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- ABSTRACT

This the81s is concerned with an investigation"

of the behaviour of the various structure factors,

espec1ally of their long wavelength (wave number q» 0)

limits, for different types £ mixtures.
First we examine the behaviour of the q+ 0

~ limits of ‘the concentration fluctuations S (q-i0)~and

CC
the various partial structure factors a; (0) using:the
model of conformal solutions. ~The model lS applicable E

to systems in which (a) the two types of . atoms (A and |
B). are of roughly the same- 51ze, and (b) the difference

[ 4 »>
W 1n pa1rw1se 1nteraction energles between the atoms s

%

small (tor an 1deal solution<u~ 0). It is found that .

-

the 1nterchange energy w is directly related to SCC(O)'
or the combination all(0)+ a22(0) 2a12(0)', The model
is applied to calculate a; (0) for Na-K alloys and good
| agreement with experlment 1s found The behav1our of
CC(0) for alloys where the- assumption (a) above does
not hold is also discussed, uSLng‘Flory s approximation.
Next, a phenomenological model is proposed to
calculageescg(ﬂl and other thermodinamic properties of
systems 1n whlch the 1nteratom1c 1nteract10ns are strong
and which form: compounds in ‘the SOlld ‘phase at one or
more well defined st01chiometr1c comp051tions spec1f1ed

by Aqu (M,v small 1ntegers). It is assumed that the

iv
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binary liquid mixture consists of A and B atoms and
. . - : ”

theirVchemical_associations.Aupv in chemical equili-

-

" brium. The formulationiis given in general terms, but

N

the actual calculations' are made by assuming that only

“one type of chemical 'associations is formed. . By,

assumiog first,‘for eimpliCityL that the mixture of

A, B and Aqu cah be‘considered ideai}.it isvshown that'
the concentration,dependence of SCC(O)‘and'ﬁence of the.
‘various a (0) depend characterlstlcally on ‘the values
of (u,v). The results for_SCC(O) for (M,v) = (3,2),
(3,1) and (2, l)vare'in qualitative agreement with those

determined from measured thermodynamlc activity data

for Mg-Bi, Ag-aAl and Hg—K It is then shown. by numerical

calculations for four systems(Mg-Bi, Tl-Te, Ag-Al and

Cu—én) that quantitative agreement with experiment can’
oe achieved if the ternary mixture of A, B and Aqu is_
treated ih either the'conformal or Flory's approximations,
the interaction parameters belng determlned from the -
observed free energy. It is concluded that ev1dence

~—
for the formatlon of chemlcal complexes should be sought

' by maklng neutron scatterlng experlments. |

Flnally, a 31mp1e modlflcatlon (based on the
random.phase approx1matlon) of the usual hard sphere
calculatlons of tﬁg:structure factors, at arbltrary q,
‘is proposed to take into account\t?e effect{of the long

range attractlve 1nteractlons in. weakly lnteractlng

! ) ?



. v . : I~

 s&stem5;._The.method is first applied.to calculate
S(h)jfor‘liqeid ergoh obtaihing good agfeement with
‘experiment. Next, some numerical ‘examples are given
" for mixfuree. One finds that thekeffect of the.
eattractlve lnteractlons may be expected to be llmlte&
to q values in the range 0 <q <q , wWhere q is the

‘ positlon of the ma:.n peak in a; (q),. - The significance

ij
L .»of these results to the calculatlon o(\electrlcal resis-

, tlvn.ty, e_tc. ‘is briefly dlscqssed.

S
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CHAPTER 1

. INTRODUCTION

Thls thesis is concerned with a study of,
firstly, the long wavelengtﬁ\(wavenumber q+0) llmlts‘
of the structure,factorS'of blnary‘molten alloys whose
constituent atom. interact with.one‘another either
weakly or strong, and, secondly, the structure factors
at all q for weakly interacting systems. )

The structure factors play an 1mportant role
in our understandlng of 1nteratom1c 1nteractlons, on
the one hand and of varicus transport propertles of
molten alloys, on the other; for an exhaustive review,
see Faber (1972) |

The structure of (relative arrangement of
atoms in) a pure liquid is described by a single
structure factor S(q) mhlch &s essentlally the Fourier
transform of the pair dlstrlghtlon function g(r)

[see Chapter 2]. Since X-ray or neutron scattered>
intensities are directly.proportional to S(q), its
'experimental determination‘is a straightforward matter.A
On the theoretlcal side, there have been many attempts
to calculate S(g), notable are those using the hard
‘sphere model in the Percus-Yev%gk approximation
{Ashcroft and Lékner'(l966;, etq.]'and\modlfications

_thereof [wOodhead~Galloway and Gaskell (1968), etc.].

?



)
For a comprehensive list of references see, for example,
: Croxton (1974). 1In the zero-wavenumber limit, however,
S(0) can be exactly expressed in terms of certaln
thermodynamlc quantities via the Elnsteln—Smoluchowskl

or Ornstein-Zernike relation:

<=

where k. is the isothermal .compressibility, N is the

total number of atoms in volume V, T is the'temperature,

k4

and kg is the Boltzmanh'conStant.

In a blnary A-B mlxture there are three 1nde;\.
pendent structure factors correspondlng, ba51ca11y, to
the correlations'between A-A atomvpairs} B-B atom pairs
and A-B atom pairs. There are several equlvalent
(11nearly related) sets of structure factors deflned (
in the ilterature: for example, the part1a1 strdcture
' factors aw.(q), or S (q) [Faber and ‘Ziman (1965),
Ashcroft’ and Langreth (1967)], and the number—concen—
.tratlon—structure factors SNN(q)' SNC(q) and Scc(q)

[Bhatla and Thornton (1970 1971)).

| The expre881on for the scattered 1nten51ty
for X—rays or neutrons now 1nvolves, ln,general, all'
three structure factors (all a; (q),‘or S (q), etc.),
and experlmental determlnat;on of them 1nvolves

varylng the coefficients in the ~expression for

scattering. Where practlcal, this can be done for



neutton_sc#tteringvby ﬁSing different isotopeé ngone
of the compdnents‘in the mixture. The actual deter-
minaﬁiontof the structure f;ctcrs has'beeh achieved
only fof a few_césés [EnderbyZ?Nofth and Egelstaff
| (1966) , Page and Mika (1971)]. The theoretical cal-. °
‘ culatiohs of Sij(q) for aibgﬁary ﬁixturé are’mainlyvl
£hose using- the h;fd sphere;modei'in Ehe Percus-Yevick
approximation [Lebowitz (1964), Ashcroft’and Langreth
(1967), En&erby and ﬁbrth-(lQGB)]..,

The long’waQelength'(q*-Oj limiﬁs of the
structure facto:s are néturally.harq tokdetermine
from scattering experiments, and one must turn to
_othe; considerationgﬁto obté%n informatioq on'thgm.‘
Recently-Bhatia andQThornton (l970)_have’shdwn'tha£.
the q-fOilimits“of.the_structure factors may be
determined frém a knowledgé of.three thermoqynéhi¢
‘quantities: thévcompressibility,‘the volume as a
function of compositiqn aﬁd Scé(O) kthe heaﬁ square
fiﬁctuatidn’in concentration). The latter quantity
(SCC(O)) depends on’thé secondtdérivative of the free
energ;iof nixing Qith respect to the concentration
and, as wve shali see late}, féflects rather sensitively
the nature of'the”intefatomic,interactions‘in the‘

mixture. L g:. - |
In Chapter 3 of the thésis, we'investigate

the}behaviou; of SCC(O) and other struéture factors



(in g+ 0 limit), using the weli~known theor'ticallmodel
of regulat eolutions (in the zeroth-approxim tion).
_This} model‘-.ie applicable to systems in which \(a) the:
two typee of"atoms are of roughly the same size, andh
(b) the dlfferences in paxrwxse lnteractlons b tween
the atoms is small.- These condltlons are approﬁlmately
mfulfilled in meny systems, e.g. Na-K. Detalled Calcu—
1ation are glven for the Na=~K system and are fohnd to
be in good agreement with expexlment [McAllster ‘and
Turner (1972)]. This chapter\%lso dlscusses quallta-,
txvely the " behav1our of S (0) when the two types of
atoms have significantly d1fferent size. '

| " There are, however, a numbergof systems (e. g.'
. K-Hg, Mg-Bl, Ag-Al T1l- Te, etc ) where the differences
in. the 1nteract10ns between the "two. species is not |
_small. ThlS is evidenced by the-fact,‘amongst.pthers
.(magnitude'ef molar free energy  of mixing relativeAtq,
RT, etc.), that in the solid phase they form inter?

'metellié compounds Jk-@ne or more well-defined chemical

compositions. The main body of the thesis (Chapters 4
"and 5) is devoted to a discussion of the concentration
dependehce of Scé(O) and other thermo&ynamic properties
of such compound-forming eystemé“

é ; ' In Chapter 4 we first descrlbe a theoretlcal
model to obtain an exﬁre351on for the free energy G

of the compound- formlng molten systems. The model

&



C::::gggghtially consists of'assnmingsthe existence of appro-
priate chemical complexes A;Bﬁ in cheﬁical equilibrium
with one another; here u,v aré small non-zero integers.
Although’a éenera1 formulation is given, the actual
‘calculatlons can be made only under certaln 51mpllfy1ng
lapproxxmatlons. In the remalnder of the chapter we |
examine,' in é‘simple—approximation, the general features
of SCC(O)'aﬁd of partial structure factors for different
values,qg g and v. o )

Next°(Chapter 5), we discuss two'higher appro-
iimatiohs to the free.energy and calculate‘therefrom

CC(0) and other thermodynamic quantltles. It is shown

.by taking several examples that the model gives quantl—‘

tatlve agreement w1th experlment

| Finally, in Chapter é% an.approximate model is
used to dlscuss some qualltatlve features of the struc-

ture factors of weakly interacting systems, way from

_the long wavelength limit (i.e. g>0).

Pl




CHAPTER 2

STRUCTURE FACTORS AND THEIR LONG WAVELENGTH,LIMITS

Aé mentioned earlier, there are several equiva-
lent séts of>5£fucture factors for’binary mikturesvuséd
ig.thé litérature. In this chapter we define three sets
" and give, for them, certain results which will be found -

useful in later chapters.

2.1 Definitions of the Structure Factdrs

The most commonly used set of structure factors
are perhaps the partial interference functionS‘aaB(q) of

Faber and Zziman (1965) defined by (a,8 = 1,2)

.2

v

., | |
agla) = 1+ f gl?‘r(gae(r) - .1);13;: (2.1)
Qheregéas(r) g'gBa(r) is.th? pair distribution function
defined as the probability)-normalized to unity for
large f, of finding an atom”of type 8 in a unit'volﬁmev
at a radius r from the centre of a type o atom.
Because'of the spherical symmetry of g (r) in an
isotropic liquid, the ayg

on the magnitude of g (and not on its direction).

B(q)

which are frequently used,'ate defined as [Ashcroft

(g) depends, of course, only
Another set of structure factors S

and'Lang;eth”(1967),'Enderby and North (1968)]



. >

- ¥ N igq.r _ 3
Saa(q) = ‘SaB + (cdcs) 7 J e | r[gaBr(r) 1)a°r (2.2)

I

where ca'is the ,concentration of ajtypeﬂatoms in the

mixture, If Nl and N2 denote the numbers of the two

>

types of atoms respé%tively,.N = Nl-FvN2 and’
= _1 - 2 : ' T

Comparing with (2.1) and (2.2) one has

[a

Sap(@) = Sgg + (cpeg) ¥lagg(@ ~1) . (2.4)

of

Finally; a set which we find particularly useful
are ‘the number—cohceﬁtrafion structure factors SNN(q),
Scc(q) and SNC(q) [Bhatia and Thornton (1970)]. Thése
are defined in the.foilowing ménner. -

Let na(?{ (o = 1,2) denote the local number
»density'of a-type atoms and let their mean density be
denoted by n_(=N_/V). Then the deviation dha(§) from
.the mean iéﬁ |
én_(f)=n (¥)~-n_ = —; + ?a

a ' o L&

-> - o . ‘
o o 3-1_6(r ﬁj) , (2.5)

Sy o ' :
where Rg is the position of the jth atom of type u.

Making'the Fourier expansion

T In the following, it will sometfhes be convenient to

‘write the concentrations c; and c, also as

¢y =c , cz’-—’- lv-“,c1=l—c‘.



+

g Na(a)e"iq‘r , (2.6)

<=

én_(Z) =

+ ' ia T P 3‘“
E{g(q) = Ie ( <$na (r) d‘ r
Ny i3.E
= ] e J - N

N dq,0 (2.7)

-

The reality of dn (r) requires that N;(q)==Na(-q).
Similarly, if N(a) denotes the Fourier transform of
the local deviation &n(T) in the total number density

n() =n; () + n, (), then
N iq.R%
N(q) e J - NS o
a=1,2 q,

Ny (@) + N, (@) . - - (2.8)

_ _ 4
We next define the local deviation from the

. mean concentration c(sc,) by
sc(f) = g [(1~c)ény (¥) ~cbn, ()], (2.9)

' so that if ¢n; and én, change in proportion to their

respective mean concentrations, namely, ¢ and (l-c),

then GC(;) =0, as'it,should. If we makelfhe Fourier
expansion
N o e : .
sc(f) = J c(@e 9T (2.10)
q - C

£

then



&

>
c(q) = ‘-17 J sc(P)eld T

t

=5 lA-aN@-an,di . (2.11)

The number-concentration structure factors are

- now defined by

-»> - l *‘-> + . . i
Syntd) = N <N" (qQ)N(q) > . (2.12a)
‘ ‘ v .
See (@)= N<c* (@ @) > (2.12b)
5@ = 3 N @c@ +N\@c* @> (2.12c)

%

ot

where <...> represents’thérmal (ensemble) average. - Like
aaB(q) and SaB(q)’,SNN(q) etc..for an is?ﬁropic liquid
~are also indepéndént of the direction of gq. T
To see how these different sets ofvétfucture
factors are related:to oné another, one has odiy fd;
note that the pair distribution function gae(r) is, by

definition,

‘ “ - > ' + o
() = _J d3r_”<na(ro)[n8(ro+r) Gasd(r)li-

- S

<\

g ‘
AQB [} . > .
. <na(ro)><ne(ro+r)> ‘
- (2.13)
Using fdr na(f),‘etc.‘the expansion (2.5) and noting
that <na(r)> = ﬁa, it may be seen that Saé(q) may also
be written as
' _ 1 ' * o > o *x . :
Sas(q) = — <Na(q)NB(q)1-Na(q)NB(q)> . (2.14)
2N(cuc6) .

/



since from (2.8) and (2.11)

Ny (@) = oN(@ +NC@) , Ny (@ = (1-c)N(@) -NC(@)  (2.15)

one can immediatély write down the SaB(q) in terms of
SﬁN(q) etc., and hence using (2.4) also the»aaB(q) in
terms of SNN(q) etc. We give here explicitly the

relations be£ween_aa8(q) and SNN(q) etc. [Bhatia and

Thornton (1970)]

2 2 : : o
, clall}q) = clsNN(q)~+2c1$NC(q)+-SCC(q)~ chZ‘ x\ (2.16a) ..
c2a._(q) = c2s..(q) - 2¢ s (q) +5...(q) ~ c.c | (2.16b)
23324 2°nNN ‘9 2N '9 cc'd 12 , e dd

c1€2a;,(q) = c3e,8 (@) + (e -cy) Sy (@) = Seola) +cyc)

) ! | " (2.16c)
and conversely. ‘

s /(q) = ¢2a ’(») + czg .(—) + 2c,c,a,,(q) o (2.17a)
NN T C1211 1) T Calptd) T €C1%% 2 - L

_’SNC(q)==CICQLCi(alllq)-alé(q))-c2$a22(q)—a12(q))1‘(2.17b)

. ;.SCC(q)=;91¢2[14;clc2(ali‘g)+'a22(g)— Zaiz(q))] | (%.l?c)

/
/

/

10



2.2 Sum Rules and Constraints

It is next of interest to give the sum rules
satisfied by the various structure factors defined
above.

Firstlconsider the sum rules for the number-
concentration structuéf factors [Bhatia and Thornton

(1970)1. For SNN(q), we have from (2.12a) and (2.8)

. ia X
N ) _ 2
.SNN(q) = ﬁ <ll}‘:‘ e N(Sq'ol >
1 ig. (R ~R )
= 1 + 'ﬁ < e > - qu o
m#n ’
1 L > . 3' -
= 1+N— Ielq'r< §(r-R_+R _)>d°r - N§ .
m#n m N g9.0
Hence
1 N1 (o (ER 4R ) sad
7 g‘ [Sn (@ -11= - G +§ Ia(r) <m;n6(r R +R )>a’r (2.18) .

3

where we have used the relation

s > >, X (T :
% z etd (r-r )=u——l—§ felq (r-r )d3 = §(F-7') . (2.19)
qa - (2m) ' ‘

The integral,on'the.right-hand side of (2.18) is zero
since Rmvandeﬁ:are pOSitiéhs of two distinct particles.

Hence

<z

1 SR o .
¥ LSy @ - 11 = -
S :

(2.20),

11
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AN

or, in the integral form 7 ~

= 5

1 J ‘s 3w . -
3 [[SNN‘qX.‘ 1]d"q = - g - (2.21a)
(2m)7 <,

’ Simiiarly»one may show that
l N ‘ ,."' 3 . . ='v | ' . ’ .
[S.~(g) - c(l-c)]ld”q =0 : (2.21b)
“teet v , ‘
s *'+)d37°— 0 | : RRTIPT
Nc(q’ q= * : (2.21c)

The .corresponding sum rules for’aéé(q) were

given by Enderby et. al. (1966). They may be immedié%ely‘

obtained from (2.21) and (2.16) as (a,8 = 1,2) . .
- o | |
1 j 3. 27N | ,
(@ . (q)-11d%q = - %, C(2.22)
(2n)3 SoaB E . v

for all the partial 1nterference fﬁhctlons aaB(q).
Using (2.4), the. correspondlngﬂsum rules for. SaB( q)
are obvious and will be omitted here. |

" We observe from (2.2la) and (2.22) that sﬁN(E)
satiSfiés the same sum rule as aaB(a); In coﬁtrast, |

s

the sum rules (2.21b) and (2.2lc), for SCC(a) and
N(.(q) respectlvely, are different from that of ENN(§I
and}aaB(E). ‘These sum rules clearly imply that, for
large q, all three aaB(g) and SNN(a) oscilléte about
unity, whereas SCC(q) oséillates about c(l-c) and SNC(a)

about zero.



//’/

—

Apart from the sum ru}es; each set'of structure
factors satisfies certain additional constraints.vwFor
the number-concentration structure factors, two of these
' AN

follow from the definitions, namely that
Syn(@). 20 and  Seelg) 20 (2.23)

Alfurther'constraihtvcan be deduced from the exp;eésion
for the scattered intensity (in the weak sc%ﬁteriné.%
aéﬁroximation). 1f Wl(é)'and Wé(a) aréithe atom9form«
factors (f;; é}ectron; neutron or Xfféy scattering),

‘ then the sca££ered infensify is‘essénﬁially,given by

9
1@) = @125, @ + (4@ 125, (@) +2 7 (@) ] [8W (&) 153 ()
— o (2.29)
where ’ -

(q) = oWy (qr+ (1=o)W, (@) and AW (q) =W, (@) - Wy(q) .

A{2.25)

If this exﬁiession is to be non-negative for all Wl(q)

and W, (q), then in Addifion to SNN(q) > 0 and Scc(g) >0,
we must have '
S (@) Sanl@) = 82 (q) 2 0 (226
NN ‘9’ Pcc Onc ' = Yo

In terms of the aaB(a), 4he expressionAfor I(a) is given

by [Faber and Ziman (1965)]

K

13
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I(q) =.c W2 (@) + c,W3 (@) + o3y (@) ayy (@) -1] +

+ caW3 (@) lag, (@ =11+ 20108 (D)W, (@) lay, (@)1

/( (2.27)

5

from which one may deduce that the aas(q) must satisfy

the constraints [Epderby et. al. (1966), Faber (1972)],

0

v

T cyap; (@) ey

v

02822 (q) "‘i"Cl 0‘ ) ‘ B 3 | (2.28)
(cl,all(q)+c2) (c2a22(‘q)+cl), 2 cl‘c_:z[alj2 (q‘)-—l]2 .

We note that individually the aaB(q) may be either posi-

tive or negative.

2.3 Long Wavelength Limits of the Structure Factors

The properties of the structure factorﬁ_dis—
cussed in the last se@tion;'namely the sum rules and the
asymptotic behaviour fof large q} are iﬁdependent of the .
individua1~chgfaéteristics of a system. In contrast,
tge long’waveiéngth (g~ 0) limits of the structure
factorstependvon the thermodynamic properties of the
mixture. This thermodynamic’connection is‘perhaps most

transparent for the number-concentration structure

Y

factors and we consider them'first.

It will be recalled that,SNN(q) describes

¥

the correlation between the particle density and



particle density, irreépective of the concentrations.
For a fluid, it then represents, in the g+ 0 limit,
- simply the mean square fluctuations in the total

number ofvpafticles in the volume V of the medium

Sy (@+0) = S0 = a2 (2.29)
Similarly
Sec (0) = N<(ae)®> , Sy (0) = <aNac> (2.30)

whe:e~<(Ac)2> is the-mean'square fluctuation in the con-

centration, Ac being defined by

v

— "'l A_ - . ‘ ‘7
éc =N [(1-c)aN, CAN, ]

" and <ANAc> is fhe correlation between the two fluctﬁations
Ac and AN = ANl+-AN2.
, » .
The expressions for the SNN(O) etc. may then be
obtained straightfdrwardly from the fluctuation theory

and one finds [Bhatia and Thornton (1970) 1,

.NkBT~ e L
SCC(O) = SCC(qa-O) = 32G (2.31)
=
L, oo T,P,N %
S (0) = Sy (a=0) = 8 + 675, (0) (2.32)
SNC(O) = SNC(q—>0) = -SSCC(O) (2.33)

15
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Here G is the Gibbs f:ee energy, P is the.pressureand//

s

%

§ is the dilatation factor . . - \\ o
_ V=V ‘ , '
6 = %[%%] = vl-+c2v ' ; (2.34)
T,P,N 171 272 ‘

where vlland vzﬁare the partial molar volumes of the

two species in the mixture. Finally,

_ N
6 = T kBTKT (2,.35)
o “ 1av] . : .
where Kk, = - Sl . is the isothermal compressibi-
' T V{BP T,c,N } P ‘

lity at COnstantvcomposition.

'
1 B

If the partial molar volumes of the two species

are the'same, then' § = 0 and the fluctuations in number

density are independehﬁ of those in concentration
Y

(SNC(0)= 0), as might‘be.expected;intuitively.. Eurther,

Sy (0)- is then s, like the'expressién‘(l.l) for the

structure factor of a pure liquid.
The expressions, for the long wavelength limit
of the other structure factors (aii(q), Sij(q)) follow

iﬁmﬁgiately from the relations between these and SNN(q),

‘etc. given in §2.1. _Substituting (2.31)-(2.33) into

(2;16),-we have (clzzc, c, = (l-c))

0
N
[

- (E - 0% s K

Q
e
—

Q-

L
c2'

+ (24 52 s_.(0)

)
N
N
~~
o T
.
Il
@
1

CcC

o
(%)

W
-
N
S
s
I

G +'l.-(EI 6)(E;-+6)SCC(O) . ’(2m36)



Finally using (2.36) into (2.4), we have
o * 1 .2
S 1(0)_'cle'fclscc‘o)(az _6)
522(o>==cze-+c2scc(0)(g%-a)z
0 % g 0
,(0) = (c1e,) 78 = (cye,) "See )(——- c)(——-+a) (2.37)

€1 €2

We thus see that the concentration dependence
of the q-*O limit of the various structure factors are

known ifHWe"know;the'VOlume V, the compressibility Kp -

and the conCentratlon fluctuatlons S .. (0) as functions

cC

- of comp051t10n. The volume and K though not ‘easily

TI
amenable to calculatlon, are dlrectly measurable quan-
tities. Fdr'SCc(O) we require the Gibbs free ehergy G
as‘a function of c. We recall that G for a blnarya'

mixture can be qu1te generally written in the form )

¢ = Wice® (2,1 + (1-0)6f% (p, )1 + g (2.38)
; where,ﬁp= N/N;&}Na is Avogadroﬂs'numberf), G{O) and

G§°) are the molar Gibbs free-energies'of the two pure

1.

In conformity with the standard thermodyhamic usage
we shall hencéfbrth?express the‘extensivity of G in
terms of gm moles (JP)fof‘the mixture rather than the

total number of atoms (N).

17



‘species (at the%presSure and temperature of the mixture)

‘and. G, is, the free energy of mixing (arising from the

(o) (o)v

entropyﬁgnd energy of mixing) Since G and G,

by deflnltlon 1ndependent of. coneentratlon, we have

. from (2.37) and (2.31) - R

Scc(0) = 2”RT
326

(2.39)

)

2
ocC

T, P, N,

where R = N kg is the gas constant.  Thus we have to know

Gy as a~functioh of the composition.;

Theoretlcally, expre551ons for GM are available. |
in the literature for several models of the mlxtures,

e.g. the 1deal solutlon, the regular solutlons in zeroth‘

'and quas:—chemlcal approx1matlons, athermal mlxtures, etc.

For reviews see, for example, Guggenhelm (1952), Rowllnson

(1969) , Prigogine (1957). We examine the behaviour of
the structure faetors on the basis of some of these
models in the next c&gptet. As already‘mentioned} the
existing models do hot in  general suffice for systems |
thch have,ein thehsolid phase, a strong tendency to form
compounds. A ea1Culatioh of G,, and hence of S (0) etc.;

M
for the compound forming . systems is descrlbed in Chapters

4 and 5.

Scc(0) can be calculated from the experimental

data also, since the concentration dependence of Gy is

18
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tabulatedu[fOr.example, in Hultgren et. al. (1963)]

‘for many molten alloys. Exper}mental GM is inferred

*from the heat of mixing data as a function of tempera-

uture or, what is more common, from the activity data.

The éctivity ay of component 1 in the mixture is defined

by

. 3G | . “ (o)
RT in al = [WI] T Gl

B
—

a

34

Ve,p, N,

=1 + (1 (BGM ‘
,_,iF[GM | -c) ga*)T,P"M . (2.40)

where JW1= Wc is the number of gm moles of component 1

1in the mixture, and JP = WW(l—c).' The activity a, of .
_component 2 is defined 51mllarly. yWhen the'activitiesb
;Tare known, it is actually not necessary to first inte-
" grate them tO‘thaih GM’ since S (0) is related to ay

[

or a, by .[MCAlister and Turner (1972), Ichikawa and

\ .
Thompson (1973)] »
(0) = —h=C) - | (2.41)
: 7I75T7;f"v'7§*fﬁ—33" ’ v K M
- Tde - dc '

as may b verified from (2.39) and (2.40).

19



CHAPTER 3

CONCENTRATION FLUCTUATIONS AND PARTIAL STRUCTURE

FACTORS IN IDEAL AND WEAKLY INTERACTING MIXTURES

3.1 Introduction

"The thermodynamlc relations glven in the pre-~
cedlng chapter make it possible to carry out a system~
-at1c‘exam1nat10n of theubehaviour of the lpng wavelength

limits of the structure factors'for various types of
mixtures. The present chapter is cencerned with‘the
Etud& of concentration flucthations SCC and partial
structure factors% aijjfor ideal (noh-interacting) and .
weakly.iateracting mixtures., Prior to about 1970, it
was generally held that the so-called substitutional
hypothe51s for a; (q) mlght not be an unreasonable
_‘approx1matlon., In this approx1matlon a; (q) are regarded
as near}y independent of concentratlonnand all(q):azz(q)e

alz(q).. In the paper giving the aforementioned

———

.l-

In tﬁis chapter and Chapters 4 and 5, we shall be
concerned with only the 1eng wavelength limits of the
‘structure factors. Hence we make the cenventiens: the
. words "in the long Qaveleagth limit" are to be under-
StCOd unless stated otherWise~ aleo, the argument (0)

in‘S (0) is deleted so that S (O), a..Eaij(O) etc.

NN NN 1]

N
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thermodynamic'relations for the structure factors,
Bhatia and Thornton (1970) showed, by an example,

that while the substitutional hypothesis may well

be reasonable for high g, 1t is far from justified

in the g+0 limits. Subsequently McAlister and Turner
(1972), using thermodynamic data, obtained aij for
Na-K and K-Hg alloys and fouhd»them to.be.highly‘con—
centration:dependent._nIt was therefore felt.deeirable

to examine the behaviour of aij on the basis of some

<3

know? theoretical models for mixtures.
The plan of the chapter is as follows.+ In

§3,2, SCC and alj are described for the ideal,solutions.

In §83. 3 we derive, for later use, some general formulae

for aij‘ln the low concentratlon 11m1t " In .§3.4, the |

regular solution model (in zeroth_approximation - i.e.

for weak interaction) is'described and the expressions

for S.c and other structure factors are derived.

Section 3.5 is devoted to the application of these

Formulae to Na- -K alloy. "Finally in §3.6, ‘some remarks

are made on concentratlon fluctuations ln mixtures wherev"

'rhe difference befween the sizes of the atoms 1is so

large that they cannot be regarded as regular solutions.

T The work on partial structure factors presented here

was publlshed in Bhatla, Hargrove and March (1973).

2
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3.2 1Ideal Solution

The simplest type of mixture is the ideal solu-
“tion for which the free energy of mixing GM is just (-T)

times the entropy of random mixing, so that

(GM) = JY‘RT‘ [cnc + (1~c) n (1-c)] (3’.1) .

ideal
and hence from (2.38).

G:=JW[CG{°)+'(1—c)Gé%%]4jNRT[c n e+f(l—c)2n(l—c)].
(3.2)

‘From (3.2) we have for the volume V of the mixture
(o) 3G(0)

oG \
vV = [-——] =N‘[c( + (1-¢) )
oP T,N,c BP ) ( BP T )
- JY‘[cV(O) +(1-e)violy | (3.3)
where V{o) and V(O) are - the molegavolumes of the two

\
pure species (at the same temperature and pressure as

that of the mixture). Eqn; (3 3) expresses the well
known Vegard's law regarding the linear varlatlon of "

volume with concentratlon Similarly

v , v | ,
L A P 3G ‘
VKT = "[a—P—] = - ['———2-] s ‘(3.4) i
g ,T,C aP N\'T”C/ . ) .
=/iev® e+ (e 2 @



tion.

| o , 23

is the 1sothérmal compressibility of thé pure species
i. We note that VKT‘and not Kk, varies linearly with
¢ for the ideal solution.

Using ¢3.3) in (2.34), the expression for

the dilatation factor & becomes

(o) (BY
Slrp,w cviol (l-c)V2°) : S

. 1

N

The variation of ¢ with c'according\to (3.6) 1is illus-

trated in Figq. 3fl‘for two values df Véo)/V{O).

Finally substituting (3.1) in (2.59)_we have

for the concentration fluctuations. o
id _ - o ' : .
SCC~ - C(L C) r . - . ‘ (3'7) \t .

A

‘where the superscript 'id' hassbeen added to signify

that this is the expression for Sce for an ideal solu-

“
5,

Gt

3.2.2 Partial Structure Factors

\
With Scc°given by (3.7), the expressio%s(Z.BG)

for aij become (cl 2c, ¢, = l-c): B
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Fig.

or n
J
AJ . - —— -
—
S
S~
S
. ~
i \
-1 - i
? l
0] 05 |
Cp

3 1. Variation of dllatatlon factor § w1th
concentration for a mlxture obeying
Vegard's law. B =V 0)/V ) = 2,
-~ B = 1/2. 1

e
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2
all = 0 f 2c26 + clczd

a = 0 + 2c¢.,8 + c,cC 62

22 = O 1 16287

a.. = 0 + §(c.-c.) + c.c.82 (3.8)
12 1°C2 162 ' .

we observe that if the mixture, in addition to being
ideal, is such that § = 0 (i.e. the two pure species
have the same molar volumes), then the substitutional

hypothesis is wvalid, that is,

Usually 8 is mo more than 0.03-0.05 at the melting point
of an alloy and in Figs. 3.2 and 3.3 we sketch, taking
6= 0, the variation of aij with ¢ for the two sets of

;

§ given in Fig. 3.1

3.3 Partial Structure Factors in the Low Concentration

h

Limit

Before considering the behaviour of the partial

structure factors for a non-ideal mixture on the basis
of a model, it is useful to consider their general form

at small concentrations. \

In the ¢+ 0 limit, the mixture approaches the

4

pure species 2. Since the leading term in SCC' for

2

s

a3 = o . (3.9)

25



Fig. 3.2. Variation of aj+ with concentration
in an idesgl. so uyion taking 6 = 0
and g = v{®/vio) = 2,

L

26



- Fig; 3.3. Variation of ai: with concentration

in an ideal. solition taking 6 = 0 and

B = 1/2.

27



small c, is always+ c, it follows\from expressions

(2;36) for aij that‘as c+0 (csscl),

o _ ,0 A0 - a2 . <©
- a22 — 6 ’ a12 8-« 6
and _
O '_ 40 _ o,1l n ’ :
aj;. = 8 23 fz[(SCC)c=0+ 2] , - ~ (3.10)

where the superscript 'o' means the value of the corres-
ponding quantif&lis evaluated at ¢ = 0. The expressions
for qgé and aiz are the same as obtained by McAlister

and Turner (1972), but their<expression for ail is

ail==6° —260, which is true only for an idealﬁ;ﬂiutiOD

for which [(Séé) +2] =0, Similarly, as c > 1
‘ c=0 ) : .
1 .1 1 .11
-all = § ' ajp, = 6~ + 6§
L1 i ] o
agp = 0T+ 287 vglisco) L +2] (3.11)
For an ideal so%ﬁtidn; ' , : /////}N“
- - A ' v o) e _
N §%-p-1 , et=1-871, & == (3.12)

\

and, from (3.10) and® (3.11), ~ & S

T For a dilute solution (c << 1), G, has the form

M
G=‘\N'.RT[c fnc+ o,c +a c2+ ]
M s | 2 *oc
the leading term (c 2n c)‘resulting from entropy of mix-

ing, mustAalwaysabe there. Hence, using (2.39) one has.

SCC-+c‘as c+ 0. ”.' - .

-
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_ O _ O_ /o Y _a—1 :
roay, = 6 (g-1) , 415" 8~ + (1-8 ) . (3.13)
:Alsp, from (3.8) and (3.12) _ - ]
. 2 )
a = 8 + c(B”~1) for c << 1 ,
22 ; b
Li
and
aj, = 8+ (1=c)(872-1) for (l-c) <<1. (3.14)
Isiis interestihg to note that if we set 6 = 0 in (3.13)

and (3.14) and identify the volume ratio B as (01/02)3,

where oy and o, are ;he-hard'sphere diameters for the
two types of atoms, then (3.13) and (3.14) reduce to
those obtained by Fabérv(l972) usinébthe hard sphere
modei. [Note the difference ih ndtation and also tha?
there is a misprint in Eqns. (6.17) and (6.18) of Faber
(1972)]. Finally we see from (2.36) that the combingtion

all+ a 2-2a

2 is independent of § and & and is given

12
by

S8cc — ¢(1-c)

5 . (3.15)
[c(1l-c)]

- 2a =

*tagy, 12

211

This is zero for an ideal solut}on; and a non-zero
value of it is a direct indication of non-ideality of
the solution. If we represent, for small ¢, the depar-

ture from ideality by

See * c-ctigc? c<<1l, (3.1
then
) o o o _ -
all,+ a22 - 2a12 = 4 . (3.17)

29
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We shall see presently that‘for‘regular solutions (in
- the zeroth approximation), & is a direct measure of

an inte:change energy in suitable units,

3.4 Regular Solutions in the Zeroth Approximation

3.4.1 Expression for the Free Energy

For a‘solution to be ideal, two conditions

have to be satisfied: (a) the difference in the sizes
‘of the two types of atoms must be small - in terms of
the volume ratio 8 or (01/02)‘, it is usually considerea
sufficient if % < B < 2 [see;”fos‘example, Guggenheim.
(1952)1; (b) the difference g in the pairwise interac-
‘tion energies between the atoms must be zero (see below).
In the regular solution(theory the assumption (a) is
‘retained, but the difference w.iS'bonsidefed;to‘be non-
zero. |

| When w # 0, only approximate expressions,for
the free energy ofkmixing GM can be derived. The'sim-
plest.approximation to GM' which is valid when w can
be con51dered to be small (see below), is usually
referred to as the "zeroth or Bragg-Williams approxima-
“tion" (Guggenheim, 1952). The expression for the free
enefgy of a reéular solution in the "zeroth.approxima-.
tion" is usually derived in the following manner (e.q.,

see Guggehheim, 1952),



- L
One assumes that the interaction is signifi-
véant only between atoms which are nearest heighbours‘
6f one another. Le§ Xaa’ XBB and XAB dehote, respec-
tively, éhe interaction energies between nearest neigh-
boﬁr A-A, B-B and A-B atom paifs+, and let the number
.of néarest,heighbours of each atom be Z. Then:if‘NAA,

N and N denote the number of nearest neighbour A-a,

BB AB v
B-B and A-B pairs in the mixture, the energy E of the
solution is

E = NaaXan* NppXpp * NapXan
with

N, + N__+N =:-12‘-NZ=

AA BB AB NN_Z , | | (3.19)

a

‘N being again the total nﬁmber of atoms in the solution.
If wWe now assume that the two tYpeé of atoms aré-dis—j

,tribuﬁed.completely at random, then of the Z neighbburs
s6f a given atom, aj%raction c Will be A atoms and (l-c)

B atoms. Hence (c:Z CA)

_ NS A
NAB—-Z(i NZ) c(l-c) . (3.20)

(3.18)

T For convenience of writing two types of atoms will

sometimes (as here) be also denoted by A and B with'

A =species 1, B= speéies 2.
. o
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Substituting (3.20) in (3.18) and rearranging terms

E (%uMNaZ)[czxAA + (l—cfszB t 2c(l-c) x,p]

= —c) + % o - ‘
= wowc(l-c) + 2(.A(_’NaZ)[chA + (l C)XBB] . (3.21)
where |

{w =»(% NaZ)(zxAB =~ Xan -'XBB) . o (3.52)
Since‘the térms in the sqhare,bracketS-are the appro-
priateliihéar (in ¢) combination of the characﬁeristic

‘ energieé of the‘Qure_constituents,'the energy of mixing

EM‘}S s1mp1y

M
Finally, since the atoms have been assumed to be at
random, the contribution to GM from the entropy.bf'

s . X . ‘ ) N +
mixing is the same as for an ideal solution. Hence

T We note that this expression for GM is the‘same as

that for the confdrmal solution modei [Longuét—Higgins
(1951)1]. Here‘one assumes that the‘;roperties bf'the
mixture can be described by small‘pérturbations from‘a
suitably chosen standard‘reference liquid (at the same
temperature and préésure as the mixture). The word

’ "éonformai" refers to the fact. that the interatomic
potentials for the different pairé are assumed to have
.the same functional form. The two modeis are valid
essentially undef thé éame conditibns, namely the‘assﬁmp—

tion (a) and smallness of w. K

E, = Muc(l-c) . S (3.23)

32,
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N - /’
G, = E, + (G.)-
M M .M jdeal

=NRT[c gn c+ (1-c) 2n(1-c) ] +avwc (1-c)-  (3.24)
and

(o)

6 =wcG® + a(1-0)G}®) +wRTlctn o+ (1-c)in(1-c)]

+ wwel(l-c) , o S ‘ (3.25)

which are the desifed'expressions for GMvadd G for a

regular solution in the zeroth approximation.

The quantity w, assumed to be concentration

independent, is called the interchanggkehergy. If we
repla¢e an AA pair aﬂd a BB pair by two AB pairs,

then the energy of the-mixtufe‘is increased by
[w/i%.NaZ)]. Clearly if w is poSitive the formation
"of like atom (nearest neighbour) pairs 1is énergeticaliy
preferred over that of ﬁnlike atom pairs. The bpposité
is the case if w is neéatiﬁé.i This tendency qf‘an atom
to prefer one “type of atom:over another as ;EE néarest
neighbéur was neglected in the above treatment when we
vassumed’the“atoms to be distributed completely at’
random.: A somewhat bgtﬁer approximation is the éo;
called quasi-chemical aéproximatiOn. Here it istound
thétvthe various tjpes of pairslqbey'a sort of chemical

equilibrium relation, namely,
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W
NaaNpg  "#NaZRpT 24/ (zrT) | |
4 —73=e = e , (3.26)
(7 Nag) ™ '
in contrast to (from (3.20))
‘('2- NAB) .

~in the "zeroth approximation". Since the quasi-chemical

approximation is itself approximate and quite complexf,

x

we shall not pursue it here.

A comparison of (3.26) and (3.27) shows that

o ) ) ‘ /
the "zeroth approximation" should be valid if

lZ&/(ZRT)l»<<'1.’ If we say, somewhat arbitrarily, '
that the a@proximation should be valid for lZw/ZRT]<»%,
‘then since Z 8, 10, we get a_réugh‘c:iterion for the

"zeroth approximation" to be reasonable as

-2 <X <2 . - : (3.28)
; RT . . , .

b

Since-[GMf, given by expréssiond(§.24), is maximum at
c ='%, the condition (3.28) implies that

G
- M
’ 1.2 < eRT

N

<-0.2, (atc=3 .  (3.29)

We shall need (3.28) and (3.29) in our discussions

later.

T For reviews see,Afbr example, Guggenheim (1952) and

Prigogine (1957)..



3.4.2 Expressions for V, §,kp and Scc

Wwith G given by (3.25), one obtains for the

volume, § and Kk, the expressions:

G (o) (o) v, (0)
v= ( ] = A[cV + (1l-c)V +a V c(l-c)] (3.30)
ﬁTuN‘rb 1 2 1 T
(o) _ (o), 1y (0)
_1{av _ Vl -V, ta Vl (1—29) |
8=F\5c =0y S) ) (3.31) .
JT,P 0 ch + (l---‘c)V2 + arvl c(l-c) - '
and
2
VK = - [.@__Q.]
T 3P
T'clﬂ,
=HN{CV{O)Kél)+ (l—C)VéO)KéZ)4—a"V{o)Kél)C(l*C)

(3.32)

where a' and a" are dimensionless quantities proportional

to the first and second derivatifes of the interchange

»

energy w with respect to pressuﬁg\\\»'

2
SR arp g

(o} \dpP T ! -, (o) (1) R :
: . Vl K
1f w is independent of pressure, V and VK are‘linéar
in concentration as for an ideal solution.

Using (3.24) in (2.39) one has for the con-

centration fluctuations:

S. _ JY'RT _ " c(l~c)

= . X (3.34)
CC 2. 2w S

3 G 1l - == c(1l~-¢) .

"7} KT | L‘,

[3" AT, P
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Fig. 3.4.

3 1 L.
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Variation of Sgc with concentration for
regular solutions in the zeroth approxi-

mation; w/RT = 1.1, —— w/RT=0.5,
eeee. ®/RT=0 (ideal solution), --- w/RT=
0.5, — -~ —-=w/RT = ~-1.0, o data for

Na-K from Hultgren et al. (1963).
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We observe that Scc is symmetric about c = % and

lies above the ideal value [Ség = c(l-c)] if w is

. "V‘ - ) .

positive and below it if w is negative. If w is
"positive, the solution has a critical point of mixing,
the critical temperature Tcm being given by

__l
Tcm -7

~le

. .' : (3.35)

Near this:point SCC becomes very large. Although the
ekpressidn (3.24) for thebfree energy is too simple
to adequately descfibe partiélly miscible‘liquidsf, and
the thermodynamic theory of fluctuations breaks down
'nea£ the critical point, the largeness of the concen-
tration fluctuations near T, is of course well known
from the phenomena of Critiéal opalescence in light
scattering and, other scattering experiments neaf qg = 0.
igFig; 3.4Villustrates the variation of Sec
with concentration forva few values of w/RT.“

3.4.3 Expressions for the Partial Structure Factors

By combining (3.34) with (2.36), one immedi-

‘ately obtains

T as discussed near (3.28), for |w|/RT > 2, the zeroth

'épproximation is likely’'to be poor whether w is posi-

tive or negative.



} 2. 1y o o) + 29 (102
aj; = 0+ X(6"c(l-c) - 26(1 c)+RT (1-c) ™)

o 2. L 20 2,
aj, = 0 + X(8§"c(1 c)+—26c-+§f c’)
and
a,, = 8 + X(86%c(1-c) - (1-2¢) 6 - 22 c(1-c)) . (3.36)

12 : RT :
where»we have set
. S
_ ®cc _ 1

1 - Eei-c)

If we take the limit c-+0 (c =c;), then |

/

O _ 40 _ 5,40 , 2w
all—e - 26 t T
o _ .0
and |
?22 =6° - §° , | . ~ (3.38)
yielding o
ad) + a9, - 222, = 28 (3.39)

22~ “912 T RT

and showing that 4 in Eqn. 13.17) is simply. related to
the interchange energy w in units of RT. The left-hand
.side is zero if w = 0, in agreement with the result in

(3,15) that for an ideal solution a 2a,., = 0.

. 11 7327 %27
When w # 0, thiS»combination of aij-is given by the

expression

38
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2w
11 Y222~ 223y, RT

il

) X

- 2w/RT . (3.40) o
1~ c(1-c) (52) -‘

. Its variation with concentration is illustrated in

Fig. 3.5. P o e

3.5 Application of Regular Solution Theory to Na-K

3.5.1 Comparison with Experiment for Scc, V and K

For the Na-K alloy the data at 300°K on GM
apqd activities are given in Hultgren et. al. (1963).
Wlﬁhin experimental errors GM is symmetric about c=

G
and at ¢ = % and 5;%? ~ ~0.43 so that the regular

-

- solution theory as described above should be valid.

The determination of Sce from theory just requires one

‘parameter, namely the interchange energy w. ﬁChoosihg'
w. so that GM/JVNT agreesﬁyith experimeﬁ%ﬁl at c ﬁyj,r
o R, _ ‘ .

one finds

w/RT = 1.1 , T = 298.15°K .

With this vélueuof w the plot of S.. against ¢ is given
in Fig. 3.4. As describéd in §2.3, the experimental
values of Sce aré‘moét,réédily determined by differen-
:tiatihg the activity data. We see from the Figure

" that the agreement‘bétween théory and experiment is

- fairly good.

¢
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C
Fig. 3.5. Variation of ayjray,—2 with concentra-

tion according to eg

A: w/Rt = 1;

B:

al%B

.40) .

w/RT = =1/2.
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3.5.2 Partial Structure Factors W

For calculating V and'vKT as a function of con-
el ' :

centration, one needs, apart from the volume and com-

pressibility of the two pure speties, the first and

kS

second pressﬁre derivatives of w, i.e. a and»a" defined
in (3.33). A theoretical calculation of these, as of o
itself, is e'difficult problem and\wategard here o' and
a" also as parameters. Using the observed volumes and

compressibilities for pure Naband K,” Figs. 3.6 and 3.7

illustrate the variation of V and VKT with concentration

. ¢ for several values of a' and a". The curve with a' =

-0.1 for volume and the curve with“a"‘="—0.5 for VKT

o

fit quite well with the respective data on these quan-

tltleS due to Abow1tz and Gordon (1962) . Thus'we‘see

~

that for the Na- K system the departures from llnearlty

are gquite small. How “hese small departures affect 6 1is

depicted in Fig. 3.8.

Once SCC’ vV and Keps and hence ¢ and 6 are

known, it is an easy matter to evaluate aij using (3.36).

From the values of V and Kg fbf the Na-K system given
in the preceding sectlon, one finds that 6 [=(N/V)RTkK ]
lies between 0.05 and 0.0 = in the entire concentra
tion range and makes negllglble contrlbwflon to al;:at

most concentrations. Tlg. 3. d depictg the varlation

!
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yolume (cm37

Molar

Fig. 3.6. Molar volume against
tion for Na-K alloys
a' = -0.5,

_____ a':O’ —— -

potassium concentra-
at 107 <

-a' = -0,1,
— ~- o' = 0.5,
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05 4
C, K

Volume times compressibility against
potassiumyconcentration for Na-K alloys
at 100°cC:® o" = -0.5, ——=—- a"=0,
—_—— — a" = 0.5.




#ig. 3.8. Dilatation factor § versus sodium
concentration for Na-K alloys for
several values of a'.

44
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of aij w;th concentration _for the parameters a', qo"
and w appropriate to Na-K system. Since as discussed
above V and VKT vary approximately lineafly with ¢, the
curves takihg a' = a" = 0 are also given. We see that,
as expecﬁed,-the twb‘sets of curves lie.very élose to
each other. | “

| ‘Fig. 3.9 aléo gi&es the experimental values of
aj5 obtained by McAliste;‘an@ Turner (1972). . It will
be seen that the agreement with theory‘is goéd except
) near c (Eé ) =" 0 and fér a

for a 1 22 (EaKK)

near c; = l. This discrepahcy is due to the fact that,

11 Fyana Na

as discussed in §3.2, they determined ail (value of.
ayg at cy= 0) by substituting the observed values of

-6 and ¢ in the formula

O _ L0 _ o -
aj; = 0, 268 (3.41a)
which is only appropriate if SCC>= Ség , rather than

the expression (3.10), which for our moéel gives [from
(3.38)]

20
RT °

o]

a7, = 87 - 26° + . (3.41b)

The values of a?l from (3.41la) and (3.41b) are respec-
tively 0.7 and 2.9 at 100°C. The use of the'latter

value for ail would remove the sudden drop near c,= 0

in the experimental curve for ayqr thus bringing it

close to the theoretical curve. fimilar remarks of



Fig.

3.9. Variation of aj;; with concentration
for Na-K alloys’at 100°C, ——— q'=
-0.1, a" = -0.5; —-=——= a' = 0, a"=0;

: a'==-0.5, a" = 0.5;

B, ®, A experimental from McAlister

and Turner (1972).
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course apply to ay, near cl= l, the two values of a%z

- now being

R | ) .
| ayp = 87 4 2867 = -1.95
and
1 .1, .1, 2w
82 = 97 4 207 4 F = 0.25 .

3.5.3 Concluding Remarks

- To conclude, we see firstly that for the Na-K

system the aij vary markedly with concentration and

that their values are in generai very différent from

aij =9 expecFed from the substitutional hypotheéis.
Secondly, we have shown that the regular solution model
in the zeroth approximation is capable of explaining
all the data for this.system. For K—Hgnalloy also (the‘
other system examined by McAlistef and Tﬁrnef), the -
aij‘vary strongly with concentration. We cannoﬁ.how;
ever apply the above modél to this system since the

magnitude of the observed free energy of mixing

M

————— O - ' o~ . ' - o
R 3.3 at ¢ =0.4, T=600°%K,
in conjunction with (3.29) shows thét this is not a

weakly interacting system. Also, the volume ratio

(o) ,,,(0) _

B (= VK /VHg ¥ 3) is large. We shall consider this

system in the next chapter.
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3.6 Effect of Size Difference on Concentraction

Fluctuations in Weakly Interacting Systems

We conclude this chapter by briefly discussing,
for the sake of completeness, the behaviour of concen-

tration fluctuations Sce in a system for which, though

- the interchange energy w is small, the difference in

volumes of the two speéies is too large for the regﬁlar
solution model to apply. For such a system a more valid
approximation, in a similar vein to (3.24), is Flory's

fbrmula_[Flory (1953), Guggenheim (1952)],

Gy=XRT{[c 2n o+ (1-c)2n(1-9) ]} +{Nwé (1-4) [+ (1-c) /8] )
(3.42)

where, as before, w is a suitably defined‘interchange
enerqgy, while ¢ is the concentration of species l,by .
volume and B is the volume ratio. With w independent
of pressure, as is usuhlly'aésuﬁed when using this

approximation,

| dV{O)‘ V{O)
¢ = .. B = . (3.43)
cv{°) + (1-c)v,°®) | v§°5 | )

From (3.42) and (2.39) we have

| c(l-c) T o
s . = , (3.44)
“ l+ca-ere’ - 2

(B=~1)~ RT

where
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(o) (o)
s o1~V ___ B-1

_ _ : (3.45)
cvi® 4 (1-qyvlo)  U-el+es R

We see from (3.44) that, unlike the case of
regular solutions (8 small), SCC(O) now also depends
on §. In particular, even for an athermal,mixtﬁre, i.e.

when the interchange energy w= 0, is not just equal

Sce
to c(l-c) as for a truly random (ideal) solution. .The
-variation of Séc for\several values of 'w/RT, for the
case B = %, is illustrated in Fig. 3.10. .

We should finally mention again‘that (3.42),
like (3.24)Afor the régular,solutions, is valid only
for weakly interacting systems with restrictions on
GM similar to (3.29). Also, we should note that
although Flory's expression does indeed reduce, for
~B = 1, to the "regular solution" expression (3.24), it

should probably be viewed to be valid only for about

1
> -
B 2 2-or B < e
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ccC i w 1O )
; RT
0-4}- 1 -~
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- -0.5 ]
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C
Fig. 3.10. Variation 6f Scc with concentration

in Flory's approximation (eq. (3.44))
for the volume ratio B = 1/3 and
several values of w/RT (Fig. from
Bhatia and March (1975)). = )



CHAPTER 4

CONCENTRATION FLUCTUATIONS AND PARTIAL STRUCTURE

FACTORS OF COMPOUND. FORMING BINARY MOLTEN ALLOYS

4.1 Introductinr. and Model

In‘the p;eceding chapter, we discussed the
behaviouf of the concentration fluctuations SCC and
other structure factors on the basie of some simple
theoretical models of mixtures. BaSically this
discuséion wae applicable to systems in which the
difference w in the pairwise interaction energies .
between the two species can be considered to be small
(see Eqns. -(3.28) and (3.29)). There is,'howeyer, an
interesting class of moigen systems - examples being
K-Hg (aiready mentioned in Chapter 3), Mg-Bi, T1l-Te,
etc. -,whexadthis difference is not small. This is
evidenced by the fact, amongst others (magnitude of
'GM/meT etc.), that in the solid phase they form inter-
metallic compounds at one or more well defined stoichio-
metric compositions. In this and the next chapter we
discuss, using a phenemehological medel, some charac-—

teristic features of S and otherfstruétqre factors in

ccC

- such "compound forming" solutions+_

- T The results described in Chapters 4. and 5 are pu-

blished in Bhatia and Hargrove (1973, 1974), Bhatia,

Hargrove and Thornton (1974).
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The concentration fluctuations SCC have been

recently evaluated from thermodynamic. data for a nﬁmber
‘of chpéund forming molten élloys by several authors,
notably, Ichikawa and Thompson (1973), Thompson (1974),
ﬂMarch et. al. (1973), McAlister et. al. (1973) and
Turner (1973), and Figs. 4.2-4.4 and 5.3(a-d) exhibit
the variation of'SCC with compbsition fqr a few systems.
A remarkable feature of these results is that,beven for

-systems in which the difference in volumes of the two

pure species is small (like Mg-Bi, T1-Te, Ag-Al), SCC

is far from symmetric  about c==%. This is quite in
contrast to the expectation from the'regular solution
theory which in both and the zeroth and higher approxima-

Ktions predicts that GM and hence SCc be symmetric about
1

c=35 (with the usual assumptlon that w is lndcpendent
c

of ). o -

'To interpret the behaviour of S.. and other

© structure factors iﬁlcompound forming molten alloys,
1one has thus flrst to dev1se ‘an approprlate expression

- for GM A flrst prlnc1ple calculatlon (from statls—

tlcal“ﬁ@chanlcs) of G is dlfflcult for these systems

M
‘and does not seem to be avallable. We therefore here

useqa phenomenological model.
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It is assumed that the mixture consists of thoe

A and B atoms and chemical associations qurh“ type
Aqu (u,v small non-zero integers) in chemical equili-
briumTu The requirement that, at constant temperature
and pressure, G be a minimum then gives the equilibriam

numbers of different chemical specieé in terms of their
chemical potentials. Although a general formulation

is given, the actual>calculations in this chaptér are
carriéd out by making the simplifying assumption that
the mixture of different chemical species can be con-
sidered as an ideal solution. For liquid (as opposed

to gaseous) mixtures this assumption is admittedly
approximate. However, it does‘make the problem consi-
derably Simplef and has been used in the past with vary-
ing degrees of semi—qudntitative success to understand

a variety of propertics - see, for example, Bent and -

Hilderbrand (192 i,“Barfield and Schneider (l959)tan§?i_
Darken (1967), thre other references to the literature
ﬁay be found. 1In the next chapter we shall consider
improvements upon this ideai solution ?SSUmption which

will allow a more quantitative comparison with experi-

ment.

T The effects of such chemical associations on SCC has[

also been considered by McAlister and Crozier (1974)

using similar methods.



The plarn of the present chapter is as

4

follows.
In §4.2, the model is described and on the

basis -hereof the formal expression for SCC is derived.

'In §4.3, this is specialised by making the ideal solu-

tion assumption and is then used to discuss SCC for

spécific cases of different u and v (§4.4). For com-

parison, S.. as evaiuated from measured thermodynamic

CcC

data for Mg-Bi, Ag-Al and Hg-K systems are also given
here. Finally, in §4.5, we apply thesz results to
discuss the variation of partial structure fac.ors with

concentration.

4.2 Expressions for G and Scc

A distinctive aspuct of the molten mixtures
under consideration is that in their respesctive solid

states . thev form conwpounds at one or moi. definite

asonabie to

)

refore r

T
{T
®

chemic.) compositions. It is the
"assume that in the mol<ten state of the mixture there -

is a strong tendency for the two types of atoms A and
.

—

B to form chemical associations of the type AUBM

(where 1, v are small non-zero integers), the pr

ecige
numerical values of p and  Jdepending cn the mixture

under consideration.

To write dowr‘a phenomenclogice  ¢xpressiocon

for G on the above basis, consider, for definiteness,
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1 cm mole of a mixture of A and B atoms, the molar

fraction of A atoms being c. Let at any instant these
exist &s n, gm moles of A atoms, n, of B atoms and n,
B, molecules,vwherela = 3,4,....m, and

_ Ha Va
My and v, are again small non-zero integers.  From

gm moles of A

the conservation of total number of A and B atoms, we

have

and

m ‘m
n= ) n,=1- ) (ua+ Vo T 1) n, - (4.2)

1f G; denotes the chemical potential per gm
mole of the species, i=1,2,....m, then the differential

change in the free energy G = Z n,G; is given by (S,
i

entropy)

AG = ~8d4T +Vd4dr + G.dn. . (4.3)

We can now regard Nyr &= 3,4,....m as order parameters
whose equilibrium values are determined by the require-
went that for equilibrium®at constant T, P and ¢, G

is a minimum. Hence eliminating én, and én, from (4.1)

1 2

and setting (aG/an@)T,P,c,na,: 6, we obtai:
3 - = =3 4. : : 4
ua61+ VQGZ GOL 0o , e} 354,00 00m (4.4)

PN
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-If Gi’ i=1,2,....m, are known, Egns. (4.4) together
with (4;1) constitute m equations to determine the

equilibrium values of ni, nz; SRR at a given T,

P and c.
It is convenient}to write the chemical poten—
tials-in the form (i = 1,2,....m)
G. = G(O)ﬂ-RT ¢n(n;,/n) + RT 4n vy " {(4.5)
i i i i’ . *
where Gio) is a function of P and T on./ and is just

the molar Gibbs free energy'for the pure species i (at
the pressure and temperaturé of the mixture) and Yir by
definition, is the activity coefficient of the species
i. The yi's, in general, depend pothron the various
concentrations nj/n and on P agd T, If the mixture‘of
different chemical species can/be considered)to‘form an
ideal solution, then‘all the Yy = 1. (This assumptiop,
of cecurse, does not imply tha£ the moltern sg;v;ﬁ consi-
dered just as a’mixture of>A and B atoms form: an ideal
solution.) ~Substitﬁting (4.5) into (4.4), one has for

the equilibrium values of ni‘the equations

‘UOL \)CL
(mry/m) - a¥p/m) ep -2 = K (4.6)
(n_ v /) T eXPLITRT! T ta - ®
where' - ‘
g, = paGl(o) + \)an(o) - GCiO) . (4.7)

and the last eguality defines K, Under the assumption



57

of ideality (y; = 1, i - 1,2,....m), Eqns. (4.6) become
the familiar equations for studying chemical reactions,
K, being known as the reaction constants. ‘Note that,
to avoid cumbersome notation, weé have denoted in

(4.6) the equilibriumlvalue of a n, alsqﬂby‘ni. In

- the equations that follow all n; signify equilibrium

values.
3 ‘The Gibbs free energy may now be written as
{
G= E n;G, \
(°)+(1 c)G(O) 2 n,g,+ RT z n,%n (n; /n)k f n, i, 4

oa=3 i= l,
(4.8)

where A, = RT 2%n Y- Noting that g, are independent of
the concentration, we may then obtain by straightforward

differentiations and use of (4.1), (4.2), (4.6) and the

Gibbs-Duhem type of relations for Ai+
3G (o) 0 Ay
—[E—J +(l ~C)V, T Z n Vot y ni(?ﬁ_] (4.9)
T a=3 i=1 - /T,c
and
rr__ (3% U CA T S
= t~_‘] = RT[ N - ]-% ) n,A; (4.10)
CcC ac T,D i=1 i i=1
T These are
Z aA, ‘ s
n, [55—} =0 , for each j (= 1,2,....m) .

T.P,n
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where vy = (aga/aP)T c ! and a prime denotes differen-
. ’ )
tiation with respect to c. ' Funkther, V{O) and Véo)

are the molar volumes of the pure\liquids A and B

and Kp may be

respectively. The expressiotz/;or
respect to ¢ ané3

obtained by differentiating .9) wi
P, respectively. |

In ordér to apply Eqns; (4.6)—(4.10) to a
p;rticulaf system, we have to spécify the Yi's and pd,

-

vd. As already mentioned, the simplest approximation to-

Ve

Yi results if one assumes that the mixture of different

- chemical species M, (Mi = A, B, A B, ) is ideal, so

\Y)
ua a

~that all'yi = 1. This is tantamouﬁ; to assuming that

oy

there is no interaction between the different M;. The

- next approximation to Yi would then correspond to assum-

ing pairwise interaCtiQns wij between the different Mi
which are sufficiently weak for the theory of réguiar
solutions (in zeroth approximation) or of conformal
solutions to apply. jFor this case y; are given by-

[Longuet-Higgins (1951)]

Y= egp[Ai/RT]

m . : _ .
= exp{l[ | (nj/n)wij-Z Z(nj/n)(nk/n)wkj]/RT} (4.11)
3=1, J<k
with Wiy = 0, if i = j. The use of y; from (4.11),

apart from adding a number of additional parameters

(wij), makes the problem of solving (4.6) difficult.
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As mentioned_earlier, we shall adopt in this chapter
the ideal solution approximatioﬁ (Aii o, yis 1), with
the reservation that to obtain detailed.quantitative

T~ ’ . 0 ’ : !
agreement more sophisticated expressions for ' such

2
as (4.11) will have toube enployed.

‘ There are a number of biqary.allﬂy systems
which, in Fhe solid state, form éompounc nly at one
stoichiometric composition, e.qg. Mg—Bi at cMg = 3/5,
Ag—-Al at cAg = 3/4, ;n such cases onérhas'to consider
only one pair of values for u, v. The same is appro-
ximately true when the compounds are formed at more than
one stoichiometric cpmpositiqn, provided one of‘these
is'considerébly more stable than the others. For
simplicity,'and also since our main purpose in this
chapter is to discuss broad features of the concentra-
tion flﬁctuations and of the partial structure factors
réthe; than consider'oné specific system in detail, we
shéll present hereiresults of calculation assuming that

only one type of chemical associations are formed in the

molten mixture.

4.3 Expressions for Si- etc. for Single Pair of (u,v)

and the Ideal Solution Aésumption

It is convenient next to rewrite some of the:
above formulae for’fhis simple case. We denote the

single type of chemical associatior Oy A B, and its
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molar amount. by n Egqns. (4.1) and (4.2) then reduce

3+

to
ng=c-uny , n,= 1-c¢c- vng o, n= 1- (u+v—l)n3. (4.12)

Further, with Yy’ = Y, = v3 = 1, Eqgns. (4f5) to (4.10)

yield »

(n;/m)* (n,/n) Y. i :

e = exeloo/anl = (@.13)

with

g —-RT 2n K uG{O) vcéo)- Géo) , (4.14)

(0) (o), 3 |
G= cG. %'+ (1- c) G, ©+n, RT 2n K+ RT § n: &n(n./n) , (4.15)
i 3 121 1 1
V==CV{O)¥K1—C)V§0L-n3V , v= -RT(3 &n K/ag)T , (4.16) -
- {0) (o) '
5=l[2‘l] TV TRy | | (4.17)
v 8? T,P,N CV{O)+'(1—C)V£O)"-H3V' .
_ RT[av] _RT [ g o) (1) (0) (2). , 3 .
g= =5|m= = + (1-c)V K< + (== (n,v)) ,
72 1) P K | 2. T 50 3V g

, ( (4.18)

and
v, 2 -1
3 (n!) ; 2
_ i (n') ‘
Scc T (.Z AT T T h ] - - (4.19)
1fl i ' '

From (4.12)

¢ - '
ny=1-un}, né= -1 —.vné , n'= -(p+v- 1) n} . (4.20)
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Hence remembering that K is independent of concentration,

we have from (4.13)

I(u + vic-ulnn, ‘
a' = 5 5 . (4.21)

n ( +\)—1)2 - n n, - v nn,n,-nn
nynongt M nnshg Rt SRR R

Care must be taken in_uéing (4.21) at ¢ = 0 and ¢ = 1,
since here ny and one of n; and‘n2 simultaneously tend
~ to zero. |

Fiﬁally in eValqating 8 oﬁé nee%§ (BQB/BP)T’ '

which is given by, from (4.12) and (4.13),

-1
. (4.22)

[3“3] . v {uz w2, 1w - 1>2}
oP T,c RT 1 n2 n3> n

' We observe from the above equations that the
determination of concentration fluctuations (SCC)
requires only the knowledge of the reaction constant K,

An approximate value of K for a specific system may be

inferred from (4.15) and the experimental data on the

(o) (o)
1 g

determination of V and 8 from Egns. (4.16) and (4.18)
, N .

requires the knowledge of v and (av/aP)T.reSpectively,

free energy of mixing.GM = G- cG, ‘- (1-c)G The

which are related to the first and second derivatives
of K with respect to pressure. In practi¢e v may be
inferred from the data on volume. 8 is usually small
(v0.03) and may, in the absence of experiméntal data
and to a first.approximatiOn, be linearly interpolated

between its values for the two pure ligquids.

C N
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4.4 Concentration Fluctuations SCC for Different y,v

We now use Egns. (4.1i3) and (4.19) to calculate
the concentration fluctuations SCC as a function of con-
centration and the reaction constant K for different

pairs of values of B and v.

4.4.1 Limiting Cases

If we eliminate ny and n,, usihg (4.12), Eqn;
(4.13) becomes an algebraic equation bf degree p+v in
nj. Hence, except for the case u = 1 and v = 1, one
has to sclve (4.13). numeriqally and‘then obtain SCC;
Before presenting the numerical results it will be use-

ful first to consider certain limiting cases.

'.a) K =+ o
First, if K = «, one can readily see from (4.13)
' 2
— ' — o —_ o
that ny = 0 and also‘(n3) /n3 = 0. Then ny = C; Ny= 1l-c,

and one has from (4.19) and (4.20)

id ' _
SCC = c(l-¢c) , (4.23)

where, as before, the superscript id on SCC indicates
that the binary mi:.ure behaves like an ideal solution
in this case.

b) K + 0

The solutions in which molecular formations

occur to a marked degree form the opposite case. Here
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K << 1, with typical.values of 10“l - lb~4. We there-
fore consider the limiting case K = 0, although physi-
~cally K can never be zero as it corresponds to infinitely
large negative free energy of mixing (cf. Egn. (4.15)).

. We shall see presently that the simple expression for

>S for K = 0 corresponds closely to the S for a'nonr

ccC CcC
zero K << 1.

With K = 0, (4.13) implies that either ny, = 0,
so that ngy = c/u, or n, = 0 so that n, = (l=c)/v.
Remembering that the maximum possible value of ng is
n, = (u+v)—l, we have v

n,y =c/yu for 0 < c g u/lut+v) ' (4.24)

ny=(1-c)/v for u/(u+v) < ¢ < 1 . (4.25)
The concentrations ¢ = 0 and ¢ = 1 are excluded from the

ranges of ¢ in (4.24) and (4.25). Here n, = 0 so that
the left hand side of Egn. (4.13) has the form 0/0 and
it needs special consideration to which we come

presently.

When (4.24) is valid, one has

i

ny = o , n, l-c-cv/p , n= l—'(u+v—1)é/u (4.26)

2
' .
and (n]) /nl 0

Sl

lence using (4.19) and (4.20) one obtains

S =

ce [h=c(u+v) ] [u= (u+v=1)c] , 0 < c < - (4.27)

JERY

=0
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Similarly when (4.25) is'valid

__(_]_._:‘_Ci_)__ —— — Fee 3 Y — [y - — U < ‘(
Sec= S [v-(1 c)(L+\\1;v (1-c) (p+v=-1)1, Ty < © < 1.

(4.28)

Note that (4.28) ﬁay'be obtained from (4.27) by replécing
everywhere ;; (4.27) ¢ b? l-¢, py by v and v by u. Sinbg
(4.27) is, in general, not valid at c = 0, it cahnot

be used to calculate the slope 6f SCC at ¢ = 0, and,
inAfacf, gives incorrectly this slope except when p = 1
(see.Eqns. (4.38);(4.40) below). Simil:r remarks apply

to /4.28) at c = 1.

c) c<<1l, Kx<1

To obtain S and its slope near ¢ = 0 and ¢ = i,

cC
let us go back to Egn. (4.13) with K # 0 and rewrite it

in the form, using (4.12),

‘ ' .
(c- un3)u(l— c - vn3) =,Kn3[l— (p+v—l)n3]U+v l

. (4.29)

-~

Consider first the case c << 1. Then noting that n, is
necessarily less than or equal to c/y, we Vave; to lead-
ing order in small gquantities,

(c -~ pn3)U = Kn
or

vW + Ky - ¢c =0, : (4.30)

where

64



Yy = <un3)1/*1 ;K= (kL , - (4.31)
For py = 1, (4.30) give§
y = n,y = c/(1+&) ’ for uy =1 . ©(4.32)

For p > 2, we can neglect, for sufficiently small c, the
first term in (4.30) compared to the second term and
hence

y = c/K' or n, = ci/x , p>2 .  (4.33)
- (4.33) is clearly validkif (c/K"')}l << ¢, or

¢ << (k/Y/ D N | (4.34)

Noting that (4.32) and (4.33) are correct to

the power*of c exhibited in them, and using Egns. (4.12),

we can readily'expand the expression (4.19)‘for‘(SCC)—l
in powers of c. One finds, for u = 1,

-1 -1 3 -

SCC = c “+ 1+ 2v/(1+K)+ O(c) , p =1 (4.35)
and for u > 2

Sca=c T+ -k penct e ot L (436
For comparison

. -l -
(Ség)' =c\l+1+c+c2+...w (4.37)

Al

From (4.35) and (4.36), we have, to ordew <,



e 2 2y 2 3, T
Scc=C¢" ¢ " 13r © +0(c™) , T w=1, (4.38)
Sccﬁc—cz + (2/K)c2+ 0(c3), o= 2, (4.39)
' 2 3, -
‘§chfg)~ c” + O0(e™) -, wz 3. (4.40)
-1

Thg expressions for SCC'and SCC near ¢ = 1 are

simply obtained from Eqns. (4.35)—(4.40) by replacing

- everywhere c by 1-c, y by v and v by u.

4.4.2 Discussion’and Numerical Resulﬁs

Egqns. (4.35)-(4.40) show firstly that in every

case as c-+0,.SCC-+c, as it sho Secoﬂdly,4as c
increases.from zero (but still < 4 SCC incrgases
and lies below the ideal valv- if + and above it

if p > 2. With further increc '~ of .. Eqn; (4:27) shows
that SCC has a maximum at some 'ow:entratioh,,say,ral
(51 <p/p+v), and then drops to -..ou at ¢‘= p/p+v. Sce
hés : jiscoﬁtinubusAslope at this point, since as c¢
ingreaseS’fgrther Eqn. (4.28) takes over and éCé rises

again to a maximum, atlﬁhe éoncentration, 52, éay,‘énd
then decreases to zero, the limiting behaviour near

¢ = 1 being governed by whether v = 1 or v 2 2 in_
accordance with equations similar ﬂo (4.35);(4.40).

o

It is interesting to remark here that the fact

c

variation with_copcentration near ¢ = y/u+v is similar

&4
4.

that (for K +0)} Sy = 0 at ¢ = p/u+v and has a V-shaped
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to v v haviour of the concentration fluctuations in

a pertectly ordered solid al}oy near the appropriate
Stoichiomotric compositioh [Krishnan and Bhatia (1944)
Bhatia and Thornton (1970)]. For the latter at the
'st01chlometr1c compo&~t5£n itself, of course, Scc(g)z 0
for all wave vectors'g except for the spikes which
correspond to Bragg reflections due to the formation

of the superlattice. In‘a‘compound forming molter.

solution at the chemical composition, ) may then

cc

be expected to be much smaller than s* id for small ¢,

CcC
have a peak hlgher than SCS at some hlgher.q and then

Cg with progressively damped amplitude.

with the sum rule for Scc(q) given by Egn. (2.21b).

osc;llate about S

Returning to Egns. (4.27)-(4.28), we may deduce
- . G O .
from them that the positions ci and 02 of the two maxima

in S and their heights are given by

CC
= NEW) . E=l- /) (44D
i See(E) = (/) PE(y) (1-£ (y)) [y+E(y) (1-y) 1, (4.42)
Sec (€)= (WS @) (4.43)

where y = ptv and

= 2y -=1-(y —y+1)

We note that thevggights of the two.peaks are in general



unequal being in' the ratio (u/v, . Table 4.1 gives
valuéé of.El, 62 and the heights of the peaks for somé
val.as df =~ and v,

Pocr a non-zero X, out K << 1 the posicions and
heights of the peaks wguld‘still be rougély given by
EqQns. (4.41)—(4;42), while the V-shaped behaviour near
c= y/u+v will get rounded iﬁtd‘a ﬁinimum. With further
increase in K, the two maxima will grédually merge into
each othef in accordance with the limiting behév;ou:‘

1d =c(l-c) for K - ». . These features are illustrated

SCC *

in Figs. 4.1-4.4, where we give the results ofs numerical

calculations for SCC for different values of K for the

cases (u,v) = (1,1), {(3,2), (3,1) and (2,1).
In Fig. 4.2, we also give the experimental

values of SCC for Mg—-Bi system which is known to form

the compound MgBBi

5 in the solid state. These wera

nbtained from the data on the activities tabdlatcdwf.”’

g

v A . o
.962, . by nozing that if v is. th=

—
L)

Cent of metal A concenbhirslion oL Lo

soiution . chen !

oo (4 45) fellows droaed. v 2ly foom (2077 if e
{Otj Ll achivities o an SN 3
—O P anc YB ny A 74 EELZE}‘ =y A and o " [ F3) = ey n
“le mer.-ion tﬂlaﬁ, i certal E&;hgﬁ »£ cornen Thon, a
(13 e determiration of the slopon OF ‘
LTI 0 myogt ;e1raf} her. o7 e saguires more dac L

ave Lanle,

A
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peaks in S

of U,Vva

s

The

cc

For comparison the value

each of the concentration is also

Table 4.1

positions {cl and c

69

and heights of the

for the limiting case K >0 for some pairs

=3

0.283

0.294

0.310

wn

0.221

(]
K]

1

9? Ség = ¢ (l-c) a?
given. |

S, Scckézg» ség<52>
0.788 | 0.096 0.167
9}87 ~ 0.058 0.113
0.906 10042 0.085
0.926 | 0.033 0,065
0.96 0.0154 0.038
0.853 | 0.131 0.125
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Fig. 4.1. The concentration fluctuations Scge as &
function of concentration in & binary
mixture forming chemical asioci.i ions
of the AB type (u=v=1l). The diffecrent
curves are for different values of the
reaction constant K as marked; the curve

¥.= ® represents SCC==Ség:=c(lmc).
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0.2

Ol

Fig. 4.2.

Scc as a function of concentration c.of

A atoms in a binary mixture forming
chemical associations of the A3B, type
(u=3, v=2). —, theoretical for different
values of the reaction constant K; —~— —, .
experimental from data of Hultgren ot.al,
(1963) [see also Ichikawa and Thompgon

(1973)) for the Mg-Bi system w1th c= cMg‘
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Fig. 4.3, Sce as a function of concentration c of
A atoms in a binary mixture forming
chemical associations of the A3By type
(u=3, v= 1). —, theoretical for different
Values of the reaction constant K; — —=,
- experimental from data o} Hultgren et al.
‘ (2963) for the °Ag-Al sybtem; ---, 8%&”Tlﬁ
mental from data of Wflder and Ellio®
(1960). for the Ag-Al system with c:'cAg.

~
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Scc as & function of concentration c of

. A atoms in a binary mixture forming ‘
chemical assoclations of the A.B tvoe
(=2, v=1). __ theoretical for different
values of the reaction constant Ky — —,
experimental from data. of Hultgren et _al.
(1963) for tha Hg~-K system with ¢ = CHg

,.f«m, »



c{(l~c) c(l-c)

SCC==" 9 &n Ya = d n ¥y : (4.45)
‘ B
tC [———-————ac ] l"'. (1=c) {———*—ac }
T,p T,P

The data on free energy of mixing for this alléy at the

temperature concerned sugg@sté that KWJ]O—6-lOf4. W

sée that the experimental SCc has a minimum and twc

maxima at appfaximately the right concen%”itidns_and

their heigynhts are of the'right orders o . magnitude.
Fig. 4.3 similarly shows the experimehtal

values of Scc for the Ag-al system,-whichiin the solid

C

state forms the dompound Ag3Al. These were obtained
from the data given by Hultgren et. al. (1963) and also

that given by Wilder and Elliot® (1960). For this

e D .
system the free energy data suggests Kv 10 © and we

see that the minimum at is very shallow compared

c. =3
Ag 4

to that in the Mg-Bi system at as 2upec.ad.

Mg~ 57
Yinally, in Fig. 4.4 (y =2, v = 1), the ex-

perimental values of SCC for the Hg-K system are given.

-5 <4 ; SRS o Co .
Here K~ 10 " -10 . . go& cthat the height and the

- position of the first peak, and the low velues of ScC

2 ad M ) LN e ] e ) .
near c, =-x are fairlv well reproduced by the theorc-
tical curves, but the experimental curye shows no second
ce for Hg~Na is similar for
but the height of the first peak is substan-

maximum. The experindénial S

. 1
“ng. ¢ 3¢

tially less than that for the Hg-K system; These



discrepanéies are probably at least partly due to the
fact that'these solutions, in the solid state, form

not only the compound HgéB (B=Z X or Na) but also HgB,
85, so that seVeral‘pairs of o) shouid

be simultaneously taken into consideration (see

Hg .3 and Hg
=y .

Egn. (4.10)).
Finally, as a contrast to the behaviour  of

Scé.depicted in Figs. 4.1-4.4, we may recall the

variation bfws with concentratién for the regulecrc

cc

. o . . t ' :
(in the zeroth approximation) or conformal solutions.

For these S is given by (3.34), namely,

cC
S - C\l—c) ) '\4-46)
A R gﬁ'c(l—”) )
so that it is symmetric about ¢ = %, has a maximum at
D R . id _
c =3 and lies, for all c, either above SCC = c(l-~c)

or below Ség, dépending upon whether the interchange

‘energy w is positive or negative.

' Parenthetically we mention that, as might be expected,

the regular'solution thebry in the higher (guasi-
chemicai~ see. §3.4) approximaﬁionr giVeé for Sce
éssentially the same results as depicted in Fig. 4.1
which is for the cése p = v = 1 and hence: is symmetric

1
about o = .
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From the above discussion, it is apparent that
the simplifiedlversion uf the model (on which the
calculations are presented here) has reasonable appli-
cability to at least some of the compound forming
solutions, aithough in general other raccors (more than
one tYpe of b;”v and deviation from the assumntion of
ideaiity, see Eqn. (4610)) have to be considered for

obtaining quantitative agreement.

4.5 Vafiation of Partial Structure Factors with

Concentration

Knowing S it is relatively a simple matter

cc’
to infer the concentration dependence of the partial
structure factois a;4 or of the other two number-

concentration structure factors Sy

For this purpose we r>quire ¢ and GUK‘Of these,

and SNC {see §3.2).

as mentioned earlier, 6 is usually small (v0.03) and
in the absence of experimental data may, to a first
approximation, be assumed to vary linearly with c

between the two pure metals. § may be inferred fromn

he data on volume as '‘a functien of -concentration, which,

1f the simplified version of the model is wvalid, should

be given by (4.16), in which we need only to fix the

(o)

parameter v (and, of course, v, and v from the

(o)
2
observed data. In this connection we should note that
according to (4.16), the excess volume AV, i.e. the

© 76



actual volume of the mixture minus the volume obtained
by linear interpolation potween the values for the

two pure liquids, 1is given by

(0!

(0)
ESVARRY YL, A
’ 71 2

(1-c) V. = -n,V o, (4.47)

llence IAVI is maximum when n, is maximum, that is at the
concenttation c = Y/utv, For many cases AV/V is at most
a few percent and we have not been able to verify this
conclusion for ]ack of sufficient data. (In these
cases, 0 calculated by assumlng the lln car dependence

of volume'’'on ¢C forms a reasonable approximation, cf.

Fig. 3.8). UTor the amalgams discussed earlier, HgK and

HgNa, the observed maximum in [AV] (+0.24V and 0.18V

respectively) -occurs near ¢ = % [Degenkolba ar.u Sauerwald
(1952) , Vanstone (1911)]. We have alrcady mentioned the

reasons why the SLmP11x1od version of the modol tdking.
0l = 2 and v :>l is not qa1to adequate fox.thebc caontems
when tho tendency to form chemlkal associations
AUviiS strong (X << 1), the vaviation of 4 with‘conw
Céhtration depends markedly on the values oi p and v

To illustrate this feature and to see how this variation

is affec . . §, we depict aij versus concentration
curveé i JwW cases iﬁbFiqso 4,.5-4.7. For(simplii
city'wé have throughout set 0 = 0 ana drawn all the
curves for X = 10f3. As will be clear from thé inspec-
tion of Figs. 4.1-4.4 for S a swaller value of K

cc’
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does not affect the results qualitatively. (For K+ =,
Sce Ség (=c (1-c)), and the concentration dependence
of aij is quite different from that depicted in these
figures; for example, if § = 0, then all aij = 6~ 0.03,
”and if B = 2 or % aij are as given in Figs. 3.2-3.3.

Fig. 4.5 gives the results for the cases (y,v) =
(1,1) and (3,1) taking § = 0 (equai partial molar volumes
for the two species at all c)._ The curves for (u,v)

(1,1 are qualitatively similar to those given in Faber

(1972). The dashed curves in Fig. 4.6 show the concen-

tration dependence of aij for w = 3, v = 2 case taking
§ = 0, while the smooth curves are drawn by assuming

that the volume varies linearly between the volumes ot
the two purc cbpstituents. The numerical values for the
volumes were chosen approprjaté to the Mg-Bi system, so%
that §{(c) varies monotonically with concentration from
"~0.29 at ¢ = 0 to 0.4 at ¢ = 1. These values uf'é(c)

should be correct to about 109 for this systam since

AV = 0.02 V at the composition Mg3Bi2m

Lastly, Fig. 4.7 gives the results ooy = Z,
v = 1 case. The curves with long dashes are again fou
S+ ¢, while thw smooth curves are drawn using 6(c)

obtained from the measured data on volumes for the K-Hg
Syﬁtem [Dagenkolbe and Sauerwald (1952)]. (6 (c) first

decreases from ¢ i0) *=1.3 to §(%) = -1.5 and then
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The partial structure factors aj;s as a
function of concentration ¢ of A atoms
in a binary mixture forming chemical
associations of the AyB, type. — —,
H=v=1; - p—~3 v= 1, BoLH sets of
curves are for §=.0 . (equal partial molar

.- volumg ;__;che‘[wq SPéC&CS)-




Fig.

A
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05 10

‘The partial structure factors aj; as a

function of concentration ¢ of A atoms

in a binary mixture forming chemical
associations of the type A3By (1 =3,v=2),
vy §= 0 -, §, as explalined _n the
cext. For ~alues of ayj; near c= 0 and of

a9 near c¢= 1, not shown in the diagram,

see text folleowing egn. (4.56).
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e T ‘ - /
4,7. The partial structure factors a4 as a

R . - . p /
function of “oncentration « of A atoms
in a binary uixture forming chemical

associations of the type 2,87 (u=2,v=1).
e theoretical

retical with § as
—-——, experimencal
Turner (1972) “or
c==cHg

with 6 =0; —, theo-
explained 4in the text;
from McAlistexr and
the Hg-K system with
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increasesgmonotonically to 6(1§= =0, 7)‘t For cdhﬁarisoﬁ
‘the‘valués of aij obtalned by McAllster and Turner (1972)
from the measured thermodynamlt data are also given. .
Con51der1ng the llmltatlons of the model dlscussed
earller and the uncertalnty in determlnlng SCC from :

the measured act1v1ty data, the agreement between the

two is not unsatlsfactory
I

The results presented above need two further_
.comments. Flrst, we observe that in FlgS 4 6 and 4. 7

the dashed (6 = 0) and smooth (8§ ¥ 0) curves for each .

aij come very close to each other near the approprlate
Y

chemlcal composxtlon. This is not surprising Lf we

refer to Egn. (2.36) for-a‘ij and consider the limiting

case K+ 0. Then since now SCC = 0 at the stoxchlometrlc

comp051tlon c(=zc )-—U/u+v the partlal structure factors

become 1ndependent of § at thls compos1tlon, and are

l

‘The values of aj 5 for K = 1073 given in Figs. 4.6 and

w[.w

‘4.7 are close to these wvalues at '¢c = % and ¢ =

respectively.

i : . . . . C
' Second, it is of interest to give explicit

expressions‘for the values of a; /(c) at’'c =0 and c-—l

If we substitute the expan51ons (4 38)~-(4.40) for SCC

1nto the Egn. (2.36) and take the limit ¢ + 0 (or c+ 1 r

e
A
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. .0 '
aij etc.)

as the case may be), we obtain-(aij(c=0)

all% &) ' ay, = 6 for~al; g and v, - - (4.49)
L} o 1} _ ol sl . r‘ e : I
12 2 g° 6», a12 *‘s + 3 _for all p and v, . ’ (4.50)

o o~ o =1 - oL

ad, =8°-28%-2v(1+K) 7T, for u = 1 3 - (4.51)

=% - 25° + 2/K , foru=2 (4.52)
. T _

=6° - 26° , forwu 23 ,  (4.53)

and | |

al ol + 26t- e, forv=1 (4.54)
ol + 26t + 27k, for v =2 , (4.55)
= ol 4+ 206t ; , forv 23 ot . (4.56)

Thus, for example, in Fig. 4.6 (u =3, v = 2), the dashed

curve for a,; starts from zero and steeply rises wit

'small increase in the concentration, has a large maximum

(~33, not sﬁoWn'in the'diégram) at c = 0.01, and then

) follows thencurve as in the diagram. In contrast Aspr

near ¢ = l, contlnues to rlse to the value a%2==2K= 2000

in accordance w1th (4. 55) As shown by Egns. (3.10) and

f‘

1
(3.11), all and az, depend on the. curvature of SCC' i.e.

2

.

d“s C/dc2, at ¢ = 0 and ¢ =1 respectlvexy, so that

their determlnatlon from experimental SCC is difficult

The llmltS glven in Egns., (4.51) to (4. 56) may therefore

’serve‘as useful guidellnes where the model 1s;app11cab1e.



CHAPTER 5

CONCENTRATION FLUCTUATIONS AND THERMODYNAMIC PROPERTIES

OF SOME COMPOUND FORMING BINARY MOLTEN SYSTEMS

5.1 Introduction

In the previons chapter we discussed some
general characteristics of the concentration fluctuations
SCC and ‘other structure factors in the’ compound formlng
binary molten systems on the basas of the so~called

:

- chemical approach. This assumes that if the mlxture of

A and B atoms forms, in‘the\solid state, a compound at
a single chemical composition+ specified by Au3§ (W, V

small integers), then in the 1iqu1d‘state there exist,

at a given temperature and pressure, certain numbers- of

Vo

A and B atoms and chemlcal complexes AHB in chemical
equlllbrlum with one another. ‘The equllmbrlumdﬁﬁmbers
of these and hence the macroscoplc thermodynamlc proper- -

ties of the binary mixture depend on (a) the (free)

T The more general case where compounds are formed at

" more than one chemical composition was also formulated

in the chapter, but wilf* not be pursued here. gaIf one
of the compounds is considerably more stable (for
example, has much higher meltlng p01nt) than the othersk

one may as a first approximationassume that one type

“of chemlcal complexes is formed.
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“euergy'of'formation of the chemical complexes or the
reaction constant, and on (b) the form of the chemlcal
potentlals assumed for A,B and AHB that 1s,pwhether
the ternary mixture can be regarded to behave like an
ideal, athermal, conformal solutlon etc.

The behav1our,of SCC etc. for different values

of i and v was dlscussed in Chapter 4 by making the

simplest, namely, the 1dea1 solution assumptlon referred-

o to in (b) above. However, this assumptlon lS too crude
™
to glve, in general, quantltatlve agreement thh experi-
ment. In this chapter we dlscuss two hlgher approxima-
’ tions‘and calcula}e on their, bases the conceutratlon
dependence of the free energy of.mixlng, the activity
and Séc for four biuary systems: T1-T€, Mg-Bi, Cu-Sn
ahd.Ag:Al. Each of theSe higher approximations contalns
four lnteractlon parameters, and although these have
phy51cal interpretation they have to be at present de-
-termlned from ‘the thermodynamic data themselves. |
| . The two approxlmatlons are descrlbed in 85.2
and the varlous relevant formulae -are derlved on the
abases thHereof in 5513. "In §5. 4 the behavxour of S.c
is discussed for two llmxtlng 03535 for'Whlch thé '
equilibrium equation can“be solved analytically. The
. results of numerlcal calculatlons and comparison with
experiment are*presenteﬁ_ln §5.5. This is followed by
a brief discussion of the results and some concluding

N .

remarks.
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A

5.2 Basic Formulqae‘ and Approximation'é

~ Let the binary eolution' contain in all N = .N‘c
and VN = /W (l-c) gm moles of A and B atoms respectively,‘
c being the atomic fraction of A atoms. We assume that
only one type of chemi al complexes AHB (u,v small o
.,integers) are formed. Then if there are in the solution
ny gm mo'les' of A atoms, n2 of B atoms and n3 gm moles of

A B, we have from conservation of atoms | g

ny = ANC= ung , n,= WN(l=-c) - vn 4
and '

n = n,*r,+ n3= N - »(u+v-13n3 . - (5.1)

The free energir bof mixing for the binary A-B, alloy can

obv1ously be written as

=]

GM = G -mcs(m/ ’f‘(l c)G(°7

with o o -
g = u_G{O) + vG2(°) - G§°) | - (5.3)
y s 6'=6- (n,6{+ny6 2§°j+n G(°)) . (5.4)

" where G(o) , i=1,2,3, is the chemical potential for .
’ ié ' -- \ . ,
the pure species i in the solution. _The equilibrium :

value of n, at a given conce‘ntration, pressure ‘and tem-

peratare is ‘given by the condition that G and hence .
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',GM be a minimum, i.e.

o (acan)t'_. “ (5. .
. ; o M/ 3 '.p\N‘c . s . - ’ ‘

z

We remark that in Chapter 4 we haéfhermulated the problem
somewhat dlfferently (using the language of chemlstry
rather than physics!) The equlvalence of the two

<

fprmulations-is demonstrated‘and thelr—relatlve conven=
ience commented;upo@ in Appendix 1. . .
'Ip (5.2), the first term (-n3g) repreéeqté the

‘lowering of the (free) energy due to the formation)of

&

I3

the chemiéalizomple3es& - The second term'islthe free °
energy of1mi*ing of a ternary mixtute,of fixed ni,n2fn3.
wbose.copstituents AjB ahdgAqu Will-te essumedvto inter--
ect”releti;ely weakly with one another - thetstrong
bonding 1nteraction between A and B atoms. havxng been
already taken care of via the formatlon of chemxcal com—

. =

plexes. We may thus borrow expre551ons of varying com-

iﬁlexity for G' from the vamious theories of weakly -
LB R ©

,
i

ra

" interacting mixtures. . - q»!' e N L
The simplest expression for G' comes from .
assuming that the ternary mixture forms an ideal.

N

eelution whence . oY : o N
. 3 . ‘ / ,-r‘ . v :
LI ) . R . . 7
G RT éll n, Ln(ni/n) ' B (5.6)

. -

whlch is ju§t (=T) times the entropy for random4m1x1ng.
The.discus?ion of,condentration fluctuetions on. the

~



‘ximation is valid. G' then is just a straightforward

-
L |

basis of (5.6) aqd 15.2)(was giveh in Chapter 4. th.

(S.G)Wis valid when (a) the effects of differences in“

sigee of the various constituents‘in the mixtere can

b ignored and.(b) the differen€ef™w,; (defined below)

in the interactions between the different spgcies are

zero. If we retain the assumption (a) and treat the.

interactions wij to be small, then we have.conditions

gndervwhich the theory of regular solutions in the

zerbthaapproximation'or‘the conformal solution appro-.
g _ - ; "

generalisation of (3.24) to a ternary mixture and is

"given by(Lsee,'for example, Longuet—Higgins (1951)]

o

4 &n(ng/n)+ 3 2 (n; n. /n)w (5.7
o> . * L 1<J ,

Gr=mr [ n,

where i,3 = 1,2,3 and w;; (20 for i = j) are the inter-

action'energies defihed»in the usual way, for example,

2m12-:2m wAﬁ_ Wy etc;,/For brev1§y, we shall refer
to (5,7) as the conformal solution approximation or,
simply approximation :(a).

The'effects of differences in sizes between

A, B and AUB are more difficult to take inte account.

e

>

A s;mple approximate expre551on for G' in similar vein.

‘~to (5.7), is that due to Flory (1942, "1953), well known

in polymer phy51cs, namely,

G'=RTan£n¢+ZZi/?Jf '(58)



e
~made in qua51-1att1ce modelsnof\manoﬁer—polymer solutions

-89

where ¢i is the cancentration\by-yolume of the ith)
species‘in the mixture and xij_(zo if i o= 3) are
,in#eraction energies (s;miiar to wij in Egn. (5.7))
between the different species, and are (RT) times the
X;; defined in Flory (1953). The first term in (5.8)
iS’the'expresséon, in Flo;y's.approximation (see aléq
below), for k—T) times the entropy of mixing three

speciegﬁwhose molecules- differ appreciably in volume

o, .= ;% ﬂ@d (5 8) becomes ldentlcal w1th (5 7). We

i
make here a further 51mpllflcatlon of (5.8) by\assumlng
that the wolume per atom of A and B atoms is nearly

the same, say’ v, ‘and the™ volume of AuB is (u+v)v.d

[This assumptlon is essentially 51m11ar to that often

and is of course only approximately_tfﬁef; see below].

Then _ - . . / . _on

-

&

o)

B = RN L by = mpdN . by (9)n (5.9)

cwith (5.9), expreSsion (5.8) becomes

-

G' = RT[n ln(nl/ﬁr)afn Ozn(nz/ff)i—n32J1«U+V)ﬁ3/ﬁf)]

10 vy s (5.10)

1<J

r

T For an account of the quasi—latticé»models,,see, for

»

example, Guggenheim (1952) or Prigogine (1957) .

(W

‘  from one another. If these volumes are all equal then



where we have set v, , 2 XiZ' Vi3= (u+v)xi3, Voy= (u+v)x§3.
We shall refer to (5.10), for breV1ty, as Flory's
approxlmatlon or approxlmatlon (b). We note, as 15
well known, that the combi%atorial term [the term
proportional to RT] in (5.10) follows also f'mm the
qua51-latt1ce models. of monqmer—polymer solutlons 1f)

the coordlnatlon number z -is taken to be 1nfln1te+

;nathewfollow1ng we .shall use the‘approx1mations
(a) and (b) above, in con'unctien~with (5.2), to calcu-

late the thermodynamic pr perties of some compound form;

ing systems. Each of these dpproximations contains.

and contain, in QenEral, additional parameters
[coordination number, surface;tO'volume ratio for polymer

molecules‘(chemital complexes) etc.].and will not .be

s . .

LIy

pursued here. 7 . - |

I

T See, for example, Guggenhelm (1952), Eqns, (lO;ir i) -

and (10 10.1). Note that in- these equatlons “for" our
problem, rl—Al r,= X, r3=, G AVIR Note also that N of
Guggenhelm are nl in our notatxbn, and the comblnatorlal

_term in G‘ _is just -T Z ni A S. In the 11m1t z*~w,

;q3-+u+v an& the (10.10. 4) glves the comblnatorlal term
&
“in (5, 10) \\In practice’, the dlfference between the

latter and'(10.10.4) is quite small’ for z> 8 or\lO.

- i

L3
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It may at first sight séem surprising that

we ° should cOnside: the'appfoximation (a) at all, since
even if the sizes of A and B atoms are equel, the size
of'A#Bv will n%} be tha£ of A or B, However, we sheuld
recall firstly from §3.4, that the conformal (or
regular)Asoiution theories are generally_considered

to be reesonagle for volumes of the different species
dlfferlng by up to 100% Secondly, the bond length
between A and A, B and B or A ahd B may be dlfferent
(less!) when both atoms of the pair are in the chemical
conplex than when one or both of the atemé do not belong
to the chemical cbmplexf ﬁence, sifice apprdximét;on (b)
is'also only an approximetion to- a truly conplex situa-
tion, apd ¥ and Vv arefemali intege:s‘in our problem,
,itzﬁas thougnt'desirqble to nake cakculations on both
the aépyoximatiens (a)xand'(b) abeve.v We comment 1ate£

. b : .
on the extent to whieh the two approximations agree

~
T

with experiment. ' ) e .

5.3 Expressions for Vaﬁious Thefmpdynamic,Qﬁantities'
- R 1 R ] .
.‘5.3.1\\@toximaﬁion () S

Cmelnlng Eqn. (5 7) with (5 2),»the free energy

3

of mlx;n§3G for thé compound formlng blnary alloy is

GME"A%39+,RT Z n; gn(n /n)+ Z z (n n. /n)w j . ,(5;11)
; ) i.—_l l<j 7 :



)
The equilibrium number of chemical complexes is given
‘by the condition (5.5). This gives, on uSing (5.1)

and after some rearrangement of terms, the equation

.u'\)== Y - ’ .
n;n, (n3p »»Ke A g (5.12)

where

K = expl-g/RT] : (5.13)
and : o - o
Y= (élz/RT){ﬂu+y-l)(nlnz/n?)- u(nz/n)— y(gi{n)}

o

+.(w13/RT){(ﬁ+v-l)(nles(nz);.p(n3/n)+ (nl/n)}

+ (w23/RT){(u+w 1)(n2n3/n ) - v(n3/n)+ (nz/n)} (5.14)

" On eliminating nl, ny, and n in (5.12) and (5.14) from
(5.1), Egn. (5.12) is seen to be an equation in the

single‘unknown n When the solutlon of (5.12) for

3°
nj, and the conresponﬁing vaiues of‘nl,vn2 and n are -

substituted into (5.11) one oﬁteins the equilibriumh

<

free energy of mlxlng Gy for comparlson with experlment
) In the follow1ng, to av01d cumbersome notatlon, we

sﬁall continue to denote the equ1l1br1um values of ng,

3

Ny nz,ﬂetc. by the same‘symbols. We note that the

~differentiation of Gy with respect to a variable say T,
at equilibrium can be written as

o

~



A

(3G, /3T) = (3G,./9n,)  (3n,/3T) +
M P,c,wx, M ;T,P,C,.N‘ 3 P,c,w R
+ (3Gy/3T) = & -
,,( M )P,c nﬁg'ﬂ.
= (3G,/3T) .- 5.15
‘ M/ P,c,ny . ( _ )

by virtue af the equilibrium condition (5.5). Similar
results apply for differentiations with respect to ¢ or
P.

Usiné (5.11) and (5.15), the expression for

the heat of mixing HM is
Hy = Gy - T(aGM/aT)P | : o (5.16a)»
y _ 8
‘ _ﬂ Bwi. ' :
= 3{9 T (57) } 2 Z (—l)( T (gl )P-] (5.16b)
and the entropy of mixing S = (H GM)/T
| - . The concentratlon fluctuatlons SCC~are given
by/(2.39),4namely,
\\\\. bl . )
S = RT a ) (3.17
cc ﬁfl /( / c ) T,P,N ( ~)

Hence dlfferentlatlng (5. ll) tw1ce with respect to c¢

"and u51ng (5.1) and (5. 12), one may obtain after sormie

A\

algebra

, . . |
s = — CC o | (5.18)
1+8&sq

Here » R
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7 !

3 2 TR
SCC“N‘[izl (ni)"/ni- (n') /n] ’ (5.19)
‘ ! | o ;
B = 20, 1) w, . (;}) (7}) (5.20)

WRT i<3 i3
# where a prime denotes differentiation with respect to c.
The expression for ny is obtained by straightforward

4
differentiation of (5.12) using (5.1) and noting that

ni.= N - As etc. In (5.20)

(ni/n)i = (nin - n'ni)/n2 .

Finally, as mentioned previously, experimen- -
 tally Sec is detefmiged from the measured activities.
If a, denotes the activity of the component: A in the .

mixture, one has from (2.41) rémembering thatAaAs aj.,

= g ' : o ‘
?CC -}%lﬁc)aA/aA . . 4 | , (5.2;)
In terms of Gy a, is given by bqﬁ. (2.40), i.e.q
‘ 'aG& 1 3Gy .
A T,P,NB

With G, given by (5.11), Egn.(5.22) gives, on using
(5.1) and' (5.5), |

4 ’ n. n.
, - _ i .
n aA:-ln( )$ [ Yoy ,* (—-)wl3 11 by

-

(5.23)

Using (5.23), the expressions (5.21) and (5.18) for

S

cc . May be verified to be equivalent to one another.

¥



The expression (5.18) has certain advantages in dedﬁbing
the limiting behavio?rs of SCC,’considered in §5.4, from

theory.

5.3.2 Approximation (b)

b3

In this approximation G' is given by (5.10).

" Hence using (5.2), we obtain+ 5
~ A nl' n2 (u+v)n3
GM = - n3g+RT[nl 2n Tv'fnz n 7F+-n3 n ———xr——}
+ 11 tyngvdvyy - - (5.24)

i<3
Using (5.5) in (5.24), the equilibrium value of n, is

given by the equation

il An expression essentially similar to (5.24) for GM

has been recently derived in another manner by
Takéuchi et. al. (1973) for the case where one of u,v
is unity. ;Takeuchi et. al. use this to calculate

n. as a function of concentration for Cu-Sn and Cu-In.

3

The interaction parameters in this work were deter-
mined .from the observed values of HM neglecting in

" the expression for H

M the possible température depen-

dence of Vij No comparison of other thermodynamic

gquantities is made in this work. (A éalculatioh made

by us for Cu-Sn with their parameéeters gives substan-
) 0

tial disagreement with experiment for S... ‘See also

§5.5). , >



TRV p+v-1 N/ T
- onyn, = (n3ﬁf )EK e o | (5.25)
V)he re ;\ ) ‘ \}d
¥
K' = K(p+v)expl- (u+v=1)1/ (5.26)
- “1; | _ _ LT '2 |
Z —(JWRQ) [(nl un3)vl3+(n2 vn3)v23.(un2+vnl)v12]v

(5.27)

and K is given by (5.13). Next remembering that the

heat of mixing and .activity are related to Gy by (5.16a)h

-and (5.22), one obtains for this case

. n.n. A v, .
= - - 7¢d9y |- L - (et '
Hy ,n3[g T(BT)P]+-§<§ V% Vi ?( P ) (5.28)
n n, 1
fn a,=An —=+1+8n 5-5+—ren (nyvy 5 .+’n2v12)
1 I
- =] ) n,n.v.. . . o (5.29)

Finally, using (5.17) in (5.24), one finds

CcC
(5.18), but with s

that S may again formally be written in the form
cc and d9 in it now given by
. 3 _
T O S
see =V 1 (ng) /“i]
i=1

29/ = (2/n%rT) T ningv.. . : (5.30)

i< +J

06 \



5.4 Expressions for Sec for Two Limiting Cases

M’ 2 and SCC’

" the concentration dependence'of-sCC exhibits the most

Of the thermodynamic functions G

interesting and varied features (seé Figs. 5.1-5.3).'
To have a qualitative understanding of these features
it is instructi&e tb'consider two' limiting cases fég\\
which'analyticexpressionsvfor’SCC may be obtained.

’ The first limiting case refers, to situations
where there is a‘vefy-strong tendency to form chemical
complexes, that is;.g/RT >> ik

RS

.9r K << 1. We therefore
consider the limit K +0. ConSideriné first the appro-

ximation® (a), we see that in the equilibrium Egn. (5.12),

K+ 0 implies also K exp[Y]*&O, since (wij/RT).are by
assumption small finite numbers. Then, if n, # 0,

~ Egn. (5.11) implies that either)ﬁl+ 0 or n,~> 0. One

Ao

‘ then‘has, using (5.1),
ny > Nc/u for 0 <,¢ < u/(u+v) , (5.31)
ng + N(l-c)/v for. u/(u+v) < c < 1 . (5.32)

In the limiti(5.31) nl-*p,\and one may show+ also that

s

T To see this, let ny = (ch/u)-An3.

Substitute this
in (5.12). Then using (5.1), remembering that K << 1,

and retaining lowest order terms in An,, one finds that

An3 and hence ny =uAn3 are proportional to a positive po-

wer of K. Hence as K-+0, nl,ni and (ni)zﬂa_tend to zero.



i

 corresponding expressions for s

 Eqn;‘(5.l2)‘requiré

¢
_ni~r0 and (ni)z/hl+10. Using Ehis result and (5.51)
and Eqns. (5.1) in the expressions (5.19) and (5.20)

cC
(0 < ¢ < u/(u+v))

for s and £, one obtains straightforwardly for

542 = (e/w) e (o) 1 Lu= (urv-1) el

§'?) = ~2(w,,/4?RT) (W/n) 2, n=Nll-c(u+v-1)/u] . (5.33)

The index 'a' signifies that these expressions are for
the approximation (a). 'Sgg then is of course

2
s 3

3

B ~ -1 R
sed) = sgg)[l,+ &2 . (5.34)

‘Similar%y from (5.32), for the concentration range

(@Y~ y71(1-c) [u=(T=c) (u+v) 1 {v=(L1=c) (utv=1)]

Y

i#a)==-2(ml3/v2RT](wf/nF r N=N[1-(1-c) (ptv-1)/v].
- | » ’ (5.35)

‘The solutions (5.31) and (5.32) and hence the

' cc and é} are not valld

in the limits c¢»> 0 and ¢ »1 respectively. For these

cases n, itself tends tb‘zero and the eguilibrium

S more careful analysis. By follow-

ing steps similar to those given in §4.4 for the case

wij = 0, one may show that gfor ¢ << 1, the equilibrium

-Eqn. (5.12) has the solution -
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(5.36a)

ﬁ3 = $fca'+ 0(025 ' for p =1

ny = Nc“)xa + o(é“*l) , for u 2 2 (5.36b)
where . . ]

K, = K exP[(QZB; hwp ) /RT] , @ = (k)T . (5,37

The e;poneht-in_(5-37) is just the value of XX[Eqn.(5.14H
‘at ¢ = 0. The solution (5.36b) is valid when.bbth (see

54.4),

hd
s

c << 1 and c << (Ka/u)

'

1/(u=1) (5.38)

As may be"vérified, the solutibns (5.36) are sufficient'
| (a)

to determine SCC

to order &2 and one obtains after

some’algebra4

(a) _ .2 2 —q)— - -
Sce = c-c  [1+ 2vaﬂ-ﬁf (wl3a(l o) w23a @12(1 a))l]
+ 0(c?) . for ey =1, - (5.39)
and . ' » . |
s = e-c?l1-(2/K )-20 /RTI+ O(c), for u =2

ccC :
! o (5.40a)

A Y

= c=c?[1 -2m12/RT]+-0(c3), for u 23 . (5.40b)

The‘expansions (5.40) are valid when both the iﬁequali;
ties in (5.38) are satisfied. To obtain similar expan-
sions near c =’l; replace in Eqns. (5.36)-(5.40), c by

- : . - . - + 2
1-c and make the lnterchgnge MW Vvoand wyg Y Wy 3.

Eqns. (5.39)-(5.40) démonstraté that for sufficiently,
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small c, Scc = © in all cases. The expmasions are

. ' 2 't : ;
carried to order ¢~ here, since as discussed earlier,

a

the value at ¢ = 0 of one of ﬁhe Faber-Ziman partial

structure factors deggnds on [d SCC/dc ]c=0‘-

Slmllar remarks with approprlate changes apply to the',
region c+1. o
'We note that in the-special case where all

Wiy = 0, so that G' is given by (5.6), the ~various

expressions (5. 33)=(5. .35), (5.39) and (5.40) for sla)

CC .
reduce to those given 1n Chapter 4, as they should.

In Flory' s . approxrmatlon (approx1mat10n'(b)),

for K+ 0, n, are again’ glven by (5. 31) and (5.32).

For® Scer & egc. one then obtains, u51ng (5 30),
. B . . .
g(b) _ . ue(u=(utvic) (b) _ _ 2(u+v) - '
cc "y - ¢ & T Va3 ¢ (5.41)

K RT
for 0 < ¢ £ y/(u+v), and:

(b) _ v(1=c) (v=(u+v) (1=c) by rube)
sccy"v+(u+v)(u+v—1)(1—c) A M ke —:%;;— viz » (5.42)

for u/(u+v) < ¢ <1l. Finally the low c<expansions'for
' .. ' Too#
this case are,

ég) - c-c2~{(1+ve)2+(g/nr>[-vl,_(l-m (1+V8) +(1-8) Bvy 5

’

- (1+vB)Bv,,]} +.0(c?) ,~ for u=1, (5.43)

c-c?[1-(3/K,)-2v ,/RT] +O(c?) , for u=2 , (5.44).

1]

.

e-c®[1-2v ,/RT) + o(c?) , for uz 3,  (5.45)
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where -
Ky, =‘K'exp[(v23fuv12?/RT] ,

. . . ) _1 . . .

B = (Lek) ™t . (5.46)
The expresSions (5.44)-(5.45) are valid only when both
c << 1and c << (Ky st/ (w=1)

yxpansions near - .-
c = 1 are obtalned from (5 43)-(5 46) by lnterchanglng
+ (1-c), TN and v23 b l3f “ ;

| . ’ | .
" The second limiting case refers to-situations

where there is only a very weak or no tendency to form
‘chemical ¢omplexes, that is,

(g/RT) << O0.or K >> 1.

As
K + «, an inspectlon of the equillbflum Egn.

-1l
3 ° K

' - (5.12); or
(5. 25) shows that in both the approx1mat10ns (a) and
.(b), n

| | Hence as K + «, Ngy. n3 and (n3) /n
all'tend to zero. Then 31nce“nl->\Nc, n, +'mw(1—c) and
rx*-JP, we have' for approxlmatlon (a) , from Egns.
(5.20), |

(5.18) -
' T . ﬁ c(l-c) . . :
Scc = v1—21w12/RT)c(l—c) r K> ‘5’47)
“The approxi

PJon (b) gives the same result with w,,
replaced by vy

The expression (5.47) for Sccvls

the same as for a binary regular solution in the zeroth
approximation, as is to be expected

From the various expressions given above we |
1nfer the fqliow1ng.regarding'the concentration depen—v
dence of géc‘ (1) In every case SCc stér£s from zero at
c # 0 with.the slope unlty and ends at zero with the
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slope -1 at ¢ = 1. (2) 1f K.<< 1, then jn the K~ 0
Y . )

limit S,, is again zero at‘the-chemical eempositiOn

c, = u/(u+v) - see Eqgns. (5.33)-(5.35) and (5.41)-(5.42).

Thus § has'two maxima, one in the concentration range

el
0< c<cg and the. other in the range cc<‘c< 1. The

4]

peighttand'positidn of these maxima depend, apart from

the values of K(<<l), u and v, onxthe magnitudes and
s;gns of Wq 4 and wl3 (or Vo3 and vl3) respectlvely

(3) In the opposite 11m1t K+ o, SCC has Just one

“‘maxlmum which occurs at c =.§, its height being deter-

mined by the sign and magnitude of W] 2 (or VIZ)' “We

note that an infinite Sccr Which can happen for posi-

=

tive wij‘(or Vij) implies phase separation and our

treatment applies in such cases only at temperatures

above the crltlcal t%@perature for phase separatlon or

far away from the critical composition.

The results of the detailed calculations show

that the K +0 limit expressions for n, and'SCC form a
good first apPerimation if g 2f3(p+V)RT. Remembering
(5.31) and (5.32),this‘implies that, with Gy negative,
|G (e )/JWI > 3RT. Two of the systems (Mg-Bi and T1-Te)

examlned below belong to this class at the temperatures

'under consideration. For the other two systems

IG (c: )/A”RTI is not so large and the behaviour of

Scc is intermediate between that expected from the K-+ 0

and K + » limits. As. the temperature increases



K(=exp[~g/RT]) may be expectea to increase,‘so that,
- for a given system, with increasing témperatures, CC'
will tend towards the behaviour given by (5. 47) and

eventually towards Scc = c(l—c) approprlate to an
.,.

ideal solution'.

5.5 Numerical Results

In'order to'apply the various equafions of
§5.3 to a speoific system, we have to solve numerically
the ‘equilibrium Eqn. (5.12)'and at the same time deter-

mine thevparameters g (or K) and w13~from”the observed

data on the free energy of mixing G, u51ng (5. 11)

(We exp11c1t1y conflne our remarks to approx1mat10n (a)—

103

the procedure followed for approximation (b) was 51mllar )

.+ We note that the fact that'the two approxiharions (a)

and (b) give the same limiting behaviour for Sce at
high temperatures is a consequence of the assumption

that in both the‘approximations the atomic volumes of

Pure A and B liquids are taken to be not too different

from one another. If his is not the case one should

use for G' expression /(5. 8) and then the llmltlng beha—

viour of. Scc‘would b¢ given by the expression which one

obtains by consider ng'the binary mixture in Flory's
approximation, i.jf Egn. (3.44) of Chapter 3.

o
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For two of the molten systems con31dered
namely Mg—Bl and T1-Te whigh PR the solld state form  _{_ -
highly stable compounds Mg3§%2 (b = 3,v=2) and
Tl Te (= 2, v= 1), |Gy(c )/NRT| > 3 at ‘the tem-
petatures of obserVatidn. For these cases, therefore,
~we took as a startlng approx1matlon that n3 is giveng W
by (5 31) and (5.32) whlch is approprlate for K << 1.
»Then at the chemical compos;tlon cc%uu/(u+v), GM= -n3g,‘
.’Ghich gives a‘starting value for g or K. With n, sti}l
giventby'(5.31) and (5.32) and g as determined above, -
theyexpressiqn for GM' for c <Cqr COntains;thé single
unknown parameter'm23 (since n; = 0). A value of w23

M

intermediate concentratlon between 0.1 and,cc._

”was thus determined from the observed data on-G, at an

Similarly wl3 was determlned from the observed valuev‘: ‘f
of GM at a concentration 1ntermed1ate between C. and

0.9. It may be seen, using expre551ons (5.31), (5.32)

and (5.36) for'n3)ﬁthat for systems with K << 1, 512“
 affects G, fsidnificantly‘Only for u > 2 and ¢ << 1 as
determlned by the second 1nequa11ty in (5 38)~[and
51m1larly for v 2 2 in the region 1- -c <<'1], Since

. this 1mp11esAc to be less than 0.001 for Mg-Bi and |
‘Tl-Te.systems, wiz could not be determined from the -
experimental data on Gy,. Pinding that any reasonable.
choice of wiz (“RT) affeets the values of other para-

| meters only slightly we set in our calculations w12==0.
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‘With-the above starting choice of g,
equilibrium Egn. (5.12) was solved for ng
parameters‘were adjdsted in the light ofnthe e valuee
of'n3/to obtain a good f1t for GM The final choice

of the parameters is glven in Table 5.1(a). .

For the other two systems con51dered, namely
Ag—hl_and Cu;Sn, which were assumed to‘form chemical
complexes Ag,Al (u = 3hzv = 1) and‘Cu4Sn (M =4, v =1)
respectlvely, |G /¢VRT|4-1 2 and 0.9 at the ‘respective
chemical comp051tlon Thle 1mp11es smaller valuestof
g/RT (larger K or weaker tendencyvto form chemical
oompleges) than for Mg-Bi and Tl1-Te. As a starting
japprox1matlon we took g. to be - (u+v)GM(c Y/N . Unllke
the casg of Mg—Bl and Tl-Te, the calculations had to
be made for several dlfferent chorces of parameterS"\
before a good fit for tM could be obtained. We did not
attempt:any mean‘SQuare deviation tests to decide on
the best fit so that the parameters given iﬁ/Eable 5.1
varevto_be_regarded‘as reatonable choices rather than
nécessarily‘the hest possible ‘ones. B
o The parameters smmllarly found for approx1ma—
tlon (b) for the four eystems are given in Table 5.1«(b).

The results of calculation of GM-together with
.the'experimehtal,data ror the four systems arehplotted

in Figs 5.1 (a=-d). ~ The varlatlon of ng with concentra-

tion is also shown here for each case. Figs.5.2(a-d)

S
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Table

5.1

l‘.j

Interaction parameters for the systems Tl~-Te,

Mg-Bi, Ag-Al and Cu-Sn in the,approximations (a) and

(b).

(a) : Approximation (a)

™

K

System| Temp. % . .

(°K) | (Eqn.(5.13)) | 9/RT [019/RT | w) 3/RT| w,3/RT
.TIRTé 873 [ 2 x107°.|10.82] o 1.95| -4.0
Mg-Bi | 973 [1.25x1077 [15.9 | 0 -4.8 | -3.0
Ag-Al | 1173 0.04* | 3.2 |-0.95 -0.3 -2.7
Cu-sn | 1593 0.08 2.5 |-0.9 0 ~2.0

(b) : Approximation (b)

'System| Temp. K ‘ ot ;

(°K) | (Eqn.(5.26))| . 9/RT [V12/RT | v} 3/RT| v, 3/RT
Tl-Te | 873 g8x107% [10.84| o 3.6 | -4.0
Mg-Bi | 973 | s5x107? [16.7 0 -1.0 0.8
Ag-al | 1173 | 0.004 | 3.9 | -o0.8 2.5 | -1.5
cu-sn | 1593 0.01 2.2 | -0.8 2.0 | -2.0
+

and v,, for T1-Te and Mg-Bi.

See discussion in the texf‘rega;ding the choice of w

L
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Fig. 5.la.
|

0.2 04 06 08. 10

Gy/W'RT and n./N -as functions of con-
centration fof Tl-Te. Curve A: conformal
solution approximation; curve B: Flory's
approximation - see text. ® Experimental
data for taken from Nakamura and
Shimoji (1971). o , .

107
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Fig. 5.1b. Gy4//RT and n.// .as functions of concen- .
tration for M3-Bi. Theoretical curves A
and B as explained in Fig. 5.la. e Experi-
mental data for GM taken from Hultgren: et,
al. (1963).
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e

Fig. 5.1c. Gu/NMRT and n./~ as functions of con-
: centration for Ag-aAl. Theoretical
curves A and B as explained in Fig. 5.la.
@ Experimental data for GM taken from
Wilder and Elliot (1960).



110

B

Fig. 5.1d. Gy//V’RT and- n,/N as functions of con-
_ centration for Cu-Sn. Theoretical curves
A and B as explained in Fig. 5.la. e _
Experimental data for GM taken from Hager
et.al. (1970). .
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0 02 04 06 08. 10

- Fig. 5.2a. The logarithm of the activity, 1ln a..,
_ . T1'

. versus concentration for Tl-Te. .
Curve A: conformal solution approxima-
tion; curve B: Flory's approximation -
see text. e Experimental data from
Nakumura and Shimoji (1971).
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. L1 B RN N TSN SR SN |
) ‘jﬁ 0 02 04 06 08 10 _ -
, : CM‘g

Fig. 5.2b. The logarithm of the activity, 1n Ay 7
versus concentration fo# Mg-Bi. ! ._g
‘Theoretical curves as explained in
Fig. 5.2a. ‘e Experimental data from
Hultgren et.al. (1963).

1

>
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Fiqg.

5.2c. The logarithm of the activity, 1n aAg,
~ . versus concentration for Ag-Al.
Theoretical curves as explained in -
Fig. 5.2a. e Experimental data from
‘Wilder and Elliot (1960) :

-
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Fig. 5.2d. The logarithm of the activity, 1ln a
versus concentration for Cu-Sn.
Theoretical curves as explained in
Fig. 5.2a. e Experimental data from
Hager et.al. (1970).

Cu’
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CTI

Fig. 5.3a. The concentration fluctuation Si» versus

' : concentration for T1l-Te. Solid curve A:
“conformal solution approximation; curve
B: Flory's approximation - see text.
— —— — Experimental using data from
Nakamura and Shimoji (1971). =-==--
Sccl=c(l-c)] for an ideal binary solution.
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’Flg. 5. 3b The concentratlon fluctuation Scg versus
. concentration for Mg-Bi. Theorefical
(solid) curves A and B as explalhed in.
Fig. 5.3a. — — — Experimentdl using
data from Hultgren et,al. (1963).
m———— c [=c(1~-c)] for_an ideal binary
solutlog
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Fig. 5.3c. The concentration fluctuation Scc versus

: concentration for Ag-Al. Theoretcial
(solid) curves A and B as explained in
Fig. 5.3a. -— — — Experimental using
data from Wilder and Elliot (1960).

----- Scel=c(1-c)] for an ideal binary
. VUCC
solution.
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Fig. 5.3d. The concentration fluctuation Spp versus
‘ concentration for Cu-Sn, Theoretical
(solid) curves A and B as explained in
Fig. 5.3a. — — — Experimental using
data from Hager et.al. (1970).
----- S c[=='c(1--c)] for an ideal binary
,solutiog. '
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compere'the activities and Figs.5.3(a~d) the concen-
tration fluctuations Scce for T1-Te tbe height of the
second peak‘in the theoretical curves is v;}y senstitive
to smallvlncreases {(~v1%) in w 3/RT (or v 3/RT) beyond
the values listed in the Tables, 1ndlcat1ng the tendency J
for phase separation. For the values of Wy 3 {and v 3),
given in the Tdble, the height of the second peak (not
shown in the diagram). is about unity.

It is well known in the theory of binary
. regular orl&pnformal solutions [see, fo;.example,
Guggenheim (1952), LohgueE—HigginS (1951) ] that the

concentration‘dependences‘of-G and of the heat (HM) o 5

Ml

and entropy (SM) of mixing can in general be simul-

téneously'fitted with the experimental data only if

the interaction parameter is assumed to be temperature ’/////3

~ dependent. In the same Splrlt in our work we have to

a

assume that g and wij (or vy ) ‘are temperature depen-
dent as we have done 1nrder1v1ng expressions (5.16)

and (5.28) for H If the tempereture dependence of

M
g and'wij (or A ) is 1gnored then HM ana Sy are

readily caldulated using the values of n, [and con-
sequently'of'hl and né ffom'Eqn. (5.1)] given in

Figs. 5.1 (a=-d) and the_vaiues of g etc. from Table

Sll. Oneoflnds that for T1-Te, the’ values of H so -

calculated agree with experlment to w1th1n 5% over

vthe whole concentratlon range, while the dev1atlons



@

for S, are considerably larger. In particular at the
chemical composition c = 2/3, the calculated SM =0,

while the observed S,, is negative. In contrast, for

M

Cu-Sn system both HM a'ndSM so calculated are consi-

‘derably. in error with experiment. The relative
) Coe #* . /

importance of t terms involving the temperature
‘ , p

derlvatlves of g and wlj (or v, ) in,the expressions

for HM and SM would of course vary from system to

system, and the above,comments are made here only to

v

illustrate that the parameders g etc. should be deter—
mined from the observed values of G rather than of HM
- by
" As an illustration of the extent to which

‘agreement can be obtained for H and S we give plots

M
of Hy and Sy for Tl Te (Flg. 5. 4), in whlch the . theore-
tical curves were calculated by taking dg/dT = -0.44R,
and |
duy #aT = ~1.2R for approximation (a)
o o ‘ ’

and - | -«
dv23A§Tv= 0.7R , dv13/dT==-R +» for approximation (b) .

(5.48)
-

The temperature dependence of the paraFeters not listed
was taken 'to be zero. The fact that Hk is concave for
_c:‘<cc and convex for c> cc is connected w1th the fact

that Wy3 (v23) and Wy 3 (v13) are of opposite signs for

120
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Heat and entropy of mixing for Tl-Te
System. Theoretical curves A: conformal
solution approximation and B: Flory's
approximation - see text. e Experimental
data from Nakamufa and Shimoji (1971).



this system. Note also the signs of their temperature

derivatives given in Eqn. (5.48).

5.6 Discussion and Concluding Remarks

We observe from Figs. 5.1 (a~-d), that both the
approximations (a) and (b) reproduce the observed con-
centration dependence of e free energy of mixing Gy
remarkably well for the(systems examined. The activi-
ties and Sce which depend kespectively on the fiést

and second derivatives of G,, with respect to concen-

M
tration provide more sensitive test; for the model.
As seen from Figs. 5.2 and 5.3, the agreement with
experiment for these guantities also is not unsaFis—
factory. For the Tl1-Te and Mg;Bi systems for which
were set equal‘to zero, the theoretical

w12 and v

12

values of the activities apy and aMg can be soméwhat
‘adjusted in the concentration range 0 < c<cg by taking
a non-zero Wy and Vi2 [see Egns. (5.23) and (5.29)],
but this does not seem to improve the overall fit with
experiment.

As regards the values of the interaction
Pparameters requiredtlo fit the experimental data it
is gratifying to see that' for each of the systems

examined, the two approximations yield for the (free)

‘energy g of\ formation of chemical complexes values
\ R

122
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which are within 20% of each othegﬂ Also, in each

case, Ww,, = v However, the values of‘w23 and w4

12 12°
‘differ in some cases substantially from the corfres-~

ponding Vs3 and Vi3e This is probably related to the

1]
are likely to be significant when the chemical complex

differences in the definitions of w.. and vij which

is involved, i.e. for (ij) = 2,3 and 1,35 The tracing
of reiaﬁions.between w and v, however,cmust await their
integpretaﬁion in terms of.the basic interatomic
interactions_betwéen the A and B atoms. We should
also'recall that the userof.the'expressions (5.7)‘and
(5.10) férdG“ éntails the assumption that.the‘interac—

tions MEB and v are small quantities - for binary

ij
A, . . .
regular solutions one usually considers the expression

corresponding to {5.7) to be approximately valid for

[ w < 2RT f(see §3.4). In Table 5.1, some of |w

12' 23l
etc. &are as large as 4RT. It is possible that these
large values of wij
partly reflecting the inadequacy of the approximations

) .
in which the combinatorial terms in (5.7) and (5.10)

(or Vij) needed to fit the data are

§

are treated. In this connection it is interestinc to
note that for the Mg-Bi system v23‘and v,3 are consi-
derably smaller than W53 and Wy 3¢ SO that for this

system the approximation (b) is to be preferred over

the approximation (a). This is not surprising in view

/'/
7
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of the discussion of the two approximations given §5.2

and §5.4 - in Mg-Bi there is a strong tendency to form’

chemical complexes and u+v (=5) is relatively large.
In conclusion, it has been shown in this

chapter,‘by four exémples, that for some compound

forming binary molten systems the concentration depen-.. -

dence of the various thermodynamic guantities may be

interpreted by assuming the formation of apprdpriate/

71 complexes. The model then provides informa-
tion 6n'the free eneigy of formation of the chemical
compiexes Aqu and on”the intefaction energies between
the three species@Av B and Aqu in the solution. It

will be realised that the model is a phenomenological

<

one in which the concentration ng of the chemical
complexes occurs as an ofder paréﬁéter. It is nét
possible fo expliqitly demonstrate the existence of -
these chemical complexes from the therquynamic data

or from the zero wave number (g- 0) limit of the

structure factors‘SCC(q) etc. However, if the chemical

complexes are actually formed, then their équilibrium
nu@ber‘and the geometric'arréngements of the atoms in
them should, in principle, be\deterﬁinable from the
knowledge of the structure factofs‘at higher g values,
just as the S(g) at higher g valueé reflects ‘the mole-
cularvnature of a polyatomié fluid [Egelstaff et. al.

(1971), Gubbins et. al. (1973)].
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Finally, it is worth noting that the aésumpa
tion of the formation of chemical complexes undérlies,
also, some of ?he recent discusSions of the‘éoncentra~
tion.dependence of the electron transporf properties
of Mg-Bi and T1-Te systems [Enderby and Simmons (1969),
Enderby and Collings (1970),'Cutier (1971)]. In such
aiscussions, pf course, one has to make additional
aésdmb&ions regarding the behaviour of the valence
electrons og formation of the'chemical coﬁplexes. In
as much:as thé‘present work describes the concentration
dependence of the thermodynamic properties éuahtifatively
and, additionélly,_ailo&s one to infer the number of
‘chemicél cémplexes at any given temperature and pressure‘
from the thermodynamic data, it may be‘helpfu1 towards
a more quantitative interpretatioﬁ of the transport

- properties of these systems.

N\
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CHAPTER 6

THE STRUCTURE FACTORS FOR ARBITRARY g INTERACTING'

4

BINARY MIXTURES 3

6.1 Introduction - v : \

@ff’
The work of the last three chapters shows that
the concentration dependence of the long’wavélehgth
(wave number g+ 0) limit of the structure factors
exhibit widely varying featuresndepending on the type

of molten system under conSideration.' In particular,
we saw that the devfétion of the concentratioﬁ fluctué—
tions'SCC(O) frém the_ideal valué‘(clcz) refle¢ts rather
sensitively the nature of thg interatomic interactions.

- in the mixture.. On the other hand, ?s discusséd in §2.2,
the.sum rule obeyed by a structure factor and its short.
wavelength (q-*m)'limit are the same for every system -
for example,vaij(q) and Scc(q) respéctively obey the

sum rules (2.22) and (2.21) and a;;(=) =1 and Sq ()
cicz. Thus we expectkthat the structure factors at
intermediate g also depend, in generai, on the inter-
atomic interactions in tﬂe,mixture. We méy recall,
.anenthetically, that the knowledge of the structure.
factors at non-zero q is qruCial, not only for under- .
standing tge usual X-ray and neﬁtron scattering

experiments in a mixture, but also calculating

‘the electron transport properties of alloys of metals.
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_ The calculation of the structure féctors er'
arbitrary.q is far from easy and, in fact, the qnly
calculations available to datéASeém to be for a mix-
ture of hard sphergs'using Percus~Yevick appfoximation
[Lebowitz (1964), Ashcroft and Langreth (1967), Enderby
and North (1968)]. Here, as the name implies, one
regards thé system as a randoﬁ mixture of haré spheresA
of appropriate atomic (molecular) diameters, so that the
distribution of the two types of atoms (moleculés) is
entirely gqvérned by their sizes. The model clearly
correspohds to an athermél type mixtufe of Chapter 3

[ = 0 in Egns.: (3.25) and (3.42)].+ It thus cannot be

' It is to be noted that even within the framework of

- the model, the derivatidn’of the eXpressiqh (3.42)
for GM‘and -hence (3.44) fof'Séé(O), on the one hand,

and of the expressions for the various structure

3

factors S..(q) etc. on the other, involve other mathem-"
atical approximations. Hence, for example, the value

of lim Scc(q) from the latter calculations would, in
general, not agree with the expression (3.44) [with

(0),1/3_
cc 2 )=l

both give SCC(O)==c(l—c). 'For:this case SCC(q)'= c(l-c)

w = 0] for s..(0). If, however, 01/02= (V{O)/V

’

for all g and'SNC(q) = 0, and we have avsubstitutibnal

alloy at all q.
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‘-
expected to give agreement with experiment at g+ 0 limit
even for the simplest of real systems. For example, for

3 ) ., (O)

/VNa ) =2 (o o

Kl

NafK alloy, with (GK/oNa) Na’

:(vé?
diameters of K and Na atomsﬁrespeéfively), the hard
sphere modelkgiVés,‘ak c=1/2, SCC(O) ¥0.24, whereas the
experimental valué,at 100°¢,.is SCC(0{=O.55 (see Fig.3.4).
| The purpose'ofﬂthe’pragent chapter is to present
an approximate modificatioﬁ of the hard sphere treatment
so that the g~ 0 limit of Séc(q).is more in accord with
that for a weakly intéracting system - rather than for'ﬁ
an athermal or non-interacting mixture - and then to
examine,'by’an exaﬁple, the behaQiour of the structure
factors at hon—zerolqun the basis of ﬁhis appfoximation.
- The basic equations are‘;olleqtéd together in §6.2‘and
the modifiéatioh_df the hard sphere model is‘described‘in
§6.3;'Sectibn 6.4 gives.the numerical example and is

followed by a brief discussion of the resﬁlts and their

significance (56.5).

6.2 Basic Equations

6.2.1 Direct Correlation Functions and Structure Factors

There are essentially two éppfoaches to the
calculati&n oflthe pair-éorrel;£ion functién-g(r) of"
a liquid (or oflgij(r) for a mixture). The‘first;
developed Variouély'by Bogoliubov, Born and Green, Yvon,
and Kirkwood [for a. peview and references see, for exam-

ple, Cole (1967)] results in a heirarchy of differentio-



integral equations whichvexpress the pair correlation
function in terms of the interatomic potentials and"
the triblet correlation‘functions 9(3), the friplet
in térﬂz}of quadruplet and so on. In actuelvcalcula-
tions one truncates these BBGYK equations at the first
by making some convenlent approx1mat10n for the triplet
correlatlon functlons g( ), such as the super-p051tlon
- or convolutlon approx1mat10ns. The second approach
involves instead the substxtutlon of an approx1mate
expre351on for the dlrect correlation functlon, flrst
introduced by-Ornsteln and Zernike. Of several appro-
ximations avallable, the Percus -Yevick (PY) theory
[Percus and Yevick (1958)] has proved most c0nvenien£h
and we base our Caicﬁiatiohs on>it; | |

For a binary system, the direct correlation
functions Cij(r) ='Cji(r), i,j = 1,2, are defined by

the relations

2 . ) . : . : .
. 3, :
= ' -t .
hlj(r} Cij(r)i-h lgl cthiz(r )ng(lr r')a’r (6.1)
where n is the number density, cy is the concentration

of atoms of type £ (% = 1,2) and

hl{g(r) = glj (r) - 1 . ) (6-2)
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Denoting the Fourier transform of hij(r) by hij(q)

- iq.7 .3
hij (q) =‘-' Jhij (lf)e d"r ' (6.3)'
and‘similarly the Fourier transform of Cij(r) by Cij(q),
one obtains from (6.1) |
hij_(q)=cij(q)+ nzzl czhiz(q)czj (q). (6.4) .
Remembering the definition of the Faber-Ziman

J/sﬁructUre factors_aiﬁ(q), Eqn. (2.1), one has

a;5 (@ l+—nf[gij(r)- 1]et9* a3c
= 1+nh; (@) . , (6.5)

Hence, from (6.4) and (6.5),
311 (@)= D7H(@) (1406, (€11 () ~Cop (@)
2 2 ) s | 2
~ n cz(cll(q)cz2(q)— Cio (@]
azz(q)= D-l(q)[1+ nclgczz(q)-cil(q)) ,
| (6.6)
2 2 : 2 .
-n cl(Cll(q)sz(q)-iclz(q))]_
a;, =D (q)[1-n(clcll(q)i-c2C22(q)- Clz(q))
' 2 , 2
+‘n clcz(Cll(q)sz(q)-Clz(q))]
“where
D(q) = 1—n(chll(q)fczczz(q)#nqucz(Cll(q)sz(q)-Ciz(q)). ,

« (6.7)

\
Y
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For a singlé componentbsystem the Eqns. (6.1), (6.4). and

(6.6), of course, take the well known simple forms

h(r) = C(r)*'nJh(r')C(Ir-r'|)d3r'
h(q) = C(q) + nh(q)C(q) A ' -
and ' |
3 _ 1 o o \
a(q) : S(q) = m . : | (6-.8)

. The expressions for the-nﬁmber—concentration
structu;g factors SNN(q)vetc; for the bina;y mixture in
terms éf Cij(q) are readily written by substituting (6.6),
into (2.17). In the following it will be convenient to
work with theuconcehtration fluctuation‘strdcture factor

Scc(qf,and the combinations

0(q) = Sy (@) = [Syc (@) /S (@)1 %S oe (@) (6.9)
~and

8(Q) = -ch(q)/s%C(q) : _. (6.10)

We observe from (2.32) and (2.33) that 6(q) and 4(q)

are defined such that

6(0) = 8 = RNk T«

\' T

and A(0) = §, the dilatation factor. Substituting (6.6)
intob(2.l7), one obtains
L | 1 N '
8(q) = — 3 » - (6.11)
. l—n(chll(q)+c2C22(q)+2clc2C12(q))

-



132

and ‘
cy 2[l n(ulcll(q)+c (q)+2clc2clz(q))]

See (Q)=" 2 '
l—n(chll(q)+c2C22(q))+f clcz(Cll(q)sz(q)—Clz(q))

(6.13)
|
On using (6.11) and (6.12), SCC(q) can also be written in

. the form -
» 0102 :
CC(q)= ' ' 5 ’
~ , - - A” (q)
1= neycy(Cpy (@+Cy, (@)-2C,, (@) - ¢y, CRCIne

(6.14)l

S

which will be found useful later.

6.2.2 P-Y Approximation and Hard Sphere Model

In the P-Y approximation for a mixturd, the
interatomic potentials ¢ ij r) are related to C (r) by
the relations [Percus (196 ), Lebow1tz (1964)]

-B¢.. (r) ' -B¢..(r) S
1] - = 1] :
glj(r)(e | l)‘ Cij(r)e | (6.15)
where B = 1/k T. Equatlons (6.15) together with (6 1)
and (6.2) are suff1c1ent to determine C (r) or gij(r)'
if ¢1](r) are known.

For a mixture of hard spheres of diameters 9y
and 02, one has
e =0 for r < % (0,4 j)

Y

=1 for r .> %(Gi‘l'dj) (6.16)



which imply, from (6.15), that

gij(r) = 0 for r < %‘oi+ojx

Cij(r) = 0 for r > %‘Oi+0j) - (6.17)

With (6.17), the solution of the Eqn. (6.1) for Ciy(x)

is [Lebowitz (1964)] (x =r-A)

3

—Cii(r) = a,+ bir+-dr | r <o, i=1,2
’ClZ(r)‘='a1 ’ r <a, | A = %(02-01)
2. 1ran3y ald -
= a1+ [bx"+ 4)dx"+ dx"1/r , A<r < %(ol+02)

(6.18)

where we have assumed, for definiteness, that a, > Ol

‘and where a;, by, a,b,d are constants which are func-
tions Of_dl' Py the number density n of the atomS'And
the concentratibn of two types of atoms. For brevity
they will not be written hefevexplicitly. ‘When 0, = Oy
the various constants are independent of concentration

and a; = a,, bl,= b2 = b, sO thatf

Cll(r)_= sz(r) = Clz(r), for 0y =0y -

.'.

one component hard sphere fluid, the expression for
which was first obtained by Wertheim (1963) and Thiele

(1963).

As to be expected, each Cij(r) is then just C(r) of a .
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Rememberlng the relatlons between the Fourler transforms
(q) of C (r).and the various structure factors,

one sees that for hard sphere mixture of equal diameters
» Secla) =0, A =0

and a1,(@ = ay, (@ = ap, (@)

so that one has a simplevsubstitutionalfmixture.

The calculation'cij(q) from (6.18) for any 91
and_oz, involves integrals of the type fsin gr rdar o
with n = 0,2,...,4} which can be evaluated in closed
.form. The resulting expressiohs for C..(q) and hence
'the structure factors have been obtalned by Ashcroft
and Langreth (1967) and Enderby and North (1968) . Since
they are lengthy we shall not reproduce them here.

]

6.3 A Modification of the Hard Sphere Model

fhe interatomic potential consists of a strong-
short range repuLéive interaction and a relatively long
-range weak attractive lnteractlon (see Fig. 6.1). The
hard sphere model takes into account the former in
the form of an infinitely strong repu151ve core but

~

neglects the attractive 1nteract10n. An approximate

N
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method+ of taking the latter into account is suggested
hby the following argument, ‘

We notice from (6.15) that if ¢ij(r) = 0, at
" a given r, then provided gij(r) is nonAsingular, |
Cij(r) = 0. Further if Cij(r) are zero for all r, then
egn. (6.1) gives gij(r) = 1 for all r [ideal gas or
hard sphere model of zero diameter!]. This suggests
that if [8¢ij(r)| s< 1, we can set,'approximately, in

(6.15) gij(r) =1 and thus obtain

N | | . |
Cij(x) = -Boy. (x¥, l¢ij (r)]| << 7 - (6.19)

In analogy with the case’ of one component system, this

approximation may be referred to as the random phase

K2
[N
(2
2

The method is anﬁextension of that proposed by
Woodhead-Galloway et.al. (1968) for a pure fluid.
While this work was in progreSS‘it wes‘pointed out
to us by Professor March that a similér extension ﬁas
been suggested by Woodhead -Galloway and Gaskell (1968) .
Our procedure of spec1fy1ng the repu151ve core and the
attractive potential (see below) differs however from
that used in these works and the discussion of S

cc(q)

etc. presented here has not been given previously.
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approximation (RPA) for the mixture.* Because ¢i.(r)
is not small for small interatomic separation, the

" RPA is actually quite a poor approximation for liquid
‘ .
media. To take into account both the strong short range

repulsive interaction and the weak long range aptractiﬁé

interaction, we assume that Cij(r) has the form

(£) = CiS(r) - Byyy (r) (6.20)

Cij ij

where C??(r) are the direct correlation functions for

'"\Qﬁ‘the mixture of hard spheres of appropriate (see below)

" ? diameters o. and o. and

1 2

v

the triplet correlatiqn function igz (g Zcb)'—* 1.

B

. i ;!’
Brout (1965)] s
B 1 k q ) ' ' J
< > =N+ & —— < > 6.19) "
PP-q” N E P 2 PxPaf-x—q (6.19)
N  iq.R. h -
where pq = E e 3, Rj being the position of the j

atom.. The RPA correéponds to neglecting all terms in

~the sum in (6.19)' except k = -q, whence

]

= 1 . -1 | ‘ | u
S(q) = 5 <pqpfq> = [1 + Bn¢q] \ | (6.19)

‘which implies, comparing (6.8), C(qg) ='—Bn¢q.

4
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m
= > .. 15 . +g.
le(r) ¢ij(r) for r rlj > L(ql ag.) (6.21)
= (rm) fcr r < rmi (.22
i3 i

-4

where r?j is the position atnwhich @ij(r) is minimum.
The approximation (6.21) implies that beyond rTj; the
potential can be considered to, be weak, since use of

(6.21) in (6.20) gives,

’jij(r) =~ —B@lj {r)y , r > rlj ’ (6.23)‘

¥

) : L m
~2 choice of a non-zero Xi‘(r)’ for r«< rij’

u J
e comment., First, if“&ij(r) is set equal to
vemn ta <r?j, then this abrupt cut off gives rise to

. 48 harmonics in C;j(q) and hence in various struc-

cure tazctors., Secondly, as discussed by Gaskell (19707
for a pure fluid, a non-zero Xij(r) in the core region
is necessary to satisfy the physical requirements that

the pair distribu-ior functi s ;(r) (calculated from

|

£.,20-6.22) be zero for r< k(oi+0j}a To find such &
x: ;(r)is & difficult mathematical problem and Gaskell

in his work .n argon alsoc took y(r) to be a conste. . i,

say y . inside the core region. He adjusted the value

/\O

of Ao SO that tho average of ¢glr) over the core is zero,

0]
1.0, f glr)dr = 0. ‘hisz givec argon at 8C.L°K,

0 ;
e = ~1.67 cocampared to the wvalue of Byo = ~1.3Y% from
o y |

(6.22). 0Ouvr suggestion fcr y(r) has, perhaps, the



advantage thét,it requires no additional work to deter-

mine Xo and that it7ftour x(r)] is smooth over the whole

range of r. We note parenthetically that in Gaskell's |
g , ’ {

work, x{(r) = ¢(r) for r > ry and x(r) = Xo for r < rg
where T, (= o) is the value of r at which ¢(r) = 02.
6.4 Numerical Calculations A

&

6.4.1 Calculations for Liquid Argon -

~

: Beforeaprese;ting calculations for . a mixture,
it is useful to consider the application of the abgve
approximation to. a pure liquid. We chbosé liquid argon,
for which the interatomic potential is usually given in
the.Lénnard;Jones form: |

r, 1? rO 6
€[(t-‘jf—) e ('—I—_-) ] °

¢(r) = 4
For argon,

RS"= 123°K , r = 3.4%x10"° cm . (6.25)
B .

We make the calculation at 85°K at which mclar voliume

is 28.34 cm and n = 2.14 XIozz]cmB. The functions

¢ (r) and x(r) are depicted in Fig. 6.1 (rm==2 ro)‘

.One may physically expect the appropriate hard

core diameter ¢ to be somewhat less than the value -
(ro) at which the potential is zero. \ﬁlthough

. ‘ )
the fit for the structure faétor, S{q) (=9 {q))

1

i
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Fig. 6.1. Sketch of the model potential showing

$(r) of Lennard-Jones form and x (r)
as well as the hard core.
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with‘experiﬁent was not unreasonable for the choice

0 =r a somewhat better agreement with experiment is

Ol
obtained for the choice o = 0.98 r,- The theoretical
and experimental results are shown in Fig. 6.2. We
observe that the agreement with experiment is not

unsatisfactory.

1

6.4.2 Mixture

To éxaﬁine the effects of the long range attrac-
tive interactions on. the various structure factors of a
bina;y nixture, we shall here cdnsider, for simplicity,
‘a mixture in which ¢li(r)} ¢22(r)\and'¢12(r);have the
form (6.24) with the same r ., S0 that one may take;.to
a ff%é%happroximatioﬁ+, the hérd core diameters for the
two spegies to be equal (Gl'= g, = g, say). Further,
the three ¢ij(r) are then pgpportionai.to one anbther,
and similarly the three xij(;) and hence their Fourier
transforms Xij(q)' Denoting Xll(q) = x(g) and int:Oe

ducing two dimensionless parameters Yy andO{r

‘ €., - € - €y,F €5, — 2€

11 2 2
Y =._—_“_"—l— , 2R = 11 §2 1
. 11 .- 11

’ (6.26)

to measure relative differences in the (minimum) depths

of ¢ij(r), one has .

.f.

This may be expected to be reasonable if the diffe-

rences in various Eij are small (see below).
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qr,

Fig. 6.2. Model g(q) (solid line) for e/kg= 12i°K,
‘o= 3.4%10"° cm and o = 0.98 r, compared |
"with experimental S(g) for Ar at 85°K.
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X1 (@) = x(a . Xpz (@) = (1-v)x(Q)

and - X, (q) = (2R-2y+1)x(q) . (6.27)
Finally, recalling (6.20), one has

5@ = Cyg(@ - Bxyyl@)  (6.28)

ij ij
where CHs (q) is the lf‘(/)tyn':ierj transform of the vdirect
corfélation functibn CHS(r) for a fluid of hérd spheres
6f diameter o.

Substituting (6.27) and (6.28) into the
expressions (6.11), (6.12) and (6.14) for 6(gq), A(q)

R |
and SCC (g), one obtains

1

8(q) = - 5 (6.29)
1l- ?‘CHS (q) + an(q)‘ [1- 2yc2 +2tRc2] '
8(q) = -no(@x(DB(y - 2Rc,) (6.30)
and ° N
R c,C ' -
Sl = 172 . i (6.31)
' 1+ 8(2nx(qQ)R )CICZ = ¢yC, AT%%;- )

If €11 = €op¢ theh, from (6.26), y = & and the expressions

for 6(q) and A(q) take the form (y =R)

v

8(q) = ! : (6°32)

l_nCHS_ (@) + nBx(q) (1~ 2Reyc,)

~n8 (q) Bx(q)R(1- 2¢ (6.33)

A(q)»‘ 2) .



We note that this case corresponds to systems where
. o

the volumes (V{O) and Vzo)) of the two pure species

are equal. Indeed, the expression (6.33) for A(q)

has the same concentration dependence as the expression

(3.31) for 6 = A(0)) for a conformal solution, if in

(o) _ ,,(0O)
1~V

the latter one sets V . ,Finaliy, for a mixture

Iwhich satisfies the substitutiohal bypothesisr-sll= €50 =
€y, and hence y=®= 0, so that 6(q) is independeﬁt of
cpncentration; A(q?==0 énd SCC(q)==c1c2, as expectéd.

We observe from (6.33) that at ¢ = %, A(q)=0,
so that, for this case (® = Y, €, = %), the value of

SCC(q) depends on the single parameter -

| /R - wlg)
nx(q) kgT = KT ) . ‘6‘34)

Ry
which defines wl(q). If we use the interatomic potential

_ . . « -
for liguid argon to calculate x(q), we find for x(0) =

x (g=0)
[+ o]
(EEITI“)X(O) = 41r(]—{-n—,1.-). J x(r)r2dr
B B 0 : .
_ 32 3, e, _ 1624
= (T) Tanm(}-c—B—,i;) = T A (6.35)
‘and hence w(0)/kg T = -1624 f/T. For mixture having this

value of w(0), S,,(0) would become infinitely large,

T = 85°K if R = 0.105. For R > 0.105, Sae (0) would be

negative which is not allowed since SCC 1S non-—-negative
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by définition. In other words,.for ﬁ,= 0.105,. the

- critical température'of'mixing is 85°K. Now it may be
seen from eqns. (6.30) and. (6.31) that if |R&| a;d

lvy] << 1 (or, of coﬁrsé, if [ﬁBx(O)I << 1), i.e. if
the differences in the pairwise interaction energies
afe‘small, then since 6(0) ~ 0.06, the term involving
A in the deaninator of (6.31) cah be ignored at all
concentratibns for calcuiating SCC(C), énd hence (6.31)

gives

:)2 (6.36)

cc

Chapter 3 from the expression  for the free energy of

which is just the expression for S_.(0) derived in

a regular solution (in the zeroth approximation) or a
conformal solution. As remarked earlier (see p. 127)
we cannot in general expect that the approximate

methods for calculating the S ) etc. for arbitrary

ccla

CC(O) etc., the same expressions'as

derived from the appropriate statistical mechanical

q, would give for S

theories of mixtures described in Chapterl3. It is,
therefore, not unencouraging that the method suggested

here gi&es, at least for the case V{O)/Véo) =1, and

[R] and |y| << 1, an expression for Scc(q) which in the

limit g +0 agrees with that derived from statistical

. mechanics for this case.
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In Figs. 6;3—6.6, we present some results of
numerical calculations to illustrate the variafion of
the different structure‘factors with wave number q.
For dafiniteness, we took throughout for y(r) and ¢
the values‘appropriate to liquid argon as given in
. §6.4.1 and assumed for the mixture that R = .

The results in fiéé- 6.3 (a and b) are for
R, = 0.10 and at T = 85°K which (for this value of )
as dlscussed above is close to critical solution. tem-
perature of the mixture, so that SCC(O) is very large

as g+ 0 for c,=c, =1k qu. 6.3a shows 8(q), SCC(q)

and A(q) for‘c2==% and c2= 0.2. [A(q), in our examples,’

:is zero at cz==% and is in general quite’small at other
concentrations since we are considering here only the
mi#tures &ith V£°)==Vé°);]v Fig., 6. 3b shows as (q) for
the same two concentratipns;

Fig. 654 ‘gives similarly the resﬁlts at an
elevated temperature'T==% Tc’ using the same ®, namely‘
k_oQ, = 0.1. .

As will be clear from the definition of R ,

a positive Valua of R implies that like atom pairs
havéllower~energy than the unlike atom pairs. To
‘illustrate the behaviour ‘of the structure factors
. when unlike atom pairs are energetically preferred,

Fig. 6.5 gives the model structure factors for

‘ R =-0.2 at T= 85°K. As expected, Scc(q).fof q+ 0,
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ola)} W ]
 2 . i

04

| Sc_c (q)

0-2

0-0 1 L1 1 | 1
0 ' 10

Fig. 6.3a. Model 6(q), Scclq) and A(g) (inset) for two
‘ ' concentrations (c = 1/2, c=1/5) takirng
R =0.10, T = 85° (i.e. critical parameters).
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qr

' Fig. 6.3b. Model a. . (
Fig. 6.§g.
- = - C = 1/5.

q) for the same .parameters as
¢ =1/2 (aj; =a,,),




148

D
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T g
—>

0-0

-0-02

Fig. 6.4a. Model 6(q), Scc(q) and A(q) (inset)
' at an elevated temperature: T= 3/2 T,
with R = 0.1 (Tc = 85°K).
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Fig. 6.4b. 'Model,.aij (q) for the same parame{:'ers. as
. Fig. 6.4a. c = 1/2 (all =a,5,),

>
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Fig. 6.5a. Model 6(q), Scc{q) and A(g) (inset) for
R = -0,2, T = 85°K for two concentrations.

\
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is now less than the ideal value (c1c2) in contrast to
the case R >0. Also, it is found that the oscillations
in Sdb(q) damp less rapidly‘when QR < 0 than when' &> 0

(Fig. 6.6). o

6.5 Discussion and Concluding Remarks-

"The major featu:e of tﬁe results cepicted in

Figs. 6.3-6.5 is that the effect of the difference in
the interatomic potehtials on the strucgure‘f%ctors.is
primarily confined té the values of g in the range

0 < g § % Ao where 9, is thevpositibn of the main
peak in ejq)‘or aij(q). For example,-fof a legs than
‘about % 9g s Scc(q) is .quite different when < 0 from
that when ® > 0, while beyond this g, S,..(q) =c;c,,
irrespective of the value @. The partial structure

Ay are different from one \

win

factors aij(q), for g<
. . o . =1 :

anothgf (except that all(q)—-azz(q) for ¢, » since

in our example A(g) =0 at this concentration) and depend

on the concentration, the dependence of aij on both

‘and concentration being quite different when [ < 0 and

when & > 0. In contrast, for g z % g, one has appro-

ximately all(q)= a22(q)=:a12(q) and the dependence on:

concentration is quite small. In other words, the aij(q)

here approximately obey the substitutional hypothesis.
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qr.

Fig.. 6.6. Sce (q) for two values of R at T = 85°K,



In the célculations-presented in Figs. 6.3~

(o) _
N

so that the hard core diameters a3 for the two types

6.5, we have coﬁsidered the mixtures with Vv Véo)
of atoms are equal. When the two diameters are not
equal, one would still expect that the éffects of the
_(wgak) 1ong range interactions are chfined to g-values
less than a value q, where d9. *49,- For q¢:>qo ﬁhe
structure factors méy be expected to be approximately
those given by the hard sphere appréximation with
different oif

Our wofk thus shows that for weakly interactihg
mixtures - that is, where the differenées in théfinter—
atémic potentials are smail ; the structurebfactors in
that fange 0 5 g $ 9, can be significaﬁtly different
frém those calcﬁlated from the hard sphere model, the
difference being dependent on thelrelative_strengths
(magnitude'and sign of R and y) of the éotgntials.
Although a comparison with experiment of the'sﬁructure
factors fo; a;bitrary g is at present not possible
because of léck.bf experimental scattering data, the
cénclusion arrived at‘heré are nonetheless of consi-
derable interest.

For exémple, in the theory of Faber and Zimén
(1965) of the electrical iesistivity of mi#tures of
simple metals, one has essentially to integrate the

" scattering function I(g), Egn. (2.27),'With a weighting
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factbr q3, from q = 0 to.ZqF; where dp is the Fermi
wave number of the electrons. The calculations have
hitherto been performed either using the substitutional
hypothesis'or‘the hard sphere structure factoq@ with
different 6. For multi-valent metals,‘2gF >q, so

that the.integration extends.beyond'thé'first peak

‘and hence the use of hard sphere structure factors woﬁld
form é'good approximation{”‘VHowever, for monovalent
-metals 2qp < g , so that the modifications of the hard
sphere structure factors at low q would, in general,
have to be taken into acCount to obtain fully quantita¥

8. | S
atomic potentials in metal

tive results. Sinée the intex
alloys are not so well knbwn, a useful procedure might
be to choose a simple analytic fbrm for xij(r) and fix
the parameters such that the long anélength limit of
all three structure factors agfees with those derived
from thermodyﬁamic data. The band Struqture\and Madelung
energydélso depend én the structure factors and a similar
procedﬁre mightvpe'adVantagedus there Eoo.

Finally we recall from Chapters 4 and’5 that
the long wavelength limit 6f SCC and other structurel
factors forfcompound—forming molten systems vary with
concentration in a spectaculérly different manner than

for the conformal or weakly interacting‘mixtures. In

these (compound-forming) syétems the associative tendency



(characterised by stoichiometfy)Abetween the atoms is
very strong and the metiiod of calculating Scc(q), etc.
presented here is not sufficient. Recently Ruppersberg
and Eggar (1975) have measured from neutron scafugring‘
CC(q) for Lin mixture at the compound forming concen-
tration L14Pb and SCL(q) shows oscill~»tions which are
of much larger amplitude and which da. .ess rapidly

than SCC(q) of Fig. 6.6. It was shown in Chapters 4 and

5, that the concentration fluctuations S (O) and other
thermodynamic properties of the compound forming molten
systems may be quantitatively explained on the basis of
formatlon of appropriate chemical complexes Recent
‘work [Bhatia and Ratti, to be published] indicates that
the idea of complex formation can also satisfactorily

explain- the neutron- scatterlng data.
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