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Abstract

Fractional order calculus (FOC) has wide applications in modeling natural behavior

of systems related to different areas of engineering including bioengineering, viscoelas-

ticity, electronics, robotics, control theory and signal processing. This thesis aims at

modeling a lossy transmission line using fractional order calculus and identifying its

parameters.

A lossy transmission line is considered where its behavior is modeled by a fractional

order transfer function. A semi-infinite lossy transmission line is presented with its

distributed parameters R, L, C and ordinary AC circuit theory is applied to find the

partial differential equations. Furthermore, applying boundary conditions and the

Laplace transformation a generalized fractional order transfer function of the lossy

transmission line is obtained. A finite length lossy transmission line terminated with

arbitrary load is also considered and its fractional order transfer function has been

derived.

Next, the frequency responses of lossy transmission lines from their fractional

order transfer functions are also derived. Simulation results are presented to vali-

date the frequency responses. Based on the simulation results it can be concluded

that the derived fractional order transmission line model is capable of capturing the

phenomenon of a distributed parameter transmission line.

The achievement of modeling a highly accurate transmission line requires that a

realistic account needs to be taken of its parameters. Therefore, a parameter identifi-

cation technique to identify the parameters of the fractional order lossy transmission

line is introduced.

Finally, a few open problems are listed as the future research directions.
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Chapter 1

Introduction

1.1 Motivation

Fractional order calculus (FOC) was not much explored in engineering due to its

inherent complexity and the fact that it does not have a fully acceptable physical

or geometrical interpretation [1], [2]. Despite of these complexities, it can be used

to describe some natural behavior of systems related to different engineering areas

including bioengineering [3], [4], viscoelasticity [5], [6], robotics [7], [8], [9], electronics

[10], [11], control theory [12], [13] and signal processing [14], [15].

Fractional order calculus can represent systems with high-order dynamics and

complex nonlinear phenomena using fewer coefficients [6], [16], [17], since the arbi-

trary order of the derivatives gives an additional degree of freedom to fit a specific

behavior. A noteworthy merit of fractional derivative is that it may still apply to the

functions which are not differentiable in the classical sense. The fractional derivatives

of these functions depend on the domain and boundary conditions. The domain and

boundary conditions of the functions must be chosen and restricted in order to find the

fractional derivatives. Therefore, unlike the integral order derivative, the fractional

order derivative at a point x is not determined by an arbitrary small neighborhood of

x. In other words, fractional derivative is not a local property of the function. This

characteristic is useful when the system has long-term memory and any evaluation

point depends on the past values of the function. As an instance, a model of the 4th

1
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Figure 1.1: Comparison between a high order integer system and its approximation
by fractional one.

order [18],

G(s) =
s4 + 36s3 + 126s2 + 84s+ 9

9s4 + 84s3 + 126s2 + 36s+ 1

can be approximated by G(s) ≈ 1/s0.5, which is a compact fractional order system

with just one parameter, valid in the frequency range from 0.01265 rad/s to 80 rad/s,

as shown in Figure 1.1.

Another example of the fractional order formulation is presented in [19], where

the authors modeled a complex system, a flexible structure with five vibration modes

which is an infinite dimensional system, by a fractional order system with fewer

parameters. They proposed the transfer function:

G(s) =

∑m
i=0 ai(s

α)i

(sα)n +
∑n−1

j=0 bj(s
α)j

with α = 0.5, i = (0, 1, . . . ,m), j = (0, 1, . . . , n − 1) and n,m ∈ Z. A real-valued α
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models the damping behavior without increasing the order of the system and main-

taining a compact expression which is valid for the frequency range from 0.1 to 200 Hz.

The authors showed that this transfer function is an optimal candidate for obtaining

useful finite dimensional model of the infinite dimensional system. This fact leads us

to consider fractional calculus as an appropriate tool to model more accurately the

dynamics of distributed parameter systems which are infinite dimensional in nature.

Many real systems properties such as viscoelastic material properties [20], [21] can be

better identified by fractional order equations than integer order ones.

Transmission line theory is well known in physics and electrical engineering. The

availability of an accurate transmission line model is desirable for many applications

including power engineering, microwave engineering and telecommunication. The

achievement of modeling a highly accurate model requires that a realistic account

needs to be taken for the transmission line parameters [22]. The difficulty for this

attainment is the variance of the parameters. Some of the parameters vary in a

complex way with frequency. In particular, inductive and capacitive elements can be

strongly frequency dependant due to the result of the skin effect of the conductor.

Transmission lines are distributed parameter systems and thus the dynamics are

described by parabolic partial differential equations [23]. Due to the distributive

nature, it is not possible to obtain rational transfer functions with limited number of

parameters. Fractional order calculus has the property of infinite dimensionality due

to its fractional order. This property of fractional order calculus might be useful to

describe the dynamics of distributive parameter systems such as transmission lines.

It might be possible to obtain a transfer function of the transmission line with a small

number of parameters using fractional order calculus theory.

Abnormal diffusion process appears in the transmission lines. The voltage (cur-

rent) wave of a transmission line is composed of incident and reflected waves. The

reflected wave is an abnormal diffusion wave of the incident wave. Classical calculus

theory cannot accurately describe this diffusion phenomenon. Fractional calculus is

capable of better capturing this phenomenon due to its infinite dimensional struc-

3



ture [24]. Hence, fractional calculus can be used to model a distributed parameter

transmission line.

In classical power engineering textbooks, transmission lines are modeled using

classical partial differential equations where they simply overlooked the fractional or-

der behavior of the system. In [25], the author developed a semi-infinite fractional

order lossy transmission line model. In that model, the author only considered pa-

rameters R (resistance) and C (capacitance) of the system. In this thesis, we extended

the model into a general case considering the parameters R (resistance), L (induc-

tance) and C (capacitance). We also derived a model for finite length transmission

line terminated by arbitrary load at the receiving terminal.

1.2 Objectives

The main objectives of this thesis lie in the following aspects:

1. To derive a generalized fractional order transfer function of a lossy transmission

line considering the parameters R, L, and C.

2. Finding out the frequency response expressions of the fractional order transfer

functions in order to identify the parameters of the transmission line from the

frequency responses.

3. Identify the parameters of the line using parameter estimation techniques.

1.3 Scope of the Thesis

In chapter 2, we review the concept of fractional order calculus. Fractional order

calculus theory will be briefly discussed. Definitions of fractional derivatives/inte-

grals and the Laplace transformation of fractional derivatives are given. Analysis of

control properties such as stability, controllability and observability criteria for frac-

tional order systems are also presented. Properties of fractional calculus have been

discussed with functions useful in the analysis of fractional calculus. Traditional and

4



a new modified approximation techniques to find a rational transfer function are also

reviewed.

Chapter 3 aims at development of a fractional order model of a lossy transmission

line. An extension of a fractional order model in [25] is proposed as a more generalized

model of a lossy transmission line with R, L and C parameters.

In chapter 4, frequency responses of fractional order transfer functions are ob-

tained. Frequency responses for both finite and semi-infinite length lossy transmis-

sion lines have been derived. Simulation results have been presented to validate the

obtained frequency response models.

Chapter 5 is dedicated to the introduction of parameter estimation techniques

for fractional order systems. Linear and nonlinear parameter estimation techniques

have been discussed. A nonlinear estimation technique has been applied to identify

the parameters of the transmission line from its frequency response data. Estimation

results are presented to show that it is possible to identify the parameters of the line

from the fractional order model.

The last chapter summarizes the work in the thesis, and outlines some possible

future research directions.

1.4 Notation

The notation used through out the thesis is fairly standard. The superscript ‘T’ stands

for matrix transposition; Rn denotes the n-dimensional Euclidean space; Rm×n is the

set of all m× n real matrices. R, Z and C are the set of all real, integer and complex

numbers, respectively.

5



Chapter 2

Introduction to Fractional
Calculus

2.1 Introduction

In 1695, L’ Hospital asked Leibniz that he had used a notation for the nth derivative

of a function,
dnf(x)

dxn

and asked what would be the result if n = 1/2? In response Leibniz replied, “An

apparent paradox from which one day useful consequences will be drawn”. In these

words, fractional calculus was born around 300 years ago [25]. Fractional calculus is a

natural generalization of the calculus theory. Before the 19th century, fractional cal-

culus was developed as a pure mathematical theory without any physical significance.

But unfortunately it was not much popular in the engineering community due to its

inherent complexity, the apparent self-sufficiency of the integer order calculus, and the

fact that it does not have a fully acceptable geometrical or physical interpretation [1].

Due to the growing advancement in computing science, fractional calculus becomes

an increasingly interesting topic of research in the field of science and technology. The

essence of this subject is that fractional derivatives and integrals have a distributive

property. Therefore, it provides an excellent tool for the description of memory and

hereditary properties of various materials and processes. This is the main advantage

of fractional derivatives in comparison with the classical integer-order ones, in which

6



such effects are neglected. The advantages of fractional derivatives become appar-

ent in modeling mechanical and electrical properties of materials as well as in the

theory of control of dynamic systems. It has been found that behavior of many phys-

ical systems can be properly described by using the fractional order system theory.

For example, heat conduction [26], dielectric polarization, electromagnetic waves [27],

electrode-electrolyte polarization [28], visco-elastic systems [6], quantum evolution of

complex systems [29], quantitative finance [30] and diffusion waves [31] are among

the known dynamic systems that were modeled using fractional order equations. The

special issue of signal processing [32] discusses many of its applications in detail.

This chapter discusses the basic concepts of the fractional order calculus. The

chapter provides the background on the mathematical knowledge of fractional order

calculus theory.

2.2 Definitions of Fractional Derivatives/Integrals in Frac-
tional Calculus

Fractional calculus is a generalization of integration and differentiation to non-integer

orders [33], [34]. The continuous integro-differential operator is defined as

aD
α
t =






dα

dtα , α > 0,
1, α = 0,∫ t
a(dτ)

−α, α < 0.
(2.1)

The three equivalent definitions most frequently used for the general fractional dif-

ferintegral (a term that was coined to avoid the cumbersome alternate “derivatives

or integrals to arbitrary order”) are the Riemann-Liouville (RL) [33], the Grünwald-

Letnikov (GL) and the Caputo (1967) definitions.

2.2.1 Riemann-Liouville Definition

The RL definition for a function f(t) is given as

aD
α
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

f(τ)

(t− τ)α−n+1
dτ, (2.2)
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where t > 0, α ∈ R+ and n is an integer such that (n − 1) ≤ α < n. Γ(.) is the well

known Euler’s Gamma function.

2.2.2 Caputo Definition

The Caputo definition for a function f(t) can be given as

aD
α
t f(t) =

1

Γ(α− n)

∫ t

a

fn(τ)

(t− τ)α+1−n
dτ, (2.3)

where (n− 1) ≤ α < n, n is an integer and α is a real number. This definition is very

famous and is used in many literature to define the fractional order derivatives and

integrals.

2.2.3 Grünwald-Letnikov Definition

The GL definition is the most popular definition for the general fractional derivatives

and integrals because of its discrete nature. It is very useful for simulation of fractional

derivatives and integrals. According to GL, the fractional derivative of a function f(t)

is given as

aD
αf(t) = lim

h→0

1

hα

[ t−a
h ]∑

i=0

(−1)i
( α

i

)
f(t− ih) (2.4)

where
( α

i

)
=

Γ(α+ 1)

Γ(i+ 1)Γ(α− i+ 1)

is the generalization of Newton’s binomial
( α

i

)
by the use of Euler’s Gamma (Γ)

function where h is the sampling period and [.] means the integer part.

2.3 Laplace Transform of Fractional Order Derivatives

The analysis of dynamical behavior in systems theory often uses transfer functions. In

this respect, introduction to the Laplace transform for non-integer order derivatives

is necessary. Fortunately, the Laplace transforms of fractional order derivatives are

straightforward like the classical case and very useful in the study of fractional order

8



systems. The inverse Laplace transformation is also useful for time domain represen-

tations of systems for which only the frequency response is known. The formula for

the Laplace transform of the fractional derivative has the following form [35]:

∫ ∞

0
e−stDα

t f(t)dt = sαF (s)−
n−1∑

k=0

skDα−k−1
t f(t)|t=0 (2.5)

where n is an integer such that n − 1 < α ≤ n and s denotes the Laplace transform

variable. The above expression becomes very simple when all the initial conditions

are zero:

L{Dα
t f(t)} = sαL{f(t)} (2.6)

2.4 General Properties of Fractional Calculus

The main properties of fractional derivatives and integrals described in [36] are as

follows:

For α = n, where n is an integer, the operation Dα
t f(t) gives the same result as

the classical differentiation of integer order n.

For α = 0, the operation Dα
t f(t) is the identity operator:

D0
t f(t) = f(t)

Fractional differentiations and integrations are linear operations:

aDα
t f(t) + bDα

t g(t) = a0D
α
t f(t) + b0D

α
t g(t)

The additive index law (semigroup property)

Dα
t D

β
t f(t) = Dβ

t D
α
t f(t) = Dα+β

t f(t)

holds under some reasonable constraints on the function f(t). The fractional-

order derivative commutes with integer order derivative,

dn

dtn
(aD

α
t f(t)) = aD

α
t

(dnf(t)
dtn

)
= aD

α+n
t f(t)

under the condition that if t = a, we have f (k)(a) = 0, (k = 0, 1, 2, . . . , n − 1).

The above relationship says the operators dn

dtn and aD
α
t commute.

9



2.5 Functions Used in Fractional Calculus

There are a number of functions that have been found to be useful in fractional

calculus. The Gamma function, which generalizes factorial (n!) expressions and allow

n to be non-integer values. The Mittag-Leffler function is a basis function in fractional

calculus as the exponential functions are in integer order calculus.

2.5.1 Gamma Function

The Gamma function is one of the basic functions in fractional order calculus. The

function generalizes the the factorial n! and allows n to be a real number. The Gamma

function can be defined as

Γ(z) =

∫ ∞

0
e−ttz−1dt (2.7)

which converges in the right half of the complex plane &(z) > 0. This statement

implies that the Gamma function is defined continuously for positive real numbers.

The basic property of the Gamma function is

Γ(z + 1) = zΓ(z). (2.8)

Using the above property, we can find the values for z = 1, 2, 3, . . ., as follows

Γ(1) = 1

Γ(2) = 1Γ(1) = 1!

Γ(3) = 2Γ(2) = 2!

Γ(4) = 3Γ(3) = 3!

...
...

Γ(n+ 1) = nΓ(n) = n(n− 1)! = n!

2.5.2 Mittag-Leffler Function

Exponential functions play an important role in the integer order calculus, while

Mittag-Leffler functions do the same in fractional order calculus. They are the gen-

eralization of exponential functions. Mittag-Leffler considered a parameter a to be a

10



complex number, such as a = |a|ejφ and defined a function as Eq[az], q > 0. When

he studied the function, it became apparent that this function could be stable or

unstable as z increases, depending upon how the parameters a and q are chosen. He

found the function remain bounded for increasing z if |φ| ≥ π
2 .

One Parameter Mittag-Leffler Function

The one parameter Mittag-Leffler function is defined as

Eα(z) =
∞∑

k=0

zk

Γ(αk + 1)
(2.9)

where α > 0.

Two Parameter Mittag-leffler Function

The two-parameter Mittag-Leffler function was introduced by Agarwal and Erdelyi

in 1953-1954 [37]. It plays an important role in the fractional order calculus. The

two-parameter function is defined as follows

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
(2.10)

where α > 0,β > 0. If β = 1 it becomes the one parameter Mittag-Leffler function.

Laplace Transform of Mittag-Leffler Function

The Laplace transformation is a very useful tool for finding the solution of fractional

order differential equations. The following expression gives the identities for Laplace

transform pairs of Mittag-Leffler functions:

tαk+β−1E(k)
α,β(at

α) ⇐⇒ sα−βk!

(sα − a)k+1
(2.11)

where

E(k)
α,β =

d(k)

dt(k)
Eα,β

and α and β are Mittag-Leffler function parameters. The operation is differentiation

of the Mittaf-Leffler function for k > 0 and integration for k < 0.
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2.6 Fractional Order Systems Representation

A fractional mathematical model can be described by the following fractional order

differential equation [35]:

y(t)+ b1D
β1y(t)+ . . .+ bmBD

βmB y(t) = a0D
α0u(t)+a1D

α1u(t)+ . . .+amAD
αmAu(t)

(2.12)

where differentiation orders β1 < β2 < . . . < βmB and α0 < α1 < . . . < αmA are

allowed to be non-integer positive numbers. This fractional differential equation can

be represented more concisely using algebraic tools, e.g., the Laplace transformation

[38]. The Laplace transform notation is

L{Dαx(t)} = sαX(s), if x(t) = 0 ∀ t < 0.

So a generic single-input single-output (SISO) fractional order system representation

in the Laplace domain can be given as

F (s) =

∑mA
i=0 ais

αi

1 +
∑mB

j=1 bjs
βj

(2.13)

where, (ai, bj) ∈ R2, (αi,βj) ∈ R2
+, ∀ i = 0, 1, . . . ,mA and ∀ j = 1, 2, . . . ,mB.

The transfer function given by equation (2.13) can be classified as either a com-

mensurate or a non-commensurate transfer function. A transfer function, F (s) is

commensurate order of α if and only if it can be written as F (s) = S(sα), where

S = T/R is a rational function, with T and R as two co-prime polynomials. The

commensurate order α is defined as the biggest real number such that all differentia-

tion orders are integer multiples of α. The transfer function F (s) is non-commensurate

if αi,βj can take arbitrary values.

To obtain a discrete model of the fractional-order system in (2.13), we have to use

the discrete approximation of the fractional-order integro-differential operators to get

a general expression for the discrete transfer function of the system [39]:

F (z) =
amA

(
w(z−1)

)αmA + . . .+ a0
(
w(z−1)

)α0

bmB

(
w(z−1)

)βmB + . . .+ b1
(
w(z−1)

)β1 + 1
(2.14)
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where
(
w(z−1)

)
denotes the discrete equivalent of the Laplace operator s, expressed

as a functions of the complex variable z or the shift operator z−1.

2.7 Stability, Controllability and Observability of Frac-
tional Order Systems

A commensurable fractional order linear time invariant (LTI) system can also be

represented by state-space model:

0D
α
t x(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(2.15)

where x ∈ Rn, u ∈ Rr and y ∈ Rp are the state, input and output vectors of the

system and A ∈ Rn×n, B ∈ Rn×r, C ∈ Rp×n are the system matrices. α is the

fractional commensurable order.

An integer order LTI system is stable if the roots of the characteristic polynomial

are negative or have negative real parts if they are complex. This means, they are

located on the left half of the complex plane. It is different for fractional order

LTI systems. A fractional order stable transfer function may have roots in the right

half of the complex plane. Matignon [40] has established the stability condition of

any commensurable explicit fractional order system. The fractional transfer function

G(s) = Z(s)/P (s) is stable if and only if the following condition is satisfied in the σ

plane:

|arg(σ)| > α
π

2
∀σ ∈ C, P (σ) = 0 (2.16)

where σ := sα. When σ = 0 is a single root of P (s), the system cannot be stable. For

α = 1, this is the classical theorem of pole location in the complex plane.

Figure 2.1 shows the stable and unstable regions of this case.

The controllability and observability of system (2.15) are defined by Matignon

[41]. System (2.15) is controllable if the controllability matrix,

Ca = [BABA2B . . . An−1B]

13



Figure 2.1: Stability region of fractional order LTI system (2.15) with order 0 < α < 1.

has rank n. Similarly, system (2.15) is observable if the observability matrix,

Oa =





C
CA
CA2

...
CAn−1





has rank n.

2.8 Approximation Methods of Fractional Order Sys-
tems

A fractional order system is an infinite dimensional system due to its fractional or-

der while integer order systems are finite dimensional with limited memory. The

characteristic equation of a fractional LTI system is not a polynomial but a pseudo-

polynomial function of the fractional power of the complex variable s [42]. A frequency

band limited implementation technique is required for fractional order systems. The

finite dimensional approximation should be done in the range of frequency band and

it is an active research topic in the community. Direct discretization methods were

proposed by Chen et al. [43], while in [44], a new infinite impulse response (IIR) type

digital fractional differentiator is proposed. In [45], continued fraction expansion is

used for approximation due to the fact that the continued fraction expansion often

14



converges much more rapidly than power series expansion. In [46], it was proposed to

design digital fractional differentiator and integrator by recursive filtering via power

series expansion and Prony’s approximation.

2.8.1 Oustaloup’s Approximation Algorithm

Oustaloup’s approximation algorithm [47] is widely used, where a frequency domain

response is fitted by a bank of integer order filters to the fractional order derivatives

within a band of frequency range. The output s(t) of a non-integer differentiator is

the non-integer order derivative of its input e(t) multiplied by a factor, i.e.,

s(t) = τα
( d

dt

)α
e(t) (2.17)

where τ is real and positive differentiation time constant and α is the non-integer

order of differentiation. Taking the Laplace transform of equation (2.17) in which

ωµ = 1/τ , also known as unit gain frequency or transition frequency, we obtain

S(s) =
( s

ωµ

)α
E(s). (2.18)

The fractional order differentiation is carried out by limiting differentiation trans-

fer function H(s) =
(

s
ωµ

)α
within the frequency range [ωA,ωB], replacing by the

frequency bounded differentiation transfer function

C0
1 + s/ωb

1 + s/ωh
(2.19)

where
√
ωbωh = ωu (2.20)

and

C0 =
ωb

ωu
=

ωu

ωh
(2.21)

distributed geometrically around ωµ (2.20). The high and low transitional frequencies

ωh and ωb are such that ωb , ωA and ωh - ωB.

The synthesis of such a differentiator results from an intuitive approach based on

the concept of fractal through recursivity [48]. A recursive distribution of real zeros
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and poles is used

H(s) = lim
N→∞

Ĥ(s)

with

Ĥ(s) =
(ωu

ωh

)α
N∏

k=−N

1 + s/ω
′
k

1 + s/ωk
(2.22)

where

ω
′
k = ωb

(ωh

ωb

) k+N+1/2−α/2
2N+1

(2.23)

and

ωk = ωb

(ωh

ωb

) k+N+1/2+α/2
2N+1

(2.24)

are respectively the zeros and poles of rank k, and 2N + 1 are the total number of

zeros and poles.

The quality of the Oustaloup’s approximation suffers from the inaccuracy problem

near the low and/or high frequency bands. The fitting around this band may not

provide satisfactory result.

2.8.2 Modified Approximation Method

A new modified approximation algorithm is presented by Xue et. al. [49] to overcome

the boundary fitting problem in using the Oustaloup’s algorithm. The approximation

is almost perfect within the whole pre-specified frequency range of interest.

Assuming the pre-specified frequency range to be fit is defined as (ωb,ωh), the

fractional operator sα can be approximated by the fractional order transfer function

as

K(s) =

(
1 + s

d
bωb

1 + s
b
dωh

)α

(2.25)

where 0 < α < 1, s = jω, b > 0, d > 0, Thus

K(s) =
( bs

dωb

)α
(
1 +

−ds2 + d

ds2 + bωhs

)α

. (2.26)

Now, in the frequency range ωb < ω < ωh, the Taylor series expansion will result

K(s) =
( bs

dωb

)α[
1 + αp(s) +

α(α− 1)

2
p2(s) + . . .

]
(2.27)
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with

p(s) =
−ds2 + d

ds2 + bωhs
(2.28)

We can get

sα ≈ (dωb)α[
1 + αp(s) + α(α−1)

2 p2(s) + . . .
]
(
1 + s

d
bωb

1 + s
b
dωh

)α

, (2.29)

Truncating the Taylor series to first order leads to

sα ≈ (dωb)α

bα(1 + αp(s))

(
1 + s

d
bωb

1 + s
b
dωh

)α

(2.30)

Thus

sα ≈
(dωb

b

)α( ds2 + bωhs

d(1− α)s2 + bωhs+ dα

)
(
1 + s

d
bωb

1 + s
b
dωh

)α

. (2.31)

Expression (2.31) is stable if and only if all the poles are on the left hand side of

the complex s-plane. It can be seen that expression (2.31) has 3 poles. That is,

One of the poles is located at −bωh/d, which is a negative real pole since ωh > 0,

b > 0 and d > 0;

Two other poles are the roots of the equation

d(1− α)s2 + αωhs+ dα = 0 (2.32)

whose real parts are negative since 0 < α < 1.

Therefore, the poles of the expression in (2.31) are stable within the frequency

range (ωb,ωh). This proposed approximation is only applicable to the case where

0 < α < 1. For a higher differentiation, e.g., S2.3, the approximation should be made

to s0.3 such that the original differential can be written by s2s0.3. The irrational

fractional part of the expression (2.31) can be approximated by a continuous-time

rational model

(
1 + s

d
bωb

1 + s
b
dωh

)α

= lim
N→∞

N∏

k=−N

1 + s/ω
′
k

1 + s/ωk
. (2.33)
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According to recursive distribution of real zeros and poles, the zero and pole of rank

k can be written as

ω
′
k =

(dωb

b

) α−2k
2N+1 (2.34)

and

ωk =
(bωh

d

) α+2k
2N+1 (2.35)

Thus, the final continuous rational transfer function model can be obtained as

sα ≈ K
[ ds2 + bωhs

d(1− α)s2 + bωhs+ dα

] N∏

k=−N

1 + s/ω
′
k

1 + s/ωk
(2.36)

where

K =
(dωb

b

)α
N∏

k=−N

ωk

ω
′
k

. (2.37)

Based on their numerical experiments, they suggest to use b = 10 and d = 9.

The proposed scheme is only for a single term sα. Obviously repeated application

of the scheme will finally give a finite dimensional rational LTI transfer function.

Unfortunately, the order of the transfer function might be high when the system has

no commensurable order. In that case, they suggest an effective method to perform

the reduction [50].

2.9 Conclusion

A brief introduction to fractional order calculus theory has been discussed in this chap-

ter. Definitions of the fractional derivative or integral, the Laplace transformation

technique and properties of fractional derivatives have been described. Furthermore,

the system representation of a fractional order system with stability, controllability

and observability criteria is presented. Approximation techniques for physical imple-

mentation are also illustrated in this chapter.
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Chapter 3

Transmission Line Modeling

3.1 Introduction

The past decades have witnessed an increased efforts related to fractional calculus

[51], [52] and its applications to modeling physical systems and to the control theory.

The transmission line is a distributive parameter system. Modeling the dynamics of

distributed parameter systems using fractional calculus [53] is a useful tool due to its

infinite dimensionality.

In [25], a lossy semi-infinite fractional order transmission line was modeled con-

sidering the R and C parameters. In that model, the author showed that a lossy

semi-infinite transmission line demonstrates fractional order behavior; he showed the

current into the line is equal to the half order derivative of the applied voltage. In

[53], the authors discussed fractional order dynamics of some distributed parameter

systems; they introduced the half-order fractional capacitances and inductances which

were overlooked in the classical textbooks. They showed the fractional order mod-

els capture phenomena and properties that classical integer order simply neglect. A

lossy fractional order transmission line is also discussed in [54]; the authors presented

a model of a fractional order lossy transmission line considering only R and C param-

eters. They showed the voltage and current of a lossy fractional order transmission

line can be represented as

V (x, s) = e−x
√
RCsVI(s) (3.1)
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Figure 3.1: Circuit representation of uniform transmission line.

and

I(x, s) =

√
Cs

R
e−x

√
RCsVI(s) (3.2)

where V (x, s), I(x, s) are the voltage and current anywhere in the line respectively

and VI(s) is the applied voltage in the Laplace domain. In [55], the authors showed

the analysis of fractional order transmission lines based on Mittag-Leffler functions

which yields the same result as the analysis based on standard methods.

In this chapter, we derived a more generalized lossy fractional order transmission

line based on the steps of [25] considering the parameters R, L and C. It will be shown

that the model in [25] and [54] are a special case of our derived model.

3.2 Problem Formulation

Consider an uniform single-phase two wire lossy semi-infinite transmission line. The

transmission line has a loop inductance L H/m, line to line capacitance C F/m and

a series resistance R Ω/m. Since the transmission line is of distributed nature, it can

be modeled by the circuit representation as shown in Figure 3.1. The line is pictured

as a cascade of identical sections, each ∆x long. Each section consists of series induc-

tance and resistance denoted by L∆x and R∆x respectively and shunt capacitance

denoted by C∆x. Since the shunt conductance (G) is negligible compared to other

parameters, it has been ignored in this derivation. As ∆x is chosen small compared

to the operating wavelength, an individual section of the line may be analyzed using

ordinary AC circuit theory.
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The main objective of this thesis is to derive a more generalized fractional order

transfer function of the lossy RLC transmission line for matched and arbitrary load

connected in the receiving terminal.

3.3 Fractional Order Transmission Line Modeling

As a lossy RLC transmission line is considered, the boundary value problem can

be defined in terms of the current and voltage variables. The boundary conditions

are v(0, t) = vI(t) and v(∞, t) = 0, where v is the voltage, i is the current and

vI(t) is a time-dependent input variable. At x = ∞, it is assumed that the line is

short circuited. In terms of the voltage and current variables, the partial differential

equation of the transmission line can be written as:

∂v(x, t)

∂x
= Ri(x, t) + L

∂i(x, t)

∂t
, (3.3)

∂i(x, t)

∂x
= C

∂v(x, t)

∂t
(3.4)

where R, L and C are the per unit resistance, inductance and capacitance of the line,

respectively. Differentiating equation (3.3) with respect to x and then substituting in

equation (3.4) we get

∂2v(x, t)

∂x2
= RC

∂v(x, t)

∂t
+ LC

∂2v(x, t)

∂t2
(3.5)

Choosing α = RC and β = LC, equation (3.5) becomes

∂2v(x, t)

∂x2
= α

∂v(x, t)

∂t
+ β

∂2v(x, t)

∂t2
. (3.6)

Now, taking the Laplace transformation of equation (3.6) with respect to time t

and using s as the temporal Laplace variable gives:

d2V (x, s)

dx2
=α{sV (x, s)− v(x, 0)}+ β{s2V (x, s)− sv(x, 0)− dv(x, 0)

dt
}

=α{sV (x, s)− v(x, 0)}+ β{s2V (x, s)− sv(x, 0)− V ∗(x, 0)}
(3.7)

where dv(x,0)
dt = V ∗(x, 0) is the initial voltage distribution of the transmission line

when t = 0. Again taking the Laplace transformation of equation (3.7) with respect

to spatial position x and using p as the spatial Laplace variable gives
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p2V (p, s)− pV (0, s)− dV (0, s)

dx
=α{sV (p, s)− V (p, 0)}+ β{s2V (p, s)

− sV (p, 0)− V ∗(p, 0)}
(3.8)

Substituting dV (0,s)
dx = V ∗(0, s) we get

p2V (p, s)− pV (0, s)− V ∗(0, s) = α{sV (p, s)− V (p, 0)}+ β{s2V (p, s)− sV (p, 0)

− V ∗(p, 0)}

⇒ p2V (p, s)− αsV (p, s)− βs2V (p, s) = pV (0, s) + V ∗(0, s)− αV (p, 0)− βsV (p, 0)

− βV ∗(p, 0)

⇒ V (p, s)(p2 − αs− βs2) = pV (0, s) + V ∗(0, s)− αV (p, 0)− βsV (p, 0)− βV ∗(p, 0)

⇒ V (p, s) =
[ 1

p2 − αs− βs2

](
pV (0, s) + V ∗(0, s)− αV (p, 0)− βsV (p, 0)− βV ∗(p, 0)

)

Thus

V (p, s) =
[ 1

p2 − αs− βs2

](
pV (0, s) + V ∗(0, s)

)

−
[ 1

p2 − αs− βs2

](
αV (p, 0) + βsV (p, 0) + βV ∗(p, 0)

) (3.9)

Here the first term represents the voltage present at x = 0 at the generator end

and the second term represents the initial spatial voltage distribution. After doing

partial fraction expansion of the equation (3.9), it can be expressed as

V (p, s) =
[ 1

p2 − αs− βs2

](
pV (0, s) + V ∗(0, s)

)

−
[ 1

2
√

αs+ βs2(p−
√

αs+ βs2)
− 1

2
√

αs+ βs2(p+
√

αs+ βs2)

]

(
αV (p, 0) + βsV (p, 0) + βV ∗(p, 0)

)

After rearrangement, we can write

V (p, s) =
pV (0, s)

p2 − (
√

αs+ βs2)2
+

√
αs+ βs2V ∗(0, s)√

αs+ βs2
(
p2 − (

√
αs+ βs2)2

)

− αV (p, 0)

2
√

αs+ βs2(p−
√

αs+ βs2)
+

αV (p, 0)

2
√

αs+ βs2(p+
√

αs+ βs2)

− βsV (p, 0)

2
√

αs+ βs2(p−
√

αs+ βs2)
+

βsV (p, 0)

2
√

αs+ βs2(p+
√

αs+ βs2)

− βV ∗(p, 0)

2
√

αs+ βs2(p−
√

αs+ βs2)
+

βV ∗(p, 0)

2
√

αs+ βs2(p+
√

αs+ βs2)

(3.10)
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We can take the inverse Laplace transform of equation (3.10) with respect to the

variable p. The inverse Laplace transform of the first two terms can be done by stan-

dard transform pairs and the rest of the terms can be transformed using convolution.

Taking the inverse Laplace transform of the equation (3.10), we have

V (x, s) = V (0, s) cosh(x
√

αs+ βs2) +
V ∗(0, s)√
αs+ βs2

sinh(x
√

αs+ βs2)

−
∫ x

0

1

2
√

αs+ βs2
e+(x−λ)

√
αs+βs2

[
αV (λ, 0)

]
dλ+

∫ x

0

1

2
√

αs+ βs2
e−(x−λ)

√
αs+βs2

[
αV (λ, 0)

]
dλ

−
∫ x

0

1

2
√

αs+ βs2
e+(x−λ)

√
αs+βs2

[
βsV (λ, 0)

]
dλ+

∫ x

0

1

2
√

αs+ βs2
e−(x−λ)

√
αs+βs2

[
βsV (λ, 0)

]
dλ

−
∫ x

0

1

2
√

αs+ βs2
e+(x−λ)

√
αs+βs2

[
βV ∗(λ, 0)

]
dλ+

∫ x

0

1

2
√

αs+ βs2
e−(x−λ)

√
αs+βs2

[
βV ∗(λ, 0)

]
dλ

(3.11)

Equivalently,

V (x, s) =
V (0, s)

2

[
e+x

√
αs+βs2 + e−x

√
αs+βs2

]
+

V ∗(0, s)

2
√
αs+ βs2

[
e+x

√
αs+βs2 − e−x

√
αs+βs2

]

−
∫ x

0

α

2
√

αs+ βs2
ex
√

αs+βs2e−λ
√

αs+βs2
[
V (λ, 0)dλ

]

+

∫ x

0

α

2
√

αs+ βs2
e−x

√
αs+βs2eλ

√
αs+βs2

[
V (λ, 0)dλ

]

−
∫ x

0

βs

2
√

αs+ βs2
ex
√

αs+βs2e−λ
√

αs+βs2
[
V (λ, 0)dλ

]

+

∫ x

0

βs

2
√

αs+ βs2
e−x

√
αs+βs2eλ

√
αs+βs2

[
V (λ, 0)dλ

]

−
∫ x

0

β

2
√

αs+ βs2
ex
√

αs+βs2e−λ
√

αs+βs2
[
V ∗(λ, 0)dλ

]

+

∫ x

0

β

2
√

αs+ βs2
e−x

√
αs+βs2eλ

√
αs+βs2

[
V ∗(λ, 0)dλ

]

(3.12)

Now, collecting the similar exponentials give the following expression
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V (x, s) =
e+x

√
αs+βs2

2

[
V (0, s) +

V ∗(0, s)√
αs+ βs2

− α√
αs+ βs2

∫ x

0
e−λ

√
αs+βs2V (λ, 0)dλ

− βs√
αs+ βs2

∫ x

0
e−λ

√
αs+βs2V (λ, 0)dλ− β√

αs+ βs2
e−λ

√
αs+βs2V ∗(λ, 0)dλ

]

+
e−x

√
αs+βs2

2

[
V (0, s)− V ∗(0, s)√

αs+ βs2
+

α√
αs+ βs2

∫ x

0
eλ
√

αs+βs2V (λ, 0)dλ

+
βs√

αs+ βs2

∫ x

0
eλ
√

αs+βs2V (λ, 0)dλ+
β√

αs+ βs2
eλ
√

αs+βs2V ∗(λ, 0)dλ

]

(3.13)

It can be seen from equation (3.13) that using the limit x = ∞, the second

term goes to zero due to its exponential behavior. From the boundary condition,

v(∞, t) = 0, equation (3.13) is simplified to

V (∞, s) =
e∞

√
αs+βs2

2

[
V (0, s) +

V ∗(0, s)√
αs+ βs2

− lim
x→∞

α√
αs+ βs2

∫ x

0
e−λ

√
αs+βs2V (λ, 0)dλ

− lim
x→∞

βs√
αs+ βs2

∫ x

0
e−λ

√
αs+βs2V (λ, 0)dλ

− lim
x→∞

β√
αs+ βs2

e−λ
√

αs+βs2V ∗(λ, 0)dλ

]
= 0

(3.14)

Equivalently,

V (0, s) +
V ∗(0, s)√
αs+ βs2

−
[

α√
αs+ βs2

+
βs√

αs+ βs2

]∫ ∞

0
e−λ

√
αs+βs2V (λ, 0)dλ

− β√
αs+ βs2

∫ ∞

0
e−λ

√
αs+βs2V ∗(λ, 0)dλ = 0

(3.15)

Taking the Laplace transformation of equation (3.3), we can find out the current

I(x, s) anywhere in the line which is given by

I(x, s) =
1

R+ sL

dV (x, s)

dx
(3.16)

Evaluating equation (3.16) at x = 0, the source current can be found as

I(0, s) =
1

R+ sL

dV (0, s)

dx
=

V ∗(0, s)

R+ sL
(3.17)
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Solving for voltage in terms of source current gives

V (0, s) =− (R+ sL)I(0, s)√
αs+ βs2

+

[
α+ βs√
αs+ βs2

]∫ ∞

0
e−λ

√
αs+βs2V (λ, 0)dλ

+
β√

αs+ βs2

∫ ∞

0
e−λ

√
αs+βs2V ∗(λ, 0)dλ

(3.18)

Setting the initial condition as no voltage distribution in the line gives the driving

point impedance of the transmission line which is of fractional order. The driving

point impedance function Z(s) is defined as,

Z(s) =
V (0, s)

I(0, s)

So, the driving point impedance of the lossy RLC transmission line is given by

Z(s) =
R+ sL√
αs+ βs2

or as α = RC and β = LC,

Z(s) =
R+ sL√

RCs+ LCs2
(3.19)

It can be seen that the integrals of equation (3.15) are equivalent to a Laplace

transform integral with,

s → q =
√

αs+ βs2

Thus, the Laplace transform table can be used to simplify the evaluation of these

integral terms as follows:
∫ ∞

0
e−λ

√
αs+βs2V (λ, 0)dλ =

[
V (q, 0)

]

q=
√

αs+βs2∫ ∞

0
e−λ

√
αs+βs2V ∗(λ, 0)dλ =

[
V ∗(q, 0)

]

q=
√

αs+βs2

The notation here on the right hand side of these equations is used to indicate

the evaluation procedure. The initial spatial voltage distribution v(x, 0) is Laplace

transformed with respect to the spatial Laplace variable p to give V (p, 0). The integral

on the left side of the above equations are then easily calculated by replacing the

spatial variable p with

p = q =
√

αs+ βs2
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So, equation (3.15) can be written as

V (0, s) +
V ∗(0, s)√
αs+ βs2

=
α+ βs√
αs+ βs2

[
V (p, 0)

]

p=
√

αs+βs2
+

β√
αs+ βs2

[
V ∗(p, 0)

]

p=
√

αs+βs2

(3.20)

Now, using equation (3.20) and since V (0, s) = VI(s), we can write equation (3.13)

as

V (x, s) =
e+x

√
αs+βs2

2

[
α+ βs√
αs+ βs2

[
V (p, 0)

]

p=
√

αs+βs2
+

β√
αs+ βs2

[
V ∗(p, 0)

]

p=
√

αs+βs2

− α+ βs√
αs+ βs2

∫ x

0
e−λ

√
αs+βs2V (λ, 0)dλ− β√

αs+ βs2

∫ x

0
e−λ

√
αs+βs2V ∗(λ, 0)dλ

]

+
e−x

√
αs+βs2

2

[
2VI(s)−

α+ βs√
αs+ βs2

[
V (p, 0)

]

p=
√

αs+βs2
− β√

αs+ βs2

[
V ∗(p, 0)

]

p=
√

αs+βs2
+

α+ βs√
αs+ βs2

∫ x

0
eλ
√

αs+βs2V (λ, 0)dλ

+
β√

αs+ βs2

∫ x

0
eλ
√

αs+βs2V ∗(λ, 0)dλ

]

(3.21)

This is the final expression of voltage anywhere in the line as a function of applied

voltage and the initial voltage distribution of the line. This expression represents a

general case of the expression given in [25].

For the case of transmission lines with zero initial spatial voltage distribution

V (x, 0) = 0, the above expression can be reduced to

V (x, s) = e−x
√

αs+βs2VI(s) (3.22)

where, V (x, s) is the voltage anywhere in the line and VI(s) is the applied voltage at

the entrance in the Laplace domain. Considering V (x, s) as the output at a distance x

from the entrance of the line and VI(s) as input, we can find out the transfer function

of the semi-infinite lossy transmission line with zero initial spatial voltage distribution

as follows:

Gv(s) =
V (x, s)

VI(s)
= e−x

√
αs+βs2 = e−x

√
RCs+LCs2 (3.23)
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Similarly we can find out the current of the transmission line at a distance x from

the entrance from equation (3.16):

I(x, s) =
1

R+ sL

dV (x, s)

dx

=

√
Cs√

R+ sL
e−x

√
RCs+LCs2VI(s)

(3.24)

where I(x, s) is the current anywhere in the line and VI(s) is the applied voltage at

the entrance in the Laplace domain. Considering I(x, s) as the output at a distance

x from the entrance of the line and VI(s) as input, we can also find out the transfer

function of the semi-infinite uniform lossy transmission line with zero initial spatial

voltage distribution:

Gi(s) =
I(x, s)

VI(s)
=

√
Cs√

R+ sL
e−x

√
RCs+LCs2 (3.25)

The above transmission line transfer functions are fractional order in nature with

a few number of parameters. The transfer functions are generalized case of the model

described in [25], [54]. Considering the line inductance L = 0, equation (3.23) and

(3.25) becomes

V (x, s) = e−x
√
RCsVI(s) (3.26)

and

I(x, s) =

√
Cs

R
e−x

√
RCsVI(s) (3.27)

which match with the model described in [25], [54].

The characteristic impedance of a transmission line is defined as the ratio of the

voltage to current of the line. So, the characteristic impedance of the semi-infinite

lossy transmission line is

Z0(s) =
V (x, s)

I(x, s)
=

√
R+ sL

Cs
(3.28)

It can be seen that the characteristic impedance leads us to a fractional order expres-

sion. For a lossless line where R = 0 the characteristic impedance in the frequency

domain leading to two port network with integer order elements:

Z0(s) =

√
L

C
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But for the case of a lossy line with R, L, C ∈ R+, we can have half-order fractional

inductances and half-order fractional capacitances, that is, −π/4 ≤ arg(Z0(s)) ≤ π/4.

For an example, if L = 0

Z0(jω) = [(jω)−1RC−1]1/2

These results were overlooked in the classical textbooks [23].

3.4 Terminated Transmission Lines

3.4.1 Lines Terminated with Characteristic Impedance Z0(s)

Figure 3.1 showed a semi-infinite transmission line driven by a voltage source VI .

For the infinite line only forward traveling waves exist in the line because there is

no reflection waves. Thus the driving point impedance is equal to the characteristic

impedance of the line.

Figure 3.2: Infinite length transmission line.

Suppose the semi-infinite line is broken at x = l as shown in Figure 3.2. Since

the length of the line to the right of x = l is still infinite therefore replacing it by

a load impedance with its input impedance does not change any of the condition to

the left of x = l. This means that a finite length transmission line terminated by its

characteristic impedance is equivalent to an infinitely long line. Like the infinite case,

a finite length line terminated with Z0(s) shown in Figure 3.3, has no reflection waves

and the characteristic impedance is independent of the length of the line.
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Figure 3.3: Equivalent line.

Since the line characteristic impedance is known, we can find out the voltage and

current of the terminated (with characteristic impedance) line using equations (3.22)

and (3.24) respectively. For an example at x = l, the load voltage and current will be

V (l, s) = VL = e−l
√

αs+βs2VI(s) (3.29)

and

I(l, s) = IL =
VI(s)

Z0(s)
e−l

√
αs+βs2 (3.30)

The above equations show that a finite length lossy transmission line terminated

with its characteristic impedance is equivalent to a semi-infinite lossy transmission

line. Therefore, a finite length lossy transmission line with matched load (terminated

by its characteristic impedance) can also be modeled by fractional order calculus.

3.4.2 Lines Terminated with General Load, ZL

A finite length transmission line with matched load is an ideal case. It is not always

possible to terminate a transmission line with a matched load in practice. The load

of the transmission line always varies. So, a fractional order model for finite length

transmission line with arbitrary load is necessary. A finite length transmission line

terminated with an arbitrary load ZL will have the reflection waves coming from the

load end. This reflection occurs in the transmission line when ZL 0= Z0. The general

expressions of the voltage and current of this transmission line have two traveling

waves as forward and reflected waves. The forward traveling waves are defined in the
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previous section and the reflected waves can be found by putting the sign of x as

negative since the direction of these waves are opposite. So, the voltage and current

of the line can be written as

V (x, s) = V+ + V− = V +
0 (s)e−x

√
αs+βs2 + V −

0 (s)e+x
√

αs+βs2 (3.31)

I(x, s) =I+ − I− = I+0 (s)e−x
√

αs+βs2 − I−0 (s)e+x
√

αs+βs2

=
1

Z0(s)

[
V +
0 (s)e−x

√
αs+βs2 − V −

0 (s)e+x
√

αs+βs2
] (3.32)

Let a lossy RLC transmission line with length l be terminated with a load impedance

of ZL shown in Figure 3.4. The characteristic impedance of the line is defined as equa-

tion (3.28).

Figure 3.4: A lossy transmission line terminated by a load impedance ZL.

From Figure 3.4, the boundary condition at the receiving end is

V (l, s) = ZL(s)I(l, s) (3.33)

Now substituting equations (3.31) and (3.32) in equation (3.33), we have

V +
0 (s)e−l

√
αs+βs2+V −

0 (s)e+l
√

αs+βs2 =
ZL(s)

Z0(s)

[
V +
0 (s)e−l

√
αs+βs2−V −

0 (s)e+l
√

αs+βs2
]

Solving for V −
0 (s), gives

V −
0 (s) = ΓL(s)V

+
0 (s)e−2l

√
αs+βs2 (3.34)
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where ΓL(s) is the receiving end voltage (or current) reflection coefficient which is

defined as the ratio of the reflected to forward voltages (or currents).

ΓL(s) =

ZL(s)
Z0(s)

− 1

ZL(s)
Z0(s)+1

(3.35)

Using equation (3.34) in equations (3.31) and (3.32), gives

V (x, s) =V +
0 (s)

[
e−x

√
αs+βs2 + ΓL(s)e

−2l
√

αs+βs2e+x
√

αs+βs2
]

= V +
0 (s)

[
e−x

√
αs+βs2 + ΓL(s)e

(x−2l)
√

αs+βs2
] (3.36)

and

I(x, s) =
V +
0 (s)

Z0(s)

[
e−x

√
αs+βs2 − ΓL(s)e

−2l
√

αs+βs2e+x
√

αs+βs2
]

=
V +
0 (s)

Z0(s)

[
e−x

√
αs+βs2 − ΓL(s)e

(x−2l)
√

αs+βs2
] (3.37)

From Figure 3.4, the boundary condition at the sending end V (0, s) = VI(s) leads to

V +
0 (s)

[
1 + ΓL(s)e

−2l
√

αs+βs2
]
= VI(s)

Thus

V +
0 (s) =

VI(s)

1 + ΓL(s)e−2l
√

αs+βs2
(3.38)

Now substituting equation (3.38) in equations (3.36) and (3.37), we get

V (x, s) = VI(s)
[e−x

√
αs+βs2 + ΓL(s)e(x−2l)

√
αs+βs2

1 + ΓL(s)e−2l
√

αs+βs2

]
(3.39)

and

I(x, s) =
VI(s)

Z0(s)

[e−x
√

αs+βs2 − ΓL(s)e(x−2l)
√

αs+βs2

1 + ΓL(s)e−2l
√

αs+βs2

]
(3.40)

Considering V (x, s) as the output voltage at a distance x from the entrance of

the line and VI(s) as input voltage, we can find out the transfer function of the finite

length lossy transmission line (terminated with general load impedance ZL(s)) as

Gv(s) =
V (x, s)

VI(s)
=

e−x
√

αs+βs2 + ΓL(s)e(x−2l)
√

αs+βs2

1 + ΓL(s)e−2l
√

αs+βs2
(3.41)
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Similarly, considering I(x, s) as the output current at a distance x from the entrance

of the line and VG as input voltage, we can find out the transfer function of the finite

length lossy transmission line (terminated with general load impedance ZL(s)) as

Gi(s) =
I(x, s)

VI(s)
=

1

Z0(s)

e−x
√

αs+βs2 − ΓL(s)e(x−2l)
√

αs+βs2

1 + ΓL(s)e−2l
√

αs+βs2
(3.42)

The above transfer functions is a generalized fractional order model of a finite

length lossy transmission line for any arbitrary load connected at the receiving termi-

nal. The models derived in the previous sections are special cases of this model. For

example, if we consider a matched model (ZL(s) = Z0(s)), the receiving end voltage

(or current) reflection coefficient ΓL(s) becomes zero. In that case, the models in

equations (3.41) and (3.42) become

Gv(s) =
V (x, s)

VI(s)
= e−x

√
αs+βs2 (3.43)

and

Gi(s) =
I(x, s)

VI(s)
=

1

Z0(s)
e−x

√
αs+βs2 (3.44)

which are the same models as in equations (3.23) and (3.25).

3.5 Conclusion

In this chapter we have derived a generalized fractional order transmission line model

for a lossy transmission line. A finite length transmission line terminated with ar-

bitrary load exhibits both forward and reflected traveling waves; on the other hand

semi-infinite lines or equivalently terminated with matched loads have only forward

traveling waves. The transfer functions for both of the cases are fractional order

with infinite dimensions with a small number of parameter. It has been shown that

distributed parameter systems like transmission lines can be modeled using the frac-

tional calculus with a small number of parameters. Since the transfer functions that

have been derived are infinite dimensional in nature, it is expected that they capture

the transmission line phenomena better [24].
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Chapter 4

Frequency Responses of
Fractional Order Transmission
Lines

4.1 Introduction

In the steady state, for an LTI system a sinusoidal input generates a sinusoidal output

of the same frequency. Even though the frequency of the output is the same as

the input, the phase and magnitude of the response differ from the input. These

differences are functions of the frequency.

A sinusoidal signal can be represented by a complex number which is called a

phasor. The magnitude of the complex number represents the amplitude of the sinu-

soid and the angle represents the phase of that sinusoid. This means that a sinusoid

A cos (ωt+ φ) can be presented by the phasor A∠φ, of the frequency ω.

Since an LTI system changes the amplitude and the phase of an input signal, we

can represent the system itself as a complex number or phasor, so that the product of

the input and system phasors will represent the output. In the system of Figure 4.1,

the input signal is a sinusoid represented by phasor, Ai(ω)∠φi(ω) having frequency

ω and the steady state response of the system is also a sinusoid of same frequency

represented by Ao(ω)∠φo(ω). If the system phasor is represented by G(ω)∠φ(ω), the

output of the system will be the product of the system phasor and the input phasor.

Thus, the steady state output of the system is
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Figure 4.1: Sinusoidal response of an LTI system.

Ao(ω)∠φo(ω) = G(ω)Ai(ω)∠
[
φ(ω) + φi(ω)

]
(4.1)

From the above equation, we can find the magnitude and the phase of the system as

|G(ω)| = Ao(ω)

Ai(ω)
(4.2)

and

φ(ω) = φo(ω)− φi(ω) (4.3)

Equation (4.2) and (4.3) are called the frequency response of the system. |G(ω)| is

known as the magnitude/gain response and φ(ω) is known as the phase response.

4.2 Frequency Responses of Fractional Order Transmis-
sion lines

4.2.1 Semi-infinite Line or Terminated Line with Characteristic
Impedance

The transfer function of a semi-indefinite lossy transmission line has been derived in

the previous chapter, which is equivalent to a finite length transmission line termi-

nated by its characteristic impedance defined by equation (3.28). Taking s = jω into

the transfer function, we can obtain the frequency domain expression as

Gv(jω) = e−x
√

α(jω)+β(jω)2

= e−x
√

−βω2+jαω
(4.4)

where
√

−βω2 + jαω is a complex number. Let p + jq =
√

−βω2 + jαω, where p

is the real part of this complex number and q is the imaginary part. After simple

calculations, we can find the p and q as
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p =

√
1

2
(ω

√
β2ω2 + α2 − βω2) (4.5)

and

q =

√
1

2
(ω

√
β2ω2 + α2 + βω2). (4.6)

Using p and q in equation (4.4), the frequency response of the transfer function of the

semi-infinite line or terminated line with characteristic impedance can be found as

Gv(jω) =e
−x

[√
1
2 (ω

√
β2ω2+α2−βω2)+j

√
1
2 (ω

√
β2ω2+α2+βω2)

]

= e−x
√

1
2 (ω

√
β2ω2+α2−βω2)

︸ ︷︷ ︸
Gain

e−jx
√

1
2 (ω

√
β2ω2+α2+βω2)

︸ ︷︷ ︸
Phase

.
(4.7)

The first exponential of the above expression represents the gain of the system, while

the second one represents the phase response. So, the gain and phase responses of

the fractional order transmission line are defined as

|Gv(ω)| = e−x
√

1
2 (ω

√
β2ω2+α2−βω2) (4.8)

and

φv(ω) = −x

√
1

2
(ω

√
β2ω2 + α2 + βω2) (4.9)

The frequency response of the semi-infinite or matched line can be used to obtain

the Bode plot of the infinite dimensional fractional order transmission line. The gain

expression suggests that the gain of the transmission line exponentially decreases with

the increase of distance and the frequency. The phase response is also a function of

distance and the frequency of the transmission line.

4.2.2 Line Terminated by General Load Impedance

The transfer function of the finite length lossy transmission line terminated with

general load ZL has been defined by equation (3.41) in the previous chapter. This

transfer function is cumbersome compared to the semi-infinite length transmission

line because of the presence of reflecting traveling waves. For the sake of simplicity,
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we consider a load which is twice as the characteristic impedance of the line, that is

ZL(s) = 2Z0(s). In this case, the receiving end voltage reflection coefficient becomes

ΓL(s) =

ZL(s)
Z0(s)

− 1

ZL(s)
Z0(s)+1

=
1

3

Evaluating the transfer function (in equation (3.41)) at the load end x = l with the

above load condition, we obtain

Gv(s) =
e−l

√
αs+βs2 + 1

3e
−l
√

αs+βs2

1 + 1
3e

−2l
√

αs+βs2

=
4e−l

√
αs+βs2

3 + e−2l
√

αs+βs2

Now taking s = jω, we obtain the frequency domain expression as

Gv(jω) =
4e−l

√
−βω2+jαω

3 + e−2l
√

−βω2+jαω
(4.10)

As
√

−βω2 + jαω = p+ jq defined earlier, equation (4.10) can be written as

Gv(jω) =
4e−l(p+jq)

3 + e−2l(p+jq)

=
4e−ple−jql

3 + e−2ple−j2ql

(4.11)

Using the Euler’s formula the above expression becomes

Gv(jω) =
4e−pl{cos ql − j sin ql}

3 + e−2pl{cos 2ql − j sin 2ql}

=
4e−pl cos ql − j4e−pl sin ql

3 + e−2pl cos 2ql − je−2pl sin 2ql

(4.12)

Taking a = 4e−pl cos ql, b = 4e−pl sin ql, c = 3+ e−2pl cos 2ql and d = e−2pl sin 2ql,

the above equation simplifies to

Gv(jω) =
a− jb

c− jd

=
[ac+ bd

c2 + d2

]
− j

[bc− ad

c2 + d2

] (4.13)
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The first term of equation (4.13) is

[ac+ bd

c2 + d2

]
=

(4e−pl cos ql)(3 + e−2pl cos 2ql) + (4e−pl sin ql)(e−2pl sin 2ql)

(3 + e−2pl cos 2ql)2 + (e−2pl sin 2ql)2

=
4e−pl cos ql(3 + e−2pl)

9 + e−4pl + 6e−2pl cos 2ql

(4.14)

Similarly the second term of the equation (4.13) becomes

[bc− ad

c2 + d2

]
=
(4e−pl sin ql)(3 + e−2pl cos 2ql)− (4e−pl cos ql)(e−2pl sin 2ql)

(3 + e−2pl cos 2ql)2 + (e−2pl sin 2ql)2

=
4e−pl sin ql(3− e−2pl)

9 + e−4pl + 6e−2pl cos 2ql

(4.15)

Using equations (4.14) and (4.15), equation (4.13) becomes

Gv(jω) =
4e−pl cos ql(3 + e−2pl)

9 + e−4pl + 6e−2pl cos 2ql
− j

4e−pl sin ql(3− e−2pl)

9 + e−4pl + 6e−2pl cos 2ql
(4.16)

From the above equation the gain response can be found as

|Gv(ω)| =

√
( 4e−pl cos ql(3 + e−2pl)

9 + e−4pl + 6e−2pl cos 2ql

)2
+

( 4e−pl sin ql(3− e−2pl)

9 + e−4pl + 6e−2pl cos 2ql

)2
.

After doing some simplifications (details are given in the Appendix A), |Gv(ω)| can

be found as

|Gv(ω)| =

√
{4e−pl(3− e−2pl)}2 + {

√
192e−2pl cos ql}2

9 + e−4pl + 6e−2pl cos 2ql
. (4.17)

Similarly the phase response can be found as (see the Appendix A for details)

φv(ω) = − arctan{tan ql
(3− e−2pl

3 + e−2pl

)
} (4.18)

The above frequency response expressions of the finite length lossy fractional order

transmission line can be used to obtain the Bode plot of the infinite dimensional

transfer function.

4.3 Frequency Response Validation

To validate our derived frequency responses of the lossy fractional order transmission

lines, we have simulated a transmission line model using the distributed parameter
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line block of the SimPowerSystems toolbox in SIMULINK. First, we simulated a

transmission line terminated by its characteristic impedance which is equivalent to a

semi-infinite length transmission line. Next, we simulated the second case where a

finite length transmission line is considered with a load which is twice the character-

istic impedance of the line. The line parameters are chosen as l = 500 km, R = 6.86

Ω/km, C = 4.34 pF/km, L = 2.6 mH/km. The simulations have been done for a

range of frequencies ranging from 10 to 300 Hz. Using the simulation data, the gain

and phase of the line for every frequency have been calculated and the Bode plots of

the transmission lines are obtained.

The Bode plots of the transmission lines can also be obtained from the frequency

response models that have been derived in this chapter. Comparison between these

Bode plots can be used to validate the frequency response modeling of the fractional

order transmission lines.

Comparison between the Bode plots of the transmission line terminated with its

characteristic impedance is shown in Figure 4.2. Similarly, the comparison of the Bode

plots of the transmission line terminated by a load which is twice the characteristic

impedance is shown in Figure 4.3.
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Figure 4.2: Comparison of the Bode plots of semi-infinite length or terminated line
with matched load.
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Figure 4.3: Comparison of the Bode plots of finite length line terminated with load
2Z0(s).

From Figures 4.2 and 4.3, we can see that the Bode plots of the transmission lines

simulated by SIMULINK and the frequency response models closely match with each

other. Gain responses for both of the cases are very similar while the phase responses

have some discrepancies in the low frequency range. These discrepancies could be the

result of simulation limitation in identifying the phase difference between the input

and output. To identify the phase difference between the input and output sinusoidal

signals, there are no functions or blocks presented in MATLAB or SIMULINK. The

phase difference between two continuous time sinusoidal signals can be identified by

finding out the lag between the signals in the time scale. The cross correlation between

the signals can be used to identify the lag between the signals. But in our simulation

the input and output signals are discrete in nature with nonuniform sampling periods.

This is due to the fact that, the solver used by distributed parameter line block in

SIMULINK works only with variable step sampling periods. For this reason, the exact

lag between the input and output signals cannot be identified. So, the discrepancies in

the phase responses are the result of this simulation limitation. Beside, the distributed

parameter transmission line block is based on the Bergeron’s traveling wave method

used by the Electromagnetic Transient Program (EMTP)[56]. In this model the line
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losses are considered as lumped by lumping R/4 at both ends of the line and R/2 in the

middle. Since our derived models have infinite dimension structure with distributed

parameters, it is expected to have some discrepancies between the results.

To compare the gain and phase responses of both cases the Root-Mean-Square-

Error (RMSE) and the Mean-Percentage-Error (MPE) of the responses are calculated

and are given in the table 4.1.

Table 4.1: RMSE and MPE of the Bode Plots

RMSE MPE

Gain response of semi-infinite length line 0.01381 6.1%
Gain response of finite length line 0.01664 5.6%
Phase response of semi-infinite length line 7.77801 4.7%
Phase response of finite length line 14.86291 1.9 %

The above table shows that the RMSE of the phase responses are very high due

to the large discrepancies in the low frequency ranges, but the MPE of the phase

responses are very low which reflect a successful model validation. The percentage

errors of gain and phase responses of both cases can be found in Figure 4.4.
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Figure 4.4: Percentage error of frequency response models.

From Figure 4.4, it can be seen that the percentage error of the phase responses
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are very high at the low frequency range while very low in the high frequency ranges.

Due to this high percentage error in the low frequency range the RMSE of the phase

responses are high which is stated above in the table. But the overall percentage error

of the derived frequency response models are at the satisfactory level.

4.4 Conclusion

This chapter presented the frequency responses of the fractional order transmission

line models that we have derived in the previous chapter. The gain and phase re-

sponses were derived for both semi-infinite and finite length transmission lines con-

nected with loads. Simulations results have been presented to validate the derived

model at the end. The simulation results show that our derived models are quite

satisfactory.
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Chapter 5

Parameter Identification of
Fractional Order Transmission
Lines

5.1 Introduction

System identification has become a standard tool for identifying the parameters of

unknown systems in control engineering and scientific community. It is a necessary

prerequisite for model based control to have a model of the system. Identifying a

given system from the input output data becomes more difficult for fractional order

systems. The use of fractional differential models was initiated in the late 1990s

and the beginning of this century [57], [58], [59], [60]. Frequency domain system

identification for fractional order systems was initiated by Lay in his PhD thesis [57].

Time domain system identification of fractional order systems was initiated by Lay

[57], Cois [59], Lin [60]. Two classes of time domain identification were developed as

Equation-Error-Based and Output-Error-Based methods.

Since a fractional order model of a lossy transmission line has an irrational transfer

function with an exponential term in it, it is hard to find the time domain expressions

of the system. Because of this difficulty a frequency domain identification method

was developed in this thesis for a fractional order lossy transmission line model.
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5.2 Parameter Identification Techniques

There are several parameter identification techniques that are discussed in the litera-

ture [61]. Regression analysis is one of the most used technique. Linear and nonlinear

regression analysis for parameter identification will be discussed in the this chapter.

5.2.1 Linear Regression Analysis

A linear regression model with multiple regressor variables is known as multiple re-

gression model and can be written as

y = θ0 + θ1x1 + θ2x2 + . . .+ θkxk + e (5.1)

where θ0 is the intercept, [θ1, . . . , θk] are regression coefficients and e is independent

identically distributed (iid) noise. The dependent variable or response y is related to

k independent variables or regressor variables.

To estimate the regression coefficients of the multiple regression model, a least

square estimation technique can be used. Suppose N number of observations are

available, and let xij denote the ith observation of regressor xj . So, the observations

are

(xi1, xi2, . . . , xik, yi)

where i = 1, 2, . . . , N and N > k. Multiple linear regression data can be presented in

a table form shown in table 5.1. Each of the observations (xi1, xi2, . . . , xik, yi) satisfies

Table 5.1: Data for multiple linear regression

y x1 x2 . . . xk
y1 x11 x12 . . . x1k
y2 x21 x22 . . . x2k
...

...
...

...
yN xN1 xN2 . . . xNk

the multiple regression model:

yi = θ0 + θ1xi1 + θ2xi2 + . . .+ θkxik + ei.

43



The least square objective function can be written as

L =
N∑

i=1

e2i

=
N∑

i=1

(yi − θ0 −
k∑

j=1

θjxij)
2

(5.2)

The objective is to minimize the objective function with respect to θ0, θ1, . . . , θk. It

is more convenient to use matrix notation for the multiple regression model. Let

Y =





y1
y2
...
yN




X =





1 x11 x12 . . . x1k
1 x21 x22 . . . x2k
...

...
...

...
1 xN1 xN2 . . . xNk





θ =





θ0
θ1
...
θk




ε =





e1
e2
...
eN





So, the N equations of the multiple regression model are simplified to

Y = Xθ + ε (5.3)

where, Y is a (N × 1) vector of the observations or dependent variables, X is a

(N×p) matrix of the levels of independent variables, θ is a (p×1) vector of regression

coefficients, and ε is a (N × 1) vector of random errors. The target is to find the least

square vector estimator θ̂ that minimizes the the objective function

L =
N∑

i=1

e2i

= εT ε

= (Y −Xθ)T (Y −Xθ)

(5.4)

The least square estimator θ̂ can be found from the solution of the equation

∂L

∂θ
= 0 (5.5)

The resulting equations that must be solved are

XTX θ̂ = XTY
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The solution of these equations can be found as

θ̂ = (XTX)−1XTY (5.6)

where θ̂ is

θ̂ =





θ̂0
θ̂1
θ̂2
...

θ̂k





The fitted or estimated model can be written as

ŷi = θ̂0 +
k∑

j=1

θ̂jxi,j (5.7)

where i = 1, 2, . . . , N . In matrix forms the fitted model is

Ŷ = X θ̂ (5.8)

5.2.2 Nonlinear Estimation

In the most general terms, nonlinear estimation will compute the relationship be-

tween a set of independent variables and a dependent variable. Nonlinear estimation

is a general fitting procedure that will estimate a nonlinear relationship between a

dependent and a list of independent variables. In general, a nonlinear model can be

stated as

y = f(x1, x2, . . . , xk, θ0, θ1, . . . , θk) + e (5.9)

where e is an independent identically distributed (iid) noise. The function f(x1, x2, . . . , xk,

θ0, θ1, . . . , θk) is known as the expectation function. For an example, an exponential

model

y = θ0(1− e−θ1ξ) + e

is a nonlinear regression model where θ0, θ1 are regression coefficients and ξ is an

independent variable.

There are many estimation techniques available for nonlinear regression models

such as the least square estimation, weighted least square, and maximum likelihood
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estimation. Among these, the least square estimation is the most used estimation

technique. In the most general terms, least square estimation is aimed at minimizing

the sum of squared deviations of the observed values for the dependent variable from

those predicted by the model.

5.2.3 Nonlinear Least Square Estimation

To estimate a nonlinear regression model using least square estimation, Gauss sug-

gested an approach to use a linear approximation of the expectation function to

iteratively improve an initial guess θ0 for θ and keep improving the estimates until

there is no change. This is also known as the Gauss-Newton method. In this method,

the the vector form of the parameters is taken as

θ = [θ0, θ1, . . . , θk]
T

and the vector for the independent variables is taken as

φ = [x1, x2, . . . , xk]
T

Then expanding the expectation function f(φ, θ) in a first order Taylor series about

the initial guess θ0, we find

f(φ, θ) ≈ f(φ, θ00) + v1(θ1 − θ01) + v2(θ2 − θ02) + . . .+ vk(θk − θ0k) (5.10)

where vk = ∂f(φ,θ)
∂θk

|θ0 is the Jacobian of the expectation function. Now assuming N

number of experiments to run and collecting N sets of measurement of the indepen-

dent and dependent variables such as [φ1, y1;φ2, y2; . . . ;φN , yN ], we can write for the

ith measurement

f(φi, θ) ≈ f(φi, θ
0
0) + vi1(θ1 − θ01) + vi2(θ2 − θ02) + . . .+ vik(θk − θ0k)

where vik = ∂f(φi,θ)
∂θk

|θ0 .

Incorporating all N measurements, it will be

η(θ) ≈ η(θ00) + V 0(θ − θ0) (5.11)

46



where V 0 is the (N × k) derivative matrix with elements {vik} and η(θ), η(θ00) are

η(θ) =





f(φ1, θ)
f(φ2, θ)

...
f(φN , θ)




η(θ00) =





f(φ1, θ00)
f(φ2, θ00)

...
f(φN , θ00)





Now denoting the dependent variables or observations as

Y = [y1, y2, . . . , yN ]T

We can write

Y = η(θ) + ε

≈ η(θ00) + V 0(θ − θ0) + ε
(5.12)

where ε = [e1, e2, . . . , eN ]T is the noise vector of all measurements. Denoting Z =

Y − η(θ00) and θ̃ = (θ − θ0), we get the regression equation as

Z = V 0θ̃ + ε (5.13)

This is a linear multiple regression model without intercept. Using the conven-

tional linear least square method a correct θ̃ can be calculated. Then correcting the

initial guess θ0, a new improved θ can be obtained. Iterating this procedure until we

get a convergent solution will give us the estimation of the parameters. Nonlinear

regression is an iterative procedure. The program must start with estimated initial

values for each parameter. It then adjusts these values to improve the fit.

5.3 Parameter Identification of Fractional Models

Identification of the parameters of fractional order systems is more difficult than

that of integer order systems. Two types of time domain identification models were

discussed in [57], [59], [60] as the equation-error and output-error based methods.

Equation-error based methods are suitable for systems which are linear in parameter

while output-error based methods can estimate the orders of the system and model pa-

rameters simultaneously. Equation-error and output-error based models were briefly

discussed by Malti et al. [62]. Only equation-error based method will be discussed in

this thesis.
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5.3.1 Equation-Error Based Method

The equation-error based method is able to estimate the parameters of fractional

order systems which are linear in parameters. A fractional order model is based on

fractional differential equation

y(t)+ b1D
β1y(t)+ . . .+ bmBD

βmB y(t) = a0D
α0u(t)+a1D

α1u(t)+ . . .+amAD
αmAu(t)

(5.14)

where differentiation orders β1 < β2 < . . . < βmB and α0 < α1 < . . . < αmA are non-

integer positive numbers. The input and output coefficients vector can be defined

as

θ = [a0, a1, . . . , amA , b1, b2, . . . , bmB ]
T

Prior knowledge of the differential orders of the system is required in this method.

Usually a commensurable order γ is chosen and then all its multiples are fixed up to

a given order, say βmB . The order αmA generally set to βmB − γ for a strictly proper

system

F (s) =

∑αmA/γ
k=0 akskγ

1 +
∑βmB /γ

j=1 bjsjγ
(5.15)

where the input and output data are u(t) and y∗(t) = y(t)+ e(t) and e(t) is the noise

signal. If these data are sampled at regular interval of period Ts, it is possible to

compute the fractional derivative of the input and output data by the GL (Grünwald-

Letnikov) definition given in equation (2.4).

Then the output can be written in a regression form

y(t) = φ∗(t)θ (5.16)

where the regression vector is given by

φ∗(t) = [Dα0u(t) . . . DαmAu(t) −Dβ1y∗(t) . . .−DβmB y∗(t)] (5.17)

Estimated parameters θ̂ can be obtained by minimizing the quadratic norm of the

error

J(θ̂) = ETE (5.18)
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where

E = [ε(k0Ts), ε((k0 + 1)Ts), . . . , ε(k0 +K − 1)Ts]
T

and

ε(t) = y∗(t)− φ∗(t)θ̂

The minimum of the error, J(θ̂), can be found by the least square estimation

θ̂opt = (Φ∗TΦ∗)−1Φ∗TY ∗ (5.19)

where

Φ∗ = [φ∗T (k0Ts),φ
∗T ((k0 + 1)Ts), . . . ,φ

∗T ((k0 +K − 1)Ts)]
T

Differentiation of a noisy signal amplifies the noise. Hence, a filter can be applied

to minimize the noise. A linear transformation filter can be applied to equation (5.16)

as to obtain a linear continuous regression of filtered input uf (t) and output y∗f (t)

signals. After filtering we get

yf (t) = φ∗
f (t)θ (5.20)

where

φ∗
f (t) = [Dα0uf (t) . . . D

αmAuf (t) −Dβ1y∗f (t) . . .−DβmB y∗f (t)]. (5.21)

The filter is generally chosen to be causal, stationary and low pass. Among the

possible filters, Cois et al. [63] extended the concept of state variable filters (SVFs)

[64] to fractional differential systems. They proposed to use the following fractional

filter:

H(s) =
A

α0 + α1sγ + . . .+ αNf−1sγ(Nf−1) + sγNf

where γNf is the filter order. To design this filter the following specifications must

be followed:

Nf > max(βmB ,αmA).

Coefficients α0,α1, . . . ,αNf−1 must be chosen such that H(s) is stable.
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A particular choice of SVF, proposed by Cois et al. [63] is the fractional Poisson

filter

H(s) =
1

((
s
ωf

)γ
+ 1

)Nf

=
ω
γNf

f

sγNf +
(Nf

1

)
ωγ
f s

γ(Nf−1) + . . .+
( Nf
Nf−1

)
ω
γ(Nf−1)
f sγ + ω

γNf

f

(5.22)

which is an extension of the rational Poisson filter. The frequency ωf is chosen

according to the frequency characteristic of the system to be identified.

The state vector composed of fractional derivatives of filtered input and output

signals is defined as

xf = [D(Nf−1)γzf (t), D
(Nf−2)γzf (t), . . . , D

γzf (t), zf (t)]
T (5.23)

where zf (t) denotes either uf (t) or yf (t). The fractional state space representation

of the filter is given by

Dγxf (t) = Afxf (t) +Bfzf (t) (5.24)

where

Af = −





(Nf
1

)
ωγ
f

(Nf
2

)
ω2γ
f . . .

( Nf
Nf−1

)
ωf

γ(Nf − 1) ω
γNf

f

−1 0 . . . . . . 0

0
. . . 0

...
...

. . .
. . .

. . .
...

0 . . . 0 −1 0





and

Bf = [ω
γNf

f , 0, . . . , 0]T

Each state represents the derivative of a given order of input or output signals as shown

in Figure 5.1. This fractional Poisson filter can be simulated using the definition of

GL (Grünwald-Letnikov).

The estimated parameter vector, θ̂, is now obtained by minimizing the quadratic

norm of the filtered equation error

J(θ̂) = ET
f Ef (5.25)
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Figure 5.1: Fractional SVF

where

Ef = [εf (k0Ts), εf ((k0 + 1)Ts), . . . , εf ((k0 +K − 1)Ts)]
T

and

εf (t) = y∗f (t)− φ∗
f (t)θ̂

where φ∗
f is defined by equation (5.21).

The solution is given by the classical least squares

θ̂ = (ΦT
f Φf )

−1ΦT
f Y

∗
f (5.26)

where

Φf = [φ∗T
f (k0Ts),φ

∗T
f ((k0 + 1)Ts), . . . ,φ

∗T
f ((k0 +K − 1)Ts)]

5.4 Parameter Identification of Fractional Order Trans-
mission Lines

Different types of techniques for parameter identification have been discussed in the

previous sections. Frequency responses of fractional order transmission lines have been

derived in Chapter 4. The gain response of the finite length transmission line with
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the matched load has a nonlinear relationship between the response and the applied

frequency. This implies that the parameters of the fractional order transmission line

may be estimated via, e.g., the nonlinear regression analysis.

The frequency response of the fractional order finite length transmission line with

the matched load is given by

Gv(jω) = e
−x

[√
1
2 (ω

√
β2ω2+α2−βω2)+j

√
1
2 (ω

√
β2ω2+α2+βω2)

]

(5.27)

If we consider |Gv(jω)| as the dependent variable y, θ = [α,β] as regression coefficients

and ω as the independent variable, the above equation can be presented as a nonlinear

regression model

y = f(θ,ω) + e (5.28)

where

f(θ,ω) = e−x
√

1
2 (ω

√
β2ω2+α2−βω2) (5.29)

is the expectation function and e is an additive normal disturbance. The finite length

transmission line with the matched load has been simulated for a range of frequencies

and the gain responses of the line have been calculated. Since simulation data has

no disturbance or noise, different levels of noise have been added with the simulation

data. Estimation of the parameters have been done for the deterministic case and

also for the case when a zero mean white noise is added as a disturbance to the system

with a signal to noise ratio (SNR) in dB defined by

SNR = 10 log
(signal power
noise power

)
(5.30)

We have corrupted the dependent variable y by additive Gaussian white noise with

three different values of SNR as ∞, 30 dB, 10 dB. For each SNR level the model

parameter α and β are estimated. Table 5.2 gives the results of the estimation. Since

the nonlinear least square technique is highly dependent on the initial guess of the

parameters, we have chosen the initial guess of the parameters in a neighborhood

of the real parameters. The neighborhood of the parameter α was chosen in the

range of (1× 10−5 to 1× 10−10) while the real value of α was 2.9778× 10−8 and the
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neighborhood of the parameter β was chosen in the range of (1× 10−9 to 1× 10−16)

while the real value of β was 1.1286 × 10−11. In these neighborhood, the estimation

of the parameters always converged into same result. This is the limitation of the

nonlinear least square technique.

Table 5.2: Estimated parameters for different SNR level

Parameters True Value SNR=∞ SNR=30 dB SNR=10 dB
Estimated Estimated Estimated

α 2.9778× 10−8 2.9778× 10−8 2.9419× 10−8 2.6432× 10−8

β 1.1286× 10−11 1.1286× 10−11 1.0743× 10−11 0.6515× 10−11

Table 5.3: 95% Confidence intervals of estimated parameters

Parameter SNR=∞ SNR= 30 dB SNR=10 dB
95% CI 95% CI 95% CI

High Low High Low High Low
α 2.9778× 10−8 2.9778× 10−8 2.9788× 10−8 2.9051× 10−8 2.9664× 10−8 2.322× 10−8

β 1.1286× 10−11 1.1286× 10−11 1.1269× 10−11 1.0218× 10−11 1.059× 10−11 0.2441× 10−11

To estimate the parameters of the line using the nonlinear regression analysis we

have used 290 data points for each of the simulations. To show the closeness of the es-

timation, we have calculated the 95% confidence intervals of the estimated parameters

which are given in Table 5.3. It can be seen that the estimated parameters are quite

close to the true values for each of the SNR levels, thus indicating that the parameters

of the fractional order transmission line can be estimated from its frequency response.

The confidence intervals of the estimated parameters are quite low, which suggests

the closeness of the estimation. To verify that the nonlinear regression converges,

different initial guesses in the neighborhood of the real parameters are selected. In

spite of different initial guesses, the estimates are found still the same. Further, more

iteration steps are used to observe the change of parameters. With more iteration

steps, the results remain the same. Based on these observations, we may conclude

that the nonlinear regression does converge. Similarly, it is possible to identify the

parameters of the fractional order transmission line from the phase response data

using this estimation technique.
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5.5 Conclusion

The objective of this chapter was to introduce the parameter identification techniques

for fractional order systems and identify the parameters of the fractional order trans-

mission line that has been derived in the previous chapters. We have successfully

identified the parameters of the fractional order transmission line using the nonlinear

regression method. A frequency domain identification method was used since it is

hard to get the time domain expression for the transfer function we have derived. A

time domain identification technique has been discussed in this chapter which can be

investigated to identify the parameters of the line in the future.
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Chapter 6

Conclusion

6.1 Summary

In summary, the contributions and results presented in this thesis are as follows.

A new generalized lossy fractional order transmission line model has been obtained

which is an extension of the model described in [25]. For modeling the fractional

order transmission line, the Laplace transformation technique has been used which

is the same as classical textbook derivations. In classical textbooks the fractional

behavior of the line has been neglected, but it should be considered for describing the

distributive nature of the transmission line. After deriving the new fractional order

model, frequency responses of the lines have been derived and simulated to validate

the derived model. A parameter identification technique has been used to identify

the parameters of the fractional order transmission line from the frequency response

data.

The main contribution of this thesis is to model the fractional order lossy trans-

mission line transfer functions and to derive the frequency responses of the line. The

transfer functions have an infinite dimensional nature due to its fractional order which

is expected since the transmission line is a distributed parameter system. It has been

shown in this thesis that it is possible to identify the unknown parameters of the trans-

mission line using fractional order models from the frequency response by classical

parameter identification techniques.

To validate the derived frequency response expressions, a lossy transmission line

55



has been simulated in SIMULINK using distributed parameter line blocks of the

SimPowerSystems. The comparisons between the simulation and derived expressions

were quite satisfactory though there were some discrepancies found. The source of

these variances has been explained in the thesis.

6.2 Future Work

It should be noted that the above identification of the model parameters was done

from the frequency response data. It is quite hard to come up with a time domain

expression of the infinite dimensional transfer function with an exponential term in

it. One direction of the future work is to find out the time domain expression of the

fractional order transmission line using some approximation techniques. A possible

approximation would be the Padé approximation since it provides the best approxi-

mation of a function by a rational function of a given order. Finding out a rational

transfer function of the fractional order model will give a time domain expression

by taking the inverse Laplace transformation which will result in a fractional order

differential equation.
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methods for fractional-order differentiator/integrator,” Journal of the Franklin
Institute, vol. 340, no. 5, pp. 349 – 362, 2003.

[46] Y. Ferdi and B. Boucheham, “Recursive filter approximation of digital fractional
differentiator and integrator based on Prony’s method,” in FDA’04, Borodeaux,
France, 2004.

[47] A. Oustaloup, F. Levron, F. Nanot, and B. Mathieu, “Frequency band complex
non integer differentiator : characterization and synthesis,” IEEE Transactions
on Circuits and Systems I: Fundamental Theory and Applications, vol. 47, no. 1,
pp. 25–40, January 2000.
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Appendix A

Frequency Response Derivation

Frequency expression for the finite length fractional order transmission line with a

general load is given as

Gv(jω) =
4e−pl cos ql(3 + e−2pl)

9 + e−4pl + 6e−2pl cos 2ql
− j

4e−pl sin ql(3− e−2pl)

9 + e−4pl + 6e−2pl cos 2ql
(A.1)

From the above equation the gain response can be found by

|Gv(ω)| =

√
( 4e−pl cos ql(3 + e−2pl)

9 + e−4pl + 6e−2pl cos 2ql

)2
+

( 4e−pl sin ql(3− e−2pl)

9 + e−4pl + 6e−2pl cos 2ql

)2

=

√√√√
(
4e−pl cos ql(3 + e−2pl)

)2
+

(
4e−pl sin ql(3− e−2pl)

)2
(
9 + e−4pl + 6e−2pl cos 2ql

)2

=

√√√√16e−2pl{cos2 ql(3 + e−2pl)2 + sin2 ql(3− e−2pl)2}
(
9 + e−4pl + 6e−2pl cos 2ql

)2

=

√√√√16e−2pl{cos2 ql(9 + e−4pl + 6e−2pl) + sin2 ql(9 + e−4pl − 6e−2pl)}
(
9 + e−4pl + 6e−2pl cos 2ql

)2

=

√√√√16e−2pl{9(cos2 ql + sin2 ql) + e−4pl(cos2 ql + sin2 ql) + 6e−2pl(cos2 ql − sin2 ql)}
(
9 + e−4pl + 6e−2pl cos 2ql

)2

=

√
16e−2pl(9 + e−4pl + 6e−2pl(2 cos2 ql − 1))

(
9 + e−4pl + 6e−2pl cos 2ql

)2

=

√
16e−2pl(9 + e−4pl + 12e−2pl cos2 ql − 6e−2pl)

(
9 + e−4pl + 6e−2pl cos 2ql

)2
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=

√
16e−2pl(9 + e−4pl − 6e−2pl) + 192e−4pl cos2 ql

(
9 + e−4pl + 6e−2pl cos 2ql

)2

=

√√√√{4e−pl(3− e−2pl)}2 + {
√
192e−2pl cos ql}2

(
9 + e−4pl + 6e−2pl cos 2ql

)2

Thus

|Gv(ω)| =

√
{4e−pl(3− e−2pl)}2 + {

√
192e−2pl cos ql}2

(
9 + e−4pl + 6e−2pl cos 2ql

) (A.2)

Similarly the phase response can be found as

φv(ω) = arctan−
4e−pl sin ql(3−e−2pl)

9+e−4pl+6e−2pl cos 2ql

4e−pl cos ql(3+e−2pl)
9+e−4pl+6e−2pl cos 2ql

= arctan− 4e−pl sin ql(3− e−2pl)

4e−pl cos ql(3 + e−2pl)

= arctan− sin ql(3− e−2pl)

cos ql(3 + e−2pl)

Thus

φv(ω) = − arctan{tan ql(3− e−2pl

3 + e−2pl
)} (A.3)

63



Appendix B

Codes and Simulink Blocks

B.1 MATLAB Codes

B.1.1 Dis Line Sim.m

clc
clear all
close all

R=6.86;
L=0.0026;
C=4.3409e-9;
a=L/C;

i=0;

for p=10:1:299
f=p
i=i+1;

b=R/(2*pi*f*C);
Rl=(1/sqrt(2))*sqrt(sqrt(aˆ2+bˆ2)+a);
Xc=(1/sqrt(2))*sqrt(sqrt(aˆ2+bˆ2)-a);
Cl=1/(Xc*2*pi*f);
sim(dis tx.mdl);
load input.mat;
load output.mat;
Ip Op data;
Xcor Phase;
end

save GAIN SAME.mat

f=10:1:299;
w=2*pi*f;

B.1.2 Ip Op Data.m
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x=find(ip(1,:)>0.1);

time ip = ip(1,x);
time ip=time ip-0.1;

data ip = ip(2,x);

y=find(op(1,:)>0.1);

time op = op(1,y);
time op=time op-0.1;

data op = op(2,y);

B.1.3 Xcor Phase.m

t = [0 time ip];

s1=[0 data ip];
s2=[0 data op];

x = xcorr(s1,s2,coeff);
tx =- time ip(end):1e-5:time ip(end);

[mx,ix] = max(x);
lag = (tx(ix));

ph same(1,i)=lag*f*360;

B.1.4 Derived Gain Phase.m

clc
close all
clear all

f=10:1:299;
w=2*pi.*f;
R=4+2.86;
L=0.0026;
C=4.3409e-9;
l=500;

alpha=R*C;
beta=L*C;

p=sqrt(1/2)*sqrt(w.*sqrt(betaˆ2*w.ˆ2+alphaˆ2)-beta*w.ˆ2);
q=sqrt(1/2)*sqrt(w.*sqrt(betaˆ2*w.ˆ2+alphaˆ2)+beta*w.ˆ2);

%% gain for double load
gain3=20*log10((sqrt((4*exp(-p*l).*(3-exp(-2*p*l))).ˆ2+(sqrt(192)\\
.*exp(-2*p*l).*cos(q*l)).ˆ2)./(9+exp(-4*p*l)+6*exp(-2*p*l).*cos(2*q*l))));
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phase3=zeros(1,290);

for i=10:1:299
w1=2*pi*i;
p1=sqrt(1/2)*sqrt(w1.*sqrt(betaˆ2*w1.ˆ2+alphaˆ2)-beta*w1.ˆ2);
q1=sqrt(1/2)*sqrt(w1.*sqrt(betaˆ2*w1.ˆ2+alphaˆ2)+beta*w1.ˆ2);

phase3(1,i-9)=-(atan(-tan(q1*l).*((3-exp(2*p1*l))./(3+exp(2*p1*l))))\\
*(180/pi));
phase4(1,i-9)=-l*q1*(180/pi);
if (phase3(1,i-9)>2.5)&(phase3(1,i-9)<180)

phase3(1,i-9)=phase3(1,i-9)-180;
end

if phase4(1,i-9)>0
phase4(1,i-9)=phase4(1,i-9)-360;

end
end

%% Gain for same load

gain4=(20*log10(exp(-p*l)));

save SIMULATED.mat

B.1.5 Bode Comparison.m

clc
clear all
close all

load GAIN SAME.mat
load PHASE SAME.mat
load SIMULATED.mat
load GAIN DOUBLE.mat
load PHASE DOUBLE.mat

f=10:1:299;
w=2*pi*f;
for i=1:1:290

if ph same(i)>0
ph same(i)=ph same(i)-360;

end
end

for i=1:1:290
if ph(i)>0

ph(i)=ph(i)-360;
end

end

for i=1:1:290
if PHASE(i)>0

PHASE(i)=PHASE(i)-360;
end
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end

for i=1:1:290
if PHASE1(i)>0

PHASE1(i)=PHASE1(i)-360;
end

end
figure
subplot(2,1,1)
semilogx(w,gain4)
hold on
semilogx(w,20*log10(gain same),r:)
legend(Derived,SIMULINK)
xlabel(Frequency (rad/s));
ylabel(Magnitude (dB));
title(Gain Response)

subplot(2,1,2)
semilogx(w,phase4)
hold on
semilogx(w,ph same,r:)
legend(Derived,SIMULINK)
xlabel(Frequency (rad/s))
ylabel(Phase Angle (Degree))
title(Phase Response)

figure
subplot(2,1,1)
semilogx(w,gain3);
hold on
semilogx(w,20*log10(gain double),r)
legend(Derived,SIMULINK)
xlabel(Frequency (rad/s));
ylabel(Magnitude (dB));
title(Gain Response);

subplot(2,1,2)
semilogx(w,phase3);
hold on
semilogx(w,ph,r);
legend(Derived,SIMULINK)
xlabel(Frequency (rad/s))
ylabel(Phase Angle (Degree))
title(Phase Response)

gain same sim=10.ˆ(gain4/20);

for i=1:1:290
error g s(i)=((gain same sim(i)-gain same(i))/gain same sim(i))*100;
end

figure
subplot(2,2,1)
plot(w,error g s)
xlabel(Frequency (rad/s))
ylabel(Error (%))
title(Percentage error of semi-infinite line gain response)
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gain double sim=10.ˆ(gain3/20);
for i=1:1:290
error g d(i)=((gain double sim(i)-gain double(i))/gain double sim(i))*100;
end

subplot(2,2,2)
plot(w,error g d)
xlabel(Frequency (rad/s))
ylabel(Error (%))
title(Percentage error of finite length terminated line gain response)

for i=1:1:290
error p s(i)=((phase4(i)-ph same(i))/phase4(i))*100;
end
subplot(2,2,3)
plot(w,error p s)
xlabel(Frequency (rad/s))
ylabel(Error (%))
title(Percentage error of semi-inifite line phase response)

for i=1:1:290
error p d(i)=((phase3(i)-ph(i))/phase3(i))*100;
end
subplot(2,2,4)
plot(w,error p d)
xlabel(Frequency (rad/s))
ylabel(Error (%))
title(Percentage error of finite length terminated line phase response)

mse g same=sqrt(mean((gain same-gain same sim).ˆ2))
mpe g same=mean((gain same sim-gain same)./gain same sim)*100

mse g double=sqrt(mean((gain double-gain double sim).ˆ2))
mpe g double=mean((gain double sim-gain double)./gain double sim)*100

mse p s=sqrt(mean((ph same-phase4).ˆ2))
mpe p s=mean((phase4-ph same)./phase4)*100

mse p d=sqrt(mean((phase3-ph).ˆ2))
mpe p d=mean((phase3-ph)./phase3)*100

B.1.6 Gain Id Same.m

close all
clear all
clc

format long
f=10:1:299;
w=2*pi.*f;
R=4+2.86;
L=0.0026;
C=4.3409e-9;
l=500;
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alpha=R*C;
beta=L*C;

load GAIN SAME.mat

p=sqrt(1/2)*sqrt(w.*sqrt(betaˆ2*w.ˆ2+alphaˆ2)-beta*w.ˆ2);
q=sqrt(1/2)*sqrt(w.*sqrt(betaˆ2*w.ˆ2+alphaˆ2)+beta*w.ˆ2);

gain4=(exp(-p*l));

Y=[gain4];
X=[w];
n=length(Y);

signal power=mean((Y\).ˆ2);
snr=30;
noise power=signal power./(10.ˆ(snr/10));
randn(state,4);
noise=sqrt(noise power)*(randn(n,1));
noisy y=noise+Y;
Y=noisy y;

fun=inline(exp(-500*sqrt(1/2)*sqrt(X.*sqrt(k(1)ˆ2*X.ˆ2+k(2)ˆ2)-k(1)*X.ˆ2)),k,X);
beta0=[1e-11;1e-8];
p=2;

[hat theta nl,e,J]=nlinfit(X,Y,fun,beta0);

MSE=e*e/(n-p);
C=(J*J)ˆ(-1);

d e=e/sqrt(MSE);

hat Y nl=nlpredci(fun,X,hat theta nl,e,J);
t1=tinv(0.975,n-p);

CI beta nls low=hat theta nl-t1*sqrt(MSE*diag(C))
CI beta nls high=hat theta nl+t1*sqrt(MSE*diag(C))

CI theta nl=nlparci(hat theta nl,e,J)

B.2 Simulink Blocks

The simulation blocks used in the SIMULINK are given below:
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Figure B.1: Simulink block of a distributed parameter transmission line
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