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ABSTRACT

This thesis focuses on the use of computer simulation for modeling risk of a

multi-state repairable component.

In production processes, maintenance decisions are often made based on uncertain
assessment of risk, not only in the probability when a process component goes
into a state of failure but also in the cost of lost production and preventive
maintenance. In this thesis work, preventive maintenance of a component is
modeled and simulated, in order to minimize risk (cost), as:

e aMarkov process with multiple states and fixed transition probabilities, under
the assumption that with a sufficient number of states the Markovian property
isvalid,

e a non Markov process with two possible states and non-fixed transition
probabilities for a periodically decreasing reliability component, and

e a non Markov process with two possible states and non-fixed transition

probabilities for a continuously decreasing reliability component.
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CHAPTER 1

INTRODUCTION

1.1MOTIVATION

In industry, many machines, systems and components are subject to failures due
to damage or deterioration. These failures can produce economic losses, reduced
availability, and even safety issues. The main objective of maintenance isto avoid
or minimize these potentia problems by performing the actions (technical or
administrative) that keep the device in a working state in which it can perform its
required function (maintenance) or prevent trouble from arising (preventive
maintenance). In genera, Maintenance is considered a fundamental part of
effective and profitable industrial systems.

Maintenance optimization is an area of operations research that deals with the
efficiency of maintenance activities in terms of company profits and incurred
costs. If the main purpose of a mathematical model is to maximize the benefits of
maintenance, then this mathematical model is called maintenance optimization
mode [1].

Maintenance models that consider stochastic processes are usually difficult to
comprehend and interpret by technicians, professionals and managers who are

traditionally educated on deterministic models. In genera, risk, which is a



measure of the probability and severity of undesired effects (in our case, cost), isa
concept difficult to understand due to its composition of two components:

1) The consequence or cost (tangible component), and

2) The probahility (intangible mathematical number) [20].

The purpose of thisthesisisto address a simple Maintenance Optimization Model
which deals with stochastic processes affecting a repairable component. The
intention is to use a simulation tool when addressing the problem, which is easy to
understand and interpret by the technicians, administrative and managers of a

company, and which includes a measure of risk (cost) in its objective function.

The use of simulation would offer, once the problem has been modeled
satisfactorily, a lot of flexibility to adequate and adapt to new changes in the
process, by making small changes in the simulation model. Simulation would also
offer the possibility of analyzing different hypothetical case scenarios of the
problem, by making virtual changesin the ssmulation model.

1.2 BACKGROUND AND HISTORY

In theindustrial world, it iscritical to take maintenance decisions on:

[ whether or not to stop production in order to perform preventive
maintenance or to sacrifice a PM (Preventive Maintenance) in order to keep
producing,

[ when it is the right moment to allocate those maintenance resources, and

[ selecting the areas in which the maintenance should be done,

in order to optimize processes in terms of minimizing risk. This study is focused

in the first two points described above.

Becker [2] states that the objective of Preventive Maintenance (PM) isto service a
equipment unit before, and not after, it causes damage in quality, production

output, safety or cost. Similarly, Kececioglu [3] describes the objectives of PM as
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increasing a component’s reliability, decreasing the number of failures,
decreasing the downtime of a product or a system, decreasing requirements of
gpare parts, decreasing the maintenance man hours, and decreasing its life cycle
cost. This work conforms to these two PM concepts, by considering components
“as good as new” after PM is performed, in order to potentially minimize risk
(cost).

The first scientific approaches to maintenance management date from the 1950s
and 1960s [19]. Originally maintenance was focused only on minimizing failures
and downtime, and so preventive maintenance programs started to be
implemented. With the peak of operation research studies, new models were
created in order to optimize the PM programs. Condition monitoring and
techniques such as Vibration Measurement and Analysis, Infrared Thermography,
Oil Andysis, Tribology, Ultrasonics, Motor Current Signature Anaysis, etc.
were developed to determine equipment condition in the 70's and proved to be
more effective than PM programs. Computers were not used formally for
maintenance purposes until the 1980s [19]. This study considers of high
importance the use of computers to address PM allocation problems, and more
specificaly, the use of computer simulations as another important handy tool in

the maintenance decision making.

Modarres, Kaminskiy and Krivtsov described how Reliability Centered
Maintenance (RCM) had its roots in the 1960s when the North American civil
aviation industry realized that their maintenance practices were unsafe and
implied a high cost. Before the 1960s, the maintenance aviation policy was
basicaly restoring amost everything in an airplane every certain period of time
[43]. At the start, the RCM approach was only used and oriented to airplane
maintenance and did not break through into other industries until the late 1980s
[4], [32]. In general, RCM is an industrial improvement approach focused on the
necessary processes to ensure that any component continues to do its functions.



Since then, many studies have been attempted to determine or find the best way to
decide how and when to conduct maintenance activities. The main idea of
Reliability Centered Maintenance (RCM) is to guarantee that a specific process or
system will continue performing its intended functions; however, it is not only
important to ensure the reliability and availability of a system, but also to consider
the cost associated with that availability assurance in order to make right
decisions. Then, RCM lacks a consistent decision anaysis framework and
consistent approaches to estimate risk associated with maintenance actions.

An effective framework for evaluating risk in maintenance can lead to effective
algorithms to assist with decisions about how to allocate maintenance resources,
avoiding the cost of wrong decisons and optimizing the frequency of

maintenance and the availability of the components and the system.

In production processes, the maintenance decisions are usually based on the idea
of minimizing the costs of the maintenance. In order to do this, it is common
industrial practice to assess the risk of a component or system failure and its
associated cost for lost production and the repair cost, and then to compare these
costs with the ones associated with scheduling periodic preventive maintenance to
try to avoid the failure-associated costs. This study, perform this cost comparison
through the same simulation in order to determine whether or not is advisable to

perform PM, and whit which periodicity this PM should be carried out.



CHAPTER 2

LITERATURE REVIEW

2.1 REPAIRABLE COMPONENTS

The traditional concept of Reliability, which is the ability of a system to perform
its intended functions for a designated period of time under specified operating
conditions, considers only two possible options to describe a system or a
component state: Good or Failed. In this manner, the traditional roots of reliability
do not consider the possibility of a repair of the system. In general, components
are considered non repairable in the basic Reliability vision [4]-[11]. This study
considers the situation where a component may be repairable.

In some cases, a repairable component or system that can be rehabilitated to fulfill
all its required functions satisfactorily after failing to perform at least one of its
required functions, by some method other than replacement of the entire
component or system. This is called a repairable component or a repairable
system [13]. Lindqvist [15] suggested extending this definition to include the
possibility of supplementary maintenance actions with the objective of servicing
the component or system for better performance. Or more briefly: A repairable
component or system can be defined as one that is repaired rather than replaced
after afailure[16].



The types of maintenance activities that a component might undergo have been
classified in [34]:

Perfect PM or Replacement . The component or system is considered to be as

good as new after the repair.

Minima PM or Minimal Repair. This kind of repair does not change the hazard
rate nor the effective age of the component or system. The repair only restores the
component or system to the prior functioning state at the time of failure (this type
of repair is also caled: as bad as old). The hazard rate function is the probability
that a component will fail in the next instant of time unit given that it is presently
working [27], [34].

Imperfect Repair or Imperfect PM. This activity partially restores the state of the
component or system to between as good as new (after perfect PM), and as bad as
old (after minimal repair) [34].

For simulation purposes only, this study will assume that the component is going

to be as goo as new after PM.

22MULTI-STATE JUSTIFICATION

Virtanen [14] proposed to extend the traditional concepts of reliability arguing
that when we consider a system, it may not be in one of the two states. up-state or
(fully working) or down-state (failed), but rather it may be operating in a
degraded state (many levels of reduced service). In that case, the conventional
concepts of binary reliability systems are found to be unsuitable and inadequate.
There may be situations where the system is neither in perfect condition nor fully
failed, so the calculation of the reliability of the system gets compromised, or it
gets a vaue that leads to wrong conclusions. either overestimated or

6



underestimated reliability. In this thesis, the components subject to study will be
considered “multi-state” components for the case study “model A”, which means
that they would have more than the two classic reliability states: good and failed.
In the case studies B and C, the components would be considered under the
classic view of reliability: two states, in order to reduce computation and

simulation times.

2.3 STOCHASTIC PROCESSES AND MARKOV CHAINS

A stochastic process is a random process evolving with time. It is a collection of
random variables X; indexed by time. If time is a subset of nonnegative integers
numbers {0, 1, 2, 3, ...}, the process is a discrete time process. A stochastic

process is continuous time if timeis a subset of nonnegative real numbers [0, ).

Since costs and failure rate may be probabilistic in production and maintenance, it
is appropriate to consider these processes as stochastic in order to address the
problem. In maintenance, costs are generally probabilistic because one part of
these costs is the corrective maintenance cost, and this corrective maintenance
cost can have different values, depending on whether or not a component or

system fails.

Many stochastic processes have the property that the change at time t is
determined only by the state value at the same time t and not by any state at
previous time t. Such processes are called Markov processes and such property is
called Markov property. In genera, the Markov property states that the past has
no influence on the state of the system in the future, but it suffices to consider
only the present state [19].

A Markov chain is a sequence of random variables Xj, Xz, X3 ..., with the Markov

property, mathematically described by:



Pr (Xn+1 =X | Xo=Xn s ooy X1=X1, ><0:)(0) =Pr (Xn+l =X | Xn:Xn) (1)

The possible values of X are called states of the system, and the conditional
probabilities in equation (1) are called transition probabilities. A Markov
process alows calculation of the transitions probabilities in n steps, The

probability of going from statei to statej in n stepsis:
p, " =Pr(X, = X, =) - 2

A single step transition is obtained by:
. . ©)
P; = Pr(X, = J|Xo =1)
and the n-step transition satisfies the Chapman-K olmogorov equation, that for any

O<k<n,

n (n—k)
pij( ) = Z pir(k) Pij (4)

reS

where S is the state space of the chain, in other words, S is the set of possible X;
values. [31]

The first model of this studied, also called Model A, consider that the probability
of the component subject to study changing from one state to another follows this
Markov property. In other words, the probability of this component changing its
condition or state depends only in the current state and not in the history or the

time that this component has been in a certain state.

24 SYSTEM RELIABILITY

This study mainly focuses on single components, but a bigger prospect would

consider systems, instead of only components. It is defined here, that asystemisa

8



set of components interacting or working together as a coherent entity or more

complex whole.

When studying or analyzing reliability systems, graphical models such as block
diagrams and fault trees are commonly used. These two symbolic methods are
briefly described below.

241 RELIABILITY BLOCK DIAGRAMS

Reliability block diagrams are commonly used to represent the effect of
component failures on the overall system performance, or in other words, to
describe the relationship between the performance of the system and its

components [4], [27].

Figure 1 show a simple example of a Reliability Block Diagram (RBD)
representing a system that contains only three components: two Hard Drives

(connected in paralel) and a Circuit Board.

Hard Drrive 1

Circudt Baard

Hard Drive 2

Figure 1. Reliability Block Diagram of a Simple Circuit Board [28].

The block diagram in Figure 2 represents a system comprising for two identical

power generators, three identical pumps and avalve.



— Pump [
Generator

{ _I Pump Valve |—
Generator J

—  Pump

Figure 2. Example of aReliability Block Diagram of a small system [28].

Table 1 shows some common block diagram classifications, their name and their
system reliability calculation.

Tvpe Branch Block Diazram Represenmtion System Raliability £

Series
— 4 B | R=R°R

Parallal

F.o=1- (1-R )(1-Byl

Senes-parallel

[R; =1-(1-B, W1-Byl
*(1- {1-B- ) (1-Byl)

Parallal-semas

Compley

Table 1: Reliability Block Diagram Classification [29].

242 FAULT TREE ANALYSIS

A fault tree analysis (FTA) is a system reliability analysis method developed at
Bell Laboratories in 1962. This approach is a logical process with a tree form

10



structure, in which atop event is defined as an undesirable event (usualy failure).
The probabilities or possible ways that the top event may occur are systematically
and logically deduced. Once having the tree graphical structure, a combination of
Minimal Cut Sets (MCS) and Boolean algebrais then commonly used to quantify
and evaluate fault trees. A MCS is a set of components in which the failure of
every component is absolutely necessary for the system to fail. For complex
systems with multiple failure modes and interactions among components where
the use of RBD becomes difficult, it is preferred to use FTA. A fault tree could
easily be transformed to aRBD [4],[12],[27].

A simple example of a Fault Tree diagram and its evaluation using MCS and

Boolean agebrais shown in Figure 3.

.é .‘0 A
T
IO
MC1={A,B,C}, MC2={A, B, D} then Pr (Top event) = Pr (A-B-C + A-B-D)
Figure 3: Fault Tree Diagram and Boolean Algebra example [18].

Thelogic of which this example follow is: the Minimal Cut Sets of the system are
MC1={A,B,C} and MC2={A, B, D}, becausein order for the system to fail it is
absolutely necessary that there be either a simultaneous failure of components A,
B and C or a simultaneous failure of components A, B and D. The probability of
the top event (failure) to happen is then calculated by the use of Boolean algebra.

11



The same logic procedure could be used in maintenance decision practices by
evaluating the probability of a system failure, given the actual composition of the

system and the failure probabilities of the components of the system.

2.5 APPROPRIATENESS OF MARKOV MODELS FOR MAINTENANCE
PROCESSES

Combinatorial models (fault-trees and reliability block diagrams) are available
common methods for the prediction of reliability and availability of systems.
Even though they can be applied to many particular cases, they don't easily
permit different types of dependency, in our case of interest: repairs, spare or
multi-state dependency. In this matter, Markov models are preferable due to its
capability of including these dependencies and system behaviors. The size of a
Markov model may grow exponentially with the number of components in the
system, but the changes between states can be represented in a single transition

[17]. Thefirst case study (Model A), will consider Markov models for its survey.

The Markov assumption could be appropriate for the case of interest, if some
assumptions are made, such as: no change in the failure rate of the component and
no change of the operating, maintenance and repair practices. These assumptions
and the conditions under which, the Markov assumption is valid will be described

deeply in Chapter 3.

2.6 SEMI MARKOV AND MARKOV REWARD MODELS

In maintenance practices, some assumptions, such as, the Markovian property or
more specific: the memoryless property or transitions probabilities following
negative exponential distributions, may be either mistaken or violated due to

changes in maintenance practices or human decisions. Another challenge could

12



also be the possibility of including uncertainty in the transition costs. In such
cases, different Markov approaches such as Semi-Markov Models (SMM), or
Markov Reward Models (MRM) may be necessary [26]. These two different
models that may be necessary for different case scenarios are herewith briefly

explained.

When the transition time between states of a component is a random variable that
does not follow an exponential distribution, the use of discrete Markov Chains for
describing the system is inappropriate, and a Semi-markov processes may be
more representative, since the transition probabilities in a Semi-Markov process
are functions of the duration of time spent on a state of the system [22].

In general, a semi-Markov process is the process that chooses its next state
according to a Markov chain but the transition time spent in this state it is a
random amount of time. In genera, in a Semi-Markov model the transition rates
in a particular state depend on the time aready spent in that state, but they do not
depend on the path taken to get to the present state. The transition times between
states for a component do not necessarily follow an exponential distribution.

An increased or extended Markov chain that includes a reward assignment
function is called a Markov reward model (MRM). These models describe the
behavior of the system with a Markov chain, where a reward rate is associated
with each state such that the time spent in a state contributes to the accumulation
of overall reward gained based on the reward rate [23], [24].

Markov Reward Models allow the capture of instantaneous rewards as well as
cumulative rewards in a Markov process. Some applications of MRM include:
reliability/availability, queuing and performance models where the reward rates
associated with each state in this model could be: either O (downstate) or 1
(upstate) for reliability models, the number of jobs in a given state for a queuing

model, and the computational capacity or a related performance measure for a
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combined model of performance and reliability. The advantage of a MRM is the
ability to caculate steady-state reward rate and expected instantaneous reward
rate measures [23], [24], [49].

In general it is assumed that if the process staysin any state i during the time unit,
acertain cost rj; is paid. It is aso assumed that each time the process transits from
state i to state j acost rj; should be paid.

These costs rii and rjj are called rewards. A reward may also be negative when it
characterizes a loss or penalty. Such a reward process associated with its states

or/and transitionsis called a Markov process with rewards [23], [24], [48].

A general MRM would include areward rate r; for each state i of a Markov chain.
Then the instantaneous reward rate Z(t) at timet i548]:

Z(t)= ) 1 (5)
and the accumulated reward Y(t) in the interval (O, t] is[48]
YO =[zTdT . (6)

The expected instantaneous reward rate E[Z(t)] at time t and the expected steady-

state reward rate can also be calculated as
E[Z®)= Y rm @ . and (7)
imE[Z(T)] = E[Z]=) 17, ,  respectively [48]. ®)

Where 7, (t) is the steady state probability that the system isin State i at time t

and 7, isthe steady state probability that the systemisin statei.

Finally, the expected accumulated reward in interval (0, t] is[48]

EIY(®)] = Y r [ 7 (k= YL, (1) 9

In Markov Models, a model state usually represents a system state. In

maintenance, the reward rate of the Markov Reward Model assigned to each state,
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is commonly, a non-negative reward rate. Often this reward rate is either O or 1,
and indicates the level of performance related to the operational components [23],
[24], [48].

2.7 MAINTENANCE SCHEDULING, FORECASTING AND MODELING

With the use of simulation, this research expects to offer additional tools for the
maintenance decison making. In the past, many authors have studied and
described the importance of preventive maintenance and, in general, maintenance

decisions.

Heintzelman [5], discusses the importance of planning a periodic (preventive)
maintenance and insists that this should be a continual process. He assures that
reviewing the maintenance history periodically to determine if their operations
and schedules are still efficient, could result in cost savings. The models proposed
in this study offer the capability of reviewing if the PM schedules for a certain
component are cost efficient, and by small changes in the simulation models,

anayzing new possible scenarios.

Shue and Kuo [6] used grey theory to generate a Preventive Maintenance (PM)
forecast model for prediction of PM timing of various machines in the
semiconductors industry, with the man objective of minimizing equipment
downtimes and optimizing production efficiency. Grey theory is used when there
is a mixture of precise information (white) and lack of information (black). In
other words, the information is poor or incomplete and it is used as a starting
point of investigation and to seek the intrinsic structure of the system [25] . In this
study, it is assumed that information is precise, especiadly in terms of preventive

mai ntenance costs, probability of changing between states, and transition costs.
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Lipsett [7] discusses the importance of understanding the flow of information and
the cost of wrong decisions in order to make better and informed business
decisions. Lipsett also relates the benefits of maintenance modeling, the existing
structured analysis techniques and the value of information for maintenance
decision making. This research study did not go deeply in the concepts of
information management, but it offers a framework for control and distribution of
maintenance information. In this work, once the simulation models have been
designed, properly understood, and results have been obtained, the information in
a model can be integrated into maintenance decision-making, particularly for

scheduling.

A preventive maintenance (PM) policy is a guideline that indicates how a PM
should be scheduled. Usually, PM policies are classified as Periodic or Sequential.
Periodic policies indicate that PM activities are scheduled at integer multiples of a
fixed period of time, and Sequential Policies schedule PM activities in a sequence
of unequal intervals. A Sequential PM schedule is used when the system or
component requires preventive maintenance more often as it ages, which is often
amore realistic schedule [34].

Reliability-based maintenance method is a common approach to determine PM
sequentia intervals by designating a predetermined level of maximum reliability
or minimum hazard rate of the system. Once the system reaches this level, a PM
is performed. Another common method for determining PM sequential intervalsis
the optimization method, in which the main goa is either to minimize cost,

maximize reliability, or a combination of both [34].

Under these points of view, it would be considered that this thesis research
includes PM policies for different models, in terms of indicating PM schedule,
and more precise, periodic PM policy, since the simulations results will give the
optimal fixed periodic PM interval in order to minimize risk-cost. In some way,
the models called Model B and Model C of this study, can be considered
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reliability-based, since both of this models perform PM periodically, and the
reliability of the component for these models decreases constantly. These models

will be discussed deeply later in Chapter 3.

Sequential imperfect models may consider changes in the hazard rate and
effective age of a component or system once Preventive Maintenance is
performed. Such models are called Hazard Rate Adjustment Models and Age
Reduction Models, respectively. Hazard Rate Adjustment models usualy
consider that the hazard rate decreases to zero when the PM is performed, but
then increases faster than in previous intervals due to imperfect repairs. The
hazard rate function (denoted h(t)) is the probability of the first and only failure of
a component in the next instant of time given that it has been working
satisfactorily up to time t [27], [34]. Age reduction models consider an effective
age reduction of the component or system after a PM and its hazard rate as a
function of the effective age [34] .

Lin, Zuo and Yam introduced two new sequential imperfect PM models. These
new models consider a combination of the hazard rate adjustment models and the
age reduction models (also caled hybrid model), in which a PM reduces the
affective age of the system and increases the slope of the hazard rate function
(illustrated in Figure 4). One of their models considers PM intervals as decision
variables in order to optimize (minimize) cost. Their other model assumes that a
PM is performed once the hazard rate of the component or system reaches a
predetermined level in order to determine the PM intervals [34].
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Figure 4. Hazard rate function of the proposed model by Lin et al. [34]

Of the three case studies included in this thesis research, one model (model A)
does not consider changes in hazard rate through time, nor after PM, in contrast
to the other two models, which consider changes on hazard rate with time and
after performing PM. None of these three models considers reduction on
effective age after PM, neither hazard rate as a function of the effective age of the
component. All the three models consider PM intervals as the decision variables
of the cost optimization objective function. In general, it can be said that of the
three proposed models, one considers components with constant hazard rate, other
with discretely increasing hazard rate, and the third one with linearly increasing
hazard rate; thisisillustrated in Figure 5.

Lin, Zuo and Yam [35] also categorized the failure modes in two groups:
maintainable failure modes and non-maintainable failure modes. The hazard rates
of maintainable failure modes can be reduced with PM, but the hazards rates of

non-maintainable failure modes can not be modified by PM. They applied these
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concepts of failure modes to their hybrid model for PM activities. In this research

study, all failures modes are contemplated as maintainable.

—— HAZARD RATE —— HAZARD RATE ——HAZARD RATE
0 . 0 . 0
Time, t Time, t Time, t
MODEL A MODEL B MODEL C

Figure 5. Time-hazard rate graphs for each model.

Caldeira, Taborda and Trigo [8] proposed an algorithm to determine the optimum
frequency at which to perform preventive maintenance (PM) in equipment that
exhibits linearly increasing hazard rate and constant repair rate, in order to ensure
its availability. They also developed another algorithm to optimize maintenance
management of a series system based on preventive maintenance over the
different system components. This algorithm has the following objective function,

conditions and constraints:

The objective function (defined here as a cost function per unit time) is

n

CHIPD; CIC;
clAA5,. LA, = E > R —AD) + A

=1 | A A

i [ aA;emp; A, Xeme;
— [2u(1—A)  w(l—A)

= C'f_‘-‘llq.-"lj-u . -JL:J

under the following initial conditions,

Initial conditions

Components TTR TTP PM Cost CM Cost 1

1 1=10~7 100 10 2000 4000 2000
2 5.7 =107 50 40 2500 5000 1500
3 797 %10™° 80 10 1000 2000 250
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and subject to

n

[1a=>A

i=1

0<A <1li=12,..,n
where A is the availability of component i, | is the constant repair rate, a is the

coefficient of the linearly-increasing hazard rate function (hi(t)= ait), 6; isthetime
units between preventive maintenance tasks on component i, cmp; and cmc; are
the costs of each preventive and corrective maintenance task, respectively, TTR is
the Mean Time to Repair (corrective maintenance), and TTP the time of one

preventive action.

Their goa was to goal is to calculate the vector [TL T, Tg ...,rn,]T that would keep

a predetermined availability level while minimizing maintenance costs. They

show a numerical example and use MATLAB and Excel Solver for its solution.

Barlow and Hunter [9] studied and compared two preventive maintenance policies,
one named “Perform preventive maintenance after to hours of continuing
operation without failure” or Policy I, and the other defined as “Perform
preventive maintenance on the system after it has been operating a total of t*
hours regardless of the number of intervening failures’ or Policy Il. Elementary
renewal theory was used to obtain these optimum policies and included the
mathematical criteria for their evaluation, in order to compare them for those
cases where both policies are feasible. Renewa Theory is a branch of probability
theory describing problems related with the renewa of the elements of some
system [46]. The Renewal Process (a generalization of the Poisson process) and
the Renewal Equation are its main concepts.  Policy | is more useful in
maintaining simple equipment where repairs at the time of failure may occur; and
Policy 1l is useful in large, complex systems in which is more common to
schedule PM after some specific accumulated hours of operation. Under some

circumstances, their formulation can also give minimum cost solutions when
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replacing times to repair by coststo repair.

Zhang [36] combined the replacement policy T, created by Barlow and Proschan,
in which the replacement is performed when the system or component reaches the
working age T or a failure occurs, and the policy N proposed by Park [40], in
which the system or component has a replacement once N number of failures has
been reached by the system or component. The combined bivariate replacement
policy (T, N) minimizes the average cost rate (long-run average cost per unit
time). Under this (T, N) policy, the system is replaced when the working time T
has passed or the number of failures N is reached, whichever occurs first. In
contrast to common replacement policies that assume the system as good as new
after repair, Zhang's (T, N) policy considers the system after repair not to be as
good as new, and due to deterioration, it is also considers that after each repair,
the operating time becomes shorter and the repair time becomes longer.
Eventually, the working time becomes so short and the repair time becomes so
long that the system or component must be replaced. This kind of model, in which
operation time becomes shorter and shorter and the repair times longer and longer

after repairs are called “ geometric process” models.

Zhang, Yam and Zuo [37], introduced a new policy N for a geometric process, in
which a PM is incorporated to the model and the objective function is termed by
the cost efficiency, which is defined as the long-run average cost per unit of
working time, instead of the average cost rate, which is the long-run average cost

per unit of time.

Zhang, Yam and Zuo [38], also introduced a replacement policy N, for a
multistate system, with a single component, stochastic deterioration, imperfect
repair and k+1 states, where one state is considered a working state and the other
k states are considered failure states. The objective function for this policy is the
long-run expected profit per unit time. They use analytical methods to determine

the solutions of their optimization problem and the proofs of their theorems.
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Noonan and Fain [10] developed a preventive maintenance schedule that
optimizes system performance when the assumption of immediate detection or
immediate repair of failures is not valid. They showed that, under certain
assumptions, an optimal preventive maintenance schedule exists for every
possible failure rate. Availability is their objective function and they find
analytical optimal solutions for the cases where the probability of detection and
repair of component failure isless than or equal than 1 (p<1).

Zhang [11] developed a model for PM for a deteriorating system with a bathtub-
shaped failure rate function (as a sum of the mgjor falure rate and the minor
failure rate), incorporating the concepts of Condition-Based Maintenance (CBM),
Random Failure Corrective Repair (CR), and Block Replacement (BR); in order
to reduce unexpected failures and maintenance costs. Zhang also created a
combined periodic preventive replacement and spare parts provisioning policy,
considering the salvage value of the used spare parts. Monte Carlo simulation was

used to demonstrate the effectiveness and feasibility of his models.

Reliasoft Corporation [12] mentions the importance of maintenance in the life of a
system and how maintenance affects, among others, the reliability, availability,
downtime and cost of operation of a system. It also describes how costs it is
aways a factor in scheduling PM. Reliasoft [12] aso describes the basic
conditions in which PM intervals schedul e should be set and its main objective:

o Condition 1: The component in question has an increasing failure rate.

[ Condition 2: The overall cost of the preventive maintenance action must
be less than the overall cost of a corrective action.

o Objective: Minimize Cost Per Unit Time.

In the System Analysis Reference publication of Reliasoft Corporation [12] a

cost/unit time vs. time graph was presented, as shown in figure 6.
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Figure 6: Preventive and Corrective Replacement Costs

This plot shows how, if the PM intervals increase, the corrective costs increase
and the preventive costs decrease. Therefore, there must be an optima PM
interval that optimizes the sum of those two costs; in other words, there is a PM
schedule that minimizes the total cost associated with maintenance:

min F(t) = Pc+Cc (10)

where Pc and Cc are the costs associated with Preventive and Corrective
Maintenance, respectively.

This research proposes simulation models to obtain the optimum frequency at
which to perform preventive maintenance (PM), for each of the three different
models subject to study, in order to minimize overall cost. Once PM is performed,
the components are considered as good as new, for al the models contemplated

here.
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2.8 RISK AND COST ANALYSIS

Risk has usually two connotations. Qualitative Risk and Quantitative Risk [4].
The Qualitative aspect of risk is the possibility of loss or injury due to an existing
hazard and is usually expressed using an ordina rating such as low, medium or
high. The Quantitative aspect of Risk is expressed using numeric data, and it is
the estimation of the loss likelihood [4] .  For the purpose of this study, only the
quantitative aspect of risk will be considered. More specifically, in this work, risk
is evaluated as the cost of a certain event times the probability of this event to

OcCcur,

In Li and Zuo [33], a k-out-of-n events risk analysis is conducted. They proposed
an algorithm, by enumerating all combinations of n eventsk at atime, to calculate
the estimate risk (average total cost of k events out of n events occurring
multiplied by the probability of k events out of n events occurring) and concluded
that the estimate risk can be adequate for decision making since it is pretty close

to the accurate risk.

An approach to improve the cost-effectiveness of a maintenance program is
proposed by Kunttu et a [30], by focusing on the estimation of economic costs of
faults. The novelty of this approach isits simplicity and applicability to real cases
without the use of sophisticated software tools. They explain the Reliability
Centered Maintenance methods to develop maintenance programs usually have
three common and main stages:

1. Definition and measurement of the maintenance objectives,

2. Identification of the most critical and significant components (fault
modes and failure mechanisms), and

3. Propose pertinent maintenance tasks for those critical components
identified

They classified maintenance strategies in four classes:

] Condition-based maintenance
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) Use-based maintenance

[ Failure-based maintenance also called corrective maintenance (CM),
and
® Modification

In their approach, once defined the applicable PM tasks for the identified fault
modes in stage two, the cost effectiveness of each of these tasks is estimated by
comparing their annual cost.

In order to calculate the annual cost incurred by each maintenance task, Kunttu et
al [30] statesthat it is necessary to know their detailed description and frequency.
In cases in which the maintenance task has been implemented in the past and
therefore operational experience has been obtained, historical, statistica and
expert judgment data can be used to get a good estimation of the annual cost of
the maintenance strategy. In the cases in which there is no existing operational
experience, the estimation numbers tend to be less accurate, but a rough number
would offer the right order of magnitude, good enough for the cost-effectiveness

comparison.

The cost factors for each maintenance task vary; but in general, the following cost
factors should be considered: execution of the planned task, maintenance
overhead costs, immediate repairs, monitoring, training, early failure repairs,
income losses due to production losses, labor, spare parts, etc. These factors
mentioned by Kunttu et al [30], should be considered in mind when the transition
costs explained in Chapter 3 of this thesis work are estimated.

This research study relies in the possibility of estimating good cost numbers, close
to reality, in order to find the optimal PM intervals for each model. Historical,
statistical and expert judgment data are the key to obtain reliable transitions costs
considered in this study. Thistransition costs will be explained in Chapter 3.
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2.9 MAINTENANCE OPTIMIZATION

According to Dekker [1], maintenance optimization models, in general, cover four
aspects:

1. A description of atechnical system, its function and its importance.

2. A modeling of the deterioration of the system in time and possible
consequences for the system

3. A description of the available information about the system and the actions
open to management and

4. An objective function and an optimization technique which helps in finding
the best balance.

This study follows these 4 aspects for 3 different models, but focus in the last
aspect mentioned by Dekker [1]. In these cases, the objective function is to
minimize cost, and simulation is the technique used for the optimization process.

29.1 BAYESIAN THEORY IN MAINTENANCE OPTIMIZATION

In general, Bayesian Theory uses Bayes' theorem as aruleto infer or update the
degree of belief in light of new information. Bayes' Theorem follows from the
concept of conditional probability and relates the conditional and marginal
probabilities of stochastic events A and B as follows [4]:

_PBAP(A)

olie)- "o

(11)

Bayesian Decision Theory provides theoretical foundation for inference under
uncertainty about the state of world, based on a probability distribution over a set
of possible states.
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Procaccia et a [21] presented an application of Bayesian and statistical decision
theories on the maintenance of a diesel generator component. Their main idea is
to match the expert judgments with the available operating data or feedback
through a Bayesian approach and combine it with the risk and cost of failure.
Procaccia et al [21] stated that Reliability centered maintenance has some
limitations, and for this reason, they proposed a different approach, using

Bayesian statistical theory, for a maintenance optimization problem.

They consider the use of expert judgment, arguing that field and historical data
can offer information from which it is possible to calculate failure rates or
probabilities of starting on demand, but not always show performance degradation
without failure and it is important to consider the risk from possible aggravation
of the degradation.

In this way, they obtain a posterior probability density by combining historic field
data (prior probability density) with estimates from experts (likelihood). This
probability density is richer than the prior probability density one. For questioning
the experts, severa different perspectives (manufacturers, staff, operators,
economists and maintenance departments among others) are considered; each of
these perspectives could be represented by several experts. The first step for the
expertsisto consider the different types of possible degradations; then they have
to answer whether or not the system would perform certain missions, i.e,, if the
component is going to function for a specified duration or the probability of
failure when required for its mission. The answers of these questions have to be
binary (yes and no, 1 and O respectively). From here, amodel expertise is created
by defining a discrete distribution on X=[1,0], with

p=Pr[X=x=1 and 1-p=Pr[X=x=1]

with p being the probability that the component would perform its mission
satisfactorily.
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Since the opinions of the experts may differ, Bayesian modeling is applied in
order to deal with this uncertainty. When field data is limited, expert opinion can
be treated as observations and used in statistical inference.

Applying Bayes's theorem under the assumption that the experts are independent,

Procaccia et a [21] obtained the following prior probability density distribution:

f(p/E); = 1'°a'(1‘ i = fo(p); : (12)
[ pt-@-p)dp |

the posterior probability density distribution:

f(p/a. B); =(a(;f;)!b(; f g)!l)! p*(@-pf” (13)

and a Bayesian estimator of this distribution isits expectation:

(6] = E[f(p/a p))t =— 272 (14)

' at+a+b+p+2

where a is the number of “yes’ answers and b the number of “no” answers and o
and [ are the observed cases of proper operation and failure, respectively.

Then, adecision tree is constructed with the probability calculations for each type
of degradation. This decision tree could be used to optimize the replacement time
of the component studied in terms of minimizing risk (lowest expectation of cost),
by estimating and including in the tree the loss functions or consequence costs
that might include down time, repairs and replacement costs among other costs

that may apply [21].

This study considers Procaccia’s application of high value and as a good example

of the use of expert judgment and historical data, when obtaining the transition
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probabilities and the transition costs between states of the three models studied in

thisthesis.

Duda [18] gives a brief outline for Bayesian Decision Analysis applied to Risk

analysis, where the conditional risk is defined as:
Rl %)= e w, I X) (15)
j=1

and the risk is minimum when:

R = min{R(,|X )i =1....a} (16)
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CHAPTER 3

A RISK MODEL FOR A DISCRETE MULTI-STATE
REPAIRABLE COMPONENT

3.1 INTRODUCTION

In this Chapter, a Markov Model is proposed to describe risk for a Multi-State
Repairable Component. Typically, maintenance analyses for a repairable
component consider only two states of the component: Good and Failed. In real
genera practice, the component may have different levels of efficiency and
performance. In some cases, such as low efficiency or partia duty, reliability may
be compromised but performance may still be acceptable for a reduced duration
or at a reduced level of performance. Such repairable components with several
levels of efficiency or performance (also called states) are considered in this study.
This chapter focuses only in this Multi-State Repairable Risk Markov Model,
which will be referred as Model A in future chapters to ssmplify and differentiate
from the other two models that will be introduced and study in later chapters. All
the components described in all the models of this study are considered to be
repairable.
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3.2 PROPOSED STATES OF A SINGLE REPAIRABLE COMPONENT

For a single repairable component, the number of states may vary according to the
operation and maintenance practices associated to the component, and its different
levels of performance. Lipsett, Gallardo and Zuo [26] proposed a model with
eight possible states for a single repairable component. As shown in Figure 7, the
eight possible states are: spare, standby, derated duty, full normal duty, minor
fault, magjor fault, failed, and in repair.

Spare

Standby

Derated duty

Full normal duty

Minor fault

Major fault

Failed

In repair

Figure 7: Multi-State Discrete Reliability Model for a Repairable Component [26]
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Where u;; and A, represent transition rates. Transition rates are commonly used

instead of transition probabilities for continuous-time Markov chains. The
relationship between transition rates and transition probabilities is described in
Kuo [27] asthe limit:

. p; dp;
A = lim— = 17 (17)

In this model, transition probabilities of changing from state | to state | are

generaly designated as B; , and more specificaly u; is the transition rate of

changing to a different state j if the transition increases reliability of the

component, 4; is the transition rate that makes the component less reliable when

going from state i to state j and u; represents the transition of remaining in the

current statei.

Lipsett, Gallardo and Zuo described that there are only a sub set of the transitions
that have nonzero probabilities due to the nature of how the component is
damaged or repaired. Theoreticaly, any transition may occur between any two
states; but in redlity, for the type of component described by Lipsett et a [26],
only some transitions, which describe the operating and maintenance practices,

are possible.

In practice, a large number of states will be difficult to track and determine the
transition probabilities. From this eight-state model, a four-state model is adapted
and considered in this study (Figure 8).

The idea is that, by making a generalization and combination of one state for
every two states of the eight-state model, the four-state model will simplify the
computation and tracking of every transition; but at the same time, it will include
several different states that would still represent and describe the operating and

maintenance practices. The four states considered here are: Failed (which includes
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states of “failed and “in repair”), Fault (enclosing the major and minor faults
concepts), On Duty (comprising the “derated duty” and “full normal duty” states)
and Spare (combining the concepts of “spare” and “standby”).

Spare

Duty 4,

My

Failed

Figure 8. Proposed Multi-State Discrete Reliability Model for a Repairable

Component.

A spare is a component that is not operating at the moment but is available for
operation. In genera, the reliability of the component is high, it might have had
some of its reliability consumed in a previous state; but it may have a small

probability of consuming its reliability whilein this state.

An on Duty component is operating and accumulating damage, thus consuming

reliability. The consumption of reliability depends on the level of service and
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demand of the component. Generally, it is assumed that the longer the time of

operation, the more the reliability consumption.

A component in afault state has become damaged. This happens when an on duty
component has consumed its reliability and may not be able to fully perform its
intended functions for the required duration of time. Depending on the level of the
damage the component may be operating and integrated to the system if the
system can still operate with the damaged component. For the purpose of study of
the four-state model, when the component is in a fault state, there are not major
production losses since it would be considered that the component can till
operate. The duty and fault states are considered operating states because these
are the only states during which a component might be operating.

A failed component can not perform at any level its intended function. It may be

in the process of having some level of reliability restored (going to Spare state).

Due to production processes and maintenance activities, transitions between these
states may occur. The probabilities of going from one state to another are named
transition probabilities. The sojourn time in a state is considered to be negative
exponential distributions that don’t change over time in order to meet the
Markovian property; this is a reasonable assumption if the maintenance and

operating practices are mature and unchanging.

These transition probabilities define and help us to understand the reliability of
the process, the design of the components, and the effectiveness of operating and

mai ntenance practices.

In some ideal cases, transitions between any two states might be possible, but in
reality, only some transitions between states are likely.

Table 2 shows these possible transition states considered for the proposed Multi-
State Discrete Reliability Model of a Repairable Component.



TRANSITION

DESCRIPTION

SPARE TO SPARE | Component does not change state, and there is no
consumption of reliability over time.

SPARE TO DUTY | component goes into operating service in the system.
Component goes into service, with an incipient failure,

SPARE TO FAULT

because reliability has been consumed over time in the
Spare state.

SPARE TO FAIL

Sudden catastrophic failure of unit right after installation,
bad unit or bad repair prior to storing as a spare.

DUTY TO SPARE

Change in operating conditions.

DUTY TODUTY

No change in operating conditions, component does not
change state

DUTY TO FAULT

Incipient failure and degradation in performance.

DUTY TO FAIL

Unexpected and sudden severe failure that causes
unacceptable performance of the component. There is a
small probability of this to happen since it is more
frequent the transition of the component to the fault state
before getting to Failed state.

FAULT TO SPARE

Questionable component goes into spare, as a precaution.

FAULT TODUTY

Reliability is restored without having a repair, ether
through field service (condition-based), misdiagnosis of
fault and reclassification, or spontaneous self-repair. It is
assumed that there is no change in the severity of duty.

FAULT TO FAULT

Component remains in service even though not
performing adequately, affecting system performance.

FAULT TO FAIL

Loss of reliability and function to the point of
unacceptable performance.

FAIL TO SPARE

The component has been repaired and put into spares
inventory, or there is poor maintenance practice; either a
misdiagnosis of a fault condition, or putting a failed
component into spares inventory.

FAIL TODUTY

Component goes back into service after is repaired.

FAIL TO FAULT

Component has only part of its reliability restored
without being removed from the operating system, either
through a partial servicing repair or a spontaneous self-
correction of an intermittent fault.

FAIL TO FAIL

Component has not changed or is in repair, and system
reliability has not changed.

Table 2. Transitions between states.
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3.3DEFINITION OF TRANSITION COSTS

Similar to the transition probabilities between states there are also transition costs
associated with going from one state to another. In practice, these transition costs
are easier to calculate than the transition probabilities if the system and process is
well known and understood. The transition cost of changing from state i to state

is denoted C; . The risk associated with the transition between states is the

probability of thistransition or change occurrence times the cost associated to this

change of states. Estimates of the transition costs depend on different factors.

Spare to Spare. There is a very small cost associated with this transition since
there is no a change in state and there are not costs associated with handling or
shipping; the only cost associated is related with storage. There is no change in
reliability within a state.

Spare to Duty and Spare to Fault. From the maintenance cost point of view, the
costs related with these transitions are mainly handling and installation of the
component into the system. This cost does not include the opportunity cost of lost

production during the change, if the system has to be down for the change-out.

Spare to Fail. There can be alarge cost associated with this transition mainly due
to production losses. This transition cost is where the opportunity cost of lost
production is reflected.

Duty to Spare. This transition has costs related to handling, relocation of the

component, and storage.
Duty to Duty. There is a small cost incurred in this transition, since there is no

change in state, and the cost is only related to the component working and

performing its intended functions.
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Duty to Fault. There is a small cost associated with this transition, since the
component remains operating and performing its function, this small cost is only
related to operation. If the fault condition is a big decrease in functiond
performance, there could be a high opportunity cost of lost production from
wasted product or high cost of consequential damage to other components, the
component will be considered to transition to the Fail state in this 4 state model,
and the costs associated with this transition would be reflected in the Duty to Fall
transition cost.

Duty to Fail. There can be alarge cost related to this transition due to production
losses. The MTTR (Mean time to repair) costs, aso called lost production, is
counted only in this transition and not in other transitions.

Fault to Spare. This transition has costs associated with handling, relocation of the
component, and restoration of reliability (repair). Storage cost it is only incurred

when passing from spare to spare.

Fault to Duty. Costs incurred in this transition are for restoration of reliability and

reparations.

Fault to Fault. This transition has a cost associated for remaining in a fault state,

due to compromised process performance.

Fault to Fail. Like any other transition cost that goes to Fail state, the cost is high

due to production losses.
Fail to Spare, Duty or Fault: These transitions have relatively high costs to change

from Fail to any operation state, due to the cost of restoring reliability, repairs,

and relocation of the component into the system.
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Fail to Fail. Thisisthe only non changing state transition that implies a high cost,
due to the possibility of continuous production losses or cost of poor repairs that

don't fix the problem.

34ANALYTICAL RISK MODEL

The Initial Probability Vector P that represents the probability of being in state
astheinitial state, for acomponent with n possible states is defined as:

pO _ (Pl(O) , Pz(O) , P3(O) , P4(0) , P5(0) , PG(O) , P7(0)....Pn(0)) ' (18)

where Y P =1
i=1
and P is the ith element of the Initial Probability Vector P, The risk after

one transition step is calculated using the following formulation:

. B n (0) n
Risk = 71Pi > CP, (19)

j
i j=1

If the current state i is known, then P is a vector with only zeros and one non-
zero element, the ith element that is equal to 1, and the risk equation can be

simplified as:
RiSki = ZCij Pij (20)
j=1

where Risk; represents the one step risk associated of changing from the current

state i to any state, including staying in the same state.

Analogously, by using Markov chains and considering the interactions, the Risk

after k transition steps can be calculated, as follows.
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Let the Probability Matrix P be the matrix that shows the transition probabilities
between al the n possible states:

P, P, Ry Ry Ry Ry R
I:)21 P22 PZS P24 P25 P26 I:)Zn
PSl PSZ P33 P34 P35 PSG P3n
P= P41 P42 P43 P44 P45 P46 P4n (21)
P51 P52 P53 P54 P55 P56 P5n
P61 P62 P63 P64 P65 PGG PGn
Pnl Pn 2 Pn 3 Pn 4 Pn 5 Pn 6 Pnn

where> P, =1,Vi.

=1

In the context of transition rates, if n is the more reliable state and i is the less
reliable one, then we define the Transition Rate matrix T:

Hay ) Has Hag Hys e Hynogy Haq
Ay Haz Has Mg Has e Honoy Han
Ay A M3 Hzy Hzs v Hanoy Hazn
A A A .
T= 41 2 43 Hag Has Hany Han 22)
)“(n—l)l /l(n—l)z ﬂ’(n—l)S )“(n—l)4 ﬂ*( 5 - MHopn-y  Heo-pn
/lnl /ln2 /lnS /ln4 )’ns )’n(n—l) :unn

Note that the matrix diagonal is formed by p, values, representing no changesin
state; the upper diagonal of the matrix has values u; representing transition rates

between states with increasing reliability; and the lower diagonal has only

A; representing decreasing reliability when changing states.

39



The Cost Matrix C, which includes al the cost values associated with the

transitions between state i and state j:

C:nl

an

0000

&

Cn3

=
S

O 000
SN

E

C:n4

=
[62]

0000

&

C:n5

N (=
> =]

=]

0000

nn

(23)

The Risk of changing from state i to state j is defined as the product of the

probability of moving from one state to another times the cost associated to this
transition between states: R; = P;; Cjj. Then, the Risk Transition Matrix R or

simply Risk Matrix R can be introduced:

I:)ll Cll
P21C21
PSl CSl

I:)41041

I:)nlC:nl

P.Cp
P»Co
PCy
PCa

PnZCnZ

Pl3 Cl3
P23 c 23
P33 CS3
P43 C 43

PnSCnS

which can be expressed more simply as:

Ry
Ry,
Ra:
R41

Rs:

R

R,
Ry,
Re,
R42

Re,

R

Rs Ry
Ry R
R Ry
R43 R44
Rs R
R R

Rs
Ros
Res
R45

Res

Rs

P.Cu
PuCos
P Cyy
PuCu

I:)n4C:n4

R,
Ron
R,

R

R

PnCi
PonCoan
P Can
PinCan

P,.C

nn=nn

(24)

(25)
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The risk of a process changing from state i to state j after k steps is represented
asR, k),

Then, for aMarkov process with a constant set of one-step transition probabilities,

the transition Risk matrix after k steps R® is equal to the Risk Matrix to the
power of k:

R = R (26)

Therisk of being at state i after k steps (R ") is called the Absolute or Total Risk;

and for every k steps there is an stochastic vector formed by all the Total Risks of
this step:

RK — (Rl(k) R R RY R® RY R ....Rn‘k)) @7)

where R isthe Risk of being at stateii after k steps and R® is also known as the

Risk Distribution after k steps. Following a Markov process, with a Risk
Transition Matrix Ritsis obtained,

RY = pOR

R? = RVR= POR? (28)

RK — Rk-VR = pORX

After k stepstherisk is:

Ri R, Ry Ry Rs Ry Ry
Ry Ry, Ry Ry Rs Ry Ry
Rel Rez R33 R34 Res Rse Rss (29)
Ry R Rig Ru Rs Ry Ri

& _[(p© (0) (0) (0) 0 (0) (0)
RY =(R®,P,% P PO R RO P,

Rnl Rn2 Rn3 Rn4 Rn5 RnSG RnB

or
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RK — pORK — (le RY R® RY R R® R® __an) (30)

The transformation vector V1 is defined as a column vector with n values all equal

to one.
1
1
1
1
V, = . 31
=] (3D
1
The Risk after k steps can be calculated as:
n
Risk=> R" =RM, = PORY,, (32)
i=1
whichin its expanded formis:
1
1
1
1
Risk=(R® R® R® RO RM R®W R R (33)
sk = (R, R, R R R, R RMLR x|
1
or
Risk — Rl(k) N Rz(k) " R3(") +RO . Rs(k) N Rs(k) - Rn(k) (34)
/

This equation includes the One step case, so the equation (19) is equivaent to
equation (32) when k =1:
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= PORY, (35)

In general, the transition probabilities between states can be found empirically
from historica data, including as many observations as possible. Once a
component is determined to be in a certain state, then the state at the next step is
computed and the transition recorded. The current state is determined by expert
judgment. Alternatively, times between state transitions are tracked and then

normalized to yield the transition probabilities.

In the case of spare state, the state is pretty obvious, but in the operational states
duty and fault, a major inspection (condition monitoring) of the component and its
functions may be required to classify the state. The observations have to be made
periodically at a fixed period of time, which represents the “steps’ in the
markovian model. This period of time (step length) has to be as short as possible,
in order to register al the transitions between states without missing any possible
transition between the observations, and alow error in the estimated time at which
a transition occurs, but also it has to be long enough so the observation
(inspection of the component) can be redlisticaly carried out in a regular work
environment by the maintenance department. Thus, the definition of the step

length becomes a critical aspect of the model implementation.

One way to define the step length is by the determining the shortest expected
period of time between a state change, which can be estimated through experience
and expertise judgment or through an exhaustive initial period of observation, in
which the shortest period of transition time is recorded. Then the step length

should be shorter than this value to be conservative.

After the “N” number of desired observations are registered the empirical

probabilities are calculated as follows.
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Let a component go through the state i “m” number of times, and “I” out of those
“m’ times the component changed from state i to state j. The probability of
changing from statei to statej is.

P == (36)

including the special case of remaining in the same state i with transition
probability P, .

The same procedure would be applied for all the possible component states, and

of coursethe equality ZPU =1,Vi would still bevalid.
j=1

The larger the “N” number of observations the more accurate the calculation of
the transition probability and the smaller the error “€” associated to the probability
calculations. In the limit, when N — owothe errore=0. In other words, the longer
the historical data is recorded the more accurate the model would be. Larger
samples would minimize the impact of accidenta or unlikely events. The
collection of data becomes a continuous process that would continuously, while

the process of recollection of new datalasts, update the transition probabilities B

to improve the accuracy of the model.

3.5SIMULATIONS

A computer smulation is a technique used to model and imitate a real-life or
hypothetical situation, using a computer program, based on a conceptual and
mathematical understanding of the behavior of a system. With this technique a
system and its internal processes can be studied. Predictions about the behavior,
operation, and outputs of the system can be made by changing input variables.

Computer simulation has become a useful tool for modeling many natural systems
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in physics, chemistry, and biology, in human systems such as economics and

socia science, and in engineering to gain insight into the design operation of

technological systems. [42]

A computer simulation software package is used in this work to represent the
proposed multi-state repairable component risk model. A computer-based
simulation of the problem provides flexibility for analyzing a range of possible
solutions and adapting for new problems. Once the model can be ssimulated by an
adequate agorithm, it is fairly easy to change the transition probabilities,
transition costs, number of steps, or any other variable in the problem to get new
results or to perform a sensitivity analysis of the system variables.

In this work, the tool selected to simulate and model the problem is ReliaSoft’s
RENO stochastic event simulation package [47].

3.6 MARKOV PROCESS SIMULATION

A simple model was created in RENO to simulate the Markov process of the four
state model of this study. In this model, the transition probability matrix that was
arbitrarily considered to test the modeling and approach the flow chart was the
following:

025 025 025 0.25

040 0.30 0.15 0.15

0.10 0.40 040 0.10
0O 01 03 06

The limiting probabilities for these four states, given the transition probabilities
above, were found to be 0.1776, 0.2632, 0.2796 and 0.2796 for states 1, 2, 3 and 4,

respectively, since:
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(k)

025 025 025 0.25 0.1776 0.2632 0.2796 0.2796

« _ /040 030 015 015 01776 0.2632 0.2796 0.2796
0.10 040 040 0.10 0.1776 0.2632 0.2796 0.2796
0O 01 03 06 0.1776 0.2632 0.2796 0.2796
as k—oo

In other words, for this specific transition matrix, the component would be
17.76% of the time in “fail” (state 1), 26.32% of the time in “fault”, 27.96% in
“duty” and 27.96% of the timein “spare”’. This case was then run with the RENO
simulation, and the same results were obtained when the number of steps (k) and
the number of ssimulations was sufficiently large. Very good numbers (close
convergence between limiting probabilities and values obtained with RENO
simulation) were reached with combinations of 5,000 steps and 5,000 simulations;
and 10,000 steps and 10,000 simulations, as shown in Table 3. Very good
numbers were aso obtained for a combination of 1,000 steps and 1,000
simulations. The flowchart and some of the results obtained with RENO are
showed in Figure 9.

In this work, the term simulation is used to describe a single pass through a
flowchart or process. In the example of 5,000 steps and 5,000 smulations, a
complete pass through the flowchart (simulation) was only completed when 5,000
steps were reached. This process was done 5,000 times in order to complete the
5,000 simulations. More than one simulation is done in order to represent the
randomness of the process appropriately and minimize the effects of outliers. For
this reason, the larger the number of the simulations, the better results that can be
obtained. An average of the 5,000 set of resultsis calculated. It can be noticed that
the number of steps has to be sufficiently large in order to imitate the infinite
number of steps (k—w0), in other words, the larger the number of steps, the closer

the numbers of the simulation will be to the limiting probabilities.
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Figure 9. RENO simulation flowchart of the four state Markov process for 5,000
steps and 5,000 simulations.

Figure 10 shows a general Block diagram of this Markov simulation process.
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Figure 10 General Block Diagram of the Markov simulation process.

AVERACERRIORYIIME CALCULATING % OF
IN EACH STATE FOR &—P—— £ |\ EACH STATE
ALL SIMULATIONS

I

END SIMULATION

#
SIMULATION YES—» END ANALYSIS

ACHED?

Once the flowchart was created in RENO many different analyses were run to

sense the best combination of number of steps and simulations necessary to obtain
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acceptable results. Table 3 shows these different runs and their results. It can be
confirmed that the larger the number of simulations and steps, the more accurate
the numbers obtained, in other words, the obtained values approach to the limiting
probabilities expected for the discrete Markov model.

# STEPS 5,000 10 100 1,000 100 1,000 | 5,000 | 10,000

# SIMULATIONS 10 5,000 | 1,000 100 5,000 | 1,000 | 5,000 [ 10,000
STATE % OF TIME BEING IN A CERTAIN STATE, OBTAINED BY SIMULATION | GOAL
SPARE 2775 | 2493 | 2746 | 27.73 | 27.73 | 27.98 [ 27.9649| 27.9614 | 27.96

V5 GOAL 0.21 3.23 0.5 0.23 0.23 0.02 | 0.0045 | 0.0014
DuTY 17.5 28.3 27.86 | 27.83 | 27.94 | 27.8B8 | 27.9545| 27.9592| 27.96

W5 GOAL 10.46 0.34 0.1 0.13 0.02 0.08 | 0.0035 | 0.0008
FAULT 26.7 28.73 | 260,84 | 26.61 26.5 26.3 | 26.3145| 26.315 | 26.32

V5 GOAL 0.38 241 0.52 0.29 0.18 0.02 | 0.0055 | 0.005
FAIL 18.03 | 18.22 | 17.84 | 17.82 | 17.84 | 17.83 [17.7662|17.7644| 17.76

V5 GOAL 0.27 0.46 0.08 0.06 0.08 0.07 | 0.0062 | 0.0044

SUM DIFFEREMNCES | 11.32 | 6.44 1.2 0.71 0.51 0.19 | 0.0221 | 0.0116

Table 3. Simulation results for the four state Markov process.

Among the different analyses tested with an Intel Pentium 4 CPU 2.40GHz, the
best results (closest numbers to limiting probabilities) were obtained with 10,000
steps in each simulation and 10,000 simulations followed by the test with 5,000
steps in each simulation and 5,000 simulations; but considering that the run for
the 10,000 steps in each simulation and 10,000 simulations took 4 days and 30
minutes, and the 5,000 steps in each simulation and 5,000 simulations one took
only 5 hours and 43 minutes and that both set of results are very accurate, it is
considered that a run with 5,000 ssimulations with 5,000 steps in each simulation
would be sufficient, with an error of less than 0.025%, with respect of the limiting
probabilities. For future or more complicated scenarios, where computation time
becomes relevant to the process, a combination of 1,000 steps in each simulation
and 1,000 simulations should also be acceptable, since in this exercise model this

combination gave an error of less than 0.2%.
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Some of these results are also shown in Figure 11 for one of the possible states,
just as an example, spare state was selected. This figure shows only the results of
the cases where the number of simulations and steps were equal or greater than
100.

The simulations were always run with a seed, which means that the software was
forced to use the same sequence of random numbers to start each simulation, in
order to compare the results. Specifying the use of the same seed for each
simulation run allows you to obtain same value results, in other words, the
simulation can be duplicated. A seed also help when tracking changes in
simulation results when changing the program. Without a seed, in some computer
simulation scenarios, it would be hard to redlize if changes in the outcome were

due to the changes in the code or due to different random numbers.

DEVIATON OF SIMULATION RESULTS FOR SPARE STATE

©
o

©
o

o
D
I

=}
w
1,000 steps-1000 sims

10 steps-5,000 sims

o
N
100:steps-1,000:sims

Error with respect of Spare limiting probability
o
Y
\
\

5,000 steps-5,000 sims
10,000|steps-10,000 sims

:| 1,000|steps-1,000 sims

SIMULATION RUNS

Figure 11. Comparison of limiting probability vs. Markov simulation results for
Spare state.
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3.6.1SIMULATION DEVELOPMENT

Setting up the simulation involves severa preparatory steps. The constants Steps,

Spare, Duty, Fault and Fail were created and the assigned values were 5,000, 4, 3,

2 and 1 respectively. This constant hamed “steps’ was changed in the different

runs in order to obtain the analyses of Table 3. The transition probability matrix

was created as a table as shown in Figure 12. RENO does not have a command or

function for creating a matrix, but its flexibility allows you to treat a table as a

matrix. One probability number with uniform distribution and values between 0
and 1, identified as “RN”, was aso created for this flowchart. This random

number will represent the probability of going from one state to another.

R Table
Identifier
[PROBABILITYMATRIX]
~Evaluates to
FAIL | FAULT DUTY | SPARE ot

1 0.25 | 0.25 0.25 0.25 Jul)
2 0.4 | 0.3 0.15 0.15
3 0.1 | 0.4 0.4 0.1
4 0 | 0.1 0.3 0.6 =

When to Reset

RENO

1+ Never Reset
" After Each Simulation
(" After Each Run

Cancel

Help

s

Columns

I

Figure 12. Probability matrix created in RENO.

Finally, the following storage variables were also defined in order to finish the

flowchart:

Storage Variables

Name

Start Value

MUMBER.QFDLITY

MUMBEROFFAILS

MUMBEROFFALILTS

MUMBEROFSPARE

MUMBEROFSTEPS

PreviousState

(U s R ) o ) s ) ]
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The first four storage variables are intended to be used to capture the number of
times when the component is at every possible state. The storage variable
“number of steps’ is created to record the number of steps in the Markov chain
and finally, the variable “PreviousState” captures the current state of the
component at any time in the process. As it can be noticed, it is assumed that the
initial state of the component is State 3 (Duty) for this excercise. Thanks to the
flexibility of simulation, this can always be changed easily in the definitions if
this assumption is not correct. If the current state is unknown, this current state
can be also simulated if the initial probabilities (Initial Probability Vector) are

known or defined.

3.6.2FLOWCHART BLOCKS

The first construct created was a “Flag Marker” named “Start”. This Construct
was created to be used in conjunction with the “Go to Flag” Construct named “Go
to Start”. The Go to Start construct returns the simulation point to the Start of the

Flowchart.

Since the whole simulation was created assuming that at the beginning of the
process the component is in state 3 (Duty), the first step is to determine whether
the component remains in the same state or change to any of the other three states.
In order to determine the next state, the program first evauates if this new state is
Spare; if not, then it assesses whether the new state is Duty, then Fault, and finally
(if it was not any of these three states) by elimination, Fail would be the new state.
The way the simulation actually does this evaluation is described below.

The construction block that allows us to capture the probability of going from the
current state, whichever state that is, to the next state, by recalling the table
“Probability Matrix” is shown in Figure 13.
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R Block Properties (Probability of Change to Spare) |:|@
Ttem | Subchart| Attachments |
Name

Evaluates to

PROBABILITYMATRIX(SPARE, PreviousState)

#2\ Build Equation...

Storage Variable | {(Mone) LJ

Set As Default | Style... I oK | Cancel | Help |

RENO

Figure 13. Change to Spare Probability Block definition.

A conditional block that tests whether the probability of changing to Spare is
greater than or equal to the probability RN, with the two possible outcomes TRUE
and FALSE, isincluded in the flowchart. If true, then the variable “ PreviousState”
now changes to the value “Spare”, which is equal to state 4, the Spare counter is
incremented by 1 and recorded in the storage variable “Numberofspares”. If false,
then the probability of changing to duty (Figure 14) is compared to the probability
of RN. If true, asimilar path to the true path for the spare state is followed. If false,
then the process is repeated for fault state. Finaly, if the component doesn’t
change to Spare, Duty, or Fault state, then the new state would be the Fail state.
This new state is stored as the new value of the variable “ PreviousState”.

Up to this part of the flow chart, all the ssmulation has done is to evaluate which is
the next state and count this transition. In other words, whether or not the
component changes to a different state or not, if so, which state is the new one,
and to number this transition. Once the new state for the component has been
decided through the simulation, the step counter is incremented by one and
displayed, and another conditional block, named “Done?’, decides whether the
number of desired (k) steps has been reached. If the number of steps has not yet
been reached, then the RN probability is reset and the “Go to Start” block sets the
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current simulation point to the “start” flag. The whole process is repeated in order

to simulate another step until the number of steps previously defined is reached.

R Block Properties (Probability of Change to Duty) [ |[B]]
ttem | subchart| Attachments|

Name obability of Change to Duty!

Evaluates to

PROBABILITYMATRIX(DUTY, PreviousState)+PROBABILITYMATRIX(SPARE,
PreviousState)

£\ Build Equation...

Storage Variable |(I'~Jnne) j

Set As Default | Style... | oK | Cancel | Help |

RENO

Figure 14. Change to Duty Probability Block definition.

Once the number of steps has been reached, then the percentage of times that the
component was in each of the possible states is calculated and saved; and one
simulation is completed. This whole process is considered a single simulation of
the Markov process for k steps. To get more accurate results, many different
simulations are run and the percentage of time in each state is averaged by Result
Storage blocks. In this way, the results obtained at the end of the anaysis are
actually the average of the results obtained for every simulation. A Simulationisa
single pass through a flowchart or process. A run is a set of simulations. An
anaysisis aset of runs. In our example, an Analysis comprises one run, arun is
composed by 5,000 simulations and a simulation was only completed when 5,000

steps were reached (see Table 3 for different runs and k values).

3.7 SSIMULATIONS OF COST OPTIMIZATION AND PM ALLOCATION
FOR A NON-DYNAMIC PROBABILITY MATRIX MODEL (MODEL A)

Once the Markov process simulation was verified to reflect the PM process, a new

flow chart, which includes cost and the allocation of preventive maintenance, was
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created. This new model, named model A, considers transition costs when
changes between states occur and a preventive maintenance allocation after a
specified number of steps. In this first PM model, once the PM is applied, it is
considered that the component goes automatically to its most reliable operational
state: Duty.

The flow chart for this model is shown in Figure 15, and it is similar to the one
created for the Markov process (Figure 9), but with a number of additions and

maodifications made in order to adequate to the include costs of transitions and PM.

[10.0000] [6000.0000] [2.0000] [+.0000]

4 4
PH PM P
DRRECTION CosT COUNTER STRTE FAlSE
2.0000 CORREETIOB:th: 1.0000

4.0000

613248.2600

10.0000

10.0000

AVERAGE

Go to

FALSE M
10.0000| |0.0100(True Path: 0.2707410.0000 74130.0000
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SPARES

Start  Probabiity ~ CHANGE  yCURRED SUM
8]

T COST OF SPARE
SPARE? SPARE

COSTS

50.0000( |84950.0000
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3.0000

INCURRED SUM
CosT OF puTY

Change %~ DUTY? DUTY

COSTS

2.0000

1000.0000((12400.0000
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FAILS FAILS

FAIL
Counter
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FAILED
FAIL
CO5TS

Percent of the
fime TN FAILS

Figure 15. RENO simulation flowchart that includes cost and PM allocation.

3. 7.1 NEW FLOWCHART DEFINITIONS

Two new constants named “PM” and “PMCOST” were included in the model.
The constant PM was assigned a value of 10, that represents the periodic number
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of steps in which the PM is going to be alocated. The value 10, is an arbitrary
number, since the idea of this model is to find the optimal number of steps (PM
interval) for which the cost of the process is minimized; therefore, this variable
PM is varied during simulation in order to determine the optimum PM interval

value for the scenario.

The PMCOST constant was created to capture the costs associated with
preventive maintenance. It is assumed that every time PM is performed, the cost
of this PM remains constant.

Six new storage variables were also created. Four of these storage variables
capture the sum of the transition costs for going to a certain state and their named
“TOTALstateCOST”; an example of one of these storage variables is shown in
Figure 16. Similar storage variables were created for each of the four possible
states.

Storage Variable

~Identifier

OTALDUTYCOST

~Start Value
I

Figure 16. TOTALDUTY COST storage variable definition.

Another storage variable, named “TOTALPMCOST” was created in order to
store the total cost associated with preventive maintenance. Every time PM is
performed, the TOTALPMCOST isincreased by the PMcost value.

The remaining new storage variable was simply called “D”. This is a dummy
variable that is used to determine, in the simulation, when the PM was allocated.
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Similar to the Table “PROBABILITYMATRIX”, a table named
“COSTMATRIX” was added to the RENO program. This table represents the
Transition Cost Matrix (Figure 17).

Lastly, the equation variable “PMTIMING” was aso added to the model. This
equation evaluates to: D times PM (D*PM). This variable PMTIMING will be
used to determine whether it is time to perform PM or not. For example, if the PM
schedule is every 100 steps, the value of the variable PM is 100, and PM should
be performed at D*PM steps, which are: 1* 100steps, 2* 100steps, 3*100steps,
4*100steps, and so on. This will be explained in more detail when describing the

PM subchart.

PRI

gK|
B

—Identifier

Cancel

—Evaluates to
Hel
FalL [ FAULT | puty | sPare | = ﬂ

10000 5000 7000 5000 —Columns —
11000 100 4000 2500 4 ‘
10000 50 50 1500 = :
13000 1000 1000 10

BTSN S R

Figure 17. Cost transition matrix created in RENO.

3.7.2NEW FLOWCHART BLOCKS

Between the conditional block (which determines whether the component state
changes to Spare, Duty, Fault or Fail), and the standard block (which assigns the
new state of the component in the previous Markov model), two standard blocks
were added: “Incurred cost” and “ Sum of state Costs”.

The “Incurred Cost” block evauates the transition cost incurred for the simulated

change between states by recalling the cost matrix (Figure 18).
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Block Properties (INCURRED COST) ]

Item I Subn:hartl .ﬁ.tlachmentsl

Mame IMCURRED COST)|
—Evaluates to
|COS!'I'~'1.-'+TRIZKZ(SPARE. PreviousState)

Figure 18. Incurred Cost standard block created in RENO.

The “Sum of state Costs’ standard block for each state evaluates at “Incurred
Cost” plus “TOTALstateCOST”, and captures this value in the storage variable
“TOTALstateCOST”. In other words, the cost incurred for changing to a certain
state, say, Fal state, is added and captured in the storage variable
TOTALFAILSTATE. Thisblock definition is shown in Figure 19.

Block Properties {SUM OF FAIL COSTS) =lol =]
ttem | subchart| Attachments|

e 5UM OF FAIL CosTS

—Evaluates to
IN+TOTALFAILCOST

o> Build Eguation. ..

Storage Varisble | TOTALFAILCOST = |

Figure 19. “Sum of State Costs’ block example.

After the “True” branch of the conditiona block (which determinesin the Markov
process flow chart whether or not the number of k steps has been reached), the
standard block “TOTAL COST AFTER K STEPS’, and the result storage block
“AVERAGE TOTAL COST” are dso included. This standard block calculates
the sum of al costs, as show in Figure 20, and the result storage block averages
the total cost obtained after each run.

Lastly, between the “false” branch of the conditional block mentioned before and
the reset block, the subchart shown in Figure 21 was also added to the flow chart
to represent PM performance.
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Block Properties (TOTAL COST AFTER K STEPS) =8l
ttem | subchart]| Attachments
e OTAL COST AFTER K STEPS

—Evaluates to

TOTALSPARECOST+TOTALDUTYCOST +TOTALFAULTCOST 4TOTALFAILCO
ST+TOTALPMCOST

Figure 20. TOTAL COST AFTER K STEPS standard block.

The conditional block “PM?’ decides whether or not a PM is allocated by
comparing the number of steps with the equation variable “PMTIMING”. If the
number of steps is equal to PMTIMING then the process follows the ‘true’ path,
which indicates that PM is performed, otherwise the process follows the ‘false’
path. Thisis athreshold decision, where the PM interval is the threshold.

FM FM M

O P
CORKECTION cosT COUNTER STATE-_ T
CORRECTION.

Reset READY PM?
RN o

Done?

Figure 21. Subchart that represents PM performance.

When PM is performed, the standard block PM STATE CORRECTION changes
the current state, whether the state may be, to Spare state, since it is assumed that
after PM the component will be sent to its most reliable state, which is Spare.
Then, a counter block counts the number of times PM has been performed, and
stores that value in the storage variable “D”. The standard block “PM COST”
calculates and stores the PM total cost by multiplying the PMCOST times D,
which is the number of times PM has been performed since the ssmulation start
time. The standard block “D CORRECTION” evauatesto D+1. This correction is
made in order to ensure that the equation variable PMTIMING is still valid.
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In general, when starting the simulation, the value of D defaults to 1, so the
equation variable evaluates to PMTIMING=D* PM=PM. Once a PM is performed,
D still evaluates at 1, because takes its value from the PM counter. The correction
D=D+1 is performed so D=2, and now the next time PM is performed the number
of steps reached has to be equal to PMTIMING=D*PM=2PM, and so on.

The result storage block “READY” does not have any other function than
allowing the continuity of the process in both paths. This is because a Reset block

can not have more than one incoming path in RENO software.

Since now PM is performed, and this PM activity is affecting the current state of
the component, this process is no longer considered a Markov process. It behaves
as a Markov process only until PM is performed. Once PM has changed the
current state of the component, another mini Markov process is executed only to
be interrupted again by PM. If PM is carried out frequently, the Markov limiting
probabilities of the original probability matrix can never be reached. If PM
maintenance is executed within long step intervals, then the percentage of times
of the component being in every possible state would be similar to the ones
indicated by the Markov process (limiting probabilities). This will be
demonstrated in the results of numerical experiments (Section 3.7.4, Table 8).

3.7.3PM SIMULATION SETTINGS

The first smulations for the PM model were run with the following transition

probability matrix P and transition cost matrix C:

0.400 0.010 0.090 0.500 10000 5000 7000 5000
P 0.180 0.800 0.015 0.005 co 11000 100 4000 2500
0.010 0.030 0.950 0.010 10000 50 50 1500
0.010 0.010 0.030 0.950 13000 1000 1000 10
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The limiting probabilities for these four states, given the transition probabilities
above, were found to be 0.4863, 0.3890, 0.8.47 and 0.4 for states Fail, Fault, Duty
and Spare, respectively; since:

0.4863 0.3890 0.0847 0.0040
p () _ 0.4863 0.3890 0.0847 0.0040
~ 10.4863 0.3890 0.0847 0.0040
0.4863 0.3890 0.0847 0.0040
when k—oo

In this model, P is considered a non-dynamic probability matrix, due to the fact
that the transition probabilities are fixed and don’t change over time. These are
artificial values with no application to any specific real system. The values were
selected based on engineering expertise judgment with the intention to be
representative of the transitions between states for a generic repairable component

in asystem.

i R Simulation Console 3|

€4reNo

Generall Sensitivity Analysisl Multiple Analyses

Adjust general settings used during a single run.

Simulation Settings —————— ~Display Settings
Mumber of Simulations |1E|E| " Minimal Display
+' Full Display {Set Y-Axis limits)
¥ Use a Seed Il
v fo |1000 ~y

Sensitivity Analysis (One Way) i T een Im—
Multiple Analyses (Minimize)

Help I ™ Close window when done Simulate. .. | [ekails, | Close |

Figure 22. General simulations settings for the first PM simulation.
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The genera settings for thisfirst PM simulation are shown in Figure 22. Note that
only 1000 simulations were set for this run. While this number does not appear to
be excessively high, when we consider this number of simulations combined with
the settings of Sensitivity Analysis and Multiple Analyses would actually produce

more than 25 thousand simul ations.

The settings for Sensitivity Analysis and Multiple Analyses are shown in Figure
23 and Figure 24, respectively. The sensitivity analysis settings indicate that the
parameter PM (time interval between maintenance activities) is no longer a
constant, but now it is a variable during the simulations to calculate the effect on
results due to varying this value. The start value for PM for the first set of
simulations was set to be 100 time steps; this variable was linearly increased by
100 during the simulations until reaching the maximum PM vaue of 500. These

fields determine how many runs will be performed.

R Simulation Console

General i

Use multiple runs to do sensitivity analysis varying one or two constants,

—¥ One Way (vary One Constant) — 1 Two Way (Vary Two Constants)

Constant |PM 'I
start Jwo

gd [0
Increment by IIDD—

O Help | I™ Close window when done Simulate. .. | Detalss, l Close |
Figure 23. Sensitivity Analysis settings for the first PM simulation.

In our example, with a start value of 100, end value of 500, an increment value of
100, and the number of simulations specified on the general settings as 1000, the
1000 simulations are run with the PM constant value at 100, again with it valued
at 200, again at 300 and so on, until they have been run with the PM constant at
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its end value of 500. In this case, that would mean that the analysis will consist of

5 runs, with 1000 simulations performed for each run.

As shown in Figure 24, the multiple analyses settings are chosen so that the
optimization goal isto minimize the “average total cost” of the process after 1,000
steps. The program allows us to run multiple sensitivity analyses in order to

examine whether an optimal PM length is found.

=]

General i Sensitivity Analysis

Use multiple analyses to minimize /maximize & result storage value. Sensitivity analysis
options must be set in order to use this feature,

W Perform Multiple Analyses
Action IMinimize 'I
Result Storage IAVERAGE TOTAL Cx 'I

Stopping Condition

Max. Analyses IS

—Multiple Analyses Options

Increase Simulations  + |SD

|+f- 1 Increment ‘I

PM -

Procedure

Variable Options

[~ Use Integers Only

Std. Deviation ID-UUUI Minimurm Increment IU
Help | I™ Close window when done Simulate. .. | Details, I Close I

Figure 24. Multiple Analyses settings for the first PM simulation.

In this way, RENO performs the first sensitivity analysis and finds the value of
the varied PM Constant at which the “average total cost” is lowest. It then takes
an interval surrounding that value and divides that according to the increment
specified for sensitivity analysis and performs the specified number of runs on
that interval. This process is repeated over the five specified numbers of analyses,
or until the designated 0.0001 standard deviation is reached, whatever occurs first,
refining the interval and the minimum result with each analysis. The standard
deviation setting allows specifying a convergence threshold for which future
analyses are not necessary, if this value is low enough. In this case, the 0.0001
value is low in order to warranty the five analyses to be performed, unless this
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standard deviation is reached, in which case, future results will be practically

identical and unnecessary to be preformed.

The +50 Increase Simulations option alows us to increase the number of
simulations for each consecutive analysis. In this way, RENO will perform more
simulations at each consecutive analysis so that early analyses over a broad range
take less time, while final analyses are performed in detail. In this case, recall that
it has been already said that the software would run 1,000 simulations for each
PM valuein first analysis, but for the second analysis, due to this “£50 Increase’
setting, 1,050 simulations will be run for each PM value, and so forth, so in the

fifth analysis 1,200 simulations would be run for each PM value.

The field “Procedure” alows us to specify how RENO selects the interval for
each consecutive analysis. In this case, the +/- 1 increment indicates that the
interval will have a range from one increment below the value of the varied PM
Constant at which the “average total cost” is lowest, to one increment above that
value. The size of each increment is defined on the Sensitivity Analysis page.
This can be observed in an example showed in Table 4, since the first minimum
“average total cost” value was found at PM = 400, the next analysis should be
between 400-1 interval (300) and 400+1 interval (500). Then, the next analysisis
run between 300 and 500. In the second analysis, the minimum cost was found to

be again at PM =450, therefore, the next analysis is run between the interval 400-

500, and so on, until the five analyses are run.

COST Analysis 2 Analysis 3
100 619853.18 300 617426.8727 400 619430.6667
200 620199.74 330 624739.2 425 614853.4167
300 618453.54 400 624530.4545 450 622693.7
400 616812.3 450 613793.9455 475 624211.4167
300 619586.72 200 615812.9455 a00 624713.7833

Table4. PM simulation results example.
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The 0 value on the field “Min. Increment” alows us to specify that there is not a
limit for the smallest increment that can be used to determine the values of the
varied PM Constant for the analyses, although realistically there will be some

lower limit on PM interval.

3.7.4 MODEL A SSIMULATIONSRESULTS

The simulations are run in order to find the optimal PM interval for a component
with a certain probability and cost matrix. The way the simulation works is by
simulating the changes of states in the component, based on its transition
probabilities. Every time there is a transition between states a cost associated with
this transition is computed and stored in the overall cost tally. If there was no PM
activity performed, then there would be an associated cost of the whole process
after k steps. If PM is done with a certain periodicity then the process gets
affected by these activities, and the actual state of the component is not subject
only to the probability of the state change. Therefore, the overall or total cost
after k steps gets also affected by the PM schedule. The cost associated with a PM

isaso included in the ssimulations.

Given the settings described above, the first simulation was run, for a fixed PM
cost of $100,000. The results obtained with this smulation are shown in Table 5.
The PM interval was set to be tested for every 100 steps, starting at 100 steps and
finishing at 1,100 steps. The optima PM interval was found to be every 1,080
steps, for a run with 500 simulations. Since the analysis of the simulations was
designed for only 1,000 steps, any result of the PM interval above 1,000 steps
would represent not PM performed at all. This was the case for the first
simulation that was run. Thisfirst run indicates that PM should not be performed.



Analysis 1 - PM AVERAGE TOTAL COST Analysis 2 - PM AVERAGE TOTAL COST

100 1.53E+06 800 719234.1636

200 1.02E+06 830 715174.7091

300 919223 .6 860 725085.8

400 817729.64 890 723818.2909

500 719943.1 920 727221.1636

600 718917.1 950 725726.8364

700 726975.9 980 725823.5455

800 720252.08 1010 617016.4364

900 718151.62 1040 617407.6909

1000 613846.14 1070 614882.9818

1100 616655.74 1100 612676.3273

/A a P A R A . A . A a /] » A PR A . A .

1040 618147.0667 1064 617773.1077

1046 621497.4833 1066 617575.8769

1052 621693.4333 1068 620316.3231

1058 618824.0833 1070 620823.3231

1064 625625.8 1072 620354.4769

1070 615321.1667 1074 622586.6769

1076 612407.0333 1076 627297.6154

1082 615110.2167 1078 607701.8462

1088 620984.65 1080 619291.0923

1094 622769.2333 1082 621782.8154

1100 616664.4667 1084 621088.6
1086 623859.3846
1088 618330.2154

ANa P A RA OTA O

1074 617337.0143

1075 620974 .5

1076 622779.9714

1077 618314.5429

1078 616409.0286

1079 622151.5286

1080 613821.1429

1081 619289.6857

1082 615947.5714

Table 5. Simulation results of cost optimization for model A, with a PM cost of
$100,000, each analysis set to 500 simulations.

Figure 25 shows plot of the first 3 analyses of Table 5. This figure is aso a good
representation of how the optimization process works during the different
simulation analyses. The first analysis test a big range of different PM intervals,
while further analyses focus only in a small range of PM interval values that are

suspected to be close to the optimal PM interval.
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——ANALYSIS 1 —m— ANALYSIS2 —A—ANALYSIS 3
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Figure 25. Simulation results sketch of the first 3 cost optimization analyses of
model A, with aPM cost of $100,000 and 500 simulations per analysis.

The settings of the number of simulations per analysis were changed from 500 to
1,000 simulations, for a second run with the same PM cost, in order to analyze the
sensitivity of this model to thisvariable; in other words, if different results would
be obtained with a more detailed simulation. Increasing the number of simulations
from 500 to 1,000 didn’'t give any real advantage in the results. The results
obtained for this second run (shown in Table 6 and Figure 26) were similar to the
ones obtained with fewer ssimulations per analysis: PM maintenance should not be

performed in order to minimize cost.

Asit can be seen in Table 5 and Table 6, optima PM interval was always greater
than 1,000 steps for every analysis, recommending no PM at al. The fact that
there different values for the optimal Total Cost, is due to the randomness of the
simulations, but it can be noticed that these values are pretty similar for every

case, as expected if PM is not performed for any of those cases.

66



Analysis 1 - PM AVERAGE TOTAL COST Analysis 2 - PM AVERAGE TOTAL COST

100 1.53E+06 900 715488.16
200 1.02E+06 920 722946.1
300 920453.77 940 720030.6
400 824038.74 960 718535.3
500 716033.23 980 714849.11
600 718502.8 1000 620563.34
700 720129.7 1020 619921.26
800 726390.17 1040 616511.08
900 725081.39 1060 618836.44
1000 618930.08 1080 623947.34
1100 616916.46 1100 619636.16
Analysis 3 - PM AVERAGE TOTAL COST Analysis 4 - PM AVERAGE TOTAL COST
1000 619061.77 1064 625552.41
1008 617456.1 1065 620252.88
1016 621549.03 1066 614530.71
1024 622567.15 1067 626056.06
1032 616448.47 1068 622511.31
1040 621543.07 1069 616279.08
1048 622926.25 1070 623578.15
1056 616585.2 1071 621083.11
1064 617473.47 1072 621123.38
1072 619988.6 1073 619970.21
1080 614072.91 1074 617398.62
Analysis 5 - PM AVERAGE TOTAL COST 1075 620718.7
1064 613849.66 1076 619137.71
1065 615039.64 1077 617922.05
1066 616749.89 1078 619958.94
1067 617867.19 1079 623452.1
1068 616523.11 1080 614658.1

Table 6. Simulation results of cost optimization for model A, with a PM cost of
$100,000, each analysis set to 1,000 simulations.
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Figure 26. Sketch of simulation results of Table 6 .
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Additional simulations for different PM costs were run. The PM costs were
decreased to $50,000, $10,000, $5,000 and $100, in that order, trying to find a PM
cost for which optimal PM interval would be less than 1,000 steps. The number of
simulations was set at 1,000 simulations/analysis for a $50,000 PM cost, and at
500 simulations/analysis for the rest of the PM costs. These new settings and
simulations were run in order to analyze the sensitivity of this model to those two
variables, PM cost and number of simulations per analysis. Results obtained for
these simulations are shown in Table 7 and Figure 27.

PM COST: $50,000
AVERAGE TOTAL COST Analysis 2 - PM AVERAGE TOTAL COST

Analysis 1 - PM

100 1075700 900 665488
200 820687 920 672946
300 770454 940 670031
400 724039 960 668535
500 666033 980 664849
600 668503 1000 620563
700 670130 1020 619921
800 676390 1040 616511
900 675081 1060 618836
1000 618930 1080 623947
1100 616916 1100 619636
PM COST: $10,000

P RA OTAL CO P RA OTA
100 715750 800 627952
200 661376 830 629319
300 649224 860 631823
400 637730 890 635943
500 629943 920 634918
600 628917 950 638863
700 636976 980 631292
800 630252 1010 619711
900 628152 1040 618150
1000 613846 1070 619503
1100 616656 1100 614330

PM COST: $5,000
Analysis 1 - PM AVERAGE TOTAL COST Analysis 2 - PM AVERAGE TOTAL COST

100 670750 800 622952
200 641376 830 624319
300 634224 860 626823
400 627730 890 630943
500 624943 920 629918
600 623917 950 633863
700 631976 980 626292
800 625252 1010 619711
900 623152 1040 618150
1000 613846 1070 619503
1100 | 616656 1100 614330

Analysis 1 - PM

AVERAGE TOTAL COST

PM COST: $100

Analysis 2 - PM

AVERAGE TOTAL COST

100 626650 800 618052
200 621776 830 619419
300 619524 860 621923
400 617930 890 626043
500 620043 920 625018
600 619017 950 628963
700 627076 980 621392
800 620352 1010 619711
900 618252 1040 618150
1000 613846 1070 619503
1100 | 616656 1100 614330

Table 7. Simulation results of cost optimization for model A, different PM costs.
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Decreasing the PM cost, gave the same results of not performing any PM in order
to minimize cost, but it helped us to validate the model by comparing the results
for this new PM cost. For example, since the average total cost obtained for a PM
interval of 100 steps and a $100,000 PM cost was in the order of 1.53e+06 (Table
6), and the average total cost obtained for the same number of steps but with a PM
cost of $50,000 was $1.08e+06, we can verify that these results were expected,
when using a seed. If the PM interval it is 100 steps, this means that in the 1,000
steps simulation model, PM was performed 9 times (at step number 1,000 the
model exits the ssimulation before PM is performed). When the PM cost is
$100,000 then the PM total cost is $900,000, and for the $50,000 PM cost the
total cost is $450,000. Therefore, a decrease in the average total cost of $450,000
for a 100 steps PM interval should be expected, and that was the one obtained in
the simulations ($1,530,000-$1,080,000=$450,000).

—e— $50,000 PM COST —m— $10,000 PM COST —a— $5,000 PM COST

1100000

1050000 -

1000000 -

950000 H

900000 +

850000 -

800000 -

TOTAL AVERGAE COST

750000 H

700000

650000

600000 - ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
100 200 300 400 500 600 700 800 900 1000 1100

STEPS

Figure 27. Sketch of costs optimization results for different PM cost of model A.
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It is expected that when PM cost is pretty low, the optimal PM interval is harder
to obtain due to the small changes in cost when performing PM cost, in other
words, if PM cost is very small, then performing PM does not have much effect
on Average Total Cost, and the results would not be sensible to PM interval
anymore. Total average Cost should be similar for any PM interval. In these cases,
where PM cost is low, it is expected that increasing the number of simulations
would actualy offer some improvement to the result process. The problem with
increasing the number of simulations for any run, and not only for those where the

PM cost islow, isthe computation time.

As aconclusion, of the sets of ssmulations that were run, we can say that PM it is
affecting and changing the steady state of the component, since it has been
assumed that every time that PM is performed, the state of the component would
be On Duty, regardless the previous and actua state prior to the PM and the
transition probabilities. The steady states of the component can be compared with
the actual percentage of times in which the component was in a certain state
during the simulations. As expected, when PM was performed frequently, the
percentage of time that the component spent in every different state was far from
the one expected in the limiting probabilities; but when PM was scheduled only
once or not scheduled at all, the percentage of time that the component spent in
each state during simulation was similar to the respective limiting probability.
This confirmed the idea that when PM is performed, the Markov process is
interrupted by this PM and the limiting probabilities can never be reached, but if
the PM is scheduled with long step intervals, the percentage of time spent in every
state is similar to the expected from a Markov process. As it can be noticed in
Table 8, the longer the PM interval the closer to the limiting probabilities
(denoted as LP in Table 8). PM intervals of 500 steps or longer give close value to
the LP due to the fact that these intervals represent that PM is performed only
once or not al, during the 1,000 steps subject of study, and therefore, the short
Markov process has been interrupted only once or not interrupted at all. Opposite

to smaller PM intervals, a 100 PM interval would represent 9 PM activities and 9
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interruptions of the short Markov process. In the other hand, the simulations also
show that PM intervention it is not giving any benefit to the cost optimization, but

only increasing the overall cost for the set of transition probabilities used.

PM 906 IN FAULT%0 IN FAIL% INDUTY %0 IN SPAR

100 9.0307 4.0588 45.9106 40.9999
200 8.718 4.018 42.0589 45.2051
300 8.6692 4.0139 42.0717 45.2452
400 8.6539 4.0408 40.9967 46.3086
500 8.4243 3.9788 40.5511 47.0458
600 8.484 4.0004 40.26 47.2556
700 8.5188 4.0078 40.2493 47.2241
800 8.6936 4.063 40.2827 46.9607
900 8.5926 4.0423 40.2488 47.1163
1000 8.4787 3.9969 40.1746 47.3498
1100 8.4922 3.9975 39.7019 47.8084
LP(%0) 8.47 4.00 38.90 48.63

Table 8. Comparison of percentage of time spent in every state with the limiting

probabilities. .

3.7.5SOME LIMITATIONSAND INTERPRETATIONS OF MODEL A

The accuracy of the model is limited by the data provided by the probability and
cost matrices. Therefore, the definition of these matrices becomes a key part of
the model. Each particular case study or system is going to have its own set of
probability and cost matrices. An incorrect estimation of the transition
probabilities and the transition costs would lead to an erroneous calculation of the
optimal PM interval. Reliable and realistic numbers are essential in the process of
decision making. For all these reasons, future studies on the best method to

calculate these matrices for a particular scenario should be performed.

When defining the cost transition matrix, al possible costs associated with these
transitions should be included in the transition cost between states, such as
downtime, managing, transportation, opportunity cost of lost production,
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administrative and support activities, equipment and facilities, labor, and so forth.
The only cost that is not considered in the cost matrix is the cost of performing a
PM activity, which is considered separately, because it is a deterministic activity,
not a random event.

When deciding the number of possible states for a specific component or system,
we should have in mind that there are advantages and disadvantages of having a
large number of statesin amodel. It has been mentioned that two state models for
a component may be unsuitable or inadequate, since there might be many
different levels of performance. In the model proposed by this study, the larger
the number of possible states the better the adaptation of the model; having alarge
number of possible states, would alow you to consider many particular scenarios,
characteristics and conditions of the component, including aging. The fact that
aging it could somehow be included when considering the possible state of a

component is akey point as to whether the markovian assumption isvalid or not.

Aging it wouldn’t be included as a state per se, but it would be considered in the
several different levels of performance of the component. In general, it could be
said that when the number of states of the component tends to infinity, the error of
the model tends to zero. In other words, if it could have a large number of states,
let say and infinite number of levels of performance, then all possible cases and
properties of the component would be potentialy included. In this way it can be
assured that the markovian property is fulfilled due to the fact that, by perfectly
describing the component state and the probabilities of the change of this state to
a different one, the past or history of the component becomes unimportant and
insignificant and all the information related to the component is included in its

state and transition probabilities

In the other hand, having a huge number of possible states for the component
would make almost impossible the tracking of these states, and would aso

increase the difficulty of the already challenging task of estimating the transition
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probabilities. Computational problems would also be present because of the large
number of states, and in the case of the simulation tool of this study, excessively
long computation time may be required. The optima number of states for a
component should then be defined. This ideal number of states may vary
according with each particular case or system, but it should always be considered
that this number has to be large enough to redlistically represent levels of
component performance, but small enough so the tracking of the states could be
reaistically carried out and simulations performed.

In the previous section it was discussed how PM interva affects the Markov
process. When PM is performed frequently, the Markov limiting probabilities can
never be reached; but when PM is carried out with long-duration intervals the
numbers obtained with simulation are close to the ones indicated by the limiting
probabilities. At least, at along time scale, a new set of transitions probabilities
that accounts for the transitions driven by the PM interval is obtained. The
analysis and estimation of these new transition probabilities could also be an area

for further research.
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CHAPTER 4

SIMULATIONS OF COST OPTIMIZATION AND PM
ALLOCATION FOR NON-FIXED PROBABILITY
MATRIX MODELS

4.1 INTRODUCTION

The simulations for the “Model A” were run and results for this model were
obtained, and interpreted. Two new models are created, which consider a non-
fixed probability matrix that would change over time. The two new models allow
reliability to be consumed over time, changing the transition probability of going
from duty to afailure state to increase with time, and the probability of stayingin
a duty state to decrease. The probabilities of going from failure to any other state
don not change over time. Since some of the transition probabilities change over

time, the new models are not Markov processes.
4.2 NON-FIXED PROBABILITY MATRIX MODELS
The difference between the new models (Model B and model C), is that Model B

considers a decrease of reliability after every certain number of steps

(periodically), and Model C considers a continuous decrease of reliability at every

step.
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These two new models only consider two possible states. Duty and Fail. The
states Spare and Fault are removed from the model to simplify calculations, and

minimize computation time.

‘—0— PROBABILITY OF STAYING IN DUTY STATE

0 STEPS

Figure 28. Model B without PM, Schematic Representation.

‘—0— PROBABILITY OF STAYING IN DUTY STATE ‘

STEPS

Figure 29. Model C without PM, Schematic Representation.
If preventive maintenance is performed, then the component would be considered

as good as new after PM, and the probabilities of going from Duty to Fail and

remaining in Duty would be restored to their origina values.
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Figure 30 . Model B with PM, Schematic Representation.

| —4+— PROBABILITY OF STAY NG INDUTY STATE |

P ETEPE P Phd

Figure 31 . Model C with PM, Schematic Representation.

The simulations for the new models considered the following transition

probability matrix and transition cost matrix for the numerical experiments:

0.25
0.05

0.75
0.95

10000 6000
11000 50

where the first row and first column represent Fail, and the second row and
column represent Duty in both matrixes, in other words, Fail is state 1 and Duty is
state 2:
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P — Py P C - Cq C i
P Pad o C 4
In these models, P is considered a dynamic probability matrix, since the transition

probabilities (P;;) are no longer fixed, and they change over time.

The cost of going from Fail to Fail (C ), is the cost of lost production per step.
The cost of going from Fail to Duty (C,, ) isthe cost of repairing the component,
including al maintenance corrective cost in that step. The C, cost is the cost of

failure step, which can include lost inventory, damage to the system, lost
production, etc.

Again, these are representative artificial values that were selected based on

engineering expertise judgment, with no application to any specific rea system.

The Model B considers that, after every 25 steps, the probability of remaining in a
good state (duty) will decrease 0.01; and so the probability matrix after 25, 50 and
75 steps would be respectively:

0.25 0.75 0.25 0.75 0.25 0.75
I:)25 = Pso = P75 =
0.06 0.94 0.07 0.93 0.08 0.92

and so on. If there is not preventive maintenance, the probability matrix at the end

of the simulation (1,000 steps), predicted numericaly is:
P B 0.25 0.75
0 10.45 0.55

77



The ssimulations of Model C consider a decrease in the duty to duty transition
probability of 0.0005, every step. After 1,000 steps the probability matrix for this
model, without preventive maintenance, would be:

5 0.25 0.75
00" 10.55 0.45

Modifications to the flow chart of model A were necessary in order to adjust to
the new models. The blocks related to the Spare and Fault states were removed,

and the following changes or additions were made.

Since the probability matrix now changes over time, zero values were assigned as
the original values of the “probabilitymatrix” table. This was performed, in order
to be able to assign different transition probability values during the simulation.
The blocks “ASSIGNFF", “ASSIGNDF”, “ASSIGNFD” and “ASSIGNDD” were
added to at the beginning of the flow chart. These new blocks will assign the
changeable transition probabilities to the “probabilitymatrix” table, through the
also new created variables “FF’, “DF’, “FD”, and “DD”. This will alow us to
determine the right unsettles transition probabilities for every simulation. The
origina values of the variables“FF’, “DF”, “FD”, and “DD” are, as guessed, 0.25,
0.05, 0.75, 0.95 respectively.

Also the subchart shown in Figure 32 was created and added to the two new
models, to decrease or increase, as appropriate, the transition probabilities.

<
4
GLOBA CHANGE
STEP F
COUNTER
P CHHANGE
COUNTER
f Fp
5 CHANGE  CHANGE
CORRECTION DD DF

Figure 32. Decrease of reliability subchart.
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This subchart includes the following blocks:

. A block counter named “LR COUNTER” and a standard block named
“D2 CORRECTION”. These two blocks together help the conditional block to
decide if the subchart is executed or not, (only every 25 steps the path is executed).

. Four standard blocks that allows you to decrease or increase the
transition probabilities. The new transition probability values are stored in the
storage variables DD, DF, FD, and FF. For our case, only the transition
probabilities DD and DF are modified; DD decreases 0.01 and DF decreases 0.01
every time this path is executed. Even though the probabilities FD and FF are not
modifies in our model, the blocks were created to have the flexibility and

possibility to do so.

. Another standard block named “GLOBAL STEP COUNTER”, which
recalls the number of steps. This block, along with the result block named
“STORAGE”, just helpsto give continuity to the simulation.

Finally, the PM performance subchart was also modified for both new models.
Another four standard blocks were added to this section. Each of these four blocks
evaluates to the new constants AANDD, AANDF, AANFD, and AANFF, and
stores these values in the variables DD, DF, FD, and FF, respectively. The
constants AANDD, AANDF, AANFD, and AANFF are the “as good as new”
transition probabilities. In other words, these changes in the PM subchart allow us

to restore the transition probabilities to their original or “as good as new” values.
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Figure 33. Model B flowchart.

Besides the changes mentioned above, additional changes were made to the model
B. Another conditional block was added with the label “lower reliability?’” This
block will asses if the decrease of reliability subchart should be performed or not.
Also the block counter was added to model B. this counter, counts the times that
the transition probabilities are modified due to time. Figure 33 and Figure 34
show the flowcharts of the Model B and Model C, respectively. Figure 35 and
Figure 36 are simplified block diagrams of Model B and Model C simulation

processes, respectively.
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Figure 34. Model C flowchart.

Besides the modifications made in order to adjust to the new models, a couple of
changes were also made just to improve the quality and quantity of the data.
These extra modifications were made with the finality of record not only the
number of times that the component went to a certain state, but to also record how
many of these came from a certain state and how many came from the other.
These modifications basically consisted in the rearrangement of the order of
certain blocks and the addition of a couple of decision blocks, and some extra

counter blocks.
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Figure 35. Simplified Block Diagram of Model B simulation process.
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Figure 36. Simplified Block Diagram of Model C simulation process.



Figure 37 shows the modifications made to the going to duty section. Asit can be
observed, now the simulations divide the number of times that the component
went to Duty state in two parts: the times that changed from duty to duty, and the
times that went from fail to duty. Similar changes were made to the going to fail

section.

L%F

Cafne DUTY
fn E counter Counter
Dupy?

counter

—¥

pm:{ibiw CHTABGE INCURRED  SUM Previous

CcosT OF evaulsation L i
Chdnge DUTY? DUTY
t COSTS
ty

Figure 37. States transition counters modifications .

4.3 SIMULATION RESULTS OF MODEL B AND MODEL C

Multiple simulations of model B were run for different PM costs, in order to
analyze the sensitivity of the model, and cover the different possible scenarios
that a PM decision maker might come across. In reality, once the PM cost has
been calculated for a specific component, multiple runs wouldn’t be necessary,
and the use of simulation as atool for maintenance decisions should be faster and

more efficient.

Table 9 shows the results of the multiple runs for model B. PM COST column
represents the PM cost incurred every time PM is performed. OPTIMAL PM
INTERVAL istheinterval, in numbers of steps, for which the total average cost is
minimum, obtained trough the simulation. NUMBER OF TIMES OF PM
indicates how many times PM is performed during the whole simulation process
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of 1,000 steps. This number is related to the PM interval. i.e. for an optimal PM
interval of 100 steps, the simulation performed PM 9 times, since at step 1,000 the
run exits the simulation without going trough the PM decision sub chart.

MODEL B RESULTS

PM COST OPTIMAL PM OPTIMAL AVERAGE NUMBER OF

INTERVAL (steps) TOTAL COST TIMES OF PM
$1,000 100 $1.26E+06 9
$20,000 100 $1.43E+06 9
$50,000 100 $1.70E+06 9
$60,000 150 $1.77E+06 6
$70,000 150 $1.83E+06 6
$80,000 150 $1.89E+06 6
$90,000 200 $1.94E+06 4
$100,000 200 $1.98E+06 4
$150,000 260 $2.24E+06 3
$200,000 260 $2.39E+06 3
$300,000 340 $2.63E+06 2
$400,000 380 $2.85E+06 2
$500,000 500 $2.95E+06 1
$1,000,000 500 $3.45E+06 1
$2,000,000 >1000 $3.63E+06 0

Table9. Simulation results of cost optimization for model B.

Originaly, simulations were run only for the following PM costs: $1,000,
$20,000, $50,000, $100,000, $150,000, $200,000, $300,000, $400,000, $500,000,
$1,000,000 and $2,000,000, in order to find the PM costs in which the optimal
PM interval would be minimum (100 steps), maximum (>1000 steps, which
means no PM), and some numbers in between. The problem solving method of
trial and error was used to find these numbers. Then, it was noticed that there was
abig gap between the $50,000 optimal PM interval, and the $100,000 optimal PM
interval. As it can be seen in Table 9, for a $50,000 PM cost, PM would be
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performed every 100 steps which represents 9 PM events; and for a $100,000 PM
cost, the optimal PM interval is 200 steps which means only 4 PM events.

Due to this gap between those to PM costs, additiona simulations runs were
performed for $60,000, $70,000, $80,000 and $90,000 PM costs. These are also
included in Table 9.

As expected, the smallest the PM cost is, the more frequent the PM can be
performed without increasing the total average cost. For a PM cost, less than or
equal to $50,000, the ideal PM interval is 100 steps, which is the minimum
interval possible according with the settings of the simulation.

Asthe PM cost is increased, the PM interval aso increased up to the point where
PM should not be performed at all, due to the enormous cost incurred when it is
performed. Figure 38 shows the relation between PM cost and PM interval of
Model B.

550
500
450

N
o
o

350
300
250

PM INTERVAL (steps)

PM COST

Figure 38. Optimal PM intervals for different PM costs.
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For a PM cost of more than or equal to $2,000,000, the simulation results show
that PM should be performed more than every 1,000 steps, which in our model
actualy means, no PM at adl, in terms of time, since the ssmulations are run for
1,000 steps.

It was noticed that for a PM cost of $1,000,000 PM should be performed only
once (every 500 steps), but for a $2,000,000 PM cost simulations suggest not to
perform PM at all. Between those two PM costs, there should be a range of PM
costs for which PM should be performed once, some other range for which PM
shouldn’t be performed at al, and a specific PM cost for which the optima PM
interval could be either 500 steps (one PM event), or 1,000 steps (no PM). With
help of the Reno simulations for a PM cost of $1,000,000 the spreadsheet showed
on Table 10 was created in order to find some numbers between the range of one

PM event, and none PM events.

PM COST $1.0M $1.1M $1.15M $1.17M $1.2M $1.3M $1.4M $1.5M $2.0M

Analysis 1 AVG TOTAL COST
100 $10,247,000 | $11,147,000| $11,597,000 | $11,777,000| $12,047,000| $12,947,000 | $13,847,000 | $14,747,000| $19,247,000
200 $5,574,700 \ $5,974,700 | $6,174,700 \ $6,254,700 | $6,374,700 | $6,774,700 | $7,174,700 | $7,574,700 | $9,574,700
300 $4,823,400 $5,123,400 | $5,273,400 | $5,333,400 $5,423,400 | $5,723,400 | $6,023,400 | $6,323,400 | $7,823,400
400 $4,056,000 \ $4,256,000 | $4,356,000 \ $4,396,000 | $4,456,000 | $4,656,000 | $4,856,000 | $5,056,000 | $6,056,000
500 $3,451,300 $3,551,300 $3,601,300 $3,621,300 $3,651,300 | $3,751,300 | $3,851,300 | $3,951,300 | $4,451,300
600 $3,496,900 | $3,596,900 | $3,646,900 | $3,666,900 | $3,696,900 | $3,796,900 | $3,896,900 | $3,996,900 | $4,496,900
700 $3,635,500 | $3,735,500 | $3,785,500 | $3,805,500 | $3,835,500 | $3,935,500 | $4,035,500 | $4,135,500 | $4,635,500
800 $3,869,000 | $3,969,000 | $4,019,000 | $4,039,000 | $4,069,000 | $4,169,000 | $4,269,000 | $4,369,000 | $4,869,000
900 $4,197,700 | $4,297,700 | $4,347,700 | $4,367,700 | $4,397,700 | $4,497,700 | $4,597,700 | $4,697,700 | $5,197,700
1000 $3,622,100 | $3,622,100 | $3,622,100 | $3,622,100 $3,622,100 $3,622,100 $3,622,100 $3,622,100 $3,622,100

MIN COST: | 3,451,300 | 3,551,300 | 3,601,300 | 3,621,300 | 3,622,100 \ 3,622,100 \ 3,622,100 \ 3,622,100 \ 3,622,100

Table 10. Optimal PM interval for PM costs between $1Million and $2Million.

In order to create Table 10, aRENO simulation for a PM cost value of $1,000,000
was performed. With this simulation, the average total cost values shown in the
second column of Table 10 for different PM intervals were obtained. The rest of
the values for different PM Costs were obtained by numerical methods. Once the
simulation has given the average total costs for different PM intervals with certain
PM costs, it could be possible to extrapolate and obtain new values for different
PM costs. If using an identical seed value, the way the simulation is going to
behave for any analysis with the PM interval will be identical, regardless of the
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PM cost vaue. In other words, for this numerical example, the PM cost does not
affect the transition between the component states, only the PM interval affects
these transitions. For this reason, a different PM cost for a fixed PM interval
would only change the Total Average Cost, but not the randomness of the
component states, and extrapolated values of different PM costs can be obtained.
For instance, the Average Total Cost ($5,333,400) for a 300 PM interval and a
$1,170,000 PM cost was obtained by adding the Average Total Cost ($4,823,400)
of 300 steps PM interval with a $1,000,000 PM cost plus the additional cost of the
new different PM cost. This additional cost is calculated by multiplying the
difference between the two different PM costs ($1,170,000-$1,000,000) times the
number of times this preventive maintenance would be performed; in the example
described above, three times because when the PM interval is 300 steps, PM is

performed three times in the scenario described in the simulations. Numerically:

ATC(1.17M ,300s) = $4,823,400+ [3x ($1,170,000— $1,000,000)] = $5,333400
(37)

where ATC(1.17M,300s) is the Average Total Cost for a$1,170,000 PM cost with
a 300 steps PM interval. In general, ATC(xM,ns) is the Average Total Cost for a
“X” PM cost with a“n” steps PM interval.

The rest of the values obtained in Table 10 were calculated with the same
procedure. It is important to notice that only extrapolations for different values of
PM cost can be obtained once a simulation PM interval of interest has been
performed. In other words, extrapolations or new values for different PM costs
can not be obtained numerically for any PM interval values. In the cases shown in
Table 10, it would be impossible to calculate, numerically, the Average Total
Cost for PM interval values of 150, 210, 780, or any other value that has not been
previously obtained with RENO or any other method.
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Once simulations for different PM intervals of interest have been run, tables that
are similar to Table 10 can be created by a maintenance department for each
particular case, or component subject to be studied. These tables can aso be used
in the decision making of the maintenance department by analyzing different
possible PM cost scenarios, and minimizing their computation times. First,
simulations for a vast range of possible PM intervals should be run in order to
obtain the Average Total Costs that will be used as a base. Then, the rest of the
table for different PM cost scenarios can be created with similar equations to
equation (36). This could be done very fast with the use of any spreadsheet
application program, instead of repeating the long simulations process for the
same PM cost values that have been already run. If more details for a particular
new PM cost scenario are needed, computation times for the simulation to be run
at this particular case can be minimized with the use of these look-up tables. For
instance, assuming that the maintenance department has created Table 11 based
on the transition probability and cost matrices of a certain component, and they
realized that PM cost is going to change due to external factors. The new PM cost
it is calculated to be $220,000, and an extrapolation for this PM cost can aso be
calculated for this new PM cost value, in order to give to the maintenance
department an idea, in rough numbers, of the expected optimal PM interval within
the range of the table. (Table 12).

PM COST $50,000( $100,000| $200,000| $250,000f{ $300,000( $400,000
Analysis 1 AVG TOTAL COST
100 $1,697,000| $2,147,000{ $3,047,000( $3,497,000| $3,947,000| $4,847,000
200 $1,774,700) $1,974,700] $2,374,700| $2,574,700| $2,774,700| $3,174,700
300 $1,973,400| $2,123,400] $2,423,400 $2,573,400| $2,723,400| $3,023,400
400 $2,156,000| $2,256,000] $2,456,000f $2,556,000| $2,656,000| $2,856,000
500 $2,501,300| $2,551,300] $2,651,300( $2,701,300| $2,751,300| $2,851,300
600 $2,546,900| $2,596,900| $2,696,900| $2,746,900| $2,796,900| $2,896,900
700 $2,685,500| $2,735,500| $2,835,500( $2,885,500| $2,935,500| $3,035,500
800 $2,919,000| $2,969,000| $3,069,000| $3,119,000| $3,169,000| $3,269,000
900 $3,247,700| $3,297,700] $3,397,700 $3,447,700| $3,497,700| $3,597,700
1000 $2,672,100| $2,722,100| $2,822,100| $2,872,100| $2,922,100| $3,022,100
MIN COST:$1,697,000($1,974,700[{%$2,374,700|$2,556,000|%$2,656,000|$2,851,300

Table 11. Example of an optima PM interval look-up table.
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Based on Table 11, the exact optimal PM interval can not be obtained for this new
PM cost, but the computation and simulation time for obtaining this value with
RENO can be minimized to less than one third of the time for the first analysis of
aregular ssimulation. Instead of ssimulating for PM intervals of 100, 200, 300, 400,
500, 600, 700, 800, 900, and 1,000 steps, simulations settings can be adapted to
only evauate for 200, 300 and 400 steps, since it can be observed in the tables
created by the maintenance department that the optima PM interval should be a
number between 200 and 400 steps. Another acceptable option to reduce
simulation time would be to set the first ssimulation analysis for every 20 steps for
PM intervals between 200 and 400 (200, 220, 240,...,400). This would not reduce
the ssimulation time of the first analysis but it would reduce the overall simulation
time by reducing the number of analyses necessary to find the near optimal PM

interval.

| PM COST | $220,000|

100 $3,227,000
200 $2,454,700
300 $2,483,400
400 $2,496,000
500 $2,671,300
600 $2,716,900
700 $2,855,500
800 $3,089,000
900 $3,417,700
1000 $2,842,100
MIN COST: [$2,454,700

Table 12. Extrapolation of Average Total Costs for aPM cost of $220,000.

In Table 10, it can be noticed that the optimal average total cost for PM costs of
$1.2M or more, is constant. This makes sense since the optima PM interval for
these costs is more than 1,000 steps, which means no maintenance, and therefore
no additional cost due to PM added to the process. Opposite to the optimal total
average costs between $1M and $1.2M, which even though they have the same
optimal PM interval of 500 steps, they are different, due to the PM cost variation.
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It can be shown that the limit between the one PM events and none PM events is
when PM cost is $1,170,800 (breakeven cost). The optimal costs associated to this
PM cost can be seen in Table 13. This breakeven cost value can be obtained by
solving the equation:

ATC(x,500s) = $3,451,300+ [1x ($x — $1,000,000)] = $3,622,100

[$3,622,100 — $3,451,300]
1

then, x = { +$1,000,000 }=$1,170,800

PM COST $1.1708M
Analysis 1 AVG TOTAL COST

100 $11,784,200
200 $6,257,900
300 $5,335,800
400 $4,397,600
500 $3,622,100
600 $3,667,700
700 $3,806,300
800 $4,039,800
900 $4,368,500
1000 $3,622,100
MIN COST: $3,622,100

Table 13. Optimal average total costs for a$1,170,800 PM cost obtained by

numeric method.

In this case, the optimal average total cost can be reached by performing PM only
once at 500 steps or by not performing PM at all. Either way, with one PM event
or none PM, the expected cost is the same, and in real practice PM would
probably not be performed. For this particular numerical experiment, the PM
breakeven cost value of $1,170,800 becomes a key number for the maintenance
department. If the whole process remains unchangeable, including the transition
probabilities and transition costs, PM would be performed only if the cost is less
than $1,170,800.

A simulation for this PM breakeven cost was run in Reno, to see what the

software would do in the case of having 2 different optimal costs, in other words,
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which decision the software makes when finding two possible identical optimal
solutions. Only two analyses were included in this simulation and the results are
shown in Table 14. It can be noticed that, even when there were two exact optimal
values for two different PM intervals (500 and 1,000 steps), the program decided
to keep evaluating and searching only for numbers close to 500 steps interval
value. In other words, RENO assumes that the optimal PM interval after the first
Analysisis 500 steps.

Theoretically, for this particular case, any decision of either 500 or 1,000 steps
PM interval, should be acceptable, since it would offer the same results in terms
of incurred cost; but in practice, it is more likely that if the same cost is going to
be incurred regardless PM, the maintenance department would rather not perform

PM to this component for obvious reasons.

B MODEL SIMULATION RESULTS FOR A $1,170,800 PM COST
Analysis 1 - PM AVERAGE TOTAL COST Analysis 2 - PM AVERAGE TOTAL COST

100 1.18E+07 200 6.25E+06
200 6.26E+06 260 5.31E+06
300 5.34E+06 320 5.49E+06
400 4.40E+06 380 4 .38E+06
500 3.62E+06 440 4 55E+06
600 3.67E+06 500 3.62E+06
700 3.81E+06 560 3.66E+06
800 4.04E+06 620 3.72E+06
900 4.37E+06 680 3.77E+06
1000 3.62E+06 740 3.92E+06
1100 3.63E+06 800 4.03E+06

Table 14. B modd simulation results for a PM breakeven cost obtained with
RENO.

4.3.1 SOME CONSIDERATIONS AND INTERPRETATIONS ABOUT
MODEL BRESULTS

The fact that the optima PM intervals for first three PM cost in Table 9 are the
same (100steps), should not be a concern in terms of having the same identical
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PM interval for three complete different PM costs. All the results are suggesting is
that PM should be performed as soon as possible, since PM cost is too low to

actually affect the total average cost significantly.

SIMULATION RESULTS OF MODEL B FOR A PM COST OF $60,000
Analysis 1 AVG TOTAL COST Analysis 2 AVG TOTAL COST Analysis 3 AVG TOTAL COST

100 1.79E+06 120 1.85E+06 132 1.84E+06
110 1.88E+06 126 1.78E+06 135 1.82E+06
120 1.86E+06 132 1.84E+06 138 1.82E+06
130 1.81E+06 138 1.83E+06 141 1.89E+06
140 1.85E+06 144 1.82E+06 144 1.82E+06
150 1.76E+06 150 1.76E+06 147 1.84E+06
160 1.85E+06 156 1.84E+06 150 1.77E+06
170 1.83E+06 162 1.88E+06 153 1.82E+06
180 1.85E+06 168 1.85E+06 156 1.85E+06
190 1.88E+06 174 1.90E+06 159 1.85E+06
200 1.81E+06 180 1.84E+06 162 1.89E+06

165 1.88E+06

168 1.85E+06

SIMULATION RESULTS OF MODEL B FOR A PM COST OF 570,000
Analysis 1 AVG TOTAL COST Analysis 2 AVG TOTAL COST Analysis 3 AVG TOTAL COST

100 1.88E+06 120 1.93E+06 132 1.91E+06
110 1.97E+06 126 1.85E+06 135 1.89E+06
120 1.94E+06 132 1.91E+06 138 1.89E+06
130 1.88E+06 138 1.90E+06 141 1.96E+06
140 1.92E+06 144 1.88E+06 144 1.88E+06
150 1.82E+06 150 1.82E+06 147 1.90E+06
160 1.91E+06 156 1.90E+06 150 1.83E+06
170 1.88E+06 162 1.94E+06 153 1.88E+06
180 1.90E+06 168 1.90E+06 156 1.91E+06
190 1.93E+06 174 1.95E+06 159 1.91E+06
200 1.85E+06 180 1.89E+06 162 1.95E+06

165 1.94E+06

168 1.90E+06

SIMULATION RESULTS OF MODEL B FOR A PM COST OF 580,000
Analysis 1 AVG TOTAL COST Analysis 2 AVG TOTAL COST Analysis 3 AVG TOTAL COST

100 1.97E+06 120 2.01E+06 132 1.98E+06
110 2.06E+06 126 1.92E+06 135 1.96E+06
120 2.02E+06 132 1.98E+06 138 1.96E+06
130 1.95E+06 138 1.97E+06 141 2.03E+06
140 1.99E+06 144 1.94E+06 144 1.94E+06
130 1.88BE+06 130 1.88BE+06 147 1.96E+06
160 1.97E+06 156 1.96E+06 150 1.89E+06
170 1.93E+06 162 2.00E+06 153 1.94E+06
180 1.95E+06 168 1.95E+06 156 1.97E+06
190 1.98E+06 174 2.00E+06 159 1.97E+06
200 1.89E+06 180 1.94E+06 162 2.01E+06

165 2.00E+06

168 1.95E+06

Table 15. Model B simulations results for $60,000, $70,000 and $80,000 PM

Costs.
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For the next three PM costs it was found that the optimal PM interval it was also
the same number (150 steps). This doesn’'t necessarily mean that they have
exactly the same PM optimal interval, even though they have different PM costs,
but as can be noticed in Table 15 and Figure 39, the optimal PM interval for any
of these three PM costs can be any number between 147 and 152 steps. This is
due to the number of analyses run for each PM cost. For model B, three analyses
were run for every PM cost. If a more precise number it is need to be found, then

the settings for each simulation should be increase to 5 analyses.

—e— $60,000 PM COST
—m— $70,000 PM COST
—A— $80,000 PM COST

2.05E+06

2.00E+06 -

1.95E+06 -

1.90E+06 -

1.85E+06 3

TOTAL AVERGAE COST

1.80E+06 f—— — — — _——— — — 1

1.75E+06

132 135 138 141 144 147 150 153 156 159 162 165 168
STEPS

Figure 39. Sketch of Model B simulations results for $60,000, $70,000 and
$80,000 PM costs.

More likely, the optimal PM interval for a PM cost of $60,000, $70,000, and
$80,000 could be a number lower than 150 steps, a number closer to 150 steps
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and a number higher than 150 steps, respectively, but between the range of [148-
152 steps] mentioned above.

Table 15 and Figure 39 show the sensitivity of Total Average Cost for $60,000,
$70,000 and $80,000 PM costs. It should be noticed that, in Figure 39, only the
values with a marker (triangles, squares, and rhombuses) are actual values
obtained with the simulation. The lines connecting these points are drawn with the
only intention to show a possible trend, but they don’t represent actual values.

Also, it should be kept in mind that any of these PM intervals in the range of
[148-152] steps, are basically suggesting to perform PM only 6 times during the
period of study, which is 1,000 steps. Similar analogies can be made for the other

cases where PM interval isthe same for different PM costs.

The total average costs obtained with the simulations are probabilistic since they
are the sum of the cost associated with PM activities plus the total costs associated
with the transition between states. The cost associated with PM is deterministic,
but the transition costs are stochastic since they depend in the transition between
states, which are also probabilistic. Figure 39 shows the randomness of these
stochastic costs. It should also be noticed that Figure 39 is only showing results
between 132 and 168steps PM intervals, when usually simulations are run for a
range of 100 to 1,000 steps intervals. In other words, Figure 39 is a “zoom in”
picture of the whole simulation process. A bigger picture of the results would

show a smoother line.

It can be noticed in Figure 38 that there are some discontinuities between the
different PM costs. These discontinuities can be explained by two main reasons:

1. Only some different PM cost values were used to test the sensitivity of the

model. If more PM costs were to be tested, fewer discontinuities would be

shown in Figure 38. For instance, between the PM costs of $80,000 and
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$90,000 with PM optimal intervals of 150 and 200 steps, respectively,
there should be a range of PM costs for which optima PM interval would
be between 150 and 200 steps.

. A certain range of PM intervals indicates the same number of PM
activities. Even if it were possible to simulate a very large number of
different PM costs, and the results were shown in afigure similar to Figure
38Figure 38, there would still be discontinuities between the PM costs. In
the example mentioned above for PM costs between $80,000 and $90,000,
the optimal PM intervals of 150 and 200 steps indicate 6 and 4 PM
activities in the ssimulation model, respectively. If different PM costs were
to be tested between the PM cost range of $80,000 and $90,000, a
different PM interval that would indicate 5 PM activities would be
obtained; this number could be any number between the range of 167-199
steps, since thisisthe PM interval range that indicates only 5 PM activities.
More likely, the optima PM interval that would be obtained between this
range by the ssimulation, would be 175 steps, since this PM interval would
be the one that the simulation would test within that range. If severa
analyses are run, then any other number between that range can be
obtained. For this hypothetical case, the expected figure that would still

show discontinuities is shown in Figure 40.

A wide range of different PM costs were tested during the simulations with the

only intention of analyzing the sensitivity of the model. It is not expected a

mai ntenance department would ever face such arange of possible PM cost values.

In the models of this study, numerical experiments were run for PM costs in the

range of $1,000 and $2,000,000. In a regular basis, the maintenance department

knows the actual PM cost for the component of interest, or at least, a small range

of possible PM costs.
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Figure 40. Expected optimal PM intervals for different values between the range
of $80,000 and $90,000 PM costs.

It is important to keep in mind that PM costs should be scheduled only if the
overall cost of this PM action is smaller than the overall cost of a corrective action.
In the numerical experiments of this study, it is assumed that Corrective Cost is
always larger than the PM cost values that were tested. Otherwise, PM should not
even be considered or analyzed. In other words, the ratio between PM cost and
failure replacement (corrective cost) it is always smaller than 1. Mathematically:

PM cost <1

_— 38
CM cost (38)

Similar results were obtained for Model C. Results of Moddel C simulations for

different PM cost values are included in Appendix A.
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CHAPTERS

CONCLUSIONS AND RECOMMENDATIONS FOR
FURTHER WORK

The most important conclusions and a summary of the results obtained in the
research for this thesis work are highlighted in this chapter. Future work is
suggested based on the work and models included in this research.

5.1 CONCLUSIONS

1. Computer smulation can be an effective tool to represent maintenance
systems, and help with maintenance decision making. This research study used
computer simulation for minimizing risk of multi-state repairable components
with fixed and non-fixed transition probabilities models. The models proposed
were imitated through simulation, and based on the results obtained, maintenance
decisions could be inferred. The use of look-up tables, by the maintenance

department, is suggested for forecasting and prediction of model behavior.

2. Inadequate maintenance decisions can lead to incremental overall costs. On
the other hand, adequate maintenance scheduling can help to minimize costs in
maintenance. The simulations results in this study suggested that for certain

models and variable values, decisions like whether or not to schedule periodic PM
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activities, and the periodicity of these PM activities could represent a significant

increase or decrease of the overall costs of process subject to study.

3. Programming periodical Preventive Maintenance for a device that follows a
negative exponentia lifetime distribution does not provide any economic benefits,
it actually increases the cost of maintaining the unit. The results obtained for the
modeling of the Markov process of a multi-state component with non-dynamic
probability matrix showed that PM activities only increase the overall cost of a
process that follows exponential lifetime distribution. Several PM costs were
tested; al of them offered the same results: PM should not be scheduled for this
model.

4.  Programming adequate periodical Preventive Maintenance for components
with non fixed transition probability matrices and increasing failure rate, can lead
to overall costs reduction, and a near optimal PM schedule can be obtained with
the help of simulation. Two new models with periodically and continuously
increasing failure rate were proposed in this study. Predictions about the overall
costs of the process described by these two models were possible with the help of

computer simulation.

5.2 FUTURE WORK

Future work and research can be focused in the following directions:

1. This work suggested expertise judgment, historical data and empirical

probabilities to obtain transition probabilities and transition costs. Further

research can focus methods for estimating these transition values for repairable

components and systems, and for assessing confidence in the estimates.
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2. All the models proposed in this thesis work are based in single components.
Future work may consider more complex scenarios, for systems with two or more

components.

3. The computer smulation models proposed in this work may be tested for a
real component operating in the industry. Once a component with transition
probabilities, increasing failure rate, and similar characteristics to the ones
described in this work for the single component subject to study has been tested,
the approaches can be developed to generalize for arange of specific components,

including generating specific look-up tables for PM scheduling.

4. A generad approach can be pursued for applying computer simulation
models, similar to the ones proposed in this study, for decision support in
different maintenance applications. Similar models may be applied to any area
where transition probabilities of certain events can be calculated, and where costs
associated to these events can aso been estimated. As an example, in medicine,
certain medical conditions can degenerate into many different (worst or better)
conditions. If atransition probability matrix can be redlistically formulated, and a
cost or risk associated for these transitions, simulations for better possible
treatments and interventions may be performed in order to minimize the impact or
risk of a higher illness condition of the patient. Other applications areas likely

exist.
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APPENDIX A: MODEL C SSIMULATION RESULTS

MODEL C SIMULATION RESULTS, $1,000 PMCOST

Analysis 1 - PM AVERAGE TOTAL COST Analysis 2 - PM AVERAGE TOTAL COST Analysis 3 - PM AVERAGE TOTAL COST

100 1,420,600 100 1,415,500 100 1,417,600
200 1,807,600 130 1,527,500 109 1,440,700
300 2,100,200 160 1,644,000 118 1,471,900
400 2,379,100 190 1,744,300 127 1,524,900
500 2,837,900 220 1,831,100 136 1,541,600
600 2,888,500 250 1,988,900 145 1,591,100
700 3,045,500 280 2,032,300 154 1,617,600
800 3,305,600 310 2,138,900 163 1,658,300
900 3,679,000 340 2,290,700 172 1,685,900
1,000 4,164,400 370 2,325,000 181 1,704,900
1,100 4,170,500 400 2,371,800 190 1,745,800

Analysis 1 - PM

AVERAGE TOTAL COST

Analysis 2 - PM

AVERAGE TOTAL COST

MODEL C SIMULATION RESULTS, $20,000 PMCOST

Analysis 3 - PM

AVERAGE TOTAL COST

100 1,591,600 100 1,586,500 100 1,588,600
200 1,883,600 130 1,660,500 109 1,611,700
300 2,157,200 160 1,758,000 118 1,623,900
400 2,417,100 190 1,839,300 127 1,657,900
500 2,856,900 220 1,907,100 136 1,674,600
600 2,907,500 250 2,045,900 145 1,705,100
700 3,064,500 280 2,089,300 154 1,731,600
800 3,324,600 310 2,195,900 163 1,772,300
900 3,698,000 340 2,328,700 172 1,780,900
1,000 4,164,400 370 2,363,000 181 1,799,900
1,100 4,170,500 400 2,409,800 190 1,840,800

Analysis 1 - PM

AVERAGE TOTAL COST

Analysis 2 - PM

AVERAGE TOTAL COST

MODEL C SIMULATION RESULTS, $50,000 PMCOST

Analysis 3 - PM

AVERAGE TOTAL COST

100 1,861,600 100 1,856,500 100 1,858,600
200 2,003,600 130 1,870,500 109 1,881,700
300 2,247,200 160 1,938,000 118 1,863,900
400 2,477,100 190 1,989,300 127 1,867,900
500 2,886,900 220 2,027,100 136 1,884,600
600 2,937,500 250 2,135,900 145 1,885,100
700 3,094,500 280 2,179,300 154 1,911,600
800 3,354,600 310 2,285,900 163 1,952,300
900 3,728,000 340 2,388,700 172 1,930,900
1,000 4,164,400 370 2,423,000 181 1,949,900
1,100 4,170,500 400 2,469,800 190 1,990,800

Analysis 1 - PM

AVERAGE TOTAL COST

Analysis 2 - PM

AVERAGE TOTAL COST

MODEL C SIMULATION RESULTS, $60,000 PMCOST

Analysis 3 - PM

AVERAGE TOTAL COST

100 1,951,600 100 1,946,500 100 1,948,600
200 2,043,600 130 1,940,500 112 1,928,600
300 2,277,200 160 1,998,000 124 1,979,500
400 2,497,100 190 2,039,300 136 1,963,000
500 2,896,900 220 2,067,100 148 1,944,800
600 2,947,500 250 2,165,900 160 1,994,000
700 3,104,500 280 2,209,300 172 1,990,100
800 3,364,600 310 2,315,900 184 2,014,800
900 3,738,000 340 2,408,700 196 2,076,600
1,000 4,164,400 370 2,443,000 208 2,051,600
1,100, 4,170,500 400 2,489,800 220 2,078,500

Analysis 1 - PM

AVERAGE TOTAL COST

Analysis 2 - PM

AVERAGE TOTAL COST

MODEL C SIMULATION RESULTS, $70,000 PMCOST

Analysis 3 - PM

AVERAGE TOTAL COST

100 2,041,600 100 2,036,500 130 2,012,700
110 2,073,600 106 2,056,300 133 2,009,600
120 2,039,900 112 2,019,800 136 2,021,400
130 2,009,700 118 2,029,000 139 2,051,300
140 2,051,900 124 2,054,900 142 2,063,300
150 2,012,200 130 2,008,500 145 2,005,100
160 2,052,500 136 2,027,500 148 2,015,700
170 2,027,400 142 2,059,000 151 2,014,800
180 2,054,800 148 2,002,800 154 2,025,000
190 2,088,400 154 2,028,500 157 2,035,200
200 2,086,600 160 2,051,000 160 2,049,500
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MODEL C SIMULATION RESULTS, $80,000 PMCOST

Analysis 1 - PM AVERAGE TOTAL COST Analysis 2 - PM AVERAGE TOTAL COST Analysis 3 - PM AVERAGE TOTAL COST

100 2,131,600 100 2,126,500 100 2,128,600
200 2,123,600 140 2,128,700 120 2,111,800
300 2,337,200 180 2,096,100 140 2,115,500
400 2,537,100 220 2,153,600 160 2,114,600
500 2,916,900 260 2,231,400 180 2,099,100
600 2,967,500 300 2,333,300 200 2,127,500
700 3,124,500 340 2,450,200 220 2,162,900
800 3,384,600 380 2,478,300 240 2,250,400
900 3,758,000 420 2,595,400 260 2,241,800
1,000 4,164,400 460 2,761,200 280 2,270,500
1,100 4,170,500 500 2,915,200 300 2,338,600

Analysis 1 - PM

AVERAGE TOTAL COST

Analysis 2 - PM

AVERAGE TOTAL COST

MODEL C SIMULATION RESULTS, $90,000 PMCOST

Analysis 3 - PM

AVERAGE TOTAL COST

100 2,221,600 100 2,216,500 100 2,218,600
200 2,163,600 140 2,198,700 120 2,191,800
300 2,367,200 180 2,146,100 140 2,185,500
400 2,557,100 220 2,193,600 160 2,174,600
500 2,926,900 260 2,261,400 180 2,149,100
600 2,977,500 300 2,363,300 200 2,167,500
700 3,134,500 340 2,470,200 220 2,202,900
800 3,394,600 380 2,498,300 240 2,290,400
900 3,768,000 420 2,615,400 260 2,271,800
1,000 4,164,400 460 2,781,200 280 2,300,500
1,100 4,170,500 500 2,925,200 300 2,368,600

Analysis 1 - PM

AVERAGE TOTAL COST

MODEL C SIMULATION

Analysis 2 - PM

AVERAGE TOTAL COST

RESULTS, $100,000 PMCOST

Analysis 3 - PM

AVERAGE TOTAL COST

100 2,311,600 100 2,306,500 100 2,308,600
200 2,203,600 140 2,268,700 120 2,271,800
300 2,397,200 180 2,196,100 140 2,255,500
400 2,577,100 220 2,233,600 160 2,234,600
500 2,936,900 260 2,291,400 180 2,199,100
600 2,987,500 300 2,393,300 200 2,207,500
700 3,144,500 340 2,490,200 220 2,242,900
800 3,404,600 380 2,518,300 240 2,330,400
900 3,778,000 420 2,635,400 260 2,301,800
1,000 4,164,400 460 2,801,200 280 2,330,500
1,100 4,170,500 500 2,935,200 300 2,398,600

Analysis 1 - PM

AVERAGE TOTAL COST

MODEL C SIMULATION

Analysis 2 - PM

AVERAGE TOTAL COST

RESULTS, $150,000 PMCOST

AVERAGE TOTAL COST

100 2,761,600 100 2,756,500 100 2,758,600
200 2,403,600 140 2,618,700 124 2,701,200
300 2,547,200 180 2,446,100 148 2,481,900
400 2,677,100 220 2,433,600 172 2,434,800
500 2,986,900 260 2,441,400 196 2,525,500
600 3,037,500 300 2,543,300 220 2,436,800
700 3,194,500 340 2,590,200 244 2,559,500
800 3,454,600 380 2,618,300 268 2,460,000
900 3,828,000 420 2,735,400 292 2,517,900
1,000 4,164,400 460 2,901,200 316 2,629,000
1,100, 4,170,500 500 2,985,200 340 2,592,100

Analysis 1 - PM

AVERAGE TOTAL COST

MODEL C SIMULATION

Analysis 2 - PM

AVERAGE TOTAL COST

RESULTS, $200,000 PMCOST

Analysis 3 - PM

AVERAGE TOTAL COST

100 3,211,600 100 3,206,500 140 2,966,300
200 2,603,600 140 2,968,700 164 2,851,000
300 2,697,200 180 2,696,100 188 2,725,000
400 2,777,100 220 2,633,600 212 2,622,000
500 3,036,900 260 2,591,400 236 2,693,200
600 3,087,500 300 2,693,300 260 2,598,700
700 3,244,500 340 2,690,200 284 2,645,500
800 3,504,600 380 2,718,300 308 2,736,700
900 3,878,000 420 2,835,400 332 2,879,400
1,000 4,164,400 460 3,001,200 356 2,702,200
1,100 4,170,500 500 3,035,200 380 2,733,600
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MODEL C SIMULATION RESULTS, $300,000 PMCOST

Analysis 1 - PM AVERAGE TOTAL COST Analysis 2 - PM AVERAGE TOTAL COST Analysis 3 - PM AVERAGE TOTAL COST

100 4,111,600 100 4,106,500 160 3,434,700
200 3,003,600 160 3,433,200 196 3,267,200
300 2,997,200 220 3,042,100 232 3,075,600
400 2,977,100 280 2,935,400 268 2,911,400
500 3,136,900 340 2,883,300 304 3,013,500
600 3,187,500 400 2,973,600 340 2,892,600
700 3,344,500 460 3,199,800 376 2,934,200
800 3,604,600 520 3,129,600 412 3,013,300
900 3,978,000 580 3,163,300 448 3,146,900
1,000 4,164,400 640 3,241,600 484 3,332,100
1,100 4,170,500 700 3,337,700 520 3,140,900

Analysis 1 - PM

AVERAGE TOTAL COST

MODEL C SIMULATION

Analysis 2 - PM

AVERAGE TOTAL COST

RESULTS, $400,000 PMCOST

Analysis 3 - PM

AVERAGE TOTAL COST

100 5,011,600 100 5,006,500 160 4,034,700
200 3,403,600 160 4,033,200 196 3,767,200
300 3,297,200 220 3,442,100 232 3,475,600
400 3,177,100 280 3,235,400 268 3,211,400
500 3,236,900 340 3,083,300 304 3,313,500
600 3,287,500 400 3,173,600 340 3,092,600
700 3,444,500 460 3,399,800 376 3,134,200
800 3,704,600 520 3,229,600 412 3,213,300
900 4,078,000 580 3,263,300 448 3,346,900
1,000 4,164,400 640 3,341,600 484 3,532,100
1,100 4,170,500 700 3,437,700 520 3,240,900

Analysis 1 - PM

AVERAGE TOTAL COST

MODEL C SIMULATION

Analysis 2 - PM

AVERAGE TOTAL COST

RESULTS, $500,000 PMCOST

Analysis 3 - PM

AVERAGE TOTAL COST

100 5,911,600 200 3,801,400 200 3,808,700
200 3,803,600 260 3,498,800 236 3,894,100
300 3,597,200 320 3,706,800 272 3,511,900
400 3,377,100 380 3,330,400 308 3,640,300
500 3,336,900 440 3,510,300 344 3,292,300
600 3,387,500 500 3,332,600 380 3,333,500
700 3,544,500 560 3,351,800 416 3,428,500
800 3,804,600 620 3,399,900 452 3,562,500
900 4,178,000 680 3,499,600 488 3,760,800
1,000 4,164,400 740 3,640,800 524 3,338,100
1,100 4,170,500 800 3,801,000 560 3,355,200
MODEL C SIMULATION RESULTS, $1,000,000 PMCOST
Analysis 1 - PM AVERAGE TOTAL COST Analysis 2 - PM AVERAGE TOTAL COST Analysis 3 - PM AVERAGE TOTAL COST
100 10,412,000 200 5,801,400 320 5,200,300
200 5,803,600 260 4,998,800 356 4,294,500
300 5,097,200 320 5,206,800 392 4,348,800
400 4,377,100 380 4,330,400 428 4,468,500
500 3,836,900 440 4,510,300 464 4,614,400
600 3,887,500 500 3,832,600 500 3,837,200
700 4,044,500 560 3,851,800 536 3,847,100
800 4,304,600 620 3,899,900 572 3,863,500
900 4,678,000 680 3,999,600 608 3,894,300
1,000 4,164,400 740 4,140,800 644 3,943,900
1,100, 4,170,500 800 4,301,000 680 4,004,500
MODEL C SIMULATION RESULTS, $2,000,000 PMCOST
Analysis 1 - PM AVERAGE TOTAL COST Analysis 2 - PM AVERAGE TOTAL COST Analysis 3 - PM AVERAGE TOTAL COST
100 19,412,000 700 5,033,800 900 5,677,200
200 9,803,600 740 5,138,100 920 5,755,600
300 8,097,200 780 5,252,700 940 5,860,200
400 6,377,100 820 5,373,000 960 5,959,200
500 4,836,900 860 5,512,100 980 6,051,100
600 4,887,500 900 5,670,800 1,000 4,171,100
700 5,044,500 940 5,860,800 1,020 4,171,400
800 5,304,600 980 6,049,500 1,040 4,171,800
900 5,678,000 1,020 4,162,500 1,060 4,166,000
1,000 4,164,400 1,060 4,171,300 1,080 4,169,500
1,100 4,170,500 1,100 4,162,500 1,100 4,169,800
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