University of Alberta

Geochemical Characterization and Fluid History of the Tiger Zone; a Tertiary Distal Carbonate–Replacement Intrusion-Related Gold Deposit, Central Yukon.

by

Eric J. Thiessen

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of

Master of Science

Department of Earth and Atmospheric Sciences

©Eric J. Thiessen Spring 2013 Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission.

ABSTRACT

A paragenetic and geochemical study has resulted in the classification of the Tiger zone as a Tertiary-aged intrusion-related gold deposit. Gold-bearing mineralization occurs in two geochemically and temporally distinct assemblages. The first assemblage contains carbonate-replacement, arsenopyrite-hosted, lattice bound gold deposited from hot (~400 °C), CO₂-rich immiscible magmatic fluids derived from a local intrusive body at depths of ~5 km. The second gold-bearing event contains native gold in fractures associated with bismuth, antimony, silver and tungsten, and may have precipitated from depressurization and/or mixing with cooler, meteoric waters. Mixing of components from the host-rock limestone with Precambrian sediments are demonstrated by carbon, oxygen and strontium isotopes, whereas sulfur and metals originate from a local intrusion. Post-gold monazite aged 58.1 ± 0.9 Ma constrains the minimum age for Tiger zone mineralization. The waning of the magmatic system resulted in the influx of meteoric waters forming post-mineralization calcite veins.

Acknowledgments

I would like to acknowledge ATAC Resources Ltd. for partial funding of this project and for allowing access to their extensive drill core on the Rau Property. In particular Rob Carne, Julia Lane and Matt Dumala are thanked for their continued support and thoughtful discussions throughout the duration of this project. Elizabeth Turner is also thanked for discussions regarding carbonate classifications, depositional environments and fossil identification.

This work is also partially funded by the Yukon Geological Survey and their support has been greatly appreciated, in particular Venessa Bennett, Lee Pigage, Karen MacFarlane, Carolyn Relf and Suzanne Roy are recognized.

I would like to thank Sarah Gleeson for her support and supervision throughout the duration of the project and also for her perpetual reality checks and insights along the way. Additional funding from Sarah Gleeson's NCERC Discovery grant is well appreciated. Others who have helped tremendously with analytical work include Steve Taylor (U of C), Sergei Matveev, Rob Creaser, Andy Dufrane, Mark Labbe, Judy Schultz, Olga Levner, Diane Caird, Jeremy Richards and Thomas Chacko.

Table of Contents

CHAPTER 1 – INTRODUCTION AND GEOLOGY OF THE TIGER ZON	ί Ε 1
1.1 Introduction	
1.2 Regional Geology and Tectonic Setting	5
1.3 Local Geology and Field Relationships	
CHARTER 2 ANALVTICAL TECHNIQUES AND DATA COLLECTION	J 13
CHAPTER 2 – ANALY IICAL TECHNIQUES AND DATA COLLECTION 21 Defension of the States of Cotto delemination of the States of Cotto deleminatio	۱۵۱۷۱۷
2.1 Petrography, Electron Probe and Cathodoluminescence	
2.2 X-Ray Dillifraction	
2.3 Whole-Rock Major and Trace Elements	
2.4 Microthermometry	
2.5 Carbon and Oxygen Isotopes	
2.6 Sulphur Isotopes	
2.7 U-Pb Dating	
2.8 Strontium Isotopes	
CHAPTER 3 – RESULTS	
3.1 Petrography and Paragenesis (EPMA, XRD, CL)	
Host-Rock	
Rackla Pluton	
Tiger Zone Mineralization	
Stage 1	
Stage 2	
Stage 3	
Stage 4	
Stage 5	
3.2 Whole-Rock Analysis	
3.3 Microthermometry	
Rackla Pluton	
Late Calcite Veining	
Tiger Zone	
Dol-1	
Dol-2b	
Qz-1	
Sphalerite	
3.4 Carbon, Oxygen, Sulphur and Strontium Isotopes	
Host-Rock	
Rackla Pluton	
Tiger Zone Mineralization	
Stage 1	
Stage 2	
Stage 3	
Stage 5	
3 5 U-Ph Age Determination	
	·····
CHAPTER 4 – DISCUSSION	
4.1 Nature of the Host-Rock Carbonates and Volcanics	
4.2 Kackia Pluton and Marble Development	
Narble Development.	
Evolution of the Magmatic Hydrothermal System in the Rackla Pluton	

4.3 Evolution of the Tiger Zone Mineralization: Stage 1, 2 and 3	57
4.4 Meteoric Input and Collapse of the Hydrothermal System: Stage 4 and 5	61
4.5 Age of the Tiger Zone Mineralization and Links to the Rackla Pluton	62
4.6 Genetic Model	63
CHAPTER 5 – CONCLUSIONS	65
References	66
Appendix A - non drill-core sample locations	74
Appendix B – EPMA Data	76
Appendix C – Whole-rock Data	120
Appendix D – Microthermometric Data	128
Appendix E – Monazite and Age Data	141

List of Tables

Table 1. Rackla pluton major element oxide data	30
Table 2. Summary of microthermometric data.	
Table 3. All carbon and oxygen stable isotopic data.	43
Table 4. All sulphur isotopic data.	46
Table 5. Strontium (⁸⁷ Sr/ ⁸⁶ Sr) isotopic and total strontium data.	49
Table 6. Monazite U-Pb LA-ICP-MS data.	52

List of Figures

Figure 1. Terrane map of Yukon Territory.	2
Figure 2. Regional geology of the Tiger zone.	6
Figure 3. Generalized regional stratigraphy of the Tiger zone and the northwestern	
Selwyn Basin	7
Figure 4. Typified cross-section of the Tiger zone.	10
Figure 5. Paragenetic sequence of the Tiger zone.	17
Figure 6. Host-rock carbonate and volcanic rock pictures.	18
Figure 7. Images for host-rock marbles, Rackla pluton and Stage 1 mineralization	20
Figure 8. Images for Stage 1 and Stage 2 mineralization.	22
Figure 9. Images for Stage 2 and Stage 3 mineralization.	23
Figure 10. Images for Stage 3 and Stage 4 mineralization	25
Figure 11. Images for Stage 4 mineralization.	27
Figure 12. TAS diagram of Tiger zone volcanic rocks	30
Figure 13. Rackla pluton ferric/ferrous iron diagram	31
Figure 14. Fluid inclusion images for inlcusions hosted in the Rackla pluton, Dol-1,	
Dol-2b and Qz-1	33
Figure 15. Fluid inclusion images for Qz-1 and Stage 4 sphalerite.	34
Figure 16. Fluid inclusion summary data.	38
Figure 17 . Stable isotope δ^{13} C and δ^{18} O data.	45
Figure 18 . Stable sulphur isotope data (δ^{34} S CDT) for Tiger zone sulphides.	48
Figure 29 . Strontium isotope data (87 Sr/ 86 Sr) plotted against δ^{13} C.	50
Figure 20 . Strontium isotope data (87 Sr/ 86 Sr) plotted against δ^{18} O.	50
Figure 21. Weighted mean ²⁰⁶ Pb/ ²³⁸ U age for Tiger zone monazite	51
Figure 22. Monazite images.	51
Figure 23. Theoretical two component mixing zone using ⁸⁷ Sr/ ⁸⁶ Sr isotope composition	IS
and total strontium values.	58
Figure 24. Genetic diagram of Tiger zone mineralization	64

CHAPTER 1 – INTRODUCTION AND GEOLOGY OF THE TIGER ZONE

1.1 Introduction

Gold deposits have formed throughout geologic history from the Archean to Tertiary time and are found in most tectonic environments. Gold-bearing terranes and deposits include oceanic back-arc volcanogenic massive sulphide deposits (VMS) and sedimentary exhalative deposits (SEDEX), oceanic arc and continental arc porphyry and epithermal gold deposits, orogenic gold deposits within collisional zones, continental back-arc extensional epithermal, iron oxide copper gold (IOCG), Carlin-style gold, and continental intrusion related gold deposits (IRGD). Host-rocks in these environments are diverse and include sedimentary (VMS, SEDEX, Carlin-style, IRGD), igneous (VMS, porphyry, epithermal, orogenic, IRGD), and metamorphic (Orogenic, IRGD). As expected with such diversity in age, tectonic setting and host lithologies, there is debate on the source of gold and fluids within these mineralizaing systems. For example in the sediment-hosted Carlin-style deposits of Nevada, mineralization has been ascribed to leaching of metals from sedimentary sources by convecting connate (Large et al., 2011) and meteoric waters (Ilchik and Barton, 1997; Emsbo et al., 2003), epizonal intrusion related sources (Henry and Boden, 1998; Chakurian et al., 2003; Johnston and Ressel, 2004; Muntean et al., 2011), and deeply sourced metamorphic and/or magmatic fluids (Seedorff, 1991; Hofstra and Cline, 2000; Heinrich, 2005). The origin of orogenic gold deposits has also been highly debated; presently they are thought to have formed from devolatilization of felsic magmas or from metamorphic devolatilization at mid- to lower crustal levels (Ridley and Diamond, 2000; Groves et al., 2003). To complicate matters further, ore deposits such as the orogenic and IRGD, may be essentially indistinguishable in terms of tectonic setting, metal associations, mineralization style, wall-rock alteration, and fluid chemistry (Groves et al., 2003). In this case IRGDs are better distinguished by being more distal from cratonic margins, associated with tungsten and tin magmatic provinces, and generally occurring post-deformation (Lang and Baker, 2001; Groves et al., 2003). General geological characteristics, metal associations, and geochemical footprints are clearly not adequate to classify all deposit types where distinct genetic processes may be able to form seemingly identical ores.

The Yukon Territory has a rich history of mining and exploration dating back to the Klondike goldrush in the late 1890s. Currently there are three operating mines,

Figure 1. Terrane map of Yukon Territory highlighting the location of the Tiger zone, Osiris and Ketza River carbonate replacement-style deposits (*modified from* Colpron and Nelson, 2011). The shaded area within the Selwyn Basin (TTMB) highlights the location of the Tombstone-Tungsten Magmatic Belt.

and more money spent on exploration, more claims staked, and more claims in good standing than any previous year (MacFarlane, 2012). Gold deposits in the Yukon range from high (Saager and Bianconi, 1971) and low (Duke, 1990) sulphidation epithermal deposits, porphyry deposits (Godwin, 1976), IRGDs (Maloof et al., 2001), polymetallic vein deposits (Sinclair et al., 1980), IOCG deposits (Hunt et al., 2005) and orogenic deposits (Knight et al., 1999) that occur across the northern Cordilleran orogen. In 2010, Carlin-style gold mineralization was discovered within the Selwyn Basin of the Yukon as well (R. Carne, pers. commun., 2010) adding to the diversity of Yukon gold mineralizing systems.

The Tiger zone (Fig. 1) is located in central Yukon, north of the town of Mayo. The deposit is hosted in Paleozoic platform carbonates and is characterized by pervasive strata-bound carbonate-replacement gold mineralization, which manifests as a mineral assemblage of sulphide-carbonate-silicate as well as oxide mineralization. A felsic intrusion subcrops approximately 3 km southeast of the Tiger zone, and is associated with a more proximal zone of tungsten-bearing hornfels as well as pegmatitic and aplitic dikes. An inferred resource estimate for the deposit averages 289 400 ounces gold and the indicated resource is 509 000 ounces gold (Stroshein et al., 2011) making the Tiger zone an intriguing deposit geologically and economically. Only two other carbonate-hosted gold deposits are documented in the Yukon, the past-producing Ketza River oxide gold deposit in southeast Yukon and the Osiris showing 100 km east of the Tiger zone (Fig. 1). Stroshein, (1996) and Fonseca, (1998) have suggested that Ketza River may be an example of a gold-rich, base metal poor manto-type deposit which are oxidized, replacement deposits associated with porphyries, and form at high temperatures (>300°C) from hydrothermal fluids derived from intrusive rocks, similar to examples in South America and Colorado (Mach and Thompson, 1998; Franchini et al., 2007; Kojima et al., 2009). In contrast, the Osiris deposit is considered analogous to the Carlin-type carbonate-hosted disseminated gold deposits of Nevada (R. Carne, pers. commun., 2010). Because the Tiger zone occurs in platform carbonates proximal to an intrusive body and within a low grade fold and thrust belt cratonward of the main orogenic hinterland, it provides the opportunity to study a gold deposit possibly related to an intrusion, Carlin-style mineralization, or a unique source without the complexities encountered in the more deformed orogenic terranes. Potential deposit analogies are described below.

Carlin-style deposits have host lithologies ranging from thin-bedded pyritic silty carbonates to calcareous shales and carbonaceous limestones with gold hosted in arsenic-rich pyrite overgrowths on earlier sulphides (Arehart, 1996; Cline et al., 2005). Orebody style ranges from fault controlled, to antiformal structural controlled, to reactive host-rock controlled, to controlled by zones of primary porosity. Although the source of gold and transport mechanisms are still debated, ore fluids are generally thought to be low salinity (2 to 3 wt. % NaCl eq.), low temperature (approximately 220 °C), low in CO₂ (<4 mol %) and CH₄ poor (<0.4 mol %) (Cline et al., 2005). Importantly, in Nevada these deposits occur in autochthonous rocks overthrust by correlative allochthonous strata near the margin of faulted and

attenuated crystalline basement and is roughly analogous to the location and geology hosting the Tiger zone (Cook and Erdmer, 2005; Colpron, 2007). The deep seated basement faults are suggested to be an important localization factor of ore fluids (Crafford and Grauch, 2002; Grauch et al., 2003; Emsbo et al., 2006).

Intrusion related gold deposits form a distinct class of mineral occurrences first described in the Tintina Gold Province (TGP) of the northern Cordillera of Alaska and the Yukon (Thompson et al., 1999; Lang and Baker, 2001; Hart, 2007), but they have also been suggested to occur elsewhere e.g. Mokrsko (Czech Republic), Salave (Spain), Vasilkovskoe (Kazakstan), Timbarra and Kidson (Australia) and Kori Kollo (Bolivia) (Thompson et al., 1999 and references therein). These gold-bearing systems are commonly, but not exclusively, characterized by sheeted quartz vein systems that are associated with 1) metaluminous, subalkalic felsic to intermediate intrusions, 2) carbonic hydrothermal fluids, 3) a metal assemblage of Bi, W, As, Mo, Te \pm Sb \pm Au and base metal poor, 4) a reduced ore assemblage of arsenopyrite, pyrrhotite and pyrite and a lack of magnetite, 5) being aerially restricted and having weak hydrothermal alteration halos, 6) a tectonic setting well inboard of convergent plate boundaries, and 7) within magmatic W and Sn provinces (Lang and Baker, 2001). In the northern North American Cordillera these deposits predominantly occur in a belt within the TGP named the Tombstone-Tungsten magmatic belt (TTMB. Fig. 1), southwest of the Tiger zone. The Middle Cretaceous (97 to 90 Ma) TTMB comprises the Tombstone, Mayo and Tungsten intrusive suites (Hart et al., 2004) all of which intrude autochthonous rocks inboard of the accreted allochthonous terranes (Mair et al., 2006b). A volumetrically minor intrusive occurrence, the McQuesten suite with ages of 66.8 to 64.0 Ma, overlap the western TTMB and have not been considered prospective for gold thus far (Murphy, 1997). Examples of Middle Cretaceous IRGDs include Alaska's Fort Knox deposit and the Yukon's Eagle Gold deposit, located at Dublin Gulch, ~50 km southwest of the Tiger zone (Maloof et al., 2001; Stephens et al., 2004; Hart, 2007).

Mineral deposits are typically investigated using first-order field relationships, paragenetic studies, and a plethora of analytical techniques in order to genetically classify them as well as to infer conditions under which the mineralization occurred. This study combines a detailed paragenetic framework coupled with mineralogical data, carbon, oxygen, and sulphur stable isotope compositions, ra-

diogenic strontium isotope compositions, U-Pb age constraints and fluid inclusion microthermometry. The goal of this study is therefore, to geochemically classify the mineralization of the Tiger zone, assess its potential link to the nearby intrusive body, and develop a genetic model in which source of fluids and metals, and depositional processes may be inferred.

1.2 Regional Geology and Tectonic Setting

Early mapping describing the geology of the Tiger zone area involved 1:250 000 scale reconnaissance work by the Geological Survey of Canada (Green, 1972; Blusson, 1978). The Tiger zone is situated in the Jurassic-Cretaceous fold and thrust belt of the northern North American Cordillera comprising autochthonous rocks of the Selwyn Basin and the Mackenzie Platform (Fig. 1) (Abbott et al., 1986).

As described by Gabrielse (1967), the Selwyn Basin is a passive margin succession (shelf, slope and basinal strata) that accumulated on the western border of ancient North America from the Neoproterozoic to Jurassic. Adjacent to the study area, the northwestern Selwyn Basin (Fig. 2) comprises the Hyland Group, Gull Lake Formation, Rabbitkettle Formation, Road River Group, Earn Group and the Keno Hill Quartzite (Fig. 3). Most of the northwestern Selwyn Basin consists of slope to basin facies coarse quartz sandstone, shale and carbonates (Gordey and Anderson, 1993; Murphy, 1997). Sedimentation changed in the Early to Middle Devonian when rifting initiated within the western continental margin of North America forming the Slide Mountain Ocean. This isolated the now parautochthonous Yukon Tanana Terrane (Mair et al., 2006b) from the autochthonous Selwyn Basin (Mortensen, 1992). During this time in the Selwyn Basin the Earn Group was deposited in a series of fault bounded basins developed within a now restricted deep marine setting that formed complex internal stratigraphy (Gordey et al., 1991). This subsidence and subsequent rifting in the Selwyn Basin resulted in episodic volcanism and correlative shale-hosted Pb-Zn deposits (Gordey and Anderson, 1993; Murphy, 1997). Overlying the Earn Group in the northwestern Selwyn Basin are isolated occurrences of Mississippian Keno Hill Quartzite.

Platform carbonates and sediments of the Mackenzie Platform were deposited during the Proterozoic and Paleozoic roughly northeast of the time equivalent Selwyn Basin. Underlying most of the Mackenzie platform are the Proterozoic

intrusive rocks and other deposits of the Selwyn Basin (modified from Gordey and Makepeace, 2001). Note the Selwyn Basin Figure 2. Regional geology of the northwest Selwyn Basin showing the Tiger zone and its location in relation to Cretaceous occurs south of the Dawson Thrust.

Figure 3. Generalized regional stratigraphy surrounding the Tiger zone as well as the Selwyn Basin, categorized by specific thrust-sheet packages (*modified from* Murphy, 1997). See text for explanation of Marmot Formation.

Wernecke Supergroup, Pinguicula Supergroup, Mackenzie Mountains Supergroup and the Windermere Supergroup (Mair et al., 2006b). Paleozoic shelf carbonates in the immediate study area consist of the Bouvette Formation, which is broadly described as a Cambrian to Devonian sedimentary package consisting of platformal limestones and dolostones (Morrow, 1999).

Deformation of these basinal and platformal rocks commenced during the Late Triassic when extensive northeasterly-directed compression imbricated and folded the strata (Murphy, 1997). The majority of deformation however, occurred southwest of the Selwyn Basin and Mackenzie Platform within the parautochthonous Yukon Tanana Terrane as it converged with North America (Mair et al., 2006b). The Early Jurassic to Early Cretaceous compression produced the majority of the thrust faults in the Selwyn Basin and Mackenzie Platform foreland (Abbott et al., 1986). The largest displacements occur along the Roberts Service Thrust and the Tombstone Thrust with little documented displacement along the Dawson Thrust (Mair et al., 2006b). The Dawson Thrust, which broadly separates Selwyn Basin rocks to the southwest (hangingwall), from Mackenzie Platform rocks to the northeast (footwall; Murphy, 1997), occurs ~7 km from the Tiger zone (Fig. 2). Uplift and extension is documented in the Yukon Tanana Terrane uplands of Alaska (Hudson, 1994), however similar geologic interpretations have not been made for the Selwyn Basin and Mackenzie Platform which is reflected by the relative lack of Middle Cretaceous plutonism therein (Mair et al., 2006b). Following the major episode of crustal thickening and deformation, dextral strike-slip motion initiated on the Tintina Fault around 85 Ma, due to the newly established northward-directed subduction of the Kula plate (Engebretson et al., 1985).

Intrusive rocks of the western Selwyn Basin in proximity to the study area are restricted to the Middle Cretaceous 95 to 92 Ma Mayo suite (Hart et al., 2004) and the 92 to 90 Ma Tombstone suite as well as the Late Cretaceous to Early Tertiary 66.8 to 64.0 Ma McQuesten suite (Murphy, 1997). The Mayo suite rocks are composed dominantly of metaluminous, coarse-grained leucocratic quartz monzonites, granodiorites and biotite granites (Murphy, 1997). These intrusions have initial strontium isotopic values (⁸⁷Sr/⁸⁶Sr) of 0.710 to 0.730 and belong to the ilmenite-series of intrusions (Hart, 2004). Mineral occurrences associated with Mayo suite intrusive rocks include the Dublin Gulch deposits, Scheelite Dome deposits and Clear Creek deposits (Fig. 2; Murphy, 1997; Hart et al., 2004; Mair et al., 2006a).

The Keno Hill district Ag-Pb-Zn vein deposits are also in close proximity to these intrusions yet a genetic link between the two has not been clearly demonstrated (Lynch et al., 1990). Tombstone intrusive rocks range in composition from metaluminous monzonite, to granodiorite, to syenite (Murphy, 1997). These intrusions commonly are magnetite bearing, display high initial ⁸⁷Sr/⁸⁶Sr values of 0.710 and are well known for their Au-Cu-Bi skarn occurrences throughout the Yukon such as Brewery Creek and Marn and Horne (Brown and Nesbitt, 1987; Murphy, 1997; Baker and Lang, 2001; Lang and Baker, 2001; Hart, 2007). McQuesten Suite intrusions (Fig. 2) comprise peraluminous biotite-muscovite granite and quartz monzonite compositions and have very few associated mineral occurrences (Murphy, 1997).

1.3 Local Geology and Field Relationships

The Tiger zone is hosted by the Bouvette Formation, which consists of bedded limestones intercalated with locally extensive basalts and tuffs, all of which dip gently to the northeast (Fig. 4). The Bouvette Formation locally consists of lime mudstone to skeletal wackestone with minor skeletal floatstone and rudstone. Primary fossil assemblages include crinoid ossicles, tabulate and rugose corals, bryzoans, and stromatoporoids. The occurrence of the tabulate corals *Favosites favosus*, *Halysites catenularia*, and *Syringopora flexuosa* suggest the limestone hosting the Tiger zone is Silurian in age (Moore et al., 1952), and agrees with mapping by Abbott, (1990) who classified the local stratigraphy as being Ordovician to Silurian in age. Way-up indicators are rare but suggest the rocks young to the northeast. There is also a northeastward shallowing of the depositional environment from basal terrigenous mudstone to the southwest and carbonate turbidites to upper ramp or lagoonal facies to the northeast (E.C. Turner, pers. commun., 2010).

Goodfellow et al. (1995) and Leslie (2009) have described the occurrence of Cambrian to Devonian volcanic rocks of the Marmot Formation in eastern Yukon and western Northwest Territories within the Mackenzie Mountains and Misty Creek Embayment. The host-rock volcanics within the Tiger zone may belong to the Marmot Formation given their estimated age of roughly Ordovician to Silurian, however, no published work has described the volcanic units regionally proximal to the Tiger zone and thus, this inferred association remains speculative.

Figure 4. (A) Tiger zone drill valley highlighting the stratigraphy in black and the Tiger zone fault in orange and (B) typified cross-section of the Tiger zone displaying the Discovery Horizon and the Upper Horizon. Local structural complexities are not displayed (*modified from* section line 10+000 in Dumala, 2011)

A small, two-mica, granitic intrusion, the Rackla pluton, intrudes Bouvette Fm. stratigraphy 3 km east-southeast of the Tiger zone. A U-Pb zircon age of 62.9 ± 0.5 Ma (2σ) was determined for a large intrusive sill of the Rackla pluton (V. Bennett, pers. commun., 2010). Additionally, small aplitic and pegmatitic dikes ~1km east of the Tiger zone yielded 40 Ar/ 39 Ar muscovite ages of 62.3 ± 0.7 Ma, 62.4 ± 1.8 Ma and 59.1 ± 2 Ma (Kingston et al., 2010).

Tiger zone mineralization is primarily hosted in a carbonate stratigraphic package, the Discovery Horizon, which is bounded to the top (NE) and bottom (SW) by volcanic units (Fig. 4). The intercalated volcanic-carbonate package is truncated to the southwest by a northwest trending high-angle fault named the Tiger zone fault (Fig. 4).

Sulphide mineralization also occurs in the Upper Horizon, adjacent to a volcanic unit stratigraphically above the main Discovery Horizon (Fig. 4). In a carbonate package stratigraphically equivalent but structurally down-dropped and east of the Discovery Horizon, is a pyrite-rich gold-poor horizon called the Lower Horizon.

The prominent high-angle Tiger zone fault that bounds the Tiger zone to the southwest is characterized by a thick sequence of white marble in the immediate footwall and a distinctive volcaniclastic unit informally termed the 'Leopard unit' in the hangingwall basal to the Discovery Horizon (Fig. 4). The Leopard unit is distinctive from other volcanic rocks due to its high calcite content (>50 %). Between the Leopard unit and the Discovery Horizon, a ~50 cm thick magnetite bearing white marble is locally in sharp contact with the Discovery Horizon.

In addition to the Tiger zone, regional exploration on the Rau property (ATAC Resources Ltd.) has resulted in discovery of several polymetallic quartz veins \pm gold, scheelite-bearing tremolite skarn, pyrrhotite \pm scheelite \pm chalcopyrite-bearing actinolite-diopside-garnet skarn and wolframite \pm tantalite occurrences. Three scheelite-tremolite-actinolite skarn showings occur between the Tiger zone and the Rackla pluton within the Bouvette Formation. The most strongly altered skarn occurrences are associated with southwest striking quartz-muscovite-pegmatitic dikes. Geochemical anomalies for these skarns include elevated tungsten, gold and rare copper (Dumala, 2011).

CHAPTER 2 – ANALYTICAL TECHNIQUES AND DATA COLLECTION

Rock samples were collected from core boxes at the Tiger zone drill camp. Drillhole coordinates can be found in Dumala (2011) and Stroshien (2011). Other non drill-core sample locations are presented in Appendix A.

2.1 Petrography, Electron Probe and Cathodoluminescence

Hand sample and thin section petrography was conducted on core from the Tiger zone to constrain a first order paragenesis, which is fully described in the results section herein. Over 600 samples were described at the macro scale and about 100 thin sections were prepared and subsequently analyzed using optical microscopy at the University of Alberta. Cathodoluminescence (CL) was extensively used in order to determine carbonate mineral petrography and paragenesis where optical techniques and EPMA were insufficient. A CL microscope, maintained in the U-Pb geochronology laboratory at the University of Alberta, was used to identify carbonate mineral compositional zoning and crosscutting relationships. The CL microscope consisted of a cathode ray tube connected to an enclosed thin section sample holder. This apparatus was operated in a dark room at the University of Alberta in order to properly capture digital images.

Electron probe micro analyser (EPMA) techniques including wavelength dispersive spectrometry (WDS), electron dispersive spectrometry (EDS), X-Ray elemental maps, and backscattered electron (BSE) imaging were completed using a Cameca SX100 EPMA equipped with five wavelength dispersive spectrometers at the University of Alberta's Electron Microprobe Laboratory. These techniques were used to analyze for major elements and compositional zoning in sulphide and carbonate minerals. The EPMA beam was operated at an accelerating voltage of 20 kV, probe current of 20 nA and had a beam diameter of 1 µm.

2.2 X-Ray Diffraction

X-Ray Diffraction (XRD) was utilized to determine the mineralogy of unknown monomineralic phases as well as unknown mineral assemblages in whole-rock powders. Samples were crushed and powdered using agate mortar and pestle or in a tungsten shatterbox to obtain a relatively homogenous powder. Samples with simple mineralogy were analyzed on a quartz plate whereas polymineralic samples utilized a top-press sample holder to obtain more accurate results. Analysis was performed by Diane Caird at the University of Alberta using a Rigaku Geigerflex Powder Diffractometer equipped with a cobalt cathode ray tube, a graphite monochromator and a scintillation detector.

2.3 Whole-Rock Major and Trace Elements

Limestone as well as unaltered and altered volcanic rocks were analyzed for major element oxides and trace elements through Activation Laboratories of Ancaster, Ontario by the method 4E Research which uses instrumental neutron activation (INAA) for trace element analysis, and total digestion-inductively coupled plasma (ICP) for major element analysis of rock powders fused in lithium metaborate/ tetraborate. These analyses constrain the background chemical composition of the unaltered host-rocks as well as the altered composition of these rocks post hydrothermal mineralization.

Samples of the Rackla pluton were analyzed for major element lithogeochemistry and ferrous iron by Australian Laboratory Services (ALS) Minerals, in Vancouver, British Columbia, using the methods ME-XRF06 and Fe-VOL05, respectively. The method ME-XRF06 fuses the sample into a lithium borate disc which is subsequently analyzed by X-Ray Fluorescence Spectroscopy (XRF). The method Fe-VOL05 digests the sample in H_2SO_4 -HF acid and utilized titration to analyze for FeO. These analyses allow for the Rackla pluton to be characterized geochemically and compared to other intrusive suites in the Yukon.

2.4 Microthermometry

Fluid inclusion thick-sections were prepared by Vancouver Geotech and Vancouver Petrographics. The sections were doubly polished 100-150 micron thick wafers which were separated from glass slides using acetone after petrographic examination. Based on criteria of Rodder (1984), fluid inclusions were categorized as primary, pseudosecondary or secondary and also categorized by their phase assemblage at room temperature (Lw = liquid water, Lc = carbonic liquid, Vw = water vapour, Sh = solid halite, So = solid opaque, nS = multiple solids). Fluid inclusion assemblages (FIA) refer to all phase assemblages of primary inclusions within a wafer that appear coeval and for which microthermometric data was collected during the same runs. All microthermometry was performed on a Linkam THMSG600 heating/freezing stage mounted on an Olympus BX50 microscope equipped with a 40x SLCPlan long-working distance fluorite objective lens, 2X

image magnifier and a video camera and printer. The heating/freezing stage has a working range of -196 to 600 °C. Calibration at -56.6 °C (pure CO₂), 0 °C and 374.1 °C using synthetic fluid inclusion standards from SynFlinc was completed before and after microthermometry. Accuracy below 0 °C is \pm 0.2 °C and above 0 °C accuracy is \pm 2 °C. Reported salinities have been calculated using equations from Bodnar (1993) for ice melting and Sterner et al. (1988) for halite dissolution temperatures. Salinities are reported in weight percent NaCl equivalent (wt. % NaCl eq.).

2.5 Carbon and Oxygen Isotopes

Carbon and oxygen stable isotope analyses were completed on host-rock limestone, calcite and dolomite samples at the Isotope Science Lab, Department of Physics and Astronomy, University of Calgary by Mr. Steve Taylor. Hand-picked 20-30 mg mineral separates from core samples were ground to $<50 \mu m$ using agate mortar and pestle. This powder was digested with anhydrous phosphoric acid at 25 °C followed by the collection of CO₂ and then analyzed by a VG 903 stable isotope ratio mass spectrometer for ¹³C/¹²C and ¹⁸O/¹⁶O ratios. Internal lab standards were run at the beginning and end of sample sets of 20 and are used to normalize the data and correct for instrumental drift. Additionally, these standards are calibrated against international reference materials and reported relative to Peedee Belemnite (PDB) for δ^{13} C and Standard Mean Ocean Water (SMOW) for δ^{18} O. The sample analyses are precise to 0.4 ‰ (2 σ) for δ^{13} C and δ^{18} O.

Whole-rock Rackla pluton and Tiger zone quartz samples were also analyzed for oxygen isotopes at the University of Alberta's Stable Isotope Laboratory by Dr. K. Muehlenbachs and Olga Levner. These samples were hand-picked and separated after completion of optical petrography and a paragenesis study, and ground to a powder using a tungsten shatterbox. Oxygen isotopes were measured based on methodology of Clayton and Mayeda (1963), using bromine pentafluoride to liberate O_2 gas and subsequently combine with carbon to create CO_2 gas. This CO_2 gas was analyzed by a Finnigan Mat 252 mass spectrometer equipped with multiport and continuous flow inlets located at the Department of Chemistry, University of Alberta. Analyses are precise to 0.4 ‰ (2 σ) and reported relative to Vienna Standard Mean Ocean Water (VSMOW).

2.6 Sulphur Isotopes

Sulphur isotope analysis was conducted on pure sulphide mineral separates handpicked and analyzed at the Isotope Science Laboratory, Department of Physics and Astronomy, University of Calgary by Steve Taylor. The sulphur isotope ratio ${}^{34}S/{}^{32}S$ of pure sulphides were analyzed by the method described by Glesemann et al. (1994) by Continuous Flow-Isotope Ratio Mass Spectrometry (CF-EA-IRMS) using a Carlo Erba NA 1500 elemental analyzer interfaced to a VG PRISM II mass spectrometer. Pure sulphide mineral samples were homogenized and placed into high-purity tin cups subjected to a high-temperature (EA) combustion reactor at 1020 °C. SO₂ gas was liberated and subsequently transmitted to the ion source of the mass spectrometer. Raw data are normalized to Vienna Cannon Diablo Triolite (VCDT) by comparison to internal lab standards. The accuracy of $\delta^{34}S$ for the data reported is 0.6 ‰ (2 σ).

2.7 U-Pb Dating

Laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICPMS) was utilized to determine a U-Pb crystallization age of monazite identified in the Tiger zone. Analyses were conducted at the Radiogenic Isotope Facility (RIF) in the Department of Earth and Atmospheric Sciences, University of Alberta using a NuPlasma MC-ICP-MS and the UP213 laser ablation system by the methods described by Simonetti et al. (2006). Reference material monazite from Madagascar, analyzed by ID-TIMS (Heaman et al., unpublished data), was used to normalize to unknown monzite data from the Tiger zone. The laser spot size for both unknown and reference monazite was 10 microns in diameter. The monazite crystals occur in a single thin section and were analyzed by EPMA prior to U-Pb dating. BSE images, WDS analysis and U, Th, Si, P, La and Ce elemental maps were collected for the 4 monazite grains to establish zones of physical and chemical homogeneity for quicker spot selection and subsequent analysis. The raw data from the isotopic analysis were manipulated using the Isoplot software (v. 2.0) of Ludwig, 2003 by Dr. Andy Dufrane, University of Alberta. Careful petrographic examination, BSE imaging, and WDS mapping of the monazites together with the Isoplot data reduction allowed for the aquisition of a robust ²⁰⁶Pb-²³⁸U monazite crystallization age.

2.8 Strontium Isotopes

Carbonate host-rock, Tiger zone carbonates, and whole-rock Rackla pluton samples were prepared for analysis in a class 100 cleanroom in the RIF, University of Alberta following the methods described in Buzon et al. (2007). After sample preparation and chromatographic treatment the samples were aspirated into an ICP torch using a desolvating nebulizing system (DSN-100). Isotopes ⁸⁷Sr/⁸⁶Sr, ⁸⁷Rb/⁸⁶Sr, and total Sr (ppm) and Rb (ppm) were subsequently analyzed using a NuPlasma MC-ICP-MS. Accuracy and precision was verified by analysis of the standard reference material NIST SRM 987. Internal precision of individual isotopic measurements vary from 0.00001 to 0.00003 (2σ level).

CHAPTER 3 - RESULTS

3.1 Petrography and Paragenesis (EPMA, XRD, CL)

A paragenetic summary is presented in Figure 5 and detailed descriptions are described herein. Appendix B contains extensive EPMA data for Tiger zone minerals.

Figure 6. Host-rock carbonate and volcanic rock pictures including (A) brecciated host-rock dolostone, (B) plane polarized light (PPL) image of dolostone with carbonaceous matter, (C) reflected light image showing pyrobitumen, (D) amygdaloidal basalt, (E) volcanic tuff and, and (F) magnetite pebble conglomerate.

Host-Rock

The carbonate host-rocks of the Bouvette Formation range from lime-mudstones and dolo-mudstones (Fig. 6a) to crinoidal packstones and coral rudstones. These carbonates are commonly recrystallized to form coarse dolomite and/or dolomite replacement textures. They are generally devoid of sedimentary structures due to bioturbation and/or overprinting dolomitization. Dolomitization occurs randomly throughout the unit and is found away from the mineralized areas, which suggests it is unrelated to mineralization. The host carbonates are dark grey in colour and organic material comprises 10 to 50 % of the rock (Fig. 6b). Extensive single-seam stylolite formation sub-parallel with bedding also occurs in these host-rocks. These carbonates are brecciated (Fig. 6a) within the deposit, and regionally around the Tiger zone. The most common breccia type is a mosaic breccia in which angular to subangular carbonate clasts are slightly rotated and separated from one another by up to a few centimetres. The breccia fractures exhibit polyphase cementation beginning with a 'dog tooth' dolomite spar that crystallizes on limestone clasts (Fig. 6a). This dolomite spar forms euhedral crystals up to 1 cm long and commonly rimmed by a thin veneer of sub-millimetre sized tabular pyrobitumen (Fig. 6a, 6c). The remaining void space is filled by an assemblage of anhedral quartz and calcite with minor anhedral fine-grained pyrite.

Volcanic horizons within the Tiger zone host-rocks range from flows to tuffs to epiclastic rocks. These units typically have sharp contacts with host-rock carbonates, contain very small amounts of limestone interlayers and are 10-30 m thick. One of the most identifiable textures amongst these rocks is a black amygdaloidal basalt (Fig. 6d) that contains calcite filled amygdules. Ash beds of lapilli tuff occur locally within the volcanic units where graded bedding and lapilli fragments are visible (Fig. 6e). Additionally, magnetite-bearing pebble to cobble conglomeritic volcanic rocks occur with locally high concentrations of magnetite ~20 % in centimetre-scale intervals (Fig. 6f). The volcanics are commonly fine-grained and layered (Fig. 7a). The layering may be a primary volcanic origin but is more likely a deformational feature.

Rackla Pluton

The modal mineralogy of the Rackla pluton consists of 10 to 50 % quartz, 30 to 60 % K-feldspar and 10 to 60 % plagioclase feldspar and therefore, has compositions ranging from granite to quartz monzonite to granodiorite (Fig. 7b). The grain size is generally coarse-grained with crystals commonly 0.5-1 cm in diameter but some plagioclase megacrysts are up to 3-4 cm long. The most common texture consists of centimetre-scale blocky to interlocking equant grains of quartz and feldspar however, metre-scale portions may be granophyric to pegmatitic with graphic quartz present. Plagioclase in relatively 'fresh' drill-core has a chalky appearance whereas more altered portions of the rock contain abundant sericite and chlorite replacing feldspars and may appear green (Fig. 7b). Primary mica

Figure 7. Host-rock and Stage 1 mineralization including (A) fine-grained, strained and sericitized volcanic, (B) felsic intrusive rocks from the Rackla Pluton, (bi) inset of intrusion-hosted vein, (C) massive marble being crosscut by Tiger zone mineralization, (D) calcite influx within volcanic unit, (E) classic Tiger zone pink Dol-1 with disseminated Apy-1 and foliated Py-1, and (F) cross polarized light image of Dol-1 saddle morphology and triple point texture.

components are minor (<5 %) and are typically biotite, muscovite and Cr-bearing muscovite. Minor fine-grained euhedral pyrite, arsenopyrite and sphalerite occur disseminated throughout the intrusive rock with higher sulphide concentrations occurring proximal to crosscutting calcite and dolomite veins (Fig. 7bi). A contact metamorphic aureole of marble surrounds the intrusive rocks and can be traced in drill-core for ~150 m. At the margins of the intrusion is a centimetre to metre-scale actinolite skarn. This unit is dark green in colour and has a fibrous texture due to the presence of actinolite and contains minor sulphides such as pyrite and

pyrrhotite. Beyond this aureole is unaltered limestone similar to that of the host-rock described above.

The host-rock limestone has been metamorphosed to a marble regionally and in the Tiger zone (Fig. 7c). The marble is very fine-grained, sucrosic and not very competent. Marble commonly occurs at the boundary between volcanic horizons and limestone rocks above and within the Discovery Horizon proximal to the Tiger zone fault (Fig. 4). The thickness of this marble can reach ~100 meters in the footwall of the Tiger Zone fault, however 1-4 m intersections are more common throughout the deposit. The contacts between the marbles and limestones are mostly gradational on the centimetre-scale. Similarly, the contacts of the marbles and the volcanic horizons are also gradational; the volcanic rocks can contain up to 50 % calcite. The volcanic unit basal to the Discovery Horizon contains over 50 % calcite for depths of a few metres to hundreds of metres and is informally called the leopard unit as it has a 'leopard' texture of alternating calcite and biotite (Fig. 7d). This basal unit also contains variable amounts of disseminated, euhedral magnetite at the contact with the basal volcanic package.

Tiger Zone Mineralization

Stage 1: Dolomite-1 + Arsenopyrite-1 + Gold-1

Stage 1 of the paragenetic sequence involves the pervasive replacement of hostrock carbonate within the Discovery Horizon by dolomite 1 (Dol-1) + arsenopyrite 2 (Apy-2) + gold-1 (Au-1). This mineralization massively overprints the marble (Fig. 7c) or crosscuts it as rare, discrete, centimetre-scale veins. Dolomite 1 occurs as 2-4 mm, equant to elongate, pale pink to white crystals (Fig. 7e, 7f) that commonly exhibit saddle morphology (curved crystal faces and sweeping extinction) in cross polarized transmitted light. These crystals have angular crystal boundaries and have triple-point grain textures (Fig. 7f). Both pink and white Dol-1 have a mottled texture and luminesce dark-red and black under cathodic light (Fig. 8a). This mottled texture is also visible in BSE images (Fig. 8b) as light (Fe-rich) and dark (Mg-rich) shades of grey for both pink and white dolomite. The similar compositions, CL-active species, identical BSE response and the indistinguishable nature of the pink and white dolomite phases under the microscope suggest a broadly coeval origin.

Euhedral Apy-1 is disseminated throughout Dol-1 (Fig. 7e). Importantly, Apy-

Figure 8. Stage 1 and Stage 2 mineralization including (A) CL image showing Dol-1, Cal-1 and Cal-2 and their crosscutting relationships, (B) BSE image showing mottled and zoned textures for Dol-1 and Dol-2, (C) BSE image of euhedral Apy-1 and Dol-1, (D) relationships between Dol-1, Dol-2a with Py-1 and Py-2, (E) cross polarized light image of foliation producing Py-1 within Dol-1, and (F) cross polarized light image of Py-1 crosscutting Apy-1.

1 grains have angular crystal boundaries and no reaction rim with Dol-1 and, thus, both these phases are considered to be coeval in the paragenetic sequence. Thin, <0.01 mm sub-parallel fractures are restricted to Apy-1 grains but are not observed to extend into the adjacent and inferred coeval Dol-1. Back-scattered electron imaging of Apy-1 crystals reveal faint euhedral zoning (Fig. 8c) in which the lighter zones are characterized by higher levels of As as determined by EDS analyses.

Figure 9. Stage 2 and Stage 3 mineralization including (A) BSE image of non-zoned Py-1, (B) foliation producing Py-1 and Apy-2 within white Dol-1, (C) CL image of Dol-2a with interstitial Cal-1 on grain boundaries, (D) non-foliated Dol-2b, Dol-1 and Py-1, (E) Py-3 with crosscutting Qz-1, Tlc, Chl and Cal-1, and (F) BSE image showing growth zoning in Py-3 and Py-4 with a layer of Bs between them.

Stage 2: (a) Pyrite-1 + Arsenopyrite-2 + Dolomite-2a, (b) Dolomite-2b + Pyrite-2 Stage 2a mineralization is characterized by an assemblage of fine-grained pyrite (Py-1), coarse-grained arsenopyrite (Apy-2) and dolomite (Dol-2a) that have grown in parallel tabular arrays and define a prominent foliation (Fig. 8d). Pyrite-1 occurs as 0.1-0.5 mm equant, subhedral to-cubic crystals that have grown both interstitially within Dol-1 (Fig. 8e) and overprint Dol-1 and Apy-1 (Fig. 8f). Grain boundaries of Py-1, Dol-1 and Apy-1 are sharp (Fig. 8e, 8f), have no reaction rim or dissolution textures and are inferred to be in textural equilibrium. These pyrite crystals have a weak preferred orientation and commonly have grain boundary area reduction or triple-point textures. Back-scattered electron imaging of Py-1 grains reveals that they are broadly homogeneous (Fig. 9a), although weak zoning is rarely observed. Wavelength dispersive spectrometry analysis of the brighter BSE zones of Py-1 grains demonstrates that As-rich portions of crystals have concentrations of approximately 2000 ppm As (10σ), and less commonly, can contain up to 1 wt. % As.

Arsenopyrite-2 consists of undeformed coarse-grained (0.5 cm) crystals that occur in tabular arrays parallel to Py-1 and within Dol-1 (Fig. 9b). Although Apy-2 crosscuts Dol-1 the euhedral nature of the crystals and lack of any reaction rim suggests Apy-2 is in textural equilibrium with Dol-1. Aside from the tabular array of crystals, Apy-2 is identical to Apy-1 however, is much less abundant than Apy-1.

Dolomite-2a forms 1 mm to 1 cm equant blocky, light grey crystals (Fig. 8b) with angular crystal boundaries. The abundance of angular crystal faces, absence of both saddle morphology textures and sweeping extinction (under polarized light) and fewer fluid inclusions, distinguishes Dol-2a from Dol-1. Weak undulose extinction and birdseye textures are much more common in Dol. Although no internal deformation or crystal elongation is observed besides some twinning, Dol-2a occurs in elongate mineral clusters sub-parallel to Py-1 (Fig. 8b, 8d). Alternating dark and light banding (Fig. 8b) is visible in BSE imaging; the darker zones are Mg-rich and the lighter zones are more Fe-rich. Dolomite-2a has a dark-red to black luminescence (Fig. 9c) similar to Dol-1 but is texturally, and therefore, temporally distinct.

Stage 2b mineralization is characterized by an assemblage of fine-grained pyrite (Py-2) and dolomite (Dol-2b) that postdates or crosscuts the foliation. Pyrite-2 occurs as 0.1-0.5 mm, equant, and subhedral crystals that form irregular crystal masses oblique to Py-1 (Fig. 8d). Pyrite 2 pervasively overprints Stage 1-2a mineral assemblages with no preferred orientation. Pyrite-2 does not show well-defined zoning in BSE imaging however, brighter zones also have higher As contents.

Dolomite-2b forms 1 mm to 1 cm equant, blocky and light grey crystals with

Figure 10. Stage 3 and Stage 4 mineralization including (A) Qz-1+Tlc+Cal assemblage crosscutting Dol-1, Dol-2a and Py-1, (B) cross polarized light image of Cal-1, Qz-1 and fans of Chl, (C) reflected light image of Bs and Po occupying fractures in Qz-1, (D) reflected light image of Bs and Au co-existing within fractures in Py-3, (E) reflected light image of Bs, Sp and Qz-2 within fractures of Py-3, and (F) reflected light image of Sp crosscutting Qz-2 within fractures of Py-3.

angular grain boundaries. This dolomite appears almost identical to Dol-2a, however Dol-2b does not have a preferred alignment parallel to the foliation (Fig. 9d). Back scattered electron imaging of Dol-2b reveals more uniform growth zoning similar to Dol-2a (Fig. 8b). EDS analysis indicates that darker zones in Dol-2b have higher Mg concentrations and lighter zones correspond to higher relative Fe contents. Cathodoluminescence colours for zoned Dol-2b range from dark-red to black and are identical to the CL colours and textures of Dol-2a.

Stage 3: (a) Pyrite-3, (b) Quartz-1+ Talc + Chlorite + Calcite-1, (c) Bismuthite + Gold-2 + Bismuth + Pyrrhotite + Pyrite-4

Stage 3a mineralization is characterized by coarse-grained (>1cm), brassy, euhedral to subhedral pyrite (Py-3) that overprints Stage 1-2 mineralization (Fig. 9e). Pyrite-3 is commonly associated with, but pre-dates quartz (Qz-1). Back-scattered electron imaging shows weak, sub-angular zoning within the Py-3 phase (Fig. 9f). Brighter BSE zones are determined by WDS to have higher As values ranging from 1000 to 10000 ppm.

Stage-3b mineralization comprises variable amounts of Qz-1, talc (Tlc), chlorite (Chl) and calcite (Cal-1) replacing and occurring in brittle fractures crosscutting Py-3 (Fig. 9e) and overprinting Stage 1-2 mineral assemblages (Fig. 10a). Quartz-1 is the major constituent of Stage 3b generally occurring as anhedral accumulations (Fig. 10b) replacing Stages 1-2 minerals or more rarely as euhedral crystals. Chlorite occurs as small 0.1-0.5 mm, radiating, acicular needles within Qz-1 (Fig. 10b). XRD analysis has identified talc in this stage, however it has not been identified in thin section. The Chl, and Qz-1 share sharp, angular grain boundaries (Fig. 10b) and are considered to be coeval. Calcite-1 is characterized by centimetre-scale blocky and subhedral crystals occurring as a minor phase within quartz (Fig. 10b) or as centimetre-scale veins crosscutting Py-3. Calcite-1 also crosscuts Dol-1, 2a and 2b as it precipitates along grain boundaries (Fig. 8a, 9c)

Stage 3c mineralization consists of bismuthinite (Bs), native gold (Au-2), native bismuth (Bi) and pyrrhotite (Po) within fractures of Stage 3b Qz-1 and Stage 3a Py-3. Bismuthinite occurs as anhedral crystals within fractures of Stage 1-2 sulphides, Py-3 and Qz-1 (Fig. 10c) and has been observed in a few drill holes to occur in large centimetre-scale accumulations. Back-scattered electron imaging has revealed rare bismuthinite rimming Py-3 crystals which in turn are rimmed by a later anhedral pyrite (Py-4) (Fig. 9f). Native gold occurs as anhedral fracture fills within Stage 1-2 sulphide fractures and within Py-3 fractures. When native gold is present, it is adjacent to Bs in fractures and suggests coeval precipitation (Fig. 10d). Analysis of Bs by WDS indicates the grains have elevated Sb between 4000 and 9000 ppm and anomalous As up to 17 wt. %. Where observed, native bismuth is 'speckled' within Bs as small <0.1 mm anhedral crystals and also as fracture coatings of other sulphide phases. Similarly, Po commonly occurs within close

Figure 11. Stage 4 mineralization including (A) reflected light image of Bs, Sp Qz-2 and Cpy occupying fractures in Py-3, (B) CL image of Ms and Cal-2 co-existing and overprinting Dol-1, (C) cross polarized light image of Ms and Cal-2 crosscutting Dol-2b, (D) reflected light image of Ms intergrown with Cal-2 and Py-5, (E) thin section of Mnz within Cal-2 and Ms assemblage , and (F) cross polarized light image of Act crosscut by the assemblage of Ms and Cal-2.

proximity to Bs as anhedral masses with no apparent crosscutting relationship. However, native bismuth and Po are observed to crosscut Bs in fractures suggesting a coeval to slightly epigenetic relationship of Po to Bs+Au-2 mineralization.

Stage 4: (a) Quartz-2 + Sphalerite + Chalcopyrite + Dolomite-3, (b) Monazite + *Actinolite* + *Scheelite* + *Muscovite* + *Calcite-2* + *Pyrite-5* + *Uraninite*) Stage 4a mineralization is characterized by fracture filling and replacement by quartz (Qz-2), sphalerite (Sp), chalcopyrite (Cpy) and dolomite (Dol-3). This mineral assemblage is commonly observed in bismuthinite-bismuth veinlets within Py-3 (Fig. 10e). Quartz-2 occurs as small, 0.1 mm, euhedral crystals along fractures in Py-3 (Fig. 10e, 10f) which may have Bs rimming the fractures, thus suggesting Qz-2 postdates Bs growth or minor Bs occurs in this stage. These euhedral guartz crystals are associated with anhedral Sp that also occupies these Py-3 fractures, but are also occasionally crosscut by Sp veinlets (Fig. 10f). When Bs and Sp occupy a fracture the Bs is usually rimming the Py-3 crystals whereas the Sp is commonly central to the fracture (Fig. 10e). Rare anhedral crystals of Cpy occur within fractures of Sp (Fig. 11a) suggesting Cpy is coeval to slightly epigenetic to the Sp. In rare, large centimetre-scale calcite-3 (Cal-3, below) veins Sp has been observed to occur as millimetre-scale euhedral zoned crystals rimming fractures in-filled by the calcite. Associated with this phase is a euhedral to anhedral dolomite (Dol-3) that commonly occurs with euhedral Sp and is observed to crosscut and offset fractures filled with Sp.

Stage 4b mineralization consists of monazite (Mnz), actinolite (Act), scheelite (Sch), muscovite (Ms), calcite (Cal-2), uraninite (Urn) and pyrite (Py-5). The main constituent of this phase is Cal-2 and Ms. Calcite-2 occurs as subhedral crystals that range from 0.01 mm to 1 cm in diameter and are intergrown with muscovite (Fig. 11b, 11c). Muscovite forms both parallel, acicular crystals 0.5 mm long (Fig. 11c) and irregular radiating aggregates. Muscovite and Cal-2 commonly form along rheologic boundaries such as between Dol-1 or 2 and sulphides (Fig. 11c). Pyrite (Py-5) is a minor constituent of this phase and occurs interstitial to the Ms and Cal-2 as small 0.01 mm anhedral crystals (Fig. 11d). Crosscutting relationships of Py-4 and Py-5 are not observed and, therefore, their relationship is unknown. Stage 4b mineral phases destructively overprint Stage 1-3 mineral assemblages. Calcite-2 has bright red and orange luminescence under cathodic light (Fig. 11b) and is very distinct from Cal-1 and Stage 1-2 dolomites (Fig. 9c). Calcite-2 also occurs along grain boundaries Dol-1, 2a and 2b and appears to infill void space postdating Cal-1 determined by CL (Fig. 8a).

Monazite, Act and Sch are all present within the Ms-Cal-2 assemblage but are not observed in contact with one another, thus, the relative crosscutting relationships are unclear. Monazite, which is observed to form only within Ms-Cal-2 aggregates, occurs as large 0.5-2 mm euhedral crystals (Fig. 11e). Small fractures in Mnz grains are occupied by Ms or Cal-2 crystals and locally small urananite grains (Fig. 11e) suggesting monazite pre-dates these minerals. Actinolite is associated with the Ms-Cal-2 assemblage in dense mineral clusters (Fig. 11f). No obvious temporal relationship is observed between Act grains suggesting coeval growth with the Ms-Cal-2 assemblage. Scheelite is an extremely minor component of Stage 4b. It occurs as 1 cm diameter subhedral crystals that have fractures in-filled with Ms and Cal-2. Stage 4b minerals were not found in association with Stage 4a minerals, thus the two stages may be coeval.

Stage 5: Calcite-3

Calcite-3 occupies centimetre-scale brittle fractures that crosscut Stages 1-4. Veins will occasionally contain outer margins of euhedral Sp while the later Cal-3 occupies the majority of the vein centres. Calcite-3 is coarse-grained with crystals often up to 1 cm in diameter.

3.2 Whole-Rock Analysis

The data for whole-rock analysis of limestone, variably altered volcanic rocks and the Rackla pluton are presented in Table 1 and Appendix C. Volcanic rocks have been plotted on a total alkali versus silica graph and normalized to totals without water (Fig. 12). The data have a large scatter ranging from 35 to 57 wt. % SiO₂ and 0 to 8 wt. % Na₂O + K₂O. The leopard volcanics, which are inundated with calcite, have the lowest values of between 35 and 40 wt. % SiO₂. Rackla pluton samples have been classified for alumina saturation using major element oxides. All samples have Al₂O₃ molar proportions that exceed combined CaO + K₂O + Na₂O molar proportions (Table. 1), indicating the pluton is weakly peraluminous. Additionally Rackla pluton samples have ferric/ferrous iron values below 0.5 at 70 wt. % SiO₂ (Fig. 13), and are therefore classified as ilmenite-series or reduced affinity using the classification of Ishihara, (2000).
		I074541	1074543	1074544	1074545	1074546	1074548	1074549	1074550	1074551	1074552	1074553	1074554	1074555
Recvd Wt.	kg	0.14	0.14	0.14	0.12	0.14	0.10	0.08	0.06	0.14	0.02	0.12	0.08	0.12
SiO ₂	%	71.07	73.83	73.21	72.31	74.24	73.35	74.30	73.82	56.19	69.32	71.85	71.59	62.44
Al ₂ O ₃	%	12.99	13.23	13.01	12.77	13.11	13.10	13.17	13.29	9.86	13.32	13.24	13.36	9.31
Fe ₂ O ₃ tot	%	1.42	1.52	1.48	2.01	1.33	1.85	1.67	1.95	13.92	4.43	2.32	1.69	12.11
FeO	%	1.23	1.29	1.16	1.67	1.16	1.55	1.41	1.54	12.05	n/a	1.68	1.28	8.61
CaO	%	2.30	1.74	1.74	1.14	1.63	1.73	1.82	1.65	1.02	0.82	1.25	2.21	0.66
MgO	%	0.58	0.24	0.23	0.21	0.20	0.21	0.24	0.23	0.71	0.52	0.36	0.31	0.98
Na ₂ O	%	2.32	2.37	1.61	0.60	2.39	2.21	2.85	2.56	0.19	0.13	0.38	0.22	0.15
K2O	%	5.67	5.42	6.17	7.10	5.36	5.67	4.65	5.12	5.31	6.38	6.24	5.69	4.26
Cr ₂ O ₃	%	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
TiO ₂	%	0.20	0.21	0.20	0.15	0.16	0.19	0.19	0.21	0.13	0.17	0.19	0.19	0.12
MnO	%	0.04	0.04	0.09	0.21	0.05	0.06	0.02	0.06	1.78	0.44	0.14	0.11	1.19
P2O5	%	0.07	0.08	0.07	0.05	0.06	0.07	0.07	0.07	0.06	0.08	0.07	0.07	0.04
SrO	%	0.03	0.03	0.02	0.01	0.02	0.02	0.03	0.03	< 0.01	0.01	0.01	< 0.01	< 0.01
BaO	%	0.07	0.06	0.07	0.07	0.06	0.07	0.05	0.06	0.05	0.05	0.06	0.05	0.02
LOI	%	1.85	1.20	2.09	2.59	1.22	1.41	0.77	0.88	9.39	3.97	3.39	4.25	6.81
Total	%	98.62	99.97	99.99	99.23	99.84	99.95	99.84	99.94	98.61	99.63	99.50	99.74	98.10
A/CNK		0.92	1.02	1.04	1.19	1.03	1.01	1.01	1.04	1.25	1.55	1.37	1.27	1.54

Figure 12. Tiger zone host-rock volcanics including two leopard-volcanic samples plotted on an alkali vs. silica diagram. Volcanic rocks are divided into relatively unaltered samples, altered calcitic volcanic rocks, and altered tuffaceous volcanic rocks.

Figure 13. Classification of the Rackla pluton as reduced/ilmenite-series, in comparison with other nearby intrusive suites from Hart et al. (2004). Dividing line between ilmenite and magnetite series based on values from Ishihara (2000).

3.3 Microthermometry

Microthermometric analyses were carried out on primary, pseudosecondary and secondary FIAs in Dol-1, Dol-2b, Qz-1, Sp, and from Rackla pluton magmatic quartz and crosscutting veins, thus spanning most of the paragenetic sequence. None of the mineral phases had clear discernable growth zones (excluding sphalerite) and therefore criteria for fluid inclusions of primary origin were based on host minerals that had a consistent CL signature and by fluid inclusions that had a random orientation throughout the wafer. Inclusions that appeared necked and had very irregular shapes were not analyzed due to potential post-entrapment modifications. Below, FIAs are described with respect to their paragenesis with supporting images in Figure 14 and 15, and microthermometric data are summarized in Table 2 and Figure 16. All microthermometric data are presented in Appendix D.

Rackla Pluton

The primary inclusions in single quartz crystals were very rare and mostly occurred as individual inclusions or small clusters and usually were smaller than 15 μ m.

A primary FIA consisting of Lw+Lc occurred with phase proportions of Lw = 0.9 and Lc = 0.1. Carbonic vapour bubbles (Vc) nucleated within the Lc phase followed by the formation of solid CO₂ during cooling. During the heating run, melting temperatures of the Lc phase occurred at -56.6 °C and carbonic liquid and vapour homogenization occurred at 28 °C into the Lc phase. The average aqueous ice melting temperatures in this FIA is -28 °C and final ice melting temperatures are -11 °C. Calculated salinites from ice melting had an average of 15 wt. % NaCl eq., however, due to the presence of CO₂, clathrate should have formed but was not observed, thus, reported salinities are overestimated. Some inclusions had total homogenization temperatures of 341 °C, but some inclusions decrepitated at higher temperatures (370 °C).

One inclusion consisting of Lw+Lc+Sh occurred with a phase proportion of Lw = 0.85, Lc = 0.1 and Sh = 0.05, and appears to be of primary origin using the criteria listed above (Fig. 14a). Upon cooling, a Vc phase nucleated within the Lc phase. This Vc homogenized into the Lc phase (via vapour disappearance) at 26 °C. After freezing of the liquid CO₂ at approximately -100 °C, subsequent melting of the Lc phase occurred at -56.7 °C. The average aqueous ice melting temperatures in this FIA is -22 °C. Decrepitation of the inclusion (Td) occurred at a temperature of 350 °C, at which time the halite had not dissolved. Therefore, based on a minimum halite melting temperatures of 350 °C, the calculated salinity is >40 wt. % NaCl eq.

Apparently primary aqueous (Lw+Vw) FIAs also occurred in quartz and had average phase proportions of Lw = 0.95 and Vw = 0.05. After freezing of the aqueous phase, the first ice melting temperatures have an average temperature of -22 °C and final ice melting occurred at -8 °C which corresponds to a calculated salinity of 12 wt. % NaCl eq. The homogenization temperatures have an average value of 227 °C (Table 2).

Halite saturated primary aqueous FIAs (Lw+Vw+Sh) rarely occurred and have average phase proportions of Lw = 0.85, Vw = 0.1 and Sh = 0.05. First ice melting

Figure 14. Fluid inclusions hosted in the Rackla pluton, Dol-1, Dol-2b and Qz-1 including (A) primary carbonic-aqueous brine inclusions in magmatic quartz and water and water vapour inclusions in secondary trails, (B) primary water and water vapour inclusions in intrusion-hosted calcite veins, (C) abundant primary carbonic-aqueous liquid inclusions in dolomite, (D) carbonic-aqueous brines with halite and carbonic multisolid brine inclusions in dolomite, (E) primary aqueous carbonic inclusions in dolomite, and (F) co-existing primary carbonic-aqueous and aqueous-carbonic brine inclusions in quartz.

occurred at -33 °C. Halite dissolution occurred at 152 °C before total homogenization of the inclusions at 284 °C. Calculated salinity based on halite dissolution temperatures is approximately 29 wt. % NaCl eq.

Secondary trails of Lw+Vw inclusions were common; these crosscut the quartz grains and have phase proportions of Lw = 0.95 and Vw = 0.05. First ice melting temperatures have an average of -30 °C and final ice melting temperatures have

Figure 15. Fluid inclusion images for Qz-1 and Stage 4 sphalerite including (A) abundant primary carbonicaqueous fluid inclusions in quartz, (B) negative crystal shape of primary aqueous-carbonic brine in quartz, (C) multisolid carbonic-aqueous brine possibly containing halite and an unknown solid in quartz, (D) secondary trail of water and water vapour in quartz, (E) sphalerite and Cal-3 in a vein, dark areas in sphalerite are opaque inclusions, and (F) water and water vapour inclusions in secondary trails in sphalerite.

an average of -11 °C that correspond to a calculated salinity of 15 wt. % NaCl eq. Total homogenization temperatures have an average of 259 °C.

Late calcite veining

Late calcite veins crosscut the Rackla pluton (Fig. 7bi) and contain rare primary fluid Lw+Vw inclusions (Fig. 14b). These inclusions have phase proportions of Lw = 0.95 and they did not appear to be necked or in trails. First ice melting temperatures have an average of -28 °C. Final ice melting temperatures average -12 °C that

aque	sous ic	e melting	$T_{M} = f_{1}$	nal melting of	aqueous	ice, T _N	halite =	dissolu	tion te	mperatu	inzau ire of]	bu turu halite, 7	D = d	ecrepit	tion tempera	ture, ¹	$\Gamma_{\rm H} = to$	tal hoi	nogen	zation
nun.	peratui usion t ber of	ie, LVS = ypes, hov listed me	 volumet wever, soi asured ir 	ne proportions me individual i nelusions, see a	s or riqui inclusior ippendix	id, vapo ns do ne t for a f	ur and so of have al all data ti	ll micro able.	therm	= intrus ometric	ion. 1 data r	otal nui ecorded	land	(n) or ir thus, da	clusions mea ta in this tabl	isurea e do n	are lis lot cori	ted roi	d to the	and e exact
n=	FIA	Phase	Stage	Type	P PS S	NIM	TMCO2 MAX	AVG	NIW	ThCO2 MAX	AC	TFM	Тм	TMhalite	wt % NaCl	TD	TH	Ц	>	s
∞	33	RP-Qz	INT	Lw+Vw+Sh	L.							33		152	29		284	0.85	0.10	0.05
11	35	RP-Qz	INT	Lw+Vw	Р						<u>э</u> г	22	~		12		227	0.95	0.05	0.00
-	34	RP-Qz	INT	Lw+Lc+Sh	Ρ			-56.7			- 9	22		>350	>40	350		0.85	0.10	0.05
Ξ	36	RP-Qz	INT	Lw+Lc	Р			-56.6			8	28	Ξ-		15	370	341	0.90	0.10	0.00
7	33	RP-Qz	INT	Lw+Vw	s							30	-11		15		259	0.95	0.05	0.00
5	32	RP-Cal	INT	Lw+Vw	Р						.1	28	-12		16		290	0.95	0.05	0.00
10	-	Dol-1	Stage 1	Lw+Lc	Ь	-56.6	-56.2	-56.4	28	29 2	60	39				365	406	0.56	0.44	0.00
-	1	Dol-1	Stage 1	Lw+Lc+Sh	Ь			-56.3			8			380	45			0.50	0.49	0.01
9	19	Dol-1	Stage 1	Lc+Lw	Р	-56.8	-56.6	-56.7	15	22	1					266		0.32	0.68	0.00
7	19	Dol-1	Stage 1	Lw+Lc	Р	-56.6	-56.3	-56.5	20	28	4	35	-23		24			0.55	0.45	0.00
6	19	Dol-1	Stage 1	Lw+Lc+Sh	Р	-65.0	-56.4	-57.9	24	28		35	-23		24			0.66	0.29	0.05
ŝ	19	Dol-1	Stage 1	Lw+Lc+Sh+So	Р	-65.0	-56.4	-59.8	22	30 2	9	30	8-		12			0.78	0.17	0.05
Э	20	Dol-1	Stage 1	Lw+Lc	Ь			-57.0										0.70	0.30	0.00
13	20	Dol-1	Stage 1	Lw+Lc+Sh	Ь	-60.0	-57.0	-59.0			.1	35	-22		24			0.67	0.28	0.05
-	21	Dol-1	Stage 1	Lw+Lc	Р											290		0.70	0.30	0.00
9	21	Dol-1	Stage 1	Lw+Lc+Sh	Р							33	-22	171	31	340		0.63	0.28	0.08
-	22	Dol-1	Stage 1	Lc+Lw	Ь			-56.4			33							0.20	0.80	0.00
ŝ	22	Dol-1	Stage 1	Lw+Lc	Р													0.90	0.10	0.00
9	22	Dol-1	Stage 1	Lw+Lc+Sh	Ь			-56.4			20	36		226	33			0.66	0.25	0.06
7	22	Dol-1	Stage 1	Lw+Lc+Sh+So	Р			-56.4			30	35		250	35			0.65	0.30	0.05
6	23	Dol-1	Stage 1	Lw+Lc	Р			-56.4	28	30	6	38	-15		9			0.73	0.27	0.05
5	23	Dol-1	Stage 1	Lw+Lc+Sh	Р			-56.4			67							0.69	0.23	0.09
9	30	Dol-1	Stage 1	Lc+Lw	Р	-57.4	-56.6	-57.2	10	15 1	13					280		0.20	0.80	0.00
Ξ	31	Dol-1	Stage 1	Lc+Lw	Р	-56.7	-56.6	-56.6	17	22	0					328		0.20	0.80	0.00
4	31	Dol-1	Stage 1	Lw+Lc	Р	-56.7	-56.6	-56.6	18	19	90							0.70	0.30	0.00
7	31	Dol-1	Stage 1	Lw+Lc+Sh+So	Р	-56.6								213	33			0.85	0.10	0.05
6	24	Dol-2b	Stage-2b	Lc+Lw	Р	-56.9	-56.5	-56.6	4	17 1	0					285		0.11	0.89	0.00
-	24	Dol-2b	Stage-2b	Lw+Lc+Sh	Р			-56.6				35	-15		19	280		0.69	0.30	0.01
4	25	Dol-2b	Stage-2b	Lc+Lw	Ь	-56.6	-56.4	-56.6	10	26]	<u>.</u>	23	Ξ-		14	256		0.26	0.74	0.00
ŝ	25	Dol-2b	Stage-2b	Lw+Lc+Sh	Р			-56.6	23	29	55	35		283	37			0.75	0.20	0.05
Ξ	26	Dol-2b	Stage-2b	Lc+Lw	Ь	-57.0	-56.6	-56.6	3	16 1	12					241		0.20	0.80	0.00
4	26	Dol-2b	Stage-2b	Lw+Lc	Ь			-56.6	12	27	2	35	-15		19			0.70	0.30	0.00
5	26	Dol-2b	Stage-2b	Lw+Lc+Sh	Ь			-56.6	22	27	4	35	-20	212	30	290		0.60	0.30	0.10

Table 2. Summary of microthermometric data. Shaded rows correspond to FIA's and all measurements are recorded in °C. Abbreviations are P = p primary, PS = pseudosecondary. S = secondary. T_NCO, = final ice melting of CO., T_nCO, = homogenization temperature of the CO, phase. T_{evt} = temperature of first

1	- 1							1																																	L 1
s		0.00	0.05	0.00	0.00	0.01	0.01	0.00	0.00	0.05	0.00	0.10	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.02	0.00	0.10	0.12	0.09	0.00	0.05	0.00	0.05	0.00	0.09	0.06		0.00	0.15	0.20	0.00	0.00	0.05	0.00	0.00	0.00
>		0.05	0.45	0.80	0.20	0.16	0.26	0.80	0.80	0.30	0.80	0.20	0.80	0.80	0.80	0.22	0.05	0.80	0.80	0.18	0.49	0.10	0.18	0.23	0.76	0.30	0.30	0.12	0.74	0.15	0.16		0.80	0.23	0.05	0.70	0.50	0.24	0.98	0.98	0.98
Г		0.95	0.50	0.20	0.80	0.83	0.73	0.20	0.20	0.65	0.20	0.70	0.20	0.20	0.20	0.78	0.94	0.19	0.20	0.80	0.51	0.80	0.70	0.69	0.24	0.65	0.70	0.83	0.26	0.76	0.78		0.20	0.62	0.75	0.30	0.50	0.71	0.02	0.02	0.02
$\mathbf{T}_{\mathbf{H}}$		268			350	278	410															200	277							250									151	153	150
TD			230				400	300	300	360	343	356									300		300	300								209				350	350	359			
wt % NaCl			30							13		30	16							90		32	11	63						4	33	32			12			34	1		2
halite										4			-																						G					-	4,
M TM			163							355		154	~							165		21(22(20(1 24	239	202						237			
Ţ													-12					ç					-15	-2(-24	-21	L-			28			-15	4	-	-3
TFM		-35	-10	-	-23	-26			-25	-30	-30	-25	-20			-32	-26	-30		-35	-20	-35	-37	-36				-32		-35	-30	-25		-36	24			-32		-13	-10
	AVG		3	25	24	22	19	12	15	28	3	7	17	10	7	14	17	×	÷	6	53				20	27	28	22	22	24	25		12	19		15	17	18			
CO2	XY				10		_		_				_	10		_				0	2				_		6	8	4	S						_		0			
TH	Σ				2		20	4	19		9		20		5	50				Ξ	à				2		2	2	2	2			=	51		5		2			
Th	MIN				23 25		17 20	12 14	10 19		2 6		13 20	7 15	6 7	9 20				3 15	8 2′				17 24		27 2	16 2	20 2	23 23			10 13	17 21		12 2(11 2			
TH	AVG MIN M		-60.0	-57.7	-57.0 23 25	-57.4	-56.8 17 20	-57.1 12 14	-56.8 10 19	-56.4	-61.3 2 6	-62.3	-57.6 13 20	-56.8 7 15	-57.2 6 7	-57.0 9 20	-58.2	-57.6	-61.2	-58.5 3 12	-56.8 8 2'				-56.7 17 24	-56.6	-56.7 27 2	-56.4 16 2	-57.2 20 2	-57.0 23 2	-56.6		10 13	-56.4 17 21		-57.3 12 20	-56.6	-56.6 11 2			
TMCO2 TH	MAX AVG MIN M		-60.0	-57.7	-57.0 23 25	-56.8 -57.4	-56.8 17 20	-57.1 12 14	-56.8 -56.8 10 19	-56.4	-61.1 -61.3 2 6	-61.5 -62.3	-57.4 -57.6 13 20	-56.6 -56.8 7 15	-57.2 6 7	-57.0 9 20	-58.2	-57.6	-61.2	-56.8 -58.5 3 12	-56.6 -56.8 8 2'				-56.2 -56.7 17 24	-56.6	-56.6 -56.7 27 2	-56.2 -56.4 16 2	-56.7 -57.2 20 2	-56.6 -57.0 23 2	-56.6		10 13	-56.4 17 21		-56.9 -57.3 12 20	-56.6	-56.4 -56.6 11 2			
TMCO2 TH	<u>4IN MAX AVG MIN M</u>		-60.0	-57.7	-57.0 23 25	57.8 -56.8 -57.4	-56.8 17 20	-57.1 12 14	57.1 -56.8 - 56.8 10 19	-56.4	51.6 -61.1 - 61.3 2 6	53.0 -61.5 - 62.3	57.6 -57.4 -57.6 13 20	57.2 -56.6 -56.8 7 15	-57.2 6 7	-57.0 9 20	-58.2	-57.6	-61.2	58.0 -56.8 -58.5 3 12	57.0 -56.6 -56.8 8 2'				56.8 -56.2 -56.7 17 24	-56.6	56.8 -56.6 -56.7 27 2	56.8 -56.2 -56.4 16 2	57.4 -56.7 -57.2 20 2	57.4 -56.6 -57.0 23 2	-56.6		10 13	-56.4 17 21		57.7 -56.9 -57.3 12 20	-56.6	57.1 -56.4 -56.6 11 2			
S S TMCO2 TH	MIN MAX AVG MIN M		-60.0	-57.7	-57.0 23 25	-57.8 -56.8 -57.4	-56.8 17 20	-57.1 12 14	-57.1 -56.8 -56.8 10 19	-56.4	-61.6 -61.1 -61.3 2 6	-63.0 -61.5 -62.3	-57.6 -57.4 -57.6 13 20	-57.2 -56.6 -56.8 7 15	-57.2 6 7	-57.0 9 20	-58.2	-57.6	-61.2	-68.0 -56.8 -58.5 3 12	-57.0 -56.6 -56.8 8 2'				-56.8 -56.2 -56.7 17 2 ⁴	-56.6	-56.8 -56.6 -56.7 27 2	-56.8 -56.2 -56.4 16 2	-57.4 -56.7 - 57.2 20 2	-57.4 -56.6 -57.0 23 2	-56.6		10 13	-56.4 17 21		-57.7 -56.9 -57.3 12 20	-56.6	-57.1 -56.4 -56.6 11 2			
P PS S TMCO2 TH	MIN MAX AVG MIN M	Unk	P -60.0	P -57.7	P -57.0 23 25	P -57.8 -56.8 -57.4	P -56.8 17 20	Р -57.1 12 14	P -57.1 -56.8 -56.8 10 19	P -56.4	P -61.6 -61.1 -61.3 2 6	P -63.0 -61.5 -62.3	PS -57.6 -57.4 -57.6 13 20	P -57.2 -56.6 -56.8 7 15	P -57.2 6 7	P -57.0 9 20	P -58.2	P -57.6	PS -61.2	PS -68.0 -56.8 -58.5 3 12	P -57.0 -56.6 -56.8 8 2'	Ρ	Ρ	Ρ	P -56.8 -56.2 -56.7 17 24	P -56.6	P -56.8 -56.6 -56.7 27 2	P -56.8 -56.2 -56.4 16 2	P -57.4 -56.7 -57.2 20 2	P -57.4 -56.6 -57.0 23 2	P -56.6	Unk	PS 10 13	P -56.4 17 21	Unk	P -57.7 -56.9 -57.3 12 20	P -56.6	P -57.1 -56.4 -56.6 11 2	S	S	S
Type PPS S TMCO2 TH	MIN MAX AVG MIN M	Lw+Vw Unk	Lw+Lc+Sh P -60.0	Lc+Lw P -57.7	Lw+Lc P -57.0 23 25	Lw+Lc+Sh P -57.8 -56.8 -57.4	Lw+Lc+Sh+So P -56.8 17 20	Lc+Lw P -57.1 12 14	Lc+Lw P -57.1 -56.8 -56.8 10 19	Lw+Lc+Sh+So P -56.4	Lc+Lw P -61.6 -61.1 -61.3 2 6	Lw+Lc+Sh P -63.0 -61.5 -62.3	Lc+Lw PS -57.6 -57.4 -57.6 13 20	Lc+Lw P -57.2 -56.6 -56.8 7 15	Lc+Lw P -57.2 6 7	Lw+Lc P -57.0 9 20	Lw+Lc+Sh P -58.2	Lw+Lc+Sh+So P -57.6	Lc+Lw PS -61.2	Lw+Lc+Sh PS -68.0 -56.8 -58.5 3 12	Lc+Lw P -57.0 -56.6 -56.8 8 2'	Lw+Lc+nS P	Lw+Lc+Sh P	Lw+Lc+Sh+So P	Lc+Lw P -56.8 -56.2 -56.7 17 2 ⁴	Lc+Lw+Sh P -56.6	Lw+Lc P -56.8 -56.6 -56.7 27 2	Lw+Lc+Sh P -56.8 -56.2 -56.4 16 2	Lc+Lw P -57.4 -56.7 -57.2 20 2	Lw+Lc+Sh P -57.4 -56.6 -57.0 23 2	Lw+Lc+Sh+So P -56.6	Lw+Vw+nS Unk	Lc+Lw PS 10 13	Lw+Lc+Sh P -56.4 17 21	Lw+Vw+nS Unk	Lc+Lw P -57.7 -56.9 -57.3 12 20	Lw+Lc P -56.6	Lw+Lc+Sh+So P -57.1 -56.4 -56.6 11 2	Lw+Vw S	Lw+Vw S	Lw+Vw S
Stage Type PPS S TMCO2 TH	MIN MAX AVG MIN M	Stage 3b Lw+Vw Unk	Stage 3b Lw+Lc+Sh P -60.0	Stage 3b Lc+Lw P -57.7	Stage 3b Lw+Lc P -57.0 23 2:	Stage 3b Lw+Lc+Sh P -57.8 -56.8 -57.4	Stage 3b Lw+Lc+Sh+So P -56.8 17 20	Stage 3b Lc+Lw P -57.1 12 14	Stage 3b Lc+Lw P -57.1 -56.8 -56.8 10 19	Stage 3b Lw+Lc+Sh+So P -56.4	Stage 3b Lc+Lw P -61.6 -61.1 -61.3 2 6	Stage 3b Lw+Lc+Sh P -63.0 -61.5 -62.3	Stage 3b Lc+Lw PS -57.6 -57.4 -57.6 13 20	Stage 3b Lc+Lw P -57.2 -56.6 -56.8 7 15	Stage 3b Lc+Lw P -57.2 6 7	Stage 3b Lw+Lc P -57.0 9 20	Stage 3b Lw+Lc+Sh P -58.2	Stage 3b Lw+Lc+Sh+So P -57.6	Stage 3b Lc+Lw PS -61.2	Stage 3b Lw+Lc+Sh PS -68.0 -56.8 -58.5 3 12	Stage 3b Lc+Lw P -57.0 -56.6 -56.8 8 2'	Stage 3b Lw+Lc+nS P	Stage 3b Lw+Lc+Sh P	Stage 3b Lw+Lc+Sh+So P	Stage 3b Lc+Lw P -56.8 -56.2 -56.7 17 2 ⁻	Stage 3b Lc+Lw+Sh P -56.6	Stage 3b Lw+Lc P -56.8 -56.6 -56.7 27 2	Stage 3b Lw+Lc+Sh P -56.8 -56.2 -56.4 16 2	Stage 3b Lc+Lw P -57.4 -56.7 -57.2 20 2	Stage 3b Lw+Lc+Sh P -57.4 -56.6 -57.0 23 2	Stage 3b Lw+Lc+Sh+So P -56.6	Stage 3b Lw+Vw+nS Unk	Stage 3b Lc+Lw PS 10 13	Stage 3b Lw+Lc+Sh P -56.4 17 21	Stage 3b Lw+Vw+nS Unk	Stage 3b Lc+Lw P -57.7 -56.9 -57.3 12 20	Stage 3b Lw+Lc P -56.6	Stage 3b Lw+Lc+Sh+So P -57.1 -56.4 -56.6 11 2	Stage 4a Lw+Vw S	Stage 4a Lw+Vw S	Stage 4a Lw+Vw S
Phase Stage Type P PS S TMCO2 TH	MIN MAX AVG MIN M	Qz-1 Stage 3b Lw+Vw Unk	Qz-1 Stage 3b Lw+Lc+Sh P -60.0	Qz-1 Stage 3b Lc+Lw P -57.7	Qz-1 Stage 3b Lw+Lc P -57.0 23 2:	Qz-1 Stage 3b Lw+Lc+Sh P -57.8 -56.8 -57.4	Qz-1 Stage 3b Lw+Lc+Sh+So P -56.8 17 20	Qz-1 Stage 3b Lc+Lw P -57.1 12 14	Qz-1 Stage 3b Lc+Lw P -57.1 -56.8 -56.8 10 19	Qz-1 Stage 3b Lw+Lc+Sh+So P -56.4	Qz-1 Stage 3b Lc+Lw P -61.6 -61.1 -61.3 2 6	Qz-1 Stage 3b Lw+Lc+Sh P -63.0 -61.5 -62.3	Qz-1 Stage 3b Lc+Lw PS -57.6 -57.4 -57.6 13 20	Qz-1 Stage 3b Lc+Lw P -57.2 -56.6 -56.8 7 1:	Qz-1 Stage 3b Lc+Lw P -57.2 6 7	Qz-1 Stage 3b Lw+Lc P -57.0 9 20	Qz-1 Stage 3b Lw+Lc+Sh P -58.2	Qz-1 Stage 3b Lw+Lc+Sh+So P -57.6	Qz-1 Stage 3b Lc+Lw PS -61.2	Qz-1 Stage 3b Lw+Lc+Sh PS -68.0 -56.8 -58.5 3 12	Qz-1 Stage 3b Lc+Lw P -57.0 -56.6 -56.8 8 2'	Qz-1 Stage 3b Lw+Lc+nS P	Qz-1 Stage 3b Lw+Lc+Sh P	Qz-1 Stage 3b Lw+Lc+Sh+So P	Qz-1 Stage 3b Lc+Lw P -56.8 -56.2 -56.7 17 24	Qz-1 Stage 3b Lc+Lw+Sh P -56.6	Qz-1 Stage 3b Lw+Lc P -56.8 -56.6 -56.7 27 2	Qz-1 Stage 3b Lw+Lc+Sh P -56.8 -56.2 -56.4 16 2	Qz-1 Stage 3b Lc+Lw P -57.4 -56.7 -57.2 20 2	Qz-1 Stage 3b Lw+Lc+Sh P -57.4 -56.6 -57.0 23 2	Qz-1 Stage 3b Lw+Lc+Sh+So P -56.6	Qz-1 Stage 3b Lw+Vw+nS Unk	Qz-1 Stage 3b Lc+Lw PS 10 13	Qz-1 Stage 3b Lw+Lc+Sh P -56.4 17 21	Qz-1 Stage 3b Lw+Vw+nS Unk	Qz-1 Stage 3b Lc+Lw P -57.7 -56.9 -57.3 12 20	Qz-1 Stage 3b Lw+Lc P -56.6	Qz-1 Stage 3b Lw+Lc+Sh+So P -57.1 -56.4 -56.6 11 2	Sp Stage 4a Lw+Vw S	Sp Stage 4a Lw+Vw S	Sp Stage 4a Lw+Vw S
FIA Phase Stage Type PPS S TwCO2 TH	MIN MAX AVG MIN M	2 Qz-1 Stage 3b Lw+Vw Unk	3 Qz-1 Stage 3b Lw+Lc+Sh P -60.0	4 Qz-1 Stage 3b Lc+Lw P -57.7	4 Qz-1 Stage 3b Lw+Lc P -57.0 23 2'	4 Qz-1 Stage 3b Lw+Lc+Sh P -57.8 -56.8 -57.4	4 Qz-1 Stage 3b Lw+Lc+Sh+So P -56.8 17 20	5 Qz-1 Stage 3b Lc+Lw P -57.1 12 14	6 Qz-1 Stage 3b Lc+Lw P -57.1 -56.8 -56.8 10 19	6 Qz-1 Stage 3b Lw+Lc+Sh+So P -56.4	7 Qz-1 Stage 3b Lc+Lw P -61.6 -61.1 -61.3 2 6	7 Qz-1 Stage 3b Lw+Lc+Sh P -63.0 -61.5 -62.3	8 Qz-1 Stage 3b Lc+Lw PS -57.6 -57.4 -57.6 13 20	9 Qz-1 Stage 3b Lc+Lw P -57.2 -56.6 -56.8 7 1:	10 Qz-1 Stage 3b Lc+Lw P -57.2 6 7	10 Qz-1 Stage 3b Lw+Lc P -57.0 9 20	10 Qz-1 Stage 3b Lw+Lc+Sh P -58.2	10 Qz-1 Stage 3b Lw+Lc+Sh+So P -57.6	11 Qz-1 Stage 3b Lc+Lw PS -61.2	11 Qz-1 Stage 3b Lw+Lc+Sh PS -68.0 -56.8 -58.5 3 12	12 Qz-1 Stage 3b Lc+Lw P -57.0 -56.6 -56.8 8 2'	12 Qz-1 Stage 3b Lw+Lc+nS P	12 Qz-1 Stage 3b Lw+Lc+Sh P	12 Qz-1 Stage 3b Lw+Lc+Sh+So P	13 Qz-1 Stage 3b Lc+Lw P -56.8 -56.2 -56.7 17 2 ⁻	13 Qz-1 Stage 3b Lc+Lw+Sh P -56.6	13 Qz-1 Stage 3b Lw+Lc P -56.8 -56.6 -56.7 27 2	13 Qz-1 Stage 3b Lw+Lc+Sh P -56.8 -56.2 -56.4 16 2	14 Qz-1 Stage 3b Lc+Lw P -57.4 -56.7 -57.2 20 2	14 Qz-1 Stage 3b Lw+Lc+Sh P -57.4 -56.6 -57.0 23 2	14 Qz-1 Stage 3b Lw+Lc+Sh+So P -56.6	15 Qz-1 Stage 3b Lw+Vw+nS Unk	16 Qz-1 Stage 3b Lc+Lw PS 10 13	16 Qz-1 Stage 3b Lw+Lc+Sh P -56.4 17 21	17 Qz-1 Stage 3b Lw+Vw+nS Unk	18 Qz-1 Stage 3b Lc+Lw P -57.7 -56.9 -57.3 12 20	18 Qz-1 Stage 3b Lw+Lc P -56.6	18 Qz-1 Stage 3b Lw+Lc+Sh+So P -57.1 -56.4 -56.6 11 2	27 Sp Stage 4a Lw+Vw S	28 Sp Stage 4a Lw+Vw S	29 Sp Stage 4a Lw+Vw S

Table 2. Cont.

36

correspond to calculated salinities that have an average value of 16 wt. % NaCl eq. Total homogenization values have an average of 290 °C.

Tiger Zone

Dol-1

Dolomite 1 contains abundant fluid inclusions. Many of the inclusions appeared to be of primary origin. Most inclusions, however, were very small (<10 μ m) and due to the opaque nature of the dolomite it was difficult to observe phase transitions.

The most abundant inclusion type in Dol-1 were aqueous carbonic inclusions (Lc+Lw) and had phase proportions of Lc = 0.8 and Lw = 0.2 (Fig. 14c). These inclusions had dark rims on their perimeter making the thin Lw portion very difficult to see and thus, microthermometric data from these inclusions are rare. Upon cooling, these inclusions nucleated a Vc phase, which homogenized into the Lc phase between temperatures of 13 and 23 °C. During the heating run, melting temperatures of CO₂ were mostly within error of -56.6 °C with some values of -57.2 °C, which may indicate the presence of another phase such as CH₄ or N₂ (Roedder, 1984). Aqueous ice melting was not observable and thus, no ice melting temperatures were recorded. Decrepitation temperatures have an average of 300 °C.

A less abundant, primary FIA was observed consisting of Lw+Lc+Sh+So inclusions with Lc+Lw inclusions. These halite-bearing inclusions had degrees of fill of Lw = 0.8, Lc = 0.15, Sh = 0.05 and So = trace (Fig. 14d). The So occurred as a very small black speck attached to halite cubes, but was not always visible in all inclusions; it may have been present in most inclusions but hidden by the opaque rims of inclusions. Upon cooling, a Vc phase nucleated in the Lc phase followed by the formation of solid CO₂ at low temperatures. In the heating runs, melting temperatures for the solid CO₂ range from -65.0 to -56.6 °C and the Vc phase homogenized to the Lc phase at 26 to 30 °C. First melting temperature of aqueous ice had a range of -36 to -30 °C. Halite dissolution occurred at a range of temperatures of 171 to 380 °C corresponding with calculated salinities of 31 to 45 wt. % NaCl eq. Total homogenization temperatures were not recorded due to fluid inclusion decrepitation however, decrepitation temperatures have an average of 317 °C.

A rare primary inclusion population occurred as a phase assemblage of Lw+Lc

Figure 16. Fluid inclusion summary data including (a) decrepitation and homogenization temperatures, and (b) salinity data reported as wt. % NaCl eq.

(Fig. 14e). These inclusions occurred adjacent to the Lc+Lw and Lw+Lc+Sh+So and appeared to be part of the same FIA. Phase proportions for these inclusions are Lw = 0.7 and Lc = 0.3. Upon cooling, a Vc phase nucleated in the Lc phase followed by the formation of solid CO₂ at low temperatures. In the heating runs, melting temperatures for the solid CO₂ range from -56.7 to -56.6 °C and the Vc phase homogenized to the Lc phase at 24 to 29 °C. The temperature of first aqueous ice melting had a range of -39 to -35 °C. These inclusions have calculated salinity values of 9 to 24 wt. % NaCl eq. based on final ice melting temperatures of -23 and -15 °C. Because no clathrate was observed, no clathrate melting temperatures have an average of 406 °C and decrepitation temperatures have an average of 406 °C and decrepitation temperatures had a range between 290 and 365 °C.

Rare Lw+Lc+nS inclusions occurred and contained solid halite as well as an acicular mineral with a green hue in PL (anhydrite?) (Fig. 14d). These inclusions were observed adjacent to FIAs of Lc+Lw, Lw+Lc+Sh+So, and Lw+Lc yet it is unclear if these inclusions are primary or altered by post-entrapment processes, and thus were not measured by microthermometry.

Secondary trails of $<2 \mu m Lw+Vw$ inclusions crosscut Dol-1 primary FIAs, however the small size of the inclusions within the trails did not allow for microthermometric measurements.

Dol-2b

Dol-2b had fewer inclusions than Dol-1, but the host minerals were less opaque allowing for easier data collection. The FIAs in Dol-2b are very similar to FIAs in Dol-1in that they contain primary Lc+Lw, Lw+Lc+Sh+So and lesser Lw+Lc fluid inclusions, all of which have similar microthermometric data to Dol-1.

The most common fluid inclusion type was the Lc+Lw that had phase proportions of Lc = 0.8 and Lw = 0.2 (Fig. 14c). These inclusions had dark rims on their perimeter making the Lw portion difficult to see and thus, microthermometric data are rare. Carbonic vapour bubbles nucleated in the Lc phase during cooling, and during subsequent heating homogenized by vapour disappearance at 12 to 18 °C. Melting temperatures of frozen Lc were all within error of -56.6 °C, indicative of a pure CO₂ phase. First ice melting occurred at -23 °C and final ice melting occurred at -11 °C which was calculated to correspond with 14 wt. % NaCl eq. Due to the lack of any observable clathrate, the calculated salinities from aqueous ice melting are overestimates. Decrepitation temperatures have an average of 270 °C.

Primary Lw+Lc+Sh+So fluid inclusions were less common yet rarely they occurred in same FIA with Lc+Lw inclusions. These inclusions had degrees of fill of Lw = 0.69, Lc = 0.3, Sh = 0.01 and So = trace (Fig. 14d). The So occurred as a very small black speck attached to halite cubes, however, similar to the inclusions in Dol 1 the So was not always observed. The Lc nucleated a Vc upon cooling, which homogenized during heating into the Lc phase at 24 to 27 °C by vapour disappearance. Melting temperatures for the Lc phase have an average of -56.6 °C. First aqueous ice melting temperatures have an average of -35 °C and halite dissolution occurred at temperatures of 212 to 283 °C, thus, the calculated salinities for these inclusions range from 30 to 37 wt. % NaCl eq. Decrepitation temperatures have an average of 288 °C.

A rare primary inclusion population occurred as a phase assemblage of Lw+Lc with phase proportions of Lw = 0.7 and Lc = 0.3. These inclusions are found with Lc+Lw and Lw+Lc+Sh+So inclusions and are thus, considered to part of the same FIA. Upon cooling, a Vc nucleated in the Lc phase followed by the formation of solid CO₂ at low temperatures. In the heating runs, melting temperatures for the solid CO₂ have a range from -57.0 to -56.4 °C and the Vc phase homogenized to the Lc phase at 21 °C. First melting of aqueous ice had an average of -35 °C and final ice melting occurred at -15 °C and thus, have a maximum salinity of 19 wt. % NaCl eq. Total homogenization and decrepitation temperatures were not recorded.

Secondary trails of $<2 \mu m Lw+Vw$ inclusions crosscut Dol-2b primary FIAs, however their small size did not allow for microthermometric measurements.

Qz-1

Fluid inclusion assemblages in Qz-1 are comparable to the FIAs hosted in Dol-1 and Dol-2b and have similar microthermometric data (Fig. 14f).

The most dominant primary inclusion type was the Lc+Lw assemblage (Fig. 15a) with phase proportions of Lc = 0.8 and Lw = 0.2. A single fluid inclusion contained a small halite cube, Sh = 0.05, however only carbonic phase measurements were obtained. Upon cooling, nucleation of a Vc occurred within the Lc phase, which upon heating homogenized at -1 to 25 °C into the Lc phase. Melting temperatures of solid Lc range from -61.3 to -56.6 °C. First aqueous ice melting temperatures had a range between -30 and -11 °C, and final ice melting temperatures, although rare, have an average of -12 °C, for a calculated salinity of 16 wt. % NaCl eq. Decrepitation temperatures have a range from 300 to 350 °C. No total homogenization temperatures were recorded.

Primary Lw+Lc+Sh+So inclusions were found with Lc+Lw inclusions in the same FIA (Fig. 14f). These inclusions have phase proportions of Lw = 0.8, Lc = 0.15, Sh = 0.05 and So = trace. Most of these inclusions resemble the inclusion in Figure 15b, having negative crystal shapes and clear optics. A small black speck

(So) attached to the halite cubes was not always visible. During cooling, a Vc nucleated in the Lc phase which, upon heating homogenized into the Lc phase at 2 to 28 °C. Melting temperatures of the solid carbon phase had a range of -62.3 to -56.4 °C. First ice melting temperatures had a range from -37 to -10 °C however, the average temperature was -30 °C. Halite melting temperatures had a range of 154 to 355 °C corresponding with salinities that range from 29 to 43 wt. % NaCl eq. Decrepitation of inclusions occurred during heating runs and range from 230 to 400 °C and total homogenization temperatures of a small number of inclusions that did not decrepitate range from 250 to 410 °C.

Primary Lw+Lc inclusions are very rare and have phase proportions of Lw = 0.7 and Lc = 0.3. When they are observed, they occur with Lc+Lw and Lw+Lc+Sh+So inclusions and are considered to be part of the same FIA. Cooling results in Vc nucleation in the Lc phase which upon heating homogenizes at 14 to 28 °C by vapour disappearance. Melting temperatures of solid Lc range between -57.0 and -56.6 °C. First aqueous ice melting temperatures had a range of -32 to -23 °C. Final ice melting and clathrate melting were not observable and therefore, no salinities are reported. One temperature of decrepitation was recorded at 350 °C.

Multisolid Lw+Lc+nS inclusions also occurred in the quartz (Fig. 15c) it is not known if they are primary, pseudosecondary or secondary inclusions. These inclusions had a range of 5 to 30 μ m and were often necked and had irregular shapes. Solid phases present include two cubic minerals, and occasional rhombic and acicular phases (Fig. 15c)

Secondary trails of Lw+Vw inclusions occurred crosscutting primary phases in Qz-1 (Fig. 15d). These inclusions had phase proportions of Lw = 0.95 and Vw = 0.05 but were generally too small (<10 μ m) to observe accurate phase transitions.

Sphalerite

Sphalerite of Stage 4a contains abundant growth zones and fluid inclusions, however, most of these inclusions appeared opaque (Fig. 15e). Secondary Lw+Vw fluid inclusions were present (Fig. 15f), are 10-30 μ m long and occur in planar trails cutting across growth zones. Phase proportions were Lw = 0.95 and Vw = 0.05. First ice melting temperatures have a range of -13 to -10 °C and final ice melting temperatures have a range of -4 to -1 °C corresponding to calculated salinities of 1 to 7 wt. % NaCl eq. Total homogenization temperatures had a range from 150 to 153 °C.

3.4 Carbon, Oxygen, Sulphur and Strontium Isotopes

80 carbonate, 2 quartz and 2 whole-rock samples were analyzed for δ^{13} C and/or δ^{18} O based on the paragenetic classification in Figure 5. These data are presented in Table 3 and Figure 17. Arsenopyrite, pyrite, pyrrhotite, bismuthinite and sphalerite mineral separates were analyzed for δ^{34} S. Samples from each stage of the paragenetic sequence as well as from the Rackla pluton were analyzed and the data are presented in Tables 4 and Figure 18. Total strontium concentration and strontium isotope (87 Sr/ 86 Sr) values were obtained from 25 carbonate samples and 1 whole-rock sample from the Rackla pluton. Samples were selected based on their distribution throughout the deposit as well as based on the paragenesis presented in Figure 5. All quartz and carbonate samples were analyzed for δ^{18} O and carbonates were additionally analyzed for δ^{13} C which contributed to the sample selection process for the strontium work. The data are presented in Table 5 and Figures 19 and 20.

Host-Rock

Host-rock δ^{13} C and δ^{18} O values range from -3.8 to 3.2 ‰ and 16.2 to 22.3 ‰ respectively. Tiger zone marble has δ^{13} C values of -3.8 to 2 ‰ and δ^{18} O values of 13.4 to 18.9 ‰. Calcite within the leopard unit has a range in δ^{13} C values from -3.9 to -0.6 ‰ and δ^{18} O values that range from 14.4 to 18.9 ‰.

Limestone, marble and leopard-calcite were also analyzed for ⁸⁷Sr/⁸⁶Sr and have values ranging from 0.7086 to 0.7264. The lowest ratios of 0.7086 to 0.7093 correspond to unaltered host-rock reflecting normal marine ⁸⁷Sr/⁸⁶Sr values for the Ordovician to Silurian (Veizer et al., 1999). However, most of these data values are much higher than normal marine ⁸⁷Sr/⁸⁶Sr.

Rackla Pluton

Two whole-rock samples from the Rackla pluton have δ^{18} O values of 11.2 and 11.7 ‰. A single whole-rock sample from the Rackla pluton has a measured ⁸⁷Sr/⁸⁶Sr value of 0.7618 and a calculated initial ⁸⁷Sr/⁸⁶Sr value of 0.7089 at an age of 62.9 Ma.

Sample ID	Phase	Stage	813C PDB %0	818O SMOW %0	Sample ID	Phase	Stage	ô¹³C PDB %0	$\delta^{18}O \mathrm{~smow~}\%_0$
08-07 61.45*	Limestone	Host Rock	-3.8	18.3	08-04 181.65	Lep-Cal	Host Rock	-0.6	18.9
08-07 17.95	Limestone	Host Rock	-0.8	18.6	10-87 109.60	Dol-1	Stage 1	-6.5	12.5
10-73 275.50*	Limestone	Host Rock	-2.8	19.1	09-66 55.70	Dol-1	Stage 1	-6.0	16.4
ER-13	Limestone	Host Rock	-0.6	16.2	08-07 172.74	Dol-1	Stage 1	-6.1	17.3
08-07 17.95*	Limestone	Host Rock	-1.1	16.9	08-04 136.45*	Dol-1	Stage 1	-7.3	17.4
08-07 41.50*	Limestone	Host Rock	-3.6	17.7	08-07 227.64	Dol-1	Stage 1	-7.3	17.6
08-07 18.73*	Limestone	Host Rock	-1.4	18.3	08-04 145.59	Dol-1	Stage 1	-7.5	17.7
08-07 17.95	Limestone	Host Rock	-1.2	19.1	08-07 199.67	Dol-1	Stage 1	-7.4	17.7
ER-3	Limestone	Host Rock	-0.5	20.1	08-04 136.45	Dol-1	Stage 1	-7.1	17.8
ER-1	Limestone	Host Rock	1.1	20.7	08-07 199.33*	Dol-1	Stage 1	-3.3	17.8
08-07 9.22	Limestone	Host Rock	-0.8	20.9	08-07 175.46	Dol-1	Stage 1	-7.4	18.1
ER-9*	Limestone	Host Rock	0.7	22.1	08-07 217.77	Dol-1	Stage 1	-7.2	18.3
ER-7*	Limestone	Host Rock	3.2	22.3	08-07 199.33	Dol-1	Stage 1	-0.6	18.4
Sc10-05 245.5	RP-WR	Int	n/a	11.2	08-06 45.82	Dol-1	Stage 1	-5.2	19.6
Sc10-05 221.0*	RP-WR	Int	n/a	11.6	09-51 74.52*	Dol-1	Stage 1	-6.7	17.5
Sc10-05 212.00	RP-Mb1	Int	-6.5	12.9	09-67 51.30	Dol-1	Stage 1	-7.1	17.8
Sc10-05 216.40	RP-Mb1	Int	-1.5	18.1	09-59	Dol-1	Stage 1	-6.5	17.9
Sc10-05 256.30	RP-Cal	Int	-1.7	-5.2	10-75 176.65*	Dol-1	Stage 1	-7.8	16.3
Sc10-05 260.70*	RP-Cal	Int	-4.2	17.0	10-73 219.50	Dol-1	Stage 1	-6.8	17.6
Sc10-05 268.70	RP-Cal	Int	-1.4	20.4	10-75 212.35	Dol-1	Stage 1	-7.2	17.7
10-89 103.31*	Mbl	Host Rock	-3.8	13.4	08-04 162.30	Dol-1	Stage 1	-7.0	17.8
10-76 133.80*	Mbl	Host Rock	-3.0	15.7	09-18 261.50*	Dol-1	Stage 1	-6.4	17.8
10-77 122.15	Mbl	Host Rock	-0.6	20.1	10-77 121.60*	Dol-1	Stage 1	-6.8	17.8
10-77 117.71	Mbl	Host Rock	-1.4	20.2	08-07 194.93	Dol-1	Stage 1	-7.3	18.0
08-05 159.35*	Mbl	Host Rock	2.0	22.0	08-04 122.36	Dol-1	Stage 1	-7.1	18.2
08-04 174.38	Mbl	Host Rock	1.4	22.9	09-66 67.05	Dol-1	Stage 1	-7.1	18.2
08-04 174-38	Mbl	Host Rock	1.3	23.1	10-89 257.00	Dol-1	Stage 1	-6.2	19.3
08-04 174.38*	Mbl	Host Rock	1.2	23.1	08-07 227.64	Dol-2a	Stage 2a	-8.4	15.4
08-07 238.16	Lep-Cal	Host Rock	-3.7	14.4	08-04 122.36	Dol-2a	Stage 2a	-8.1	16.2
10-73 408.00	Lep-Cal	Host Rock	-3.9	14.6	08-04 136.45	Dol-2a	Stage 2a	-7.1	17.5

Table 3. All 8¹³C and 8¹³O data for analyzed samples including sample ID, mineralogy, and paragenetic stage. Sample IDs with acterisks (*) correspond to samples that have also been analyzed for

Sample ID	Phase	Stage	$\delta^{13}C \text{ pdb } \%$	$\delta^{18}O$ smow ‰
10-75 212.35	Dol-2b	Stage 2b	-8.2	15.9
09-66 55.70	Dol-2b	Stage 2b	-6.4	17.6
10-89 104.10	Dol-2b	Stage 2b	-7.3	17.9
10-75 176.65	Dol-2b	Stage 2b	-7.0	18.0
10-73 199.90*	Dol-2b	Stage 2b	-7.0	18.3
08-07 212.89	Qz-1	Stage 3b	n/a	16.9
08-07 176.67	Qz-1	Stage 3b	n/a	17.0
08-04 136.45*	Cal-2	Stage 4b	-7.0	11.8
08-05 77.30	Cal-2	Stage 4b	-7.8	14.7
08-06 38.60*	Cal-2	Stage 4b	-6.4	15.6
08-07 199.67	Cal-2	Stage 4b	-6.6	15.7
08-04 113.96	Cal-2	Stage 4b	5.1	16.4
08-07 199.33*	Cal-2	Stage 4b	-6.6	16.4
08-07 115.20	Cal-2	Stage 4b	-4.4	14.8
08-07 199.33	Cal-2	Stage 4b	-6.7	15.5
08-07 211.04	Cal-2	Stage 4b	-6.9	15.8
08-07 119.33	Cal-2	Stage 4b	-6.7	16.0
08-07 115.20	Cal-2	Stage 4b	-7.1	16.3
09-18 250.25*	Cal-3	Stage 5	1.0	-1.3
10-89 123.30	Cal-3	Stage 5	-4.4	2.7
10-89 123.30	Cal-3	Stage 5	-2.8	3.4
10-99 475.00*	Cal-3	Stage 5	-2.7	4.0
09-18 256.74*	Cal-3	Stage 5	-2.9	16.0

Two samples of marble from the contact aureole of the intrusion, have δ^{13} C values of -6.5 to -1.5 ‰, and have δ^{18} O values of 12.9 and 18.2 ‰. The marble sample with the lower values is located immediately adjacent to the Rackla pluton while the marble with higher values is ~4 m from the intrusion.

Calcite veins crosscutting the Rackla pluton have δ^{13} C values of -4.2 to -1.4 ‰, δ^{18} O values of -5.2 to 20.4 ‰ and a 87 Sr/ 86 Sr value of 0.7293.

Arsenopyrite and sphalerite separates from the Rackla pluton have δ^{34} S values that range from 6.0 to 6.6 ‰.

Tiger Zone Mineralization

Stage 1

Dol-1 ranges in δ^{13} C values from -7.8 to -5.2 ‰, and ranges in δ^{18} O values from 12.5 to 19.3 ‰. The ⁸⁷Sr/⁸⁶Sr values of Dol-1 range from 0.7183 to 0.7244.

Apy-1 from has δ^{34} S values ranging from 7.3 to 9.2 ‰.

Figure 17. Stable isotope ¹³C/¹²C and ¹⁸O/¹⁶O data reported in delta notation in per mille relative to PDB and SMOW respectively for host-rock limestones, marbles, hydrothermal dolomite and calcite as well as data for Rackla pluton marble, calcite veins and whole-rock values. Rackla pluton whole-rock data and Tiger zone Qz-1 data do not have associated carbon isotope values and are plotted as bars. Ordovician to Silurian marine carbonates box is derived from Veizer et al. (1999), carbonatite box is from Valley (1986).

Stage 2

Dol-2a has a range of δ^{13} C and δ^{18} O values of -8.4 to -7.1 ‰ and 15.4 to 17.5 ‰ respectively. Dol-2a has a ⁸⁷Sr/⁸⁶Sr value of 0.7252, similar to values from Dol-1. The δ^{13} C values of Dol-2b range from -8.2 to -6.4 ‰ and the δ^{18} O values from 15.9 to 18.3 ‰.

Py-1 has δ^{34} S values ranging from 5.0 to 8.6 ‰ and Py-2 ranges in δ^{34} S from 1.7 to 8.4 ‰.

Stage 3

Qz-1 has δ^{18} O values ranging from 16.9 to 17.0 ‰.

Py-3 has δ^{34} S values between 3.5 and 9.6 ‰. This phase of pyrite is the only sulphide phase sampled that has a bimodal distribution of δ^{34} S values (Fig. 18).

Table4 . All δ^{34} S data for Tiger zone and Rackla pluton samples. Mineralogical abbreviations are Apy = arsenopyri
Py = pyrite, $Po = pyrrhotite$, $Bs = bismuthinite and Sp = sphalerite.$

Sample ID	Phase	Stage	$\delta^{34}S$ CDT ‰	Sample ID	Phase	Stage	$\delta^{34}S$ CDT %
09-66 67.40	Apy-1	Stage 1	7.3	08-04 116.74	Apy-1	Stage 1	9.0
08-04 162.30	Apy-1	Stage 1	7.4	08-07 174.62	Apy-1	Stage 1	9.0
09-66 67.05	Apy-1	Stage 1	7.6	08-04 113.24	Apy-1	Stage 1	9.2
09-66 69.90	Apy-1	Stage 1	7.7	10-75 176.65	Py-1	Stage 2a	5.0
08-04 168.26 b	Apy-1	Stage 1	7.8	08-05 102.80	Py-1	Stage 2a	6.5
08-07 227.64	Apy-1	Stage 1	7.9	08-07 199.67	Py-1	Stage 2a	6.6
08-04 163.64 a	Apy-1	Stage 1	7.9	09-66 5570	Py-1	Stage 2a	7.0
10-77 121.60 a	Apy-1	Stage 1	7.9	09-67 12.40	Py-1	Stage 2a	7.2
09-67 51.30	Apy-1	Stage 1	8.0	08-04 160.51	Py-1	Stage 2a	7.2
10-75 132.90	Apy-1	Stage 1	8.0	09-67 51.30	Py-1	Stage 2a	7.4
08-05 102.80	Apy-1	Stage 1	8.0	09-66 67.40	Py-1	Stage 2a	7.5
08-04 168.26 a	Apy-1	Stage 1	8.2	09-66 69.90	Py-1	Stage 2a	7.6
08-05 77.30 b	Apy-1	Stage 1	8.3	08-07 199.33	Py-1	Stage 2a	7.8
10-77 121.60 b	Apy-1	Stage 1	8.3	08-07 214.30	Py-1	Stage 2a	7.8
10-77 121.0	Apy-1	Stage 1	8.4	10-77 121.60	Py-1	Stage 2a	8.0
08-04 122.36	Apy-1	Stage 1	8.4	10-87 109.60	Py-1	Stage 2a	8.0
08-04 163.64 b	Apy-1	Stage 1	8.5	08-09 116.76	Py-1	Stage 2a	8.0
08-06 24.95	Apy-1	Stage 1	8.6	09-66 67.05	Py-1	Stage 2a	8.1
08-05 77.30 a	Apy-1	Stage 1	8.6	08-06 45.82	Py-1	Stage 2a	8.5
08-09 116.74	Apy-1	Stage 1	8.7	08-05 77.30	Py-1	Stage 2a	8.5
09-59 37.90	Apy-1	Stage 1	8.7	10-77 121.0	Py-1	Stage 2a	8.6
08-07 174.13	Apy-1	Stage 1	8.7	10-87 113.40	Py-1	Stage 2a	8.8
08-04 111.66	Apy-1	Stage 1	8.8	10-89 268.45	Py-2	Stage 2b	1.7
08-07 174.55	Apy-1	Stage 1	8.9	10-89 251.88	Py-2	Stage 2b	7.2
08-07 174.13	Apy-1	Stage 1	8.9	08-09 156.24	Py-2	Stage 2b	7.4
08-07 175.80	Apy-1	Stage 1	8.9	08-04 162.30	Py-2	Stage 2b	7.5
08-07 176.67	Apy-1	Stage 1	8.9	08-04 156.24	Py-2	Stage 2b	7.7
10-87 113.40 a	Apy-1	Stage 1	8.9	08-07 227.47	Py-2	Stage 2b	7.8
10-87 113.40 b	Apy-1	Stage 1	8.9	08-04 166.16	Py-2	Stage 2b	8.4

Pyrrhotite and bismuthinite from Stage 3c have δ^{34} S values ranging from 3.4 to 8.6 ‰.

Stage 4

Cal-2 has a similar range of carbon and oxygen isotope compositions to Dol-1, Dol-2a and Dol-2b. δ^{13} C values range from -7.8 to 5.1 ‰ and have an average value of -5.6 ‰. δ^{18} O values range from 11.8 to 16.4 ‰ and 87 Sr/ 86 Sr values from 0.7189 to 0.7282, similar to values from Dol-1.

Sphalerite from Stage 4a has δ^{34} S values ranging from -1.2 to 5.2 ‰.

Table 4. Cont.				1			
Sample ID	Phase	Stage	$\delta^{34}S$ CDT ‰	Sample ID	Phase	Stage	δ ³⁴ S CDT ‰
08-07 216.74	Py-3	Stage 3a	3.4	08-04 111.66	Py-3	Stage 3a	8.8
09-18 238.10 a	Py-3	Stage 3a	3.5	10-73 177.40	Py-3	Stage 3a	8.9
10-75 201.0	Py-3	Stage 3a	3.5	09-18 250.25	Py-3	Stage 3a	9.0
10-87 266.90	Py-3	Stage 3a	3.6	09-18 263.70	Py-3	Stage 3a	9.6
08-18 238.10 c	Py-3	Stage 3a	4.0	09-18 232.00	Bs	Stage 3c	3.4
09-18 238.10 b	Py-3	Stage 3a	4.3	10-89 247.20	Ро	Stage 3c	3.5
09-18 232.00	Py-3	Stage 3a	4.3	08-04 111.66	Bs	Stage 3c	4.5
08-06 75.68	Py-3	Stage 3a	4.9	10-87 268.10 a	Ро	Stage 3c	4.9
08-07 209.05 a	Py-3	Stage 3a	5.1	10-73 177.40	Ро	Stage 3c	4.9
08-07 216.74	Py-3	Stage 3a	5.4	09-59 30.05	Ро	Stage 3c	5.1
09-59 30.05	Py-3	Stage 3a	6.1	10-87 268.10 b	Ро	Stage 3c	5.9
08-07 209.05 b	Py-3	Stage 3a	6.6	08-06 38.60	Ро	Stage 3c	6.2
08-07 209.30	Py-3	Stage 3a	7.0	08-05 71.55	Ро	Stage 3c	8.6
09-59 110.30	Py-3	Stage 3a	7.4	09-18 256.24	Sp	Stage 4a	-1.2
09-18 257.70	Py-3	Stage 3a	7.5	09-18 257.70	Sp	Stage 4a	4.1
09-18 256.24	Py-3	Stage 3a	7.6	09-18 250.0	Sp	Stage 4a	4.6
10-75 132.90	Py-3	Stage 3a	7.9	Sc10-05 268.70 a	Sp	Stage 4a	5.1
10-89 112.85	Py-3	Stage 3a	8.3	Sc10-05 268.70 b	Sp	Stage 4a	5.2
08-05 71.55	Py-3	Stage 3a	8.4	Sc10-05 268.70 a	Ару	Int	6.0
09-18 250.00	Py-3	Stage 3a	8.4	Sc10-05 268.70 b	Ару	Int	6.3
09-51 74.52	Py-3	Stage 3a	8.5	Sc10-05 268.70 a	Ру	Int	6.4
09-18 269.55	Py-3	Stage 3a	8.6	Sc10-05 268.70 b	Ру	Int	6.6

Stage 5

Cal-3 veins have δ^{13} C values ranging from -4.4 to 1.0 ‰, and have δ^{18} O values from -1.3 to 16.0 ‰. These late calcite veins, and the calcite veins cutting the Rackla pluton, are the only samples that have δ^{18} O values lower than those of the Rackla pluton. Additionally, these calcites also have the only δ^{18} O values below 0 ‰. Cal-3 has 87 Sr/ 86 Sr values that range from 0.7170 to 0.7189.

3.5 U-Pb Age Determination

Four monazite crystals from Stage 4b were chosen for U-Pb dating. The data and images are presented in Figure 21, 22 and Table 6. These monazites were characterized using BSE imaging, WDS analysis and elemental mapping; this allowed for the selection of spots for analyses that were free of mineral inclusions and fractures, areas of post-crystallization dissolution, areas with low U and fractured areas. The monazites generally have high U concentrations between 2000 and 14000 ppm. From 48 individual spots analyzed from 4 monazite grains, 8 analyses were rejected before the age was interpreted; six were rejected due to low ²⁰⁶Pb counts (<40000 cps) and two were rejected due to abnormally high common-Pb (²⁰⁴Pb >400 cps). The six rejections due to low ²⁰⁶Pb counts were from samples 1K, 1L, 1M, 1N, 1O and 1P which had a spot size of 10 µm as opposed to the 20

Figure 18. Stable sulphur isotope data (δ^{34} S CDT) for Tiger zone sulphides including (A) all data plotted, (B) Stage 1b Apy-1, (C) Stage 2a Py-1, (D) Stage 2b Py-2, (E) Stage 3 Py-3/4, (F) Stage 3c Po and Bs, (G) Stage 4a Sp and (H) Rackla pluton Apy and Py.

Sample ID	Туре	Stage	Rb (ppm)	Sr (ppm)	87Rb/87Sr	⁸⁷ Sr/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr i	2 SE
ER-7	Lst	Host Rock		271.4		0.70858		0.000028
ER-9	Lst	Host Rock		295.4		0.70924		0.000022
08-07 18.73	Lst	Host Rock		51.28		0.71318		0.000039
08-07 17.95	Lst	Host Rock		53.14		0.71347		0.000020
08-07 61.45	Lst	Host Rock		49.11		0.71694		0.000023
10-73 275.50	Lst	Host Rock		69.68		0.72050		0.000024
08-07 41.50	Lst	Host Rock		23.86		0.72642		0.000038
Sc10-05 221.0	RP-WR	Int	395.2	19.43	59.16	0.76182	0.70899	0.000031
Sc10-05 260.70	RP-Cal	Int		3.343		0.72926		0.000143
08-04 174.38	Mbl	Host Rock		110.3		0.70933		0.000022
10-76 133.80	Mbl	Host Rock		408.9		0.71205		0.000038
10-89 103.31	Mbl	Host Rock		138.4		0.71626		0.000020
08-05 159.35	Mbl-Cal	Host Rock		151.5		0.71104		0.000022
08-07 199.33	Dol-1	Stage 1		61.90		0.71834		0.000024
09-51 74.52	Dol-1	Stage 1		87.29		0.72039		0.000024
10-75 176.65	Dol-1	Stage 1		123.5		0.72182		0.000025
09-18 261.50	Dol-1	Stage 1		104.0		0.72185		0.000046
08-04 136.45	Dol-1	Stage 1		113.0		0.72349		0.000033
10-77 121.60	Dol-1	Stage 1		105.3		0.72439		0.000044
10-73 199.90	Dol-2a	Stage 2a		133.9		0.72520		0.000017
08-06 38.60	Cal-2	Stage 4b		73.50		0.71890		0.000021
08-04 136.45	Cal-2	Stage 4b		75.69		0.71954		0.000032
08-07 199.33	Cal-2	Stage 4b		36.65		0.72821		0.000031
09-18 256.24	Cal-3	Stage 5		326.7		0.71701		0.000023
09-18 250.25	Cal-3	Stage 5		42.93		0.71837		0.000040
10-99 475.00	Cal-3	Stage 5		36.17		0.71889		0.000021

Table5. Strontium isotopic data for Tiger zone and Rackla pluton samples. All samples have also been analyzed for ${}^{13}C/{}^{12}C$ and ${}^{18}O/{}^{16}O$ values. The ${}^{87}Sr/{}^{86}Sr$ i ratio is the initial ratio at time of emplacement.

µm spot size from all other analyses. The two rejected for high common-Pb were 3A and 3G. Annotated photomicrographs, BSE images and WDS-U maps and more comprehensive isotopic data for Tiger zone monazites are available in Appendix E.

Correcting for common-Pb in most cases increases the accuracy of the desired age calculation; however, when common-Pb is corrected for there are inherent errors that propagate into the overall age calculation. Therefore, in the case of a host mineral containing very low common-Pb, applying a common-Pb correction can yield a less precise age when common-Pb can't be accounted for, such as when using an ICP. The monazites from the Tiger zone contained very low amounts of common-Pb. Using IsoPlot (Ludwig, 2003) the monazite crystallization age was interpreted at 58.1 ± 0.9 Ma (2σ) and is plotted as a weighted mean of the 206 Pb/²³⁸U age (Fig. 21).

Figure 19. Strontium isotope data (⁸⁷St/⁸⁶Sr) plotted against δ^{13} C showing increasing strontium (⁸⁷St/⁸⁶Sr) values with decreasing δ^{13} C values. Rackla pluton whole-rock data is plotted as a bar because no δ^{13} C data is available for that sample.

Figure 20. Strontium isotope data (⁸⁷Sr/⁸⁶Sr) plotted against δ^{18} O showing increasing strontium (⁸⁷Sr/⁸⁶Sr) values with decreasing δ^{18} O values. The Rackla pluton whole-rock sample has been back calculated to initial ⁸⁷Sr/⁸⁶Sr isotopic composition at an age of 62.9 Ma.

Figure 21. Weighted mean ²⁰⁶Pb/²³⁸U age displaying non common-Pb corrected results from LA-MC-ICP-MS for Tiger zone monazite from thin section.

Figure 22. BSE images of monazite grains analyzed by U-Pb LA-ICP-MS for geochronology with annotated spot locations.

Spot ID	²⁰⁶ Pb (cps)	²⁰⁴ Pb (cps)	²³⁸ U/ ²⁰⁶ Pb	2 đ	²⁰⁷ Pb/ ²⁰⁶ Pb	2 đ	²⁰⁶ Pb*/ ²³⁸ U age (Ma)	2 đ
MNZ-1F	132237	145	105.956	9.799	0.046	0.001	61	9
MNZ-1G	125441	141	104.962	10.374	0.048	0.001	61	9
MNZ-1H	103135	120	110.449	11.271	0.045	0.001	58	9
II-ZNW	94059	142	106.878	10.895	0.046	0.001	09	9
UL-ZNM	108596	113	104.952	9.907	0.046	0.001	61	9
MNZ-1Q	83498	120	106.492	10.334	0.046	0.001	09	9
MNZ-1R	89971	119	105.951	10.025	0.045	0.001	61	9
MNZ-1S	58444	147	108.693	10.487	0.045	0.001	59	9
MNZ-1T	48651	126	106.553	9.784	0.045	0.002	09	9
MNZ-1U	63607	130	109.619	11.133	0.043	0.002	59	9
MNZ-1V	54611	120	104.520	9.726	0.042	0.001	61	9
WI-ZNM	43687	107	112.520	13.176	0.040	0.002	57	٢
MNZ-2A	113934	201	104.875	10.772	0.045	0.001	61	9
MNZ-2B	93490	163	103.280	11.578	0.044	0.002	62	٢
MNZ-2C	84979	131	111.870	13.121	0.043	0.001	57	7
MNZ-2D	66066	128	119.441	12.196	0.044	0.002	54	5
MNZ-2E	101240	114	106.321	10.037	0.044	0.001	09	9
MNZ-2F	68292	155	115.292	10.711	0.044	0.001	56	ŝ
MNZ-2G	51150	139	111.260	11.138	0.041	0.002	58	9
MNZ-2H	43415	144	111.116	10.430	0.041	0.003	58	ŝ
MNZ-2I	100255	143	111.324	10.202	0.043	0.001	58	5
MNZ-2J	74823	163	117.935	12.526	0.042	0.002	54	9
MNZ-3B	90921	235	119.169	12.662	0.045	0.001	54	9
MNZ-3C	78636	208	106.677	11.872	0.045	0.001	09	7
MNZ-3D	83473	210	118.269	13.198	0.045	0.001	54	9
MNZ-3E	80443	200	114.405	11.601	0.044	0.003	56	9
MNZ-3F	85785	176	109.998	14.661	0.046	0.001	58	8
MNZ-3H	51017	168	112.281	11.260	0.044	0.002	57	9
MNZ-31	93295	175	118.758	12.094	0.046	0.001	54	5
MNZ-3J	75885	144	118.612	13.540	0.045	0.001	54	9
MNZ-4A	117523	110	112.621	11.705	0.046	0.001	57	9
MNZ-4B	58059	107	108.265	12.962	0.045	0.001	59	7
MNZ-4C	96360	135	107.682	10.095	0.046	0.001	09	9
MNZ-4D	100430	133	113.553	11.859	0.046	0.001	57	9
MNZ-4E	107490	152	108.946	11.784	0.046	0.001	59	9
MNZ-4F	119453	148	103.220	9.117	0.048	0.001	62	5
MNZ-4G	111772	129	110.075	10.616	0.046	0.001	58	9
MNZ-4H	122861	123	107.921	9.877	0.046	0.001	59	S
MNZ-4I	91562	121	114.861	11.485	0.046	0.001	56	9
MNZ-4.1	82493	118	111.489	10.685	0.046	0.001	58	5

Ц.
laı
5
cal
age
for
use
ysis
anal
Ĕ
ă
S
ual
Ē
.≥
Ę.
Ξ.
for
ta
da
\mathbf{S}
Ę.
ġ
\overline{O}
Ξ
A
2
Ы
Ч
_
9
le
å
Ĩ

CHAPTER 4 - DISCUSSION

4.1 Nature of the Host-rock Carbonates and Volcanics

The limestone host-rock within the study area has been preferentially replaced by the gold-bearing mineralization of the Tiger zone, thus the nature and the geochemistry of these rocks are critical to the genesis of the deposit. The Silurian to Ordovician Bouvette Formation limestones have δ^{13} C values that range from -3.8 to 3.2 ‰ and δ^{18} O values that range from 16.2 to 22.3 ‰; these values are positively correlated (Fig. 17) with an r^2 of 0.61. The limestones, with isotopically higher δ^{13} C values of 3.2 ‰ and δ^{18} O of 22.3 ‰, have compositions within the range of Silurian to Ordovician normal marine carbonates (Veizer et al., 1999). These samples also have the lowest values of ⁸⁷Sr/⁸⁶Sr at 0.7086 (Fig. 19, 20) which are comparable to normal marine 87Sr/86Sr in Silurian to Ordovician carbonates, between approximately 0.7070 and 0.7090 (Veizer et al., 1999). The initial ⁸⁷Sr/⁸⁶Sr of carbonate minerals is expected to be the same as present day ⁸⁷Sr/⁸⁶Sr because the large atomic radius of Rb does not readily fit into carbonate minerals. The presence of Rb-bearing silicate minerals in the whole-rock limestone samples cannot be ruled out and could result in more elevated ⁸⁷Sr through time. As the δ^{13} C and δ^{18} O values of the limestones decrease, the 87 Sr/ 86 Sr values increase up to 0.7264 (Fig. 19, 20). Because the host-carbonates deviate away from normal marine δ^{13} C, δ^{18} O and 87 Sr/ 86 Sr values, their isotopic compositions are likely to be related to mineralization and is discussed below.

The volcanic host-rocks vary widely in silica and alkali composition indicating they are likely all very altered from their original composition (Fig. 12). Volcanic rocks proximal to Tiger zone mineralization, are calcified, have abundant sericite, and may be strained whereas volcanic rocks distal to the Tiger zone mineralization do not exhibit these features and volcanic textures may be visible (Fig. 6). The less altered volcanic rocks seem to have bulk rock silica compositions similar to the Ordovician Marmot volcanics within the Misty Creek Embayment (Leslie, 2009). However, detailed geochemical analysis and geochronology is required to assess this speculation.

4.2 Rackla Pluton and Marble Development

The Rackla pluton is one of two known intrusive occurrences proximal (~3 km) to the Tiger zone consisting of weakly peraluminous (Table 1), highly fraction-

ated granitoids including local zones of pegmatite. An age for the intrusion of 62.9 ± 0.5 Ma (2σ) has been determined by U-Pb LA-ICP-MS of zircon grains by V.Bennett, (pers. commun., 2010). A zone of tungsten-bearing hornfels that occurs distal from the Rackla pluton and about 1 km from the Tiger zone is associated with aplitic and pegmatitic dikes which have ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ muscovite ages of 62.3 ± $0.7 \text{ Ma}, 62.4 \pm 1.8 \text{ Ma}$ and $59.1 \pm 2.0 \text{ Ma}$ (Kingston et al., 2010) which, with the exception of one sample, are within error of the Rackla pluton age. Additionally, Kingston et al. (2010) determined the Pb isotope composition of feldspars in these dikes and found high values for ²⁰⁶Pb/²⁰⁴Pb from 19.768 to 19.945 and ²⁰⁷Pb/²⁰⁴Pb from 15.676 to 15.767. These values are distinctly different from the Tombstone and McQuesten suite feldspars which have ²⁰⁶Pb/²⁰⁴Pb values that range from 19.00 to 19.40 and ²⁰⁷Pb/²⁰⁴Pb values that range from 15.65 to 15.70 (Kingston et al., 2010). The Tertiary age and Pb isotopic signature of the Rackla pluton suggests it is distinct from the well-known mid to late-Cretaceous TTMB intrusions and although it has a similar age, may also be different than the McQuesten plutonic suite rocks.

The whole-rock Rackla pluton samples have δ^{18} O values of 11.2 and 11.7 ‰ and a ⁸⁷Sr/⁸⁶Sr value for the intrusion is 0.7618. Using the age of 62.9 Ma, the initial ⁸⁷Sr/⁸⁶Sr value for the Rackla pluton is calculated to be 0.7089 and is preferred because it represent the strontium isotopic composition at the time of mineralization. Because the isotopic compositions of the host-rocks form a trend from normal marine δ^{18} O and ⁸⁷Sr/⁸⁶Sr values towards lower δ^{18} O values and more elevated ⁸⁷Sr/⁸⁶Sr values, it is suggested that the unaltered limestone host-rocks and an unidentified unit with high ⁸⁷Sr/⁸⁶Sr values define two isotopically distinct reservoirs, and the altered limestone host-rocks have compositions generated by mixing between these two end-members (Fig. 17); this process is discussed further below. Sulphur isotope compositions of magmatic sphalerite and arsenopyrite within the Rackla pluton have positive δ^{34} S values of 6.0 to 6.6 ‰ and contrasts with the intrusions of the Tombstone plutonic suite that typically have negative δ^{34} S values (Marsh et al., 2003; Mair et al., 2006a) due to their incorporation of biogenic sulphide from the metasediments of the Selwyn Basin (e.g. Boyle et al., 1970).

Numerous plutonic suites in the northern Cordillera, including the TTMB, have additionally been classified based on their age, spatial distribution, redox state of magmas, and associated metallogenic signature (Hart et al., 2004). Plutonic suites

are broadly classified into magnetite and ilmenite-series, or oxidized and reduced based on the initial classification of Ishihara (1977), and subsequent development of the concept (e.g. Ishihara et al., 2000; Ishihara, 2004). Reduced intrusions commonly contain ilmenite, pyrrhotite and tungsten minerals, have low magnetic responses ($<3 \times 10^{-3}$ SI units) and ferric/ferrous iron ratios below 0.5 at 70 wt. % SiO₂. In the Yukon, there is an association of IRGDs with reduced intrusions (Thompson et al., 1999; Hart et al., 2004; Hart et al., 2007) and, Hart (2007) has suggested that these systems are the most prospective for gold mineralization. The Rackla pluton has ferric/ferrous ratios below 0.5 (Fig. 13), low magnetic responses (Dumala, 2011), and associated tungsten mineralization (Kingston et al., 2010) thus, it is interpreted to be part of the group of gold-prospective, reduced, ilmenite-series intrusions.

Marble Development

Two types of marble occur in the study area, one in the Rackla pluton thermal aureole, and the second within the Tiger zone. The Tiger zone marble is localized along rheologic boundaries and proximal to faults, and as such it is unlikely that it formed simply by contact metamorphism. More likely the Tiger zone marble is a product of fracture controlled, local fluid-mediated metasomatism. Collectively, the marbles have a trend in isotopic composition (Fig. 17, 19, 20); one end member has isotopic compositions similar to some of the host limestones. The Rackla pluton aureole marble and leopard unit calcite plot away from this end member; the Rackla pluton aureole marble sample has the lowest δ^{13} C and δ^{18} O values of -6.5 ‰ and 12.9 ‰, respectively. ⁸⁷Sr/⁸⁶Sr values for the Tiger zone marble range from 0.7093 to 0.7163, and like the limestones the ⁸⁷Sr/⁸⁶Sr values deviate from Ordovician to Silurian normal marine carbonates and are correlated with the δ^{13} C and δ^{18} O values (Fig. 19, 20). Organic-rich sediments have negative δ^{13} C isotope compositions which, if mobilized, may be incorperated into circulating fluids and ultimately into the isotopic composition of the altered host-rocks. Sediments rich in organic matter occur proximal to the Tiger zone and are a likely source for the observed trend in δ^{13} C isotope compositions. The elevated 87 Sr/ 86 Sr isotopic compositions in the marbles may have originated in Precambrian sediments high in ⁸⁷Sr/⁸⁶Sr (e.g. Driver et al., 2000) that occurr regionally surrounding the Tiger zone.

Evolution of the Magmatic Hydrothermal System in the Rackla Pluton

Fluid inclusion assemblages hosted in magmatic quartz in the Rackla pluton include Lw+Lc, Lw+Lc+Sh. Lw+Vw, Lw+Vw+Sh and trail-hosted Lw+Vw. These inclusions appear primary however, the low homogenization temperatures suggest they are likely not primary to the magmatic quartz. No unequivocal unmixing assemblages were observed. The first melting temperatures for aqueous ice in all the FIAs range between -33 and -22 °C and may indicate the presence of some divalent ions in addition to NaCl in the fluids (Crawford, 1981). Salinity data from FIAs have a bimodal distribution as halite-bearing inclusions range from 27 to 40 wt. % NaCl eq. with a mode at 30 wt. % NaCl eq. No clathrate was observed in the non halite-bearing aqueous-carbonic inclusions so the calculated salinity values are overestimated (e.g. Diamond, 1994) but have salinities that are less than 17 wt. % NaCl eq. Total homogenization temperatures range from 200 to 300 °C for the non-carbonic inclusions, including the trail-hosted Lw+Vw inclusions, while the carbonic inclusions have higher homogenization temperatures from 300 to 420 °C. Although all inclusions are interpreted to be secondary in origin it is clear that the higher temperature, CO₂-bearing inclusions predate the cooler, trail-hosted, aqueous inclusions; the cooler aqueous inclusions thus, may represent the ingress of meteoric fluids into a previously magmatic environment during the collapse of the magmatic-hydrothermal system. This is supported by isotopic and microthermometric data from the late calcite veins that cross-cut the pluton. These veins contain primary aqueous fluid inclusions with salinities of 16 wt. % NaCl eq. and homogenization temperatures of 280 °C and are comparable to the non-carbonic inclusions hosted in the quartz in the Rackla pluton. Furthermore, one of the calcite vein samples has a negative δ^{18} O value (Fig. 17, Table 3) which requires a component of surface waters and is likely meteoric in origin. Two other vein calcites have δ^{13} C and δ^{18} O values similar to the limestone host-rocks. A ⁸⁷Sr/⁸⁶Sr value of 0.7293, for the calcite vein with negative δ^{18} O, is much higher than other limestone host-rocks and marbles, and is interpreted to be meteoric in origin. The elevated 87 Sr/ 86 Sr values, variable δ^{13} C and δ^{18} O values, and fluid inclusions homogenization temperatures therefore suggest that these veins (and the secondary inclusions in the plutonic quartz) are derived from mixed magmaticmeteoric hydrothermal circulation, or are derived from just meteoric water which has variably equilibrated with an elevated ⁸⁷Sr/⁸⁶Sr reservoir.

4.3 Evolution of the Tiger Zone Mineralization: Stage 1, 2 and 3

Early gold-bearing mineralization within the Tiger zone occurs as lattice bound, arsenopyrite-hosted gold, associated with replacive dolomite and pyrite. Lattice bound gold in arsenopyrite was identified by dynamic secondary ion mass spectrometry (D-SIMS); the data are presented in a technical report by Stroshein et al. (2011). A unique feature regarding the first gold-bearing event, and the Tiger zone, is the abundance and pervasive nature of the replacement dolomite. Many samples of Dol-1, Dol-2a and Dol-2b have abundant twinning and, may have undergone plastic deformation. Additionally, the presence of fractures within Apy-1 surrounded by non-fractured Dol-1 suggests plastic deformation may have occurred in Dol-1 while the rheologically stiffer Apy-1 underwent brittle deformation. The second gold-bearing mineralization is inherently different. Here, free gold is hosted in fractures, associated with bismuthinite and has also been demonstrated to occur with silver as electrum grains (Stroshein et al., 2011).

The foliation parallel growth of Py-1, Dol-2a and Apy-2, which may post-date the first gold-bearing event, suggest that, at the property scale, the rocks have been deformed in a ductile manner. The mechanisms and degree of deformation in these dolomites are beyond the scope of this study but, dolomite deformation may have occurred in a ductile manner at low temperatures (~380 °C) by accommodation through dislocation glide and mechanical twinning (Turner et al., 1954; Davis et al., 2008). If deformation initiated during Dol-1 and Apy-1 mineralization, then the strain environment may have been responsible for localization of early Tiger zone mineralizing fluids. Although these fluids caused pervasive replacement of the carbonate host-rocks, the highest gold grades occur along the rheologic boundaries on the margins of the volcanic packages and the host-carbonates (Dumala, 2011), either because of higher fluid flow or more reactive rocks in the vicinity.

The gangue minerals associated with both gold mineralizing events, specifically Dol-1, Dol-2a, Dol-2b, Qz-1 and Cal-2, have low δ^{13} C and δ^{18} O values compared to the host limestones (Fig. 17). Additionally, the ⁸⁷Sr/⁸⁶Sr values for Dol-1, Dol-2a and Cal-2 have a narrow range (from 0.7183 to 0.7282), and are generally more enriched in ⁸⁷Sr than the host limestones. Using equation 16.14 in Faure and Mensing (2005) a theoretical two component mixing line is modelled using strontium data (Fig. 23) representing an unaltered limestone endmember and an endmember high in ⁸⁷Sr/⁸⁶Sr compositions. The calculated Rackla pluton initial

Figure 23. Theoretical mixing zone of a two compnent system with end members reflecting an unidentified isotopic reservoir with values of ${}^{87}Sr/{}^{86}Sr = 0.7618$ and Sr = 2 ppm, 19 ppm and 100 ppm and unaltered limestone values of ${}^{87}Sr/{}^{86}Sr = 0.7086$ and 0.7120 and Sr = 400 ppm derived from data in Table 1 and 5. Mixing lines are calculated from equation 16.14 in Faure and Mensing (2005). Annotated tick marks denote the weight ratio degree of mixing of the two components. As for 0.1 mixing, 10 % of the unidentified component has mixed with 90 % of an unaltered limestone component.

⁸⁷Sr/⁸⁶Sr isotope composition is 0.7089 and strontium concentration is 19.4 ppm. It is therefore, unlikely that a strontium isotopic component from the Rackla pluton mixed with a strontium isotopic component of the unaltered limestones to obtain the present day trend in Figure 23. To obtain this isotopic trend, a high ⁸⁷Sr/⁸⁶Sr isotopic endmember would be required to mix with unaltered limestone ⁸⁷Sr/⁸⁶Sr isotopic compositions. Such high ⁸⁷Sr/⁸⁶Sr values exist in Precambrian sediments of southern Yukon and northern British Columbia (Driver et al., 2000). High ⁸⁷Sr/⁸⁶Sr isotopic compositions may also occur within the Precambrian sediments regionally surrounding the Tiger zone however, isotopic values for these rocks have not been obtained.

The majority of marbles and Tiger zone carbonates fall within the modelled mixing zone, and only 10 to 30 % mixing of the high ⁸⁷Sr/⁸⁶Sr isotopic signature is needed to produce the values within the Tiger zone carbonates and the altered host-rock limestones and marbles (Fig. 23). Detailed modeling of the fluid inclusion data could not be carried out because decrepitation during heating runs, and the lack of clathrate data from CO_2 -bearing inclusions (Diamond, 1994) prevented the aquisition of complete microthermometric measurements. Furthermore there are presently no equations of state that adequately describe CO_2 -bearing halite-saturated brines.

Apparently primary FIAs of Lc+Lw and Lw+Lc+Sh+So in Dol-1, Dol-2b and Qz-1 have salinities less than 16 wt. % NaCl eq. and between 30 and 35 wt. % NaCl eq. respectively. Decrepitation temperatures in Dol-1 and Qz-1 for these FIAs range between 230 and 440 °C, and a small number of total homogenization temperatures for Lw+Lc+Sh+So inclusions are recorded at 350 to 411 °C. The vast majority of fluid inclusions in Dol-1, Dol-2b and Qz-1, associated with goldbearing mineralization, are the aqueous-carbonic inclusions (Lc+Lw). However, the FIAs with Lc+Lw and Lw+Lc+Sh+So do occur in random 3D orientation in in zones that have a homogenous cathodoluminescence, which may suggest the inclusions are coeval and represent varying degrees of fluid immiscibility. It is possible, therefore, that the parental fluid to this unmixing assemblage was a hightemperature (>400 °C), low to moderate salinity (<15 wt. % NaCl eq.) carbonicaqueous liquid. This type of parental fluid is common in deep (>5 km) IRGDs and is commonly overprinted by fluid inclusion assemblages representing unmixing; these unmixing assemblages are associated with gold mineralization in IRGDs (Baker, 2002). The Tiger zone contains hot (~400 °C) CO₂-rich fluids, that resemble deeper IRGD assemblages (Baker, 2002), however, it does not have an early parental fluid that is later cross-cut by unmixing assemblages. In fact, Dol-1, Dol-2b and Qz-1 all have the same CO2-rich aqueous and lesser coeval CO2-bearing brine assemblages, which suggests that if the Tiger zone is a deep distal IRGD it does not show the typical evolution of fluids described in Baker (2002). Additionally, rare Lw+Lc fluid inclusions occur within unmixing FIAs with Lc+Lw and Lw+Lc+Sh+So; these inclusions should not occur in unmixing assemblages and actually resemble the postulated Tiger zone parental fluid. If the Lw+Lc inclusions are the parental fluid to the Lc+Lw and Lw+Lc+Sh+So inclusions, then cross-cutting relationships are expected yet not observed, therefore, the nature and origin of the Lw+Lc inclusions remains unclear. If the FIAs have been trapped at depth, in dolomite that may have deformed in a ductile manner, it is possible that some of these apparently primary arrays may have been modified after trapping. It should be noted however, that the fluids inclusions in quartz, a more robust mineral, have

similar assemblages and have comparable microthermometric data.

Benning and Seward (1996) have shown gold can be transported in near neutral pH, H,S-bearing fluids by bisulphide complexing. Additionally, gold, arsenic and sulphur are more likely to partition into the vapour phase during fluid immiscibility (Heinrich et al., 1999). It is possible therefore, that the CO₂-rich inclusions in the Tiger zone are analagous to the vapour inclusions described in Heinrich et al. (1999), and may have been the main phase that transported gold, arsenic and sulphur, as observed in the first gold-bearing event. The presence of liquid CO₂ however, suggests high pressures existed at the time of trapping allowing a denser CO₂ fluid to be trapped as the 'vapour phase'. The high CO₂ contents of this fluid may theoretically be buffered by the limestone host-rocks thus retaining a neutral pH (Phillips and Evans, 2004), and allowing the fluid to transport these metals from their source. During the Stage 1 gold-bearing event, the persistence of the high-temperature fluids and lack of a secondary lower temperature FIA suggests that cooling and mixing with a dilute colder fluid is not the likely gold precipitating mechanism. More likely, the CO2-rich Lc+Lw phase transported gold, arsenic and sulphur to the Tiger zone where sulphidation with host-rock iron precipitated the gold-bearing arsenopyrite at the contact with host rock volcanic units that have higher iron contents than the limestones (Appendix C).

The Stage 1 sulphide mineralization of Apy-1, Py-1, and Py-2 have narrow ranges of δ^{34} S values around 8 ‰, whereas later sulphide mineralization of Po, Bs and Sp have lower δ^{34} S values around 4 to 5 ‰. Only Py-3/4 has a bimodal sulphur isotopic distribution reflecting two stages of pyrite growth which were not resolved at the scale of the sampling (Fig. 9f, 18). Assuming a single fluid phase, the decrease in δ^{34} S later in the paragenesis cannot be due to cooling of the hydrothermal system because the δ^{34} S values should increase with lower temperatures (Rye and Ohmoto, 1974). More likely, mixing of Rackla pluton primary δ^{34} S values (~6 ‰) with sedimentary sulphates (>10 ‰ Claypool et al., 1980; Cecile et al., 1983) could produce δ^{34} S values of ~ 8 ‰ as in the early sulphides, and mixing with biogenic sediments (<0 ‰) could produce the values of <6 ‰ seen in the later sulphide phases. Furthermore, the proximity of Selwyn basin meta-sediments and local barite occurrences (discussed in Dumala, 2011), validates the likelihood that local country rocks contain variable sulphur isotopic compositions, which may be reflected in the range of δ^{34} S values in the Tiger zone sulphides.

4.4 Meteoric Input and Collapse of the Hydrothermal System: Stage 4 and 5 The second gold-bearing event is distinct due to the lack of arsenopyrite and dolomite, and abundance of pyrite, pyrrhotite and bismuthinite within brittle fractures of sulphides and an association with Stage 4 base metal mineralization. Abundant muscovite, calcite (Cal-2) and minor actinolite, scheelite and monazite post-date the base metal mineralization and represent the last phase of Tiger zone mineralization. Calcite veining, Cal-3, is present throughout the deposit and is commonly associated with, but post-dates, sphalerite. The δ^{13} C and δ^{18} O values for this calcite are similar to the isotopic values of the late calcite veins cutting the Rackla pluton (Fig. 17), however, the ⁸⁷Sr/⁸⁶Sr values for this calcite are lower the Rackla pluton calcite veins. The low δ^{18} O values in Cal-3 are diagnostic of a meteoric water component which overprint the mineralization and are likely the same late calcite veins observed in the Rackla pluton however, the lower ⁸⁷Sr/⁸⁶Sr values in the Cal-3 veins are likely due to less water rock interaction with the high ⁸⁷Sr Rackla pluton, or less magmatic strontium in the system at this time.

Secondary fluid inclusion trails in sphalerite associated with Cal-3 veins may represent the Cal-3 forming fluid. These fluids have salinities ranging from 3 to 8 wt. % NaCl eq., are not CO_2 -bearing and have lower homogenization temperatures of 150 to 153 °C; thus, they are distinct from the primary FIA's in the Tiger zone. The aqueous nature of the fluid, low salinity, relatively low homogenization temperatures and low δ^{18} O values suggest this fluid has a distinct meteoric component that overprints Tiger zone mineralization and represents the collapse of the magmatic-hydrothermal system.

Isotopic and fluid inclusion data are not specifically available for the second goldbearing event, however, it is clear that from Qz-1 to Cal-3 the mineralization temperature decreased from approximately 400 to 150 °C. The higher temperatures of the main Tiger zone mineralization may have allowed base metals, complexed by Cl ligands, to be transported in the less abundant unmixed Lw+Lc+Sh+So inclusions (Heinrich et al., 1999) without significant deposition. The paragenetically late temperature decrease suggests that possible dilution and cooling of the magmatic fluids with the meteoric fluids may have allowed for the precipitation of base metals from solution. The solid opaque mineral within halite-bearing brine inclusions may be one of these base metal phases. Because the second gold-bearing event also occurs in this time interval, cooling and mixing may have affected gold solubility as well. The second gold-bearing event occurs as native gold \pm bismuthinite \pm electrum in brittle fractures in sulphide grains and thus, likely precipitated from the fluid by a different mechanism than the first gold-bearing event. Also, the nature of the fracture-hosted gold indicates brittle deformation may be more pervasive in the second gold-bearing event suggesting a lower pressure or temperature environment. Therefore, this second gold-bearing event, may have resulted from bisulphide complexing in the CO₂-rich Lc+Lw fluids, which were destabalized through depressurizing, cooling, and/or mixing with meteoric water. The incomplete nature of the microthermometric data means this hypothesis cannot be tested here.

4.5 Age of the Tiger Zone Mineralization and Links to the Rackla Pluton

Similar types of fluid inclusions with comparable chemistries and homogenization temperatures occur within both the Tiger zone mineralization and within the Rackla pluton. Also, the oxygen and sulphur isotopic signatures of the Tiger zone carbonates are likely produced by mixing of the unaltered Tiger zone limestone isotopic reservoir with the isotopic compositions within the Rackla pluton. However, the high ⁸⁷Sr/⁸⁶Sr and low δ^{13} C isotopic composition of the Tiger zone carbonates indicate a third undiscovered isotopic reservoir is mixing with both the Rackla pluton and host-rock limestone isotopic signature. Additionally, both the Rackla pluton and the Tiger zone have a late meteoric overprint with comparable fluid inclusion chemistries and oxygen isotopic values.

Lead isotopes in undifferentiated pyrite and pyrrhotite within Tiger zone mineralization were analyzed by Kingston et al. (2010). The ²⁰⁷Pb/²⁰⁴Pb values range from 15.596 to 15.940 and ²⁰⁶Pb/²⁰⁴Pb ratios from 19.105 to 21.046. They compared their data with values obtained for Rackla pluton associated dikes and McQuesten and Tombstone suite intrusions. Although there is significant scatter in their dataset, Kingston et al.'s results indicate that the Pb isotope compositions of Tiger zone sulphides more closely resemble that of the Rackla pluton than the Tombstone or McQuesten intrusions.

Late in the Tiger zone paragenesis, in Stage 4, monazite grains occur; this assemblage represents the waning stages of the Tiger zone mineralization before or during the meteoric influx. I obtained a U-Pb crystallization age of 58.1 ± 0.9 Ma (2σ) for the monazites, which is within analytical uncertainty of a ⁴⁰Ar/³⁹Ar muscovite age reported for pegmatitic and aplitic dikes (Kingston et al., 2010), but is younger than the 62.9 ± 0.5 Ma (2 σ) zircon age for the Rackla pluton (V. Bennett, pers. commun. 2010). The proximity of the Tiger zone to the Rackla pluton, their reduced chemistries, fluid chemistries and corresponding ages indicates they are temporally, and most likely genetically related. Because the monazite age gives a minimum age for its crystallization, and post-dates the gold mineralization events, this suggests that both gold bearing event occurred prior to 58.1 ± 0.9 Ma and due to textural relationships (Fig. 6), likely no older than 62.9 ± 0.5 Ma. The Tiger zone is thus, the first occurrence of gold-bearing mineralization associated with Tertiary plutonism in central Yukon.

4.6 Genetic Model

The nature and style of mineralization as well as age relationships, suggest that the Tiger zone is a deep (~5 km) Au deposit related to a reduced intrusion. Early magmatic fluids from the Rackla pluton, or a related source at depth, circulated through the Tiger zone variably interacting with the host carbonates (Fig. 24a) and resulted in the subsequent deposition of hydrothermal dolomite, gold-bearing arsenopyrite and pyrite (Fig. 24b). These fluids were largely structurally focused, possibly during an early ductile deformation regime, and localized along rheologic boundaries, resulting in local marble development and increased gold grades at lithological contacts. The early arsenopyrite-hosted gold-bearing event formed from a high temperature (~400 °C), immiscible, CO₂-bearing fluid sourced from the Rackla pluton, and probably reacted with iron in the host-rocks during mineralization. The second gold-bearing event contains fracture-hosted free gold, electrum and bismuthinite and may have formed from depressurization, cooling and possibly mixing with a meteoric fluid prompting mineralization at shallower depths and lower pressures. A small amount of base metals and low-temperature calcite veining occurs late in the paragenesis and documents the influx of meteoric water and the collapse of the magmatic-hydrothermal system (Fig. 24c).

Figure 24. Genetic diagram of Tiger zone mineralization with approximate isotopic values overlaid including (a) early intruding pluton assimilating supra-crustal sources and forming early marble, (b) emplacement and continued formation of marble horizons, subsequent gold mineralization, and (c) relaxation of the magmatichydrothermal system and influx of meteoric waters. Based from cross section A – A' from Abbott (1990). Modeled initial strontium isotopic compositions are reported for the Rackla pluton. Thicker red boxes indicate inferred isotopic values not measured in this study.

CHAPTER 5 – CONCLUSIONS

The Tiger zone gold mineralization is unique in that it represents a poorly studied class of Au mineralized carbonate-replacement deposits and is the product of a highly fractionated, reduced, CO2-rich magmatic system. Based on geochemistry, fluid inclusion analysis and age constraints, the Tiger zone mineralization is determined to be genetically related to the Rackla pluton and represents a ~60 Ma distal IRGD. Two gold-bearing events are associated with immiscible CO₂-rich aqueous fluids and lesser amounts of CO2-bearing brines. The fluid associated with the first gold-bearing event was at least 400 °C at the time of mineralization, and initially the deposit probably formed at depths of approximately 5 km. Gold from Stage 1 was precipitated due to sulfidation reactions with host-rock iron. This magmatic fluid is interpreted to persist throughout most of the gold-bearing paragenesis of the Tiger zone, however, the second gold-bearing event may be a result of depressurization and fluid mixing between magmatic and meteoric waters. The Tiger zone has many characteristics that resemble IRGDs in the northern Cordillera including having reduced affinities for both mineralization and host intrusion, peraluminous and fractionated host intrusions, unequivocal magmatic source for fluids and metals, abundant CO2-rich fluids, and metal associations of arsenic, bismuth and tungsten. Features of the Tiger zone that make it unique with respect to Yukon IRGDs include mineralization hosted in platformal carbonate rocks in the footwall of the Dawson Thrust, widespread replacive dolomite mineralization, moderate sulphide content (>5%), and intrusion emplacement ~25 m.y. after initiation of Cordilleran dextral transpression. Perhaps the most significant distinction is the 58.1 ± 0.9 Ma age for Tiger zone mineralization, indicating significant Tertiary intrusion-related gold resources potentially occur elsewhere in Yukon. Exploration therefore should not be restricted to the 90-100 Ma Tombstone-Tungsten magmatic belt or spatially to the Selwyn Basin. Additionally, the Rackla pluton has similar ages, composition and spatial proximity to the poorly studied McQuesten suite intrusions, indicating a potential genetic link and an ignored prospective target for gold mineralization.
References

Abbott, G., Preliminary results of the stratigraphy and structure of the Mt. Westman map area, central Yukon, *in* Current Research, Part E, Geological Survey of Canada, Paper 90-1E, p. 15-22, 1990.

Abbott, J.G., Gordey, S.P., and Tempelman-Kluit, D.J., 1986, Setting of Stratiform, Sediment-Hosted Lead-Zinc Deposits in Yukon and Northeastern British Columbia, Geological Survey of Canada Open File 2169, p. 69–98.

Arehart, G.B., 1996, Characteristics and origin of sediment-hosted disseminated gold deposits: A review, Ore Geology Reviews, v. 11, p. 383–403.

Baker, T., 2002, Emplacement Depth and Carbon Dioxide-Rich Fluid Inclusions in Intrusion-Related Gold Deposits, Economic Geology, v. 97, p. 1111–1117.

Baker, T., and Lang, J., 2001, Fluid inclusion characteristics of intrusion-related gold mineralization, Tombstone-Tungsten magmatic belt, Yukon Territory, Canada, Mineralium Deposita, v. 36, p. 563–582.

Benning, L.G., and Seward, T.M., 1996, Hydrosulphide complexing of Au(I) in hydrothermal solutions from 150-400 °C and 500-1500 bar, Geochimica et Cosmochimica Acta, v. 60, p. 1849–1871.

Blusson, S.L., 1978, Regional geological setting of lead-zinc deposits in Selwyn Basin, Yukon, Current Research, Part A, Geological Survey of Canada, Paper 78-1a, p. 77-80.

Bodnar, R.J., 1993, Revised equation and table for determining the freezing point depression of H_2O -NaCl solutions, Geochimica et Cosmochimica Acta, v. 57, p. 683–684.

Boyle, R.W., Wanless, R.K., and Stevens, R.D., 1970, Sulfur Isotope Investigation of the Lead-Zinc-Silver-Cadmium Deposits of the Keno Hill-Galena Hill Area, Yukon, Canada, Economic Geology, v. 65, p. 1–10.

Brown, I.J., and Nesbitt, B.E., 1987, Gold–copper–bismuth mineralization in hedenbergitic skarn, Tombstone Mountains, Yukon, Canadian Journal of Earth Sciences, v. 24, p. 2362–2372.

Buzon, M.R., Simonetti, A., and Creaser, R.A., 2007, Migration in the Nile Valley during the New Kingdom period: a preliminary strontium isotope study, Journal of Archaeological Science, v. 34, p. 1391–1401.

Cecile, M.P., Shakur, M.A., and Krouse, H.R., 1983, The isotopic composition of western Canadian barites and the possible derivation of oceanic sulphate δ^{34} S and δ^{18} O age curves, Canadian Journal of Earth Sciences, v. 20, p. 1528–1535.

Chakurian, A.M., Arehart, G.B., Donelick, R.A., Zhang, X., and Reiners, P.W., 2003, Timing Constraints of Gold Mineralization along the Carlin Trend Utilizing Apatite Fission-Track, ⁴⁰Ar/³⁹Ar, and Apatite (U-Th)/He Methods, Economic Geology, v. 98, p. 1159–1171.

Claypool, G.E., Holser, W.T., Kaplan, I.R., Sakai, H., and Zak, I., 1980, The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation, Chemical Geology, v. 28, p. 199–260.

Clayton, R.N., and Mayeda, T.K., 1963, The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis, Geochimica et Cosmochimica Acta, v. 27, p. 43–52.

Cline, J.S., Hofstra, A.H., Muntean, J.L., Tosdal, R.M., and Hickey, K.A., 2005, Carlin-type gold deposits in Nevada: Critical geologic characteristics and viable models, Economic Geology, v. 100, p. 451–484.

Colpron, M. and Nelson, J.L., 2011, A Digital Atlas of Terranes for the Northern Cordillera. Accessed online from Yukon Geological Survey (www.geology.gov. yk.ca), [November 2012].

Colpron, M., Nelson, J.L., and Murphy, D.C., 2007, Northern Cordilleran terranes and their interactions through time, GSA Today, v. 17, p. 4–10.

Cook, F.A., and Erdmer, P., 2005, An 1800 km cross section of the lithosphere through the northwestern North American plate: lessons from 4.0 billion years of Earth's history, Canadian Journal of Earth Sciences, v. 42, p. 1295–1311.

Crafford, A.E.J., and Grauch, V.J.S., 2002, Geologic and geophysical evidence for the influence of deep crustal structures on Paleozoic tectonics and the alignment of world-class gold deposits, north-central Nevada, USA, Ore Geology Reviews, v. 21, p. 157–184.

Crawford, M.L., 1981, Phase equilibria in aqueous fluid inclusions, *in* Hollister, L.S., and Crawford, M.L., eds., Fluid Inclusions: Applications to Petrology: Mineralogical Association of Canada Short Course Handbook 6, p. 75-100.

Davis, N.E., Kronenberg, A.K., and Newman, J., 2008, Plasticity and diffusion creep of dolomite, Tectonophysics, v. 456, p. 127–146.

Diamond, L.W., 1994, Introduction to Phase Relations of CO₂-H₂O Fluid Inclusions, *in* De Vito, B., and Frezzotti, M.L., Fluid inclusions in minerals: methods and applications, IMA '94: Short Course, Blacksburg, VA, Virginia Tech, Fluids research laboratory, p. 376.

Driver, L.A., Creaser, R.A., Chacko, T., and Erdmer, P, 2000, Petrogenesis of the Cretaceous Cassiar batholith, Yukon-British Columbia, Canada: Implications for magmatism in the North American Cordilleran Interior, GSA Bulletin, v. 112, p. 1119-1133.

Duke, J.L., 1990, The Grew Creek gold-silver deposit in south-central Yukon Territory, *in* Mineral deposits of the Northern Canadian Cordillera, Yukon-Northeastern British Columbia, Abbott, J.G., and Turner, R.J.W., eds., 8th IAGOD Symposium Field Trip No. 14 Guidebook, Geological Survey of Canada Open File 2169, p. 309-313.

Dumala, M., 2011, Assessment Report describing Geophysics, Soil Geochemistry and Diamond Drilling at the Rau Property, p. 1–3771.

Emsbo, P., Groves, D.I., Hofstra, A.H., and Bierlein, F.P., 2006, The giant Carlin gold province: a protracted interplay of orogenic, basinal, and hydrothermal processes above a lithospheric boundary, Mineralium Deposita, v. 41, p. 517–525.

Engebretson, D. C., 1985, Relative motions between oceanic and continental plates in the Pacific basins, Geological Society of America Special Paper, v. 206, p. 1–59.

Faure, G., and Mensing, T.M., 2005, Isotopes principles and applications: New Jersey, Wiley, p. 928.

Fonseca, A.L., 1998, Origin of carbonate hosted gold rich replacement deposits and related mineralization styles in the Ketza River deposit, Yukon Territory: Unpublished M.Sc. thesis, Vancouver, Canada, The University of British Columbia, 108 p.

Franchini, M.B., de Barrio, R.E., Pons, M.J., Schalamuk, I.B., Rios, F.J., and Meinert, L., 2007, Fe Skarn, Iron Oxide Cu-Au, and Manto Cu-(Ag) Deposits in the Andes Cordillera of Southwest Mendoza Province (34°–36° S), Argentina, Exploration and Mining Geology, v. 16, p. 233–265.

Gabrielse, H., 1967, Tectonic Evolution of the Northern Canadian Cordillera, Canadian Journal of Earth Sciences, v. 4, p. 271-298.

Glesemann, A., Jaeger, H.J., Norman, A.L., Krouse, H.R., and Brand, W.A., 1994, Online Sulfur-Isotope Determination Using an Elemental Analyzer Coupled to a Mass Spectrometer, Analytical Chemistry, v. 66, p. 2816–2819.

Godwin, C.I., 1976, Casino, *in* Porphyry deposits of the Canadian Northwestern Cordillera, Canadian Institute of Mining, Metallurgy and Petroleum, Special Volume 15, p. 344-354.

Goodfellow, W.D., Cecile, M.P., and Leybourne, M.I., 1995, Geochemistry, petrogenesis, and tectonic setting of lower Paleozoic alkalic and potassic volcanic rocks, Northern Canadian Cordilleran Miogeocline, Canadian Journal of Earth Sciences, v. 32, p. 1236-1254.

Gordey, S.P., and Anderson, R.G., 1993, Evolution of the northern Cordilleran miogeocline, Nahanni map area (1051), Yukon and Northwest Territories, Geological Survey of Canada Memoir 428, 214 p.

Gordey, S.P., and Makepeace, A.J., 2001, Bedrock Geology, Yukon Territory, Geological Survey of Canada, Open File 3754, Exploration and Geological Services Division, Yukon Indian and Northern Affairs Canada, Open File 2001-1, scale 1:1 000 000.

Gordey, S.P., Geldsetzer, H.H.J., Morrow, D.W., Bamber, E.W., Henderson, C.M., Richards, B.C., McGugan, A., Gibson, D.W., and Poulton, T.P., 1991, Ancestral North America; Upper Devonian to middle Jurassic assemblages, Chapter 8, *in* Gabrielse, H., and Yourath, C.J., eds., Geology of the Cordilleran orogeny in Canada: Ottawa, Ontario, Geological Survey of Canada, p. 221-329.

Grauch, V.J.S., Rodriguez, B.D., and Wooden, J.L., 2003, Geophysical and Isotopic Constraints on Crustal Structure Related to Mineral Trends in North-Central Nevada and Implications for Tectonic History, Economic Geology, v. 98, p. 269–286.

Green, L.H., 1972, Geology of Nash Creek, Larsen Creek, and Dawson Mapareas, Yukon Territory (106D, 116A, 116B, and 116C (E1/2)): Operation Ogilvie, Geological Survey of Canada, Memoir 364, 157 p.

Groves, D.I., Goldfarb, R.J., Robert, F., and Hart, C.J.R., 2003, Gold deposits in metamorphic belts: Overview of current understanding, outstanding problems, future research, and exploration significance, Economic Geology, v. 98, p. 1–29.

Hart, C.J.R., 2007, Reduced Intrusion-Related Gold Systems, *in* Goodfellow, W.D., ed., Mineral deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, p. 95–112.

Hart, C.J.R., Goldfarb, R.J., Lewis, L.L., and Mair, J.L., 2004, The Northern Cordilleran Mid-Cretaceous Plutonic Province: Ilmenite/Magnetite-series Granitoids and Intrusion-related Mineralisation, Resource Geology, v. 54, p. 253–280.

Heinrich, C.A., 2005, The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study, Mineralium Deposita, v. 39, p. 864–889.

Heinrich, C.A., Gunther, D., Audetat, A., and Ulrich, T., 1999, Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions, Geology, v. 27, p. 755-758.

Henry, C.D., and Boden, D.R., 1998, Eocene magmatism: The heat source for Carlin-type gold deposits of northern Nevada, Geology, v. 26, p. 1067–1070.

Hofstra, A.H., and Cline, J.S., 2000, Characteristics and models for Carlin- type gold deposits: Reviews in Economic Geology, v. 13, p. 163–220.

Hudson, T.L., 1994, Crustal melting events in Alaska, *in* Plafker G., and Berg H.C., eds., The geology of Alaska: Boulder, Colorado, Geological Society of America, Decade of North American Geology, v. G-1, p. 657–671.

Hunt, J.A., Laughton, J.R., Brideau, M., Thorkelson, D.J., Brookes, M.L. and Baker, T., 2002, New mapping around the Slab iron oxide-copper-gold occurrence, Wernecke Mountains (parts of NTS 106C/13, 106D/16, 106E/1 and 106F/4), Yukon, *in* Yukon Exploration and Geology 2001, D.S. Emond, L.H. Weston and L.L. Lewis eds., Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, p. 125-138.

Ilchik, R.P., and Barton, M.D., 1997, An amagmatic origin of carlin-type gold deposits, Economic Geology, v. 92, p. 269–288.

Ishihara, S., 1977, The magnetite-series and ilmenite-series granitic rocks, Mining Geology v. 27, p. 293–305.

Ishihara, S., 2004, The redox state of granitoids relative to tectonic setting and earth history: the magnetite–ilmenite series 30 years later, Transactions of the Royal Society of Edinburgh: Earth Sciences, v. 95, p. 23–33.

Ishihara, S., Hashimoto, M., and Machida, M., 2000, Magnetite/ilmenite-series classification and magnetic susceptibility of the mesozoic-cenozoic batholiths in Peru, Resource Geology, v. 50, p. 123–129.

Johnston, M.K., and Ressel, M.W., 2004, Controversies on the origin of worldclass gold deposits, Pt. I: Carlin-type gold deposits in Nevada, II. Carlin-type and distal disseminated Au-Ag deposits: Related distal expressions of Eocene intrusive centers in north-central Nevada, Society of Economic Geologists Newsletter, v. 59, p. 12–14.

Kingston, S., Mortensen, J.K., Dumala, M., and Gabites, J., 2010, Ar-Ar geochronology and Pb isotopic constraints on the origin of the Rau gold-rich carbonate replacement deposit, central Yukon, *in* Yukon Exploration and Geology 2009, MacFarlane, K.E., Weston, L.H., and Blackburn, L.R., eds., Yukon Geological Survey, p. 213-222.

Knight, J.B., Mortensen, J.K., and Morison, S.R., 1999, Lode and placer gold composition in the Klondike District, Yukon Territory, Canada; implications for the nature and genesis of Klondike placer and lode gold deposits, Economic Geology, v. 94, p. 649–664.

Kojima, S., Trista-Aguilera, D., and Hayashi, K.I., 2009, Genetic Aspects of the Manto-type Copper Deposits Based on Geochemical Studies of North Chilean Deposits, Resource Geology, v. 59, p. 87–98.

Lang, J.R., and Baker, T., 2001, Intrusion-related gold systems: the present level of understanding, Mineralium Deposita, v. 36, p. 477–489.

Large, R.R., Bull, S.W., and Maslennikov, V.V., 2011, A Carbonaceous Sedimentary Source-Rock Model for Carlin-Type and Orogenic Gold Deposits, Economic Geology, v. 106, p. 331–358.

Leslie, C.D., 2009, Detrital Zircon Geochronology and Rift-Related Magmatism: Central Mackenzie Mountains, Northwest Territories: Unpublished M.Sc. thesis, Vancouver, Canada, The University of British Columbia, 162 p.

Ludwig, K., 2003, Isoplot/Ex, version 2: A Geochronological Toolkit for Microsoft Excel., Geochronology Center Berkeley.

Lynch, J.V.G., Longstaffe, F.J., and Nesbitt, B.E., 1990, Stable isotopic and fluid inclusion indications of large-scale hydrothermal paleoflow, boiling, and fluid mixing in the Keno Hill Ag-Pb-Zn district, Yukon Territory, Canada, Geochimica et Cosmochimica, v. 54, p. 1045–1059.

Mach, C.J., and Thompson, T.B., 1998, Geology and geochemistry of the Kokomo mining district, Colorado, Economic Geology, v. 93, p. 617–638.

Mair, J.L., Goldfarb, R.J., Johnson, C.A., Hart, C.J.R., and Marsh, E.E., 2006a, Geochemical Constraints on the Genesis of the Scheelite Dome Intrusion-Related Gold Deposit, Tombstone Gold Belt, Yukon, Canada, Economic Geology, v. 101, p. 523–553. Mair, J.L., Hart, C.J.R., and Stephens, J.R., 2006b, Deformation history of the northwestern Selwyn Basin, Yukon, Canada: Implications for orogen evolution and mid-Cretaceous magmatism, GSA Bulletin, v. 118, p. 304–323.

Maloof, T., Baker, T., and Thompson, J., 2001, The Dublin Gulch intrusion-hosted gold deposit, Tombstone plutonic suite, Yukon Territory, Canada, Mineralium Deposita, v. 36, p. 583–593.

Moore, R.C., Lalicker, C.G., and Fischer, A.G., 1952, Invertebrate Fossils: New York: McGraw-Hill, 738 p.

Morrow, D.W., Dubord, M.P., Uyeno, T.T., Norris, A.W., and Norford, B.S., 1999, Lower Paleozoic stratigraphy of northern Yukon Territory and northwestern District of Mackenzie, Geological Survey of Canada Bulletin 538, 202 p.

Mortensen, J.K., 1992, Pre-Mid-Mesozoic tectonic evolution of the Yukon-Tanana Terrane, Yukon and Alaska, Tectonics, v. 11, p. 836.

Muntean, J.L., Cline, J.S., Simon, A.C., and Longo, A.A., 2011, Magmatic–hydrothermal origin of Nevada's Carlin-type gold deposits, Nature Geoscience, v. 4, p. 122–127.

Murphy, D.C., 1997, Geology of the McQuesten River Region, Northern Mc-Questen and Mayo Map Area, Yukon Territory (115P/14, 15, 16; 105M/13, 14).

Phillips, G.N., and Evans, K.A., 2004, Role of CO_2 in the formation of gold deposits, Nature, v. 429, p. 860–863.

Ridley, J.R., and Diamond, L.W., 2000, Fluid chemistry of orogenic lode gold deposits and implications for genetic models, SEG Reviews, v. 13, p. 141–162.

Roedder, E., 1984, Fluid Inclusions: Chelsea, Michigan, Mineralogical Society of America, v. 12, 646 p.

Rye, R.O., and Ohmoto, H., 1974, Sulfur and Carbon Isotopes and Ore Genesis: A Review, Economic Geology, v. 69, p. 826–842.

Saager, R. and Bianconi, F., 1971, The Mount Nansen gold-silver deposits, Mineralium Deposita, v. 6, p. 209-224.

Seedorff, E., 1991, Magmatism, extension, and ore deposits of Eocene to Holocene age in the Great Basin-Mutual effects and preliminary proposed genetic relationships, *in* Raines, G.L., Lisle, R.E., Schafer, R.W., and Wilkinson, W.H., eds., Geology and Ore Deposits of the Great Basin, Symposium Proceedings, Geological Society of Nevada, Reno, Nevada, p. 133–178. Simonetti, A., Heaman, L.M., Chacko, T., and Banerjee, N.R., 2006, In situ petrographic thin section U–Pb dating of zircon, monazite, and titanite using laser ablation–MC–ICP-MS, International Journal of Mass Spectrometry, v. 253, p. 87–97.

Sinclair, A.J., Tessari, D.J. and Harakal, J.E., 1980, Age of Ag-Pb-Zn mineralization, Keno Hill-Galena Hill area, Yukon Territory, Canadian Journal of Earth Science, v. 17, p. 1100-1103.

Stephens, J.R., Mair, J.L., Oliver, N.H.S., Hart, C.J.R., and Baker, T., 2004, Structural and mechanical controls on intrusion-related deposits of the Tombstone Gold Belt, Yukon, Canada, with comparisons to other vein-hosted ore-deposit types, Journal of Structural Geology, v. 26, p. 1025–1041.

Sterner, S.M., Hall, D.L., and Bodnar, R.J., 1988, Synthetic fluid inclusions. V. Solubility relations in the system NaCl-KCl-H₂O under vapor-saturated conditions, Geochimica et Cosmochimica Acta, v. 52, p. 989–1005.

Stroshein, R., 1996, Geology and gold deposits at Ketza River, Yukon Territory, a Progress report, Yukon Exploration and Geology, p. 43–48.

Stroshein, R.W., Giroux, G.H., and Wengzynowski, W.A., 2011, Technical Report using National Instrument 43-101 Guidelines for the Preparation of the Tiger Zone Mineral Resource Estimate on the Rau Property Yukon Territory, Canada NTS Map Sheets 106D 01/06/07/08 Latitude 64° 11' N Longitude 134° 22'

Thompson, J.F.H., Sillitoe, R.H., Baker, T., Lang, J.R., and Mortensen, J.K., 1999, Intrusion-related gold deposits associated with tungsten-tin provinces, Mineralium Deposita, v. 34, p. 323–334.

Turner, F.J., Griggs, D.T., and Heard, H.C., 1954, Plastic deformation of dolomite rock at 380 °C, American Journal of Science, v. 252, p. 477–488.

Valley, J.W., 1986, Stable isotope geochemistry of metamorphic rocks, Reviews in Mineralogy and Geochemistry, v. 16, p. 445-489.

Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G.A.F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O.G., and Strauss, H., 1999, ⁸⁷Sr/⁸⁶Sr, δ¹³C and δ¹⁸O evolution of Phanerozoic seawater, Chemical Geology, v. 161, p. 59–88.

Yukon Exploration and Geology Overview 2011, K.E. MacFarlane ed., 2012, Yukon Geological Survey, 98 p.

Sample ID	Rock type	easting	northing
ER-20	VOL	528027	7119385
ER-19	VOL	528020	7119406
ER-18	LST	528029	7119411
ER-17	VOL	528032	7119425
ER-16	LST	528063	7119432
ER-1	LST	528147	7119552
ER-3	LST	528173	7119578
ER-2	VOL	528163	7119584
ER-4	VOL	528220	7119619
ER-5	LST	528245	7119673
ER-6	VOL	528261	7119692
ER-7	LST	528291	7119722
ER-8	VOL	528294	7119763
ER-10	VOL	528325	7119828
ER-14	VOL	528359	7119889

non drill-core sample locations. NAD 83 zone 8

APPENDIX B

Total 99.89 98.23 98.59 98.70 98.70 99.59 99.64	99.45 98.65 98.65 98.69 98.67 98.62 98.62 98.62	99.71 99.71 98.23 98.61 100.86 99.16 99.16 99.13 99.13 99.13 99.13	99.96 99.71 98.32 98.32 105.24 100.97 99.20 99.20 99.11	101.11 100.56 98.91 99.50 99.15 99.15 98.28
Te				
Hg				
≥				
Z				
Mg				205 263
Bi wt.% 80.12 79.00 79.05 79.38 99.46 79.95	75.01 78.68 98.44 74.49 74.85	0.45 97.80 100.46	75.61 98.29 79.21 73.63 0.37 100.34 100.34 77.34 74.71	100.32 99.48 73.20 0.40 97.99 97.34 97.34 98.06
Pb				
Ч		1002878	1051 1018320	1000873
Sb 6818 6818 7010 9188 6787 5779 2674 7301 7301	44612 7129 2989 46030 44346	2340 2910	44083 12133 46177 3111 15027 45969	1445 3367 46985 12717 5465 7584 6834
Sn				
Ag		2753	33420	1240
Cu 592	1029 954 1009		993 1050 1147 1147 980 980	710 814
C				
As wt.% 0.04 0.05 0.05 0.05 0.05 0.05	0.08 0.05 0.09 0.07	0.07 0.06	0.0 0.0 0.0 0.0 0.0	0.10 0.06 0.07 0.07 0.07
Zn wt.% As wt.% 0.04 0.05 0.05 0.05 0.05 0.06 0.06	0.08 0.05 0.05 0.09 0.07 0.07 66.11	67.34 67.34 0.07 65.88 0.06 66.64 0.06 66.33 66.33 66.05 66.33	0.09 0.09 0.06 66.14 0.11	0.10 0.06 0.07 0.07 0.07
Fe wt.% Zn wt.% As wt.% 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.05 0.04 0.05 0.05 0.05 0.05 0.06 0.06	0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08	0.18 0.12 0.20 67.34 0.07 0.21 65.88 0.05 0.23 66.64 0.06 0.29 66.63 0.29 66.33 0.32 65.86 0.32 65.05	0.34 0.37 0.41 0.42 0.44 0.44 0.44 0.09 0.09 0.09 0.09 0.09	0.57 0.10 0.62 0.06 0.71 0.22 0.71 0.07 0.71 0.07 0.73 0.74 0.74 0.74 0.74 0.74
Swt.% Fe wt.% Zn wt.% As wt.% 18.63 0.04 0.04 18.00 0.04 0.04 18.17 0.04 0.05 18.17 0.04 0.05 18.17 0.05 0.05 18.15 0.05 0.05 18.51 0.05 0.05	19.17 0.08 0.08 18.39 0.08 0.08 18.81 0.10 0.05 18.81 0.11 0.09 18.81 0.13 0.07 18.82 0.13 0.07 18.81 0.13 0.07 18.82 0.14 66.11 32.59 0.14 66.11	32.39 0.18 0.12 32.39 0.20 67.34 0.07 0.20 67.34 0.09 0.21 65.88 0.09 0.23 66.64 32.50 0.29 66.33 32.63 0.32 66.63	18.22 0.04 0.05 0.37 0.05 0.37 0.09 0.09 18.28 0.41 0.09 0.09 0.08 0.44 0.09 0.09 0.08 0.44 0.06 18.25 0.39 18.56 0.53 0.14 0.06 18.56 0.11	0.07 0.57 0.10 0.27 0.57 0.10 0.27 0.62 0.06 19.45 0.71 0.22 18.36 0.71 0.07 0.10 0.71 0.07 0.10 0.71 0.07 0.10 0.73 0.04 0.07 0.73 0.07 0.07 0.74 0.07 0.07 0.73 0.07 0.07 0.74 0.07

Sulphide data

Total	99.58	98.62	99.82	101.82	102.01	98.31	98.47	101.11	101.82	98.84	99.43	101.80	98.57	100.91	102.01	103.64	104.76	98.17	98.10	98.56	98.07	98.60	98.30	98.42	98.11	98.38	98.38	98.66	98.66	98.89	98.21	98.72	98.44	98.66	98.49	98.66	90.06	98.79	98.58	99.03	98.71	98.33	98.25	
Te																																												
Нg																																												
Μ																																												
ïN																																												
Mg																																												
Bi wt.%	95.54	97.09	74.13	99.83	100.32	67.85	77.11	74.81	<i>PT.</i> 66	97.04	73.61	99.25	75.99	69.29	69.52	78.98	78.46																											
Ъb																																												
Au																																												
Sb	3465	3350	47816	8182	3940	91408	12096	46979	4553		45977	8028	11598	80188	78905	13115	15270	1541																										
Sn																																												
Ag																																												
Cu			1107			509	1156	947			1024		926	801	931	891	1790																											
ů																		322				318	342												313		501	324			360			
As wt.%		0.17	0.27		0.12	0.06		0.19	0.11	0.20				0.52	1.52	0.07		42.33	42.65	42.67	42.04	42.78	42.43	42.41	42.11	42.37	42.94	41.76	43.39	42.68	42.26	41.93	42.22	42.06	42.41	42.76	42.93	42.51	41.77	42.92	42.30	42.60	41.24	
Zn wt.%																																												
Fe wt.%	0.96	0.97	1.03	1.13	1.16	1.19	1.33	1.45	1.54	1.57	1.63	1.71	1.87	2.08	2.21	2.79	3.93	33.91	33.94	34.06	34.09	34.14	34.16	34.26	34.33	34.35	34.35	34.35	34.39	34.40	34.44	34.45	34.47	34.50	34.53	34.54	34.56	34.57	34.58	34.59	34.62	34.62	34.63	
S wt.%	2.59	0.07	19.00	0.06		19.58	18.18	19.36	0.22	0.15	18.88	0.07	19.01	20.46	20.34	19.80	20.10	21.66	21.53	21.87	21.25	21.17	21.36	21.46	21.04	21.43	20.64	22.35	20.88	21.56	21.24	21.98	21.40	22.06	21.45	21.37	21.38	21.28	22.06	21.40	21.68	20.76	21.77	
Comment	08-07 199.97 Fracture	08-04 122.36 ? 91	08-04 166.16 Apy	08-04 115.75 Fracture	08-04 122.36 ? 92	08-04 162.87 Py	08-04 156.21 fracture	08-04 166.16 Apy	08-07 226.33 As	10-77 121.60 fracture	08-04 166.16 Py	08-04 115.75 Fracture	08-04 156.21 fracture	08-04 162.87 Py	08-04 162.87 Apy	08-04 156.21 fracture	08-04 156.21 fracture	SC-10 As 11	SC-10 As 10	08-07 175.80 As	08-04 166.16 Apy	08-07 175.80 As	08-04 122.36 As 102	08-04 122.36 As 106	08-04 166.16 Apy	08-04 122.36 As 95	08-07 175.80 As	08-04 122.36 As 104	08-04 122.36 As 89	08-04 122.36 As 101	08-07 175.80 As	08-04 122.36 As 105	08-07 175.80 As	08-04 122.36 As 103	08-04 122.36 As 94	SC-10 As 23	SC-10 As 24	SC-10 As 36	08-04 122.36 As 100	08-04 122.36 As 113	SC-10 As 35	08-07 226.33 As	10-77 121.60 Apy	

Total 98.23 98.23 98.25 99.25 99.28 99.26 99.26 99.26 99.26 99.25 99.26 99.25 99.25 99.26 99.25 99.26 99.26 99.27 99.27 99.26 99.27 99.26 99.27 99.27 99.27 99.26 99.27 99.27 99.26 99.27 99.27 99.26 99.27 99.27 99.26 99.27 99.27 99.26 99.27 99.27 99.26 99.27 99.27 99.26 99.26 99.27
<u>و</u>
ы Н
≥
Z
ອັ
Bi wt.%
ද
Au
Sb 2882 2882
ž
ත ද
đ
Co 324 3353 353 357 357 357 357 357 357 357 35
No. W5
л wt.% /
Fe wt.% Z 34.65 34.65 34.65 34.65 34.66 34.67 34.67 34.76 34.70 34.70 34.72 34.99 35.00
S wt % 20.98 20.98 21.13 21.140 21.13 21.146
Comment 08-04 166.16 Apy 10-77 121.60 Apy SC-10 As 18 10-77 121.60 Apy 08-04 122.36 As 93 10-77 121.60 Apy 08-04 122.36 As 85 08-04 122.36 As 85 08-04 122.36 As 81 08-07 174.62 As 08-07 174.62 As 08-04 166.16 Apy 08-04 166.16 Apy 08-04 122.36 As 80 08-04 166.16 Apy 08-04 122.36 As 82 08-04 166.16 Apy 08-04 122.36 As 82 08-04 166.16 Apy 08-04 122.36 As 81 08-04 125.36 As 81 08-04 125.36 As 80 08-04 125.75 Fracture 08-04 125.75 Fracture 08-04 125.75 Fracture

Total 99.42 99.28 98.78 98.78 98.49 99.05 99.44 99.05	99.30 99.39 99.15 98.92 98.98 99.06 99.06	99.16 99.71 99.27 99.28 99.27 99.27 99.17 99.17 99.17 99.17 99.17 99.17 99.17 99.17 99.17	99.25 99.25 99.25 99.25 99.25 99.25 99.25 99.25 99.25 99.22
Te			
Н в			
≥			
ïŻ		CP CP	1
gM			
Bi wt.%			
Pb			
Au			
Sb			
Sn			
Ав			
ਹ			
Co 373	314 314 343	390 378 398 398 314 314 352	437 343
As wt.% 42.71 41.65 42.01 42.45 41.11 41.33 41.33 41.33 41.33 42.14	42.41 43.25 43.25 41.41 41.32 41.84 43.39	42.60 42.77 42.77 42.77 42.77 42.05 42.65 41.21 41.84 41.19 41.68	41.29 41.29 41.29 41.29 42.58 42.58 41.45 41.43 41.97 42.13
. wt.%			
11, 10, 11, 10, 11, 10, 11, 10, 10, 10,	112 113 116 116 116	2 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 3 3 3 3 3 3 4 5 5 5 5 5
Fe w 35.0 35.1 35.1 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2	3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.		32 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
S wt % 20.97 21.75 21.36 21.36 21.37 21.37 21.37 21.37 21.32 21.32	21.12 20.46 21.28 21.83 21.83 21.66 21.66	20.44 20.69 20.69 21.19 21.19 21.12 21.21 21.27 21.27 21.27 21.27 21.27 21.27 21.57	21.54 21.31 21.41 21.51 21.92 21.96 21.96 21.96 21.54 21.54 21.54 21.54 21.54
Comment 10-87 113.40 Apy 08-04 166.16 Apy 08-04 125.36 As 08-07 175.67 As 10-87 113.40 Apy 08-07 175.80 As 08-04 162.87 Apy 08-07 175.80 As 08-07 175.80 As	08-07 226.33 As 08-07 217.77 Py 08-04 162.87 Py 10-87 113.40 Apy 08-04 162.87 Apy 10-87 113.40 Apy 10-87 113.40 Apy 08-07 226 33 As	08-07 174.62 Aas 10-87 113.40 Apy 08-07 217.77 Py SC-10 As 28 08-01 162 87 Py 08-07 174.62 As 08-07 174.62 As 08-07 174.62 As 08-07 121.60 Apy 08-07 126.67 As 08-07 126.67 As 08-07 1667 As 08-07 176.67 As 08-07 176.67 As	08.07 226.33 As 10-87 113.40 Apy 08-07 176.67 As 10-87 113.40 Apy 08-07 176.67 As 08-07 176.67 As 08-07 176.67 As 08-07 175.63 As 08-07 175.80 As 08-07 175.80 As 08-07 175.80 As

Total	46. <i>6</i> 6 77 00	98.86	99.52	98.95	99.38	99.39	99.20	99.49	99.21	98.98	99.44	100.08	99.59	99.65	98.56	99.49	99.25	99.22	99.63	99.02	79.62	99.83	99.70	99.41	99.63	99.16	99.56	99.20	99.72	99.78	98.46	99.65	98.90	<u>99.60</u>	77.66	99.83	98.99	98.99	98.50	99.36	99.39	77.66	99.38
Te																																											
Hg																																											
A																																											
Ni							649																																				
Mg																																											
Bi wt.%																																											
Ъb																																											
Au																																											
\mathbf{Sb}																																											
Sn																																											
Ag																																											
Cu																																											
Co								404									1138				404		423	428	409		382						343								353		
As wt.%	41.76	42.17	41.84	41.70	42.52	42.19	41.22	41.86	42.53	42.66	42.44	42.35	41.26	41.71	41.33	41.90	40.63	41.19	41.98	40.84	42.34	42.64	42.45	41.60	42.18	41.37	42.03	41.54	42.36	41.77	41.27	41.98	40.69	42.71	42.07	41.99	42.22	40.39	41.27	41.83	41.69	41.91	41.19
n wt.%																																											
Fe wt.% Z	35.26	35.26	35.27	35.27	35.29	35.30	35.30	35.30	35.30	35.30	35.30	35.30	35.31	35.31	35.31	35.32	35.33	35.33	35.33	35.34	35.34	35.35	35.36	35.36	35.36	35.37	35.38	35.38	35.38	35.39	35.39	35.41	35.41	35.41	35.42	35.42	35.43	35.44	35.44	35.44	35.44	35.45	35.47
S wt.%	21.65 21.69	20.91	22.07	21.65	21.02	21.36	22.04	21.61	20.85	20.82	21.33	21.98	22.96	21.99	21.39	21.84	22.96	22.18	21.85	22.31	21.42	21.35	21.43	21.87	21.51	21.87	21.68	21.95	21.52	21.99	21.21	21.72	22.26	20.98	21.92	21.88	20.99	22.66	21.56	21.67	21.75	21.89	22.14
Comment	05-07 113 40 AS	08-07 174.62 As	08-07 175.80 As	08-07 176.67 As	08-07 226.33 As	08-07 176.67 As	08-07 226.33 As	08-04 166.16 Apy	08-07 175.80 As	08-07 174.62 As	08-07 175.80 Po	08-07 176.67 As	08-04 122.36 As 79	10-77 121.60 Apy	08-07 174.62 As	08-07 176.67 As	SC-10 As 31	08-07 175.80 As	08-07 175.80 As	10-77 121.60 Apy	08-07 175.80 As	10-87 113.40 Apy	08-04 166.16 Apy	08-07 176.67 As	08-04 166.16 Apy	08-07 174.62 As	08-07 176.67 As	08-07 176.67 As	08-04 166.16 Apy	08-07 175.80 As	08-07 176.67 As	08-07 175.80 As	08-04 162.87 Apy	08-07 217.77 Py	08-07 176.67 As	08-07 176.67 As	08-07 174.62 As	08-04 166.16 Apy	08-07 174.62 As	08-07 175.80 As	08-07 174.62 As	08-07 175.80 As	10-77 121.60 Apy

Total 99.15 99.78 99.80 99.81 99.33 99.36	99.44 99.44 99.45 99.22 99.37 99.37 99.61 99.65 99.68	99.52 99.54 99.54 99.54 99.54 99.53 99.53 99.53 99.53 99.53 99.53 99.53	9.53 99.53 99.57 99.36 99.36 99.36 99.55 99.55	99.75 99.63 99.08 99.08 99.72
Te				
Hg				
≥				
ïZ				
Mg				
Bi wt.%				
Pb				
Ч				
Sb	2547			
Sn				
S0 V				
Cu				
Co 330 507 421 341	950 326 368 379	3396 3310 3311	57E	321 320
 As wt.% A1.55 41.55 41.24 41.95 40.99 40.88 	39.61 40.61 42.19 42.19 42.00 42.19 41.18 41.18 41.13 41.00 42.78	41.42 41.42 41.42 41.42 41.42 41.45 41.46 41.46 41.46 41.32 41.32 41.32	41.27 41.41 41.41 41.79 41.79 41.14 40.96 41.03	40.90 42.21 40.90 40.97 41.18
Zn wt.%				
Fe wt.% 35.47 35.48 35.48 35.48 35.49 35.49 35.49	35.51 35.51 35.55 35.55 35.55 35.55 35.55 35.55 35.55 35.55 35.55 35.55 35.55 35.55 35.55	35.57 35.57 35.58 35.59 35.59 35.60 35.60 35.60 35.60 35.60 35.60	35.61 35.61 35.61 35.62 35.62 35.62 35.63 35.63 35.63 35.63 35.63	35.63 35.64 35.64 35.64 35.66
S wt.% 21.66 21.54 21.13 21.13 22.27 22.37	22.83 21.59 21.63 21.63 21.63 21.63 21.95 21.95 21.95 21.95 21.87 21.95 21.37	21.33 21.53 21.53 21.86 21.86 21.88 21.88 21.79 21.79 22.73 22.73 22.73	21.91 21.91 21.91 21.70 21.91 21.72 21.91 21.72 21.72 21.72 21.72 21.72 21.72 21.72 21.72 21.72 21.72 21.91 21.72 21.91 21.72 21.91 21.72 21.91 21.72 21.91 21.72 21.91 21.72 21.91 21.72 21.91 21.72 21.91 21.72 21.91 21.72 21.91 21.72 21.912	22.146 22.17 22.17 21.91 22.26
Comment 08-07 174.62 As 08-07 176.67 As 08-07 125.63 As 10-87 113.40 Apy 08-07 162.87 Apy 08-04 166.16 Apy	SC-10 As 27 08-07 175.80 As 08-07 175.80 As 08-07 176.67 As 08-07 175.80 As	10-77 121.60 Apy 10-77 121.60 Apy 08-07 175.80 As 10-87 113.40 Apy 08-07 175.80 As 08-07 175.80 As 08-07 176.67 As 10-87 113.40 Apy 08-04 162.87 Py 08-04 162.87 Py 08-07 175.80 As	08-07 176.67 As 08-07 176.67 As 08-07 176.67 As 08-07 174.62 As 08-07 174.62 As 08-07 175.80 As 08-07 175.80 As 08-07 174.62 As 10-77 121.60 Apy	10-7/11.20.4py 10-87113.40.4py 08-07175.80 As 08-07726.33 As 08-077126.53 As

Total 99.87 99.22 99.62 99.62 99.64 99.41 99.35 99.84 99.84 99.84 99.84	99.83 99.65 99.65 99.65 99.65 99.65 99.26 99.65 99.26 99.65 99.26 99.26 99.26 99.28 99.28	98.78 98.78 98.73 99.14 99.19 98.60 98.60 98.60 98.60 98.60 98.70 98.70 98.70 99.76
ца Ц		
Η α		
*		
Ni 907		
Ma		
Bi wt.%		
ЪЪ		
Au		1641
s		
Su		3713
Ag		
õ	390	5126
Co 354 338 338 324	334 334 379 362 393 403 403 322	361 524 355 355 338 338 337 337
As wt.% 41.45 41.10 41.10 41.10 40.90 40.82 40.82 40.45 40.45 40.45 40.45 40.45 40.45 40.45 40.45 40.45 40.45 40.45 40.45 40.45 40.45 40.95 40.15 40.45 40.45 40.45 40.45 40.45 40.45 40.45 40.55 40.15 40.55 40.15 40.55 40.15 40.55 40.45 40.55 40.45 40.5	$\begin{array}{c} 40.73 \\ 41.21 \\ 41.21 \\ 40.028 \\ 40.09 \\ 40.09 \\ 43.55 \\ 43.55 \\ 43.55 \\ 43.55 \\ 1.66 \\ 0.17 \\ 0.17 \\ 1.53 \\ 1.53 \\ 1.53 \end{array}$	1.10 0.09 0.06 0.21 0.17 1.49 0.11 1.49 0.11 1.00 0.05 1.50
Zn wt.% ,		
Fe wt% 35.69 35.69 35.74 35.74 35.74 35.74 35.75 35.75 35.75 35.76 35.77 35.77	35.81 35.83 35.88 35.88 35.88 35.89 35.89 35.89 44.99 44.99 44.99 44.99	45.00 45.03 45.03 45.09 45.09 45.10 45.11 45.11 45.15 45.16 45.17 45.16 45.17 45.19
S wt.% 22.11 21.96 22.17 22.37 22.09 22.66 22.16 22.16 22.16 22.16 22.16 22.16 22.16 22.16 22.16 22.17 22.27 22.17 22.27 22.17 22.27 27 22.27 27 27 27 27 27 27 27 27 27 27 27 27 2	22.75 22.17 22.17 22.17 22.17 22.17 22.17 22.17 22.17 51.125	51.01 52.20 51.32 51.32 51.40 51.40 51.79 51.79 51.79
Comment 08-07 176.67 As 08-07 176.67 As 08-07 175.80 As 08-07 174.62 As 10-87 113 40 Apy 08-07 175.80 As 08-07 175.80 As 08-07 175.80 As 08-04 122.56 As 08-04 122.56 As 08-04 122.56 As 08-04 125.80 As 08-07 175.80 As 08-07 175.80 As 08-07 175.80 As	10-87 113.40 Apy 08-07 175.80 As 08-07 175.80 As 08-04 166.16 Py 08-04 166.16 Py 08-04 166.16 Py 08-04 165.16 Py 08-04 165.15 Py 08-04 115.75 Py 08-07 105 V	08-07, 120.53 Fy 08-07, 174.62 Py 10-87, 113-40 Apy 8C-10 Py 9 SC-10 Py 3 SC-10 Py 5 SC-10 Py 5 SC-10 Py 7 08-07, 174.62 Po 08-07, 174.62 Po 08-07, 174.62 Py 08-07, 217.77 Py 08-07, 216.33 Py 08-07, 226.33 Py 08-07, 226.33 Py

Total 99.46 99.36 99.36 99.36 99.27 99.27 99.50 98.93 98.93	99.85 98.63 99.44 100.07 99.41 99.07 99.78 99.78	98.63 99.10 99.34 99.34 99.34 100.06 99.77	99.58 100.13 99.34 99.19 99.79 99.79 99.79	99.57 99.65 99.65 99.83 98.93 98.93 99.61 99.61	100.05 100.04 100.20 99.97
Ic					
щ					
æ					
Ż					
Mg	292		4 	c/1	
Bi wt.%					
Ъ					
Au					
S					
Sn					
Ag					
5 Cr	441	427			432 374
Co 392 363 370 314	528 336 417 472 340	436 370 482	357 332 342 369	523 407	432 387
s wt.% 1.01 0.32 1.02 2.21 0.09 0.32 0.32	1.36 1.06 0.11 1.08 0.27 0.34 1.37	0.53 1.54 0.10 0.05	0.05 0.38 0.28 1.48 1.05 0.15 0.15 0.06	0.09 0.92 0.22 0.08 0.11 0.31	0.45 0.20 1.06 1.15
Zn wt.% A					
Fe wt% 7 45.27 45.27 45.27 45.28 45.33 45.41 45.41 45.44 45.44	45.48 45.51 45.51 45.51 45.54 45.54 45.54 45.55	45.55 45.55 45.57 45.57 45.59 45.59 45.59	45.60 45.61 45.61 45.62 45.68 45.68 45.68	45.68 45.69 45.71 45.72 45.72 45.72 45.73	45.73 45.77 45.78 45.78
S wt % 52.92 53.23 52.81 52.81 53.23 53.23 53.23 53.39 51.95 51.79	51.75 50.81 53.53 52.09 51.98 51.98 51.97	51.42 53.25 53.42 53.42 53.35 53.35 53.75	53.51 53.64 53.03 51.70 51.36 52.33 53.15 53.15 53.15	53.34 51.76 53.34 53.45 52.90 52.30 53.30 52.11	52.80 52.64 52.19 52.00
Comment 08-04 122.36 Py 63 SC-10 Py 2 SC-10 Py 8 08-04 166.16 Py 09-44 192.02 Py 44 08-04 122.36 Py 62 09-44 192.02 Py 48 08-04 122.22 Py 48 08-04 166.16 Py	08-07 226.33 Py 08-04 162.87 Py 09-44 192.02 Py 58 08-04 122.36 Py 61 08-07 174.62 Py 08-07 192.0 Py 1 SC-10 Py 1	08-07 216.74 Py 09-44 192.02 Py 49 08-04 162.87 Py 09-44 192.02 Py 53 09-44 192.02 Py 56 08-07 217.77 Py 09-44 192.02 Py 56	09-44 192.02 Py 55 08-04 122.36 Py 64 08-04 166.16 Py 08-07 174.62 Py 08-07 174.62 Py 08-07 216.74 Py 09-44 192.02 Py 39 09-44 192.02 Py 39	09-44 192.02 Py 5/ 09-44 192.02 Py 59 08-07 192.02 Py 60 09-44 192.02 Py 60 09-44 192.02 Py 43 08-07 217.77 fracture 09-44 192.02 Py 37 08-07 174.62 Py	08-07 226.33 Py 08-07 226.33 Py 08-07 175.80 Py 08-07 226.33 Py

Total 99.96 99.30 99.80 99.51 99.67 99.67 99.67 99.67 100.18 99.50 99.50 99.50 99.22	99.94 99.91 100.49 99.12 99.67 99.67 100.43	99.72 99.45 99.45 99.26 100.37 100.86 99.65 99.63 99.33	100.07 100.13 100.14 100.27 99.38 99.77 100.05 103.27 100.27
Ie			
Щ			
≽			
ΪŹ			312
ω	466		176
Bi wt.%			
9d			
Au			
Sb			
S			
Ag			435
Ğ	538 413		
Co 380 363 363 395 429 429 324	334 414 448	444 340 492 351 351	398 331 314
As wt % 0.17 0.11 0.16 0.93 0.16 0.16 0.16 0.77 0.75 0.33 0.35 0.33 0.36 0.33 0.36	0.27 1.19 0.05 0.73 0.24 0.26	$\begin{array}{c} 0.55\\ 0.29\\ 0.20\\ 0.27\\ 0.48\\ 0.75\\ 0.75\\ 0.22\\ 0.07\\ 0.07\end{array}$	0.14 0.68 0.57 0.34 0.34 0.31 1.00 0.18 0.18
Zn wt%			
Fe wt % 45.79 45.80 45.80 45.81 45.82 45.82 45.83 45.84 45.84 45.84 45.84 45.85 45.84 45.85 45.85	45.85 45.86 45.86 45.87 45.87 45.88 45.88 45.88 45.88	45.89 45.89 45.90 45.92 45.92 45.93 45.95 45.95	45.97 45.99 45.99 45.99 46.00 46.01 46.01
S wt.% 52.81 51.95 51.95 52.93 51.66 51.66 51.35 51.35 51.35 52.14 51.35 51.35 51.35 51.35 51.52 51.56 51.66	52.54 51.55 53.05 53.25 51.53 51.86 51.86 51.86 51.86 51.28	52.21 51.94 51.76 51.76 52.42 52.90 51.95 51.95 53.67	52.63 53.12 52.76 52.76 51.83 51.76 51.76 55.30 55.30 53.44
Comment 08-07 217.77 Py 08-07 217.77 Py 08-07 216.74 Py 08-07 226.33 Py 10-77 121.60 Py 08-07 199.97 Py 08-07 199.97 Py 08-07 199.97 Py 08-07 199.97 Py 08-07 1124.62 Py 10-87 113.40 Apy 10-87 113.40 Apy 08-07 172.36 Py 66 08-04 122.36 Py 66	08-07 226.33 Py 08-07 226.33 Py 08-04 125.21 Py 08-04 156.21 Py 08-04 156.21 Py 08-07 156.21 Py 08-07 156.21 Py 08-07 216.74 Py 08-07 216.74 Py 10-77 121.60 Py	08-07 216.74 Py 08-07 216.74 Py 08-07 216.74 Py 08-07 216.74 Py 08-07 216.74 Py 08-07 226.33 Py 08-07 127.77 Py 08-07 199.97 Py 08-04 122.36 Py 87 08-04 122.36 Py 87	08-04 166.16 Py 08-04 122.36 Py 119 08-04 122.36 Py 86 08-04 125.21 Py 08-04 156.21 Py 08-04 155.21 Py 08-04 155.21 Py 08-04 162.87 Py 08-04 162.87 Py 08-04 115.75 Fracture 08-07 122.633 Py 08-04 112.23 Py

Total 100.35 100.55 100.57 100.57 100.57 100.57 100.57 100.57 100.57 100.57 100.57 100.57 100.57 100.57 100.57 100.57 100.57 100.55 100.57 100.55 100
<u>1</u>
5709
≥
Ż
δ Ω
Bi wt.%
ය ය
A.
ŝ
S.
ao K
330 C
Co 306 362 362 3501 353 371 340 491 312 312 312 312 312 312 312 312 312 31
As wt % 0.21 0.21 0.21 0.21 0.24 0.21 0.24 0.21 0.24 0.25 0.26 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Zh W1.% .
$\begin{array}{c} \text{Fe}\ w_{1}^{w}, \\ 46.25\\ 46.25\\ 46.25\\ 46.26\\ 46.26\\ 46.26\\ 46.26\\ 46.26\\ 46.22\\ 46.22\\ 46.22\\ 46.22\\ 46.22\\ 46.22\\ 46.23\\ 46.32\\ 46.32\\ 46.33\\ 46.33\\ 46.33\\ 46.35\\ 46.$
S wt% 5 S wt% 5 S wt% 5 S wt% 5 S 2.65 S 2.6
Comment 08-07 176.67 Py 08-07 176.67 Py 08-07 126.64 Py 08-07 126.64 Py 08-07 126.67 Py 08-07 15.66 Py 08-07 155.80 Py 08-07 175.80 Py 08-07 175.80 Py 08-07 175.67 Py 08-07 175.67 Py 08-07 175.67 Py 08-07 175.67 Py 08-07 175.60 Py 10-77 121.60 Py 10-77 121.60 Py 10-77 121.60 Py 10-77 121.60 Py 10-77 121.60 Py 08-07 175.80 Py 08-07 175.67 Py 08-07 175.80 Py 08-07 175.80 Py 08-07 175.80 Py 08-07 175.67 Py 08-07 216.74 Py 08-07 216.74 Py 08-07 216.74 Py 08-07 216.74 Py 08-07 216.77 Pight 08-07 216.74 Py 08-07 216.77 Pight 08-07 216.77 Pight 08-07 216.77 Pight 08-07 216.77 Pight 08-07 216.77 Py 08-07 216.77 Py 08-07 216.77 Py 08-07 216.77 Py 08-07 226.33 Py 08-07 226.33 Py 08-07 226.33 Py 08-07 226.33 Py 08-07 226.33 Py 08-07 226.33 Py

Total 101.36 100.51 101.27 100.36 100.37 100.37 100.37 100.55 100.55 100.55 100.57 100.57 100.57 100.57 100.57 100.57 100.57 100.57 100.57 100.57 100.55 100.57 100.55 100
e H
а Н
≥
ź
Mg 309
Bi wt.%
£
Au
ŝ
S
a K
Cu 3381 500 500 500 500 500 500 500 500 500 50
Co 325 406 389 420 332 482 330 482 332 485 3310 313 310 313 310 313 310 313 329 329 332 332 332 332 332 332 332 33
As wt.% 1.53 0.12 0.24 0.28 0.24 0.24 0.24 0.24 0.24 0.25 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37
Zn wt % .
Fe wt. $\%$: 46.39 46.40 46.40 46.40 46.40 46.40 46.40 46.40 46.42 46.42 46.42 46.42 46.42 46.42 46.42 46.42 46.45 46.42 46.45 46.45 46.45 46.45 46.45 46.45 46.45 46.45 46.45 46.45 46.5
S _{W1%} 52.34 52.24 52.24 52.21 52.21 52.21 52.24 52.25 52.25 52.25 52.25 52.25 52.24 52.28 52.24 52.23 52.25 52.55 52.55 52.55 52.55 52.55 52.55 52.55 52.55 52.55 52.55 52.55 52.5
Comment 08-07 175.80 Py 10-87 113.40 Py 08-07 175.67 Py 08-07 175.67 Py 08-07 115.57 Py 08-07 175.60 Py 08-07 175.80 Py 08-07 175.67 Py 08-07 199.97 Fracture 08-07 199.97 Fracture 08-07 199.97 Fracture 08-07 199.97 Fracture 10-87 113.40 Apy 08-07 115.75 Py 08-07 199.97 08-07 199.97 08-07 199.97 08-07 199.97 08-07 199.97 Py 08-07 199.97 Py 08-07 199.97 Py

Total 100.34 100.35 100.66 100.65 100.65 100.65 100.65 100.65 100.75 100	
e	
Hg 6694	
≥	
ź	
Si Contra de la co	
Bi wt.%	
4 ₄	
n Y	
ŝ	
ž	
50 ≮	
Cu 423	
Co 352 423 406 415 415 417 339 6 81 417 3326 3326 3326 3326 3327 331 417 337 337 337 337 337 337 337 337 337 3	
Ns M. 50 413 413 413 413 413 413 413 413 413 413	
.h. wt.% /	
$ \begin{array}{l} \label{eq:constraint} \end{tabular} $	
S wt.% 52.91 52.91 52.91 52.91 52.93 52.93 52.95 52.65 52.75 52.65 52.75 52.65 52.75 55.75 55.75 55.75 55.75 55.75 55.55 55.75 55.55	
Comment 08-07 216.74 Py 08-07 216.74 Py 08-07 19.97 Fracture 00-87 113.40 Apy 08-07 199.97 Py 08-07 199.97 Py 08-07 199.97 Py 08-07 199.97 Py 08-07 174.62 Zn 08-07 174.62 Zn 08-07 174.62 Zn 08-07 174.62 Zn 08-07 174.62 Zn 08-07 174.62 Zn 08-07 175.80 Py 08-07 175.75 Py 08-07 199.97 Py 08-07 199.97 Py 08-07 175.67 Py 08-07 175.67 Py 08-07 175.67 Py 08-07 176.67 Py 08-07 176.67 Py 08-07 176.67 Py 08-07 176.67 Py 08-07 176.67 Py 08-07 199.97 Py 08-07 176.67 Py 08-07 199.97 Py 08-07 176.67 Py 08-07 176.67 Py 08-07 199.97 Py 08-07 199.97 Py 08-07 199.97 Py 08-07 199.97 Py 08-07 199.97 Py	

Total 100.92 101.79	100.85 101.10	100.29	100.22	100.35	100.52	101.05	100.16	100.29	C/ .001	101 59	101.37	100.59	100.86	101.22	100.94	101.40	101.50	101.34	99.95	100.83	100.80	101.27	101.19	10.101 98.61	98.06	98.62	98.20	98.19	98.52	98.07	98.63	98.25	99.10	98.67	98.39	98.90
Te																																				
Hg	6742		6337	6769	7526	7134	7272	6358	0611	100/		6166	7087		6981				6409	6099	6515		2012	0017												
×																																				
ïZ																									2510	2456	2042	2364	2612					2334		2485
Mg		317																																		
Bi wt.%																																				
Pb																																				
Au																																				
Sb																																				
Sn																																				
Ag																																				
Cn																																				
Co 491 361	424	346	359 461	396	316		405						341						336	377	495	397	402	394	1394	1407	1419	1406	1491	492	374		451	1464	334	1357
As wt.% 0.06 0.96 0.08	0.13 0.18 0.36	0.37	11.0	0.28	0.19	0.13	0.23	0.14	47.0	0.14	0.05		0.32	0.10		0.19	0.81	0.15		0.29	0.25	0.14	0.35	0.06							0.03	0.07			0.05	
Zn wt.%																																				
Fe wt.% 46.78 46.81 46.81	46.83 46.83 46.86	46.87	46.87 46.00	46.95	46.95	46.95	46.97	46.97	41.02	47.02 47.04	47.04	47.06	47.07	47.08	47.08	47.10	47.12	47.15	47.16	47.17	47.33	47.36	47.49	58 32	58.37	58.37	58.37	58.39	58.45	58.50	58.50	58.51	58.56	58.56	58.58	58.59
S wt.% 52.74 52.88 52.47	53.30 52.83 52.73	51.63	53.18 52.06	52.60	52.88	53.39	52.60	52.81	16.70	53.16	53.03	53.24	52.89	52.72	53.31	52.69	52.42	52.68	52.53	52.92	53.03	53.36	52.76	36.95	39.12	39.32	38.94	38.89	39.28	38.67	39.24	39.01	39.41	39.33	39.01	39.28
Comment 08-04 115.75 Py 08-07 175.80 Py 08-07 199 97 Pv	09-51 74.52 Py 7 08-07 216.74 Py 08-07 216.74 Py	08-07 199.97 Py	09-51 74.52 Py 6	09-51 74.52 Py 16	09-51 74.52 Py 9	09-51 74.52 Py 8	09-51 74.52 Py 15	09-51 74.52 Py 10	00 51 74 52 P-12	09-31 /4.32 FY 13 08-04 115 75 hright	08-07 174.62 Pv	09-51 74.52 Py 18	09-51 74.52 Py 12	08-07 217.77 bright	09-51 74.52 Py 19	08-04 156.21 Py	08-07 217.77 bright	08-04 115.75 bright	09-51 74.52 Py 22	09-51 74.52 Py 17	09-51 74.52 Py 14	08-04 122.36 Py 71	08-04 122.36 Py 70	08-07 175 80 Po	10-73 408 Pv 124	10-73 408 Py 144	10-73 408 Py 135	10-73 408 Py 134	10-73 408 Py 121	08-07 226.33 ?	08-07 175.80 Po	08-07 175.80 Po	08-07 176.67 Po	10-73 408 Py 126	08-07 175.80 Po	10-73 408 Py 122

Total	98.63	98.52	98.12	98.53	98.54	99.01	98.32	98.37	98.32	98.57	98.37	98.99	98.43	98.62	98.95	98.95	98.80	99.24	99.34	98.01	98.24	98.01	98.83	98.71	99.17	99.03	99.12	99.67	100.01
Te																													
Hg																													
M																													
Ņ	2651	2485	2525																										
Mg																													
Bi wt.%																													4333 ppm
$^{\mathrm{Pb}}$																													
Au																													998270
\mathbf{Sb}																													
Sn																													
Ag																													
Cu														385															
Co	1209	1343	1295	358	472		386	447		416	349				511		485	413			356	405		451	355		371	351	
As wt.%				0.05	0.04	0.05	0.03		0.04					0.03	0.03	0.06			0.06		0.04	0.05	0.06		0.04			0.04	
n wt.% /																													
Fe wt.% Zi	58.61	58.61	58.63	58.64	58.68	58.71	58.73	58.74	58.80	58.82	58.82	58.88	58.88	58.90	58.96	58.98	59.02	59.05	59.13	59.13	59.14	59.27	59.31	59.33	59.47	59.55	59.55	59.66	
S wt.%	39.32	39.04	38.72	38.93	38.90	39.41	38.57	38.47	38.59	39.01	38.58	39.09	38.34	38.67	39.05	38.96	38.76	39.23	39.12	37.65	38.31	37.61	38.98	38.95	38.62	38.66	38.52	39.01	
Comment	10-73 408 Py 120	10-73 408 Py 125	10-73 408 Py 133	08-07 175.80 Po	08-07 174.62 Po	08-07 175.80 Po	08-07 226.33 ?	08-04 115.75 Po	08-07 174.62 Po	08-07 175.80 Po	08-07 226.33 ?	08-07 174.62 Po	08-04 115.75 Po	08-07 226.33 ?	08-07 174.62 Po	08-07 175.80 Po	08-04 115.75 Po	08-07 175.80 Po	08-07 175.80 Po	08-04 115.75 Apy	08-07 175.80 Po	08-04 115.75 Po	08-04 122.36 Po 116	08-04 122.36 Po 115	08-07 175.80 Po	08-07 175.80 Po	08-07 174.62 Po	08-07 175.80 Po	Au

Te	573	566 200	570	568	575	589	567	563		580	598			417	416		411	604	407	611	411	417	424	418					604	605	420			605	601								596
Hg	2122	2095	1965	2013	2072	2207	1955	2063		1879	2083			3330	3406		3410	2137	3369	2155	3318	3384	3316	3310						2103	3310			3439	2176								3546
Μ	1221	1240	1217	1197	1196	1225	1197	1243		1217	1271							1242		1261									1328	1238				1308	1247								1322
Ņ	392	388	382	381	380	393	372	393	394	391	400	397	390	265	262	388	262	401	257	403	265	262	262	258	392	400	394	389	392	392	262	380	388	407	396	390	389	389	399	400	404	400	405
Mg	213	208	203	201	205	228	204	214	191	206	239	191	189	214	212	176	216	227	210	228	212	214	208	215	190	211	195	187	183	230	210	202	192	222	236	190	201	174	209	212	206	208	730
Bi	2710	2686	2623	2587	2630	2541	2587	2679	2569	2683	2665	2593	2662	2060	2097	3264	2083	2707	2054	2768	2098	2071	2141	2135	2662	2630	2627	2624	3454	2620	2200	2668	2587	2752	2671	2692	2598	3364	2732	2675	2671	2698	2765
Pb	1928	1901	1861	1793	1821	1784	1870	1832		1858	1842							1826		1824									4822	1824				2793	1856								2953
Αu	1887	2095	1757	1894	1743	1995	1835	1568	950	1862	1961	934	1011	1872	1887	1538	2091	1944	2124	1854	2061	1742	1946	2170	941	1013	954	939	2726	1939	1991	679	965	1989	1926	981	1023	1537	1076	1005	1051	1044	2060
Sb	1117	1132	1081	1090	1146	1185	1073	1152	1060	1145	1184	1112	1156	849	820	1212	796	1173	816	1181	826	825	832	802	1139	1197	1127	1121	1179	1183	812	1106	1117	1187	1192	1114	1127	1141	1194	1155	1172	1130	1205
Sn	1131	1083	1062	1105	1127	1167	1071	1083	1072	1129	1167	1085	1068	859	795	1268	836	1162	825	1180	838	815	828	871	1075	1167	1144	1092	1267	1143	842	1133	1126	1158	1159	1129	1108	1238	1186	1131	1173	1153	1158
Ag	594	579	591	568	586	628	597	595	587	582	639	559	583	441	463	705	441	641	441	636	452	455	453	458	586	640	606	584	701	616	444	581	605	621	614	602	571	704	636	621	624	631	612
Cu	471	464	461	460	466	472	461	469	473	472	488	475	471	389	387	464	386	491	391	483	382	385	390	384	472	482	467	473	462	473	387	451	467	484	477	474	475	462	488	481	483	484	488
Co	378	375	370	369	370	383	367	380	384	379	388	381	378	272	268	387	266	388	271	388	265	271	260	258	377	392	379	383	375	379	261	367	379	388	390	379	385	381	389	390	389	387	385
$\mathbf{A}_{\mathbf{S}}$	355	349	339	345	345	369	344	357	554	352	383	564	562	699	668	563	640	358	638	375	634	665	640	668	575	614	570	547	557	371	622	586	561	649	383	563	574	566	638	611	613	612	666
Zn	56	61	42	46	42	63	43	65	63	50	71	64	59	30	30	39	33	69	29	73	31	24	29	25	64	83	62	71	27	63	23	45	55	65	64	53	58		<i>LL</i>	68	72	65	70
0	6 S	. 5 . 5	-1	5	ŝ	5 2	9 5	6 5	1 5	4 5	0 5	1 5	3 5	4 5	1 5	2 6	4 5	0 5	6 5	3	2 5	9 5	3 5	7 5	1 5	5 5	3 5	4 5	9 6	8	5 5	4 5	6 5	5 5	3 5	2 5	0 5	-	6 5	3 5	6 5	1.	4
Ĥ	33	4	40	38	33	40	40	40	40	40	43	40	40	30	30	41	29	42	29	42	30	30	30	30	41	42	39	. 41	41	41	30	39	40	42	42	. 41	42	.42	42	42	42	4	43
S	429	445	408	397	388	363	406	430	410	425	420	437	439	511	489	489	513	385	530	370	519	501	488	491	409	390	443	394	487	378	481	415	399	326	378	424	408	414	405	374	369	408	979
Comment	08-07 216.74 Bi	08-07 216.74 Bi	08-07 216.74 B1	08-07 216.74 Bi	08-04 166.16 Apy	08-07 216.74 Bi	08-07 226.33 ?	08-04 166.16 Apy	08-04 166.16 Apy	SC-10 Sp 13	SC-10 Py 30	08-04 115.75 Fracture	SC-10 Py 29	08-07 216.74 Bi	SC-10 Sp 14	08-07 216.74 Bi	SC-10 Py 17	SC-10 Py 16	SC-10 Po 20	SC-10 Sp 12	08-04 166.16 Apy	08-04 115.75 Fracture	08-04 156.21 fracture	08-04 166.16 Apy	08-04 122.36 ? 112	08-07 216.74 ?	SC-10 Py 15	08-04 156.21 fracture	08-04 166.16 Apy	08-04 122.36 ? 109	08-07 216.74 ?	08-04 166.16 Apy	08-04 156.21 fracture	08-04 115.75 Fracture	08-07 199.97 Fracture	08-04 115.75 Fracture	08-07 199.97 Fracture	08-07 199.97 Fracture	08-04 122 36 9 111				

Sulphide data detection limits 3 sigma (ppm)

Te	596	598	598		421 415 641	410 447 414	412 406 414 415 409 401	404 418 416 414 417 417 417	407 406 412 412 414 414 420 411
Hg	3459	3412	2007		2955 3064 1740	1878 3019 3013	3034 2166 3014 3025 3040 2085	2005 2931 3079 3039 3053 3053	2999 3012 3014 2050 3064 3027
M	1309	1321	1239		1038 1070 997	$1032 \\ 1058 \\ 1074$	1047 1013 1049 1092 1078	1051 1051 1077 1078 1078 1078	1074 1058 1058 1058 1040 1040 1088
Ni 305	391 301	402 403 386 386	388 380 390 401 379	394 394 386	316 316 320 315	318 329 326 316	312 314 320 321 323 309	327 313 323 323 327 317 317	327 323 323 323 323 323 323 323 323
Mg	202 220 199	209 225 190 190	231 214 209 191	206 272 185 193					
Bi	2071 2790 2627	2741 2741 2584 2649	2609 2765 2609 2580 2580	2508 2570 2679 2623	2120 2050 2244 2066	2000 1984 1934 2031 2031	2143 1981 2133 2097 2070	1942 1975 2024 2150 2082 2082	1981 2004 2115 2115 2154 2000 2001
Pb	2757	2866	1819		1692	1689	1923	1913	1792
Au 001	2015 984 1051	1031 2051 1035 1026 963	2072 2072 986 1023 1023	947 980 1031 964	2099 1941 1913 978	2113 2058 2069 892	1969 2083 2021 2154 2013 2013	2060 2065 2106 2028 2008 2008	1945 2123 2063 1948 1878 938 1813 2152
Sb	1194	1190 1238 1107 1142	1185 1180 1127 1197 1108	1080 1159 1130 1124	843 832 884 807	848 812 853 853	816 840 825 855 830 793	817 807 823 820 807 858	798 830 850 815 783 815 799 808
Sn	1120 1120 1093	1184 1209 1142 1142	1132 1132 1204 1187 1108	1046 1092 1097 1138	848 861 821 878	828 823 795 831	806 825 841 794 779	829 818 844 843 840 808	827 836 814 838 838 837 837 837 831
Ag	614 567	610 645 583 610 589	587 608 620 632 632	584 584 630 564	440 447 459 459	466 442 433 440	458 452 456 429 433	431 432 455 445 445	461 453 476 476 476 476 458
Cu 400	400 469	480 476 470 470	473 462 475 478 469	474 474 469	385 382 382	382 383 388 387	383 390 384 385 386 375	387 386 386 382 382	387 383 383 383 387 387 389 389 392 392
C0 200	380 379 302	372 377 377 378	375 375 393 393 380	382 383 378 378	311 312 312 312	312 313 316 316 316	315 315 318 312 315 315	318 314 311 313 313 313 313	312 314 317 317 317 319 319 318
As	636 568 508	650 650 563 563	371 371 627 636 636	565 549 526 541	575 583 340 565	353 578 575 574	565 349 572 572 572 340	571 571 577 577 568	551 567 552 552 358 561 575
Zn 576	561 558 558	563 563 555 566	560 545 575 575	565 548 566 562	445 462 452 458	453 454 454 451	452 458 454 458 437	460 448 442 451 447	453 455 455 455 455 455 462 455
Fe 116	410 428 412	421 439 407 408	410 417 395 413	411 404 392	369 366 357	354 368 360	368 355 360 366 353	362 355 356 373 368 368	359 374 373 373 373 355 355 355 355 372 372
S 271	356 400 775	2/2 396 431 405	367 386 385 385 385 447	431 441 427	420 515 473	425 498 425 425	422 475 436 433 406	408 459 487 487 469	414 506 414 470 470 453 486 486
Comment	08-04 125.36 ? 91 08-04 166.16 Apy	08-04 115.75 Fracture 08-04 122.36 ? 92 08-04 162.87 Py 08-04 156.21 fracture 08-04 156 16 A two	08-04-100.10 Apy 08-07 226.33 As 10-77 121.60 fracture 08-04 166.16 Py 08-04 115.75 Fracture 08-04 115.75 Fracture	08-04 162.87 Py 08-04 162.87 Py 08-04 156.21 fracture 08-04 156.21 fracture	SC-10 As 11 SC-10 As 10 08-07 175.80 As 08-04 166 16 Anv	08-07 175.80 As 08-07 175.80 As 08-04 122.36 As 102 08-04 166.16 Apy	08-04 122.36 A5 95 08-07 175.80 A5 08-04 122.36 A5 104 08-04 122.36 A5 101 08-04 122.36 A5 101 08-07 175 80 A5	08-0/ 12/2:00 AS 08-0/ 12/2:0 AS 08-0/ 12/2:6 AS 105 08-04 12/2:6 AS 103 08-04 12/2:6 AS 94 SC-10 AS 23 SC-10 AS 24	SC-10 As 36 08-04 122.36 As 100 08-04 122.36 As 113 08-04 122 36 As 113 08-07 26.33 As 10-77 121.60 Apy SC-10 As 22 SC-10 As 34

Te	414 405	413 442 413	406 415 420	406 417 415 415 405 413	401 409 411 414	415 405 409
Hg	3048 3030	3083 3001 3036 3775	1775 3014 3009	3057 2965 3008 3002 2984	1717 3023 2285 3022	3096 2036 1954
M	1072 1048	1083 1084 1080	1016 1078 1065	1077 1064 1079 1071 1071	999 1082 1013 1079	1062 989 1006
Ni 320 319 374	319 328 325	319 321 321 318 318	319 323 319 312 325 318 318	325 318 325 325 324 326 326 318	311 316 325 325 321 315 323 323 315 315	322 317 315 315 322 316 316 316 322
Mg						
Bi 2045 1992 1970	2002 2032 2121	2040 2080 2040 2113 2026	2094 2052 2057 2046 1999 2141 2084 1998	2074 2162 2046 1988 2221 2121 1961 2092	1975 1895 2111 2142 2052 2143 2143 2143 2166 2144 2106	2039 1874 1865 2073 2063 2063 2063 2007 1948 2145
Pb		2001	1906		1849 1756	1804 1752
Au 913 965	2049 965 2153	1008 2168 1971 981 2071	2016 1060 999 1964 2078 1000 1010	2072 994 2089 1031 1812 1045 2075 2161	1723 980 948 990 1884 1003 2197 1035 933	1988 1788 977 966 1027 982 982
Sb 807 801 795	828 800 807	793 841 812 815 807 705	795 753 775 859 817 803 856 812	816 796 833 817 843 801 850 817	790 832 845 845 815 815 843 805 805 805 840 814	784 803 802 814 814 821 808 808
Sn 823 806 846	836 836 891	835 803 796 828	819 841 842 842 842 842 853 858 817 815	824 849 822 834 821 832 836 836 836	828 801 845 845 832 832 835 796 835 835 835 835 835	835 817 801 838 824 824 825 804 824
Ag 439 449	430 453	442 475 454 447	431 463 452 452 451 446 443	434 454 454 454 454 440 456	439 451 451 441 447 447 453 421 434	459 434 441 456 448 434 434 439
Cu 384 390	388 384 380	392 386 377 391	395 386 376 376 382 387 387	379 386 391 388 388 388 388 396	378 387 387 388 394 387 390 387 387 387	386 387 387 385 385 385 385 384 385 385
Co 320 311	319 313 308	317 317 316 316 307	317 314 313 313 317 323 317 318 316	310 319 312 312 311 315 315 316	306 316 315 315 317 317 317 317 317 317 317 315	317 305 315 315 313 315 315 315
As 576 559 569	567 557 569	557 564 569 557	354 534 556 573 573 569 550	567 553 576 545 561 551 551 551	342 542 566 568 355 568 568 568 550	569 346 579 572 572 566 566
Zn 464 458 454	463 452 460	456 458 456 456	457 455 464 457 457 456 456	444 459 451 451 459 459 453	447 456 456 456 456 443 458 443	453 440 458 458 455 468 468
Fe 358 361	357 361 369	352 363 369 355 360	360 354 364 365 363 363 363	371 341 366 371 371 365 367 367	361 358 357 355 355 356 355 355 355	373 348 361 358 356 354 354
S 485 464	512 464	413 442 447 460	470 453 497 497 475 475 411	426 439 463 401 427 432 432 455	466 447 516 479 446 470 428 447 438	440 449 452 491 428 428 428
Comment 08-04 166.16 Apy 10-77 121.60 Apy	SC-10 As 18 10-77 121.60 Apy 08-04 122.36 As 93	10-77 121.60 Apy 08-04 122.36 As 85 08-04 122.36 As 114 08-07 217.77 Fracture 08-07 217.75 As 08-07 17.75 As	08-07 174.62 As 10-87 113.40 Apy 10-77 121.60 Apy 08-04 162.16 Apy SC-10 As 33 SC-10 As 33 08-04 122.36 As 80 08-04 166.16 Apy 08-04 166.16 Apy	08-04 122.36 As 67 10-87 113-40 Apy 08-04 122.36 As 82 10-87 113-40 Apy 2C-10 As 26 10-87 113-40 Apy 10-87 113-40 Apy SC-10 As 32 08-04 122.36 As 77 08-04 122.36 As 77	08-07 174.62 As 08-04 166.16 Apy 08-04 162.16 Apy 08-04 162.16 Apy 08-04 166.16 Apy 08-04 166.16 Apy 08-04 166.16 Apy 08-04 166.16 Apy 08-04 166.16 Apy 08-04 166.16 Apy	08-04 122.36 As 88 08-07 176.67 As 08-07 176.67 As 08-04 115.67 As 08-04 115.75 Fracture 08-04 162.87 Apy 10-77 121.60 Apy 10-77 121.60 Apy 10-87 113.40 Apy

Te			415	411		403			402	400	418						394	400			414		409	411			413	393			413	400	406		101
Hg)		3077	2050		2037			2146	2088	1714						1882	1727			3038		1986	1808			1954	1891			2001	2074	1929		ろいた
M			1084	1012		994			966	166	1005						984	987			1070		1024	1022			1005	1015			1020	985	978		1007
ïZ	316	316	328	312	316	306	322	313	315	319	314	325	320	321	314	321	316	310	314	317	333	318	320	321	322	315	320	310	317	328	309	304	315	315	375
Mg)																																		
Bi	1981	1860	2183	2071	1890	1867	2007	2065	1979	2018	2040	1931	2192	2071	2174	2054	1863	1873	2122	2037	2069	2023	2038	2117	1927	2048	1956	2028	2019	2138	2027	1955	1968	2086	0112
Pb				1850		1876			1870	1775	1761						1827	1896					1712	1784			1913	1876			1918	1739	1776		
Au	996	1007	1809	1942	957	1889	1046	968	2016	1663	1874	1008	1070	986	992	1063	1974	1899	866	1059	1962	932	1790	1805	1056	1052	1795	1693	927	992	1860	1798	2024	1003	1061
\mathbf{Sb}	816	836	852	800	798	789	788	820	795	814	800	828	796	803	783	793	817	807	822	798	826	831	819	812	808	839	841	792	809	809	839	801	768	778	UU O
Sn	801	815	825	845	843	801	836	832	836	849	781	824	854	798	837	852	797	789	812	846	817	828	776	826	782	835	825	787	828	826	804	832	827	844	015
Ag	434	447	438	451	436	419	451	450	448	459	442	456	445	433	456	462	440	431	446	440	456	454	451	431	451	473	440	446	432	434	454	428	431	444	345
Cu	389	391	387	380	385	376	389	381	381	384	385	388	387	384	384	383	383	378	382	380	387	383	387	388	384	387	388	367	386	384	385	379	383	388	705
Co	316	315	314	318	314	308	308	316	309	318	311	312	312	320	324	315	315	302	315	309	313	308	319	312	317	313	321	311	312	311	312	307	315	315	212
As	561	545	583	350	556	348	574	586	346	351	354	575	575	562	575	562	342	345	575	565	579	555	350	348	569	564	350	347	546	549	357	342	348	555	570
Zn	452	452	458	445	451	444	467	452	441	451	457	457	451	457	462	461	445	444	463	453	457	461	452	457	452	447	453	442	460	453	457	444	446	461	151
Fe	346	352	368	358	353	351	357	367	354	356	367	348	363	367	361	356	344	349	363	365	368	359	355	354	376	347	360	343	356	349	368	343	346	351	VL2
S	465	455	509	461	458	421	430	454	477	453	455	491	410	479	407	414	426	496	442	433	450	417	439	487	429	445	457	434	446	507	458	457	423	414	120
Comment	10-87 113.40 Apy	08-04 166.16 Apy	$08-04\ 122.36\ As\ 83$	08-07 176.67 As	10-87 113.40 Apy	08-07 175.80 As	08-04 162.87 Apy	08-04 166.16 Apy	08-07 176.67 As	08-07 175.80 As	08-07 226.33 As	08-07 217.77 Py	08-04 162.87 Py	10-87 113.40 Apy	08-04 162.87 Apy	10-87 113.40 Apy	08-07 226.33 As	08-07 174.62 As	10-87 113.40 Apy	08-07 217.77 Py	SC-10 As 28	08-04 162.87 Py	08-07 174.62 As	08-07 174.62 As	10-77 121.60 Apy	08-04 162.87 Py	08-07 226.33 As	08-07 176.67 As	10-77 121.60 Apy	08-04 162.87 Py	08-07 176.67 As	08-07 175.80 As	08-07 226.33 As	10-87 113.40 Apy	10 0 V 12 CC1 VU 0V

Нg 1798	1945	2087	1852	1916	1940		1859	1877	1917	1998	3054		1850	1887	3019	1910	1971		1995			2111		1899	2010	2063		1935	1920	1875			2048	1792	2134		2151	1919	1999	1795		1836
W 994	1029	988	1017	1001	1029		1034	1023	1027	1016	1065		1036	981	1070	666	1027		1005			1040		766	1024	1018		1020	1001	1013			1000	1002	1011		1034	1014	995	1041		994
Ni 311 217	318	313	313	318	316	317	319	323	317	321	324	321	321	314	323	311	325	321	306	322	323	318	319	305	320	311	322	317	310	318	309	325	311	307	316	317	313	321	315	323	319	311
Mg																																										
Bi 1969 2063	2042	1965	2135	1960	2113	2045	1959	2048	2177	2096	2022	1962	2038	1987	2113	1964	2055	2044	1865	2063	2146	1920	2056	1932	2125	2015	2041	2044	1891	1982	2010	2012	1997	2053	1926	2135	2184	2116	1970	2058	2041	2019
Pb 1853	1761	1798	1850	1800	1795		1922	1791	1876	1801			1839	1675		1924	1947		1866			1854		1783	1660	1920		1749	1702	1859			1739	1717	1904		1866	1776	1661	1822		1794
Au 1886 974	9/4 2038	1959	2074	1952 1864	1924	1070	2005	2379	1887	1982	1925	920	1847	1986	1743	1935	1861	980	1911	1011	1090	1854	866	1952	1878	2264	1033	1932	1871	2015	989	981	2182	1736	1914	1001	1806	1854	1880	1920	952	1909
Sb 780 788	/ 80 819	795	784	803 813	811		832	843	818	815	804	829	797	771	806	818	825	833	781	830	813	822	813	806	803	836	803	817	822	807	795	838	1013	799	805	825	818	792	816	1000	775	809
Sn 834 787	805 / 02	819	798	80%	840	783	851	845	860	846	806	826	807	811	811	804	822	819	783	806	826	828	66 <i>L</i>	828	816	802	830	814	780	805	824	814	805	824	817	810	825	786	815	793	797	800
Ag 435 443	44.5	429	436	440 478	438	439	463	435	452	425	454	451	462	433	454	431	449	453	432	465	475	454	435	439	431	449	442	433	422	440	450	455	423	440	446	451	459	436	431	442	461	429
Cu 373 307	385 385	378	387	378	387	388	390	385	392	386	382	394	389	377	388	376	388	383	371	390	382	390	387	383	388	382	387	392	382	385	390	387	380	381	393	384	388	386	378	387	383	377
Co 308 316	313	308	317	302	319	310	315	318	317	315	317	313	310	308	315	311	319	318	301	322	310	315	312	306	309	316	314	319	312	318	309	317	308	304	323	317	313	319	302	319	317	311
As 342 564	352	341	353	347 348	353	573	353	352	356	355	559	560	354	343	552	338	356	562	341	553	549	358	567	343	350	354	550	357	339	352	557	574	346	350	352	564	348	348	347	350	563	345
Zn 439 458	4.30 463	447	456	439 441	455	462	458	462	461	455	454	456	453	449	456	447	465	456	447	458	456	458	455	438	450	464	455	454	452	449	455	465	455	448	465	460	448	465	452	461	457	445
Fe 342 363	366	362	352	355	364	353	350	357	359	353	368	351	358	339	363	342	365	347	354	356	355	353	365	343	353	355	365	369	347	359	353	364	345	340	357	356	341	351	348	350	346	350
S 433 305	425	449	467	429 477	441	475	425	439	409	505	436	482	445	448	462	442	441	418	448	429	472	499	442	481	421	472	416	422	433	391	488	450	417	415	435	451	469	464	459	488	442	408
Comment 08-07 175.80 As 10-87 113 40 Any	08-07 174.62 As	08-07 175.80 As	08-07 176.67 As	08-07 226.33 As 08-07 176 67 As	08-07 226.33 As	08-04 166.16 Apy	08-07 175.80 As	08-07 174.62 As	08-07 175.80 Po	08-07 176.67 As	08-04 122.36 As 79	10-77 121.60 Apy	08-07 174.62 As	08-07 176.67 As	SC-10 As 31	08-07 175.80 As	08-07 175.80 As	10-77 121.60 Apy	08-07 175.80 As	10-87 113.40 Apy	08-04 166.16 Apy	08-07 176.67 As	08-04 166.16 Apy	08-07 174.62 As	08-07 176.67 As	08-07 176.67 As	08-04 166.16 Apy	08-07 175.80 As	08-07 176.67 As	08-07 175.80 As	08-04 162.87 Apy	08-07 217.77 Py	08-07 176.67 As	08-07 176.67 As	08-07 174.62 As	08-04 166.16 Apy	08-07 174.62 As	08-07 175.80 As	08-07 174.62 As	08-07 175.80 As	10-77 121.60 Apy	08-07 226.33 As

TeTe401407407403339933993394405405411411413411411403411411411403411

Te 409 3966 409 409 409 415 404 415 403 394 412 403 394 412 412 412 412 412 412 412 412 412 41	396 417 404
Hg 2327 2037 2037 2037 2037 2037 1847 1924 1924 1923 1923 1923 1923 1917 2012 2012 2012 2012 2012 2012 2012 20	1924 1926 1931
W 1007 993 1007 1002 1008 1004 1002 1002 1010 1010 1013 1013 1013 1013	998 1016 1012
Ni 313 313 314 315 315 316 316 316 316 316 316 316 316 316 316	318 321 325 313 315 315 315 316
an an	
Bi 1948 1948 1956 1956 1956 1956 1997 1992 1923 1923 1923 2014 1923 2014 1923 2015 1923 2014 1925 2015 1925 2014 1925 2014 1925 2016 1925 2016 1937 1937 1937 1937 2016 1937 2016 1925 2016 1925 2016 1925 2017 2016 1925 2017 2016 1925 2017 2016 1925 2017 2016 1925 2017 2016 1925 2017 1925 2017 1925 2017 1925 2016 1925 2017 1925 2017 1925 2017 1925 2017 1925 2017 1925 2017 1925 2017 1925 2017 1925 2017 1925 2017 1925 2017 1925 2017 1925 2017 1925 2017 1925 2017 1925 2016 1925 2017 2016 1925 2016 1925 2016 1925 2016 2016 1925 2017 2016 2016 2016 2016 2016 2016 2016 2016	1974 2041 1903 1976 2019 2052 1990
Pb 1711 1711 1770 1770 1778 1879 1881 1881 1781 1749 1749 1891 1897 1958 1897 1897 1897 1897 1897 1897 1897 189	1746 1834 1831
Au 1662 1662 1662 1617 1617 1617 1617 1976 1976 1976 1978 1918 1918 1918 1918 1918 1918 1918	918 993 1008 1878 2006 1878 1863 908
S b 804 804 805 805 805 805 805 805 805 805 805 805	806 812 828 806 833 808 813 813
S n 8814 8814 8814 8814 8815 8818 8818 8818	822 812 772 840 825 838 838
A 844 844 844 844 844 844 844 844 844 84	459 447 424 424 454 451 451
Cu 379 388 388 388 388 387 388 388 388 388 388	387 382 385 389 389 389 389 385
C C 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	318 315 322 308 314 313 319 318
$\begin{smallmatrix} A_8\\ A_8\\ A_8\\ A_8\\ A_8\\ A_8\\ A_8\\ A_8\\$	552 557 552 344 349 353 353 552 552 551
Z A 461 - 200 - 20	461 456 461 435 435 449 455 455
$\begin{array}{c} F_{\rm F}\\ F_{\rm e}\\ 3359\\ 3359\\ 3359\\ 3359\\ 3359\\ 3356\\$	347 366 351 351 351 364 364
S 405 S 425 S 42	489 410 378 478 517 453 453
Comment 08-07 176 67 As 08-07 175 61 Apy 8-04 166.16 Apy 8-07 175 80 As 08-07	10-77 121.60 Apy 10-77 121.60 Apy 10-87 113-40 Apy 80-70 125.80 As 08-07 125.63 As 08-07 174.62 As 10-77 121.60 Apy 10-87 113-40 Apy

W (1029) (1020) (1022) (1027) (1016) (1016) (1016) (1025) (1025) (1025) (1026) (1026) (1026) (1026) (1027) (1027) (1026) (1027) 963 992 976 976 976 1025 990 9976 1057 985 985 985 985 985 1018 $\begin{array}{c} Ni \\ Ni \\ Sigma \\ Sigm$ ы М Pb 808 8599 8597 763 822 822 822 822 8259 695 800 877 735 877 735 8777 8877 857 893 954 977 003 997 044 903 854 967 $\sum_{r=1}^{r} \sum_{r=1}^{r} \sum_{r$ $\begin{array}{c} A_s \\ 33511 \\ 33551 \\ 35551 \\ 3$ $\begin{array}{c} F_{e} \\ F_{e}$ Comment 08-07 (75, 87 as 08-07 (75, 87 as 08-07 (75, 87 as 08-07 (75, 80 As 08-07 (75, 77 P) 08-07 (75, 75, 77 P) 08-07 (75, 75, 75, 75 P) 08-07 (75, 75, 75 P) 08-07 (75, 75, 75 P) 08-07 (75, 75 P) 08-07 (75 2118 879 885 913 889 889 889 Pb Au 841 8820 8869 881746 881746 881746 881746 881746 881746 881746 881746 8817748 8817758 881755 88175 881755 88175 881755 881755 881755 881755 881755 881755 88175 $A_{82} \\ A_{82} \\ A$ Comment 68-04 122.36 Py 63 SC-10 Py 2 SC-10 Py 2 88-04 122.36 Py 44 08-04 192.02 Py 44 08-04 192.02 Py 48 08-07 174.62 Py 88-07 174.62 Py 98-07 174.62 Py 99-44 192.02 Py 55 09-44 192.02 Py 55 09-40 1775.05 Py 55 09-40 1775.05 Py 55 09-40 1775.05 Py 55 09-4

Te	385	380	382	393 395	384 402	395	390 397	390 382 391	386 404 395	389	400
Hg	1702	1647	1634	2771 1704	1617 2747	1617	1681 2011	1749 1511 1676	2777 2766 2862	1713	2909
M	1004	1009	962	1039 998	965 1070	992	1009 993	1023 991 1006	1045 1047 1045	1008 980	1073
Ni 309 208	312 312 311	307 312	305 305 310	308 316 312	305 317 322	314 310 309 311	316 319 310 314	308 301 306 315 315	312 315 311 318	308 312 314 314 312 312 312	310 312
Mg 158	61 191 128	180	181 175 174 178	172 161 168	194 177 177	160 157 154 198	182 161 170	180 190 186 168	165 153 177 177	173 173 168 168 183 152 167	160 184
Bi 2352 7376	2316 2316 2235 2124	2494 2140 2774	2340 2227 2246 2281	2266 2304 2263	2225 2330 2197	2336 2400 2327 2220	2309 2369 2486 2424	2232 2154 2193 2266 2378	2466 2383 2300 2376	2371 2348 2303 2334 2259 2231	2265 2255
Pb	1958	1982	1161	2062	1945	1951	1994 2084	2031 1977 1903		1879	
Au 930 707	1596 177 903	1773 817 861	1551 796 822 862	1625 837 1458	1488 878 1627	824 840 848 848 874	1658 753 1614 871	1421 1710 1584 797 789	1898 1758 866 1612	804 804 889 821 803 1639	1651 821
Sb 805 731	771 793 839	826 742 804	761 786 798 750	797 763 818	750 855 839	767 768 764 857	783 766 785 769	784 778 822 775	793 804 808 707	774 777 769 796 815 799	787 773
Sn 840 822	200 781 845 807	807 811	832 783 822 825	867 798 804	793 772 802	806 813 833 846 807	825 815 816 814	833 792 772 785	822 818 850 824	803 801 778 803 803 839	787 783
Ag 435 433	436 425 413	427 443 433	411 418 424 420	435 432 442	419 466 427	408 433 413 418 430	430 415 449 435	420 419 427 427	432 421 443 443	422 422 426 428 428	410 439
Cu 381	384 381 378	381 387 377	371 383 384 385	381 382 380	366 376 375	383 374 379 383	381 390 381 381	381 379 372 381 376	379 380 386 386	385 385 386 386 378	378 375
Co 313 218	313 313 320	315 311 315	302 319 322	314 316 313	306 313 315	319 313 330 330	313 313 313 306	316 305 309 314	311 313 318 318	314 316 322 314 311 321	309 320
As 508 182	207 176 181	297 802	290 184 184	86 181 294	94 136 132	1/1 1/1 1/1 1/1 1/1	296 289 889	803 295 469 174	88 190 172	299 142 1477 1477 1477	172 164
E 49 6	2 2 2 8	5 8 5	6 6 9 6	555	6 2 3	28228	63 4 7 6 8 63 4 7 6 8	0 2 2 2 2 0	649 622 712 712	22022	74 54
0 9 4 V	1 0 0 C	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0000- 14444	- 0 L L	L & 4 /	v ∞ v ∞ 4 4 4 4 4 4	. U O W W	44444	04000	14000000	5 4 4
37 F	8868	25.85		3 6 8 8	¥ % % %	* % % % %	88888	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3	33 37 3	*****	35
S 498 521	507 507 507 507	524 524 513	531 523 523 465	505 475 492	493 512 495	517 515 515 515	538 536 509 509	500 516 526 490	478 480 515 492	515 489 515 515 515 484 484	506 507
Comment 08-07 217.77 Py 08.07 217 77 Py	08-07 210.07 19 08-07 226.33 Py 10-77 121.60 Py 08-07 199 97 Pw	08-07 216.74 Py 08-07 199.97 Py 08-04 162 87 Py	08-07 174.62 Py 10-87 113.40 Py 10-87 113.40 Apy 08-07 217 77 fracture	08-07 226.33 Py 66 08-07 226.33 Py	08-07 226.33 Py 08-04 156.21 Py 08-04 122.36 Py 69	08-04 156.21 Py 08-04 156.21 Py 08-07 216.74 Py 10-77 121.60 Py	08-07 216 74 Py 08-07 199 97 08-07 216 74 Py 08-04 156 21 Py	08-07 216.74 Py 08-07 226.33 Py 08-07 176.67 Py 08-07 217.77 Py 08-07 199.97 Py	08-04 122.36 Py 87 08-04 122.36 Py 65 08-04 166.16 Py 08-04 122.36 Py 119 08-04 122.36 Py 119	08-07 16.74 Py 08-04 156.21 Py 08-04 156.21 Py 08-04 162.87 Py 08-04 115.75 Fracture 08-07 226.33 Py	08-04 122.36 Py 68 08-04 162.87 Py

Te	401			387	396		395	389		381		378			382	389				391	382	388				386	398			378	382	394	385	386	381	376	396				392	386	
Hg	2785	i		1921	1852		1679	1897		1663		1876			1712	1640				1734	1675	1539				2848	2805			1719	1627	1609	1687	1505	1769	1776	1838				1709	1664	
M	1066			1006	866		1008	686		966		988			1003	967				1003	1006	992				1048	1035			954	1015	779	980	961	998	978	166				998	966	
Ni 302	303 309	310	300	309	313	319	314	298	304	310	311	309	310	311	309	307	309	308	306	313	310	309	312	313	308	318	314	308	311	303	311	311	310	304	315	298	306	314	307	306	314	308	314
Mg 202	189	183	181	170	174	186	199	181	191	164	158	177	178	170	174	173	195	187	159	171	171	182	151	181	162	166	167	157	164	172	164	162	197	165	183	185	189	170	157	184	190	171	166
Bi 2347	2241 2258	2330	2367	2217	2238	2224	2234	2381	2204	2141	2334	2237	2115	2299	2257	2148	2148	2370	2297	2256	2377	2366	2350	2237	2280	2383	2292	2254	2263	2173	2268	2279	2232	2256	2195	2240	2308	2363	2253	2303	2384	2160	2174
Pb				1956	1998		1940	1984		1947		1856			1969	1905				1977	1992	1932								1951	1925	1948	1882	1950	1861	1851	1914				2058	1924	
790 790	787 1666	872	LLL	1577	1699	819	1616	1625	821	1591	868	1531	868	860	1647	1640	846	810	831	1698	1509	1715	799	821	808	1609	1715	874	821	1430	1560	1479	1596	1579	1775	1643	1505	814	842	878	1666	1588	808
Sb 763	794 795	803	776	760	771	801	770	782	771	805	761	770	820	781	812	794	792	786	808	809	784	737	785	792	817	825	744	801	775	804	742	786	754	780	808	788	759	781	756	770	784	617	832
Sn 812	783 840	843	808	833	797	851	819	794	832	767	837	808	800	808	822	852	810	818	802	817	822	775	820	778	831	820	802	798	818	LLL	162	775	786	857	819	804	764	784	812	840	818	782	832
Ag 444	417	422	430	408	434	417	429	443	436	427	433	412	428	405	434	423	428	442	429	427	418	432	407	417	416	445	434	428	445	41	409	422	418	406	408	414	415	417	437	455	438	417	435
Cu 374	373 385	393	382	371	383	390	383	378	375	375	379	369	383	376	381	373	381	388	371	373	380	376	380	379	378	381	384	378	375	374	376	388	377	371	377	369	380	387	386	382	383	389	385
Co 321	311 313	309	308	318	307	320	315	317	313	315	307	303	308	308	307	304	312	310	307	313	313	310	307	306	312	312	315	316	315	307	303	315	309	314	310	308	313	318	316	302	309	310	307
As 482	455 484	481	474	290	299	481	296	315	485	296	476	291	502	470	297	294	480	471	480	290	296	294	484	464	480	510	479	464	464	290	304	291	285	292	296	294	301	485	467	453	300	296	514
Zn 463	454 453	463	460	463	459	462	461	452	458	466	468	440	458	469	445	455	451	459	454	452	470	455	460	464	456	466	452	461	453	451	461	462	445	451	449	441	450	466	459	455	463	465	466
Fe 371	356 367	359	363	356	361	362	363	365	363	359	370	347	364	360	349	358	366	353	353	358	358	359	357	362	351	365	355	370	352	346	374	366	362	359	362	343	365	356	369	356	372	359	352
8 61 8	6 19	66	06	29	04	98	05	94	90	04	96	74	07	95	=	32	41	45	24	68	07	06	22	90	16	38	65	04	13	08	82	87	96	01	41	92	05	13	92	08	88	31	98
4	v, 4	. 4	4	ŝ	ŝ	4	ŝ	4	ŝ	ŝ	4	4	ŝ	4	5	5	Ś	Ś	5	4	ŝ	4	5	ŝ	5	8 5	ŝ	ŝ	5	ŝ	4	4	4	ŝ	Ś	4	ŝ	5	4	5.	4	ŝ	ure 4
Comment 62.87 Py	62.87 Py 4 52 Pv 2	62.87 Pv	66.16 Py	74.62 Py	16.74 Py	21.60 Py	74.62 Py	16.74 Py	13.40 Apy	16.74 Py	56.21 Py	76.67 Py	17.77 Py	13.40 Apy	16.74 Py	74.62 Zn	62.87 Py	21.60 Py	21.60 Py	75.80 Py	16.74 Py	75.80 Py	99.97 Py	21.60 Py	21.60 Py	22.36 Py 11	4.52 Py 3	17.77 Py	13.40 Py	26.33 Py	16.74 Py	76.67 Py	26.33 Py	74.62 Zn	75.80 Py	76.67 Py	75.80 Py	56.21 Py	13.40 Apy	21.60 Py	16.74 Py	26.33 Py	17.77 Fract
C 08-04 1(08-04 1(09-51 72	08-04 16	08-0416	08-071	08-07 2	10-77 12	08-071	08-072	10-87 11	08-072	08-041	08-071	08-07 2	10-871)	08-072	08-071	08-041(10-77 12	10-77 12	08-071	08-07 2	08-07 10	08-07 19	10-77 12	10-77 12	08-04 12	09-51 74	08-07 2	10-87 11	08-07 22	08-072	08-071	08-07 21	08-071	08-071	08-071	08-071	08-041:	10-87 11	10-77 12	08-07 2	08-07 2.	08-07 2

e S	584	391		377	385	378		396	382	384		392		377	374	381	383	386						379		380		390		381	373		393	389		374				380				381	388
Hg	1/25	1600		1598	1808	1666		1655	1577	1827		1781		1694	1730	1748	1514	2798						1811		1731		1522		1550	1884		1668	1817		1715				1743				1860	1817
≥ 8	985	776		975	998	994		1010	1006	1004		1003		1011	968	1005	993	1051						973		945		985		982	992		998	983		972				973				1017	1010
N S	504	301	310	308	317	308	314	314	315	309	316	310	311	313	305	314	306	324	314	319	308	308	317	306	309	308	314	308	305	303	303	305	306	312	305	303	304	310	308	302	307	315	306	318	309
gN.	103	190	190	181	175	173	181	167	188	187	160	184	159	168	183	165	159	164	156	186	187	192	152	186	160	169	149	183	160	173	164	179	168	175	176	187	153	163	176	184	165	155	165	216	197
Bi	2508	2233	2266	2267	2273	2182	2219	2288	2259	2278	2236	2190	2300	2199	2187	2367	2168	2322	2220	2400	2337	2321	2245	2183	2207	2268	2223	2216	2349	2229	2238	2345	2351	2327	2253	2103	2352	2274	2235	2176	2227	2271	2372	2289	2196
Pb	5019	1939		1903	1953	1954		1955	1956	2074		1957		2031	1976	1971	1889							1888		1932		1894		1938	2019		2008	1909		1819				1868				1988	1912
Nu V	55CI	1458	782	1623	1798	1745	<i>71</i> 2	1680	1617	1680	928	1653	861	1517	1635	1544	1561	1682	837	862	833	808	814	1649	876	1618	877	1677	871	1842	1545	852	1649	1704	842	1717	831	857	LLL	1528	839	874	867	1417	1712
Sb	/67	744	793	767	792	783	818	842	763	799	822	LTT	798	803	778	780	784	820	765	798	765	793	800	775	770	774	809	821	768	776	754	161	813	171	752	757	775	769	787	778	792	812	786	828	806
Sn	86/	786	837	812	831	819	807	<i>6LL</i>	820	819	808	782	796	757	811	778	766	778	66L	819	805	817	776	815	804	835	800	814	818	764	736	791	814	759	807	803	812	808	773	737	797	759	808	776	783
Ag	414	422	427	426	413	431	437	426	428	442	426	403	431	446	413	434	427	427	423	425	426	428	408	431	425	411	424	418	406	415	409	435	425	437	424	414	416	416	424	417	411	438	433	41	406
Ū È	5/0	373	381	376	380	383	367	386	380	382	379	375	391	383	373	388	370	376	387	376	387	375	379	376	384	373	381	380	383	380	382	388	385	384	379	370	376	381	388	380	388	380	385	377	383
ပိုင်	501	301	315	301	310	311	315	313	311	316	311	310	314	309	301	313	308	311	314	306	316	314	310	308	309	307	310	314	307	303	299	319	316	320	315	307	308	313	311	308	311	313	308	312	314
As	767	296	472	299	289	308	475	296	300	297	456	295	474	295	293	298	285	490	460	474	482	480	471	288	482	298	473	293	477	290	289	477	298	299	480	285	496	461	480	289	510	460	477	302	306
Z S	452	449	457	446	464	465	458	460	458	454	470	455	465	462	443	465	443	460	466	462	456	459	458	457	453	446	466	449	464	457	454	451	448	463	463	451	467	461	455	449	459	457	454	455	449
Fe	105	349	365	357	361	367	345	380	365	360	357	373	357	348	350	356	346	381	351	359	351	361	357	348	363	347	373	362	351	356	356	357	363	370	343	341	353	350	351	353	348	370	364	359	356
s é	870	465	494	501	517	510	560	485	496	531	497	475	484	497	524	483	498	511	495	524	505	485	472	491	477	481	490	498	512	498	480	494	506	504	520	475	529	542	503	496	470	471	521	476	509
Comment	U8-U/ 226.33 Py	08-07 176.67 Py	10-77 121.60 Py	08-07 174.62 Py	08-07 216.74 Py	08-07 216.74 Py	08-04 115.75 Py	08-07 226.33 Py	08-07 175.80 Py	08-07 175.80 Py	08-04 156.21 Py	08-07 176.67 Py	08-07 217.77 fracture	08-07 226.33 Py	08-07 175.80 Py	08-07 216.74 Py	08-07 174.62 Zn	09-51 74.52 Py 4	08-04 115.75 Fracture	10-77 121.60 Py	10-77 121.60 Py	10-87 113.40 Apy	08-04 162.87 Py	08-07 176.67 Py	08-07 217.77 fracture	08-07 226.33 Py	08-07 217.77 fracture	08-07 175.80 Py	08-04 156.21 Py	08-07 216.74 Py	08-07 216.74 Py	10-77 121.60 Py	08-07 216.74 Py	08-07 226.33 Py	08-07 217.77 bright	08-07 176.67 Py	10-77 121.60 fracture	10-87 113.40 Py	10-77 121.60 Py	08-07 174.62 Py	08-07 217.77 Py	08-04 156.21 Py	08-07 217.77 fracture	08-07 226.33 Py	08-07 175.80 Py
Te	389		382				382	393	395		382	381		378		393				392		388	390	380		387	379					379						376					393		
---------------	-----------------	-----------------	-----------------	-----------------------	------------------	-----------------	-----------------	-----------------	-----------------	--------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------------	------------------	-----------------	-----------------------	-----------------------	------------------	-----------------	--------------	-----------------	-----------------	-----------------	--------------	-----------------	-----------------	-----------------	------------------
Hg	1694		1654				1572	1809	1994		1618	1844		1591		1798				1774		1730	1748	1584		1660	1483					1569						1618					1888		
M	1008	0 1 0	970				989	166	1002		981	985		066		1004				1008		986	1004	967		1007	978					166						984					968		
Ni	310	309	304	310	312	310	303	305	310	313	305	301	317	299	315	315	310	315	313	315	312	315	316	305	309	311	301	316	311	311	317	297	305	312	311	310	309	302	305	311	311	302	311	310	307
Mg	208	156	186	160	188	183	177	188	168	163	176	166	154	160	164	201	165	164	163	196	162	189	181	171	153	189	174	173	176	159	156	162	159	154	158	179	171	173	163	157	173	158	164	155	190
Bi	2424	2208	2224	2345	2273	2213	2298	2358	2131	2237	2141	2346	2210	2242	2356	2266	2350	2326	2363	2287	2316	2326	2238	2197	2371	2258	2215	2250	2219	2390	2162	2416	2365	2321	2343	2280	2318	2241	2392	2414	2369	2273	2225	2210	2340
Pb	1939		1912				2020	1929	1977		1930	1976		1912		2050				1874		1864	1927	1970		1975	1848					1884						2052					1958		
Νu	1731	858	1421	775	865	848	1711	1684	1728	849	1533	1652	806	1639	857	1783	845	785	853	1483	831	1766	1503	1685	823	1790	1490	903	774	805	837	1683	838	857	843	825	842	1624	773	888	804	826	1791	803	874
\mathbf{Sb}	782	769	772	772	766	818	781	LLL	758	756	811	783	772	773	781	766	813	765	775	177	789	774	162	755	772	800	779	781	773	800	772	787	802	821	677	824	775	770	753		813	811	754	801	804
\mathbf{Sn}	801	781	769	815	767	825	796	815	808	805	782	793	800	845	818	808	162	792	773	787	161	786	848	767	824	773	765	848	821	807	800	790	801	798	814	788	798	780	788	817	782	807	769	808	823
Ag	428	425	416	418	432	427	417	431	429	438	408	424	422	426	443	429	451	422	411	436	436	424	412	407	459	412	410	437	437	437	423	427	433	426	430	429	423	433	404	422	425	417	446	431	426
Cu	383	384	377	376	380	376	368	384	386	395	373	371	377	378	388	393	383	382	384	396	380	377	383	371	379	375	375	378	385	393	382	362	380	388	383	387	387	371	378	383	387	382	371	392	376
Co	324	316	298	308	313	314	313	324	305	309	305	302	310	311	310	321	314	312	313	317	315	319	316	302	308	314	308	315	318	308	313	300	319	315	308	316	319	302	314	315	315	308	309	317	318
\mathbf{As}	297	462	289	488	481	474	288	296	301	477	293	291	510	287	464	301	490	482	481	296	500	297	301	289	468	288	288	469	474	479	475	296	498	462	468	470	460	289	469	476	456	474	288	498	484
Zn	465	456	448	454	457	472	455	451	464	458	440	457	459	447	456	463	462	462	452	463	459	455	452	450	461	457	447	460	461	450	465	440	461	457	460	463	458	447	459	454	463	461	441	457	458
Fe	354	340	346	356	353	359	355	368	355	356	364	355	366	359	353	367	364	356	358	375	349	359	358	347	365	361	350	354	362	347	365	365	350	368	362	359	364	353	366	366	361	359	353	350	358
s	481	497	498	504	476	519	521	555	518	466	423	498	491	492	512	506	457	508	503	518	440	482	518	482	496	532	520	487	570	470	503	498	480	508	510	554	514	501	499	544	503	459	464	541	503
Comment	08-07 175.80 Py	10-87 113.40 Py	08-07 176.67 Py	08-07 217.77 fracture	10-87 113.40 Apy	08-04 115.75 Py	08-07 216.74 Py	08-07 175.80 Py	08-07 174.62 Py	08-07 199.97	08-07 175.80 Py	08-07 226.33 Py	10-77 121.60 Py	08-07 226.33 Py	08-04 156.21 Py	08-07 175.80 Py	08-04 156.21 Py	08-04 156.21 Py	08-04 156.21 Py	08-07 174.62 Py	08-07 199.97 Fracture	08-07 176.67 Py	08-07 174.62 Py	08-07 216.74 Py	08-04 162.87 Py	08-07 176.67 Py	08-07 216.74 Py	08-04 156.21 Py	08-04 115.75 Py	08-04 115.75 Fracture	10-87 113.40 Apy	08-07 226.33 Py	08-07 217.77 fracture	08-07 199.97 Fracture	10-87 113.40 Apy	08-04 115.75 Py	08-07 199.97	08-07 216.74 Py	08-04 156.21 Py	08-04 115.75 Py	08-07 199.97	10-77 121.60 Py	08-07 174.62 Py	08-07 199.97 Py	10-87 113.40 Apy

Te	387	380				397				388	374	392			386	393	383		390	387	381	390	390			401	393		399		385	388	380		387		398	377	388		393			381	
Hg	1606	1603				1732				1757	1607	2864			1817	1850	1635		2827	1754	1727	1787	1535			1759	1646		1831		1550	1839	1862		2786		1849	1534	1889		1722			1592	
M	993	086				066				1022	176	1050			980	986	666		1077	1003	1001	1040	980			686	994		7997		166	166	994		1050		1017	973	666		1017			686	
ïŻ	306	300	305	313	312	317	307	309	307	310	303	317	308	305	302	300	306	310	318	310	323	313	296	313	313	310	319	311	307	312	309	304	313	311	316	306	317	309	313	319	312	317	314	304	316
Mg	176	173	161	172	155	180	172	168	156	174	171	167	153	156	189	174	164	171	168	189	189	164	163	158	162	180	160	159	161	161	192	178	189	156	162	164	187	172	191	165	166	160	165	166	156
Bi	2275	2165	2191	2313	2223	2119	2295	2231	2267	2184	2164	2348	2210	2246	2334	2088	2265	2232	2365	2281	2272	2383	2148	2343	2174	2358	2305	2306	2251	2215	2096	2261	2261	2163	2272	2213	2265	2155	2314	2354	2326	2348	2212	2273	2157
Ъb	1914	1916				2015				2016	1919				1910	2004	1867			1926	2004	1979	1894			2058	1972		1913		1919	1884	2006				2045	1931	2092		1899			1998	
Αu	1638	1636	859	811	829	1628	823	832	798	1734	1715	1694	803	853	1621	1344	1700	802	1785	1719	1695	1555	1503	841	803	1530	1668	816	1788	862	1595	1408	1544	851	1582	850	1711	1685	1572	833	1563	821	869	1479	862
Sb	760	761	778	<i>L61</i>	794	774	764	768	809	800	741	800	787	820	759	750	677	775	790	780	162	815	782	801	748	804	810	771	800	764	776	811	812	772	<i>LLL</i>	778	797	756	66L	765	804	819	662	217	757
Sn	804	793	856	<i>7</i> 79	802	868	834	774	768	818	778	818	794	831	815	822	814	830	793	807	834	1/1	756	815	792	833	808	837	813	794	795	825	<i>7</i> 79	795	<i>611</i>	781	797	812	822	818	808	820	792	774	761
Ag	413	405	428	435	428	441	434	435	410	413	412	426	433	417	412	417	408	428	422	431	448	441	412	429	422	436	448	436	408	408	436	418	431	428	427	422	421	424	41	417	431	419	426	418	405
Cu	383	370	380	386	391	388	380	386	379	384	372	382	390	384	370	369	373	385	381	381	400	385	372	392	388	386	389	389	389	382	388	372	389	379	386	374	386	375	384	390	386	377	374	375	385
ů	315	306	313	308	313	318	315	317	310	312	311	310	311	314	304	303	304	318	315	312	314	315	310	317	311	313	320	313	313	314	308	312	311	310	307	321	322	308	310	319	301	322	316	308	312
As	299	296	462	455	469	305	501	470	496	289	297	496	466	467	286	288	297	479	498	301	299	301	287	485	464	306	295	462	299	464	302	299	306	480	468	485	293	293	289	458	299	484	471	291	480
Zn	458	450	461	468	470	457	460	468	465	468	462	459	468	466	450	448	452	470	461	468	457	467	457	456	460	461	464	462	457	458	455	459	476	455	454	454	460	453	469	459	456	460	465	445	457
Fe	362	358	380	359	356	356	362	366	365	361	356	377	364	368	352	360	356	360	378	361	365	356	355	362	357	366	343	357	360	363	354	359	366	370	368	358	366	351	363	364	360	363	366	351	360
s	535	483	518	462	515	479	481	514	502	464	516	501	506	463	506	525	487	524	456	468	527	515	521	453	470	500	481	521	512	520	523	482	526	509	518	484	522	527	490	485	540	493	470	509	471
Comment	8-07 216.74 Py	8-07 216.74 Py	8-04 115.75 Py	8-07 199.97 Fracture)-87 113.40 Apy	3-07 175.80 Py	-07 199.97 Py	3-04 156.21 Py	-07 199.97 Py	3-07 216.74 Py	3-07 174.62 Zn	3-04 122.36 Py 75	-87 113.40 Apy	-07 199.97 Py	8-07 226.33 Py	-07 175.80 Py	8-07 174.62 Zn	8-04 156.21 Py	8-04 122.36 Py 74	8-07 176.67 Py	8-07 176.67 Py	8-07 226.33 Py	8-07 174.62 Zn	-07 199.97 Py	8-04 156.21 Py	8-07 175.80 Py	8-07 176.67 Py	8-04 115.75 Fracture	8-07 176.67 Py	-07 199.97	8-07 176.67 Py	8-07 174.62 Py	8-07 176.67 Py	8-04 115.75 Py	1-51 74.52 Py 5	8-04 156.21 Py	8-07 176.67 Py	3-07 216.74 Py	8-07 176.67 Py	3-04 156.21 Py	3-07 226.33 Py	8-04 156.21 Py	8-07 199.97 Py	8-07 176.67 Py	R-07 199.97 Fracture
	Ś.	Ś.	ġ.	<u>08</u>	i0	<u>08</u>	<u>08</u>	08	08	08.	08.	8	10	<u>08</u>	<u>8</u>	<u>0</u> 8	Ö8	08	8	<u>08</u>	<u>08</u>	<u>08</u>	<u>08</u>	08	<u>08</u>	<u>08</u>	<u>08</u>	08.	08	08	08	08	08	<u>08</u>	60	<u>08</u>	<u>08</u>	08	8	08	08	08	80	08	80

Te	393	000	28.4	383	2	400		396	395	426	400	389	393	389		389	390	399		393				430	396	387	411	398	444	393	396	395	391	397	397	410	386	509	402	391	499	392	390
Hg	1913	1020	1670	1668		2836		2832	2824	2777	2863	2814	2716	2871		1691	2822	2827		2810				2853	2794	2872	2870	2766	2824	1926	2916	2826	2867	2852	2808	1969	1823	1661	1691	2878	1710	2816	1773
M	988	1040	020	961		1063		1038	1052	1046	1044	1064	1038	1064		1011	1076	1072		1062				1051	1026	1084	1079	1052	1046	1013	1106	1075	1083	1103	1104	1010	1038	1020	1013	1089	1009	1115	1023
306 306	313	505	313	304	315	307	317	309	307	316	317	321	313	313	306	312	318	312	308	318	301	310	313	306	322	320	316	309	306	323	327	319	326	326	317	315	322	321	313	326	324	325	321
Mg 158	195	051	601 167	171	151	159	158	161	168	159	164	163	162	164	156	168	155	170	158	158	161	181	159	159	161	168	159	170	156	178	168	172	170	170	172	176	185	183	175	172	180	169	177
Bi 2371	2221	2414	5067	C-27	2251	2323	2302	2338	2307	2293	2353	2396	2431	2264	2433	2251	2332	2307	2348	2325	2326	2339	2267	2209	2279	2326	2436	2256	2301	2077	2128	1951	2045	1927	2079	1915	1984	1914	1894	2016	2111	1956	1993
Pb	1161		1000	1007												2048														1916						1968	1965	1912	1872		1888		1859
Au 801	1685	008	1578	1741	881	1744	843	1759	1589	1661	1802	1653	1623	1815	799	1636	1741	1461	890	1568	828	923	825	1763	1543	1653	1625	1586	1717	1762	1700	1511	1890	1684	1914	1767	1552	1728	1776	1590	1710	1628	1814
Sb 767	753	68/	500	101	677	813	825	787	831	795	793	798	792	786	794	784	806	774	795	792	837	800	804	799	677	794	822	787	842	770	805	821	821	793	837	787	765	816	768	814	828	783	812
Sn 803	861	C18	800	788	770	820	792	810	786	818	788	812	802	805	778	167	811	788	757	849	783	849	762	833	806	841	847	783	824	810	804	815	814	800	796	775	803	795	804	829	816	769	791
Ag 417	423	420	479	413	442	430	427	445	417	434	425	435	419	438	415	435	450	409	432	421	416	422	433	407	434	433	431	436	436	413	412	428	424	434	444	427	424	439	428	422	451	422	428
Cu 387	382	085 085	202	374	389	385	389	387	379	383	384	381	387	379	383	375	383	387	389	382	380	383	384	390	380	378	387	387	387	380	397	390	399	392	391	387	380	388	388	407	394	399	392
307 20	316	202	315	305	314	313	311	308	313	313	312	320	312	321	313	315	310	316	315	317	317	318	316	310	309	310	309	312	311	326	319	321	319	327	322	324	317	329	313	319	322	321	323
As 492	297 190	489	064 286	200 200	442	497	492	488	499	464	475	482	479	499	489	291	492	501	485	490	476	478	464	502	464	469	484	488	501	314	516	518	531	527	529	326	321	320	321	525	317	519	312
Zn 456	464	403	450	446	470	457	461	459	453	463	458	463	453	449	464	463	454	457	462	456	466	454	462	465	467	459	461	467	462	452	478	464	470	465	471	470	463	475	467	473	462	459	462
Fe 352	357	205	253	354	370	367	368	377	374	372	372	359	363	379	358	358	380	381	363	379	364	373	377	379	379	373	364	378	362	384	382	395	396	392	386	385	382	374	359	392	384	393	375
s 498	518	610	170	475	475	515	494	524	535	497	545	530	540	490	518	499	490	540	508	501	477	470	489	506	510	506	502	493	511	457	520	427	458	490	481	488	520	474	476	494	461	186	477
7					7		7	 9		7	2			ہ ۳	th th	7	~ ~	2	tht		7	cht 4	cht 4	2	-	4	12	20 2		7			7		7	7	• ·	7	7	7	7	7	7
Comment 15.75 Pv	(75.80 Py	V1/9.661	1 K1 20.41	1674 Pv	199.97 Py	74.52 Py 6	166.16 Py	74.52 Py 10	74.52 Py 9	74.52 Py 8	74.52 Py 1:	74.52 Py 1(74.52 Py 11	74.52 Py 13	115.75 brig	174.62 Py	74.52 Py 18	74.52 Py 12	217.77 brig	74.52 Py 19	156.21 Py	217.77 brig	115.75 brig	74.52 Py 2.	74.52 Py 17	74.52 Py 14	122.36 Py	122.36 Py 7	74.52 Py 2	175.80 Po	408 Py 124	408 Py 144	408 Py 135	408 Py 134	108 Py 121	226.33 ?	175.80 Po	175.80 Po	176.67 Po	408 Py 126	(75.80 Po	408 Py 122	176.67 Po
, 08-04 1	08-07 1	1 /0-20	- 10-60 - 10-80	2 LO-80	08-07 1	09-51 7	08-04 1	09-51 7	09-51 7	09-51 7	09-51 7	09-51 7	09-51 7	09-51 7	08-041	08-07 1	09-51 7	09-51 7	08-07 2	09-51 7	08-04 1	08-07 2	08-04 1	09-51 7	09-51 7	09-51 7	08-041	08-04 1	09-51 7	08-07 1	10-73 4	10-73 4	10-73 4	10-73 4	10-73 4	08-07 2	08-07 1	08-07	08-07]	10-73 4	08-07	10-73 4	08-07 1

Comment	Mg wt.%	Al wt.%	Ca wt.%	Mn	Fe wt.%	S wt.%	Ba	Sr	Na	Si wt.%	К	Τi	Total
08-04 150.45 Cal 08-04 156 24 Dol vellow			21.05	2490	17.0			583					53.08
08-04 156.24 Dol yellow			38.63		0.06			683					54.22
08-04 156.24 Dol yellow		0.10	38.44		0.09			753					54.22
08-04 156.24 Dol yellow			38.80		0.08			972					54.57
08-04 122.36 Aufrac		0.03			29.09	30.82							99.12
08-04 181.65 bt?		18.49	13.09		0.06				7308	21.03			99.31
08-04 181.65 bt?		18.60	13.27		0.10				6352	21.01	136		99.67
08-04 181.65 bt?		18.37	12.92		0.11				9279	21.27	181	439	99.72
08-07 176.67 Qz										46.62			99.74
08-04 111.66 Qtz										46.58			99.78
08-04 181.65 bt?		18.77	13.47		0.11				5620	20.88	149		99.95
08-07 176.67 Qz			0.02						281	46.70	314		100.07
08-04 111.66 mus										46.81			100.18
08-07 176.67 Qz										46.83			100.20
08-04 111.66 Qtz										46.91			100.33
08-07 176.67 Qz										46.87			100.34
08-04 111.66 Qtz										46.96			100.47
08-07 176.67 Qz										46.96			100.51
08-04 136.45 mus		0.02	0.02						31	46.93			100.55
08-07 113.96 Qz										47.10			100.78
08-07 176.67 Qz										47.11			100.80
08-07 176.67 Qz										47.32			101.19
08-07 113.96 Qz										47.29			101.21
08-07 113.96 Qz										47.30			101.23
08-07 176.67 Qz DT										47.30			101.23
08-04 181.65 bt?	0.02	16.85	16.12		0.21				2759	18.54	403	297	94.88
08-04 136.45 DOL frac	0.05		38.85	1150	0.13								54.77
08-04 136.45 DOL frac	0.06		38.99	1967	0.08								55.05
08-04 136.45 DOL frac	0.06		39.21	1594	0.11								55.38
08-04 136.45 DOL frac	0.07		39.18	1059	0.12			439					55.23
08-04 122.36 Cal	0.08		30.88	2389	0.19								43.91
08-04 122.36 DOL frac	0.09		35.30	1667	0.35								50.30
08-04 136.45 DOL frac	0.09		38.94	2072	0.12								55.09
08-04 181.65 bt?	0.09	18.53	11.67		0.37		466		3509	21.00	11763	345	98.87
08-04 122.36 DOL frac	0.09		35.02	2177	0.23								49.74
08-04 136.45 DOL frac	0.09		38.95	2059	0.14			442					55.13
08-04 122.36 DOL frac	0.09		35.43	3086	0.14								50.32
08-04 122.36 DOL frac	0.10		35.08	2060	0.30								49.95
08-04 122.36 Cal	0.10		31.14	2766	0.09			589					44.30
08-04 122.36 DOL frac	0.10		35.37	1826	0.21			421					50.23
08-04 122.36 Cal	0.11		31.38	3338	0.18								44.84

non-sulphide data

136.45 Cal 136.45 Cal 17.95 Cal 12.36 DOL frac 12.36 DOL frac 17.95 Cal 17.95 Cal 17.9	$\begin{array}{c} 0.14\\ 0.15\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.18\\ 0.18\\ 0.18\\ 0.19\\ 0.18\\ 0.19\\ 0.20\\ 0.20\\ 0.20\\ 0.22\\$	18.31	37,06 37,76 37,76 37,76 39,37 39,37 39,37 39,37 39,37 39,42 39,52 39,54 39,52 39,54 39,52 39,5	2940 4270 3399 2079 2079 5138 663 5138 663 5138 623 5128 2190 5028 5028	$\begin{array}{c} 0.12\\ 0.16\\ 0.15\\ 0.16\\ 0.18\\ 0.18\\ 0.12\\ 0.12\\ 0.12\\ 0.18\\ 0.16\\ 0.18\\ 0.16\\ 0.18\\ 0.16\\ 0.18\\ 0.19\\ 0.18\\ 0.08\\ 0.08\\ 0.08\\ 0.10\\$	0.03	763	393 404 404 411 588 588 542 542 542	3641	21.07	21372	1054	55.15 53.77 55.12 55.12 55.12 55.12 55.12 55.16 55.67 55.49 55.49 55.49 55.30 55.44 55.30 55.44 55.30 55.44 55.30 55.44 55.30 55.44 55.30 55.44 55.30 55.44 55.30 55.49 55.40 55.49 55.40 55.50 55.40 55.50 55.40 55.500
5 Cal 5 Cal 5 Cal CalDT CalDT CalDT CalDT Cal Cal Cal Cal Cal CalDT CalDT CalDT CalDT CalDT CalDT CalDT CalDT CalDT CalDT CalC CalC CalC CalC CalDT Ca	$\begin{array}{c} 0.26\\ 0.26\\ 0.28\\ 0.28\\ 0.29\\ 0.29\\ 0.37\\ 0.37\\ 0.37\\ 0.37\\ 0.37\\ 0.37\\ 0.37\\ 0.39\\ 0.37\\ 0.49\\ 0.41\\ 0.51\\$		32.79 35.96 35.98 38.88 36.93 37.95	2275 2290 577 577 577 577 577 514 514 514 514 516 613 556 5346 5346	0.18 0.10 0.08 0.04 0.05 0.05 0.05 0.09 0.05 0.05 0.05 0.05			399 578 464 427 432 432	198	0.01			46.88 51.15 550.10 550.10 550.10 551.15 54.63 54.63 51.66 51.66 51.66 51.66 51.66 51.66 51.66 55.67 55.57 55.56 55.56 55.56 55.82

Comment	Mo wt %	A1 wt %	Ca wt %	Mn	Fe wt %	S wt %	Ba	Sr	Ña	Si wt %	У	Ë	Total
08-04 156.24 Dol saddle	10.07		20.73	7811	5.92			5			:	:	54.36
08-04 156.24 Dol saddle	10.07		20.42	7806	5.67								53.57
08-04 122.36 DOL	10.11		18.54	3815	2.66			501					46.72
08-04 156.24 Dol saddle	10.20		20.69	8983	6.00			419					54.77
08-04 122.36 DOL	10.29		18.29	5678	1.75								45.68
08-04 136.45 DOL	10.32		19.85	6321	4.47			485					51.48
08-04 156.24 Dol saddle	10.46		20.82	7169	5.08								53.88
08-04 156.24 Dol	10.49		20.95	7137	5.40								54.57
08-04 156.24 Dol saddle	10.49		20.92	8226	5.29			465					54.61
08-04 136.45 DOL	10.51		20.84	6446	5.14			568					54.07
08-04 136.45 DOL	10.58		20.43	7558	4.48			467					52.90
08-04 156.24 Dol saddle	10.62		20.71	8061	5.08			431					54.22
08-04 136.45 DOL	10.62		20.37	7091	5.25			459					53.84
08-04 156.24 Dol saddle	10.62		20.77	7595	4.95			424					54.07
08-04 136.45 DOL	10.65		20.23	5926	4.78			471					52.92
08-04 122.36 DOL	10.65		18.53	2756	1.89								46.48
08-04 122.36 DOL	10.66		19.07	6587	2.34								48.30
08-04 156.24 Dol saddle	10.67		20.77	7292	5.08								54.29
08-04 122.36 DOL	10.73		18.90	7739	1.74			435					47.55
08-04 122.36 DOL	10.74		19.09	5860	2.71								48.80
08-04 156.24 Dol saddle	10.79		20.81	7223	4.39			400					53.61
08-04 156.24 Dol	10.83		20.81	6639	4.76								54.13
08-04 122.36 DOL	10.88		19.09	4847	2.20								48.21
08-04 122.36 DOL	10.89		19.03	8523	1.53								47.82
08-04 136.45 DOL	10.91		20.71	6143	4.48			481					53.69
08-04 122.36 DOL	10.92		19.39	7588	2.39								49.33
08-04 122.36 DOL	10.95		19.11	9962	1.64								48.40
08-04 156.24 Dol saddle	10.98		20.82	7446	4.80								54.51
08-04 156.24 Dol saddle	11.01		20.70	7008	4.16								53.56
08-04 136.45 DOL	11.02		20.71	5761	3.70								52.77
08-04 136.45 DOL	11.07		20.92	6207	4.41								54.11
08-04 136.45 DOL	11.07		20.47	6750	4.14								53.20
08-04 136.45 qtz?	11.08		21.96	5820	2.32				10				52.81
08-04 136.45 DOL	11.10		20.52	5150	4.18			660					53.26
08-04 156.24 Dol	11.15	0.03	20.87	7038	4.04								53.90
08-04 136.45 DOL	11.16		20.88	7289	3.35								53.00
08-04 136.45 DOL	11.18		20.96	6517	4.08								53.99
08-04 156.24 Dol clean	11.23		20.75	9038	4.29			425					54.42
08-04 136.45 DOLr	11.26		20.61	6588	3.49								52.88
08-04 156.24 Dol clean	11.27		20.61	8427	3.77			431					53.54
08-04 156.24 Dol clean	11.28		20.58	6582	3.42								52.80
08-04 136.45 DOLr	11.28		20.23	5524	2.99								51.61
08-04 136.45 DOLr	11.31	0.02	20.68	6347	3.48			428					53.09
08-04 136.45 DOL	11.35		20.50	6141	3.20								52.43
08-04 136.45 DOLr	11.39		20.94	7628	2.75								52.76

Mg wt.% A 11.41 11.41 11.44 11.48 11.48 11.48	1wt% Ca wt% 20.75 21.11 22.27 20.39 20.52	Mn 8487 5979 651 4339 5658	Fe wt.% 3.43 3.07 2.47 2.76	S wt.%	Ba	Sr 463	Na	Si wt.%	Ч	Ĩ	Total 53.54 53.21 50.27 51.38 52.10
	20.96 21.07 22.71 21.07 21.07 21.07	/41/ 5403 8756 484 8369 7854	3.35 3.29 2.16 2.86			252 424					53.63 53.63 52.30 51.11 53.23 53.05
	20.04 20.05 21.20 20.88 20.96 21.05 21.26	4052 5241 7281 8938 8007 4703 4457	2.15 3.09 2.68 3.29 2.22 2.21				114 29				50.75 53.49 52.41 53.83 53.33 54.12 52.45 52.45
	20.67 21.06 21.03 21.06 20.15 20.60 20.88 20.97	5352 8388 6825 9210 7977 3941 5658 5894	2.07 2.08 2.62 0.88 2.04 2.05 2.07			490 498 435					51.98 53.05 53.16 53.16 53.16 53.86 51.80 51.80 51.80 53.65
	20.97 20.36 20.45 20.45 21.14 20.95 20.92 20.92 20.92	9548 2876 5347 5479 3449 3351 5440	2.02 1.89 1.66 1.68 1.98 2.10 2.10			518 499 432					53.18 51.20 51.44 52.46 52.33 52.33 52.33 52.33 52.33
	20.02 20.98 20.98 20.94 20.27 20.27 21.43 21.01	585 3119 3144 6009 5824 5824 3968	0.28 0.28 1.61 1.96 0.10 0.06 1.87 2.03			448 433	65				49.50 49.50 51.94 52.20 52.74 48.66 48.66 53.28 53.28 53.28

K Ti Total 52.15 52.24 52.24	52.13 52.13	52.06	48.80	51.82	53.19 52.46	52.50	52.58	54.10	50.91	80.6C	53.63	55.50	70 97.28	69 97.36	.94 97.90	26 97.69	78 97.50	87 98.09	97.89	45 86.25	95 85.84	87.16	62 86.55	86.78	86.49	40 85.35	21 85.80	20 87.29	94.26	21 93.39	93.70	93.69	94.35	92.53	95.76	94.10	94.98	90.47
Si wt.%													27.27 2	27.35 1	27.47 2	27.40 1	27.40 1	27.55 2	27.54	14.18 1	14.24 1	14.29	14.36 1	14.14	14.18	13.89 3	14.17 1	14.19 2	29.69	29.29	29.29	29.26	29.36	28.93	30.24	29.55	29.68	27.86
Na 67	5				159			24			70	2	283	280	280		224	266	233							217			148		78	187	127	44	130			243
a Sr	440	474		473			515			455 787	100																											
S wt.% B											0.03	60.0																		0.03								
Fe wt.% 1.29 1.05	2.13 1.52	1.67	0.12	1.46	2.53 1.51	1.50	1.58	2.29		C8.1 0.57	0.41	1.16	1.77	1.58	1.68	1.65	1.76	1.64	1.60	7.93	6.13	7.16	6.14	6.38	6.20	6.13	6.37	6.20	0.89	0.71	0.93	0.86	1.02	0.37	0.75	0.58	1.09	0.53
Mn 6565 3456 4786	4175 3752	2962 3120	599	2853	4578 4938	5650	3970	5320	658 2215	3310 3436	3511	4889	2108	1752	2041	1952	1859	1568	1977	868	1200	1008	1224	1378	1361	1127	1046	1454			687						541	
Ca wt.% 21.02 20.76	20.89 20.98	20.84 20.69	20.14	20.83	20.67 20.99	20.95	21.05	21.33	21.56	02.06	20.10	22.32	9.49	9.63	9.64	9.56	9.31	9.59	9.54							0.03	0.01	0.02	0.03	0.03	0.02	0.02	0.08	0.13	0.03	0.01		0.05
Al wt.%													0.05	0.06	0.05	0.05	0.05	0.07	0.03	10.30	10.99	10.63	10.90	10.97	10.88	10.53	10.29	11.03	0.10	0.07	0.09	0.14	0.16	0.05	0.07	0.08	0.04	0.07
Mg wt.% 12.19 12.21	12.22	12.26	12.29	12.29	12.29 12.34	12.35	12.37	12.40	12.44	12.44	12.66	13.35	13.84	13.86	13.89	13.98	13.99	14.00	14.00	15.73	15.99	16.33	16.35	16.51	16.54	16.61	16.70	16.79	17.67	17.84	17.86	17.88	17.93	17.99	18.02	18.03	18.04	18.04
Comment 08-04 156.24 Dol clean 08-04 156.24 Dol clean 08-04 136.45 6777	08-04 156.24 Dol clean 08-04 156.24 Dol clean	08-04 156.24 Dol clean 08-04 156.24 Dol clean	08-07 17.95 CalDT	08-04 156.24 Dol clean	08-04 136.45 qtz? 08-04 156.24 Dol clean	08-04 156.24 Dol saddle	08-04 156.24 Dol clean	08-04 136.45 qtz?	08-07 17.95 CalDT	08-04 156.24 Dol clean	08-04 136 45 mile	08-04 136.45 mus	08-07 113.96 mys	08-07 176.67 tlc	08-04 122.36 mus	08-04 111.66 mus	08-04 122.36 mus	08-04 122.36 mus	08-04 122.36 mus	08-04 136.45 mus	08-04 122.36 mus	08-07 113.96 mus	08-07 113.96 mus	08-04 136.45 mus														

Comment	Mg wt.%	Al wt.%	Ca wt.%	Mn	Fe wt.%	S wt.%	Ba	Sr	Na	Si wt.%	K	Ti	Total
08-07 113.96 mus	18.08	0.06	0.01		1.28					29.99			95.99
08-04 111.66 mus	18.10	0.11			0.62					29.09	153		93.38
08-04 136.45 mus	18.11	0.07	0.04	570	1.11				159	28.74		128	93.23
08-04 111.66 mus	18.12	0.09	0.02		0.51					28.88			92.75
08-07 113.96 mus	18.13	0.10	0.03	520	0.73					29.52			94.45
08-04 111.66 mus	18.13	0.07	0.04		0.50					29.32			93.71
08-04 111.66 mus	18.15	0.10			0.58					29.05			93.23
08-04 111.66 mus	18.18	0.12	0.01	495	0.73					29.53			94.63
08-04 136.45 mus	18.18	0.10	0.03		1.53				269	27.30			90.84
08-04 136.45 mus	18.18	0.08	0.03		0.77				212	27.53			90.33
08-04 122.36 mus	18.20	0.08	0.07		0.98				66	29.54			94.99
08-04 111.66 mus	18.21	0.09	0.02		0.52					29.38	167		94.01
08-07 113.96 mus	18.22	0.08	0.02		1.34					29.55	146		95.37
08-04 111.66 mus	18.23	0.10	0.03		0.51					29.18	120		93.65
08-07 113.96 mus	18.24	0.11	0.03	479	0.58				227	29.37			94.19
08-07 113.96 mus	18.24	0.10	0.02	518	0.80					29.78			95.28
08-04 136.45 mus	18.25	0.09	0.05		0.51				157	26.57			88.09
08-07 113.96 mus	18.27	0.08	0.03		1.16					29.82			95.85
08-04 111.66 mus	18.33	0.12	0.02		0.70				176	29.55			94.84
08-07 113.96 mus	18.33	0.07			0.89				230	29.43	167		94.75
08-04 136.45 mus	18.36	0.10	0.09		0.37				67	28.55			92.38
08-07 113.96 mus	18.41	0.08	0.01	723	0.81					29.67			95.29
08-04 111.66 mus	18.45	0.10	0.05		0.53				176	29.51			94.70
08-07 113.96 mus	18.46	0.06			0.56					29.69			95.02
08-04 136.45 mus	18.50	0.08	0.07		0.48	0.03			276	25.61			86.45
08-07 113.96 mus	18.51	0.07	0.05		0.47					29.46			94.55
08-07 113.96 mus	18.55	0.06		559	0.69					29.62			95.20
08-04 111.66 mus	18.61	0.11			0.70				247	29.19			94.49
08-07 113.96 mus	18.64	0.07	0.07		0.41					29.64	121		95.11
08-07 113.96 mus	18.66	0.07	0.07		0.55					29.47			95.01

yellow yellow yellow ac	Mg 284 2265 309 2288 2288 2288 2288 2288 2288 2288 22	Al 118 231 231 237 268 237	Ca 324 316 315 315 233	Mn 492 513 513 511 663	Fe 362 393 425 414 414 535	S 261 350 361 425 302 670	Ba 447 475 475 443 517 517	Sr 395 410 427 399 399	Na	Si Si	Y S	Ξ.
2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	۰ ۵ ۵ ۵ ۵ ۵ ۰	94 [1] 68 96	131 133 101 130	493 450 459 457	305 327 292 292	381 309 380 399 261	389 395 381 403		204 196 168 168 165	205 211 202 215 215	125 125 125 125 115	277 278 272 267 267 270
<u> </u>	5 5 7 6 6 0 J J 8 5 7 7 7 8 5 7 7 7 8 7 8 5 7 7 7 8 5 7 7 7 7 8 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	99 99 102 99 99 99 99 99 93 303 303 303	432 438 445 445 445 446 446 446 465 465 461 461 465 465 465 527 527 501	298 286 3310 2772 2772 2772 2772 286 286 286 288 288 3381 3381	382 279 279 335 332 332 314 312 312 312 312 321	387 373 391 386 386 386 374 378 378 378 378 378 378 378 378 378 378	383 374 378	162 181 178 173 173 173 171 171 171 189 189 176 189 176 181 176	226 214 214 224 224 225 226 225 225 225 225 222 223 221 222 223 221 222 223	$\begin{array}{c}111\\116\\116\\1112\\1112\\1112\\1112\\1112\\11$	261 261 261 261 272 272 272 272 272 272 272 272 272 27
276 254 2534 2533 2533 2569 2569 2585 2585 2585 2585 2585 2585 2585 2576	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	25 25 25 25 25 27 27 27 27 27 27 27 27 27 27 27 27 27	321 302 298 1127 316 316 304 304 310 2281 287 287	547 482 474 465 515 515 515 485 485 470 470 470 473	360 405 384 387 302 371 371 373 370 378 363 363	384 303 3329 333 365 342 342 371 337 337 302 266	440 425 426 420 337 420 414 413 413 416 403	384 388 396 397 397 397 383 383 370 370	178	207	127	289

non-sulphide data detection limits 3 sigma (ppm)

Comment	Mg	Ы	Ca	Mn	Fe	s	Ba	Sr	Na	Si	К	Ξ
08-04 122.36 DOL frac	250	247	303	513	377	329	428	382				
08-07 17.95 CalDT	251	216	303	514	363	278	414	367				
08-04 122.36 Cal	252	226	305	504	378	304	428	393				
08-04 136.45 DOL	245	222	317	503	354	254	418	374				
08-04 136.45 Cal	266	233	328	536	393	328	436	381				
08-04 136.45 Cal	259	240	332	552	365	385	432	392				
08-07 17.95 Cal	245	202	294	463	383	253	412	371				
08-04 122.36 DOL frac	235	221	288	470	383	334	402	377				
08-04 136.45 Cal	254	233	327	535	393	290	430	398				
08-07 17.95 CalDT	248	205	293	510	358	361	418	359				
08-04 136.45 DOL	292	218	305	472	376	364	433	386				
08-07 17.95 Cal	267	212	300	489	359	225	413	358				
08-07 17.95 CalDT	260	211	299	446	385	333	411	366				
08-04 122.36 Cal	261	212	293	510	363	240	409	372				
08-07 17.95 Cal	275	244	333	528	341	328	450	389				
08-07 17.95 CalDT	270	223	319	454	377	320	436	370				
08-07 17.95 Cal	247	219	289	501	338	371	423	361				
08-04 122.36 DOL frac	275	212	283	466	347	302	406	366				
08-04 136.45 DOL	276	232	310	510	358	335	425	378				
08-04 136.45 Cal	261	210	329	523	368	395	432	392				
08-07 17.95 Cal	245	228	315	507	396	316	431	383				
08-07 17.95 Cal	262	224	328	525	392	352	431	395				
08-04 136.45 Cal	277	217	333	475	374	276	451	374				
08-04 136.45 Cal	278	237	330	508	382	329	434	387				
08-04 122.36 Cal	261	228	298	496	406	342	435	386				
08-04 181.65 bt?	139	194	127	458	300	373	402		188	209	131	290
08-04 136.45 Cal	258	248	330	492	363	304	439	391				
08-04 136.45 Cal	261	247	326	497	358	352	435	394				
08-04 136.45 Cal	280	233	327	518	366	352	436	395				
08-07 17.95 CalDT	246	224	305	497	379	342	404	373				
08-07 17.95 Cal	260	231	333	526	367	352	441	376				
08-04 136.45 DOL frac	259	205	301	479	348	363	425	366				
08-07 17.95 CalDT	231	214	304	450	379	343	394	374				
08-04 111.66 Qtz frac	145	168	171	519	304	315	410		199	133	100	316
08-07 17.95 Cal	275	217	330	512	368	352	432	386				
08-07 17.95 Cal	277	221	327	475	401	276	424	388				
08-07 17.95 Cal	256	220	326	517	407	330	430	388				
08-04 111.66 Qtz frac	141	177	178	508	316	304	409		193	139	96	319
08-04 136.45 Cal	256	241	330	499	373	276	438	388				
08-07 17.95 Cal	265	235	337	492	398	304	423	370				
08-07 17.95 CalDT	257	206	300	453	336	290	417	367				
08-07 17.95 Cal	254	225	311	483	349	302	411	369				
08-07 17.95 CalDT	236	233	297	477	380	240	410	380				
08-04 136.45 DOL frac	285	227	314	497	379	304	431	390				
08-07 17.95 Cal	267	222	311	521	364	291	428	375				

Comment	Mg	Al	Ca	Mn	Fe	s	Ba	Sr	Na	Si	К	Τi
08-07 17.95 CalDT	241	215	294	442	342	280	426	374				
08-07 17.95 Cal	255	226	296	457	359	344	427	373				
08-07 17.95 CalDT	280	244	288	510	346	291	415	377				
08-04 136.45 Cal	278	248	323	532	383	262	431	383				
08-07 17.95 Cal	261	234	319	451	408	397	423	374				
08-07 17.95 Cal	269	228	319	500	386	330	437	386				
08-04 136.45 Cal	268	224	310	464	381	292	408	361				
08-07 17.95 CalDT	228	213	303	469	370	303	405	380				
08-04 136.45 Cal	301	233	340	493	370	263	438	385				
08-04 136.45 Cal	280	1.#INF	315	503	394	315	416	377				
08-04 136.45 Cal	266	225	316	476	371	281	410	372				
08-04 136.45 Cal	267	255	330	504	386	407	431	384				
08-04 136.45 Cal	281	223	344	486	386	355	425	399				
08-04 136.45 Cal	295	223	316	499	422	306	424	391				
08-04 111.66 Qtz frac	133	161	169	537	325	301	407		127	106	91	274
08-04 181.65 bt	183	212	108	487	361	321	412		221	208	153	312
08-04 181.65 bt	186	206	III	531	353	382	413		229	212	159	297
08-04 181.65 bt	183	219	110	494	353	378	422		244	212	154	294
08-04 181.65 bt	182	214	106	526	329	365	402		229	211	151	306
08-04 181.65 bt	188	214	109	497	341	286	408		222	209	152	287
08-04 181.65 bt	181	223	112	496	346	314	413		230	210	156	298
08-04 181.65 bt	187	215	III	494	355	327	415		230	213	155	287
08-04 181.65 bt	182	208	107	495	356	326	419		225	216	152	292
08-04 181.65 bt	195	223	111	528	338	326	415		219	213	152	296
08-04 181.65 bt	184	220	112	495	355	327	411		220	212	151	290
08-04 181.65 bt	188	212	111	506	352	346	410		213	213	150	276
08-04 181.65 bt	192	210	110	471	352	327	418		218	215	157	292
08-04 181.65 bt	186	214	107	482	355	349	406		222	209	156	279
08-04 181.65 bt	188	212	106	474	348	306	415		229	208	153	293
08-04 156.24 Dol clean	348	223	241	453	388	351	372	397				
08-04 122.36 DOL	345	213	237	484	356	1.#INF	387	414				
08-04 122.36 DOL	352	258	238	435	363	410	382	401				
08-04 122.36 DOL	338	230	240	471	336	326	373	399				
08-04 122.36 DOL	335	240	242	495	349	341	377	390				
08-04 122.36 DOL	342	265	240	444	330	439	381	395				
08-04 122.36 DOL	349	278	258	482	381	343	389	414				
08-04 122.36 DOL	315	233	239	436	343	354	375	409				
08-04 122.36 DOL	348	255	234	443	333	300	373	395				
08-04 122.36 DOL	351	208	232	452	362	288	382	390				
08-04 122.36 DOL	324	250	241	449	338	355	375	414				
08-04 122.36 DOL	337	250	246	445	320	390	374	406				
08-04 136.45 DOL	357	246	246	470	359	315	374	401				
08-04 122.36 DOL	353	251	247	493	345	343	392	416				
08-04 156.24 Dol clean	358	253	242	469	354	353	377	394				
08-04 156.24 Dol saddle	328	226	240	414	375	271	371	391				

		14	Ċ		Ĺ	5		2			2	Ē
	Mg S	T I	Ca Ca	UIM	1 G	0	Da	5	ING	10	4	Ξ
08-04 156.24 Dol saddle	320	C 22	246	493	358	310	391	405				
08-04 156.24 Dol saddle	369	244	256	471	374	411	398	425				
08-04 122.36 DOL	328	251	231	469	343	302	361	385				
08-04 156.24 Dol saddle	336	235	237	446	377	355	377	399				
08-04 122.36 DOL	347	262	249	473	334	360	382	411				
08-04 136.45 DOL	361	259	271	491	354	398	404	406				
08-04 156.24 Dol saddle	353	273	259	484	378	398	402	441				
08-04 156.24 Dol	355	283	247	468	397	398	384	426				
08-04 156.24 Dol saddle	317	240	245	472	331 1	#INF	373	393				
08-04 136.45 DOL	319	245	233	471	371	388	374	391				
08-04 136.45 DOL	358	245	244	468	359	377	375	403				
08-04 156.24 Dol saddle	348	233	243	456	358	255	397	397				
08-04 136.45 DOL	335	233	239	422	373	341	372	401				
08-04 156.24 Dol saddle	339	230	244	462	347	389	380	401				
08-04 136.45 DOL	364	248	258	486	379	345	393	409				
08-04 122.36 DOL	355	263	257	481	352	331	384	416				
08-04 122.36 DOL	328	233	231	441	348	256	364	403				
08-04 156.24 Dol saddle	338	234	246	482	367	286	381	404				
08-04 122.36 DOL	337	231	253	462	348	359	386	411				
08-04 122.36 DOL	329	238	224	451	333	344	379	401				
08-04 156.24 Dol saddle	342	252	247	451	392	412	378	396				
08-04 156.24 Dol	352	252	247	477	389	238	391	424				
08-04 122.36 DOL	333	272	235	470	323	381	374	393				
08-04 122.36 DOL	360	245	254	481	329	333	393	409				
08-04 136.45 DOL	319	250	243	481	355	316	374	396				
08-04 122.36 DOL	330	243	236	419	354	317	378	402				
08-04 122.36 DOL	343	227	235	442	326	317	367	397				
08-04 156.24 Dol saddle	340	241	245	434	350	367	367	406				
08-04 156.24 Dol saddle	335	229	249	435	354	272	373	404				
08-04 136.45 DOL	370	251	255	471	358 1	#INF	398	425				
08-04 136.45 DOL	337	262	248	464	352	400	370	404				
08-04 136.45 DOL	341	245	239	455	320	342	379	403				
08-04 136.45 qtz?	214	205	145	488	289	307	402		190	150	104	276
08-04 136.45 DOL	349	254	255	479	344	279	394	398				
08-04 156.24 Dol	349	224	257	465	351	359	387	409				
08-04 136.45 DOL	356	263	261	436	348	344	393	416				
08-04 136.45 DOL	341	210	253	440	352	389	375	397				
08-04 156.24 Dol clean	350	244	251	441	354	273	377	400				
08-04 136.45 DOLr	354	258	254	477	338	359	392	429				
08-04 156.24 Dol clean	363	277	256	468	374	300	383	411				
08-04 156.24 Dol clean	351	231	245	431	362	343	368	404				
08-04 136.45 DOLr	351	280	264	444	382	313	399	419				
08-04 136.45 DOLr	340	212	245	456	350	255	376	396				
08-04 136.45 DOL	327	239	237	474	359	355	361	413				
08-04 136.45 DOLr	351	261	256	494	392	343	400	408				

Comment	Мσ	41	°,	Mn	٩ لا	v.	Ra	Sr	^e Z	2	К	Ë
08-04 136 45 DOI	344	245	260 260	466	367	278	705	475	1	5	4	:
08-04 136.45 DOL	329	240	248	462	339	342	369	403				
08-07 17.95 CalDT	340	240	267	444	362	254	381	397				
08-04 136.45 DOL	353	249	242	442	358	273	368	396				
08-04 136.45 DOL	369	272	247	461	388	313	390	416				
08-04 156.24 Dol clean	356	280	254	461	353	359	393	403				
08-04 156.24 Dol	350	270	246	435	389	360	400	415				
08-04 156.24 Dol saddle	360	272	261	465	352	345	390	415				
08-07 17.95 CalDT	369	250	263	445	354	370	403	413				
08-04 156.24 Dol	309	236	248	494	360	437	391	413				
08-04 136.45 DOL	366	241	259	478	356	387	396	415				
08-04 136.45 DOL	332	249	241	404	340	392	374	407				
08-04 156.24 Dol clean	348	256	240	415	339	272	380	404				
08-04 156.24 Dol saddle	358	256	245	443	350	374	392	432				
08-04 156.24 Dol	357	247	268	465	379	313	397	412				
08-04 136.45 DOL	352	270	247	392	354	317	373	398				
08-04 156.24 Dol saddle	355	261	245	428	319	412	371	402				
08-04 136.45 qtz?	217	209	147	454	307	256	392		187	155	110	290
08-04 136.45 qtz?	219	220	144	453	291	237	394		192	152	103	292
08-04 136.45 DOL	354	256	245	469	385	388	401	405				
08-04 156.24 Dol	364	270	258	465	352	297	390	411				
08-04 156.24 Dol saddle	347	269	247	455	362	298	384	422				
08-04 156.24 Dol saddle	347	234	239	423	356	380	378	411				
08-04 136.45 DOL	348	222	247	426	344	357	362	394				
08-04 156.24 Dol clean	351	223	260	445	374	374	389	422				
08-04 136.45 DOLr	363	255	247	454	355	374	398	421				
08-04 156.24 Dol clean	342	283	243	417	367	1.#INF	369	404				
08-04 156.24 Dol saddle	326	258	241	451	374	289	365	390				
08-04 136.45 DOL	359	278	244	468	327	414	374	400				
08-04 136.45 DOL	367	296	261	481	326	360	400	405				
08-04 156.24 Dol clean	338	252	234	472	346	343	375	403				
08-04 156.24 Dol clean	345	244	242	454	345	317	371	398				
08-04 156.24 Dol clean	379	263	265	469	369	330	391	424				
08-04 136.45 DOLr	346	275	255	447	385	297	395	409				
08-04 156.24 Dol clean	311	259	246	417	359	367	375	401				
08-04 156.24 Dol clean	351	228	242	439	331	381	382	397				
08-07 17.95 CalDT	372	255	275	454	336	359	395	426				
08-07 17.95 CalDT	369	246	259	463	383	345	390	409				
08-04 156.24 Dol clean	338	250	259	464	391	414	393	416				
08-04 156.24 Dol clean	358	241	249	473	336	220	372	396				
08-04 136.45 DOL	352	258	236	428	343	368	376	398				
08-07 17.95 CalDT	372	276	280	467	313	346	390	403				
08-07 17.95 CalDT	352	238	258	511	344	388	381	411				
08-04 136.45 qtz?	219	201	145	470	276	289	402		185	141	112	290
08-04 156.24 Dol clean	344	269	247	477	352	345	391	410				

ΤΪ	266	291	279	281 282 281	296 296 297 283	$\begin{array}{c} 283\\ 283\\ 284\\ 283\\ 284\\ 283\\ 284\\ 283\\ 284\\ 283\\ 284\\ 284\\ 284\\ 284\\ 284\\ 284\\ 284\\ 284$	273 278 276
ч	101	106	102	106 106 120	121 121 115 125 113	115 117 117 117 117 117 117 117 117 117	119 112 111
Si	144	154	148	143 153 208	205 205 204 204	203 209 194 197 197 204 203 203 203 203 203 203 203 203 203 203	216 206 212
Na	185	188	197	180 204 181	161 187 178 190	186 185 185 185 183 183 187 187 187 187 187 183 183 183 183 183 173 183 183 173 173 173 174 177 177 176 177 177 177 177 177 177 177	164 173 179
Sr 400	400 396 405 407	402 396 397 400	400 399 376				
Ba 381	377 381 384 377 377 378	305 373 376 376	389 378 372 366	385 396 393	387 387 382 393 389	381 395 395 395 377 377 367 367 367 377 377 377 377 377	375 363 368
S 303	381 332 332 333 331 331 331 332 332 332 33	2/4 297 304 318 1 #INF	282 422 221 380	246 274 282	202 373 319 314	319 314 314 314 314 315 319 316 219 316 219 316 219 316 219 316 219 213 213	431 302 331
Fe 373	355 344 355 355 355 355 355	250 280 347 361	317 333 337 337 337	285 263 298	230 289 287 322	$\begin{array}{c} 289\\ 286\\ 306\\ 306\\ 306\\ 306\\ 308\\ 308\\ 302\\ 284\\ 239\\ 282\\ 282\\ 288\\ 298\\$	282 293 278
Mn 430	472 479 509 414 435	450 451 427 434 458	448 436 430 430	447 472 471	471 469 494 442	488 455 4560 4557 4557 465 4465 471 471 473	471 459 438
Ca 249	246 145 250 258 243 243	201 244 229 258	261 261 242 243	147 144 126	120 124 123 125	128 90 2 2 8 2 2 2 2 2 2 2 2 8 2 2 2 8 2 2 8 2 2 8 2 2 8 2	98 97
AI 245	212 214 214 214 217 219	200 257 228 252	232 232 242 777	201 191 183	1 85 1 92 1 90 2 03	171 172 215 215 215 215 216 219 219 213 219 213 219 213 213 213 213 214 213 213 213 214 215 215 215 215 215 215 215 215 215 215	207 197 193
342 342	245 217 321 337 339 339 339	270 219 352 352	355 342 342 338	214 216 208	208 206 208 208 207	207 211 213 213 213 213 213 215 215 215 215 215 215 215	217 211 217
Comment 08-04 156.24 Dol clean	08-04 155.24 Dol clean 08-04 156.24 Dol clean 08-04 156.24 Dol clean 08-04 156.24 Dol clean 08-04 156.24 Dol clean 08-07 155.24 Dol clean 08-07 1755 CalDT	08-04 1.20.24 D0l clean 08-04 136.45 qtz? 08-04 156.24 Dol clean 08-04 156.24 Dol clean 08-04 156 24 Dol clean	08-04 136.45 qtz? 08-07 17.95 CalDT 08-04 156.24 Dol clean 08-04 136.45 DOI	08-04 136.45 mus 08-04 136.45 mus 08-07 113.96 mvs	08-07 113.96 mys 08-07 113.96 mys 08-07 113.96 mys 08-07 113.96 mys	08-07 113.96 mys 08-07 113.96 mys 08-07 176.67 tlc 08-07 176.67 tlc 08-04 122.36 mus 08-04 122.36 mus	08-04 122.36 mus 08-07 113.96 mus 08-07 113.96 mus

Ξ	263	271	270	265	278	269	261	268	273	271	265	274	270	264	286	262	269	284	262	273	264	269	276	265	267	266	259	268	254	267
K	124	115	110	120	118	111	122	117	120	120	115	111	110	116	117	113	113	123	118	113	110	127	118	113	125	116	116	118	105	115
Si	211	200	213	208	215	217	208	208	217	213	214	208	208	205	209	212	217	210	207	214	214	215	212	217	210	212	214	204	215	206
Na	168	176	178	167	165	172	171	178	179	172	177	177	171	172	167	167	167	180	173	168	179	170	168	164	161	166	169	168	183	165
\mathbf{Sr}																														
Ba	378	367	365	369	381	375	380	373	374	373	384	374	367	372	374	366	383	374	370	372	369	370	366	369	376	388	374	382	369	373
S	298	315	371	315	368	325	303	291	1.#INF	331	331	325	325	268	296	280	272	320	325	332	297	296	334	285	245	340	351	325	369	255
Fe	293	296	278	284	278	286	272	289	289	293	301	291	298	280	262	275	306	288	289	295	301	302	271	292	312	267	294	284	294	282
Mn	447	432	423	447	440	422	447	436	468	458	469	430	446	474	470	428	473	467	456	468	438	435	463	464	476	452	438	453	454	451
Ca	66	96	76	94	95	101	93	96	76	95	98	95	100	96	95	95	98	93	96	96	94	93	94	98	66	76	98	96	100	93
AI	190	187	192	195	189	185	189	176	207	192	192	181	190	183	180	192	201	202	197	185	188	193	198	189	187	191	189	179	194	184
Mg	221	216	216	211	214	215	218	221	219	220	222	214	215	218	217	217	214	218	219	219	213	220	209	213	216	214	217	219	221	218
Comment	08-07 113.96 mus	08-04 111.66 mus	08-04 136.45 mus	08-04 111.66 mus	08-07 113.96 mus	08-04 111.66 mus	08-04 111.66 mus	08-04 111.66 mus	08-04 136.45 mus	08-04 136.45 mus	08-04 122.36 mus	08-04 111.66 mus	08-07 113.96 mus	08-04 111.66 mus	08-07 113.96 mus	08-07 113.96 mus	08-04 136.45 mus	08-07 113.96 mus	08-04 111.66 mus	08-07 113.96 mus	08-04 136.45 mus	08-07 113.96 mus	08-04 111.66 mus	08-07 113.96 mus	08-04 136.45 mus	08-07 113.96 mus	08-07 113.96 mus	08-04 111.66 mus	08-07 113.96 mus	08-07 113.96 mus

and Lep = leop:	ard calcite.)	:					
			SiO ₂	Al2O3	Fe2O3(T)	MnO	Mg0	CaO	Na2O	K20	TiO ₂	P2O5	ΓOI	Total
		Detection Limit	0.01 %	0.01 %	0.01 %	0.001 %	0.01 %	0.01 %	0.01 %	0.01 %	0.001 %	0.01 %		0.01 %
Sample ID	Rock type	Analysis Method	FUS-ICP	FUS-ICP	FUS-ICP	FUS-ICP	FUS-ICP	FUS-ICP	FUS-ICP	FUS-ICP	FUS-ICP	FUS-ICP	FUS-ICP	FUS-ICP
ER-2	Vol	G285302	38.02	13.63	13.40	0.185	14.05	5.83	0.00	0.06	1.98	0.53	11.00	98.69
ER-4	Vol	G285304	44.36	12.31	10.04	0.138	8.32	8.92	0.03	1.68	1.691	0.44	11.33	99.25
ER-6	Vol	G285306	41.72	15.05	13.15	0.070	9.00	5.95	0.25	5.01	1.508	0.21	8.20	100.10
ER-8	Vol	G285308	45.60	14.34	13.58	0.048	13.80	1.87	0.81	2.57	1.629	0.16	5.64	100.10
ER-10	Vol	G285309	41.56	15.39	10.82	0.107	7.96	8.74	2.96	0.92	1.724	0.20	10.11	100.50
ER-12	Vol	G285310	30.01	9.68	8.23	0.141	4.60	23.63	2.13	0.46	1.619	0.40	19.60	100.50
ER-14	Vol	G285311	52.47	14.75	9.52	0.065	6.44	6.59	4.20	0.96	1.568	0.26	2.49	99.31
ER-15	Vol	G285312	54.59	14.93	7.40	0.077	6.94	5.47	4.93	1.65	1.651	0.24	2.80	100.70
ER-17	Vol	G285314	54.75	15.37	12.83	0.024	4.17	0.72	0.10	4.81	2.221	0.49	3.45	98.93
ER-19	Vol	G285316	44.51	15.21	17.10	0.059	9.24	0.88	1.93	3.83	2.205	0.43	3.82	99.23
ER-20	Vol	G285317	39.88	15.13	17.82	0.068	9.99	1.70	0.08	7.38	2.131	0.45	4.23	98.86
09-61 184.60	Vol	G285321	47.87	14.56	15.38	0.059	7.78	4.26	0.25	5.43	1.544	0.21	2.42	99.76
08-07 29.00	Vol	G285323	41.27	15.08	11.74	0.072	6.88	11.22	0.15	4.39	1.491	0.18	7.96	100.40
08-07 117.49	Vol	G285324	39.59	14.88	12.81	0.197	5.55	11.46	1.23	4.12	2.382	0.39	7.58	100.20
09-64 121.00	Vol	G285327	39.25	14.40	11.94	0.165	8.14	10.84	1.87	1.39	2.002	0.32	9.10	99.42
10-99 5.50	Vol	G285318	49.83	18.58	13.48	0.104	2.25	1.51	0.20	7.22	3.008	0.61	2.66	99.45
10-99 284.50	Vol	G285319	45.99	14.91	23.55	0.022	2.86	0.64	0.36	5.83	3.807	0.07	1.77	99.81
09-64 135.10	Vol	G285326	44.94	19.84	14.00	0.085	3.58	3.09	1.04	6.47	2.763	1.09	2.43	99.34
ER-1	Lst	G285301	11.05	3.17	3.31	0.034	3.68	41.19	0.05	1.05	0.548	0.14	36.04	100.30
ER-3	Lst	G285303	1.40	0.21	0.35	0.019	4.42	50.12	< 0.01	0.05	0.013	< 0.01	43.80	100.40
ER-5	Lst	G285305	0.29	0.12	0.11	0.021	0.90	54.78	< 0.01	0.03	0.009	< 0.01	43.58	99.86
ER-7	Lst	G285307	6.66	0.22	0.49	0.017	1.84	50.18	< 0.01	0.09	0.025	< 0.01	41.10	100.60
ER-16	Lst	G285313	0.98	0.10	0.31	0.062	0.44	54.82	< 0.01	0.02	0.007	0.05	43.13	99.94
ER-18	Lst	G285315	1.30	0.45	0.66	0.107	0.48	53.55	< 0.01	0.14	0.113	0.03	42.79	99.63
10-99 578.80	Lep	G285320	36.74	15.63	24.70	0.022	2.63	3.91	0.84	5.74	2.109	0.67	5.76	98.74
10-73 469.39	Lep	G285322	28.73	9.31	7.30	0.109	4.68	24.89	0.44	2.96	2.067	0.53	15.00	96.00
08-07 246.65	Lep	G285325	22.29	8.75	7.65	0.132	2.71	31.02	0.32	2.55	2.154	0.51	22.81	100.90

Whole-rock. Whole rock geochemical data for selected volcanic rocks and limestone rocks within the Tiger zone. Rock-type abbreviations are Vol = volcanic, Lst = limestone,

Mo	2 ppm	TD-ICP	<2	< 2 2	<2 <	< 2	< 2 2	2 2	< 2 2	< 2 2	< 2	< 2 2	< 2	< 2 2	< 2 2	< 2	< 2 2	2 <</th <th>< 2</th> <th>< 2</th> <th>< 2</th> <th>< 2 2</th> <th>Э</th> <th>< 2 2</th> <th>2</th> <th><!--2--></th> <th><2 <</th> <th><!--2--></th> <th>< 2</th>	< 2	< 2	< 2	< 2 2	Э	< 2 2	2	2	<2 <	2	< 2
Ir	1 ppb	INAA	~1	~		~ 	~		~		~ 		~ 			~ 					~ 		~ 						< 1
Hg	1 ppm	INAA	<u>~</u> 1		~1	-1		~1		~1	-1	~1	-1		~1	-1	~1	~1			-1		-1		~1	<u>^</u> 1	~1	<u>^</u> 1	< 1
Ηf	.2 ppm	INAA	.4	· 6:	4.	č.	-	9.	8.	8.	ů.	<u>8</u> .		4	5	I	5	0.	.5	80	4.	0.2	: 0.2	0.2	0.2	.5	<u>8</u> .	is	· 8.
Cu	ppm C	O-ICP	4	4	0	0	0	0	0	0	ŝ	4	ŝ	0	0	Ч	en.	(-	Q	9	1	v	v	v	v	0	-	4	3
8	pm 1	IT V	5	17	70	62	76	298	4	19	414	4	$\overline{}$	34	7	76	9	43	$\overline{\vee}$	$\overline{\vee}$	7	ŝ	ŝ	4	4	9	299	4	31
Ö	m 0.2 p	A INA	< 0.2	2.0	5.5	6.9	1.5	< 0.2	1.4	1.6	11.9	43.9	122	23.3	15.2	6.2	2.5	13.4	22.5	9.9	1.4	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	11.0	20.0	8.8
Cr	a 0.5 pp	INA.	349.0	279.0	281.0	373.0	234.0	168.0	273.0	211.0	403.0	375.0	429.0	345.0	305.0	380.0	439.0	225.0	72.8	188.0	68.0	2.4	< 0.5	5.0	2.5	15.0	231.0	37.0	39.0
Co	0.1 ppn	INAA	51.4	28.6	62.6	49.1	42.6	23.0	41.0	39.1	42.3	57.3	53.1	68.3	51.2	66.8	63.5	33.9	22.5	53.9	6.9	1.0	0.5	0.9	1.1	1.6	44.1	45.5	41.9
Cd	0.5 ppm	TD-ICP	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6	< 0.5	< 0.5
Br	0.5 ppm	INAA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.8	< 0.5	0.8	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Bi	2 ppm	TD-ICP	< 2	2 <</th <th>< 2 < 2</th> <th>< 2 < 2</th> <th><!--2 <</th--><th>< 2 < 2</th><th><!--2 <</th--><th>2</th><th>< 2 < 2</th><th>< 2 < 2</th><th>< 2 < 2</th><th><!--2 <</th--><th>< 2 < 2</th><th>< 2 < 2</th><th>< 2 < 2</th><th>< 2 < 2</th><th>< 2</th><th>< 7</th><th>< 2 < 2</th><th><!--2 <</th--><th>< 2 < 2</th><th><!--2 <</th--><th>< 2 < 2</th><th>< 2</th><th>< 2 < 2</th><th>< 2</th><th>< 2</th></th></th></th></th></th>	< 2 < 2	< 2 < 2	2 <</th <th>< 2 < 2</th> <th><!--2 <</th--><th>2</th><th>< 2 < 2</th><th>< 2 < 2</th><th>< 2 < 2</th><th><!--2 <</th--><th>< 2 < 2</th><th>< 2 < 2</th><th>< 2 < 2</th><th>< 2 < 2</th><th>< 2</th><th>< 7</th><th>< 2 < 2</th><th><!--2 <</th--><th>< 2 < 2</th><th><!--2 <</th--><th>< 2 < 2</th><th>< 2</th><th>< 2 < 2</th><th>< 2</th><th>< 2</th></th></th></th></th>	< 2 < 2	2 <</th <th>2</th> <th>< 2 < 2</th> <th>< 2 < 2</th> <th>< 2 < 2</th> <th><!--2 <</th--><th>< 2 < 2</th><th>< 2 < 2</th><th>< 2 < 2</th><th>< 2 < 2</th><th>< 2</th><th>< 7</th><th>< 2 < 2</th><th><!--2 <</th--><th>< 2 < 2</th><th><!--2 <</th--><th>< 2 < 2</th><th>< 2</th><th>< 2 < 2</th><th>< 2</th><th>< 2</th></th></th></th>	2	< 2 < 2	< 2 < 2	< 2 < 2	2 <</th <th>< 2 < 2</th> <th>< 2 < 2</th> <th>< 2 < 2</th> <th>< 2 < 2</th> <th>< 2</th> <th>< 7</th> <th>< 2 < 2</th> <th><!--2 <</th--><th>< 2 < 2</th><th><!--2 <</th--><th>< 2 < 2</th><th>< 2</th><th>< 2 < 2</th><th>< 2</th><th>< 2</th></th></th>	< 2 < 2	< 2 < 2	< 2 < 2	< 2 < 2	< 2	< 7	< 2 < 2	2 <</th <th>< 2 < 2</th> <th><!--2 <</th--><th>< 2 < 2</th><th>< 2</th><th>< 2 < 2</th><th>< 2</th><th>< 2</th></th>	< 2 < 2	2 <</th <th>< 2 < 2</th> <th>< 2</th> <th>< 2 < 2</th> <th>< 2</th> <th>< 2</th>	< 2 < 2	< 2	< 2 < 2	< 2	< 2
Be	1 ppm	US-ICP	-		-	1	-	-						-	-						1	-	1	-	-	1			
-	m	ICP F	V	7	V	V	V	V	-	-	2	7	1	V	V	1	-	ŝ	2	2	V	V	V	V	V	V	Э	1	1
B	1 pi	FUS-	24	434	819	376	232	62	216	346	1911	677	744	696	766	1186	549	2967	1016	2117	180	93	75	36	26	61	6636	1608	569
As	1 ppm	E INAA	15		$\frac{1}{\sqrt{2}}$		5	$\overline{\vee}$		$\frac{1}{\sqrt{2}}$	ŝ	1			$\frac{1}{\sqrt{2}}$		$\frac{1}{\sqrt{2}}$	4	$\overline{\vee}$	$\overline{\cdot}$	ŝ	ŝ			e,	4	1	$\frac{1}{\sqrt{2}}$	< 1
	hm	V/TD-IC																											
βĀ	0.5 p	LT INA/	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
۸u	bpb	IAA AU	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V	~
4	-	vpe IN	$\overline{\vee}$	ę	$\frac{1}{2}$	$\overline{\vee}$	$\overline{\vee}$	-	$\overline{\vee}$	$\frac{1}{2}$	5	$\frac{1}{2}$	$\overline{\vee}$	$\overline{\vee}$	$\frac{1}{2}$	$\overline{\vee}$	$\frac{1}{2}$	4	$\stackrel{\scriptstyle \vee}{\overset{\scriptstyle -}{}}$	7	$\overline{\vee}$	$\overline{\vee}$	10	35	$\overline{\lor}$	$\overline{\vee}$	$\overline{\lor}$	$\overline{\vee}$	8
		Rock ty	Vol	Vol	Vol	Vol	Vol	Vol	Vol	Vol	Vol	Vol	Vol	Vol	Vol	Vol	Vol	Vol	Vol	Vol	Lst	Lst	Lst	Lst	Lst	Lst	Lep	Lep	Lep
		Sample ID	ER-2	ER-4	ER-6	ER-8	ER-10	ER-12	ER-14	ER-15	ER-17	ER-19	ER-20	09-61 184.60	08-07 29.00	08-07 117.49	09-64 121.00	10-99 5.50	10-99 284.50	09-64 135.10	ER-1	ER-3	ER-5	ER-7	ER-16	ER-18	10-99 578.80	10-73 469.39	08-07 246.65

Cont.
/hole-rock.

		ż	Pb	Rb	Sb	s	Sc	Se	Sr	Ta	Th	Ŋ	٧
		1 ppm	5 ppm	10 ppm	0.1 ppm	0.001 %	0.01 ppm	0.5 ppm	2 ppm	0.3 ppm	0.1 ppm	0.1 ppm	5 ppm
Sample ID	Rock type	TD-ICP	TD-ICP	INAA	INAA	TD-ICP	INAA	INAA	FUS-ICP	INAA	INAA	INAA	FUS-ICP
ER-2	Vol	248	< 5	< 10	< 0.1	0.004	23.10	< 0.5	105	2.9	6.8	2.3	96
ER-4	Vol	185	< 5 5	30	< 0.1	0.005	17.60	< 0.5	113	3.0	7.3	1.4	134
ER-6	Vol	219	< 5 5	60	0.2	0.005	25.90	< 0.5	88	0.8	2.1	0.9	205
ER-8	Vol	237	< 5	40	0.2	0.005	24.50	< 0.5	42	1.3	3.0	0.8	148
ER-10	Vol	154	< 5	40	0.4	0.037	23.30	< 0.5	114	< 0.3	1.8	< 0.1	178
ER-12	Vol	117	< 5 <	< 10	0.4	0.020	15.90	< 0.5	338	1.3	3.5	1.4	86
ER-14	Vol	139	< 5 <	< 10	< 0.1	0.004	21.40	< 0.5	729	< 0.3	3.1	< 0.1	137
ER-15	Vol	113	< 5	40	0.2	0.004	20.30	< 0.5	332	1.5	2.5	0.9	154
ER-17	Vol	388	< 5	90	0.6	0.019	23.80	< 0.5	19	3.6	7.8	1.4	151
ER-19	Vol	318	< 5	210	1.1	0.005	24.80	< 0.5	33	2.9	7.3	0.8	102
ER-20	Vol	392	< 5 <	750	2.4	0.030	26.20	< 0.5	27	3.0	9.9	1.3	122
09-61 184.60	Vol	257	< 5 <	90	0.7	0.035	25.00	< 0.5	85	< 0.3	1.9	0.6	216
08-07 29.00	Vol	216	< 5 <	09	0.2	0.050	24.40	< 0.5	84	< 0.3	1.7	< 0.1	200
08-07 117.49	Vol	251	< 5	09	0.3	0.015	26.70	< 0.5	174	2.0	3.7	1.4	320
09-64 121.00	Vol	281	< 5	< 10	0.3	0.005	29.60	< 0.5	219	1.4	3.4	< 0.1	307
10-995.50	Vol	54	< 5	140	0.7	0.417	18.50	< 0.5	44	5.0	8.4	1.9	276
10-99 284.50	Vol	104	6	160	0.6	0.008	17.40	< 0.5	25	3.5	5.1	< 0.1	187
09-64 135.10	Vol	201	< 5	110	0.7	0.004	21.50	< 0.5	108	4.9	10.2	1.6	184
ER-1	Lst	29	< 5 <	30	0.2	0.059	4.60	< 0.5	942	0.8	1.9	1.0	46
ER-3	Lst	4	< 5 5	< 10	< 0.1	0.012	0.31	< 0.5	150	< 0.3	0.1	0.8	< 5
ER-5	Lst	3	< 5 <	< 10	< 0.1	0.003	0.30	< 0.5	106	< 0.3	< 0.1	0.6	6
ER-7	Lst	4	< 5	< 10	< 0.1	0.009	0.49	< 0.5	236	< 0.3	0.3	0.4	5
ER-16	Lst	2	< 5	< 10	< 0.1	0.011	0.30	< 0.5	173	< 0.3	< 0.1	0.3	8
ER-18	Lst	5	< 5	< 10	0.2	0.031	2.20	< 0.5	187	< 0.3	0.6	0.5	13
10-99 578.80	Lep	120	< 5	270	0.7	4.900	16.20	1.5	222	3.6	7.5	2.6	177
10-73 469.39	Lep	87	< 5 <	180	0.2	1.120	10.00	< 0.5	126	2.1	3.6	1.0	136
08-07 246.65	Lep	86	< 5	50	0.3	0.025	9.84	< 0.5	119	1.9	2.9	0.6	137

Cont.	
Whole-rock.	

	W	Y	Zn	Zr	La	Ce	Nd	Sm	Eu	Тb	Yb	Lu	Mass
1 ppm		1 ppm	1 ppm	2 ppm	0.05 ppm	1 ppm	1 ppm	0.01 ppm	0.05 ppm	0.1 ppm	0.05 ppm	0.01 ppm	ас
INAA		FUS-ICP	MULT INAA / TD-IG	CP FUS-ICP	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA
<1		20	121	190	46.00	80	39	6.88	2.06	1.0	1.76	0.08	1.271
~		25	62	202	49.50	84	38	6.59	2.09	< 0.1	1.96	0.09	1.249
~		17	90	80	16.30	28	14	3.47	1.31	0.5	1.73	0.10	1.503
<		14	89	95	20.50	39	16	3.97	1.33	< 0.1	1.49	0.13	1.223
<u>~</u>		19	119	85	10.50	20	10	3.44	1.13	< 0.1	1.55	0.03	1.505
<u>~</u>		25	63	115	31.90	58	28	5.99	1.59	0.9	1.30	< 0.01	1.457
~		19	78	109	21.80	36	16	4.31	1.61	0.8	1.42	0.08	1.513
~		17	85	104	17.80	29	14	3.92	1.56	0.6	1.52	0.09	1.523
~		28	98	201	51.50	86	44	8.29	2.42	1.3	2.13	0.19	1.228
<u>~</u>		20	126	212	50.90	84	38	7.43	2.24	0.9	1.66	0.11	1.266
~		24	121	203	45.80	74	40	7.91	2.30	1.1	2.00	0.13	1.270
~		16	95	86	18.10	33	18	3.76	1.36	0.4	1.48	0.08	1.519
~		17	82	79	13.90	25	11	3.38	1.27	< 0.1	1.60	0.04	1.472
<u>~</u>		21	153	172	31.60	55	28	6.22	2.02	0.8	1.61	< 0.01	1.681
		20	117	142	25.60	44	23	5.16	1.64	1.0	1.60	0.01	1.603
		44	60	322	97.90	184	78	13.5	4.63	1.9	3.49	0.34	1.506
4		15	78	315	56.90	101	49	8.63	3.24	0.9	1.16	< 0.01	1.700
<u>-</u>		41	84	336	84.50	139	59	11.4	3.84	1.4	3.36	0.32	1.492
		8	45	63	10.90	18	10	1.88	0.61	0.4	0.59	< 0.01	1.511
~ 		2	5	5	1.25	~	б	0.13	0.08	< 0.1	0.06	< 0.01	1.774
		2	40	4	1.98	ю		0.22	< 0.05	< 0.1	< 0.05	< 0.01	1.419
~		3	4	4	3.06	4		0.32	0.14	< 0.1	0.11	< 0.01	1.547
		5	3	С	4.34	4	б	0.40	0.14	< 0.1	0.21	< 0.01	1.768
		16	2	22	9.30	20	5	1.75	0.61	0.4	1.00	< 0.01	1.536
6		35	40	346	43.80	85	41	9.26	2.41	1.4	2.70	0.28	1.779
<u>~</u>		16	18	192	42.50	75	33	6.96	2.46	0.9	1.15	< 0.01	1.611
< 1		14	43	172	33.60	61	30	6.26	2.21	0.8	0.88	< 0.01	1.565

Whole-rock. Cont.

Report: A10-5263					Ac	Fine	ll Repol Labor	rt atories								
Analyte Symbol	Si02	Al203	Fe2O3(T)	MnO	MgO	CaO	Na2O	K20	Ti02	P205	IOI	Total	ΝN	Ag	Ag	As
Unit Symbol	%	%	%	%	%	%	%	%	%	%	%	%	qdd	mqq	mqq	mqq
Detection Limit Analysis Method	0.01 FUS-ICP	0.01 FUS-ICP	0.01 FUS-ICP	0.001 FUS-ICP	0.01 FUS-ICP	0.01 FUS-ICP	0.01 FUS-ICP	0.01 FUS-ICP	0.001 FUS-ICP	0.01 FUS-ICP	FUS-ICP	0.01 FUS-ICP	1 INAA	0.5 TD-ICP	5 INAA I	1 NAA
GXR-1 Meas													3230	32.1	31	428
GXR-1 Cert													3300	31	31	427
NIST 694 Meas	11.17	1.88	0.76	0.01	0.35	43.46	0.87	0.53	0.116	30.16						
NIST 694 Cert	11.2	1.8	0.79	0.0116	0.33	43.6	0.86	0.51	0.11	30.2						
DNC-1 Meas	46.65	18.52	9.89	0.148	10.08	11.37	1.89	0.22	0.485	0.08						
DNC-1 Cert	47.15	18.34	76.9	0.15	10.13	11.49	1.89	0.234	0.48	0.07						
GBW 07113 Meas	71.52	12.93	3.32	0.138	0.15	0.6	2.52	5.42	0.286	0.07						
GBW 07113 Cert	72.8	13	3.21	0.14	0.16	0.59	2.57	5.43	0.3	0.05						
GXR-4 Meas														3.6		
GXR-4 Cert														4		
SDC-1 Meas														< 0.5		
SDC-1 Cert														0.041		
SCO-1 Meas														< 0.5		
SCO-1 Cert														0.134		
GXR-6 Meas														< 0.5		
GXR-6 Cert														13		
NIST 1633b Meas	48.98	28.56	10.84	0.019	0.77	2.1	0.27	2.37	1.292	0.56						
NIST 1633b Cert	49.2	28.4	11.11	0.02	0.8	2.11	0.27	2.35	1.32	0.53						
W-2a Meas	52.61	15.14	10.9	0.169	6.29	11	2.18	0.61	1.078	0.14						
W-2a Cert	52.4	15.4	10.7	0.163	6.37	10.9	2.14	0.626	1.06	0.13						
SY-4 Meas	49.57	20.33	6.21	0.106	0.51	8.06	6.94	1.65	0.287	0.14						
SY-4 Cert	49.9	20.69	6.21	0.108	0.54	8.05	7.1	1.66	0.287	0.131						
BIR-1a Meas	48.04	15.61	11.28	0.173	9.55	13.14	1.83	0.02	0.968	0.02						
BIR-1a Cert	47.8	15.4	11.3	0.171	9.68	13.2	1.75	0.03	0.96	0.05						
DNC-1a Meas																
DNC-1a Cert																
OREAS 13b (4-Acid) Meas																
OREAS 13b (4-Acid) Cert														0.86		
G285305 Orig	0.3	0.12	0.11	0.021	0.9	54.46	< 0.01	0.03	0.01	< 0.01	43.58	99.55				
G285305 Dup	0.29	0.12	0.11	0.021	0.9	55.1	< 0.01	0.02	0.009	0.02	43.58	100.2				
G285308 Orig														< 0.5		
G285308 Dup														< 0.5		
G285322 Orig	28.7	9.37	7.21	0.109	4.68	24.82	0.44	2.96	2.065	0.53	15	95.87				
G285322 Dup	28.76	9.24	7.39	0.108	4.68	24.96	0.44	2.96	2.069	0.52	15	96.14				
Method Blank Method Blank														< 0.5		
Method Blank Method Blank														< 0.5		
Method Blank Method Blank														< 0.5		
Method Blank Method Blank														< 0.5		
Method Blank Method Blank													V		\$ \	V

Matrix function In	Report: A10-5263						Δct	Fini	al Rep n Lahi	oort orator	sai										
Americanical Tell Res Res C							5			01810	2										
Interval	Analyte Symbol	Ba	Be	Bi	Br	Cd	Co	C	Cs	Cī	Ηf	Hg	Ir N	0	, iz	Pb	Rb	Sb	s	ŝ	Se
Member III III III III IIII IIII IIII IIII IIIII IIIII IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Unit Symbol	udd	udd	mqq	udd	mqq	mqq	d udd	mdc	ł udd	łd udc	id uc	dd qu	n pp	d u	d ud	dd ud	E	dd %	dd u	E
OWD Network Not Not <th< th=""><th>Detection Limit Analysis Method</th><th>FIIS-ICP</th><th>I FIIS-ICP</th><th>2 Th-ICP</th><th>0.5 INAA</th><th>0.5 TD-ICP</th><th>0.1 INAA</th><th>0.5 VAA IN</th><th>0.2 A A TD</th><th>n –</th><th>0.2 A A INA</th><th>1 VA INA</th><th>1 TD-IC</th><th>2 P TD-IC</th><th>ا TD-I</th><th>2 IN</th><th>10 0 AA INA</th><th>0.0 A TD-1</th><th>01 0.0 CP INA</th><th>0 I 0</th><th><u>ک</u> ۸</th></th<>	Detection Limit Analysis Method	FIIS-ICP	I FIIS-ICP	2 Th-ICP	0.5 INAA	0.5 TD-ICP	0.1 INAA	0.5 VAA IN	0.2 A A TD	n –	0.2 A A INA	1 VA INA	1 TD-IC	2 P TD-IC	ا TD-I	2 IN	10 0 AA INA	0.0 A TD-1	01 0.0 CP INA	0 I 0	<u>ک</u> ۸
Contractioner and a	GXR-1 Meas			1410	13	3.2	83	11.6	4	1160	-	U.		9	11	742 <	10	22 0.2	36 1.5	9 14	ll 🗄
Nervence Nerven	GXR-1 Cert			1380	0.5	3.3	8.2	12		1110 (3 96'	9.9	-	~ ~	Ħ	730	14	22 0.2	57 1.5	88 16	9
NEW Indication Image: Second constraints Seco	NIST 694 Meas																				
Discription 103 Discription 103 Operation 10 1 1 1 1 1 Operation 10 1 2 1 2 1 2 1 Operation 10 1 2 10 10 2 10 1	NIST 694 Cert																				
DNC (clic 118 QW (n1):Cur 30 4 QW (n1):Cur 20 00 QU (n1):Cur 21 21 QU (n1):Cur 22 23 20 QW (n1):Cur 23 21 21 QW (n1):Cur 23 21 21 QW (n1):Cur 33 31 32 QW (n1):Cur 33 31 32 QW (n1):Cur 33 31 32 QW (n1):Cur 33 31 32 <	DNC-1 Meas	105																			
GWOTIJANG 60 4 GWOTIJANG 1 2 2 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 1	DNC-1 Cert	118																			
GWOTIJC(et 36 4 31	GBW 07113 Meas	486	4																		
CMC-MARE 20 <0.0 0.	GBW 07113 Cert	506	4																		
CRN (Gat 10 0.6 0.6 0.0 2.0 0.0 2.0 0.1 7.7 SCI (Gat 2.1 0.0 0.0 2.0 0.0 2.0 0.0	GXR-4 Meas			29		< 0.5				6600			31	4	53	57		-	.82		
SDC I Mase 2 603 30 23 30 23 30 003 SDC I Mase 2 603 03 3 2 30 03	GXR-4 Cert			19		0.86				6520			31	0	54	52		-	<i>LL</i> :		
SDC (Get 26 08 30 23 24 20 005 SOC (Mast -2 61 03 29 27 10 20 005 SOC (Corrent -2 61 27 17 27 10 006 SOC (Corrent -2 61 27 17 27 10 006 SOC (Corrent 10 -1 66 24 27 10 006 SOC (Corrent 10 -1 66 24 27 10 006 NEX (G3)-Ger 30 2 -2 24 27 10 006 NC (Gr 30 2 -2 24 27 10 016 NC (Gr 30 2 1 -2 27 10 016 NC (Gr 30 2 1 27 1 27 101 NC (Gr 30 2 1 27 1 27	SDC-1 Meas			< 2		< 0.5				30			V	6	37	29		0.0	85		
SCO (Mas. 23 03	SDC-1 Cert			2.6		0.08				30			0.2	5	38	25		0.0	965		
SCO (Cat 32 32 33 32 33 34	SCO-1 Meas			< 2		< 0.5				29			V	6	32	26					
CKNe Mase 000 000 000 000 000 000 000 000 000 0	SCO-1 Cert			0.37		0.14				28.7			1.1	-	27	31					
CRNe Gert 0.29 1 0.6 24 27 101 016 NST (53)-Gert 70	GXR-6 Meas			< 2		< 0.5				72				4	30	66		0.0	016		
NST (G3b Mas 7) NST (G3b Cat 7) NST (G	GXR-6 Cert			0.29		-				99			2	4	12	101		0.0	016		
NIST IG35 Car 70 W.2.d.Mas 12 Y.2.d.Mas 23 SY-Mas 23 SY-Mas 23 SY-Mas 23 SY-Mas 23 SY-Mas 23 SY-Mas 24 SY-Mas 24	NIST 1633b Meas	704																			
W2A Mass [7] <1 W2A Mass [7] <1 W2A Mass [3] <1 <1 W2A Mass [3] <1 <1 W2A Mass [3] <1 <1 SY-Mass [3] <1 <1 <1 SY-Mass [3] <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <th<< td=""><td>NIST 1633b Cert</td><td>709</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<<>	NIST 1633b Cert	709																			
W.J.a. Cert 13 13 13 3 <th3< th=""> 3 3 <</th3<>	W-2a Meas	171	~																		
SY-Meas 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5<	W-2a Cert	182	1.3																		
SY-Gert 30 26 BR-Ja Mest 8 <1	SY4 Meas	333	3																		
BR-la Meas 8 <1 BR-la Meas 7 0.58 DR-la Cert 7 0.58 DR-la Cert 7 0.58 DR-la Cert 7 0.58 DR-la Meas 15 (4-Acid) Meas 210 247 113 DR-Sa 15 (4-Acid) Meas 210 247 113 CB-Sa 210 247 248 249 247 248 248 249 240 Mebod Blank Method Blank Metho	SY-4 Cert	340	2.6																		
BR-1a Cert 7 058 DNC-1a Meas 247 DNC-1a Meas 2	BIR-1a Meas	~	$\overline{\vee}$																		
DNC-la Meta 247 247 DNC-la (etr 100 247 DNC-la (etr 100 247 DNC-la (etr 100 247 DNC-la (etr 240 8 DNC-la (etr 240 8 OR-BS 18) (4-Acid) Meta 75 OR S 200 Up 75 C385305 Up 75 OR S 200 Up 75 C385305 Up 72 C385305 Up 72 <	BIR-1a Cert	7	0.58																		
DNC-Ia Cert 247 247 247 1.13 0REAS 13b (+A-kic) Meas 75 7 240 8 210 1.13 0REAS 13b (+A-kic) Meas 75 7 2327 9 2247 1.2 035505 Ong 75 7 1 1 1 1 035505 Ong 75 61 2 247 1.2 0255305 Ong 75 61 2 2 2 0.005 0255305 Ong 7 61 2 2 2 0.005 0253505 Ong 15 61 2 2 2 0.004 0253505 Ong 15 61 2 2 2 0.004 0253505 Ong 15 61 2 2 2 0 0.004 0235305 Ong 15 1 2 2 2 2 0 0.004 0235305 Ong 15 1 2 2 2 2 0 0.004 0235305 Ong 15 1 2 2 2 2 0 0.004 0235305 Ong 15 1 2 2 2 2 0 033532 Ong 1	DNC-1a Meas									101				6	47						
OREAS 1b (-A-kei) Mes 2400 8 2110 113 0.85.AS 1b (-A-kei) Cert 2327 9 2347 12 0.85.AS 1b (-A-kei) Cert 75 <1	DNC-1a Cert									100				6	47						
OREAS 13b (4-Acid) Cert 2237 9 247 1.2 C383305 Org 75 <1	OREAS 13b (4-Acid) Meas									2400				8 21	10			-	.13		
G285305 Orig 75 <1	OREAS 13b (4-Acid) Cert									2327				9 22	11				1.2		
G285305 Dm 75 <1	G285305 Orig	75	V																		
G2S5308 Orig C2 <0.5	G285305 Dup	75	$\overline{\vee}$																		
G285308 Dmp <2	G285308 Orig			< 2		< 0.5				61			V	2	58	< 5		0.0	05		
G285322 Orig 1599 1 G285322 Dip 1617 1	G285308 Dup			< 2		< 0.5				63			V	2	46	< 5		0.0	04		
G285322 Dup 1617 1 C285322 Dup 1617 1 / < < <td>G285322 Orig</td> <td>1599</td> <td>-</td> <td></td>	G285322 Orig	1599	-																		
Method Blank Method B	G285322 Dup	1617	-																		
Method Blank Method Blank <2 <0.5 <1 <5 <0.001 Method Blank Method Blank <2	Method Blank Method Blank			< 2		< 0.5				$\overline{\vee}$			V	2	-	< 5 5		< 0.0	00		
Method Blank Method B	Method Blank Method Blank			< 2		< 0.5				v			V	2	-	< 5		< 0.0	100		
Method Blank <2 <0.5 <1 <2 <1 <5 <0.001 Method Blank <0.5	Method Blank Method Blank			< 2		< 0.5				$\overline{\vee}$			V	2	-	< 5 5		< 0.0	00		
Method Blank Method Blank = 0.5 < 0.1 < 0.5 < 0.2 < 0.1 < 0.5 < 0.2 < 0.1 < 0.5 < 0.0 < 0.1 < 0.5 < 0.0 < 0.1 < 0.5 < 0.0 < 0.5 < 0.0 < 0.1 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.0 < 0.5 < 0.5 < 0.0 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 <	Method Blank Method Blank			< 2		< 0.5				- v			V	5	-	< 5		< 0.0	10		
	Method Blank Method Blank				< 0.5		< 0.1	< 0.5 <	0.2	V	0.2	v 	-			V	<10 <0	-	< 0.0	10 < 0	5

Page 5 of 6

Interview Interview <t< th=""><th>Report: A10-5263</th><th></th><th></th><th></th><th></th><th></th><th></th><th>Fi Activati</th><th>nal Re ion Lat</th><th>port</th><th>ories</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Report: A10-5263							Fi Activati	nal Re ion Lat	port	ories									
Interview Interview <t< th=""><th>Analyte Symbol</th><th>Sr</th><th>Та</th><th>Th</th><th>D</th><th>></th><th>M</th><th>Υ</th><th>Zn</th><th>Zn</th><th>Zr</th><th>La</th><th>Ce</th><th>PN</th><th>Sm</th><th>Eu</th><th>đT</th><th>Yb</th><th>Lu</th><th>Mass</th></t<>	Analyte Symbol	Sr	Та	Th	D	>	M	Υ	Zn	Zn	Zr	La	Ce	PN	Sm	Eu	đT	Yb	Lu	Mass
Methodination 2 0 1 0 1 1 0 1 1 0 0	Unit Symbol	mqq	mqq	mqq	mqq	mqq	mqq	mqq	uidd	udd	udd	mqq	mqq	mqq	udd	mqq	mqq	uidd	mqq	00
Math Math <th< th=""><th>Detection Limit</th><th>2 ETTE 1CB</th><th>0.3 IN A A</th><th>0.1 INIAA</th><th>0.1 IN A A</th><th>5</th><th>INIA</th><th></th><th></th><th>50 IN A A</th><th>2</th><th>0.05</th><th>I</th><th></th><th>0.01</th><th>0.05</th><th>0.1</th><th>0.05</th><th>0.01</th><th>A A M</th></th<>	Detection Limit	2 ETTE 1CB	0.3 IN A A	0.1 INIAA	0.1 IN A A	5	INIA			50 IN A A	2	0.05	I		0.01	0.05	0.1	0.05	0.01	A A M
Click Click <th< td=""><td>GXR-1 Meas</td><td>TOPICI</td><td>< 0.3</td><td>2.4</td><td>31.7</td><td>INFER 1</td><td>174</td><td>INF60.1</td><td>746</td><td>740</td><td>INFEN I</td><td>7.98</td><td>18</td><td>16</td><td>3.28</td><td>< 0.05</td><td>0.8</td><td>2.15</td><td>0.28</td><td>CONT.</td></th<>	GXR-1 Meas	TOPICI	< 0.3	2.4	31.7	INFER 1	174	INF60.1	746	740	INFEN I	7.98	18	16	3.28	< 0.05	0.8	2.15	0.28	CONT.
NG Medite 10 10 10 10 10 10 10 10 10 10 10 10 10	GXR-1 Cert		0.175	2.44	34.9		164		760	760		7.5	17	18	2.7	0.69	0.83	1.9	0.28	
NY ROLCI NY ROLCI MAIL 10 NY LORE 10 NY	NIST 694 Meas					1676														
NCI (Name) 13 33 33 NCI (Name) 14 2 3 SNV (11) (Name) 1 3 3 SNV (12) (Name) 1 3 3 SNV (12) (Name) 1 3 3 SNV (12) (Name) 10 3 3 SNV (13) (Name) 10 3 3 SNV (13) (Name) 10 3 3 SNV (13) (Name) 1 3 3 SNV (13) (Name) 1 3 3 SNV (14) (Name) 1 3 3 SNV (14) (Name) 3 3	NIST 694 Cert					1740														
MC (Cut) 18 38 MC (Cut) 1 1 3 MC (Litter 1 1 3 GWU (Litter 1 3 3 GWU (Litter 1 3 <td>DNC-1 Meas</td> <td>143</td> <td></td> <td></td> <td></td> <td>158</td> <td></td> <td>16</td> <td></td> <td></td> <td>35</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	DNC-1 Meas	143				158		16			35									
Off Worthink B C3 B D3 GBW (711) KHG 13 3 1 3 0 GBW (711) KHG 13 5 1 3 0 GBW (711) KHG 13 2 1 2 1 GBW (711) KHG 1 2 1 2 2 GBW (711) KHG 1 1 2 2 2 GBW (711) KHG 1 1 2 2 2 SCI (CHC 100 2 2 2 2 2 SCI (CHC 100 2 2 2 2 2 COL (CHC 100 2 2 2 2 2 COL (CHC 100 2 2 2 2 2 2 COL (CHC 100 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DNC-1 Cert	144				148		18			38									
OBV OTIL Cet 4] 6] 6] OBV OTIL Cet 7 7 7 OR VALMEN 7 7 7 OR VALMEN 7 7 7 OR LANS 1 7 7 OR LANS 1 1 1 OR Cat 1 1 1 SCI Chas 1 1 1 <	GBW 07113 Meas	48				< 5		47			392									
OXF A Maa S S OXF - Car 1 1 SUC1 (Aar 1 1 SUC1 (A	GBW 07113 Cert	43				5		43			403									
CMA Cont 73 73 CONT Mean 00 0 SOCI Class 0 0 SOCI Al Class 0 0 </td <td>GXR-4 Meas</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>85</td> <td></td>	GXR-4 Meas								85											
BC I Mate 10 10 10 10 10 10 10 10 10 10 10 10 10	GXR-4 Cert								73											
OCC Cert 100 100 SCO L Cert 100 200 NST (63b)Mes 100 200 NST (63b)Mes 100 200 NST (63b)Mes 100 200 NST (63b)Mes 100 200 V2.Mos 110 200 V2.Mos 110 200 NST (64)Mes 100 200 NST (64)Mes 100 200 NST (64)Mes 100 200 NST (64)Mes 100 100 NST (64)Mes 100 100 <td>SDC-1 Meas</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>102</td> <td></td>	SDC-1 Meas								102											
SCO. Maa SCO. Maa SCO. Carting 10 GX6. Carting 10 W. J. Carting 10 W. Carting 1	SDC-1 Cert								103											
Stoletation 103 Corrected 133 Corrected 133 Corrected 103 Corrected 104 Strait 103 National 104 Corrected 104 Strait 203 Valuence 104 Valuence 105 Valuence 104 Valuence 104 Valuence 104 Valuence 105 Valuence 105 Valuence 105 Valuence 106 Valuence 107 Valuence 106 Valuence 107 Valuence 107 Valuence 107 Valuence 106 Valuence 107 Valuence 107 </td <td>SCO-1 Meas</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>76</td> <td></td>	SCO-1 Meas								76											
GXR o Mas 13 GXR o Car 18 GXR o Car 10 XST (63) Max 102 NST (63) Max 103 NST (64) Ma	SCO-1 Cert								103											
CKNs Cert 118 NST 163.bMeas 102 20 NST 163.bMeas 102 26 V2.aCcrt 104 26 24 V2.aCcrt 109 26 24 V2.aCcrt 109 26 24 V2.aCcrt 109 27 24 V2.aCcrt 109 27 24 V2.aCcrt 109 27 24 V2.aCcrt 109 27 24 V2.aCcrt 109 16 16 V2.aCcrt 100 16 16 V2.aCcrt 100 16 16 V2.aCrt 16 1 1 <td>GXR-6 Meas</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>133</td> <td></td>	GXR-6 Meas								133											
NST 16330 Meas 102 202 203 203 203 203 203 203 203 203 2	GXR-6 Cert								118											
NST 163D Cert 00 206	NIST 1633b Meas	1042				302														
W.J. Meta Diff	NIST 1633b Cert	1040				296														
W.Ja.Cert 10 22 24 94 N.Ya.Jacrt 19 53 53 N.Ya.Lert 19 53 53 N.Ya.Lert 19 53 53 N.Ya.Lert 10 8 10 53 N.Ya.Lert 10 8 10 53 B.R.Ja.Kar 10 33 14 16 B.R.Ja.Car 108 313 16 16 B.R.Ja.Car 108 313 16 16 D.N.C.Ja.Kar 108 10 16 16 D.N.C.Ja.Kar 10 10 10 D.N.C.Ja.Kar 11 11 11 D.N.C.Ja.Kar 11 11 14 D.N.C.Ja.Kar 11 11 14 D.N.C.Ja.Kar 11 11 14 D.N.C.Ja.Kar 11 11 14 D.N.C.Ja.Kar 13 14 14 D.N.C.Ja.Kar 11 11 14 D.N.C.Ja.Kar 11 11 14 D.N.C.Ja.Kar 11 11 14 D.N.C.Ja.Kar 11 14 14 D.N.C.Ja.Kar 1 1 1 <td>W-2a Meas</td> <td>194</td> <td></td> <td></td> <td></td> <td>281</td> <td></td> <td>20</td> <td></td> <td></td> <td>89</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	W-2a Meas	194				281		20			89									
XI-Mease 118 < 539 539 XI-Lenders 191 8 19 517 XI-Lenders 191 8 19 517 SY-Lender 191 10 16 16 SY-Lender 103 16 16 16 DNC-La Mease 1 16 16 16 DNC-La Mease 11 10 16 16 DNC-La Mease 11 11 16 16 DNC-La Mease 10 11 10 16 CBSS305 Dup 107 2 2 4 16 CBSS305 Dup 127 1 1 1 16 CBSS305 Dup 126 138 1 1 1 CBSS305 Dup 127	W-2a Cert	190				262		24			94									
N-4 Cat [10] 8 [12] 517 BR-1 Advant 07 339 14 16 BR-1 Advant 08 313 16 16 BR-1 Advant 08 313 16 16 DNC-1a Advant 13 16 16 DNC-1a Advant 13 11 17 DNC-1a Cat 13 11 11 DNC-1a Cat 13 11 11 DNC-1a Cat 13 11 1 DNC-1a Cat 13 1 1 DNC-1a Cat 1 1 1 <t< td=""><td>SY-4 Meas</td><td>1189</td><td></td><td></td><td></td><td>< 5</td><td></td><td>119</td><td></td><td></td><td>559</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	SY-4 Meas	1189				< 5		119			559									
BR-la Meas DNC-la Gen DNC-la Meas DNC-la Gen DNC-la Meas DNC-la Gen DNC-la Meas DNC-la Gen DNC-la G	SY-4 Cert	1611				~		119			517									
BR-la Cert 108 313 16 16 16 16 16 16 16 16 16 16 16 16 16	BIR-1a Meas	107				339		14			16									
DNC-Ia Meas S8 DNC-Ia Meas 70 DNC-Ia Cert 11 DNC-Ia Cert 11 DNC-Ia Cert 11 DNC-Ia Cert 11 DREAS 130 (A-roid) Cert 10 C38505 Org 10 <td>BIR-la Cert</td> <td>108</td> <td></td> <td></td> <td></td> <td>313</td> <td></td> <td>16</td> <td></td> <td></td> <td>16</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	BIR-la Cert	108				313		16			16									
DNC-Ia Cert 70 OREAS 13 (4-Acid) Meas 111 OREAS 13 (4-Acid) Meas 111 G285305 Orig 106 8 G285305 Orig 106 8 G285305 Orig 107 9 2 G285305 Orig 127 133 19 G285305 Orig 127 133 19 G285305 Orig 127 133 19 G285305 Orig 133 16 191 Antod Blank Method Blank 1 1 1 Method Blank Method Blank <01	DNC-1a Meas								58											
OREAS 13b (4-Acid) Mass 111 OREAS 13b (4-Acid) Cat 133 OREAS 13b (4-Acid) Cat 133 C385305 Dap 106 C385305 Dap 107 C385305 Dap 127 C385325 Dap 127 Mehod Blank Mehod Blank 138 Mehod Blank Mehod Blank 1 Mehod Blank Mehod Blank 1 Acid 1 <t< td=""><td>DNC-la Cert</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>70</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	DNC-la Cert								70											
OREANT/B(4-foul) Cert 133 OREANT/B(4-foul) Cert 16 8 2 4 C3S305 Orig 107 9 2 4 C3S305 Orig 127 135 16 191 C3S322 Orig 127 138 16 191 C3S322 Orig 126 138 16 191 C3S322 Orig 138 16 193 1 C400 Blank Method Blank 1 1 1 1 Method Blank Method Blank 1 1 1 Method Blank Method Blank 1 1 1 Method Blank Method Blank 1 1 1	OREAS 13b (4-Acid) Meas								Ξ											
G3S305 Org 106 8 2 4 G3S305 Day 107 9 2 4 G3S305 Day 107 9 2 4 G3S305 Day 107 9 2 4 G3S305 Day 127 135 16 191 G3S305 Day 126 138 16 191 G3S322 Org 126 138 16 191 G3S322 Day 126 138 16 193 Anchod Blank Method Blank 4 1 1 Method Blank Method Blank 4 4 4 Method Blank	OREAS 13b (4-Acid) Cert								133											
G38505 Dup 107 9 2 4 G38505 Dup 88 88 G38508 Orig 23 91 G385322 Orig 127 135 16 G385322 Orig 127 135 16 G385322 Orig 127 138 16 Anchod Blank Method Blank 126 138 6 Method Blank Method Blank	G285305 Orig	106				×		2			4									
G285308 Orig C385308 Orig 91 C385308 Drip 127 91 C385308 Drip 127 135 16 C38532 Drip 127 135 16 C38532 Drip 126 138 16 C38532 Drip 126 138 16 Anchod Blank 126 138 16 Method Blank	G285305 Dup	107				6		7			4									
G3S308 Dmp 01 G3S322 Orig 127 135 16 191 G2S322 Dmp 126 138 16 191 G2S322 Dmp 126 138 16 193 G2S322 Dmp 126 138 16 193 G2S322 Dmp 126 138 16 193 Method Blank Method Blank <	G285308 Orig								88											
C3S332.0rg 127 135 16 191 C3S332.Drg 126 138 16 193 G3S332.Drg 126 138 16 193 Method Blank Method Blank Method Blank	G285308 Dup								16											
C3S332 Day 126 138 16 193 Method Blank Method Blank Method Blank Method Blank	G285322 Orig	127				135		16			191									
Method Blank <1	G285322 Dup	126				138		16			193									
Method Blank <1 Method Blank <1	Method Blank Method Blank								$\overline{\vee}$											
Method Blank <1 Method Blank 1 1 1 Method Blank 1 <1	Method Blank Method Blank								- V											
Method Blank Metho	Method Blank Method Blank								V											
Method Blank Method Blank (201 × 0.1 × 0.1 × 0.1 × 0.1 × 0.0 × 0.05 × 0.1 × 0.05 × 0.1 × 0.05 × 0.05 × 0.01 × 0.05 × 0.05	Method Blank Method Blank								-											
	Method Blank Method Blank		< 0.3	< 0.1	< 0.1		V			< 50		< 0.05	V	V	< 0.01	< 0.05	< 0.1	< 0.05	< 0.01	-

Indic I Diol Singe P 566 28 365 0.50 <th></th> <th>Type</th> <th>assemblage</th> <th>Phase</th> <th>Stage</th> <th>P PS S</th> <th>TMC02</th> <th>2 THCO</th> <th>12 TFM</th> <th>ΠM</th> <th>wt % NaCI TML</th> <th>alite J</th> <th>9</th> <th>TH I</th> <th></th> <th>></th> <th>s</th>		Type	assemblage	Phase	Stage	P PS S	TMC02	2 THCO	12 TFM	ΠM	wt % NaCI TML	alite J	9	TH I		>	s
	1	Lw+Lc	-	Dol-1	Stage 1	Р	-56.6	28				0	365		.50	0.50	0.00
		Lw+Lc	1	Dol-1	Stage 1	Р	-56.6	28				с о	365	0	.50	0.50	0.00
	~	Lw+Lc	1	Dol-1	Stage 1	Ь	-56.6	28				e	965	0	.40	0.60	0.00
	~	Lw+Lc	1	Dol-1	Stage 1	Р	-56.3	29	-39					0	.70	0.30	0.00
	6	Lw+Lc	1	Dol-1	Stage 1	Р	-56.3	29						0	.70	0.30	0.00
	6	Lw+Lc	1	Dol-1	Stage 1	Р	-56.3	29						397 0	.50	0.50	0.00
	6	Lw+Lc	1	Dol-1	Stage 1	Р	-56.2	29				e	965	0	.70	0.30	0.00
	6	Lw+Lc	1	Dol-1	Stage 1	Р								415 0	.50	0.50	0.00
	6	Lw+Lc	1	Dol-1	Stage 1	Р								0	.50	0.50	0.00
	6	Lw+Lc+Sh	1	Dol-1	Stage 1	Р	-56.3	28			45 380			0	.50	0.49	0.01
	6	Lc+Lw	19	Dol-1	Stage 1	Ь	-56.8	15				7	20	0	.30	0.70	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	Lc+Lw	19	Dol-1	Stage 1	Ь	-56.8	15						0	.30	0.70	0.00
	6	Lc+Lw	19	Dol-1	Stage 1	Ь	-56.6	22						0	.40	0.60	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	Lc+Lw	19	Dol-1	Stage 1	Ь	-56.6	15				7	063	0	.30	0.70	0.00
	6	Lc+Lw	19	Dol-1	Stage 1	Ь								0	.30	0.70	0.00
	6	Lc+Lw	19	Dol-1	Stage 1	Р		12				7	063	0	.30	0.70	0.00
	6	Lw+Lc	19	Dol-1	Stage 1	Р	-56.6	20						0	40	0.60	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	Lw+Lc	19	Dol-1	Stage 1	Р	-56.3	28 v	-35	-23	24			0	.70	0.30	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	Lw+Lc+Sh	19	Dol-1	Stage 1	Ь	-65	29 v						0	.85	0.10	0.05
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	Lw+Lc+Sh	19	Dol-1	Stage 1	Ь	-56.6	28	-35	-23	24			0	.45	0.50	0.05
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	Lw+Lc+Sh	19	Dol-1	Stage 1	Р	-56.6	25						0	.65	0.30	0.05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	~	Lw+Lc+Sh	19	Dol-1	Stage 1	Ь	-56.4	27						0	.65	0.30	0.05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	~	Lw+Lc+Sh	19	Dol-1	Stage 1	Р	-56.4	27						0	.65	0.30	0.05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	~	Lw+Lc+Sh	19	Dol-1	Stage 1	Ь	-56.4	25 v			37 280	7	063	0	.75	0.20	0.05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	~	Lw+Lc+Sh	19	Dol-1	Stage 1	Р								0	.65	0.30	0.05
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~	Lw+Lc+Sh	19	Dol-1	Stage 1	Р								0	.65	0.30	0.05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	~	Lw+Lc+Sh	19	Dol-1	Stage 1	Ь		25 v				с о	320	0	.65	0.30	0.05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	~	Lw+Lc+Sh+St	0 19	Dol-1	Stage 1	Ь	-65	30 v						0	.85	0.10	0.05
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	~	Lw+Lc+Sh+St	0 19	Dol-1	Stage 1	Ь	-57.9	22 v				0	50	0	.75	0.20	0.05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	~	Lw+Lc+Sh+So	0 19	Dol-1	Stage 1	Р	-56.4	25	-30	ş	12	e	960	0	.75	0.20	0.05
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_	Lw+Lc	20	Dol-1	Stage 1	Ь	-57							0	.70	0.30	0.00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_	Lw+Lc	20	Dol-1	Stage 1	Ь								0	.70	0.30	0.00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_	Lw+Lc	20	Dol-1	Stage 1	Ь								0	.70	0.30	0.00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_	Lw+Lc+Sh	20	Dol-1	Stage 1	Ь	-60							0	.65	0.30	0.05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	Lw+Lc+Sh	20	Dol-1	Stage 1	Р	-60							0	.65	0.30	0.05
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_	Lw+Lc+Sh	20	Dol-1	Stage 1	Р	-57		-35	-23	24			0	.75	0.20	0.05
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_	Lw+Lc+Sh	20	Dol-1	Stage 1	Р								0	.65	0.30	0.05
D Lw+Lc+Sh 20 Dol-1 Stage 1 P 0.65 0.30 0.05 0 Lw+Lc+Sh 20 Dol-1 Stage 1 P -35 -22 24 0.65 0.30 0.05 0 Lw+Lc+Sh 20 Dol-1 Stage 1 P -35 -22 24 0.65 0.30 0.05 0 Lw+Lc+Sh 20 Dol-1 Stage 1 P -0.65 0.30 0.05	_	Lw+Lc+Sh	20	Dol-1	Stage 1	Р								0	.65	0.30	0.05
D Lw+Lc+Sh 20 Dol-1 Stage 1 P -35 -22 24 0.65 0.30 0.05 0 Lw+Lc+Sh 20 Dol-1 Stage 1 P 0.65 0.30 0.05	_	Lw+Lc+Sh	20	Dol-1	Stage 1	Ь								0	.65	0.30	0.05
0 Lw+Lc+Sh 20 Dol-1 Stage 1 P 0.05	0	Lw+Lc+Sh	20	Dol-1	Stage 1	Ь			-35	-22	24			0	.65	0.30	0.05
	0	Lw+Lc+Sh	20	Dol-1	Stage 1	Ь								0	.65	0.30	0.05

s	0.05	0.05	0.05	0.05	0.05	0.00	0.10	0.10	0.10	0.10	0.05	0.05	0.00	0.00	0.00	0.00	0.05	0.05	0.05	0.10	0.05	0.05	0.05	0.05						0.05				0.10	0.20	0.05	0.05	0.05	0.10	0.05	CU.U
V	0.30	0.10	0.30	0.30	0.30	0.30	0.30	0.20	0.30	0.30	0.30	0.30	0.80	0.10	0.10	0.10	0.30	0.30	0.30	0.30	0.30	0.20	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.20	0.20	0.20	0.30	0.10	0.30	0.30	0.30	0.30	0.20	0.10	
Г	0.65	0.85	0.65	0.65	0.65	0.70	0.60	0.70	0.60	0.60	0.65	0.65	0.20	0.90	0.90	0.90	0.65	0.65	0.65	0.60	0.65	0.75	0.65	0.65	0.70	0.70	0.70	0.70	0.70	0.75	0.80	0.80	0.70	0.80	0.50	0.65	0.65	0.65	0.70	0.85	
ΗI																																									
ΠD						290	340		340																																
NaCl TMhalite							188	194	130								250	250	182	250		198	250	250																	
wt %]			24				31	32	29								35	35	31	35		32	35	35							19										
Ш			-22				-22		-22																			0			-15										
2 TFM			-35				-35		-30								-35	-35		-45		-30	-35	-35				-S			-25										
THCO													23				29 v	30 v						30 v	30 v	27	30	30	30 v	29	28 v	29 v				29	29	29			
MC02													5.4				5.4	5.4	5.4				5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4		5.4	5.4	5.4	5.4	5.4	5.4		
T S													-5(-5(-5	-5				-5	-5	-5	-5	-5	-5	-5	-5	-5	-5		-5(-5	-5	-5	-5	-5		
Sd d	Ч	Ч	Ч	Ч	Ч	Ь	Ь	Ь	Р	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ч	Ч	Ч	Ь	Р	Ч	Ь	Ч	0	
Stage	Stage 1	Ctorn 1	,																																						
Phase	Dol-1																																								
assemblage	20	20	20	20	20	21	21	21	21	21	21	21	22	22	22	22	22	22	22	22	22	22	22	22	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	22	
Type	Lw+Lc+Sh	Lw+Lc+Sh	Lw+Lc+Sh	Lw+Lc+Sh	Lw+Lc+Sh	Lw+Lc	Lw+Lc+Sh	Lw+Lc+Sh	Lw+Lc+Sh	Lw+Lc+Sh	Lw+Lc+Sh	Lw+Lc+Sh	Lc+Lw	Lw+Lc	Lw+Lc	Lw+Lc	Lw+Lc+Sh	Lw+Lc+Sh	Lw+Lc+Sh	Lw+Lc+Sh	Lw+Lc+Sh	Lw+Lc+Sh	Lw+Lc+Sh+So	Lw+Lc+Sh+So	Lw+Lc	Lw+Lc+Sh	Lw+Lc+Sh	Lw+Lc+Sh	Lw+Lc+Sh	Lw+Lc+Sh	Lw+Lc+Sh	I with other									
Sample ID	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	09-59 111.30	00 50 111 20	

I																																									
s	0.00	0.00	0.00	0.00		0.01	0.05	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.10	0.10	0.10	0.10	0.00	0.05	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01
>	0.80	0.80	0.80	0.80		0.10	0.30	0.20	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.05	0.45	0.80	0.80	0.10	0.30	0.10	0.29	0.10	0.10	0.30	0.30	0.30
L	0.20	0.20	0.20	0.20		0.89	0.65	0.70	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.70	0.70	0.70	0.70	0.60	0.60	0.60	0.60	0.60	0.95	0.50	0.20	0.20	06.0	0.70	0.89	0.70	0.89	0.89	0.69	0.69	0.69
ΗI																													268				350			278				409	411
1D																			241					300	320	240	260	330		230									400		
NaCI TMhalite						295	300	253																206	206	230		206		163											
wt %.			13	13	18	38	38	35												19				32	32	33	22	32		30											
MT			6	6	13.8															-15				-20		-20	20														
TEM					-23	-35														-35				-35		-35	-35		-35	-10	-11		-25	-20	-17	-35	-25				
THCO	18	20	19	18	26 v	23 v	29	24	3	16	16	16	16	16	16	8	12	9	6	27	27	18	12	27	27	22	22	24		2.5	25	25	25	23	22	22	22		17	17	20
TMC02	-56.6	-56.6	-56.6	-56.6	-56.4	-56.6	-56.6	-56.6	-57	-56.6	-56.6	-56.6	-56.6	-56.6	-56.6	-56.6	-56.6	-56.6	-56.6	-56.6	-56.6	-56.6	-56.6	-56.6	-56.6	-56.6	-56.6	-56.6		-60	-57.7		-57		-57.8	-57.7	-57.4	-56.8			
P PS S	Ь	Ь	Ь	Ь	Ь	Ь	Р	Р	Ь	Р	Р	Р	Ь	Ь	Ь	Ь	Ь	Р	Ь	Р	Ь	Ь	Р	Р	Р	Ь	Ь	Ь	Unk	Ь	Р	Ь	Р	Ь	Р	Ь	Р	Р	Ь	Р	Ь
Stage	Stage 2b	Stage 3b																																							
Phase	Dol-2b	Qz-1	0z-1	Qz-1																																					
assemblage	25	25	25	25	25	25	25	25	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	2	3	4	4	4	4	4	4	4	4	4	4	4
Type	Lc+Lw	Lc+Lw	Lc+Lw	Lc+Lw	Lc+Lw	Lw+Lc+Sh	Lw+Lc+Sh	Lw+Lc+Sh	Lc+Lw	Lw+Lc	Lw+Lc	Lw+Lc	Lw+Lc	Lw+Lc+Sh	Lw+Lc+Sh	Lw+Lc+Sh	Lw+Lc+Sh	Lw+Lc+Sh	L^{w+V}	Lw+Lc+Sh	Lc+Lw	Lc+Lw	Lw+Lc	Lw+Lc	Lw+Lc+Sh	Lw+Lc+Sh	Lw+Lc+Sh	Lw+Lc+Sh+So	Lw+Lc+Sh+So	Lw+Lc+Sh+So	Lw+Lc+Sh+So										
Sample 1D	08-04 163.64	08-04 163.64	08-04 163.64	08-04 163.64	08-04 163.64	08-04 163.64	08-04 163.64	08-04 163.64	08-04 163.64	08-04 163.64	08-04 163.64	08-04 163.64	08-04 163.64	08-04 163.64	08-04 163.64	08-04 163.64	08-04 163.64	08-04 163.64	08-04 163.64	08-04 163.64	08-04 163.64	08-04 163.64	08-04 163.64	08-04 163.64	08-04 163.64	08-04 163.64	08-04 163.64	08-04 163.64	08-07 209.30	08-07 209.30	08-04 111.66	08-04 111.66	08-04 111.66	08-04 111.66	08-04 111.66	08-04 111.66	08-04 111.66	08-04 111.66	08-04 111.66	08-04 111.66	08-04 111.66

																1
Sample ID	Type	assemblage	Phase	Stage	P PS S	TMC02	THCO2	TFM	M	wt % NaCl	TMhalite	TD	TH L	^	S	- 1
08-04 111.66	Lw+Lc+Sh+So	4	Qz-1	Stage 3b	Ь		20					400	0.69	0.30	0.01	
08-04 111.66	Lc+Lw	5	Qz-1	Stage 3b	Ь	-57.1	11.5					300	0.20	0.80	0.00	
08-04 111.66	Lc+Lw	5	Qz-1	Stage 3b	٩	-57.1	11.5					300	0.20	0.80	0.00	
08-04 111.66	Lc+Lw	5	Qz-1	Stage 3b	٩	-57.1	11.5					300	0.20	0.80	0.00	
08-04 111.66	Lc+Lw	5	Qz-1	Stage 3b	4	-57.1	11.5					300	0.20	0.80	0.00	
08-04 111.66	Lc+Lw	5	Qz-1	Stage 3b	Ь	-57.1	11.5					300	0.20	0.80	0.00	
08-04 111.66	Lc+Lw	5	Qz-1	Stage 3b	Ь	-57.1	11.5					300	0.20	0.80	0.00	
08-04 111.66	Lc+Lw	5	Qz-1	Stage 3b	Ь	-57.1	11.5					300	0.20	0.80	0.00	
08-04 111.66	Lc+Lw	5	Qz-1	Stage 3b	Ь	-57.1	11.5					300	0.20	0.80	0.00	
08-04 111.66	Lc+Lw	5	Qz-1	Stage 3b	Ь	-57.1	11.5					300	0.20	0.80	0.00	
08-04 111.66	Lc+Lw	5	Qz-1	Stage 3b	Ь	-57.1	11.5					300	0.20	0.80	0.00	
08-04 111.66	Lc+Lw	5	Qz-1	Stage 3b	Ь	-57.1	13.7					300	0.20	0.80	0.00	
08-04 111.66	Lc+Lw	9	Qz-1	Stage 3b	Ь	-57.1	15					300	0.20	0.80	0.00	
08-04 111.66	Lc+Lw	9	Qz-1	Stage 3b	Ь	-56.8	13	-25				300	0.20	0.80	0.00	
08-04 111.66	LC+LW	9	Qz-1	Stage 3b	Ь	-56.8	19	-25				300	0.20	0.80	0.00	
08-04 111.66	Lc+Lw	9	Qz-1	Stage 3b	Ь	-56.8	19	-25				300	0.20	0.80	0.00	
08-04 111.66	Lc+Lw	9	Qz-1	Stage 3b	Ь	-56.8	10	-25				300	0.20	0.80	0.00	
08-04 111.66	Lc+Lw	9	Qz-1	Stage 3b	Ь	-56.8	14.9	-25				300	0.20	0.80	0.00	
08-04 111.66	Lc+Lw	9	Qz-1	Stage 3b	Ь	-56.8	15.6	-24				300	0.20	0.80	0.00	
08-04 111.66	Lc+Lw	9	Qz-1	Stage 3b	Ь	-56.8	15.6					300	0.20	0.80	0.00	
08-04 111.66	Lc+Lw	9	Qz-1	Stage 3b	Ь	-56.8						300	0.20	0.80	0.00	
08-04 111.66	Lw+Lc+Sh+So	9	Qz-1	Stage 3b	Ь	-56.4	28			42	350	360	0.65	0.30	0.05	
08-04 111.66	Lw+Lc+Sh+So	9	Qz-1	Stage 3b	Ь	-56.4	28	-30		43	360	360	0.65	0:30	0.05	
08-04 111.66	Lc+Lw	7	Qz-1	Stage 3b	Ь	-61.6	9					400	0.20	0.80	0.00	
08-04 111.66	Lc+Lw	7	Qz-1	Stage 3b	Ь	-61.1	2					230	0.20	0.80	0.00	
08-04 111.66	Lc+Lw	7	Qz-1	Stage 3b	Ь	-61.1	2	-30				400	0.20	0.80	0.00	
08-04 111.66	Lw+Lc+Sh	7	Qz-1	Stage 3b	Ь	-63	2	-24				281	0.70	0.20	0.10	
08-04 111.66	Lw+Lc+Sh	7	Qz-1	Stage 3b	٩	-61.5	2	-25		30	154	430	0.70	0.20	0.10	
08-04 111.66	Lc+Lw	8	Qz-1	Stage 3b	PS	-57.6	16.6	-20					0.20	0.80	0.00	
08-04 111.66	Lc+Lw	8	Qz-1	Stage 3b	PS	-57.6	14	-20					0.20	0.80	0.00	
08-04 111.66	Lc+Lw	8	Qz-1	Stage 3b	PS	-57.6	13.1	-20					0.20	0.80	0.00	
08-04 111.66	Lc+Lw	8	Qz-1	Stage 3b	PS	-57.6	16.6	-20 -	12	16			0.20	0.80	0.00	
08-04 111.66	Lc+Lw	8	Qz-1	Stage 3b	PS	-57.6	17.5						0.20	0.80	0.00	
08-04 111.66	Lc+Lw	8	Qz-1	Stage 3b	PS	-57.6	16						0.20	0.80	0.00	
08-04 111.66	Lc+Lw	8	Qz-1	Stage 3b	PS	-57.6	20.3						0.20	0.80	0.00	
08-04 111.66	Lc+Lw	8	Qz-1	Stage 3b	PS	-57.6	16.3						0.20	0.80	0.00	
08-04 111.66	Lc+Lw	8	Qz-1	Stage 3b	PS	-57.6	16.7						0.20	0.80	0.00	
08-04 111.66	Lc+Lw	8	Qz-1	Stage 3b	PS	-57.6	18.9						0.20	0.80	0.00	
08-04 111.66	Lc+Lw	8	Qz-1	Stage 3b	PS	-57.6	16.3						0.20	0.80	0.00	
08-04 111.66	Lc+Lw	8	Qz-1	Stage 3b	PS	-57.6	18.1						0.20	0.80	0.00	
08-04 111.66	Lc+Lw	8	Qz-1	Stage 3b	PS	-57.6	17.1						0.20	0.80	0.00	

All microthermometric data for each fluid inclusion. All abbreveations are described in main text.

ext.	
ain to	
ы С	
ed ii	
scrib	
e des	
s are	
tion	
evea	
bbre	
Alla	
ion.	
clus	
id in	
h flu	
eac	
a for	
datä	
etric	
ome	
nerm	
croth	
lmic	
Ā	

Sample ID	Type	assemblage	Phase	Stage	P PS S	TMC02	THCO2 TFM	Σ	wt % NaCl TMhalite TD	₽	_	>	s
08-04 111.66	Lc+Lw	80	Qz-1	Stage 3b	PS	-57.6	13.2				0.20	0.80	0.00
08-04 111.66	Lc+Lw	8	Qz-1	Stage 3b	PS	-57.6	14.9				0.20	0.80	0.00
08-04 111.66	Lc+Lw	8	Qz-1	Stage 3b	PS	-57.6	18.5				0.20	0.80	0.00
08-04 111.66	Lc+Lw	8	Qz-1	Stage 3b	PS	-57.6	16.7				0.20	0.80	0.00
08-04 111.66	Lc+Lw	8	Qz-1	Stage 3b	PS	-57.6					0.20	0.80	0.00
08-04 111.66	Lc+Lw	8	Qz-1	Stage 3b	PS	-57.4	17.9				0.20	0.80	0.00
08-04 111.66	Lc+Lw	8	Qz-1	Stage 3b	PS	-57.4	18.9				0.20	0.80	0.00
08-04 111.66	Lc+Lw	8	Qz-1	Stage 3b	PS		18.9				0.20	0.80	0.00
08-04 111.66	Lc+Lw	6	Qz-1	Stage 3b	Ъ	-57.2	11.4				0.20	0.80	0.00
08-04 111.66	Lc+Lw	6	Qz-1	Stage 3b	٩	-57.2	15.4				0.20	0.80	0.00
08-04 111.66	Lc+Lw	6	Qz-1	Stage 3b	Ъ	-57.2	9.8				0.20	0.80	0.00
08-04 111.66	Lc+Lw	6	Qz-1	Stage 3b	٩	-57.2					0.20	0.80	0.00
08-04 111.66	Lc+Lw	6	Qz-1	Stage 3b	Р	-57.2	10.6				0.20	0.80	0.00
08-04 111.66	Lc+Lw	6	Qz-1	Stage 3b	4	-57.1	6.2				0.20	0.80	0.00
08-04 111.66	Lc+Lw	6	Qz-1	Stage 3b	٩	-56.8	10.7				0.20	0.80	0.00
08-04 111.66	Lc+Lw	6	Qz-1	Stage 3b	Р	-56.8	10				0.20	0.80	0.00
08-04 111.66	Lc+Lw	6	Qz-1	Stage 3b	Р	-56.8	11.4				0.20	0.80	0.00
08-04 111.66	Lc+Lw	6	Qz-1	Stage 3b	Р	-56.8	11.3				0.20	0.80	0.00
08-04 111.66	Lc+Lw	6	Qz-1	Stage 3b	Р	-56.8	12				0.20	0.80	0.00
08-04 111.66	Lc+Lw	6	Qz-1	Stage 3b	Р	-56.8	10.4				0.20	0.80	0.00
08-04 111.66	Lc+Lw	6	Qz-1	Stage 3b	Р	-56.8	10.4				0.20	0.80	0.00
08-04 111.66	Lc+Lw	6	Qz-1	Stage 3b	Р	-56.8	9.6				0.20	0.80	0.00
08-04 111.66	Lc+Lw	6	Qz-1	Stage 3b	Ъ	-56.8	10.2				0.20	0.80	0.00
08-04 111.66	Lc+Lw	6	Qz-1	Stage 3b	4	-56.8	9.5				0.20	0.80	0.00
08-04 111.66	Lc+Lw	6	Qz-1	Stage 3b	Ъ	-56.8					0.20	0.80	0.00
08-04 111.66	LC+LW	6	Qz-1	Stage 3b	Ъ	-56.8	8.5				0.20	0.80	0.00
08-04 111.66	Lc+Lw	6	Qz-1	Stage 3b	Ъ	-56.8	8.5				0.20	0.80	0.00
08-04 111.66	LC+LW	6	Qz-1	Stage 3b	Ъ	-56.8	7.2				0.20	0.80	0.00
08-04 111.66	LC+LW	6	Qz-1	Stage 3b	4	-56.7	9.8				0.20	0.80	0.00
08-04 111.66	LC+LW	6	Qz-1	Stage 3b	Ъ	-56.7	10.7				0.20	0.80	0.00
08-04 111.66	LC+LW	6	Qz-1	Stage 3b	Ъ	-56.7	9.3				0.20	0.80	0.00
08-04 111.66	LC+LW	6	Qz-1	Stage 3b	Р	-56.7					0.20	0.80	0.00
08-04 111.66	LC+LW	6	Qz-1	Stage 3b	Ъ	-56.7					0.20	0.80	0.00
08-04 111.66	LC+LW	6	Qz-1	Stage 3b	Р	-56.7	9.7				0.20	0.80	0.00
08-04 111.66	LC+LW	6	Qz-1	Stage 3b	4	-56.7	8.8				0.20	0.80	0.00
08-04 111.66	LC+LW	6	Qz-1	Stage 3b	Ч	-56.7	7.3				0.20	0.80	0.00
08-04 111.66	LC+LW	6	Qz-1	Stage 3b	Ч	-56.7					0.20	0.80	0.00
08-04 111.66	Lc+Lw	6	Qz-1	Stage 3b	Ъ	-56.7	7.3				0.20	0.80	0.00
08-04 111.66	Lc+Lw	6	Qz-1	Stage 3b	Ь	-56.7	11.2				0.20	0.80	0.00
08-04 111.66	Lc+Lw	6	Qz-1	Stage 3b	Ь	-56.7	12.5				0.20	0.80	0.00
08-04 111.66	LC+LW	6	Qz-1	Stage 3b	4	-56.7	10.2				0.20	0.80	0.00

	ŀ		đ		5	000141	1 00011			- 10 at	ī	-	:	
sample ID	Iype	assemblage	Phase	stage	2222	IMCUZ	IHCOZ II		WI % N§		E	_	>	~
08-04 111.66	Lc+Lw	6	Qz-1	Stage 3b	٩.	-56.7	9.6					0.20	0.80	0.00
08-04 111.66	LC+LW	6	Qz-1	Stage 3b	Ь	-56.7	9.6					0.20	0.80	0.00
08-04 111.66	Lc+Lw	6	Qz-1	Stage 3b	Ь	-56.6	11					0.20	0.80	0.00
08-04 111.66	Lc+Lw	6	Qz-1	Stage 3b	Ь	-56.6	11					0.20	0.80	0.00
08-04 111.66	LC+LW	6	Qz-1	Stage 3b	Ь	-56.6	11					0.20	0.80	0.00
08-04 111.66	Lc+Lw	6	Qz-1	Stage 3b	Ь	-56.6	11.2					0.20	0.80	0.00
08-04 111.66	Lc+Lw	6	Qz-1	Stage 3b	Ь	-56.6	11.2					0.20	0.80	0.00
08-04 111.66	LC+LW	6	Qz-1	Stage 3b	Ь	-56.6	10.5					0.20	0.80	0.00
08-04 111.66	LC+LW	6	Qz-1	Stage 3b	Ь							0.20	0.80	0.00
08-04 111.66	LC+LW	6	Qz-1	Stage 3b	Ь		14.2					0.20	0.80	0.00
08-04 111.66	LC+LW	6	Qz-1	Stage 3b	Ь		10.5					0.20	0.80	0.00
08-04 111.66	LC+LW	10	Qz-1	Stage 3b	Ь	-57.2	6.7					0.20	0.80	0.00
08-04 111.66	LC+LW	10	Qz-1	Stage 3b	Ь	-57.2	9					0.20	0.80	0.00
08-04 111.66	LC+LW	10	Qz-1	Stage 3b	Ь	-57.2	7					0.20	0.80	0.00
08-04 111.66	LC+LW	10	Qz-1	Stage 3b	Ь	-57.2	7.1					0.20	0.80	0.00
08-04 111.66	Lc+Lw	10	Qz-1	Stage 3b	Ь	-57.2	6.6					0.20	0.80	0.00
08-04 111.66	Lc+Lw	10	Qz-1	Stage 3b	Ь	-57.2	7.1					0.20	0.80	0.00
08-04 111.66	Lc+Lw	10	Qz-1	Stage 3b	Ь	-57.2	5.7					0.20	0.80	0.00
08-04 111.66	LC+LW	10	Qz-1	Stage 3b	Ь	-57.2	6.9					0.20	0.80	0.00
08-04 111.66	Lc+Lw	10	Qz-1	Stage 3b	Ь	-57.2	6.1					0.20	0.80	0.00
08-04 111.66	Lw+Lc	10	Qz-1	Stage 3b	Ь	-57	19.5 -3	5				0.90	0.10	0.00
08-04 111.66	Lw+Lc	10	Qz-1	Stage 3b	Ь	-57	8.7 -3	0				0.50	0.50	0.00
08-04 111.66	Lw+Lc	10	Qz-1	Stage 3b	Ь							0.95	0.05	0.00
08-04 111.66	Lw+Lc+Sh	10	Qz-1	Stage 3b	Ь	-58.2	17 -2	9				0.94	0.05	0.01
08-04 111.66	Lw+Lc+Sh	10	Qz-1	Stage 3b	Ь							0.94	0.05	0.01
08-04 111.66	Lw+Lc+Sh+So	10	Qz-1	Stage 3b	Ь	-57.6	8.3 -3	0 2.7	4			0.19	0.80	0.01
08-07 209.30	Lc+Lw	11	Qz-1	Stage 3b	PS	-61.2	-1.3					0.20	0.80	0.00
08-07 209.30	Lw+Lc+Sh	11	Qz-1	Stage 3b	PS	-60.8	8 8	5				0.80	0.19	0.01
08-07 209.30	Lw+Lc+Sh	11	Qz-1	Stage 3b	PS	-60.8	8 8	2				0.80	0.19	0.01
08-07 209.30	Lw+Lc+Sh	11	Qz-1	Stage 3b	PS	-60.3	с, С	ņ				0.80	0.19	0.01
08-07 209.30	Lw+Lc+Sh	11	Qz-1	Stage 3b	PS	-60.3	'n	ŝ				0.80	0.19	0.01
08-07 209.30	Lw+Lc+Sh	11	Qz-1	Stage 3b	PS	-60.3	5	S				0.80	0.19	0.01
08-07 209.30	Lw+Lc+Sh	11	Qz-1	Stage 3b	PS	-60.3	7					0.80	0.18	0.02
08-07 209.30	Lw+Lc+Sh	11	Qz-1	Stage 3b	PS	-60.1	10					0.80	0.19	0.01
08-07 209.30	Lw+Lc+Sh	11	Qz-1	Stage 3b	PS	-57.6	11 -3	ŝ	29	130		0.80	0.19	0.01
08-07 209.30	Lw+Lc+Sh	11	Qz-1	Stage 3b	PS	-57.6	12 -3	5	32	200		0.80	0.19	0.01
08-07 209.30	Lw+Lc+Sh	11	Qz-1	Stage 3b	PS	-57.6	12 -3	5				0.80	0.19	0.01
08-07 209.30	Lw+Lc+Sh	11	Qz-1	Stage 3b	PS	-57.6	12 -3	5				0.80	0.19	0.01
08-07 209.30	Lw+Lc+Sh	11	Qz-1	Stage 3b	PS	-57.6	12 -3	5				0.80	0.15	0.05
08-07 209.30	Lw+Lc+Sh	11	Qz-1	Stage 3b	PS	-56.8	'n	5				0.80	0.15	0.05
08-07 209.30	Lw+Lc+Sh	11	Qz-1	Stage 3b	PS	-56.8	'n	5				0.80	0.15	0.05

All microthermometric data for each fluid inclusion. All abbreveations are described in main text.

نہ
×
Ð
÷
۲ ۲
÷Ξ
ğ
3
-
q
Ū
р
5
š
نة
ō
e.
Τ
10
S
ç
0
÷
,
ă
ž
ā
Ľ
р
_
=
<
ō
·
IS
2
0
Ē
.=
σ
·Ξ
Ŧ
<u>ر</u>
$\overline{\mathbf{O}}$
ĕ
ă
2
5
Ξ
g
ät
0
S
. <u> </u>
Ē
e
F
2
Q
3
Ľ
ā
ž
÷
Ö
Ē
<u>0</u>
:=
_
4

Sample ID	Type	assemblage	Phase	Stage	P PS S	TMC02	THC02	TFM	Ā	wt % NaCl	TMhalite	₽	₽	_	>	s
08-07 209.30	Lw+Lc+Sh	11	Qz-1	Stage 3b	PS	-56.8	12	-35						0.80	0.19	0.01
08-07 209.30	Lw+Lc+Sh	11	Qz-1	Stage 3b	PS	-56.8	10	-35						0.80	0.18	0.02
08-07 209.30	Lw+Lc+Sh	11	Qz-1	Stage 3b	PS	-56.8		-35						0.80	0.19	0.01
08-07 209.30	Lw+Lc+Sh	11	Qz-1	Stage 3b	PS		10							0.80	0.19	0.01
08-07 209.30	Lw+Lc+Sh	11	Qz-1	Stage 3b	PS		10							0.80	0.19	0.01
08-07 209.30	Lw+Lc+Sh	11	Qz-1	Stage 3b	PS									0.80	0.19	0.01
08-07 209.30	Lw+Lc+Sh	11	Qz-1	Stage 3b	PS		7 to 9	-30	15	19						
10-76 429.68	Lc+Lw	12	Qz-1	Stage 3b	Ъ	-57	∞							0.60	0.40	00.0
10-76 429.68	Lc+Lw	12	Qz-1	Stage 3b	٩	-56.9	25							0.70	0.30	00.0
10-76 429.68	Lc+Lw	12	Qz-1	Stage 3b	٩	-56.9	26							0.70	0.30	00.0
10-76 429.68	Lc+Lw	12	Qz-1	Stage 3b	٩	-56.9	25							0.70	0.30	00.0
10-76 429.68	Lc+Lw	12	Qz-1	Stage 3b	٩	-56.7	25							0:30	0.70	0.00
10-76 429.68	Lc+Lw	12	Qz-1	Stage 3b	٩	-56.7	27							0:30	0.70	0.00
10-76 429.68	Lc+Lw	12	Qz-1	Stage 3b	٩	-56.6	23						>300	0.40	0.60	00.0
10-76 429.68	Lc+Lw	12	Qz-1	Stage 3b	Ъ	-56.6	25						>300	0.40	0.60	00.00
10-76 429.68	Lc+Lw	12	Qz-1	Stage 3b	Ч	-56.6	23	-20						09.0	0.40	00.0
10-76 429.68	Lc+Lw	12	Qz-1	Stage 3b	Р								>300	0.40	0.60	00.0
10-76 429.68	Lc+Lw	12	Qz-1	Stage 3b	Ч									0.50	0.50	0.00
10-76 429.68	Lw+Lc+nS	12	Qz-1	Stage 3b	Р			-35		32	210		200	0.80	0.10	0.10
10-76 429.68	Lw+Lc+Sh	12	Qz-1	Stage 3b	Ь			-35	-20	22			>300	0.80	0.10	0.10
10-76 429.68	Lw+Lc+Sh	12	Qz-1	Stage 3b	Ь					37	288		277	0.80	0.10	0.10
10-76 429.68	Lw+Lc+Sh	12	Qz-1	Stage 3b	Р			-35	-17.2	32	195			0.50	0.30	0.20
10-76 429.68	Lw+Lc+Sh	12	Qz-1	Stage 3b	Ь			-40		32	195					
10-76 429.68	Lw+Lc+Sh	12	Qz-1	Stage 3b	Ч									0.60	0.30	0.10
10-76 429.68	Lw+Lc+Sh+So	12	Qz-1	Stage 3b	Ь			-35	-20	22			>300	0.75	0.20	0.05
10-76 429.68	Lw+Lc+Sh+So	12	Qz-1	Stage 3b	Ь			-35	-20	32	195		>300	0.75	0.20	0.05
10-76 429.68	Lw+Lc+Sh+So	12	Qz-1	Stage 3b	Ч			-35	-20	32	195		>300	0.70	0.20	0.10
10-76 429.68	Lw+Lc+Sh+So	12	Qz-1	Stage 3b	Ь			-37.5	-24.4	34	238		>300	0.50	0:30	0.20
10-76 429.68	Lw+Lc+Sh+So	12	Qz-1	Stage 3b	Ь				-24.2	31	190			0.70	0.20	0.10
10-76 429.68	Lw+Lc+Sh+So	12	Qz-1	Stage 3b	Ь			-35	-13	17				0.70	0:30	0.00
10-76 429.68	Lw+Lc+Sh+So	12	Qz-1	Stage 3b	4			-40	-17.5	32	195			0.80	0.10	0.10
10-76 429.68	Lw+Lc+Sh+So	12	Qz-1	Stage 3b	Ч			-35		33	220			0.60	0.30	0.10
10-76 429.68	Lc+Lw	13	Qz-1	Stage 3b	Ь	-56.8	20							0.30	0.70	0.00
10-76 429.68	Lc+Lw	13	Qz-1	Stage 3b	Ч	-56.8	22							0.10	0.90	0.00
10-76 429.68	Lc+Lw	13	Qz-1	Stage 3b	4	-56.8	24							0.10	06.0	0.00
10-76 429.68	Lc+Lw	13	Qz-1	Stage 3b	Ь	-56.8	23							0.10	06.0	0.00
10-76 429.68	Lc+Lw	13	Qz-1	Stage 3b	Ь	-56.8	19							0.10	0.90	0.00
10-76 429.68	Lc+Lw	13	Qz-1	Stage 3b	Ь	-56.8	19							0.10	0.90	0.00
10-76 429.68	Lc+Lw	13	Qz-1	Stage 3b	Р	-56.8	22							0.40	0.60	00.0
10-76 429.68	Lc+Lw	13	Qz-1	Stage 3b	Ь	-56.8	19							0.10	0.90	0.00
10-76 429.68	Lc+Lw	13	Qz-1	Stage 3b	٩	-56.8	21							0.10	0.90	0.00

Samula ID	Tyne	accemblage	Dhace	Stage	2 20 C	TMC02	THCO2	TEM	TM	wt % NaCl	TMhalite	F	- HI	>	,
10-76 429.68	LC+LW	13	Qz-1	Stage 3b	4	-56.6	24					!	0.30	0.70	0.00
10-76 429.68	Lc+Lw	13	Qz-1	Stage 3b	Ъ	-56.6	10						0.40	0.60	0.00
10-76 429.68	Lc+Lw	13	Qz-1	Stage 3b	Ь	-56.6	20						0.10	06.0	0.00
10-76 429.68	Lc+Lw	13	Qz-1	Stage 3b	Ъ	-56.6	24						0.10	06.0	0.00
10-76 429.68	Lc+Lw	13	Qz-1	Stage 3b	Ъ	-56.6	17						0.40	0.60	0.00
10-76 429.68	Lc+Lw	13	Qz-1	Stage 3b	Ъ	-56.6	24						0.50	0.50	0.00
10-76 429.68	Lc+Lw	13	Qz-1	Stage 3b	Ъ	-56.3	20						0.30	0.70	0.00
10-76 429.68	Lc+Lw	13	Qz-1	Stage 3b	Ъ	-56.2	20						0.50	0.50	0.00
10-76 429.68	Lc+Lw+Sh	13	Qz-1	Stage 3b	Ъ	-56.6	27						0.65	0:30	0.05
10-76 429.68	Lw+Lc	13	Qz-1	Stage 3b	Ъ	-56.8	28						0.70	0:30	0.00
10-76 429.68	Lw+Lc	13	Qz-1	Stage 3b	Ъ	-56.8	27						0.70	0.30	0.00
10-76 429.68	Lw+Lc	13	Qz-1	Stage 3b	Ь	-56.6	28						0.80	0.20	0.00
10-76 429.68	Lw+Lc	13	Qz-1	Stage 3b	Ь	-56.6	29						0.60	0.40	0.00
10-76 429.68	Lw+Lc+Sh	13	Qz-1	Stage 3b	Ь	-56.8							0.75	0.20	0.05
10-76 429.68	Lw+Lc+Sh	13	Qz-1	Stage 3b	4	-56.2	16						06.0	0.05	0.05
10-76 429.68	Lw+Lc+Sh	13	Qz-1	Stage 3b	4	-56.2	28	-32	-15	19			0.85	0.10	0.05
10-76 429.68	Lc+Lw	14	Qz-1	Stage 3b	4	-57.4							0.50	0.50	0.00
10-76 429.68	Lc+Lw	14	Qz-1	Stage 3b	Ъ	-57.4	24						0.10	06.0	0.00
10-76 429.68	Lc+Lw	14	Qz-1	Stage 3b	Ъ	-57.4	22						0.10	06.0	0.00
10-76 429.68	Lc+Lw	14	Qz-1	Stage 3b	Ъ	-56.7	20						0.50	0.50	0.00
10-76 429.68	Lc+Lw	14	Qz-1	Stage 3b	Ъ								0.10	06.0	0.00
10-76 429.68	Lw+Lc+Sh	14	Qz-1	Stage 3b	Ь	-57.4	25						0.65	0:30	0.05
10-76 429.68	Lw+Lc+Sh	14	Qz-1	Stage 3b	Ъ	-56.6	23						0.65	0.30	0.05
10-76 429.68	Lw+Lc+Sh	14	Qz-1	Stage 3b	Ъ					33	230		0.40	0.30	0.30
10-76 429.68	Lw+Lc+Sh	14	Qz-1	Stage 3b	Ь					35	250		0.80	0.10	0.10
10-76 429.68	Lw+Lc+Sh	14	Qz-1	Stage 3b	Ъ			-30		35	250		0.80	0.10	0.10
10-76 429.68	Lw+Lc+Sh	14	Qz-1	Stage 3b	Ъ					34	238		0.80	0.10	0.10
10-76 429.68	Lw+Lc+Sh	14	Qz-1	Stage 3b	Ъ								0.90	0.05	0.05
10-76 429.68	Lw+Lc+Sh	14	Qz-1	Stage 3b	Ъ			-40	-31	29			250 v 0.90	0.05	0.05
10-76 429.68	Lw+Lc+Sh	14	Qz-1	Stage 3b	4			-35	-23	35	250		0.80	0.10	0.10
10-76 429.68	Lw+Lc+Sh	14	Qz-1	Stage 3b	Ь			-35	-18	32	210		0.85	0.10	0.05
10-76 429.68	Lw+Lc+Sh	14	Qz-1	Stage 3b	Ь			-35		35	250		0.70	0.20	0.10
10-76 429.68	Lw+Lc+Sh	14	Qz-1	Stage 3b	Ъ		16			35	250		06.0	0.05	0.05
10-76 429.68	Lw+Lc+Sh	14	Qz-1	Stage 3b	Ь			-35					0.70	0.20	0.10
10-76 429.68	Lw+Lc+Sh	14	Qz-1	Stage 3b	Ъ			-35					0.85	0.10	0.05
10-76 429.68	Lw+Lc+Sh+So	14	Qz-1	Stage 3b	Ь	-56.6	25	-20					0.65	0.30	0.05
10-76 429.68	Lw+Lc+Sh+So	14	Qz-1	Stage 3b	Ь	-56.6	25						0.50	0.50	0.00
10-76 429.68	Lw+Lc+Sh+So	14	Qz-1	Stage 3b	Ь					34	238		0.80	0.10	0.10
10-76 429.68	Lw+Lc+Sh+So	14	Qz-1	Stage 3b	٩			-30		34	238		0.80	0.10	0.10
10-76 429.68	Lw+Lc+Sh+So	14	Qz-1	Stage 3b	٩			-35	-25	35	250		06.0	0.05	0.05
10-76 429.68	Lw+Lc+Sh+So	14	Qz-1	Stage 3b	д.					34	238		0.90	0.05	0.05

All microthermometric data for each fluid inclusion. All abbreveations are described in main text.
s	0.05	0.05	0.05	0.10		0.00	0.00	0.00	0.10	0.10	0.20	0.20	0.20	0.20	0.05	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.05	0.05	0.05	0.05	10 0
>	0.05	0.05	0.20	0.20		0.80	0.80	0.80	0:30	0.30	0.30	0.30	0:30	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.80	0.80	0.80	0.80	0.80	0.60	0.60	0.60	0.60	0.70	0.60	0.50	0:30	0.60	0.20	0.20	0.20	
_	06.0	06.0	0.75	0.70		0.20	0.20	0.20	0.60	0.60	0.50	0.50	0.50	0.75	06.0	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.20	0.20	0.20	0.20	0.20	0.40	0.40	0.40	0.40	0.30	0.40	0.50	0.50	0.35	0.75	0.75	0.75	
₽					209																																			
P																							350	350	350	350	350		350	350	350	350	350	350		390	350	350	350	
TMhalite	238	238	235		209				215	250	250	230	215																								225	256	225	
% NaCl																																								
¥	34	34	34	22	32				33	35	35	33	33						27	27																	33	36	33	
Σ			-18	-20	-6.9				-22	-22	-22	-22	-22						28	28																		-17	-13	
TFM	-30		-30	-33	-25				-38	-35	-35	-35	-35						24	24																		-35	-30	
THCO2						12	13	10	17	19	20	21	17										12	13	13	15	12	18	18	20	16	15	14	17		11	19	15	20	
TMC02									-56.4	-56.4	-56.4	-56.4	-56.4										-57.7	-57.6	-57.5	-57.5	-57.4	-57.3	-57.1	-57.1	-57.1	-57.1	-56.9	-56.6		-57.1	-56.6	-56.6	-56.6	
P PS S	4	Ь	Ь	Ь	Unk	PS	PS	PS	Ь	д	Ъ	Ь	Ъ	Ъ	۵.	۵.	д.	д.	Unk	Unk	Unk	Unk	۵.	۵.	۵.	۵.	۵.	۵.	۵.	۵.	۵.	٩	۵.	Ь	Ь	Ь	Ь	Ъ	٩	
Stage	Stage 3b																																							
Phase	Qz-1	0z-1	ł																																					
assemblage	14	14	14	14	15	16	16	16	16	16	16	16	16	16	16	16	16	16	17	17	17	17	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	
Type	Lw+Lc+Sh+So	Lw+Lc+Sh+So	Lw+Lc+Sh+So	Lw+Lc+Sh+So	Lw+V+nS	Lc+Lw	Lc+Lw	Lc+Lw	Lw+Lc+Sh				Lw+V+nS	Lw+V+nS	Lw+V+nS	Lw+V+nS	Lc+Lw	Lw+Lc	Lw+Lc+Sh	Lw+Lc+Sh+So	Lw+Lc+Sh+So	Lw+Lc+Sh+So	Lw+Lc+Sh+So																	
Sample ID	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	10-76 429.68	

All microthermometric data for each fluid inclusion. All abbreveations are described in main text.

Samula ID	Tyne	accomblage	Dhaca	Ctage	0 20 0	TMCO2	THCO2	EM	1 wt % N3	CI TMhalita	F	₽	-	>	
10-76 429.68	Lw+Lc+Sh+So	18	02-1	Stage 3h		100	70011		36	270	350		0.75	0.20	0.05
10-76 429.68	Lw+Lc+Sh+So	18	0z-1	Stage 3b	. 4				35	240	385		0.75	0.20	0.05
09-18 250.00	Lw+V	27	Sp	Stage 4a	s			4	9			158	0.02	0.98	0.00
09-18 250.00	Lw+V	27	Sp	Stage 4a	S			4.6	7			150	0.02	0.98	0.00
09-18 250.00	Lw+V	27	Sp	Stage 4a	S			4.6	7			150	0.02	0.98	0.00
09-18 250.00	Lw+V	27	Sp	Stage 4a	s			4.6	7			150	0.02	0.98	0.00
09-18 250.00	Lw+V	27	Sp	Stage 4a	S			4.6	7			150	0.02	0.98	0.00
09-18 250.00	Lw+V	27	Sp	Stage 4a	S			4.6	7			150	0.02	0.98	0.00
09-18 250.00	Lw+V	27	Sp	Stage 4a	s			4.6	7			150	0.02	0.98	0.00
09-18 250.00	Lw+V	27	Sp	Stage 4a	S			4.6	7			150	0.02	0.98	0.00
09-18 250.00	Lw+V	27	Sp	Stage 4a	S			4.6	7			150	0.02	0.98	0.00
09-18 250.00	Lw+V	27	Sp	Stage 4a	S			4.6	7			150	0.02	0.98	0.00
09-18 250.00	Lw+V	27	Sp	Stage 4a	S			4.6	7			150	0.02	0.98	0.00
09-18 250.00	Lw+V	27	Sp	Stage 4a	S			4.6	7			150	0.02	0.98	0.00
09-18 250.00	Lw+V	27	Sp	Stage 4a	s			4.6	7			150	0.02	0.98	0.00
09-18 250.00	Lw+V	27	Sp	Stage 4a	s			4.6	7			150	0.02	0.98	0.00
09-18 250.00	Lw+V	27	Sp	Stage 4a	S			2	æ			156	0.02	0.98	0.00
09-18 250.00	Lw+V	27	Sp	Stage 4a	S			4.6	7			150	0.02	0.98	0.00
09-18 250.00	Lw+V	27	Sp	Stage 4a	S			2	œ			150	0.02	0.98	0.00
09-18 250.00	Lw+V	27	Sp	Stage 4a	S			4.6	7			150	0.02	0.98	0.00
09-18 250.00	Lw+V	27	Sp	Stage 4a	s			4.6	-			150	0.02	0.98	0.00
09-18 250.00	Lw+V	28	Sp	Stage 4a	s			13 0.8	1			153	0.02	0.98	0.00
09-18 250.00	Lw+V	29	Sp	Stage 4a	S		T	10 3.1	2			150	0.02	0.98	0.00
09-18 250.00	Lw+V	29	Sp	Stage 4a	S		T	10 3.1	5 LO			150	0.02	0.98	0.00
09-18 250.00	Lw+V	29	Sp	Stage 4a	S		T	10 3.1	S			150	0.02	0.98	0.00
09-18 250.00	Lw+V	29	Sp	Stage 4a	s		T	10 3.1	5			150	0.02	0.98	0.00
09-18 250.00	Lw+V	29	Sp	Stage 4a	S		T	10 3.1	5 LO			150	0.02	0.98	0.00
09-18 250.00	Lw+V	29	Sp	Stage 4a	S		T	10 3.1	5 LO			150	0.02	0.98	0.00
09-18 250.00	Lw+V	29	Sp	Stage 4a	S		Т	10 3.1	5 S			150	0.02	0.98	0.00
09-18 250.00	Lw+V	29	Sp	Stage 4a	S		T	10 3.1	5			150	0.02	0.98	0.00
09-18 250.00	Lw+V	29	Sp	Stage 4a	s		T	10 3.1	ß			150	0.02	0.98	0.00
09-18 250.00	Lw+V	29	Sp	Stage 4a	S		Т.	10 3.1	5			150	0.02	0.98	0.00
Sc10-05 260.70	Lw+V	32	RP-Cal	INT	Ъ			30 12	16			290	0.95	0.05	0.00
Sc10-05 260.70	Lw+V	32	RP-Cal	INT	Ъ								0.95	0.05	0.00
Sc10-05 260.70	Lw+V	32	RP-Cal	INT	٩							290	0.95	0.05	0.00
Sc10-05 260.70	Lw+V	32	RP-Cal	INT	٩			20 -12	16			290	0.95	0.05	0.00
Sc10-05 260.70	Lw+V	32	RP-Cal	INT	Ъ			30 -12	16			290	0.95	0.05	0.00
Sc10-05 260.70	Lw+V	32	RP-Cal	INT	٩			30 -12	16			290	0.95	0.05	0.00
Sc10-05 260.70	Lw+V	33	RP-Qz	INT	s			6- 08	13			220	0.95	0.05	0.00
Sc10-05 260.70	Lw+V	33	RP-Qz	INT	s			30 12	16			274	0.95	0.05	0.00
Sc10-05 260.70	Lw+V	33	RP-Oz	INT	S			30 11	5 15			274	0.95	0.05	0.00

All microthermometric data for each fluid inclusion. All abbreveations are described in main text.

All microthermometric data for each fluid inclusion. All abbreveations are described in main text.

	0	0	0	0	5	35	5	5	5	5	5	35	5	0	0	0	0	0	00	0	0	00	0	00	0	0	0	0	0	0	0	0	0	0	
S	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
>	0.05	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	
_	0.95	0.95	0.95	0.95	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	06.0	06.0	0.90	06.0	06.0	06.0	06.0	06.0	06.0	06.0	
Ŧ	274		274	235	260	235	294	250	300	325	325	285		230	235	208	210	250	220	220	235	230	224	233		320		309						395	1
e													350														322		412	412	340	412	322		
lite .																													•	•		•			
TMha					150		155	155	150	150	155	150	>350																						
6 NaCl																																			
wt %	15	15	15	15	30	26	30	30	30	30	30	30		œ	m	œ	13	16	13	13	16	16	16	16		6	6	16	16	16	16	16	16	16	
τM	11.5	11.5	11	11										2	2	2	6	12	6	6	12	12	12	12		9	9	12	12	12	12	12	12	12	
TFM	-30	-30	-30	-30	-33	-30	-33	-33	-33	-33	-33	-33	-22	-22	-22	-22	-22		-22	-22		-22	-22	-22		-33	-33			-22		-22			
HC02													9												∞	∞	∞	∞	∞	∞	80	∞	8	∞	
02 T													7 2												5 2	5 2	5 2	5 2	5 2	5	5	5	5 2	5	
TMO													-26.7												-56.6	-56.6	-56.6	-56.6	-56.6	-56.(-56.(-56.(-56.(-56.(
P PS S	S	S	S	S	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ъ	Ь	Ь	Ь	Ь	д.	Ь	Ь	Ь	Ь	Ъ									
a																																			
Stag	INT																																		
hase	P-Qz																																		
lge P	æ	æ	æ	æ	æ	æ	æ	œ	œ	œ	œ	æ	œ	æ	æ	œ	æ	œ	œ	œ	œ	œ	æ	æ	œ	æ	œ	œ	œ	œ	œ	œ	œ	æ	
sembla																																			
as	33	ŝ	ŝ	33	33	ŝ	33	33	ŝ	ŝ	89	33	37	30	35	30	30	30	30	30	30	30	30	30	36	36	36	36	36	36	36	36	36	36	
	,	,	,	,	/+Sh	.c+Sh	,	/	,	,			,	,		,	,	ų	ų	ų	ų	ų	ų	с,	ų	ų	ų								
Type	/+//) Lw+\) Lw+\) Lw+\	/+//) Lw+\	/+//) Lw+\) Lw+\) Lw+\) Lw+/) Lw+\) Lw+L	/+//) Lw+/) Lw+/) Lw+\) Lw+/) Lw+/) Lw+\) Lw+/) Lw+/	(+/	/+//) Lw+L										
₽	260.70	260.70	260.70	260.70	260.70	260.70	260.70	260.70	260.70	260.70	260.70	260.70	260.70	260.70	260.70	260.70	260.70	260.70	260.70	260.70	260.70	260.70	260.70	260.70	260.70	260.70	260.70	260.70	260.70	260.70	260.70	260.70	260.70	260.70	I
ple	05	-05	-05	-05	-05	-05	-05	-05	-05	-05	-05	-05	-05	-05	-05	-05	-05	-05	-05	-05	-05	-05	-05	-05	-05	-05	-05	-05	-05	-05	-05	-05	-05	Ģ	

Monazite EPMA data. From thin secti

on 08-04 136.45

Ca	Y	La	Ce	Pr	Nd	Pb	Th	U	Р	Si	Total
275	0	185628	286756	48405	60611	0	0	0	132757	0	99
416	0	181038	288000	48301	62342	0	0	0	131502	0	99
244	0	183059	287854	46945	59071	0	0	0	126014	306	97
495	0	185278	285725	49487	58409	0	0	0	130702	191	98
572	0	181386	287849	49358	59028	0	0	0	131892	0	98
462	0	179429	287613	48962	59542	0	0	0	131425	223	98
467	0	178202	284978	49932	59505	0	0	0	132319	234	98
422	1669	176506	286996	50319	60783	0	0	10585	129866	246	99
440	1534	174758	285789	51448	58626	0	0	0	132167	0	98
464	0	171948	282816	50986	59621	Ő	õ	10302	130065	0	97
369	Õ	164184	286130	50346	59492	0	0	0	129199	228	96
457	Õ	164427	283404	53282	58124	0	0	0	128346	0	95
469	Õ	161191	281068	52723	54022	0	0	0	125501	191	93
262	1773	159042	280905	53658	58063	Ő	õ	Ő	129146	0	95
529	1406	150174	274363	54846	55115	0	õ	Ő	126461	0	92
570	2075	148358	276312	54564	54518	0	õ	Ő	127363	0	93
502	0	140381	276349	54538	54635	0	0	0	127339	218	93
473	1444	149174	276054	55754	54856	õ	õ	0	125215	243	92
451	0	149660	279068	55382	54696	0	0	0	127493	296	93
411	1410	154124	277127	54092	55272	0	0	0	128374	197	93
455	0	152374	280013	54173	56273	0	0	0	127212	297	94
402	0	152074	230013	52620	52200	0	0	0	125641	0	01
492	1592	150023	270480	55012	59725	0	0	0	125041	0	91
402	0	150261	274970	5/226	54946	0	0	0	125805	416	93
492	0	149299	277024	54330	55640	0	0	0	125695	214	92
459	1447	140300	213232	54314	53640	0	0	0	123470	220	92
438	1447	148290	270600	54129	52402	0	0	0	127501	239	93
428	0	146939	279000	55002	55405	0	0	0	12/301	372	93
455	1550	140039	270839	53085	54066	0	0	0	125005	204	92
451	1550	14/668	27/644	5458/	54000	0	0	0	125362	394	92
402	0	14/55/	2/9521	54470	50220	0	0	0383	12/113	333	93
487	0	183555	28/398	40430	59228	0	0	8892	131484	194	99
2499	1/33	1/6493	282917	46231	(1222	0	0	14086	131947	211	99
240	1559	186270	283/02	46105	61223	0	0	0	130396	215	98
420	2068	17/063	283707	45/24	65062	0	0	0	129480	260	97
310	1282	181513	285915	4/25/	03431	0	0	0	130806	223	98
322	1536	18/683	288231	4/156	60141	0	0	0	131943	0	99
445	2072	1/8131	285932	46/82	63381	0	0	0	132634	0	98
412	1/50	1/8285	283604	469/9	03030	0	0	8275	133322	196	99
500	0	1/301/	28303/	4/200	64085	0	0	0	120004	221	9/
289 1224	2462	170724	283883	4509/	040/5	0	0	/8/9	129994	240	98
1254	1/52	1/9/54	27/050	456/8	65550	0	0	0	131/0/	24/	98
015	1//5	190/14	219939	40094	58/10	0	0	0	130919	0	98
397	2159	182177	281090	45900	61967	0	0	6063	128122	0	97
553	2604	173339	285846	45711	65002	0	U	8537	128177	0	97
407	1753	184407	283144	46657	58564	2438	0	0	129869	0	98
874	0	186206	284989	45407	58115	0	U	0	131386	211	98
1116	0	183015	281197	45626	60069	0	U	9948	129001	0	98
462	1384	188360	283756	46420	59993	0	U	0	131306	0	98
1179	1832	184570	285960	46524	59425	0	0	0	131540	0	99
450	0	186153	285952	46228	57841	0	0	0	130909	0	98
519	0	183204	286134	46588	61698	0	0	0	131129	0	98
649	0	183574	287265	46282	60277	0	0	6688	131616	208	99
492	1599	184842	285903	46846	59316	0	0	0	131142	214	98
504	0	186234	289611	45800	60874	0	0	0	129883	236	99
355	1669	180008	289081	46633	62123	0	0	0	129269	287	97

Ca	Y	La	Ce	Pr	Nd	Pb	Th	U	Р	Si	Total
221	0	178953	287295	47258	64241	0	0	0	130521	251	98
386	1765	178158	283330	46527	63537	0	0	0	130866	286	97
158	1383	182893	291091	47810	62278	0	0	0	131506	0	99
424	1636	183352	284429	46891	60488	0	0	0	132349	286	98
407	0	183974	289678	44868	58844	0	0	0	131251	193	99
941	0	186656	284281	44510	61010	0	0	0	132931	0	98
842	1518	182626	286955	45773	62364	0	0	0	131719	0	98
1058	0	182645	284937	45935	60688	0	0	0	129916	0	98
893	1599	183191	283829	46619	60664	0	0	0	130005	205	98
556	0	175596	281411	44767	64353	0	0	9559	132447	0	98
522	1498	177173	286957	46710	63272	0	0	0	132183	0	99
430	1478	180367	285628	46402	64149	0	0	7019	131891	0	99
1323	0	185141	279958	46110	59671	0	0	10542	131186	0	98
695	2006	217343	335401	56278	76795	0	0	0	155136	0	116
866	2738	212987	331769	54995	72245	0	0	0	154185	0	115
1235	2032	186843	285437	45669	60240	0	0	0	130720	0	99
993	1854	190365	282880	46530	58587	0	0	0	131793	0	98
1026	0	188809	285564	46245	57853	0	0	0	131348	205	98
430	1395	189808	282933	45078	57716	0	0	0	133614	232	99
1244	1845	193174	283680	44771	54888	2082	0	0	133089	214	99
1081	1595	193089	284453	45929	57533	0	0	5313	133608	0	100
384	1647	178500	286021	46333	60779	0	0	14846	130798	0	99
421	2030	182357	283254	45689	61390	0	0	7482	132548	0	99
486	0	179359	280584	45669	64684	0	0	0	133836	0	98
388	0	182811	284360	46802	60572	0	0	7239	132326	0	98
923	1534	179704	282344	45556	64545	0	0	0	132869	0	98
892	0	200150	284617	46002	52786	0	0	0	131770	0	99
1294	1572	184638	281733	45724	60633	0	0	0	131029	0	97
388	1929	177988	284498	46112	63448	0	0	0	127365	0	97
428	1704	177288	285519	46569	64944	0	0	0	130488	0	98
475	1773	180093	287367	46751	62524	0	0	0	132703	0	98
420	2173	176779	282573	46205	63452	0	0	0	132098	0	98
442	2059	175176	284020	46868	67712	0	0	0	131536	0	98
352	1606	179159	285680	45943	66585	0	0	0	130868	0	98
962	1976	183654	280819	45360	61095	0	0	0	131396	0	98
1037	0	182896	278835	46508	62348	0	0	6082	130792	0	98
299	1682	186892	288264	45250	60850	0	0	0	130139	0	98
471	1916	187463	286346	45092	58644	0	0	0	128510	0	98
538	2083	186769	281957	46368	60143	0	0	0	130498	0	98
681	1616	186162	282227	47473	60557	0	0	0	130191	0	97
613	1683	184395	284161	46599	58800	0	0	0	131655	0	98

Ablation locations and images for LA-ICP-MS U-Pb analysis. See Figure 23 for spot locations and ID

sample name	²⁰⁶ Pb (cps)	²⁰⁴ Pb (cps)	²⁰⁷ Pb/ ²⁰⁶ Pb	2 σ	²⁰⁷ Pb/ ²³⁵ U	2 σ	²⁰⁶ Pb/ ²³⁸ U	2 σ	ρ
MNZ-1F	132237	145	0.04609	0.00097	0.05997	0.00569	0 00944	0.00087	0.975
MNZ-1G	125441	143	0.04834	0.00107	0.06350	0.00643	0.00953	0.000007	0.976
MNZ-1H	103135	120	0.04519	0.00103	0.05642	0.00590	0.00905	0.00092	0.976
MNZ-11	94059	142	0.04648	0.00094	0.05996	0.00623	0.00936	0.00095	0.981
MNZ-11	108596	112	0.04632	0.00096	0.06086	0.00588	0.00953	0.00090	0.977
MNZ-10	83498	120	0.04553	0.00094	0.05895	0.00585	0.00939	0.00091	0.978
MNZ-1R	89971	119	0.04532	0.00100	0.05898	0.00573	0.00944	0.00089	0.974
MNZ-1S	58444	147	0.04474	0.00122	0.05676	0.00569	0.00920	0.00089	0.962
MNZ-1T	48651	126	0.04481	0.00172	0.05799	0.00577	0.00939	0.00086	0.922
MNZ-1U	63607	130	0.04269	0.00193	0.05369	0.00597	0.00912	0.00093	0.914
MNZ-1V	54611	120	0.04235	0.00137	0.05586	0.00550	0.00957	0.00089	0.945
MNZ-1W	43687	107	0.03954	0.00184	0.04845	0.00610	0.00889	0.00104	0.929
MNZ-2A	113934	201	0.04523	0.00122	0.05947	0.00631	0.00954	0.00098	0.967
MNZ-2B	93490	163	0.04360	0.00179	0.05821	0.00695	0.00968	0.00109	0.939
MNZ-2C	84979	131	0.04346	0.00126	0.05357	0.00647	0.00894	0.00105	0.971
MNZ-2D	99099	128	0.04370	0.00171	0.05045	0.00552	0.00837	0.00085	0.934
MNZ-2E	101240	114	0.04426	0.00116	0.05740	0.00562	0.00941	0.00089	0.963
MNZ-2F	68292	155	0.04424	0.00121	0.05291	0.00513	0.00867	0.00081	0.959
MNZ-2G	51150	139	0.04060	0.00171	0.05031	0.00547	0.00899	0.00090	0.921
MNZ-2H	43415	144	0.04130	0.00259	0.05125	0.00578	0.00900	0.00084	0.832
MNZ-2I	100255	143	0.04333	0.00141	0.05366	0.00522	0.00898	0.00082	0.942
MNZ-2J	74823	163	0.04188	0.00188	0.04897	0.00565	0.00848	0.00090	0.921
MNZ-3B	90921	235	0.04544	0.00099	0.05258	0.00570	0.00839	0.00089	0.980
MNIZ 2C	78626	208	0.04400	0.00146	0.05915	0.00674	0.00027	0.00104	0.060
MNZ-3C	/8030	208	0.04499	0.00146	0.05815	0.006/4	0.00937	0.00104	0.960
MNZ-3D	834/3	210	0.04348	0.00099	0.05302	0.00603	0.00846	0.00094	0.981
MNZ-3E	00443	200	0.04500	0.00200	0.05254	0.00018	0.00874	0.00089	0.802
MNZ-3F	51017	170	0.04398	0.00115	0.05705	0.00781	0.00909	0.00121	0.964
MNZ-3H	02205	108	0.04392	0.00131	0.05395	0.00572	0.00891	0.00089	0.940
MNZ-31	75885	173	0.04388	0.00101	0.05327	0.00555	0.00842	0.00080	0.976
MNIZ 4A	117522	144	0.04580	0.00114	0.05210	0.00007	0.00888	0.00000	0.070
MNZ-4A	58050	107	0.04510	0.00100	0.05018	0.00397	0.00888	0.00092	0.979
MNZ-4C	96360	135	0.04510	0.00141	0.05745	0.00711	0.00924	0.00111	0.908
MNZ-4C	100430	133	0.04537	0.00101	0.05618	0.00502	0.00929	0.00087	0.975
MNZ-4E	107490	152	0.04597	0.000074	0.05818	0.00578	0.000018	0.00092	0.982
MNZ-4E	119453	148	0.04377	0.00107	0.05318	0.00587	0.00918	0.00099	0.968
MNZ-4G	111772	129	0.04575	0.00092	0.05731	0.00565	0.00908	0.00088	0.979
MNZ-4U	122861	123	0.04632	0.00092	0.05918	0.00553	0.00908	0.00085	0.979
MNZ-4I	91562	125	0.04628	0.00007	0.05555	0.00555	0.00927	0.00087	0.979
MNZ-4I	82493	118	0.04591	0.00117	0.05555	0.00563	0.00897	0.00086	0.967
	02195	110	0.01091	0.00117	0.05077	0.00202	0.00077	0.00000	0.907
culls									
-MNZ-1K	38112	130	0.04197	0.00230	0.05773	0.00696	0.00998	0.00107	0.890
-MNZ-1L	30758	127	0.03731	0.00370	0.04679	0.00651	0.00910	0.00089	0.701
- MNZ-1M	30039	124	0.03962	0.00222	0.05387	0.00605	0.00986	0.00096	0.867
-MNZ-1N	23654	107	0.03721	0.00259	0.04844	0.00583	0.00944	0.00093	0.815
- <u>MNZ-10</u>	21847	136	0.04421	0.00509	0.05915	0.00861	0.00970	0.00086	0.611
-MNZ-1P	17577	120	0.03437	0.00415	0.04890	0.00754	0.01032	0.00099	0.622
-MNZ-3G	41740	542	0.14005	0.03245	0.20891	0.05409	0.01082	0.00125	0.446
-MNZ-3A	89625	435	0.05544	0.00432	0.07490	0.00968	0.00980	0.00101	0.798

Utilized and rejected data for U-Pb age determination from Isoplot.

	²⁰⁷ Pb*/ ²⁰⁶ Pb*	2 σ	²⁰⁷ Pb*/ ²³⁵ U	2 σ	²⁰⁶ Pb*/ ²³⁸ U	2 σ	%
sample name	age (Ma)	error (Ma)	age (Ma)	error (Ma)	age (Ma)	error (Ma)	discordance
						`	
MNZ-1F	2	50	59	5	61	6	-2806.9
MNZ-1G	116	52	63	6	61	6	47.5
MNZ-1H	-45	54	56	6	58	6	229.3
MNZ-11	22	48	59	6	60	6	-169.3
MNZ-1J	15	49	60	6	61	6	-321.3
MNZ-1Q	-27	49	58	6	60	6	322.8
MNZ-1R	-38	53	58	5	61	6	259.7
MNZ-1S	-70	65	56	5	59	6	185.7
MNZ-1T	-66	91	57	6	60	6	192.3
MNZ-1U	-186	109	53	6	59	6	132.1
MNZ-1V	-206	79	55	5	61	6	130.4
MNZ-1W	-381	117	48	6	57	7	115.5
MNZ-2A	-43	64	59	6	61	6	243.5
MNZ-2B	-133	99	57	7	62	7	147.4
MNZ-2C	-141	70	53	6	57	7	141.3
MNZ-2D	-128	94	50	5	54	5	142.7
MNZ-2E	-96	63	57	5	60	6	163.4
MNZ-2F	-97	66	52	5	56	5	158.0
MNZ-2G	-313	105	50	5	58	6	119.0
MNZ-2H	-269	152	51	6	58	5	122.0
MNZ-2I	-149	79	53	5	58	5	139.4
MNZ-2J	-234	110	49	5	54	6	123.8
MNZ-3B	-32	52	52	5	54	6	269.7
MNZ-3C	-56	77	57	6	60	7	208.0
MNZ-3D	-30	52	52	6	54	6	281.8
MNZ-3E	-133	141	52	6	56	6	142.7
MNZ-3F	-4	58	57	7	58	8	1710.3
MNZ-3H	-115	83	53	5	57	6	150.2
MNZ-3I	-8	52	53	5	54	5	741.6
MNZ-3J	-65	61	52	6	54	6	183.5
MNZ-4A	-8	52	56	6	57	6	811.0
MNZ-4B	-50	74	57	7	59	7	218.5
MNZ-4C	-25	53	58	5	60	6	341.7
MNZ-4D	12	48	56	6	57	6	-383.2
MNZ-4E	-4	55	57	6	59	6	1589.6
MNZ-4F	105	54	63	6	62	5	40.7
MNZ-4G	-15	48	57	5	58	6	482.3
MNZ-4H	14	45	58	5	59	5	-317.9
MNZ-4I	12	50	55	5	56	6	-368.4
MNZ-4J	-7	60	56	5	58	5	886.8
culls	220	100		-		-	100 (
-MNZ-IK	-229	133	57	7	64	7	128.6
-MNZ-IL	-534	247	40	t (86	tr (111.4
-MNZ-IM	-376	140	53	¢	63	б	117.4
-MNZ-IN	-541	178	48	б	61	6	111.7
-MNZ-10	-99	261	58	*	62	б	103.6
-MNZ-IP	-759	310	48	+	60	б	109.3
-MNZ-3G	2228	354	193	44	69	8	97.4
MNZ-3A	430	165	73	サ	63	t	85.8

sample name	²³⁸ U/ ²⁰⁶ Pb	2 σ	²⁰⁷ Pb/ ²⁰⁶ Pb	2 σ
MNZ-1F	105.956	9.799	0.046	0.001
MNZ-1G	104.962	10.374	0.048	0.001
MNZ-1H	110.449	11.271	0.045	0.001
MNZ-1I	106.878	10.895	0.046	0.001
MNZ-1J	104.952	9.907	0.046	0.001
MNZ-10	106.492	10.334	0.046	0.001
MNZ-1R	105.951	10.025	0.045	0.001
MNZ-1S	108.693	10.487	0.045	0.001
MNZ-1T	106.553	9.784	0.045	0.002
MNZ-1U	109.619	11 133	0.043	0.002
MNZ-1V	104 520	9 726	0.042	0.001
MNZ-1W	112 520	13 176	0.040	0.002
MNZ-24	104 875	10.772	0.045	0.002
MNZ-2R	103 280	11 578	0.044	0.002
MNZ-2D	111 870	13 121	0.044	0.002
MNZ 2D	110.441	12.121	0.043	0.001
MNZ-2D	119.441	12.190	0.044	0.002
MNZ-2E	115 202	10.057	0.044	0.001
MNZ-2F	113.292	10./11	0.044	0.001
MNZ-2G	111.200	11.138	0.041	0.002
MINZ-2H	111.110	10.430	0.041	0.003
MNZ-21	111.324	10.202	0.043	0.001
MNZ-2J	117.935	12.526	0.042	0.002
MNZ-3B	119.169	12.662	0.045	0.001
MNZ-3C	106.677	11.872	0.045	0.001
MNZ-3D	118.269	13.198	0.045	0.001
MNZ-3E	114.405	11.601	0.044	0.003
MNZ-3F	109.998	14.661	0.046	0.001
MNZ-3H	112.281	11.260	0.044	0.002
MNZ-3I	118.758	12.094	0.046	0.001
MNZ-3J	118.612	13.540	0.045	0.001
MNZ-4A	112.621	11.705	0.046	0.001
MNZ-4B	108.265	12.962	0.045	0.001
MNZ-4C	107.682	10.095	0.046	0.001
MNZ-4D	113.553	11.859	0.046	0.001
MNZ-4E	108 946	11 784	0.046	0.001
MNZ-4F	103.220	9.117	0.048	0.001
MNZ-4G	110.075	10.616	0.046	0.001
MNZ-4H	107 921	9 877	0.046	0.001
MNZ-4I	114 861	11 485	0.046	0.001
MNZ-4J	111.489	10.685	0.046	0.001
culls				
-MNZ-1K	100.230	10.758	0.042	0.002
-MNZ-1L	109.943	10.723	0.037	0.004
- MNZ-1M	101.400	9.879	0.040	0.002
-MNZ-1N	105.910	10.381	0.037	0.003
- <u>MNZ-10</u>	103.051	9.176	0.044	0.005
-MNZ-1P	96,910	9.292	0.034	0.004
-MNZ-3G	92.431	10.679	0.140	0.032
-MN7-34	$\frac{102.061}{102.061}$	10 519	0.055	0.001