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Abstract

It has been known that for some physical problems, a small change in the system pa-
rameters or in the initial/boundary conditions could leas to a significant change in the
system response. Hence, it is of importance to investigate the impact of uncertainty
on dynamical system in order to fully understand the system behavior. In this thesis,
numerical methods used to simulate the effect of random /stochastic perturbation on
dynamical systems are studied. In the first part of this thesis, an aeroelastic system
model representing an oscillating airfoil in pitch and plunge with random variations in
the flow speed, the structural stiffness terms and initial conditions are concerned. Two
approaches, stochastic normal form and stochastic collocation method, are proposed to
investigate the Hopf bifurcation and the secondary bifurcation behavior, respectively.
Stochastic normal form allows us to study analytically the Hopf bifurcation scenario
and to predict the amplitude and frequency of the limit cycle oscillation; while nu-
merical simulations demonstrate the effectiveness of stochastic collocation method for
long term computation and discontinuous problems. In the second part of this work,
we focus the construction of efficient and robust computational schemes for stochas-
tic system, and the stochastic symplectic schemes for stochastic Hamiltonian system
are developed. A systematic procedure to construct symplectic numerical schemes
for stochastic Hamiltonian systems is presented. The approach is an extension to the
stochastic case of the methods based on generating functions. The idea is also extended
to the symplectic weak scheme construction. Theoretical analysis of the convergence
is reported for strong/weak symplectic integrators. The numerical simulations are car-
ried out to confirm that the symplectic methods are efficient computational tools for
long-term behaviors. Moreover, the coefficients of the generating function are invari-
ant under permutations for the stochastic Hamiltonian system preserving Hamiltonian

functions. As a consequence the high-order symplectic weak and strong methods have



simpler forms than the Taylor expansion schemes with the same order.
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Chapter 1

Introduction

A purpose of mathematical models is to describe and predict the future behaviors
of physical systems. Although differential equations have been successfully used to
explain and predict the responses of physical events, the accuracy of the predictions
usually relies on the mathematical model, and correct estimation or the measurement
of the values of system parameters, initial values or boundary conditions.

In recent years, there is a growing interest in the study of uncertainty quantification
(UQ). The goal of UQ is to investigate the impact due to uncertainty in data or in the
mathematical model, so that we could perform a more reliable prediction for the real
physical problems.

The first part of my Ph.D work is concerned with the UQ of aeroelastic dynam-
ical systems, which is a continuation of my master research program [6]. Unlike a
deterministic model in which the governing mathematical formulation is given by a
system of nonlinear differential equations, the present aeroelastic model is represented
by nonlinear differential equations with random parameters, i.e., random differential
equations.

Several UQ aeroelastic investigations focusing on limit cycle oscillations (LCO) and
the bifurcation analysis are reported, such as Monte Carlo simulations (MCS) [15, 14,
4], polynomial chaos expansions [25, 5, 18, 17|, perturbation techniques [11, 13] and
so on. In the present study, two new approaches based on the stochastic normal form
and stochastic collocation methods are proposed to analyze the effect of parameters
uncertainty on the Hopf and secondary bifurcation, respectively [8, 9, 2].

In the second part of my thesis, I develop serval efficient and reliable numerical



methods for stochastic Hamiltonian systems. At present, Hamiltonian systems are al-
ready widely used in many diverse fields of applied and pure mathematics such as the
optimal control, elasticity, KAM theory, quantum mechanics, etc. Hence it is of impor-
tance to derive efficient and reliable computational methods for solving Hamiltonian
systems numerically.

After the initial work of Hamilton, which was developed further by Jacobi, the
most significant progress of Hamiltonian formalism was made by Poincaré, resulting in
symplectic geometry, which has become the natural language for the Hamiltonian sys-
tem. Since the symplecticity is a characteristic property of Hamiltonian systems, it is
desirable that numerical methods should preserve this property as much as possible. A
natural way to achieve this is to work out numerical methods that share these property,
so called the symplectic integration. The pioneering work on the symplectic integration
is due to de Vogelaere [23], Ruth [22] and Feng [10]. The approach turned out to be
fruitful and successful. Many simulations and applications show the significant advan-
tage of the symplectic integration on accuracy of long time computation. Symplectic
integration is one of the most important subjects in computational mathematics and
scientific computing.

Inspired by the idea of the symplecticity invariance, Milstein et al. [21] [20] proposed
symplectic numerical scheme to the stochastic Hamiltonian system (SHS). Since then,
there is growing interesting and effort on the theoretical and numerical studies on
special stochastic hamiltonian systems [12], [16]. The variational integrator method
proposed by Wang et al. [24] is to construct the symplectic scheme on SHS. But the
systematic research on stochastic symplectic methods is still rare and the construction
of high order symplectic method is an open problem. In our research [7], we employ the
properties of multiple stochastic integrals to derive a recursive formula for determining
the coefficients of the generating function. Theoretically, this formula allows us to
derive stochastic sympletic schemes of any order with corresponding conditions on the

Hamiltonian functions. It is a non-trivial extension of the methods based on generating



functions from deterministic Hamiltonian systems to stochastic setting. Hence, the
major contribution of our work is to present a framework to construct different types
of stochastic symplectic schemes of any order.

Moreover, we extend the results to the symplectic weak schemes (in the sense of the
convergence of expectation) by using the relation of Stratonovich multiple integrals and
Ito multiple integrals [3]. So we are able to construct the second order weak stoachstic
symplectic scheme for the general SHSs, which answers the open problem proposed by
Milstein. et al [19].

Using the method based on generating functions, we construct computationally
attractive high order symplectic schemes [1] for a special type of SHS preserving the
hamiltonian functions. The developed symplectic schemes are efficient compared with
the Taylor-Stratonovich expansion type scheme, because the laborious approximation
of the multiple stochastic integrals is not required for the proposed high order symplec-
tic scheme. Moreover, it only requires one random variable for each Brownian motion
at each time step. Hence it provides subtantial saving in the computational time used
to generate the quasi-random numbers.

This thesis is organized as follows. We first provide introduction about an aeroe-
lastic system representing an oscillating airfoil in pitch and plunge in Chapter 2. The
implementation of stochastic normal form and stochastic collocation method on aeroe-
lastic system will be discussed in Chapter 3 and 4, respectively. Then, we will focus
on the stochastic symplectic schemes. The definition of SHS and the construction of
the strong symplectic schemes will be covered in Chapter 5. Chapter 6 presents the
construction of weak stochastic symplectic schemes. The symplectic schemes for SHS
preserving Hamiltonian functions are reported in Chapter 7. Finally, conclusions will
be presented in Chapter 8.

It is worth noting that the works presented in Chapter 3 — 7 have been accepted /submitted
for referred jounral publications. In particular,

Chapter 3 appeared as Hopf bifurcation analysis of an aeroelastic model using



stochastic normal form in Journal of Sound and Vibration in 2011.

Chapter 4 appeared as Stochastic collocation method for secondary bifurcation of a
nonlinear aeroelastic system in Journal of Sound and Vibration in 2010.

Chapter 5 was submitted as High-order symplectic schemes for stochastic Hamilto-
nian systems to Communications in Computational Physics in 2012.

Chapter 6 was submitted as Weak symplectic schemes for stochastic Hamiltonian
equations to Journal of Computational and Applied Mathematics in 2012.

Chapter 7 was submmited as Symplectic numerical schemes for stochastic systems
preserving Hamiltonian functions to International Journal of Numerical Analysis €

Modeling in 2012.
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Chapter 2

Introduction to Aeroelastic

Dynamical System

Nonlinear airfoil flutter is one of the important topics encountered in aerospace engi-
neering. It is well-known that assuming a linear model for the structural components
of the aircraft, will produce an inaccurate prediction for aging aircrafts and combat
aircrafts that carry heavy external stores [3, 1]. In an aeroelastic system, structural
nonlinearities arises from worn hinges or control surfaces. It has been reported that for
some systems, small perturbations in the initial conditions and/or the system parame-
ters could lead to significant changes in the nonlinear response [3]. Hence, in addition
to studying the deterministic model, it is desirable to carry out an investigation that

takes into account the effects due to uncertainty.

2.1 Mathematical model

The two-degree-of-freedom (DOF) dynamic model (see Fig. 1) simulating an airfoil
oscillating in pitch and plunge can be expressed as a coupled system of two second-
order nonlinear integro-differential equations, and the detail description can be found

in [3]:

~ ~ 2
” ” W w 1
S +zx,0 + 2C§ﬁ§ + (a) G(§) = ——CL(T>
Lo ” CCV ’ 1 2
s ol apa+ paMie) = =

«



b

\\c\ MEAN POSITION

MID-CHORD
ELASTIC AXIS

CEMNTRE OF MASS

Figure 1: Two-degree-of-freedom airfoil motion

Here ¢ = h/b is the non-dimensional displacement of the elastic axis, U* = U/(bw,)
is a non-dimensional velocity, * denotes differentiation with respect to the non-dimensional
time 7 = Ut/b, © = w./w, is the ratio of the natural frequencies, r, is the radius of
gyration about the elastic axis, and (., ¢, are the damping ratios. G(s) and M («) are
the nonlinear plunge and pitch stiffness terms, respectively, and the lift and pitching
moment coefficients are denoted by C(7) and Cy (7). For subsonic flow, they are

expressed as:

Cu(r) =n(s" — ana” + ') + 2 {a(0) + <'(0) + [2 — anla’(0)}o(7)

2
. (2.2)
w2 [ olr =)o/ (0) +'(0) + (5 — an)e ()
Car(r) =n(5 + ) {a(0) +(0) + [ — anl’(0)}6(r)
r(gra) [ o= () +0)+ (G- (lde (@23
+ gah(g// —apa”) — (% — ah)go/ — 17T—60/’

10



where the Wagner function ¢(7) is given by

O(1) =1 — e 1 —ahge 2" (2.4)
and the constants are ¥; = 0.165, ¥y = 0.335, £ = 0.0455 and ¢, = 0.3.

By introducing four new variables wy, we, w3, wy:

wl(T):/ e e (0)da
0

(2.1) can be rewritten as:

" " / /
CoS + 10 + oS + 3y + ¢4M + Cs + CeWy + CrWa + C8W3 + CoWy

—)2G(s) = f(r
£)6() = 1(7) o

d()g” + dlo/' + d2§/ + ng/ + d47] + d50é + d6w1 + d7UJ2 + dgwg + d9w4

22 M(0) = g(r).

+(w

+

The coeflicients of Eq. (2.5) are as follows:

1 a o 2
60:1+_, Clzma__ha 02:2C<7+—(1—1/11—¢2)7
Jz Iz Us

. — 1+(1- 2ah)151 — 1 — %)7 cy = %wlgl + 1ae9),

%zzw—¢rwm+um—mmm&+w@m
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Ce = %1/1161[1 —(1/2—ap)e), o= 2%52[1 — (1/2 = an)es),

2 2
Cg = ——?/11€%, Cg = ——1/1253,
M M

o 1+ 8a?
dozx——& 1= 1+ g_zah,
HTo

G 1—=2ap, (14 2a)(1—2a)(1 -1 — o)

b = 2@ i our: 2ur? ’
de — — (1 -+ 26Lh)<1 — wl — ZﬂQ) _ (1 + 2ah)(1 — 2ah)(w1€1 + w282)
= r? 22 /
g = (14 2ap)(1 — 11 — 1) & — (1 +2a,)(1 = 2ap,) (Y161 + ae2)
4 — = ) 5 — )

r 2ur?

d = (4 2ap)the[1 = (1/2 — ap)ed] dr = —

2
HT

(1 + 2&}1)@0252[1 — (1/2 — CLh)EQ]
prg

I

(1 + 2ap)11€2 (1 + 2ay)1)oe3
w? w2

where M («) is the nonlinear pitch stiffness term, G(¢) is the plunge stiffness term. The

d8:_ 5 d9:_

Y

forcing terms f(7) and g(7) are expressed as follows:

f(r) = =((5 = an)(0) + <(0)) (1216”7 + Phacae™7),

(1+ 2ah)f(7)‘

When 7 is sufficiently large, the steady-state solutions are obtained, f(7) and g(7)

converges to zero. Hence, we suppose f(7) and g(7) are zero in our study. Let z; =

12



o, Ty = &', x3 = ¢, x4 = ¢, x5 = Wy, T = Wo, Ty = ws, and xg = w4, We can rewrite

(2.5) as the following system of eight-order ODEs:

T = 19
ZEIQ = (C()A — dOB)/(d061 — Codl)
Ty = 14

Q?il = (CIA -+ dlB)/(docl — Codl)

(2.6)
T =11 — €15
Ty = T — €%
Th = x5 — €107
Ty = T3 — €21,
where
A = d3xy + doxg + dsxz + dyxy + dexs + dywe + dgwy + doxg + (%)2]\4(1:1) —g(7),

w

B = C5T1 + C3X9 + C4T3 + Coxy + CeZ5 + C7Xg + C8T7 + Coxg + (W)QG(Q@) — f(T)
In this study, we assume that the non-linear plunge and pitch stiffness terms are
polynomial functions. However, other representations, such as freeplay and hysteresis

models, can also be used for M(z;) and G(z3).

2.2 Dynamical behavior

If the pitch stiffness term M («) is given by a cubic polynomial model M (x1) = x1+ksz}
and the plunge stiffness term is linear G(z3) = x3, the aeroelastic system undergoes
a Hopf-bifurcation at the U* = Uj, where U is called the linear flutter speed. Here,
positive values of ks yields a supercritical Hopf bifurcation (see Fig. 2(a)) for which
a stable LCO exists for U* > U}; negative values yields a subcritical bifurcation (see

Fig. 2(b)) leading to unstable LCO for U* < Uj}.

13
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Figure 2: Hopf-bifurcation in the aeroelastic system: solid line: stable branch; dashed
line: unstable branch; (a) supercritical bifurcation for k3 = 3; (b) subcritical bifurcation
for ks = -3

Pitch exteame value (degree)

o
T T T T T T T T T

Figure 3: Secondary bifurcation in the aeroelastic system

When U* increases further to about 2U; and with a strong cubic nonlinearity for
ks > 0, a jump phenomenon in the LCO amplitude and frequency is observed, and
this is known as the secondary bifurcation (see Fig. 3). Lee et. al. [2] and Liu et. al.
[4] investigated the aeroelastic behavior in the secondary bifurcation when the cubic
nonlinearity in the pitch DOF is given by M(x;) = x1 + ksx? with k3 = 80. They have
noted that the flow velocity at which the secondary bifurcation occurs may depend on

the initial conditions.
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Chapter 3

Hopf Bifurcation Analysis Using

Stochastic Normal Form

The normal form for deterministic aeroelastic systems was developed in [9]. To extend
these results to the stochastic case, we apply the stochastic normal form (Chapter 8
in [1]) to reduce the dimension of the system. We consider random parameters in
the flow speed and in both the pitch and the plunge non-linear stiffness terms. Using
the reduced model represented by the stochastic normal form, we confirm analytically
the stochastic Hopf bifurcation scenario obtained numerically in [12]. We also obtain
explicit formulas for the frequency and the amplitude of the LCOs.

When using various chaos expansions, it was observed [4, 6, 5| that the accuracy
of the computed results is lower around the bifurcation point due to discontinuities in
the parameter space. On the other hand, an analytical study based on the stochastic
normal form gives the highest accuracy around the bifurcation point. Thus, the ana-
lytical study presented here can complement an approach based on chaos expansions
because it is capable of providing explicit formulas for the amplitude and the frequency
of the LCOs, and to determine the effects of parameters uncertainties near the Hopf

bifurcation point.

3.1 Stochastic normal form

In this section, we assume that the non-linear plunge and pitch stiffness terms are given

by G(z3) = Bix3 + Box and M (z1) = Bsz1 + B3, and consider random perturbations

16



of the coefficients of the cubic terms and the bifurcation parameter. Then we can

rewrite (2.6) as follows:
X' = AX +6BX + (1 — 0)F(X), (3.1)

where 6 = 1 — (U;/U*)? is the bifurcation parameter (with U} the linear flutter ve-
locity). The matrix A is the 8 x 8 Jacobian matrix evaluated at the equilibrium point
X = 0 and at the bifurcation value 6 = 0, and F;(X) contains cubic terms in x; and

I3

1 0 0 0 0 0 0 0

ag1 —bor e g3 —bag azq azs Qs  Gar  aog

0 0 0 1 0 0 0 0
A— ag1 — by au2 G4z —byz Gay agy  age Q47 Aug 7
1 0 0 0 —e O 0 0
1 0 0 0 0 —e 0 0
0 0 1 0 0 0 —¢ 0
i 0 0 1 0 0 0 0 —€2
[ 0O 0 0 O O- [ 0 ]
byy 0 bys O 0 —boy 5t} + bos B2}
0 0 0 O 0 0
B=1by 0 by 0 0, Fui= buGal - b}
0 0 0
I 0 ... . 0 0_ i 0 |

Now consider random perturbations of the coefficients of the third order terms in

z3 and x3, and the bifurcation parameter d:

0=0+01m, Po=Po+0oamn, Bi=Pi+ o, (3.2)
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where §, 52, B4, 01 > 0, 03 > 0, 03 > 0 are constants, and 7;(-), n2(+), and n3(-) are
independent random variable uniformly distributed on the interval [—1, 1].

Thus, our random model is given by:
3
X' = AX + (6 + oym)BX + (1 — 6 — oymy) <F1(X) +) amiFZ-(X)) . (3.3)
=2

where F;(X), i = 1,2,3 contain terms in 3 and x3. We use the same values of the
parameters as in [9], so that the matrix A has one pair of purely imaginary eigenvalues
A1,2 = twyp, one pair of complex eigenvalues with negative real parts A3 4 = b £ ic, and
four negative real eigenvalues \; < 0,7 =5,...,8.

We first apply a deterministic transformation Y = P~!X, where the matrix P
is constructed from the eigenspace of A such that P~'AP = J, with J the Jordan

Canonical form of A:

b ¢ 0 0 0 O
—c b 0 0 0 O
Je 0w 0 0 X3 0O 0 O
J = ,  Jo= N e (3.4)
Js —Wo 0 0 0 0 )\4 0 0
0O 0 0 0 X5 O
0 0 0 0 0 X

In the new variable Y = (y1,...,ys)7 = (Y., Y,)?, with Y. = (y1,92)7, the system

(3.3) can be rewritten as

Y =JY + (0 +0m)P'BPY + (1 =6 — oym) (P'F1(PY)
(3.5)

3
+Y o PT'Fi(PY)).

=2
Similar to the deterministic normal form, the stochastic normal form retains the
essential characteristics of the system, but reduces the dimension of the original prob-

lem. In our case, since the system given in equations (3.5) contains both stable and

critical modes, we now reduce the dimension from eight to two using the procedure
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described in the proof of Theorem 8.4.3 in [1]. This method allows us to obtain simul-
taneously the center manifold and the stochastic normal form. We consider a small
noise scenario, and suppose that the parameters A = (8,01, 09,03)" are all close to

zero. So, to equation Eq. (3.5) we add four more equations:
=0, 0,=0, 0,=0, 03=0. (3.6)

Let denote by F(Y,A) the random polynomial given by the right hand side of
equation Eq. (3.5). Then a Taylor expansion of F gives

F(Y,A)=JY+ Y  Fu(Y,A)+O0(Y['+]A]%), (3.7)
1<p+q<3
0<r<1
where F,, is a random homogeneous polynomial of degree p+ ¢+ r, which is of degree

pin Y., of degree ¢ in Y, and of degree r in A, with values in R®. More precisely, for
any 1 <p+¢<3,0<r <1, wehave Fp, . (Y,A) = (frpgrs-- - fspgr) (Y, A) with

_ n1 ns 1
Fipar (Y A) = 3" fim o Y2 o050 03 (3.8)
ni+na2=p
n3+-+ns=q
rit-tra=r
where fin, ngrira 5 @ = 1,...,8, are the random variables, but they are not time

dependent. Notice that given the cubic form of the non-linearities considered here, we
have no quadratic terms in the Taylor expansion (i.e. Fp,.(Y,A) =0, for any p+q = 2
and any 0 <r < 1).

Next, we find a near-identity random transformation

Y D 1<p+g<3,0<r<1, Hpqr<YC7Y5, A)
Y > Y+H(Y,A)=| |+ (p+ar)£(L,0)

Y, > 1<prq<so<r<t, Ho o (Y, Y, A) (3.9)
(p+q.m)#(1,0)

+O(|Y[* +|AP),

where HY =~ and H = are random homogeneous polynomials of degree p + ¢ + r, which

are of degree p in Y., ¢ in Y, and r in A, with values in R? and RS respectively.
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They have a similar representation with F,, shown above in Eq. (3.8). Applying the
transformation (3.9) to (3.5),we get

Y.=JY.+ > GL(Y.LA) +O(Y | + AP (3.10)

=Yl =4,

(n,r)#(1,0)
Y. =LY, + ) G (Yo Y, A) +O(Y]' + AP, (3.11)

OVl =4,

9=1,(p,r)#(0,0)
where G7,. and Gj . are random homogeneous polynomials with a similar represen-

tation with F,, (see Eq. (3.8)). G¢, is of degree n + r, such that it is of degree n

nr

in Y. and 7 in A, with values in R2. G;,- is of degree p + g + 7, such that it is of
degree p in Y., ¢ in Y,, and r in A, with values in R®. Similar to the deterministic
cases, we try to solve the cohomological equations and to find the resonant terms that
cannot be eliminated through the transformation given in Eq. (3.9), while making the
polynomials G{ . and G; . as simple as possible.

pgr

To get the cohomological equations, we start from the following equation (see Eq.

(8.4.7) in [1)):

F(Y+H(Y,A) =Y + (Dy,H)Y, + (DyH)Y, + %H(Y, A), (3.12)

and replace Y  with the formal Taylor expansions given on the right hand side of
equations (3.10)-(3.11), F with the expansion (3.7), and H with the Taylor expansion
given in Eq. (3.9). Equating the coefficients and separating the center and the stable
components, we get the corresponding cohomological equations. Since we are mainly
interested in the center equation of the truncated stochastic normal form (3.10), we

focus on the corresponding cohomological equations (see also equations 8.4.17 and

8.4.18 in [1]):
iHCOr(ch A) - ‘]CHCOT(Yw A) + DY HCOT<YCa A)JCYC = _Gcr(Ym A)
at " ! o ! (3.13)
+ Rio, (Y, A)
d
CH (Yo, A) — JH, (Yo, A) + Dy Ho (Yo, A)LY. = RS, (Yo, A),  (3.14)

dt pOT
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where R¢

sor and Ry depend only on Fyo, and on Hy, 10,71, H

P/,O,T"7 G;’TH Gf/(]'r” for
pl Spa rl ST, andp/+7"l §p+7~_1

Since Eq. (3.13) is resonant, instead of trying to find stationary solutions, we let
= 0 and thus G, = R;

'pOr

HC

Sor Eq. (3.14) is not resonant and we can find stationary

solutions as in Chapter 8.4 in [1]. In fact, we do not even need to solve for the stationary
solution of a general random differential equation because the cohomological equations
(3.14) with p = 2,3 and r = 0 are deterministic, and only some of the equations
corresponding to r = 1 and p = 1,3 contain the random terms. Moreover, since we
consider uncertainties expressed by random variables (which do not depend on time),
finding the stationary solutions reduces to finding the time independent solution of a
system of linear equations.

To determine the coefficients of Hy, for each p = 1,2, 3, , we solve 4 linear systems
of p+ 1 coupled equations, and one linear system of 2(p + 1) equations. When solving
for the coefficients of H};, we have 16 linear systems of p + 1 coupled equations, and
four linear systems of 2(p + 1) equations. After extensive calculations using Maple,
the approximate center manifold (up to the terms of order 3 in Y. and order 1 in

(0,01, 09,03)) is the graph:
R*x R'> (3/17 Y2, 0,01, 02, ‘73) - 5(Hf01000y1 + H8110003/2> + Ulﬁl(‘)(Hioomoyl

+ Hii010092) + Z Y192 (Hjoo00 + 01000 + o171 (1) Hjo100 (3.15)
i+j=3,i>0,7>0

+ o912 (- ) H ;0010 + 0313 (- ) Hij0001) € R,

and the truncated center equation is

cl cl cl cl
v - 95010009 + 9L00100017M —wo + 96110000 + 96101007171 v
- C

C
c2 c2 c2 c2
Wo + 95610000 + 9160100017 96110009 + 90701007171

cl cl cl cl
. i | 9ijoooo T 09551000 + 955010001 9i50010
+ )y ( ’ ’ ’ +oo [T (3.16)

c2 c2 c2 c2
i+j=3,i>0,j>0 550000 + 0951000 T Ij0100017M1 9330010

cl
9i50001
+ 03 ns |-
c2
9ij0001
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Here, we have

Hy,, = > H; iy 6F ol oy ol (3.17)

i+j=p,k+l+n+m=r
i,9,k,l,n,m=>0

k
S itimpktiintm=r (I mm N Y0 ot oD o

c __ %,7,k,l,n,m>0
G;, = R (3.18)
D it =p,k+l4+n+m= r(gzjklnmm??z)yly25 010303
i,7,k,l,n,m>

Notice that from Eq. (3.5) and (3.8), we get fin, .. 181,000 = fing,. ns01,00, fOr any i =
1,...,8, and any non-negative integers nq, ..., ng. As a consequence, in the truncated
normal form (3.16), we have g5/ 1000 = 950100 a0d g571000 = Y0100, fOr any non-negative
integers 4,7 =0,...,3.

We then reduce the number of terms in the center part of the truncated normal
form (3.16) by proceeding as in [9], we bring the linear part to a diagonal form by
applying the transformation V = NP~'Y,, where

1 0 b
NP = 2o (3.19)

Vb3 + B2+ (a — by )? B o — by

: _ cl cl _ cl cl _ c2
with bi1 = 95410000 + 91001000171, D12 = —Wo + 95110000 + Jo101000171> 21 = Wo + Gi510000 +

9?(2)010001771, by = 98%100054'98%010001771, o= (b11+b22)/2, and 8 = v/bi1bgy — bioby — .
In the next section, we show that for the values of the parameters corresponding to
the aeroelastic system considered here and for values of 6 and oy close to zero, we have
bis # 0 and by # boy, for any random value of 1, € [—1,1]. In this case, since we can
also write 8 = \/b12(b1a — bo1), using Eq. (3.19), we easily verify that the matrix NP
is invertible for any random value of n, € [—1,1].

The complex form of the transformed Eq. (3.16) is given by
Z = \0,00\)Z + F.(Z,Z,N), (3.20)

where \(§,01) = a+ i and Z = vy + ive, V = (vy,v2)T. Here, we consider A =

(0,01,09,03) as small parameters. By adding four more equations § =0, (7/1 =0,
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0/2 =0, O';) = 0, we apply the same procedure as before to find simultaneously the
stochastic normal form and the center manifold.

Using a Taylor expansion we rewrite Eq. (3.20) as

7 = (010 + agroim + i(Boo + Bord + Boroim)) Z
+ Y ST fepamn 27296 0oy ah + O(1 2] + | AJP), (3.21)
1<p+¢<3,0<r<1, k+l+n+m=r
(p+4q,7)#(1,0)
where ap1 = (9551000 + 9511000)/2 = (9560100 + 9630100)/2- Note that given the cubic form

of the non-linearities, we have f, ,qkimn = 0 if p + ¢ = 2, for any non-negative integers

k, I, m, n. We now find a near-identity random transformation

7 =72+ H(Z,A) =7 + > Hopo(Z.Z,A)+ 02" +|AP),  (3.22)

(p+q,m)#(1,0)

which transforms Eq. (3.21) into

Z' = (ao16 + agoim +i(Boo + Bord + Borom)) Z
Y Gaw(ZZ.8)+0(2 + |AP), (3.23)
1<p+¢<3,0<r<1,
(p+aq,r)#(1,0)
where H, ,, and G, are random homogeneous polynomials of degree p+ ¢+ 7, such
that they are of degree p in Z, ¢ in Z, and r in A:

Since 71, 12 and 73 are random variables, they do not depend on time, and pro-
ceeding similar to the deterministic Hopf bifurcation case (see, for example, Chapter
11 in [11]) we can find stationary solutions H, ,, of the cohomological equations and
make G, = 0if (p,q) #(2,1), forany 1 <p+¢<3,0<r <1, (p+gq,r)#(1,0).
Moreover, solving the cohomological equations, we get H, ,,, = 0 if p + ¢ # 3 and
H, 51, = 0. More exactly we have

L,.m, n 7qsk I _m _n
H; pgr = E , H, parimnming ny 27 29050105 03, (3.24)
k+l4+m4n=rk,l,mn>0

l.m, n 7qsk I _m __n
Gz,pqr = § Gz,qulmn”l”Q N3 Zqu(SOalO-Q 03, (325>
k+l+m~+n=rk,l,m,n>0
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where H, poiimn and G pgrimn are complex constants. From the formula in the right
hand side of Eq. (3.5), we get G, pg10mn= Gz pgo1mn, fOr any non-negative integers p, ¢,
m, n.

The truncated normal form up to the terms of order 3 in (Z,Z) and order 1 in
(0,01,09,03) can be expressed as

7 = (10 + agrovm + i(Boo + Bord + Boroim)) Z + ZQZ(Gz,moooo (3.26)

+ G 2110000 + G- 21100001 + G- 2100100272 + G2 2100010373)-

i6(T)

If we write Z = r(7)e"”™), we can express the truncated normal form (3.26) in polar

coordinates:

r = (10 + 1o + T3(R6(Gz,210000) + Re(G 211000)0 (3.27)

+ Re(G 211000)01m1 + Re(G. 210010)02m2 + Re(G - 210001)0373)

0 = Boo + Bo10 + Boroim + 7"2(Im(Gz,210000) + Im(G. 211000)9 (3.28)

+Im(G 211000) 01 + Im(G 210010) 0212 + Im(G 210001) 0373)-

Equations (3.27)-(3.28) can be solved analytically, and the result can be used to study
the stochastic bifurcation and to analyze the effect of parameter uncertainties on the

amplitude and the frequency of the limit cycle oscillations.

Remark 1 Although the stochastic normal form was obtained under the restrictive
assumption that the parameter uncertainties are expressed by random wvariables, the
results can be extended to more complex types of noise. More precisely, a similar
truncated normal form with the one given in Eq. (3.16) can be obtained if ny, 1, and
ns are any stationary stochastic processes (also called real noise) or if they are white
noises (Brownian motion/Wiener processes) (see [1, chap. 8] or [3] for a succinct
presentation of stochastic normal form). To obtain the decoupled equations (3.27)-
(3.28), we needed more restrictive conditions on the nature of the noises n, 12, and
ns. If only uncertainties in the coefficients of the cubic terms are present (o1 = 0),

then if ny and n3 are real noises, a condition to determine stationary solutions for the
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cohomological equations is given in [2] in terms of the spectral density matriz. If no
and n3 are Gaussian white noises, then it is not possible to reduce the normal form to
the decoupled equations (3.27)-(3.28) because there are no stationary solutions for the

corresponding stochastic differential equations (see [10]).

3.2 Stochastic bifurcation

To study the stochastic bifurcation, we notice that Eq. (3.27) can be solved indepen-
dently of Eq. (3.28), and we have a bifurcation scenario in dimension one similar to
the case represented in Eq. (17) in [13]. The solutions of system (3.27)-(3.28) define a
local random dynamical system [13], ®5(7,w), but the bifurcation study in [13] cannot
be applied directly because the noises 7;, + = 1,2, 3 are random variables, so they are
not ergodic processes. However, we can find the invariant measures following a similar

approach.

3.2.1 Stochastic bifurcation in dimension one

Consider the random differential equation

= (a+ & W)z +23(b + & (w)) (3.29)
where & and & are random variables and a, b are constants. To study the stochastic
bifurcation, we note that Eq. (3.29) can be solved analytically and we have a bifurcation
in dimension one scenario similar with the case represented in Eq. (16) in [13].

First, using the transformation y = 1/2% in Eq. (3.29) and solving the linear

equation in y, we obtain explicitly the solution z(7,w,z() starting at 7 = 0 from

xg # 0:

sign(xg)elatér (@) n
\/%7%<62(a+§1(“>>771) ira+ 61 (w> 7& 0
o(rw,me) =9 V0 T (3.30)
__ sign(zo) if a4 & (w) = 0

(b))
0
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Consequently the local random dynamical system [1] (RDS) ¢(7,w)zo : D;(w) = R (w)
generated by (3.29) is given by

0—=0
0 # zg = ¢(1T,w)xo = (T, W, X0),

where (T, w, zo) is given in Eq. (3.30).

In general, there are two types of stochastic bifurcations [1]: phenomenological
bifurcations regarding the structural changes of the stationary measures, and the dy-
namical bifurcations related to the invariant measures. For Eq. (3.29), the two types
of bifurcations coincide because the noises &; and & do not depend on time, and con-
sequently any invariant measure p is also a stationary measure, i.e. for all 7 > 0 we

have
/P(w c(x(T,w,x0)) € B) p(d(x9))) = p(B), P — almost sure. (3.31)

Lemma 2.3 in [13] is also true in our case and using Eq. (3.30), we can easily obtain
a similar result given in Lemma 4.1 in [13]. Thus, we have:

p

(—00, 00) if ¢(r,w) <0
__ 1 1 if >0
\ ( \/C(T’w) ) \/C(T,w)> 1 C(Ta CL))
(
(—00, 00) if ¢(r,w) >0
R (w) = (3.33)
_elat& ()T glatéy(w))r if C(T W) <0
\ \/—C(Tyw) ’ \/70(7’,0.)) ’
where
brea(w) (2at&i@)T — 1) if g + & (w) £ 0
o(t,w) = a+&1(w) ( ) 1) (3.34)

(b+ &(w))T if a4+ & (w) =0

The set A(w) = (),cr Dr(w) of the initial values at time 7 = 0 whose orbits never
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explode can be explicitly determined as
(

(—00,00) if b+ &(w)=0

A(w) = 4 {0} if etal) > (3.35)

(w)
b+&2(w)
] at&i(w) _atéi(w) a+€&1 (w)

\[ \/ bEa()” \/ bt (@) J i e <0

Notice that A(w) is a random interval, and proceeding as in [13] the nontrivial invariant

measures are random Dirac measures sitting at the boundary points of A(w). Obviously

x = 0 is a stationary solution for Eq. (3.29) and the linearised equation at x = 0 is

!/

=(a+&(w))x. (3.36)
It is easy to verify that
a+ & (w) a+ & (w)
W) | £y ————= | =y ————, 3.37
i )< b+£2(w)> b+ & (w) (3.37)
and the linearised equation at xr = + ZI?(( ; is
= —2(a+ & W)z (3.38)

Using (3.35)-(3.38), we can prove a result similar with Theorem 4.4 and 4.5 stated in
[13]:

Proposition 2 1. Ifb+&(w) <0 and a+ & (w) < 0, then the Dirac measure dq is

the unique tnvariant measure and it is stable.

2. If b+ &(w) > 0 and a + & (w) > 0, then the Dirac measure dy is the unique

movariant measure and it is unstable.

3. Ifb+&(w) <0 and a+ & (w) > 0, then the Dirac measure &g is unstable and we

have two new stable Dirac measures 6 —
T bt+ég(w)
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4. If b+ &(w) > 0 and a + & (w) < 0, then the Dirac measure &g is stable and we

also have the unstable invariant Dirac measures ¢ e

T bté (W)

These results can be applied to study the stochastic Hopf bifurcation for the following

random differential equations in polar coordinates: Consider the random differential

equations
r = (ot G@)r 0+ &(w)) (3:39)
0 = c+ &(w) +r2(d+ &(w)) (3.40)
where &;, © = 1,...,4, are random variables and a, b, ¢, d are constants. Using the

transformation y = 1/r% and solving the linear equation in y, we obtain the solution
of Eq. (3.39) explicitly. Replacing the formula for r in Eq. (3.40) and solving for 6,
we obtain the following expression for the solution (r(7,w,rg),0(T,w, b, 79)) starting

at 7 =0 from (rg,6p), ro > 0O:

ela+1 (@) ,
1, &) (2ater (@) 1) ifa+&(w)#0

r = "0 a+£1(w) (341)
T if -+ €(w) =0

L (btEa(w)
0

d w b a w))T
00 +(C+€3(w)) ((b—:-g.ﬁ4 . 11’1’1 _T(%aj—-?iw)) ( At 1)‘

if a4+ &(w) #0,b+ &(w) #0
B +(c+ (W) — e In |1 — 13 (b + & (w))7]
if a+&(w) =00+ &(w) #0

0= (3.42)

ro(d w a w
By +(c+ &(w))r + ol ?i&f?i»”)@ e

if a+ & (w) # 0,0+ &(w) =
O +(c+&w))T +1o(d + &a(w))

lfCL—i-é.l(W) = 0,b+£2(w> =0
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As a consequence the local random dynamical system ®(7,w)(rg,6y) associated with

the system (3.39)-(3.40) is given by:

(0,0) — (0,0)
(ro,00) = (1, w)(rg,00) = (r(1,w,10),0(T,W0,00,70)),70 # 0

where 7(7,w, r0), 0(T,w, Oy, 79) are given in equations (3.41)-(3.42).

To study the bifurcation scenario for the system given in equations (3.39)-(3.40),
we define Leb(r) to be the normalized Lebesgue measure[13] on the circle S(r) =
{2? + y* = r?} with radius r in R?. We have the following result similar to Theorems

4.8 and 4.9 given in [13]:

Proposition 3 1. Ifb+&(w) <0 and a+ & (w) < 0, then the Dirac measure dq is

the unique tnvariant measure and it is stable.

2. If b+ &(w) < 0 and a+ & (w) > 0, then there are two invariant measures: the

_at&i(w)
b+E2(w)

Dirac measure 0y and i, :Leb< ) Moreover, oy is unstable and p,, is

stable.

3. If b+ &(w) > 0 and a + & (w) > 0, then the Dirac measure &y is the unique

variant measure and it is unstable.

4. If b+ &(w) > 0 and a + & (w) < 0, then there are two invariant measures: the

_atéi(w)
b+&o(w)

Dirac measure oy and i, :Leb< ) Moreover, the Dirac measure g is

stable and p,, is unstable.

Proof:

The proof is similar with the proof of Theorem 3.7 in [13]. If Zig((gg > 0, then
analogously with Eq. (3.35), we can show that A(w) = {0}. Thus the only possible

invariant measure for ® is the Dirac measure dy.
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If ¢t w) < 0, then using formulas (3.41)-(3.42) and Proposition 1, we can easily

btéa(w)
show that
et &) (et &(W) . -
o5t ®) - (fian b ere 53
el
Consequently,
at+&(w)) _ a+&(w) L at&(w)

Thus the support of y,, is ® invariant, so y,, is invariant.
To show the uniqueness, we suppose that there exists an invariant measure p,, # i,
and we show that p, = dy. Since p,, is invariant, we have ®(7,w)p, = p,. Thus for

any function f continuous and bounded we have

O(7,w)pu(f /f T,w)(1,0))po(d(r,0)) = pu(f). (3.45)
But [ f(® (r,0))p,(d(r,0)) — f(0,0) because ®(7,w)(r,0) — (0,0) for all r #
Zj:gl(w) As a consequence, from Eq. (3.45), we get p,(f) = £(0,0) = do(f).

Finally, the stability can easily be proved using the linearized equations. 0O

3.2.2 Stochastic bifurcation of aeroelastic system

To Slmphfy the notation let denote Gz,ZlOOOO =a1+ ibl, Gz7211000 = as + ibQ, Gz,210010 =
as+ibs, and G 210001 = @4+1bys. Solving Eq. (3.27) explicitly, replacing the formula for
r in Eq. (3.28), and solving for 8, we obtain the following expression for the solution

(r(1,w,r0),0(T,w,00,710)) starting at 7 = 0 from (ro,6p), 70 > 0 (see also equations

30



(3.41)-(3.42) in Subsection 3.2.1):

elaord+aoioim(w))r

r(r,w,rg) =

(3.46)

ai1+tasd+taso w)+ago w)+taso w @ an1o )T
\/% _aitagdtap ;Zig-i-):mifn?(i))—i_ 40373 )(62( 010+ao1o1m (W))T 1)
O(1,w, 70, 00) = 0o + (Boo + Lo16 + Bororm (w))T
(b1 4 b6 + baoimi(w) + b3oamp(w) + baogns(w)) I
2(a1 + azdy + a0 (w) + asoanz(w) + asosnz(w))
ay + as00 + azo1m (w) + agagnz(w) + a403773(w) (62(a015+a01017]1(w))7' _ 1) ‘
ap10 + agro1m (w)

1 -5 (3.47)

To study the bifurcation scenario for the system given in equations (3.27)-(3.28),
we define Leb(r) to be the normalized Lebesgue measure[13] on the circle with radius
r in R?2. We can now prove results similar with Theorems 4.8 and 4.9 in [13] for the

system (3.27)-(3.28) (see Proposition 2 in Section 3.2.1):

Case (a) If a1 + a20 + ago1m (w) + azoana(w) + agosns(w) < 0 and agrd + aprom (w) < 0,

then the Dirac measure dy is the unique invariant measure and it is stable.

Case (b) If a; + a9d + asoym (w) + azoona(w) + ago3ns(w) < 0 and @ d + agrom (w) > 0,
then there are two invariant measures: the Dirac measure d§p and u, = Leb

B ao1d+ap1o1m (W) i i -
<\/ S et Tare i @) tasoam @ Tamam@ ) - Moreover, d, is unstable and p,, is sta

ble.

Case (¢) If a3 + a2 + aso1mi(w) + azoeme(w) + agosnz(w) > 0 and apd + agrom(w) > 0,

then the Dirac measure ¢ is the unique invariant measure and it is unstable.

Case (d) If a; + a0 + aso1m (w) + azooma(w) + aso3ns(w) > 0 and agi0 + agron(w) < 0,
then there are two invariant measures: the Dirac measure dp and u, = Leb

5 : .
<\/ 010+ 001017 () ) Moreover, the Dirac measure d is stable

T ar1tazdtazorn (w)tazoens (w)tasosnz (W)

and i, is unstable.

To explain our results, consider the case when agd + agro1m(w) > 0 and a; +

a0 + asorn(w) + azoana(w) + agosns(w) < 0. In the deterministic case (i.e. when
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o1 = 09 = o3 = 0), we have a supercritical Hopf bifurcation when § = 0 repre-
senting a transition from a stationary solution to a limit cycle oscillation, namely for

ap10 > 0 and a; + axd < 0, we have a periodic solution on the circle with radius

v/ —a016/(a1 + a2d). In the stochastic case, when the system is perturbed by noises
with small intensities such that a; + ad < —ago1m (w) — azoenz(w) — ago3ns3(w), then
for ap10 + agroimi(w) > 0, the solution become a random process on a circle whose
radius depends on the sample path. The support of the bifurcating invariant measure

Heo :Leb(\/ a1+ 001011 () )> is this "random” circle.

T ar1tazdtazorni(w)tazoan(w)tasosnz (W

Since the noises n;, @ = 1,2, 3 are not ergodic, the bifurcation diagrams depend on
the sample path (i.e. on the random realization w). However, for the values of the
parameters corresponding to the aeroelastic model considered in this chapter and for
small values for |§] < 1, 0 < 0; < 1, i = 1,2, 3, because the noises n;, i = 1,2,3 are
uniformly distributed on [—1, 1], the bifurcation diagram is in many cases independent

on the sample path.

Cases studies

To illustrate the previous bifurcation scenarios, we consider three case studies represent-
ing aeroelastic models with cubic structural non-linearities. The values of the system
parameters [9] are = 100, a, = —0.5, z, = 0.25, @ = 04, r, = —0.5, Uy = 5.23376,
Ce = 0 and ¢, = 0. We consider the combinations of the plunge and pitch coefficients of
the stiffness terms (1, fs, B3 and 54 shown in Table. 1. For the deterministic aeroelastic
dynamical system with the same parameters setting, Cases 1 and 2 were studied in [9],
and Case 3 was studied in [8]. Recalling that § = 1 — (U;/U*)?, for the deterministic
system given in Eq. (2.1), we know that when § < 0 (i.e. U*/UL < 1) the dynamical
system converges to a steady solution, and when § > 0 (i.e. U*/Up > 1), we have
LCOs.

For Case 1, non-linearities are present in both pitch and plunge stiffness terms,

and for Cases 2 and 3 cubic restoring forces are considered only in the pitch degree of
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Table 1: Cases studies
Case [ [o P35 [
1 1 1 1 4

2 1 0 1 3
31 0 1 03

invariant measures invariant measures

8+0, 1, (0) 5
=

invariant measures

Figure 4: Stochastic bifurcation: (a) Case study 1for0 < o; < 1,7 =1,...,3 (b) Cases
studies 2 and 3 for 0 < 03 < 1 (c¢)Case study 3 for 0.3 < g3 < 1, —0.00006117092055 —
0.000366081356 — 0.000203903068403m3(w) > 0.

freedom (B = 0), so in these two cases only one random variable is included (o7 =
oo = 0). Small perturbations with 0y < 1 and 03 < 1 in the cubic coefficients do
not lead to unstable motions for Cases 1 and 2, because we have strong structural
non-linearities in the pitch degree of freedom ( 84 > 1), and the aeroelastic random
dynamical system is restricted to the bifurcation diagrams in Fig. 4 (a) and (b). For
Case 3, only a weak cubic non-linearity (8, = 0.3) is considered, and different types of
random dynamical behavior can be expected for various values of the noise intensity
o3 < 1.

For Case 1, the truncated center equation of the normal form corresponding to Eq.
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(3.16) with Y. = (y1,90)7 is given by

yy = (—0.11922586 — 0.107901556 — 0.10790155017; )y2 + (0.110675735
+0.1106757301m1 )y1 + (0.001459301 + 0.00061541731305
+ 0.000079008531,05 — 0.014640645 — 0.01464064011; )yo*
+ (—0.003958199 — 0.0013118821305 + 0.0012893297505 — 0.017983575 L s
— 0.0179835701m1 )y1y2> + (0.003175896 -+ 0.00093217777305 34
— 0.0005528146m,05 + 0.023882115 + 0.0238821 10111 )y1 2y»
+ (—0.0008041554 — 0.00022079097305 -+ 0.000079008531,0

— 0.025845390 — 0.025845390 111 )1,

y; = (0.11922586 — 0.0647987536 — 0.06479875301m1)y1 + (0.0814785066
+ 0.08147850601m1 )y2 + (—0.0009378495 — 0.0002853327013073
4 0.00020348121,0 + 0.0087506216 + 0.008750621017; )y2*
+ (0.002171234 + 0.0006082423n303 — 0.00026173471909 + 0.007074308 510
4 0.0070743080 111 )y112” + (—0.001616561 — 0.0004321958n303 349
+0.000112221 71305 — 0.0097770895 — 0.0097770890 171 )31 Y2
+ (0.0003934322 + 0.0001023677n303 — 0.00001603878n205
4 0.011959696 + 0.011959690 17, )y/5.

Thus, for the linear transformation defined in Eq. (3.19), we have bjs = —0.11922586—
0.107901550 —0.10790155017m; and bg; = 0.11922586 —0.0647987530 — 0.064798753011; .
Since n; € [—1,1], notice that for any value of § very close to zero and for any
0<o0y <1, 01m # —1.10495 — § and o117, # 5.532163 4+ 0. Consequently b5 # 0 and
ba1 — bia # 0, the matrix NP given in Eq. (3.19) is invertible.

Transforming the truncated center equations into the normal form in polar co-

ordinates, we obtain the following equations:
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r’ = (0.0960771226 + 0.09607712201m1 )r + 13(—0.00067504 — 0.00473436 550
3.50

— 0.0047343011m1 — 0.000203900272 + 0.0001405607373)

0" = (0.119225 + 0.02155148 + 0.02155140,m1) + r*(—0.000262641 ( )
3.51

+ 0.004490966 + 0.00449096017; — 0.00011644209m5 4+ 0.00020312907373).

Since n; € [-1,1], 0 < 0; < 1,7 = 1,2,3 and ¢ is very close to zero, the bifurca-
tion diagram is the stochastic version of the supercritical Hopf bifurcation encountered
in the deterministic case, and is given in Fig. 4 (a). More precisely, if —0.06983 <
J + oym(w) < 0, then 0.0960771220 + 0.096077122017;(w) < 0 and —0.00067504 —
0.00473430—0.0047343011; (w) —0.0002039009m2 (w)+0.000140560373(w) < 0. Thus, we
are in Case (a), and the Dirac measure Jj is the unique invariant measure, and it is sta-
ble. If 6+oym;(w) > 0 then 0.0960771220+0.096077122017; (w) > 0 and —0.00067504 —
0.00473430—0.0047343011; (w) —0.0002039009m2 (w)+0.000140560373(w) < 0. Thus, we
are in Case (b) with two invariant measures: the Dirac measure dy, which is unstable,

and the stable measure p,, which is the Lebesgue measure

—0. )
—0.000675 — 0.004734(6 + o1m1) — 0.00020309m2 + 0.000140373

In the deterministic case, the bifurcation point is 6 = 0, but from Fig. 4(a), we
note that in the stochastic case it is 6 = —o1m;(w), so it shifts around zero depending
on the random value 7, (w). However, for any sample path the asymptotic state of the
system is a limit cycle oscillation for any 6 > o;.

For Cases 2 and 3, we have non-linearities only in pitch, and we consider only one
random variable (o7 = oy = 0). Since the only uncertainty is in the coefficient of
the cubic term in pitch, the linear transformation defined in Eq. (3.19) is no longer
stochastic, For both cases, we can reduce the truncated center equation of the normal

form to the form given in equations (3.27)-(3.28).
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For Case 2, we obtain the following equations in polar co-ordinates:

7 = 0.0960771227 + 7 (—.0006117092055 — 0.00366081359 (3.53)

— 0.00020390306840373)

0" = (0.119225 + 0.02155140) + r*(—0.0003493282 + 0.0046860375 ( )
3.54

—0.00011644274860373).

If —0.1 < 6 < 0, then 0.0960771226 < 0 and —.0006117092055 — 0.00366081355 —
0.000203903068403n3 < 0 for any o3 < 1 and any random realization of n3 € [—1,1].
Thus, the bifurcation corresponds to Case (a), and the Dirac measure dy is the unique
invariant measure which is stable. If 9 > 0, then 0.0960771226 > 0 and —.0006117092055—
0.00366081350 — 0.000203903068403n3 < 0 for any value o3 < 3, so we have two in-
variant measures (Case (b)): the Dirac measure dy (which is unstable) and the stable

measure

Leb —0.0960771229 (3.55)
w = e . .
a —.0006117092055 — 0.00366081350 — 0.000203903068407373

The bifurcation diagram is similar with the one corresponding to Case 1, but this time
the bifurcation point is 6 = 0, the same as in the deterministic case (see Fig. 4 (b)).
For Case 3, only a weak cubic non-linearity is considered in the pitch stiffness term.

The following stochastic normal form of the Hopf bifurcation is obtained

' = 0.09607712207 + r*(—0.00006117092055 — 0.000366081355 ( )
3.56

— 0.00020390306840373)

0" = (0.119225 + 0.02155140) + r*(—0.00003493282 + 0.00046860375 ( )
3.57

— 0.00011644274860373).

Here, even for small values of the noise intensity o3 < 1, we may have different
stochastic bifurcation diagrams (see the stochastic diagrams in Fig. 4 (b), (¢)). For
lower noise intensity o3 < 0.3, we have —0.00006117092055 — 0.000203903068403n3 < 0

for any random realization of n3 € [—1,1]. Thus for U*/U;, > 1 (i.e. § > 0), we have
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Figure 5: Pitch sample path for Case study 3 with (a) oo = 0.25,73 ~ 0.348 and (b)
09 = 04, N3y =~ —0.823.

stable LCOs with random amplitude and frequency (see Fig. 5(a)). Hence, bifurcation
is in Case (b). For this case, we have two invariant measures, the unstable Dirac

measure oy and the stable measure

el —0.0960771226
flo = —.00006117092055 — 0.000366081356 — 0.0002039030684073775 | °

(3.58)

Thus, for very small values of o3 < 1, the bifurcation diagram is the same as shown
for Case 2 (see Fig. 4 (b)).

However, if 0.3 < 03 < 1 and U*/U, > 1 (i.e. § > 0), then there are sample
paths for which —0.00006117092055 — 0.000366081359 - 0.0002039030684 o313 > 0.
The unique invariant measure dy is unstable, and we may have divergent solutions for
some realizations of the random variable €, (see Fig. 5(b)). For these sample paths,
—0.00006117092055 — 0.000366081355 — 0.000203903068403n3 > 0 and for § < 0, we
have a transition from Case (d) to Case (¢) when § = 0 (see the bifurcation digram in
Fig. 4 (c¢)). In the deterministic case this would correspond to a transition from steady
solutions to unstable solutions, and this sub-critical Hopf bifurcation behavior never

occurs for the nonlinear deterministic system with this parameter setting.
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3.3 Numerical simulations

In this section, we apply the stochastic normal to predict the frequency and amplitude
of the LCOs. Since ' = 0 and §' # 0 corresponds to a periodic orbit in (3.27)- (3.28),
the frequency of the LCOs is estimated by the relation below:

(a1 + a2 + asoimy + azoan, + ag03m3)
(0401(5
b1 + bad + baoimy + bzoams + byosns (3.59)

0 = Boo + Bo10 + Poroim —

+ apr1o1m).

where a;, b;, i = 1,...,4 were defined at the beginning of Section 3.2.
To determine the pitch and plunge amplitudes of the LCOs, the following equations
given by Lee et al. [7] are used

n? + 52
A= Ll , 3.60
mi + (p1 + qir2)? (3.60)
rl = AR2, (3.61)
2 1 2 2 2
R = —(=sy /(s +m3)A —n3), (3.62)
q2

where r. and R, denote the amplitude of the plunge motion ¢ and the pitch motion «,
respectively, and mq,nq, ... are functions of the system parameters and the frequency
6. The explicit definitions are given in [7].

Due to the presence of the random variables in equations (3.59) - (3.62), MCS are
applied to provide the statistical information of the random frequency and amplitude of
the LCOs. To verify the accuracy of these results obtained using the stochastic normal
form, the frequency and amplitude predictions are compared with those obtained by
the numerical simulation of the solutions of the random differential Eq. (3.3) with 10*
samples, where for each sample the corresponding deterministic system is solved using
an adaptive fourth order Runge-Kutta numerical scheme.

To demonstrate the validation of the stochastic normal form, we consider various
combinations of the plunge and pitch stiffness terms coefficients 1, 52, 83 and 84 shown

in the previous section in Table. 1.
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Figure 6: Expected dynamical response for Case study 1 with o5 = 0.8 and o3 = 0.8:
line : stochastic norm form; circle or square: MCS.

Fig. 6 presents the expected dynamical response with different linear random per-
turbation for Case 1. In this case study, we have an aeroelastic system with cubic
non-linearities in both the pitch and the plunge degrees of freedom, and the uncertain-
ties in the cubic and the bifurcation parameters. The truncated normal form is given
in equations (3.50)-(3.51), and the bifurcation diagram for this aeroelastic system is
displayed in Fig. 4(a).

Fig. 6 shows that the stochastic norm form provides a good agreement with the ex-
pected pitch/plunge amplitude around the Hopf bifurcation. From the previous section,
we know that the stochastic Hopf bifurcation point is shifted from the deterministic
value 6 = 0 to 0 = —oyn;. Thus the noise intensity, oy, influences the bifurcation
position. We observe that the difference in the expected amplitude for various noise
intensities, o, is only noticeable around the Hopf bifurcation point; for some random
realizations of 7, the system convergences to a steady state, but not a LCO. However,
for 01 < § < 1, the asymptotic state is a LCO for any sample path. Fig. 6 also shows
that the expected dynamical response of the aeroelastic system becomes less sensitive
to the small noise intensity o;. Actually, for 0.01 < § < 1, the expected pitch ampli-
tude (or the expected plunge amplitude) has almost the same values for o3 = 0.005

and o; = 0.01.
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In Case 2, we consider an aeroelastic system with structural non-linearity only in
the pitch degree of freedom with one random variable (o7 = 05 = 0). The truncated
normal form in polar coordinates is given in equations (3.53)-(3.54), and the bifurcation
diagram is given in Fig. 4 (b). Recalling that 6 = 1 — (U;/U*)?, since the influence
of the parameter uncertainties on the amplitude and the frequency of the LCOs is of
interest to the present study, we only investigate the performance of the stochastic
normal form around 0 < § < 1, i.e. when the speed U* is slightly over the linear
flutter speed Uy, = 5.23376.

In Fig. 7, we display the predicted mean amplitudes and frequencies for the pitch
motion corresponding to o3 = 0.8, 0.3, and 0.001. The estimated values are compared
with the results obtained from MCS, and a good agreement in predicting the dynamical
responses is shown.

To illustrate the influence of noise, the expected pitch amplitudes for various value
of o3 are compared in Fig.8(a). It is clear that the expected value of the pitch amplitude
increases only very slightly when o3 increases, o3 < 1. Moreover, the results displayed
in Fig. 8(a) are very close to the results obtained for the deterministic dynamical
system (o3 = 0), as reported in Fig. 2 in [9]. However, for larger values of o3 > 1,
an increase in the expected value of the pitch amplitude has been observed [12]. The
results displayed in Fig.8(b) indicate that there is no difference between the expected
values of the LCOs frequencies for various values of 3.

To better investigate the influence of the random noise with small intensity on
the LCO’s amplitude, Fig.9 displays the probability density functions of the pitch
amplitude at a fixed speed U* = 1.01U. The estimations obtained using MCS and the
stochastic normal form are very similar, and we can see that although there is almost
no difference between the expected values of the pitch amplitudes, the range of the
random pitch amplitude increases with the value of o3.

In Case 3, we have a weak cubic non-linearity in the pitch degree of freedom.

The truncated normal form is given in equations (3.56)- (3.57). Depending on the
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Figure 7: Expected dynamical response for Case study 2 with (a)os = 0.8; (b)os = 0.3;
(c)os = 0.001: —, stochastic normal form; o o o, MCS.

noise intensity the bifurcation diagram shows supercritical (see Fig. 4 (b)) or unstable
subcritical behaviors (see Fig. 4 (c)). Since we are interested in the influence of noise
on the amplitude and frequency of the LCOs, in what follows we only consider values
of 03 < 0.3 and U~ is slightly over the linear flutter speed U = 5.23376.

The expected values of the pitch amplitude and frequency obtained using the
stochastic normal form and MCS are very similar (see Fig.10). Unlike the previous
two cases, from the results displayed in Fig.11(a), we note that the expected value
of the pitch amplitude obviously increases with the noise intensity o3, even for small
values of o3 < 0.3.

From Figs. 8(b) and 11(b), we observe that the expected values of the frequency
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Figure 8: Expected values of (a) pitch amplitude and (b) frequency for Case study 2
estimated using stochastic normal form.

are almost the same in Case 2 and Case 3, and the noise intensity o3 has very little
influence. The fact that the frequency variation with U*/Up is almost the same was
also noticed [9] for the deterministic models corresponding to Cases 2 and 3, and it is a
consequence of having the same values for the linear parameters, and having different
values only for the values of the cubic parameters. To explain this analytically for
the stochastic models corresponding to Cases 2 and 3, the frequency formula (3.59) is
expressed explicitly in terms of Sy4, 0, o3 and 13

~0.0001164427486(5; — 0.001562012573340 + o373)
~ 0.0002039030684(8, + 0.0012202711808,46 + o3ns) (3.63)

+0.119225 4 0.02155146 — 0.0960771229,

where 84 = 3 in Case 2 and B4 = 0.3 in Case 3. Since 73 is uniformly distributed on
[—1,1], taking expectation we get the following estimation for the expected value of
the frequency:

0.532179,0> | 0.50975853, + 0.50975803 + 3.050678 346
n
0.5097583, — 0.509758073 + 3.050678 346

—0.0333156 =~ 0.119225 — .0333159,

) +0.119225

03

(3.64)

for 0 < §,03 << 1. The approximation (3.64) provide an explanation of the fact that

the cubic term and the noise intensity have very little influence on the expected value
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—, stochastic normal form; - -, MCS.

of frequency around the Hopf bifurcation.

3.4 Conclusion

In this chapter, the stochastic normal form is presented and applied to an aeroelastic
random dynamical system with uncertainties in the bifurcation parameter and the
plunge and pitch non-linear terms. Using the stochastic normal form equations in
polar coordinates, we are able to obtain analytically the stochastic bifurcation diagrams
depending on the values of the noise intensities and the flow speed. Moreover, when the
system behavior is characterized by limit cycles oscillations, the stochastic normal form
can be used to study the influence of the noise on the limit cycle oscillation amplitudes
and frequencies. After considering various combinations of values for the coefficients
of the cubic terms in pitch and plunge, we conclude that the stochastic normal form
gives accurate results for predicting the mean of the limit cycle oscillation amplitude
and frequency for noise with small intensity.

The main effect of uncertainties in the deterministic bifurcation parameter is the

shifting of the bifurcation point depending on the noise intensity and the sample path.
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Figure 10: Expected dynamical response for Case study 3 with (a)oy = 0.25; (b)oy =
0.2; (c)og = 0.1: —, stochastic normal form; o o o, MCS.

Consequently, the onset of the limit cycle oscillations may occur at flow speeds less
than the deterministic linear flutter speed.

When we have only one non-linearity in the pitch degree of freedom and using the
stochastic normal form, we confirm the numerical results presented in [12]. Moreover,
we provide a theoretical explanation why the noise with small intensity does not in-
fluence the limit cycle oscillation frequency. We also extend the study to aeroelastic
systems with uncertainties in the coefficients of the cubic terms of both pitch and
plunge, and notice again that the presence of noise with small intensity has very little

effect on the mean frequency.
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Figure 11: Expected values of (a) pitch amplitude and (b) frequency for Case study 3
estimated using stochastic normal form.

Previous numerical studies [12] show that the amplitude of the limit cycle oscil-
lations increases with the noise intensity for aeroelastic systems with only one non-
linearity in the pitch degree of freedom. We notice the same behavior for systems
characterized by the noise with small intensity and weak structural non-linearities.
Moreover, the study of the stochastic bifurcation shows that in this case the divergent
solutions can happen for certain relatively small values of the noise intensity. On the
other hand, for noise with small intensity and stronger cubic structural non-linearities,
the effect on the limit cycle oscillation amplitude becomes small, and no divergent so-
lution exists. Thus the effect of the noise on the behavior of the aeroelastic system is
dependent on the strength of the structural non-linearity. Numerically this dependence
can be illustrated by extensive simulations, but theoretically it can be easily analyzed

using the stochastic bifurcation study presented in this chapter.
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Chapter 4

Secondary Bifurcation Analysis

Using Stochastic Collocation

Method

For an aeroelastic system modeling an airfoil oscillating in pitch and plunge, the uncer-
tainties arise due to inexact values of the system parameters and/or the perturbations
in the initial conditions. To perform a realistic simulation, we propose a mathematical
model expressed as a system of random equations instead of the traditional formula-
tion based on a deterministic system. A stochastic collocation method is developed
to investigate the effect of the uncertainties in the aeroelastic model. In this study,
particular attention is focused on the nonlinear behavior when a jump phenomenon
between the Hopf and the secondary bifurcations occurs.

Several UQ aeroelastic investigations focusing on LCOs and the Hopf bifurcation
analysis were reported. A special non-intrusive polynomial chaos formulation based
on normalizing the oscillatory samples in terms of their phases was applied in Ref.
[17]. The aeroelastic model is constructed starting from the same deterministic model
as considered in our studies, but with uncertainty represented by a symmetric beta
distribution in either the coefficient of the cubic pitch stiffness, or the initial pitch
angle «(0), or the ratio of the natural frequencies w. An intrusive polynomial chaos
expansion and the method of multiple scales are used in Ref. [6] to determine the effect
of the variations of the linear and nonlinear pitch and plunge coefficients on the stability

near the Hopf bifurcation. In the series of papers [14, 12, 11, 1] different types of
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chaos expansions are employed for a two DOF aeroelastic model, but with a structural
nonlinearity in pitch represented by a fifth degree polynomial and the uncertainties
expressed by Gaussian random variables included in the initial pitch angle «/(0) and
the coefficient of the cubic term in the pitch stiffness. Since the traditional polynomial
chaos expansions produce inaccurate oscillatory motion for long time simulations [14],
the dependence of the LCOs erupting from the Hopf bifurcations on random parameters
was studied using other bases for the stochastic projection method, such as the Fourier
chaos [11], the multivariate B-spline [12], and a local Wiener-Haar wavelet expansion
(14, 1].

An alternative approach was proposed in our previous study [3] using a stochastic
collocation method (SCM), in which the randomness is included through the interpo-
lation of the corresponding solutions of the deterministic system computed at selected
values of the uncertainty. The performance of the SCM was compared with various
types of chaos expansions. For long time simulations and applications to discontinu-
ous problems, the SCM gives more accurate results than the polynomial or the Fourier
chaos expansions. Its performance is similar with the local Wiener-Haar wavelet expan-
sion, but the attractive feature is that the implementation is straightforward because
the SCM requires only the use of a deterministic solver [19].

The present study is a follow up investigation of our early work reported in [3], and
the major contribution presented here is the application of the SCM for multidimen-
sional UQ problems in the secondary bifurcation. To the best of our knowledge, only a
few results are available for aeroelastic response with multidimensional uncertainties.
Here, we extend the study presented in Ref. [17] for parameter uncertainty expressed
by more than one random variable. We study the nonlinear response in the presence of
two random variables due to uncertainties in the initial pitch angle and the coefficients
of the nonlinear restoring force. We also analyze the influence of the parameter uncer-

tainty expressed by a combination of five random variables on the LCO behavior. An
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improved version of the SCM is presented, in which higher order schemes such as piece-
wise cubic interpolation and piecewise cubic spline interpolation are used. Moreover,
in order to effectively deal with multidimensional random variables, the traditional ap-
proach based on a tensor product for interpolation in multidimensional spaces is now
replaced by an efficient sparse grid strategy incorporating the Smolyak algorithm and
a dimension adaptive approach [15, 19, 10, 13, 5].

In this section, we consider a linear plunge stiffness term G(x3) = x3, and the

nonlinear pitch stiffness term M (z;) is defined as a cubic spring:
M(a:l) =+ k'g,[lﬁ'?, (41)

where k3 is a constant for the deterministic model.

We apply the stochastic collocation method to study three different models with
uncertainties in the coefficient k3 of the cubic term and the initial condition a(0). First
we introduce a random perturbation in the cubic nonlinearity in the pitch restoring

force,
k3(§) = [kslo + [ks]1€ (4.2)

where [k3]o = 80, [k3]; = 8 and £ is a uniform random variable on [—1,1]. For this
model, we compare the performance of various implementations of the stochastic col-
location based on different interpolation methods near the Hopf and the secondary
bifurcation points. Since the onset of the secondary bifurcation depends on the initial
condition [9], we also consider a model with randomness in both the cubic coefficient

and the initial pitch angle:

o = [ap)o + [ao]1&
ks3(&2) = [kslo + [k3]1&e

where [aglo = 0°, [ap]1 = 5°, [ks]o = 80, [k3]1 = 8, and & and & are two independent

(4.3)

random variables, & uniformly distributed on [0,1] and & uniformly distributed on
[-1,1]. Finally, to simulate a more realistic type of noise and to test the performance

of the proposed stochastic collocation method for higher dimensional problems, we
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express the nonlinear coefficient k3 by a time dependent combination of five random
variables:

ks (7, €) = ks + ks (T, €). (4.4)

where k3 is a constant and I%(T, €) is the noise with the following expression:

5
~ 1 o
kg(’?', f) =0 ‘_E 1 m008<27ﬂ7’)f (45)
where ¢4 = 1,2,...,5 are independent uniformly distributed random variables on

~1,1].

4.1 Stochastic collocation method

The collocation approach provides a procedure to predict the behavior of a given system
at a fixed time by interpolation. To illustrate the numerical implementation of the

SCM, we consider the following simple random dynamical system:
u=—allu, t>0, u(0)=u, (4.6)

where the coefficient « is a function of the random variable ¢ on the interval [a, b] with
the probability density function p [18].

Let © = {f(i)}fvzl € [a,b] be a set of nodes selected on the interval [a, b] according
to a distribution with density p, where N is the total number of nodes. Clearly, Eq.
(4.6) has to be satisfied at each node for k = 1,..., N, so we have the deterministic
equations:

W) = —aE®)u, t>0, u(0)=u. (4.7)

Solving the differential equation (4.7), we get a deterministic solution u(t; €®)) for each
sample. Outside the nodal set O, the solution u(t, &) is estimated by the interpolation
based on u(t; £7).

From the well-developed classical theory of univariate Lagrange polynomial interpo-

lation, we know that the convergence of a high degree polynomial interpolation requires
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certain degree of smoothness. However, for a problem exhibiting a jump phenomena,
even the assumption of continuity may not be satisfied. When using high degree inter-
polation polynomials, the discontinuity of the predicted function could result in a slow
convergence or even divergence (e.g. the Gibbs’ phenomenon [16]). Consequently, for
the SCM, piecewise interpolation methods are generally preferred.

Although the SCM is an effective numerical scheme for UQ problems, the imple-
mentation becomes difficult and inefficient for multidimensional cases, because com-
puting the coefficients of Lagrange polynomials turns out to be a very challenging task.
A simple way to overcome this difficulty is to use the tensor product [3]. Although
its implementation is straightforward, this approach is not recommended because the
number of nodes, and hence the computational time, increases exponentially. Alterna-
tively, we can construct a more efficient multidimensional collocation method using a
sparse grid algorithm developed by Smolyak [15]. The sparse grid strategy has been
successfully implemented to study various engineering UQ problems [10, 13], and it
has been demonstrated that in some applications, it can overcomes the difficulties due
to the ’curse of dimensionality’ [5].

Without loss of generality, we consider to approximate a function f : [0.1]¢ — R
using the values of the function at some selected nodes. In the one-dimensional case
(d = 1), the interpolation formula is given by

T'f = > f(@)ds, (4.8)
rieX:
where X’ = {2 € [0,1],j = 1,...,m;} is the set of nodes, i € {0} UN is the resolution
level that controls the grid, and d,: satisfies 5m](x;) = 1land é,:(y) = 0 for y # s,
y € X*. Similarly, using the tensor product, we construct an interpolation formula for
multivariate cases (d > 1):
(T @ @Tf= > - > flal ... ,x;'.;)(azﬁ ® - ®0 ). (4.9)

. . Jd
i1 il id ig
N eX zjdex

However, the tensor product produces a large number m;, ---m;, of nodes, and the

d
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nodal set X = H?Zl X% is referred as the full grid.
To reduce the number of nodes, Smolyak proposed a more flexible selection algo-
rithm [15]. With Z° = 0, A" =7 — T i = (44, ... ,iq) |i| = i1 + -+ - + ig, and ¢ > 0,

the Smolyak interpolation is presented in [15] as

Aga(f) =) (A" @ @ D) (f) = Agraf) + (A" @ - @ A)(f).  (4.10)

lil<q lil=q
Due to the recursive structure of Eq. (4.10), A,_14(f), the interpolation results at
resolution level ¢ — 1, are utilized in the construction of the Smolyak algorithm at the
resolution level ¢. If the nodal set on each dimension is nested (i.e. X%~! C X%) in
the construction of the Smolyak algorithm from the resolution level ¢ — 1 to ¢, it is

only necessary to evaluate the function f on the nodal set AH, 4, given by [4]
AHgg= | AX" () (R AX". (4.11)
lil=q
where AX? = X AX% = X%\X%1). Hence the sparse grid at resolution level ¢ is
constructed using the following set of nodes
Hy,= | aH,=[JAX" Q) Q) Aax™ (4.12)
1=0...q lil<q
Several sparse grid strategies have been reported, and the nested sparse grid with
equidistant nodes [10] is used in the present study. Here, :cz are defined as

j—1)/(m; — 1 for j=1,...,m; if m; > 1,
L Ja=nem— s

1/2 for j=1 if m;=1,

S

1 if =0,
m; = (4.14)
2041 if 7>0.
We illustrate the construction of the sparse grid for a two dimensional example

(d = 2), with resolution levels, ¢ = 1 and ¢ = 2. At the resolution level ¢ = 1,
using Eqs. (4.11)-(4.12), we get Hy o = AHgo|JAH; 5, and AHps = AX°Q AXC,
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Figure 12: The hierarchical construction from Hj s (al, a2) to Hyo (b1, b2), and the
comparison of the nested sparse grid Hy o (a2), Ha2 (b2) and full grid X? @ X? (a3, b3),
where (al) presents the decomposition of Hj 2, (bl) presents the decomposition of Hj o

AH; 5 = (AX° Q@ AXY) U(AXT Q AX?). Replacing ¢ with 0 and 1 in Egs. (4.13)-
(4.14), for the equidistant nodes we have X° = {z%} = {1/2} and X! = {2}, 2}, 21} =
{0,1/2,1}. Thus AX? = {1/2}, AX! = {0,1} and the two dimensional sparse grid at
resolution level 1is Hy s = AX°QAX JAXTQAX JAX? QR AX! (see Fig. 12
(al - a3) for the construction of H;, and a comparison with the full grid X' @ X1).
The two dimensional Smolyak interpolation with resolution level 1, A;,(f) in Eq.
(4.10), is given by (A°@ AN (f)+ (A'@ A% (f) + (A @ AN (f), where AP = TP — T,

By the recursive structure of the sparse grid in Eq. (4.12), the construction of the

sparse grid from resolution level 1 to 2 requires only the addition of the nodes on the
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set AHppo = AX° Q@ AX?JAX'QR AXTJAX2Q AXO (see Fig. 12 (bl)). Making
i =2 in Eqgs (4.13)-(4.14), for the equidistant nodes we have X? = {z? 22 22 23 22} =
{0,1/4,1/2,3/4,1} and AX? = {1/4,3/4} (see Fig. 12 (bl, b2)). Hence the two
dimensional Smolyak interpolation with resolution level 2 is given in the Eq. (4.10) as
Ass(f) = Ao (f)+H(A QA2 (f)+H(A'QAY (f)+(A*@A°)(f). Moreover from Fig. 12
(b2, b3) we observe that the two dimensional sparse grid Hy » = H; 5 | AH 5 requires
less nodal points than the full grid X? ) X?2. The amount of the nodes reduced by the
sparse grid compared to the full grid with the same one dimensional nodes increases
with the resolution level ¢, but the sparse grid consist of much smaller number of
nodes than that of full grid [18]. For instance, |Hgo| = 321, and |X°® Q) X°| = 4225;
|H7o| = 705, and | X7 @ X"| = 16641. Hence compared with the nodes in the full
grid model, a significant reduction of 92% and 95% is achieved when the sparse grid
with the resolution level 6 and 7 is used. Thus the Smolyak algorithm provides a more
flexible high dimensional interpolation method.

Considering the discontinuity associated with the bifurcation behavior, we select

the linear hat functions [10] as the basis functions d,: (z) :

5333; (x)=1 for i=1, (4.15)
and fori >1and j=1,...,m;
1—(m; — D]z —2t, if |z—2i <1/(m;—1),
0y () = ’ ’ (4.16)
0, otherwise.

If a d-variate function f has continuous mixed derivatives

olel f
Df=——"— 4.17
/ ozt - 0xy* (4.17)
where o = (ay, ..., aq) with aq, ..., ag positive integers less than or equal with 2, and
la| = 327, ay, then according to [15], the piecewise linear Smolyak interpolation error

is given by
1/ = Aga(f) llo= O(N~2[logy N[*“1), (4.18)

25



with N denoting the number of nodes of this type of sparse grid. However, the piecewise
linear interpolation error on the full grid with N nodes is only O(N(2/9) [5].

From Eq. (4.10), the interpolation in a standard sparse grid is constructed by
the summation of (A% ® --- ® A)(f) with the index set |i| < ¢. The conventional
sparse grid approach treats all dimensions equally, and thus gains no immediate ad-
vantage for problems in which dimensions are of different importance. A dimension
adaptive method was developed by Gerstner et. al. [5] to adaptively assess the dimen-
sions according to their importance. The idea of the adaptive algorithm is to find the
most important dimensions and then construct a different index set depending on the
different importance of each dimension.

In an adaptive algorithm, the index set is separated into two disjoint sets, called the
active and the old index set. The active index set contains the indices i, whose error
has been estimated by the error estimator, but the error of the forward neighbors of i
have not yet been calculated. Here, the forwards neighbors of an index i are defined
as the d indices {i+e;,1 < j < d}, where e; is the j-th unit vector. The old index set
is formed by the other indices of the current index set. An adaptive process applied to
a two dimensional example is presented by Gerstner et al. (see Fig. 2 in [5]). It is of

interest to mention that the error estimator for the nested sets of nodes is given by

RASY Vi
Eur ) 1

where AQ; f is the quadrature difference on the index i, n; is given by n; = m;, ... m;,,

maz{w

which is the number of nodes required for the computation of the quadrature difference
AQ;f, and w € [0,1] is the control parameter [5]. Note that when w = 0, there is no
adaptive process and the grid construction reverts to the classical sparse grid. If the
estimated error for a given index is very small, then the index may stop any future
refinement in its forwards neighbors. However, it is possible that the forward neighbors

may have a large error and a refinement is required.
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4.2 Numerical simulations

We now study the performance of the SCM for the 2 DOF aeroelastic system given
in Egs. (2.6). Following [8], [11] and [1], the system parameters are specified as:
w=100,a, = —0.5,2, = 0.25,0 = 0.2,r, = —0.5,(, = 0 and ¢, = 0, while random
variables are introduced in the coeflicient k3 and the initial pitch angle «(0).

In this section, the SCM is applied to study the secondary bifurcation by taking
into account of the presence of uncertainties. Since the flow will not jump until U*
is close to 2U;, and the jump phenomenon occurs only at certain values of k3, our
simulations will focus on U*/U; ~ 1.98 and k3 ~ 80. The effect of the uncertainties
in the initial condition will also be examined. MCS reported here are based on 10,000

samples.

4.2.1 Simulations with one random variable

We first consider a model with a random variable in the cubic nonlinearity in the pitch

restoring force,

k3(§) = [kslo + [ks)hi€ (4.20)

where [k3]o = 80, [k3]s = 8 and ¢ is a uniform random variable on [—1,1]. The initial
condition is deterministic, «(0) = 1.0°, and all other initial values are set to zero. Near
U*/U; =~ 1.98, we observe a jump phenomenon in the pitch motion similar to that
reported by Liu et. al. [9]. However, to capture the correct aeroelastic behaviors, a
very accurate solver must be employed for the deterministic aeroelastic system. Fig. 13
displays the pitch motions using Matlab ode45 algorithm, which is an adaptive 4th/5th-
order Runge-Kutta scheme with an error checking. Clearly, the solutions depend on
the tolerance specified in the ode45 algorithm, and the computed pitch motions are
identical when the absolute error tolerances are set to be 107 and 10~'3. Thus, to
ensure accurate numerical solutions for the deterministic system, we set the tolerance

level to 10~ in all calculations.
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Figure 13: Pitch motions for k3 = 78, U*/U; = 1.9802, with various relative and
absolute error tolerance in ode45: (a)1072%; (b)107%; (¢)10~!; (d)10~13

Interpolation with piecewise linear functions

The results presented here are based on SCM using a piecewise linear interpolation.
In Fig. 14, we show the LCO amplitude response at three different flow velocities.
The values U*/U; = 1.975 and 1.985 are chosen, so that the jump phenomenon does
not occur (see Fig.14(a)-(d)), and the pitch motion is restricted in either Hopf or
secondary bifurcation. Notice that, the amplitude for U*/U; = 1.985 (i.e., in the
secondary bifurcation) is higher than the amplitude for U* /U = 1.975 (i.e., in the Hopf
bifurcation). At U*/U; = 1.9802, we observe the occurrence of a jump phenomenon
in the LCO amplitudes. In Fig. 14(e,f), the amplitude plot has two discontinuous
parts, such that the lower part corresponds to the Hopf bifurcation and the upper part
corresponds to the secondary bifurcation.

The SCM simulation displayed in Fig. 14(e,f) clearly indicates that there is a
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Figure 14: The amplitude response at various U*/U;, values, where red dots: deter-
ministic, blue dashed lines: SCM with 101 nodes in (a,c,e) and SCM with 201 nodes
in (b,d,f)

significant decay of the LCO amplitudes near k3 = 78 at which the jump phenomenon
between the bifurcations occurs. The jump between the two bifurcations introduces
the difficulty to accurately simulate the LCO amplitude using the SCM. However,
if we compare Figs. 14 (e) and (f), we notice that some improvement around the
discontinuity is obtained if more nodes are used in the SCM.

Fig. 15 shows the corresponding pitch motions at t=2000. Because the decay of the
LCO amplitude is a result of the interpolation error in the random space, a significant
error of the dynamical response is observed near k3 = 78 (see Fig. 15 (e-f)), where the
pitch motion is discontinuous in the random space. Thus the pictures presented in Fig.
15 reconfirm the simulation results reported in Fig. 14. Notice that for U*/U} = 1.975
and 1.985, when the pitch motion is entirely in the Hopf or the secondary bifurcation,

there is no decay in the LCO amplitudes. Moreover for cases with no discontinuity the
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Figure 15: Pitch motion at t=2000 at various U*/Uj values, where red dots: deter-
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in (b,d.f)

SCM results using 101 or 201 nodes are essentially the same (see Fig. 14 (a-d) and
Fig. 15 (a-d)).

Interpolation with high order basis functions

The previous results obtained using the SCM show that in order to accurately capture
the discontinuity, we need to increase the number of nodes. Since the decay of the LCO
amplitude is due to the interpolation error in the random space, a better alternative
approach is to replace the piecewise linear interpolation with more accurate interpola-
tion formulas, such as the piecewise cubic interpolation and the piecewise cubic spline
interpolation. We select equidistant nodes, so that the total number of interpolating
nodes remains unchanged.

Fig. 16 shows the probability density function (PDF) of the LCO amplitudes at
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Figure 16: PDFs of the LCO amplitudes at U*/U; = 1.9802 by various interpolations
with 151 nodes

U*/U; = 1.9802 using the SCM with various interpolation functions with 151 nodes
and using a MCS. A small tail on the left side of the PDF is observed for the SCM
results. We note that the SCM with the cubic spline interpolation has the smallest
tail, and it produces an excellent agreement with the MCS. However, a small tail in
the PDF generated by the cubic spline interpolation is also observed on the right side
of PDF. This implies that the SCM with the cubic spline interpolation overestimates
the LCO amplitude.

In Fig. 17 we compare the convergence of the SCM using various interpolations

methods. The mean square error is defined by

E[(a™(€) — 6™ (€))?] = / (a2 () — 6™ (€))?p(€)dé (4.21)

where o™ (¢) is the exact LCO amplitude for the random variable £, &™** is the LCO
amplitude simulated by the SCM, and p(€) is the probability density function of £ (i.e.
the uniform density on [—1,1])). The comparison in Fig. 17 also indicates that the
best convergence rate is given by the SCM with a cubic spline interpolation. The SCM
mean square error using a cubic spline interpolation with 61 nodes is about the same
as that using a linear interpolation with 301 nodes. It should be noted that in a typical

SCM simulation with 500 nodes, the computing time used for the interpolation is less
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that one percent of the overall computing time. Hence, for accurate simulation results,

high order interpolation methods should be used.

4.2.2 Simulations with two random variables

In this section, we consider a model with uncertainties in the cubic nonlinearity term

ks and the initial pitch angle «g. The randomness are introduced as follows:

vy = [aolo + [a]1&1,

ks3(&2) = [kslo + [k3]1&e

(4.22)

where [op]o = 0, [a]1 = 5, [ks]o = 80, [ks3]1 = 8, & is a uniform variables on [0,1], & is
a uniform variables on [-1,1], and & and &, are independent. Here, (ayg,0,0,0,0,0,0,0)
represents the initial condition of the aeroelastic system given in Eq. (2.6). Hence only
the nonnegative initial pitch angle is considered.

Particular attention is given to cases when U*/U; = 1.98 and 1.985, for which
the pitch motion changes from the LCO corresponding to the Hopf bifurcation to
the LCO corresponding to the secondary bifurcation. Here, the Smolyak algorithm is
implemented using the Matlab Sparse Grid Interpolation Toolbox developed by Klimke
[7].

62



88 ——k—k—x—x T Sk k%
86|
84|

82

cekkkkkkkokokk

78
76

74

Sesksk sk sk S s S Sl s s s e SIS S e e e g o
KRR AR

72 LSSk etk —k

N
N
w
N
o

o, (degree)

Figure 18: The amplitude response surface for U*/U; = 1.98. secondary bifurcation
(red -), Hopf bifurcation (blue *), where oy = 0° is a singularity

Figs. 18 and 19 display the amplitude response surface for U*/U; = 1.98 and 1.985.
Clearly, jump phenomena between the Hopf and secondary bifurcations exist at these
flow velocities. In stochastic analysis, the jump phenomena lead to discontinuities in
the random spaces, and consequently, to larger numerical errors for the SCM. In Figs.
18 and 19, the regions with different behavior are presented as bands. In the response
surface, the x-axis corresponds to the random variables associated with «g, and the
y-axis with random variables in k3. It is interesting to note that the responses are
almost parallel to the k3 axis. Hence, for the aeroelastic UQ problem, the initial value
of the pitch angle is more critical than the cubic coefficient k3. The simulation results
are also confirmed by the bi-modal PDF's displayed in Fig. 20. The left peak on the
PDFs is related to the amplitude of the LCO in the Hopf bifurcation, and the right
peak corresponds to the amplitude of the LCO in the secondary bifurcation.

To demonstrate the effectiveness of the Smolyak algorithm, Fig. 20 reports the
SCM performances using various grid strategies. Here, we simulate the PDF's of the
amplitude of the LCOs generated by the piecewise linear SCM using 51 x 21 full grid
(i.e., 51 nodes in ap-dimension and 21 nodes in kz-dimension), 21 x 51 full grid, and

sparse grid with level 7 resolution (i.e., 705 nodes). Although the tensor product
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Figure 19: The amplitude response surface for U*/U; = 1.985. secondary bifurcation
(red -), Hopf bifurcation (blue *), where oy = 0° is a singularity

produces the same number of nodes for the SCM, Fig 20 clearly shows that the PDFs
with 51 x 21 full-grid is in better agreement with the MCS than that using 21 x 51 full
grid. This is reasonable since the behavior is more sensitive to the initial pitch angle
than the cubic nonlinear term. Among various grid methods, the SCM with the sparse
grid gives the best approximation. Even though only 705 nodes are employed in the
sparse grid with the resolution level 7, the results are in better agreement with the MCS
than the results obtained using the full grid with 1071 nodes. This demonstrates that
the Smolyak’s sparse grid algorithm with a smaller number of nodes produces more
accurate results than the interpolation based on the full grid (see also the interpolation
error in Eq.(4.18)).

Fig. 21 displays the mean square error of the LCO amplitude using various grids:
full grid with 21 x 21, 21 x 51, 21 x 101 nodes (i.e., increasing the number of nodes in
ks); full grid with 21 x 21, 51 x 21, 101 x 21 nodes (i.e., increasing the nodes in ayp);
full grid with 21 x 21, 25 x 25, 51 x 51 nodes (i.e., increasing the nodes in both kj
and ap); and the sparse grids with resolution level from 1 (5 nodes) to 8 (1537 nodes).
From the results presented here, we conclude that although increasing the nodes in the

ap-dimension improves the convergence when using full grid, the SCM with a sparse
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grid is clearly more efficient and produces a smaller error than those based on full grids

(see Fig. 21).

4.2.3 Simulations with five random variables

In order to further evaluate the performance of the proposed SCM, we consider the
aeroelastic system given in Eq. (2.6) with a fixed initial value for « = 1°, but more
random variables are now introduced in the nonlinear coefficient k3. Since k3 plays a
crucial role in the onset of the Hopf and the secondary bifurcations [8], it is important
to investigate the effects due to the presence of randomness in the nonlinear pitch
stiffness. Here, we consider a time dependent process instead of a random variable. An
aeroelastic model perturbed by a time dependent noise was also considered in [2], and

the stochastic bifurcation was studied using a stochastic averaging.
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Let

where k3 is a constant and l;;;,(t, €) is the noise with the following expression:

M

~ 1 Ny

ks(t,&) =0 Zl Wcos(%mt)f (4.24)
where £',1 = 1,2,..., M are independent uniformly distributed random variables on

[—1,1]. The form given in Eq. (4.24) has been used to simulate noise in [19], and it
represents a truncated expression of the Karhunen-Loeve (KL) expansion of a stochastic

process. The series (4.24) converges as M — oo, and
— — o — g
E<k3(t,£)) = ]{Z3, ks — E < kg(t,é-) < k3 + 6 (425)

In this study, the number M of random variables is set to five. Numerical simula-

tions are carried out at the flow velocity U*/U; = 1.9802, with k3 = 80 and o = 48.
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The truncated KL expansion (4.24) is strictly positive for any positive integer M and
it is bounded by [72,88]. Here, we particularly focus on the comparisons of the simu-
lation results using the Monte-Carlo method with 20,000 samples and the SCM with
sparse grid.

The PDFs generated by the MCS and the SCM are shown in Fig. 22(a). Although
k3 = 80 is near the value where the jump phenomenon occurs (see Fig. 14), the range
of the PDFsrs (see Fig. 14), the range of the PDFs is around 0.2588, and only one
peak is displayed. Hence, from the LCO amplitude, we conclude that the aeroelastic
system is in the secondary bifurcation. Fig. 22(b) shows that the SCM mean square
error is decreasing as the resolution level increases in the sparse grid. Since no jump
phenomenon occurs, the SCM produces accurate predictions. This is confirmed in Fig.
23 by comparing the time histories of the expected values of the pitch motion computed

by MCS and the SCM with level ¢ =5 (see Egs. (4.10)).
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To investigate a challenging case with discontinuity, we keep M = 5, but the ex-
pected value of cubic coefficient is shifted to k3 = 78, a value around which a jump
phenomenon occurs. Moreover, to extend the range of the expansion, we set ¢ to 60 .
Hence, k3 is bounded by [68, 88].

Fig. 24(a) shows a bimodal PDF generated by the MCS, and the shape indicates
that the random aeroelastic system converges to two types of LCOs. The left peak
of the PDF corresponds to a smaller amplitude of the LCO for the Hopf bifurca-
tion, and the right peak represents the LCOs in the secondary bifurcation. The jump
phenomenon from the Hopf bifurcation to the secondary bifurcation produces the dis-
continuous behavior in the five dimensional random spaces. The corresponding PDFs
obtained using sparse grid at different resolution levels are displayed in Fig. 24 (b)-
(d). Clearly, better agreements are achieved as the resolution level ¢ increases, and the
bimodal shapes with the correct peak locations are obtained when ¢ > 4.

The discontinuous behavior is also shown in the plot of the expected value of «
displayed in Fig. 25. Note that when the non-dimensional time is around 800, a
change of amplitude of the expected value of pitch happens. The expected value of a
based on the SCM with level ¢ = 5 has a good agreement with the results obtained

using the MCS. However, unlike the previous case when an almost prefect match was

68



- 08 < 0.08
o 2
< <
& a ©
go6 @ £ 0.06 (®)
2] (2]
< <
E 0.4 E 0.04
c c
K] i)
'g 0.2 g 0.02
© ©
12 2
o— : : : o— : : :
0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3
Amplitude(rad) Amplitude(rad)
< 0.08 < 0.2
K] K]
© ©
S = d
2oos © Zois @
n n
E E
E 0.04 g 0.1
c c
K] K]
g 0.02 g 0.05 A
© ©
2 2
0 0
0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3
Amplitude(rad) Amplitude(rad)

Figure 24: Comparison of PDFs from the MCS(a) and the SCM with sparse grid and ¢ =
3(b), 4(c) and 5(d)

shown in Fig. 23, a small discrepancy is observed in Fig. 25. The difficulty is generated
by the presence of discontinuity, and it can also be seen by checking the mean square
error plotted in Fig. 26. Compared with the errors shown in Fig. 22 (b), we note that
when a discontinuity exits in the UQ problem, increasing the level (i.e., using more
nodes) does not guarantee the reduction of the error.

Although we can achieve more accurate SCM results by increasing the resolution
level in the Smolyak algorithm, this strategy is not recommended when dealing with
high dimensional UQ problems because of the enormous increase in computing time.
An effective way to improve the efficiency of the Smolyak algorithm is to incorporate
the dimension adaptive method proposed in [5].

For the problem under consideration, the uncertainty is given in Eq. (4.24). Since
the random variable ; is scaled by 1/(i?m?), the effect of & is controlled by the index
1. For this reason, the first random variable & plays the essential role in the 'noise’.

Hence, the resolution level in each dimension should be set according to the effect of

69



0.4

0.3 - MCS -
- — — SCM

Expected value of a

-0.21 h

0 200 400 600 800 1000 1200 1400 1600 1800 2000
non—dimensional time

Figure 25: The expected value of the pitch motion calculated using the MCS and the
SCM with level ¢ =5

—2.7

—2.75F 2 =
S -2.8f 1
[<5)
(<5}
£ -—285f R
=
& —2.9@ 1
[
3
2 -295f R
=]
g 3 4 1
= 3

—3.05} R

5
-3.1 .
10° 10°

Number of nodes
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each random variable instead of treating all dimensions equally. In the implementation
of this dimension adaptive approach, the iterative adaptive process is terminated once
the number of accumulated nodes becomes greater than 1000.

Fig. 27 shows the PDFs generated by the MCS and the SCM with the dimension
adaptive algorithm with w = 0,0.5,1. When the control parameter w = 1, the first
dimension has the maximum resolution level implying that the random variable &; has
a major contribution in the perturbation. As shown in Fig. 27, the SCM with adaptive
sparse grid produces the bimodal shapes of the PDFs. The locations of the two peaks
are in good agreement with those found using the MCS. Moreover, from the SCM
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mean square errors for various values of w illustrated in Fig. 28, it is clear that error
reduction is achieved when the dimension adaptive method is applied (i.e., w # 0).

For the problem considered here, w = 1 gives the best numerical simulation.

4.3 Conclusion

Interpolation schemes based on piecewise linear, piecewise cubic and piecewise cubic
spline basis functions are examined, and the advantage of using a high order interpola-
tion in the stochastic collocation method is demonstrated. For aeroelastic systems with

multidimensional random variables, the efficiency of the stochastic collocation method
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Figure 28: The SCM mean square error with the dimension adaptive algorithm at
various values of the control parameter w

can be enhanced by incorporating a sparse grid and a dimension adaptive strategy. The
stochastic collocation method performs well for the random aeroelastic model, and the
results are in good agreement with those obtained by the Monte Carlo simulations.
However, more work is needed in order to develop an effective stochastic collocation
method which is capable of producing accurate simulations for the aeroelastic behavior

when discontinuity exists in the random space.
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Part 11

Stochastic Symplectic Schemes
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Chapter 5

Construction High Order Strong
Stochastic Sympletic Scheme

The symplectic integration is a special type of numerical method which is capable of
preserving the symplecticity properties of the Hamiltonian system. The pioneering
work on the symplectic integration is due to de Vogelaere [14], Ruth [13] and Feng [3].
Symplectic methods have been applied successfully to deterministic Hamiltonian sys-
tems, and numerical simulations consistently show that the most important feature of
this approach is that the accuracy of the computed solution is guaranteed even for long
term computation. In this chapter, we extend the approach to stochastic Hamiltonian
systems (SHS), and we propose a systemic procedure to generate symplectic numerical
schemes of any desired order for stochastic Hamiltonian systems.

There are growing interests and efforts on the theoretical study and computational
implementation of numerical methods for SHS [12], [11], [9], [5], [15]. Milstein et al.
[12] [11] introduced the symplectic numerical schemes to SHS, and demonstrated the
superiority of the symplectic methods for long time computation. Here, we follow the
rigorous approach presented in [2], and employ the properties of multiple stochastic
integrals to derive a recursive formula for determining the coefficients of the generating
function. Theoretically, this formula allow us to construct stochastic sympletic stochas-
tic schemes of arbitrary high order with corresponding conditions on the Hamiltonian
functions. Hence, the major contribution of the work reported here is to present a
framework to construct different types of stochastic symplectic schemes of any order.

Since the computation complexity increases with the order of the numerical schemes,
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we mainly focus on the symplectic schemes with mean square order 1 for which we
also present the convergence analysis. Moreover, for special types of SHSs, such as
SHSs with additive noise, SHSs with separable Hamiltonians, or SHS preserving the
Hamiltonian functions, using the method based on generating functions we construct
computationally attractive symplectic schemes of mean square order 2. The study of
high order stochastic symplectic scheme for the general SHS (5.1) can lead to more
efficient construction of high order Runge-Kutta type schemes that avoid the need of

higher order derivatives.

5.1 Stochastic Hamiltonian systems and symplec-
ticity
Consider the stochastic differential equations (SDEs) in the sense of the Stratonovich:

OHOPQ) ), §~OHO(P.Q)

sz = — d r’ Pty = :
50, o, oMb P =p
oH"(P,Q) ”ZZEH“)(P Q) ol
dQ; = 8—Pidt+;8—PiOdw;’ Q(to) = q,
where P, (), p,q are n-dimensional vectors with components P;, Q;,p;,¢;,i = 1,...,n,
and w},r =1,...,m are independent standard Wiener Processes. The SDEs (5.1) are

called the Stochastic Hamiltonian System (SHS) ([12]). The SHS (5.1) includes both
Hamiltonian systems with additive or multiplicative noise.

A non-autonomous SHS is given by time-dependent Hamiltonian functions H (¢, P, Q),

r=20,...,m. However, it can be rewritten as an autonomous SHS by introducing new
. Q) .
variables e, and fj. Let df, = dt, de, = —w odw?!, (where dw) := dt), with the

initial condition e, (to) = —H" (to,p,q) and f.(tg) = to, 7 = 0,...,m. Then the new
Hamiltonian functions H"(P,Q) = H"(f.,P,Q), r = 1,...,m, and HO(P,Q) =
HO(f, P,Q)+ ey + - + em, define an autonomous SHS with P = (P, eq,...,em)"
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and Q = (QT, fo,..., fm)T. Hence, in this study, we will only investigate the au-
tonomous case as given in (5.1)

We denote the solution of the SHS (5.1) by X (t;to, zo;w) = (PT(t;tg,p,q;w),
QT (t;to, p, q;w))T, where tg <t <ty + T, and w is an elementary event. It is known
that if HY), j = 0,...,m are sufficiently smooth, then X (;ty, zo;w) is a phase flow
(diffeomorphism) for almost any w ([7]). To simplify the notation, we will remove any
mentioning of the dependence on w unless it is absolutely necessary to avoid confu-
sions, and we make the convention to understand that all the equations involving the
solution of the SHS (5.1) are true for almost any w.

In differential geometry, the differential 1-form of a function f : R*® — R on

€ € R?" is defined as:

e =3 e (5.2)

8zi
i=1
The exterior product df A dg of £&,n € R?" is given by df A dg(&,n) = df(£)dg(n) —
df (n)dg(&), and represents the oriented area of the image of the parallelogram with

sides df (£) and dg(n) on the df (&), dg(n)-plane.
The stochastic flow (p, ¢) — (P, @) of the SHS (5.1) preserves symplectic structure

(Theorem 2.1 in [12]) as follows:
dP A dQ = dp N dg, (5.3)

i.e. the sum over the oriented areas of its projections onto the two dimensional plane

(pi, ;) is invariant. Here we consider the differential 2-form
dp N dq = dpy Ndqi + - - - + dp, N dgs, (5.4)

and the differentiation in (5.1) and (5.3) have different meanings: in (5.1) p, ¢ are
fixed parameters and differentiation is done with respect to time ¢, while in (5.3)
differentiation is carried out with respect to the initial data p, ¢q. We say that a
method based on the one step approximation P = P(t + h;t,p,q), Q@ = Q(t + h;t,p,q)

preserves symplectic structure if
dP A dQ = dp A dg. (5.5)

78



Here, we introduce another definition of symplecticity. A random map ¢(w, x) is a

map with the property that for any fixed z € R*", ¢(-,z) is a random variable. We

denote ¢, (-) = p(w, ).

Definition 5.1 (symplecticity:) A differentiable random map ¢, : U — R** (where

U C R*" is an open set) is called symplectic if the Jacobian matriz ', satisfies

0 I
o) I, (pyg) = J  with J= Lo (5.6)

for almost any w and any p,q € R", (p,q)T € U, where I is the identity matriz of

dimension n.

The two definitions of symplecticity are equivalent, as stated in the following the-

oremni:

Theorem 5.2 A random differentiable map ¢, : (p,q) — (P, Q) is symplectic if and
only if dP N\ dQ = dp A dq almost surely (a.s.).

Proof: For any &, n € R™ and for the 2n x 1 vectors (; = (dpe,dge)” and ¢ =
(dpy, dg,)T, we have

n

¢l I G = (dpe, dge) J (dpy, dgy)" = (dpe,day, —dge,dpy,) = _ dpiNdg; = dpAdg(&,n).
i=1 i=1

(5.7)

If @ is the Jacobian of ¢, then (dP,dQ)T = ®(dp,dq)”, and proceeding as in (5.7),

we have

dP N dQ(€,m) = (dpe, dge) T JO(dp,, dg,)". (5.8)

Thus, we get ®TJ® = J a.s. if and only if AP AdQ = dp Adq a.s.. 0O
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5.2 Generating function and stochastic Hamiltonian-
Jacobi partial differential equation

In the deterministic case, generating functions are powerful tools to study symplectic
transformations. The next lemma introduces the generating functions S, S¢,i =1,2,3

in the stochastic case.

Lemma 5.3 Let ¢, : (p,q) — (P,Q) be a smooth random map from R®™ to R**. Then

Yo 15 symplectic if any of the following statements is true:

1. There exists locally a smooth random map S, from R*" to R* such that 9(S,,)/dq0Q

18 1nwvertible a.s. and we have

oS oS

P, (¢,Q), i=1,...,n. (5.9)

(2

2. There ezists locally a smooth random map S} from R*" to R*" such that O(PTq+

S1)/OPAq is invertible a.s., and we have

oS! oS!
D; . 8qi( q), Qi=q + GPZ-( q), @ N (5.10)

3. There exists locally a smooth random map S? from R®*™ to R*" such that (p” Q +
S2)/0pdQ is invertible a.s., and we have

052 052 o

4. There exists locally a smooth random map S2 from R*" to R*" such that O((P +
p)T(Q — q) — 253)/0Y Dy is invertible a.s., and we have

Y =y—JVS3((y +Y)/2), (5.12)

where Y = (PT,QT)T, y = (pT,¢")T.

80



Proof:
The proof can be completed easily by adapting the proof of Theorem 3.1 in [11]. For

example, to prove that the first statement implies that ¢, is symplectic, we calculate

ZdﬂAin_Z(Z@QaQ dQ; + Za@ )Ad@i

_ZZaQaQ dQJAdQﬁZZaQ dg; A dQ;,

i=1 j=1 =1 j=1

where everwhere the arguments are ), ¢. Since d@Q; A dQ); = —dQ; N dQ;, we get

> dP A dQ; = ZZaQ 50 dg; A dQ;. (5.13)
i=1

=1 j=1

Similarly, using the second equation in (5.9) and dg; A dg; = —dg; A dg;, we have

> dpi Adgi = ZZ 9 aQ]dQJAqu (5.14)
i=1

i=1 j=1
From (5.13), (5.14) and dg; A dQ; = —dQ; A dg;, we get dP A dQ = dp A dq a.s., so ¢,
is symplectic. 0O
The previous lemma gives us a powerful tool to analyze the symplectic structure

and to construct symplectic methods. For instance, for the SHS (5.1), if in the relation

(5.10) we let

h e 8H(’“) aH
Sl =hH Pq+§z qu op Pq+Z\/_£r W(Pq)  (5.15)

r=1 j=1
where h is the time step and &, are independent bounded random variables such that
E(&—&)* < h, with £ ~ N(0, 1), then we obtain the symplectic Euler scheme proposed
by Milstein et al. [12] [11]. Lemma 5.3 guarantees that the numerical scheme is

symplectic. Moreover the implicit midpoint scheme in [11] is obtained by setting
S5 =hHO((y+Y)/2)+ Y _VheH (y+Y)/2) (5.16)

in relation (5.12).
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The stochastic Hamilton-Jacobi partial differential equation associated with the
SHS (5.1) follows the rigorous approach from [2]. We want to consider the effect of
time in the generating function S, so let S, (z,t) be a family of real valued processes
with parameters x € R?". We can regard it as a random field with double parameters
x and t. If S,(x,t) is a C*> function of x for almost all w for any ¢, we can regard
S.(x,t) as a C™ value process [§].

Let assume that the Hamiltonian function H™) for » = 0,...,m in (5.1) belong to

C*. In addition, we also suppose that:

Y IV HO(P,Q)=V,HY (p, q)|[+|V, H (P,Q)=V,H (p,q)|) < Li(|P—p|+|Q—q))
" (5.17)
and .

> UV, H (0,9)| + IV H (p,q)]) < La(1+ |p| + |ql) (5.18)

So the Lipschitz condition (5.17) and linear growth bound (5.18) guarantees the lo-
cal existence and uniqueness of the solution (P(t,w)T,Q(t,w)T)T of the SHS (5.1).
Moreover, it is known that X (¢;to, zo;w) = (P (¢; 0, p, ¢;w), QT (t;t0, p, 4 w))T, where
to <t < ty+ T is a diffeomorphism a.s.[7]. Thus the generating function, which is
a random mapping, becomes a stochastic process S(q, @, t,w), and through equations
(5.9), this stochastic process generates the symplectic map (p,q) — (P(t,w), Q(t,w))
of the flow of the SHS.

For the sake of simplification, let us keep the notation S, for the stochastic pro-
cess S(q,Q,t,w). The generating function S, is connected with the SHS (5.1) by the
Hamilton-Jacobi partial differential equation (HJ PDE) (see Theorem 6.14 in [2]):

S, 85 a5
dS, = —H® , Q... Q) dt— EV) e —2 Q1. .., Q)odw!
Gor g @ Z 9, O ot

(5.19)

with the initial condition S, (¢, @,0) = j(q,Q), where j is a C* function. Starting
from the flow X (t;to, zo;w) of the SHS (5.1) and using the method of characteristics,

in Theorem 6.14 and its corollary in [2] it is shown that for any initial point zq there
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exists a stopping time 7 > ty a.s and a local solution S,(q,@,t), to < t < 7 of
(5.19) for which we have the equations given in (5.9). Moreover, almost sure the flow
X (t; to, zo;w) is a local Stratonovich semi-martingale, and S, (¢, @, t), 05,(¢q, Q,1)/0Q
and 0S,(q, @, t)/0q are local Stratonovich semi-martingale, continuous on (¢, @, t), and

C* value processes (see also Theorem 6.1.5 in [8]).

Theorem 5.4 Let S,(q,Q,t) be a local solution of the HJ PDE (5.22) with initial
values satisfying g—i(q,q) + %i(q,q) =0,¢=1,...,n, and such that almost sure
S.(q,Q,t), 05,(q,Q,t)/0Q and 0S,,(q, Q,t)/Iq are local Stratonovich semi-martingale,
continuous on (q,Q,t), and C* value processes. If there exists a stopping time 7' > t
a.s. such that the matriz (0*(S,)/0q0Q) is a.s. invertible for to < t < 7/, then the
map (p,q) — (P(t,w),Q(t,w)), to <t < 7', defined by (5.9) is the flow of the SHS

(5.1).

Proof: The mapping (p,q) — (P,, Q) is well defined by (5.9) because of the invert-
ibility of the matrix (92(S,,)/0q0Q) for ty <t < 7/, and the implicit function theorem.

Differentiation of the second equation of (5.9) (see Theorem 3.3.2 in [8]) yields

aqz Z o a 0 “_dQ; = 0. (5.20)

Recalling that S, is the solution of the stochastic HJ PDE (5.19), the following
equation holds by differentiating (5.19) with respect to ¢; (see the corollary of Theorem
6.14 in [2]).

929

a% Z 8P anaQJ rZZ 8P anaQJ dth:O (521)

Comparing equations (5.20) and (5.21) and using the invertibility of the matrix

( 925,
0qi0Q);

The first equation of (5.1) can be obtained using a similar procedure as reported

), we have the second equation of (5.1).

above, i.e., by differentiating the first relation of (5.9) and the HJ PDE with respect
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to @;, then subtracting the obtained equations. Also the initial values guarantee that
(P(to,(x)),@(to,bd)) = (paq) O
The HJ PDEs for the coordinate transformations (2) and (4) in Lemma 5.3 can be

expressed as

SL(t, P q) = /H (P,q+ VpSi(s, P q))ds + ZH<T>(P,q+vP55(s,P,q)>odw;",

to p=1

(5.22)

S3(t,w) = /H (w+ J V83 (s,w))ds + ZH”w—i— J VS (s,w)) o dw!,

to p=1

(5.23)
where w € R?", and we consider S!|,—;, = 0 and S3|,—, = 0. It is straightforward

to obtain the HJ PDE for the generating function (3) in Lemma 5.3, as it is just the

adjoint case of (2).

5.3 Constructing high-order symplectic schemes

For deterministic problems, the construction of high-order symplectic schemes via gen-
erating functions was first proposed by Feng et al [3], [4]. The key idea is to obtain an
approximation of the solution of the HJ PDE, and then to construct the symplectic
numerical scheme through the relations (5.10) - (5.12).

Following this idea, we now seek an expansion which reflects the stochastic proper-
ties of the generating function. Due to the Ito representation theorem, the relation be-
tween the Ito integral, the Stratonovich integral and the stochastic Taylor-Stratonovich
expansion, it is reasonable to assume that the generating function can be expressed by

the following expansion locally:

S'(P.4::009) = Gl (P + Gl (Poa) oy + Gloay (P sy +++ = 3 Gl
(5.24)
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where o = (j1,72,---,71),7i € {0,1,...,m}, i = 1,...,1 is a multi-index of length [,

and J, is the multiple Stratonovich integral

t S 52 . . .
Jo = / / . / odwl} -+ odwl~! o dw]l. (5.25)
0o Jo 0

For convenience, ds is denoted by dw?. Similarly, the multiple Ito stochastic integral

t St 52 . . .
I, = /O /O /o dwll ... dwl-'dwl. (5.26)

5.3.1 Properties of multiple stochastic integrals

1, is given by

To prepare for the derivation of the symplectic numerical schemes, we present some
properties of the multiple stochastic integrals. First, we define operations for multi-
indexes.

If the multi-index « = (j1, Jo, - - -, Ji) with > 1 then a— = (j1, jo, . .-, Ji_1), i.e. the
last component is deleted. For instance, (1,3,0)— = (1,3). For any two multi-indexes
a = (j1,Ja,---,51) and & = (j1,79,---,7y), we define the concatenation operation s’
as ax ' = (J1, 72, Ji,J1: J%s - -, Jp). For example, (1,3,0) % (1,4) = (1,3,0,1,4).
The concatenation of a collection A of multi-indexes with the multi-index « gives the
collection formed by concatenating each element of the collection A with the multi-
index «, i.e., A xa = {a' x a|a’ € A}. For example, if A = {(1,1),(0,1,2),(1,1)} and
a = (0), then A x o = {(1,1,0),(0,1,2,0), (1,1,0)}.

Proposition 5.5

Jodor = > (5.27)
66‘/\04,0/
where o = (j1, jo, - -, 1), & = (J1, 7%, - -, Jy) and Ay o is the collection of multi-indezes
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depending on o and o' and given by the following recurrence relation:

¢

{(G,51), G a0}y, if I=landl' =1

Agpyor—*(p), o« ()}, if l=1landl' #1

N LA SRl -
{Aa g x Gn)yax ()}, if 1#land /=1

\{Aaf,a’ * (jl)a Aoz,a’f * (]l/’)}a Zf ! 7A land I 7£ 1

Proof: Let consider two stochastic processes
X! = /t bi(X,) odw? and X7 = /t by(X,) o dw | (5.29)
0 0
Then, for the Stratonovich integrals, we have
XX} = / t X2b1(X,) o dwl + / t X1by(X,) 0 dwl’ . (5.30)
0 0

If I >1and I' > 1, let by(X,) = Jo and by(X,) = J!,_, such that X! = J, and
X? = Ju. The product rule (5.30) of the stochastic integrals yields

t t -/
A — / Jor Jo— 0 dw? + / Jodo_ o dwl' . (5.31)
0 0

This implies the fourth relation in (5.28).

If l =1 (orI” = 1), the second (or third) relation in the recurrence (5.28) is obtained
for b1(X,) = 1 and bo(Xs) = J/,_ (or b1(X,) = Jo— and be(X;) = 1). For the first
relation, we take b;(Xs) =1 and bo(X5) =1. O

For instance, since
A0 = {A@).01) * (0), Aoy, * (1)}
= {{A@),©0 *(1),(0,1,2)} % (0)}, {A),© * (0),(2,0,0)} = (1)}
={{(2,0,1),(0,2,1),(0,1,2)} % (0),{(0,2,0), (2,0,0),(2,0,0)} = (1)}
={(2,0,1,0),(0,2,1,0),(0,1,2,0), (0,2,0,1), (2,0,0,1), (2,0,0, 1)},
(5.32)

then we have J20)J0,1) = J(2,0,1,0) + J0,2,1,0) T J(0,1,2,0) + J0,2,0,1) + 2J(2,0,0,1)
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Remark 5.6 From the recurrence (5.28), we can see that Ay o = Ao o, and the length
of the multi indexes in A, o is the summation of the lengths of a and o, i.e. if
B € Ay, then 1(B) = l(a) + I(a). This will be used to determine the coefficients of

the generating function in the next subsection.

Corollary 5.7 For a = (j1, a2, -+, 1),

l
wg‘]a - Z J(jla-~~:ji7.j7ji+l 77777 i) (5‘33)
1=0

Proof: The proof follows by repeatedly applying the second recurrence of (5.28).

Similarly, we can show that the multiplication of a finite sequence of multiple-

indexes can be expressed by the following summation:

M= > s (5.34)

where the collection A,, ., can be defined recursively by A, . a.= {Asa, |0 €

..... an1}» 2 3. For example, Ay, 0),0)= {As,0)[8 € Ay} = {Awn.0) A0}
={(0,0,1),(0,0,1), (0,1,0),(1,0,0),(0,1,0),(1,0,0)}. Thus J(l)Jfo) = 2J0,0,)+2J1,00+
2Jo,1,0)-

In addition to the recurrence relation (5.28), we also propose an explicit way to
calculate the collection A, /. For any multi-index oo = (j1, o, - - . , ji) with no duplicated
elements (i.e., j, # Jnif m #n, m,n =1,...,1), we define the set R(«) to be the empty
set R(a) = @ if [ =1 and R() = {(jm,Jn)|im < n,m,n =1,... 1} if | > 2. R(«a)
defines a partial order on the set formed with the numbers included in the multi-index

a, defined by i < j if and only if (7, j) € R(«). We suppose that there are no duplicated

elements in or between the multi-indexes o = (j1, j2, ..., 51) and o = (J1, 7%, - -, Jp)-

Lemma 5.8 If there are no duplicated elements in or between the multi-indexes o =
(j17j27 B 7.jl) and o = (j£7]é7 s 7jl,’)7 then
Ao = {8 € M|I(B) = l(er) + (), R(a) U R(c) € R(B) (5.35)

and 8 has no duplicated elements}
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where M = {(J1, Jas - - - Jiw)Ji € {G1sGos -y iy Fards ooy gubi=1,...,1+1'}

Proof: Let denote A}, , = {8 € M|I(B) = l(a) + I(c), R(a) U R(a') C R(B)
and 8 has no duplicated elements }. Since there are no duplicated elements in 5 and
1(B) = () + I(a), each element of {j1, Ja, ..., j1, 41, J4s - - -, jj } must appear in 8 only
once.

We prove that A, = A, ,, by induction on I(a) + (). If I(a) + (/) = 2, then
l(a) =1(¢/) =1 and R(a) = R(a/) = ®. Hence R(f) contains any pair with distinct
components from M = {(r, J2)lju.Js € L jith 50 Ayor = {Gis30), (Fo31)}, and
from the first equation in the recurrence (5.28), A, ,, = Ag o

We suppose that Aq o = A}, ,, for any multi-indexes a and o/ such that I(a)+I(a’) <
k and we prove that A, o = A[, ,, for any multi-indexes o and o/ with I(a) +1(a/) = k

First, we prove that A}, , € A . For any element 3 = {51,32, o ,jk} in A, .,
because 7j; is the largest element with respect to the partial order defined by R(«), and
4l is the largest element with respect to the partial order defined by R(a’), then jj, can

only be j; or jj,. This leads to the following cases:

1. Ifjy=j,and | = 1, then § = o/ %j; € Ay o, by the second equation in recurrence

(5.28).

2. If j, = jy and [ > 1, then f— € A, = Ao Dby the induction assumption

because l(a—) + (/) = k—1 < k. Hence 5 = —*(ji) € Aa—.or * (ji), and from

the fourth equation in recurrence (5.28) we get § € Ay .o

3. If j = jy and I' = 1, then 8 = a* j, € Ay, by the third equation in recurrence
(5.28).

4. If jp = jy and I’ > 1, then f— € A, = Moo Hence B = 3 — x(j)) €

Aqo— * (j]), and from the fourth equation in recurrence (5.28) we get 8 € Ay -

Similarly, using the recurrence (5.28), we can prove that A, C A} . Thus

Ao = A, and the lemma is proved. [
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The lemma can be easily extended to determine the collection A,

.....

Lemma 5.9 If there are no duplicated elements in or between any of the multi-indexes

1 (1 n) -(n
(.]§ )7.]5 )7*-'7]l(1)); I (]§ )ajé )7"*)]l ) then

Moy, = {B € M|I(B Zl ag)and U'_, R(ay) C R(B)
(5.36)

and there are no duplicated elements in B},
AA 1 (1 n) .(n -(n . 77
where./\/l = {(]17]27 e 7][)|]Z e {]1 7]5 )7‘ . 7]l(1)7' j§ )7j§ )7 e )jl(n)}az - 17‘ . '7l)l -
i+ 41}

To extend the previous two lemmas to multi-indexes with duplicated elements,
we just need to assign a different subscript to each duplicated element, for example,
A2,0),01) = A2,01),000,1) = {(2,02,1,01), (02,2,1,01), (01,1, 2,05), (02, 2,04, 1), (2,01, 09, 1),
(2,0,01,1)}.

5.3.2 Higher order symplectic scheme

Inserting (5.24) into the HJ PDE (5.22), and using the proposition (5.5), we get
S, = HY (P =J,)d HY (P, = J,) o dw,
L= [ HOE e Y G 3 [ HOP a3 G 0
m t 8G1
=3 [P DG o
r=0

o oHr oG, e
:Z/Z Z (9q H 3pa<]) - 8;J)kodw
- i (5.37)
8G}11 oGL [t )
B ; ; il 1,; 8q ;ai apkl ' 8Pkl /0 ’H Jak © dws
m oo 1 n o' H aGél aG}ll
S 2 WZ oo X e

1 9H™ 0GL  9GL

- Z Z Z Z Z F@qkl ce 8% aP]C: o 8P]€: JB*(T)

r=0 =0 ki,....k;=1 a1,...,a; €A, ..
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1
where (3 agp )k, is the k;-th component of the column vector ) BGP :
coefficients of J, in (5.24) and (5.37), we get the recurrence formula for determining
Gl

o

For instance, for the SHS (5.1) with m = 1, we have
Gl =H?,  Gly=HW. (5.38)

To find Gy, since I((0,0)) =2 we only need to consider the values i = 1, a = (0) and

r =0, so that
H©O 8G1 H©
(0)
oo =Y o i =3 SO )

Similarly, using ¢ = 1, « = (1) and r = 0 for G(1,0)7 i=1,a=(0)and r =1 for G%OJ),

and i =1, a = (1) and r = 1 for G{, ,, we obtain

DoHM " 9HW oH O
G , Gl =Y
1) Z 8qk 8Pk 1 (1,0) = Z 8qk E)Pk ©.1) ; 8qk (9Pk

Because [((0,0,0)) = 3, the casesi = 1, « = (0,0), r =0 and ¢ = 2, ag = (0), az = (0),
r = 0 both contribute to the coefficient of Jg ,0):

L 9H© 9G i 1 &HO 2(‘9G%0) 9G
i Oa OBy 4= 20q1,0qr, 0P, 0P,

n P2HO 9O 50 9O g ©) 52 f(0) OHO agH©) 52 (0)
N Z <0qk18qk2 apk;1 8Pk2 + 8qk1 8Pk2 quQGPkl + 8qk1 8qk2 8Pk10Pk2)

G%o,o,o) =

k1,k2=1

(5.41)
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Similarly,

" HYoHY 9HW 9HY 9?HY  9HW 9HY
111 ; (8%13(]@ 0Py, 0Py, * Oqr, 0P, 0qr, 0P, " Ok, O, 6Pk18Pk2
i HY9HY  9HO 9HY PHO  9H© 9HY §HY
110 klZZI < o0 aqu 3Pk1 aP,, + Oqe, 0Py, 0qr, 0P, + Oqr, Oqr, 0Py, 0Py,
HO9HM  9HD 9HY PHO  9HM 9HO §HY
G1o1 e <3qk13qk2 0P, 0P, + Oqy, 0Py, Oqi,0Py, + 0qe, Oy, aPkﬁsz
HY9HO  9HM 9HO 92HO  9H® 9HO
G011 ( D, @qu apkl oP,, + Oqr, 0Py, 0qy,0Py, + 0k, O, 8Pk18Pk2

(5.42)

For m > 1, we apply lemma 5.9 to obtain a recurrence formula for G.. If o = (r),
r=1,...,mthen GL = H. Ifa = (iy,...,5_1,7), I > 1, 41,....5_1,7 =1,....m

has no duplicates then

1 n i (7 ()
Gl = = D O,
Z 7! ZZ: O, - - - O, l(a1)+---+;ai):l(a)l
R(01)U-UR(as)CR(a—)

oGL,  9GL

.. . 4
OPs, 0P, (543)

If the multi-index « contains any duplicates, then we apply formula (5.43) after asso-
ciating different subscripts to the repeating numbers.

We can use the same approach, but for the HIPDE (5.23). For example, for the
SHS (5.1) with m = 1, for S? we get

3 _ g7(0 3 1 3
1
Gl = 5(vztﬂO))TJ—lvml), Gy (VH<1>)TJ—1VH<0> (5.44)

1, _
Gooo) = ng WHNI2HO (J-1vHO),

Proceeding as for S!, we can obtain a general recurrence for finding the coefficients

G3 of S3. Hence, if « = (r), r =1,...,d then G3 = H,. If & = (i1,...,4;_1,7), [ > 1,
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i1,...,%—1,7 = 1,...,d has no duplicates then

la)—1 2n .
1 O'H 1
3 _ ., B )
G, = Z il Z Mer - Oye Z (§J VG i,
=1 Tk ki=1 10 t o l(ar)+H (o) =l(a)—1 (5 45)
R(a1)U-UR(0)CR(a—) .
1
. (§J*1VG3%),%

where (J7'VG? )i, is the k-th component of the column vector J'VG? . If the
multi-index « contains any duplicates, then we apply formula (5.45) after we associate
different subscripts to the repeating numbers.

Using (5.10) and a truncated series for S., or using (5.12) and a truncated series

for S3

w?

we obtain various symplectic schemes for the SHS (5.1). In this Chapter, we
study only the strong schemes, but a similar approach can be applied to construct
the weak schemes, and it will be reported in the next Chapter. Let define A, = {a :
l(a) + n(a) <279} and B, = {a : l(a) + n(a) < 2y or [(a) = n(o) = v+ 0.5}, where
n(a) is the number of zero components of the multi-index « (e.g. n((0,0,1)) = 2).
The implicit midpoint scheme in [12] is the numerical scheme of order 1 obtained
from (5.12) using the truncated series S3 = > 4 Godo = D)L, GfJiry (see also
Eq. (5.16) where bounded random variables are used to approximate Ji,) because the
scheme is implicit). A first order symplectic implicit scheme is also obtained if we

truncate the Stratonovich expansion for S! according to A;:

5o Glodo + Y (Ghydiy + Glonden) + D Gliyday.  (546)
r=1

1,j=1i#]
In the next section, we study the convergence and we prove the first order mean square
convergence for the scheme based on the generating function given in (5.46).
To obtain the symplectic Euler scheme of order 0.5 in [11], we use the relation of
the Tto stochastic multiple integrals and the Stratonovich stochastic multiple integrals
([6]), and we replace in the expansion (5.24) of S} each Stratonovich integral in terms

of Tto integrals I,. We truncate the series by keeping only terms corresponding to Ito
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integrals I, with a € By 5, and for m = 1 we have
1 1 1 L
Sy = Gyl + (G + §G(1,1))I(o)~ (5.47)

Notice that the generating function in (5.15) was obtained from the previous equation,
using (5.38)-(5.39) and bounded random variables to approximate ).

For the 1.5 order scheme, we truncate according to By 5, so, for m = 1 we get :
S~ Gl G| 1G1 I G| 1G1 1 G} 1G1
w = Gayla) + () T 9 7 (1,1) (0 t+ 0,1 T 9 7 (1,1,1) 0,1) T (1,00 T 9 7 (1,1,1)

1 1
I(LO) + G%1,1)](171) + <G%0,0) + §(G%0,1,1) + G%1,1,0)) + ZG%LLLI)) 1(0,0)
(5.48)

The formulas for the coefficients G, included in (5.48) are given in (5.38)-(5.42), and
the Ito integrals I (o1, I(1,0), and I(;,1) should be approximated using bounded random

variables ([11], [6]).

Remark 5.10 If we consider the deterministic cases, i.e., m = 0, then J, = %t”
with l(«) = n. The coefficients (5.39) - (5.41) and (5.44) of the approximations of the
generating function proposed here, are consistent with those of Type (II) and Type (I111)
generating functions in [4]. In other words, the proposed construction of the stochastic
symplectic numerical schemes via generating function is an extension of the methods

introduced by Feng [4).

5.4 Convergence analysis

In this section, we study the convergence of the first order symplectic implicit scheme
constructed using the generating function given in (5.46). As we have mentioned early,
since this is an implicit scheme we need to use bounded random variables. To keep
the notation simple, we consider the SHS (5.1) with n = 1 and m = 1, but the same
approach can be easily extended to the general case. Also for notation convenience,
oOH

¥ and %—Ij are denoted as H, and H,, respectively.
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As in [11], for the proposed implicit schemes with time step h < 1, we replace the

random variable £ ~ N(0,1) with the bounded random variables &:

(

—Ah lff < —Ah
&n=1q¢ if [§] < Ay (5.49)
Ah lff > Ah,

\

where A, = 24/|Inh|. From [11], we know that

E(&—¢&)” < I, (5.50)

0 < E(&—€)) < (1+4/|Inh|)h? < 5h32. (5.51)

Carrying out similar calculations, we get

2 o 2 2 o
B(e2 _ e2)2 — 22— A2 2 gy — / 21 94,42
(§ gh) \/% " ( h) \/% : (y hy)
Ap
_ (yt+ap)? 2e 2 /OO 9 9 42 _ﬁ ( 9 8Ah )
e 2 < +2Apy)e Tdy=e"2 (3+4A; +
Y= \/% o (y hy) Y h \/ﬁ
< 27h. (5.52)
From (7.20), for any non-negative integer k, we can easily verify
B(G ) =B ) =0, B(|&l") < B(I¢[F) < co. (5.53)

Using (5.10) and (5.46), for the SHS (5.1) with n = 1 and m = 1, we construct an
implicit symplectic scheme corresponding to the following one step approximation :
P =p— (HP(P,q)Jw) + H{ (P, q)Jfy) + (HP (P, q) H{ (P, q)g (i 1)),

(5.54)
Q = q+ (HO(P.q)Jo) + HM(P,q)J ) + (H(P,q)H (P, q))p i 1))

p q

where Jo) = h, Ji,) = Vh&, and J ) = 167
We suppose that the Hamiltonian functions H® and H® and their partial deriva-

tives up to order four are continuous, and the following inequalities hold for some
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positive constants L;, ¢ =1,...,5

1

> (H(P,Q) = H (p.q) + [H(P.Q) = HY (p,@)]) < Li(IP = p| +1Q — al),

r=0

(5.55)

Xi;lﬂér)(p, )|+ H (0, @)l) < Lo(1+ [pl + |q]), (5.56)
Ti(!ﬁ“( 9+ |HS) (0, 0)| + 1HS) (9, 9)) < Ls, (5.57)
;w,&;;( Q)|+ 1HS) (0, )| + [HE), (b, )')Sm’ (5.58)
(0, @) + [H, (0, 0)] + [H, (b, >|_(1+|js+|q|)2. (5.59)
(I(HSOHD),(P,Q) — (HVHM ), (p, q)| 0

+[(HPHP)(P.Q) — (HHMY) o (p,@)]) < Li(|P — pl +1Q — ),
The first equation in (5.54) is implicit, so in the following lemma we show that the

scheme (5.54) is well-defined.

Lemma 5.11 There exists constants Ky > 0 and hg > 0, such that for any h < hq the

first equation in (5.54) has a unique solution P which satisfies
L
P—p| < KoL+ Il +lal) (JVR+h+580) k=12 (561

Proof: The proof can be completed similarly with the proof of Lemma 2.4 in [11],
using the assumptions (6.9)-(5.60) and the contraction principle. 0O

Corollary 5.12 There exists constants K > 0 and hg > 0, such that for any h < hy,
we have

E(IP—pl'+1Q — ql) < K(1+|p| + |q))'h3,i=1,2,... (5.62)

To prove the first order mean square convergence for the scheme based on the one

step approximation (5.54), we apply the following general result (Theorem 1.1 in [10]):
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Theorem 5.13 Let X; ,(t+h) be a one step approzimation for the solution X, ,(t+h)
of the SHS (5.1). If for arbitrary to <t < to+T —h, © € R*" the following inequalities
hold:
|E (Xpa(t+h) — Xeo(t+h)| < K(1+|z[?) /2R, (5.63)
_ 1/2
[E | X, ot + h) — Kot + h)|2] < K(1+ [z]?) 2R, (5.64)

with pe > 1/2 and py > pa+1/2, then the mean square order of accuracy of the method
constructed using the one step approzimation X, . (t + h) is py — 1/2.

Before proving the main convergence theorem, we include some preliminary results

in the following lemma.

Lemma 5.14 There exists constants Ky, Ko, K3 > 0 and hg > 0, such that for any

h < hg, we have

|E(P —p)| +|E(Q —q)| < K1(1+ |p| + |q])h, (5.65)
|E((P —p)J{i)| + 1E(Q — q)Jfi1)| < Ka(1+ [p| + |g])R?, (5.66)
|E((P = p)* i) + |E(Q — @)* ()| < Ks(1+ |p| + q])*h*>. (5.67)

Proof: For r = 0,1, z = p or ¢, and with sufficiently small A, from (5.56) and
(5.61), we have

[H(P,g)| < [HO(P,q) = HO (p,q)| + [H (p, )] < Li|P = p| + [H (p, q)|
1., (5.68)

< (1ol + o (KlaVE+ Kb+ K36h+ L ).
Hence, using (5.53) we show that there exist constants KC; > 0,7 = 1,2,... such that

EIH(P,g)|' < KCi(1+ |p| + |q])", i=1,2,.... (5.69)

Using the Taylor expansion, we rewrite the first relation of (5.54) as P —p =
—H{ (p,q) I}, + Ry with Ry = —H\"(P,q)Jo) — Hy (1. q)(P — p)Jhyy — (HY(P,q)
Hél)(P7 q))qJ(hl’l) where p; is between p and P. Hence, using the Cauchy-Schwarz
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inequality, (5.56), (5.57), (5.62), and (5.69) imply that there is a constant K; > 0,
such that

B(R)| < E|Ri| < BLH(P.)\Jo) + Lin/ETP — LT
B B - K
+ (VRO @k + B P 0R ) Loy BT < 50+ bl + lan

(5.70)

Moreover, since we have
R < z((H;0><P, DY) + (HD @1, @) (P — 0 (s P+
(HOP, ) 2(HD (P,q) + (HO(P, g)2(HD (P,q))) <Jza,1>>2),

proceeding similarly we can show that there exists constants Ky > 0 and K% > 0, such

that

| =

E(R}) < 2K3(L+|p| +14q1)*h®,  |E(RYIG)| < Ki(L+ p| +1q))?h**  (5.71)

~ W

E(R{(J))*) < K(1+ [pl + lal)*h® (5.72)

Using the Cauchy-Schwarz inequality, (5.70), (5.71) and (5.53) imply that there

exists a constant K3 > 0 such that:

K
|E(P —p)| < |HM(p, ) E(J)| + |E(R)| < 71(1 + Ipl + lgh, (5.73)

E((P = p)Jin)| < [HP (0, ) B Tin)| + BRI < \JE(RDELT 2

Ko
< =
- 2
|E((P = p)*Ji)| < (HP (0, 0))? [E((J)D)| + [ERIIE)| + 2 [HD (p, ) E(Ry (J3)?)]

K
< K1+ [pl + |al)*h*2 + 2[HD (9, q)| \/EBRYET | < 2 (U + |p| + |a))*p>"
(5.75)

(1+ [p| + lql)h? (5.74)

Similarly, [E(Q — q)| < 51+ [p| + ). [E(Q — q)Jfiy)| < (1 + [pl + [g))h?, and
|E((Q — )* )l < 52 (14 |p| + |g])*h*? so (5.65)- (5.67) are proved.
O
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Remark 5.15 Notice that for h sufficiently small, using Taylor expansions, inequal-
ities (5.56)-(5.58), (5.62) and the characterization of the moments in (5.53), we can

also show that there exists a constant Ky > 0, such that

BB < B ((H (0, 0) o) + <H<1>H;”> (P a)Ja) Jv)|
+E{J(1)H (Do, @) J(0) (P — p) ’JFE’Jh H(l))pq(ﬁ11,Q))J(}L1,1)(P—P)}
+ 1B (Tt Hy (51, 0) 16 (P = p)) | < LsK (1 + [pl + |aDh® + (3La Lz + L3)(1 + [p| + la])h?
+ 2| H) (p, @) || E(J1) (P = )| + BTG HE) (1, 0) T (1 — p)(P = p)]
< LyK(1+ [pl + |qDh* + (3LaLy + L3)(1 + [p| + [a)h* + 2K5Ls(1 + [p| + [a])h?
+ La(1+ Ip| + la)h* < Ka(1 + Ip| + lal)h*

(5.76)
where py, p1 and P11 are values between P and p, and ﬁl 1 a value between py and

p. Here we have also used 2J(hn) = (J(hl))2 and the fact that for sufficiently small h,

Lemma 5.11 implies that there exists positive constants Cy and Cy such that

L+ pl+ gl <1+ |P —p|[+|p| + lq] < Ci(1+ |p| + |ql), (5.77)
1 1 1 C,
- < — < <
L+pl+lql = 1+ 1pl = p—pl+lql = 1+ I[p| =P —pl+ gl = 1+ |p|+lq|

(5.78)

for any p between P and p.

Theorem 5.16 If the conditions (6.9) - (5.58) are satisfied, the scheme (5.54) con-

verges with the mean square order 1.

Proof: Applying Taylor expansions, for the first part of the one step approximation
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(5.54), we have
P—p=—H"(p,q)Jo)— H"(p, q9)Jfy) - (HSVHM)4(p, QI
— HY (9, q)Joy(P — p) = (HSV HD)q(p, @) J{s 1y (P = p)
—HY (p,q)(P —p)J3 - %Hégi,(poo, Q) (P —p)* T,

1 1 _
— S 0. )P = p)P Iy = S (P HD ) g (o, a) (P = p)* iy (5:79)

2 ppq
- 6prpq(p017 q) (P - p)3‘](h1)
=—H"(p,9)J0) — HM (p, @) sy — (H (0, ) HO (0, 0)) I 1)

H(1)< D, q )(P_p)J(}Zl)+R27

where poo, Po1 and pp1; are values between P and p. Since

R < 2(H9 (9, 0))*(J0)*(P = p)> + 2 (HV HD ) (0, 0))” (Jl1))*(P = p)?

A (EG G )’ (P = )l + L (HG00))” (P~ ) ()
5 (D HD) o, 0)) (P = p) i)+ 1 (S (o)) (P = p)® ()

(5.80)
the assumptions (5.56) -(5.59), Cauchy-Schwarz inequality, inequalities (5.62), Lemma
5.14, and the characterization of the moments in (5.53) implies that for h sufficiently

small there exists a positive constant Kg such that
|E(Ry)| < Ke(1+ [p| + a])h®,  E|Rs|* < Ko(1+ |p| + |q])*R°. (5.81)
Substituting P — p = H; (p, q)J(hl) + Ry, where R, is defined in the proof of Lemma
5.14, into H,(xll) (p,q)(P — p)J(hl) , we obtain
P—p=—H"(p,q)Joy— H  (p,q) T}y — (H (p, ) H (9, 0))q I 1)

— HS(p.q)Hy(p, 0)(J{y)> — HY (p. q) Iy Ra + Ro.
It is easy to verify that assumption (5.56) and inequalities (5.72), (5.76) and (5.81)

(5.82)

imply that there exists a positive constant K; such that
|E(HS) (p,q)J(y B — Ro)| < K7(1+ [p| + |q])?, (5.83)
2
E (H“)(p, Q) J{y Ry — Re)” < K7(1+ [p| + [q])?h®. (5.84)
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Recall that the Milstein scheme [6] for the stochastic Hamiltonian system (5.1) satis-
fying conditions (5.55) - (5.59) has the mean square order 1 and satisfies the inequalities
(5.63)-(5.64) with p; = 2, po = 1.5 . The one step approximation corresponding to the

Milstein scheme is given by

Q=q+H"(p.q)Jo) + H"(p,q) Ty + (HS (0, ) HV (p, q) — HD (p, q) HM (p, @) J11).
(5.85)

Comparing the one step approximation corresponding to the Milstein scheme with

(5.54), we obtain

P-P

HV (p, q)(Jay — Jby) + (HD (0. ) H (p,q) — HY (0, ) H (9, @) (Ja1) — J(i))
- H;(n?(p7 Q)J(han + Ry.
(5.86)

Thus, from (5.50)-(5.53), assumptions (5.56), (5.57), and(5.83), (5.84), we get

E(P —P)* < (L+|p| +|q|)*h® (2L3 + 5AL3L3 + K7) 5.87)
5.87

[E(P = P)| < (1+ |p| + |a)h? (LsLsh? + K7 )
The proof for the Q — Q follows similarly by repeating the same procedure for the

second relation of (5.54), so the scheme corresponding to the one step approximation

(5.54) satisfies the inequalities (5.63)-(5.64) with py =2, po =15 0O

Remark 5.17 Using the same approach, we were able to prove that the symplectic
schemes based on truncations of S. or S® for multi-indezes o € By or a € Ay have
the mean square order k, for k = 1,1.5,2. Higher order schemes include Ito multiple
stochastic integrals I, with multi-indexes o« € By, or Stratonovich multiple stochastic
integrals J, with multi-indexes o € Ay, but they are computationally erpensive to

simulate bounded approximations when k > 2.
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5.5 Symplectic schemes for special types of stochas-

tic Hamiltonian systems

5.5.1 SHS with additive noise

First, we consider the special case of SHS with additive noise

oOH©O
dpP, = — an dt ZO‘T odwy, P(ty)=np,
oo (5.88)
dQ; = a—Pi’dt+;TrOdw;’ Q(to) = ¢,

where i = 1,...,n. Notice that H") = S (P7 + Qio,), where o, and 7, are
constants.

To calculate the coefficients of S}, we replace in (5.43) and get,

" 9H® 9H© " OH O " HHO
Gl _ 1 , 7 Gl . 7
00 2_: dg. OB, ' 0 71; dq Or1) = on z:: P,
" 92HO
G! = 0,7 G! — 0.0 Z -
(r1,m2) T2 T (0,r1,r2) ro¥ry s
ket 0T 08k (5.89)
- " 92H©
G, o) = OryTr Gl ooy = TroTr —_
(ra0r2) = o Z anlasz (r1,r2,0) 2 k1§:1 anlanQ
G(Tl T2,73) = O’ G(T’l r2,T3,74) - 07
where 1 < ry,...,74 < m. The 1.5 order schemes are obtained by truncating the

generating functions to multi-indexes o € By 5. Using the approximation of S} given

in Eq. (5.48), we have the following symplectic implicit scheme of mean square order
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1.5:
Py(k+1) =Py (k) — h—Z(ar\/EﬁfZ,? + I+ —=10
0Q, " &= 0} 70,
+ 1 28G%0,0) + aG%O,T‘,T) + 0G%r,r,0) h2
0Q; 3Qi 0Q;

4
6H G(O r) f 8(; (r,0) 7

(5.90)

Qi(k+1) =Q;(k) +

1 1 1
L1 (28G(o,o> N 8G<o,m~> N 5G(m,0)> hz)
4 OP, 0P, 0P,

where ¢ = 1,...,n and all the functions have (P(k+ 1), Q(k)) as their arguments. Here
3 (1)

I(hro) = b2 (5,(;2 %) and I% (o) = éh h3 — . 0)» Where at each time step , f,(l? and

n}(lk) are independent bounded random Varlables as given in (7.20).

Analogously, for S3, we obtain,

: 1
3 _ 3 _ 3 3 _ T 0
G(Qo) =0, G (ri,r2) — 0, G (r1,0) _G(O,m) - éTr VH( )7
3 = 3 3 T2 77(0
G(Tl,m,rg) - 07 G (r1,r2,0) G(O,ﬁﬂ"z) G(Tl 0,r2) — 4TT1V H( )Tm, (591)
3
G(Tl,T2,7‘3ﬂ“4) =0,

where T, = J-'VH") = (—0,,...,—0,,7r,...7.)  and 1 < r{,...74 < m. The follow-
ing 1.5 order scheme is derived based on the truncation of S? according to multi-indexes

S 81.52

m

Vi =Yi + JﬁlVH(O)(YkJr%)h + Z(T &+ T VG ) (Vi )(f(};,o) — o)

= (5.92)
h2
)
where for each time step k, we have Y, = (P, Q)" and the arguments are everywhere
Vi1 = (Yis1 + Y%)/2. The random variables f(};p

for (5.90).

+ J71VG(T7T70) (Y,H%)

) Ih fhk and nhk are the same as

Notice that the 1.5 symplectic methods (5.90) and (5.92) are implicit. These meth-
ods have a similar computational complexity as the 1.5 symplectic implicit Runge-

Kutta method proposed in [12].
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5.5.2 Separable SHS

Let consider the general autonomous SHS (5.1) with separable Hamiltonian functions

such that

OP,Q)=Vo(P)+Us(Q), H(P,Q)=U,(Q), r=1,....m (5.93)

In this case, the coefficients of S become:

ou gy ©)
Gl..,=0, Gl 5=0
(7‘1 7‘2 Y (Tl,o) Y (0 7"1 Z an aPk
"L oUW gV © . . .
G(OO Z an apk (r1,r2,m3) — G(m,rz,O) = G(rl,D,rg) =0 (594)
=1
L gU) gU gRY )
G| e =0, G} =0,
O:rr2) MZ | Oq, Ogy, OPLOR, )
where 1 < rq,...,ry < m.

The following symplectic first order scheme based on S? is explicit, and it is differ-
ent from the two explicit symplectic first mean square order partitioned Runge-Kutta

methods presented in [11]:

Pi(k+1)=Pi(k) — |
1) =P(K) ~ 55 (Q }j Viel;
r=1 (5.95)
ov o
Qi(k+1) =Q;(k) + P (P(k+1))h,
where i = 1,...,n. [11] presents an explicit 1.5 mean square order partitioned Runge-

Kutta method, however, the symplectic schemes based on the generating function S}

are implicit when the order increases to 1.5 or higher. The 1.5 order scheme derived
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from the current approach is provided below:

© LUV §(0)
Pk +1) = Pi(k) - 22 (Q(/f))h—Z(aU (Q(k)) Ve,

0Q; Qi
8G(0’T) - 1 8G(0,0)
o (PUE+ ). QU + 3 (2552 (Pl +1).Q()
OG0 s
O (P(k + 1), Q(K)) | h? (5.96)
Q)
av<0> .
Qi(k+1) = Qi(k) + 3P P(k+1)) h+z< P(k+1),Q(k) I,
1 8G(070) aG (0,r,r) 2
+ 1 (2752 Pt + 1,0 + 28 PG+ 1.0 )
where i = 1,...,n and the random variables are generated following the same procedure

as for (5.90)

5.5.3 SHS preserving Hamiltonian functions

Unlike the deterministic cases, in general the SHSs no longer preserve with respect to
time for the Hamiltonian functions H;,7 = 0,...,n , even when the SHS is autonomous.
However, using the chain rule of the Stratonovich stochastic integration, it is easy
to verify for the Hamiltonian system (5.1) that the Hamiltonian functions H® i =
0,...,m are invariant (i.e. dH® = 0), if and only if {H(i) HW} = 0 for any i,j =

0,...,m, where the Poisson bracket is defined as {H® HUW} = S0 1(3(%2)‘96}[—;) -
OH® o) )
oQr 0P,

For systems preserving the Hamiltonian functions, the coefficients G of S are

invariant under the permutations on a, when I(«) = 2 because for any 1,79 =0, ...,m,
we have
OH ™) 9H ()
1
Glrrmn) = Clryrn) Z T (5.97)
Moreover, for I(ar) = 3, from the formula (5.43) we easily see that G , =G| )
T1,72,73 T2,71,73
for any ry,ro,73 = 0,...,m. Also, since for any ki,ky = 1,...,n and any r1,79 =
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0,...,m, we have

0~~~ OH"2) 9H(3) 0 = OH) 92
aqu kr 8qk1 8Pk1 N 8qk2 P aqkl aPkl

(5.98)

=1 1=1

= G{ . Hence, G} is also invariant

a simple calculation confirms that G(le rars) (r1,78,72)

under the permutation on a when /(a) = 3.

These properties are helpful not only to reduce the calculations for G, but the need
of using approximation of high-order stochastic multiple integrals in the symplectic
schemes based on the generating function S! is also avoided. For instance, when

m = 1, we have the second order generating function S.:

h? h&?
SL = Gloh + Gl Vhé, + Gloo = + Gl + Gl g 6nh? 500
5.99
héf 6 h2 h2£4
+G(111) Gh Glno h G(1111) 24

where everywhere the arguments are (Ppi1,Q%), and we have used Jo 1y + Ja,0) =
JoyJoy and Jo11) + Jaon + Ja0 = JanJo (see the corollary 5.7). Then the
second order symplctic scheme is obtained by (5.10).

For the coefficients of S3, {H() H(2)} = 0 for any 0 < 71,75 < m implies that
G =0 and G?

=0, ry,r9,73,74 = 1,...,m. Moreover, a simple compu-

(ri,r2) — (r1,r2,r3,74)

tation shows that G2 is also invariant under the permutation on «, when I(a) = 3.

Hence the second order midpoint symplectic scheme when m =1 is given by

Yiyr = Yi + J 7' VG (Vg )b + T VG (Vi 1 )VRG,

nie e (5.100)

+ JﬁlVG?l,l,l)(YkJr )7+ 1VG(l 1 0)(Yk+ )75

where Yy .1 = (Vi1 + Yi)/2.
It can be verified that G2 is invariant under the permutation on « for any I(«)
([1]), and this property makes the higher order symplectic schemes computationally

attractive for the SHS preserving Hamiltonian functions.
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5.6 Numerical simulations and conclusion

To validate the high-order symplectic schemes proposed in this study, and to compare
the performance with the lower order schemes, we consider three test cases. The
cases have been used as the test examples in [12] [11], [5], and the last example is a
nonlinear problem which is often used for testing numerical algorithms for stochastic

computations [11].

5.6.1 SHS with additive noise

We now consider the following SHS with additive noise:

dP = Qdt + odw;, P(0)=1p
(5.101)

dQ = —Pdt +vdw?, Q(0) =gq
where o and 7 are constant.
The exact solution can be expressed in the following form using the equal-distance
time discretization 0 = tg < t; < -+ < tiy = T, where the time-step h (h = tx11 — tx)

is a small positive number:

X(tgs1) = FX(tg) +ug, X(0)=Xo, k=0,1,...,N—1 (5.102)
where
P(t cosh sinh
X(ty) = (tx) X, = p . F= , (5.103)
Q(tr) q —sinh cosh
thi1 1 tet1 : 2
. — o [,/ cos (typr — s)dw) + 7y [, sin (tya — s)dw] | (5.104)

t . t
—0 ft:“ sin (g1 — s)dw! + ’yft:“ cos (tppr — 8)dw?
The mean square order two symplectic scheme based on a truncation of S according

to multi-indexes a € Aj is given by

1+2 0 1 A oy +J,
2 Xy = X+ | @ eor (5.105)

h 1 0 1+ %2 vJ2) +oJo



We have the following proposition about the long time error of the symplectic

second order scheme.

Proposition 5.18 IfT and h are positive values such that Th? and h are sufficiently

small, and E|Xy|? is finite, then the mean square error is bounded by

VE|X(ty) — Xi2 < K(VTh? + VT3hY), k=1,2,...,N. (5.106)

Proof: As in the proof of propositions 6.1 in [12], we can show that if 7" and h are
positive values such that Th? and h are sufficiently small, then for £ = 0,1,..., N,
T = Nh, there exists a constant K; such that the following inequality holds:

—1
1+ 0 1 h
|HF — F*|| < K (R* +Th?), H= 2 : (5.107)
h2
hoo1 0 1+%

The proof then follows from the previous inequality, proceeding as in the proof of
propositions 6.2 in [12].
0

The corresponding error for the first-order scheme proposed in [12] is given by
O(T'Y2h + T3/2h?). Clearly, a better performance is expected using the second-order
scheme.

In numerical simulations, to guarantee that the exact solution, Euler scheme, first-
order and second-order schemes have the same sample paths, eight independent stan-
dard normal distributed random variables, &1 i, &2k, M1.k5 2,6, Cks C2.k5 €1,k €2,5 are used

at every time step k. The random variables in (5.104) and (5.105) are evaluated as:

o . sinh
J(z) = \/Eka, /tk CcOS (tk—i—l — S)dw; = sz’k + a1k,
tet1 ) ) 2 Ly h
/tk sin (tg+1 — s)dw, = ﬁ s §§i,k + aani . + asGi, (5.108)

hs ,
Jo,) = 7fi,k +agig + asGr + ascin,  Jio) = hJu — Joy, =12
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where

\/h sin2h  sin®h 1 sin*h  2sinh . h
=" st o L hy
2 4 h a2 h 2
h  sin2h 4 ., h 1 hsin h
a3:\/§_T_Esm4§_a%’ a4:a—1(1—cosh—T), (5.109)
h h?
a5:a—3(h—sinh—hsin2§—a2a4), ag = E—ai—a%.

I I I I I I I I
100 102 104 106 108 110 112 114 116 118 120

Figure 29: A sample trajectory of the solution to (5.101) for 0 = 0, 7 =1, p =1
and ¢ = 0: exact solution (solid line), S! second order scheme with time step h = 27°
(circle). The circle of different scheme are plotted once per 10 steps.

Fig.29 displays the results obtained using the symplectic schemes for long time

simulations. A good agreement with the exact solution is observed when the symplectic

scheme is implemented.

-2 T T

©  Order 1.0 sympletic scheme
_al Order 1.0 reference line

*  Order 2.0 sympletic scheme
— — — Order 2.0 reference line

Figure 30: Convergence rate of different order S symplectic scheme for (5.101), where
error is the maximum error of (P, Q) at T' = 100.
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Fig. 30 presents the estimations of the convergence rate for various order symplectic
schemes based on S!. We notice that the numerical results agree with the prediction
based on the theoretical study. So the second order symplectic scheme can provide a

more accuracy estimation than the first order scheme with the same time step.

5.6.2 Kubo oscillator

In [11], the following SDEs (the Kubo oscillator) in the sense of Stratonovich are
used to demonstrate the advantage of the stochastic symplectic scheme for long time
computation.

dP = —aQdt — 0Q o dw;, P(0)=p,

(5.110)
dQ = aPdt +oPodw?, Q(0)=gq,

where a and o are constants.
As illustrated in [11], the Hamiltonian functions H (P(t), Q(t)) = aw and
HY(P(t),Q(t)) = aw are preserved under the phase flow of the systems. This

means that the phase trajectory of (5.110) lies on the circle with the center at the
origin and the radius \/]m .

Here, we consider the explicit Milstein first order scheme given in (5.85), and five
stochastic symplectic schemes: the mean square 0.5, first and second order schemes
based on S!, and the mean square first- and second-order schemes based on S2. The

coefficients G, of S} for the system (5.110) are given by:

a o
Gloy=50"+¢), Gy =50"+a), Gy =d’ps, Gy =0"pg
G%I,O) = G%O,l) = aopq, G%o,o,o) = a3(p2 + qz) G%Ll,l) = ‘73(]92 + q2) (5.111)

G%l,l,o) = G'%1,0,1) = G%O,Ll) = ac’(p* + ¢%), G'%1,1,1,1) = 50pqg.

The various order symplectic schemes are obtained by truncating the generating func-
tion S! appropriately.

For S3, G2 for SHSs preserving Hamiltonian functions is zero when I(a) = 2,4.
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Thus

3

a o a
Gy = 5(172 +¢°), Gh= §(P2 +4%), Glooo = Z(JD2 +¢°),
3 AT 3 3 3 ac® 5 5 (5112)
G(1,1,1) = Z(p +q°), G(1,1,0) = G(1,0,1) = G(O,l,l) = T(I? +q°).

The first-order midpoint scheme was already applied in [11] for the system (5.110) to
illustrate the superior performance on the long time intervals compared to the non-

symplectic schemes. The second-order midpoint scheme is given in (7.23).

1 ®
0.5
o (o]
-0.5
-1

30 -1 -0.5 (o] 0.5 1
P

1 © 1 @
0.5 0.5
o (o] o (o]
-0.5 -0.5
-1 -1

0.5 1 -1 -0.5 (o} 0.5

Tvo
T
[

Figure 31: A sample phase trajectory of (5.110) with a =2, 0 =0.3, p=1and ¢ = 0:
The Milstein scheme (a); S} first-order scheme (b); S! second-order scheme (c); S2
second-order scheme (d) with time step A = 27° on the time interval 7' < 200

Sample phase trajectories of (5.110) from various numerical scheme are presented
in Fig. 31. It can be seen that the phase trajectory of non-symplectic scheme is far
away from the circle P(t)? + Q(t)? = 1. However, the symplectic schemes produce
accurate numerical solutions.

Figs. 32 and 33 confirm that the symplectic schemes have the expected convergence
rate. Hence, the high order symplectic schemes have a more accuracy estimation than

the low order symplctic scheme with the same time step.
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o -

Order 2.0 reference line

—12.5 —12 —11.5 —11 —10.5 —9o.5 —9o —8.5 —8 —7.5

—1o0
1og,,(h)

Figure 32: Convergence rate of different order S! symplectic scheme for (5.110), where
error is the maximum error of (P, Q) at 7" = 100.

Iog2(Error)
\
\

- ©  Order 1.0 sympletic scheme

- - Order 1.0 reference line
s  Order 2.0 sympletic scheme

— — — - Order 2.0 reference line

—20 L L L L L L L L L
Si2.5 —12 —-11.5 —11 —10.5 —10 —9.5 -9 —-8.5 -8 —-7.5

Figure 33: Convergence rate of different order S? symplectic scheme for (5.110), where
error is the maximum error of (P, Q) at 7' = 100.

5.6.3 Synchrotron oscillations
The mathematical model for oscillations of particles in storage rings is given by:

dP = —3*sin Qdt — o4 cos Q o dwtl —098in() o dwtz,
(5.113)

dQ = Pdt.

We obtain the following formulas for the coefficients G of S}

2
G%O) = % — w?cos q, G(ll) = 01 8ing, G%Q) = —09 €08, G%O,O) = wzpsin q,

G%0,1) = 01pcCosq, G%oz) = o9psing, G%O,l,l) = 07 cos? ¢, G%OQ’Q) = 05 sin’ g,

(5.114)
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T
— — — sl 1.5 order scheme

15 ‘ S} 1.0 order scheme

0.5

—0.5H|

|
R o
L——T—F
=
=
i
—_—
e
5
_—
_—
_{,;

-1.5

L L L L L
o 10 20 30 40 50 60 70 80 90 100

Figure 34: A sample trajectory of (6.26) for w = 2, o1 = 0.2, 09 = 0.1, and time step
h =275,
All other G in (5.48) are zero.

Since the exact solution of the nonlinear SHS (6.26) is not known, it is hard to
verify the order of various symplectic schemes. However, using a very fine time step
h = 2%  we confirm that the sample trajectories from S! with first and 1.5 order are
almost identical, and this is shown in Fig. 34. Moreover, the results also show that the

various order numerical schemes based on S! are reliable for long time computation.

5.6.4 Conclusions

We present a framework to construct high-order symplectic schemes based on generat-
ing functions for stochastic Hamiltonian systems. The theoretical convergence analysis
and numerical tests are provided for the proposed numerical methods. In general these
symplectic schemes are implicit, and computationally expensive for mean square orders
higher than two because they require generating approximations for multiple stochastic
integrals of high order. It is also interesting to note that for stochastic Hamiltonian sys-
tems preserving Hamiltonian functions, the high order symplectic schemes have simpler
forms and include less multiple stochastic integrals than the explicit Taylor expansion

schemes.
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Chapter 6

Weak Symplectic Schemes for

Stochastic Hamiltonian Equations

If the approximation X = (P,Q), k = 0,1,. .., of the solution X (t;,w) = (P(ty,w), Q(t,w)),

satisfies

|EIF(Xk(w))] = BIF(X(t, w)]| < Kh", (6.1)

for F' from a sufficiently large class of functions, where t;, = tq + kh € [to,to + T], h
is the time step, and the constant K does not depend on k and h, then we say that
X}, approximate the solution X (t) of (5.1) in the weak sense [6] with weak order of
accuracy m.

In [6], Milstein et.al. have constructed a first-order weak symplectic scheme for
the system (5.1). Although several second and third order weak symplectic schemes
were proposed for special types of SHS (such as SHSs with additive noise or SHSs with
separable Hamiltonians), they conclude that further investigation is needed to obtain
higher order symplectic schemes for the general SHS (5.1) with multiplicative noise [6,
Remark 4.2].

In this Chapter, we propose a new method to derive symplectic weak schemes, and
we construct a second order weak symplectic scheme for the general SHS (5.1). Our
approach is a non-trivial extension of the methods based on generating functions from
deterministic Hamiltonian systems [1, Chapter 4] to SHS. The generating function
method in the stochastic case was applied to obtain strong schemes in [2], [3], but only
the low order symplectic schemes with mean square orders up to 3/2 were constructed

because of the complexity of the calculations required for finding the coefficients of the
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generating function. In previous section, we employ a different formulation, and we
obtain a general recursive formula for the coefficients of the generating function. To
the best of our knowledge, a systematic approach as presented in this work to construct

symplectic weak schemes of any order has not been reported before.

6.1 The weak symplectic schemes

In this section, we present a method to generate weak symplectic numerical schemes
for the SHS (5.1) of any given order. From equations (2.34), Chapter 5 in [4], we have

the following relationship between the Ito integrals

t St 52 . . .
]a[f('7'>]to,t:// / Fs1,)dw? . dwi=rdw?, T, = o[z,
to Jto to

and the Stratanovich integrals J, defined in Eq. (5.25): I, = J, if (o) = 1 and

1

Jo = Iy [Ja-] + X =201 0) [f(a)] ;o) > 2, (6.2)

where a = (j1,72,.-.,71),7Ji € {0,1,...,m}, xa denotes the indicator function of the
set A, and f is any appropriate process [4, Chapter 5] .
For m = 1, replacing in the previous equation, we get Jio) = Iy, Ja) = In),

J0,0) = L0,0), Jo,1) = L0,1), J1,00 = L1,0)5 J1,01) = L(1,0,1)5

1 1
Jay =Iay + Loy, Jaay =Iaan) + 5 (I(l,O) + ](0,1)) ;

2
1 1
Ja,0 = Ia,1,0) + 51(0,0)’ Jo,1) = Lo1,1) + 51(0,0)7
1 1
Jaaan =ILaan + B ([(0,1,1) + I(1,00) + [1,1,0) + Z[(o,o)-

To obtain a second order weak scheme, we replace in (5.24) the Stratanovich integrals
Jo by Tto integrals using the Eq. (6.2), and we truncate the series to include only

Ito integrals with multi-indexes « such that I(«) < 2. Thus, we have the following
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approximation for the generating function

Q

1
Sulj (G%o) + §G%1,1)) + G [(1 (G(o 015 (G(1 1,0 1 G (0,1,1) )

1 1

1
+ (Gh,o) + §G%1,1,1)) I0),
where everywhere the arguments are (P, q).

Replacing in (5.37), we get the scheme corresponding to the following one step

approximation:
1 1 1 1 1
ooy h@G h1/2£8G( h2 8G 0.0) 8G(1 L) 8G(0’1’1)
' dqi 0q; 2\ Oq 2 dq, dq,
1 1
190G _he Gy 5 (0G0 R 190G 44 o)
4 g 2 0Og dq; 2 g
8G%0,1) . laG%l,l,l)
0y 2 Oqg
1 1 1 1
6_2 — ¢ —|—h@G (0) h1/2£aG h? 8G(9,0) laG(l,},u)
' oF, op, "2\ "ap, "1 op
+1 aG%m,o) n aG%o,u) +£6G11 D L 302 6G110 n 16G%1,1,1)
2\ 0P, ) 2 0P, oP, 2 0P,
1 1
+ h3/2(§ —¢) aG(E),l) + laG(liu)
0P, 2 0P ’
where i = 1,...,n, h is the time step, and everywhere the arguments are (P,q). The

random variable v/h¢ represents the Ito integral (1), and h%2e represents the double
Ito integral I(; ), and we have £ ~ N(0,1), € ~ N(0,1/3) and E({e) = 1/2. Notice
that Tio1) + I(1,0) = L0yl (1), 50 h3/?(€ — €) represents the double integral (g ).

For a weak scheme, we can generate the noise increments more efficiently than for
a strong scheme . For example, proceeding as in Section 14.2 of [4], we can avoid the
second random variable € and generate a single random variable ¢ with the following

discrete distribution

P((=+V3) = (6.4)



The moments of £ and ( are equaled up to order 5, and we also replace € by %( , SO wWe

obtain the simplified scheme:

B =p, — haG1 ]NQ% 2 (0Gq) 1 10G{ 110
dq; g, 2\ 9¢ 4  9g
+ aG(1 Lo) aG%O,l,l) _h_@aG%l,l) _ lhg/gg aG%l,O) n aG%I,l,l)
2 dq; dq; 2 Ogi 2 dq; dq;
0G|
(0,1)
6.5
T > (6.5)
1 1 1 1
Qi =qi + haG(O) + h1/2 8G aG(OO 1 aG(l,},l,l)
' OP, T3 OP;
+ 66‘%1 1,0) n aG(o 1,1) Q %1 1 h3/2C 8G%1 0) N 8G%m’1)
2\ op OF, 2 0B 2 OP, O,
0G!
(0,1)
“ap 6.6
"R, ) (6.6)
where i = 1,...,n, and everywhere the arguments are (P, q).

Lemma 6.1 The scheme (6.5)-(6.6) is symplectic.

Proof: By definition the scheme (6.5)-(6.6) is symplectic if it preserves symplectic
structure, i.e. if we have P A Q = dp A dq. This can be proved proceeding as in the
proof of Theorem 3.1 in [7]. Notice that we can write the scheme (6.5)-(6.6)) as

_ 0S; , - _ 05, -
b =p — —X(P =g+ —=(P
i = Di 6qi( .q), Qi qz+api( 1 Q)
where
h2
Sy = Glph+ G}y \/_C+(G(00)+ (Gliroy + Gloany) + G(1111)) 5
hCQ h3/2<=
+ Gy + 5 (Gloy + Gl + Gluo)

0
For the general stochastic Hamiltonian system (5.1) with d > 1, a second order

symplectic scheme can be constructed similarly using the following approximation of
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the generating function

d d d
_ 1 1
k=1 k=1

1 1 ¢ 1 h2 hg/ ? 1
+ Glokk) 1 Z G (k k.5 ZCk Glox + Glro
k=1
L&
- 92 Z km J]k > Z G CjCk + Gik)- (6.7)
Jj=1 jk: 1
Here (, for K = 1,...,m are independent random variables with the distribution

given in (6.4) and (; are independent, two-point distributed random variables with

thjl =—1,

1

§’j2 - 1"”’]’1 - ]" §j17j2 - _Canjlva :jl + 17"'ad7

P(Grge = £1) =

for j; =1,...,m, [4, Chapter 14.2].
It is important to recognize that a symplectic scheme of order m can be constructed
in a similar way by replacing the Stratanovich integrals in (5.24) by Ito integrals using
the Eq. (6.2) and keeping the Ito integrals I, with [(«) < r. Here G can be determined

using (5.43). For example, for order three weak symplectic schemes, we include in the

approximation of the generating function S! all terms containing Ito integral I, with
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[(a) < 3. From (6.2) we have
1
Sy~ (G%O) +3 > G%ch)) I (o)
k=1
Z G(k k.5:3) )I(OU T Z(

k,j=1

d
1
1 1
+ (Gwm + §G(k,j,j>) L(k.0)
j=1

d
Z(G%k:,kz,()) + G%O,k,k))

k=1

DO | —

(G}Om +

1 d
G(Ok +§

> Gl k)) Lok

7j=1

+ Z G%k)](k)

d
k=1

— — 1

d
1
+ Z le (k.g) L (k.5) (G%O,O,o) + 5 Z (G%k:,k,o,(]) + G%O,k,k,o) + G%O,O,k;,k;))
1
+ Z Z (G:(Lkvkvjvjvo) + G%O,k},k‘,jd) + G%kvkzovjj Z G k‘ k‘,_] ],ll ) 0 0,0)
kvj:]- ,]l 1
d 1 d
+ Z (G%O,M) + 5 Z (G%J}J}O,k) +G (0,” k:) Z G( ,],z,ug)) (0,0,k)
k=1 j=1 Jz 1
d 1 d 1 d
+2 (G 00+ 5 2 (Cliwo) + Glowan) + 7 22 Gb,j,k,z,n) Lo ko)
k=1 j=1 Gl=1
d d 1 d
1 1
- (G(kaﬂ,o) + 2 Z (G( k.g0) T G(k 0]] + 4 Z G(k,j,j,l,l)) Lik0.0)
k=1 j=1 Gi=1
d 1 d 1 d
+ Z <(G%k7j70) + 92 Z G%mu)) L(k.j,0) + (G%O,k,j) + B Z G%z,z,;g)) Lok,
k,j=1 =1 =1
1 d
T (G%’vaJ) T 92 Z Gbﬁ“d)) kO,J)) Z G (ki) L (k,5i0)
=1 k,3,l=1

where everywhere the arguments are (P, q). Although it is easier to approximate the
multiple Ito integrals I, for weak schemes than for the strong schemes, it should be
noted that weak symplectic schemes with high order (e.g. r > 4) will involve long
formulas for the coefficients G}, including high order partial derivatives of the Hamil-
tonians H"), r =0,...,m

Analogously, using (5.11) and a truncated series for S? or (5.12) and a truncated
series for S2, we can obtain various weak symplectic schemes for the SHS (5.1). For

example, if m = 1, we have the following weak second order scheme based on the
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truncation of S3 that includes only the terms containing Ito integrals I, with multi-

indexes « such that [(a) < 2:
Yigr = Vi + J'VHO Y, )b + T VHO (Y, 0)R2G

h? 1 1
+ J (ZVG?l,l,l,l)(YkJr;) + Q(VG?LLO)(YH%) + VG:())OJJ)(YH;)))

h3/2
+_2<k (VG310( 1) + VG (Y1) + VG 1y (Vi )) (6.8)

where for each time step k, we have Y}, = (P, QT)T, and the arguments are everywhere
Yip1 = (Yaqr + Yi)/2. The random variables ¢, are the same as for the scheme (6.5)-
(6.6), and the coefficients G2 can be found using (5.45).

Remark 6.2 The order 1 scheme presented in [6] (with « = [ = 1) corresponds to
the following approximation of the generating function which contains Ito integrals I,

with (o) <1

d d
Qo 1 1 1
S1(P,q) = (G (P, q) +§;G(kk P, q))h ;G(k)(P7Q)\/E77k7

P(n, = £1) = 1/2, and the random variables ny are mutually independent. The weak
order 1 scheme presented in [6] (with « = [ = 1/2) corresponds to the following

truncation of the generating function according to indezes o with I(«) < 1:

_ 1
S5(2) = Gloy(2)h+ Y Gl (2)Vhm, Pl = £1) = 30 ZE€ R*".

k=1

and the random variables n, are mutually independent.

6.2 Convergence study

We study the convergence of the symplectic numerical schemes proposed in the previous
section. To keep the notations as simple as possible, we will illustrate the idea of the
proof for the scheme (6.5)-(6.6) which corresponds to the system (5.1) with m = 1,

and to the truncation given in (6.3) of the generating function. The same approach
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can be followed in the general case for m > 1 and for truncations of the generating
function including all Ito integrals I, with I(a) < r with r > 2, but the complexity of
the calculations in the Taylor expansions increases with m and 7.

We assume that the coefficients of (5.1) are smooth enough to satisfy the following

global Lipschitz condition

Z IVHP(P,Q) — VH;(p.q)|| < Li(||[P = pll + |Q — gl})- (6.9)

As in [6], we define the class F to be formed with the functions F' defined on R*"

for which there exists constants K > 0 and x > 0, such that
[F(x)] < K(1+ [z])X,

for any € R?". To prove the weak convergence with order 2, we use the general result
given in Theorem 4.1 in [6]. We assume that the function F' in (6.1) together with its
partial derivatives up to order 6 belong to the class F. Moreover, in addition to (6.9),

H© and H® together with their partial derivatives up to order 7 belongs to class F.

Theorem 6.3 The implicit method (6.5)-(6.6) for the system (5.1) with m = 1 is

symplectic and of weak order 2.

Proof: The scheme (6.5)-(6.6) is implicit, so we should first prove that it is well-
defined. Using the Lipschitz condition (6.9), the fact that at each step the random
variables || < v/3, and proceeding as in the proof of lemma 5.3, from the contraction
principle we get that there exist constants K > 0 and hg > 0 such that for any h < hy,
to <t <ty+T, 2= (pr,¢")" € R®™, the system (6.5)-(6.6) has a unique solution
X = (PT,QT)T € R® which satisfies the inequality

X — 2| < K(1+||z|)Vh. (6.10)

This solution can be found by the method of simple iteration with z = (p?,¢")T as

the initial approximation, so the scheme (6.5)-(6.6) is well-defined.
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From lemma 6.1, we know that the scheme is symplectic, and to prove the weak
convergence with second order, we check the conditions (2) and (4) in Theorem 4.1
in [6]. Fori =1,...,2n, let denote A’ = X — 2% and A" = X (t + h) — 2", where
Xio(t+h) = (PT(t+h),QT(t+h))T is the solution of the system (5.1) and X; ,.(t) = .
Then from (6.10) we have

6
ET[IA% < K@)k, KeF, di;e{l,....2n},j=1,...,6. (6.11)
j=1
To prove that
'E (HM —HM) ‘g k(x)h, v=1,...,5, kelF, (6.12)
j=1 j=1
we compare the scheme (6.5)-(6.6) with the order 2 weak Taylor scheme ([4], pp. 464).

To simplify the notation, let denote

Q) =-5 Q)+ (G (P (R0
P (P0)
ar.Q) = M0 p g+ ] g(—%w QS (PQ
n a£1)< Qg (P.)
5(P,Q) = a;g (P.Q), w(P.Q) = af; (P.Q),

and f = (fla"‘afn)Tu 9 = (917~--,gn)T7 0= (01a~~-70n)Tu T = ('Vh--w%z)T‘ Using

the Ito stochastic integration, we rewrite the equations (5.1) as

dP; = fi(P,Q)dt + 05(P, Q)dwy, P(to) = p (6.13)

dQi = g:(P, Q)dt + (P, Q)dw, Q(to) = q, (6.14)

An order 2 weak Taylor scheme [4, Chapter 14.2] for the Ito system (6.13)-(6.14) is
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given in the following equations:

B 2 3/2 o
By by + 1260+ B n() + T olo) + () + A ’<c2 -~ (1)
- 12 h2 hS/ZC )
Q=g+ hg+n2cy + o) + "0 (o) + Lata) + M0 <) e

where f, g, o, v and their derivatives are calculated at (p, ¢), and the operators Ly and
Ly are given by

n 1 < & 0? 0?
b Z(fﬂap “95g;) 3 12( osam g g

Jj=1 i=
B 0 0
Ly = i
=3 (von +1ag)
The random variables ( are generated independently at each time step according to
the discrete distribution given in (6.4).
For i = 1,...,2n let denote A’ = Xi — 2%, where X = (PT, QT)T. Then from [5,
Chapter 8] we know that

‘E (H Al — HM) ‘g Ko(x)h®, v=1,...,5, Ko€F. (6.17)

j=1 j=1

Let define p by
pi=XI—Xi=N N | j=1,.2n.
Expanding the terms in the right-hand side of (6.5)-(6.6) around (p, q), we get

Jj+1

A"=Ai(p.q)+ R;(P,q), |Rj(P,q)|<Fh™>, i=1,..2n,

where I; € F, j=1,...,5. For example, if n = 1, we define recursively
oG oG ) 0?G oG C20G (11
Al — _p120 220 AL p1)2 LAEmN © , 6 0Guy
1 C aq ) 2 ( aq 1 aqa aq + 2 aq 9

0Gu PG (A2SG, 0G0  C20CG.
A h1/2 1) Al 1) 1 RN h (0) S (1,1
C( dg "2 oq0p T2 g% dg 2 aq

A%ﬁ 9G (o) N ¢?0Guy hg,/2C G 1,0) 5G(1,1,1) 0G0, ’
op \ 0Oq 2 0q 2 Jq dq dq
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oG 0*G (AD2O3Gy  (AD?O*G oG
Al — _pl/2 1) Al 1) 2 1) 1 OREE h (0)
1 ¢ ( 9 " "%qp T2 0g%p T 6 040%p dq
20G 0 (0G 20G AN? 9?2 (0G 20G
CoGay | Al o COGuy) , (A1) 0 o , ¢ 9Gan
2 0q dp \ Jq 2 g 2 0%p \ Oq 2 Oq
oG oG oG 0 [(0G oG oG
TV (1,0) (1,1,1) (0,1) ard (1,0) 1,1,1) 0,1)
2 C( dq + dq + dq + Lop dq + q + dq
h? (0G 190G 1 /0G oG
_h7 0o  L9Gaiuy 1 Lo 9G0LY ’
2 dq 4  Oq 2 q 0q

+

Al = _pi2¢ G Ala Go) |, (8y)° PGay | (A3 0'Gy N (A} Gy
g dq 1 9q0p 2 0q0?%p 6 0q03p 24 0qo*p

0Go 0Guy 0 [0Ge COGun\ (A2 @ [9G

_h SOt ALY s %a,

( g 4 ¢ op\Tag T2 0 )T 2 2\ oy

2 0G| D393 110G 20G oG oG

L C9Gan ), (A) 7 © , ¢ 9CGan h3/2C 0o , 9Gary
2 0Jq 6 Pp \ 0Oq 2 Jq 2 dq dq
80(0 1) 1 0 8G(1 0) GG(l 1,1) GG(O 1) (Al) 82 oG (1,0

k] A . ) Es) k]

Yo T\ Tag T T o )T 2 o\ o
Gy  9Gy) h* (0G0 10Gui11) 1 (0Ga10 0G0

+ q + dq 2 dq + 4 Oq + 2 dq + dq

+ard 0 (aG(o,o) N 10Gaa, +1 (aG(l,l,O) n aG(o,u)) >)
2

Lop dq 4  Oq dq dq
Similarly, we define A?, j =1,...,5, starting from A} = ht/2¢(= 80(1)
Using MAPLE software for the calculations and using the assumptions on the
smoothness and boundedness of H©® and H® and E(Y) = 0,1 = 1,3,5, it is not

difficult to verify

o3l < Ka(w)h?, (6.18)
1By = | B (& - &) \s Koot (6.19)
|E(p;AY)] < Ks(z)h*, i,j=1,...,2n (6.20)

for any i,5 = 1,...,2n, where K; € F, [ = 1,2,3. Moreover, from (6.10), we get

A< Ky(x)h? j=1,....2n, 1=1,2,..., K,€F. (6.21)

125



Hence from (6.18)-(6.20), we obtain for v = 2
2 2

|E(H Al — H A9 = [E(T(AY + pi,) - [[AY)| < K(2)h®, KeF. (622

j=1 j=1

For v = 3,4,5, the difference [];_, Al — [[;_, A% consists of terms including either
a product p;; -+ p; with at least 2 factors, or a product p;, - (A™--- A™) with at
least three factors. Hence, using (6.18), (6.21) and the Cauchy—Schwarz inequality

inequality, we can easily verify that that
‘E (H Al — HM) 'g K(x)h®, v=3,4,5, KeF. (6.23)
j=1 j=1

The inequality (6.12) follows from (6.17) and (6.19), (6.22), (6.23).

To conclude the proof, we have to show that for a sufficiently large number m,
the moments E(||Xy|") exist and are uniformly bounded with respect to N, where
h = T/N, and £k = 0,...,N. Since E(¢{) = 0, expanding the terms in the right-
hand side of (6.5)-(6.6) around (p, ¢), and using the assumptions on smoothness and
boundedness of H® and H, we can show that |E(A)| < K (14| z||)h. This inequality
and (6.10) ensure the existence and boundedness of the moments E(||X}||") (see lemma
9.1in [5)). O

Analogously, we can prove the following result for the midpoint scheme.

Theorem 6.4 The implicit method (6.8) for the SHS (5.1) is symplectic and of weak

order 2.

The convergence of the symplectic weak scheme of any order m constructed using
the generating function S, i = 1,2, 3, can be proved in a similar way using Theorem
9.1 in [5] and comparing with the corresponding explicit order m weak Taylor scheme

in Chapter 14 in [4].
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6.3 Numerical Tests

To validate the performance of the proposed symplectic schemes, we perform numerical
simulations. Since we work with weak schemes, for the MCS we only need to simulate
uniformly distributed random numbers, and to calculate the expectations, unless we

specify otherwise, 100 000 samples were used.

6.3.1 Kubo oscillator

In [7] the Kubo oscillator based on the following SDEs in the sense of Stratonovich is
used to demonstrate the advantage of using a stochastic symplectic scheme for long

time computations:

dP = —aQdt — oQ o dw;, P(0) = py,
(6.24)
dQ = aPdt+ ocP o dw;, Q(0) = qo,
where a and o are constants.

Here, we consider the Euler weak scheme given in Chapter 14.1 in [4], and four
stochastic symplectic weak schemes, namely the first and second order schemes based
on S! and S3. The coefficients G, of S! for system (6.24) are given by (see the general
formula (5.43)):

G%o) = g(P2 +92): Gh) = %(PQ +C_12), G%O,O) = GQPCL G(11 = UQPQ

G(1 0) G%O,l) = aoPyq, G%o,o,o) =ad’ (P’ +¢°) G(1 11 = =0’ (P’ +¢*)

G(l,l,O G(IO 1) G%o,m) = aaz(PQ + q2), G(1,1,1,1) = 504PC]7

where everywhere the arguments are (P, ¢). The symplectic schemes of various orders
are obtained by truncating the generating function S! appropriately (see (6.5)-(6.6)
for the second order scheme).

For S2, replacing in the general formula (5.45), we get G3 = 0 when [(a) = 2 and
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Figure 35: The expected value of P(t) (a) and Q(t) (b) for (6.24) with a = 2, 0 = 0.2,
p=1,¢=0, and time step h = 275: solid line; second order S! weak scheme, dashed
line; Euler weak scheme

From [7], it is well-known that the Hamiltonian functions H (P(t), Q(t)) = aw
and HO(P(t),Q(t)) = Uw are preserved under the phase flow of the system.
Therefore, the expected value of P(t)? + Q(t)? is also invariant with respect to time

and we have

2, 2

E(P(t)) = e~ (pcos (at) — gsin (at)), E(Q(t)) = e = (psin (at) + qcos (at)).
(6.25)
In Fig. 35, we compare the exact values (6.25) with the estimations obtained using the
explicit Euler scheme and the second-order weak symplectic scheme (6.5)-(6.6). It is
clear that the second-order weak symplectic scheme produces very accurate estimations,

while the Euler scheme fails even for a short term simulations.
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Figure 37: Convergence rate of different order S3 symplectic weak scheme for (6.24).

The convergence rates of various symplectic weak schemes are investigated numer-
ically by comparing the estimations of the expected values of the solutions with the
exact value (6.25). Fig. 36 and Fig. 37 both confirm the expected convergence rates
of the proposed symplectic schemes. The error is defined as the difference between the

estimation of the expected value of solution from the numerical scheme and the exact

value (6.25) at 7' = 10.
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6.3.2 Synchrotron oscillations

The mathematical model for the oscillations of the particles in storage rings ([7]) is

given by:

dP = —f%sin Qdt — oy cos Q o dw; — oy sin Q o dw?,
(6.26)
dQ) = Pdt.
Notice that HO(P,Q) = —B%cosQ + P?/2 = U(Q) + V(P), HY(P,Q) = o,sinQ,
H®(P,Q) = —0yc0sQ, so (6.26) is a SHS with separable Hamiltonians. Thus the
explicit symplectic schemes in Section 4.2 in [6] can be applied.
Replacing in the general formula (5.43), we obtain the following formulas for the
coefficients G, of S}
p2

G%o) =5 B? cos g, Gél) = o8ing, G%Q) = —05 08 ¢,

G%O,O) = $*Psing, G%o,n = 01Pcosq, G%OQ) = 09 Psing,

0%071,1) = a% cos? q, G%O,Q,Z) = ag sin? q,
where everywhere the arguments are (P, ¢). All other G, included in the second order
weak symplectic scheme based on the generating function S} given in (6.7) are zero,
and the first- and second-order symplectic weak schemes based on S are explicit for
the SHS (6.26).

The mean energy of the system (6.26) is defined as E(e(p,q)), where e(p,q) =

p?/2 — B%cos(q) ([6]). If o1 = o9 we have ([6])

E(e(P(t;0,p,q),Q(t:0,p,q))) = e(p,q) + %Qt- (6.27)

To check the accuracy of the proposed symplectic weak schemes, we run MCS and
estimate 95% confidence intervals for E(e(P(t;0,p, q), Q(t;0,p,q))) as

—Se(ti/o’ﬂp’ 9) , (6.28)

where M is the number of independent realizations in the MCS, &(¢;0,p,q) is the

é(t;0,p,q) £ 1.96

sample average and s.(t; 0, p, q) is the sample standard deviation (see also formula 7.7
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in [6]). In addition to the weak scheme error, we also have the Monte Carlo error, but
the margin of error in the confidence intervals (6.28) reflects the Monte Carlo error

only.

Table 2: Simulation of E(e(P(200;0,1,0),Q(200;0,1,0))) by the second order weak
symplectic scheme based on the generating function S} given in (6.7)
h M €(200;0,1,0) s.(200;0,1,0) 95% confidence interval

0.05 10° -6.609 0.029 -6.665 to -6.552
0.025 10° -6.544 0.029 -6.601 to -6.488
0.01 10° -6.497 0.029 -6.553 to -6.44
0.01 4-10° -6.502 0.005 -6.511 to -6.493

The experiments presented in Table 2 demonstrate that the second order weak sym-
plectic scheme based on the generating function S! given in (6.7) has similar accuracy
with the explicit symplectic schemes (7.3) and (7.5) in [6] (see Table 1 in [6]). The
values of the parameters used in the simulations are o1 = 09 = 0.3, § = 4, the initial
values are P(0) = 1, Q(0) = 0, and ¢ = 200. The sample averages €(200;0, 1,0) dis-
played in Table 2, corresponding to various time steps h and number of realizations M,
are good estimations of the exact solution E(e(P(200;0,1,0),@(200;0,1,0))) = —6.5
obtained from (6.27). This proves the excellent performance for long term simulation
of the second order weak symplectic scheme based on the generating function S’ given

in (6.7).

6.4 Conclusions

We present a systematic approach based on the generating functions to construct sym-
plectic weak schemes of any order m for a general stochastic Hamiltonian system. For
order m = 1, the derived weak scheme is the same as that proposed in [6]. However, it
should be noted that a different approach is reported in [6], but no detail is provided

how to extend this approach to construct symplectic weak scheme of order m > 1 for
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general SHSs. In this study, we focus on the proposed second order symplectic weak
schemes. To our knowledge, this may be the first to present the second order sympletic
weak schemes which can be applied to general SHSs. It is important to recognize that
higher oder weak schemes can be derived using the same procedure reported in this
work.

For the symplectic second order weak schemes, we present a convergence study and
validate their accuracy by numerical simulations for two different stochastic Hamilto-
nian systems. It is known that there are effective explicit methods of weak order 2
for general stochastic differential equations ([4, chapter 14]), but these methods are
not symplectic. Compared to the Taylor expansion methods, the proposed symplectic
second order weak methods are implicit, but they are comparable in terms of the num-
ber and the complexity of the multiple Ito stochastic integrals or the derivatives of the
Hamiltonian functions required. Moreover, since for weak schemes we can use bounded
discrete random variables to simulate the multiple Ito stochastic integrals, the derived
symplectic implicit weak schemes are well defined and they are also computationally
efficient.

Constructing weak symplectic schemes with high order (e.g. m > 4) is important
from a theoretical point of view. Regarding a practical implementation, the Monte-
Carlo simulations included in Section 6.3 for the symplectic schemes of weak orders
m = 1 and m = 2 do not require variance reduction methods, but for orders m > 4, it is
expected that the accuracy of the results will be influenced by the increasing variance.
In addition, the weak symplectic schemes with higher order involve high order partial

derivatives of the Hamiltonian functions.
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Chapter 7

Symplectic schemes for stochastic
Hamiltonian systems preserving

Hamiltonian functions

Unlike the deterministic cases, in general the SHS (5.1) no longer preserves the Hamil-
tonian functions H®, i =0, ..., n with respect to time. However, by the chain rule of

the Stratonovich stochastic integration, for any ¢ = 0,..., m we have

. " OH® H® n H® 9
dH® — Z(a dP + 0 dQ) = Z( OO
k

oP, 9Q 0P, 0Qk
aH(i)lg;[(O) mr 9H® 3;[1(T) OH® §H ™ (7.1)
+ dt + — + o dw;
0Qy 0P, ) ;;( 0P, 0Q Q. 0P, ) K
Thus, the Hamiltonian functions H® i = 0,...,m are invariant for the flow of

the system (5.1) (i.e. dH® = 0), if and only if {H® HU} =0 for i,5 = 0,...,m,

where the Poisson bracket is defined as {H®, H)} = ZZ=1(85%(Z) 653(;) — 86%(: 8;;}:)).

In this Chapter, we propose symplectic schemes for the special type of SHS preserving
the Hamiltonian functions. This type of SHS is a special case of integrable stochastic
hamiltonian dynamical systems which has been studied in [2].

The main results are included in section 7.1 where we prove that the coefficients
of the generating function are invariant under permutation for this type of systems.
That allows us to construct in section 7.2 strong and weak symplectic schemes of order
two and three simpler than non-symplectic explicit Taylor expansion schemes with the

same order.

134



7.1 Properties of G,

In this section we prove an invariance property of the coefficients G?, of the generating
functions S!

w?

index o = (i1,...,7%) with [(a) = [ let denote by m(«) the multi-index defined as

i =1,2,3. For any permutation on {1,...,l}, [ > 1, and for any multi-

7T(O./) = (iﬂ(l), N ,iﬂ(l)).

Based on formula (5.43) we have the following result.

Theorem 7.1 For SHS preserving the Hamiltonian functions, the coefficients G of

the generating function S. are invariants under permutations, i.e G, = Gw(a

Proof: By induction on the length of the multi-index «, the coefficients G of S}
are invariant under the permutations on « for systems preserving the Hamiltonian

functions, when [(«) = 2 because for any ry,7, = 0,...,m we have

OH2) g OH) 9H )
Z Z

Gt =G )
(r1,r2 (?qk aPk aqk 8Pk (r2,r1)

(7.2)

We assume that GL = G}r(a) for any multi-index a with I(a)) < [ and any permutation
mon{l,...,l(a)}. Let consider any multi-index a with I(«) = [. We suppose that the
components of the multi-index « are distinct, otherwise we rename the repeating ones
with distinct subscripts. To prove that G} = G}T(a) we analyse several cases, depending
on the permutation 7 on {1,...,1}

Case 1 Let first consider any permutation 7 such that () = [. Then we can write
@ = (i1,...,4-1,7) and 7() = (iz1),---,ix@-1),7), With 7 =4, € {0,...,m}. From
(5.43) and Gy = G4 for any multi-index 8 with I(3) < we get

l—11 n ZH(T

oGl 9GL

. Ry an )4t (o) =l— , Pk OF%,
Oé_eAal ..... oy
" o' H( oG! oGt
= IR pya
Z il Z (9q Z 0Py, OP,, m(a)

ki, o Yk l(on)++l(ag)=1-1
77(01) GAal ,,,,, [e%
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Case 2: Let consider any permutation 7 such that 7n(l) =1 -1, n(l — 1) = I,

(a—)— = (m(a)—)— Then we can write @ = (i1, ...,%-2,5,7) and 7(a) = (iy,...,4_2,7,5),

with r =4, € {0,...,m} and s = 4,1 € {0,...,m}. Since Ay, 0, = Aay.a, and s is the

"largest” number with respect to the partial order < on a— we can write

N e T2

k1, o Yk l(ag)+-—+1(o)=l—

o— eAal ,,,,, fe
» Al
_ Z H" 0G (a)-)u(s)
aqkl (9Pk1

1 “ OSH®  9H®)
+y —

oGl AGL
OB, OB,

7

oGL,  9GL

(a—)—€Aasy,...,0;
- § 1 ’il Xn: &' H® > oG, OGL
£ | g, - . . Oy, 9P, U oP.

i=2 " G=1 ki, k= o L )+ () =1—2—7,
Uar)=j, (a—)—€Aay,...,q
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Using formula (5.43) for the first and the third terms, we get
OH( — 1l 9" H®)
= o (G X
Z 80}31 oG,
oF,, 8Pcu

U(B1)++1(Bu)=l-2
(O‘_)_EAﬂl 77777 Bu

1 iHO  9H®)
TP
1=2 (Z B 1)' ki, k=1 aqkl e aq’% aP}Cl
s %G G,
aPkJQ aPk

S oG., G
op,, 0P,

0 (ZJ: 1 Z”: O"H) 3 oG}, aG;u)
' e .
0Py, “—~ ul . 0Gey - - - 0qe, Bt T8 =i 0P, oF,,
a1€AB ... By

.......

By the product rule, we separate G into two sums denoted by T} and T, such that
Ty is formed with all terms not including differentiation of the Hamiltonian H®) with

respect to P, for any i = 1,...,n. Thus G} = T} + Ty, with

OH"  9*H) o (0Gs — 0Gy,
SIS > (o)

u=1 """ ky,er,ecu=1 8qk1 aqcl o 'aqcu 1(B1)+++1(Bu)=1-2 apcl aPCu
(a=)—€Apy,....8,
2 ig®  gup®)
+
=2 j=1 ; u' Z o 1 Z aq’“l e aq’% 8qu s aC]Cu
01 ,,,,, cu:1
1 1
aPkQ OBy, 8P/€1 8P01 aPCu
ag)+++l(ei)=1—2—1], © B+ +l(,3u)
Hon)2s,  (am) g i

After some simple manipulations of the summation indexes and Ay, 0, = Aay a4, it give
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. z": OH®M OHE) PG,y
e dqs, 0qe, OPs 0P,

k1,c1=1
+§ 1 Z”: OH")  g"H®) 5 9 (aGgl 8G}3u>
_' ..
L Oqe, 0qe, --.0qc, (B e B 8Pk1 OF,, oF,,
(a—)—€Agy .8
-2 [—i—1 n l—i—1
1 "H) OvH®)
22 T 2 > >
— 1))
=2 u=1 (i = Dlu! kyoooki=1 Ok, - - - O ey - - - 9, Jmu ()t () =1—2— ],
Clyeeey cu=1 l(al):j7 (af)*EAal ..... a;
OG! oG!

oGl aagu>

=g X a(
0P,  OPy . =  OPy\0F, O,

oGy G )

1 OH®  9eH) )
a X > (e

aqk’l aqcl o« aqou l(51)++l(5u):l_2
(a—=)—€Ap,y ... By

i F(7) OvH ()
+;;u'2—1 Z_ Ok, - - 0qy,; 0qc, - .. 0qc,
c1 .......... cufl
Z oGL, 0G. 0 8G}31 6G}3u
8P, 0P, 0P, \ 0P, 0P,

Wag)++l(Bu)=1-2
(a_)_eAag ,,,,, ;8155 Bu
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Using again the product rule and Ay, o, = Aa,.q,, We obtain

n r s 271
1=1 anl aQCl aijl apcl

L2 n CI ) 2!
+Z(u—11)' 2. 8aH aaHa D azfg??
_ "k =1 qk, Ofcy - --0qc, 1<1(8)<l—1—u k1YL ey
R(B)CR((a—)-)

1 1
Z aGVl aC;'Yu—l
oF,, ’ oP.
UB)+H1(y1) -+ (yu—1)=l—2 b
(a_)_eAﬂ’n SVu—1
-2 n ;
1 OFHT  9HG) J*GL
LD D DR Y. 7poP
i=2 ekt ki=1 Ty - - - Ok Oy 1<U(B)<l—1—i &

R(B)CR((a—)-) (7 4)
acl,  oc, -

> T
l(/B)‘H(’Yl)—H(’yz,l):l—Q i
(a_)_eA,B V1 Vi—1

353 > g
+
=2 u=2 Z B 1 U - 1 =1 8C]lﬂ . an 8(]61 c. 8qcu
cl .......... c u:l
2,1

len
= . OPLOP,
R(B)CR((« ) )

> oGy, 0G_ 0G)  0Gl .,
, 0P, oF, OF, IF,

UB) (v )+ H (Yitu—2)=l—
(a_)_eAﬂ,’u ,,,,, Vidtu—2

Notice that if we sum first with respect to u and next with respect to i, we can rewrite

the last term as

>y R DA
— = (1 — 1)l (u—1)! i) 8qk1. .0qk,; 0qey - - . 0qe, <UD 0Py, 0F,,
e R(B)CR((e)-)
1 1
Z 8G,171 N oG, | 8G;¢ ' 8G%+u ,
0Py, 0P, 0P, oP.,

LB+ (y1)++(Yigu—2)=1-2
(a=)—€Ag ..., Yidu—2

Thus by switching s and r, the formula (7.4) for 77 does not change, so T} is symmetric

in s and t.
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From Eq. (7.3) and G, = T} + Ty, we have

N Z iHO 9H®) S oGk, G,
2 = —a .
im LT M T anl . an apkl Uon)+ AU as)=l—2 8Pk2 8sz
(ai)ieAOLQ ,,,,, a;
. l‘zz 1 i OH® gt H®) 5 oGl aG},
u—1 u: k1,c1,mcu=1 anl aPk‘I@Q(ﬂ Tt anu 1(B1) 4+ (Bu) =1—2 aPa 8PCu
(a=)—€Apy,....6
IS i) U+ ()
+ = =1 ; (1—1) 'u' Z 8qk1. .0qy, 0P, 04, - .. 0qe,
c1 .....
ac:;z 6G§” > aGY  OGh,
oy titmmia—g, 0Tk Py T OFa OF,
Ha1)=j (a=)—€Aaq,....,04 01€AB, ... By

Similarly as for 77, using Aa, .0, = Aay,a,, We obtain

OHLHT  9H®) aGil 8G}M
Z@' Z dq 0q;, OF, l Z

k1 - - - 8Ph

k1,41..5i=1 (?1)§~~+Az(ai>:l—2 OF;,
a—)—¢c QY 5eeny [e %3
N Z Z”: OH™ 9T H® > 0Gh  0GY
i=1 " kyg1.0i=1 aqkl 6Pk1 anl e 'aqji l((ﬁ1)'~)' +/l\(/81) aP]l apjl
a—)—=€Ng,, ...,
-2 1—i—1 1 n i ) gu+1 )
* Z Z (1 —1)lu! Z Ok, - - - Oqy, OPy,0qe, - - . 04
i=2 u=l1 ki,..., kZZ% v u
Clyeeny Cuy=
1 1 1
3 0GL,  0GL 0Gh G},

o gTomt—a 0Tk 0Py 0Py OF,

(0‘7)76‘/\0&2 ~~~~~ @B,y Bu
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Introducing a new summation index v = ¢ + u — 1 for the last term, it gives

Hitl H(r) 8H(S)
2= Z Z dq dg;, OPy, | 2

" k1,g1edi=1 gy - - (1) +—+l(ag)=1—2
(a*)*eAal ,,,,, «

oGL,  OGL,
op, " oP,

n

aH(r) ai—l—l H(s) aGél 8G[132
+ Z ' Z 8qk1 alak;1 8(]]'1 . Z

=1 kujiesgi=1 - 04, U(B1)++1(Bi)=l anl oF;,
(a=)—€Ag, ... 5;
v n azH r 8v+2_iH(s)
+
Uz; ZZ; (t— DN v—i+1)! m;’:jv:l 04k, 0¢j, - .. 0qj,_, 0Py, 0q;, . .. 0q;,
1 1
Ly1) 4+ (yo)=1-2 0, op;,
(@=)—€MAy om0
Notice that T5 can be expressed as follows
-2 n
1 oM OH™ 9H) oGL  0G!
TQ:ZU 2 9g;, - - - g (561 oP ) 2 T
o=l ko=t R L O = A o

(a=)=€Ayy, ...y

(7.5)
. . . OH™ 9H)  gH() gH(s)
Hence T, is symmetric with respect to s and r because Dar, 0P — OPn Oan for any
k‘l = 17 o, n
Thus Gy, is symmetric with respect to r and s, so we have G, = G,
Case3: For any arbitrary permutation 7 on {1,...,l} not in any of the previous

two cases (i.e. 7(l) # [ and either w(l) #1—1 or w(l — 1) # 1), let consider any multi-
index a = (i1, ...,%-1,%), () = (ix1), - - -+ %n(-1), Ix@)) and denote r = i, s = ir).
Since 7(l) # I, we have r # s, and there exists k € {1,...,l — 1} such that i, = s.
We consider a permutation 7 on {1,...,[} defined by m (k) =1—1, m(l —1) = k,
m(u) = u, foru =1,...,l, u #k, u # 1 —1. Thus m(a) = (ir,a),.-.,5,7), and
from cases 1 and 2 we know that G} = G}rl = G}, where oy = (ir,(1),...,7,5).
Notice that oy = (i1,...,%4-1,...,4,5), SO we can obtain 7(a) from oy applying a
permutation m with m2(1) = I, and from case 1 we have G;,, = G, ) = G} ,)- Thus

ma ()
we get Gl = G}r(a)
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Putting together the previous three cases, we conclude G, = G}r(a) for any permu-
tation 7 and any multi-index o with I(a) =1 O

Given that the coefficients of the generating function S2 are obtained replacing in
the recurrence (5.43) ¢ by p and P by @), we can easily adapt the previous proof to
show that the coefficients of S? are also invariant under permutations .

A similar result hold also for the coefficients of the generating function S2 and it is

based on formula (5.45).

Theorem 7.2 For SHS preserving the Hamiltonian functions, the coefficients G3 of

the generating function S2 are invariants to permutations.

Proof: By induction on the length of the multi-index «, the coefficients G2 of S?

are invariant under the permutations on « for systems preserving the Hamiltonian

functions, when [(«) = 2 because for any 1,75 =0, ..., m we have
1« OH) gH™)  9H2) gHT)
?rr):_§ - - :O:G?rr) (76)
24— Ok OYrtn  OYktn OUk o

We assume that G2 = Gf’r(a) for any multi-index o with /() < [ and any permutation
mon{l,...,l(a)}. Let consider any multi-index a with I(«) = [. We suppose that the
components of the multi-index « are distinct, otherwise we rename the repeating ones
with distinct subscripts. To prove that G2 = G?r(a) we analyse the same three cases as
in the proof of theorem 7.1. The arguments for Cases 1 and 3 are similar, so we will
present the details only for Case 2.

Let consider any permutation 7 such that «(l) =1 —1, 7(l — 1) = I, (a—)— =

(m(a)—)—, and denote o = (iy,...,%_9,8,7) and w(a) = (i1,...,4_2,7,5), with ;s €
{0,...,m}. Notice that for any 2n- dimensional vector v = (vy,...,v9,)T we have
T = (—Ung1s e Vopy U1,y e oo, V).

Since Ay .0, = Aoy, and s is the "largest” number with respect to the partial order
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< on a—, from formula (5.45) we get

ng Z s DO AR

n r 3 r 3
B aH( ) 8G((a—)—)*(s) 8H( ) aG((oz—)—)*(s)
Ok, OYy+n k1 n Oy,

OH®)

ag)++l(a;)=l—2
(af)feAaQ ,,,,,
-2 1 I—i—1 n
X =DIDY 5 > (TG,
=2 © =1 ki=lko, k=1 l(on)+-+(ag)=1—2—7,

lla1)=4, (a—)—€Aay,. o

OH"  0Gg,. OHD OGG
— ) ¢
OYky - - OQk; OYky+n  OUkytn ---OQr;,  OYk,
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-1 n 2n ; ;
1 OFHT  9H®) OH™
— 2i(i — 1)! Z Z OYky - Ok, OYkyon OYkygm - - - OUr, Oyp,

)

L (JTIVGE ),



Using formula (5.45) for the first and the third terms, we obtain

n OH®™
3 S

k11

2

(Bl)+ +l(6u)

0

ayk aykl +n

(J’1VG31)Cl

L

2n

L2

.....

lecgi)c)

OH™)

+
aykl +n

OvH®)
ey - - OYe,

)

( ) eAﬂl ..... Bu
0 ( QZ" uF (5) Z (J*1VG3) (VG >)
Ok, ey - e, ver pisei
C1,..ey )+ A (Bu)=1
a—)—€Agy .. By
-1 n 2n .
1 O'H™  9H®) OH"  9H®
* 2%(@-1)'Z 2 (‘a Dy, D B Dy, O
i—2 " k1=1 kg,... ki=1 Yy - - - OYk; OYki4n Ykr4n - - - Ok, OYky
Yo UTVG k- (JTIVE)
Wao)+-+l(ay)=l-2
(a_)_eAa2 ,,,,, o
-2 1 l—i—1 J 1 n 2n
) g D 2 2 > (J7IVGE, )i,
— 2i(i — 1)! 2uqy
1=2 j=1 u=1 k1=1ko,..ki=1 l(o2)++l(a;)=l—2—},
l(a1)=j, (a=)=EAay..a;
&' H 9 2 Ol
RGN (¥ 20
' Wk -+ O OYryin \ | Sy OWer - - e,
O H 9 2n
S VG VG (S
1B+ +1(Bu)=3 Ykitn - Ok Oy \,| 7 1
Q1ENB ...,y
(JIVGE)., . (J‘IVG%u)cu))
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As in the proof of theorem 7.1 we separate into G2 = T} + Ty with

-2

= 22u+1ulz Z 3y

ki=lci,....,cu=

(r)
Z (_aaH ; 0 ((j*1VG31)Cl o (J71VG%U)CU)
1(B1)+++(Bu)=1-2 Yki OYki+n

(a=)—€Ap, ..,
OH™ 9

ayk 1+n 8yk1
i-1 j

1-2 1—i—1 on guE®)
+Z Zl Z2u+zul Z—l | Z Z ay ) 8ycu
J

1=2 u=1 k1=1 ko,..., i

(J7'VGE)e, - (J'VGE)e,) )

> (JTIVGE g, - (TGS ),

(77 7
(o) ++(ay)=1-23,
l(al):j7 (af)feAal ,,,,, @

i 7 (r)
> (— oH 0 ((J1VGgl)cl...(J1VGgu)Cu)

1(B1)+++1(Bu)=] Ok - - - O, Ors-4n

N OHD %)
8yk’1+n CRE aykz aykl

((J—lva?’l)q . (J—lvc;gu)%))
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After simple manipulations of the summation indexes and Ay, 4, = Ay .0y, it gives

"2 HHE) ( OHM O(J'VGY, ) )ey  9H®™ a(J—lvc;?a_)_)q>

1
T = - +
1 22 Z Z aycl 8yk1 8ykl+n aylirn aykl

ki=1lci=1

-2 1 n 2n v H )
tlgma 2 2 gy

C
ki=1c1,...,cu=1 w

H™
Z <_aa : 0 ((J*1VG31)01 o <J71VG3H)CH)
1(B1)++1(Bu)=1-2 Yky OYki4n

(a=)—€Ap; ... 8,
OH™ 9

OYky+n OYr,
-2 |—i—1

1 n 2n uH(s)
2D a2 2 ay o
=1

i=2 u=1 k1=1 ko,....k;

(J7'VGE)er - (JT'VGEE)e,) )

> (J7IVGE )iy (JTIVGEE )

) +-+1(Bu) =12
(O‘_)_GAQQ ..... ;1515 Bu

OH o)
(_aykl o OYr, OYy4m
OH %)
Oy - - - OYk; OYpy

((J1VG31)61 . (JWG%M)%)

((J—lvagl)cl . (J—lvagu)%))
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Using again Ay, 4, = Ay, and the product rule, we obtain

T1:

1 i <8H(’”) OH® 0GP, . OH™M §HE PG,
22 2~ N\ Or OYer OYri4nOYerin  MWhitn OYerin 3yk18yq
_9H") 9H® G,y _ 9HW 9H® PG, )

3yk1 8ycl+n OYrr4nOYer  OYki+n OYer OYk OYern

OH®  uH(s) 0263
e N YD VN ﬁ

k‘1 c1=1ca,...,cu=1 1<I(B)<I-1—u aykl 8y01 te aycu aykl-l—n@ycﬁ-n
R(B)CR((a )—)
n OH) v H () 82G% OH™ L 2i0) azG%
aylirn 3yc1+n cee 8ycu 8yk1 8y61 8yk1+n 8ycl c 8ycu 8yk1 8y01+n
OH™) OUH ) 9203
e T o) gy 3 T 7T e
Yk OYci+n - - - OYc, OYk14+n0Ycy UB) (1) A (a1 ) =12

(@=)—€AB 1.y

GHD  gHY) 9GS
" Z 21+1 Z - 1 Z Z Z (8yk1 s aykl aycl ayk1+nayc1+n

k1,c1=1 ko,..., ki=1 1<l <l 1—3
R(B)CR(( -)-)

N OH™  9H®  0*G IH™  9H®) PG
MWiran -+ OYk; Oerdn OUri0%e;  Okyan - - Ok, OYer OYry Oy 4n
O'H™  9H®  §*GE _
-5 55 5 g ) > (J'VGE Dk, (JTIVGEE i,
ykl st ykz y01+n yk1+n y01 ( )“Fl('}/l)“rl('}/z—l):l*Q

(a*)’eABﬂ SVi—1

-3 1—i—1 OH OvH ()
+ZZQ““1—1 l(u—1)! Z Z Z (8yk1...8yki8y01...8qcu

=2 u=2 k1,c1=1 ko,...,ki=1 1<l(B)<l—i—u

el em1 R (e
0*G3 O'H™ OUHE) PG
_|_
MWy +n0%ci4n  OUkign - - OUk; OYergn - - - Oe, OYry OYey
O H™ v H ) 626% OH ™ OvH () aQG% )
aykl s ayki ay01+n cee aycu ayk1+n8y01 aylirn s ayki ayal s aycu 8yk18y01+n
> (TG iy (VG (TG ey (VG ),

UB) (1)t H (Vitu—2)=1-2
(D‘*)*eAB,'yl ..... Vitu—2

Notice that the previous formula does not change by switching r and s, so 77 is sym-

metric in r and s.
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The difference Tp = G2 — T} is given by

— H®  9H®) OH®  9H®)
T, = +
i Z (i —1)! Z Z ( OUry - - - OYk; Oryon OUkytn - - OYr, Oy, )

i=2 k1=1ks,....k;=1

3 (TG )y, . (JTIVGE ),

-2 n n
1 oHw gt oH™ gt HE)
- Z u+1,/1 Z Z (_ + )
2utlyl “ Ok, OUYky+00Yc; - - OYcy  OUky+n OUk, Oy - - - OYe,

> (J7'VGE ey ... (JTIVGEE ).,

UB1L)++1(Bu)=1—-2
(a=)=€Apy,. By

-2 1—i-1 j (r) 8u+1Hs)
+ Z Z Z 2u+z @ — 1 1! Z 21( 8yk ayk aykl—i-naycl' ‘aycu

=2 j=1 wu=1 k1=1 ka,...,
Clyeeey cu—l
azH(r) au-‘rlH(s) )
+ > (J7IVGE )iy (JTIVGE )y,
ayk1+n . aykz ay’ﬂaycl s aycu Ua) -+ ) =l—2— 3,

l(al)—] (Oé ) €A Q1 yeeny a;

Y (VG e - (JTIVE).,
l(ﬁl)"""""l(ﬁu):j

Introducing new summation indexes j = ¢ — 1 for the first term, and v =7+ u — 1 for
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the last term and using Ay, o, = Aay.ay, We Obtain

OTHT  gH®) oI H ™) aH(s))

;= - -

2 Z 2J+1J| ;;cl,,zcj—l ( Wiy -+ OYe; OWryin OYkyin - - - OYe; OYry
> (J'VGE ey - (JTIVED ).,

l(a1)+---+l(a]~):l72
(a—)—EAal ,,,,, o

H () outl g (s) OH™) out1 [ (s)
+ Z >y +
2u+1u‘ 8yk1 ayk’ﬁ-nayq B aycu aykﬁ-n 8yk18y01 s 8ycu

ki=1c1,...,cu=1

> (J7IVGE ey . (JTIVGEE ),

H(r) 8v+2—z'H(s)
+ Z Z vt (i — Dl (v —i+1)! Z Z ( OYk, OYjy - - - OYj,_y OYky 400V, - .. Oy,

v=2 =2 k1=171,.,Jv=1

O'H® g H®) )
+ > (J7IVGR )y, - (JTIVGEE ),
ayk1+nayj1 - 'ayji—l aykl ayji s aij (Zl)ﬁ"'+/l\(’yv):l72
a—)—=C€Nyy,. .,y

. " §H " 9H®)
Notice that Ty = 0 because 2LZ 20— OHY OHZ {41 any k= 1,...,n and Ty can
y ) )
OYky OYky+n OYky+n OYk,

be expressed as follows

-2
OH" 9H®  HHD) aH<8>)
T, — — +
2= Z 2v+1v| Z Z 0y, -+ ij< Yk, OYkyan  Oky4n O,

k1=17J1,...,jv=1

> (JTIVG ) - (JTIVGES),,
(1) ++H(yw)=1—-2
(=) =€My .m0

Thus G2 = T; is symmetric with respect to s and r 0O

7.2 Symplectic schemes

We now use the generating function method and the special properties of the coefficients

GZ

ol

t = 1,2,3 to construct symplectic schemes for SHS preserving the Hamiltonian
functions. Taking advantage of the invariance under permutations of the coefficients
G',i=1,2,3, we propose strong and weak symplectic schemes of relatively high order

that are still computationally attractive.
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7.2.1 Symplectic strong schemes

Let define A, = {a : l(a) +n(a) < 27}, where n(«) is the number of zero components
of the multi-index «. Symplectic schemes that have mean square order of convergence
k can be build using the equations (5.10)-(5.12) and truncations of the appropriate
generating functions S’ i = 1,2, 3, according to the indexes o € Ayg,. Since these
schemes are implicit, the Stratonovich stochastic integrals should be approximated by
bounded random variables ([5]).

In Chapter 6, we propose first order schemes for the SHS (5.1) based on truncations

of the generating function S?, i = 1,3, according to A,. To construct second order

w?

schemes, we use the following truncations according to Ay:

SfJ ~ Géo) J(O) + Z (Gér) J(v") + GéO,r) J(OJ‘) + GZ('T,O) J(no)) + Géo,o) J(070)
r=1
+ > Ghpdean+ D Glamdean + Y Gljradesns (7.7)
r,j=1 r,j,k=1 r,J,k,s=1
+ Z (GZ('T,J‘,O) Jerg.0) + Géo,r,j)*] (0.r.5) + Gér,o,j)J (r,o,j)) )
rj=1

for any 7 =1, 2, 3.
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Using (5.34) we obtain

JoyJi = Z Jg = Jom + Jro) (7.8)
BEM (), (r)

JoyJ o) = Z Jg = Jorr) + Joro) T o) (7.9)
BEM ), (rr)

Jodmdn =Y.  Js=Jdowj+ -+ JGro) (7.10)

BEM0),(m),(5)
Jodn =Y. Js=Jei+ Jon (7.11)
BEA@),(7)

Jiy ey = Z Js = Jirr) + Jorg) + Jorjr) (7.12)
BEAG), (rr)

Tondoo = > Js=1Jge0 + Joos + J040 (7.13)
BEAG), (rr)

‘](7",7") J(j,j) = Z Jg = J(r,r,j,j) +...+ ‘](j,j,m“) (7.14)

BEA (), (7.5)
J(j)J(r,r,r) = Z J,B = J(j,r,r,r) + J(r,r,j,r) + J(r,j,r,r) + J(r,r,r,j) (715)
BEAG), (ryrr)
Jwdmdo = Y. Js=Jwrp + -+ JGr) (7.16)
BEA ), (1), ()
J(k)J(j)J(r,r) = Z J@ = J(k,j,r,r) + ...+ J(r,j,k,r) (7.17)
BEA kY, (5, (r,r)
J(S)J(k)J(T)J(j) = Z Jﬁ = J(s,k,r,j) + ...+ J(j,r,k,s)7 (7.18)
BEA(s),(k),(r), ()
for any distinct positive integers r, j, k, s = 1,...,m. The previous equations and

Propositions 7.1 and 7.2 give us the following truncations of the genrating functions
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St i=1,2,3:

Si NGZ +Z T‘)J(T _'_G(TT)J(TT +G0T J J(T‘))
r=1

+ G(O 0) (0,0) + Z (rr(] + Glrrr ‘]T’T,T) + Gér,r,r,r) ‘](7’,7‘77",7"))
m—1 m -

+2 > (Glp i) + GlorinTorsdip + Glori 0T n )
r=1 j=r+1

S oo+ Gl s -
rj=1,r#j ’
m—2 m—1 m

m—3 m—2

+ Z Z Gl T 0y Ty o)

r=1 j=r+4+1 k=j+1 s=k+1

Notice that for SHS preserving Hamiltonian functions to construct second order
symplectic schemes, we need to generate only the stochastic integrals Jioy, J0,0), J(r)
Jowys Sy, and Jprrey, 7= 1,...,m. To ensure that these implicit schemes are
well-defined, we proceed as in [5], and to generate the stochastic integrals , instead of
the independent random variables £(r) ~ N(0,1), » = 1,...,m, we use the bounded
random variables &, (r):

~

—Ah 1f§ < —Ah

Enlr) = ¢etr) ¢ < A, (7.20)

Ah lfg > Ah,

\

where 0 < h < 1 is a small time step and A, = 21/2|In h|. Hence we use the following

approximations for the stochastic integrals:

h?
Joy=h Joo =75, Jn= Vhén(r), -
Lo_ngw) W) ) |
(r,r) 9 y (ryr,r) 6 ; (ryr,r,r) 24 .
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For example, for m = 1 (i.e. the SHS with one noise), using (5.10) and (7.19) we
construct the symplectic mean square second-order scheme based on the truncation of

the generating function S!:

OG! 601 E)Gl B2 OGL . he2
Pi(k+1) = P(k) - ( 8C§O)h+ 7. IG5t S+ —agfl)%
3621 0Q; 6 0Q; 2 0Q; 24 (7.22)
8G1 8G1 OGL . h2  OG! h&? '
(0) (1 (0,0) (1,1) 1S,
Qi(k+1) = Qi(k) + ( Vhé, + — —
8P or, 2 or, 2
8G (1, 0)5 8G%1,1,1) hifh n 8G(1,1,0) fhh i 6’G%m,m) thﬁ
0P, 0P, 6 0P, 2 0P, 24

where everywhere the arguments are (P(k + 1), Q(k)), and the random variables &, are
generated independently at each step k according to (7.20).

For the coefficients of S3, a simple calculation shows that G?rhm) = 0 for any
ri, 79 = 0,1 and G(1111 = 0. Hence using (5.12), when m = 1 the second order

midpoint symplectic scheme is given by

Yigr = Vi + J 7'V (Ve )+ T VG (Y 1) VG,

§

hg; &b
6 2
where Y, 1 = (Yiir1+Y%)/2, and the random variables &, are generated independently

+1
+3

(7.23)

+J° 1VG3111( k1 1) +J” 1VG(110)( )

at each step k according to (7.20).

Since the schemes (7.22) and (7.23) are based on generating functions, we can easily
proved that they are symplectic (see also the proof of Theorem 3.1 in [5]). Analogously
with Theorem 5.16 in Chapter 5, the convergence with mean square order two can be
proved under appropriate conditions using repeated Taylor expansions and Theorem

1.1 in [3].

7.2.2 Weak schemes

To obtain an k order symplectic weak scheme, we replace in (5.24) the Stratonovich

integrals J, by Ito integrals using the Eq. (6.2), and we truncate the series to include
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only Ito integrals with multi-indexes a such that I(«) < k, k = 1,2,3. Replacing in
(6.2) we get Joy = Loy, Ju) = Lw), Jo,0) = Lo0), o) = L), Jao) = Luoy, Ji0g) =
Liogyy Jaosy = Laoays Jig) = Lag), Jk00) = Lk00) Jok0) = Lok Jo0k = L0k,
Jiigi) = L)

1 1
Jio =16 + 510, Jein = Leig + 510
1 1
JGig) = Ly + 51(]',0), Jii,i,0) = Lgii0) + 5—](0,0),
1 1
Jo,,i) = L0, + 51(0,0), S = Laag + 5 ([(O,i) + [(i,O)) (7.24)
1 1
Jiiga) = LGidd + 5 (Z049) + Liio) + 1100
1 1
i) = L + B (I(o,m‘) + Lioq + I(z‘,z‘,O)) + ZI(O’O)’

forany ¢ # 7,4,5 = 1,...,d. Thus, for a second order weak scheme we use the following

approximation for the generating functions Si, i =1,2,3:

d d
& i 1 i i
S = < 0526 m)) Loy + > Gl
2 k=1
L 1 d
(Gzo ot B Z (kk0) T Glo k) Z Z sz,k,j,j)> 0,0
k=1 k,j=1

d
i 1 i i 1 i
+ Z ((Gm,k) +5 G(j,j,m) Lo + (Gwm 52 G(k,m) 1 (lw))
k=1 j=1 =1
d
+ D Glanlow:

]7k:1

(7.25)

Using Propositions 7.1 and 7.2 and equations (7.8), (7.11), we get:
Gi i L™ i i
Su = (G(m 32 G(m)) lo) + Z Gyl
k=1 k=
i - i L
(6 32 (Gt + ) + 535 3 s ) o
1

(7.26)

k 1 j=k+1
m

+Z< Ok)—l— ZGZ]]k> +ZGM[(M
pa k=1
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For a weak scheme, we can generate the noise increments more efficiently than for a
strong scheme. Hence proceeding as in section 14.2 of [1] to simulate the stochastic
integrals I(y), k = 1,...,d, at each time step, we generate independent random variable

Vhis, k=1,...,d, with the following discrete distribution
1 2
P( = £V3) = 5’ P =0) = 3 (7.27)

The moments of (; are equal up to order 5 with the moments of the normal distribution

N(0,1), so we obtain the scheme based on S!:

8G ™ OG! oG]
p’i = Pi; — h h1/2 (k (00
pi ZC 34,
m oG 1 aGl ) 1 m—1 m Bles o
(k,k,0) (ke k k) (k,k,5.7)
D) ( 1) 15§ L)
~\ O 4 Og 205 %4
s 290G s <~ 9Gh
3G 34, =5 D g, GG
= ! k=1 j=k+1 ¢
Gl 1 m aGl
3/2 (0, k) (4,3.%)
- ZC ( T3 Z 9qi >
B 7.28)
_ 8G n 8G1 h2 oG} (
(0,0)
A TR I et (—
oG! 10G 1= oG,
N Z ( a(kko) : (akkkk)) ‘ 3 g,k,m))
_ Pi Pi k=1 j=k+1 Pi
h m 8G%k,k) B 8G1k]
tl b, tak Z GG
k=1 k=1 j=k+1
m aGﬂ m aGl
4+ B3/2 (0,k) (4,3,k)
R ECE s ]
where i = 1,...,n, and everywhere the arguments are (P,q). In Theorem 6.3 in

Chapter 6 we prove that the scheme based on the one step approximation (7.28) is
symplectic and of weak order two.

Similarly we can construct symplectic schemes of weak order three based on the
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following approximations of the generating functions S°, i = 1,2, 3:
i 1 —
S (G T3 ZG(M>[(0)+ (G(oo)+§Z(G(Mo + Glony)
k=1
i I~
T Z &f (k.k.3,9) >I<0 0) T Z ( <G(0,k> ™ ) Z G(m)) Lo,k
k] 1 j=1
(az 0+ 336 ) o 4 3Gl
k=

1 m
+ Z G(k; ,j)+( (0,0,0) 52 (15,0,0) +G0kk0 +G(00kk))
k=1

v

k,j=1
+ - Z (kkgij0) T G Okk5j) T Gl@k,o,],] Z G| (kK. g,l,l)) (0,0,0)
7.7 1 ,],l 1
— i L= i i 1 i
=1 =1 =1
— 1 . i 1 i
+2_{ Glroo T3 Z (Glrgio + Clrosn) * 7 > Glrisan | lwoo)
=1 =1 jl=1

+ Z (<G<k,j,o> t3 Z G(kz,j,z,z)> L0y + (G(o,m +52 G(l,z,km) To.k.)
=1

k,j=1 =1

+ <G<k,o,j>+§ZG<k,z,z,j>> f(km')) Z G g kins
=1

k,j,l=1

where everywhere the arguments are (P, ¢). Using Propositions 7.1 and 7.2, equations
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(7.8)- (7.13), (7.16) and (7.24), the previous approximation becomes
Qt 1 = 1 = 7
Se R ( +3 Z (k, k)) o) + Z Gieylir)
k=1 k=1
G%0,0)+Z< Z@ko + G(kzkzkk> Z Z G(kk“>
k=1

+<
k 1 j=k+1

+Z< Ok)+ ZGZJM)) +ZG(kkI(kk)

k=1 j=1 k=1
+Z Z Gék,j)f(k)[()"‘( (000)"‘ ZlekOO

k=1 j=k+1

3 w—
+4_1 ZG(kkJJU +3 Z Gkk“zz>f(000)

k,j=1 k]l 1

m (7.29)
+Z<G200k Z 330k+ ZG(mllk)) 0,01 (k)

k=1 ]ll

m—1

_|_

e
Il
—

N
I

+1

7 1 i
(G(k,j,o) t3 Z G(k,j,z,z)) Loy Iyl
e -

<szk0) +35 ZG Kk, > (I(k,k)[(O) + [(0,0))

"
NE

k=1
m—2 1 m m
+2 2 > Clnlwlnlo + ) Clrnlwrn
k=1 j=k+1l=j5+1 k=1
m—1 m 1
+ > Gluwy (f(k,k)fm + §f(k)f(j)) :
k=1 j=k+1

We can obtain third order symplectic weak schemes based on one of the equations
(5.10)-(5.12) and the approximation (7.29) of the corresponding generating functions
Si, i = 1,2,3. At each time step, we generate the stochastic integrals Iy, k =
1,...,m, as independent random variable Vh&;, k = 1,...,m, with the following
discrete distribution (see the scheme (10.36) in [3])

Pla=0)=3 Pla=+)=r Pa=+/)=5  (130)

Loy, as h&2 /2, and L pp), as hV/hER /6, k = 1,...,m. Under appropriate assumptions

regarding the functions H™, r» = 0,...,r we can prove the convergence of the schemes
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with weak order three proceeding as in Theorem 6.3, using Theorem 4.1 in [4] and

repeated Taylor expansions.

7.3 Numerical simulation

Consider the Kubo oscillator as follows

dP = —aQdt — 0Q o dw;, P(0)=p,

(7.31)

dQ = aPdt +oPodw?, Q(0)=q.
As the Poisson bracket of the Hamiltonian functions H® and H® vanish, H©® and
H® conserve along the phase flow of the systems. Because the superior performance
of symplectic schemes on long term simulation is shown in previous chapter, we only
consider five types of stochastic strong symplectic schemes, such as the mean square

0.5, first and second order schemes based on S}, and the mean square first- and second-

order schemes based on S3, and we compare that efficiency.

Iogw(error)
I
w
T

L I
3 3.5 4 a5
log, j(computational time) (s)

Figure 38: Computing time v.s. error for different types of symplectic strong S scheme
with various time step for T' = 100 with 10° samples, O: h = 0.004; O: h = 0.002; A:
h =0.001, s7: h = 0.0005.

Fig. 38 and Fig. 39 show that the higher order strong schemes are more efficient

than the lower ones. The computing time takes about 4180 seconds to complete the

158



L L
3 3.5 " s
log, ,(computational time) (s)

Figure 39: Computing time v.s. Error for different types of symplectic strong S scheme
with various time step for 7' = 100 with 10° samples, (): h = 0.004; O: h = 0.002; A:
h =0.001, 7: h = 0.0005

first order S! schemes simulation for A = 0.002. The computing time for the second
order S! schemes with time step i = 0.004 is about 3200 seconds. However, the error
of second order S! schemes is 0.0038, compared to 0.0049, the error of first order S}

scheme.
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Chapter 8

Summary and Conclusion

In this thesis, the effect of noise on dynamical systems is considered. In the first part of
this study, we investigate the effect of uncertainties in the parameters of an aeroelastic
system. The stochastic normal form is applied to study the aeroelastic system with
uncertainties in the bifurcation parameter and the non-linear coefficients in the plunge
and pitch. The stochastic normal form is capable of capturing the behavior of the
limit cycle oscillation, and predict the influence of the noise with small intensity on
the amplitudes and frequencies of the limit cycle oscillation. Moreover, unlike the
deterministic case, the stochastic bifurcation analysis shows that a noise with small
intensity and weak structural non-linearities may lead to divergent solutions.

As the stochastic normal form is a technique used to investigate the dynamical sys-
tem with small random perturbation, another method, a stochastic collocation method,
is proposed to study the behavior of aeroelastic system with noise with larger inten-
sity. The stochastic collocation method is presented with particular attention given to
the nonlinear phenomena in the Hopf and the secondary bifurcations in an aeroelas-
tic system. Various types of interpolation schemes are examined to demonstrate the
advantage of high order interpolation on the stochastic collocation method. A sparse
grid and a dimension adaptive strategy are considered for the aeroelastic system with
multidimensional random variables. The numerical results shows that the stochastic
collocation method can provide an accurate prediction of the effect of uncertainties
parameters on aeroelastic systems.

In the second part, we study the construction of symplectic schemes for stochas-

tic Hamiltonian systems. First, a framework to derive high-order strong symplectic

161



schemes based on generating functions for stochastic Hamiltonian systems is proposed,
and then, it is extended to derive the weak symplectic schemes. The theoretical conver-
gence analysis is presented. Systemic construction of the stochastic symplectic schemes
with arbitrary high order is important from the theoretical point of view. Regarding
a practical implementation, for the high order (> 4) weak symplectic scheme, it is ex-
pected that the accuracy of the results will be influenced by the increasing variance. It
is interesting to notice that for stochastic Hamiltonian systems preserving Hamiltonian
functions, the high order symplectic schemes turn out to have simpler forms and with-
out requiring the approximation of more multiple stochastic integrals than the explicit
Taylor expansion schemes. Numerical simulations are also reported, and they confirm
the the superior performance of the symplectic schemes for long time simulation.

The superior performance of the symplecitc schemes has been reported for some
non-Hamiltonian systems. In the future, it will be interest to investigate the application

of stochastic symplectic schemes for the aeroelastic system with stochastic noise.
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