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Abstract

It has been known that for some physical problems, a small change in the system pa-

rameters or in the initial/boundary conditions could leas to a significant change in the

system response. Hence, it is of importance to investigate the impact of uncertainty

on dynamical system in order to fully understand the system behavior. In this thesis,

numerical methods used to simulate the effect of random/stochastic perturbation on

dynamical systems are studied. In the first part of this thesis, an aeroelastic system

model representing an oscillating airfoil in pitch and plunge with random variations in

the flow speed, the structural stiffness terms and initial conditions are concerned. Two

approaches, stochastic normal form and stochastic collocation method, are proposed to

investigate the Hopf bifurcation and the secondary bifurcation behavior, respectively.

Stochastic normal form allows us to study analytically the Hopf bifurcation scenario

and to predict the amplitude and frequency of the limit cycle oscillation; while nu-

merical simulations demonstrate the effectiveness of stochastic collocation method for

long term computation and discontinuous problems. In the second part of this work,

we focus the construction of efficient and robust computational schemes for stochas-

tic system, and the stochastic symplectic schemes for stochastic Hamiltonian system

are developed. A systematic procedure to construct symplectic numerical schemes

for stochastic Hamiltonian systems is presented. The approach is an extension to the

stochastic case of the methods based on generating functions. The idea is also extended

to the symplectic weak scheme construction. Theoretical analysis of the convergence

is reported for strong/weak symplectic integrators. The numerical simulations are car-

ried out to confirm that the symplectic methods are efficient computational tools for

long-term behaviors. Moreover, the coefficients of the generating function are invari-

ant under permutations for the stochastic Hamiltonian system preserving Hamiltonian

functions. As a consequence the high-order symplectic weak and strong methods have



simpler forms than the Taylor expansion schemes with the same order.
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Notation and Symbols

ah non-dimensional distance from airfoil mid-chord to elastic axis

b airfoil semi-chord

CL aerodynamic lift coefficient

CM pitching moment coefficient

c chord

h plunge displacement

m airfoil mass

rα radius of gyration about the elastic axis

τ time

U free stream velocity

U∗ non-dimensional flow velocity (= U/bωα)

U∗
L non-dimensional linear flutter speed

xα non-dimensional distance from elastic axis to center of mass

α pitch angle

ε1, ε2 constants in Wagner’s function

µ airfoil-air mass ratio (= m/πρb2)

ρ density

τ non-dimensional time (= Ut/b)

ωα natural frequencies of the uncoupled pitching modes

ως natural frequencies of the uncoupled plunging modes

ω̃ frequency ratio (= ως/ωα)

ψ1, ψ2 constants in Wagner’s function

ς, non-dimensional displacement of the elastic axis

ζα viscous pitch damping ratio

ζς viscous plunge damping ratio



E[·] expected value

P (·) probability

Abbreviation

UQ uncertainty quantification

LCO limit cycle oscillations

SHS stochastic Hamiltonian system

DOF degree-of-freedom

MCS Monte Carlo simulations
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Chapter 1

Introduction

A purpose of mathematical models is to describe and predict the future behaviors

of physical systems. Although differential equations have been successfully used to

explain and predict the responses of physical events, the accuracy of the predictions

usually relies on the mathematical model, and correct estimation or the measurement

of the values of system parameters, initial values or boundary conditions.

In recent years, there is a growing interest in the study of uncertainty quantification

(UQ). The goal of UQ is to investigate the impact due to uncertainty in data or in the

mathematical model, so that we could perform a more reliable prediction for the real

physical problems.

The first part of my Ph.D work is concerned with the UQ of aeroelastic dynam-

ical systems, which is a continuation of my master research program [6]. Unlike a

deterministic model in which the governing mathematical formulation is given by a

system of nonlinear differential equations, the present aeroelastic model is represented

by nonlinear differential equations with random parameters, i.e., random differential

equations.

Several UQ aeroelastic investigations focusing on limit cycle oscillations (LCO) and

the bifurcation analysis are reported, such as Monte Carlo simulations (MCS) [15, 14,

4], polynomial chaos expansions [25, 5, 18, 17], perturbation techniques [11, 13] and

so on. In the present study, two new approaches based on the stochastic normal form

and stochastic collocation methods are proposed to analyze the effect of parameters

uncertainty on the Hopf and secondary bifurcation, respectively [8, 9, 2].

In the second part of my thesis, I develop serval efficient and reliable numerical

1



methods for stochastic Hamiltonian systems. At present, Hamiltonian systems are al-

ready widely used in many diverse fields of applied and pure mathematics such as the

optimal control, elasticity, KAM theory, quantum mechanics, etc. Hence it is of impor-

tance to derive efficient and reliable computational methods for solving Hamiltonian

systems numerically.

After the initial work of Hamilton, which was developed further by Jacobi, the

most significant progress of Hamiltonian formalism was made by Poincaré, resulting in

symplectic geometry, which has become the natural language for the Hamiltonian sys-

tem. Since the symplecticity is a characteristic property of Hamiltonian systems, it is

desirable that numerical methods should preserve this property as much as possible. A

natural way to achieve this is to work out numerical methods that share these property,

so called the symplectic integration. The pioneering work on the symplectic integration

is due to de Vogelaere [23], Ruth [22] and Feng [10]. The approach turned out to be

fruitful and successful. Many simulations and applications show the significant advan-

tage of the symplectic integration on accuracy of long time computation. Symplectic

integration is one of the most important subjects in computational mathematics and

scientific computing.

Inspired by the idea of the symplecticity invariance, Milstein et al. [21] [20] proposed

symplectic numerical scheme to the stochastic Hamiltonian system (SHS). Since then,

there is growing interesting and effort on the theoretical and numerical studies on

special stochastic hamiltonian systems [12], [16]. The variational integrator method

proposed by Wang et al. [24] is to construct the symplectic scheme on SHS. But the

systematic research on stochastic symplectic methods is still rare and the construction

of high order symplectic method is an open problem. In our research [7], we employ the

properties of multiple stochastic integrals to derive a recursive formula for determining

the coefficients of the generating function. Theoretically, this formula allows us to

derive stochastic sympletic schemes of any order with corresponding conditions on the

Hamiltonian functions. It is a non-trivial extension of the methods based on generating

2



functions from deterministic Hamiltonian systems to stochastic setting. Hence, the

major contribution of our work is to present a framework to construct different types

of stochastic symplectic schemes of any order.

Moreover, we extend the results to the symplectic weak schemes (in the sense of the

convergence of expectation) by using the relation of Stratonovich multiple integrals and

Ito multiple integrals [3]. So we are able to construct the second order weak stoachstic

symplectic scheme for the general SHSs, which answers the open problem proposed by

Milstein. et al [19].

Using the method based on generating functions, we construct computationally

attractive high order symplectic schemes [1] for a special type of SHS preserving the

hamiltonian functions. The developed symplectic schemes are efficient compared with

the Taylor-Stratonovich expansion type scheme, because the laborious approximation

of the multiple stochastic integrals is not required for the proposed high order symplec-

tic scheme. Moreover, it only requires one random variable for each Brownian motion

at each time step. Hence it provides subtantial saving in the computational time used

to generate the quasi-random numbers.

This thesis is organized as follows. We first provide introduction about an aeroe-

lastic system representing an oscillating airfoil in pitch and plunge in Chapter 2. The

implementation of stochastic normal form and stochastic collocation method on aeroe-

lastic system will be discussed in Chapter 3 and 4, respectively. Then, we will focus

on the stochastic symplectic schemes. The definition of SHS and the construction of

the strong symplectic schemes will be covered in Chapter 5. Chapter 6 presents the

construction of weak stochastic symplectic schemes. The symplectic schemes for SHS

preserving Hamiltonian functions are reported in Chapter 7. Finally, conclusions will

be presented in Chapter 8.

It is worth noting that the works presented in Chapter 3 – 7 have been accepted/submitted

for referred jounral publications. In particular,

Chapter 3 appeared as Hopf bifurcation analysis of an aeroelastic model using

3



stochastic normal form in Journal of Sound and Vibration in 2011.

Chapter 4 appeared as Stochastic collocation method for secondary bifurcation of a

nonlinear aeroelastic system in Journal of Sound and Vibration in 2010.

Chapter 5 was submitted as High-order symplectic schemes for stochastic Hamilto-

nian systems to Communications in Computational Physics in 2012.

Chapter 6 was submitted as Weak symplectic schemes for stochastic Hamiltonian

equations to Journal of Computational and Applied Mathematics in 2012.

Chapter 7 was submmited as Symplectic numerical schemes for stochastic systems

preserving Hamiltonian functions to International Journal of Numerical Analysis &

Modeling in 2012.
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Part I

Uncertainty Quantification of

Aeroelastic System

8



Chapter 2

Introduction to Aeroelastic

Dynamical System

Nonlinear airfoil flutter is one of the important topics encountered in aerospace engi-

neering. It is well-known that assuming a linear model for the structural components

of the aircraft, will produce an inaccurate prediction for aging aircrafts and combat

aircrafts that carry heavy external stores [3, 1]. In an aeroelastic system, structural

nonlinearities arises from worn hinges or control surfaces. It has been reported that for

some systems, small perturbations in the initial conditions and/or the system parame-

ters could lead to significant changes in the nonlinear response [3]. Hence, in addition

to studying the deterministic model, it is desirable to carry out an investigation that

takes into account the effects due to uncertainty.

2.1 Mathematical model

The two-degree-of-freedom (DOF) dynamic model (see Fig. 1) simulating an airfoil

oscillating in pitch and plunge can be expressed as a coupled system of two second-

order nonlinear integro-differential equations, and the detail description can be found

in [3]:

ς
′′
+ xαα

′′
+ 2ζς

ω̃

U∗ ς
′
+

(
ω̃

U∗

)2

G(ς) = − 1

πµ
CL(τ)

xα
r2α
ς
′′
+ α

′′
+ 2

ζα
U∗α

′
+

1

U∗2M(α) =
2

πµr2α
CM(τ).

(2.1)
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Figure 1: Two-degree-of-freedom airfoil motion

Here ς = h/b is the non-dimensional displacement of the elastic axis, U∗ = U/(bωα)

is a non-dimensional velocity, ’ denotes differentiation with respect to the non-dimensional

time τ = Ut/b, ω̃ = ως/ωα is the ratio of the natural frequencies, rα is the radius of

gyration about the elastic axis, and ζς , ζα are the damping ratios. G(ς) and M(α) are

the nonlinear plunge and pitch stiffness terms, respectively, and the lift and pitching

moment coefficients are denoted by CL(τ) and CM(τ). For subsonic flow, they are

expressed as:

CL(τ) =π(ς
′′ − ahα

′′ + α′) + 2π{α(0) + ς ′(0) + [
1

2
− ah]α

′(0)}ϕ(τ)

+ 2π

∫ τ

0

ϕ(τ − σ)[α′(σ) + ς ′′(σ) + (
1

2
− ah)α

′′(σ)]dσ,
(2.2)

CM(τ) =π(
1

2
+ ah){α(0) + ς ′(0) + [

1

2
− ah]α

′(0)}ϕ(τ)

+ π(
1

2
+ ah)

∫ τ

0

ϕ(τ − σ)[α′(σ) + ς ′′(σ) + (
1

2
− ah)α

′′(σ)]dσ

+
π

2
ah(ς

′′ − ahα
′′)− (

1

2
− ah)

π

2
α′ − π

16
α′′

(2.3)
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where the Wagner function ϕ(τ) is given by

ϕ(τ) = 1− ψ1e
−ε1τ − ψ2e

−ε2τ (2.4)

and the constants are ψ1 = 0.165, ψ2 = 0.335, ε1 = 0.0455 and ε2 = 0.3.

By introducing four new variables w1, w2, w3, w4:

w1(τ) =

∫ τ

0

e−ε1(τ−σ)α(σ)dσ

w2(τ) =

∫ τ

0

e−ε2(τ−σ)α(σ)dσ

w3(τ) =

∫ τ

0

e−ε1(τ−σ)ς(σ)dσ

w4(τ) =

∫ τ

0

e−ε2(τ−σ)ς(σ)dσ,

(2.1) can be rewritten as:

c0ς
′′ + c1α

′′ + c2ς
′ + c3α

′ + c4η + c5α + c6w1 + c7w2 + c8w3 + c9w4

+ (
ω̃

U∗ )
2G(ς) = f(τ)

d0ς
′′ + d1α

′′ + d2ς
′ + d3α

′ + d4η + d5α + d6w1 + d7w2 + d8w3 + d9w4

+ (
1

U∗ )
2M(α) = g(τ).

(2.5)

The coefficients of Eq. (2.5) are as follows:

c0 = 1 +
1

µ
, c1 = xα − ah

µ
, c2 = 2ζς

ω̃

U∗ +
2

µ
(1− ψ1 − ψ2),

c3 =
1 + (1− 2ah)(1− ψ1 − ψ2)

µ
, c4 =

2

µ
(ψ1ε1 + ψ2ε2),

c5 =
2

µ
[(1− ψ1 − ψ2) + (1/2− ah)(ψ1ε1 + ψ2ε2)],
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c6 =
2

µ
ψ1ε1[1− (1/2− ah)ε1], c7 =

2

µ
ψ2ε2[1− (1/2− ah)ε2],

c8 = − 2

µ
ψ1ε

2
1, c9 = − 2

µ
ψ2ε

2
2,

d0 =
xα
r2α

− ah
µr2α

, d1 = 1 +
1 + 8a2h
8µr2α

,

d2 = 2
ζς
U∗ +

1− 2ah
2µr2α

− (1 + 2ah)(1− 2ah)(1− ψ1 − ψ2)

2µr2α
,

d3 = −(1 + 2ah)(1− ψ1 − ψ2)

µr2α
− (1 + 2ah)(1− 2ah)(ψ1ε1 + ψ2ε2)

2µr2α
,

d4 = −(1 + 2ah)(1− ψ1 − ψ2)

µr2α
, d5 =

(1 + 2ah)(1− 2ah)(ψ1ε1 + ψ2ε2)

2µr2α
,

d6 = −(1 + 2ah)ψ1ε1[1− (1/2− ah)ε1]

µr2α
d7 = −(1 + 2ah)ψ2ε2[1− (1/2− ah)ε2]

µr2α
,

d8 = −(1 + 2ah)ψ1ε
2
1

µr2α
, d9 = −(1 + 2ah)ψ2ε

2
2

µr2α
,

whereM(α) is the nonlinear pitch stiffness term, G(ς) is the plunge stiffness term. The

forcing terms f(τ) and g(τ) are expressed as follows:

f(τ) =
2

µ
((
1

2
− ah)α(0) + ς(0))(ψ1ε1e

−ε1τ + ψ2ε2e
−ε2τ ),

g(τ) = −(1 + 2ah)f(τ)

2r2α
.

When τ is sufficiently large, the steady-state solutions are obtained, f(τ) and g(τ)

converges to zero. Hence, we suppose f(τ) and g(τ) are zero in our study. Let x1 =

12



α, x2 = α′, x3 = ς, x4 = ς ′, x5 = w1, x6 = w2, x7 = w3, and x8 = w4, we can rewrite

(2.5) as the following system of eight-order ODEs:

x′1 = x2

x′2 = (c0A− d0B)/(d0c1 − c0d1)

x′3 = x4

x′4 = (c1A+ d1B)/(d0c1 − c0d1)

x′5 = x1 − ϵ1x5

x′6 = x1 − ϵ2x6

x′7 = x3 − ϵ1x7

x′8 = x3 − ϵ2x8,

(2.6)

where

A = d3x1 + d2x2 + d5x3 + d4x4 + d6x5 + d7x6 + d8x7 + d9x8 + (
1

U∗ )
2M(x1)− g(τ),

B = c5x1 + c3x2 + c4x3 + c2x4 + c6x5 + c7x6 + c8x7 + c9x8 + (
ω̃

U∗ )
2G(x3)− f(τ).

In this study, we assume that the non-linear plunge and pitch stiffness terms are

polynomial functions. However, other representations, such as freeplay and hysteresis

models, can also be used for M(x1) and G(x3).

2.2 Dynamical behavior

If the pitch stiffness termM(α) is given by a cubic polynomial modelM(x1) = x1+k3x
3
1

and the plunge stiffness term is linear G(x3) = x3, the aeroelastic system undergoes

a Hopf-bifurcation at the U∗ = U∗
L, where U

∗
L is called the linear flutter speed. Here,

positive values of k3 yields a supercritical Hopf bifurcation (see Fig. 2(a)) for which

a stable LCO exists for U∗ > U∗
L; negative values yields a subcritical bifurcation (see

Fig. 2(b)) leading to unstable LCO for U∗ < U∗
L.

13



(a) 0.9 0.95 1 1.05 1.1
−20

−15

−10

−5

0

5

10

15

20

U*/U*
L

pitc
h am

plitu
de (

deg
)

(b) 0.9 0.95 1 1.05 1.1
−20

−15

−10

−5

0

5

10

15

20

U*/U*
L

α(0)
 (de

g)

Figure 2: Hopf-bifurcation in the aeroelastic system: solid line: stable branch; dashed
line: unstable branch; (a) supercritical bifurcation for k3 = 3; (b) subcritical bifurcation
for k3 = −3
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Figure 3: Secondary bifurcation in the aeroelastic system

When U∗ increases further to about 2U∗
L and with a strong cubic nonlinearity for

k3 > 0, a jump phenomenon in the LCO amplitude and frequency is observed, and

this is known as the secondary bifurcation (see Fig. 3). Lee et. al. [2] and Liu et. al.

[4] investigated the aeroelastic behavior in the secondary bifurcation when the cubic

nonlinearity in the pitch DOF is given by M(x1) = x1 + k3x
3
1 with k3 = 80. They have

noted that the flow velocity at which the secondary bifurcation occurs may depend on

the initial conditions.
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Chapter 3

Hopf Bifurcation Analysis Using

Stochastic Normal Form

The normal form for deterministic aeroelastic systems was developed in [9]. To extend

these results to the stochastic case, we apply the stochastic normal form (Chapter 8

in [1]) to reduce the dimension of the system. We consider random parameters in

the flow speed and in both the pitch and the plunge non-linear stiffness terms. Using

the reduced model represented by the stochastic normal form, we confirm analytically

the stochastic Hopf bifurcation scenario obtained numerically in [12]. We also obtain

explicit formulas for the frequency and the amplitude of the LCOs.

When using various chaos expansions, it was observed [4, 6, 5] that the accuracy

of the computed results is lower around the bifurcation point due to discontinuities in

the parameter space. On the other hand, an analytical study based on the stochastic

normal form gives the highest accuracy around the bifurcation point. Thus, the ana-

lytical study presented here can complement an approach based on chaos expansions

because it is capable of providing explicit formulas for the amplitude and the frequency

of the LCOs, and to determine the effects of parameters uncertainties near the Hopf

bifurcation point.

3.1 Stochastic normal form

In this section, we assume that the non-linear plunge and pitch stiffness terms are given

by G(x3) = β1x3+β2x
3
3 and M(x1) = β3x1+β4x

3
1, and consider random perturbations
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of the coefficients of the cubic terms and the bifurcation parameter. Then we can

rewrite (2.6) as follows:

X
′
= AX+ δBX+ (1− δ)F1(X), (3.1)

where δ = 1 − (U∗
L/U

∗)2 is the bifurcation parameter (with U∗
L the linear flutter ve-

locity). The matrix A is the 8× 8 Jacobian matrix evaluated at the equilibrium point

X = 0 and at the bifurcation value δ = 0, and F1(X) contains cubic terms in x1 and

x3:

A =



1 0 0 0 0 0 0 0

a21 − b21 a22 a23 − b23 a24 a25 a26 a27 a28

0 0 0 1 0 0 0 0

a41 − b41 a42 a43 − b43 a44 a45 a46 a47 a48

1 0 0 0 −ϵ1 0 0 0

1 0 0 0 0 −ϵ2 0 0

0 0 1 0 0 0 −ϵ1 0

0 0 1 0 0 0 0 −ϵ2



,

B =



0 0 0 0 . . . 0

b21 0 b23 0 . . . 0

0 0 0 0 . . . 0

b41 0 b43 0 . . . 0

0 . . . . . . . . . . . . 0
...

...

0 . . . . . . . . . . . . 0


, F1 =



0

−b21 β4

β3
x31 + b23

β2

β1
x33

0

b41
β4

β3
x31 − b43

β2

β1
x33

0
...

0


Now consider random perturbations of the coefficients of the third order terms in

x31 and x33, and the bifurcation parameter δ:

δ̃ = δ + σ1η1, β̃2 = β2 + σ2η2, β̃4 = β4 + σ3η3, (3.2)

17



where δ, β2, β4, σ1 ≥ 0, σ2 ≥ 0, σ3 ≥ 0 are constants, and η1(·), η2(·), and η3(·) are

independent random variable uniformly distributed on the interval [−1, 1].

Thus, our random model is given by:

X
′
= AX+ (δ + σ1η1)BX+ (1− δ − σ1η1)

(
F1(X) +

3∑
i=2

σiηiFi(X)

)
, (3.3)

where Fi(X), i = 1, 2, 3 contain terms in x31 and x33. We use the same values of the

parameters as in [9], so that the matrix A has one pair of purely imaginary eigenvalues

λ1,2 = ±ω0, one pair of complex eigenvalues with negative real parts λ3,4 = b± ic, and

four negative real eigenvalues λi < 0, i = 5, . . . , 8.

We first apply a deterministic transformation Y = P−1X, where the matrix P

is constructed from the eigenspace of A such that P−1AP = J , with J the Jordan

Canonical form of A:

J =

Jc 0

0 Js

 , Jc =

 0 ω0

−ω0 0

 , Js =



b c 0 0 0 0

−c b 0 0 0 0

0 0 λ3 0 0 0

0 0 0 λ4 0 0

0 0 0 0 λ5 0

0 0 0 0 0 λ6


. (3.4)

In the new variable Y = (y1, . . . , y8)
T = (Yc,Ys)

T , with Yc = (y1, y2)
T , the system

(3.3) can be rewritten as

Y′ = JY + (δ + σ1η1)P
−1BPY + (1− δ − σ1η1)

(
P−1F1(PY)

+
3∑

i=2

σiηiP
−1Fi(PY)

)
.

(3.5)

Similar to the deterministic normal form, the stochastic normal form retains the

essential characteristics of the system, but reduces the dimension of the original prob-

lem. In our case, since the system given in equations (3.5) contains both stable and

critical modes, we now reduce the dimension from eight to two using the procedure
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described in the proof of Theorem 8.4.3 in [1]. This method allows us to obtain simul-

taneously the center manifold and the stochastic normal form. We consider a small

noise scenario, and suppose that the parameters ∆ = (δ, σ1, σ2, σ3)
T are all close to

zero. So, to equation Eq. (3.5) we add four more equations:

δ
′
= 0, σ

′

1 = 0, σ
′

2 = 0, σ
′

3 = 0. (3.6)

Let denote by F(Y,∆) the random polynomial given by the right hand side of

equation Eq. (3.5). Then a Taylor expansion of F gives

F(Y,∆) = JY +
∑

1≤p+q≤3
0≤r≤1

Fpqr(Y,∆) +O(|Y|4 + |∆|2), (3.7)

where Fpqr is a random homogeneous polynomial of degree p+ q+ r, which is of degree

p in Yc, of degree q in Ys, and of degree r in ∆, with values in R8. More precisely, for

any 1 ≤ p+ q ≤ 3, 0 ≤ r ≤ 1, we have Fpqr(Y,∆) = (f1,pqr, . . . , f8,pqr)
T (Y,∆) with

fi,pqr(Y,∆) =
∑

n1+n2=p
n3+···+n8=q
r1+···+r4=r

fi,n1,...,n8,r1,...,r4y
n1
1 · · · yn8

8 δ
r1σr2

1 σ
r3
2 σ

r4
3 , (3.8)

where fi,n1,...,n8,r1,...,r4 , i = 1, . . . , 8, are the random variables, but they are not time

dependent. Notice that given the cubic form of the non-linearities considered here, we

have no quadratic terms in the Taylor expansion (i.e. Fpqr(Y,∆) = 0, for any p+q = 2

and any 0 ≤ r ≤ 1).

Next, we find a near-identity random transformation

Y → Y +H(Y,∆) =

Yc

Ys

+


∑

1≤p+q≤3,0≤r≤1,
(p+q,r) ̸=(1,0)

Hc
pqr(Yc,Ys,∆)∑

1≤p+q≤3,0≤r≤1,
(p+q,r) ̸=(1,0)

Hs
pqr(Yc,Ys,∆)


+O(|Y|4 + |∆|2),

(3.9)

where Hc
pqr and Hs

pqr are random homogeneous polynomials of degree p+ q+ r, which

are of degree p in Yc, q in Ys and r in ∆, with values in R2 and R6 respectively.
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They have a similar representation with Fpqr shown above in Eq. (3.8). Applying the

transformation (3.9) to (3.5),we get

Y
′

c = JcYc +
∑

1≤n≤3,0≤r≤1,
(n,r)̸=(1,0)

Gc
nr(Yc,∆) +O(|Yc|4 + |∆|2) (3.10)

Y
′

s = JsYs +
∑

1≤p+q≤3,0≤r≤1,
q≥1,(p,r)̸=(0,0)

Gs
pqr(Yc,Ys,∆) +O(|Y|4 + |∆|2), (3.11)

where Gc
nr and Gs

pqr are random homogeneous polynomials with a similar represen-

tation with Fpqr (see Eq. (3.8)). Gc
nr is of degree n + r, such that it is of degree n

in Yc and r in ∆, with values in R2. Gs
pqr is of degree p + q + r, such that it is of

degree p in Yc, q in Ys, and r in ∆, with values in R6. Similar to the deterministic

cases, we try to solve the cohomological equations and to find the resonant terms that

cannot be eliminated through the transformation given in Eq. (3.9), while making the

polynomials Gc
nr and Gs

pqr as simple as possible.

To get the cohomological equations, we start from the following equation (see Eq.

(8.4.7) in [1]):

F(Y +H(Y,∆)) = Y
′
+ (DYcH)Y

′

c + (DYsH)Y
′

s +
d

dt
H(Y,∆), (3.12)

and replace Y
′
with the formal Taylor expansions given on the right hand side of

equations (3.10)-(3.11), F with the expansion (3.7), and H with the Taylor expansion

given in Eq. (3.9). Equating the coefficients and separating the center and the stable

components, we get the corresponding cohomological equations. Since we are mainly

interested in the center equation of the truncated stochastic normal form (3.10), we

focus on the corresponding cohomological equations (see also equations 8.4.17 and

8.4.18 in [1]):

d

dt
Hc

p0r(Yc,∆)− JcH
c
p0r(Yc,∆) +DYcH

c
p0r(Yc,∆)JcYc = −Gc

pr(Yc,∆)

+Rc
p0r(Yc,∆)

(3.13)

d

dt
Hs

p0r(Yc,∆)− JsH
s
p0r(Yc,∆) +DYsH

s
p0r(Yc,∆)JcYc = Rs

p0r(Yc,∆), (3.14)
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where Rc
p0r and Rs

p0r depend only on Fp0r and on Hp+1,0,r′−1, Hp
′
,0,r′ , G

c
p′r′

, Gs
p′0r′

, for

p
′ ≤ p, r

′ ≤ r, and p
′
+ r

′ ≤ p+ r − 1.

Since Eq. (3.13) is resonant, instead of trying to find stationary solutions, we let

Hc
p0r = 0 and thus Gc

pr = Rc
p0r. Eq. (3.14) is not resonant and we can find stationary

solutions as in Chapter 8.4 in [1]. In fact, we do not even need to solve for the stationary

solution of a general random differential equation because the cohomological equations

(3.14) with p = 2, 3 and r = 0 are deterministic, and only some of the equations

corresponding to r = 1 and p = 1, 3 contain the random terms. Moreover, since we

consider uncertainties expressed by random variables (which do not depend on time),

finding the stationary solutions reduces to finding the time independent solution of a

system of linear equations.

To determine the coefficients of Hs
p00 for each p = 1, 2, 3, , we solve 4 linear systems

of p+ 1 coupled equations, and one linear system of 2(p+ 1) equations. When solving

for the coefficients of Hs
p01, we have 16 linear systems of p+ 1 coupled equations, and

four linear systems of 2(p + 1) equations. After extensive calculations using Maple,

the approximate center manifold (up to the terms of order 3 in Yc and order 1 in

(δ, σ1, σ2, σ3)) is the graph:

R2 ×R4 ∋ (y1, y2, δ, σ1, σ2, σ3) → δ(Hs
101000y1 +Hs

011000y2) + σ1η1(·)(Hs
100100y1

+Hs
010100y2) +

∑
i+j=3,i≥0,j≥0

yi1y
j
2(H

s
ij0000 + δHs

ij1000 + σ1η1(·)Hs
ij0100

+ σ2η2(·)Hs
ij0010 + σ3η3(·)Hs

ij0001) ∈ R6,

(3.15)

and the truncated center equation is

Y
′

c =

 gc1101000δ + gc1100100σ1η1 −ω0 + gc1011000δ + gc1010100σ1η1

ω0 + gc2101000δ + gc2100100σ1η1 gc2011000δ + gc2010100σ1η1

Yc

+
∑

i+j=3,i≥0,j≥0

yi1y
j
2

(gc1ij0000 + δgc1ij1000 + gc1ij0100σ1η1

gc2ij0000 + δgc2ij1000 + gc2ij0100σ1η1

+ σ2

gc1ij0010
gc2ij0010

 η2
+ σ3

gc1ij0001
gc2ij0001

 η3).
(3.16)
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Here, we have

Hs
p0r =

∑
i+j=p,k+l+n+m=r

i,j,k,l,n,m≥0

Hs
ijklnmy

i
1y

j
2η

l
1η

n
2 η

m
3 δ

kσl
1σ

n
2σ

m
3 (3.17)

Gc
pr =


∑

i+j=p,k+l+n+m=r
i,j,k,l,n,m≥0

(gc1ijklnmη
l
1η

n
2 η

m
3 )y

i
1y

j
2δ

kσl
1σ

n
2σ

m
3∑

i+j=p,k+l+n+m=r
i,j,k,l,n,m≥0

(gc2ijklnmη
l
1η

n
2 )y

i
1y

j
2δ

kσl
1σ

n
2σ

m
3

 . (3.18)

Notice that from Eq. (3.5) and (3.8), we get fi,n1,...,n8,1,0,0,0 = fi,n1,...,n8,0,1,0,0, for any i =

1, . . . , 8, and any non-negative integers n1, . . . , n8. As a consequence, in the truncated

normal form (3.16), we have gc1ij1000 = gc1ij0100 and gc2ij1000 = gc2ij0100, for any non-negative

integers i, j = 0, . . . , 3.

We then reduce the number of terms in the center part of the truncated normal

form (3.16) by proceeding as in [9], we bring the linear part to a diagonal form by

applying the transformation V = NP−1Yc, where

NP =
1√

b212 + β2 + (α− b11)2

0 b12

β α− b11

 , (3.19)

with b11 = gc1101000δ+g
c1
100100σ1η1, b12 = −ω0+g

c1
011000δ+g

c1
010100σ1η1, b21 = ω0+g

c2
101000δ+

gc2100100σ1η1, b22 = gc2011000δ+g
c2
010100σ1η1, α = (b11+b22)/2, and β =

√
b11b22 − b12b21 − α2.

In the next section, we show that for the values of the parameters corresponding to

the aeroelastic system considered here and for values of δ and σ1 close to zero, we have

b12 ̸= 0 and b12 ̸= b21, for any random value of η1 ∈ [−1, 1]. In this case, since we can

also write β =
√
b12(b12 − b21), using Eq. (3.19), we easily verify that the matrix NP

is invertible for any random value of η1 ∈ [−1, 1].

The complex form of the transformed Eq. (3.16) is given by

Z
′
= λ(δ, σ1)Z + Fz(Z, Z̄,∆), (3.20)

where λ(δ, σ1) = α + iβ and Z = v1 + iv2, V = (v1, v2)
T . Here, we consider ∆ =

(δ, σ1, σ2, σ3) as small parameters. By adding four more equations δ
′
= 0, σ

′
1 = 0,
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σ
′
2 = 0, σ

′
3 = 0, we apply the same procedure as before to find simultaneously the

stochastic normal form and the center manifold.

Using a Taylor expansion we rewrite Eq. (3.20) as

Z
′
= (α01δ + α01σ1η1 + i(β00 + β01δ + β01σ1η1))Z

+
∑

1≤p+q≤3,0≤r≤1,
(p+q,r) ̸=(1,0)

∑
k+l+n+m=r

fz,pqklmnZ
pZ̄qδkσl

1σ
m
2 σ

n
3 +O(|Z|4 + |∆|2), (3.21)

where α01 = (gc1101000+ g
c2
011000)/2 = (gc1100100+ g

c2
010100)/2. Note that given the cubic form

of the non-linearities, we have fz,pqklmn = 0 if p+ q = 2, for any non-negative integers

k, l, m, n. We now find a near-identity random transformation

Z → Z +Hz(Z,∆) = Z +
∑

1≤p+q≤3,0≤r≤1,
(p+q,r)̸=(1,0)

Hz,pqr(Z, Z̄,∆) +O(|Z|4 + |∆|2), (3.22)

which transforms Eq. (3.21) into

Z
′
= (α01δ + α01σ1η1 + i(β00 + β01δ + β01σ1η1))Z

+
∑

1≤p+q≤3,0≤r≤1,
(p+q,r)̸=(1,0)

Gz,pqr(Z, Z̄,∆) +O(|Z|4 + |∆|2), (3.23)

where Hz,pqr and Gz,pqr are random homogeneous polynomials of degree p+ q+ r, such

that they are of degree p in Z, q in Z̄, and r in ∆:

Since η1, η2 and η3 are random variables, they do not depend on time, and pro-

ceeding similar to the deterministic Hopf bifurcation case (see, for example, Chapter

11 in [11]) we can find stationary solutions Hz,pqr of the cohomological equations and

make Gz,pqr = 0 if (p, q) ̸= (2, 1), for any 1 ≤ p + q ≤ 3, 0 ≤ r ≤ 1, (p + q, r) ̸= (1, 0).

Moreover, solving the cohomological equations, we get Hz,pqr = 0 if p + q ̸= 3 and

Hz,21r = 0. More exactly we have

Hz,pqr =
∑

k+l+m+n=r,k,l,m,n≥0

Hz,pqklmnη
l
1η

m
2 η

n
3Z

pZ̄qδk0σ
l
1σ

m
2 σ

n
3 , (3.24)

Gz,pqr =
∑

k+l+m+n=r,k,l,m,n≥0

Gz,pqklmnη
l
1η

m
2 η

n
3Z

pZ̄qδk0σ
l
1σ

m
2 σ

n
3 , (3.25)
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where Hz,pqklmn and Gz,pqklmn are complex constants. From the formula in the right

hand side of Eq. (3.5), we get Gz,pq10mn= Gz,pq01mn, for any non-negative integers p, q,

m, n.

The truncated normal form up to the terms of order 3 in (Z,Z̄) and order 1 in

(δ, σ1, σ2, σ3) can be expressed as

Z
′
= (α01δ + α01σ1η1 + i(β00 + β01δ + β01σ1η1))Z + Z2Z̄(Gz,210000

+Gz,211000δ +Gz,211000σ1η1 +Gz,210010σ2η2 +Gz,210001σ3η3).
(3.26)

If we write Z = r(τ)eiθ(τ), we can express the truncated normal form (3.26) in polar

coordinates:

r
′
= (α01δ + α01σ1η1)r + r3(Re(Gz,210000) + Re(Gz,211000)δ

+Re(Gz,211000)σ1η1 +Re(Gz,210010)σ2η2 +Re(Gz,210001)σ3η3)
(3.27)

θ
′
= β00 + β01δ + β01σ1η1 + r2(Im(Gz,210000) + Im(Gz,211000)δ

+ Im(Gz,211000)σ1η1 + Im(Gz,210010)σ2η2 + Im(Gz,210001)σ3η3).
(3.28)

Equations (3.27)-(3.28) can be solved analytically, and the result can be used to study

the stochastic bifurcation and to analyze the effect of parameter uncertainties on the

amplitude and the frequency of the limit cycle oscillations.

Remark 1 Although the stochastic normal form was obtained under the restrictive

assumption that the parameter uncertainties are expressed by random variables, the

results can be extended to more complex types of noise. More precisely, a similar

truncated normal form with the one given in Eq. (3.16) can be obtained if η1, η2, and

η3 are any stationary stochastic processes (also called real noise) or if they are white

noises (Brownian motion/Wiener processes) (see [1, chap. 8] or [3] for a succinct

presentation of stochastic normal form). To obtain the decoupled equations (3.27)-

(3.28), we needed more restrictive conditions on the nature of the noises η1, η2, and

η3. If only uncertainties in the coefficients of the cubic terms are present (σ1 = 0),

then if η2 and η3 are real noises, a condition to determine stationary solutions for the

24



cohomological equations is given in [2] in terms of the spectral density matrix. If η2

and η3 are Gaussian white noises, then it is not possible to reduce the normal form to

the decoupled equations (3.27)-(3.28) because there are no stationary solutions for the

corresponding stochastic differential equations (see [10]).

3.2 Stochastic bifurcation

To study the stochastic bifurcation, we notice that Eq. (3.27) can be solved indepen-

dently of Eq. (3.28), and we have a bifurcation scenario in dimension one similar to

the case represented in Eq. (17) in [13]. The solutions of system (3.27)-(3.28) define a

local random dynamical system [13], Φδ(τ, ω), but the bifurcation study in [13] cannot

be applied directly because the noises ηi, i = 1, 2, 3 are random variables, so they are

not ergodic processes. However, we can find the invariant measures following a similar

approach.

3.2.1 Stochastic bifurcation in dimension one

Consider the random differential equation

x
′
= (a+ ξ1(ω))x+ x3(b+ ξ2(ω)) (3.29)

where ξ1 and ξ2 are random variables and a, b are constants. To study the stochastic

bifurcation, we note that Eq. (3.29) can be solved analytically and we have a bifurcation

in dimension one scenario similar with the case represented in Eq. (16) in [13].

First, using the transformation y = 1/x2 in Eq. (3.29) and solving the linear

equation in y, we obtain explicitly the solution x(τ, ω, x0) starting at τ = 0 from

x0 ̸= 0:

x(τ, ω, x0) =


sign(x0)e(a+ξ1(ω))τ√

1

x20
− b+ξ2(ω)

a+ξ1(ω)(e2(a+ξ1(ω))τ−1)
if a+ ξ1(ω) ̸= 0

sign(x0)√
1

x20
−(b+ξ2(ω))τ

if a+ ξ1(ω) = 0

(3.30)
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Consequently the local random dynamical system [1] (RDS) ϕ(τ, ω)x0 : Dτ (ω)→ Rτ (ω)

generated by (3.29) is given by

0 → 0

0 ̸= x0 → ϕ(τ, ω)x0 = x(τ, ω, x0),

where x(τ, ω, x0) is given in Eq. (3.30).

In general, there are two types of stochastic bifurcations [1]: phenomenological

bifurcations regarding the structural changes of the stationary measures, and the dy-

namical bifurcations related to the invariant measures. For Eq. (3.29), the two types

of bifurcations coincide because the noises ξ1 and ξ2 do not depend on time, and con-

sequently any invariant measure ρ is also a stationary measure, i.e. for all τ > 0 we

have ∫
P (ω : (x(τ, ω, x0)) ∈ B) ρ(d(x0))) = ρ(B), P − almost sure. (3.31)

Lemma 2.3 in [13] is also true in our case and using Eq. (3.30), we can easily obtain

a similar result given in Lemma 4.1 in [13]. Thus, we have:

Dτ (ω) =


(−∞,∞) if c(τ, ω) ≤ 0(
− 1√

c(τ,ω)
, 1√

c(τ,ω)

)
if c(τ, ω) > 0

(3.32)

Rτ (ω) =


(−∞,∞) if c(τ, ω) ≥ 0(
− e(a+ξ1(ω))τ√

−c(τ,ω)
, e

(a+ξ1(ω))τ√
−c(τ,ω)

)
if c(τ, ω) < 0

(3.33)

where

c(τ, ω) =


b+ξ2(ω)
a+ξ1(ω)

(
e2(a+ξ1(ω))τ − 1

)
if a+ ξ1(ω) ̸= 0

(b+ ξ2(ω))τ if a+ ξ1(ω) = 0

(3.34)

The set A(ω) =
∩

τ∈RDτ (ω) of the initial values at time τ = 0 whose orbits never
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explode can be explicitly determined as

A(ω) =


(−∞,∞) if b+ ξ2(ω) = 0

{0} if a+ξ1(ω)
b+ξ2(ω)

≥ 0[
−
√
−a+ξ1(ω)

b+ξ2(ω)
,
√

−a+ξ1(ω)
b+ξ2(ω)

]
if a+ξ1(ω)

b+ξ2(ω)
< 0

(3.35)

Notice that A(ω) is a random interval, and proceeding as in [13] the nontrivial invariant

measures are random Dirac measures sitting at the boundary points of A(ω). Obviously

x = 0 is a stationary solution for Eq. (3.29) and the linearised equation at x = 0 is

x
′
= (a+ ξ1(ω))x. (3.36)

It is easy to verify that

ϕ(τ, ω)

(
±

√
−a+ ξ1(ω)

b+ ξ2(ω)

)
= ±

√
−a+ ξ1(ω)

b+ ξ2(ω)
, (3.37)

and the linearised equation at x = ±
√
−a+ξ1(ω)

b+ξ2(ω)
is

x
′
= −2(a+ ξ1(ω))x. (3.38)

Using (3.35)-(3.38), we can prove a result similar with Theorem 4.4 and 4.5 stated in

[13]:

Proposition 2 1. If b+ ξ2(ω) < 0 and a+ ξ1(ω) < 0, then the Dirac measure δ0 is

the unique invariant measure and it is stable.

2. If b + ξ2(ω) > 0 and a + ξ1(ω) > 0, then the Dirac measure δ0 is the unique

invariant measure and it is unstable.

3. If b+ ξ2(ω) < 0 and a+ ξ1(ω) > 0, then the Dirac measure δ0 is unstable and we

have two new stable Dirac measures δ
±
√

−a+ξ1(ω)
b+ξ2(ω)
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4. If b + ξ2(ω) > 0 and a + ξ1(ω) < 0, then the Dirac measure δ0 is stable and we

also have the unstable invariant Dirac measures δ
±
√

−a+ξ1(ω)
b+ξ2(ω)

.

These results can be applied to study the stochastic Hopf bifurcation for the following

random differential equations in polar coordinates: Consider the random differential

equations

r
′
= (a+ ξ1(ω))r + r3(b+ ξ2(ω)) (3.39)

θ
′
= c+ ξ3(ω) + r2(d+ ξ4(ω)) (3.40)

where ξi, i = 1, . . . , 4, are random variables and a, b, c, d are constants. Using the

transformation y = 1/r2 and solving the linear equation in y, we obtain the solution

of Eq. (3.39) explicitly. Replacing the formula for r in Eq. (3.40) and solving for θ,

we obtain the following expression for the solution (r(τ, ω, r0), θ(τ, ω, θ0, r0)) starting

at τ = 0 from (r0, θ0), r0 > 0:

r =


e(a+ξ1(ω))τ√

1

r20
− b+ξ2(ω)

a+ξ1(ω)(e2(a+ξ1(ω))τ−1)
if a+ ξ1(ω) ̸= 0

1√
1

r20
−(b+ξ2(ω))τ

if a+ ξ1(ω) = 0

(3.41)

θ =



θ0 +(c+ ξ3(ω))τ − (d+ξ4(ω))
2(b+ξ2(ω))

ln
∣∣∣1− r20

b+ξ2(ω)
a+ξ1(ω)

(
e2(a+ξ1(ω))τ − 1

)∣∣∣
if a+ ξ1(ω) ̸= 0, b+ ξ2(ω) ̸= 0

θ0 +(c+ ξ3(ω))τ − (d+ξ4(ω))
(b+ξ2(ω))

ln |1− r20(b+ ξ2(ω))τ |

if a+ ξ1(ω) = 0, b+ ξ2(ω) ̸= 0

θ0 +(c+ ξ3(ω))τ +
(r0(d+ξ4(ω)))
(a+ξ1(ω))

ea+ξ1(ω)

if a+ ξ1(ω) ̸= 0, b+ ξ2(ω) = 0

θ0 +(c+ ξ3(ω))τ + r0(d+ ξ4(ω))

if a+ ξ1(ω) = 0, b+ ξ2(ω) = 0

(3.42)
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As a consequence the local random dynamical system Φ(τ, ω)(r0, θ0) associated with

the system (3.39)-(3.40) is given by:

(0, 0) → (0, 0)

(r0, θ0) → Φ(τ, ω)(r0, θ0) = (r(τ, ω, r0), θ(τ, ω, θ0, r0)), r0 ̸= 0

where r(τ, ω, r0), θ(τ, ω, θ0, r0) are given in equations (3.41)-(3.42).

To study the bifurcation scenario for the system given in equations (3.39)-(3.40),

we define Leb(r) to be the normalized Lebesgue measure[13] on the circle S(r) =

{x2 + y2 = r2} with radius r in R2. We have the following result similar to Theorems

4.8 and 4.9 given in [13]:

Proposition 3 1. If b+ ξ2(ω) < 0 and a+ ξ1(ω) < 0, then the Dirac measure δ0 is

the unique invariant measure and it is stable.

2. If b + ξ2(ω) < 0 and a + ξ1(ω) > 0, then there are two invariant measures: the

Dirac measure δ0 and µω =Leb
(√

−a+ξ1(ω)
b+ξ2(ω)

)
Moreover, δ0 is unstable and µω is

stable.

3. If b + ξ2(ω) > 0 and a + ξ1(ω) > 0, then the Dirac measure δ0 is the unique

invariant measure and it is unstable.

4. If b + ξ2(ω) > 0 and a + ξ1(ω) < 0, then there are two invariant measures: the

Dirac measure δ0 and µω =Leb
(√

−a+ξ1(ω)
b+ξ2(ω)

)
. Moreover, the Dirac measure δ0 is

stable and µω is unstable.

Proof:

The proof is similar with the proof of Theorem 3.7 in [13]. If a+ξ1(ω)
b+ξ2(ω)

> 0, then

analogously with Eq. (3.35), we can show that A(ω) = {0}. Thus the only possible

invariant measure for Φ is the Dirac measure δ0.
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If a+ξ1(ω)
b+ξ2(ω)

< 0, then using formulas (3.41)-(3.42) and Proposition 1, we can easily

show that

Φ(τ, ω)

(√
−a+ ξ1(ω)

b+ ξ2(ω)
, θ0

)
=

(√
−a+ ξ1(ω)

b+ ξ2(ω)
, θ0 + (c+ ξ3)τ

− (d+ ξ4)
a+ ξ1(ω)

b+ ξ2(ω)

) (3.43)

Consequently,

Φ(τ, ω)S

(√
−a+ ξ1(ω)

b+ ξ2(ω)

)
= S

(√
−a+ ξ1(ω)

b+ ξ2(ω)

)
, if

a+ ξ1(ω)

b+ ξ2(ω)
< 0. (3.44)

Thus the support of µω is Φ invariant, so µω is invariant.

To show the uniqueness, we suppose that there exists an invariant measure ρω ̸= µω,

and we show that ρω = δ0. Since ρω is invariant, we have Φ(τ, ω)ρω = ρω. Thus for

any function f continuous and bounded we have

Φ(τ, ω)ρω(f) =

∫
f(Φ(τ, ω)(r, θ))ρω(d(r, θ)) = ρω(f). (3.45)

But
∫
f(Φ(τ, ω)(r, θ))ρω(d(r, θ)) → f(0, 0) because Φ(τ, ω)(r, θ) → (0, 0) for all r ̸=√

−a+ξ1(ω)
b+ξ2(ω)

. As a consequence, from Eq. (3.45), we get ρω(f) = f(0, 0) = δ0(f).

Finally, the stability can easily be proved using the linearized equations.

3.2.2 Stochastic bifurcation of aeroelastic system

To simplify the notation let denote Gz,210000 = a1+ ib1, Gz,211000 = a2+ ib2, Gz,210010 =

a3+ib3, and Gz,210001 = a4+ib4. Solving Eq. (3.27) explicitly, replacing the formula for

r in Eq. (3.28), and solving for θ, we obtain the following expression for the solution

(r(τ, ω, r0), θ(τ, ω, θ0, r0)) starting at τ = 0 from (r0, θ0), r0 > 0 (see also equations
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(3.41)-(3.42) in Subsection 3.2.1):

r(τ, ω, r0) =
e(α01δ+α01σ1η1(ω))τ√

1
r20

− a1+a2δ+a2σ1η1(ω)+a3σ2η2(ω)+a4σ3η3(ω)
α01δ+α01σ1η1(ω)

(e2(α01δ+α01σ1η1(ω))τ − 1)
(3.46)

θ(τ, ω, r0, θ0) = θ0 + (β00 + β01δ + β01σ1η1(ω))τ

− (b1 + b2δ + b2σ1η1(ω) + b3σ2η2(ω) + b4σ3η3(ω))

2(a1 + a2δ0 + a2σ1η1(ω) + a3σ2η2(ω) + a4σ3η3(ω))
ln

∣∣∣∣1− r20

a1 + a2δ0 + a2σ1η1(ω) + a3σ2η2(ω) + a4σ3η3(ω)

α01δ + α01σ1η1(ω)

(
e2(α01δ+α01σ1η1(ω))τ − 1

) ∣∣∣∣
(3.47)

To study the bifurcation scenario for the system given in equations (3.27)-(3.28),

we define Leb(r) to be the normalized Lebesgue measure[13] on the circle with radius

r in R2. We can now prove results similar with Theorems 4.8 and 4.9 in [13] for the

system (3.27)-(3.28) (see Proposition 2 in Section 3.2.1):

Case (a) If a1 + a2δ + a2σ1η1(ω) + a3σ2η2(ω) + a4σ3η3(ω) < 0 and α01δ + α01σ1η1(ω) < 0,

then the Dirac measure δ0 is the unique invariant measure and it is stable.

Case (b) If a1 + a2δ + a2σ1η1(ω) + a3σ2η2(ω) + a4σ3η3(ω) < 0 and α01δ + α01σ1η1(ω) > 0,

then there are two invariant measures: the Dirac measure δ0 and µω = Leb(√
− α01δ+α01σ1η1(ω)

a1+a2δ+a2σ1η1(ω)+a3σ2η2(ω)+a4σ3η3(ω)

)
. Moreover, δ0 is unstable and µω is sta-

ble.

Case (c) If a1 + a2δ + a2σ1η1(ω) + a3σ2η2(ω) + a4σ3η3(ω) > 0 and α01δ + α01σ1η1(ω) > 0,

then the Dirac measure δ0 is the unique invariant measure and it is unstable.

Case (d) If a1 + a2δ + a2σ1η1(ω) + a3σ2η2(ω) + a4σ3η3(ω) > 0 and α01δ + α01σ1η1(ω) < 0,

then there are two invariant measures: the Dirac measure δ0 and µω = Leb(√
− α01δ+α01σ1η1(ω)

a1+a2δ+a2σ1η1(ω)+a3σ2η2(ω)+a4σ3η3(ω)

)
. Moreover, the Dirac measure δ0 is stable

and µω is unstable.

To explain our results, consider the case when α01δ + α01σ1η1(ω) > 0 and a1 +

a2δ + a2σ1η1(ω) + a3σ2η2(ω) + a4σ3η3(ω) < 0. In the deterministic case (i.e. when
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σ1 = σ2 = σ3 = 0), we have a supercritical Hopf bifurcation when δ = 0 repre-

senting a transition from a stationary solution to a limit cycle oscillation, namely for

α01δ > 0 and a1 + a2δ < 0, we have a periodic solution on the circle with radius√
−α01δ/(a1 + a2δ). In the stochastic case, when the system is perturbed by noises

with small intensities such that a1 + a2δ ≤ −a2σ1η1(ω)− a3σ2η2(ω)− a4σ3η3(ω), then

for α01δ + α01σ1η1(ω) > 0, the solution become a random process on a circle whose

radius depends on the sample path. The support of the bifurcating invariant measure

µω =Leb
(√

− α01δ+α01σ1η1(ω)
a1+a2δ+a2σ1η1(ω)+a3σ2η2(ω)+a4σ3η3(ω)

)
is this ”random” circle.

Since the noises ηi, i = 1, 2, 3 are not ergodic, the bifurcation diagrams depend on

the sample path (i.e. on the random realization ω). However, for the values of the

parameters corresponding to the aeroelastic model considered in this chapter and for

small values for |δ| ≪ 1, 0 < σi ≪ 1, i = 1, 2, 3, because the noises ηi, i = 1, 2, 3 are

uniformly distributed on [−1, 1], the bifurcation diagram is in many cases independent

on the sample path.

Cases studies

To illustrate the previous bifurcation scenarios, we consider three case studies represent-

ing aeroelastic models with cubic structural non-linearities. The values of the system

parameters [9] are µ = 100, ah = −0.5, xα = 0.25, ω̃ = 0.4, rα = −0.5, UL = 5.23376,

ζξ = 0 and ζα = 0. We consider the combinations of the plunge and pitch coefficients of

the stiffness terms β1, β2, β3 and β4 shown in Table. 1. For the deterministic aeroelastic

dynamical system with the same parameters setting, Cases 1 and 2 were studied in [9],

and Case 3 was studied in [8]. Recalling that δ = 1− (U∗
L/U

∗)2, for the deterministic

system given in Eq. (2.1), we know that when δ < 0 (i.e. U∗/UL < 1) the dynamical

system converges to a steady solution, and when δ > 0 (i.e. U∗/UL > 1), we have

LCOs.

For Case 1, non-linearities are present in both pitch and plunge stiffness terms,

and for Cases 2 and 3 cubic restoring forces are considered only in the pitch degree of
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Table 1: Cases studies
Case β1 β2 β3 β4

1 1 1 1 4
2 1 0 1 3
3 1 0 1 0.3

(a) (b)

(c)

Figure 4: Stochastic bifurcation: (a) Case study 1 for 0 < σi ≪ 1, i = 1, . . . , 3 (b) Cases
studies 2 and 3 for 0 < σ3 ≪ 1 (c)Case study 3 for 0.3 < σ3 < 1, −0.00006117092055−
0.00036608135δ − 0.0002039030684σ3η3(ω) > 0.

freedom (β2 = 0), so in these two cases only one random variable is included (σ1 =

σ2 = 0). Small perturbations with σ2 ≪ 1 and σ3 ≪ 1 in the cubic coefficients do

not lead to unstable motions for Cases 1 and 2, because we have strong structural

non-linearities in the pitch degree of freedom ( β4 > 1), and the aeroelastic random

dynamical system is restricted to the bifurcation diagrams in Fig. 4 (a) and (b). For

Case 3, only a weak cubic non-linearity (β4 = 0.3) is considered, and different types of

random dynamical behavior can be expected for various values of the noise intensity

σ3 ≪ 1.

For Case 1, the truncated center equation of the normal form corresponding to Eq.
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(3.16) with Yc = (y1, y2)
T is given by

y
′

1 = (−0.11922586− 0.10790155δ − 0.10790155σ1η1)y2 + (0.11067573δ

+ 0.11067573σ1η1)y1 + (0.001459301 + 0.0006154173η3σ3

+ 0.00007900853η2σ2 − 0.01464064δ − 0.01464064σ1η1)y2
3

+ (−0.003958199− 0.001311882η3σ3 + 0.001289329η2σ2 − 0.01798357δ

− 0.01798357σ1η1)y1y2
2 + (0.003175896 + 0.0009321777η3σ3

− 0.0005528146η2σ2 + 0.02388211δ + 0.02388211σ1η1)y1
2y2

+ (−0.0008041554− 0.0002207909η3σ3 + 0.00007900853η2σ2

− 0.02584539δ − 0.02584539σ1η1)y
3
1,

(3.48)

y
′

2 = (0.11922586− 0.064798753δ − 0.064798753σ1η1)y1 + (0.081478506δ

+ 0.081478506σ1η1)y2 + (−0.0009378495− 0.00028533270η3σ3

+ 0.0002034812η2σ2 + 0.008750621δ + 0.008750621σ1η1)y2
3

+ (0.002171234 + 0.0006082423η3σ3 − 0.0002617347η2σ2 + 0.007074308δ

+ 0.007074308σ1η1)y1y2
2 + (−0.001616561− 0.0004321958η3σ3

+ 0.0001122217η2σ2 − 0.009777089δ − 0.009777089σ1η1)y1
2y2

+ (0.0003934322 + 0.0001023677η3σ3 − 0.00001603878η2σ2

+ 0.01195969δ + 0.01195969σ1η1)y
3
1.

(3.49)

Thus, for the linear transformation defined in Eq. (3.19), we have b12 = −0.11922586−

0.10790155δ−0.10790155σ1η1 and b21 = 0.11922586−0.064798753δ−0.064798753σ1η1.

Since η1 ∈ [−1, 1], notice that for any value of δ very close to zero and for any

0 < σ1 ≪ 1, σ1η1 ̸= −1.10495− δ and σ1η1 ̸= 5.532163 + δ. Consequently b12 ̸= 0 and

b21 − b12 ̸= 0, the matrix NP given in Eq. (3.19) is invertible.

Transforming the truncated center equations into the normal form in polar co-

ordinates, we obtain the following equations:
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r′ = (0.096077122δ + 0.096077122σ1η1)r + r3(−0.00067504− 0.0047343δ

− 0.0047343σ1η1 − 0.00020390σ2η2 + 0.00014056σ3η3)
(3.50)

θ′ = (0.119225 + 0.0215514δ + 0.0215514σ1η1) + r2(−0.000262641

+ 0.00449096δ + 0.00449096σ1η1 − 0.000116442σ2η2 + 0.000203129σ3η3).
(3.51)

Since ηi ∈ [−1, 1], 0 < σi ≪ 1, i = 1, 2, 3 and δ is very close to zero, the bifurca-

tion diagram is the stochastic version of the supercritical Hopf bifurcation encountered

in the deterministic case, and is given in Fig. 4 (a). More precisely, if −0.06983 <

δ + σ1η1(ω) < 0, then 0.096077122δ + 0.096077122σ1η1(ω) < 0 and −0.00067504 −

0.0047343δ−0.0047343σ1η1(ω)−0.00020390σ2η2(ω)+0.00014056σ3η3(ω) < 0. Thus, we

are in Case (a), and the Dirac measure δ0 is the unique invariant measure, and it is sta-

ble. If δ+σ1η1(ω) > 0 then 0.096077122δ+0.096077122σ1η1(ω) > 0 and −0.00067504−

0.0047343δ−0.0047343σ1η1(ω)−0.00020390σ2η2(ω)+0.00014056σ3η3(ω) < 0. Thus, we

are in Case (b) with two invariant measures: the Dirac measure δ0, which is unstable,

and the stable measure µω which is the Lebesgue measure

Leb

(√
−0.096077(δ + σ1η1)

−0.000675− 0.004734(δ + σ1η1)− 0.000203σ2η2 + 0.00014σ3η3

)
. (3.52)

In the deterministic case, the bifurcation point is δ = 0, but from Fig. 4(a), we

note that in the stochastic case it is δ = −σ1η1(ω), so it shifts around zero depending

on the random value η1(ω). However, for any sample path the asymptotic state of the

system is a limit cycle oscillation for any δ > σ1.

For Cases 2 and 3, we have non-linearities only in pitch, and we consider only one

random variable (σ1 = σ2 = 0). Since the only uncertainty is in the coefficient of

the cubic term in pitch, the linear transformation defined in Eq. (3.19) is no longer

stochastic, For both cases, we can reduce the truncated center equation of the normal

form to the form given in equations (3.27)-(3.28).
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For Case 2, we obtain the following equations in polar co-ordinates:

r′ = 0.096077122δr + r3(−.0006117092055− 0.0036608135δ

− 0.0002039030684σ3η3)
(3.53)

θ′ = (0.119225 + 0.0215514δ) + r2(−0.0003493282 + 0.004686037δ

− 0.0001164427486σ3η3).
(3.54)

If −0.1 < δ < 0, then 0.096077122δ < 0 and −.0006117092055 − 0.0036608135δ −

0.0002039030684σ3η3 < 0 for any σ3 ≪ 1 and any random realization of η3 ∈ [−1, 1].

Thus, the bifurcation corresponds to Case (a), and the Dirac measure δ0 is the unique

invariant measure which is stable. If δ > 0, then 0.096077122δ > 0 and−.0006117092055−

0.0036608135δ − 0.0002039030684σ3η3 < 0 for any value σ3 ≤ 3, so we have two in-

variant measures (Case (b)): the Dirac measure δ0 (which is unstable) and the stable

measure

µω = Leb

(√
−0.096077122δ

−.0006117092055− 0.0036608135δ − 0.0002039030684σ3η3

)
. (3.55)

The bifurcation diagram is similar with the one corresponding to Case 1, but this time

the bifurcation point is δ = 0, the same as in the deterministic case (see Fig. 4 (b)).

For Case 3, only a weak cubic non-linearity is considered in the pitch stiffness term.

The following stochastic normal form of the Hopf bifurcation is obtained

r′ = 0.096077122δr + r3(−0.00006117092055− 0.00036608135δ

− 0.0002039030684σ3η3)
(3.56)

θ′ = (0.119225 + 0.0215514δ) + r2(−0.00003493282 + 0.0004686037δ

− 0.0001164427486σ3η3).
(3.57)

Here, even for small values of the noise intensity σ3 < 1, we may have different

stochastic bifurcation diagrams (see the stochastic diagrams in Fig. 4 (b), (c)). For

lower noise intensity σ3 < 0.3, we have −0.00006117092055−0.0002039030684σ3η3 < 0

for any random realization of η3 ∈ [−1, 1]. Thus for U∗/UL > 1 (i.e. δ > 0), we have
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Figure 5: Pitch sample path for Case study 3 with (a) σ2 = 0.25, η3 ≈ 0.348 and (b)
σ2 = 0.4, η3 ≈ −0.823.

stable LCOs with random amplitude and frequency (see Fig. 5(a)). Hence, bifurcation

is in Case (b). For this case, we have two invariant measures, the unstable Dirac

measure δ0 and the stable measure

µω = Leb

(√
−0.096077122δ

−.00006117092055− 0.00036608135δ − 0.0002039030684σ3η3

)
.

(3.58)

Thus, for very small values of σ3 ≪ 1, the bifurcation diagram is the same as shown

for Case 2 (see Fig. 4 (b)).

However, if 0.3 < σ3 ≪ 1 and U∗/UL > 1 (i.e. δ > 0), then there are sample

paths for which −0.00006117092055 − 0.00036608135δ - 0.0002039030684 σ3η3 > 0.

The unique invariant measure δ0 is unstable, and we may have divergent solutions for

some realizations of the random variable ϵ2 (see Fig. 5(b)). For these sample paths,

−0.00006117092055 − 0.00036608135δ − 0.0002039030684σ3η3 > 0 and for δ < 0, we

have a transition from Case (d) to Case (c) when δ = 0 (see the bifurcation digram in

Fig. 4 (c)). In the deterministic case this would correspond to a transition from steady

solutions to unstable solutions, and this sub-critical Hopf bifurcation behavior never

occurs for the nonlinear deterministic system with this parameter setting.
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3.3 Numerical simulations

In this section, we apply the stochastic normal to predict the frequency and amplitude

of the LCOs. Since r
′
= 0 and θ

′ ̸= 0 corresponds to a periodic orbit in (3.27)- (3.28),

the frequency of the LCOs is estimated by the relation below:

θ = β00 + β01δ + β01σ1η1 −
(a1 + a2δ + a2σ1η1 + a3σ2η2 + a4σ3η3)

b1 + b2δ + b2σ1η1 + b3σ2η2 + b4σ3η3
)(α01δ

+ α01σ1η1).

(3.59)

where ai, bi, i = 1, . . . , 4 were defined at the beginning of Section 3.2.

To determine the pitch and plunge amplitudes of the LCOs, the following equations

given by Lee et al. [7] are used

A =
n2
1 + s21

m2
1 + (p1 + q1r2ς )

2
, (3.60)

r2ς = AR2
α, (3.61)

R2
α =

1

q2
(−s2 ±

√
(p22 +m2

2)A− n2
2), (3.62)

where rς and Rα denote the amplitude of the plunge motion ς and the pitch motion α,

respectively, and m1, n1, . . . are functions of the system parameters and the frequency

θ. The explicit definitions are given in [7].

Due to the presence of the random variables in equations (3.59) - (3.62), MCS are

applied to provide the statistical information of the random frequency and amplitude of

the LCOs. To verify the accuracy of these results obtained using the stochastic normal

form, the frequency and amplitude predictions are compared with those obtained by

the numerical simulation of the solutions of the random differential Eq. (3.3) with 104

samples, where for each sample the corresponding deterministic system is solved using

an adaptive fourth order Runge-Kutta numerical scheme.

To demonstrate the validation of the stochastic normal form, we consider various

combinations of the plunge and pitch stiffness terms coefficients β1, β2, β3 and β4 shown

in the previous section in Table. 1.
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Figure 6: Expected dynamical response for Case study 1 with σ2 = 0.8 and σ3 = 0.8:
line : stochastic norm form; circle or square: MCS.

Fig. 6 presents the expected dynamical response with different linear random per-

turbation for Case 1. In this case study, we have an aeroelastic system with cubic

non-linearities in both the pitch and the plunge degrees of freedom, and the uncertain-

ties in the cubic and the bifurcation parameters. The truncated normal form is given

in equations (3.50)-(3.51), and the bifurcation diagram for this aeroelastic system is

displayed in Fig. 4(a).

Fig. 6 shows that the stochastic norm form provides a good agreement with the ex-

pected pitch/plunge amplitude around the Hopf bifurcation. From the previous section,

we know that the stochastic Hopf bifurcation point is shifted from the deterministic

value δ = 0 to δ = −σ1η1. Thus the noise intensity, σ1, influences the bifurcation

position. We observe that the difference in the expected amplitude for various noise

intensities, σ1, is only noticeable around the Hopf bifurcation point; for some random

realizations of η1, the system convergences to a steady state, but not a LCO. However,

for σ1 < δ ≪ 1, the asymptotic state is a LCO for any sample path. Fig. 6 also shows

that the expected dynamical response of the aeroelastic system becomes less sensitive

to the small noise intensity σ1. Actually, for 0.01 < δ ≪ 1, the expected pitch ampli-

tude (or the expected plunge amplitude) has almost the same values for σ1 = 0.005

and σ1 = 0.01.

39



In Case 2, we consider an aeroelastic system with structural non-linearity only in

the pitch degree of freedom with one random variable (σ1 = σ2 = 0). The truncated

normal form in polar coordinates is given in equations (3.53)-(3.54), and the bifurcation

diagram is given in Fig. 4 (b). Recalling that δ = 1 − (U∗
L/U

∗)2, since the influence

of the parameter uncertainties on the amplitude and the frequency of the LCOs is of

interest to the present study, we only investigate the performance of the stochastic

normal form around 0 < δ ≪ 1, i.e. when the speed U∗ is slightly over the linear

flutter speed UL = 5.23376.

In Fig. 7, we display the predicted mean amplitudes and frequencies for the pitch

motion corresponding to σ3 = 0.8, 0.3, and 0.001. The estimated values are compared

with the results obtained from MCS, and a good agreement in predicting the dynamical

responses is shown.

To illustrate the influence of noise, the expected pitch amplitudes for various value

of σ3 are compared in Fig.8(a). It is clear that the expected value of the pitch amplitude

increases only very slightly when σ3 increases, σ3 < 1. Moreover, the results displayed

in Fig. 8(a) are very close to the results obtained for the deterministic dynamical

system (σ3 = 0), as reported in Fig. 2 in [9]. However, for larger values of σ3 > 1,

an increase in the expected value of the pitch amplitude has been observed [12]. The

results displayed in Fig.8(b) indicate that there is no difference between the expected

values of the LCOs frequencies for various values of σ3.

To better investigate the influence of the random noise with small intensity on

the LCO’s amplitude, Fig.9 displays the probability density functions of the pitch

amplitude at a fixed speed U∗ = 1.01UL. The estimations obtained using MCS and the

stochastic normal form are very similar, and we can see that although there is almost

no difference between the expected values of the pitch amplitudes, the range of the

random pitch amplitude increases with the value of σ3.

In Case 3, we have a weak cubic non-linearity in the pitch degree of freedom.

The truncated normal form is given in equations (3.56)- (3.57). Depending on the
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Figure 7: Expected dynamical response for Case study 2 with (a)σ3 = 0.8; (b)σ3 = 0.3;
(c)σ3 = 0.001: —, stochastic normal form; ◦ ◦ ◦, MCS.

noise intensity the bifurcation diagram shows supercritical (see Fig. 4 (b)) or unstable

subcritical behaviors (see Fig. 4 (c)). Since we are interested in the influence of noise

on the amplitude and frequency of the LCOs, in what follows we only consider values

of σ3 < 0.3 and U∗ is slightly over the linear flutter speed UL = 5.23376.

The expected values of the pitch amplitude and frequency obtained using the

stochastic normal form and MCS are very similar (see Fig.10). Unlike the previous

two cases, from the results displayed in Fig.11(a), we note that the expected value

of the pitch amplitude obviously increases with the noise intensity σ3, even for small

values of σ3 < 0.3.

From Figs. 8(b) and 11(b), we observe that the expected values of the frequency

41



1 1.005 1.01 1.015 1.02
0

1

2

3

4

5

6

U*/U
L

E
[p

it
c
h

 a
m

p
lit

u
d

e
] 

(d
e

g
re

e
)

 

 

1 1.005 1.01 1.015 1.02
0.115

0.12

0.125

U*/U
L

E
[f

re
q

u
e

n
c
y
]

 

 

σ=0.8

σ=0.3

σ=0.001

σ=0.8

σ=0.3

σ=0.001

Figure 8: Expected values of (a) pitch amplitude and (b) frequency for Case study 2
estimated using stochastic normal form.

are almost the same in Case 2 and Case 3, and the noise intensity σ3 has very little

influence. The fact that the frequency variation with U∗/UL is almost the same was

also noticed [9] for the deterministic models corresponding to Cases 2 and 3, and it is a

consequence of having the same values for the linear parameters, and having different

values only for the values of the cubic parameters. To explain this analytically for

the stochastic models corresponding to Cases 2 and 3, the frequency formula (3.59) is

expressed explicitly in terms of β4, δ, σ3 and η3

θ =
0.0001164427486(β4 − 0.001562012573β4δ + σ3η3)

0.0002039030684(β4 + 0.001220271180β4δ + σ3η3)

+ 0.119225 + 0.0215514δ − 0.096077122δ,

(3.63)

where β4 = 3 in Case 2 and β4 = 0.3 in Case 3. Since η3 is uniformly distributed on

[−1, 1], taking expectation we get the following estimation for the expected value of

the frequency:

0.532179β4δ
2

σ3
ln

(
0.509758β4 + 0.509758σ3 + 3.050678β4δ

0.509758β4 − 0.509758σ3 + 3.050678β4δ

)
+ 0.119225

− 0.033315δ ≈ 0.119225− .033315δ,

(3.64)

for 0 < δ, σ3 << 1. The approximation (3.64) provide an explanation of the fact that

the cubic term and the noise intensity have very little influence on the expected value

42



2 4 6
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Pitch amplitude(degree)

Pr
ob

ab
ilit

y 
de

ns
ity

 fu
nc

tio
n

2 4 6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Pitch amplitude(degree)
Pr

ob
ab

ilit
y 

de
ns

ity
 fu

nc
tio

n
2 4 6

0

0.02

0.04

0.06

0.08

0.1

0.12

Pitch amplitude(degree)

Pr
ob

ab
ilit

y 
de

ns
ity

 fu
nc

tio
n

(a) (b) (c)

Figure 9: Probability density function of pitch amplitude of the aeroelastic system
with (a)σ3 = 0.8 ; (b)σ3 = 0.3; (c)σ3 = 0.001 for Case study 2 when U∗ = 1.010UL:
—, stochastic normal form; - -, MCS.

of frequency around the Hopf bifurcation.

3.4 Conclusion

In this chapter, the stochastic normal form is presented and applied to an aeroelastic

random dynamical system with uncertainties in the bifurcation parameter and the

plunge and pitch non-linear terms. Using the stochastic normal form equations in

polar coordinates, we are able to obtain analytically the stochastic bifurcation diagrams

depending on the values of the noise intensities and the flow speed. Moreover, when the

system behavior is characterized by limit cycles oscillations, the stochastic normal form

can be used to study the influence of the noise on the limit cycle oscillation amplitudes

and frequencies. After considering various combinations of values for the coefficients

of the cubic terms in pitch and plunge, we conclude that the stochastic normal form

gives accurate results for predicting the mean of the limit cycle oscillation amplitude

and frequency for noise with small intensity.

The main effect of uncertainties in the deterministic bifurcation parameter is the

shifting of the bifurcation point depending on the noise intensity and the sample path.
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Figure 10: Expected dynamical response for Case study 3 with (a)σ2 = 0.25; (b)σ2 =
0.2; (c)σ2 = 0.1: —, stochastic normal form; ◦ ◦ ◦, MCS.

Consequently, the onset of the limit cycle oscillations may occur at flow speeds less

than the deterministic linear flutter speed.

When we have only one non-linearity in the pitch degree of freedom and using the

stochastic normal form, we confirm the numerical results presented in [12]. Moreover,

we provide a theoretical explanation why the noise with small intensity does not in-

fluence the limit cycle oscillation frequency. We also extend the study to aeroelastic

systems with uncertainties in the coefficients of the cubic terms of both pitch and

plunge, and notice again that the presence of noise with small intensity has very little

effect on the mean frequency.
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Figure 11: Expected values of (a) pitch amplitude and (b) frequency for Case study 3
estimated using stochastic normal form.

Previous numerical studies [12] show that the amplitude of the limit cycle oscil-

lations increases with the noise intensity for aeroelastic systems with only one non-

linearity in the pitch degree of freedom. We notice the same behavior for systems

characterized by the noise with small intensity and weak structural non-linearities.

Moreover, the study of the stochastic bifurcation shows that in this case the divergent

solutions can happen for certain relatively small values of the noise intensity. On the

other hand, for noise with small intensity and stronger cubic structural non-linearities,

the effect on the limit cycle oscillation amplitude becomes small, and no divergent so-

lution exists. Thus the effect of the noise on the behavior of the aeroelastic system is

dependent on the strength of the structural non-linearity. Numerically this dependence

can be illustrated by extensive simulations, but theoretically it can be easily analyzed

using the stochastic bifurcation study presented in this chapter.
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Chapter 4

Secondary Bifurcation Analysis

Using Stochastic Collocation

Method

For an aeroelastic system modeling an airfoil oscillating in pitch and plunge, the uncer-

tainties arise due to inexact values of the system parameters and/or the perturbations

in the initial conditions. To perform a realistic simulation, we propose a mathematical

model expressed as a system of random equations instead of the traditional formula-

tion based on a deterministic system. A stochastic collocation method is developed

to investigate the effect of the uncertainties in the aeroelastic model. In this study,

particular attention is focused on the nonlinear behavior when a jump phenomenon

between the Hopf and the secondary bifurcations occurs.

Several UQ aeroelastic investigations focusing on LCOs and the Hopf bifurcation

analysis were reported. A special non-intrusive polynomial chaos formulation based

on normalizing the oscillatory samples in terms of their phases was applied in Ref.

[17]. The aeroelastic model is constructed starting from the same deterministic model

as considered in our studies, but with uncertainty represented by a symmetric beta

distribution in either the coefficient of the cubic pitch stiffness, or the initial pitch

angle α(0), or the ratio of the natural frequencies ω̄. An intrusive polynomial chaos

expansion and the method of multiple scales are used in Ref. [6] to determine the effect

of the variations of the linear and nonlinear pitch and plunge coefficients on the stability

near the Hopf bifurcation. In the series of papers [14, 12, 11, 1] different types of
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chaos expansions are employed for a two DOF aeroelastic model, but with a structural

nonlinearity in pitch represented by a fifth degree polynomial and the uncertainties

expressed by Gaussian random variables included in the initial pitch angle α(0) and

the coefficient of the cubic term in the pitch stiffness. Since the traditional polynomial

chaos expansions produce inaccurate oscillatory motion for long time simulations [14],

the dependence of the LCOs erupting from the Hopf bifurcations on random parameters

was studied using other bases for the stochastic projection method, such as the Fourier

chaos [11], the multivariate B-spline [12], and a local Wiener-Haar wavelet expansion

[14, 1].

An alternative approach was proposed in our previous study [3] using a stochastic

collocation method (SCM), in which the randomness is included through the interpo-

lation of the corresponding solutions of the deterministic system computed at selected

values of the uncertainty. The performance of the SCM was compared with various

types of chaos expansions. For long time simulations and applications to discontinu-

ous problems, the SCM gives more accurate results than the polynomial or the Fourier

chaos expansions. Its performance is similar with the local Wiener-Haar wavelet expan-

sion, but the attractive feature is that the implementation is straightforward because

the SCM requires only the use of a deterministic solver [19].

The present study is a follow up investigation of our early work reported in [3], and

the major contribution presented here is the application of the SCM for multidimen-

sional UQ problems in the secondary bifurcation. To the best of our knowledge, only a

few results are available for aeroelastic response with multidimensional uncertainties.

Here, we extend the study presented in Ref. [17] for parameter uncertainty expressed

by more than one random variable. We study the nonlinear response in the presence of

two random variables due to uncertainties in the initial pitch angle and the coefficients

of the nonlinear restoring force. We also analyze the influence of the parameter uncer-

tainty expressed by a combination of five random variables on the LCO behavior. An
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improved version of the SCM is presented, in which higher order schemes such as piece-

wise cubic interpolation and piecewise cubic spline interpolation are used. Moreover,

in order to effectively deal with multidimensional random variables, the traditional ap-

proach based on a tensor product for interpolation in multidimensional spaces is now

replaced by an efficient sparse grid strategy incorporating the Smolyak algorithm and

a dimension adaptive approach [15, 19, 10, 13, 5].

In this section, we consider a linear plunge stiffness term G(x3) = x3, and the

nonlinear pitch stiffness term M(x1) is defined as a cubic spring:

M(x1) = x1 + k3x
3
1, (4.1)

where k3 is a constant for the deterministic model.

We apply the stochastic collocation method to study three different models with

uncertainties in the coefficient k3 of the cubic term and the initial condition α(0). First

we introduce a random perturbation in the cubic nonlinearity in the pitch restoring

force,

k3(ξ) = [k3]0 + [k3]1ξ (4.2)

where [k3]0 = 80, [k3]1 = 8 and ξ is a uniform random variable on [−1, 1]. For this

model, we compare the performance of various implementations of the stochastic col-

location based on different interpolation methods near the Hopf and the secondary

bifurcation points. Since the onset of the secondary bifurcation depends on the initial

condition [9], we also consider a model with randomness in both the cubic coefficient

and the initial pitch angle:

α0 = [α0]0 + [α0]1ξ1

k3(ξ2) = [k3]0 + [k3]1ξ2

(4.3)

where [α0]0 = 0◦, [α0]1 = 5◦, [k3]0 = 80, [k3]1 = 8, and ξ1 and ξ2 are two independent

random variables, ξ1 uniformly distributed on [0,1] and ξ2 uniformly distributed on

[-1,1]. Finally, to simulate a more realistic type of noise and to test the performance

of the proposed stochastic collocation method for higher dimensional problems, we
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express the nonlinear coefficient k3 by a time dependent combination of five random

variables:

k3(τ, ξ) = k3 + k̃3(τ, ξ). (4.4)

where k3 is a constant and k̃3(τ, ξ) is the noise with the following expression:

k̃3(τ, ξ) = σ
5∑

i=1

1

i2π2
cos(2πiτ)ξi (4.5)

where ξi, i = 1, 2, . . . , 5 are independent uniformly distributed random variables on

[−1, 1].

4.1 Stochastic collocation method

The collocation approach provides a procedure to predict the behavior of a given system

at a fixed time by interpolation. To illustrate the numerical implementation of the

SCM, we consider the following simple random dynamical system:

u′ = −α(ξ)u, t > 0, u(0) = u0, (4.6)

where the coefficient α is a function of the random variable ξ on the interval [a, b] with

the probability density function ρ [18].

Let Θ = {ξ(i)}Ni=1 ∈ [a, b] be a set of nodes selected on the interval [a, b] according

to a distribution with density ρ, where N is the total number of nodes. Clearly, Eq.

(4.6) has to be satisfied at each node for k = 1, . . . , N , so we have the deterministic

equations:

u′(t) = −α(ξ(k))u, t > 0, u(0) = u0. (4.7)

Solving the differential equation (4.7), we get a deterministic solution u(t; ξ(k)) for each

sample. Outside the nodal set Θ, the solution u(t, ξ) is estimated by the interpolation

based on u(t; ξ(i)).

From the well-developed classical theory of univariate Lagrange polynomial interpo-

lation, we know that the convergence of a high degree polynomial interpolation requires
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certain degree of smoothness. However, for a problem exhibiting a jump phenomena,

even the assumption of continuity may not be satisfied. When using high degree inter-

polation polynomials, the discontinuity of the predicted function could result in a slow

convergence or even divergence (e.g. the Gibbs’ phenomenon [16]). Consequently, for

the SCM, piecewise interpolation methods are generally preferred.

Although the SCM is an effective numerical scheme for UQ problems, the imple-

mentation becomes difficult and inefficient for multidimensional cases, because com-

puting the coefficients of Lagrange polynomials turns out to be a very challenging task.

A simple way to overcome this difficulty is to use the tensor product [3]. Although

its implementation is straightforward, this approach is not recommended because the

number of nodes, and hence the computational time, increases exponentially. Alterna-

tively, we can construct a more efficient multidimensional collocation method using a

sparse grid algorithm developed by Smolyak [15]. The sparse grid strategy has been

successfully implemented to study various engineering UQ problems [10, 13], and it

has been demonstrated that in some applications, it can overcomes the difficulties due

to the ’curse of dimensionality’ [5].

Without loss of generality, we consider to approximate a function f : [0.1]d → R

using the values of the function at some selected nodes. In the one-dimensional case

(d = 1), the interpolation formula is given by

I if =
∑
xi
j∈Xi

f(xij)δxi
j
, (4.8)

where Xi = {xij ∈ [0, 1], j = 1, . . . ,mi} is the set of nodes, i ∈ {0}∪N is the resolution

level that controls the grid, and δxi
j
satisfies δxi

j
(xij) = 1 and δxi

j
(y) = 0 for y ̸= xij,

y ∈ Xi. Similarly, using the tensor product, we construct an interpolation formula for

multivariate cases (d > 1):

(I i1 ⊗ · · · ⊗ I id)f =
∑

x
i1
j1
∈Xi1

· · ·
∑

x
id
jd
∈Xid

f(xi1j1 , . . . , x
id
jd
)(δ

x
i1
j1

⊗ · · · ⊗ δ
x
id
jd

). (4.9)

However, the tensor product produces a large number mi1 · · ·mid of nodes, and the
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nodal set X =
∏d

j=1 X
ij is referred as the full grid.

To reduce the number of nodes, Smolyak proposed a more flexible selection algo-

rithm [15]. With I0 = 0,△i = I i+1 − I i, i = (i1, . . . , id) |i| = i1 + · · · + id, and q ≥ 0,

the Smolyak interpolation is presented in [15] as

Aq,d(f) =
∑
|i|≤q

(△i1 ⊗ · · · ⊗ △id)(f) = Aq−1,d(f) +
∑
|i|=q

(△i1 ⊗ · · · ⊗ △id)(f). (4.10)

Due to the recursive structure of Eq. (4.10), Aq−1,d(f), the interpolation results at

resolution level q − 1, are utilized in the construction of the Smolyak algorithm at the

resolution level q. If the nodal set on each dimension is nested (i.e. Xij−1 ⊂ Xij) in

the construction of the Smolyak algorithm from the resolution level q − 1 to q, it is

only necessary to evaluate the function f on the nodal set △Hq,d, given by [4]

△Hq,d =
∪
|i|=q

△X i1
⊗

· · ·
⊗

△X id . (4.11)

where △X0 = X0, △X ij = Xij\Xij−1). Hence the sparse grid at resolution level q is

constructed using the following set of nodes

Hq,d =
∪

l=0...q

△Hl,d =
∪
|i|≤q

△X i1
⊗

· · ·
⊗

△X id . (4.12)

Several sparse grid strategies have been reported, and the nested sparse grid with

equidistant nodes [10] is used in the present study. Here, xij are defined as

xij =

(j − 1)/(mi − 1) for j = 1, . . . ,mi if mi > 1,

1/2 for j = 1 if mi = 1,

(4.13)

mi =

1 if i = 0,

2i + 1 if i > 0.

(4.14)

We illustrate the construction of the sparse grid for a two dimensional example

(d = 2), with resolution levels, q = 1 and q = 2. At the resolution level q = 1,

using Eqs. (4.11)-(4.12), we get H1,2 = △H0,2

∪
△H1,2, and △H0,2 = △X0

⊗
△X0,
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Figure 12: The hierarchical construction from H1,2 (a1, a2) to H2,2 (b1, b2), and the
comparison of the nested sparse grid H1,2 (a2), H2,2 (b2) and full grid X2

⊗
X2 (a3, b3),

where (a1) presents the decomposition of H1,2, (b1) presents the decomposition of H2,2

.

△H1,2 = (△X0
⊗

△X1)
∪
(△X1

⊗
△X0). Replacing i with 0 and 1 in Eqs. (4.13)-

(4.14), for the equidistant nodes we have X0 = {x01} = {1/2} and X1 = {x11, x12, x13} =

{0, 1/2, 1}. Thus △X0 = {1/2}, △X1 = {0, 1} and the two dimensional sparse grid at

resolution level 1 is H1,2 = △X0
⊗

△X0
∪

△X1
⊗

△X0
∪
△X0

⊗
△X1 (see Fig. 12

(a1 - a3) for the construction of H1,2 and a comparison with the full grid X1
⊗

X1).

The two dimensional Smolyak interpolation with resolution level 1, A1,2(f) in Eq.

(4.10), is given by (△0⊗△0)(f)+(△1⊗△0)(f)+(△0⊗△1)(f), where △i = I i+1−I i.

By the recursive structure of the sparse grid in Eq. (4.12), the construction of the

sparse grid from resolution level 1 to 2 requires only the addition of the nodes on the
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set △H2,2 = △X0
⊗

△X2
∪
△X1

⊗
△X1

∪
△X2

⊗
△X0 (see Fig. 12 (b1)). Making

i = 2 in Eqs (4.13)-(4.14), for the equidistant nodes we have X2 = {x21, x22, x23, x24, x25} =

{0, 1/4, 1/2, 3/4, 1} and △X2 = {1/4, 3/4} (see Fig. 12 (b1, b2)). Hence the two

dimensional Smolyak interpolation with resolution level 2 is given in the Eq. (4.10) as

A2,2(f) = A1,2(f)+(△0⊗△2)(f)+(△1⊗△1)(f)+(△2⊗△0)(f). Moreover from Fig. 12

(b2, b3) we observe that the two dimensional sparse grid H2,2 = H1,2

∪
△H2,2 requires

less nodal points than the full grid X2
⊗

X2. The amount of the nodes reduced by the

sparse grid compared to the full grid with the same one dimensional nodes increases

with the resolution level q, but the sparse grid consist of much smaller number of

nodes than that of full grid [18]. For instance, |H6,2| = 321, and |X6
⊗

X6| = 4225;

|H7,2| = 705, and |X7
⊗

X7| = 16641. Hence compared with the nodes in the full

grid model, a significant reduction of 92% and 95% is achieved when the sparse grid

with the resolution level 6 and 7 is used. Thus the Smolyak algorithm provides a more

flexible high dimensional interpolation method.

Considering the discontinuity associated with the bifurcation behavior, we select

the linear hat functions [10] as the basis functions δxi
j
(x) :

δxi
j
(x) = 1 for i = 1, (4.15)

and for i > 1 and j = 1, . . . ,mi

δxi
j
(x) =

1− (mi − 1)|x− xij|, if |x− xij| < 1/(mi − 1),

0, otherwise.

(4.16)

If a d-variate function f has continuous mixed derivatives

Dαf =
∂|α|f

∂xα1
1 · · · ∂xαd

d

, (4.17)

where α = (α1, . . . , αd) with α1, . . . , αd positive integers less than or equal with 2, and

|α| =
∑d

i=1 αi, then according to [15], the piecewise linear Smolyak interpolation error

is given by

∥ f −Aq,d(f) ∥∞= O(N−2| log2N |3(d−1)), (4.18)
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with N denoting the number of nodes of this type of sparse grid. However, the piecewise

linear interpolation error on the full grid with N nodes is only O(N (−2/d)) [5].

From Eq. (4.10), the interpolation in a standard sparse grid is constructed by

the summation of (△i1 ⊗ · · · ⊗ △id)(f) with the index set |i| ≤ q. The conventional

sparse grid approach treats all dimensions equally, and thus gains no immediate ad-

vantage for problems in which dimensions are of different importance. A dimension

adaptive method was developed by Gerstner et. al. [5] to adaptively assess the dimen-

sions according to their importance. The idea of the adaptive algorithm is to find the

most important dimensions and then construct a different index set depending on the

different importance of each dimension.

In an adaptive algorithm, the index set is separated into two disjoint sets, called the

active and the old index set. The active index set contains the indices i, whose error

has been estimated by the error estimator, but the error of the forward neighbors of i

have not yet been calculated. Here, the forwards neighbors of an index i are defined

as the d indices {i+ ej, 1 ≤ j ≤ d}, where ej is the j-th unit vector. The old index set

is formed by the other indices of the current index set. An adaptive process applied to

a two dimensional example is presented by Gerstner et al. (see Fig. 2 in [5]). It is of

interest to mention that the error estimator for the nested sets of nodes is given by

max{w | △Qif |
| △Q1f |

, (1− w)
1

ni

)} (4.19)

where △Qif is the quadrature difference on the index i, ni is given by ni = mi1 . . .mid ,

which is the number of nodes required for the computation of the quadrature difference

△Qif , and w ∈ [0, 1] is the control parameter [5]. Note that when w = 0, there is no

adaptive process and the grid construction reverts to the classical sparse grid. If the

estimated error for a given index is very small, then the index may stop any future

refinement in its forwards neighbors. However, it is possible that the forward neighbors

may have a large error and a refinement is required.
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4.2 Numerical simulations

We now study the performance of the SCM for the 2 DOF aeroelastic system given

in Eqs. (2.6). Following [8], [11] and [1], the system parameters are specified as:

µ = 100, ah = −0.5, xα = 0.25, ω̃ = 0.2, rα = −0.5, ζη = 0 and ζα = 0, while random

variables are introduced in the coefficient k3 and the initial pitch angle α(0).

In this section, the SCM is applied to study the secondary bifurcation by taking

into account of the presence of uncertainties. Since the flow will not jump until U∗

is close to 2U∗
L, and the jump phenomenon occurs only at certain values of k3, our

simulations will focus on U∗/U∗
L ≈ 1.98 and k3 ≈ 80. The effect of the uncertainties

in the initial condition will also be examined. MCS reported here are based on 10,000

samples.

4.2.1 Simulations with one random variable

We first consider a model with a random variable in the cubic nonlinearity in the pitch

restoring force,

k3(ξ) = [k3]0 + [k3]1ξ (4.20)

where [k3]0 = 80, [k3]1 = 8 and ξ is a uniform random variable on [−1, 1]. The initial

condition is deterministic, α(0) = 1.0◦, and all other initial values are set to zero. Near

U∗/U∗
L ≈ 1.98, we observe a jump phenomenon in the pitch motion similar to that

reported by Liu et. al. [9]. However, to capture the correct aeroelastic behaviors, a

very accurate solver must be employed for the deterministic aeroelastic system. Fig. 13

displays the pitch motions using Matlab ode45 algorithm, which is an adaptive 4th/5th-

order Runge-Kutta scheme with an error checking. Clearly, the solutions depend on

the tolerance specified in the ode45 algorithm, and the computed pitch motions are

identical when the absolute error tolerances are set to be 10−11 and 10−13. Thus, to

ensure accurate numerical solutions for the deterministic system, we set the tolerance

level to 10−11 in all calculations.

57



0 500 1000 1500 2000
−0.5

0

0.5
α

0 500 1000 1500 2000
−0.5

0

0.5

α

0 500 1000 1500 2000
−0.5

0

0.5

α

0 500 1000 1500 2000
−0.5

0

0.5

non−dimensional time

α

(d)

(c)

(b)

(a)

Figure 13: Pitch motions for k3 = 78, U∗/U∗
L = 1.9802, with various relative and

absolute error tolerance in ode45: (a)10−3; (b)10−6; (c)10−11; (d)10−13

Interpolation with piecewise linear functions

The results presented here are based on SCM using a piecewise linear interpolation.

In Fig. 14, we show the LCO amplitude response at three different flow velocities.

The values U∗/U∗
L = 1.975 and 1.985 are chosen, so that the jump phenomenon does

not occur (see Fig.14(a)-(d)), and the pitch motion is restricted in either Hopf or

secondary bifurcation. Notice that, the amplitude for U∗/U∗
L = 1.985 (i.e., in the

secondary bifurcation) is higher than the amplitude for U∗/U∗
L = 1.975 (i.e., in the Hopf

bifurcation). At U∗/U∗
L = 1.9802, we observe the occurrence of a jump phenomenon

in the LCO amplitudes. In Fig. 14(e,f), the amplitude plot has two discontinuous

parts, such that the lower part corresponds to the Hopf bifurcation and the upper part

corresponds to the secondary bifurcation.

The SCM simulation displayed in Fig. 14(e,f) clearly indicates that there is a
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Figure 14: The amplitude response at various U∗/UL values, where red dots: deter-
ministic, blue dashed lines: SCM with 101 nodes in (a,c,e) and SCM with 201 nodes
in (b,d,f)

significant decay of the LCO amplitudes near k3 = 78 at which the jump phenomenon

between the bifurcations occurs. The jump between the two bifurcations introduces

the difficulty to accurately simulate the LCO amplitude using the SCM. However,

if we compare Figs. 14 (e) and (f), we notice that some improvement around the

discontinuity is obtained if more nodes are used in the SCM.

Fig. 15 shows the corresponding pitch motions at t=2000. Because the decay of the

LCO amplitude is a result of the interpolation error in the random space, a significant

error of the dynamical response is observed near k3 = 78 (see Fig. 15 (e-f)), where the

pitch motion is discontinuous in the random space. Thus the pictures presented in Fig.

15 reconfirm the simulation results reported in Fig. 14. Notice that for U∗/U∗
L = 1.975

and 1.985, when the pitch motion is entirely in the Hopf or the secondary bifurcation,

there is no decay in the LCO amplitudes. Moreover for cases with no discontinuity the
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Figure 15: Pitch motion at t=2000 at various U∗/UL values, where red dots: deter-
ministic, blue dashed lines: SCM with 101 nodes in (a,c,e) and SCM with 201 nodes
in (b,d,f)

SCM results using 101 or 201 nodes are essentially the same (see Fig. 14 (a-d) and

Fig. 15 (a-d)).

Interpolation with high order basis functions

The previous results obtained using the SCM show that in order to accurately capture

the discontinuity, we need to increase the number of nodes. Since the decay of the LCO

amplitude is due to the interpolation error in the random space, a better alternative

approach is to replace the piecewise linear interpolation with more accurate interpola-

tion formulas, such as the piecewise cubic interpolation and the piecewise cubic spline

interpolation. We select equidistant nodes, so that the total number of interpolating

nodes remains unchanged.

Fig. 16 shows the probability density function (PDF) of the LCO amplitudes at
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Figure 16: PDFs of the LCO amplitudes at U∗/U∗
L = 1.9802 by various interpolations

with 151 nodes

U∗/U∗
L = 1.9802 using the SCM with various interpolation functions with 151 nodes

and using a MCS. A small tail on the left side of the PDF is observed for the SCM

results. We note that the SCM with the cubic spline interpolation has the smallest

tail, and it produces an excellent agreement with the MCS. However, a small tail in

the PDF generated by the cubic spline interpolation is also observed on the right side

of PDF. This implies that the SCM with the cubic spline interpolation overestimates

the LCO amplitude.

In Fig. 17 we compare the convergence of the SCM using various interpolations

methods. The mean square error is defined by

E[(αmax(ξ)− α̂max(ξ))2] =

∫
(αmax(ξ)− α̂max(ξ))2ρ(ξ)dξ (4.21)

where αmax(ξ) is the exact LCO amplitude for the random variable ξ, α̂max is the LCO

amplitude simulated by the SCM, and ρ(ξ) is the probability density function of ξ (i.e.

the uniform density on [−1, 1])). The comparison in Fig. 17 also indicates that the

best convergence rate is given by the SCM with a cubic spline interpolation. The SCM

mean square error using a cubic spline interpolation with 61 nodes is about the same

as that using a linear interpolation with 301 nodes. It should be noted that in a typical

SCM simulation with 500 nodes, the computing time used for the interpolation is less
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Figure 17: Comparison of mean square errors generated by various interpolations

that one percent of the overall computing time. Hence, for accurate simulation results,

high order interpolation methods should be used.

4.2.2 Simulations with two random variables

In this section, we consider a model with uncertainties in the cubic nonlinearity term

k3 and the initial pitch angle α0. The randomness are introduced as follows:

α0 = [α0]0 + [α0]1ξ1,

k3(ξ2) = [k3]0 + [k3]1ξ2

(4.22)

where [α0]0 = 0, [α0]1 = 5, [k3]0 = 80, [k3]1 = 8, ξ1 is a uniform variables on [0,1], ξ2 is

a uniform variables on [-1,1], and ξ1 and ξ2 are independent. Here, (α0, 0, 0, 0, 0, 0, 0, 0)

represents the initial condition of the aeroelastic system given in Eq. (2.6). Hence only

the nonnegative initial pitch angle is considered.

Particular attention is given to cases when U∗/U∗
L = 1.98 and 1.985, for which

the pitch motion changes from the LCO corresponding to the Hopf bifurcation to

the LCO corresponding to the secondary bifurcation. Here, the Smolyak algorithm is

implemented using the Matlab Sparse Grid Interpolation Toolbox developed by Klimke

[7].
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Figure 18: The amplitude response surface for U∗/U∗
L = 1.98. secondary bifurcation

(red ·), Hopf bifurcation (blue *), where α0 = 0◦ is a singularity

Figs. 18 and 19 display the amplitude response surface for U∗/U∗
L = 1.98 and 1.985.

Clearly, jump phenomena between the Hopf and secondary bifurcations exist at these

flow velocities. In stochastic analysis, the jump phenomena lead to discontinuities in

the random spaces, and consequently, to larger numerical errors for the SCM. In Figs.

18 and 19, the regions with different behavior are presented as bands. In the response

surface, the x-axis corresponds to the random variables associated with α0, and the

y-axis with random variables in k3. It is interesting to note that the responses are

almost parallel to the k3 axis. Hence, for the aeroelastic UQ problem, the initial value

of the pitch angle is more critical than the cubic coefficient k3. The simulation results

are also confirmed by the bi-modal PDFs displayed in Fig. 20. The left peak on the

PDFs is related to the amplitude of the LCO in the Hopf bifurcation, and the right

peak corresponds to the amplitude of the LCO in the secondary bifurcation.

To demonstrate the effectiveness of the Smolyak algorithm, Fig. 20 reports the

SCM performances using various grid strategies. Here, we simulate the PDFs of the

amplitude of the LCOs generated by the piecewise linear SCM using 51× 21 full grid

(i.e., 51 nodes in α0-dimension and 21 nodes in k3-dimension), 21 × 51 full grid, and

sparse grid with level 7 resolution (i.e., 705 nodes). Although the tensor product
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Figure 19: The amplitude response surface for U∗/U∗
L = 1.985. secondary bifurcation

(red ·), Hopf bifurcation (blue *), where α0 = 0◦ is a singularity

produces the same number of nodes for the SCM, Fig 20 clearly shows that the PDFs

with 51× 21 full-grid is in better agreement with the MCS than that using 21× 51 full

grid. This is reasonable since the behavior is more sensitive to the initial pitch angle

than the cubic nonlinear term. Among various grid methods, the SCM with the sparse

grid gives the best approximation. Even though only 705 nodes are employed in the

sparse grid with the resolution level 7, the results are in better agreement with the MCS

than the results obtained using the full grid with 1071 nodes. This demonstrates that

the Smolyak’s sparse grid algorithm with a smaller number of nodes produces more

accurate results than the interpolation based on the full grid (see also the interpolation

error in Eq.(4.18)).

Fig. 21 displays the mean square error of the LCO amplitude using various grids:

full grid with 21× 21, 21× 51, 21× 101 nodes (i.e., increasing the number of nodes in

k3); full grid with 21 × 21, 51 × 21, 101 × 21 nodes (i.e., increasing the nodes in α0);

full grid with 21 × 21, 25 × 25, 51 × 51 nodes (i.e., increasing the nodes in both k3

and α0); and the sparse grids with resolution level from 1 (5 nodes) to 8 (1537 nodes).

From the results presented here, we conclude that although increasing the nodes in the

α0-dimension improves the convergence when using full grid, the SCM with a sparse
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Figure 20: PDFs generated by various methods on [0◦, 5◦]×[72, 88] for (a) U∗/U∗
L = 1.98

and (b) U∗/U∗
L = 1.985

grid is clearly more efficient and produces a smaller error than those based on full grids

(see Fig. 21).

4.2.3 Simulations with five random variables

In order to further evaluate the performance of the proposed SCM, we consider the

aeroelastic system given in Eq. (2.6) with a fixed initial value for α = 1◦, but more

random variables are now introduced in the nonlinear coefficient k3. Since k3 plays a

crucial role in the onset of the Hopf and the secondary bifurcations [8], it is important

to investigate the effects due to the presence of randomness in the nonlinear pitch

stiffness. Here, we consider a time dependent process instead of a random variable. An

aeroelastic model perturbed by a time dependent noise was also considered in [2], and

the stochastic bifurcation was studied using a stochastic averaging.
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Figure 21: Comparison of mean square errors generated by various methods on [0◦, 5◦]×
[72, 88] for (a) U∗/U∗

L = 1.98 and (b) U∗/U∗
L = 1.985

Let

k3(t, ξ) = k3 + k̃3(t, ξ). (4.23)

where k3 is a constant and k̃3(t, ξ) is the noise with the following expression:

k̃3(t, ξ) = σ
M∑
i=1

1

i2π2
cos(2πit)ξi (4.24)

where ξi, i = 1, 2, . . . ,M are independent uniformly distributed random variables on

[−1, 1]. The form given in Eq. (4.24) has been used to simulate noise in [19], and it

represents a truncated expression of the Karhunen-Loeve (KL) expansion of a stochastic

process. The series (4.24) converges as M −→ ∞, and

E(k3(t, ξ)) = k3, k3 −
σ

6
< k3(t, ξ) < k3 +

σ

6
. (4.25)

In this study, the number M of random variables is set to five. Numerical simula-

tions are carried out at the flow velocity U∗/U∗
L = 1.9802, with k3 = 80 and σ = 48.
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Figure 22: Comparison of PDFs and the SCM mean square error for k3 = 80

The truncated KL expansion (4.24) is strictly positive for any positive integer M and

it is bounded by [72, 88]. Here, we particularly focus on the comparisons of the simu-

lation results using the Monte-Carlo method with 20,000 samples and the SCM with

sparse grid.

The PDFs generated by the MCS and the SCM are shown in Fig. 22(a). Although

k3 = 80 is near the value where the jump phenomenon occurs (see Fig. 14), the range

of the PDFsrs (see Fig. 14), the range of the PDFs is around 0.2588, and only one

peak is displayed. Hence, from the LCO amplitude, we conclude that the aeroelastic

system is in the secondary bifurcation. Fig. 22(b) shows that the SCM mean square

error is decreasing as the resolution level increases in the sparse grid. Since no jump

phenomenon occurs, the SCM produces accurate predictions. This is confirmed in Fig.

23 by comparing the time histories of the expected values of the pitch motion computed

by MCS and the SCM with level q = 5 (see Eqs. (4.10)).
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Figure 23: Expected value of the pitch motion calculated using the MCS and the SCM
with level q = 5

To investigate a challenging case with discontinuity, we keep M = 5, but the ex-

pected value of cubic coefficient is shifted to k3 = 78, a value around which a jump

phenomenon occurs. Moreover, to extend the range of the expansion, we set σ to 60 .

Hence, k3 is bounded by [68, 88].

Fig. 24(a) shows a bimodal PDF generated by the MCS, and the shape indicates

that the random aeroelastic system converges to two types of LCOs. The left peak

of the PDF corresponds to a smaller amplitude of the LCO for the Hopf bifurca-

tion, and the right peak represents the LCOs in the secondary bifurcation. The jump

phenomenon from the Hopf bifurcation to the secondary bifurcation produces the dis-

continuous behavior in the five dimensional random spaces. The corresponding PDFs

obtained using sparse grid at different resolution levels are displayed in Fig. 24 (b)-

(d). Clearly, better agreements are achieved as the resolution level q increases, and the

bimodal shapes with the correct peak locations are obtained when q ≥ 4.

The discontinuous behavior is also shown in the plot of the expected value of α

displayed in Fig. 25. Note that when the non-dimensional time is around 800, a

change of amplitude of the expected value of pitch happens. The expected value of α

based on the SCM with level q = 5 has a good agreement with the results obtained

using the MCS. However, unlike the previous case when an almost prefect match was
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Figure 24: Comparison of PDFs from the MCS(a) and the SCM with sparse grid and q =
3(b), 4(c) and 5(d)

shown in Fig. 23, a small discrepancy is observed in Fig. 25. The difficulty is generated

by the presence of discontinuity, and it can also be seen by checking the mean square

error plotted in Fig. 26. Compared with the errors shown in Fig. 22 (b), we note that

when a discontinuity exits in the UQ problem, increasing the level (i.e., using more

nodes) does not guarantee the reduction of the error.

Although we can achieve more accurate SCM results by increasing the resolution

level in the Smolyak algorithm, this strategy is not recommended when dealing with

high dimensional UQ problems because of the enormous increase in computing time.

An effective way to improve the efficiency of the Smolyak algorithm is to incorporate

the dimension adaptive method proposed in [5].

For the problem under consideration, the uncertainty is given in Eq. (4.24). Since

the random variable ξi is scaled by 1/(i2π2), the effect of ξi is controlled by the index

i. For this reason, the first random variable ξ1 plays the essential role in the ’noise’.

Hence, the resolution level in each dimension should be set according to the effect of
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Figure 26: SCM mean square error with various levels

each random variable instead of treating all dimensions equally. In the implementation

of this dimension adaptive approach, the iterative adaptive process is terminated once

the number of accumulated nodes becomes greater than 1000.

Fig. 27 shows the PDFs generated by the MCS and the SCM with the dimension

adaptive algorithm with w = 0, 0.5, 1. When the control parameter w = 1, the first

dimension has the maximum resolution level implying that the random variable ξ1 has

a major contribution in the perturbation. As shown in Fig. 27, the SCM with adaptive

sparse grid produces the bimodal shapes of the PDFs. The locations of the two peaks

are in good agreement with those found using the MCS. Moreover, from the SCM

70



0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

Amplitude(rad)

R
ea

liz
at

io
n/

T
ot

al
 s

im
ul

at
io

n

(a)

0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

Amplitude(rad)

R
ea

liz
at

io
n/

T
ot

al
 s

im
ul

at
io

n

(b)

0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

Amplitude(rad)

R
ea

liz
at

io
n/

T
ot

al
 s

im
ul

at
io

n

(c)

0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

Amplitude(rad)

R
ea

liz
at

io
n/

T
ot

al
 s

im
ul

at
io

n

(d)

Figure 27: Comparison of PDFs from the MCS(a) and the SCM with the dimension
adaptive approach with (b)w = 0, where the number of nodes = 1001, max resolution
level on each dimension = [5 5 4 4 4]; (c)w = 0.5, where the number of nodes = 1025,
max resolution level on each dimension = [8 4 4 4 4]; (d)w = 1, where the number of
nodes = 1035, max resolution level on each dimension = [9 2 1 1 1]

mean square errors for various values of w illustrated in Fig. 28, it is clear that error

reduction is achieved when the dimension adaptive method is applied (i.e., w ̸= 0).

For the problem considered here, w = 1 gives the best numerical simulation.

4.3 Conclusion

Interpolation schemes based on piecewise linear, piecewise cubic and piecewise cubic

spline basis functions are examined, and the advantage of using a high order interpola-

tion in the stochastic collocation method is demonstrated. For aeroelastic systems with

multidimensional random variables, the efficiency of the stochastic collocation method
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Figure 28: The SCM mean square error with the dimension adaptive algorithm at
various values of the control parameter w

can be enhanced by incorporating a sparse grid and a dimension adaptive strategy. The

stochastic collocation method performs well for the random aeroelastic model, and the

results are in good agreement with those obtained by the Monte Carlo simulations.

However, more work is needed in order to develop an effective stochastic collocation

method which is capable of producing accurate simulations for the aeroelastic behavior

when discontinuity exists in the random space.
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Part II

Stochastic Symplectic Schemes
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Chapter 5

Construction High Order Strong

Stochastic Sympletic Scheme

The symplectic integration is a special type of numerical method which is capable of

preserving the symplecticity properties of the Hamiltonian system. The pioneering

work on the symplectic integration is due to de Vogelaere [14], Ruth [13] and Feng [3].

Symplectic methods have been applied successfully to deterministic Hamiltonian sys-

tems, and numerical simulations consistently show that the most important feature of

this approach is that the accuracy of the computed solution is guaranteed even for long

term computation. In this chapter, we extend the approach to stochastic Hamiltonian

systems (SHS), and we propose a systemic procedure to generate symplectic numerical

schemes of any desired order for stochastic Hamiltonian systems.

There are growing interests and efforts on the theoretical study and computational

implementation of numerical methods for SHS [12], [11], [9], [5], [15]. Milstein et al.

[12] [11] introduced the symplectic numerical schemes to SHS, and demonstrated the

superiority of the symplectic methods for long time computation. Here, we follow the

rigorous approach presented in [2], and employ the properties of multiple stochastic

integrals to derive a recursive formula for determining the coefficients of the generating

function. Theoretically, this formula allow us to construct stochastic sympletic stochas-

tic schemes of arbitrary high order with corresponding conditions on the Hamiltonian

functions. Hence, the major contribution of the work reported here is to present a

framework to construct different types of stochastic symplectic schemes of any order.

Since the computation complexity increases with the order of the numerical schemes,
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we mainly focus on the symplectic schemes with mean square order 1 for which we

also present the convergence analysis. Moreover, for special types of SHSs, such as

SHSs with additive noise, SHSs with separable Hamiltonians, or SHS preserving the

Hamiltonian functions, using the method based on generating functions we construct

computationally attractive symplectic schemes of mean square order 2. The study of

high order stochastic symplectic scheme for the general SHS (5.1) can lead to more

efficient construction of high order Runge-Kutta type schemes that avoid the need of

higher order derivatives.

5.1 Stochastic Hamiltonian systems and symplec-

ticity

Consider the stochastic differential equations (SDEs) in the sense of the Stratonovich:

dPi = −∂H
(0)(P,Q)

∂Qi

dt−
m∑
r=1

∂H(r)(P,Q)

∂Qi

◦ dwr
t , P (t0) = p,

dQi =
∂H(0)(P,Q)

∂Pi

dt+
m∑
r=1

∂H(r)(P,Q)

∂Pi

◦ dwr
t , Q(t0) = q,

(5.1)

where P , Q, p, q are n-dimensional vectors with components Pi, Qi, pi, qi, i = 1, . . . , n,

and wr
t , r = 1, . . . ,m are independent standard Wiener Processes. The SDEs (5.1) are

called the Stochastic Hamiltonian System (SHS) ([12]). The SHS (5.1) includes both

Hamiltonian systems with additive or multiplicative noise.

A non-autonomous SHS is given by time-dependent Hamiltonian functionsH(r)(t, P,Q),

r = 0, . . . ,m. However, it can be rewritten as an autonomous SHS by introducing new

variables ek and fk. Let dfr = dt, der = −∂H(r)(t,P,Q)
∂t

◦dwr
t , (where dw

0
t := dt), with the

initial condition er(t0) = −H(r)(t0, p, q) and fr(t0) = t0, r = 0, . . . ,m. Then the new

Hamiltonian functions H̄(r)(P̄ , Q̄) = H(r)(fr, P,Q), r = 1, . . . ,m, and H̄(0)(P̄ , Q̄) =

H(0)(fr, P,Q) + e0 + · · · + em, define an autonomous SHS with P̄ = (P T , e0, . . . , em)
T
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and Q̄ = (QT , f0, . . . , fm)
T . Hence, in this study, we will only investigate the au-

tonomous case as given in (5.1)

We denote the solution of the SHS (5.1) by X(t; t0, x0;ω) =
(
P T (t; t0, p, q;ω),

QT (t; t0, p, q;ω)
)T

, where t0 ≤ t ≤ t0 + T , and ω is an elementary event. It is known

that if H(j), j = 0, . . . ,m are sufficiently smooth, then X(t; t0, x0;ω) is a phase flow

(diffeomorphism) for almost any ω ([7]). To simplify the notation, we will remove any

mentioning of the dependence on ω unless it is absolutely necessary to avoid confu-

sions, and we make the convention to understand that all the equations involving the

solution of the SHS (5.1) are true for almost any ω.

In differential geometry, the differential 1-form of a function f : R2n → R on

ξ ∈ R2n is defined as:

df(ξ) :=
2n∑
i=1

∂f

∂zi
ξi. (5.2)

The exterior product df ∧ dg of ξ, η ∈ R2n is given by df ∧ dg(ξ, η) = df(ξ)dg(η) −

df(η)dg(ξ), and represents the oriented area of the image of the parallelogram with

sides df(ξ) and dg(η) on the df(ξ), dg(η)-plane.

The stochastic flow (p, q) −→ (P,Q) of the SHS (5.1) preserves symplectic structure

(Theorem 2.1 in [12]) as follows:

dP ∧ dQ = dp ∧ dq, (5.3)

i.e. the sum over the oriented areas of its projections onto the two dimensional plane

(pi, qi) is invariant. Here we consider the differential 2-form

dp ∧ dq = dp1 ∧ dq1 + · · ·+ dpn ∧ dqn, (5.4)

and the differentiation in (5.1) and (5.3) have different meanings: in (5.1) p, q are

fixed parameters and differentiation is done with respect to time t, while in (5.3)

differentiation is carried out with respect to the initial data p, q. We say that a

method based on the one step approximation P̄ = P̄ (t+ h; t, p, q), Q̄ = Q̄(t+ h; t, p, q)

preserves symplectic structure if

dP̄ ∧ dQ̄ = dp ∧ dq. (5.5)
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Here, we introduce another definition of symplecticity. A random map φ(ω, x) is a

map with the property that for any fixed x ∈ R2n, φ(·, x) is a random variable. We

denote φω(·) = φ(ω, ·).

Definition 5.1 (symplecticity:) A differentiable random map φω : U → R2n (where

U ⊂ R2n is an open set) is called symplectic if the Jacobian matrix φ′
ω satisfies

φ′
ω(p, q)

TJφ′
ω(p, q) = J with J =

 0 I

−I 0

 (5.6)

for almost any ω and any p, q ∈ Rn, (p, q)T ∈ U , where I is the identity matrix of

dimension n.

The two definitions of symplecticity are equivalent, as stated in the following the-

orem:

Theorem 5.2 A random differentiable map φω : (p, q) → (P,Q) is symplectic if and

only if dP ∧ dQ = dp ∧ dq almost surely (a.s.).

Proof: For any ξ, η ∈ Rn and for the 2n × 1 vectors ζ1 = (dpξ, dqξ)
T and ζ2 =

(dpη, dqη)
T , we have

ζT1 Jζ2 = (dpξ, dqξ)J(dpη, dqη)
T =

n∑
i=1

(dpξidqηi−dqξidpηi) =
n∑

i=1

dpi∧dqi = dp∧dq(ξ, η).

(5.7)

If Φ is the Jacobian of φω, then (dP, dQ)T = Φ(dp, dq)T , and proceeding as in (5.7),

we have

dP ∧ dQ(ξ, η) = (dpξ, dqξ)Φ
TJΦ(dpη, dqη)

T . (5.8)

Thus, we get ΦTJΦ = J a.s. if and only if dP ∧ dQ = dp ∧ dq a.s..
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5.2 Generating function and stochastic Hamiltonian-

Jacobi partial differential equation

In the deterministic case, generating functions are powerful tools to study symplectic

transformations. The next lemma introduces the generating functions Sω, S
i
ω, i = 1, 2, 3

in the stochastic case.

Lemma 5.3 Let φω : (p, q) → (P,Q) be a smooth random map from R2n to R2n. Then

φω is symplectic if any of the following statements is true:

1. There exists locally a smooth random map Sω from R2n to R2n such that ∂(Sω)/∂q∂Q

is invertible a.s. and we have

Pi =
∂S

∂Qi

(q,Q), pi = −∂S
∂qi

(q,Q), i = 1, . . . , n. (5.9)

2. There exists locally a smooth random map S1
ω from R2n to R2n such that ∂(P T q+

S1
ω)/∂P∂q is invertible a.s., and we have

pi = Pi +
∂S1

ω

∂qi
(P, q), Qi = qi +

∂S1
ω

∂Pi

(P, q), i = 1, . . . , n. (5.10)

3. There exists locally a smooth random map S2
ω from R2n to R2n such that ∂(pTQ+

S2
ω)/∂p∂Q is invertible a.s., and we have

qi = Qi +
∂S2

ω

∂pi
(p,Q), Pi = pi +

∂S2
ω

∂Qi

(p,Q), i = 1, . . . , n. (5.11)

4. There exists locally a smooth random map S3
ω from R2n to R2n such that ∂((P +

p)T (Q− q)− 2S3
ω)/∂Y ∂y is invertible a.s., and we have

Y = y − J∇S3
ω((y + Y )/2), (5.12)

where Y = (P T , QT )T , y = (pT , qT )T .
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Proof:

The proof can be completed easily by adapting the proof of Theorem 3.1 in [11]. For

example, to prove that the first statement implies that φω is symplectic, we calculate

n∑
i=1

dPi ∧ dQi =
n∑

i=1

(
n∑

j=1

∂2Sω

∂Qi∂Qj

dQj +
n∑

j=1

∂2Sω

∂Qi∂qj
dqj

)
∧ dQi

=
n∑

i=1

n∑
j=1

∂2Sω

∂Qi∂Qj

dQj ∧ dQi +
n∑

i=1

n∑
j=1

∂2Sω

∂Qi∂qj
dqj ∧ dQi,

where everwhere the arguments are Q, q. Since dQi ∧ dQj = −dQj ∧ dQi, we get

n∑
i=1

dPi ∧ dQi =
n∑

i=1

n∑
j=1

∂2Sω

∂Qi∂qj
dqj ∧ dQi. (5.13)

Similarly, using the second equation in (5.9) and dqi ∧ dqj = −dqj ∧ dqi, we have

n∑
i=1

dpi ∧ dqi =
n∑

i=1

n∑
j=1

− ∂2Sω

∂qi∂Qj

dQj ∧ dqi. (5.14)

From (5.13), (5.14) and dqi ∧ dQj = −dQj ∧ dqi, we get dP ∧ dQ = dp ∧ dq a.s., so φω

is symplectic.

The previous lemma gives us a powerful tool to analyze the symplectic structure

and to construct symplectic methods. For instance, for the SHS (5.1), if in the relation

(5.10) we let

S1
ω = hH(0)(P, q) +

h

2

m∑
r=1

n∑
j=1

∂H(r)

∂qj
(P, q)

∂H(r)

∂Pj

(P, q) +
m∑
r=1

√
hξrH

(r)(P, q) (5.15)

where h is the time step and ξr are independent bounded random variables such that

E(ξr−ξ)2 ≤ h, with ξ ∼ N(0, 1), then we obtain the symplectic Euler scheme proposed

by Milstein et al. [12] [11]. Lemma 5.3 guarantees that the numerical scheme is

symplectic. Moreover the implicit midpoint scheme in [11] is obtained by setting

S3
ω = hH(0)((y + Y )/2) +

m∑
r=1

√
hξrH

(r)((y + Y )/2) (5.16)

in relation (5.12).
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The stochastic Hamilton-Jacobi partial differential equation associated with the

SHS (5.1) follows the rigorous approach from [2]. We want to consider the effect of

time in the generating function Sω, so let Sω(x, t) be a family of real valued processes

with parameters x ∈ R2n. We can regard it as a random field with double parameters

x and t. If Sω(x, t) is a C∞ function of x for almost all ω for any t, we can regard

Sω(x, t) as a C∞ value process [8].

Let assume that the Hamiltonian function H(r) for r = 0, . . . ,m in (5.1) belong to

C∞. In addition, we also suppose that:

m∑
r=0

(|∇pH
(r)(P,Q)−∇pH

(r)(p, q)|+|∇qH
(r)(P,Q)−∇qH

(r)(p, q)|) ≤ L1(|P−p|+|Q−q|)

(5.17)

and
m∑
r=0

(|∇pH
(r)(p, q)|+ |∇qH

(r)(p, q)|) ≤ L2(1 + |p|+ |q|) (5.18)

So the Lipschitz condition (5.17) and linear growth bound (5.18) guarantees the lo-

cal existence and uniqueness of the solution
(
P (t, ω)T , Q(t, ω)T

)T
of the SHS (5.1).

Moreover, it is known that X(t; t0, x0;ω) =
(
P T (t; t0, p, q;ω), Q

T (t; t0, p, q;ω)
)T

, where

t0 ≤ t ≤ t0 + T is a diffeomorphism a.s.[7]. Thus the generating function, which is

a random mapping, becomes a stochastic process S(q,Q, t, ω), and through equations

(5.9), this stochastic process generates the symplectic map (p, q) → (P (t, ω), Q(t, ω))

of the flow of the SHS.

For the sake of simplification, let us keep the notation Sω for the stochastic pro-

cess S(q,Q, t, ω). The generating function Sω is connected with the SHS (5.1) by the

Hamilton-Jacobi partial differential equation (HJ PDE) (see Theorem 6.14 in [2]):

dSω = −H(0)(
∂Sω

∂Q1

, . . . ,
∂Sω

∂Qn

, Q1, . . . , Qn)dt−
m∑
r=1

H(r)(
∂Sω

∂Q1

, . . . ,
∂Sω

∂Qn

, Q1, . . . , Qn)◦dwr
t ,

(5.19)

with the initial condition Sω(q,Q, 0) = j(q,Q), where j is a C∞ function. Starting

from the flow X(t; t0, x0;ω) of the SHS (5.1) and using the method of characteristics,

in Theorem 6.14 and its corollary in [2] it is shown that for any initial point x0 there

82



exists a stopping time τ > t0 a.s and a local solution Sω(q,Q, t), t0 ≤ t < τ of

(5.19) for which we have the equations given in (5.9). Moreover, almost sure the flow

X(t; t0, x0;ω) is a local Stratonovich semi-martingale, and Sω(q,Q, t), ∂Sω(q,Q, t)/∂Q

and ∂Sω(q,Q, t)/∂q are local Stratonovich semi-martingale, continuous on (q,Q, t), and

C∞ value processes (see also Theorem 6.1.5 in [8]).

Theorem 5.4 Let Sω(q,Q, t) be a local solution of the HJ PDE (5.22) with initial

values satisfying ∂j
∂qi

(q, q) + ∂j
∂Qi

(q, q) = 0, i = 1, . . . , n, and such that almost sure

Sω(q,Q, t), ∂Sω(q,Q, t)/∂Q and ∂Sω(q,Q, t)/∂q are local Stratonovich semi-martingale,

continuous on (q,Q, t), and C∞ value processes. If there exists a stopping time τ ′ > t0

a.s. such that the matrix (∂2(Sω)/∂q∂Q) is a.s. invertible for t0 ≤ t < τ ′, then the

map (p, q) → (P (t, ω), Q(t, ω)), t0 ≤ t < τ ′, defined by (5.9) is the flow of the SHS

(5.1).

Proof: The mapping (p, q) → (Pω, Qω) is well defined by (5.9) because of the invert-

ibility of the matrix (∂2(Sω)/∂q∂Q) for t0 ≤ t < τ ′, and the implicit function theorem.

Differentiation of the second equation of (5.9) (see Theorem 3.3.2 in [8]) yields

d(
∂Sω

∂qi
) +

n∑
j=1

∂2Sω

∂qi∂Qj

dQj = 0. (5.20)

Recalling that Sω is the solution of the stochastic HJ PDE (5.19), the following

equation holds by differentiating (5.19) with respect to qi (see the corollary of Theorem

6.14 in [2]).

d(
∂Sω

∂qi
) +

n∑
j=1

∂H(0)

∂Pj

∂2Sω

∂qi∂Qj

dt+
m∑
r=1

n∑
j=1

∂H(r)

∂Pj

∂2Sω

∂qi∂Qj

◦ dwr
t = 0. (5.21)

Comparing equations (5.20) and (5.21) and using the invertibility of the matrix

( ∂2Sω

∂qi∂Qj
), we have the second equation of (5.1).

The first equation of (5.1) can be obtained using a similar procedure as reported

above, i.e., by differentiating the first relation of (5.9) and the HJ PDE with respect
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to Qi, then subtracting the obtained equations. Also the initial values guarantee that

(P (t0, ω), Q(t0, ω)) = (p, q).

The HJ PDEs for the coordinate transformations (2) and (4) in Lemma 5.3 can be

expressed as

S1
ω(t, P, q) =

∫ t

t0

H(0)(P, q +∇PS
1
ω(s, P, q))ds+

∫ t

t0

m∑
r=1

H(r)(P, q +∇PS
1
ω(s, P, q)) ◦ dwr

s,

(5.22)

S3
ω(t, w) =

∫ t

t0

H(0)(w +
1

2
J−1∇S3

ω(s, w))ds+

∫ t

t0

m∑
r=1

H(r)(w +
1

2
J−1∇S3

ω(s, w)) ◦ dwr
s,

(5.23)

where w ∈ R2n, and we consider S1
ω|t=t0 = 0 and S3

ω|t=t0 = 0. It is straightforward

to obtain the HJ PDE for the generating function (3) in Lemma 5.3, as it is just the

adjoint case of (2).

5.3 Constructing high-order symplectic schemes

For deterministic problems, the construction of high-order symplectic schemes via gen-

erating functions was first proposed by Feng et al [3], [4]. The key idea is to obtain an

approximation of the solution of the HJ PDE, and then to construct the symplectic

numerical scheme through the relations (5.10) - (5.12).

Following this idea, we now seek an expansion which reflects the stochastic proper-

ties of the generating function. Due to the Ito representation theorem, the relation be-

tween the Ito integral, the Stratonovich integral and the stochastic Taylor-Stratonovich

expansion, it is reasonable to assume that the generating function can be expressed by

the following expansion locally:

S1(P, q, t, θ(t)ω) = G1
(0)(P, q)J(0) +G1

(1)(P, q)J(1) +G1
(0,1)(P, q)J(0,1) + · · · =

∑
α

G1
αJα,

(5.24)
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where α = (j1, j2, . . . , jl), ji ∈ {0, 1, . . . ,m}, i = 1, . . . , l is a multi-index of length l,

and Jα is the multiple Stratonovich integral

Jα =

∫ t

0

∫ sl

0

. . .

∫ s2

0

◦dwj1
s1
· · · ◦ dwjl−1

sl−1
◦ dwjl

sl
. (5.25)

For convenience, ds is denoted by dw0
s . Similarly, the multiple Ito stochastic integral

Iα is given by

Iα =

∫ t

0

∫ sl

0

. . .

∫ s2

0

dwj1
s1
. . . dwjl−1

sl−1
dwjl

sl
. (5.26)

5.3.1 Properties of multiple stochastic integrals

To prepare for the derivation of the symplectic numerical schemes, we present some

properties of the multiple stochastic integrals. First, we define operations for multi-

indexes.

If the multi-index α = (j1, j2, . . . , jl) with l > 1 then α− = (j1, j2, . . . , jl−1), i.e. the

last component is deleted. For instance, (1, 3, 0)− = (1, 3). For any two multi-indexes

α = (j1, j2, . . . , jl) and α′ = (j′1, j
′
2, . . . , j

′
l′), we define the concatenation operation ′∗′

as α ∗ α′ = (j1, j2, . . . , jl, j
′
1, j

′
2, . . . , j

′
l′). For example, (1, 3, 0) ∗ (1, 4) = (1, 3, 0, 1, 4).

The concatenation of a collection Λ of multi-indexes with the multi-index α gives the

collection formed by concatenating each element of the collection Λ with the multi-

index α, i.e., Λ ∗ α = {α′ ∗ α|α′ ∈ Λ}. For example, if Λ = {(1, 1), (0, 1, 2), (1, 1)} and

α = (0), then Λ ∗ α = {(1, 1, 0), (0, 1, 2, 0), (1, 1, 0)}.

Proposition 5.5

JαJα′ =
∑

β∈Λα,α′

Jβ (5.27)

where α = (j1, j2, . . . , jl), α
′ = (j′1, j

′
2, . . . , j

′
l′) and Λα,α′ is the collection of multi-indexes
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depending on α and α′ and given by the following recurrence relation:

Λα,α′ =



{(j1, j′1), (j′1, j1)}, if l = 1and l′ = 1

{Λ(j1),α′− ∗ (j′l′), α′ ∗ (jl)}, if l = 1and l′ ̸= 1

{Λα−,(j′1)
∗ (jl), α ∗ (j′l)}, if l ̸= 1and l′ = 1

{Λα−,α′ ∗ (jl),Λα,α′− ∗ (j′l′)}, if l ̸= 1and l′ ̸= 1

(5.28)

Proof: Let consider two stochastic processes

X1
t =

∫ t

0

b1(Xs) ◦ dwjl
s and X2

t =

∫ t

0

b2(Xs) ◦ dw
j′
l′
s . (5.29)

Then, for the Stratonovich integrals, we have

X1
tX

2
t =

∫ t

0

X2
s b1(Xs) ◦ dwjl

s +

∫ t

0

X1
s b2(Xs) ◦ dw

j′
l′
s . (5.30)

If l > 1 and l′ > 1, let b1(Xs) = Jα− and b2(Xs) = J ′
α′−, such that X1

t = Jα and

X2
t = Jα′ . The product rule (5.30) of the stochastic integrals yields

JαJα′ =

∫ t

0

Jα′Jα− ◦ dwjl
s +

∫ t

0

JαJα′− ◦ dwj′
l′
s . (5.31)

This implies the fourth relation in (5.28).

If l = 1 (or l′ = 1), the second (or third) relation in the recurrence (5.28) is obtained

for b1(Xs) = 1 and b2(Xs) = J ′
α′− (or b1(Xs) = Jα− and b2(Xs) = 1). For the first

relation, we take b1(Xs) = 1 and b2(Xs) = 1.

For instance, since

Λ(2,0),(0,1) = {Λ(2),(0,1) ∗ (0),Λ(2,0),(0) ∗ (1)}

= {{Λ(2),(0) ∗ (1), (0, 1, 2)} ∗ (0)}, {Λ(2),(0) ∗ (0), (2, 0, 0)} ∗ (1)}

= {{(2, 0, 1), (0, 2, 1), (0, 1, 2)} ∗ (0), {(0, 2, 0), (2, 0, 0), (2, 0, 0)} ∗ (1)}

= {(2, 0, 1, 0), (0, 2, 1, 0), (0, 1, 2, 0), (0, 2, 0, 1), (2, 0, 0, 1), (2, 0, 0, 1)},

(5.32)

then we have J(2,0)J(0,1) = J(2,0,1,0) + J(0,2,1,0) + J(0,1,2,0) + J(0,2,0,1) + 2J(2,0,0,1)
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Remark 5.6 From the recurrence (5.28), we can see that Λα,α′ = Λα′,α, and the length

of the multi indexes in Λα,α′ is the summation of the lengths of α and α′, i.e. if

β ∈ Λα,α′, then l(β) = l(α) + l(α′). This will be used to determine the coefficients of

the generating function in the next subsection.

Corollary 5.7 For α = (j1, j2, . . . , jl),

wj
tJα =

l∑
i=0

J(j1,...,ji,j,ji+1,...,jl). (5.33)

Proof: The proof follows by repeatedly applying the second recurrence of (5.28).

Similarly, we can show that the multiplication of a finite sequence of multiple-

indexes can be expressed by the following summation:
n∏

i=1

Jαi
=

∑
β∈Λα1,...,αn

Jβ, (5.34)

where the collection Λα1,...,αn can be defined recursively by Λα1,...,αn= {Λβ,αn|β ∈

Λα1,...,αn−1}, n ≥ 3. For example, Λ(1),(0),(0)= {Λβ,(0)|β ∈ Λ(1),(0)} = {Λ(0,1),(0),Λ(1,0),(0)}

= {(0, 0, 1), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 0), (1, 0, 0)}. Thus J(1)J2
(0) = 2J(0,0,1)+2J(1,0,0)+

2J0,1,0).

In addition to the recurrence relation (5.28), we also propose an explicit way to

calculate the collection Λα,α′ . For any multi-index α = (j1, j2, . . . , jl) with no duplicated

elements (i.e., jm ̸= jn ifm ̸= n,m,n = 1, . . . , l), we define the set R(α) to be the empty

set R(α) = Φ if l = 1 and R(α) = {(jm, jn)|m < n,m, n = 1, . . . , l} if l ≥ 2. R(α)

defines a partial order on the set formed with the numbers included in the multi-index

α, defined by i ≺ j if and only if (i, j) ∈ R(α). We suppose that there are no duplicated

elements in or between the multi-indexes α = (j1, j2, . . . , jl) and α
′ = (j′1, j

′
2, . . . , j

′
l′).

Lemma 5.8 If there are no duplicated elements in or between the multi-indexes α =

(j1, j2, . . . , jl) and α
′ = (j′1, j

′
2, . . . , j

′
l′), then

Λα,α′ = {β ∈ M|l(β) = l(α) + l(α′), R(α) ∪R(α′) ⊆ R(β)

and β has no duplicated elements}
(5.35)
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where M = {(ĵ1, ĵ2, . . . , ĵl+l′)|ĵi ∈ {j1, j2, . . . , jl, j′1, j′2, . . . , j′l′}, i = 1, . . . , l + l′}

Proof: Let denote Λ′
α,α′ = {β ∈ M|l(β) = l(α) + l(α′), R(α) ∪ R(α′) ⊆ R(β)

and β has no duplicated elements }. Since there are no duplicated elements in β and

l(β) = l(α) + l(α′), each element of {j1, j2, . . . , jl, j′1, j′2, . . . , j′l′} must appear in β only

once.

We prove that Λα,α′ = Λ′
α,α′ by induction on l(α) + l(α′). If l(α) + l(α′) = 2, then

l(α) = l(α′) = 1 and R(α) = R(α′) = Φ. Hence R(β) contains any pair with distinct

components from M = {(ĵ1, ĵ2)|ĵ1, ĵ2 ∈ {j1, j′1}}, so Λ′
α,α′ = {(j1, j′1), (j′1, j1)}, and

from the first equation in the recurrence (5.28), Λ′
α,α′ = Λα,α′ .

We suppose that Λα,α′ = Λ′
α,α′ for any multi-indexes α and α′ such that l(α)+l(α′) <

k and we prove that Λα,α′ = Λ′
α,α′ for any multi-indexes α and α′ with l(α) + l(α′) = k

First, we prove that Λ′
α,α′ ⊆ Λα,α′ . For any element β = {ĵ1, ĵ2, . . . , ĵk} in Λ′

α,α′ ,

because jl is the largest element with respect to the partial order defined by R(α), and

j′l′ is the largest element with respect to the partial order defined by R(α′), then ĵk can

only be jl or j
′
l′ . This leads to the following cases:

1. If ĵk = jl and l = 1, then β = α′∗j1 ∈ Λα,α′ , by the second equation in recurrence

(5.28).

2. If ĵk = jl and l > 1, then β− ∈ Λ′
α−,α′ = Λα−,α′ by the induction assumption

because l(α−) + l(α′) = k− 1 < k. Hence β = β −∗(jl) ∈ Λα−,α′ ∗ (jl), and from

the fourth equation in recurrence (5.28) we get β ∈ Λα,α′ .

3. If ĵk = jl′ and l
′ = 1, then β = α ∗ j′1 ∈ Λα,α′ , by the third equation in recurrence

(5.28).

4. If ĵk = jl′ and l′ > 1, then β− ∈ Λ′
α,α′− = Λα,α′−. Hence β = β − ∗(j′l) ∈

Λα,α′− ∗ (j′l), and from the fourth equation in recurrence (5.28) we get β ∈ Λα,α′ .

Similarly, using the recurrence (5.28), we can prove that Λα,α′ ⊆ Λ′
α,α′ . Thus

Λα,α′ = Λ′
α,α′ and the lemma is proved.
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The lemma can be easily extended to determine the collection Λα1,...,αn .

Lemma 5.9 If there are no duplicated elements in or between any of the multi-indexes

α = (j
(1)
1 , j

(1)
2 , . . . , j

(1)
l1

), . . . , αn = (j
(n)
1 , j

(n)
2 , . . . , j

(n)
ln

), then

Λα1,...,αn = {β ∈ M|l(β) =
n∑

k=1

l(αk)and ∪n
k=1 R(αk) ⊆ R(β)

and there are no duplicated elements in β},

(5.36)

whereM = {(ĵ1, ĵ2, . . . , ĵl̂)|ĵi ∈ {j(1)1 , j
(1)
2 , . . . , j

(1)
l1
, . . . j

(n)
1 , j

(n)
2 , . . . , j

(n)
ln

}, i = 1, . . . , l̂, l̂ =

l1 + · · ·+ ln}.

To extend the previous two lemmas to multi-indexes with duplicated elements,

we just need to assign a different subscript to each duplicated element, for example,

Λ(2,0),(0,1) = Λ(2,01),(02,1) = {(2, 02, 1, 01), (02, 2, 1, 01), (01, 1, 2, 02), (02, 2, 01, 1), (2, 01, 02, 1),

(2, 02, 01, 1)}.

5.3.2 Higher order symplectic scheme

Inserting (5.24) into the HJ PDE (5.22), and using the proposition (5.5), we get

S1
ω =

∫ t

0

H(0)(P, q +
∑
α

∂G1
α

∂P
Jα)ds+

m∑
r=1

∫ t

0

H(r)(P, q +
∑
α

∂G1
α

∂P
Jα) ◦ dwr

s

=
m∑
r=0

∫ t

0

H(r)(P, q +
∑
α

∂G1
α

∂P
Jα) ◦ dwr

s

=
m∑
r=0

∫ t

0

∞∑
i=0

1

i!

n∑
k1,...,ki=1

∂iH(r)

∂qk1 . . . ∂qki
(
∑
α

∂G1
α

∂P
Jα)k1 . . . (

∑
α

∂G1
α

∂P
Jα)ki ◦ dwr

s

=
m∑
r=0

∞∑
i=0

1

i!

n∑
k1,...,ki=1

∂iH(r)

∂qk1 . . . ∂qki

∑
α1,...,αi

∂G1
α1

∂Pk1

. . .
∂G1

αi

∂Pki

∫ t

0

i∏
k=1

Jαk
◦ dwr

s

=
m∑
r=0

∞∑
i=0

1

i!

n∑
k1,...,ki=1

∂iH(r)

∂qk1 . . . ∂qki

∑
α1,...,αi

∂G1
α1

∂Pk1

. . .
∂G1

αi

∂Pki

∑
β∈Λα1,...αi

Jβ∗(r)

=
m∑
r=0

∞∑
i=0

n∑
k1,...,ki=1

∑
α1,...,αi

∑
β∈Λα1,...αi

1

i!

∂iH(r)

∂qk1 . . . ∂qki

∂G1
α1

∂Pk1

. . .
∂G1

αi

∂Pki

Jβ∗(r)

(5.37)
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where (
∑

α

∂G1
αi

∂P
)ki is the ki-th component of the column vector

∑
α

∂G1
αi

∂P
. Equating the

coefficients of Jα in (5.24) and (5.37), we get the recurrence formula for determining

G1
α.

For instance, for the SHS (5.1) with m = 1, we have

G1
(0) = H(0), G1

(1) = H(1). (5.38)

To find G1
(0,0), since l((0, 0)) =2 we only need to consider the values i = 1, α = (0) and

r = 0, so that

G1
(0,0) =

n∑
k=1

∂H(0)

∂qk

∂G1
(0)

∂Pk

=
n∑

k=1

∂H(0)

∂qk

∂H(0)

∂Pk

. (5.39)

Similarly, using i = 1, α = (1) and r = 0 for G1
(1,0), i = 1, α = (0) and r = 1 for G1

(0,1),

and i = 1, α = (1) and r = 1 for G1
(1,1) we obtain

G1
(1,1) =

n∑
k=1

∂H(1)

∂qk

∂H(1)

∂Pk

, G1
(1,0) =

n∑
k=1

∂H(0)

∂qk

∂H(1)

∂Pk

, G1
(0,1) =

n∑
k=1

∂H(1)

∂qk

∂H(0)

∂Pk

.

(5.40)

Because l((0, 0, 0)) = 3, the cases i = 1, α = (0, 0), r = 0 and i = 2, α1 = (0), α2 = (0),

r = 0 both contribute to the coefficient of J(0,0,0):

G1
(0,0,0) =

n∑
k1=1

∂H(0)

∂qk1

∂G1
(0,0)

∂Pk1

+
n∑

k1,k2=1

1

2

∂2H(0)

∂qk1∂qk2
2
∂G1

(0)

∂Pk1

∂G1
(0)

∂Pk2

=
n∑

k1,k2=1

(
∂2H(0)

∂qk1∂qk2

∂H(0)

∂Pk1

∂H(0)

∂Pk2

+
∂H(0)

∂qk1

∂H(0)

∂Pk2

∂2H(0)

∂qk2∂Pk1

+
∂H(0)

∂qk1

∂H(0)

∂qk2

∂2H(0)

∂Pk1∂Pk2

)
.

(5.41)
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Similarly,

G1
(1,1,1) =

n∑
k1,k2=1

(
∂2H(1)

∂qk1∂qk2

∂H(1)

∂Pk1

∂H(1)

∂Pk2

+
∂H(1)

∂qk1

∂H(1)

∂Pk2

∂2H(1)

∂qk2∂Pk1

+
∂H(1)

∂qk1

∂H(1)

∂qk2

∂2H(1)

∂Pk1∂Pk2

)
,

G1
(1,1,0) =

n∑
k1,k2=1

(
∂2H(0)

∂qk1∂qk2

∂H(1)

∂Pk1

∂H(1)

∂Pk2

+
∂H(0)

∂qk1

∂H(1)

∂Pk2

∂2H(1)

∂qk2∂Pk1

+
∂H(0)

∂qk1

∂H(1)

∂qk2

∂2H(1)

∂Pk1∂Pk2

)
,

G1
(1,0,1) =

n∑
k1,k2=1

(
∂2H(1)

∂qk1∂qk2

∂H(0)

∂Pk1

∂H(1)

∂Pk2

+
∂H(1)

∂qk1

∂H(1)

∂Pk2

∂2H(0)

∂qk2∂Pk1

+
∂H(1)

∂qk1

∂H(0)

∂qk2

∂2H(1)

∂Pk1∂Pk2

)
,

G1
(0,1,1) =

n∑
k1,k2=1

(
∂2H(1)

∂qk1∂qk2

∂H(1)

∂Pk1

∂H(0)

∂Pk2

+
∂H(1)

∂qk1

∂H(0)

∂Pk2

∂2H(1)

∂qk2∂Pk1

+
∂H(1)

∂qk1

∂H(1)

∂qk2

∂2H(0)

∂Pk1∂Pk2

)
.

(5.42)

For m ≥ 1, we apply lemma 5.9 to obtain a recurrence formula for G1
α. If α = (r),

r = 1, . . . ,m then G1
α = H(r). If α = (i1, . . . , il−1, r), l > 1, i1, . . . , il−1, r = 1, . . . ,m

has no duplicates then

G1
α =

l(α)−1∑
i=1

1

i!

n∑
k1,...,ki=1

∂iH(r)

∂qk1 . . . ∂qki

∑
l(α1)+···+l(αi)=l(α)−1
R(α1)∪···∪R(αi)⊆R(α−)

∂G1
α1

∂Pk1

. . .
∂G1

αi

∂Pki

. (5.43)

If the multi-index α contains any duplicates, then we apply formula (5.43) after asso-

ciating different subscripts to the repeating numbers.

We can use the same approach, but for the HJPDE (5.23). For example, for the

SHS (5.1) with m = 1, for S3
ω we get

G3
(0) = H(0), G3

(1) = H(1), G3
(0,0) = 0, G3

(1,1) = 0

G3
(1,0) =

1

2
(∇H(0))TJ−1∇H(1), G3

(0,1) =
1

2
(∇H(1))TJ−1∇H(0)

G3
(0,0,0) =

1

4
(J−1∇H(0))T∇2H(0)(J−1∇H(0)), . . .

(5.44)

Proceeding as for S1
ω, we can obtain a general recurrence for finding the coefficients

G3
α of S3

ω. Hence, if α = (r), r = 1, . . . , d then G3
α = Hr. If α = (i1, . . . , il−1, r), l > 1,
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i1, . . . , il−1, r = 1, . . . , d has no duplicates then

G3
α =

l(α)−1∑
i=1

1

i!

2n∑
k1,...,ki=1

∂iHr

∂yk1 . . . ∂yki

∑
l(α1)+···+l(αi)=l(α)−1
R(α1)∪···∪R(αi)⊆R(α−)

(
1

2
J−1∇G3

α1
)k1

. . . (
1

2
J−1∇G3

αi
)ki

(5.45)

where (J−1∇G3
αi
)ki is the ki-th component of the column vector J−1∇G3

αi
. If the

multi-index α contains any duplicates, then we apply formula (5.45) after we associate

different subscripts to the repeating numbers.

Using (5.10) and a truncated series for S1
ω, or using (5.12) and a truncated series

for S3
ω, we obtain various symplectic schemes for the SHS (5.1). In this Chapter, we

study only the strong schemes, but a similar approach can be applied to construct

the weak schemes, and it will be reported in the next Chapter. Let define Aγ = {α :

l(α) + n(α) ≤ 2γ} and Bγ = {α : l(α) + n(α) ≤ 2γ or l(α) = n(α) = γ + 0.5}, where

n(α) is the number of zero components of the multi-index α (e.g. n((0, 0, 1)) = 2).

The implicit midpoint scheme in [12] is the numerical scheme of order 1 obtained

from (5.12) using the truncated series S3
ω ≈

∑
α∈A1

G3
αJα =

∑m
r=1G

3
(r)J(r) (see also

Eq. (5.16) where bounded random variables are used to approximate J(r) because the

scheme is implicit). A first order symplectic implicit scheme is also obtained if we

truncate the Stratonovich expansion for S1
ω according to A1:

S1
ω ≈ G1

(0)J(0) +
m∑
r=1

(
G1

(r)J(r) +G1
(r,r)J(r,r)

)
+

m∑
i,j=1,i̸=j

G1
(i,j)J(i,j). (5.46)

In the next section, we study the convergence and we prove the first order mean square

convergence for the scheme based on the generating function given in (5.46).

To obtain the symplectic Euler scheme of order 0.5 in [11], we use the relation of

the Ito stochastic multiple integrals and the Stratonovich stochastic multiple integrals

([6]), and we replace in the expansion (5.24) of S1
ω each Stratonovich integral in terms

of Ito integrals Iα. We truncate the series by keeping only terms corresponding to Ito
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integrals Iα with α ∈ B0.5, and for m = 1 we have

S1
ω ≈ G1

(1)I(1) + (G1
(0) +

1

2
G1

(1,1))I(0). (5.47)

Notice that the generating function in (5.15) was obtained from the previous equation,

using (5.38)-(5.39) and bounded random variables to approximate I(1).

For the 1.5 order scheme, we truncate according to B1.5, so, for m = 1 we get :

S1
ω ≈ G1

(1)I(1) +

(
G1

(0) +
1

2
G1

(1,1)

)
I(0) +

(
G1

(0,1) +
1

2
G1

(1,1,1)

)
I(0,1) +

(
G1

(1,0) +
1

2
G1

(1,1,1)

)
I(1,0) +G1

(1,1)I(1,1) +

(
G1

(0,0) +
1

2
(G1

(0,1,1) +G1
(1,1,0)) +

1

4
G1

(1,1,1,1)

)
I(0,0)

(5.48)

The formulas for the coefficients G1
α included in (5.48) are given in (5.38)-(5.42), and

the Ito integrals I(0,1), I(1,0), and I(1,1) should be approximated using bounded random

variables ([11], [6]).

Remark 5.10 If we consider the deterministic cases, i.e., m = 0, then Jα = 1
n!
tn

with l(α) = n. The coefficients (5.39) - (5.41) and (5.44) of the approximations of the

generating function proposed here, are consistent with those of Type (II) and Type (III)

generating functions in [4]. In other words, the proposed construction of the stochastic

symplectic numerical schemes via generating function is an extension of the methods

introduced by Feng [4].

5.4 Convergence analysis

In this section, we study the convergence of the first order symplectic implicit scheme

constructed using the generating function given in (5.46). As we have mentioned early,

since this is an implicit scheme we need to use bounded random variables. To keep

the notation simple, we consider the SHS (5.1) with n = 1 and m = 1, but the same

approach can be easily extended to the general case. Also for notation convenience,

∂H
∂p

and ∂H
∂q

are denoted as Hp and Hq, respectively.
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As in [11], for the proposed implicit schemes with time step h < 1, we replace the

random variable ξ ∼ N(0, 1) with the bounded random variables ξh:

ξh =


−Ah if ξ < −Ah

ξ if |ξ| ≤ Ah

Ah if ξ > Ah,

(5.49)

where Ah = 2
√

| lnh|. From [11], we know that

E(ξ − ξh)
2 ≤ h2, (5.50)

0 ≤ E(ξ2 − ξ2h) ≤ (1 + 4
√

| lnh|)h2 ≤ 5h3/2. (5.51)

Carrying out similar calculations, we get

E(ξ2 − ξ2h)
2 =

2√
2π

∫ ∞

Ah

(x2 − A2
h)

2e−x2/2dx =
2√
2π

∫ ∞

0

(y2 + 2Ahy)
2

e−
(y+Ah)2

2 dy ≤ 2e−
A2
h
2

√
2π

∫ ∞

0

(y2 + 2Ahy)
2e−

y2

2 dy = e−
A2
h
2

(
3 + 4A2

h +
8Ah√
2π

)
≤ 27h. (5.52)

From (7.20), for any non-negative integer k, we can easily verify

E(ξ2k+1
h ) = E(ξ2k+1) = 0, E(|ξh|k) ≤ E(|ξ|k) <∞. (5.53)

Using (5.10) and (5.46), for the SHS (5.1) with n = 1 and m = 1, we construct an

implicit symplectic scheme corresponding to the following one step approximation :

P = p− (H(0)
q (P, q)J(0) +H(1)

q (P, q)Jh
(1) + (H(1)

p (P, q)H(1)
q (P, q))qJ

h
(1,1)),

Q = q + (H(0)
p (P, q)J(0) +H(1)

p (P, q)Jh
(1) + (H(1)

p (P, q)H(1)
q (P, q))pJ

h
(1,1)),

(5.54)

where J(0) = h, Jh
(1) =

√
hξh and Jh

(1,1) =
1
2
ξ2h

We suppose that the Hamiltonian functions H(0) and H(1) and their partial deriva-

tives up to order four are continuous, and the following inequalities hold for some
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positive constants Li, i = 1, . . . , 5

1∑
r=0

(|H(r)
p (P,Q)−H(r)

p (p, q)|+ |H(r)
q (P,Q)−H(r)

q (p, q)|) ≤ L1(|P − p|+ |Q− q|),

(5.55)

1∑
r=0

(|H(r)
p (p, q)|+ |H(r)

q (p, q)|) ≤ L2(1 + |p|+ |q|), (5.56)

1∑
r=0

(|H(r)
pp (p, q)|+ |H(r)

pq (p, q)|+ |H(r)
qq (p, q)|) ≤ L3, (5.57)

1∑
r=0

(|H(r)
ppq(p, q)|+ |H(r)

pqq(p, q)|+ |H(r)
ppp(p, q)|) ≤

L4

1 + |p|+ |q|
, (5.58)

|H(1)
pppq(p, q)|+ |H(1)

ppqq(p, q)|+ |H(1)
pppp(p, q)| ≤

L5

(1 + |p|+ |q|)2
. (5.59)

(|(H(1)
p H(1)

q )p(P,Q)− (H(1)
p H(1)

q )p(p, q)|

+ |(H(1)
p H(1)

q )q(P,Q)− (H(1)
p H(1)

q )q(p, q)|) ≤ L1(|P − p|+ |Q− q|),
(5.60)

The first equation in (5.54) is implicit, so in the following lemma we show that the

scheme (5.54) is well-defined.

Lemma 5.11 There exists constants K0 > 0 and h0 > 0, such that for any h < h0 the

first equation in (5.54) has a unique solution P which satisfies

|P − p| ≤ K0(1 + |p|+ |q|)
(
|ξh|

√
h+ h+

1

2
ξ2hh

)
, k = 1, 2, . . . (5.61)

Proof: The proof can be completed similarly with the proof of Lemma 2.4 in [11],

using the assumptions (6.9)-(5.60) and the contraction principle.

Corollary 5.12 There exists constants K > 0 and h0 > 0, such that for any h < h0,

we have

E(|P − p|i + |Q− q|i) ≤ K(1 + |p|+ |q|)ih
i
2 , i = 1, 2, . . . (5.62)

To prove the first order mean square convergence for the scheme based on the one

step approximation (5.54), we apply the following general result (Theorem 1.1 in [10]):

95



Theorem 5.13 Let X̄t,x(t+h) be a one step approximation for the solution Xt,x(t+h)

of the SHS (5.1). If for arbitrary t0 ≤ t ≤ t0+T −h, x ∈ R2n the following inequalities

hold:

∣∣E (Xt,x(t+ h)− X̄t,x(t+ h)
)∣∣ ≤ K(1 + |x|2)1/2hp1 , (5.63)[

E
∣∣Xt,x(t+ h)− X̄t,x(t+ h)

∣∣2]1/2 ≤ K(1 + |x|2)1/2hp2 , (5.64)

with p2 ≥ 1/2 and p1 ≥ p2+1/2, then the mean square order of accuracy of the method

constructed using the one step approximation X̄t,x(t+ h) is p2 − 1/2.

Before proving the main convergence theorem, we include some preliminary results

in the following lemma.

Lemma 5.14 There exists constants K1, K2, K3 > 0 and h0 > 0, such that for any

h < h0, we have

|E(P − p)|+ |E(Q− q)| ≤ K1(1 + |p|+ |q|)h, (5.65)

|E((P − p)Jh
(11))|+ |E((Q− q)Jh

(11))| ≤ K2(1 + |p|+ |q|)h2, (5.66)

|E((P − p)2Jh
(1))|+ |E((Q− q)2Jh

(1))| ≤ K3(1 + |p|+ |q|)2h5/2. (5.67)

Proof: For r = 0, 1, z = p or q, and with sufficiently small h, from (5.56) and

(5.61), we have

|H(r)
z (P, q)| ≤ |H(r)

z (P, q)−H(r)
z (p, q)|+ |H(r)

z (p, q)| ≤ L1|P − p|+ |H(r)
z (p, q)|

≤ (1 + |p|+ |q|)
(
K|ξh|

√
h+Kh+K

1

2
ξ2hh+ L3

)
.

(5.68)

Hence, using (5.53) we show that there exist constants KCi > 0, i = 1, 2, . . . such that

E|H(r)
z (P, q)|i ≤ KCi(1 + |p|+ |q|)i, i = 1, 2, . . . . (5.69)

Using the Taylor expansion, we rewrite the first relation of (5.54) as P − p =

−H(1)
q (p, q)Jh

(1) + R1 with R1 = −H(0)
q (P, q)J(0) − H

(1)
qp (p̄1, q)(P − p)Jh

(1) − (H
(1)
p (P, q)

H
(1)
q (P, q))qJ

h
(1,1) where p̄1 is between p and P . Hence, using the Cauchy-Schwarz
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inequality, (5.56), (5.57), (5.62), and (5.69) imply that there is a constant K1 > 0,

such that

|E(R1)| ≤ E|R1| ≤ E|H(0)
q (P, q)|J(0) + L3

√
E|P − p|2

√
E|Jh

(1)|2

+

(√
E|H(1)

q (P, q)|2 +
√
E|H(1)

p (P, q)|2
)
L3

√
E|Jh

(11)|2 ≤
K1

2
(1 + |p|+ |q|)h.

(5.70)

Moreover, since we have

R2
1 ≤ 2

(
(H(0)

q (P, q))2(J(0))
2 + (H(1)

qp (p̄1, q))
2(P − p)2(Jh

(1))
2+

(
(H(1)

p (P, q))2(H(1)
qq (P, q))

2 + (H(1)
pq (P, q))

2(H(1)
q (P, q))2

)
(Jh

(1,1))
2

)
,

proceeding similarly we can show that there exists constants K2 > 0 and K ′
3 > 0, such

that

E(R2
1) ≤

1

3
K2

2(1 + |p|+ |q|)2h2, |E(R2
1J

h
(1))| ≤ K ′

3(1 + |p|+ |q|)2h5/2 (5.71)

E(R2
1(J

h
(1))

2) ≤ K ′
3(1 + |p|+ |q|)2h3 (5.72)

Using the Cauchy-Schwarz inequality, (5.70), (5.71) and (5.53) imply that there

exists a constant K3 > 0 such that:

|E(P − p)| ≤
∣∣H(1)

q (p, q)E(Jh
(1))
∣∣+ |E(R1)| ≤

K1

2
(1 + |p|+ |q|)h, (5.73)

|E((P − p)Jh
(11))| ≤

∣∣H(1)
q (p, q)E(Jh

(1)J
h
(11))

∣∣+ |E(R1J
h
(11))| ≤

√
E(R2

1)E|Jh
(11)|2

≤ K2

2
(1 + |p|+ |q|)h2 (5.74)

|E((P − p)2Jh
(1))| ≤ (H(1)

q (p, q))2
∣∣E((Jh

(1))
3)
∣∣+ |E(R2

1J
h
(1))|+ 2

∣∣H(1)
q (p, q)E(R1(J

h
(1))

2)
∣∣

≤ K ′
3(1 + |p|+ |q|)2h5/2 + 2

∣∣H(1)
q (p, q)

∣∣√E(R2
1)E|Jh

(1)|4 ≤
K3

2
(1 + |p|+ |q|)2h5/2

(5.75)

Similarly, |E(Q− q)| ≤ K1

2
(1 + |p|+ |q|)h, |E((Q− q)Jh

(11))| ≤
K2

2
(1 + |p|+ |q|)h2, and

|E((Q− q)2Jh
(1))| ≤

K3

2
(1 + |p|+ |q|)2h5/2 so (5.65)- (5.67) are proved.
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Remark 5.15 Notice that for h sufficiently small, using Taylor expansions, inequal-

ities (5.56)-(5.58), (5.62) and the characterization of the moments in (5.53), we can

also show that there exists a constant K4 > 0, such that

|E(R1J
h
(1))| ≤

∣∣E ((H(0)
q (p, q)J(0) + (H(1)

p H(1)
q )q(p, q)J(1,1)

)
Jh
(1)

)∣∣
+ E

∣∣Jh
(1)H

(0)
pq (p̄0, q)J(0)(P − p)

∣∣+ E
∣∣Jh

(1)(H
(1)
p H(1)

q )pq(p̄11, q))J
h
(1,1)(P − p)

∣∣
+ |E

(
Jh
(1)H

(1)
pq (p̄1, q)J

h
(1)(P − p)

)
| ≤ L3K(1 + |p|+ |q|)h2 + (3L4L2 + L2

3)(1 + |p|+ |q|)h2

+ 2|H(1)
pq (p, q)||E(Jh

(11)(P − p))|+ E|Jh
(1)H

(1)
ppq(

ˆ̂p1, q)J
h
(1)(p̄1 − p)(P − p)|

≤ L3K(1 + |p|+ |q|)h2 + (3L4L2 + L2
3)(1 + |p|+ |q|)h2 + 2K2L3(1 + |p|+ |q|)h2

+ L4(1 + |p|+ |q|)h2 ≤ K4(1 + |p|+ |q|)h2,

(5.76)

where p̄0, p̄1 and p̄11 are values between P and p, and ˆ̂p1 is a value between p̄1 and

p. Here we have also used 2Jh
(11) = (Jh

(1))
2 and the fact that for sufficiently small h,

Lemma 5.11 implies that there exists positive constants C1 and C2 such that

1 + |p̄|+ |q| ≤ 1 + |P − p|+ |p|+ |q| ≤ C1(1 + |p|+ |q|), (5.77)

1

1 + |p̄|+ |q|
≤ 1

1 + |p| − |p̄− p|+ |q|
≤ 1

1 + |p| − |P − p|+ |q|
≤ C2

1 + |p|+ |q|
(5.78)

for any p̄ between P and p.

Theorem 5.16 If the conditions (6.9) - (5.58) are satisfied, the scheme (5.54) con-

verges with the mean square order 1.

Proof: Applying Taylor expansions, for the first part of the one step approximation
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(5.54), we have

P − p = −H(0)
q (p, q)J(0) −H(1)

q (p, q)Jh
(1) − (H(1)

p H(1)
q )q(p, q)J

h
(1,1)

−H(0)
pq (p, q)J(0)(P − p)− (H(1)

p H(1)
q )pq(p, q)J

h
(1,1)(P − p)

−H(1)
pq (p, q)(P − p)Jh

(1) −
1

2
H(0)

ppq(p̄00, q)(P − p)2Jh
(0)

− 1

2
H(1)

ppq(p, q)(P − p)2Jh
(1) −

1

2
(H(1)

p H(1)
q )ppq(p̄011, q)(P − p)2Jh

(11)

− 1

6
H(1)

pppq(p̄01, q)(P − p)3Jh
(1)

= −H(0)
q (p, q)J(0) −H(1)

q (p, q)Jh
(1) − (H(1)

p (p, q)H(1)
q (p, q))qJ

h
(1,1)

−H(1)
pq (p, q)(P − p)Jh

(1) +R2,

(5.79)

where p̄00, p̄01 and p̄011 are values between P and p. Since

R2
2 ≤ 2(H(0)

pq (p, q))
2(J(0))

2(P − p)2 + 2
(
(H(1)

p H(1)
q )pq(p, q)

)2
(Jh

(1,1))
2(P − p)2

+
1

2

(
H(0)

ppq(p̄00, q)
)2

(P − p)4(Jh
(0))

2 +
1

2

(
H(1)

ppq(p, q)
)2

(P − p)4(Jh
(1))

2

+
1

2

(
(H(1)

p H(1)
q )ppq(p̄011, q)

)2
(P − p)4(Jh

(11))
2 +

1

18

(
H(1)

pppq(p̄01, q)
)2

(P − p)6
(
Jh
(1)

)2
(5.80)

the assumptions (5.56) -(5.59), Cauchy-Schwarz inequality, inequalities (5.62), Lemma

5.14, and the characterization of the moments in (5.53) implies that for h sufficiently

small there exists a positive constant K6 such that

|E(R2)| ≤ K6(1 + |p|+ |q|)h2, E|R2|2 ≤ K6(1 + |p|+ |q|)2h3. (5.81)

Substituting P − p = H1
q (p, q)J

h
(1) +R1, where R1 is defined in the proof of Lemma

5.14, into H
(1)
pq (p, q)(P − p)Jh

(1) , we obtain

P − p = −H(0)
q (p, q)J(0) −H(1)

q (p, q)Jh
(1) − (H(1)

p (p, q)H(1)
q (p, q))qJ

h
(1,1)

−H(1)
pq (p, q)H

1
q (p, q)(J

h
(1))

2 −H(1)
pq (p, q)J

h
(1)R1 +R2.

(5.82)

It is easy to verify that assumption (5.56) and inequalities (5.72), (5.76) and (5.81)

imply that there exists a positive constant K7 such that∣∣E(H(1)
pq (p, q)J

h
(1)R1 −R2)

∣∣ ≤ K7(1 + |p|+ |q|)h2, (5.83)

E
(
H(1)

pq (p, q)J
h
(1)R1 −R2

)2 ≤ K7(1 + |p|+ |q|)2h3. (5.84)
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Recall that the Milstein scheme [6] for the stochastic Hamiltonian system (5.1) satis-

fying conditions (5.55) - (5.59) has the mean square order 1 and satisfies the inequalities

(5.63)-(5.64) with p1 = 2, p2 = 1.5 . The one step approximation corresponding to the

Milstein scheme is given by

P̃ = p−H(0)
q (p, q)J(0) −H(1)

q (p, q)J(1) + (H(1)
pq (p, q)H

(1)
q (p, q)−H(1)

qq (p, q)H
(1)
p (p, q))J(1,1)

Q̃ = q +H(0)
p (p, q)J(0) +H(1)

p (p, q)J(1) + (H(1)
pq (p, q)H

(1)
p (p, q)−H(1)

pp (p, q)H
(1)
q (p, q))J(1,1).

(5.85)

Comparing the one step approximation corresponding to the Milstein scheme with

(5.54), we obtain

P − P̃ = H(1)
q (p, q)(J(1) − Jh

(1)) + (H(1)
pq (p, q)H

(1)
q (p, q)−H(1)

qq (p, q)H
(1)
p (p, q))(J(1,1) − Jh

(1,1))

−H(1)
pq (p, q)J

h
(1)R1 +R2.

(5.86)

Thus, from (5.50)-(5.53), assumptions (5.56), (5.57), and(5.83), (5.84), we get

E(P − P̃ )2 ≤ (1 + |p|+ |q|)2h3
(
2L2

2 + 54L2
3L

2
2 +K7

)
,

|E(P − P̃ )| ≤ (1 + |p|+ |q|)h2
(
L3L2h

1
2 +K7

)
.

(5.87)

The proof for the Q − Q̃ follows similarly by repeating the same procedure for the

second relation of (5.54), so the scheme corresponding to the one step approximation

(5.54) satisfies the inequalities (5.63)-(5.64) with p1 = 2, p2 = 1.5

Remark 5.17 Using the same approach, we were able to prove that the symplectic

schemes based on truncations of S1
ω or S3

ω for multi-indexes α ∈ Bk or α ∈ Ak have

the mean square order k, for k = 1, 1.5, 2. Higher order schemes include Ito multiple

stochastic integrals Iα with multi-indexes α ∈ Bk or Stratonovich multiple stochastic

integrals Jα with multi-indexes α ∈ Ak, but they are computationally expensive to

simulate bounded approximations when k > 2.
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5.5 Symplectic schemes for special types of stochas-

tic Hamiltonian systems

5.5.1 SHS with additive noise

First, we consider the special case of SHS with additive noise

dPi = −∂H
(0)(P,Q)

∂Qi

dt−
m∑
r=1

σr ◦ dwr
t , P (t0) = p,

dQi =
∂H(0)(P,Q)

∂Pi

dt+
m∑
r=1

τr ◦ dwr
t , Q(t0) = q,

(5.88)

where i = 1, . . . , n. Notice that H(r) =
∑n

i=1(Piτr + Qiσr), where σr and τr are

constants.

To calculate the coefficients of S1
ω, we replace in (5.43) and get,

G1
(0,0) =

n∑
k=1

∂H(0)

∂qk

∂H(0)

∂Pk

, G1
(r1,0)

= τr1

n∑
k=1

∂H(0)

∂qk
, G1

(0,r1)
= σr1

n∑
k=1

∂H(0)

∂Pk

,

G1
(r1,r2)

= σr2τr1 , G1
(0,r1,r2)

= σr2σr1

n∑
k1,k2=1

∂2H(0)

∂Pk1∂Pk2

,

G1
(r1,0,r2)

= σr2τr1

n∑
k1,k2=1

∂2H(0)

∂qk1∂Pk2

, G1
(r1,r2,0)

= τr2τr1

n∑
k1,k2=1

∂2H(0)

∂qk1∂qk2
,

G1
(r1,r2,r3)

= 0, G1
(r1,r2,r3,r4)

= 0,

(5.89)

where 1 ≤ r1, . . . , r4 ≤ m. The 1.5 order schemes are obtained by truncating the

generating functions to multi-indexes α ∈ B1.5. Using the approximation of S1
ω given

in Eq. (5.48), we have the following symplectic implicit scheme of mean square order
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1.5:

Pi(k + 1) =Pi(k)−
∂H(0)

∂Qi

h−
m∑
r=1

(
σr
√
hξ

(r)
hk +

∂G1
(0,r)

∂Qi

Īh(0,r) +
∂G1

(r,0)

∂Qi

Īh(r,0)

+
1

4

(
2
∂G1

(0,0)

∂Qi

+
∂G1

(0,r,r)

∂Qi

+
∂G1

(r,r,0)

∂Qi

)
h2
)

Qi(k + 1) =Qi(k) +
∂H(0)

∂Pi

h+
m∑
r=1

(
τr
√
hξ

(r)
hk +

∂G1
(0,r)

∂Pi

Īh(0,r) +
∂G1

(r,0)

∂Pi

Īh(r,0)

+
1

4

(
2
∂G1

(0,0)

∂Pi

+
∂G1

(0,r,r)

∂Pi

+
∂G1

(r,r,0)

∂Pi

)
h2
)

(5.90)

where i = 1, . . . , n and all the functions have (P (k+1), Q(k)) as their arguments. Here

Īh(r,0) =
h

3
2

2
(ξ

(r)
hk +

η
(r)
hk√
3
) and Īh(0,r) = ξ

(r)
hk h

3
2 − Īh(r,0), where at each time step k, ξ

(r)
hk and

η
(r)
hk are independent bounded random variables as given in (7.20).

Analogously, for S3
ω, we obtain,

G3
(0,0) = 0, G3

(r1,r2)
= 0, G3

(r1,0)
= −G3

(0,r1)
=

1

2
T T
r ∇H(0),

G3
(r1,r2,r3)

= 0, G3
(r1,r2,0)

= G3
(0,r1,r2)

= −G3
(r1,0,r2)

=
1

4
T T
r1
∇2H(0)Tr2 ,

G3
(r1,r2,r3,r4)

= 0,

(5.91)

where Tr = J−1∇H(r) = (−σr, . . . ,−σr, τr, . . . τr)T and 1 ≤ r1, . . . r4 ≤ m. The follow-

ing 1.5 order scheme is derived based on the truncation of S3
ω according to multi-indexes

α ∈ B1.5:

Yk+1 =Yk + J−1∇H(0)(Yk+ 1
2
)h+

m∑
r=1

(Trξ
(r)
hk + J−1∇G(r,0)(Yk+ 1

2
)(Īh(r,0) − Īh(0,r))

+ J−1∇G(r,r,0)(Yk+ 1
2
)
h2

2
)

(5.92)

where for each time step k, we have Yk = (P T
k , Q

T
k )

T and the arguments are everywhere

Yk+ 1
2
= (Yk+1 + Yk)/2. The random variables Īh(r,0), Ī

h
(0,r), ξ

(r)
hk and η

(r)
hk are the same as

for (5.90).

Notice that the 1.5 symplectic methods (5.90) and (5.92) are implicit. These meth-

ods have a similar computational complexity as the 1.5 symplectic implicit Runge-

Kutta method proposed in [12].
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5.5.2 Separable SHS

Let consider the general autonomous SHS (5.1) with separable Hamiltonian functions

such that

H(0)(P,Q) = V0(P ) + U0(Q), H(r)(P,Q) = Ur(Q), r = 1, . . . ,m (5.93)

In this case, the coefficients of S1
ω become:

G1
(r1,r2)

= 0, G1
(r1,0)

= 0, G1
(0,r1) =

n∑
k=1

∂U (r1)

∂qk

∂V (0)

∂Pk

,

G1
(0,0) =

n∑
k=1

∂U (0)

∂qk

∂V (0)

∂Pk

, G1
(r1,r2,r3)

= G1
(r1,r2,0)

= G1
(r1,0,r2)

= 0

G1
(0,r1,r2)

=
n∑

k1,k2=1

∂U (r2)

∂qk1

∂U (r1)

∂qk2

∂2V (0)

∂Pk1∂Pk2

, G1
(r1,r2,r3)

= 0, G1
(r1,r2,r3,r4)

= 0,

(5.94)

where 1 ≤ r1, . . . , r4 ≤ m.

The following symplectic first order scheme based on S1
ω is explicit, and it is differ-

ent from the two explicit symplectic first mean square order partitioned Runge-Kutta

methods presented in [11]:

Pi(k + 1) =Pi(k)−
∂U (0)

∂Qi

(Q(k))h−
m∑
r=1

∂U (r)

∂Qi

(Q(k))
√
hξ

(r)
hk

Qi(k + 1) =Qi(k) +
∂V (0)

∂Pi

(P (k + 1))h,

(5.95)

where i = 1, . . . , n. [11] presents an explicit 1.5 mean square order partitioned Runge-

Kutta method, however, the symplectic schemes based on the generating function S1
ω

are implicit when the order increases to 1.5 or higher. The 1.5 order scheme derived
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from the current approach is provided below:

Pi(k + 1) = Pi(k)−
∂U (0)

∂Qi

(Q(k))h−
m∑
r=1

(
∂U (r)

∂Qi

(Q(k))
√
hξ

(r)
hk

+
∂G(0,r)

∂Qi

(P (k + 1), Q(k))Īh(0,r) +
1

4

(
2
∂G(0,0)

∂Qi

(P (k + 1), Q(k))

+
∂G(0,r,r)

∂Qi

(P (k + 1), Q(k))

)
h2
)

Qi(k + 1) = Qi(k) +
∂V (0)

∂Pi

(P (k + 1))h+
m∑
r=1

(
∂G(0,r)

∂Pi

(P (k + 1), Q(k))Īh(0,r)

+
1

4

(
2
∂G(0,0)

∂Pi

(P (k + 1), Q(k)) +
∂G(0,r,r)

∂Pi

(P (k + 1), Q(k))

)
h2
)

(5.96)

where i = 1, . . . , n and the random variables are generated following the same procedure

as for (5.90)

5.5.3 SHS preserving Hamiltonian functions

Unlike the deterministic cases, in general the SHSs no longer preserve with respect to

time for the Hamiltonian functions Hi, i = 0, . . . , n , even when the SHS is autonomous.

However, using the chain rule of the Stratonovich stochastic integration, it is easy

to verify for the Hamiltonian system (5.1) that the Hamiltonian functions H(i), i =

0, . . . ,m are invariant (i.e. dH(i) = 0), if and only if {H(i), H(j)} = 0 for any i, j =

0, . . . ,m, where the Poisson bracket is defined as {H(i), H(j)} =
∑n

k=1(
∂H(j)

∂Qk

∂H(i)

∂Pk
−

∂H(i)

∂Qk

∂H(j)

∂Pk
).

For systems preserving the Hamiltonian functions, the coefficients G1
α of S1

ω are

invariant under the permutations on α, when l(α) = 2 because for any r1, r2 = 0, . . . ,m,

we have

G1
(r1,r2)

= G1
(r2,r1)

=
n∑

k=1

∂H(r1)

∂qk

∂H(r2)

∂Pk

. (5.97)

Moreover, for l(α) = 3, from the formula (5.43) we easily see that G1
(r1,r2,r3)

= G1
(r2,r1,r3)

for any r1, r2, r3 = 0, . . . ,m. Also, since for any k1, k2 = 1, . . . , n and any r1, r2 =

104



0, . . . ,m, we have

∂

∂qk2
(

n∑
k1=1

∂H(r2)

∂qk1

∂H(r3)

∂Pk1

) =
∂

∂qk2
(

n∑
k1=1

∂H(r3)

∂qk1

∂H(r2)

∂Pk1

), (5.98)

a simple calculation confirms that G1
(r1,r2,r3)

= G1
(r1,r3,r2)

. Hence, G1
α is also invariant

under the permutation on α when l(α) = 3.

These properties are helpful not only to reduce the calculations for G1
α, but the need

of using approximation of high-order stochastic multiple integrals in the symplectic

schemes based on the generating function S1
ω is also avoided. For instance, when

m = 1, we have the second order generating function S1
ω:

S1
ω = G1

(0)h+G1
(1)

√
hξh +G1

(0,0)

h2

2
+G1

(1,1)

hξ2h
2

+G1
(1,0)ξhh

3
2

+G1
(1,1,1)

h
3
2 ξ3h
6

+G1
(1,1,0)

ξ2hh
2

2
+G1

(1,1,1,1)

h2ξ4h
24

(5.99)

where everywhere the arguments are (Pk+1, Qk), and we have used J(0,1) + J(1,0) =

J(1)J(0) and J(0,1,1) + J(1,0,1) + J(1,1,0) = J(1,1)J(0) (see the corollary 5.7). Then the

second order symplctic scheme is obtained by (5.10).

For the coefficients of S3
ω, {H(r1), H(r2)} = 0 for any 0 ≤ r1, r2 ≤ m implies that

G3
(r1,r2)

= 0 and G3
(r1,r2,r3,r4)

= 0, r1, r2, r3, r4 = 1, . . . ,m. Moreover, a simple compu-

tation shows that G3
α is also invariant under the permutation on α, when l(α) = 3.

Hence the second order midpoint symplectic scheme when m = 1 is given by

Yk+1 = Yk + J−1∇G3
(0)(Yk+ 1

2
)h+ J−1∇G3

(1)(Yk+ 1
2
)
√
hξh

+ J−1∇G3
(1,1,1)(Yk+ 1

2
)
h

3
2 ξ3h
6

+ J−1∇G3
(1,1,0)(Yk+ 1

2
)
ξ2hh

2

2

(5.100)

where Yk+ 1
2
= (Yk+1 + Yk)/2.

It can be verified that G3
α is invariant under the permutation on α for any l(α)

([1]), and this property makes the higher order symplectic schemes computationally

attractive for the SHS preserving Hamiltonian functions.
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5.6 Numerical simulations and conclusion

To validate the high-order symplectic schemes proposed in this study, and to compare

the performance with the lower order schemes, we consider three test cases. The

cases have been used as the test examples in [12] [11], [5], and the last example is a

nonlinear problem which is often used for testing numerical algorithms for stochastic

computations [11].

5.6.1 SHS with additive noise

We now consider the following SHS with additive noise:

dP = Qdt+ σdw1
t , P (0) = p

dQ = −Pdt+ γdw2
t , Q(0) = q

(5.101)

where σ and γ are constant.

The exact solution can be expressed in the following form using the equal-distance

time discretization 0 = t0 < t1 < · · · < tN = T , where the time-step h (h = tk+1 − tk)

is a small positive number:

X(tk+1) = FX(tk) + uk, X(0) = X0, k = 0, 1, . . . , N − 1 (5.102)

where

X(tk) =

P (tk)
Q(tk)

 , X0 =

p
q

 , F =

 cosh sinh

− sinh cosh

 , (5.103)

uk =

 σ
∫ tk+1

tk
cos (tk+1 − s)dw1

s + γ
∫ tk+1

tk
sin (tk+1 − s)dw2

s

−σ
∫ tk+1

tk
sin (tk+1 − s)dw1

s + γ
∫ tk+1

tk
cos (tk+1 − s)dw2

s

 . (5.104)

The mean square order two symplectic scheme based on a truncation of S1
ω according

to multi-indexes α ∈ A2 is given by1 + h2

2
0

h 1

Xk+1 =

1 h

0 1 + h2

2

Xk +

σJ(1) + γJ(2,0)

γJ(2) + σJ(0,1)

 . (5.105)
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We have the following proposition about the long time error of the symplectic

second order scheme.

Proposition 5.18 If T and h are positive values such that Th2 and h are sufficiently

small, and E|X0|2 is finite, then the mean square error is bounded by

√
E|X(tk)−Xk|2 ≤ K(

√
Th2 +

√
T 3h4), k = 1, 2, . . . , N. (5.106)

Proof: As in the proof of propositions 6.1 in [12], we can show that if T and h are

positive values such that Th2 and h are sufficiently small, then for k = 0, 1, . . . , N ,

T = Nh, there exists a constant K1 such that the following inequality holds:

||Hk − F k|| ≤ K1(h
3 + Th2), H =

1 + h2

2
0

h 1

−1 1 h

0 1 + h2

2

 . (5.107)

The proof then follows from the previous inequality, proceeding as in the proof of

propositions 6.2 in [12].

The corresponding error for the first-order scheme proposed in [12] is given by

O(T 1/2h + T 3/2h2). Clearly, a better performance is expected using the second-order

scheme.

In numerical simulations, to guarantee that the exact solution, Euler scheme, first-

order and second-order schemes have the same sample paths, eight independent stan-

dard normal distributed random variables, ξ1,k, ξ2,k, η1,k, η2,k, ζ1,k, ζ2,k, ε1,k, ε2,k are used

at every time step k. The random variables in (5.104) and (5.105) are evaluated as:

J(i) =
√
hξ1,k,

∫ tk+1

tk

cos (tk+1 − s)dwi
s =

sinh√
h
ξi,k + a1ηi,k,∫ tk+1

tk

sin (tk+1 − s)dwi
s =

2√
h
sin2 h

2
ξi,k + a2ηi,k + a3ζi,k,

J(0,i) =
h

3
2

2
ξi,k + a4ηi,k + a5ζi,k + a6εi,k, J(i,0) = hJ(i) − J(0,i), i = 1, 2.

(5.108)
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where

a1 =

√
h

2
+

sin 2h

4
− sin2 h

h
, a2 =

1

a1
(
sin2 h

2
− 2 sinh

h
sin2 h

2
),

a3 =

√
h

2
− sin 2h

4
− 4

h
sin4 h

2
− a22, a4 =

1

a1
(1− cosh− h sinh

2
),

a5 =
1

a3
(h− sinh− h sin2 h

2
− a2a4), a6 =

√
h3

12
− a24 − a25.

(5.109)
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Figure 29: A sample trajectory of the solution to (5.101) for σ = 0, τ = 1, p = 1
and q = 0: exact solution (solid line), S1

ω second order scheme with time step h = 2−6

(circle). The circle of different scheme are plotted once per 10 steps.

Fig.29 displays the results obtained using the symplectic schemes for long time

simulations. A good agreement with the exact solution is observed when the symplectic

scheme is implemented.
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Figure 30: Convergence rate of different order S1
ω symplectic scheme for (5.101), where

error is the maximum error of (P,Q) at T = 100.
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Fig. 30 presents the estimations of the convergence rate for various order symplectic

schemes based on S1
ω. We notice that the numerical results agree with the prediction

based on the theoretical study. So the second order symplectic scheme can provide a

more accuracy estimation than the first order scheme with the same time step.

5.6.2 Kubo oscillator

In [11], the following SDEs (the Kubo oscillator) in the sense of Stratonovich are

used to demonstrate the advantage of the stochastic symplectic scheme for long time

computation.

dP = −aQdt− σQ ◦ dw1
t , P (0) = p,

dQ = aPdt+ σP ◦ dw2
t , Q(0) = q,

(5.110)

where a and σ are constants.

As illustrated in [11], the Hamiltonian functions H(0)(P (t), Q(t)) = aP (t)2+Q(t)2

2
and

H(1)(P (t), Q(t)) = σ P (t)2+Q(t)2

2
are preserved under the phase flow of the systems. This

means that the phase trajectory of (5.110) lies on the circle with the center at the

origin and the radius
√
p2 + q2.

Here, we consider the explicit Milstein first order scheme given in (5.85), and five

stochastic symplectic schemes: the mean square 0.5, first and second order schemes

based on S1
ω, and the mean square first- and second-order schemes based on S3

ω. The

coefficients G1
α of S1

ω for the system (5.110) are given by:

G1
(0) =

a

2
(p2 + q2), G1

(1) =
σ

2
(p2 + q2), G1

(0,0) = a2pq, G1
(1,1) = σ2pq

G1
(1,0) = G1

(0,1) = aσpq, G1
(0,0,0) = a3(p2 + q2) G1

(1,1,1) = σ3(p2 + q2)

G1
(1,1,0) = G1

(1,0,1) = G1
(0,1,1) = aσ2(p2 + q2), G1

(1,1,1,1) = 5σ4pq.

(5.111)

The various order symplectic schemes are obtained by truncating the generating func-

tion S1
ω appropriately.

For S3
ω, G

3
α for SHSs preserving Hamiltonian functions is zero when l(α) = 2, 4.
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Thus

G3
(0) =

a

2
(p2 + q2), G3

(1) =
σ

2
(p2 + q2), G3

(0,0,0) =
a3

4
(p2 + q2),

G3
(1,1,1) =

σ3

4
(p2 + q2), G3

(1,1,0) = G3
(1,0,1) = G3

(0,1,1) =
aσ2

4
(p2 + q2).

(5.112)

The first-order midpoint scheme was already applied in [11] for the system (5.110) to

illustrate the superior performance on the long time intervals compared to the non-

symplectic schemes. The second-order midpoint scheme is given in (7.23).
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Figure 31: A sample phase trajectory of (5.110) with a = 2, σ = 0.3, p = 1 and q = 0:
The Milstein scheme (a); S1

ω first-order scheme (b); S1
ω second-order scheme (c); S3

ω

second-order scheme (d) with time step h = 2−8 on the time interval T ≤ 200

Sample phase trajectories of (5.110) from various numerical scheme are presented

in Fig. 31. It can be seen that the phase trajectory of non-symplectic scheme is far

away from the circle P (t)2 + Q(t)2 = 1. However, the symplectic schemes produce

accurate numerical solutions.

Figs. 32 and 33 confirm that the symplectic schemes have the expected convergence

rate. Hence, the high order symplectic schemes have a more accuracy estimation than

the low order symplctic scheme with the same time step.
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Figure 32: Convergence rate of different order S1
ω symplectic scheme for (5.110), where

error is the maximum error of (P,Q) at T = 100.
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Figure 33: Convergence rate of different order S3
ω symplectic scheme for (5.110), where

error is the maximum error of (P,Q) at T = 100.

5.6.3 Synchrotron oscillations

The mathematical model for oscillations of particles in storage rings is given by:

dP = −β2 sinQdt− σ1 cosQ ◦ dw1
t − σ2 sinQ ◦ dw2

t ,

dQ = Pdt.
(5.113)

We obtain the following formulas for the coefficients G1
α of S1

ω

G1
(0) =

p2

2
− ω2 cos q, G1

(1) = σ1 sin q, G1
(2) = −σ2 cos q, G1

(0,0) = ω2p sin q,

G1
(0,1) = σ1p cos q, G1

(0,2) = σ2p sin q, G1
(0,1,1) = σ2

1 cos
2 q, G1

(0,2,2) = σ2
2 sin

2 q,

(5.114)
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Figure 34: A sample trajectory of (6.26) for ω = 2, σ1 = 0.2, σ2 = 0.1, and time step
h = 2−5.

All other G1
α in (5.48) are zero.

Since the exact solution of the nonlinear SHS (6.26) is not known, it is hard to

verify the order of various symplectic schemes. However, using a very fine time step

h = 2−8 , we confirm that the sample trajectories from S1
ω with first and 1.5 order are

almost identical, and this is shown in Fig. 34. Moreover, the results also show that the

various order numerical schemes based on S1
ω are reliable for long time computation.

5.6.4 Conclusions

We present a framework to construct high-order symplectic schemes based on generat-

ing functions for stochastic Hamiltonian systems. The theoretical convergence analysis

and numerical tests are provided for the proposed numerical methods. In general these

symplectic schemes are implicit, and computationally expensive for mean square orders

higher than two because they require generating approximations for multiple stochastic

integrals of high order. It is also interesting to note that for stochastic Hamiltonian sys-

tems preserving Hamiltonian functions, the high order symplectic schemes have simpler

forms and include less multiple stochastic integrals than the explicit Taylor expansion

schemes.
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Chapter 6

Weak Symplectic Schemes for

Stochastic Hamiltonian Equations

If the approximation X̄k = (P̄ , Q̄), k = 0, 1, . . ., of the solutionX(tk, ω) = (P (tk, ω), Q(tk, ω)),

satisfies

|E[F (X̄k(ω))]− E[F (X(tk, ω)]| ≤ Khr, (6.1)

for F from a sufficiently large class of functions, where tk = t0 + kh ∈ [t0, t0 + T ], h

is the time step, and the constant K does not depend on k and h, then we say that

X̄k approximate the solution X(tk) of (5.1) in the weak sense [6] with weak order of

accuracy m.

In [6], Milstein et.al. have constructed a first-order weak symplectic scheme for

the system (5.1). Although several second and third order weak symplectic schemes

were proposed for special types of SHS (such as SHSs with additive noise or SHSs with

separable Hamiltonians), they conclude that further investigation is needed to obtain

higher order symplectic schemes for the general SHS (5.1) with multiplicative noise [6,

Remark 4.2].

In this Chapter, we propose a new method to derive symplectic weak schemes, and

we construct a second order weak symplectic scheme for the general SHS (5.1). Our

approach is a non-trivial extension of the methods based on generating functions from

deterministic Hamiltonian systems [1, Chapter 4] to SHS. The generating function

method in the stochastic case was applied to obtain strong schemes in [2], [3], but only

the low order symplectic schemes with mean square orders up to 3/2 were constructed

because of the complexity of the calculations required for finding the coefficients of the
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generating function. In previous section, we employ a different formulation, and we

obtain a general recursive formula for the coefficients of the generating function. To

the best of our knowledge, a systematic approach as presented in this work to construct

symplectic weak schemes of any order has not been reported before.

6.1 The weak symplectic schemes

In this section, we present a method to generate weak symplectic numerical schemes

for the SHS (5.1) of any given order. From equations (2.34), Chapter 5 in [4], we have

the following relationship between the Ito integrals

Iα[f(·, ·)]t0,t =
∫ t

t0

∫ sl

t0

. . .

∫ s2

t0

f(s1, ·)dwj1
s1
. . . dwjl−1

sl−1
dwjl

sl
, Iα = Iα[1]t0,t,

and the Stratanovich integrals Jα defined in Eq. (5.25): Iα = Jα if l(α) = 1 and

Jα = I(jl) [Jα−] + χ{jl=jl−1 ̸=0}I(0)

[
1

2
J(α−)−

]
, l(α) ≥ 2, (6.2)

where α = (j1, j2, . . . , jl), ji ∈ {0, 1, . . . ,m}, χA denotes the indicator function of the

set A, and f is any appropriate process [4, Chapter 5] .

For m = 1, replacing in the previous equation, we get J(0) = I(0), J(1) = I(1),

J(0,0) = I(0,0), J(0,1) = I(0,1), J(1,0) = I(1,0), J(1,0,1) = I(1,0,1),

J(1,1) = I(1,1) +
1

2
I(0), J(1,1,1) = I(1,1,1) +

1

2

(
I(1,0) + I(0,1)

)
,

J(1,1,0) = I(1,1,0) +
1

2
I(0,0), J(0,1,1) = I(0,1,1) +

1

2
I(0,0),

J(1,1,1,1) = I(1,1,1,1) +
1

2

(
I(0,1,1) + I(1,0,1) + I1,1,0

)
+

1

4
I(0,0).

To obtain a second order weak scheme, we replace in (5.24) the Stratanovich integrals

Jα by Ito integrals using the Eq. (6.2), and we truncate the series to include only

Ito integrals with multi-indexes α such that l(α) ≤ 2. Thus, we have the following
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approximation for the generating function

S1
ω ≈ (G1

(0) +
1

2
G1

(1,1))I(0) +G1
(1)I(1) +

(
G1

(0,0) +
1

2
(G1

(1,1,0) +G1
(0,1,1))

+
1

4
G1

(1,1,1,1)

)
I(0,0) +G1

(1,1)I(1,1) +

(
G1

(0,1) +
1

2
G1

(1,1,1)

)
I(0,1)

+

(
G1

(1,0) +
1

2
G1

(1,1,1)

)
I(1,0),

(6.3)

where everywhere the arguments are (P, q).

Replacing in (5.37), we get the scheme corresponding to the following one step

approximation:

P̄i = pi − h
∂G1

(0)

∂qi
− h1/2ξ

∂G1
(1)

∂qi
− h2

2

(
∂G1

(0,0)

∂qi
+

1

2

(
∂G1

(1,1,0)

∂qi
+
∂G1

(0,1,1)

∂qi

)

+
1

4

∂G1
(1,1,1,1)

∂qi

)
−hξ

2

2

∂G1
(1,1)

∂qi
− h3/2ϵ

(
∂G1

(1,0)

∂qi
+

1

2

∂G1
(1,1,1)

∂qi

)
−h3/2(ξ − ϵ)(

∂G1
(0,1)

∂qi
+

1

2

∂G1
(1,1,1)

∂qi

)

Q̄i = qi + h
∂G1

(0)

∂P̄i

+ h1/2ξ
∂G1

(1)

∂P̄i

+
h2

2

(
∂G1

(0,0)

∂P̄i

+
1

4

∂G1
(1,1,1,1)

∂P̄i

+
1

2

(
∂G1

(1,1,0)

∂P̄i

+
∂G1

(0,1,1)

∂P̄i

))
+
hξ2

2

∂G1
(1,1)

∂P̄i

+ h3/2ϵ

(
∂G1

(1,0)

∂P̄i

+
1

2

∂G1
(1,1,1)

∂P̄i

)

+ h3/2(ξ − ϵ)

(
∂G1

(0,1)

∂P̄i

+
1

2

∂G1
(1,1,1)

∂P̄i

)
,

where i = 1, . . . , n, h is the time step, and everywhere the arguments are (P̄ , q). The

random variable
√
hξ represents the Ito integral I(1), and h

3/2ϵ represents the double

Ito integral I(1,0), and we have ξ ∼ N(0, 1), ϵ ∼ N(0, 1/3) and E(ξϵ) = 1/2. Notice

that I(0,1) + I(1,0) = I(0)I(1), so h
3/2(ξ − ϵ) represents the double integral I(0,1).

For a weak scheme, we can generate the noise increments more efficiently than for

a strong scheme . For example, proceeding as in Section 14.2 of [4], we can avoid the

second random variable ϵ and generate a single random variable ζ with the following

discrete distribution

P (ζ = ±
√
3) =

1

6
, P (ζ = 0) =

2

3
. (6.4)
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The moments of ξ and ζ are equaled up to order 5, and we also replace ϵ by 1
2
ζ, so we

obtain the simplified scheme:

P̄i = pi − h
∂G1

(0)

∂qi
− h1/2ζ

∂G1
(1)

∂qi
− h2

2

(
∂G1

(0,0)

∂qi
+

1

4

∂G1
(1,1,1,1)

∂qi

+
1

2

(
∂G1

(1,1,0)

∂qi
+
∂G1

(0,1,1)

∂qi

))
−hζ

2

2

∂G1
(1,1)

∂qi
− 1

2
h3/2ζ

(
∂G1

(1,0)

∂qi
+
∂G1

(1,1,1)

∂qi

+
∂G1

(0,1)

∂qi

)
, (6.5)

Q̄i = qi + h
∂G1

(0)

∂P̄i

+ h1/2ζ
∂G1

(1)

∂P̄i

+
h2

2

(
∂G1

(0,0)

∂P̄i

+
1

4

∂G1
(1,1,1,1)

∂P̄i

+
1

2

(
∂G1

(1,1,0)

∂P̄i

+
∂G1

(0,1,1)

∂P̄i

))
+
hζ2

2

∂G1
(1,1)

∂P̄i

+
1

2
h3/2ζ

(
∂G1

(1,0)

∂P̄i

+
∂G1

(1,1,1)

∂P̄i

+
∂G1

(0,1)

∂P̄i

)
, (6.6)

where i = 1, . . . , n, and everywhere the arguments are (P̄ , q).

Lemma 6.1 The scheme (6.5)-(6.6) is symplectic.

Proof: By definition the scheme (6.5)-(6.6) is symplectic if it preserves symplectic

structure, i.e. if we have P̄ ∧ Q̄ = dp ∧ dq. This can be proved proceeding as in the

proof of Theorem 3.1 in [7]. Notice that we can write the scheme (6.5)-(6.6)) as

P̄i = pi −
∂S̄1

∂qi
(P̄ , q), Q̄i = qi +

∂S̄1

∂P̄i

(P̄ , q),

where

S̄1 = G1
(0)h+G1

(1)

√
hζ +

(
G1

(0,0) +
1

2
(G1

(1,1,0) +G1
(0,1,1)) +

1

4
G1

(1,1,1,1)

)
h2

2

+G1
(1,1)

hζ2

2
+
h3/2ζ

2

(
G1

(0,1) +G1
(1,1,1) +G1

(1,0)

)
.

For the general stochastic Hamiltonian system (5.1) with d ≥ 1, a second order

symplectic scheme can be constructed similarly using the following approximation of
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the generating function

S̄1
ω =

(
G1

(0) +
1

2

d∑
k=1

G1
(k,k)

)
h+

d∑
k=1

G1
(k)

√
hζk +

(
G1

(0,0) +
1

2

d∑
k=1

(
G1

(k,k,0)

+G1
(0,k,k)

)
+
1

4

d∑
k,j=1

G1
(k,k,j,j)

)
h2

2
+
h3/2

2

d∑
k=1

ζk

(
G1

(0,k) +G1
(k,0)

+
1

2

d∑
j=1

(
G1

(k,j,j) +G1
(j,j,k)

))
+
h

2

d∑
j,k=1

G1
(j,k)(ζjζk + ζj,k). (6.7)

Here ζk, for k = 1, . . . ,m are independent random variables with the distribution

given in (6.4) and ζj,k are independent, two-point distributed random variables with

ζj1,j1 = −1,

P (ζj1,j2 = ±1) =
1

2
, j2 = 1, . . . , j1 − 1, ζj1,j2 = −ζj2,j1 , j2 = j1 + 1, . . . , d,

for j1 = 1, . . . ,m, [4, Chapter 14.2].

It is important to recognize that a symplectic scheme of order m can be constructed

in a similar way by replacing the Stratanovich integrals in (5.24) by Ito integrals using

the Eq. (6.2) and keeping the Ito integrals Iα with l(α) ≤ r. HereG1
α can be determined

using (5.43). For example, for order three weak symplectic schemes, we include in the

approximation of the generating function S1
ω all terms containing Ito integral Iα with
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l(α) ≤ 3. From (6.2) we have

S1
ω ≈

(
G1

(0) +
1

2

d∑
k=1

G1
(k,k)

)
I(0) +

(
G1

(0,0) +
1

2

d∑
k=1

(G1
(k,k,0) +G1

(0,k,k))

+
1

4

d∑
k,j=1

G1
(k,k,j,j)

)
I(0,0) +

d∑
k=1

((
G1

(0,k) +
1

2

d∑
j=1

G1
(j,j,k)

)
I(0,k)

+

(
G1

(k,0) +
d∑

j=1

1

2
G1

(k,j,j)

)
I(k,0)

)
+

d∑
k=1

G1
(k)I(k)

+
d∑

k,j=1

G1
(k,j)I(k,j) +

(
G1

(0,0,0) +
1

2

d∑
k=1

(
G1

(k,k,0,0) +G1
(0,k,k,0) +G1

(0,0,k,k)

)
+

1

4

d∑
k,j=1

(
G1

(k,k,j,j,0) +G1
(0,k,k,j,j) +G1

(k,k,0,j,j)

)
+

1

8

d∑
k,j,l=1

G1
(k,k,j,j,l,l)

)
I(0,0,0)

+
d∑

k=1

(
G1

(0,0,k) +
1

2

d∑
j=1

(
G1

(j,j,0,k) +G1
(0,j,j,k)

)
+

1

4

d∑
j,l=1

G1
(j,j,l,l,k)

)
I(0,0,k)

+
d∑

k=1

(
G1

(0,k,0) +
1

2

d∑
j=1

(
G1

(j,j,k,0) +G1
(0,k,j,j)

)
+

1

4

d∑
j,l=1

G1
(j,j,k,l,l)

)
I(0,k,0)

+
d∑

k=1

(
G1

(k,0,0) +
1

2

d∑
j=1

(
G1

(k,j,j,0) +G1
(k,0,j,j)

)
+

1

4

d∑
j,l=1

G1
(k,j,j,l,l)

)
I(k,0,0)

+
d∑

k,j=1

((
G1

(k,j,0) +
1

2

d∑
l=1

G1
(k,j,l,l)

)
I(k,j,0) +

(
G1

(0,k,j) +
1

2

d∑
l=1

G1
(l,l,k,j)

)
I(0,k,j)

+

(
G1

(k,0,j) +
1

2

d∑
l=1

G1
(k,l,l,j)

)
I(k,0,j)

)
+

d∑
k,j,l=1

G1
(k,j,l)I(k,j,l),

where everywhere the arguments are (P, q). Although it is easier to approximate the

multiple Ito integrals Iα for weak schemes than for the strong schemes, it should be

noted that weak symplectic schemes with high order (e.g. r ≥ 4) will involve long

formulas for the coefficients G1
α, including high order partial derivatives of the Hamil-

tonians H(r), r = 0, . . . ,m.

Analogously, using (5.11) and a truncated series for S2
ω or (5.12) and a truncated

series for S3
ω, we can obtain various weak symplectic schemes for the SHS (5.1). For

example, if m = 1, we have the following weak second order scheme based on the
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truncation of S3
ω that includes only the terms containing Ito integrals Iα with multi-

indexes α such that l(α) ≤ 2:

Yk+1 = Yk + J−1∇H(0)(Yk+ 1
2
)h+ J−1∇H(1)(Yk+ 1

2
)h1/2ζk

+
h2

2
J−1

(
1

4
∇G3

(1,1,1,1)(Yk+ 1
2
) +

1

2

(
∇G3

(1,1,0)(Yk+ 1
2
) +∇G3

(0,1,1)(Yk+ 1
2
)
))

+
h3/2ζk

2
J−1

(
∇G3

(1,0)(Yk+ 1
2
) +∇G3

(0,1)(Yk+ 1
2
) +∇G3

(1,1,1)(Yk+ 1
2
)
)

(6.8)

where for each time step k, we have Yk = (P T
k , Q

T
k )

T , and the arguments are everywhere

Yk+ 1
2
= (Yk+1 + Yk)/2. The random variables ζk are the same as for the scheme (6.5)-

(6.6), and the coefficients G3
α can be found using (5.45).

Remark 6.2 The order 1 scheme presented in [6] (with α = β = 1) corresponds to

the following approximation of the generating function which contains Ito integrals Iα

with l(α) ≤ 1:

S̄1(P, q) ≈ (G1
(0)(P, q) +

1

2

d∑
k=1

G1
(k,k)(P, q))h+

d∑
k=1

G1
(k)(P, q)

√
hηk,

P (ηk = ±1) = 1/2, and the random variables ηk are mutually independent. The weak

order 1 scheme presented in [6] (with α = β = 1/2) corresponds to the following

truncation of the generating function according to indexes α with l(α) ≤ 1:

S̄3(z) ≈ G3
(0)(z)h+

d∑
k=1

G3
(k)(z)

√
hηk, P (ηk = ±1) =

1

2
, z ∈ R2n.

and the random variables ηk are mutually independent.

6.2 Convergence study

We study the convergence of the symplectic numerical schemes proposed in the previous

section. To keep the notations as simple as possible, we will illustrate the idea of the

proof for the scheme (6.5)-(6.6) which corresponds to the system (5.1) with m = 1,

and to the truncation given in (6.3) of the generating function. The same approach
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can be followed in the general case for m > 1 and for truncations of the generating

function including all Ito integrals Iα with l(α) ≤ r with r > 2, but the complexity of

the calculations in the Taylor expansions increases with m and r.

We assume that the coefficients of (5.1) are smooth enough to satisfy the following

global Lipschitz condition

1∑
j=0

∥∇H(j)(P,Q)−∇Hj(p, q)∥ ≤ L1(∥P − p∥+ ∥Q− q∥). (6.9)

As in [6], we define the class F to be formed with the functions F defined on R2n

for which there exists constants K > 0 and χ > 0, such that

|F (x)| ≤ K(1 + |x|)χ,

for any x ∈ R2n. To prove the weak convergence with order 2, we use the general result

given in Theorem 4.1 in [6]. We assume that the function F in (6.1) together with its

partial derivatives up to order 6 belong to the class F . Moreover, in addition to (6.9),

H(0) and H(1) together with their partial derivatives up to order 7 belongs to class F .

Theorem 6.3 The implicit method (6.5)-(6.6) for the system (5.1) with m = 1 is

symplectic and of weak order 2.

Proof: The scheme (6.5)-(6.6) is implicit, so we should first prove that it is well-

defined. Using the Lipschitz condition (6.9), the fact that at each step the random

variables |ζ| ≤
√
3, and proceeding as in the proof of lemma 5.3, from the contraction

principle we get that there exist constants K > 0 and h0 > 0 such that for any h ≤ h0,

t0 ≤ t ≤ t0 + T , x = (pT , qT )T ∈ R2n, the system (6.5)-(6.6) has a unique solution

X̄ = (P̄ T , Q̄T )T ∈ R2n which satisfies the inequality

∥X̄ − x∥ ≤ K(1 + ∥x∥)
√
h. (6.10)

This solution can be found by the method of simple iteration with x = (pT , qT )T as

the initial approximation, so the scheme (6.5)-(6.6) is well-defined.
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From lemma 6.1, we know that the scheme is symplectic, and to prove the weak

convergence with second order, we check the conditions (2) and (4) in Theorem 4.1

in [6]. For i = 1, . . . , 2n, let denote ∆̄i = X̄ i − xi and ∆i = X i
t,x(t + h) − xi, where

Xt,x(t+h) = (P T (t+h), QT (t+h))T is the solution of the system (5.1) and Xt,x(t) = x.

Then from (6.10) we have

E
6∏

j=1

|∆̄ij | ≤ K(x)h3, K ∈ F , ij ∈ {1, . . . , 2n}, j = 1, . . . , 6. (6.11)

To prove that∣∣∣∣E
(

v∏
j=1

∆ij −
v∏

j=1

∆̄ij

)∣∣∣∣≤ k(x)h3, v = 1, . . . , 5, k ∈ F , (6.12)

we compare the scheme (6.5)-(6.6) with the order 2 weak Taylor scheme ([4], pp. 464).

To simplify the notation, let denote

fi(P,Q) = −∂H
(0)

∂Qi

(P,Q) +
1

2

n∑
j=1

(
∂H(1)

∂Qj

(P,Q)
∂2H(1)

∂Pj∂Qi

(P,Q)

− ∂H(1)

∂Pj

(P,Q)
∂2H(1)

∂Qj∂Qi

(P,Q)

)
gi(P,Q) =

∂H(0)

∂Pi

(P,Q) +
1

2

n∑
j=1

(
−∂H

(1)

∂Qj

(P,Q)
∂2H(1)

∂Pj∂Pi

(P,Q)

+
∂H(1)

∂Pj

(P,Q)
∂2H(1)

∂Pi∂Qj

(P,Q)

)
σi(P,Q) = −∂H

(1)

∂Qi

(P,Q), γi(P,Q) =
∂H(1)

∂Pi

(P,Q),

and f = (f1, . . . , fn)
T , g = (g1, . . . , gn)

T , σ = (σ1, . . . , σn)
T , γ = (γ1, . . . , γn)

T . Using

the Ito stochastic integration, we rewrite the equations (5.1) as

dPi = fi(P,Q)dt+ σi(P,Q)dwt, P (t0) = p (6.13)

dQi = gi(P,Q)dt+ γi(P,Q)dwt, Q(t0) = q, (6.14)

An order 2 weak Taylor scheme [4, Chapter 14.2] for the Ito system (6.13)-(6.14) is
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given in the following equations:

P̃ = p+ hf + h1/2ζσ +
h2

2
L0(f) +

h3/2ζ

2
(L0(σ) + L1(f)) +

hL1(σ)

2
(ζ2 − 1), (6.15)

Q̃ = q + hg + h1/2ζγ +
h2

2
L0(g) +

h3/2ζ

2
(L0(γ) + L1(g)) +

hL1(γ)

2
(ζ2 − 1), (6.16)

where f , g, σ, γ and their derivatives are calculated at (p, q), and the operators L0 and

L1 are given by

L0 =
n∑

j=1

(
fj

∂

∂Pj

+ gj
∂

∂Qj

)
+

1

2

n∑
i=1

n∑
j=1

(
σiσj

∂2

∂PiPj

+ γiγj
∂2

∂QiQj

+ 2σiγj
∂2

∂PiQj

)

L1 =
n∑

i=1

(
σi

∂

∂Pi

+ γi
∂

∂Qi

)
.

The random variables ζ are generated independently at each time step according to

the discrete distribution given in (6.4).

For i = 1, . . . , 2n let denote ∆̃i = X̃ i − xi, where X̃ = (P̃ T , Q̃T )T . Then from [5,

Chapter 8] we know that∣∣∣∣E
(

v∏
j=1

∆ij −
v∏

j=1

∆̃ij

)∣∣∣∣≤ K0(x)h
3, v = 1, . . . , 5, K0 ∈ F . (6.17)

Let define ρ by

ρj = X̃j − X̄j = ∆̃j − ∆̄j, j = 1, . . . , 2n.

Expanding the terms in the right-hand side of (6.5)-(6.6) around (p, q), we get

∆i = ∆i
j(p, q) +Rj(P̄ , q), |Rj(P̄ , q)| ≤ Fjh

j+1
2 , i = 1, . . . , 2n,

where Fj ∈ F , j = 1, . . . , 5. For example, if n = 1, we define recursively

∆1
1 = −h1/2ζ

∂G(1)

∂q
, ∆1

2 = −h1/2ζ
(
∂G(1)

∂q
+∆1

1

∂2G(1)

∂q∂p

)
− h

(
∂G(0)

∂q
+
ζ2

2

∂G(1,1)

∂q

)
,

∆1
3 = −h1/2ζ

(
∂G(1)

∂q
+∆1

2

∂2G(1)

∂q∂p
+

(∆1
1)

2

2

∂3G(1)

∂q∂2p

)
− h

(
∂G(0)

∂q
+
ζ2

2

∂G(1,1)

∂q

+∆1
1

∂

∂p

(
∂G(0)

∂q
+
ζ2

2

∂G(1,1)

∂q

))
−1

2
h3/2ζ

(
∂G(1,0)

∂q
+
∂G(1,1,1)

∂q
+
∂G(0,1)

∂q

)
,
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∆1
4 = −h1/2ζ

(
∂G(1)

∂q
+∆1

3

∂2G(1)

∂q∂p
+

(∆1
2)

2

2

∂3G(1)

∂q∂2p
+

(∆1
1)

3

6

∂4G(1)

∂q∂3p

)
− h

(
∂G(0)

∂q

+
ζ2

2

∂G(1,1)

∂q
+∆1

2

∂

∂p

(
∂G(0)

∂q
+
ζ2

2

∂G(1,1)

∂q

)
+

(∆1
1)

2

2

∂2

∂2p

(
∂G(0)

∂q
+
ζ2

2

∂G(1,1)

∂q

))
− 1

2
h3/2ζ

(
∂G(1,0)

∂q
+
∂G(1,1,1)

∂q
+
∂G(0,1)

∂q
+∆1

1

∂

∂p

(
∂G(1,0)

∂q
+
∂G(1,1,1)

∂q
+
∂G(0,1)

∂q

))
− h2

2

(
∂G(0,0)

∂q
+

1

4

∂G(1,1,1,1)

∂q
+

1

2

(
∂G(1,1,0)

∂q
+
∂G(0,1,1)

∂q

))
,

∆1
5 = −h1/2ζ

(
∂G(1)

∂q
+∆1

4

∂2G(1)

∂q∂p
+

(∆1
3)

2

2

∂3G(1)

∂q∂2p
+

(∆1
2)

3

6

∂4G(1)

∂q∂3p
+

(∆1
1)

4

24

∂5G(1)

∂q∂4p

)
− h

(
∂G(0)

∂q
+
ζ2

2

∂G(1,1)

∂q
+∆1

3

∂

∂p

(
∂G(0)

∂q
+
ζ2

2

∂G(1,1)

∂q

)
+

(∆1
2)

2

2

∂2

∂2p

(
∂G(0)

∂q

+
ζ2

2

∂G(1,1)

∂q

)
+
(∆1

1)
3

6

∂3

∂3p

(
∂G(0)

∂q
+
ζ2

2

∂G(1,1)

∂q

))
−1

2
h3/2ζ

(
∂G(1,0)

∂q
+
∂G(1,1,1)

∂q

+
∂G(0,1)

∂q
+∆1

2

∂

∂p

(
∂G(1,0)

∂q
+
∂G(1,1,1)

∂q
+
∂G(0,1)

∂q

)
+
(∆1

1)
2

2

∂2

∂2p

(
∂G(1,0)

∂q

+
∂G(1,1,1)

∂q
+
∂G(0,1)

∂q

))
−h

2

2

(
∂G(0,0)

∂q
+

1

4

∂G(1,1,1,1)

∂q
+

1

2

(
∂G(1,1,0)

∂q
+
∂G(0,1,1)

∂q

)
+∆1

1

∂

∂p

(
∂G(0,0)

∂q
+

1

4

∂G(1,1,1,1)

∂q
+

1

2

(
∂G(1,1,0)

∂q
+
∂G(0,1,1)

∂q

)))
Similarly, we define ∆2

j , j = 1, . . . , 5, starting from ∆2
1 = h1/2ζ

∂G(1)

∂p
.

Using MAPLE software for the calculations and using the assumptions on the

smoothness and boundedness of H(0) and H(1) and E(ζ l) = 0, l = 1, 3, 5, it is not

difficult to verify

|ρj| ≤ K1(x)h
2, (6.18)

|E(ρj)| =
∣∣∣∣E (∆̃j − ∆̄j

) ∣∣∣∣≤ K2(x)h
3, (6.19)

|E(ρj∆̄i)| ≤ K3(x)h
3, i, j = 1, . . . , 2n (6.20)

for any i, j = 1, . . . , 2n, where Kl ∈ F , l = 1, 2, 3. Moreover, from (6.10), we get

|∆̄j|l ≤ K4(x)h
l/2 j = 1, . . . , 2n, l = 1, 2, . . . , K4 ∈ F . (6.21)
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Hence from (6.18)-(6.20), we obtain for v = 2

|E(
2∏

j=1

∆̃ij −
2∏

j=1

∆̄ij)| = |E(
2∏

j=1

(∆̄ij + ρij)−
2∏

j=1

∆̄ij)| ≤ K(x)h3, K ∈ F . (6.22)

For v = 3, 4, 5, the difference
∏v

j=1 ∆̃
ij −

∏v
j=1 ∆̄

ij consists of terms including either

a product ρij · · · ρik with at least 2 factors, or a product ρij · (∆̄i1 · · · ∆̄iv) with at

least three factors. Hence, using (6.18), (6.21) and the Cauchy–Schwarz inequality

inequality, we can easily verify that that∣∣∣∣E
(

v∏
j=1

∆̃ij −
v∏

j=1

∆̄ij

)∣∣∣∣≤ K(x)h3, v = 3, 4, 5, K ∈ F . (6.23)

The inequality (6.12) follows from (6.17) and (6.19), (6.22), (6.23).

To conclude the proof, we have to show that for a sufficiently large number m,

the moments E(∥X̄k∥r) exist and are uniformly bounded with respect to N , where

h = T/N , and k = 0, . . . , N . Since E(ζ) = 0, expanding the terms in the right-

hand side of (6.5)-(6.6) around (p, q), and using the assumptions on smoothness and

boundedness ofH(0) andH(1), we can show that |E(∆̄)| ≤ K(1+∥x∥)h. This inequality

and (6.10) ensure the existence and boundedness of the moments E(∥X̄k∥r) (see lemma

9.1 in [5]).

Analogously, we can prove the following result for the midpoint scheme.

Theorem 6.4 The implicit method (6.8) for the SHS (5.1) is symplectic and of weak

order 2.

The convergence of the symplectic weak scheme of any order m constructed using

the generating function Si
ω, i = 1, 2, 3, can be proved in a similar way using Theorem

9.1 in [5] and comparing with the corresponding explicit order m weak Taylor scheme

in Chapter 14 in [4].
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6.3 Numerical Tests

To validate the performance of the proposed symplectic schemes, we perform numerical

simulations. Since we work with weak schemes, for the MCS we only need to simulate

uniformly distributed random numbers, and to calculate the expectations, unless we

specify otherwise, 100 000 samples were used.

6.3.1 Kubo oscillator

In [7] the Kubo oscillator based on the following SDEs in the sense of Stratonovich is

used to demonstrate the advantage of using a stochastic symplectic scheme for long

time computations:

dP = −aQdt− σQ ◦ dwt, P (0) = p0,

dQ = aPdt+ σP ◦ dwt, Q(0) = q0,
(6.24)

where a and σ are constants.

Here, we consider the Euler weak scheme given in Chapter 14.1 in [4], and four

stochastic symplectic weak schemes, namely the first and second order schemes based

on S1
ω and S3

ω. The coefficients G1
α of S1

ω for system (6.24) are given by (see the general

formula (5.43)):

G1
(0) =

a

2
(P 2 + q2), G1

(1) =
σ

2
(P 2 + q2), G1

(0,0) = a2Pq, G1
(1,1) = σ2Pq

G1
(1,0) = G1

(0,1) = aσPq, G1
(0,0,0) = a3(P 2 + q2) G1

(1,1,1) = σ3(P 2 + q2)

G1
(1,1,0) = G1

(1,0,1) = G1
(0,1,1) = aσ2(P 2 + q2), G1

(1,1,1,1) = 5σ4Pq,

where everywhere the arguments are (P, q). The symplectic schemes of various orders

are obtained by truncating the generating function S1
ω appropriately (see (6.5)-(6.6)

for the second order scheme).

For S3
ω, replacing in the general formula (5.45), we get G3

α = 0 when l(α) = 2 and
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G3
(1,1,1,1) = 0. Thus

G3
(0)(p, q) =

a

2
(p2 + q2), G3

(1)(p, q) =
σ

2
(p2 + q2), G3

(0,0,0)(p, q) =
a3

4
(p2 + q2),

G3
(1,1,1)(p, q) =

σ3

4
(p2 + q2), G3

(1,1,0)(p, q) = G3
(1,0,1)(p, q) = G3

(0,1,1)(p, q)

=
aσ2

4
(p2 + q2).
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Figure 35: The expected value of P (t) (a) and Q(t) (b) for (6.24) with a = 2, σ = 0.2,
p = 1, q = 0, and time step h = 2−5: solid line; second order S1

ω weak scheme, dashed
line; Euler weak scheme

From [7], it is well-known that the Hamiltonian functionsH(0)(P (t), Q(t)) = aP (t)2+Q(t)2

2

and H(1)(P (t), Q(t)) = σ P (t)2+Q(t)2

2
are preserved under the phase flow of the system.

Therefore, the expected value of P (t)2 + Q(t)2 is also invariant with respect to time

and we have

E(P (t)) = e−
σ2t
2 (p cos (at)− q sin (at)), E(Q(t)) = e−

σ2t
2 (p sin (at) + q cos (at)).

(6.25)

In Fig. 35, we compare the exact values (6.25) with the estimations obtained using the

explicit Euler scheme and the second-order weak symplectic scheme (6.5)-(6.6). It is

clear that the second-order weak symplectic scheme produces very accurate estimations,

while the Euler scheme fails even for a short term simulations.
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Figure 36: Convergence rate of different order S1
ω symplectic weak scheme for (6.24)
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Figure 37: Convergence rate of different order S3
ω symplectic weak scheme for (6.24).

The convergence rates of various symplectic weak schemes are investigated numer-

ically by comparing the estimations of the expected values of the solutions with the

exact value (6.25). Fig. 36 and Fig. 37 both confirm the expected convergence rates

of the proposed symplectic schemes. The error is defined as the difference between the

estimation of the expected value of solution from the numerical scheme and the exact

value (6.25) at T = 10.
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6.3.2 Synchrotron oscillations

The mathematical model for the oscillations of the particles in storage rings ([7]) is

given by:

dP = −β2 sinQdt− σ1 cosQ ◦ dw1
t − σ2 sinQ ◦ dw2

t ,

dQ = Pdt.
(6.26)

Notice that H(0)(P,Q) = −β2cosQ + P 2/2 = U(Q) + V (P ), H(1)(P,Q) = σ1sinQ,

H(2)(P,Q) = −σ2cosQ, so (6.26) is a SHS with separable Hamiltonians. Thus the

explicit symplectic schemes in Section 4.2 in [6] can be applied.

Replacing in the general formula (5.43), we obtain the following formulas for the

coefficients G1
α of S1

ω

G1
(0) =

P 2

2
− β2 cos q, G1

(1) = σ1 sin q, G1
(2) = −σ2 cos q,

G1
(0,0) = β2P sin q, G1

(0,1) = σ1P cos q, G1
(0,2) = σ2P sin q,

G1
(0,1,1) = σ2

1 cos
2 q, G1

(0,2,2) = σ2
2 sin

2 q,

where everywhere the arguments are (P, q). All other G1
α included in the second order

weak symplectic scheme based on the generating function S1
ω given in (6.7) are zero,

and the first- and second-order symplectic weak schemes based on S1
ω are explicit for

the SHS (6.26).

The mean energy of the system (6.26) is defined as E(e(p, q)), where e(p, q) =

p2/2− β2cos(q) ([6]). If σ1 = σ2 we have ([6])

E(e(P (t; 0, p, q), Q(t; 0, p, q))) = e(p, q) +
σ2

2
t. (6.27)

To check the accuracy of the proposed symplectic weak schemes, we run MCS and

estimate 95% confidence intervals for E(e(P (t; 0, p, q), Q(t; 0, p, q))) as

ē(t; 0, p, q)± 1.96
se(t; 0, p, q)√

M
, (6.28)

where M is the number of independent realizations in the MCS, ē(t; 0, p, q) is the

sample average and se(t; 0, p, q) is the sample standard deviation (see also formula 7.7
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in [6]). In addition to the weak scheme error, we also have the Monte Carlo error, but

the margin of error in the confidence intervals (6.28) reflects the Monte Carlo error

only.

Table 2: Simulation of E(e(P (200; 0, 1, 0), Q(200; 0, 1, 0))) by the second order weak
symplectic scheme based on the generating function S1

ω given in (6.7)
h M ē(200; 0, 1, 0) se(200; 0, 1, 0) 95% confidence interval

0.05 105 -6.609 0.029 -6.665 to -6.552
0.025 105 -6.544 0.029 -6.601 to -6.488
0.01 105 -6.497 0.029 -6.553 to -6.44
0.01 4 · 106 -6.502 0.005 -6.511 to -6.493

The experiments presented in Table 2 demonstrate that the second order weak sym-

plectic scheme based on the generating function S1
ω given in (6.7) has similar accuracy

with the explicit symplectic schemes (7.3) and (7.5) in [6] (see Table 1 in [6]). The

values of the parameters used in the simulations are σ1 = σ2 = 0.3, β = 4, the initial

values are P (0) = 1, Q(0) = 0, and t = 200. The sample averages ē(200; 0, 1, 0) dis-

played in Table 2, corresponding to various time steps h and number of realizationsM ,

are good estimations of the exact solution E(e(P (200; 0, 1, 0), Q(200; 0, 1, 0))) = −6.5

obtained from (6.27). This proves the excellent performance for long term simulation

of the second order weak symplectic scheme based on the generating function S1
ω given

in (6.7).

6.4 Conclusions

We present a systematic approach based on the generating functions to construct sym-

plectic weak schemes of any order m for a general stochastic Hamiltonian system. For

order m = 1, the derived weak scheme is the same as that proposed in [6]. However, it

should be noted that a different approach is reported in [6], but no detail is provided

how to extend this approach to construct symplectic weak scheme of order m > 1 for
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general SHSs. In this study, we focus on the proposed second order symplectic weak

schemes. To our knowledge, this may be the first to present the second order sympletic

weak schemes which can be applied to general SHSs. It is important to recognize that

higher oder weak schemes can be derived using the same procedure reported in this

work.

For the symplectic second order weak schemes, we present a convergence study and

validate their accuracy by numerical simulations for two different stochastic Hamilto-

nian systems. It is known that there are effective explicit methods of weak order 2

for general stochastic differential equations ([4, chapter 14]), but these methods are

not symplectic. Compared to the Taylor expansion methods, the proposed symplectic

second order weak methods are implicit, but they are comparable in terms of the num-

ber and the complexity of the multiple Ito stochastic integrals or the derivatives of the

Hamiltonian functions required. Moreover, since for weak schemes we can use bounded

discrete random variables to simulate the multiple Ito stochastic integrals, the derived

symplectic implicit weak schemes are well defined and they are also computationally

efficient.

Constructing weak symplectic schemes with high order (e.g. m > 4) is important

from a theoretical point of view. Regarding a practical implementation, the Monte-

Carlo simulations included in Section 6.3 for the symplectic schemes of weak orders

m = 1 andm = 2 do not require variance reduction methods, but for ordersm > 4, it is

expected that the accuracy of the results will be influenced by the increasing variance.

In addition, the weak symplectic schemes with higher order involve high order partial

derivatives of the Hamiltonian functions.
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Chapter 7

Symplectic schemes for stochastic

Hamiltonian systems preserving

Hamiltonian functions

Unlike the deterministic cases, in general the SHS (5.1) no longer preserves the Hamil-

tonian functions H(i), i = 0, . . . , n with respect to time. However, by the chain rule of

the Stratonovich stochastic integration, for any i = 0, . . . ,m we have

dH(i) =
n∑

k=1

(
∂H(i)

∂Pk

dP +
∂H(i)

∂Qk

dQ) =
n∑

k=1

(−∂H
(i)

∂Pk

∂H(0)

∂Qk

+
∂H(i)

∂Qk

∂H(0)

∂Pk

)dt+
m∑
r=1

n∑
k=1

(−∂H
(i)

∂Pk

∂H(r)

∂Qk

+
∂H(i)

∂Qk

∂H(r)

∂Pk

) ◦ dwr
t

(7.1)

Thus, the Hamiltonian functions H(i), i = 0, . . . ,m are invariant for the flow of

the system (5.1) (i.e. dH(i) = 0), if and only if {H(i), H(j)} = 0 for i, j = 0, . . . ,m,

where the Poisson bracket is defined as {H(i), H(j)} =
∑n

k=1(
∂H(j)

∂Qk

∂H(i)

∂Pk
− ∂H(i)

∂Qk

∂H(j)

∂Pk
).

In this Chapter, we propose symplectic schemes for the special type of SHS preserving

the Hamiltonian functions. This type of SHS is a special case of integrable stochastic

hamiltonian dynamical systems which has been studied in [2].

The main results are included in section 7.1 where we prove that the coefficients

of the generating function are invariant under permutation for this type of systems.

That allows us to construct in section 7.2 strong and weak symplectic schemes of order

two and three simpler than non-symplectic explicit Taylor expansion schemes with the

same order.
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7.1 Properties of Gα

In this section we prove an invariance property of the coefficients Gi
α of the generating

functions Si
ω, i = 1, 2, 3. For any permutation on {1, . . . , l}, l ≥ 1, and for any multi-

index α = (i1, . . . , il) with l(α) = l let denote by π(α) the multi-index defined as

π(α) := (iπ(1), . . . , iπ(l)).

Based on formula (5.43) we have the following result.

Theorem 7.1 For SHS preserving the Hamiltonian functions, the coefficients G1
α of

the generating function S1
ω are invariants under permutations, i.e G1

α = G1
π(α).

Proof: By induction on the length of the multi-index α, the coefficients G1
α of S1

ω

are invariant under the permutations on α for systems preserving the Hamiltonian

functions, when l(α) = 2 because for any r1, r2 = 0, . . . ,m we have

G1
(r1,r2)

=
n∑

k=1

∂H(r2)

∂qk

∂H(r1)

∂Pk

=
n∑

k=1

∂H(r1)

∂qk

∂H(r2)

∂Pk

= G1
(r2,r1)

. (7.2)

We assume that G1
α = G1

π(α) for any multi-index α with l(α) < l and any permutation

π on {1, . . . , l(α)}. Let consider any multi-index α with l(α) = l. We suppose that the

components of the multi-index α are distinct, otherwise we rename the repeating ones

with distinct subscripts. To prove that G1
α = G1

π(α) we analyse several cases, depending

on the permutation π on {1, . . . , l}

Case 1 Let first consider any permutation π such that π(l) = l. Then we can write

α = (i1, . . . , il−1, r) and π(α) = (iπ(1), . . . , iπ(l−1), r), with r = il ∈ {0, . . . ,m}. From

(5.43) and G1
β = G1

π(β) for any multi-index β with l(β) < l we get

G1
α =

l−1∑
i=1

1

i!

n∑
k1,...,ki=1

∂iH(r)

∂qk1 . . . ∂qki

∑
l(α1)+···+l(αi)=l−1

α−∈Λα1,...,αi

∂G1
α1

∂Pk1

. . .
∂G1

αi

∂Pki

=
l−1∑
i=1

1

i!

n∑
k1,...,ki=1

∂iH(r)

∂qk1 . . . ∂qki

∑
l(α1)+···+l(αi)=l−1
π(α)−∈Λα1,...,αi

∂G1
α1

∂Pk1

. . .
∂G1

αi

∂Pki

= G1
π(α),
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Case 2: Let consider any permutation π such that π(l) = l − 1, π(l − 1) = l,

(α−)− = (π(α)−)− Then we can write α = (i1, . . . , il−2, s, r) and π(α) = (i1, . . . , il−2, r, s),

with r = il ∈ {0, . . . ,m} and s = il−1 ∈ {0, . . . ,m}. Since Λα1,α2 = Λα2,α1 and s is the

”largest” number with respect to the partial order ≺ on α− we can write

G1
α =

l−1∑
i=1

1

i!

n∑
k1,...,ki=1

∂iH(r)

∂qk1 . . . ∂qki

∑
l(α1)+···+l(αi)=l−1

α−∈Λα1,...,αi

∂G1
α1

∂Pk1

. . .
∂G1

αi

∂Pki

=
n∑

k1=1

∂H(r)

∂qk1

∂G1
((α−)−)∗(s)

∂Pk1

+
l−1∑
i=2

1

(i− 1)!

n∑
k1,...,ki=1

∂iH(r)

∂qk1 . . . ∂qki

∂H(s)

∂Pk1

∑
l(α2)+···+l(αi)=l−2
(α−)−∈Λα2,...,αi

∂G1
α2

∂Pk2

. . .
∂G1

αi

∂Pki

+
l−2∑
i=2

1

i!

l−i−1∑
j=1

n∑
k1,...,ki=1

∂iH(r)

∂qk1 . . . ∂qki

∑
l(α2)+···+l(αi)=l−2−j,

l(α1)=j, (α−)−∈Λα1,...,αi

∂G1
α1∗(s)

∂Pk1

. . .
∂G1

αi

∂Pki

.
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Using formula (5.43) for the first and the third terms, we get

G1
α =

n∑
k1=1

∂H(r)

∂qk1

∂

∂Pk1

( l−2∑
u=1

1

u!

n∑
c1,...,cu=1

∂uH(s)

∂qc1 . . . ∂qcu∑
l(β1)+···+l(βu)=l−2
(α−)−∈Λβ1,...,βu

∂G1
β1

∂Pc1

. . .
∂G1

βu

∂Pcu

)

+
l−1∑
i=2

1

(i− 1)!

n∑
k1,...,ki=1

∂iH(r)

∂qk1 . . . ∂qki

∂H(s)

∂Pk1∑
l(α2)+···+l(αi)=l−2
(α−)−∈Λα2,...,αi

∂G1
α2

∂Pk2

. . .
∂G1

αi

∂Pki

+
l−2∑
i=2

1

(i− 1)!

l−i−1∑
j=1

n∑
k1,...,ki=1

∂iH(r)

∂qk1 . . . ∂qki∑
l(α2)+···+l(αi)=l−2−j,

l(α1)=j, (α−)−∈Λα1,...,αi

∂G1
α2

∂Pk2

. . .
∂G1

αi

∂Pki

∂

∂Pk1

( j∑
u=1

1

u!

n∑
c1,...,cu=1

∂uH(s)

∂qc1 . . . ∂qcu

∑
l(β1)+···+l(βu)=j

α1∈Λβ1,...,βu

∂G1
β1

∂Pc1

. . .
∂G1

βu

∂Pcu

)
.

(7.3)

By the product rule, we separate G1
α into two sums denoted by T1 and T2 such that

T1 is formed with all terms not including differentiation of the Hamiltonian H(s) with

respect to Pi, for any i = 1, . . . , n. Thus G1
α = T1 + T2, with

T1 =
l−2∑
u=1

1

u!

n∑
k1,c1,...,cu=1

∂H(r)

∂qk1

∂uH(s)

∂qc1 . . . ∂qcu

∑
l(β1)+···+l(βu)=l−2
(α−)−∈Λβ1,...,βu

∂

∂Pk1

(
∂G1

β1

∂Pc1

. . .
∂G1

βu

∂Pcu

)

+
l−2∑
i=2

l−i−1∑
j=1

j∑
u=1

1

u!(i− 1)!

n∑
k1,...,ki=1
c1,...,cu=1

∂iH(r)

∂qk1 . . . ∂qki

∂uH(s)

∂qc1 . . . ∂qcu

∑
l(α2)+···+l(αi)=l−2−j,

l(α1)=j, (α−)−∈Λα1,...,αi

∂G1
α2

∂Pk2

. . .
∂G1

αi

∂Pki

∑
l(β1)+···+l(βu)=j

α1∈Λβ1,...,βu

∂

∂Pk1

(
∂G1

β1

∂Pc1

. . .
∂G1

βu

∂Pcu

)

After some simple manipulations of the summation indexes and Λα1,α2 = Λα2,α1 , it give
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us

T1 =
n∑

k1,c1=1

∂H(r)

∂qk1

∂H(s)

∂qc1

∂2G1
(α−)−

∂Pk1∂Pc1

+
l−2∑
u=2

1

u!

n∑
k1,c1,...,cu=1

∂H(r)

∂qk1

∂uH(s)

∂qc1 . . . ∂qcu

∑
l(β1)+···+l(βu)=l−2
(α−)−∈Λβ1,...,βu

∂

∂Pk1

(
∂G1

β1

∂Pc1

. . .
∂G1

βu

∂Pcu

)

+
l−2∑
i=2

l−i−1∑
u=1

1

(i− 1)!u!

n∑
k1,...,ki=1
c1,...,cu=1

∂iH(r)

∂qk1 . . . ∂qki

∂uH(s)

∂qc1 . . . ∂qcu

l−i−1∑
j=u

∑
l(α2)+···+l(αi)=l−2−j,

l(α1)=j, (α−)−∈Λα1,...,αi

∂G1
α2

∂Pk2

· · ·
∂G1

αi

∂Pki

∑
l(β1)+···+l(βu)=j

α1∈Λβ1,...,βu

∂

∂Pk1

(
∂G1

β1

∂Pc1

· · ·
∂G1

βu

∂Pcu

)

=
n∑

k1,c1=1

∂H(r)

∂qk1

∂H(s)

∂qc1

∂2G1
(α−)−

∂Pk1∂Pc1

+
l−2∑
u=2

1

u!

n∑
k1,c1,...,cu=1

∂H(r)

∂qk1

∂uH(s)

∂qc1 . . . ∂qcu

∑
l(β1)+···+l(βu)=l−2
(α−)−∈Λβ1,...,βu

∂

∂Pk1

(
∂G1

β1

∂Pc1

. . .
∂G1

βu

∂Pcu

)

+
l−2∑
i=2

l−i−1∑
u=1

1

u!(i− 1)!

n∑
k1,...,ki=1
c1,...,cu=1

∂iH(r)

∂qk1 . . . ∂qki

∂uH(s)

∂qc1 . . . ∂qcu

∑
l(α2)+···+l(βu)=l−2

(α−)−∈Λα2,...,αi,β1,...,βu

∂G1
α2

∂Pk2

· · ·
∂G1

αi

∂Pki

∂

∂Pk1

(
∂G1

β1

∂Pc1

· · ·
∂G1

βu

∂Pcu

)
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Using again the product rule and Λα1,α2 = Λα2,α1 , we obtain

T1 =
n∑

k1,c1=1

∂H(r)

∂qk1

∂H(s)

∂qc1

∂2G1
(α−)−

∂Pk1∂Pc1

+
l−2∑
u=2

1

(u− 1)!

n∑
k1,c1,...,cu=1

∂H(r)

∂qk1

∂uH(s)

∂qc1 . . . ∂qcu

∑
1≤l(β)≤l−1−u
R(β)⊆R((α−)−)

∂2G1
β

∂Pk1∂Pc1

∑
l(β)+l(γ1)···+l(γu−1)=l−2

(α−)−∈Λβ,γ1...,γu−1

∂G1
γ1

∂Pc2

. . .
∂G1

γu−1

∂Pcu

+
l−2∑
i=2

1

(i− 1)!

n∑
c1,k1,...,ki=1

∂iH(r)

∂qk1 . . . ∂qki

∂H(s)

∂qc1

∑
1≤l(β)≤l−1−i

R(β)⊆R((α−)−)

∂2G1
β

∂Pk1∂Pc1

∑
l(β)+l(γ1)···+l(γi−1)=l−2

(α−)−∈Λβ,γ1...,γi−1

∂G1
γ1

∂Pk2

. . .
∂G1

γi−1

∂Pki

+
l−3∑
i=2

l−i−1∑
u=2

1

(i− 1)!(u− 1)!

n∑
k1,...,ki=1
c1,...,cu=1

∂iH(r)

∂qk1 . . . ∂qki

∂uH(s)

∂qc1 . . . ∂qcu

∑
1≤l(β)≤l−i−u
R(β)⊆R((α−)−)

∂2G1
β

∂Pk1∂Pc1

∑
l(β)+l(γ1)+···+l(γi+u−2)=l−2

(α−)−∈Λβ,γ1,...,γi+u−2

∂G1
γ1

∂Pk2

· · ·
∂G1

γi−1

∂Pki

∂G1
γi

∂Pc2

· · ·
∂G1

γi+u−2

∂Pcu

(7.4)

Notice that if we sum first with respect to u and next with respect to i, we can rewrite

the last term as

l−3∑
u=2

l−u−1∑
i=2

1

(i− 1)!(u− 1)!

n∑
k1,...,ki=1
c1,...,cu=1

∂iH(r)

∂qk1 . . . ∂qki

∂uH(s)

∂qc1 . . . ∂qcu

∑
1≤l(β)≤l−i−u
R(β)⊆R((α−)−)

∂2G1
β

∂Pk1∂Pc1

∑
l(β)+l(γ1)+···+l(γi+u−2)=l−2

(α−)−∈Λβ,γ1,...,γi+u−2

∂G1
γ1

∂Pk2

· · ·
∂G1

γi−1

∂Pki

∂G1
γi

∂Pc2

· · ·
∂G1

γi+u−2

∂Pcu

Thus by switching s and r, the formula (7.4) for T1 does not change, so T1 is symmetric

in s and t.
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From Eq. (7.3) and G1
α = T1 + T2, we have

T2 =
l−1∑
i=2

1

(i− 1)!

n∑
k1,...,ki=1

∂iH(r)

∂qk1 . . . ∂qki

∂H(s)

∂Pk1

∑
l(α2)+···+l(αi)=l−2
(α−)−∈Λα2,...,αi

∂G1
α2

∂Pk2

. . .
∂G1

αi

∂Pki

+
l−2∑
u=1

1

u!

n∑
k1,c1,...,cu=1

∂H(r)

∂qk1

∂u+1H(s)

∂Pk1∂qc1 . . . ∂qcu

∑
l(β1)+···+l(βu)=l−2
(α−)−∈Λβ1,...,βu

∂G1
β1

∂Pc1

. . .
∂G1

βu

∂Pcu

+
l−2∑
i=2

l−i−1∑
j=1

j∑
u=1

1

(i− 1)!u!

n∑
k1,...,ki=1
c1,...,cu=1

∂iH(r)

∂qk1 . . . ∂qki

∂u+1H(s)

∂Pk1∂qc1 . . . ∂qcu

∑
l(α2)+···+l(αi)=l−2−j,

l(α1)=j, (α−)−∈Λα1,...,αi

∂G1
α2

∂Pk2

. . .
∂G1

αi

∂Pki

∑
l(β1)+···+l(βu)=j

α1∈Λβ1,...,βu

∂G1
β1

∂Pc1

. . .
∂G1

βu

∂Pcu

.

Similarly as for T1, using Λα1,α2 = Λα2,α1 , we obtain

T2 =
l−2∑
i=1

1

i!

n∑
k1,j1...,ji=1

∂i+1H(r)

∂qk1qj1 . . . ∂qji

∂H(s)

∂Pk1

∑
l(α1)+···+l(αi)=l−2
(α−)−∈Λα1,...,αi

∂G1
α1

∂Pj1

. . .
∂G1

αi

∂Pji

+
l−2∑
i=1

1

i!

n∑
k1,j1...,ji=1

∂H(r)

∂qk1

∂i+1H(s)

∂Pk1∂qj1 . . . ∂qji

∑
l(β1)+···+l(βi)=l−2
(α−)−∈Λβ1,...,βi

∂G1
β1

∂Pj1

. . .
∂G1

βi

∂Pji

+
l−2∑
i=2

l−i−1∑
u=1

1

(i− 1)!u!

n∑
k1,...,ki=1
c1,...,cu=1

∂iH(r)

∂qk1 . . . ∂qki

∂u+1H(s)

∂Pk1∂qc1 . . . ∂qcu

∑
l(α2)+···+l(βu)=l−2

(α−)−∈Λα2,...,αi,β1,...,βu

∂G1
α2

∂Pk2

· · ·
∂G1

αi

∂Pki

∂G1
β1

∂Pc1

· · ·
∂G1

βu

∂Pcu
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Introducing a new summation index v = i+ u− 1 for the last term, it gives

T2 =
l−2∑
i=1

1

i!

n∑
k1,j1...,ji=1

∂i+1H(r)

∂qk1qj1 . . . ∂qji

∂H(s)

∂Pk1

∑
l(α1)+···+l(αi)=l−2
(α−)−∈Λα1,...,αi

∂G1
α1

∂Pj1

. . .
∂G1

αi

∂Pji

+
l−2∑
i=1

1

i!

n∑
k1,j1...,ji=1

∂H(r)

∂qk1

∂i+1H(s)

∂Pk1∂qj1 . . . ∂qji

∑
l(β1)+···+l(βi)=l−2
(α−)−∈Λβ1,...,βi

∂G1
β1

∂Pj1

. . .
∂G1

βi

∂Pji

+
l−2∑
v=2

v∑
i=2

1

(i− 1)!(v − i+ 1)!

n∑
k1,j1,...,jv=1

∂iH(r)

∂qk1∂qj1 . . . ∂qji−1

∂v+2−iH(s)

∂Pk1∂qji . . . ∂qjv∑
l(γ1)+···+l(γv)=l−2
(α−)−∈Λγ1,...,γv

∂G1
γ1

∂Pj1

· · ·
∂G1

γv

∂Pjv

Notice that T2 can be expressed as follows

T2 =
l−2∑
v=1

1

v!

n∑
k1,j1,...,jv=1

∂v

∂qj1 · · · ∂qjv

(
∂H(r)

∂qk1

∂H(s)

∂Pk1

) ∑
l(γ1)+···+l(γv)=l−2
(α−)−∈Λγ1,...,γv

∂G1
γ1

∂Pj1

· · ·
∂G1

γv

∂Pjv

.

(7.5)

Hence T2 is symmetric with respect to s and r because ∂H(r)

∂qk1

∂H(s)

∂Pk1
= ∂H(r)

∂Pk1

∂H(s)

∂qk1
for any

k1 = 1, . . . , n.

Thus G1
α is symmetric with respect to r and s, so we have G1

α = G1
π(α).

Case3: For any arbitrary permutation π on {1, . . . , l} not in any of the previous

two cases (i.e. π(l) ̸= l and either π(l) ̸= l− 1 or π(l− 1) ̸= l), let consider any multi-

index α = (i1, . . . , il−1, il), π(α) = (iπ(1), . . . , iπ(l−1), iπ(l)) and denote r = il, s = iπ(l).

Since π(l) ̸= l, we have r ̸= s, and there exists k ∈ {1, . . . , l − 1} such that ik = s.

We consider a permutation π1 on {1, . . . , l} defined by π1(k) = l − 1, π1(l − 1) = k,

π1(u) = u, for u = 1, . . . , l, u ̸= k, u ̸= l − 1. Thus π1(α) = (iπ1(1), . . . , s, r), and

from cases 1 and 2 we know that G1
α = G1

π1(α)
= G1

α1
, where α1 = (iπ1(1), . . . , r, s).

Notice that α1 = (i1, . . . , il−1, . . . , il, s), so we can obtain π(α) from α1 applying a

permutation π2 with π2(l) = l, and from case 1 we have G1
α1

= G1
π2(α1)

= G1
π(α). Thus

we get G1
α = G1

π(α).
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Putting together the previous three cases, we conclude G1
α = G1

π(α) for any permu-

tation π and any multi-index α with l(α) = l

Given that the coefficients of the generating function S2
ω are obtained replacing in

the recurrence (5.43) q by p and P by Q, we can easily adapt the previous proof to

show that the coefficients of S2
ω are also invariant under permutations .

A similar result hold also for the coefficients of the generating function S3
ω and it is

based on formula (5.45).

Theorem 7.2 For SHS preserving the Hamiltonian functions, the coefficients G3
α of

the generating function S3
ω are invariants to permutations.

Proof: By induction on the length of the multi-index α, the coefficients G3
α of S3

ω

are invariant under the permutations on α for systems preserving the Hamiltonian

functions, when l(α) = 2 because for any r1, r2 = 0, . . . ,m we have

G3
(r1,r2)

=
1

2

n∑
k=1

(
−∂H

(r2)

∂yk

∂H(r1)

∂yk+n

− ∂H(r2)

∂yk+n

∂H(r1)

∂yk

)
= 0 = G3

(r2,r1)
. (7.6)

We assume that G3
α = G3

π(α) for any multi-index α with l(α) < l and any permutation

π on {1, . . . , l(α)}. Let consider any multi-index α with l(α) = l. We suppose that the

components of the multi-index α are distinct, otherwise we rename the repeating ones

with distinct subscripts. To prove that G3
α = G3

π(α) we analyse the same three cases as

in the proof of theorem 7.1. The arguments for Cases 1 and 3 are similar, so we will

present the details only for Case 2.

Let consider any permutation π such that π(l) = l − 1, π(l − 1) = l, (α−)− =

(π(α)−)−, and denote α = (i1, . . . , il−2, s, r) and π(α) = (i1, . . . , il−2, r, s), with r, s ∈

{0, . . . ,m}. Notice that for any 2n- dimensional vector v = (v1, . . . , v2n)
T we have

J−1v = (−vn+1, . . . , v2n, v1, . . . , vn).

Since Λα1,α2 = Λα2,α1 and s is the ”largest” number with respect to the partial order
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≺ on α−, from formula (5.45) we get

G3
α =

l−1∑
i=1

1

2ii!

2n∑
k1,...,ki=1

∂iH(r)

∂yk1 . . . ∂yki

∑
l(α1)+···+l(αi)=l−1

α−∈Λα1,...,αi

(J−1∇G3
α1
)k1 . . . (J

−1∇G3
αi
)ki

=
1

2

n∑
k1=1

(
−∂H

(r)

∂yk1

∂G3
((α−)−)∗(s)

∂yk1+n

+
∂H(r)

∂yk1+n

∂G3
((α−)−)∗(s)

∂yk1

)

+
l−1∑
i=2

1

2i(i− 1)!

n∑
k1=1

2n∑
k2,...,ki=1

(
− ∂iH(r)

∂yk1 . . . ∂yki

∂H(s)

∂yk1+n

+
∂iH(r)

∂yk1+n . . . ∂yki

∂H(s)

∂yk1

)
∑

l(α2)+···+l(αi)=l−2
(α−)−∈Λα2,...,αi

(J−1∇G3
α2
)k2 . . . (J

−1∇G3
αi
)ki

+
l−2∑
i=2

1

2ii!

l−i−1∑
j=1

n∑
k1=1

2n∑
k2,...,ki=1

∑
l(α2)+···+l(αi)=l−2−j,

l(α1)=j, (α−)−∈Λα1,...,αi

(J−1∇G3
α2
)k2 . . . (J

−1∇G3
αi
)ki

(
− ∂iH(r)

∂yk1 . . . ∂qki

∂G3
α1∗(s)

∂yk1+n

+
∂iH(r)

∂yk1+n . . . ∂qki

∂G3
α1∗(s)

∂yk1

)
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Using formula (5.45) for the first and the third terms, we obtain

G3
α =

1

2

n∑
k1=1

l−2∑
u=1

1

2uu!

(
−∂H

(r)

∂yk1

∂

∂yk1+n

( 2n∑
c1,...,cu=1

∂uH(s)

∂yc1 . . . ∂ycu∑
l(β1)+···+l(βu)=l−2
(α−)−∈Λβ1,...,βu

(J−1∇G3
β1
)c1 . . . (J

−1∇G3
βi
)ci

)
+
∂H(r)

∂yk1+n

∂

∂yk1

( 2n∑
c1,...,cu=1

∂uH(s)

∂yc1 . . . ∂ycu

∑
l(β1)+···+l(βu)=l−2
(α−)−∈Λβ1,...,βu

(J−1∇G3
β1
)c1 . . . (J

−1∇G3
βi
)ci

))

+
l−1∑
i=2

1

2i(i− 1)!

n∑
k1=1

2n∑
k2,...,ki=1

(
− ∂iH(r)

∂yk1 . . . ∂yki

∂H(s)

∂yk1+n

+
∂iH(r)

∂yk1+n . . . ∂yki

∂H(s)

∂yk1

)
∑

l(α2)+···+l(αi)=l−2
(α−)−∈Λα2,...,αi

(J−1∇G3
α2
)k2 . . . (J

−1∇G3
αi
)ki

+
l−2∑
i=2

1

2i(i− 1)!

l−i−1∑
j=1

j∑
u=1

1

2uu!

n∑
k1=1

2n∑
k2,...,ki=1

∑
l(α2)+···+l(αi)=l−2−j,

l(α1)=j, (α−)−∈Λα1,...,αi

(J−1∇G3
α2
)k2 . . .

(J−1∇G3
αi
)ki

(
− ∂iH(r)

∂yk1 . . . ∂qki

∂

∂yk1+n

( 2n∑
c1,...,cu=1

∂uH(s)

∂yc1 . . . ∂ycu∑
l(β1)+···+l(βu)=j

α1∈Λβ1,...,βu

(J−1∇G3
β1
)c1 . . . (J

−1∇G3
βu
)cu

)
+

∂iH(r)

∂yk1+n . . . ∂qki

∂

∂yk1

( 2n∑
c1,...,cu=1

∂uH(s)

∂yc1 . . . ∂ycu

∑
l(β1)+···+l(βu)=j

α1∈Λβ1,...,βu

(J−1∇G3
β1
)c1 . . . (J

−1∇G3
βu
)cu

))
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As in the proof of theorem 7.1 we separate into G3
α = T1 + T2 with

T1 =
l−2∑
u=1

1

2u+1u!

n∑
k1=1

2n∑
c1,...,cu=1

∂uH(s)

∂yc1 . . . ∂ycu∑
l(β1)+···+l(βu)=l−2
(α−)−∈Λβ1,...,βu

(
−∂H

(r)

∂yk1

∂

∂yk1+n

(
(J−1∇G3

β1
)c1 . . . (J

−1∇G3
βu
)cu
)

+
∂H(r)

∂yk1+n

∂

∂yk1

(
(J−1∇G3

β1
)c1 . . . (J

−1∇G3
βu
)cu
))

+
l−2∑
i=2

l−i−1∑
j=1

j∑
u=1

1

2u+iu!(i− 1)!

n∑
k1=1

2n∑
k2,...,ki=1
c1,...,cu=1

∂uH(s)

∂yc1 . . . ∂ycu∑
l(α2)+···+l(αi)=l−2−j,

l(α1)=j, (α−)−∈Λα1,...,αi

(J−1∇G3
α2
)k2 . . . (J

−1∇G3
αi
)ki

∑
l(β1)+···+l(βu)=j

α1∈Λβ1,...,βu

(
− ∂iH(r)

∂yk1 . . . ∂yki

∂

∂yk1+n

(
(J−1∇G3

β1
)c1 . . . (J

−1∇G3
βu
)cu

)

+
∂iH(r)

∂yk1+n . . . ∂yki

∂

∂yk1

(
(J−1∇G3

β1
)c1 . . . (J

−1∇G3
βu
)cu

))
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After simple manipulations of the summation indexes and Λα1,α2 = Λα2,α1 , it gives

T1 =
1

22

n∑
k1=1

2n∑
c1=1

∂H(s)

∂yc1

(
−∂H

(r)

∂yk1

∂(J−1∇G3
(α−)−)c1

∂yk1+n

+
∂H(r)

∂yk1+n

∂(J−1∇G3
(α−)−)c1

∂yk1

)

+
l−2∑
u=2

1

2u+1u!

n∑
k1=1

2n∑
c1,...,cu=1

∂uH(s)

∂yc1 . . . ∂ycu∑
l(β1)+···+l(βu)=l−2
(α−)−∈Λβ1,...,βu

(
−∂H

(r)

∂yk1

∂

∂yk1+n

(
(J−1∇G3

β1
)c1 . . . (J

−1∇G3
βu
)cu
)

+
∂H(r)

∂yk1+n

∂

∂yk1

(
(J−1∇G3

β1
)c1 . . . (J

−1∇G3
βu
)cu
))

+
l−2∑
i=2

l−i−1∑
u=1

1

2u+iu!(i− 1)!

n∑
k1=1

2n∑
k2,...,ki=1
c1,...,cu=1

∂uH(s)

∂yc1 . . . ∂ycu∑
l(α2)+···+l(βu)=l−2

(α−)−∈Λα2,...,αi,β1,...,βu

(J−1∇G3
α2
)k2 . . . (J

−1∇G3
αi
)ki

(
− ∂iH(r)

∂yk1 . . . ∂yki

∂

∂yk1+n

(
(J−1∇G3

β1
)c1 . . . (J

−1∇G3
βu
)cu

)
+

∂iH(r)

∂yk1+n . . . ∂yki

∂

∂yk1

(
(J−1∇G3

β1
)c1 . . . (J

−1∇G3
βu
)cu

))
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Using again Λα1,α2 = Λα2,α1 and the product rule, we obtain

T1 =
1

22

n∑
k1,c1=1

(
∂H(r)

∂yk1

∂H(s)

∂yc1

∂2G3
(α−)−

∂yk1+n∂yc1+n

+
∂H(r)

∂yk1+n

∂H(s)

∂yc1+n

∂2G3
(α−)−

∂yk1∂yc1

− ∂H(r)

∂yk1

∂H(s)

∂yc1+n

∂2G3
(α−)−

∂yk1+n∂yc1
− ∂H(r)

∂yk1+n

∂H(s)

∂yc1

∂2G3
(α−)−

∂yk1∂yc1+n

)
+

l−2∑
u=2

1

2u+1(u− 1)!

n∑
k1,c1=1

2n∑
c2,...,cu=1

∑
1≤l(β)≤l−1−u
R(β)⊆R((α−)−)

(
∂H(r)

∂yk1

∂uH(s)

∂yc1 . . . ∂ycu

∂2G3
β

∂yk1+n∂yc1+n

+
∂H(r)

∂yk1+n

∂uH(s)

∂yc1+n . . . ∂ycu

∂2G3
β

∂yk1∂yc1
− ∂H(r)

∂yk1+n

∂uH(s)

∂yc1 . . . ∂ycu

∂2G3
β

∂yk1∂yc1+n

− ∂H(r)

∂yk1

∂uH(s)

∂yc1+n . . . ∂ycu

∂2G3
β

∂yk1+n∂yc1

) ∑
l(β)+l(γ1)···+l(γu−1)=l−2

(α−)−∈Λβ,γ1...,γu−1

(J−1∇G3
γ1
)c2 . . . (J

−1∇G3
γu−1

)cu

+
l−2∑
i=2

1

2i+1(i− 1)!

n∑
k1,c1=1

2n∑
k2,...,ki=1

∑
1≤l(β)≤l−1−i

R(β)⊆R((α−)−)

(
∂iH(r)

∂yk1 . . . ∂yki

∂H(s)

∂yc1

∂2G3
β

∂yk1+n∂yc1+n

+
∂iH(r)

∂yk1+n . . . ∂yki

∂H(s)

∂yc1+n

∂2G3
β

∂yk1∂yc1
− ∂iH(r)

∂yk1+n . . . ∂yki

∂H(s)

∂yc1

∂2G3
β

∂yk1∂yc1+n

− ∂iH(r)

∂yk1 . . . ∂yki

∂H(s)

∂yc1+n

∂2G3
β

∂yk1+n∂yc1

) ∑
l(β)+l(γ1)···+l(γi−1)=l−2

(α−)−∈Λβ,γ1...,γi−1

(J−1∇G3
γ1
)k2 . . . (J

−1∇G3
γi−1

)ki

+
l−3∑
i=2

l−i−1∑
u=2

1

2u+i(i− 1)!(u− 1)!

n∑
k1,c1=1

2n∑
k2,...,ki=1
c2,...,cu=1

∑
1≤l(β)≤l−i−u
R(β)⊆R((α−)−)

(
∂iH(r)

∂yk1 . . . ∂yki

∂uH(s)

∂yc1 . . . ∂qcu

∂2G3
β

∂yk1+n∂yc1+n

+
∂iH(r)

∂yk1+n . . . ∂yki

∂uH(s)

∂yc1+n . . . ∂ycu

∂2G3
β

∂yk1∂yc1

− ∂iH(r)

∂yk1 . . . ∂yki

∂uH(s)

∂yc1+n . . . ∂ycu

∂2G3
β

∂yk1+n∂yc1
− ∂iH(r)

∂yk1+n . . . ∂yki

∂uH(s)

∂yc1 . . . ∂ycu

∂2G3
β

∂yk1∂yc1+n

)
∑

l(β)+l(γ1)+···+l(γi+u−2)=l−2
(α−)−∈Λβ,γ1,...,γi+u−2

(J−1∇G3
γ1
)k2 · · · (J−1∇G3

γi−1
)ki(J

−1∇G3
γi
)c2 · · · (J−1∇G3

γi+u−2
)cu

Notice that the previous formula does not change by switching r and s, so T1 is sym-

metric in r and s.

147



The difference T2 = G3
α − T1 is given by

T2 =
l−1∑
i=2

1

2i(i− 1)!

n∑
k1=1

2n∑
k2,...,ki=1

(
− ∂iH(r)

∂yk1 . . . ∂yki

∂H(s)

∂yk1+n

+
∂iH(r)

∂yk1+n . . . ∂yki

∂H(s)

∂yk1

)
∑

l(α2)+···+l(αi)=l−2
(α−)−∈Λα2,...,αi

(J−1∇G3
α2
)k2 . . . (J

−1∇G3
αi
)ki

+
l−2∑
u=1

1

2u+1u!

n∑
k1=1

n∑
c1,...,cu=1

(
−∂H

(r)

∂yk1

∂u+1H(s)

∂yk1+n∂yc1 . . . ∂ycu
+

∂H(r)

∂yk1+n

∂u+1H(s)

∂yk1∂yc1 . . . ∂ycu

)
∑

l(β1)+···+l(βu)=l−2
(α−)−∈Λβ1,...,βu

(J−1∇G3
β1
)c1 . . . (J

−1∇G3
βu
)cu

+
l−2∑
i=2

l−i−1∑
j=1

j∑
u=1

1

2u+i(i− 1)!u!

n∑
k1=1

n∑
k2,...,ki=1
c1,...,cu=1

(
− ∂iH(r)

∂yk1 . . . ∂yki

∂u+1H(s)

∂yk1+n∂yc1 . . . ∂ycu

+
∂iH(r)

∂yk1+n . . . ∂yki

∂u+1H(s)

∂yk1∂yc1 . . . ∂ycu

) ∑
l(α2)+···+l(αi)=l−2−j,

l(α1)=j, (α−)−∈Λα1,...,αi

(J−1∇G3
α2
)k2 . . . (J

−1∇G3
αi
)ki

∑
l(β1)+···+l(βu)=j

α1∈Λβ1,...,βu

(J−1∇G3
β1
)c1 . . . (J

−1∇G3
βu
)cu

Introducing new summation indexes j = i− 1 for the first term, and v = i+ u− 1 for
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the last term and using Λα1,α2 = Λα2,α1 , we obtain

T2 =
l−2∑
j=1

1

2j+1j!

n∑
k1=1

2n∑
c1,...,cj=1

(
− ∂jH(r)

∂yk1 . . . ∂ycj

∂H(s)

∂yk1+n

+
∂jH(r)

∂yk1+n . . . ∂ycj

∂H(s)

∂yk1

)
∑

l(α1)+···+l(αj)=l−2
(α−)−∈Λα1,...,αj

(J−1∇G3
α1
)c1 . . . (J

−1∇G3
αj
)cj

+
l−2∑
u=1

1

2u+1u!

n∑
k1=1

n∑
c1,...,cu=1

(
−∂H

(r)

∂yk1

∂u+1H(s)

∂yk1+n∂yc1 . . . ∂ycu
+

∂H(r)

∂yk1+n

∂u+1H(s)

∂yk1∂yc1 . . . ∂ycu

)
∑

l(β1)+···+l(βu)=l−2
(α−)−∈Λβ1,...,βu

(J−1∇G3
β1
)c1 . . . (J

−1∇G3
βu
)cu

+
l−2∑
v=2

v∑
i=2

1

2v+1(i− 1)!(v − i+ 1)!

n∑
k1=1

2n∑
j1,...,jv=1

(
− ∂iH(r)

∂yk1∂yj1 . . . ∂yji−1

∂v+2−iH(s)

∂yk1+n∂yji . . . ∂yjv

+
∂iH(r)

∂yk1+n∂yj1 . . . ∂yji−1

∂v+2−iH(s)

∂yk1∂yji . . . ∂yjv

) ∑
l(γ1)+···+l(γv)=l−2
(α−)−∈Λγ1,...,γv

(J−1∇G3
γ1
)j1 · · · (J−1∇G3

γv)jv

Notice that T2 = 0 because ∂H(r)

∂yk1

∂H(s)

∂yk1+n
= ∂H(r)

∂yk1+n

∂H(s)

∂yk1
for any k1 = 1, . . . , n and T2 can

be expressed as follows

T2 =
l−2∑
v=1

1

2v+1v!

n∑
k1=1

2n∑
j1,...,jv=1

∂v

∂yj1 · · · ∂yjv

(
−∂H

(r)

∂yk1

∂H(s)

∂yk1+n

+
∂H(r)

∂yk1+n

∂H(s)

∂yk1

)
∑

l(γ1)+···+l(γv)=l−2
(α−)−∈Λγ1,...,γv

(J−1∇G3
γ1
)j1 · · · (J−1∇G3

γv)jv

Thus G3
α = T1 is symmetric with respect to s and r

7.2 Symplectic schemes

We now use the generating function method and the special properties of the coefficients

Gi
α, i = 1, 2, 3 to construct symplectic schemes for SHS preserving the Hamiltonian

functions. Taking advantage of the invariance under permutations of the coefficients

Gi
α, i = 1, 2, 3, we propose strong and weak symplectic schemes of relatively high order

that are still computationally attractive.
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7.2.1 Symplectic strong schemes

Let define Aγ = {α : l(α)+n(α) ≤ 2γ}, where n(α) is the number of zero components

of the multi-index α. Symplectic schemes that have mean square order of convergence

k can be build using the equations (5.10)-(5.12) and truncations of the appropriate

generating functions Si
ω, i = 1, 2, 3, according to the indexes α ∈ A2k. Since these

schemes are implicit, the Stratonovich stochastic integrals should be approximated by

bounded random variables ([5]).

In Chapter 6, we propose first order schemes for the SHS (5.1) based on truncations

of the generating function Si
ω, i = 1, 3, according to A2. To construct second order

schemes, we use the following truncations according to A4:

Si
ω ≈ Gi

(0)J(0) +
m∑
r=1

(
Gi

(r)J(r) +Gi
(0,r)J(0,r) +Gi

(r,0)J(r,0)
)
+Gi

(0,0)J(0,0)

+
m∑

r,j=1

Gi
(r,j)J(r,j) +

m∑
r,j,k=1

Gi
(r,j,k)J(r,j,k) +

m∑
r,j,k,s=1

Gi
(r,j,k,s)J(r,j,k,s)

+
m∑

r,j=1

(
Gi

(r,j,0)J(r,j,0) +Gi
(0,r,j)J(0,r,j) +Gi

(r,0,j)J(r,0,j)
)
,

(7.7)

for any i = 1, 2, 3.
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Using (5.34) we obtain

J(0)J(r) =
∑

β∈Λ(0),(r)

Jβ = J(0,r) + J(r,0) (7.8)

J(0)J(r,r) =
∑

β∈Λ(0),(r,r)

Jβ = J(0,r,r) + J(r,r,0) + J(r,0,r) (7.9)

J(0)J(r)J(j) =
∑

β∈Λ(0),(r),(j)

Jβ = J(0,r,j) + . . .+ J(j,r,0) (7.10)

J(r)J(j) =
∑

β∈Λ(r),(j)

Jβ = J(r,j) + J(j,r) (7.11)

J(j)J(r,r) =
∑

β∈Λ(j),(r,r)

Jβ = J(j,r,r) + J(r,r,j) + J(r,j,r) (7.12)

J(j)J(0,0) =
∑

β∈Λ(j),(r,r)

Jβ = J(j,0,0) + J(0,0,j) + J(0,j,0) (7.13)

J(r,r)J(j,j) =
∑

β∈Λ(r,r),(j,j)

Jβ = J(r,r,j,j) + . . .+ J(j,j,r,r) (7.14)

J(j)J(r,r,r) =
∑

β∈Λ(j),(r,r,r)

Jβ = J(j,r,r,r) + J(r,r,j,r) + J(r,j,r,r) + J(r,r,r,j) (7.15)

J(k)J(r)J(j) =
∑

β∈Λ(k),(r),(j)

Jβ = J(k,r,j) + . . .+ J(j,r,k) (7.16)

J(k)J(j)J(r,r) =
∑

β∈Λ(k),(j),(r,r)

Jβ = J(k,j,r,r) + . . .+ J(r,j,k,r) (7.17)

J(s)J(k)J(r)J(j) =
∑

β∈Λ(s),(k),(r),(j)

Jβ = J(s,k,r,j) + . . .+ J(j,r,k,s), (7.18)

for any distinct positive integers r, j, k, s = 1, . . . ,m. The previous equations and

Propositions 7.1 and 7.2 give us the following truncations of the genrating functions
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Si
ω, i = 1, 2, 3:

Si
ω ≈ Gi

(0)J(0) +
m∑
r=1

(
Gi

(r)J(r) +Gi
(r,r)J(r,r) +Gi

(0,r)J(0)J(r)
)

+Gi
(0,0)J(0,0) +

m∑
r=1

(
Gi

(r,r,0)J(r,r)J(0) +Gi
(r,r,r)J(r,r,r) +Gi

(r,r,r,r)J(r,r,r,r)
)

+
m−1∑
r=1

m∑
j=r+1

(
Gi

(r,j)J(r)J(j) +Gi
(r,r,j,j)J(r,r,)J(j,j) +Gi

(0,r,j)J(0)J(r)J(j)
)

+
m∑

r,j=1,r ̸=j

(
Gi

(r,r,j)J(r,r)J(j) +Gi
(r,r,r,j)J(r,r,r)J(j)

)
+

m−2∑
r=1

m−1∑
j=r+1

m∑
k=j+1

Gi
(r,j,k)J(r)J(j)J(k)

+
m−1∑
k=1

m∑
j=k+1

m∑
r=1,

r ̸=k,r ̸=j

Gi
(r,r,j,k)J(r,r)J(j)J(k)

+
m−3∑
r=1

m−2∑
j=r+1

m−1∑
k=j+1

m∑
s=k+1

Gi
(r,j,k,s)J(r)J(j)J(k)J(s).

(7.19)

Notice that for SHS preserving Hamiltonian functions to construct second order

symplectic schemes, we need to generate only the stochastic integrals J(0), J(0,0), J(r),

J(r,r), J(r,r,r), and J(r,r,r,r), r = 1, . . . ,m. To ensure that these implicit schemes are

well-defined, we proceed as in [5], and to generate the stochastic integrals , instead of

the independent random variables ξ(r) ∼ N(0, 1), r = 1, . . . ,m, we use the bounded

random variables ξh(r):

ξh(r) =


−Âh if ξ < −Âh

ξ(r) if |ξ| ≤ Âh

Âh if ξ > Âh,

(7.20)

where 0 < h < 1 is a small time step and Âh = 2
√
2| lnh|. Hence we use the following

approximations for the stochastic integrals:

J(0) = h, J(0,0) =
h2

2
, J(r) =

√
hξh(r),

J(r,r) =
hξ2h(r)

2
, J(r,r,r) =

h3/2ξ3h(r)

6
, J(r,r,r,r) =

h2ξ4h(r)

24
.

(7.21)
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For example, for m = 1 (i.e. the SHS with one noise), using (5.10) and (7.19) we

construct the symplectic mean square second-order scheme based on the truncation of

the generating function S1
ω:

Pi(k + 1) = Pi(k)−
(
∂G1

(0)

∂Qi

h+
∂G1

(1)

∂Qi

√
hξh +

∂G1
(0,0)

∂Qi

h2

2
+
∂G1

(1,1)

∂Qi

hξ2h
2

+
∂G1

(1,0)

∂Qi

ξhh
3
2 +

∂G1
(1,1,1)

∂Qi

h
3
2 ξ3h
6

+
∂G1

(1,1,0)

∂Qi

ξ2hh
2

2
+
∂G1

(1,1,1,1)

∂Qi

h2ξ4h
24

)
Qi(k + 1) = Qi(k) +

(
∂G1

(0)

∂Pi

h+
∂G1

(1)

∂Pi

√
hξh +

∂G1
(0,0)

∂Pi

h2

2
+
∂G1

(1,1)

∂Pi

hξ2h
2

+
∂G1

(1,0)

∂Pi

ξhh
3
2 +

∂G1
(1,1,1)

∂Pi

h
3
2 ξ3h
6

+
∂G1

(1,1,0)

∂Pi

ξ2hh
2

2
+
∂G1

(1,1,1,1)

∂Pi

h2ξ4h
24

)
,

(7.22)

where everywhere the arguments are (P (k + 1), Q(k)), and the random variables ξh are

generated independently at each step k according to (7.20).

For the coefficients of S3
ω, a simple calculation shows that G3

(r1,r2)
= 0 for any

r1, r2 = 0, 1 and G3
(1,1,1,1) = 0. Hence using (5.12), when m = 1 the second order

midpoint symplectic scheme is given by

Yk+1 = Yk + J−1∇G3
(0)(Yk+ 1

2
)h+ J−1∇G3

(1)(Yk+ 1
2
)
√
hξh

+ J−1∇G3
(1,1,1)(Yk+ 1

2
)
h

3
2 ξ3h
6

+ J−1∇G3
(1,1,0)(Yk+ 1

2
)
ξ2hh

2

2

(7.23)

where Yk+ 1
2
= (Yk+1+Yk)/2, and the random variables ξh are generated independently

at each step k according to (7.20).

Since the schemes (7.22) and (7.23) are based on generating functions, we can easily

proved that they are symplectic (see also the proof of Theorem 3.1 in [5]). Analogously

with Theorem 5.16 in Chapter 5, the convergence with mean square order two can be

proved under appropriate conditions using repeated Taylor expansions and Theorem

1.1 in [3].

7.2.2 Weak schemes

To obtain an k order symplectic weak scheme, we replace in (5.24) the Stratonovich

integrals Jα by Ito integrals using the Eq. (6.2), and we truncate the series to include
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only Ito integrals with multi-indexes α such that l(α) ≤ k, k = 1, 2, 3. Replacing in

(6.2) we get J(0) = I(0), J(i) = I(i), J(0,0) = I(0,0), J(0,i) = I(0,i), J(i,0) = I(i,0), J(i,0,j) =

I(i,0,j), J(i,0,i) = I(i,0,i), J(i,j) = I(i,j), J(k,0,0) = I(k,0,0), J(0,k,0) = I(0,k,0), J(0,0,k) = I(0,0,k),

J(i,j,i) = I(i,j,i)

J(i,i) = I(i,i) +
1

2
I(0), J(i,i,j) = I(i,i,j) +

1

2
I(0,j)

J(j,i,i) = Ij,i,i) +
1

2
I(j,0), J(i,i,0) = I(i,i,0) +

1

2
I(0,0),

J(0,i,i) = I(0,i,i) +
1

2
I(0,0), J(i,i,i) = I(i,i,i) +

1

2

(
I(0,i) + I(i,0)

)
J(i,i,j,j) = I(i,i,j,j) +

1

2

(
I(0,j,j) + I(i,i,0)

)
+

1

4
I(0,0),

J(i,i,i,i) = I(i,i,i,i) +
1

2

(
I(0,i,i) + I(i,0,i) + I(i,i,0)

)
+

1

4
I(0,0),

(7.24)

for any i ̸= j, i, j = 1, . . . , d. Thus, for a second order weak scheme we use the following

approximation for the generating functions Si
ω, i = 1, 2, 3:

S̄i
ω =

(
Gi

(0) +
1

2

d∑
k=1

Gi
(k,k)

)
I(0) +

d∑
k=1

Gi
(k)I(k)

+

(
Gi

(0,0) +
1

2

d∑
k=1

(Gi
(k,k,0) +Gi

(0,k,k)) +
1

4

d∑
k,j=1

Gi
(k,k,j,j)

)
I(0,0)

+
d∑

k=1

((
Gi

(0,k) +
1

2

d∑
j=1

Gi
(j,j,k)

)
I(0,k) +

(
Gi

(k,0) +
1

2

d∑
j=1

Gi
(k,j,j)

)
I(k,0)

)

+
d∑

j,k=1

Gi
(j,k)I(j,k).

(7.25)

Using Propositions 7.1 and 7.2 and equations (7.8), (7.11), we get:

S̄i
ω =

(
Gi

(0) +
1

2

m∑
k=1

Gi
(k,k)

)
I(0) +

m∑
k=1

Gi
(k)I(k)

+

(
Gi

(0,0) +
m∑
k=1

(
Gi

(k,k,0) +
1

4
Gi

(k,k,k,k)

)
+

1

2

m∑
k=1

m∑
j=k+1

Gi
(k,k,j,j)

)
I(0,0)

+
m∑
k=1

(
Gi

(0,k) +
1

2

m∑
j=1

Gi
(j,j,k)

)
I(0)I(k) +

m∑
k=1

Gi
(k,k)I(k,k)

+
m∑
k=1

m∑
j=k+1

Gi
(k,j)I(k)I(j).

(7.26)
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For a weak scheme, we can generate the noise increments more efficiently than for a

strong scheme. Hence proceeding as in section 14.2 of [1] to simulate the stochastic

integrals I(k), k = 1, . . . , d, at each time step, we generate independent random variable
√
hζk, k = 1, . . . , d, with the following discrete distribution

P (ζk = ±
√
3) =

1

6
, P (ζk = 0) =

2

3
. (7.27)

The moments of ζk are equal up to order 5 with the moments of the normal distribution

N(0, 1), so we obtain the scheme based on S1
ω:

P̄i = pi − h
∂G1

(0)

∂qi
− h1/2

m∑
k=1

ζk
∂G1

(k)

∂qi
− h2

2

(
∂G1

(0,0)

∂qi

+
m∑
k=1

(
∂G1

(k,k,0)

∂qi
+

1

4

∂G1
(k,k,k,k)

∂qi
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)
,

(7.28)

where i = 1, . . . , n, and everywhere the arguments are (P̄ , q). In Theorem 6.3 in

Chapter 6 we prove that the scheme based on the one step approximation (7.28) is

symplectic and of weak order two.

Similarly we can construct symplectic schemes of weak order three based on the

155



following approximations of the generating functions Si
ω, i = 1, 2, 3:

Si
ω ≈

(
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)
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8
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where everywhere the arguments are (P, q). Using Propositions 7.1 and 7.2, equations

156



(7.8)- (7.13), (7.16) and (7.24), the previous approximation becomes

S̄i
ω ≈
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(7.29)

We can obtain third order symplectic weak schemes based on one of the equations

(5.10)-(5.12) and the approximation (7.29) of the corresponding generating functions

Si
ω, i = 1, 2, 3. At each time step, we generate the stochastic integrals I(k), k =

1, . . . ,m, as independent random variable
√
hξk, k = 1, . . . ,m, with the following

discrete distribution (see the scheme (10.36) in [3])

P (ξk = 0) =
1

3
, P (ξk = ±1) =

3

10
, P (ξk = ±

√
6) =

1

30
, (7.30)

I(k,k), as hξ
2
k/2, and I(k,k,k), as h

√
hξ3k/6, k = 1, . . . ,m. Under appropriate assumptions

regarding the functions H(r), r = 0, . . . , r we can prove the convergence of the schemes
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with weak order three proceeding as in Theorem 6.3, using Theorem 4.1 in [4] and

repeated Taylor expansions.

7.3 Numerical simulation

Consider the Kubo oscillator as follows

dP = −aQdt− σQ ◦ dw1
t , P (0) = p,

dQ = aPdt+ σP ◦ dw2
t , Q(0) = q.

(7.31)

As the Poisson bracket of the Hamiltonian functions H(0) and H(1) vanish, H(0) and

H(1) conserve along the phase flow of the systems. Because the superior performance

of symplectic schemes on long term simulation is shown in previous chapter, we only

consider five types of stochastic strong symplectic schemes, such as the mean square

0.5, first and second order schemes based on S1
ω, and the mean square first- and second-

order schemes based on S3
ω, and we compare that efficiency.
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Figure 38: Computing time v.s. error for different types of symplectic strong S1
ω scheme

with various time step for T = 100 with 105 samples, ⃝: h = 0.004; �: h = 0.002; △:
h = 0.001, ▽: h = 0.0005.

Fig. 38 and Fig. 39 show that the higher order strong schemes are more efficient

than the lower ones. The computing time takes about 4180 seconds to complete the
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Figure 39: Computing time v.s. Error for different types of symplectic strong S3
ω scheme

with various time step for T = 100 with 105 samples, ⃝: h = 0.004; �: h = 0.002; △:
h = 0.001, ▽: h = 0.0005

first order S1
ω schemes simulation for h = 0.002. The computing time for the second

order S1
ω schemes with time step h = 0.004 is about 3200 seconds. However, the error

of second order S1
ω schemes is 0.0038, compared to 0.0049, the error of first order S1

ω

scheme.
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Chapter 8

Summary and Conclusion

In this thesis, the effect of noise on dynamical systems is considered. In the first part of

this study, we investigate the effect of uncertainties in the parameters of an aeroelastic

system. The stochastic normal form is applied to study the aeroelastic system with

uncertainties in the bifurcation parameter and the non-linear coefficients in the plunge

and pitch. The stochastic normal form is capable of capturing the behavior of the

limit cycle oscillation, and predict the influence of the noise with small intensity on

the amplitudes and frequencies of the limit cycle oscillation. Moreover, unlike the

deterministic case, the stochastic bifurcation analysis shows that a noise with small

intensity and weak structural non-linearities may lead to divergent solutions.

As the stochastic normal form is a technique used to investigate the dynamical sys-

tem with small random perturbation, another method, a stochastic collocation method,

is proposed to study the behavior of aeroelastic system with noise with larger inten-

sity. The stochastic collocation method is presented with particular attention given to

the nonlinear phenomena in the Hopf and the secondary bifurcations in an aeroelas-

tic system. Various types of interpolation schemes are examined to demonstrate the

advantage of high order interpolation on the stochastic collocation method. A sparse

grid and a dimension adaptive strategy are considered for the aeroelastic system with

multidimensional random variables. The numerical results shows that the stochastic

collocation method can provide an accurate prediction of the effect of uncertainties

parameters on aeroelastic systems.

In the second part, we study the construction of symplectic schemes for stochas-

tic Hamiltonian systems. First, a framework to derive high-order strong symplectic
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schemes based on generating functions for stochastic Hamiltonian systems is proposed,

and then, it is extended to derive the weak symplectic schemes. The theoretical conver-

gence analysis is presented. Systemic construction of the stochastic symplectic schemes

with arbitrary high order is important from the theoretical point of view. Regarding

a practical implementation, for the high order (≥ 4) weak symplectic scheme, it is ex-

pected that the accuracy of the results will be influenced by the increasing variance. It

is interesting to notice that for stochastic Hamiltonian systems preserving Hamiltonian

functions, the high order symplectic schemes turn out to have simpler forms and with-

out requiring the approximation of more multiple stochastic integrals than the explicit

Taylor expansion schemes. Numerical simulations are also reported, and they confirm

the the superior performance of the symplectic schemes for long time simulation.

The superior performance of the symplecitc schemes has been reported for some

non-Hamiltonian systems. In the future, it will be interest to investigate the application

of stochastic symplectic schemes for the aeroelastic system with stochastic noise.
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