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Abstract

Motivated by the financial crisis of 2007-2009 and the increasing demand for port-

folio and risk management, we study optimal insurance and investment problems

with regime switching in this thesis.

We incorporate an insurable risk into the classical consumption and investment

framework and consider an investor who wants to select optimal consumption, in-

vestment and insurance policies in a regime switching economy. We allow not only

the financial market but also the insurable risk to depend on the regime of the econ-

omy. The objective of the investor is to maximize his/her expected total discounted

utility of consumption over an infinite time horizon. For the case of hyperbolic ab-

solute risk aversion (HARA) utility functions, we obtain the first explicit solutions

for simultaneous optimal consumption, investment and insurance problems when

there is regime switching.

Next we consider an insurer who wants to maximize his/her expected utility

of terminal wealth by selecting optimal investment and risk control policies. The

insurer’s risk is modeled by a jump-diffusion process and is negatively correlated

with the capital gains in the financial market. In the case of no regime switching

in the economy, we apply the martingale approach to obtain optimal policies for

HARA utility functions, constant absolute risk aversion (CARA) utility functions,

and quadratic utility functions. When there is regime switching in the economy,

we apply dynamic programming to derive the associated Hamilton-Jacobi-Bellman

(HJB) equation. Optimal investment and risk control policies are then obtained in

explicit forms by solving the HJB equation.
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We provide economic analyses for all optimal control problems considered in

this thesis. We study how optimal policies are affected by the economic conditions,

the financial and insurance markets, and investor’s risk preference.
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Chapter 1

Introduction
As a field of applied mathematics, mathematical finance has been experiencing a

rapid and fascinating development in the last a few decades. The origin of mathe-

matical finance dates back to Louis Bachelier’s Ph.D thesis in 1900 (see Bachelier

[5]). In his fundamental work, Bachelier applied Winer processes (Brownian mo-

tion) to model the dynamics of stock prices and studied option pricing problems,

which was five years earlier than Albert Einstein’s celebrated work on Brownian

motion (see Einstein [26]). But Bachelier’s work was not recognized by either a-

cademic field or industries at that time, it rather took about another half a century

until the world finally realized the importance of the applications of mathematics to

finance.

Modern finance is built upon two revolutions, mainly by mathematicians. The

first revolution was led by Harry Markowitz, with the publication of the paper Port-

folio Selection in 1952. Markowitz argued that all rational investors should select

mean-variance efficient portfolios which minimize variance under a given expected

return or maximize expected return under a given variance (see Markowitz [60, 61]).

Building on Markowitz’s original work, Sharpe [82] developed the Capital Asset

Pricing Model, which was also proposed by Lintner [57] and Mossin [67] indepen-

dently. Markowitz and Sharpe, jointly with Miller, received the 1990 Nobel Prize

in Economics for their contributions to modern portfolio theory.

The second revolution began with the Black-Scholes model on option pricing in
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1973. Fischer Black and Myron Scholes derived a partial differential equation that

yields the explicit solution of European call/put option price (see Black and Scholes

[7]). Black-Scholes model also provides an important risk management procedure,

called delta hedging. Robert Merton worked closely with Black and Scholes on the

development of the option pricing formula and extended the original work of Black

and Scholes [7] in Merton [65]. Merton and Scholes were awarded the Nobel Price

in Economics in 1997 for their work on options pricing. Sadly, Black passed away

in 1995 and then was only memorized as a contributor.

In this thesis, we concern not only investment problems but also risk manage-

ment problems. In particular, we deal with risk management problems with insur-

ance/reinsurance. Arrow’s paper in 1963 (see Arrow [2]) draw the attention of many

researchers to risk management with insurance. In general, insurance is considered

as a risk transfer tool. But insurance can also be used to prevent risk. Ehrlich and

Becker [25] were the first to propose how insurance can be used as a risk preven-

tion tool. Early contributions to insurance/reinsurance problems can be found in

Louberge [59] and Dionne [22].

1.1 Objectives of the Thesis

The financial crisis of 2007-2009 caused a severe recession in global economy,

considered by many economists to be the worst financial crisis since the Great De-

pression of the 1930s. It resulted in the threat of bankruptcy of large financial

institutions, the bailout of banks, and downturns in stock markets around the world

(see IMF World Economic Outlook [45], Stein [88], and Zou and Cadenillas [103]

among others). To understand the causes of this financial crisis and manage port-

folio and risk with securities, derivatives and other financial products, we focus on
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the case of American International Group, Inc. (AIG), whose severe liquidity crisis

put the entire financial system on the brink of collapse.

AIG, once the largest insurance company in the United States with a triple-A

credit rating, collapsed within a few months in 2008. The stock price of AIG was

traded at over $50 per share in February, but plunged down to less than $2 per share

in the last quarter of 2008. The severity of AIG’s liquidity crisis led to an initial

rescue of $85 billion and a total of $182 billion bailout by the U.S. government, the

largest government bailout in history (See Stein [88, Chapter 6] and Sjostrom [83]

for detailed discussions on AIG bailout case). According to Stein [88, Chapter 6],

AIG made several major mistakes which together contributed to its sudden collapse.

First, AIG did not take business cycles into consideration and expected the housing

price index and capital gains to continue to grow when making risk management

decisions. Second, AIG misunderstood the influence of derivatives trading on the

company’s capital structure and failed to regulate risk using a proper model. Third,

AIG underpriced the risk of writing Credit Default Swap (CDS) contracts since it

ignored the negative correlation between its liabilities and the capital gains in the

financial market. Therefore, our research aims to address two important questions

that arose from the AIG case:

• Problem (i)

How can we find optimal consumption, investment and insurance strategies

for an investor who is trading securities, derivatives and insurance in an econ-

omy with business cycles?

• Problem (ii)

How can we regulate risk for an insurer who makes investment decisions and

controls its liabilities simultaneously in a market with regime switching?

3



1.2 Literature Review

In this thesis, we study two major topics: optimal investment problems, and risk

management problems with insurance/reinsurance. We review literature on these

two topics in this section.

The theory of portfolio selection started with the mean-variance framework of

Markowitz [60]. Markowitz used variance as a measure of risk and expected return

of a portfolio as a selection criterion, and then treated portfolio selection and risk

management problems as mathematical optimization problems. A major drawback

of mean-variance model is its inconsistency with second order stochastic domi-

nance, see Rothschild and Stiglitz [77]. Built as a static model, mean-variance

framework has limitations when applied to dynamic settings.

Next milestone in portfolio management attributed to the application of stochas-

tic calculus and control theory in financial economics, see Samuelson [78] and Mer-

ton [63, 64]. Their work can be described as dynamic portfolio selection, since the

price processes of risky assets are modeled by geometric Brownian motions and

portfolio decisions are made dynamically. Merton [63] was the first to obtain ex-

plicit solutions to consumption and investment problems in continuous time using

dynamic programming. Many generalizations to Merton’s work can be found in

Karatzas [52], Karatzas and Shreve [53], Sethi [81], et cetera. Another major ap-

proach to solve dynamic portfolio selection problems is the martingale approach,

see, for instance, Cox and Huang [19], and Karatzas et al. [50].

Portfolio selection in incomplete markets has attracted more attention recently.

In incomplete markets, explicit solutions of portfolio strategies may not be obtained,

and Monte Carlo simulations are then needed to obtain numerical solutions. Thanks

to the Girsanov Theorem (see Girsanov [34]), researchers can apply stochastic in-
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terest rate models and deal with changes of numeraire in economics and finance, see

Geman et al. [32] for their original work on this topic. Applications with changes

of numeraire on portfolio selection can be found in Munk and Sorensen [69, 70].

Implementing constraints on portfolio strategies, such as short-selling forbiddance,

will make markets incomplete. Examples of research on portfolio selection with

constraints can be found in Karatzas et al. [51], and Cvitanic and Karatzas [20].

Another direction is to include jump components in the modelling, which leads to

incomplete markets as well. Optimal portfolio selection with jumps have been stud-

ied by Aase [1], Jeanblant-Picque and Pontier [46], Jin and Zhang [48] and many

others. A recent review on portfolio selection can be found in Detemple [21].

The initial optimal insurance problem studies an individual who is subject to

an insurable risk and seeks the optimal amount of insurance under the utility max-

imization criterion. Using the expected value principle for premium, Arrow [2]

found the optimal insurance is deductible insurance in discrete time, see also Ar-

row [3]. The work of Arrow [2] has been generalized with state dependent utility

functions in Arrow [4]. Mossin [68] showed that full coverage is never optimal if

the insurance premium is not equal to its actuarial value (in other words, there exists

a strictly positive loading in the premium). Smith [84] extended Arrow’s research in

medical insurance to casualty insurance and liability insurance. Raviv [76] formally

explained the cause of optimal insurance being deductible insurance, and consid-

ered the case of multiply losses. Doherty and Schlesinger [23] considered the pres-

ence of an uninsurable risk and found the sufficient conditions for optimal insurance

to be full coverage or deductible insurance. Promislow and Young [75] reviewed

optimal insurance problems (without investment and consumption). They proposed

a general market model and obtained explicit solutions to optimal insurance prob-

lems under different premium principles, such as variance principle, equivalent u-
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tility principle, Wang’s principle, et cetera. Most research on optimal insurance use

the criterion of utility maximization, such as Arrow [2, 4], Mossin [68]. Doherty

and Eeckhoudt [24] applied the dual theory (also called rank-dependence, see Yaari

[95]) as the criterion to obtain optimal insurance contracts.

Optimal reinsurance problem considers an insurer who wants to select the opti-

mal reinsurance contract to insure against its risk (liabilities) under certain criteria.

Borch [9] was the first to study Pareto optimal problems with reinsurance in a e-

quilibrium model. Early contributions on optimal reinsurance are summarized in

the books of Buhlmann [12] and Gerber [33]. Common optimization criteria in-

clude mean-variance principle, see Kaluszka [49], maximizing expected value of

discounted reserve, see Hojgaard and Taksar [44], and minimizing the ruin proba-

bility, see Schmidli [79].

In traditional financial modeling, the market parameters, like the risk-free in-

terest rate, stock returns and volatility, are assumed to be independent of general

macroeconomic activities. Examples can be found extensively in the literature,

such as option pricing models (see Black and Scholes [7], and Merton [63]) and

interest rate models (see Cox et. al [18], and Vasicek [91]). However, historical

data and empirical research both show that the market behavior is affected by long-

term economic factors, which may change dramatically as time evolves. Interested

readers may refer to Chen [16], Fama [27, 29], Lee [56], Schwert [80], and the

references therein, for detailed discussions on the relationship between the finan-

cial market and macroeconomic activities. All those research show that there exist

business cycles (regime switching features) in the financial market.

In the insurance market, insurance policies depend on the regime of the econ-

omy as well. In the case of traditional insurance, the underwriting cycle has been

well documented in the literature. Indeed, empirical research provides evidence
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for the dependence of insurance policies’ underwriting performance on external

economic conditions (see for instance Grace and Hotchkiss [35], Haley [37] on

property-liability insurance, and Chung and Weiss [17] on reinsurance). In the case

of non-traditional insurance, by investigating the comovements of credit default

swap (CDS) and the bond/stock markets, Norden and Weber [71] found that CDS

spreads are negatively correlated with the price movements of the underlying stocks

and such cointegration is affected by the corporate bond volume.

Regime switching models have been developed to capture the uncertainty of

those long-term economic factors by a continuous-time Markov chain with finite

states. Hence, regime switching models can be used to capture business cycles in

the economy. Hamilton [38] was the first to introduce a regime switching model for

postwar real GNP in the U.S. and showed that the regime switching model captures

the movements of GNP in the long run better than the models with deterministic

coefficients.

Thereafter, regime switching has been applied to model many important prob-

lems in economics, finance, actuarial science, operation research and other fields.

Bollen [8], Buffington and Elliott [11], and Zhang and Guo [99] considered op-

tion pricing problems in regime switching models. Portfolio optimization problems

have been studied in regime switching models by Bauerle and Rieder [6], Sotomay-

or and Cadenillas [86], Yin and Zhou [96], Zariphopoulou [98], Zhang and Yin

[100], Zhou and Yin [101], Zou and Cadenillas [103], and many others. Regime

switching models in optimal dividend policy problems can be found in Jiang and

Pistorius [47], Sotomayor and Cadenillas [87], and Wei et al. [93]. Cadenillas et

al. [14] studied optimal production management in a regime switching framework.

Optimal investment-reinsurance problems have been studied by Liu et al. [58] in a

regime switching model.
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1.3 Organization of the Thesis

This thesis consists of three research projects on optimal investment and insurance

problems conducted by the candidate under the supervision of Professor Abel Ca-

denillas during his PhD studies at the University of Alberta.

In Chapter 2, we study Problem (i) introduced in Section 1.1. We assume that

an investor faces an insurable risk and can purchase insurance to insure against

such risk. Motivated by new insurance products, we allow not only the financial

market but also the insurable loss to depend on the regime of the economy. The

investor wants to select optimal consumption, investment and insurance policies to

maximize his/her expected total discounted utility of consumption. In the case of

hyperbolic absolute risk aversion (HARA) utility functions, via applying classical s-

tochastic control theory and solving the Hamilton-Jacobi-Bellman (HJB) equations,

we obtain the first explicit solutions for simultaneous optimal consumption, invest-

ment, and insurance problems when there is regime switching. We determine that

the optimal insurance contract is either no-insurance or deductible insurance, and

calculate when it is optimal to buy insurance. The optimal policy depends strongly

on the regime of the economy. Through an economic analysis, we calculate the

advantage of buying insurance.

In Chapter 3, we study Problem (ii) under the assumption of no regime switch-

ing in the economy. As discussed in Section 1.1, we consider an insurer whose risk

process is modeled by a jump-diffusion process and is negatively correlated with

the capital gains in the financial market. The objective of the insurer is to select

optimal investment and risk control strategies to maximize his/her expected utility

of terminal wealth. We apply the martingale approach to obtain explicit optimal

strategies in the cases of logarithmic utility, power utility, exponential utility and

8



quadratic utility. Through an economic analysis, we investigate the impact of two

factors on optimal strategies: the negative correlation between the risk process and

the capital gains, and the jump intensity of the risk.

In Chapter 4, we continue our studies on Problem (ii), and generalize the results

obtained in Chapter 3 in a regime switching model. We assume both the financial

market and the insurance market depend on the same regime. In this chapter, we

apply dynamic programming to derive the HJB equation, and then solve the HJB

equation to obtain explicit optimal investment and risk control strategies for loga-

rithmic utility, power utility and exponential utility. An economic analysis is also

provided to study the impact of markets on optimal strategies.

We summarize the results of this thesis in Chapter 5.
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Chapter 2

Optimal Consumption, Investment and

Insurance Policies with Regime Switch-

ing
In classical consumption and investment problems (see, e.g., Merton [63, 65]), a

risk-averse investor wants to select optimal consumption and investment policies in

order to maximize his/her expected discounted utility of consumption. In the tradi-

tional models for consumption and investment problems, there is only one source

of risk that comes from the uncertainty of the stock prices in the financial market.

But in real life, apart from the risk exposure in the financial market, investors often

face other random risks, such as property-liability risk and credit default risk. Thus,

it is more realistic and practical to extend the traditional models by incorporating an

insurable risk. When an investor is subject to an additional insurable risk, buying

insurance is a trade-off decision. On one hand, insurance can provide the investor

with compensation and then offset capital losses if the specified risk events occur.

On the other hand, the cost of insurance diminishes the investor’s ability to consume

and therefore reduces the investor’s expected utility of consumption.

Moore and Young [66] incorporated an insurable loss and a random horizon

into Merton’s framework in continuous time. They found explicit or numerical

solutions for different utility functions, but they did not verify rigourously that the
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obtained policies are indeed optimal. Perera [73] revisited Moore and Young’s work

by considering the same problem in a more general Levy market, and applied the

martingale approach to obtain explicit optimal policies for exponential utility func-

tions. Pirvu and Zhang [74] considered the insurable risk to be mortality risk and

studied optimal investment, consumption and life insurance problems in a financial

market in which the stock price is modeled by a mean-reverting process.

As discussed in Section 1.1 and Section 1.2, both the financial market and the

insurance market are affected by long-term economic factors that present regime

switching features, see also Sotomayor and Cadenillas [86], Sotomayor and Ca-

denillas [87], and Zou and Cadenillas [103]. Hence in this chapter, we use an

observable continuous-time finite-state Markov chain to model the regime of the

economy, and allow both the financial market and the insurance market to depend

on the regime. Our objective is to obtain simultaneously optimal consumption,

investment and insurance policies for a risk-averse investor who wants to maxi-

mize his/her expected total discounted utility of consumption over an infinite time

horizon. We extend Sotomayor and Cadenillas [86] by including a random loss in

the model and an insurance policy in the control. The most important difference

between the model of Moore and Young [66] and ours is that they do not allow

regime switching, while we allow regime switching in both the financial market

and the insurance market.

2.1 The Model

Consider a complete probability space (Ω,F ,P) in which a standard Brownian mo-

tion W and an observable continuous-time, stationary, finite-state Markov chain ε

are defined. Denote by S = {1, 2, · · · , S} the state space of this Markov chain,
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where S is the number of regimes in the economy. The matrix Q = (qij)S×S de-

notes the strongly irreducible generator of ε, where ∀ i ∈ S ,
∑
j∈S

qij = 0, qij > 0

when j 6= i and qii = −
∑
j 6=i

qij .

We consider a financial market consisting of two assets, a bond with price P0

(riskless asset) and a stock with price P1 (risky asset), respectively. Their price

processes are driven by the following Markov-modulated stochastic differential e-

quations:

dP0(t) = rε(t)P0(t)dt,

dP1(t) = P1(t)(µε(t)dt+ σε(t)dW (t)),

with initial conditions P0(0) = 1 and P1(0) > 0. The coefficients ri, µi and σi,

i ∈ S, are all positive constants.

An investor chooses π = {π(t), t ≥ 0}, the proportion of wealth invested in

the stock, and a consumption rate process c = {c(t), t ≥ 0}. We require the con-

sumption rate c to be non-negative, but allow the investment proportion π in the

stock to take all real values. In other words, short-selling of the stock is allowed

in the financial market and we assume the stock is infinitely divisible. We assume

the investor is subject to an insurable loss L(t, ε(t), X(t)), where X(t) denotes the

investor’s wealth at time t. We shall use the short notation Lt (or L(t)) to replace

L(t, ε(t), X(t)) if there is no confusion. We use a Poisson process N with intensity

λε(t), where λi > 0 for every i ∈ S , to model the occurrence of this insurable loss.

In the insurance market, there are insurance policies available to insure against the

loss Lt. We further assume the investor can control the payout amount I(t), where

I(t) : [0,∞) × Ω 7→ [0,∞) and I(t, ω) := It(L(t, ε(t, ω), X(t, ω))), or in short,

I(t) = It(Lt). For example, if ∆N(t0) = 1, then at time t0 the investor suffers
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a loss of amount Lt0 but receives a compensation of amount It0(Lt0) from the in-

surance policy, so the investor’s net loss is Lt0 − It0(Lt0). Following the premium

setting used in Moore and Young [66] (the famous expected value principle), we

assume investors pay premium continuously at the rate P given by

P (t) = λε(t)(1 + θε(t))E[It(Lt)],

where the positive constant θi, i ∈ S , is known as the loading factor in the in-

surance industry. Such extra positive loading comes from insurance companies’

administrative cost, tax, profit, et cetera.

Following Sotomayor and Cadenillas [86], we assume the Brownian motion W ,

the Poisson process N and the Markov chain ε are mutually independent. We also

assume that the loss process L is independent of N . We take the P−augmented

filtration {Ft}t≥0 generated by W , N , L and ε as our filtration and define F :=

σ(∪t≥0Ft).

For an investor with triplet strategies u(t) := (π(t), c(t), I(t)), the associated

wealth process X is obtained as

dX(t) =
(
rε(t)X(t) + (µε(t) − rε(t))π(t)X(t)− c(t)− λε(t)(1 + θε(t))

· E[It(Lt)]
)
dt+ σε(t)π(t)X(t)dW (t)− (Lt − It(Lt)) dN(t),

(2.1)

with initial conditions X(0) = x > 0 and ε(0) = i ∈ S.

We define the criterion function J as

J(x, i;u) := Ex,i

[∫ +∞

0

e−δtU(c(t), ε(t))dt

]
, (2.2)

where δ > 0 is the discount rate and Ex,i means conditional expectation given

X(0) = x and ε(0) = i. We assume that for every i ∈ S, the utility function

U(·, i) isC2(0,+∞), strictly increasing and concave, and satisfies the linear growth
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condition

∃K > 0 such that U(y, i) ≤ K(1 + y), ∀ y > 0, i ∈ S.

Besides, we use the notation U(0, i) := lim
y→0+

U(y, i), ∀ i ∈ S.

Remark 2.1. The strict concavity implies that the investors considered here are risk

averse. Furthermore, we assume the utility function is regime dependent. Such as-

sumption is supported by extensive literature, see, for instance, Koszegi and Rabin

[54, 55] and Sugden [89]. Sotomayor [85], and Sotomayor and Cadenillas [86]

gave a detailed explanation and reference regarding the validness of this assump-

tion.

We define the bankruptcy time as

Θ := inf{t ≥ 0 : X(t) ≤ 0}.

Since an investor can consume only when his/her wealth is strictly positive, we

define

R(Θ) :=

∫ ∞
Θ

e−δtU(c(t), ε(t))dt =

∫ ∞
Θ

e−δtU(0, ε(t))dt.

A control u := (π, c, I) is called admissible if {ut}t≥0 is predictable with re-

spect to the filtration {Ft}t≥0 and satisfies, ∀ t ≥ 0

Ex,i

[∫ t

0

c(s)ds

]
< +∞, (2.3)

Ex,i

[∫ t

0

σ2
ε(s)π

2(s)ds

]
< +∞, (2.4)

Ex,i

[∫ Θ

0

e−δsU+(c(s), ε(s))ds

]
< +∞, (2.5)

and I(t) ∈ It := {I : 0 ≤ I(Y ) ≤ Y, where Y is Ft-measurable}.

The set of all admissible controls with initial conditions X(0) = x and ε(0) = i
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is denoted by Ax,i. We study the following problem.

Problem 2.1. Select an admissible control u∗ = (π∗, c∗, I∗) ∈ Ax,i that maximizes

the criterion function J . In addition, find the value function

V (x, i) := sup
u∈Ax,i

J(x, i;u).

The control u∗ is called an optimal control or an optimal policy.

Moore and Young [66] also incorporated an insurable risk into the consump-

tion and investment framework. However, they did not consider a regime switching

model, or equivalently they assumed that there is only one regime in the economy.

Nevertheless, the insurable risk and the coefficients of the financial market most

likely depend on the regime of the economy. Hence, in the above regime switching

model, we assume that the insurance market (insurable loss and insurance perfor-

mance) and the financial market are regime dependent. Furthermore, we assume

these two markets depend on the same regime. We mention three examples below

to support such assumption. First, the assumption that the financial market and

the insurance market depend on the same regime is supported by the bailout case

of AIG (see Sjostrom [83] for details) and new financial derivatives traded in the

insurance market. Before the crash of the U.S. housing market in 2007, many in-

vestors, banks and financial institutions bought obligations constructed from mort-

gage payments or made loans to the housing agencies. To insure against the credit

risk that the obligations or loans may default, they purchased credit default swap

(CDS) contracts from insurance companies like AIG. In a CDS contract, the buy-

er makes periodic payments to the seller, and in return, receives the par value of

the underlying obligation or loan in the event of a default. Apparently, the credit

default risk insured by CDS contracts is negatively correlated with the reference
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entity’s stock performance (see Norden and Weber [71] for empirical evidence).

Second, generated by the financial engineering on derivatives, insurance companies

have created numerous equity-linked products, such as equity-linked life insurance

(see Hardy [41] for more details on such insurance policy). If the insured of an

equity-linked life insurance policy survives to the expiration, then the beneficiary

receives investment benefit that depends upon the market value of the reference eq-

uity. Hence, equity-linked life insurance and its reference equity are affected by the

same long-term economic factors. Third, even in traditional insurance products like

property-liability insurance, there is empirical evidence (see, for instance, Grace

and Hotchkiss [35]) that the loading factor θ depends on the regime of the econo-

my. Indeed, in those traditional insurance products, λε(t) and L(t, ε(t, ω), X(t, ω))

might be independent of ε(t) but θ depends on ε(t).

2.2 Verification Theorems

Let ψ : (0,∞)×S → R be a function with ψ(·, i) ∈ C2(0,∞),∀ i ∈ S. We define

the operator Lui by

Lui (ψ) := (rix+ (µi − ri)πx− c− λi(1 + θi)E[I(L)])ψ′ +
1

2
σ2
i π

2x2ψ′′ − δψ,

where ψ′ = ∂ψ
∂x

and ψ′′ = ∂2ψ
∂x2

.

Theorem 2.1. Suppose U(0, i) is finite, ∀ i ∈ S . Let v(·, i) ∈ C2(0,∞) be an

increasing and concave function such that v(0, i) = U(0,i)
δ

for every i ∈ S . If

v = v(·, ·) satisfies the Hamilton-Jacobi-Bellman equation
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sup
u

{
Lui v(x, i) + U(c, i) + λiE[v(x− L+ I(L), i)− v(x, i)]

}
= −

∑
j∈S

qij

(
v(x, j)− U(0, j)

δ

)
(2.6)

for every x > 0, i ∈ S, and the control u∗ = (π∗, c∗, I∗) defined by

u∗t := arg sup
u

(
Luε(t)v(X∗t , εt) + U(c, εt)

+ λε(t)E[v(X∗t − Lt + I(Lt), εt)− v(X∗t , εt)]
)
10≤t<Θ

is admissible, then u∗ is an optimal control to Problem 2.1. In addition, the value

function is given by

V (x, i) = v(x, i) +
1

δ
Ex,i

[∫ ∞
0

e−δsdU(0, εs)

]
,

where dU(0, εs) :=
∑
j∈S

qεs,jU(0, j)ds.

Furthermore, if the utility function does not depend on the regime, namely

U(y, i) = U(y), for every i ∈ S, then the value function V (x, i) = v(x, i).

Proof. ∀u ∈ Ax,i, consider f(t,Xt, εt) := e−δt(v(Xt, εt) − U(0,εt)
δ

). By applying

Ito’s formula for Markov-modulated processes (see, for instance, Buffington and

Elliott [11], and Sotomayor and Cadenillas [86]), we get

f(t,Xt, εt) =

∫ t

0

e−δs
(
Lu(s)
ε(s) v(Xs, εs) + λε(s) [v(Xs − Ls + Is, εs)− v(Xs, εs)]

+
∑
j∈S

qεs,j
(
v(Xs, j)−

U(0, j)

δ

)
+ U(0, εs)

)
ds

+ v(X0, ε0)− U(0, ε0)

δ
+mf

t , (2.7)

where {mf
t }t≥0 is a P−martingale with mf

0 = 0.

Let 0 < a < X0 = x < b < ∞ and define a stopping time τ := inf{t ≥
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0 : Xt ≤ a or Xt ≥ b}. Then by replacing t by t ∧ τ in (2.7), taking conditional

expectation and applying the HJB equation (2.6), we obtain

Ex,i[f(t ∧ τ,Xt∧τ , εt∧τ )] ≤ −Ex,i
[∫ t∧τ

0

e−δs(U(cs, εs)− U(0, εs))ds

]
+ v(x, i)− U(0, i)

δ
.

Let a ↓ 0, b ↑ +∞ and t → ∞. Then t ∧ τ → Θ. Since f is continuous, we

obtain

f(t ∧ τ,Xt∧τ , εt∧τ )→ f(Θ, 0, εΘ) = 0,

when a ↓ 0, b ↑ +∞, t→∞.

Then, we get

v(x, i)− U(0, i)

δ
− Ex,i

[∫ Θ

0

e−δs(U(cs, εs)− U(0, εs))ds

]
≥ 0. (2.8)

Define g(t, εt) := −e−δt U(0,εt)
δ

. Applying Ito’s formula to g(t, εt) yields

g(t, εt)− g(0, ε0) =

∫ t

0

e−δs

(
U(0, εs)−

1

δ

∑
j∈S

qεs,jU(0, j)

)
ds+mg

t ,

where {mg
t}t≥0 is a square-integrable martingale with mg

0 = 0.

Taking conditional expectation and applying the monotone convergence theo-

rem to the above equality, we get

U(0, i)

δ
= Ex,i

[∫ ∞
0

e−δsU(0, εs)ds

]
− 1

δ
Ex,i

[∫ ∞
0

e−δsdU(0, εs)

]
,

and then
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v(x, i)− U(0, i)

δ
− Ex,i

[∫ Θ

0

e−δs(U(cs, εs)− U(0, εs))ds

]
=v(x, i)− Ex,i

[∫ ∞
0

e−δsU(0, εs)ds−
1

δ

∫ ∞
0

e−δsdU(0, εs)

]
− Ex,i

[∫ Θ

0

e−δs(U(cs, εs)− U(0, εs))ds

]
=v(x, i) +

1

δ
Ex,i

[∫ ∞
0

e−δsdU(0, εs)

]
− Ex,i

[∫ Θ

0

e−δsU(cs, εs)ds

]
− Ex,i

[∫ ∞
Θ

e−δsU(0, εs))ds

]
.

Therefore, the inequality (2.8) can be rearranged as

(x, i) +
1

δ
Ex,i

[∫ ∞
0

e−δsdU(0, εs)

]
≥ Ex,i

[∫ ∞
0

e−δsU(cs, εs)ds

]
= J(x, i;u),

and the equality will be achieved when u = u∗.

If the utility function does not depend on the regime, then dU(0, εs) = U(0) ·∑
j∈S

qijds = 0, and so V (x, i) = v(x, i). �

U(·, i) is an increasing function for every i ∈ S , so if U(0, i) is not finite, then

U(0, i) = −∞. The following theorem deals with the case when U(0, i) = −∞,

∀ i ∈ S.

Theorem 2.2. Suppose U(0, i) = −∞ for every i ∈ S . Let v(·, i) ∈ C2(0,∞) be

an increasing and concave function such that v(0, i) = −∞ for every i ∈ S . If

v = v(·, ·) satisfies the Hamilton-Jacobi-Bellman equation

sup
u

{
Lui v(x, i) + U(c, i) + λiE[v(x− L+ I(L), i)− v(x, i)]

}
= −

∑
j∈S

qijv(x, j) (2.9)
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for every x > 0, i ∈ S, and the control u∗ = (π∗, c∗, I∗) defined by

u∗t := arg sup
u

(
Luε(t)v(X∗t , εt) + U(c, εt)

+ λε(t)E[v(X∗t − Lt + I(Lt), εt)− v(X∗t , εt)]
)
10≤t<Θ

is admissible, then u∗ is an optimal control to Problem 2.1 and the value function

is V (x, i) = v(x, i).

Proof. Define h(t,Xt, εt) := e−δtv(Xt, εt). For any admissible control u, by fol-

lowing a similar argument as in Theorem 2.1, we obtain

Ex,i [h(t ∧ τ,Xt∧τ , εt∧τ )] = Ex,i

[ ∫ t∧τ

0

e−δs
(
Lu(s)
ε(s) v(Xs, εs) +

∑
j∈S

qεs,jv(Xs, j)

+ λiE[v(Xs − Ls + Is, εs)− v(Xs, εs)]
)
ds
]

+ v(x, i)

≤ v(x, i)− Ex,i
[∫ t∧τ

0

e−δsU(cs, εs)ds

]
.

Ex,i

[∫ t∧τ
0

e−δsU(c(s), ε(s))ds
]

is well defined and finite, because u is an admissi-

ble control and U satisfies the linear growth condition. Then the above inequality

becomes

v(x, i) ≥ Ex,i [h(t ∧ τ,Xt∧τ , εt∧τ )] + Ex,i

[∫ t∧τ

0

e−δsU(cs, εs)ds

]
.

By assumption, v(·, i) is increasing in (0,∞) and v(0, i) = U(0,i)
δ

= −∞ for

every i ∈ S, so

Ex,i[h(t ∧ τ,Xt∧τ , εt∧τ )] ≥ Ex,i

[∫ ∞
t∧τ

e−δsU(0, εs)ds

]
.

By letting a ↓ 0, b ↑ +∞ and t→∞, and applying the monotone convergence

theorem, we obtain

v(x, i) ≥ Ex,i

[∫ Θ

0

e−δsU(cs, εs)ds

]
+ Ex,i

[∫ ∞
Θ

e−δsU(0, εs)ds

]
= J(x, i;u),
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and the equality holds when u = u∗. �

2.3 Explicit Solutions of Value Function and Optimal

Policies

In this section, we obtain explicit solutions to optimal consumption, investment and

insurance problems when there is regime switching in the economy. We assume the

utility function is of HARA (Hyperbolic Absolute Risk Aversion) type and the in-

surable loss L is proportional to the investor’s wealth, L(t, ε(t), X(t)) = ηε(t) ltXt.

Here for every i ∈ S , ηi > 0 measures the intensity of the insurable loss in regime

i, and for every t ≥ 0, lt denotes the loss proportion at time t. We assume that lt is

Ft−measurable and lt ∈ (0, 1) for all t ≥ 0.

To obtain optimal policy, we first construct a candidate policy at time t, which

is a function of (x, i, l), namely, π∗ = π∗(x, i, l), c∗ = c∗(x, i, l) and I∗ = I∗(x, i, l)

(In fact, we find π∗ and c∗ are independent of l). The candidate policy is indeed

optimal once we can prove it is admissible.

We rewrite the HJB equation (2.6) as

max
π

[
(µi − ri)πxv′(x, i) +

1

2
σ2
i π

2x2v′′(x, i)
]

+ max
c

[
U(c, i)− cv′(x, i)

]
+ λi max

I

[
Ev(x− ηilx+ I(ηilx), i)− (1 + θi)E(I(ηilx))v′(x, i)

]
= (δ + λi)v(x, i)− rixv′(x, i)−

∑
j∈S

qij

(
v(x, j)− U(0, j)

δ

)
, (2.10)
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and the HJB equation (2.9) as

max
π

[
(µi − ri)πxv′(x, i) +

1

2
σ2
i π

2x2v′′(x, i)
]

+ max
c

[
U(c, i)− cv′(x, i)

]
+ λi max

I

[
Ev(x− ηilx+ I(ηilx), i)− (1 + θi)E(I(ηilx))v′(x, i)

]
= (δ + λi)v(x, i)− rixv′(x, i)−

∑
j∈S

qijv(x, j). (2.11)

We conjecture that v(·, i) is strictly increasing and concave for every i ∈ S .

Then a candidate for π∗ is given by

π∗(x, i) = −(µi − ri)v′(x, i)
σ2
i xv

′′(x, i)
. (2.12)

Since U ′ is strictly decreasing, the inverse of U ′ exists. Then a candidate for c∗

is given by

c∗(x, i) = (U ′)−1(v′(x, i), i). (2.13)

For the optimal insurance, we have the following Lemma and Theorem.

Lemma 2.1. ∀x > 0 and i ∈ S, denote z0 := ηil0x, where constant l0 ∈ (0, 1). We

denote the optimal insurance policy by I∗. Then we have

(a) I∗(x, i, l0) = 0 if and only if

(1 + θi)v
′(x, i) ≥ v′(x− z0, i).

(b) 0 < I∗(x, i, l0) < z0 if and only if

(1 + θi)v
′(x, i) = v′(x− z0 + I∗(x, i; l0), i).

Proof. ∀ i ∈ S , we use the notation z := ηilx. We then break the proof into four

steps.

Step 1: We show that I∗(x, i, l) 6= z, ∀ l ∈ (0, 1).
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Assume to the contrary that ∃ l0 ∈ (0, 1) such that I∗(x, i, l0) = I∗(z0) = z0.

Consider Ī(x, i, l) := I∗(x, i, l)− ζG(l), where ζ > 0 and G(l) = 1 when l0− ρ <

l ≤ l0 + ρ and 0 otherwise, ρ > 0. Here we choose small ζ and ρ to ensure that

0 ≤ Ī(z) ≤ z. Let

f I(x, i, l; I) := E [v(x− z + I(z), i)]− (1 + θi)E [I(z)] v′(x, i).

Since I∗ is the maximizer of f I(x, i, l; I), we have

E
[
v(x− z + Ī(z), i)− v(x− z + I∗(z), i)

]
≤ (1 + θi)E

[
Ī(z)− I∗(z)

]
v′(x, i).

Using Taylor expansion and letting ζ → 0+, we get

(1 + θi)E
[
G(l)]v′(x, i) ≤ E

[
v′(x− z + I∗(z), i)G(l)

]
.

Letting ρ→ 0+ (z → z0) and applying the mean value theorem of integrals, we

obtain

(1 + θi)v
′(x, i) ≤ v′(x− z0 + I∗(z0), i) = v′(x, i),

which is a contradiction since v′(x, i) > 0 and θi > 0, ∀i ∈ S.

Step 2: We show that I∗(x, i, l0) = 0⇒ (1 + θi)v
′(x, i) ≥ v′(x− z0, i).

To this purpose, we consider Ī ′(x, i, l) := I∗(x, i, l) + ζG(l). For small enough

ζ and ρ, we have 0 ≤ Ī ′(z) ≤ z. Then a similar argument as above gives the desired

result

(1 + θi)v
′(x, i) ≥ v′(x− z0 + I∗(x, i, l0), i) = v′(x− z0, i).

Step 3: We show that 0 < I∗(x, i, l0) < z0 ⇒ (1 + θi)v
′(x, i) = v′(x − z0 +

I∗(x, i, l0), i).

In this step, we consider Ī(x, i, l) and Ī ′(x, i, l) constructed above. From the

results in Step 1 and Step 2, we obtain (1 + θi)v
′(x, i) ≤ v′(x− z0 + I∗(x, i, l0), i)
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and (1 + θi)v
′(x, i) ≥ v′(x − z0 + I∗(x, i, l0), i) at the same time, and thus the

equality is achieved.

Step 4: We show that (1 + θi)v
′(x, i) ≥ v′(x− z0, i)⇒ I∗(x, i, l0) = 0.

We assume to the contrary that I∗(x, i, l0) > 0. Then the results above give

(1+θi)v
′(x, i) = v′(x−z0+I∗(x, i, l0), i) < v′(x−z0, i), which is a contradiction to

the given condition. A similar method also applies to the proof of (1 + θi)v
′(x, i) =

v′(x− z0 + I∗(x, i, l0), i)⇒ 0 < I∗(x, i, l0) < z0. �

Theorem 2.3. The optimal insurance is either no insurance or deductible insurance

(almost surely).

(a) The optimal insurance is no insurance I∗(x, i, l) = 0,∀i ∈ S, when

(1 + θi)v
′(x, i) ≥ v′

(
(1− ηi ess sup(l))x, i

)
. (2.14)

(b) The optimal insurance is deductible insurance I∗(x, i, l) = (ηilx− di)+, ∀ i ∈

S, when there exists di := di(x) ∈ (0, x) satisfying

(1 + θi)v
′(x, i) = v′(x− di, i). (2.15)

Proof. We complete the proof in three steps.

Step 1: We show Case (a).

Assume there exists l0 ∈ (0, 1) such that 0 < I∗(x, i, l0) < z0. Then according

to (b) in Lemma 2.1, we have (1 + θi)v
′(x, i) = v′(x− z0 + I∗(x, i, l0), i). Define

the set Nl := {ω ∈ Ω : l(ω) > ess sup(l)} (we have P{Nl} = 0). If l0 ≤ ess sup(l)

(on the set N c
l ), then v′((1− ηi ess sup(l))x, i) > v′(x− z0 + I∗(x, i, l0), i) = (1 +

θi)v
′(x, i), which is a contradiction to the given condition. Therefore I∗(x, i, l) = 0

on the set N c
l .
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Besides, if two policies I1 and I2 only differ on a negligible set, we have

f I(i, l; I1) = f I(i, l; I2), because the integration of a bounded function on a negli-

gible set is zero.

Step 2: We show Case (b).

We notice that v′(·, i) is a strictly decreasing function, so if such di exists, it

must be unique. We then break our discussion into two disjoint scenarios.

(i) 0 < l0 ≤
di
ηix

In this scenario, ηil0x ≤ di, so we have

v′((1− ηil0)x, i) ≤ v′(x− di, i) = (1 + θi)v
′(x, i).

Then by part (a) of Lemma 2.1, we obtain

I∗(x, i, l0) = 0 = (ηil0x− di)+.

(ii)
di
ηix

< l0 < 1

In this scenario, we have 0 < I∗(x, i, l0) < z0 since v′((1− ηil0)x, i) > v′(x−

di, i) = (1 + θi)v
′(x, i). Then the results in Lemma 2.1 shall give

(1 + θi)v
′(x, i) = v′(x− z0 + I∗(x, i, l0), i) = v′(x− di, i).

Due to the monotonicity of v′(·, i), we must have

I∗(x, i, l0) = ηil0x− di = (ηil0x− di)+.

Step 3: We show that either (2.14) or (2.15) holds.

If condition (2.14) fails, then

v′(x, i) < (1 + θi)v
′(x, i) < v′((1− ηi ess sup(l))x, i) ≤ v′(0, i),

where v′(0, i) := limx→0 v
′(x, i). Since v′(·, i) is continuous and strictly decreasing
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in [0, x], there must exist a unique di ∈ (0, x) such that

(1 + θi)v
′(x, i) = v′(x− di, i).

If (2.15) has no solution in (0, x), then

(1 + θi)v
′(x, i) ≥ v′(0, i) ≥ v′((1− ηi ess sup(l))x, i).

Therefore, we conclude that the optimal insurance is either no insurance or de-

ductible insurance. �

Remark 2.2. The optimal insurance I∗ also satisfies the usual properties: I∗t (·) is

an increasing function of the loss and I∗t (0) = 0.

To find explicit solutions to the optimal consumption, investment and insurance

problems, we consider four utility functions of HARA class. The first three utility

functions do not depend on the market regimes:

1. U(y, i) = ln(y), y > 0,

2. U(y, i) = −yα, y > 0, α < 0,

3. U(y, i) = yα, y > 0, 0 < α < 1.

The fourth utility function depends on the regime of the economy and we assume

there are two regimes in the economy (S = 2).

4. U(y, i) = βiy
1/2, y > 0, βi > 0, i = 1, 2.

All these four utility functions are C2(0,∞), strictly increasing and concave,

and satisfy the linear growth condition. To be specific, we can take K = 1 for the

first three utility functions and K = max{β1, β2} for the last one.
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2.3.1 U(y, i) = ln(y), y > 0,∀ i ∈ S

In this case, a solution to the HJB equation (2.11) is given by

v̂(x, i) =
1

δ
ln(δx) + Âi, i ∈ S, (2.16)

where the constants Âi, i ∈ S, will be determined below.

Since v̂′(x, i) = 1
δx

, v̂′′(x, i) = − 1
δx2

and (U ′)−1(y, i) = 1
y
, we obtain from

(2.12) and (2.13) that

π∗(x, i) =
µi − ri
σ2
i

and c∗(x, i) = δx.

Solving (1 + θi)v̂
′(x, i) = v̂′(x − di, i) gives di = θi

1+θi
x ∈ (0, x). Then by

Theorem 2.3,

I∗(x, i, l) =

(
ηil −

θi
1 + θi

)+

x.

Therefore, the HJB equation (2.11) reads as

ri
δ

+
γi
δ

+
λi
δ

Λ̂i − 1 = δÂi −
∑
j∈S

qijÂj,

where γi := 1
2

(µi−ri)2
σ2
i

and

Λ̂i := E

[
ln

(
1− ηil +

(
ηil −

θi
1 + θi

)+
)]
− (1 + θi)E

[(
ηil −

θi
1 + θi

)+
]
.

Let ~̂A = (Â1, Â2, · · · , ÂS)′, ~r = (r1, r2, · · · , rS)′, ~γ = (γ1, γ2, · · · , γS)′, ~λΛ̂ =

(λ1Λ̂1, λ2Λ̂2, · · · , λSΛ̂S)′, 1 = (1, 1, · · · , 1)′S×1 and I be the S × S identity matrix.

Then the constant vector ~̂A satisfies the linear system

(δI−Q)
~̂
A =

1

δ

(
~r + ~γ +

~
λΛ̂− δ1

)
. (2.17)
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Proposition 2.1. The function v̂ = v̂(·, ·), given by

v̂(x, i) =


1
δ

ln(δx) + Âi, x > 0

−∞, x = 0

where ~̂
A = (Â1, Â2, · · · , ÂS)′ solves the linear system (2.17), is the value function

of Problem 2.1. Furthermore, the policy given by

u∗(t) = (π∗(t), c∗(t), I∗(t)) =

(
µε(t) − rε(t)

σ2
ε(t)

, δX∗t ,

(
ηε(t) lt −

θε(t)
1 + θε(t)

)+

X∗t

)

is an optimal policy of Problem 2.1.

Proof. The function v̂(·, i) defined above is a smooth function which is strictly in-

creasing and concave such that v̂(0, i) = −∞, for every i ∈ S. By the construction

of the vector ~̂A, v̂ satisfies the HJB equation (2.11).

To show that the candidate policy is admissible, we consider an upper bound

process Z of X∗

dZt
Zt

=
(
rε(t) − δ + 2γε(t)

)
dt+

µε(t) − rε(t)
σε(t)

dW (t),

with initial value Z(0) = x.

Solving the above SDE gives

Zt = x exp

{∫ t

0

(
rε(s) − δ + γε(s)

)
ds+

∫ t

0

µε(s) − rε(s)
σε(s)

dW (s)

}
.

By the definition of Z, we have X∗t ≤ Zt, ∀t ≥ 0.

Notice that if ε(t) = i for t ∈ (t1, t2], then∫ t2

t1

µε(s) − rε(s)
σε(s)

dW (s) =
µi − ri
σi

(W (t2)−W (t1)).

So
∫ t

0

µε(s)−rε(s)
σε(s)

dW (s) is a linear combination of independent Brownian motions.
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By the exponential martingale property of a Brownian motion, we have

E

[
exp

(∫ t

0

µε(s) − rε(s)
σε(s)

dW (s)

)]
= exp

(∫ t

0

γε(s)ds

)
.

For the candidate of optimal investment proportion π∗,

Ex,i

[∫ t

0

σ2
ε(t)(π

∗(s))2ds

]
≤ 2 γM t <∞, ∀t ≥ 0,

where γM = max
i∈S
{γi}.

Since c∗(t) = 0,∀ t > Θ, for the candidate of optimal consumption c∗,

Ex,i

[∫ t

0

c∗(s)ds

]
= Ex,i

[∫ t

0

c∗(s)1s≤Θds

]
≤ δEx,i

[∫ t

0

X∗sds

]
≤ δEx,i

[∫ t

0

Zsds

]
≤ δx

∫ t

0

eK1sds =
δx

K1

(
eK1 t − 1

)
<∞, ∀t ≥ 0,

where K1 = max
i∈S
{ri − δ + 2γi}.

For the candidate of optimal insurance I∗, ∀Ft-measurable random variable Y ,

0 ≤ I∗t (Y ) =
(
Y − θε(t)

1+θε(t)
X∗t

)+

≤ Y , so I∗t ∈ It.

Furthermore, we have

Ex,i

[∫ Θ

0

e−δs ln+(c∗s)ds

]
≤ Ex,i

[∫ ∞
0

e−δs| ln(δZs)|ds
]

≤ 1

δ
| ln(δx)|+K ′1

∫ ∞
0

e−δssds

+ 2

√
γM
π

∫ ∞
0

e−δs
√
s ds

=
1

δ
| ln(δx)|+ K ′1

δ2
+

√
γM

δ
√
δ
<∞,

where K ′1 = max
i∈S
|ri − δ + γi|.

Therefore, u∗ = (π∗, c∗, I∗) is optimal policy of Problem 2.1, and by Theorem

2.2, v̂ is the corresponding value function. �
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Example 2.1. S = 2

In this example, we assume there are two regimes in the economy, where regime

1 represents a bull market and regime 2 represents a bear market. According to

French et al. [31], the stock returns are higher in a bull market, so µ1 > µ2. Hamil-

ton and Lin [39] found stock volatility is higher in a bear market, thus σ1 < σ2. The

data of overnight financing rate and treasury bill rate (see, for instance, the statisti-

cal data from Bank of Canada) suggests the risk-free interest rate is higher in good

economy, hence r1 > r2. Haley [37] found the underwriting margin is negatively

correlated with the interest rate, which implies the loading factor is smaller in a

bull market, θ1 < θ2. Norden and Weber [71] observed that CDS spreads (default

risk) are negatively correlated with the stock prices. Equivalently, the default risk

is higher in a bear market, that is, η1 < η2.

The generator matrix entries become

q11 = −Π1, q12 = Π1, q21 = Π2, q22 = −Π2,

with Π1,Π2 > 0, so the linear system (2.17) becomes

(δ + Π1)Â1 − Π1Â2 =
1

δ
(r1 + γ1 − δ + λ1Λ̂1)

−Π2Â1 + (δ + Π2)Â2 =
1

δ
(r2 + γ2 − δ + λ2Λ̂2)

which gives a unique solution

Âi =
Πi(rj + γj − δ + λjΛ̂j) + (δ + Πj)(ri + γi − δ + λiΛ̂i)

δ2(δ + Π1 + Π2)
,

where i, j = 1, 2 and i 6= j.

From the above expression of Âi, we notice that only Λ̂i is not directly given by

the market. To calculate Λ̂i, we assume the loss proportion lt does not depend on
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time t and we discuss the cases that l is constant or uniformly distributed on (0, 1).

We further assume θ1
η1(1+θ1)

≤ θ2
η2(1+θ2)

. If the opposite is true, then we switch the

expressions when calculating Λ̂1 and Λ̂2.

1. l is constant.

If
(
ηil − θi

1+θi

)+

≡ 0, i = 1 or 2, then

Λ̂i = ln(1− ηil).

Otherwise, we obtain

Λ̂i = − ln(1 + θi)− ηil(1 + θi) + θi.

2. l is uniformly distributed on (0, 1).

If
(
ηil − θi

1+θi

)+

≡ 0, i = 1 or 2, then

Λ̂i = E [ln(1− ηil)] =

(
1− 1

ηi

)
ln(1− ηi)− 1.

Otherwise, through straightforward calculus, we obtain

E

[
ln

(
1− ηil +

(
ηil −

θi
1 + θi

)+
)]

=

(
1

ηi
− 1

)
ln(1 + θi)−

θi
ηi(1 + θi)

,

and E

[(
ηil −

θi
1 + θi

)+
]

=
ηi
2

+
θ2
i

2ηi(1 + θi)2
− θi

1 + θi
.

Hence,

Λ̂i =

(
1

ηi
− 1

)
ln(1 + θi)−

(ηi(1 + θi)− θi)2 + 2θi
2ηi(1 + θi)

.
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2.3.2 U(y, i) = −yα, y > 0, α < 0,∀i ∈ S

In this scenario, a solution to the HJB equation (2.11) is given by

ṽ(x, i) = −Ã1−α
i xα, (2.18)

where the constants Ãi > 0, i ∈ S, will be determined below.

From

ṽ′(x, i) = −αÃ1−α
i x−(1−α),

ṽ′′(x, i) = α(1− α)Ã1−α
i x−(2−α),

and (U ′)−1(y, i) = (−α
y

)
1

1−α ,

we obtain

π∗(x, i) =
µi − ri

(1− α)σ2
i

and c∗(x, i) =
x

Ãi
> 0.

Solving the equation

(1 + θi)ṽ
′(x, i) = ṽ′(x− di, i)

gives di = νix, where

νi := 1− (1 + θi)
− 1

1−α .

Then, by Theorem 2.3,

I∗(x, i, l) = (ηil − νi)+x.

By plugging the candidate policy into the HJB equation (2.11), we find the

constants Ãi should satisfy the following non-linear system(
δ − αri −

α

1− α
γi + λi(1− Λ̃i)

)
Ã1−α
i − (1− α)Ã−αi =

∑
j∈S

qijÃ
1−α
j , (2.19)

where Λ̃i := E
[
(1− ηil + (ηil − νi)+)α

]
− α(1 + θi)E

[
(ηil − νi)+

]
.
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In order to guarantee the above non-linear system has a unique positive solution,

we need the following technical condition

δ > max
i∈S

{
αri +

α

1− α
γi − λi(1− Λ̃i)

}
. (2.20)

Lemma 2.2. The non-linear system (2.19) has a unique positive solution Ãi, i ∈ S,

if the condition (2.20) holds.

Proof. Please refer to Lemma 4.1 in Sotomayor and Cadenillas [86] for proof. �

Proposition 2.2. The function ṽ = ṽ(·, ·), given by

ṽ(x, i) =


−Ã1−α

i xα, x > 0

−∞, x = 0

,

where Ãi is the unique solution to the non-linear system (2.19), is the value function

of Problem 2.1. Furthermore, the policy given by

u∗(t) =

(
µε(t) − rε(t)
(1− α)σ2

ε(t)

,
X∗t
Ãε(t)

,
(
ηε(t) lt − νε(t)

)+
X∗t

)

is an optimal policy of Problem 2.1.

Proof. To verify that the candidate policy is admissible, we consider an upper bound

process Z̃ of X∗ with the dynamics

dZ̃t

Z̃t
=

(
rε(t) +

(µε(t) − rε(t))2

(1− α)σ2
ε(t)

)
dt+

µε(t) − rε(t)
(1− α)σε(t)

dWt.

Given Z̃0 = X∗0 = x, we can solve the above SDE to obtain

Z̃t = x exp

{∫ t

0

(
rε(s) +

(1− 2α)(µε(s) − rε(s))2

2(1− α)2σ2
ε(s)

)
ds+

∫ t

0

µε(s) − rε(s)
(1− α)σε(s)

dWs

}
.

We use this upper bound process Z̃ to verify that the conditions for an admissi-
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ble control are satisfied. We have for every t ≥ 0 that

Ex,i

[∫ t

0

σ2
ε(t)(π

∗
s)

2ds

]
≤ 2γM t

(1− α)2
<∞,

Ex,i

[∫ t

0

c∗sds

]
≤ 1

Ãm
Ex,i

[∫ t

0

Z̃sds

]
≤ x

Ãm

∫ t

0

eK2sds <∞,

Ex,i

[∫ Θ

0

e−δtU+(c∗t )dt

]
≤ Ex,i

[∫ Θ

0

e−δt

(
−(

Z̃t

Ãε(t)
)α

)+

dt

]
= 0,

where Ãm := min
i∈S
{Ãi} and K2 = max

i∈S

{
ri + 2γi

1−α

}
.

Besides, we can verify that I∗t ∈ It since 0 ≤ I∗t (Y ) = (Y − dε(t))+ ≤ Y , for

every Ft-measurable random variable Y .

Therefore, u∗ defined above is admissible and then is optimal policy of Problem

2.1. By definition, smooth function ṽ(·, i) is strictly increasing and concave, and

satisfies ṽ(0, i) = −∞, ∀i ∈ S. From the construction of Ãi, the HJB equation

(2.11) holds for all i ∈ S . Therefore, according to Theorem 2.2, ṽ is the value

function of Problem 2.1. �

Example 2.2. S = 2

To solve the non-linear system (2.19), we need to find Λ̃i first. In this example, we

show how to find Λ̃i when l is constant or is uniformly distributed on (0, 1). Without

loss of generality, we assume ν1
η1
≤ ν2

η2
. If the opposite holds, we switch the formulas

for Λ̃1 and Λ̃2. The results will be used for economic analysis in the next section.

1. l is constant.

If (ηil − νi)+ ≡ 0, i = 1 or 2, then Λ̃i = (1− ηil)α.

Otherwise, we obtain

Λ̃i = (1− νi)α − α(1 + θi)(ηil − νi).
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2. l is uniformly distributed on (0, 1).

If (ηil − νi)+ ≡ 0, i = 1 or 2, then

Λ̃i = E [(1− ηil)α] =


− 1
ηi

ln(1− ηi), α = −1

1
ηi(1+α)

(1− (1− ηi)1+α), α 6= −1

.

Otherwise, we obtain

E[(ηil − νi)+] =

∫ 1

νi
ηi

(ηil − νi)dl =
(ηi − νi)2

2ηi
,

and when α = −1,

E[(1− ηil + (ηil − νi)+)α] = (1− νi)−1

(
1− νi

ηi

)
− 1

ηi
ln(1− νi),

and when α 6= −1,

E[(1− ηil+ (ηil− νi)+)α] = (1− νi)α
(

1− νi
ηi
− 1− νi
ηi(1 + α)

)
+

1

ηi(1 + α)
.

Therefore, if (ηil − νi)+ 6≡ 0, i = 1 or 2, and α = −1, then

Λ̃i = (1− νi)−1

(
1− νi

ηi

)
− 1

ηi
ln(1− νi) + (1 + θi)

(ηi − νi)2

2ηi
;

and if (ηil − νi)+ 6≡ 0, i = 1 or 2, and α 6= −1, then

Λ̃i = (1− νi)α
(

1− νi
ηi
− 1− νi
ηi(1 + α)

)
+

1

ηi(1 + α)
− α(1 + θi)

(ηi − νi)2

2ηi
.
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2.3.3 U(y, i) = yα, y > 0, 0 < α < 1,∀ i ∈ S

In this case, a solution to the HJB equation (2.10) has the form

v̄(x, i) = Ā1−α
i xα, (2.21)

where the constants Āi > 0, i ∈ S, will be determined below.

Then we can find the candidate for π∗ and c∗ as

π∗(x, i) =
µi − ri

(1− α)σ2
i

and c∗(x, i) =
x

Āi
.

From (1 + θi)v̄
′(x, i) = v̄′(x − di, i), we can solve to obtain di = νix with

νi := 1− (1 + θi)
− 1

1−α . By Theorem 2.3, we have

I∗(x, i) = (ηil − νi)+x.

Plugging the candidate policy into the HJB equation (2.10) yields(
δ − αri −

α

1− α
γi + λi(1− Λ̄i)

)
Ā1−α
i − (1− α)Ā−αi =

∑
j∈S

qijĀ
1−α
j , (2.22)

where Λ̄i := E
[
(1− ηil + (ηil − νi)+)α

]
− α(1 + θi)E

[
(ηil − νi)+

]
.

We need to impose an extra requirement for δ

δ > max
i∈S

{
αri +

α

1− α
γi

}
. (2.23)

Lemma 2.3. The non-linear system (2.22) has a unique positive solution Āi, i ∈ S,

if the condition (2.23) is satisfied.

Proof. See Lemma 4.2 in Sotomayor and Cadenillas [86]. �

Proposition 2.3. The function v̄(x, i) = Ā1−α
i xα, x ≥ 0, where Āi is the unique

solution to the non-linear system (2.22), is the value function of Problem 2.1. Fur-
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thermore, the policy given by

u∗(t) :=

(
µε(t) − rε(t)
(1− α)σ2

ε(t)

,
X∗t
Āε(t)

, (ηε(t) lt − νε(t))+X∗t

)

is an optimal policy of Problem 2.1.

Proof. We use the same upper bound process Z̃ defined in Subsection 2.3.2. By

following a similar argument as in the previous proposition, we can easily verify

Ex,i

[∫ t
0
σ2
ε(t)(π

∗
s)

2ds
]
<∞, Ex,i

[∫ t
0
c∗sds

]
<∞ and I∗t ∈ It, ∀t ≥ 0.

Besides, we have

Ex,i

[∫ Θ

0

e−δtU+(c∗t )dt

]
≤ Ex,i

[∫ ∞
0

e−δt

(
Z̃t
Āε(t)

)α

dt

]

=
xα

Āαm

∫ ∞
0

e−δt exp

(∫ t

0

(
αrε(s) +

α

1− α
γε(s)

)
ds

)
dt

≤ xα

K3Āαm
<∞,

where Ām = min
i∈S

Āi and K3 = min
i∈S

(δ − αri − α
1−αγi) > 0 (K3 > 0 is because of

the condition (2.23)).

By definition, v̄(·, i) ∈ C2(0,∞) is strictly increasing and concave, and satisfies

v̄(0, i) = U(0,i)
δ

= 0 for all i ∈ S . By the construction of constants Āi, the HJB

equation (2.11) holds for all i ∈ S.

Therefore, u∗ is admissible and then is optimal policy of Problem 2.1. Fur-

thermore, by Theorem 2.1, v̄ defined above is the value function of Problem 2.1.

�

Example 2.3. S = 2

We notice that the non-linear systems (2.19) and (2.22) are identical expect that α

is negative in (2.19) while in (2.22), α ∈ (0, 1). Hence in a two-regime economy,

we shall obtain Λ̄i in the same form of Λ̃i as in Example 2.2.
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2.3.4 U(y, i) = βiy
1/2, y > 0, βi > 0, i = 1, 2

In this case, a solution to the HJB equation (2.10) is given by

v̌(x, i) = (Ǎix)1/2, (2.24)

where the constants Ǎi > 0, i = 1, 2, will be determined below.

From v̌′(x, i) = 1
2
Ǎ

1
2
i x
− 1

2 , v̌′′(x, i) = −1
4
Ǎ

1
2
i x
− 3

2 and (U ′)−1(y, i) = ( βi
2y

)2, we

obtain the candidate for π∗ and c∗

π∗(x, i) =
2(µi − ri)

σ2
i

and c∗(x, i) =
β2
i x

Ǎi
.

Solving (1 + θi)v̌
′(x, i) = v̌′(x− di, i) gives di = ν̌ix where ν̌i := 1− 1

(1+θi)2
.

Thus a candidate for optimal insurance is

I∗(x, i) = (ηil − ν̌i)+x.

From the HJB equation (2.10), we obtain the following nonlinear system(
δ − 1

2
ri − γi + λi(1− Λ̌i)

)
Ǎ

1/2
i −

1

2

β2
i

Ǎ
1/2
i

=
∑
j∈S

qijǍ
1/2
j ,

where Λ̌i := E
[
(1− ηil + (ηil − ν̌i)+)1/2

]
− 1

2
(1 + θi)E [(ηil − ν̌i)+].

Since S = 2, so we have q11 = −Π1, q12 = Π1, q21 = Π2, q22 = −Π2 with

Π1,Π2 > 0. Thus we can rewrite the above system as

ξ̌iǍi −
β2
i

2Πi

= (Ǎ1Ǎ2)1/2, (2.25)

where ξ̌i := 1
Πi

[
δ + Πi − 1

2
ri − γi + λi(1− Λ̌i)

]
.

Lemma 2.4. The non-linear system (2.25) has a real solution Ǎi ≥
β2
i

2Πiξ̌i
> 0,

i = 1, 2, if δ > max
i=1,2

{
1
2
ri + γi,

1
2
ri + γi − λi(1− Λ̌i)

}
.
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Proof. The non-linear system (2.25) is equivalent to

ξ̌1Ǎ1 −
β2

1

2Π1

=

√
Ǎ1Ǎ2 = ξ̌2Ǎ2 −

β2
2

2Π2

.

Solving this system for Ǎ1 gives(
ξ̌1

ξ̌2

− ξ̌2
1

)
Ǎ2

1 −
(

β2
1

2Π1ξ̌2

− β2
2

2Π2ξ̌2

− ξ̌1β
2
1

Π1

)
Ǎ1 −

β4
1

4Π2
1

= 0.

The discriminant of the above quadratic equation is

∆ =

(
β2

1

2Π1ξ̌2

− β2
2

2Π2ξ̌2

)2

+
ξ̌1β

2
1β

2
2

Π1Π2ξ̌2

.

Since δ > 1
2
ri + γi − λi(1 − Λ̌i), we have ξ̌i > 1, i = 1, 2 and then ∆ > 0,

which implies Ǎ1 has a real solution. Besides,
√
Ǎ1Ǎ2 ≥ 0, so Ǎ1 ≥

β2
1

2Π1ξ̌1

> 0.

Similar analysis also applies to Ǎ2. �

Proposition 2.4. The function v̌ defined by v̌(x, i) = (Ǎix)1/2, x > 0, where Ǎi is

the positive solution to the non-linear system (2.25), is the value function of Problem

2.1. Furthermore, the policy given by

u∗(t) :=

(
2(µε(t) − rε(t))

σ2
ε(t)

,
β2
ε(t)X

∗
t

Ǎε(t)
, (ηε(t) lt − ν̌ε(t))+X∗t

)

is an optimal policy of Problem 2.1.

Proof. We consider an upper bound process Ž of X∗ to verify that the candidate

policy is admissible. The dynamics of Ž is given by

dŽt

Žt
=

(
rε(t) +

2(µε(t) − rε(t))2

σ2
ε(t)

)
dt+

2(µε(t) − rε(t))
σε(t)

dW (t),

with initial condition Ž0 = X∗0 = x.
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The solution to the above SDE is

Žt = x · exp

{∫ t

0

rε(s)ds+ 2

∫ t

0

µε(s) − rε(s)
σε(s)

dW (s)

}
.

Since X∗t ≤ Žt, ∀ t ≥ 0, we have

Ex,i

[∫ t

0

c∗(s)ds

]
≤ β2

M

Ǎm
Ex,i

[∫ t

0

Žsds

]
=
β2
Mx

Ǎm

∫ t

0

exp

(∫ s

0

(rε(v) + 4γε(v))dv

)
ds

≤ β2
Mx

Ǎm

∫ t

0

eK4s =
β2
Mx

K4Ǎm
(eK4t − 1) <∞,

where βM = max{β1, β2}, Ǎm = min{Ǎ1, Ǎ2} and K4 = max
i=1,2
{ri + 4γi}.

Furthermore, we calculate

Ex,i

[∫ Θ

0

e−δsU+(c∗s, εs)ds

]
≤ Ex,i

[∫ ∞
0

e−δsβε(s)
βε(s)(X

∗
s )1/2

Ǎ
1/2
ε(s)

ds

]

≤ Ex,i

[∫ ∞
0

e−δsβε(s)
βε(s)Ž

1/2
s

Ǎ
1/2
ε(s)

ds

]

=
β2
Mx

1/2

Ǎ
1/2
m

∫ t

0

e−δs exp

(∫ s

0

(
1

2
rε(v) + γε(v))dv

)
ds

≤ β2
Mx

1/2

Ǎ
1/2
m

∫ ∞
0

e−K5sds =
β2
Mx

1/2

K5Ǎ
1/2
m

<∞,

where K5 := mini∈S(δ − 1
2
ri − γi) > 0 (Notice K5 > 0 due to the assumption that

δ > 1
2
ri + γi, ∀ i ∈ S).

Besides, ∀ t ≥ 0,

Ex,i

[∫ t

0

σ2
ε(s)(π

∗
s)

2ds

]
≤ 8γM t < +∞,

and 0 ≤ I∗t (Y ) = (Y − ν̌ε(t)X∗t )+ ≤ Y , for every Ft-measurable random variable

Y .

We have proved u∗ is admissible and thus u∗ is optimal policy of Problem 2.1.
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By definition, v̌(·, i) ∈ C2(0,∞) is strictly increasing and concave, and satisfies

v̌(0, i) = U(0,i)
δ

, i = 1, 2. By the construction of Ǎi, the HJB equation (2.10) is

satisfied for i = 1, 2. Therefore, by Theorem 2.1, the value function is given by

v̌(x, i) + 1
δ
Ex,i[

∫∞
0
e−δsdU(0, εs)] = v̌(x, i) because dU(0, εs) = 0. �

2.4 Impact of Markets and Risk Aversion on Optimal

Policies

In this section, we analyze the impact of market parameters and the investor’s risk

aversion on optimal policies. To conduct the economic analysis, we assume there

are two regimes in the economy, like in Example 2.1, Example 2.2, and Example

2.3: regime 1 represents a bull market while regime 2 represents a bear market. We

only consider the first three utility functions that do not depend on the regime of the

economy in the economic analysis.

According to the results obtained in Section 2.3, we write the optimal proportion

invested in the stock in an uniform expression

π∗t =
1

1− α
µε(t) − rε(t)

σ2
ε(t)

, (2.26)

where α = 0 when U(y, i) = ln(y).

During any given regime, the optimal investment proportion in the stock π∗

is constant, and is independent of the investor’s wealth. This result is consistent

with the findings in the classical work of Merton [63], which also obtained constant

optimal investment proportion under HARA utility functions.

The dependency of π∗ on market parameters (expected excess return over vari-

ance) is evident. Through empirical research, French et al. [31] found that the
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expected excess return over variance is higher in good economy. α < 1, and then

1
1−α > 0, so we have

π(ε(t) = 2) < π(ε(t) = 1), for all α < 1.

Hence all investors should invest a greater proportion of their wealth on the stock

in a bull market.

Expression (2.26) shows that π∗ is inversely proportional to the relative risk

aversion 1 − α. Thus, investors with higher risk tolerance (greater α) will invest a

larger proportion of their wealth on the stock in both regimes.

For all three cases, the optimal consumption rate process is proportional to the

wealth process and such ratio κ(t) := c∗(t)
X∗(t)

is given by

κ(t) =



δ, if U(y, i) = ln(y), α = 0;

1

Ãε(t)
, if U(y, i) = −yα, α < 0;

1

Āε(t)
, if U(y, i) = yα, 0 < α < 1.

Since κ(t) is positive in all three cases, investors will consume more when

they become wealthier. To examine the dependency of the optimal consumption

to wealth ratio κ(t) on α, we separate our discussion into the following three cases.

For moderate risk-averse investors (α = 0), κ(t) is constant regardless of the

market regimes, so moderate risk-averse investors consume the same proportion of

their wealth in both bull and bear markets.

For high risk-averse investors (α < 0), their optimal consumption to wealth

ratio is given by 1/Ãi, i = 1, 2, where Ãi can be obtained from the system (2.19).

To find a numerical solution to the system (2.19), we set market parameters as

µ1 = 0.2, µ2 = 0.15, r1 = 0.08, r2 = 0.03, σ1 = 0.25, σ2 = 0.6, θ1 = 0.15, θ2 =

42



0.25, η1 = 0.8, η2 = 1, λ1 = 0.1, λ2 = 0.2,Π1 = 6.04,Π2 = 6.4, and δ = 0.15 (for

the convenience of citation thereafter, we denote the choice of market parameters

here as Parameter Set I). Notice that these parameters satisfy the technical condition

(2.20). We draw graphs in Figure 2.1 for the optimal consumption to wealth ratio

when −1 < α < 0 and l = 0.3, l = 0.5, and l = 0.7. We see that the optimal

consumption to wealth ratio is an increasing function of α. Thus, the higher the

risk tolerance, the higher the proportion of consumption over wealth. For the above

parameter values, we find 1/Ã1 > 1/Ã2, which can be seen from Figure 2.1. Hence

Figure 2.1: Optimal Consumption to Wealth Ratio When α < 0

investors should allocate a higher proportion of their wealth to consumption in a bull

market. For any chosen investor (fixed α), she/he will behave more conservatively

by reducing the proportion spent in consumption when facing larger losses (greater

l). This behavior was not noticed in Sotomayor and Cadenillas [86], because they

did not incorporate an insurable loss in their model. Besides, from a mathematical

point of view, the ratios all converge to 0.15 when α approaches 0, which is exactly

the same optimal consumption to wealth ratio when α = 0 (δ = 0.15).
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For low risk-averse investors (0 < α < 1), the optimal consumption to wealth

ratio is given by 1/Āi, i = 1, 2, where 1/Āi can be calculated from the system

(2.22). We set market parameters to be µ1 = 0.2, µ2 = 0.15, r1 = 0.15, r2 =

0.1, σ1 = 0.4, σ2 = 0.6, θ1 = 0.15, θ2 = 0.25, η1 = 0.8, η2 = 1, λ1 = 0.1, λ2 =

0.2,Π1 = 6.04,Π2 = 6.4, and δ = 0.2 (denoted as Parameter Set II). For these

parameters values, the corresponding technical condition (2.23) is satisfied. Figure

Figure 2.2: Optimal Consumption to Wealth Ratio When 0 < α < 1

2.2 shows that the optimal consumption to wealth ratio when l = 0.3, 0.5, and

0.7. Similar to the previous case, we also observe that the optimal consumption

to wealth ratio is an increasing function of α. However, contrary to the previous

case, we have 1/Ā1 < 1/Ā2 when 0 < α < 1. This means low risk-averse in-

vestors (0 < α < 1) spend a smaller proportion of their wealth on consumption in

a bull market. We notice that for very low risk-averse investors (α close to 1), the

optimal consumption to wealth ratio is even greater than 1, meaning they finance

consumption by borrowing.

By comparing all three cases, we conclude that investors with high risk toler-
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ance (large α) consume a large proportion of their wealth in every market regime.

However, investors’ consumption decision depends on the market regimes, and in-

vestors with different risk aversion attitudes behave differently in bull and bear

markets. High risk-averse investors consume proportionally more in a bull market,

but low risk-averse investors spend more proportion of wealth on consumption in a

bear market.

The optimal insurance for all three utility functions is deductible insurance, and

is given in the form of

I∗t =
[
ηε(t) l − 1 + (1 + θε(t))

− 1
1−α

]+

X∗t .

We observe that, for each fixed regime, the optimal insurance is proportional to the

investor’s optimal wealthX∗. We note that it is optimal to buy insurance if and only

if

ηε(t) l − 1 + (1 + θε(t))
− 1

1−α > 0,

or equivalently if and only if

ηε(t)l > 1− (1 + θε(t))
− 1

1−α . (2.27)

Thus, it is optimal to buy insurance if and only if, relative to the other variables, ηε(t)

is large, l is large, θε(t) is small, and α is small (we recall that α ∈ (−∞, 1)). That

is, it is optimal to buy insurance if the insurable loss is large, the cost of insurance is

low, and the investor is very risk averse. It is surprising that the variable λε(t) does

not appear explicitly in this expression. Our explanation is that λε(t) is implicitly

incorporated in X∗t , so λε(t) is important as well to determine the optimal insurance.

If it is optimal to buy insurance, or equivalently, the condition (2.27) is satisfied,
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then

I∗t =
[
ηε(t) l − 1 + (1 + θε(t))

− 1
1−α

]
X∗t .

Thus, as expected, the optimal insurance is proportional to ηε(t) and l. Furthermore,

∂I∗t
∂θε(t)

= −
[

1

1− α
(1 + θε(t))

− 2−α
1−α

]
X∗t < 0,

∂2I∗t
∂θ2

ε(t)

=

[
2− α

(1− α)2
(1 + θε(t))

2α−3
1−α

]
X∗t > 0.

The above results of partial derivatives indicate that the optimal insurance is a de-

creasing and convex function of θ. The decreasing property means that, as the

premium loading θ increases, it is optimal to reduce the purchase of insurance. The

convexity indicates the amount of reduction in insurance decreases as the premium

loading increases.

In addition, if it is optimal to buy insurance (when condition (2.27) is satisfied),

then

∂I∗t
∂α

= −
[

1

(1− α)2
ln(1 + θε(t))(1 + θε(t))

− 1
1−α

]
X∗t < 0,

∂2I∗t
∂α2

=

[
ln(1 + θε(t))

(1− α)3

(
ln(1 + θε(t))

1− α
− 2

)
(1 + θε(t))

− 1
1−α

]
X∗t .

Hence, the optimal insurance is a decreasing function of α, which implies the higher

the risk tolerance, the smaller amount spent on insurance.

The sign of ∂2I∗t
∂α2 depends on α, investor’s risk aversion parameter. We observe

that ∂2I∗t
∂α2 and ln(1+θε(t))

1−α − 2 have the same sign. Recall that θ is the premium load-

ing, which usually does not exceed 100%. We make the discussions based on the

following two cases.

(i) α ≤ 0

In this case, we have ∂2I∗t
∂α2 < 0. This indicates that for high and moderate
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risk-averse investors (α ≤ 0), the reduction in insurance is more significant

when α is greater (or when α is closer to 0).

(ii) 0 < α < 1

In this case, we define α̃ by

α̃ := 1− 1

2
ln(1 + θε(t)).

Notice the result
∂2I∗t
∂α2

= 0 at the point α = α̃.

We find that ∂2I∗t
∂α2 < 0 when α < α̃ and ∂2I∗t

∂α2 > 0 when α > α̃. So for low

risk-averse investors (0 < α < 1), the magnitude of reduction in insurance

depends on the risk aversion attitude.

2.5 Comparison with No Insurance Case

In this section, we want to find out the advantage of buying insurance for investors

who face a random insurable risk. To this purpose, we assume that insurance poli-

cies are not available in the market to insure against the random loss L. We calcu-

late the value function with the constraint of no insurance, denoted by V1(x, i), and

compare V1(x, i) with V (x, i) (the value function of Problem 2.1 with insurance).

Under the constraint of no insurance, the dynamics of the wealth process X1

changes accordingly from (2.1) to

dX1(t) =
(
rε(t)X1(t) + (µε(t) − rε(t))π(t)X1(t)− c(t)

)
dt

+ σε(t)π(t)X1(t)dW (t)− L(t)dN(t),

where the insurable loss is L(t) = ηε(t) l(t)X1(t) and the initial condition is given

by X1(0) = x.
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We denote the control by u1 = (π1, c1) in this section and the set of all ad-

missible sets with initial conditions X1(0) = x, ε(0) = i by A1. For every u1 =

(π1, c1) ∈ A1, π1 and c1 need to satisfy all the conditions (conditions (2.3), (2.4)

and (2.5)) that π and c satisfy, where (π, c, I) ∈ Ax,i.

We formulate the constrained version of Problem 2.1 as follows.

Problem 2.2. Select an admissible policy u∗1 := (π∗1, c
∗
1) that maximizes the criteri-

on function J , defined by (2.2). In addition, find the value function

V1(x, i) := sup
u1∈A1

J(x, i;u1).

Since for any u1 = (π1, c1) ∈ A1, we have (π1, c1, I ≡ 0) ∈ Ax,i. Therefore,

V (x, i) ≥ V1(x, i) for all x > 0 and i ∈ S.

We provide a verification theorem to Problem 2.2 (see Theorems 2.1 and 2.2 for

proofs) when the utility function does not depend on the regime , that is, U(y, i) =

U(y) for every i ∈ S.

Theorem 2.4. Suppose U(0) is finite or U(0) = −∞. Let v(·, i) ∈ C2(0,∞) be

an increasing and concave function such that v(0, i) = U(0)
δ

for every i ∈ S . If

v = v(·, ·) satisfies the Hamilton-Jacobi-Bellman equation

sup
(π1,c1)

{
Gπ1,c1i v(x, i) + U(c1) + λiE[v(x− L, i)]

}
= −

∑
j∈S

qijv(x, j), (2.28)

where the operator G is defined as

Gπ1,c1i (ψ) := (rix+ (µi − ri)πx− c1)ψ′ +
1

2
σ2
i π

2x2ψ′′ − (δ + λi)ψ,

and the control u∗1 := (π∗1, c
∗
1) defined by

u∗1(t) :=

(
1

1− α
(µε(t) − rε(t))

σ2
ε(t)

, (U ′)−1(v′ (X∗1 (t), ε(t)))

)
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is admissible, then u∗1 is an optimal control to Problem 2.2.

2.5.1 U(y) = ln(y), y > 0

Under the logarithmic utility, we find the value function to Problem 2.2 is given by

v̂1(x, i) =
1

δ
ln(δx) + âi,

where the constants âi satisfy the following linear system

ri
δ

+
γi
δ

+
λi
δ

Υ̂i − 1 = δâi −
∑
j∈S

qij âj, (2.29)

with Υ̂i defined by Υ̂i := E[ln(1− ηil)].

To compare the value functions v̂ and v̂1, we assume there are two regimes

(S = 2) in the economy. Under this assumption, we find âi given by

âi =
Πi(rj + γj − δ + λjΥ̂j) + (δ + Πj)(ri + γi − δ + λiΥ̂i)

δ2(δ + Π1 + Π2)
,

where i, j = 1, 2 and i 6= j.

We then calculate

v̂(x, i)− v̂1(x, i) =
Πiλj(Λ̂j − Υ̂j) + λi(δ + Πj)(Λ̂i − Υ̂i)

δ2(δ + Π1 + Π2)
, (2.30)

where i, j = 1, 2 and i 6= j.

To facilitate our scenario analysis, we assume θ1
η1(1+θ1)

≤ θ2
η2(1+θ2)

and l is either

constant or uniformly distributed on (0, 1).

• Case 1: l is constant.

In this case, Υ̂i = ln(1− ηil), i = 1, 2.

(i) Optimal insurance is no insurance for both regimes.
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From Example 2.1, we notice when the optimal insurance I∗ is no insurance,

we have Λ̂i = ln(1 − ηil), i = 1, 2. Then, we obtain Λ̂i − Υ̂i = 0 for both

regimes. Hence v̂(x, i) = v̂1(x, i) for all x > 0 and i = 1, 2.

(ii) Optimal insurance is strictly positive in at least one regime.

When the optimal insurance I∗ is strictly positive in at least one regime, we

must have at least one Λ̂i in the form of Λ̂i = − ln(1 + θi)− ηil(1 + θi) + θi.

Without loss of generality, we assume I∗ > 0 in regime 1, or equivalently,

η1l − θ1
1+θ1

> 0. Then we obtain

Λ̂1 − Υ̂1 = − ln(1 + θ1)− η1l(1 + θ1) + θ1 − ln(1− η1l)

> −η1l(1 + θ1)− ln(1− η1l),

where the second inequality comes from − ln(1 + θ1) + θ1 > 0.

Consider w(l) := −η1l(1 + θ1)− ln(1− η1l). We have w(0) = 0 and

w′(l) =
η1

(1− η1l)(1 + θ1)

(
η1l −

θ1

1 + θ1

)
> 0.

This implies w(l) > 0 for all l ∈ (0, 1), and then Λ̂1− Υ̂1 > 0. Together with

the result above, we can claim that Λ̂2 − Υ̂2 ≥ 0.

Hence, regardless of the optimal insurance I∗ in regime 2, we have v̂(x, i) >

v̂1(x, i) for both regimes according to (2.30). Even when I∗(x, i = 2, l) = 0,

buying insurance in regime 1 increases the value function in regime 2.

To further study the advantage of buying insurance, we define the increase

ratio of the value function by

m(x, i) :=

∣∣∣∣V (x, i)− V1(x, i)

V1(x, i)

∣∣∣∣ , i = 1, 2,

where V (x, i) and V1(x, i) are the value functions to Problem 2.1 and Problem
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2.2, respectively.

Without loss of generality, we assume x = 1
δ

(such assumption makes the

constant 1
δ

ln(δx) be 0). Hence, we have V (x, i) = v̂(x, i) = Âi and V1(x, i) =

v̂1(x, i) = âi, i = 1, 2. Then we obtain for i = 1, 2 that

m(x, i) =
Πiλj(Λ̂j − Υ̂j) + λi(δ + Πj)(Λ̂i − Υ̂i)

|Πi(rj + γj − δ + λjΥ̂j) + (δ + Πj)(ri + γi − δ + λiΥ̂i)|
.

To analyze the impact of the insurable loss on the ratio m, we keep l as a

variable and choose Parameter Set I but δ = 0.2. Notice that for the chosen

parameters, our assumption is satisfied

θ1

η1(1 + θ1)
= 0.16 <

θ2

η2(1 + θ2)
= 0.2.

Since we assume I∗ > 0 in regime 1, l ∈ (0.16, 1). We draw the graph of the

increase ratio of the value function in Figure 2.3. As expected, the advantage

of buying insurance increases when the insurable loss becomes larger in both

regimes. But surprisingly, we find that buying insurance benefits investors

more in a bull market, especially when the insurable loss is large.

• Case 2. l is uniformly distributed on (0, 1).

In this case, Υ̂i =
∫ 1

0
ln(1− ηil)dl = (1− 1

ηi
) ln(1− ηi)− 1, i = 1, 2.

(i) Optimal insurance is no insurance for both regimes.

In this scenario, it is obvious that Λ̂i = Υ̂i and then v̂(x, i) = v̂1(x, i), for all

x > 0 and i = 1, 2.

(ii) Optimal insurance is strictly positive in at least one regime.

Again we assume I∗ > 0 in regime 1. Then we have

Λ̂1 − Υ̂1 = (
1

η1

− 1) ln((1 + θ1)(1− η1)) + 1− (η1(1 + θ1)− θ1)2 + 2θ1

2η1(1 + θ1)
.

51



Figure 2.3: Increase Ratio of the Value Function When l Is Constant

Here Λ̂1−Υ̂1 depends on the premium loading θ and loss intensity η in regime

1. To investigate such dependency, we conduct a numerical calculation. No-

tice that η1 must satisfy the condition η1 ≥ θ1
1+θ1

. We draw the difference

Λ̂1 − Υ̂1 in Figure 2.4 when θ1 = 0.01, 0.1, 0.2, 0.5, 0.8, 0.99.

We observe that Λ̂1−Υ̂1 is strictly positive and therefore v̂(x, i) > v̂1(x, i) for

both regimes, which is consistent with our findings in the previous case. Fur-

thermore, as θ increases (which means the cost of insurance policy increases),

the difference of Λ̂i− Υ̂i becomes smaller, so the benefit of purchasing insur-

ance policy decreases accordingly. We also observe that investors gain more

advantage from insurance when the insurable loss becomes larger (that is, the

loss intensity η increases).
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Figure 2.4: Difference of Λ̂i − Υ̂i

2.5.2 U(y) = −yα, α < 0

In the case of negative power utility, the value function to Problem 2.2 is given by

ṽ1(x, i) = −ã1−α
i xα,

where positive constants ãi satisfy(
δ − αri −

α

1− α
γi + λi(1− Υ̃i)

)
ã1−α
i − (1− α)ã−αi =

∑
j∈S

qij ã
1−α
j , (2.31)

with Υ̃i := E
[
(1− ηil)α

]
.

Comparing with the value function we found in Section 2.3.2, we have

ṽ(x, i)− ṽ1(x, i) = −(Ã1−α
i − ã1−α

i )x.

We assume there are two regimes in the economy and the loss proportion l is

constant. We skip the trivial case of I∗ ≡ 0, in which ṽ(x, i) = ṽ1(x, i) in both

regimes. We then carry out a numerical calculation to study the non-trivial case,
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that is I∗(x, i, l) > 0 in at least one regime.

To solve the systems (2.19) and (2.31) numerically, we choose Parameter Set

I but δ = 0.25. For the chosen parameters, it is more reasonable to consider the

case when l ∈ (ν2
η2
, 1) (Since both ν1

η1
and ν2

η2
are small). In Table 2.1 we calculate

ṽ(x, i) − ṽ1(x, i) for various values of α (when calculating ṽ(x, i) − ṽ1(x, i), we

take x = 1).

risk aversion α loss proportion l ṽ(x, 1)− ṽ1(x, 1) ṽ(x, 2)− ṽ1(x, 2)

l = 0.30 7.7176× 10−5 7.4304× 10−5

-0.01 l = 0.60 9.8981× 10−4 9.5315× 10−4

l = 0.90 0.0041 0.0039

l = 0.15 0.0015 0.0015

-0.5 l = 0.35 0.0797 0.0781

l = 0.50 0.3010 0.2961

l = 0.20 0.1675 0.1653

-1 l = 0.30 0.8116 0.8036

l = 0.40 2.6969 2.6841

l = 0.08 0.2454 0.2441

-2 l = 0.10 0.9421 0.9381

l = 0.12 2.2418 2.2344

Table 2.1: Ãi − ãi When Loss Proportion l ∈ (ν2
η2
, 1)

The result clearly confirms that ṽ(x, i) > ṽ1(x, i) in both regimes. We also

observe that the advantage of buying insurance is greater for investors with high-
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er risk aversion. The size of the insurable loss l affects the advantage of buying

insurance as well. When the insurable loss increases (loss proportion l increases),

buying insurance will give investors more advantage. We obtain ṽ(1, 1)−ṽ1(1, 1) >

ṽ(1, 2)− ṽ1(1, 2), meaning buying insurance is more advantageous in a bull market.

2.5.3 U(y) = yα, 0 < α < 1

We find the corresponding value function to Problem 2.2 given by

v̄1(x, i) = ā1−α
i xα,

where the constants āi satisfy the system (2.31) with 0 < α < 1.

From the discussion in Section 2.3.3, we obtain v̄(x, i) − v̄1(x, i) = (Ā1−α
i −

ā1−α
i )xα. We then follow all the assumptions made in Section 2.5.2 including x = 1

and conduct a numerical analysis by choosing Parameter Set II. In this numerical

example, we have ν1
η1
≤ ν2

η2
< 1 when α ∈ (0, 0.8672], ν2

η2
≤ ν1

η1
< 1, when

α ∈ (0.8672, 0.9132], and ν2
η2
≤ 1 < ν2

η2
when α ∈ (0.9132, 1). We consider the

first scenario: ν1
η1
≤ ν2

η2
< 1 since it includes most low risk-averse investors. We are

interested in the case of I∗ > 0 in at least one regime. For the chosen parameters, we

find ν1
η1

is so small that the case of l ∈ (0, ν1
η1

) is rare. So we further assume constant

loss proportion l ∈ (ν1
η1
, ν2
η2

]. Notice that when l ∈ (ν1
η1
, ν2
η2

], we have I∗(x, 1, l) > 0

but I∗(x, 2, l) = 0.

From solving the non-linear systems (2.22) and (2.31), we draw v̄(x, i)−v̄1(x, i)

for l = lM := 1
2
(ν1
η1

+ ν2
η2

) and l = lm := ν2
η2
− 0.01 in Figure 2.5. It is obvious that

v̄(1, i)−v̄1(1, i) > 0 in both regimes. As have seen in the previous cases, the benefit

of buying insurance in a bull market strictly outperforms that in a bear market. We

also observe a surprising result that the difference of the value functions (advantage

55



Figure 2.5: v̄(1, i)− v̄1(1, i) When l ∈ (ν1
η1
, ν2
η2

]

of buying insurance) is not an increasing function of α, which is different from the

result in Section 2.5.2. But the difference is a concave function of α.

2.6 The Case of No Regime Switching

In this section, we consider a special case of Problem 2.1 when there is no regime

switching in the economy, or equivalently, we assume there is only one regime in

the economy (S = 1). Since S = 1, we remove the Markovian component ε from

the definitions of the criterion function J , the utility function U , and the operator

L.

In the financial market, there is a bond with a fixed yield rate r > 0, and a stock,

whose price process P1 is modeled by a geometric Brownian motion with expected

return µ and volatility σ. Both µ and σ are strictly positive. Equivalently, their price
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processes are given by

dP0(t) = rP0(t)dt,

dP1(t) = P1(t)(µdt+ σdW (t)),

with initial conditions P0(0) = 1 and P1(t) > 0.

We denote the set of all admissible controls by Ax. For any u ∈ Ax, all the

conditions (2.3-2.5) and I ∈ I are satisfied.

For an investor with triplet policies u, his/her wealth process X2 is governed by

the following dynamics:

dX2(t) =
(
rX2(t) + (µ− r)π(t)X2(t)− c(t)− λ(1 + θ)E[I(t)]

)
dt

+ σπ(t)X2(t)dW (t)− (L(t)− I(t))dN(t),

where the insurable loss is assumed as L(t) = lX2(t), where random variable l ∈

(0, 1). Notice that since there is no regime switching in the economy, we drop the

intensity constant of the regime η from the definition of L(t) = ηε(t)l(t)X(t) used

in Section 2.3.

In the case of no regime switching, Problem 2.1 reads as follows.

Problem 2.3. Find an admissible control u∗ ∈ Ax that maximizes the criterion

function

u∗ = arg sup
u∈Ax

J(x;u)

and the value function

V (x) := J(x;u∗).

The control u∗ is called an optimal control or optimal policy.

To study Problem 2.3, we rewrite the verification theorem without regime switch-

ing.
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Theorem 2.5. Suppose U(0) is finite or U(0) = −∞. Let v(·) ∈ C2(0,∞) be

an increasing and concave function such that v(0) = U(0)
δ

. If v(·) satisfies the

Hamilton-Jacobi-Bellman equation

sup
u

{
Luv(x) + U(c) + λE[v(x− lx+ I(lx))− v(x)]

}
= 0, (2.32)

for ∀x > 0 and u∗ = (π∗, c∗, I∗) defined by

u∗t := arg sup
u

(
Lutv(X∗2 (t))+U(ct)+λE[v(X∗2 (t)−lX∗2 (t)+It(lX

∗
2 (t)))−v(X∗2 (t))]

)
is admissible, then u∗ is an optimal control to Problem 2.3.

2.6.1 Optimal Consumption, Investment and Insurance Policies

We consider the first three utility functions of HARA class that do not depend on

the regime of the economy for Problem 2.3. We directly present the results here

(please refer to Propositions 2.1, 2.2 and 2.3 for proofs).

(i) U(y) = ln(y), y > 0

Define two constants

Λ̂ := E

[
ln

(
1− l +

(
l − θ

1 + θ

)+
)]
− (1 + θ)E

[(
l − θ

1 + θ

)+
]

(2.33)

and

Â :=
1

δ2

[
r − δ +

(µ− r)2

2σ2
+ λΛ̂

]
. (2.34)

Proposition 2.5. The function defined by

v̂2(x) :=


1

δ
ln(δx) + Â, x > 0

−∞, x = 0
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is the value function of Problem 2.3. Furthermore, the control given by

u∗(t) :=

(
µ− r
σ2

, δX∗2 (t),

(
l − θ

1 + θ

)+

X∗2 (t)

)

is an optimal control to Problem 2.3.

In the above Proposition , we obtain the value function v̂2 in explicit expression

with Â determined by (2.34), which depends on the distribution of l.

Example 2.4. In this example, we calculate Â under two special scenarios.

(1) Loss proportion l is constant.

If l ∈ (0, θ
1+θ

], then

Â =
1

δ2

[
r − δ +

(µ− r)2

2σ2
+ λ ln(1− l)

]
.

Otherwise, we obtain

Â =
1

δ2

[
r − δ +

(µ− r)2

2σ2
− λ ln(1 + θ)− λl(1 + θ) + λθ

]
.

(2) Loss proportion l is uniformly distributed on (0, 1).

In this scenario, we obtain

E

[
ln

(
1− l +

(
l − θ

1 + θ

)+
)]

= − θ

1 + θ
,

E

(
l − θ

1 + θ

)+

=

∫ 1

θ
1+θ

(
w − θ

1 + θ

)
dw =

1

2(1 + θ)2
.

Therefore, constant Â is calculated as

Â =
1

δ2

[
r − δ +

(µ− r)2

2σ2
− λ(1 + 2θ)

2(1 + θ)

]
.

(ii) U(y) = −yα, α < 0
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Define three constants

ν : = 1− (1 + θ)−
1

1−α ∈ (0, 1),

Λ̃ : = E
[ (

1− l + (l − ν)+)α ]− α(1 + θ)E
[
(l − ν)+

]
,

and

Ã :=
1− α

δ − αr − α(µ−r)2
2(1−α)σ2 + λ(1− Λ̃)

. (2.35)

Assume the cumulative distribution function of l is Fl, then

1− Λ̃ = 1−
∫ ν

0

(1− w)αdFl −
∫ 1

ν

(1− ν)αdFl + α(1 + θ)

∫ 1

ν

(l − ν)dFl

≥ 1− (1− ν)αFl(ν)− (1− ν)α(1− Fl(ν)) + α(1− ν)(1 + θ)(1− Fl(ν))

≥ 1− (1− ν)α + α(1− ν)(1 + θ).

We impose the following technical condition for the discount rate δ

δ > αr +
α(µ− r)2

2(1− α)σ2
− λ(1− (1− ν)α + α(1− ν)(1 + θ)). (2.36)

Due to the technical condition (2.36) above, the constant Ã defined by (2.35) is

strictly positive.

Proposition 2.6. The function defined by

ṽ2(x) :=


−Ã1−αxα, x > 0

−∞, x = 0

where Ã is given by (2.35), is the value function of Problem 2.3. Furthermore, the

control u∗ given by

u∗t :=

(
µ− r

(1− α)σ2
,

1

Ã
X∗2 (t), (l − ν)+X∗2 (t)

)
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is an optimal control to Problem 2.3.

Example 2.5. In this example, we calculate Ã under two special scenarios.

(1) Loss proportion l is constant.

If l ∈ (0, ν], then

Ã =
1− α

δ − αr − α(µ−r)2
2(1−α)σ2 + λ(1− (1− l)α)

.

Otherwise,

Ã =
1− α

δ − αr − α(µ−r)2
2(1−α)σ2 + λ(1− (1− ν)α + α(1 + θ)(l − ν))

.

(2) Loss proportion l is uniformly distributed on (0, 1).

In this scenario, we calculate

E(l − ν)+ =

∫ 1

ν

(w − ν)dw =
1

2
(1− ν)2,

and

E(1− l + (l − ν)+)α =


1 + α(1− ν)1+α

1 + α
if α 6= −1,

1− ln(1− ν) if α = −1.

Therefore, we obtain when α 6= −1,

Ã =
1− α

δ − αr − α(µ− r)2

2(1− α)σ2
+ λ

[
α

1 + α
(1− (1− ν)1+α) +

1

2
α(1 + θ)(1− ν)2

] ,
and when α = −1,

Ã =
1− α

δ − αr − α(µ− r)2

2(1− α)σ2
+ λ

[
ln(1− ν) +

1

2
α(1 + θ)(1− ν)2

] .
(iii) U(y) = yα, 0 < α < 1
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We denote Ā = Ã, as defined by (2.35). The technical condition needed in this case

is

δ > αr +
α(µ− r)2

2(1− α)σ2
. (2.37)

The above condition (2.37) guarantees Ā > 0 when 0 < α < 1.

Proposition 2.7. The function defined by

v̄2(x) = Ā1−αxα, x ≥ 0,

is the value function of Problem 2.3. Furthermore, the control u∗ given by

u∗(t) :=

(
µ− r

(1− α)σ2
,

1

Ā
X∗2 (t), (l − ν)+X∗2 (t)

)
is an optimal control to Problem 2.3.

Example 2.6. Similar to Example 2.4 and Example 2.5, we calculate Ā in the fol-

lowing two scenarios.

(1) Loss proportion l is constant.

In this case, Ā has the exactly same formula as Ã in Example 2.5.

(2) Loss proportion l is uniformly distributed on (0, 1)

In this scenario, we find Ā given by

Ā =
1− α

δ − αr − α(µ−r)2
2(1−α)σ2 + λ

[
α

1+α
(1− (1− ν)1+α) + 1

2
α(1 + θ)(1− ν)2

] .

2.6.2 Economic Analysis

We have investigated the impact of market parameters and investor’s risk aversion

on optimal policies when there is regime switching in Section 2.4. Here we conduct

62



a similar economic analysis to analyze how various factors affect the value function

and the optimal policies.

The optimal investment proportion in the stock π∗ is given by

π∗(t) =
µ− r

(1− α)σ2
,

which is similar to (2.26), the optimal investment proportion π∗ with regime switch-

ing. Hence, the impact of the market and risk aversion on π∗ follows from the

discussions Section 2.4.

The optimal consumption rate is proportional to the investor’s optimal wealth in

all three cases, see Propositions 2.5-2.7. In the case of logarithmic utility function

(moderate risk-averse investors), the proportion is constant,

c∗(t)

X∗2 (t)
= δ.

Thus, the investor’s consumption decision is not affected by the market or individual

risk aversion.

In the case of negative power utility function (high risk-averse investors), the

optimal consumption to wealth ratio is given by

c∗(t)

X∗2 (t)
=

1

Ã
, where Ã is defined by (2.35).

In the following analysis, we assume the market parameters are given by the ones

of the bull market in Parameter Set I, namely, µ = 0.2, r = 0.08, σ = 0.25,

λ = 0.1, θ = 0.15 and δ = 0.15. Under the given parameters, we call this market

a good market. In the two-regime case (Section 2.4), the insurable loss is L(t) =

ηε(t)l(t)X(t) and η1 = 0.8 in a bull market. But in this case (one regime only),

we have L(t) = lX2(t). Hence, if we choose l = 0.5 in the two-regime case, we

need to assign l = 0.4 in the one-regime case. Next we repeat the same analysis
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in a different market, called bad market, with all the parameters given by a bear

market in Parameter Set I. In other words, we set: µ = 0.15, r = 0.03, σ = 0.6,

λ = 0.2, θ = 0.25 and δ = 0.15. Since η1 = 1 in a bear market, so loss proportion

l is the same for both one-regime case and two-regime case. In the analysis below,

the value of l is assigned for the two-regime case. In Table 2.2, we calculate the

optimal consumption to wealth ratio for one-regime case and two-regime case.

The results obtained in Table 2.2 confirm our conclusions made in Section 2.4

that
1

Ã1

>
1

Ã2

, that is, investors consume proportionally more in a bull market that

in a bear market. Similarly, we observe that more risk-averse investors (smaller

α) spend a lower proportion of their wealth on consumption. When comparing the

optimal consumption to wealth ratio in the last four columns in Table 2.2, we obtain

the relationship of the optimal consumption to wealth ratio in different markets as

follows:

Good Market > Bull Market > Bear Market > Bad Market.

Hence, we come to the conclusion that investors spend proportionally more when

economy is stronger.

In the case of positive power utility function (low risk-averse investors), the

optimal consumption to wealth ratio is given by

c∗(t)

X∗2 (t)
=

1

Ā
, where Ā = Ã defined by (2.35).

We follow the analysis above, but take the market parameters from Parameter

Set II. In a good market, we set parameters as: µ = 0.2, r = 0.15, σ = 0.4, λ = 0.1,

θ = 0.15 and δ = 0.2. In a bad market, we choose: µ = 0.15, r = 0.1, σ = 0.6,

λ = 0.2, θ = 0.25 and δ = 0.2. The results are obtained in Table 2.3 and indicate

the relationship of the optimal consumption to wealth ratio in different markets as
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follows:

Bad Market > Bear Market > Bull Market > Good Market,

which is exactly the opposite of that in the case of negative power utility.

In all three cases, the optimal insurance is deductible insurance with the form

I∗(t) =
(
l − 1 + (1 + θ)−

1
1−α
)+
X∗2 (t),

where α = 0 when U(y) = ln(y). The above optimal insurance is a special example

of the result obtained in Section 2.4, so all our analysis applies here.
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2.7 Concluding Remarks

We have considered simultaneous optimal consumption, investment and insurance

problems in a regime switching model which enables the regime of the economy to

affect not only the financial but also the insurance market. A risk-averse investor

facing an insurable risk wants to obtain the optimal consumption, investment and

insurance policy that maximizes his/her expected total discounted utility of con-

sumption over an infinite time horizon.

We have presented the first version of verification theorems for simultaneous

optimal consumption, investment and insurance problems when there is regime

switching. We have also obtained explicitly the optimal policy and the value func-

tion when the utility function belongs to the HARA class.

The optimal proportion of wealth invested in the stock is constant in every

regime, and is greater in a bull market regardless of the investor’s risk aversion

attitude. We observe that investors with high risk tolerance invest a large propor-

tion of wealth in the stock.

The optimal consumption to wealth ratio is a strictly increasing function of the

investor’s risk aversion parameter (α). Moderate risk-averse investors (α = 0)

consume at a constant proportion in both regimes. High risk-averse investors (α <

0) consume a higher proportion of their wealth in a bull market. In contrast, low

risk-averse investors (0 < α < 1) consume proportionally more in a bear market.

The optimal insurance is proportional to the investor’s wealth and such propor-

tion depends on the premium loading θ and the investor’s risk aversion parameter α.

As the loading θ increases, the demand for insurance decreases. This decrease of the

demand for insurance is more significant when θ is small. We observe that investors

who are very risk tolerant (that is, investors with large α) spend a small amount of
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wealth in insurance. For high and moderate risk-averse investors (α ≤ 0), the

amount of reduction in insurance is greater when α is far away from 0. However,

low risk-averse investors (0 < α < 1) reduce the amount of insurance in different

magnitudes depending on the value of α.

We have obtained the conditions under which it is optimal to buy insurance, and

analyzed their dependence on the different parameters.

We have calculated the advantage of buying insurance. Based on a comparative

analysis, we find the value function V (x, i) to Problem 2.1 is strictly greater than

the value function V1(x, i) to Problem 2.2 when the optimal insurance is not equal to

0 in all regimes. We also observe that the advantage of buying insurance is greater

in a bull market. Investors who face a large random loss, gain more benefits from

purchasing insurance.

We have also studied optimal consumption, investment and insurance problems

under the special case of no regime switching in the economy. Optimal consump-

tion, investment and insurance policies are obtained in explicit forms.
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Chapter 3

Optimal Investment and Risk Control

Policies without Regime Switching
As discussed in Chapter 1 (see also Stein [88, Chapter 6]), AIG ignored the nega-

tive correlation between its liabilities and the capital gains in the financial market,

and applied a questionable model for risk management. To address these issues,

we assume that the insurer’s risk is modeled by a jump-diffusion process, and is

negatively correlated with the capital gains in the financial market. We then seek

optimal investment and risk control policies for an insurer who wants to maximize

its expected utility of terminal wealth. Our research has two roots in the literature:

optimal investment problems and optimal reinsurance (risk control) problems.

Merton [63] was the first to apply stochastic control theory to solve consump-

tion and investment problems in continuous time. Motivated by Merton’s work on

consumption/investment problems, many researchers added an uncontrollable risk

process to Merton’s model and then sought to obtain optimal investment policies

(mostly without consumption) under certain criteria. For instance, Browne [10]

modeled the risk by a continuous diffusion process and studied optimal investment

problems under two different criteria: maximizing expected exponential utility of

terminal wealth and minimizing the probability of ruin. Wang et al. [92] applied a

jump-diffusion model for the risk process and considered optimal investment prob-

lems under the utility maximization criterion.
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The second root of our research is optimal reinsurance problems, which con-

sider an insurer who wants to control the reinsurance payout to achieve certain

objectives. Reinsurance is an important tool for insurance companies to manage

their risk exposure. A classical risk model in the insurance literature is Cramér-

Lundberg model, which uses a compound Poisson process to model risk (claims).

The Cramér-Lundberg model was introduced by Lundberg in 1903 and then re-

published by Cramér in 1930s. Since the limiting process of a compound Poisson

process is a diffusion process, see, e.g., Taksar [90], recent research began to model

risk using a diffusion process or a jump-diffusion process, see, e.g., Wang et al.

[92]. Hojgaard and Taksar [44] assumed the reserve of an insurance company is

governed by a diffusion process and considered optimal proportional reinsurance

problems under the criterion of maximizing expected utility of running reserve up

to bankruptcy. Kaluszka [49] studied optimal reinsurance problems in discrete time

under the mean-variance criterion for both proportional reinsurance and step-loss

reinsurance. Schmidli [79] considered both the Cramér-Lundberg model and the

diffusion model, and obtained optimal proportional reinsurance policies when the

insurer’s objective is to minimize the probability of ruin. Cai and Tan [15] con-

sidered optimal reinsurance under VaR (value-at-risk) and CTE (conditional tail

expectation) measures. Recent generalizations of modeling for optimal reinsurance

problems include incorporating regime switching, see Zhuo et al. [102], and interest

rate risk and inflation risk, see Guan and Liang [36].

In mathematics, there are two main tools for solving stochastic control prob-

lems. The first tool is dynamic programming and maximum principle, see, for

instance, Fleming and Soner [30], Cadenillas [13], and Yong and Zhou [97]. The

second tool is martingale approach, based on equivalent martingale measures and

martingale representation theorems. The martingale approach and its application

71



in continuous time finance was developed by Harrison and Kreps [42]. Thereafter,

the martingale method has been applied to solve numerous important problems in

economics and finance, such as option pricing problem in Harrison and Pliska [43],

optimal consumption and investment problem in Karatzas et al. [50], Karatzas et al.

[51], optimal consumption, investment and insurance problem in Perera [73] and

optimal investment problem in Wang et al. [92]. In this chapter, we also apply the

martingale approach to solve our stochastic control problem.

Our model and optimization problem are different from the existing ones in the

literature in several directions. Comparing with Merton’s framework and its gener-

alizations, we add a controllable jump-diffusion process into the model, which will

be used to model the insurer’s risk. We then regulate the insurer’s risk by controlling

the insurer’s total liabilities or the ratio of the liabilities over wealth. Our model is

also different from the ones considered in optimal reinsurance problem and its vari-

ants, in which the risk is managed through purchasing reinsurance policies from

another insurer. As suggested in Stein [88, Chapter 6], we assume there exists neg-

ative correlation between the insurer’s risk and the capital returns in the financial

market. Stein [88, Chapter 6] considered a similar risk regulation problem as ours,

but in his model, the investment strategy is fixed, and the insurer’s risk is modeled

by a diffusion process. To generalize Stein’s work, we use a jump-diffusion pro-

cess to model the insurer’s risk and allow the insurer to select investment strategies

continuously. Stein [88, Chapter 6] considered the problem with logarithmic util-

ity function only, which can be easily solved using classical optimization method.

We obtain explicit solutions of optimal investment and risk control policies for var-

ious utility functions, including hyperbolic absolute risk aversion (HARA) utility

function (logarithmic function and power function), constant absolute risk aversion

(CARA) utility function (exponential function), and quadratic utility function.
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3.1 The Model

In the financial market, there are two assets available for investment, a riskless asset

with price process P0 and a risky asset (stock) with price process P1. On a filtered

probability space (Ω,F , {Ft}t≥0,P), the dynamics of P0 and P1 are given by

dP0(t) = r(t)P0(t)dt,

dP1(t) = P1(t)(µ(t)dt+ σ(t)dW (1)(t)),

where r, µ and σ are positive bounded functions and W (1) is a standard Brownian

motion. The initial conditions are P0(0) = 1 and P1(0) > 0.

For an insurer like AIG, its main liabilities (risk) come from writing insurance

policies, and we denote the insurer’s total liabilities at time t by L(t). In the actuar-

ial industry, the premium is usually precalculated, which means insurance compa-

nies charge premium based on historical data and estimation models. For example,

regarding auto insurance policies, insurance companies consider several main fac-

tors, such as the insured’s demographic information, previous driving record, cov-

erage needs, type of vehicle, et cetera, and then use an actuarial model to calculate

the premium for the insured. Therefore, it is reasonable to assume the premium

per dollar amount of liabilities is a fixed constant for a certain type of insurance

contracts and a given group of the insured. To simplify our analysis, we further

assume the average premium per dollar amount of liabilities for the insurer is p, so

the revenue from selling insurance policies over the time period (t, t + dt) is given

by pL(t)dt.

A commonly used risk model for claims in the actuarial industry is compound

Poisson model (Cramér-Lundberg model), in which the risk is modelled by
N(t)∑
i=1

Yi,
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where {Yi} is a series of independent and identically distributed random variables,

and N(t) is a Poisson process independent of Yi (see, e.g., Melnikov [62, Chapter

3]). If the mean of Yi and the intensity of N(t) are finite, then such compound Pois-

son process is a Levy process with finite Levy measure. According to Oksendal

and Sulem [72, Theorem 1.7], a Levy process can be decomposed into three com-

ponents, a linear drift part, a Brownian motion part and a pure jump part. Based on

this result, we assume the insurer’s risk (per dollar amount of liabilities) is given by

dR(t) = adt+ bdW̄ (t) + γdN(t), R(0) = 0,

where W̄ is a standard Brownian motion and N is a Poisson process defined on the

given filtered space, respectively. We assume a, b, γ are all positive constants.

Stein [88] argues that a major mistake AIG made during the financial crisis is

ignore the negative correlation between its liabilities and the capital returns in the

financial market. So we assume

W̄ (t) = ρW (1)(t) +
√

1− ρ2W (2)(t),

where −1 ≤ ρ < 0 and W (2) is another standard Brownian motion, independent

of W (1). We also assume the Poisson process N has a constant intensity λ, and is

independent of both W (1) and W (2).

At time t, an insurer (AIG) chooses π̃(t), the dollar amount invested in the risky

asset, and total liabilities L(t). For a control ũ := (π̃, L), the corresponding wealth

process (surplus process) X ũ is driven by the following SDE:

dX ũ(t) =
(
r(t)X ũ(t) + (µ(t)− r(t))π̃(t) + (p− a)L(t)

)
dt− γL(t)dN(t)

+ (σ(t)π̃(t)− ρbL(t))dW (1)(t)− b
√

1− ρ2L(t)dW (2)(t), (3.1)
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with initial wealth X ũ(0) = x > 0.

Following Stein [88, Chapter 6], we define the ratio of liabilities over wealth as

κ(t) := L(t)
X(t)

(which is called liability ratio). We denote π(t) as the proportion of

wealth invested in the risky asset at time t. Then for a control u(t) := (π(t), κ(t)),

we have ũ(t) = X(t)u(t). We then rewrite SDE (3.1) as

dXu(t)

Xu(t−)
= (r(t) + (µ(t)− r(t))π(t) + (p− a)κ(t))dt− γκ(t)dN(t)

+ (σ(t)π(t)− ρbκ(t))dW (1)(t)− b
√

1− ρ2κ(t)dW (2)(t),

(3.2)

with Xu(0) = x > 0.

Remark 3.1. In a financial market, it is universally acknowledged that extra un-

certainty (risk) must be compensated by extra return. So in our model, we impose

further conditions on the coefficients: µ(t) > r(t) ≥ 0 and p > a > 0.

We define the criterion function as

J(x;u) = Ex [U(Xu(T ))] ,

where T > 0 is the terminal time, and Ex means conditional expectation under

probability measure P given Xu(0) = x. The utility function U is assumed to

be a strictly increasing and concave function. The common choices for the utility

function in economics and finance are U(x) = ln(x), U(x) = − 1
α
e−αx, where

α > 0, and U(x) = 1
α
xα, where α < 1 and α 6= 0.

We denoteA(x) as the set of all admissible controls with initial wealth X(0) =

x. Depending on the choice of the utility function, we choose in Sections 3.2, 3.3,

3.4, and 3.5 either u or ũ to be our control and then define A(x) formally.

The value function is defined by

V (x) := sup
u∈A(x)

J(x;u),
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where u will be changed accordingly if the control we choose is ũ.

We then formulate optimal investment and risk control problems as follows.

Problem 3.1. Select an admissible control u∗ = (π∗, κ∗) ∈ A(x) (or ũ∗ = (π̃∗, L∗) ∈

A(x)) that attains the value function V (x). The control u∗ (or ũ∗) is called an op-

timal control or an optimal policy.

3.2 The Analysis for U(x) = ln(x), x > 0

We first consider Problem 3.1 when the utility function is given by U(x) = ln(x),

x > 0, which belongs to the class of hyperbolic absolute risk aversion (HARA)

utility functions.

We choose u as control and denote A1 as the set of all admissible controls

when U(x) = ln(x). For every u ∈ A1, {u(t)}0≤t≤T is progressively measurable

with respect to the filtration {Ft}0≤t≤T and satisfies the following conditions, ∀ t ∈

[0, T ],

E

[∫ t

0

π(s)2ds

]
<∞, and E

[∫ t

0

κ(s)2ds

]
<∞, κ(t) ≥ 0.

Furthermore, to avoid the possibility of bankruptcy at jumps, we assume κ(t) < 1
γ

if u ∈ A1.

Notice that ∀u ∈ A1, the SDE (3.2) satisfies the linear growth condition and

Lipschitz continuity condition. Thus by Theorem 1.19 in Oksendal and Sulem [72],

there exists a unique solution Xu such that

E[|Xu(t)|2] <∞ for all t ∈ [0, T ].

Proposition 3.1. Under optimal control u∗ of Problem 3.1, the associated optimal

terminal wealth Xu∗(T ) is strictly positive with probability 1.
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Proof. Notice that u0 := (π ≡ 0, κ ≡ 0) ∈ A1 is an admissible control, and the

associated wealth Xu0 is given by

Xu0(t) = x e
∫ t
0 r(s)ds > 0, ∀ t ∈ [0, T ].

Thus, E[U(Xu0(T ))] is finite. Since u∗ is optimal control of Problem 3.1, we have

E[U(Xu∗(T ))] ≥ E[U(Xu0(T ))], and in particularE[U(Xu∗(T ))] is bounded from

below. Since U is the logarithmic utility, this implies that Xu∗(T ) > 0 with proba-

bility 1. �

3.2.1 Method 1: Optimization Method in Calculus

Under the logarithmic utility assumption, we can apply the classical optimization

method in calculus to solve Problem 3.1. For more details on using this method to

solve stochastic control problems, please see Stein [88, Chapters 4,5,6].

Applying Ito’s formula to ln(Xt), we obtain

ln
Xu
t

X0

=

∫ t

0

(
rs + (µs − rs)πs + (p− a)κs −

1

2
σ2
sπ

2
s + ρbσsπsκs

− 1

2
b2κ2

s + λ ln(1− γκs)
)
ds+

∫ t

0

(σsπs − bρκs) dW (1)
s

−
∫ t

0

b
√

1− ρ2κsdW
(2)
s +

∫ t

0

ln(1− γκs)dMs,

where Mt := Nt − λt is the compensated Poisson process of N and is a martingale

under P.

For any given u ∈ A1, we have∫ t

0

(σsπs − bρκs)2 ds ≤ K1

∫ t

0

π2
sds+K2

∫ t

0

κ2
sds <∞,∫ t

0

b2(1− ρ2)κ2
sds ≤ K3

∫ t

0

κ2
sds <∞,
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for some positive constants Ki, i = 1, 2, 3.

Therefore, we obtain

Ex

[∫ t

0

(σsπs − bρκs) dW (1)
s

]
= Ex

[∫ t

0

b
√

1− ρ2κsdW
(2)
s

]
= 0.

Since κ is a bounded predictable process, so is ln(1 − γκ) and this implies the

stochastic integral
∫ t

0
ln(1− γκs)dMs is again a P-martingale with the initial value

being 0. So we obtain

Ex

[∫ t

0

ln(1− γκs)dMs

]
= 0.

The above analysis yields

Ex

[
ln
Xu
T

Xu
0

]
= Ex

[∫ T

0

f(π(t), κ(t))dt

]
,

where f(π(t), κ(t)) := r(t) + (µ(t) − r(t))π(t) + (p − a)κ(t) − 1
2
σ(t)2π(t)2 +

ρbσ(t)π(t)κ(t)− 1
2
b2κ(t)2 + λ ln(1− γκ(t)).

Hence we obtain the optimization condition as follows

u∗(t) = arg sup
u∈A1

J(x;u) = arg sup
u∈A1

f(π(t), κ(t)).

The first-order condition is then given by

µ(t)− r(t)− σ2(t)π∗(t) + ρbσ(t)κ∗(t) = 0,

p− a+ ρbσ(t)π∗(t)− b2κ∗(t)− λγ

1− γκ∗(t)
= 0.

(3.3)

We next obtain a candidate for π∗ as

π∗(t) =
µ(t)− r(t)
σ2(t)

+
ρb

σ(t)
κ∗(t), (3.4)
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where κ∗(t) is the solution to the following quadratic equation

A(κ∗(t))2 −B(t)κ∗(t) + C(t) = 0, (3.5)

with coefficients defined as

A : = b2(1− ρ2)γ,

B(t) : = b2(1− ρ2) + γ

(
p− a+ ρ b

µ(t)− r(t)
σ(t)

)
,

C(t) : = p− a+ ρ b
µ(t)− r(t)

σ(t)
− λγ.

It is easy to check that

∆(t) := B2(t)− 4AC(t) = (b2(1− ρ2)− γ(C(t) + λγ))2 + 4λb2(1− ρ2)γ2 > 0.

So the quadratic system (3.5) has two solutions. One of them is given by

κ+(t) =
B(t) +

√
∆(t)

2A
>

1

γ
,

which is not included in the admissible set A1.

To ensure the existence of a non-negative κ∗ ∈ [0, 1
γ
), we impose the technical

condition mint∈[0,T ] C(t) > 0, which is equivalent to

p− a+ ρ b
µ(t)− r(t)

σ(t)
> λγ, ∀ t ∈ [0, T ]. (3.6)

If the technical condition (3.6) holds, we have

κ∗(t) = κ−(t) :=
B(t)−

√
∆(t)

2A
. (3.7)

Notice that a sufficient condition for a regular interior maximizer and the first-

order condition to hold is

fππ < 0, fκκ < 0, and fππfκκ − f 2
πκ > 0. (3.8)
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We then calculate those partial derivatives and verify that the above condition (3.8)

is satisfied.

fππ = −σ2(t) < 0,

fκκ = −b2 − λγ2κ(t)

(1− γκ(t))2
< 0,

fππfκκ − f 2
πκ = (1− ρ2)b2σ2(t) +

λγ2σ2(t)κ(t)

(1− γκ(t))2
> 0.

Theorem 3.1. WhenU(x) = ln(x), and the technical condition (3.6) holds, u∗(t) =

(π∗(t), κ∗(t)), where π∗(t) and κ∗(t) are given by (3.4) and (3.7), respectively, is

optimal control to Problem 3.1 with the admissible set A1.

Proof. ∀u = (π, κ) ∈ A1, since u∗ defined above is the maximizer of f , we have

f(π∗(t), κ∗(t)) ≥ f(π(t), κ(t)), ∀ t ∈ [0, T ],

and then ∫ T

0

f(π∗(t), κ∗(t))dt ≥
∫ T

0

f(π(t), κ(t))dt,

which implies J(x, u∗) ≥ J(x, u). Due to the arbitrariness of u, we obtain J(x, u∗) ≥

V (x).

To complete the proof, we verify that u∗ defined above is admissible.

Since C(t)
A

> 0 and κ+(t) > 0, we have κ∗(t) = κ−(t) > 0.

To show κ∗(t) < 1
γ

, it is equivalent to show

∆(t) > (γ(C(t) + λγ)− b2(1− ρ)2)2,

which is always satisfied if we recall the definition of ∆(t).

So we have 0 ≤ κ∗(t) < 1
γ

, which in turn implies∫ t

0

(κ∗(s))2ds <∞,∀ t ∈ [0, T ].
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From our assumption, µ(t), r(t) and σ(t) are all positive and bounded functions,

for all t ∈ [0, T ], we obtain∫ t

0

(π∗(s))2ds ≤ K4t+K5

∫ t

0

(κ∗(s))2ds <∞,

for some positive constants K4 and K5.

Therefore u∗ defined above is an admissible control and then is optimal control

to Problem 3.1. �

3.2.2 Method 2: Martingale Method

In this subsection, we apply the martingale method to solve Problem 3.1. To begin

with, we give two important Lemmas, which are Proposition 2.1 and Lemma 2.1

in Wang et al. [92], respectively. Lemma 3.1 gives the condition that optimal con-

trol must satisfy. Lemma 3.2 is a generalized version of martingale representation

theorem.

Lemma 3.1. If there exists a control u∗ ∈ A(x) such that

E
[
U ′(Xu∗(T ))Xu(T )

]
is constant over all admissible controls, (3.9)

then u∗ is optimal control to Problem 3.1.

Lemma 3.2. For any P-martingaleZ, there exists predictable processes θ = (θ1, θ2, θ3)

such that

Zt = Z0 +

∫ t

0

θ1(s)dW (1)
s +

∫ t

0

θ2(s)dW (2)
s +

∫ t

0

θ3(s)dMs,

for all t ∈ [0, T ].

We obtain optimal control to Problem 3.1 through the following three steps.
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Step 1. We conjecture candidates for optimal strategies π∗ and κ∗.

Define

ZT :=
(Xu∗

T )−1

E[(Xu∗
T )−1]

, and Zη := E[ZT |Fη] (3.10)

for any stopping time η ≤ T almost surely. Recall Proposition 3.1, the process Z

is a strictly positive (square-integrable) martingale under P with E[Zt] = 1, for all

t ∈ [0, T ]. We define a new measure Q by
dQ
dP

:= ZT .

From the SDE (3.1), we have

Xu
t = X ũ

t = xert +

∫ t

0

er(t−s)((µs − rs)π̃s + (p− a)Ls)ds−
∫ t

0

er(t−s)γLsdNs

+

∫ t

0

er(t−s)(σsπ̃s − ρbLs)dW (1)
s −

∫ t

0

er(t−s)b
√

1− ρ2LsdW
(2)
s .

Using the above expression of X and Lemma 3.1, for all admissible controls,

we have

EQ

[ ∫ t

0

e−rs
(

((µs − rs)π̃s + (p− a)Ls)ds+ (σsπ̃s − ρbLs)dW (1)
s

− b
√

1− ρ2LsdW
(2)
s − γLsdNs

)]
is constant.

(3.11)

We define

Kt :=

∫ t

0

1

Zs−
dZs, t ∈ [0, T ].

Since Z is a P-martingale, so is K.

By Lemma 3.2, there exist predictable processes (θ1, θ2, θ3) such that (see Wang

et al. [92] for measurability and integrability conditions that θ should satisfy)

dKt = θ1(t)dW
(1)
t + θ2(t)dW

(2)
t + θ3(t)dM(t).

82



Then by the Doleans-Dade exponential formula, we have

Zt = Z0 exp
{∫ t

0

(θ1(s)dW (1)
s + θ2(s)dW (2)

s + ln(1 + θ3(s))dNs)

− 1

2

∫ t

0

(θ2
1(s) + θ2

2(s) + 2λθ3(s))ds
}
.

(3.12)

By Girsanov’s Theorem, W (i)(t) −
∫ t

0
θi(s)ds, i = 1, 2, is a Brownian Motion

under Q and N(t)−
∫ t

0
λ(1 + θ3(s))ds is a martingale under Q.

For any stopping time η ≤ T , we choose π̃(t) = 1t≤η and L(t) = 0, which is

apparently an admissible control. By substituting this control into (3.11), we obtain

EQ

[∫ η

0

e−rs(µs − rs)ds+

∫ η

0

e−rsσsdW
(1)
s

]
is constant over all η ≤ T,

which implies∫ t

0

e−rs(µs − rs)ds+

∫ t

0

e−rsσsdW
(1)
s is a Q-martingale. (3.13)

Therefore, θ1 must satisfy the equation

µ(t)− r(t) + σ(t)θ1(t) = 0,

or equivalently,

θ1(t) = −µ(t)− r(t)
σ(t)

, t ∈ [0, T ]. (3.14)

Next we choose π̃(t) = 0 and L(t) = 1t≤η. By following a similar argument as

above, we have∫ t

0

e−rs((p− a)ds− ρbdW (1)
s − b

√
1− ρ2dW (2)

s − γdNs) is a Q-martingale,

which in turn yields

p− a− ρbθ1(t)− b
√

1− ρ2θ2(t)− λγ(1 + θ3(t)) = 0, t ∈ [0, T ].
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By (3.14), we can rewrite the above equation as

p− a+ ρb
µ(t)− r(t)

σ(t)
− b
√

1− ρ2 θ2(t)− λγ(1 + θ3(t)) = 0, t ∈ [0, T ]. (3.15)

Remark 3.2. Notice that the above analysis holds for all utility functions except

that the definition of Z in (3.10) changes accordingly. More importantly, we em-

phasize that the conditions (3.14) and (3.15) are satisfied for all utility functions,

although θ2 and θ3 will be different for different utility functions. We shall use the

conclusion in this Remark when applying the martingale approach to solve Problem

3.1 for different utility functions thereafter.

From the SDE (3.2), we can solve to get (Xu∗
T )−1

(Xu∗

T )−1 = x−1 exp
{
−
∫ T

0

f(π∗t , κ
∗
t )dt−

∫ T

0

(σtπ
∗
t − ρbκ∗t )dW

(1)
t

+

∫ T

0

b
√

1− ρ2κ∗tdW
(2)
t −

∫ T

0

ln(1− γκ∗t )dMt

}
.

(3.16)

By comparing the dW (1), dW (2) and dN terms in (3.12) and (3.16), we obtain

θ1(t) = −(σ(t)π∗(t)− ρbκ∗(t)),

θ2(t) = b
√

1− ρ2κ∗(t),

ln(1 + θ3(t)) = − ln(1− γκ∗(t)).

(3.17)

By plugging (3.17) into (3.14) and (3.15), we obtain the same system (3.3) as

in Method 1. Hence, the candidates of the optimal policies π∗ and κ∗ are given by

(3.4) and (3.7).

Step 2. For θi given in (3.17) and u∗ = (π∗, κ∗) defined by (3.4) and (3.7), we

verify that ZT defined by (3.12) is consistent with its definition.
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We first rewrite (3.16) as
1

Xu∗
T

= ITHT ,

where

IT : =
1

x
exp

{∫ T

0

(−f(π∗s , κ
∗
s) + λ ln(1− γκ∗s))ds

}
,

HT : = exp
{
−
∫ T

0

(σsπ
∗
s − ρbκ∗s)dW (1)

s +

∫ T

0

b
√

1− ρ2κ∗sdW
(2)
s

−
∫ T

0

ln(1− γκ∗s)dNs

}
.

By substituting (3.17) back into (3.12), we obtain

ZT = JTHT ,

where

JT := exp

{∫ T

0

(−1

2
σ2
s(π
∗
s)

2 + ρbσsπ
∗
sκ
∗
s −

1

2
b2(κ∗s)

2 + λ(
1

1− γκ∗s
− 1))ds

}
is constant.

By definition, we know Z is a P-martingale and E[ZT ] = 1, and then

E[HT ] =
1

JT
.

Therefore, we obtain

ZT =
(Xu∗

T )−1

E [(Xu∗
T )−1]

=
ITHT

ITE[HT ]
=
HT

J−1
T

= JTHT ,

which shows Z given by (3.12) with θi provided by (3.17) is the same as the defini-

tion: ZT =
(Xu∗

T )−1

E[(Xu∗
T )−1]

.

Step 3. We verify that π∗ and κ∗, given by (3.4) and (3.7), respectively, are in-
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deed optimal strategies. Equivalently, we verify the condition (3.9) is satisfied for

u∗ = (π∗, κ∗).

For any u ∈ A1, we define a new process Y u as follows

Y u
t :=

∫ t

0

e−rsXu
s ((µs − rs)πs + (p− a)κs) ds−

∫ t

0

e−rsXu
s γκsdNs

+

∫ t

0

e−rsXu
s

(
(σsπs − ρbκs)dW (1)

s − b
√

1− ρ2κsdW
(2)
s

)
=

∫ t

0

e−rsXu
s κs

(
p− a+ ρb

µs − rs
σs

− b2(1− ρ2)κ∗s −
λγ

1− γκ∗s

)
ds

+ local Q-martingale.

Due to the first-order condition (3.3), the above ds term will be 0, and then Y u

is a local Q-martingale.

Since u∗ is deterministic and bounded, Z is a square-integrable martingale under

P, which implies E[(ZT )2] <∞ or equivalently, Z ∈ L2(F). Furthermore, for any

u ∈ A1, we have Xu ∈ L2(F), so is Y u. Therefore, we have

EQ

[
sup

0≤t≤T
|Y u
t |
]
≤
√
E[(ZT )2]

√
E

[
sup

0≤t≤T
|Y u
t |2
]
<∞,

which enables us to conclude that the family

{Y u
η : stopping time η ≤ T} is uniformly integrable under Q.

Hence Y u is indeed a martingale under Q with EQ[Y u
t ] = 0 for any u ∈ A1. This

result verifies the condition (3.9) is satisfied.

Therefore, Lemma 3.1 together with the above three steps lead to Theorem 3.1.

�
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3.3 The Analysis for U(x) = 1
αx

α, α < 1, α 6= 0

The second utility function we consider is power function, which also belongs to

HARA class. Here, we choose A1 as the admissible set for Problem 3.1.

Since U ′(Xu∗
T ) = (Xu∗

T )α−1, we define Z as

ZT :=

(
Xu∗
T

)α−1

E
[
(Xu∗

T )
α−1
] , and Zη := E[ZT |Fη], (3.18)

where η is a stopping time and η ≤ T almost surely. With the help of Z, we define

a new probability measure Q by
dQ
dP

= ZT .

From the SDE (3.2), we obtain

(
Xu∗

T

)α−1
= constant · exp

{∫ T

0

(α− 1)
(

(σtπ
∗
t − ρbκ∗t )dW

(1)
t

− b
√

1− ρ2κ∗tdW
(2)
t + ln(1− γκ∗t )dNt

)}
.

(3.19)

Thanks to Remark 3.2, ZT also bears the expression (3.12). So by comparing

the terms of dW (1), dW (2) and dN in (3.12) and (3.19), we obtain

θ1(t) = (α− 1)(σ(t)π∗(t)− ρbκ∗(t)),

θ2(t) = −b(α− 1)
√

1− ρ2κ∗(t),

ln(1 + θ3(t)) = (α− 1) ln(1− γκ∗(t)).

(3.20)

Substituting θ1 in (3.20) into (3.14), we obtain optimal proportion π∗ of invest-

ment in the risky asset

π∗(t) = − µ(t)− r(t)
(α− 1)σ2(t)

+
ρ b

σ(t)
κ∗(t), (3.21)

where κ∗ will be determined below by (3.22).

Due to Remark 3.2, θ2 and θ3 defined above should satisfy the equation (3.15).
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We then plug (3.20) into (3.15), and obtain

p−a+ρb
µ(t)− r(t)

σ(t)
+ (α− 1)b2(1−ρ2)κ∗(t)−λγ(1−γκ∗(t))α−1 = 0. (3.22)

Define

φ(t) : = 1− γκ∗(t),

B1 : =
(α− 1)b2(1− ρ2)

λγ2
,

C1(t) : = − 1

λγ

[
p− a+ ρb

µ(t)− r(t)
σ(t)

+
(α− 1)b2(1− ρ2)

γ

]
.

Then the equation (3.22) for optimal liability ratio κ∗ can be rewritten as

(φ(t))α−1 +B1 φ(t) + C1(t) = 0. (3.23)

Lemma 3.3. If the condition (3.6) holds, then there exists a unique solution φ(t) ∈

(0, 1) to the equation (3.23), equivalently, a unique solution κ∗(t) ∈ (0, 1
γ
) to the

equation (3.22).

Proof. Define h(x) := xα−1 + B1 x + C1(t). It is easy to check h′(x) = (α −

1)xα−2 + B1 < 0 since α − 1 < 0. Besides, limx→0+ h(x) = +∞. Due to the

technical condition (3.6), we have

h(1) = 1− 1

λγ

(
p− a+ ρb

µ(t)− r(t)
σ(t)

)
< 0.

Hence, there exists a unique solution in (0, 1) to the equation (3.23) for all t ∈ [0, T ].

Recall the definition of φ, if φ ∈ (0, 1), then κ∗ ∈ (0, 1
γ
), and so the equation (3.22)

bears a unique solution in (0, 1
γ
). �

Theorem 3.2. When U(x) = 1
α
xα, α < 1, α 6= 0, and the technical condition

(3.6) holds, u∗(t) = (π∗(t), κ∗(t)), with π∗ and κ∗ given by (3.21) and (3.22),

respectively, is optimal control to Problem 3.1 with the admissible set A1.
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Proof. Because of Lemma 3.3, π∗ and κ∗ given by (3.21) and (3.22) are well-defined

if the condition (3.6) is satisfied. By following Steps 2 and 3 as in Section 3.2, we

can verify that the condition (3.9) holds for the above defined u∗ = (π∗, κ∗). Then

it remains to show that u∗ is admissible.

By Lemma 3.3, we have κ∗(t) ∈ (0, 1
γ
), and then the square integrability condi-

tion for κ∗ follows. Recall (3.21) and the assumption that µ, r, σ are all bounded, π∗

is also square-integrable. Therefore, u∗ ∈ A1 and then u∗ defined above is optimal

control to Problem 3.1. �

3.4 The Analysis for U(x) = − 1
αe
−αx, α > 0

In this section, we consider Problem 3.1 for exponential utility function, which is

of constant absolute risk aversion (CARA) class. In this case, we use control ũ and

define the admissible set A2 as follows: for any admissible control ũ = (π̃, L) ∈

A2, {ũt}0≤t≤T is progressively measurable with respect to the filtration {Ft}0≤t≤T ,

and satisfies the integrability conditions

E

[∫ t

0

(π̃(s))2ds

]
<∞, E

[∫ t

0

(L(s))2ds

]
<∞,

and L(t) ≥ 0, ∀ t ∈ [0, T ].

By Lemma 3.1, optimal control ũ∗ should satisfy the following condition

E
[
exp{−αX ũ∗

T }X ũ
T

]
is constant for all u ∈ A2. (3.24)

So we define the Radon-Nikodym process by

ZT :=
e−αX

u∗
T

E[e−αX
u∗
T ]
, and Zη := E[ZT |Fη], (3.25)

for any stopping time η ≤ T , and a new probability measure Q by dQ
dP = ZT .
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Since Z is a martingale under P, there exist progressively measurable processes

θi, i = 1, 2, 3, such that Z is in the form of (3.12).

From the SDE (3.1), we can calculate

exp
{
−αX ũ∗

T

}
= constant · exp

{
−
∫ T

0

αer(T−t)
(

(σtπ̃
∗
t − ρbL∗t )dW

(1)
t

− b
√

1− ρ2L∗tdW
(2)
t − γL∗tdNt

)}
.

(3.26)

Comparing (3.12) and (3.26) gives

θ1(t) = −αer(T−t)(σ(t)π̃∗(t)− ρbL∗(t)),

θ2(t) = αer(T−t)b
√

1− ρ2L∗(t),

ln(1 + θ3(t)) = αγer(T−t)L∗(t).

(3.27)

By (3.14), we have

π̃∗(t) = e−r(T−t)
µ(t)− r(t)
ασ(t)2

+
ρb

σ(t)
L∗(t). (3.28)

Substituting (3.27) into (3.15), we obtain

λγ eA3(t)L∗(t) +B3(t)L∗(t)− C3(t) = 0, (3.29)

with A3, B3 and C3 defined by

A3(t) : = α γ er(T−t),

B3(t) : = αer(T−t)b2(1− ρ2),

C3(t) : = p− a+ ρb
µ(t)− r(t)

σ(t)
.

Lemma 3.4. If the condition (3.6) holds, then there exists a (unique) positive solu-

tion to the equation (3.29).

Proof. We define h̃(x) := λ γ eA3(t)x+B3(t)x−C3(t). SinceA3(t) > 0,B3(t) > 0
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for all t ∈ [0, T ], and

h̃′(x) = λ γ A3(t)eA3(t)x +B3(t),

we have h̃′(x) > 0. Because the condition (3.6) holds, we obtain h̃(0) = λγ −

C3(t) < 0 for all t ∈ [0, T ]. Besides, C3(t) is a bounded function on [0, t] and then

has a finite maximum, which implies h̃(x) > 0 when x is large enough. Therefore,

as a continuous and strictly increasing function, h̃(x) has a (unique) positive zero

point. �.

Theorem 3.3. When U(x) = − 1
α
e−αx, α > 0, and the condition (3.6) holds,

ũ∗(t) = (π̃∗(t), L∗(t)), where π̃∗ and L∗ are defined by (3.28) and (3.29), respec-

tively, is optimal control to Problem 3.1 with the admissible set A2 .

Proof. Please refer to Theorem 3.1 for proof. �

3.5 The Analysis for U(x) = x− α

2
x2, α > 0

As pointed in Wang et al. [92], to find a mean-variance portfolio strategy is equiv-

alent to maximize expected utility for a quadratic function. So in this section, we

consider a quadratic utility function, and solve Problem 3.1 with admissible set

A(x) = A2. Notice that the quadratic utility function considered in this section is

not strictly increasing for all x, but rather has a maximum point at x = 1
α

. This

means if investor’s wealth is greater than the maximum point, he/she will expe-

rience a decreasing utility as wealth increases. Such result is consistent with the

famous efficient frontier theory (discovered by Markowitz [60]).

Since U ′(x) = 1− αx, our objective is to find ũ∗ ∈ A2 such that

E[(1− αX ũ∗

T )X ũ
T ] is constant for all u ∈ A2. (3.30)
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Define ZT := 1 − αX ũ∗
T and Zt := E[ZT |Ft]. Since ũ∗ ∈ A2, Z is a square-

integrable martingale under P. By Lemma 3.2, there exist progressively measurable

processes θi, i = 1, 2, 3, such that

dZ(t) = θ1(t)dW (1)(t) + θ2(t)dW (2)(t) + θ3(t)dM(t).

Define the process Ỹ ũ by

Ỹ ũ(t) :=

∫ t

0

e−rs
[
((µs − rs)π̃s + (p− a)Ls)ds+ (σsπ̃s − ρbLs)dW (1)

s

− b
√

1− ρ2LsdW
(2)
s − γLsdNs

]
.

Then we can write X ũ as X ũ(t) = ert(x+ Ỹ ũ(t)) and obtain a sufficient condition

for (3.30)

{Ỹ ũ(t)Z(t)}t∈[0,T ] is a martingale under measure P.

By Ito’s formula, we have

dỸ ũ
t Zt = Ỹ ũ

t−dZt + Zt−dỸ
ũ
t + d[Ỹ ũ, Z](t)

= Ỹ ũ
t−dZt + Zt−e

−rt((µt − rt)π̃t + (p− a)Lt
)
dt

+ Zt−e
−rt(σtπ̃t − ρbLt)dW (1)

t − Zt−e−rtb
√

1− ρ2LtdW
(2)
t

− Zt−e−rtγLtdNt + θ1(t)e−rt(σtπ̃t − ρbLt)dt

− θ2(t)e−rtb
√

1− ρ2Ltdt− θ3(t)e−rtγLtdNt.

Then a necessary condition for Ỹ ũZ to be a P-martingale is

Zt−((µt − rt)π̃t + (p− a)Lt − λγLt) + θ1(t)(σtπ̃t − ρbLt)

− θ2(t)b
√

1− ρ2Lt − θ3(t)λγLt = 0.

By considering two admissible controls (π̃ = 1, L = 0) and (π̃ = 0, L = 1), we
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obtain

Zt−(µ(t)− r(t)) + σ(t)θ1(t) = 0 ⇒ θ1(t) = −µ(t)− r(t)
σ(t)

Zt−. (3.31)

Zt−(p− a− λγ)− ρbθ1(t)− b
√

1− ρ2θ2(t)− λγθ3(t) = 0. (3.32)

Define P (t) := exp{
∫ t

0
ξ(s)ds}, t ∈ [0, T ], where ξ is a deterministic function

that will be determined later. Applying Ito’s formula to PtZt gives

PTZT = Z0 +

∫ T

0

PtdZt +

∫ T

0

Zt−dPt

= Z0 +

∫ T

0

Zt−ξtPtdt−
∫ T

0

µt − rt
σt

Zt−PtdW
(1)
t

+

∫ T

0

Ptθ2(t)dW
(2)
t +

∫ T

0

Ptθ3(t)dNt −
∫ T

0

λPtθ3(t)dt.

Recall the definition of ZT , we obtain X ũ∗
T = 1−ZT

α
= 1

α
− PTZT

αPT
and

X ũ∗

T =
1

α
− Z0

αPT
− 1

αPT

∫ T

0

Zt−ξtPtdt

+
1

αPT

∫ T

0

µt − rt
σt

Zt−PtdW
(1)
t −

1

αPT

∫ T

0

Ptθ2(t)dW
(2)
t

− 1

αPT

∫ T

0

Ptθ3(t)dNt +
1

αPT

∫ T

0

λPtθ3(t)dt.

(3.33)

By substituting optimal control ũ∗ into the SDE (3.1), we solve to get

X ũ∗

T = xerT +

∫ T

0

er(T−t)
(
((µs − rs)π̃∗s + (p− a)L∗s

)
ds−

∫ T

0

er(T−t)γL∗tdNt

+

∫ T

0

er(T−t)
(

(σtπ̃
∗
t − ρbL∗t )dW

(1)
t − b

√
1− ρ2L∗tdW

(2)
t

)
. (3.34)
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Apparently, the above two expressions of X ũ∗
T should match, and hence

1

α

µ(t)− r(t)
σ(t)

Pt
PT

Zt− = er(T−t)(σ(t)π̃∗(t)− ρbL∗(t)),

1

α

Pt
PT

θ2(t) = er(T−t)b
√

1− ρ2L∗(t),

1

α

Pt
PT

θ3(t) = er(T−t)γL∗(t).

(3.35)

By (3.35), we can rearrange (3.33) as

X ũ∗

T =
1

α
− Z0

αPT
− 1

αPT

∫ T

0

Zt−ξtPtdt+

∫ T

0

er(T−t)λγL∗tdt

+X ũ∗

T − xerT −
∫ T

0

er(T−t)
(
(µt − rt)π̃∗t + (p− a)L∗t

)
dt.

(3.36)

From the systems of (3.31) and (3.32) along with the above conditions (3.35),

we find optimal control as

π̃∗(t) = e−r(T−t)
1

α

µ(t)− r(t)
σ(t)2

Pt
PT

Zt− +
ρb

σ(t)
L∗(t), (3.37)

L∗(t) = e−r(T−t)
1

α

p− a− λγ + ρbµ(t)−r(t)
σ(t)

b2(1− ρ2) + λγ2

Pt
PT

Zt−. (3.38)

To ensure the equation (3.36) holds, we choose ξ to be

ξ(t) = −
(
µ(t)− r(t)

σ(t)

)2

− ϕ(t), (3.39)

with ϕ defined by

ϕ(t) :=

(
p− a− λγ + ρbµ(t)−r(t)

σ(t)

)2

b2(1− ρ2) + λγ2
,

and Z0 as

Z0 = (1− αxerT )PT = (1− αxerT ) exp

{∫ T

0

ξ(t)dt

}
. (3.40)

Now we substitute optimal L∗ into (3.35) and obtain the expressions of θ2 and
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θ3 in Z as

θ2(t) = b
√

1− ρ2Φ(t)Zt−, (3.41)

θ3(t) = γΦ(t)Zt−, (3.42)

where Φ is defined as

Φ(t) :=
p− a− λγ + ρbµ(t)−r(t)

σ(t)

b2(1− ρ2) + λγ2
.

Therefore, we obtain the dynamics of Z as

dZt = Zt−

(
−µt − rt

σt
dW

(1)
t + b

√
1− ρ2ΦtdW

(2)
t + γΦtdMt

)
,

which yields a unique solution

Zt =Z0 exp

{
−
∫ t

0

(
1

2

(
µs − rs
σs

)2

+
1

2
b2(1− ρ2)Φ2

s + λγΦs

)
ds∫ t

0

(
−µs − rs

σs
dW (1)

s + b
√

1− ρ2ΦsdW
(2)
s + ln(1 + γΦs)dNs

)}
,

(3.43)

where Z0 is given by (3.40).

Then we can rewrite optimal control in the following form

π̃∗(t) =
1

α
e−r(T−t)

(
µ(t)− r(t)
σ2(t)

+
ρb

σ(t)
Φ(t)

)
exp

{
−
∫ T

t

ξ(s)ds

}
Zt−, (3.44)

L∗(t) =
1

α
e−r(T−t)Φ(t) exp

{
−
∫ T

t

ξ(s)ds

}
Zt−, (3.45)

where ξ and Z are given by (3.39) and (3.43), respectively.

Theorem 3.4. When U(x) = x − α
2
x2, α > 0, and the condition (3.6) holds,

ũ∗ = (π̃∗, L∗) with π̃∗ and liabilities L∗ given by (3.44) and (3.45), respectively, is

optimal investment to Problem 3.1 with the admissible control set A2.

Proof. ∀ t ∈ [0, T ], Φ(t) is a bounded deterministic function, so are θi
Zt−

, with θi,
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i = 1, 2, 3, defined by (3.31), (3.41) and (3.42), respectively. Hence Z, defined

by (3.43), is indeed a square-integrable martingale. With our choices for ξ and Z0,

given by (3.39) and (3.40), we can verify that

− 1

αPT

∫ T

0

Zt−ξtPtdt−
∫ T

0

er(T−t)
(
(µt − rt)π̃∗t + (p− a− λγ)L∗t

)
dt = 0,

and 1
α
− Z0

αPT
−xerT = 0, which implies ZT defined by (3.43) is equal to 1−αX ũ∗

T ,

with X ũ∗
T given by (3.34).

Provided ũ ∈ A2, X ũ ∈ L2(F), then Ỹ Z ∈ L2(F), which verifies Ỹ Z is

indeed a martingale under P. So the condition (3.30) holds.

In the last step, we show that ũ∗ = (π̃∗, L∗), with π̃∗ and L∗ given by (3.44) and

(3.45), is admissible. To that purpose, notice both Φ(t) and ξ(t) are bounded for all

t ∈ [0, T ]. Hence, ∀ t ∈ [0, T ], there exists a positive constant K̃t such that

max
{

(π̃∗(t))2 , (L∗(t))2} ≤ K̃t (Zt−)2 .

Due to the fact that Z ∈ L2(F), we obtain π̃∗, L∗ ∈ L2(F). When the condition

(3.6) holds, Φ(t) ≥ 0 for all t ∈ [0, T ], which implies L∗(t) ≥ 0, ∀ t ∈ [0, T ]. �

3.6 Economic Analysis

In this section, we analyze the impact of the market parameters on the optimal poli-

cies in three cases: logarithmic utility function, power utility function and exponen-

tial utility function. To conduct the economic analysis, we assume the coefficients

in the financial market are constants and select the market parameters as given in

Table 3.1. Notice that in Table 3.1, three variables: ρ, γ and α, have not been as-

signed fixed values. We shall analyze the impact of those three variables on the

optimal policies.
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µ r σ a b p λ
0.05 0.01 0.25 0.08 0.1 0.15 0.1

Table 3.1: Market Parameters

First, we study the impact of ρ, the negative correlation coefficient between

insurer’s risk and stock returns, on the optimal policies. We fix γ = 0.3.

For the logarithmic utility function, the optimal policies of π∗ and κ∗ are given

by (3.4) and (3.7), respectively. We draw the graph of optimal policies with respect

to different values of ρ in Figure 3.1.

Figure 3.1: Impact of ρ on Optimal Policies When U(x) = ln(x)

In the case of the power utility function, the optimal policies are obtained by

(3.21) and (3.22). We notice that the optimal policies depend on α, the insurer’s

risk aversion parameter. The smaller the α, the higher the risk aversion. We divide

all the insurers into two categories: high risk-averse insurers (α < 0) and low risk-

averse insurers (0 < α < 1). For high risk-averse insurers, we pick α = −1; for

low risk-averse insurers, we consider α = 0.1. The corresponding optimal policies

are presented in Figure 3.2.
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Figure 3.2: Impact of ρ on Optimal Policies When U(x) = 1
α
xα

In the case of the exponential utility function, we obtain the optimal policies by

(3.28) and (3.29). We notice that the optimal policies at time t depend on T − t,

the duration to the terminal date. In the analysis below, we choose T − t = 1. We

consider only risk averse insurers, so α > 0. In this case, insurers with greater α

are more risk averse. We draw the graph of optimal policies when α = 0.5 and 1 in

Figure 3.3.

Based on the results presented in Figure 3.1, Figure 3.2 and Figure 3.3, we

observe that the optimal investment proportion π∗ (or investment amount π̃∗ in the

case of exponential utility) in the stock is an increasing function of ρ. However,

the optimal liability ratio κ∗ (or optimal liabilities L∗ in the case of exponential

utility) looks like a convex function of ρ. The explanation of this behavior comes

from the equations of R and W̄ in Section 2.1. We analyze first the case of power

utility (logarithmic utility is a special case of power utility). For our parameter

values, when ρ takes values around the middle of the interval (−1, 0), there is a lot

of uncertainty in the insurance market, and hence κ∗ takes a minimum value in that
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Figure 3.3: Impact of ρ on Optimal Policies When U(x) = − 1
α
e−αx

region. π∗ is then calculated from equation (3.4) or (3.21). When ρ takes values near

0, there is little uncertainty in the insurance market, so κ∗ takes a maximum value

in that region. Furthermore, when ρ takes values near 0, the financial market and

the insurance market are almost uncorrelated, so π∗ takes a maximum value in that

region, and indeed approaches the famous Merton proportion µ(t)−r(t)
(1−α)σ2(t)

. Similar

comments can be made about the case of the exponential utility.

The second variable we analyze is γ, the jump intensity of the risk process. For

this analysis, we fix ρ = −0.5 and consider γ ∈ [0.2, 0.5], which includes the value

0.3 used in the previous analysis. We follow the same methodology used to analyze

the impact of ρ on the optimal policies and obtain the results for logarithmic utility

in Figure 3.4, for power utility in Figure 3.5, and for exponential utility in Figure

3.6.

From Figure 3.4, Figure 3.5 and Figure 3.6, we observe that the optimal invest-

ment proportion π∗ (or investment amount π̃∗ in the case of exponential utility) in

the stock is an increasing function of γ. These figures also show that the optimal
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Figure 3.4: Impact of γ on Optimal Policies When U(x) = ln(x)

Figure 3.5: Impact of γ on Optimal Policies When U(x) = 1
α
xα
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Figure 3.6: Impact of γ on Optimal Policies When U(x) = − 1
α
e−αx

liability ratio κ∗ (or optimal liabilities L∗ in the case of exponential utility) is a

decreasing function of γ. This observation is supported by the economic interpreta-

tion of γ. In the modeling, greater γ means more risk for the insurers. Hence, when

γ increases, a risk averse insurer reduces his/her optimal liability ratio (or optimal

liabilities). From the optimal investment expressions (3.4), (3.21) and (3.28), we

see that as γ increases, ρb
σ(t)

κ∗ (or ρb
σ(t)

L∗ in the exponential utility case) increases

because ρ < 0. Hence when γ increases, π∗ (or π̃∗) increases as well.

Last, we analyze the impact of α, the coefficient of risk aversion. We start with

the power utility. From Figures 1 and 2 (α = 0 in Figure 1), we see that for each

fixed value of ρ, the larger the risk aversion (the lower the value of α), the lower the

proportion invested in the risky asset (π∗) and the lower the liability ratio (κ∗). In

Figures 4 and 5, we see that for each fixed value of γ, the larger the risk aversion

(the lower the value of α), the lower the proportion invested in the risky asset (π∗)

and the lower the liability ratio (κ∗). We consider now the exponential utility. In

Figure 3, we see that for each fixed value of ρ, the larger the risk aversion (the
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higher the value of α), the lower the amount invested in the risky asset (π̃∗) and

the lower the liabilities (L∗). In Figure 6, we see that for each fixed value of γ, the

larger the risk aversion (the higher the value of α), the lower the amount invested in

the risky asset (π̃∗) and the lower the liabilities (L∗). Summarizing, the impact of

the risk aversion agrees with our intuition.

3.7 Concluding Remarks

Motivated by the bailout case of AIG in the financial crisis of 2007-2009 and the

increasing demand on risk management in the insurance industry, we consider op-

timal investment and risk control problems for an insurer (like AIG). Since jump

models can better capture the sudden spikes of risks (claims), we assume that the

insurer’s risk follows a jump-diffusion process in our model, which can be con-

trolled proportionally by the insurer. As discussed in Stein [88, Chapter 6], one

major mistake in AIG’s modelling is missing the negative correlation between its

liabilities (risk) and the capital gains in the financial market. Hence in our model,

we assume the insurer’s risk process is negatively correlated with the price process

of the risky asset.

We consider an insurer who wants to maximize its expected utility of terminal

wealth by selecting optimal investment and risk control (liabilities or liability ratio)

strategies. We apply the martingale approach to solve our optimal control problem.

We obtain explicit solutions of optimal investment and risk control strategies for

logarithmic utility function, power utility function, exponential utility function and

quadratic utility function, respectively.

Through an economic analysis, we investigate the impact of ρ (the negative cor-

relation coefficient between insurer’s risk and stock returns) and γ (jump intensity
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of insurer’s risk) on optimal strategies. We observe that the optimal investment pro-

portion (or optimal investment amount in the exponential utility case) in the stock

is increasing with respect to both ρ and γ. The optimal liability ratio (or optimal

liabilities in the exponential utility case) is a convex function of ρ and a decreas-

ing function of γ. Furthermore, we find that insurers with high risk aversion invest

a small proportion (small amount in the exponential utility case) in the stock and

select a low liability ratio (or bear low liabilities in the exponential utility case).
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Chapter 4

Optimal Investment and Risk Control

Policies with Regime Switching
As agreed by most economists, the trigger of the 2007-2009 financial crisis is the

crash of the housing market. But back at that time, most individual investors, com-

panies, financial institutions and banks did not seriously take into account the busi-

ness cycles in the U.S. housing market and made their decisions based on the false

prediction of the housing price index. In the AIG case, AIG Financial Products Cor-

p. (AIGFP), AIG’s subsidiary, significantly underestimated the risk of writing CDS

backed by mortgage payments. To manager the risk arising from business cycles,

regime switching models should be applied (e.g., Sotomayor and Cadenillas [86],

Zhou and Yin [101], Zou and Cadenillas [103] and the references therein for more

details). Bauerle and Rieder [6] considered portfolio optimization problems in a

regime switching market under the utility maximization criterion. In Sotomayor

and Cadenillas [86], they further assumed the utility function is regime dependent

and obtained explicit consumption and investment policies. Zhou and Yin [101]

also studied Merton’s problem in a regime switching model but under Markowitz’s

mean-variance criterion. Regime switching models can also be found in reinsurance

problems, see, for instance, Liu et al. [58] and Zhuo et al. [102].

Motivated by the infamous AIG case discussed in Chapter 1, we propose a

regime switching model which addresses several major mistakes AIG made in the
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financial crisis. We consider an insurer whose external risk (liabilities) can be mod-

eled by a jump-diffusion process and assume that the insurer can control the risk

process. The insurer makes investment decisions in a financial market which con-

sists of a riskless asset and a risky asset. Following Stein [88, Chapter 6], we

assume the insurer’s risk process is negatively correlated with the price process of

the risky asset. In our model, both the financial market and the risk process depend

on the regime of the economy, see Section 2.1 for explanations. The objective of the

insurer is to select the proportion of wealth invested in the risky asset and the liabil-

ity ratio (which is defined as total liabilities over wealth) to maximize its expected

utility of terminal wealth.

As far as we are concerned, this is by far the first work studying investment and

liability ratio problems when there is regime switching in the economy. We also

successfully obtain optimal investment and liability ratio policies in explicit forms

for logarithmic utility, power utility and exponential utility. Stein [88, Chapter 6]

considered a similar problem under the same criterion, but in a much simpler way

compared with our work. First, he did not consider regime switching in the model.

Second, the insurer does not control investment decisions and the risk is modeled by

a diffusion process without jumps. Last, the only utility function considered in Stein

[88, Chapter 6] is logarithmic function. Different from investment/consumption

problems with regime switching, e.g., Bauerle and Rieder [6], Sotomayor and Ca-

denillas [86], Zhou and Yin [101], our model incorporates an external risk process.

Our research also differs from recent work in reinsurance problems in several di-

rections. For instance, in Liu et al. [58], the insurer’s risk process is governed by a

continuous diffusion process (without jumps) and is assumed to be independent of

the price process of the securities. In Zhuo et al. [102], investment is not included

and they only obtained numerical solutions in a regime switching model.
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4.1 The Model

Comparing with the model in Section 3.1, the one used in this chapter presents

regime switching features. The regime of the economy is represented by an observ-

able, continuous and stationary Markov chain ε = {εt, 0 ≤ t ≤ T} with finite state

space S = {1, 2, . . . , S}, where T ∈ (0,+∞) is the terminal time and S ∈ N+

is the number of regimes in the economy. We assume the Markov Chain ε has a

strongly irreducible generator Q = (qij)S×S , where
∑

j∈S qij = 0 for all i ∈ S.

In the financial market, there are two trading assets, namely, a riskless asset and

a risky asset. The price processes of the riskless asset and the risky asset are repre-

sented by P0 and P1, respectively, which satisfy the Markov-modulated stochastic

differential equations:

dP0(t) = rε(t)P0(t)dt,

dP1(t) = P1(t)(µε(t)dt+ σε(t)dW
(1)(t)),

where t ∈ [0, T ] and the initial conditions are P0(0) = 1 and P1(0) > 0. The

coefficients ri, µi, σi, i ∈ S , are all positive constants, and W (1) is a standard one-

dimensional Brownian motion defined on a complete probability space (Ω,F ,P).

We assume insurers are subject to a controllable external risk (liabilities). Fol-

lowing Wang et al. [92], we further assume the unit risk (risk per dollar amount of

liabilities) is modelled by a jump-diffusion process

dR(t) = aε(t)dt+ bε(t)dW̄ (t) + γε(t)dN(t),

where W̄ is another standard one-dimensional Brownian motion andN is a Poisson

process with constant intensity λ > 0. For all i ∈ S , the coefficients ai, bi and γi
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are positive constants. As discussed in Stein [88, Chapter 6], we assume the risk

process R is negatively correlated with the capital gains in the financial market.

Furthermore, we assume such negative correlation depends on the regime of the

economy. Hence we can rewrite W̄ as

W̄ (t) = ρε(t)W
(1)(t) +

√
1− ρ2

ε(t)W
(2)(t),

where ρi ∈ [−1, 0), ∀i ∈ S, and W (2) is a standard Brownian motion defined on

(Ω,F ,P) independent of W (1). We assume the unit premium (per dollar amount of

liabilities) at time t is pε(t), where pi > 0 for all i ∈ S. Therefore, insurers’ unit

profit (loss if being negative) over the time period (t, t+ dt) is pε(t)dt− dR(t).

Denote the insurer’s total liabilities at time t by L(t). Then the dynamics of the

insurer’s total profit is given by

L(t)
(
pε(t)dt− dR(t)

)
.

Following Sotomayor and Cadenillas [86], we assume the Brownian motions

W (1) and W (2), the Poisson process N and the Markov chain ε are mutually inde-

pendent. We take the P−augmented filtration generated by W (1),W (2), N and ε as

our filtration {Ft}0≤t≤T .

Remark 4.1. The above model for risk process can be understood as a limiting

process of the classic Cramér-Lundberg model in continuous time, see, e.g., Taksar

[90], Wang et al. [92], Zhuo et al. [102].

At time t, an insurer selects π(t), fraction of wealth invested in the risky asset,

and liability ratio κ(t), defined as the ratio of total liabilities over wealth. Define

control u := {(π(t), κ(t))}t∈[0,T ]. For any control u, we denote Xu(t) as the in-

surer’s wealth (surplus) at time t, and thus L(t) = κ(t)Xu(t). Based on the above
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model setting, we have

dXu(t) = rε(t)(1−π(t))Xu(t)dt+
π(t)Xu(t)

P1(t)
dP1(t)+κ(t)Xu(t)(pε(t)dt−dR(t)).

Hence the dynamics of Xu(t) is given by

dXu(t)

Xu(t−)
= (rε(t) + (µε(t) − rε(t))πt + (pε(t) − aε(t))κt)dt− γε(t)κtdNt

+ (σε(t)πt − ρε(t)bε(t)κt)dW (1)
t −

√
1− ρ2

ε(t)bε(t)κtdW
(2)
t , (4.1)

with Xu(0) = x > 0.

We denote Ax,i as the set of all admissible controls under the initial conditions

Xu(0) = x and ε(0) = i, where x > 0 and i ∈ S. For all u ∈ Ax,i, u is a predictable

process with respect to the filtration {Ft}, and satisfies

E

[∫ T

0

(π(t))2dt

]
<∞, E

[∫ T

0

(κ(t))2dt

]
<∞,

and

0 ≤ κ(t) <
1

γε(t)
, for all t ∈ [0, T ].

Since the coefficients of all dt, dW (1), dW (2) and dN terms are bounded almost

surely for every u ∈ Ax,i, by Oksendal and Sulem [72, Theorem 1.19], there exists

a unique solution Xu
t to SDE (4.1) such that

E
[
|Xu

t |2
]
<∞ for all t ∈ [0, T ].

We define the criterion function J by

J(x, i;u) := Ex,i
[
U(Xu(T ))

]
,

where the utility function U is strictly increasing and concave, and satisfies the lin-

ear growth condition. Notation Ex,i means conditional expectation given Xu(0) =
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x and ε(0) = i under the actual measure P.

We then formulate optimal investment and liability ratio problem as follows.

Problem 4.1. Select an admissible control u∗ = (π∗, κ∗) that attains the value

function V , defined by

V (x, i) := sup
u∈Ax,i

J(x, i;u).

The control u∗ is called an optimal control or optimal strategies of investment and

liability ratio.

To apply stochastic control method to solve Problem 4.1, we consider a modified

version of Problem 4.1 (See, e.g., Bauerle and Rieder [6], Fleming and Soner [30,

Chapter III] for details)

V (t, x, i) := sup
u∈At,x,i

Et,x,i[U(Xu
T )],

where At,x,i is defined similarly as Ax,i except for the starting point of time being t

instead of 0. The notation Et,x,i means conditional expectation under Xu
t = x and

ε(t) = i.

4.2 The Analysis

Let ψ(·, ·, i) be a C1,2 function for all i ∈ S. Define operator Qui by

Qui ψ := ψt(t, x, i) + [ri + (µi − ri)π + (pi − ai)κ]xψx(t, x, i)

+
1

2
[(σiπ − ρibiκ)2 + (1− ρ2

i )b
2
iκ

2]x2ψxx(t, x, i),

where π ∈ R and 0 ≤ κ < 1
γi

.

Theorem 4.1. Suppose v(·, ·, i) ∈ C1,2 and v(t, ·, i) be an increasing and concave

function for all t ∈ [0, T ] and i ∈ S . If v(t, x, i) satisfies the Hamilton-Jacobi-
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Bellman equation

sup
u∈R×[0, 1

γi
)

{
Qui v(t, x, i) + λ[v(t, (1− γiκ)x, i)− v(t, x, i)]

}
= −

∑
j∈S

qijv(t, x, j)

(4.2)

and the boundary condition

v(T, x, i) = U(x) (4.3)

for every x > 0, i ∈ S, and the control u∗ = (π∗, κ∗) defined by

u∗ = arg sup
u∈R×[0, 1

γi
)

{
Qui v(t, x, i) + λ[v(t, (1− γiκ)x, i)− v(t, x, i)]

}
is admissible, then u∗ is an optimal control to Problem 4.1 and v(t, x, i) is the

associated value function.

Proof. ∀u ∈ At,x,i, by applying Markov-modulated Ito’s formula (see, e.g.,

Sotomayor and Cadenillas [86]), we obtain

v(w,Xu
w, εw) = v(t,Xu

t , εt) +

∫ w

t

(
Qu(s)
ε(s) v(s,Xu

s , εs) +
∑
j∈S

qε(s),jv(s,Xu
s , j)

)
ds

+

∫ w

t

Xu
s−vx(s,X

u
s−, εs)(σε(s)πs − ρε(s)bε(s)κs)dW (1)

s

−
∫ w

t

Xu
s−vx(s,X

u
s−, εs)

√
1− ρ2

ε(s)bε(s)κsdW
(2)
s

+

∫ w

t

(
v(s, (1− γε(s)κs)Xu

s−, εs)− v(s,Xu
s−, εs)

)
dNs +mv

w,

where mv is a square-integrable martingale and mv
0 = 0.

For u ∈ At,x,i, Xu, π and κ are all square integrable. By assumption, vx is

bounded on [t, T ]. Hence we have
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Et,x,i

[∫ w

t

Xu
s−vx(X

u
s−, εs)(σε(s)πs − ρε(s)bε(s)κs)dW (1)

s

]
= 0,

Et,x,i

[∫ w

t

Xu
s−vx(X

u
s−, εs)

√
1− ρ2

ε(s)bε(s)κsdW
(2)
s

]
= 0.

The function v(s, (1 − γε(s)κs)X
u
s−, εs) − v(s,Xu

s−, εs) is left continuous and

bounded, thus

Et,x,i

[∫ w

t

(
v(s, (1− γε(s)κs)Xu

s−, εs)− v(s,Xu
s−, εs)

)
dMs

]
= 0,

where M , defined as Mt = Nt − λt, is the compensated Poisson process of N , and

then a true martingale under measure P.

Hence, taking conditional expectation for v(w,Xu
w, εw) yields

Et,x,i
[
v(w,Xu

w, εw)
]

= v(t, x, i) +

∫ w

t

(
Qui v(s,Xu

s , i) + λ[v(s, (1− γiκ)Xu
s , i)

− v(s,Xu
s , i)]

)
ds+

∫ w

t

∑
j∈S

qε(s),jv(s,Xu
s , j)ds,

which directly implies the HJB equation (4.2). Then v defined in Theorem 4.1 is the

value function to modified Problem 4.1. Given u∗ is admissible, u∗ is an optimal

control to Problem 4.1 (See, e.g., Fleming and Soner [30, Chapter III], Oksendal

and Sulem [72, Chapter 3] for analysis). �

4.3 Construction of Explicit Solutions

In this section, we obtain explicit solutions to Problem 4.1 in a regime switching

market. Our strategy is to conjecture a strictly increasing and strictly concave can-

didate for the value function and then obtain candidate for optimal control. We next

verify that such candidate control is admissible and then indeed optimal.
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To obtain candidate for optimal control, we separate the optimization problem

in the HJB equation (4.2) into two sub optimization problems

max
π∈R

[
xvx(t, x, i)(µi − ri)π +

1

2
x2vxx(t, x, i)(σ

2
i π

2 − 2ρiσibiπκ)
]

for investment portfolio π, and

max
κ∈[0, 1

γi
)

{
xvx(t, x, i)(pi − ai)κ+

1

2
x2vxx(t, x, i)(−2ρiσibiπκ+ b2

iκ
2)

+ λv(t, (1− γiκ)x, i)
}

for liability ratio κ.

Under the assumption that v(t, ·, i) is strictly increasing and strictly concave, we

obtain the candidate of π∗ as

π∗ = −vx(t, x, i)(µi − ri)
xvxx(t, x, i)σ2

i

+ ρi
bi
σi
κ∗, (4.4)

where the candidate of κ∗ satisfies

xvxx(t, x, i)(1− ρ2
i )b

2
iκ
∗ − λγivx(t, (1− γiκ∗)x, i)

+ vx(t, x, i)(pi − ai + ρi
bi
σi

(µi − ri)) = 0.
(4.5)

To guarantee the equation (4.5) has a unique solution, we impose a technical

condition

pi − ai + ρi
bi
σi

(µi − ri) > λγi for all i ∈ S. (4.6)

To obtain the value function v and optimal control u∗ = (π∗, κ∗) in explicit

forms, we consider three utility functions:

1. U(x) = ln(x), x > 0,

2. U(x) = 1
α
xα, x > 0, where α < 1 and α 6= 0,
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3. U(x) = − 1
α
e−αx, where α > 0.

4.3.1 U(x) = ln(x), x > 0

In this case, we find the solution to the HJB equation (4.2) is

v(t, x, i) = ln(x) + g(t, i),

where g(t, i) will be determined below.

We obtain vx(t, x, i) = 1
x

and vxx(t, x, i) = − 1
x2

, then

π∗ =
µi − ri
σ2
i

+ ρi
bi
σi
κ∗, (4.7)

and

Ai(κ
∗)2 −Bi κ

∗ + Ci = 0, (4.8)

with

Ai : = (1− ρ2
i )b

2
i γi,

Bi : = (1− ρ2
i )b

2
i + γi

(
pi − ai + ρi

bi
σi

(µi − ri)
)
,

Ci : = pi − ai + ρi
bi
σi

(µi − ri)− λγi.

(4.9)

Lemma 4.1. If the technical condition (4.6) holds, or equivalently, Ci > 0 for all

i ∈ S, then there exists a unique solution in [0, 1
γi

) to the equation (4.8).

Proof. We calculate the discriminant of the quadratic equation system (4.8)

∆i := B2
i − 4AiCi = (b2

i (1− ρ2
i )− γi(Ci + λγi))

2 + 4λb2
i (1− ρ2

i )γ
2
i > 0.

Therefore there are two solutions to the equation (4.8), and one of them is given by

κ+
i =

Bi +
√

∆i

2Ai
>

1

γi
,
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while the other is given by

κ−i =
Bi −

√
∆i

2Ai
. (4.10)

For all i ∈ S , Ai > 0. Along with the assumption Ci > 0 and the result

κ+
i >

1
γi
> 0, we obtain κ−i > 0.

To show κ−i <
1
γi

, it is equivalent to show that

∆i >

(
Bi −

2Ai
γi

)2

= (γi(Ci + λγi)− (1− ρ2
i )b

2
i )

2.

Recall the definition of ∆i, the above inequality is always satisfied.

Denote κ∗(x, i) := κ−i as the unique solution in [0, 1
γi

) to the equation (4.8)

when Ci > 0 for all i ∈ S. �

By substituting candidate strategies π∗ and κ∗, given by (4.7) and (4.10), into the

HJB equation (4.2), we obtain the following system of linear differential equations:

gt(t, i) +
∑
j∈S

qijg(t, j) + Πi = 0 (4.11)

with boundary condition

g(T, i) = 0 for all i ∈ S.

In (4.11), Πi is defined as Πi := ri + (µi−ri)2
2σ2
i

+
(
pi − ai + ρi

bi
σi

(µi − ri)
)
κ∗ +

λ ln(1− γiκ∗)− 1
2
(1− ρ2

i )b
2
i (κ
∗)2.

Theorem 4.2. When U(x) = ln(x), u∗ = (π∗, κ∗), where

π∗(t) =
µε(t) − rε(t)

σ2
ε(t)

+ ρε(t)
bε(t)
σε(t)

κ∗(t),

and κ∗(t) is the unique solution to the equation

Aε(t)(κ
∗(t))2 −Bε(t) κ

∗(t) + Cε(t) = 0,
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is an optimal control to Problem 4.1.

Proof. First notice that the ODE system (4.11) has a unique solution (See Bauer-

le and Rieder [6]) and then v(t, x, i) = ln(x) + g(t, i) is the value function to mod-

ified Problem 4.1. By Lemma 4.1, there exists a unique solution in [0, 1
γε(t)

) to the

equation (4.8). The boundedness of π∗ and κ∗ implies that both are square inte-

grable in [0, T ]. Hence, u∗ = (π∗, κ∗) defined above is admissible, and then an

optimal control to Problem 4.1. �

4.3.2 U(x) = 1
αx

α, x > 0, where α < 1 and α 6= 0

In this case, the utility function is given by U(x) = 1
α
xα, where α < 1, α 6= 0. This

utility function is of constant relative risk aversion (CRRA) type and the relative

risk aversion coefficient is 1− α.

The solution to the HJB (4.2) is given by

v(t, x, i) =
1

α
xα · ĝ(t, i),

where ĝ(t, i) > 0 for all i ∈ S will be determined below.

Next, we obtain the candidate for optimal control

π∗ =
µi − ri

(1− α)σ2
i

+ ρi
bi
σi
κ∗, (4.12)

and

(α− 1)(1− ρ2
i )b

2
iκ
∗ − λγi(1− γiκ∗)α−1 + pi − ai + ρi

bi
σi

(µi − ri) = 0. (4.13)

Lemma 4.2. If the condition (4.6) holds, then there exists a unique solution in

[0, 1
γi

) to the equation (4.13).

Proof. Please see Lemma 3.3 for proof. �
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By plugging candidate control into the HJB equation (4.2), we obtain

ĝt(t, i) +
∑
j∈S

qij ĝ(t, j) + α Π̂i ĝ(t, i) = 0 (4.14)

with the boundary condition

ĝ(T, i) = 1 for all i ∈ S.

Here Π̂i is defined by Π̂i := ri + (µi−ri)2
2(1−α)σ2

i
+
(
pi − ai + ρi

bi
σi

(µi − ri)
)
κ∗ + λ[(1−

γiκ
∗)α − 1]− 1

2
(1− α)(1− ρ2

i )b
2
i (κ
∗)2.

We remark that the above ODE system has a unique solution. Furthermore, to

verify our conjecture that v(t, ·, i) is strictly increasing and concave, we need to

show ĝ(t, i) is strictly positive for all i ∈ S. The lemma below provides the proof

for ĝ(t, i) > 0.

Lemma 4.3. The function ĝ(t, i), which is the unique solution to the system (4.14),

is strictly positive.

Proof. Using Ito’s formula for Markov-modulated process, we obtain

ĝ(T, εT ) = ĝ(t, εt) +

∫ T

t

ĝt(s, εs)ds+

∫ t

t

∑
j∈S

qεs,j ĝ(s, j)ds+mĝ
T ,

where mĝ is a square integrable martingale with E[mĝ
t ] = 0 for all t ∈ [0, T ].

Taking conditional expectation and using the equation (4.14), we get

Et,x,i[ĝ(T, εT )] = ĝ(t, εt)− Et,x,i
[∫ T

t

αΠ̂ε(s)ĝ(s, εs)ds

]
,

which is equivalent to (Recall the boundary condition ĝ(T, i) = 1)

ĝ(t, i) = 1 + Et,x,i

[∫ T

t

αΠ̂ε(s)ĝ(s, εs)ds

]
.
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Solving the above equation yields

ĝ(t, i) = Et,x,i

[
exp

{∫ T

t

αΠ̂ε(s)ds

}]
.

Hence, the positiveness of ĝ(t, i) follows. �

From the construction of ĝ(t, i) and Lemma 4.3, v(t, x, i) = 1
α
xα · ĝ(t, i) is

the associated value function to the modified Problem 4.1. Thanks to Lemma 4.2,

u∗ = (π∗, κ∗), with π∗ and κ∗ given by (4.12) and (4.13), is admissible. Hence

Theorem 4.3 follows accordingly.

Theorem 4.3. When U(x) = 1
α
xα, where α < 1 and α 6= 0, an optimal control to

Problem 4.1 is given by u∗ = (π∗, κ∗), where

π∗(t) =
µε(t) − rε(t)
(1− α)σ2

ε(t)

+ ρε(t)
bε(t)
σε(t)

κ∗(t),

and κ∗(t) is the unique solution to the equation

(α− 1)(1− ρ2
ε(t))b

2
ε(t)κ

∗(t)− λγε(t)(1− γε(t)κ∗(t))α−1 + pε(t) − aε(t)

+ ρε(t)
bε(t)
σε(t)

(µε(t) − rε(t)) = 0.

4.3.3 U(x) = − 1
αe
−αx, where α > 0

In this subsection, we consider exponential utility function, which belongs to the

class of constant absolute risk aversion (CARA) utility functions. We find the solu-

tion to the HJB (4.2) is of the form

v(t, x, i) = − 1

α
exp

{
−αeri(T−t)x+ g̃(t, i)

}
,

where g̃(t, i) will be determined below.

For the above solution, we calculate that
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vt(t, x, i) =
[
α rixe

ri(T−t) + g̃t(t, i)
]
v(t, x, i),

vx(t, x, i) = −α eri(T−t)v(t, x, i),

vxx(t, x, i) = α2 e2ri(T−t)v(t, x, i).

Hence, we obtain the candidate for π∗

π∗ = e−ri(T−t)
µi − ri
αxσ2

i

+ ρi
bi
σi
κ∗. (4.15)

Apparently, in this case, it is more convenient to use the actual amount instead of the

proportion as the control, see, e.g., Browne [10], Wang et al. [92], Yang and Zhang

[94]. We then define θ(t) as the amount of money invested in the risky asset and

L(t) as the total liabilities at time t. By definition, we have ũ := (θ, L) = Xu · u.

If both θ and L are predictable and square integrable in [t, T ], then (θ, L) is an

admissible control. Denote Ãx,i as the admissible set given X(0) = x, ε(0) = i.

By (4.15) and (4.5), we obtain the candidate for θ∗

θ∗ = e−ri(T−t)
µi − ri
ασ2

i

+ ρi
bi
σi
L∗, (4.16)

and the candidate for L∗, which satisfies

λγie
ÃiL

∗
+ B̃iL

∗ − C̃i = 0, (4.17)

where

Ãi := αγie
ri(T−t),

B̃i := αeri(T−t)b2
i (1− ρ2

i ),

C̃i := pi − ai + ρibi
µi − ri
σi

.

118



Lemma 4.4. If the condition (4.6) holds, then there exists a unique solution to the

equation (4.17).

Proof. Please refer to Lemma 3.4 for a similar proof. �

Next, we rewrite the HJB equation (4.2) as follows

g̃t(t, i) +
∑
j∈S

qij exp
{
−αxe(rj−ri)(T−t)

}
eg̃(t,j)−g̃(t,i) + Π̃i = 0, (4.18)

where Π̃i := −αeri(T−t)[(µi−ri)θ∗+(pi−ai)L∗]+1
2
α2e2ri(T−t)[σ2

i (θ
∗)2−2ρibiσiθ

∗L∗+

b2
i (L

∗)2] + λ(exp
(
αγie

ri(T−t)L∗
)
− 1).

Let q̃ij := qij exp
{
−αxe(rj−ri)(T−t)

}
and Φ(t, i) := exp{g̃(t, i)}. Then equa-

tion (4.18) becomes

Φt(t, i) +
∑
j∈S

q̃ijΦ(t, j) + Π̃iΦ(t, i) = 0,

which, similar to the system (4.14), bears a unique solution. Hence, there exists a

unique solution g̃(t, i) to the system (4.18).

By Lemma 4.4, the solution L∗ to the equation (4.17) is finite for all i ∈ S ,

which implies L∗ is finite and square integrable on [0, T ]. Hence, by (4.15), θ∗ is

also finite and square integrable on [0, T ]. In conclusion, (θ∗, L∗) is admissible, and

then indeed an optimal control to Problem 4.1 over the admissible set Ãx,i.

Theorem 4.4. When utility function is U(x) = − 1
α
e−αx, where α > 0, an optimal

control to Problem 4.1 over the admissible set Ãx,i is ũ∗(t) := (θ∗(t), L∗(t)), where

θ∗(t) = e−rε(t)(T−t)
µε(t) − rε(t)
ασ2

ε(t)

+ ρε(t)
bε(t)
σε(t)

L∗(t),

and L∗(t) is the unique solution to the equation

λγε(t) exp{Ãε(t)L∗(t)}+ B̃ε(t)L
∗(t)− C̃ε(t) = 0.
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4.4 Economic Analysis

In this section, we study the impact of the economy and the insurer’s risk attitude on

optimal policy. To this purpose, we assume there are two regimes in the economy.

Regime 1 represents a bull market, in which the economy is booming. Regime 2

represents a bear market, meaning the economy is in recession. For comparative

analysis, we consider HARA utility functions, namely, U(x) = 1
α
xα, where α < 1

(α = 0 is associated with the case of logarithmic utility function U(x) = ln(x)).

When α < 0, insurers are high risk-averse, when α = 0, insurers are moderate

risk-averse, when 0 < α < 1, insurers are low risk-averse.

Following Fama and French [28], we assume µi > ri > 0 and pi > ai > 0,

i = 1, 2. French et al. [31] find that capital returns are higher in a bull market,

hence we assume µ1 > µ2 and r1 > r2. Hamilton and Lin [39] show that the

stock volatility is greater when the economy is in recession, which implies σ1 < σ2.

Furthermore, we assume µ1−r1
σ2
1

> µ2−r2
σ2
2

, as supported by French et al. [31]. In

the insurance market, the risk process (claims) is negatively correlated with the

stock returns and interest rate, see, e.g., Haley [37], Norden and Weber [71]. This

conclusion leads to the assumption that a2 > a1, b2 > b1, and γ2 > γ1. When the

economy is in recession, the insurance companies charge a higher premium, hence

p2 > p1. In the analysis, we assume that ρ is same in both regimes (ρ1 = ρ2).

We also notice that the coefficient we choose should satisfy the technical condition

(4.6). Based on the above argument, we choose the parameters and list in Table 4.1.

Regime µ r σ a b γ p ρ λ
1 (bull market) 0.1 0.03 0.15 0.04 0.05 0.2 0.1

2 (bear market) 0.05 0.01 0.25 0.08 0.1 0.5 0.2
-0.5 0.01

Table 4.1: Market Parameters
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By Theorem 4.2, we calculate the optimal policy for moderate risk-averse in-

surers (that is, α = 0). For both high risk-averse and low risk-averse insurers, we

obtain the corresponding optimal policy through Theorem 4.3. The results are listed

in Table 4.2.

α Regime π∗ (Investment) κ∗ (Liability Ratio)
-5 1 0.2211 1.7843

2 -0.0407 0.7370
-2 1 0.5364 3.0040

2 -0.0308 1.2207
-1 1 0.9240 3.7895

2 0.0148 1.5262
-0.01 1 2.2906 4.7383

2 0.2548 1.8945
0 1 2.3200 4.7464

2 0.2605 1.8977
0.01 1 2.3501 4.7544

2 0.2663 1.9009
0.1 1 2.6532 4.8218

2 0.3256 1.9275
0.2 1 3.0747 4.8854

2 0.4094 1.9529
0.5 1 5.3906 4.9895

2 0.8809 1.9954
0.7 1 9.5371 4.9999

2 1.7333 1.9990

Table 4.2: Impact of α on Optimal Policies

According to the results obtained in Table 4.2, we observe that both the opti-

mal investment proportion in the risky asset π∗ and the optimal liability ratio κ∗

are increasing functions of the risk aversion parameter α. Hence less risk-averse

insurers (that is, insurers with large α) invest proportionally more in the risky asset

and choose a higher liability ratio.

As pointed out in Stein [88, Chapter 6], a major mistake that contributed sig-

nificantly to AIG’s sudden collapse is the negligence of the negative correlation
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between the risk and the capital returns (or equivalently, ρ < 0). Hence in the next

analysis, we calculate the optimal policy for different values of ρ. We still keep

all the other parameters unchanged as in Table 4.1, but consider ρ = −0.9, −0.5,

−0.2. We obtain optimal strategies in Table 4.3.

ρ α Regime π∗ (Investment) κ∗ (Liability Ratio)
-1 1 0.4122 3.8112

2 -0.2388 1.5521
-0.9 0 1 1.6927 4.7279

2 -0.0447 1.9019
0.5 1 4.7264 4.9860

2 0.5617 1.9954
-1 1 0.9240 3.7895

2 0.0148 1.5262
-0.5 0 1 2.3200 4.7464

2 0.2605 1.8977
0.5 1 5.3906 4.9895

2 0.8809 1.9954
-1 1 1.2998 3.8363

2 0.1982 1.5221
-0.2 0 1 2.7930 4.7721

2 0.4881 1.8986
0.5 1 5.8894 4.9918

2 1.1203 1.9957

Table 4.3: Impact of ρ on Optimal Policies

Based on the results in Table 4.3, we find the optimal proportion invested in the

risky asset π∗ is an increasing function of ρ. However, the relation between κ∗ and ρ

is more complicated, some show convexity while other show monotonicity. Those

observations can be seen in the case of no regime switching, see Figures 3.1, 3.2,

and 3.3. Hence the explanations made there shall apply here as well.

Furthermore, the dependency of the optimal policy on the regime of the econo-

my is evident. We notice from Table 4.2 and Table 4.3 that π∗1 > π∗2 and κ∗1 > κ∗2

for all insurers (all α). This result shows that all insurers take more risk in a bull
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market by spending a greater proportion on the risky asset and selecting a higher

liability ratio.
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4.5 Concluding Remarks

The 2007-2009 financial crisis brought new challenges on risk management to all

market participants. There are two major contributors to AIG’s sudden collapse.

First, AIG did not pay full attention to the business cycles in the U.S. housing mar-

ket, which directly caused a significant underestimation of the risk involved in the

CDS trading. Second, AIG ignored the negative correlation between its liabilities

and the capital gains in the financial market. Such ignorance indicates that AIG was

not fully aware of the impact of derivatives trading on its capital structure.

To address these two problems in the AIG case, we set up a regime switching

model from an insurer’s perspective and assume not only the financial market but

also the insurer’s risk process depend on the regime of the economy. An insurer

makes investment decisions in a financial market which consists of a riskless as-

set and a risky asset, and faces an external risk that is negatively correlated with

the price of the risky asset. The insurer wants to maximize its expected utility of

terminal wealth by selecting optimal investment proportion in the risky asset and

liability ratio simultaneously. We obtain explicit solutions of optimal investment

and liability ratio policies when the insurer’s utility is given by logarithmic, power

and exponential utility functions.

Through an economic analysis, we find the optimal policy depends on the regime

of the economy. All insurers spend a greater proportion in the risky asset and choose

a higher liability ratio when the market is in bull regime. We also observe that the

optimal proportion invested in the risky asset is increasing with respect to both α

and ρ. In the meantime, the optimal liability ratio also increases when α increases,

but its relation with ρ is not monotone.
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Chapter 5

Conclusions
The financial crisis of 2007-2009 caused severe recession in the global economy,

and brought new challenges on portfolio selection and risk management. Motivat-

ed by the financial crisis of 2007-2009, we incorporate new features into market

modeling. One major mistake in the financial crisis is the ignorance of business

cycles in the economy. Hence, we include regime switching in our model, which

is modeled by an observable continuous-time Markov chain. We apply stochastic

control theory to study optimal insurance and investment problems.

We first incorporate the presence of an insurance risk and regime switching of

economy into Merton’s consumption/investment framework. We seek to find opti-

mal consumption, investment and insurance policies for an investor who wants to

maximize his/her expected total discounted utility of consumption over an infinite

time horizon. We provide rigourous proof to the verification theorems and obtain

explicit solutions to the associated Hamilton-Jacobi-Bellman equations in the case

of HARA utility functions. We conduct an economic analysis to study the impact

of market parameters and investor’s risk preference on optimal policies. The advan-

tage of buying insurance is also calculated.

Next, we consider an insurer who makes investment decisions and controls li-

abilities dynamically in a regime switching economy. The objective of the insurer

is to select optimal investment and risk control policies that maximize his/her ex-

pected utility of terminal wealth. In the special case when there is only one regime
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in the economy (no regime switching), we apply the martingale approach to ob-

tain explicit optimal policies for many important utility functions. When there is

regime switching in the economy, classical dynamic programming is used to derive

the Hamilton-Jacobi-Bellman (HJB) equation. We obtain explicit optimal policies

by solving the HJB equation. Economic analysis is provided to study the impact of

economic factors and investor’s risk preference on optimal policies in both cases.
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