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Abstract

This thesis gives two realizations of fgc extended affine Lie algebras, as fixed point

subalgebras and as descended objects. Fgc stands for “finitely generated over the

centroid ” . All extended affine Lie algebras are fgc except for a well understood

family of type A. In the process, the Lie algebra of derivations of certain Lie alge-

bras (including multiloop algebras) are also studied from the twisted forms point of

view.

Given an extended affine Lie algebra E, it is known that E can be realized in

the form E = L � D
gr⇤ � D, where L is a centreless Lie torus, D is a graded

subalgebra of the derivation algebra Derk(L), and D
gr⇤ is the graded dual of D.

For fgc extended affine Lie algebras, L can be choosen to be a multiloop algebra.

In chapter 3, we show that every fgc extended affine Lie algebra E can be realized

as a fixed point subalgebra of some untwisted extended affine Lie algebra. This

generalizes known results of affine Kac-Moody algebras.

Descent theory has been used with great success to study several aspects of

infinite dimensional Lie theory. In particular, multiloop algebras have been studied

extensively from the descent point of view. The motivation of studying the whole

E as a descended object leads naturally to our study of Derk(L) as a twisted form.

In chapter 5, we first study Lie algebra of derivations of certain Lie algebras under

both étale cover and Galois cases. More precisely, if L is determined by some 1-

cocycle, we construct a 1-cocycle that leads to Derk(L) explicitly. Furthermore,

we get maps between the corresponding (non-abelian) cohomology sets. Once this
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is done, we give a realization of fgc E as a descended algebra of some untwisted

extended affine Lie algebra.
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Chapter 1

Introduction

Extended affine Lie algebras (EALAs for short) are natural axiomatic generaliza-
tions of affine Kac-Moody Lie algebras and finite-dimensional simple Lie algebras.
They were first considered under the name of irreducible quasisimple Lie algebras
in the paper [H-KT]. It was in [AABGP] that the authors gave a mathematical foun-
dation of these Lie algebras. Since then, a lot of work has been done for the study
of EALAs (c.f. [ABFP2], [ABP1], [ABP4], [AF], [N2], [N3], [N4], etc.).

Since EALAs are defined via abstract axioms, to better understand them, it is
important to realize them explicitly. Associated to every EALA there is an invari-
ant named nullity; it is a non-negative integer. EALAs of nullity 0 are just finite-
dimensional simple Lie algebras (c.f. [ABP4]). We are interested in EALAs with
positive nullity. Neher gives an explicit procedure of how to construct EALAs from
centreless Lie tori. The realization of EALAs thus reduces to the realization of cen-
treless Lie tori. Explicitly, let k be an algebraically closed field of characteristic 0.
Every extended affine Lie algebra E over k can be constructed in the form ([N1],
[N2])

E = L�D
gr⇤ �D,

for some centreless Lie torus L, where D is a graded subalgebra of the skew-
centroidal derivation algebra SCDerk(L) of L, Dgr⇤ is the graded dual of D and
plays the role of central extension (see Section 2.2 for detail).

The motivation for realizing centreless Lie tori as multiloop Lie algebras comes
from affine Kac-Moody Lie theory. Multiloop Lie algebra is defined with respect
to g, � and m, where g is a finite dimensional simple Lie algebra over k, � =

(�1, . . . , �n) is an n-tuple of commuting finite order automorphisms of g and m =

(m1, . . . ,mn) is an n-tuple of positive integers with �mi
i

= id, i = 1, . . . , n. It is
denoted by L(g,�,m) (see Section 2.3 for its definition). If n = 1, then L(g, �,m)

is called a loop algebra. Every affine Kac-Moody Lie algebra bL over k can be
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realized as a direct sum ([K], [ABP4])

bL = L� kc� kd,

for some loop algebra L, L � kc is an universal central extension of L, and d

is the degree derivation of L (see Section 3.3). Affine Kac-Moody Lie algebras
are EALAs of nullity 1 ([ABGP], [ABP4]). In the paper [ABFP2], the authors
successfully realized every fgc centreless Lie torus (see its definition in Chapter 2)
as a multiloop Lie algebra. From the classification of centreless Lie tori, we know
that there is only one family of centreless Lie tori that is not fgc, i.e. the family of
type A`(` � 1) associated with a quantum torus kq, where q is a quantum matrix
containing an entry that is not a root of unity (c.f. Remark 1.4.3 of [ABFP2]).
Depending on whether the centreless Lie torus in the construction of EALAs is fgc
or not, EALAs are divided into two families, fgc EALAs and non-fgc EALAs. In
this thesis, we will focus on the study of fgc EALAs.

For an fgc EALA E, L is of the form of a multiloop Lie algebra (see Section
2.2). It is known that multiloop Lie algebras can be viewed as fixed point subalge-
bras of certain untwisted multiloop Lie algebras. For example, let L = L(g,�,m)

be a multiloop algebra, let Sn = k[t
± 1

m1
1 , . . . , t

± 1
mn

n ] be a Laurent polynomial ring,
then L is the fixed point subalgebra of the untwisted multiloop Lie algebra g ⌦ Sn

under a group action by the group � = Z/m1Z ⇥ · · · ⇥ Z/mnZ (see Section 3.1),
i.e.

L = (g⌦k Sn)
�
.

It is also known that affine Kac-Moody Lie algebras are fixed point subalgebras of
untwisted affine Kac-Moody Lie algebras (c.f. Chapter 8 of [K]). Note that starting
from g⌦k Sn, one can construct untwisted EALAs (see its definition in Section 2.2)
which are of the form

ESn = (g⌦k Sn)� D̃
gr⇤ � D̃,

for any suitable D̃ ⇢ SCDerk(g⌦kSn). Then a natural question to ask is if the group
� also acts naturally on the algebra D̃ and its graded dual D̃gr⇤, is the fixed point
subalgebra (ES)� also an EALA? Conversely, can every fgc EALA be realized as a
fixed point subalgebra of some untwisted EALA?

2



To solve such questions, one first needs to know that the derivation algebra
D that is used in the construction of an EALA E is actually a graded subalge-
bra of the skew-centroidal derivation algebra SCDerk(L) of L. Denote by Rn =

k[t±1
1 , . . . , t

±1
n
] another Laurent polynomial ring. An important observation is that

Sn is an étale ring extension of Rn (in fact, Sn/Rn is Galois with finite Galois
group �), which makes it possible to identify the skew-centroidal derivation alge-
bra SCDerk(L) as a subalgebra of SCDerk(g⌦ Sn). These two derivation algebras
can be further identified with the skew-symmetric derivation algebras SDerk(Rn),
SDerk(Sn) respectively, as one sees from Section 4.2 of [CNPY], i.e.

SDerk(Rn) = SCDerk(L) ⇢ SCDerk(g⌦ Sn) = SDerk(Sn).

We will use these identifications to get the results that for every graded subalgebra
D̃ ⇢ SCDerk(g ⌦ Sn), � acts on D̃ and its graded dual D̃gr⇤, so the �-action
on g ⌦k Sn induces a �-action on every untwisted EALA ESn and the fixed point
subalgebra of ESn under � is also an EALA. We also show that every fgc EALA
can be constructed as a fixed point subalgebra of some untwisted EALA in Chapter
3. But, except for the nullity 1 case (i.e. n = 1), the untwisted EALA may not be
unique. We give an explanation and construct an explicit example in Section 3.2.
For EALAs of nullity 1, it is known that they are just affine Kac-Moody algebras.
We will use the identifications that

SCDerk(g⌦ k[z±1]) = kd = SCDerk(L(g, �,m)),

where d = z
d

dz
is the degree derivation, L(g, �,m) is any loop algebra, and the

requirements of ingredients that are used in the construction of EALAs (see Sec-
tion 2.2 for the requirements), to explain that up to isomorphism every affine Kac-
Moody algebra can be realized as a fixed point subalgebra of a unique untwisted
affine Kac-Moody algebra.

The second topic of the thesis is about the application of descent theory to the
study of Lie algebras of derivations, and in particular, to the Lie algebra of deriva-
tions that arise in the construction of EALAs. Descent theory has been used to study
certain Lie algebras and their different structures. The basic idea of descent is that
a (complicated) object can be viewed as a “twisted form” of a much simpler object.
Knowledge of this simple object can in certain cases “descend” to the object that
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we had originally set out to understand. It is known that multiloop Lie algebras can
also be viewed as Lie algebras over certain rings. For example, the multiloop Lie
algebra L(g,�,m) is a Lie algebra over the ring Rn above. And when we view it
as a Lie algebra over Rn, there is the following Lie algebra isomorphism

L(g,�,m)⌦Rn Sn
⇠= (g⌦k Rn)⌦Rn Sn

⇠= g⌦k Sn,

which tells us that L(g,�,m) can be viewed as a twisted form of g⌦k Rn.

In general, let R be a commutative unital ring, and let N be any R-module. A
twisted form of N is by definition an R-module N 0 such that

N
0 ⌦R S ⇠= N ⌦R S

as S-modules for some ring extension S/R, where “S/R is a ring extension ” means
that there exists a ring homomorphism R �! S that takes the identity element of
R to the identity element of S. We are most interested in the case when the ring
extension is faithfully flat and finitely presented. If N is also equipped with other
structures, for example, if N is an R-Lie algebra, then we say an R-Lie algebra N 0

is a twisted form of the Lie algebraN ifN 0⌦RS
⇠= N⌦RS as S-Lie algebras. The

R-isomorphism classes of such modules can be computed by means of cocycles,
just as one does in Galois cohomology. There exists a one-to-one correspondence
between the following two sets,

Isomorphism classes of S/R� forms of N  ! H
1(S/R,Aut(N)),

where H1(S/R,Aut(N)) is a certain (non-abelian) first cohomology set that can
be defined explicitly (see Section 4.1). The elements in H

1(S/R,Aut(N)) are
equivalence classes of 1-cocycles, where equivalent 1-cocycles will give isomor-
phic twisted forms. From the sheaf viewpoint it is Čech cohomology for the cov-
ering Spec S �! Spec R. The automorphism group functor Aut(N) is a functor
from the category of ring extensions of R to the category of groups with

Aut(N) : R
0
/R 7! Aut(N)(R

0
) := Aut

R
0�mod

(N ⌦R R
0
),

Aut(N)(f) : Aut
R

0�mod
(N ⌦R R

0
) 7! Aut

R
00�mod

(N ⌦R R
00
)
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for f : R
0 �! R

00 an arbitrary ring homomorphism over R. If N is an R-Lie
algebra, then Aut(N)(R

0
) = Aut

R
0�Lie

(N ⌦R R
0
). For any 1-cocycle ' which

is a representative of an element in H
1(S/R,Aut(N)), it determines a descended

object

(N⌦RS)' =
nX

ni ⌦ si 2 N ⌦R S | '(
X

ni ⌦ si ⌦ 1S) =
X

ni ⌦ 1S ⌦ si

o
,

which is the corresponding twisted form of N . For any N
0 ⇠= (N ⌦R S)', we

refer to ' as the descent data that leads to the form N
0 . When S/R is Galois

with finite Galois group � (see Section 5.2), which is the case we are interested in,
H

1(S/R,Aut(N)) can be identified with the usual (non-abelian) Galois cohomol-
ogy set H1(�,Aut(N)(S)) (c.f. [W], [S]). And analogously there is a one-to-one
correspondence between the following two sets,

Isomorphism classes of S/R� forms of N  ! H
1(�,Aut(N)(S)).

Similarly, for any Galois 1-cocycle µ = (µ�)�2� which is a representative of an
element in H1(�,Aut(N)(S)), its corresponding descended object is defined as

(N ⌦R S)µ = {m 2 N ⌦R S | µ�(�m) = m, 8� 2 �},

where � acts on N ⌦R S via id⌦R � for any � 2 �.

It is well known how descent theory can be used to study the nature of the Lie
tori that appeared in extended affine Lie algebras (more precisely, multiloop Lie
algebras). Let Aut(g) be the k-algebraic group of automorphisms of g. The R-
group functor Aut(g)R obtained by base change is clearly isomorphic to Aut(g⌦k

R). It is an affine, smooth, and finitely presented group scheme over R whose
functor of points is given by

Aut(g⌦k R)(S) = AutS(g⌦k R⌦R S) ⇠= AutS(g⌦k S) = Aut(g)(S).

For the multiloop Lie algebraL(g,�,m) and ringsRn, Sn defined as above, Sn/Rn

is Galois with Galois group � = Z/m1Z⇥ · · ·⇥Z/mnZ, where the �-action on Sn

5



is given in Section 3.1. The corresponding Galois 1-cocycle is

u : � �! Aut(g)(Sn),

(i1, . . . , in) 7! (��i1
1 ⌦k idSn) · · · (��in

n
⌦k idSn),

i.e. L(g,�,m) = (g⌦kSn)u. On the other hand, one can also look at twisted forms
from the torsors viewpoint (c.f. [GP1], [GP2], [GP3], [GP4], [P1], [P3], [P4], etc.).
Aside from these, the idea of descent has been used in the study of the structure
of Lie algebras. For example, let L be a multiloop Lie algebra. The derivation
algebra Derk(L) is determined using descent theory in [P5]. Galois descent of
central extensions of L has been studied in [PPS]. Invariant bilinear forms on L
have been studied in [NPPS].

In [KP], the authors developed a theory of relative Kähler differentials for Lie
algebras. Therein they define a module of R/k-differentials ⌦R,L/k for any R-Lie
algebra L, where R is a k-algebra and k is a commutative unital ring. ⌦R,L/k is an
object that represent the functor DerR/k(L, ·). When k is a field of characteristic 0,
L is an R-form of some finite dimensional perfect Lie algebra g over k (by this we
mean it is a twisted form of g⌦k R under faithfully flat and finitely presented ring
extensions), ⌦R,L/k behaves very well under étale base change. The results in [KP]
tell us that there exists a canonical isomorphism

Derk(L)⌦R S ⇠= Derk(L⌦R S)

for any S/R étale. Hence for any S/R faithfully flat and étale (S/R is then an étale
cover, see Section 4.2 for its definition), if L⌦R S ⇠= (g⌦k R)⌦R S, then we can
get an isomorphism

Derk(L)⌦R S ⇠= Derk(g⌦k R)⌦R S.

So the derivation algebra Derk(L) of such an L can be viewed as an R-form of
Derk(g ⌦k R) under étale covers, and then descent consideration for derivation
algebras of such Lie algebras follows. Since Derk(L) is anR-form of Derk(g⌦kR),
there exists a 1-cocycle that leads to it. We will construct explicitly the descent data
in Chapter 5.

Because of the one-to-one correspondence between the set of isomorphism
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classes of twisted forms and the corresponding non-abelian first cohomology set,
and there exists a natural map between the isomorphism classes of Lie algebras
and their derivation algebras, it follows that there exists a natural map between the
corresponding (non-abelian) first cohomology sets under étale covers:

H
1(S/R,Aut(L)) �! H

1(S/R,Aut(Derk(L))).

We will construct the explicit map between these two cohomology sets. Actually,
we will construct a natural transformation between the two automorphism group
functors

Aut(L) �! Aut(Derk(L)),

where now the automorphism group functors are restricted to the category of étale
ring extensions. Then for any equivalence class of 1-cocycle ['] inH1(S/R,Aut(gR)),
where we denote g ⌦k R = gR, we construct an equivalence class of 1-cocycle
[e'] in H

1(S/R,Aut(Derk(gR))). These classes determine two descended objects
(g⌦k S)' and (Derk(g⌦k R)⌦R S)e'.We have shown that there exists an isomor-
phism

(Derk(g⌦k R)⌦R S)e'
⇠= Derk ((g⌦k S)') .

Since Galois ring extensions are faithfully flat and étale, the same considerations
apply to the corresponding (non-abelian) Galois cohomology sets. For any S/R

Galois with finite Galois group �, we construct a well-defined map between Galois
cohomology sets

H
1(�,Aut(gR)(S)) �! H

1(�,Aut(Derk(gR))(S)), [µ] 7! [eµ],

and show that there exists an isomorphism

(Derk(g⌦k R)⌦R S)eµ ⇠= Derk((g⌦k S)µ).

At the end, we apply the idea of descent to study extended affine Lie algebras.
Explicitly, if E is an fgc EALA, then E is of the form E = L�D

gr⇤�D, where L
is a twisted form of g⌦kR under Galois ring extensions for some finite dimensional
simple Lie algebra g over an algebraically closed field k of characteristic 0, R is a
Laurent polynomial ring over k. We know the descent data that leads to L. D is a

7



graded subalgebra of the skew-centroidal derivation algebra SCDerk(L), and when
D is taken to be the whole of SCDerk(L), then L � SCDerk(L)gr⇤ is a universal
central extension of L. Descent construction of such Lie algebras has been studied
in [PPS]. We will show generally that for every central extension L�D

gr⇤ of L, its
descent data can be constructed. More generally, we will use the results obtained
in Chapter 3 to construct the descent data that leads to the whole extended affine
Lie algebra E, which makes it possible to use descent theory to study extended
affine Lie algebras. For the Galois 1-cocycle u defined above that determines the
multiloop Lie algebra L, we construct a 1-cocycle eu in Section 5.3 such that the
descended object of some untwisted EALA under eu is the EALA E.

This thesis is organized as follows. In Chapter 2, we will review some basic
notions and results of extended affine Lie algebras, Lie tori and multiloop Lie al-
gebras. We also recall the process of how to construct extended affine Lie algebras
from centreless Lie tori. In Chapter 3, we show that there exists an action of some
finite abelian group on any untwisted EALA and the fixed point subalgebra is also
an EALA. Conversely, we give the result that every fgc EALA can be constructed
as a fixed point subalgebra of some untwisted EALA, and we apply the results to
the study of affine Kac-Moody algebras. In Chapter 4, we first introduce the notion
of twisted forms that will be used, the definition of automorphism group functors,
the first non-abelian cohomology sets and the results about one-to-one correspon-
dences between twisted forms and non-abelian cohomology sets. Then we review
derivations and differentials for both Lie algebras and associative algebras. We also
present step by step all the maps that will be used in the construction of an important
isomorphism, which leads to the result that derivation algebras of certain Lie alge-
bras can also be viewed as twisted forms. In Chapter 5, we will study the derivation
algebras as twisted forms from both étale cover and Galois descent points of view.
At the end, we apply the above obtained results to construct the descent data that
leads to every fgc extended affine Lie algebra.

In this thesis,R is a k-algebra meansR is a commutative unital ring with a fixed
ring homomorphism k �! R. All rings are assumed to be commutative with unit,
and ring homomorphisms take unit to unit.

8



Chapter 2

Extended affine Lie algebras andmul-
tiloop Lie algebras
In this chapter, we will recall the definitions and related results of extended affine
Lie algebras, Lie tori and multiloop Lie algebras, and also review the construction
of EALAs from centreless Lie tori introduced by Neher.

2.1 Extended affine Lie algebras (EALAs)

The definition of extended affine Lie algebras over the field C of complex numbers
was first introduced in [AABGP]. EALAs over an arbitrary field of characteristic 0
are introduced in [N2] which are defined similarly to the definition of EALAs over
C but with slight modifications. Let k be a field of characteristic 0.

Definition 2.1. An extended affine Lie algebra, or EALA for short, is a Lie algebra
E over k satisfying the conditions (EA1)-(EA6) below:
(EA1) E has a nondegenerate invariant symmetric bilinear form ( | ).
(EA2)E contains a nontrivial finite-dimensional self-centralizing and ad-diagonalizable
subalgebra H .

Because of (EA2), E has a root space decomposition

E =
M

↵2H⇤

E↵, E0 = H,

where E↵ = {x 2 E | [h, x] = ↵(h)x for all h 2 H}.
Due to the property (EA1) and H = E0, the restriction of ( | ) to H is also

nondegenerate. We can therefore represent any ↵ 2 H
⇤ by a unique vector t↵ 2 H

via ↵(h) = (t↵ | h) for all h 2 H . Transfer ( | ) to H
⇤ by (↵ | �) = (t↵ | t�) for all

9



↵, � 2 H
⇤. Define

R = {↵ 2 H
⇤ : E↵ 6= 0} (root system of E),

R
0 = {↵ 2 R : (↵ | ↵) = 0} (isotropic roots),

R
an = {↵ 2 R : (↵ | ↵) 6= 0} (anisotropic roots),

so that R = R
0 [ R

an. Let Ec be the subalgebra of E generated by all subspaces
E↵,↵ 2 R

an. Ec is called the core of E. Now we state the remaining axioms:
(EA3) For any ↵ 2 R

an, x↵ 2 E↵, ad x↵ is locally nilpotent.
(EA4) Ran is irreducible, i.e. there does not exist R1, R2 such that Ran = R1 [R2

and (R1 | R2) = 0.
(EA5) E is tame in the sense that {x 2 E | [x,Ec] = 0} ⇢ Ec.
(EA6) The Z-span of R0 is a free abelian group of finite rank.

An EALA is usually denoted by (E,H, ( | )). The finite rank in (EA6) is called
the nullity of the extended affine Lie algebra E. Denote by Z(Ec) the center of Ec.
Since Ec is a perfect Lie algebra, the quotient Ecc = Ec/Z(Ec) is centreless. It is
called the centreless core of the extended affine Lie algebra E.

Example 2.2. Let g be any finite dimensional split simple Lie algebra over k with
H a splitting Cartan subalgebra (c.f. [C], [H], [MP], etc.). Let ( | ) be the Killing
form, i.e.

(x|y) = tr(ad x � ad y), for any x, y 2 g.

Let R be the root system of g. Then R
an = R\{0} and R

0 = {0}. Hence the
Z-span of R0 is of rank 0. (g, H, ( | )) is an EALA over k of nullity 0.

We are concerned with Lie algebras up to isomorphism, so recall the definition
of two EALAs being isomorphic (c.f. [AF], [ABFP2], etc.).

Definition 2.3. Let (E,H, ( | )) and (E 0
, H

0
, ( | )0) be extended affine Lie algebras.

We say (E,H, ( | )) and (E
0
, H

0
, ( | )0) are isomorphic, denoted by (E,H, ( | )) ⇠=

(E
0
, H

0
, ( | )0), if there exists a Lie algebra isomorphism ' : E �! E

0 such that

'(H) = H
0
, and ('(x) | '(y))0 = a(x | y) for some 0 6= a 2 k, 8x, y 2 E.

10



Before giving the notion of an EALA being fgc, we first recall the general def-
inition of the centroid of a Lie algebra. The centroid of a Lie algebra L over any
commutative ring R is by definition the set of all R-linear endomorphisms of L
that commute with left and right multiplication by elements of L. It is denoted by
CtdR(L), i.e.

CtdR(L) = {� 2 EndR(L) | �([x, y]) = [�(x), y] = [x,�(y)], 8x, y 2 L}.

By the skew-symmetry of Lie bracket, it is the same as

CtdR(L) = {� 2 EndR(L) | �([x, y]) = [�(x), y], 8x, y 2 L},

or
CtdR(L) = {� 2 EndR(L) | �([x, y]) = [x,�(y)], 8x, y 2 L}.

If L is a perfect Lie algebra, then CtdR(L) is a commutative ring (c.f. Lemma 4.1 of
[GP2], Lemma 2.3 of [P5]). L can be naturally viewed as a module over CtdR(L)
via �.x = �(x) for all x 2 L, � 2 CtdR(L).

Definition 2.4. An EALA is fgc if its centreless core is fgc, i.e. the centreless core
is finitely generated as a module over its centroid.

Remark 2.5. From the definition of EALAs, we see that the structure of an EALA
is determined by the triple (E,H, ( | )). But for fgc EALAs, it is proved in Theorem
7.6 of [CNPY] that different subalgebras H in E are conjugate. Therefore, up to
isomorphism of EALAs, the choice of H has no effect. Similarly, fgc EALAs
can be constructed from multiloop Lie algebras as we will explain below, and it is
proved in Corollary 7.4 of [NPPS] that the invariant bilinear forms ( | ) on multiloop
Lie algebras are unique up to nonzero scalars, so the choice of the invariant bilinear
form is also not important (see also Remark 2.9 of [CNPY]).

Remark 2.6. For non-fgc EALAs, there is also some study for conjugacy in [CNP].

2.2 The general construction

In [N2], Neher gives a construction of extended affine Lie algebras from centreless
Lie tori. In this section, we will review his construction. Let us first recall some

11



terminology and results on Lie tori ([N1], [Y]). By a finite irreducible root system
we mean a finite subset � of a finite dimensional vector space (equipped with a
symmetric bilinear form ( , )) over the field k of characteristic 0 such that 0 2 �

and �⇥ := �\{0} is a finite irreducible root system in the usual sense (see [B],

chap. VI, § 1, Définition 1). Denote by �ind = {0} [ {↵ 2 � | 1
2
↵ /2 �} the

subsystem of indivisible roots. Then it is known that � has one of the following
types ([B], chap. VI, § 4):

A`(` � 1), B`(` � 2), C`(` � 3), D`(` � 4), E6, E7, E8, F4, G2, BC`(` � 1).

� is said to be reduced if 2↵ /2 �⇥ for ↵ 2 �⇥. Then, type BC`(` � 1) is not
reduced; all others are reduced.

Definition 2.7. Let ⇤ be an abelian group. A ⇤-graded algebra is an algebra A

over k together with a family (A� : � 2 ⇤) of subspaces A� of A such that

A =
M

�2⇤

A
� and A

�
A

µ ✓ A
�+µ for all �, µ 2 ⇤.

If A = ��2⇤A� is a ⇤-graded algebra we let supp⇤(A) = {� 2 ⇤ | A� 6= 0}
denote the ⇤-support of A.

If S is a subset of a group, we denote by hSi the subgroup generated by S.
We now recall the definition of a Lie torus. Lie tori were introduced by Y. Yoshii

in [Y] to give a characterization of EALAs and were further studied by E. Neher in
[N1].

Let ⇤ be a free abelian group of finite rank. Let � be a finite irreducible root
system. The span Q := spanZ(�) is the root lattice of �. For ↵, � 2 �, ↵̌ is the
coroot of ↵, and h�, ↵̌i is the Cartan integer of (�,↵) (c.f. [B], [N1]).

Definition 2.8. A Lie ⇤-torus of type � (or a Lie torus of type (�,⇤)) is a Lie
algebra L over k satisfying the following conditions (LT1)� (LT4).

(LT1) L is a Q⇥ ⇤-graded Lie algebra

L =
M

(↵,�)2Q⇥⇤

L
�

↵
, [L�

↵
, L

µ

�
] ⇢ L

�+µ

↵+� such that L�
↵
= 0 if ↵ /2 �.

(LT2) For ↵ 2 �⇥ and � 2 ⇤ we have

12



(i) dim L
�

↵
 1, with dim L

0
↵
= 1 if ↵ 2 �ind,

(ii) if dim L
�

↵
= 1 then there exist elements e�

↵
2 L

�

↵
and f�

↵
2 L

��
�↵ such that

L
�

↵
= ke

�

↵
, L

��
�↵ = kf

�

↵
,

and
[[e�

↵
, f

�

↵
], x�] = h�, ↵̌ix�

for all x� 2 L�, � 2 �.

(LT3) For � 2 ⇤ we have L�0 =
P

(↵,µ)2�⇥⇥⇤

[Lµ

↵
, L

��µ

�↵ ].

(LT4) ⇤ = hsupp⇤(L)i, where supp⇤(L) = {� 2 ⇤ | L�
↵
6= 0 for some ↵ 2 �}.

The rank of ⇤ is called the nullity of L. We say L is a Lie torus means that it is
a Lie torus of type (�,⇤) for some �, ⇤. Denote by

L
� =

M

↵2Q

L
�

↵
for � 2 ⇤ and L↵ =

M

�2⇤

L
�

↵
for ↵ 2 Q,

then L =
L

�2⇤ L
� is ⇤-graded and L =

L
↵2Q L↵ is Q-graded.

It is known that if L is an arbitrary Lie torus, then L/Z(L) is in a natural way a
centreless Lie torus (i.e. Lie torus with center 0) of the same type and nullity as L
(see Lemma 1.4 of [Y]).

Example 2.9. Let q = (qij) 2 Matn(k) be a quantum matrix, i.e. qijqji = 1 = qii

for all 1  i, j  n. The quantum torus associated to q is the unital associative
k-algebra kq generated by t

±1
i
, i = 1, . . . , n, modulo relations

tit
�1
i

= 1 = t
�1
i
ti and titj = qijtjti for 1  i, j  n.

On kq, we have a natural Zn-grading

kq =
M

�2Zn

kt
� where t

� = t
�1
1 · · · t�n

n
for � = (�1, . . . ,�n).

Denote by [kq, kq] the span of all commutators [a, b] = ab � ba with a, b 2 kq.
Then sll+1(kq) = {x 2 Matl+1(kq) | tr(x) 2 [kq, kq]} is a Lie torus of type Al,
l � 1, and is of nullity n. If all qij = 1, then kq = k[t±1

1 , . . . , t
±1
n
] is the Laurent

polynomial ring in n variables and sll+1(kq) = sll+1(k)⌦ k[t±1
1 , . . . , t

±1
n
].
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The following result is obtained from Theorem 2.2 and Theorem 7.1 of [Y].

Lemma 2.10. Let L be a Lie torus with L =
L

�2⇤ L
�
. Then L has a nonzero

invariant symmetric bilinear form ( | ), ⇤-graded in the sense that (L�|Lµ) = 0 if

� + µ 6= 0. And any such form is unique up to a nonzero scalar. If furthermore, L
is centreless, then ( | ) is nondegenerate.

Extended affine Lie algebras are closely related to Lie tori (c.f. Proposition 12
of [N2]).

Proposition 2.11. Let E be an extended affine Lie algebra of nullity n. Then its

core Ec is a Lie torus of nullity n, and its centreless core Ecc is a centreless Lie

torus of nullity n.

The following definition is given in Section 4 of [CNPY].

Definition 2.12. An EALA is called untwisted if its centreless core, as a Lie torus,
is of the form g ⌦k R for some finite dimensional simple Lie algebra g over k and
some Laurent polynomial ring R in finitely many variables.

Let L be a Lie torus over k of nullity n with grading ⇤. Then its centroid
Ctdk(L) is also ⇤-graded

Ctdk(L) =
M

�2⇤

Ctdk(L)�, with dimk Ctdk(L)�  1,

where Ctdk(L)� = {� 2 Ctdk(L) | �(Lµ) ✓ L
�+µ for all µ 2 ⇤}. Let ⌅ = {� 2

⇤ | Ctdk(L)� 6= 0}. The following results from Theorem 7 of [N1] give justification
to call ⌅ the centroid grading group of L.

Theorem 2.13. Let L be a centreless Lie ⇤-torus of type �. Then

(a) ⌅ is a subgroup of ⇤, and Ctdk(L) is isomorphic to the group ring k[⌅], hence

to a Laurent polynomial ring in finitely many variables.

(b) L is a free Ctdk(L)-module, and if � 6= Al, then L has finite rank as a

Ctdk(L)-module.

In the following, L will be a centreless Lie ⇤-torus of type � with centroid
grading group ⌅. We can thus write

Ctdk(L) =
M

µ2⌅

k�
µ
,
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where �µ acts on L as endomorphisms of degree µ and �µ
�
⌫ = �

µ+⌫ .
For any ✓ 2 HomZ(⇤, k), define @✓ of L by

@✓(x
�) = ✓(�)x� for � 2 ⇤, x� 2 L

�
.

@✓ is called a degree derivation of L. Put

D = {@✓ | ✓ 2 HomZ(⇤, k)}

the set of all degree derivations. Denote by

CDerk(L) := Ctdk(L)D =
M

µ2⌅

�
µD

the centroidal derivations of L. It is a ⌅-graded subalgebra of the derivation algebra
Derk(L) with

[�µ
@✓,�

⌫
@ ] = �

µ+⌫(✓(⌫)@ �  (µ)@✓).

Fix a nondegenerate invariant ⇤-graded bilinear form ( | )L on L (recall Lemma
2.10). Let SCDerk(L) be the set of all skew-centroidal derivations of L. It is a
⌅-graded subalgebra of CDerk(L) consisting of all skew derivations with respect to
( | )L, i.e.

SCDerk(L) = {d 2 CDerk(L) | (d(x) | x)L = 0 for all x 2 L}

=
M

µ2⌅

SCDerk(L)µ =
M

µ2⌅

�
µ{@✓ | ✓(µ) = 0}. (2.2.1)

Note that SCDerk(L)0 = D.

Now we are in a position to list two ingredients that appear in the construction
of EALAs.

(i) Let D =
L

µ2⌅ D
µ be a ⌅-graded subalgebra of SCDerk(L) such that the

canonical evaluation map

ev : ⇤ �! (D0)⇤

defined by
ev(�)(@✓) = ✓(�), � 2 ⇤
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is injective, where (D0)⇤ is the dual space ofD0
.Note thatD0 ✓ SCDerk(L)0 =

D.

(ii) Let ⌧ : D ⇥D �! D
gr⇤ be a 2-cocycle which is graded and invariant, i.e.

⌧(Dµ1 , D
µ2) ✓ (D�µ1�µ2)⇤ and ⌧(d1, d2)(d3) = ⌧(d2, d3)(d1),

and further require ⌧(D0
, D) = 0. Here Dgr⇤ =

L
µ2⌅(D

µ)⇤ is the graded
dual of D with grading (Dgr⇤)µ = (D�µ)⇤, and it is viewed as a D-module
by the contragredient action, i.e.

(d.')(d
0
) = '([d

0
, d]) for d, d

0 2 D,' 2 D
gr⇤

,

where ' 2 (Dµ)⇤ is viewed as a linear form on D by '|D⌫ = 0 for ⌫ 6= µ.

Remark 2.14. Clearly, ⌧ = 0 always satisfies the condition. It is important to
know that there do exist nontrivial ⌧ , see Remark 3.71 of [BGK]. For (i), the whole
skew-centroidal derivations SCDerk(L) always satisfies the condition and in that
case SCDerk(L)gr⇤ leads to a universal central extension of L (the Remarks after
Theorem 14 of [N2]).

Denote by

P (L) = {(D, ⌧) | D, ⌧ satisfying properties (i) and (ii) above}.

From the above Remark we know that P (L) is a nonempty set.
Then starting from L, for any (D, ⌧) 2 P (L), let

E = L�D
gr⇤ �D

be a Lie algebra with Lie bracket

[x1 + c1 + d1, x2 + c2 + d2] = ([x1, x2]L + d1(x2)� d2(x1))

+ (�D(x1, x2) + d1. c2 � d2. c1 + ⌧(d1, d2))

+ [d1, d2] (2.2.2)

for x1, x2 2 L, c1, c2 2 D
gr⇤, d1, d2 2 D, where [ , ]L denotes the Lie bracket of L,
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[d1, d2] = d1d2 � d2d1, and �D : L⇥ L �! D
gr⇤ is defined by

�D(x, y)(d) = (d(x) | y)L for all x, y 2 L, d 2 D. (2.2.3)

Note that �D is a 2-cocycle with D
gr⇤ viewed as a trivial L-module. E has a non-

degenerate invariant symmetric bilinear form defined by

(x1 + c1 + d1 | x2 + c2 + d2) = (x1 | x2)L + c1(d2) + c2(d1). (2.2.4)

Let
H = h� (D0)⇤ �D

0

where
h = L

0
0 = span

k
{[e�

↵
, f

�

↵
], ↵ 2 �⇥

,� 2 ⇤}

for e�
↵
, f

�

↵
as in (LT2).

The following Theorem is given in Theorem 14 of [N2].

Theorem 2.15. (a) For any (D, ⌧) in P (L), the triple (E,H, ( | )) constructed
above is an extended affine Lie algebra, denoted by E(L,D, ⌧). Its core is

L�D
gr⇤

, and centreless core is L.

(b) Conversely, for any extended affine Lie algebra (E,H, ( | )), let L = Ecc be

its centreless core. Then there exists (D, ⌧) 2 P (L) such that (E,H, ( | )) ⇠=
E(L,D, ⌧) as extended affine Lie algebras.

2.3 Multiloop Lie algebras

By now, we know that every extended affine Lie algebra can be constructed from
a centreless Lie torus, so the realization of extended affine Lie algebras reduces to
the realization of centreless Lie tori. In this section, we will explain the realization
of fgc centreless Lie tori as multiloop Lie algebras.

Firstly, we will recall the construction of multiloop Lie algebras and related
results (c.f. [ABFP1], [ABFP2]). Let now k be an algebraically closed field of
characteristic 0. For any positive integer m, fix once and for all a choice of m-th
primitive root of unity ⇠m compatible in the sense that ⇠`

m`
= ⇠m for all ` 2 Z�1.
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Let g be a finite-dimensional simple Lie algebra over k. Aut(g) is the automor-
phism group of g. For n a positive integer, denote by

cfon(g) = {� = (�1, . . . , �n) 2 Aut(g)n | |�i| <1, �i�j = �j�i for all i, j}

the set of n-tuples of commuting finite order automorphisms of g.

Let m = (m1, . . . ,mn) be a sequence of positive integers such that �mi
i

= id

for all i = 1, . . . , n, where � = (�1, . . . , �n) 2 cfon(g). For simplicity, we will
write �m = Id. Let

R = k[t±1
1 , . . . , t

±1
n
], S = k[t

± 1
m1

1 , . . . , t
± 1

mn
n ]

be two Laurent polynomial rings, and R ⇢ S as a subring. Set zi = t

1
mi
i

, thus
ti = z

mi
i
, i = 1, . . . , n, and

R = k[z±m1
1 , . . . , z

±mn
n

], S = k[z±1
1 , . . . , z

±1
n
].

Then g⌦k S is a Lie algebra under

[x⌦ f, y ⌦ g] = [x, y]⌦ fg, for x, y 2 g, f, g 2 S. (2.3.1)

Let ⇤ = Zn. For � = (�1, . . . ,�n) 2 ⇤, denote by

z� = z
�1
1 · · · z�n

n
= t

�1
m1
1 · · · t

�n
mn
n . (2.3.2)

Let � : ⇤ �! Z/m1Z� · · ·� Z/mnZ = ⇤̄ be the canonical map. With respect to
�, g has an eigenspace decomposition

g =
M

�̄2⇤̄

g�̄

with g�̄ = {x 2 g | �i(x) = ⇠
�i
mi
x, 1  i  n} for � = (�1, . . . ,�n) 2 ⇤.

Then we can define a ⇤-graded Lie algebra

L = L(g,�,m) =
M

�2⇤

(g�̄ ⌦ z�) ✓ g⌦k S. (2.3.3)
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g⌦k S is equipped with a ⇤-grading by

(g⌦k S)
� = g⌦k S

� = g⌦ kz�, 8� 2 ⇤,

so that L is a ⇤-graded subalgebra of g⌦k S with L� = g�̄ ⌦ z� ⇢ (g⌦k S)�.

Definition 2.16. Suppose g is a finite dimensional simple Lie algebra, � 2 cfon(g),
and m 2 Zn

�1 such that �m = Id. Then the Lie algebra L defined above is called
a multiloop Lie algebra determined by g,�,m. The Lie algebra g⌦ S is called an
untwisted multiloop Lie algebra. The positive integer n is called the nullity of both
L and g⌦ S.

When n = 1, L and g ⌦ S are called twisted loop algebra and untwisted loop

algebra, respectively (c.f. Chapter 8 of [K]).

Remark 2.17. The positive integer mi is a peroid of �i. It may not be the order
of �i, i = 1, . . . , n. There are studies related to the effects of changing the three
elements g,�,m in the structures of multiloop Lie algebras. Since these are not
relevant to our work, we will not go into details. The interested reader can refer to
[ABFP2], [ABP1], [ABP2], [K], [Na].

Now we will review the realization of centreless Lie tori as multiloop Lie alge-
bras ([ABFP2]). To be more precise, we need the following definition (c.f. Defini-
tion 2.1.1 of [ABFP2]).

Definition 2.18. If L is a Lie torus with grading Q ⇥ ⇤ and L0 is a Lie torus with
grading Q

0 ⇥ ⇤0, we say that L and L0 are bi-isomorphic if there is an algebra
isomorphism from L to L0 that is isograded relative to the two gradings; this means
that there is an algebra isomorphism ' : L �! L0, a group isomorphism 'r :

Q �! Q, and a group isomorphism 'e : ⇤ �! ⇤0 such that

'(L�
↵
) = L'e(�)

'r(↵)

for any ↵ 2 Q and � 2 ⇤.

A multiloop Lie Zn-torus is a multiloop Lie algebra with a grading Zn that is
also a Lie torus. Note that not every multiloop Lie algebra with the defined grading
(see (2.3.3)) is a Lie torus. For example, it is shown in Proposition 3.4.1 of [ABFP2]
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that if n = 1, then L(g, �,m) with grading defined as in (2.3.3) is a centreless Lie
torus if and only if � is a diagram automorphism. The following important result is
given in Theorem 3.3.1 of [ABFP2].

Theorem 2.19. Let k be algebraically closed of characteristic 0. A centreless Lie

⇤-torus L of nullity n � 1 is bi-isomorphic to a multiloop Lie Zn
-torus if and only

if L is fgc, i.e. it is finitely generated as a module over its centroid.

Therefore, up to isomorphism, every fgc centreless Lie torus has the form of a
multiloop Lie algebra.

Remark 2.20. The construction in Section 2.2 is given for centreless Lie tori. It is
known that every fgc centreless Lie torus is a multiloop Lie algebra, but a multiloop
Lie algebra may not be a Lie torus. However, starting from any multiloop Lie
algebra L(g,�,m), if the fixed point subalgebra g� = g0̄ 6= 0, then by the same
construction process, one can get EALAs from multiloop Lie algebras (see Section
5 of [Na]).
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Chapter 3

Fixed point subalgebra realization
It is known that every fgc centreless core can be realized as a fixed point subalgebra
of some untwisted centreless core under a finite abelian group. In this chapter, we
first show that the fixed point subalgebras of untwisted EALAs under a finite abelian
group (which is determined by some commuting finite order automorphisms) are
also (fgc) EALAs. Then we show that every fgc extended affine Lie algebra can be
realized as a fixed point subalgebra of some untwisted EALAs, which generalizes
the result of affine Kac-Moody Lie algebras as they are fgc extended affine Lie
algebras (of nullity 1). At the end, we will give an explanation of our results to affine
Kac-Moody Lie algebras. We also give a new proof of the equivalence between
EALAs of nullity 1 and affine Kac-Moody Lie algebras. Throughout this chapter,
k will be an algebraically closed field of characteristic 0.

3.1 Fixed point subalgebras of untwisted EALAs

Let E be an untwisted EALA of nullity n. Then, by definition, Ecc is of the form
g ⌦ S with g a finite dimensional simple Lie algebra, and S a Laurent polynomial
ring in n variables. From Theorem 2.15, for any (D̃, ⌧̃) 2 P (g⌦ S),

ES = (g⌦ S)� D̃
gr⇤ � D̃ (3.1.1)

is an untwisted EALA. For any sequence of positive integers m = (m1, . . . ,mn),
let

� = Z/m1Z� · · ·� Z/mnZ.

Let S,R be the Laurent polynomial rings as in Section 2.3. For any ` = (`1, . . . , `n) 2
Zn

�1, denote by ⇠`m = ⇠
`1
m1

· · · ⇠`n
mn

. For any � 2 cfon(g) such that g� 6= 0. Suppose
withm = (m1, . . . ,mn) is such that �m = Id, consider the following �-action on
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g⌦ S.

�.(x⌦ s) = (��� ⌦ idS) � (idg ⌦ �)(x⌦ s) for any � 2 �, x 2 g, s 2 S,

where � = �̄ = (�̄1, . . . , �̄n) 2 � acts on the elements in S by

�.zµ = ⇠�µmzµ for all µ 2 ⇤ = Zn
, (3.1.2)

and ��� means the composition ���1
1 � · · · � ���n

n
. Denote by

h� = (��� ⌦ idS) � (idg ⌦ �) (3.1.3)

for any � 2 �. Then �.(x⌦ s) = h�(x⌦ s).

Under this �-action, it is easy to see that the �-fixed point subalgebra of g ⌦ S

is actually the multiloop Lie algebra L defined before, i.e.

L = L(g,�,m) = (g⌦ S)� = {y 2 g⌦ S | h�(y) = y, 8� 2 �}. (3.1.4)

Now we are going to show that � actually acts on the untwisted EALA ES and
its fixed point subalgebra (ES)� is also an EALA.

The �-action on g⌦ S induces a �-action on Derk(g⌦ S) by

�⇥ Derk(g⌦ S) �! Derk(g⌦ S) (3.1.5)

(�, d) 7! �.d = Ch� (d) = h� � d � h�1
�
.

For any (D̃, ⌧̃) 2 P (g ⌦ S), to show that � acts on D̃ and D̃
gr⇤, we first need

to explain several identifications (c.f. [CNPY], [GP2], [P5]). It follows from [GP2]
that the centroids of L, g⌦ S can be identified with the rings R, S respectively, via

R �! Ctdk(L); r 7! �r, where �r(x) = rx, 8 x 2 L,

S �! Ctdk(g⌦ S), s 7! �s, where �s(y) = sy, 8 y 2 g⌦ S.

Therefore, by Definition 2.4, every untwisted EALA is fgc. And the centroid grad-
ing groups of L and g ⌦ S (defined analogously as in the Lie torus case) are
⌅ = m1Z� · · ·�mnZ and ⇤ = Zn respectively.
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The argument below follows from Section 4.2 of [CNPY]. Since S is étale
over R, every k-linear derivation � 2 Derk(R) extends uniquely to a derivation
�̂ 2 Derk(S). We identify Derk(R) ⇢ Derk(S) by viewing � = �̂. There is a natural
symmetric bilinear form on S defined by

(zµ | z⌫) = �µ+⌫,0, (3.1.6)

and similarly on R. Then the skew-symmetric derivations on R can be identified as
a graded-subalgebra of the skew-symmetric derivations on S in the following way:

SDerk(R) =
M

µ2⌅

z
µ{@✓ | ✓(µ) = 0} ⇢

M

µ2⇤

z
µ{@✓ | ✓(µ) = 0} = SDerk(S),

where @✓ is the degree derivation with respect to the natural gradings on R and S.
Let  be the Killing form on g. Then there is a natural bilinear form on g⌦ S with

(x1 ⌦ zµ | x2 ⌦ z⌫) = (x1, x2)�µ+⌫,0. (3.1.7)

( | ) is invariant, nondegenerate and symmetric. Its restriction ( | )L to the multiloop
Lie algebra L has the same properties and is up to a scalar the only such bilinear
form (Corollary 7.4 of [NPPS]).

Clearly, the map � 7! idg⌦ � identifes Derk(S) with the subalgebra CDerk(g⌦
S) of centroidal derivations, and it maps SDerk(S) onto SCDerk(g ⌦ S). Analo-
gously, � 7! (idg ⌦ �)|L identifies Derk(R) with CDerk(L) (c.f. [P5]) where � is
viewed as an element in Derk(S) via the above identification Derk(R) ⇢ Derk(S),
and it maps SDerk(R) onto SCDerk(L). Via all these identifications, we get

SCDerk(L) = SDerk(R) ⇢ SDerk(S) = SCDerk(g⌦ S).

Explicitly, we can write

SCDerk(L) =
M

µ2⌅

(SCDerk(L))µ =
M

µ2⌅

z
µ{@✓ 2 D : ✓(µ) = 0},

SCDerk(g⌦ S) =
M

⌫2⇤

(SCDerk(g⌦ S))⌫ =
M

⌫2⇤

z
⌫{@✓ 2 D : ✓(⌫) = 0},
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so that for every µ 2 ⌅ ⇢ ⇤,

(SCDerk(L))µ = (SCDerk(g⌦ S))µ.

We first show that the �-action preserves every graded subalgebra of the skew-
centroidal derivation algebra and also preserves its grading so that it induces an
action on its graded dual.

Lemma 3.1. � acts on every graded subalgebra D̃ ✓ SCDerk(g⌦S) and its graded
dual D̃

gr⇤
. In particular, (SCDerk(g⌦S))� = SCDerk(L), and (D̃gr⇤)� = (D̃�)gr⇤.

Proof. For any element z⌫@✓ 2 (SCDerk(g⌦ S))⌫ ⇢ SCDerk(g⌦ S), ⌫ 2 ⇤, it is
easy to see, by the �-action defined on Derk(g⌦ S), that

Ch� (z
⌫
@✓) = ⇠�⌫mz⌫@✓ 2 (SCDerk(g⌦ S))⌫ , for any � 2 �. (3.1.8)

Therefore � acts on SCDerk(g ⌦ S) as an automorphism group and preserves its
grading.

From (3.1.8), we see that actually � acts on the skew-centroidal derivations by
scalars. Therefore for any graded subalgebra D̃ ✓ SCDerk(g⌦S), � acts on D̃ and
preserves its grading. Write D̃ =

L
⌫2⇤ D̃

⌫ . Then for any ⌫ 2 ⇤, by definition,

(D̃⌫)� = {z⌫@✓ 2 D̃
⌫ | ⇠�⌫mz⌫@✓ = z⌫@✓, 8� 2 �}

= {z⌫@✓ 2 D̃
⌫ | ⇠�⌫m = 1, 8� 2 �}. (3.1.9)

The ⇠mi , i = 1, . . . , n are all primitive, so

(D̃⌫)� = D̃
⌫ if ⌫ 2 ⌅,

(D̃⌫)� = 0 if ⌫ 2 ⇤\⌅.

Hence
D̃

� =
M

⌫2⇤

(D̃⌫)� =
M

µ2⌅

D̃
µ
.
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In particular,

(SCDerk(g⌦ S))� =
M

⌫2⇤

((SCDerk(g⌦ S))⌫)�

=
M

µ2⌅

(SCDerk(g⌦ S))µ

=
M

µ2⌅

(SCDerk(L))µ = SCDerk(L). (3.1.10)

Since the �-action preserves the grading, it induces a �-action on (D̃⌫)⇤ for any
⌫ 2 ⇤ by

(�.')(d) = '(��1
.d) = '(C

h
�1
�
(d)), 8� 2 �, ' 2 (D̃⌫)⇤, d 2 D̃

⌫
, (3.1.11)

which then induces a �-action on D̃
gr⇤ =

L
⌫2⇤(D̃

⌫)⇤ that preserves the grading
by definition. Simiarly, it is easy to show that

((D̃⌫)⇤)� = (D̃⌫)⇤ if ⌫ 2 ⌅,

((D̃⌫)⇤)� = 0 if ⌫ 2 ⇤\⌅.

Hence
(D̃gr⇤)� =

M

⌫2⇤

((D̃⌫)⇤)� =
M

µ2⌅

(D̃µ)⇤ = (D̃�)gr⇤.

In particular,

((SCDerk(g⌦ S))gr⇤)� = (SCDerk(L))gr⇤. (3.1.12)

Lemma 3.2. For any (D̃, ⌧̃) 2 P (g ⌦k S), the 2-cocycle ⌧̃ is �-equivariant under
the above �-actions.

Proof. Recall that ⌧̃ : D̃ ⇥ D̃ �! D̃
gr⇤ is graded, ⌧̃(D̃⌫1 , D̃

⌫2) ⇢ (D̃�⌫1�⌫2)⇤. For
any � 2 �, di 2 D̃

⌫i , i = 1, 2, d 2 D̃
�⌫1�⌫2 , we have

⌧̃(�.d1, �.d2)(d) = ⌧̃(⇠�⌫1m d1, ⇠
�⌫2
m d2)(d) = ⇠�(⌫1+⌫2)m ⌧̃(d1, d2)(d),
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(�.⌧̃(d1, d2))(d) = ⌧̃(d1, d2)(�
�1
.d) = ⌧̃(d1, d2)(⇠

��(�⌫1�⌫2)
m (d)).

They are equal, so ⌧̃ is �-equivariant.

Now
D̃

� ✓ (SCDerk(g⌦ S))� = SCDerk(L),

and (D̃�)0 = (D̃0)� = D̃
0 (actually, � acts on degree derivations as the identity).

If ev : ⇤ �! (D̃0)⇤ is injective, then ev : ⇤ �! ((D̃�)0)⇤ is also injective. Hence
D̃

� satisfies property (i) in Section 2.2 for L = L.
Since ⌧̃ : D̃ ⇥ D̃ �! D̃

gr⇤ is �-equivariant, (D̃gr⇤)� = (D̃�)gr⇤, and (D̃�)0 =

D̃
0. It is immediate to then see that the restriction map

⌧̃ | : D̃� ⇥ D̃
� �! (D̃gr⇤)� = (D̃�)gr⇤,

satisfies property (ii) in Section 2.2. Thus (D̃�
, ⌧̃ |) 2 P (L).

It then follows from Theorem 2.15 and Remark 2.20 that

Theorem 3.3. Let E(g ⌦k S, D̃, ⌧̃) be any untwisted EALA. For any � 2 cfon(g)
with g� 6= 0, �m = Id, let � = Z/m1Z� · · ·� Z/mnZ act on D̃, D̃

gr⇤ as above.
Then (D̃�

, ⌧̃ |) 2 P (L). In particular, the fixed point subalgebraE(g⌦kS, D̃, ⌧̃)� =

E(L, D̃�
, ⌧̃ |) is also an EALA.

3.2 Fgc EALAs as fixed point subalgebras

LetE be an fgc EALA of nullity n. ThenEcc is an fgc centreless Lie torus of nullity
n, so, by Theorem 2.19, Ecc is a multiloop Lie algebra. Suppose Ecc is of the form
L = L(g,�,m) for some g, �,m. Recall that (see 3.1.4)

L = (g⌦k S)
�
.

Now for any (D, ⌧) 2 P (L), E = L�D
gr⇤ �D is an fgc EALA.

Our question is, does there exist (D̃, ⌧̃) 2 P (g ⌦k S) such that the fixed point
subalgebra under � of the obtained untwisted EALA ES = (g⌦k S)� D̃

gr⇤� D̃ is
the EALA E?
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Note that for any (D̃, ⌧̃) 2 P (g ⌦k S), by Lemma 3.1 and Lemma 3.2, � acts
on D̃, D̃

gr⇤ and ⌧̃ is �-equivariant. In what follows, we will use the identifications
explained in Section 3.1.

The answer to the question above is positive, as one example of such (D̃, ⌧̃)

is given in Lemma 4.5 of [CNPY]. One can just take (D̃, ⌧̃) = (D, ⌧). Since
SCDerk(L) ⇢ SCDerk(g⌦S), we have (D, ⌧) 2 P (g⌦k S). So, by Theorem 2.15,
ES = (g⌦k S)�D

gr⇤ �D is an untwisted EALA.
By the �-actions defined above, we know that for any D ✓ SCDerk(L),

D
� = D, and (Dgr⇤)� = D

gr⇤
.

The following result is stated in Section 6 of [CNPY].

Theorem 3.4. For any fgc EALA E(L, D, ⌧) where L = (g ⌦k S)� for some � a

finite abelian group, there exists an untwisted EALA ES(g⌦k S,D, ⌧) such that the

fixed point subalgebra of ES under � is E = E(L, D, ⌧), i.e.

(ES)
� = (g⌦k S)

� � (Dgr⇤)� �D
� = L�D

gr⇤ �D = E.

It is natural to ask then if such a (D̃, ⌧̃) is unique? Generally, the answer is
negative, the untwisted EALA need not be unique. For example, one can take any
graded subalgebra D̃ of SCDerk(g ⌦ S) with the property that it contains D and
D̃

µ = D
µ for all µ 2 ⌅, so that it satisfies the injectivity condition and D̃

� = D.
Then one defines

⌧̃ : D̃ ⇥ D̃ �! (D̃)gr⇤

by ⌧̃ |D⇥D = ⌧ , and 0 on other elements. It is straightforward to show that such
defined ⌧̃ is indeed a 2-cocycle satisfying the property (ii) before. Hence

(D̃, ⌧̃) 2 P (g⌦k S)

with
(D̃)� = D and ⌧̃ | = ⌧.

Therefore, for any such EALA E(g⌦k S, D̃, ⌧̃), its �-fixed point subalgebra is the
EALA E(L, D, ⌧). We give an explicit example of such D̃ that is not D.

Example 3.5. Suppose n = 2, � = (id, �2) with �2
2 = 1, let m = (1, 2). Then
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� = Z/2Z, ⌅ = Z⇥ 2Z ⇢ Z⇥ Z = ⇤,

R = k[t±1
1 , t

±1
2 ] = k[z±1

1 , z
±2
2 ], S = k[t±1

1 , t
± 1

2
2 ] = k[z±1

1 , z
±1
2 ],

L = L(g,�,m) = (g⌦k S)
� ⇢ g⌦k S.

For any D ✓ SCDerk(L) satisfying property (i), note that D is Z ⇥ 2Z-graded,
consider

D̃ = D �D
0
with D

0
=

M

⌫2Z⇥(2Z+1)

kz⌫@⌫
✓
,

where
z⌫ = z

m

1 z
2n+1
2 , @

⌫

✓
= (2n+ 1)z1

@

@z1
�mz2

@

@z2

for any ⌫ = (m, 2n + 1) 2 Z ⇥ (2Z + 1). It is straightforward to show that D̃ ⇢
SCDerk(g ⌦k S) is a graded subalgebra satisfying the property (i) and D̃

� = D

with �-action defined as before (note � acts on the second variable of S).

We will explain below that for EALAs of nullity 1, the untwisted EALA is
unique up to isomorphism.

3.3 Application to affine Kac-Moody Lie algebras

We now give a characterization of the equivalence of EALAs of nullity 1 and affine
Kac-Moody Lie algebras which is different from the ones given in [ABGP] and
[ABP4]. We also give an explanation of the above results in the affine case.

Theorem 3.6. Up to natural isomorphism, extended affine Lie algebras of nullity 1
are the same as affine Kac-Moody Lie algebras.

Proof. For any extended affine Lie algebra E of nullity 1, Ecc is a centreless Lie
torus of nullity 1. By the classification of centreless Lie tori, we know that Ecc

is always fgc. Therefore Ecc is a loop algebra, say Ecc = L(g, �,m) for some
(g, �,m) where � can be choosen to be a diagram automorphism (c.f. Theorem 2
of [P1]). Then up to isomorphism

E = L(g, �,m)�D
gr⇤ �D
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for some (D, ⌧) 2 P (L(g, �,m)). Given that

SCDerk(L(g, �,m)) = kz
d

dz
= kt

1
m

d

dt
1
m

only consists of degree derivations, where z = t
1
m , there is only one possibility for

D, i.e. D can only be kd for d the degree derivation. And due to the requirement
for ⌧ that ⌧(D0

, D) = 0, in this case, ⌧ can only be identically 0. SinceDgr⇤ is also
one-dimensional, we denote it by kc with c(d) = 1. Hence

E = L(g, �,m)� kc� kd,

with Lie bracket defined by the formula (2.2.2) (remember that ⌧ = 0, [d, d] = 0

and note that in this case the contragredient action of D on Dgr⇤ is actually trivial).
It follows from the realization of affine Kac-Moody Lie algebras (Chapter 7 and 8
of [K]) that E is an affine Kac-Moody Lie algebra.

Conversely, let E be an affine Kac-Moody Lie algebra. Then, again by its real-
ization (Chapter 7 and 8 [K]), E is of the form

E = L(g, �,m)� kc� kd,

for d the degree derivation, kc a one-dimensional center, and � can be choosen to
be a diagram automorphism of the finite dimensional simple Lie algebra g of finite
order m. Here L(g, �,m) is a loop algebra of nullity 1. By Proposition 3.4.1 of
[ABFP2], L(g, �,m) is a centreless Lie torus and it is clear that

(kd, 0) 2 P (L(g, �,m)),

so E is an extended affine Lie algebra of nullity 1.

By Theorem 3.6, affine Kac-Moody Lie algebras are extended affine Lie alge-
bras of nullity 1 (see also Proposition 5.2.3 of [ABP4] or Theorem 2.32 of [ABGP]).
Therefore, by Theorem 3.3, the fixed point subalgebra of an untwisted affine Kac-
Moody Lie algebra is also an affine Kac-Moody Lie algebra. Conversely, by Section
3.2, we know that every affine Kac-Moody Lie algebra can be realized as a fixed
point subalgebra of some untwisted affine Kac-Moody Lie algebra. We now explain
why the untwised affine Kac-Moody Lie algebra is actually unique.
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This is because
SCDerk(g⌦ k[z±1]) = kz

d

dz
,

i.e. all skew-centroidal derivations are degree derivations, so

SCDerk(g⌦ k[z±1]) = kd = SCDerk(L(g, �,m)),

where d is the degree derivation and L(g, �,m) is any loop algebra. Hence the
graded subalgebra D has no choice but to be the whole set of skew-centroidal
derivations, which justifies that in the affine case, the central extension is univer-
sal, and then ⌧ has no choice but to be 0. Therefore

P (g⌦ k[z±1]) = {(kd, 0)} = P (L(g, �,m))

only consists of one point, uniqueness follows (up to isomorphism).
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Chapter 4

Descent theory and derivation algebras

Throughout this chapter, k will be a field of characteristic 0. We will first introduce
some basic notions and terminology that will be used. The notion of (twisted) forms
given here is suitable for our work. We also review the definition of a certain (non-
abelian) first cohomology set and its relation with twisted forms (c.f. [W]). Then
we recall related notions about differentials and derivations for Lie algebras and
associative algebras from [KP], [M] respectively. At the end, we explain in detail
how to get the result that derivation algebras of twisted forms of certain Lie algebras
can also be viewed as twisted forms.

4.1 Faithfully flat descent

Definition 4.1. Let R be a ring, N and N 0 are R-modules. We say N 0 is an R-form

(or R-twisted form) of N if

N
0 ⌦R S ⇠= N ⌦R S

as S-modules for some faithfully flat ring extension S/R.

If N and N
0 are Lie algebras over R, then the isomorphism in the definition

is required to be an S-Lie algebra isomorphism with the Lie bracket on the tensor
product defined naturally.

By abuse of terminology and for simplicitly, if g is a Lie algebra over k, we say
an R-Lie algebra L is an R-form of g if it is an R-form of the Lie algebra g⌦k R.

We now recall the group functor Aut(N) for an arbitrary R-module N . Let
R�alg be the category of ring extensions of R, andGp be the category of groups.
ThenAut(N) is the functor, from the categoryR�alg to the categoryGp, defined
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as follows:

Aut(N) : R
0
/R 7! Aut(N)(R

0
) := Aut

R
0�mod

(N ⌦R R
0
),

and for every homomorphism f : R
0 7! R

00 in R�alg, the group homomorphism
inGp is given by

Aut(N)(f) : Aut
R

0�mod
(N ⌦R R

0
) �! Aut

R
00�mod

(N ⌦R R
00
),

� 7! Aut(N)(f)(�) := �
R

00 ,

where �
R

00 is the unique R00-module automorphism of N ⌦R R
00 such that for any

n 2 N ,

�
R

00 (n⌦ 1
R

00 ) =
X

ni ⌦ f(r
0

i
) whenever �(n⌦ 1

R
0 ) =

X
ni ⌦ r

0

i

where ni 2 N , r0
i
2 R

0 . Similarly, if we are working with Lie algebras, then all
module homomorphisms are required to be Lie algebra homomorphisms.

Let S/R be any ring extension, consider the following morphisms in R�alg:

S ⌦R S �! S ⌦R S ⌦R S

P12 : s⌦ t 7! s⌦ t⌦ 1S,

P13 : s⌦ t 7! s⌦ 1S ⌦ t,

P23 : s⌦ t 7! 1S ⌦ s⌦ t,

P1 : S �! S ⌦R S, s 7! s⌦ 1S,

and
P2 : S �! S ⌦R S, s 7! 1S ⌦ s.

Denote by S
00
= S ⌦R S and S

000
= S ⌦R S ⌦R S. For any element ' in

Aut(N)(S
00
) = Aut

S
00�mod

(N ⌦R S
00
), denote by

'ij = Aut(N)(Pij)(') 2 Aut
S
000�mod

(N ⌦R S
000
)

for 1  i < j  3. Consider the elements ' 2 Aut(N)(S
00
) with '13 = '23 � '12,

they are called 1-cocycles. Two 1-cocycles ' and '0 are called cohomologous,
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denoted by ' ⇠ '
0 , if

'
0
= (d2�)'(d1�)�1

for some � 2 Aut(N)(S), where d
i
� = Aut(N)(Pi)(�) for i = 1, 2. Such de-

fined ⇠ is an equivalence relation. The set of equivalence classes is denoted by
H

1(S/R,Aut(N)), for every 1-cocycle ', we denote by ['] its equivalence class.
H

1(S/R,Aut(N)) is a pointed set with a distinguished element, i.e. the equiva-
lence class of the identity map. We call it the (non-abelian) first cohomology set.

When S/R is faithfully flat, every 1-cocycle ' determines a descent datum.
Namely, ' determines a “descended object”M overR such thatM⌦RS

⇠= N⌦RS.

Up to isomorphism,M can be characterized as

M = (N ⌦R S)'

= {
X

ni ⌦ si 2 N ⌦R S | '(
X

ni ⌦ si ⌦ 1S) =
X

ni ⌦ 1S ⌦ si},

one verifies that the map

f : (N ⌦R S)' ⌦R S �! N ⌦R S; (
X

ni ⌦ si)⌦ s 7!
X

ni ⌦ ssi

is an S-module isomorphism.
The above is a one-to-one correspondence (c.f. § 17.6 of [W]).

Theorem 4.2. Let R �! S be faithfully flat. Then the set of isomorphism classes

of S/R-forms of N is in one-to-one correspondence with H
1(S/R,Aut(N)). For

any 1-cocycle ', the (N ⌦R S)' is the corresponding S/R-form of N .

4.2 Derivations and differentials

We first recall some basic notions from [KP]. Let R be a k-algebra. L is an R-

Lie algebra means that L is an R-module together with an R-bilinear Lie bracket
[ , ]; note then L is also a Lie algebra over k. An L-module M is a k-module with
compatible L-action, i.e. the map L ⌦k M �! M , (x,m) 7! xm is k-linear such
that [x, y]m = xym�yxm for all x, y 2 L,m 2M. IfM is also anR-module, then
M is called an R� L-module if in addition, x(rm) = (rx)m = r(xm) for all r 2
R, x 2 L,m 2 M. If M,N are R � L-modules, denote by HomR�L(M,N) the
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set of L-equivariant R-module maps. It has a natural R-module structure given by
(rf)(m) = rf(m) for all r 2 R, f 2 HomR�L(M,N),m 2M.

Let L be a Lie algebra over k, andM be an L-module. A k-derivation of L with
values in M is a k-linear map � : L �!M such that

�([x, y]) = x�(y)� y�(x), for all x, y 2 L.

Now let L be anR-Lie algebra. Consider the functor Derk(L, ·) (or DerR/k(L, ·)
to emphasize the presence of R) which is defined from the category of R � L-
modules to the category ofR-modules, where forM anR�L-module, Derk(L,M)

consists of all k-derivations of L with values in M . Derk(L,M) has a natural R-
module structure via (r�)(x) = r�(x) for all r 2 R, x 2 L, � 2 Derk(L,M).When
M is taken to be L, as an L-module via adjoint representation, then a k-derivation
of L with values in L is the same as the notion of a derivation on L, and Derk(L,L)
is the same as the algebra of derivations Derk(L) on the Lie algebra L.

In the paper [KP], the authors showed that the functor Derk(L, ·) is repre-
sentable, i.e. there exists a unique (up to isomorphism) module ofR/k-differentials
⌦R,L/k for L with a universal derivation dR,L,k : L �! ⌦R,L/k such that for any
R� L-moduleM , the following map is an R-module isomorphism,

 R,L,M : HomR�L(⌦R,L/k,M) �! Derk(L,M); ↵ 7! ↵ � dR,L,k.

In other words, any derivation � : L �!M corresponds to a unique R�L-module
homomoprhism �� : ⌦R,L/k �!M such that �� � dR,L,k = �.

In particular, when M is taken to be L with the adjoint action (note that L is
naturally an R� L-module), we denote by

 R,L : HomR�L(⌦R,L/k, L) �! Derk(L); ↵ 7! ↵ � dR,L,k (4.2.1)

the R-module isomorphism.

We also recall some results on Kähler differentials (c.f. Chapter 10 of [M]).
Let R be a k-algebra, and M be an R-module. A k-derivation of R into M is an
additive map d : R �!M such that

da = 0 for all a 2 k, and d(rs) = rds+ sdr for all r, s 2 R.
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There exists a module of differentials (or of Kähler differentials)⌦R/k ofR over
k, together with a k-derivation dR/k : R �! ⌦R/k, which satisfies the following
universal property: for any R-module M and for any k-derivation d : R �! M ,
there exists a unique R-module homomorphism f : ⌦R/k �! M such that d =

f � dR/k.

⌦R/k can be constructed in the following way: it is generated as a freeR-module
by formal generators dR/k(r) for all r 2 R, modulo the relations

dR/k(a) = 0, dR/k(r + s) = dR/k(r) + dR/k(s),

dR/k(rs) = rdR/k(s) + sdR/k(r), 8a 2 k, r, s 2 R.

In the following, we will explain in detail how to get that derivation algebras
can also be viewed as twisted forms. Let R be a k-algebra, f : R �! T be an étale
ring extension. Then the following map

d�T : ⌦R/k ⌦R T �! ⌦T/k; dR/k(r)⌦ t 7! tdT/k(f(r)) (4.2.2)

is a T -module isomorphism (see for example [EGAIV] Corollary 20.5.8), and its
inverse d��1

T
: ⌦T/k �! ⌦R/k ⌦R T induces a T -module isomorphism

✏
�1
T

: ⌦T/k ⌦T L⌦R T �! ⌦R/k ⌦R L⌦R T. (4.2.3)

Specifically, if d��1
T
(dT/k(t)) =

P
j
dR/k(rj)⌦ tj , then ✏�1

T
(dT/k(t)⌦ (x⌦ u)) =

P
j
dR/k(rj)⌦ x⌦ tju for x 2 L, t, u 2 T.

When L is a perfect Lie algebra, the map � : ⌦R/k ⌦R L �! ⌦R,L/k defined
by �(dR/k(r)⌦ x) = dR,L,k(rx)� rdR,L,k(x) for all r 2 R, x 2 L, is an R-module
homomorphism. And then for any T/R a ring extension, � induces a T -module
homomorphism which we denoted by �T ,

�T = � ⌦R idT : ⌦R/k ⌦R L⌦R T �! ⌦R,L/k ⌦R T. (4.2.4)

Combining them together we get a T -module homomorphism

�T � ✏�1
T

: ⌦T/k ⌦T L⌦R T �! ⌦R,L/k ⌦R T.
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For any ring extension T/R, denote by LT = L ⌦R T . The Lie bracket on L

induces a Lie bracket on LT by

[x⌦ r, y ⌦ t] = [x, y]⌦ st, x, y 2 L, s, t 2 T,

which makes LT a T -Lie algebra as well as an R-Lie algebra, and then

'T : L �! LT ; x 7! x⌦ 1T

is a homomorphism of R-Lie algebras. The composition

dT,LT ,k � 'T : L �! ⌦T,LT /k; x 7! dT,LT ,k(x⌦ 1T )

is a k-derivation of L with values in ⌦T,LT /k, where ⌦T,LT /k as an L-module via
'T . Then by the universal property of ⌦R,L/k we get an induced R� L-linear map

↵ : ⌦R,L/k �! ⌦T,LT /k

such that ↵ � dR,L,k = dT,LT ,k � 'T . Finally, the following composition

⌦R,L/k ⌦R T ⌦T,LT /k ⌦R T ⌦T,LT /k

↵⌦RidT

is a T � LT -linear map, which we denote by d'T , i.e.

d'T : ⌦R,L/k ⌦R T �! ⌦T,LT /k; dR,L,k(x)⌦ t 7! tdT,LT ,k(x⌦ 1T ) (4.2.5)

for x 2 L, t 2 T.

We have (c.f. Lemma 5.3 of [KP] )

Lemma 4.3. Let L be a perfect Lie algebra over R and f : R �! T an étale ring
extension. Then d'T is an isomorphism with inverse

(d'T )
�1 : ⌦T,LT /k �! ⌦R,L/k ⌦R T

a T � LT -linear map such that

(d'T )
�1(dT,LT ,k(x⌦ t)) = dR,L,k(x)⌦ t+ �T � ✏�1

T
(dT/k(t)⌦ (x⌦ 1T ))
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for all x 2 L, t 2 T. (Note dT/k(1T ) = 0 by the definition of k-derivation.)

The isomorphism (d'T )�1 induces a T -module isomorphism

'
⇤
T
: HomT�LT (⌦R,L/k ⌦R T, LT ) �! HomT�LT (⌦T,LT /k, LT ) (4.2.6)

↵ 7! ↵ � (d'T )
�1
.

Recall that we have the canonical T -module isomorphism

 T,LT : HomT�LT (⌦T,LT /k, LT ) �! Derk(LT ); ↵ 7! ↵ � dT,LT ,k. (4.2.7)

Note that if L is an R-form of a perfect, finite dimensional Lie algebra g over k,
then L is a perfect Lie algebra and is finitely generated as anR-module (c.f. Lemma
3.4 of [P5], Lemma 4.6 of [GP2]). The following result is Lemma 6.5 of [KP].

Lemma 4.4. Let R be a k-algebra of finite type. Let L be an R-form of a perfect,

finite dimensional Lie algebra g over k, let T/R be a flat ring extension, then the

canonical map

⇢T,LT : HomR�L(⌦R,L/k, L)⌦R T �! HomT�LT (⌦R,L/k ⌦R T, LT ) (4.2.8)

↵⌦ t 7! ↵⌦ t(idT )

is a T -module isomorphism.

Therefore, the following result is obtained.

Proposition 4.5. Let k be a field of characteristic 0, let R be a k-algebra of finite

type and L an R-form of a perfect, finite dimensional Lie algebra g over k. Let

T/R be an étale ring extension (so is flat by definition). Then we have a canonical

T -module isomorphism

�T : Derk(L)⌦R T �! Derk(LT ) (4.2.9)

which is obtained via �T =  T,LT � '⇤
T
� ⇢T,LT � (( R,L)�1 ⌦ idT ).

The following definition is given in Section 2.3 of [NP].

Definition 4.6. Let S/R be a ring extension. S/R is called an étale cover if S/R is
étale and the induced map Spec(S) �! Spec(R) is surjective.
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Recall that S/R is faithfully flat is equivalent to S/R is flat and Spec(S) �!
Spec(R) is surjective (c.f. § 13.2 of [W]). And S/R étale implies that S/R is flat
(c.f. Chapter I, § 3 of [Mil]). Therefore, an étale cover is the same as a faithfully
flat and étale ring extension.

Now we give our main result of this chapter.

Proposition 4.7. Let k be a field of characteristic 0, let R be a k-algebra of finite

type, let g be a perfect, finite dimensional Lie algebra over k. If R-Lie algebra L is

an R-form of g under étale cover, then Derk(L) is an R-form of Derk(g ⌦k R) as

modules.

Proof. Let S/R be an étale cover such that L ⌦R S ⇠= g ⌦k R ⌦R S as S-Lie
algebras. Then

Derk(L⌦R S) ⇠= Derk(g⌦k R⌦R S)

as S-modules (obtained by conjugation). On the other hand, by Proposition 4.5,
there exist canonical S-module isomorphisms

Derk(L)⌦R S ⇠= Derk(L⌦R S)

and
Derk(g⌦k R)⌦R S ⇠= Derk(g⌦k R⌦R S).

Hence we get an S-module isomorphism

Derk(L)⌦R S ⇠= Derk(g⌦k R)⌦R S, (4.2.10)

which by definition means that Derk(L) is an R-form of Derk(g⌦k R).

It is easy to see that if two Lie algebras L1, L2 are isomorphic as R-Lie alge-
bras (so also as k-Lie algebras), then Derk(L1) and Derk(L2) are isomorphic as
R-modules. So we also have the following result.

Theorem 4.8. Under the hypothesis of Proposition 4.7, there exists a well-defined

map from the set of isomorphism classes of R-forms of g to the set of isomorphism

classes of R-forms of Derk(g ⌦k R) under étale covers, where the isomorphism

class [L] goes to the isomorphism class [Derk(L)].
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Chapter 5

Descent construction of certain deriva-
tion algebras and EALAs
In this chapter, we will study derivation algebras of certain Lie algebras and ex-
tended affine Lie algebras from the descent point of view. We first consider k is a
field of characteristic 0, R is a k-algebra of finite type, g is a perfect, finite dimen-
sional Lie algebra over k, and we study the descent theory of the derivation algebras
of any R-forms of g in both étale cover and Galois cases. Then considering k an
algebraically closed field of characteristic 0, g is a finite dimensional simple Lie
algebra over k, E is an arbitrary fgc EALA, we will construct explicitly the descent
data that leads toE from some untwisted EALAs. This gives a descent construction
of fgc extended affine Lie algebras.

5.1 Étale cover descent

If L is an R-form of g under some étale cover, then by Proposition 4.7, Derk(L) is
an R-form of Derk(g ⌦k R). By Theorem 4.2, L is determined up to isomorphism
by some descent data, say a 1-cocycle ', i.e. L ⇠= (g ⌦k S)' as R-Lie algebras.
Also by Theorem 4.2, there exists some descent data that leads to Derk(L). We will
construct the descent data explicitly below. On the other hand, the isomorphism in
Proposition 4.5 exists for any étale ring extensions. We observed that if we restrict
our ring extensions to be étale, then there exists a morphism between the automor-
phism group functor of L and the automorphism group functor of the derivation
algebra of L, which then induces a map between the corresponding cohomology
sets. We will show that the map obtained is exactly the one implied by Theorem 4.8
and Theorem 4.2 under an étale cover.

We first study the existence of a morphism between two automorphism group
functors. For this part, L is an R-form of a perfect, finite dimensional Lie algebra
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g. Let Ret-alg be the category of all étale ring extensions over R. Consider the
following two group functors defined in the same way as in Section 4.1,

Aut(L) : Ret � alg �! Gp,

Aut(Derk(L)) : Ret � alg �! Gp.

Let f1 : R �! T1 and f2 : R �! T2 be two étale ring extensions. Let
f : T1 �! T2 be a ring homomorphism such that f2 = f � f1. Then f is also étale
(c.f. Corollary 3.6 of [Mil]). Hence we have three isomorphisms as explained in
Section 4.2:

d�T1 : ⌦R/k ⌦R T1 �! ⌦T1/k; dR/k(r)⌦ t1 7! t1dT1/k(f1(r)),

d�T2 : ⌦R/k ⌦R T2 �! ⌦T2/k; dR/k(r)⌦ t2 7! t2dT2/k(f2(r)),

f̃ : ⌦T1/k ⌦T1 T2 �! ⌦T2/k; dT1/k(t1)⌦ t2 7! t2dT2/k(f(t1)).

Then we have the following Lemma.

Lemma 5.1.

(d�T2)
�1 � dT2/k � f = (id⌦R/k

⌦ f) � (d�T1)
�1 � dT1/k.

Proof. It suffices to show that

dT2/k � f = (d�T2) � (id⌦R/k
⌦ f) � (d�T1)

�1 � dT1/k.

For any t 2 T1, say (d�T1)
�1(dT1/k(t)) =

P
i
dR/k(ri)⌦ ti, then

dT1/k(t) = d�T1(
X

i

dR/k(ri)⌦ ti) =
X

i

tidT1/k(f1(ri)),

and

(d�T2) � (id⌦R/k
⌦ f) � (d�T1)

�1 � dT1/k(t) =
X

i

f(ti)dT2/k(f2(ri)).
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On the other hand,

dT2/k � f(t) = dT2/k(f(t)) = f̃(dT1/k(t)⌦ 1T2)

= f̃(
X

i

tidT1/k(f1(ri))⌦ 1T2)

= f̃(
X

i

dT1/k(f1(ri))⌦ f(ti))

=
X

i

f(ti)dT2/k(f(f1(ri))) =
X

i

f(ti)dT2/k(f2(ri)),

so they are equal.

Recall that for F and G two group functors between two categories C and D, a
natural transformation or morphism ⌘ from F to G is a family of morphisms that
satisfies the following two requirements.

(a) The natural transformation must associate to every object X in C a group
homomorphism

⌘X : F (X) �! G(X)

between objects of D. The morphism ⌘X is called the component of ⌘ at X .

(b) Components must be such that for every morphism f : X �! Y in C we
have:

⌘Y � F (f) = G(f) � ⌘X ,

where F (f) : F (X) �! F (Y ), G(f) : G(X) �! G(Y ) are group homo-
morphisms in D.

We will show that there is a morphism (natural transformation) between the
above two group functorsAut(L),Aut(Derk(L)). For any T an object in the cate-
goryRet-alg and for any � 2 Aut(L)(T ), there is a natural T -module isomorphism

C� : Derk(L⌦R T ) �! Derk(L⌦R T ); d 7! � � d � ��1
,

named the conjugation map. Define

�̃ = �
�1
T
� C� � �T ,

where �T is the one obtained by Proposition 4.5. It is easy to see that such defined
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�̃ is indeed an element in Aut(Derk(L))(T ) = AutT�mod(Derk(L) ⌦R T ). So we
get a map between the two group functors defined on every object in the category
Ret-alg. To show that it is well-defined on every morphism inRet-alg, we will need
the following equation. The way we get it is by using their definitions to check their
actions on elements, it is a rather complicated calculation, and we will need to use
Lemma 5.1.

Lemma 5.2. For any f : T1 �! T2 a morphism in the category Ret-alg and for

any � 2 Aut(L)(T1), the following equation holds:

Aut(Derk(L))(f)(�̃) = �
�1
T2
� CAut(L)(f)(�) � �T2 ,

where �̃ = �
�1
T1
� C� � �T1 , and

CAut(L)(f)(�) : Derk(LT2) �! Derk(LT2),

is a T2-module isomorphism defined as d 7! Aut(L)(f)(�)�d�Aut(L)(f)(��1),

for any d 2 Derk(LT2).

Proof. Since both sides are T2-module homomorphisms, we only need to consider
their action on the element of the form d ⌦R 1T2 , for d 2 Derk(L), 1T2 2 T2 the
identity element:

Aut(Derk(L))(f)(�̃)(d⌦ 1T2) = (id⌦ f)(�̃(d⌦ 1T1))

= (id⌦ f)(��1
T1
� C� � �T1(d⌦ 1T1))

= (id⌦ f)(��1
T1

(� � �T1(d⌦ 1T1) � ��1)) 2 Derk(L)⌦R T2.

Denote by (id⌦ f)(��1
T1

(� � �T1(d⌦ 1T1) � ��1)) = X . On the other hand,

�
�1
T2
� CAut(L)(f)(�) � �T2(d⌦ 1T2)

= �
�1
T2

�
Aut(L)(f)(�) � �T2(d⌦ 1T2) �Aut(L)(f)(�)�1

�
.

So it suffices to show that

�T2(X) �Aut(L)(f)(�) = Aut(L)(f)(�) � �T2(d⌦ 1T2). (5.1.1)
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Say ( R,L)�1(d) = ↵, then ↵ � dR,L,k = d, so

�T2(d⌦ 1T2) = '
⇤
T2
(↵⌦ idT2) � dT2,LT2 ,k

,

then

RHS of (5.1.1) = Aut(L)(f)(�) � '⇤
T2
(↵⌦ idT2) � dT2,LT2 ,k

,

and

LHS of (5.1.1) = '
⇤
T2

⇥
⇢T2,LT2

�
( R,L)

�1 ⌦ idT2)(X)
�⇤
� dT2,LT2 ,k

�Aut(L)(f)(�).

Since dT2,LT2 ,k
is k-linear, not T2-linear, let’s consider the action of two sides on the

element of the form x⌦ t 2 L⌦ T2, where x 2 L, t 2 T2. Note

Aut(L)(f)(�)(x⌦ t) = (idL ⌦ tf)(�(x⌦ 1T1)).

Say �(x⌦ 1T1) =
P
l

xl ⌦ tl 2 L⌦R T1, then

Aut(L)(f)(�)(x⌦ t) =
X

l

xl ⌦ f(tl)t.

Say

�
�1
T1

(� � �T1(d⌦ 1T1) � ��1) =
X

m

dm ⌦ tm 2 Derk(L)⌦R T1, (5.1.2)

then X =
P
m

dm ⌦ f(tm) and so

(( R,L)
�1 ⌦ idT2)(X) =

X

m

 
�1
R,L

(dm)⌦ f(tm).

Say  �1
R,L

(dm) = ↵m, then ↵m � dR,L,k = dm, 8 m and so

(( R,L)
�1 ⌦ idT2)(X) =

X

m

↵m ⌦ f(tm).
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By applying both sides of (5.1.1) to x⌦R t, we get

LHS of (5.1.1)(x⌦ t)

= '
⇤
T2
(
X

m

↵m ⌦ f(tm)idT2)(
X

l

dT2,LT2 ,k
(xl ⌦ f(tl)t))

= (
X

m

↵m ⌦ f(tm)idT2) � (d'T2)
�1(

X

l

dT2,LT2 ,k
(xl ⌦ f(tl)t)),

and

RHS of (5.1.1)(x⌦ t)

= Aut(L)(f)(�) � '⇤
T2
(↵⌦ idT2) � dT2,LT2 ,k

(x⌦ t)

= Aut(L)(f)(�) � (↵⌦ idT2) � (d'T2)
�1 � dT2,LT2 ,k

(x⌦ t).

By definition of (d'T2)
�1 (Lemma 4.3) we have

(d'T2)
�1 � dT2,LT2 ,k

(x⌦ t)

= dR,L,k(x)⌦ t+ �T2 � ✏�1
T2

�
dT2/k(t)⌦T2 (x⌦ 1T2)

�
,

we denote the two sums above by A and B respectively, i.e.

(d'T2)
�1 � dT2,LT2 ,k

(x⌦ t) = A+ B.

Similarly,

(d'T2)
�1(

X

l

dT2,LT2 ,k
(xl ⌦ f(tl)t))

=
X

l

dR,L,k(xl)⌦ f(tl)t

+
X

l

�T2 � ✏�1
T2
(dT2/k(f(tl)t)⌦ (xl ⌦ 1T2)),

and we denote the two sums above by C and D respectively, i.e.

(d'T2)
�1(

X

l

dT2,LT2 ,k
(xl ⌦ f(tl)t)) = C +D.
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Now
LHS of (5.1.1)(x⌦ t) =

X

m

(↵m ⌦ f(tm)idT2)(C +D),

RHS of (5.1.1)(x⌦ t) = Aut(L)(f)(�) � (↵⌦ idT2)(A+ B).

Consider A and C terms first,

Aut(L)(f)(�) � (↵⌦ idT2)(A)

= Aut(L)(f)(�) ((↵ � dR,L,k)(x)⌦ t)

= Aut(L)(f)(�)(d(x)⌦ t)

= (idL ⌦ tf) � �(d(x)⌦ 1T1),

(
X

m

↵m ⌦ f(tm)idT2)(C)

=
X

m,l

(↵m � dR,L,k)(xl)⌦ f(tm)f(tl)t

=
X

m,l

dm(xl)⌦ f(tmtl)t.

By (5.1.2) we have

� � �T1(d⌦ 1T1) = �T1(
X

m

dm ⌦ tm) � �,

and by the definition of �T1 we have

�T1(d⌦ 1T1) =  T1,LT1

⇥
(↵⌦ idT1) � (d'T1)

�1
⇤

= (↵⌦ idT1) � (d'T1)
�1 � dT1,LT1 ,k

,

so

� � (↵⌦ idT1) � (d'T1)
�1 � dT1,LT1 ,k

= �T1(
X

m

dm ⌦ tm) � �. (5.1.3)
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Again by the definition of �T1 we have

�T1(dm ⌦ 1T1) =  T1,LT1

⇥
(↵m ⌦ idT1) � (d'T1)

�1
⇤

= (↵m ⌦ idT1) � (d'T1)
�1 � dT1,LT1 ,k

.

Applying both sides of (5.1.3) to the element x⌦1T1 , recall �(x⌦1T1) =
P
l

xl⌦ tl,

�T1 is T1-module homomorphism, and by the definition of (d'T1)
�1 we get

RHS of (5.1.3)(x⌦ 1T1) =
X

m

(↵m ⌦ tmidT1) � (d'T1)
�1 � dT1,LT1 ,k

(
X

l

xl ⌦ tl)

=
X

m,l

(↵m ⌦ tmidT1)
⇥
dR,L,k(xl)⌦ tl + �T1 � ✏�1

T1
(dT1/k(tl)⌦ (xl ⌦ 1T1))

⇤

=
X

m,l

dm(xl)⌦ tmtl

+
X

m,l

(↵m ⌦ tmidT1)
⇥
�T1 � ✏�1

T1
(dT1/k(tl)⌦ (xl ⌦ 1T1))

⇤
.

Note dT1/k(1T1) = 0, we have

LHS of (5.1.3)(x⌦ 1T1)

= � � (↵⌦ idT1) � (d'T1)
�1 � dT1,LT1 ,k

(x⌦ 1T1)

= � � (↵⌦ idT1)(dR,L,k(x)⌦ 1T1)

= �(d(x)⌦ 1T1).

So from equation (5.1.3) we get that

�(d(x)⌦ 1T1)

=
X

m,l

dm(xl)⌦ tmtl

+
X

m,l

(↵m ⌦ tmidT1)
⇥
�T1 � ✏�1

T1
(dT1/k(tl)⌦ (xl ⌦ 1T1))

⇤
, (5.1.4)
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where �(x⌦ 1T1) =
P
l

xl ⌦ tl. Hence

Aut(L)(f)(�) � (↵⌦ idT2)(A)

= (idL ⌦ tf)

"
X

m,l

dm(xl)⌦ tmtl

#

+ (idL ⌦ tf)

"
X

m,l

(↵m ⌦ tmidT1)
⇥
�T1 � ✏�1

T1
(dT1/k(tl)⌦ (xl ⌦ 1T1))

⇤
#

= (
X

m

↵m ⌦ f(tm)idT2)(C)

+ (idL ⌦ tf)

"
X

m,l

(↵m ⌦ tmidT1)
⇥
�T1 � ✏�1

T1
(dT1/k(tl)⌦ (xl ⌦ 1T1))

⇤
#
.

Denote by

Y = (idL ⌦ tf)

"
X

m,l

(↵m ⌦ tmidT1)
⇥
�T1 � ✏�1

T1
(dT1/k(tl)⌦ (xl ⌦ 1T1))

⇤
#
.

Therefore, it now suffices to show

(
X

m

↵m ⌦ f(tm)idT2)(D) = Aut(L)(f)(�) � (↵⌦ idT2)(B) + Y. (5.1.5)

For D,

X

l

�T2 � ✏�1
T2

⇥
dT2/k(f(tl)t)⌦ (xl ⌦ 1T2)

⇤

=
X

l

�T2 � ✏�1
T2

⇥⇥
f(tl)dT2/k(t) + tdT2/k(f(tl))

⇤
⌦ (xl ⌦ 1T2)

⇤

=
X

l

�T2 � ✏�1
T2

⇥
dT2/k(t)⌦ (xl ⌦ f(tl))

⇤

+
X

l

�T2 � ✏�1
T2

⇥
dT2/k(f(tl))⌦ (xl ⌦ t)

⇤
,

we denote by the two sums D1 and D2. Say d��1
T2
(dT2/k(t)) =

P
q
dR/k(rq) ⌦ sq,
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then

D1 =
X

l

�T2(
X

q

dR/k(rq)⌦ xl ⌦ sqf(tl))

=
X

l,q

(dR,L,k(rqxl)� rqdR,L,k(xl))⌦ sqf(tl).

Now for (5.1.5),

LHS =
X

l,q,m

(dm(rqxl)� rqdm(xl))⌦ sqf(tmtl)

+ (
X

m

↵m ⌦ f(tm)idT2)(D2). (5.1.6)

For B,

�T2 � ✏�1
T2
(dT2/k(t)⌦ (x⌦ 1T2))

= �T2(
X

q

dR/k(rq)⌦ x⌦ sq)

=
X

q

(dR,L,k(rqx)� rqdR,L,k(x))⌦ sq,

so

Aut(L)(f)(�) � (↵⌦ idT2)(B) =
X

q

(idL ⌦ sqf) [� [(d(rqx)� rqd(x))⌦ 1T1 ]] .

Consider the term �(d(rqx) ⌦ 1T1) � �(rqd(x) ⌦ 1T1). Note that �(x ⌦ 1T1) =
P
l

xl ⌦ tl, and � is a T1-module homomorphism. We have

�(rqx⌦ 1T1) =
X

l

rqxl ⌦ tl,
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and then similar to how we obtained �(d(x)⌦ 1T1) in (5.1.4), we get that

�(d(rqx)⌦ 1T1)

=
X

m,l

dm(rqxl)⌦ tmtl

+
X

m,l

(↵m ⌦ tmidT1)
⇥
�T1 � ✏�1

T1
(dT1/k(tl)⌦ (rqxl ⌦ 1T1))

⇤
.

Note that since one can write �(rqx⌦ 1T1) =
P
l

xl ⌦ f1(rq)tl, then using the same

considerations as above, we can write

�(d(rqx)⌦ 1T1)

=
X

m,l

dm(xl)⌦ f1(rq)tmtl

+
X

m,l

(↵m ⌦ tmidT1)
⇥
�T1 � ✏�1

T1
(dT1/k(f1(rq)tl)⌦ (xl ⌦ 1T1))

⇤
.

But note that by Lemma 5.1 we have

(d�T1)
�1 � dT1/k(f1(rq)) = dR/k(rq)⌦ 1T1 ,

so the two expressions are actually the same. Then from the above we get

�(d(rqx)⌦ 1T1)� �(rqd(x)⌦ 1T1)

=
X

m,l

dm(rqxl)⌦ tmtl �
X

m,l

rqdm(xl)⌦ tmtl

=
X

m,l

(dm(rqxl)� rqdm(xl))⌦ tmtl. (5.1.7)

From (5.1.5), it now suffices to show that

(
X

m

↵m ⌦ f(tm)idT2)(D2) = Y . (5.1.8)
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Say (d�T1)
�1(dT1/k(tl)) =

P
p
dR/k(rpl)⌦ spl, then

�T1 � ✏�1
T1
(dT1/k(tl)⌦ (xl ⌦ 1T1))

=
X

p

(dR,L,k(rplxl)� rpldR,L,k(xl))⌦ spl.

Hence the right hand side of (5.1.8) becomes

RHS of (5.1.8) =
X

m,p,l

(dm(rplxl)� rpldm(xl))⌦ tf(tm)f(spl). (5.1.9)

By Lemma 5.1 and

(id⌦R/k
⌦ f) � (d�T1)

�1 � dT1/k(tl)

= (id⌦R/k
⌦ f)(

X

p

dR/k(rpl)⌦ spl) =
X

p

dR/k(rpl)⌦ f(spl),

we get that
(d�T2)

�1(dT2/k(f(tl))) =
X

p

dR/k(rpl)⌦ f(spl).

Then by definition of �T2 and ✏
�1
T2

we have

�T2 � ✏�1
T2
(dT2/k(f(tl))⌦ (xl ⌦ t)) =

X

p

(dR,L,k(rplxl)� rpldR,L,k(xl))⌦ tf(spl),

so the left hand side of (5.1.8) becomes

LHS of (5.1.8)

=
X

m

(↵m ⌦ f(tm)idT2)(
X

l,p

(dR,L,k(rplxl)� rpldR,L,k(xl))⌦ tf(spl)

=
X

m,p,l

(dm(rplxl)� rpldm(xl))⌦ tf(tm)f(spl) = RHS of (5.1.8),(5.1.10)

which completes the proof.

Using Lemma 5.2, it is straightforward to show the following.

Proposition 5.3. Let Aut(L) and Aut(Derk(L)) be two group functors from Ret-
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alg to Gp. Then there exists a natural transformation

F : Aut(L) �! Aut(Derk(L)) (5.1.11)

such that for every object T in Ret-alg,

F (T ) : Aut(L)(T ) �! Aut(Derk(L))(T ); � 7! �̃ = �
�1
T
� C� � �T .

Proof. Clearly, for any étale ring extension T/R, the above defined F (T ) is a group
homomorphism in the categoryGp. Now for any homomorphism f : T1 �! T2 in
Ret-alg and for any � 2 Aut(L)(T1), we have

(F (T2) �Aut(L)(f)) (�) = �
�1
T2
� CAut(L)(f)(�) � �T2 ,

(Aut(Derk(L))(f) � F (T1)) (�) = Aut(Derk(L))(f)(��1
T1
� C� � �T1).

They are equal by Lemma 5.2. Hence F is a natural transformation.

From Proposition 5.3 we obtained an induced map between the two correspond-
ing cohomology sets. One can also show this directly using again Lemma 5.2.

Proposition 5.4. For any R-form L of g, for any étale ring extension S/R. There

exists a map of pointed sets

F̃ : H1(S/R,Aut(L)) �! H
1(S/R,Aut(Derk(L))); ['] 7! ['̃], (5.1.12)

where '̃ = �
�1
S
00 � C' � �S00 , and

C' : Derk(LS
00 ) �! Derk(LS

00 ),

is an S
00
-module isomorphism defined as d 7! ' � d � '�1

, for any d 2 Derk(LS
00 ).

Proof. It suffices to show that '̃ = �
�1
S
00 � C' � �S00 is a 1-cocycle. Recall

'̃ij = Aut(Derk(L))(Pij)('̃), 1  i < j  3.
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Then by Lemma 5.2,

'̃ij = �
�1
S
000 � CAut(L)(Pij)(') � �S000 , 1  i < j  3,

where
CAut(L)(Pij)(') : Derk(LS

000 ) �! Derk(LS
000 ),

is an S 000-module isomorphism defined as d 7! Aut(L)(Pij)(')�d�Aut(L)(Pij)('�1),

for any d 2 Derk(LS
000 ). So

'̃23 � '̃12

= �
�1
S
000 � CAut(L)(P23)(') � CAut(L)(P12)(') � �S000

= �
�1
S
000 � CAut(L)(P23)(')�Aut(L)(P12)(') � �S000

= �
�1
S
000 � CAut(L)(P13)(') � �S000

= '̃13, (5.1.13)

by definition, '̃ is a 1-cocycle.

Now if L is an R-form of g for some étale cover, say S/R, then by Theorem
4.2, L is given by some 1-cocycle ' 2 Aut(gR)(S

00
) (up to isomorphism), i.e.

L = (g ⌦k S)' as R-Lie algebras, where gR = g ⌦k R. By Proposition 5.4, we
know that e' = �

�1
S
00 � C' � �S00 2 Aut(Derk(gR))(S

00
) is also a 1-cocycle, where

C' : Derk(gS00 ) �! Derk(gS00 ), d 7! ' � d � '�1, is an S
00-module isomorphism.

S/R is faithfully flat, so e' determines a descended object defined by

(Derk(g⌦k R)⌦R S)e'

= {
X

n

dn ⌦ sn 2 Derk(g⌦k R)⌦R S |

e'(
X

n

dn ⌦ sn ⌦ 1S) =
X

n

dn ⌦ 1S ⌦ sn}.

The following result also contains some complicated calculation.

Proposition 5.5. Let S/R be an étale cover and let L be an S/R-form of g de-

termined up to isomorphism by an 1-cocycle '. Then there exists an R-module
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isomorphism

(Derk(g⌦k R)⌦R S)e' ⇠= Derk((g⌦k S)') = Derk(L)

which is induced from the isomorphism �S , where '̃ = �
�1
S
00 � C' � �S00 .

Proof. For

�S : Derk(g⌦k R)⌦R S �! Derk((g⌦k R)⌦R S)

the canonical S-module isomorphism defined before (i.e. in Proposition 4.5 we
take L to be the trivial form g ⌦k R), we first show that �S induces a map from
(Derk(g⌦k R)⌦R S)e' to Derk((g⌦k S)').

For any
P

n
dn ⌦ sn 2 (Derk(g ⌦k R) ⌦R S)e', since e' = �

�1
S
00 � C' � �S00 we

have

' � �
S
00 (
X

n

dn ⌦ sn ⌦ 1S) = �
S
00 (
X

n

dn ⌦ 1S ⌦ sn) � ', (5.1.14)

and �S(
P

n
dn⌦sn) is a derivation from (g⌦kR)⌦RS to (g⌦kR)⌦RS. Consider

its restriction on the elements (g⌦kS)' ✓ g⌦kS, where we identify (g⌦kR)⌦RS

with g⌦k S := gS , so there is the map

�S(
X

n

dn ⌦ sn)|(gS)' : (g⌦k S)' �! (g⌦k R)⌦R S.

Now we are going to show that this map actually maps to (g ⌦k S)'. For anyP
u
xu ⌦ su 2 (g⌦k S)', we have

'(
X

u

xu ⌦ su ⌦ 1S) =
X

u

xu ⌦ 1S ⌦ su. (5.1.15)

We want to show that

�S(
X

n

dn ⌦ sn)|(gS)'(
X

u

xu ⌦ su) 2 (g⌦k S)'. (5.1.16)
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Applying (5.1.14) to the element
P

u
xu ⌦ su ⌦ 1S and using (5.1.15) we get

' � �
S
00 (
X

n

dn ⌦ sn ⌦ 1S)(
X

u

xu ⌦ su ⌦ 1S)

= �
S
00 (
X

n

dn ⌦ 1S ⌦ sn)(
X

u

xu ⌦ 1S ⌦ su). (5.1.17)

Say  �1
R,gR

(dn) = ↵n for all n. Then ↵n � dR,gR,k = dn and

�
S
00 (dn ⌦ 1

S
00 ) = (↵n ⌦ id

S
00 ) � (d'

S
00 )�1 � d

S
00
,g

S
00 ,k.

�
S
00 is an S 00-module homomorphism, so

�
S
00 (
X

n

dn ⌦ sn ⌦ 1S)(
X

u

xu ⌦ su ⌦ 1S)

=
X

n

(↵n ⌦ (sn ⌦ 1S)idS00 ) � (d'
S
00 )�1 � d

S
00
,g

S
00 ,k(

X

u

xu ⌦ su ⌦ 1S)

=
X

n,u

dn(xu)⌦ snsu ⌦ 1S

+
X

n,u

(↵n ⌦ (sn ⌦ 1S)idS00 ) � �
S
00 � ✏�1

S
00 (dS00

/k
(su ⌦ 1S)⌦ (xu ⌦ 1

S
00 )).

Similarly one can get the equation for �
S
00 (
P

n
dn ⌦ 1S ⌦ sn)(

P
u
xu ⌦ 1S ⌦ su).

Denote by

X1 =
X

n,u

(↵n ⌦ (sn ⌦ 1S)idS00 ) � �
S
00 � ✏�1

S
00 (dS00

/k
(su ⌦ 1S)⌦ (xu ⌦ 1

S
00 )),

X2 =
X

n,u

(↵n ⌦ (1S ⌦ sn)idS00 ) � �
S
00 � ✏�1

S
00 (dS00

/k
(1S ⌦ su)⌦ (xu ⌦ 1

S
00 )).

Then

�
S
00 (
X

n

dn ⌦ sn ⌦ 1S)(
X

u

xu ⌦ su ⌦ 1S)

=
X

n,u

dn(xu)⌦ snsu ⌦ 1S +X1,
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�
S
00 (
X

n

dn ⌦ 1S ⌦ sn)(
X

u

xu ⌦ 1S ⌦ su)

=
X

n,u

dn(xu)⌦ 1S ⌦ snsu +X2,

and by (5.1.17) we get that

'(X1) + '(
X

n,u

dn(xu)⌦ snsu ⌦ 1S)

= X2 +
X

n,u

dn(xu)⌦ 1S ⌦ snsu. (5.1.18)

By definition, �S(dn ⌦ 1S) = (↵n ⌦ idS) � (d'S)�1 � dS,gS ,k for all n. Denote by

X3 =
X

n,u

(↵n ⌦ snidS) � �S � ✏�1
S
(dS/k(su)⌦ (xu ⌦ 1S)).

Then

�S(
X

n

dn ⌦ sn)|(gR)'(
X

u

xu ⌦ su) = X3 +
X

n,u

dn(xu)⌦ snsu. (5.1.19)

We now investigate the expression of X1, X2 and X3. Say (d�S)�1(dS/k(su)) =
P

v
dR/k(ruv)⌦suv for all u, then dS/k(su) =

P
v
suvdS/k(ruv). Note that to be more

precise we should write dS/k(f(ruv)) on the right hand side where f : R �! S, but
as one can see this makes no difference for our final answer, we will just write as
dS/k(ruv). On the other hand, since S/R is faithfully flat, the map f : R �! S is
actually injective, so we can view the elements of R as elements of S. Then

✏
�1
S
(dS/k(su)⌦ (xu ⌦ 1S)) =

X

v

dR/k(ruv)⌦ xu ⌦ suv,

so
X3 =

X

n,u,v

(dn(ruvxu)� ruvdn(xu))⌦ snsuv.

For X2, take T1 = S, T2 = S
00 , f = P2 in Lemma 5.1. We get

d��1
S
00 (dS00

/k
(1S ⌦ su)) =

X

v

dR/k(ruv)⌦ 1S ⌦ suv,
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so that
X2 =

X

n,u,v

(dn(ruvxu)� ruvdn(xu))⌦ 1S ⌦ snsuv.

Then

X2 = (id⌦ P2)(X3). (5.1.20)

For X1, take T1 = S, T2 = S
00 , f = P1 in Lemma 5.1. We get

d��1
S
00 (dS00

/k
(su ⌦ 1S)) =

X

v

dR/k(ruv)⌦ suv ⌦ 1S,

so that

X1 =
X

n,u,v

(dn(ruvxu)� ruvdn(xu))⌦ snsuv ⌦ 1S = X3 ⌦ 1S. (5.1.21)

With (5.1.18), (5.1.19), (5.1.20), (5.1.21) and the definition of (g ⌦k S)', we get
that (5.1.16) holds, i.e.

�S(
X

n

dn ⌦ sn)|(gS)'(
X

u

xu ⌦ su) 2 (g⌦k S)',

hence

�S(
X

n

dn ⌦ sn)|(gS)' : (g⌦k S)' �! (g⌦k S)' (5.1.22)

is a well-defined map. It is clearly a derivation, so

�S(
X

n

dn ⌦ sn)|(gS)' 2 Derk((g⌦k S)').

Therefore, �S induces a well-defined map

�S| : (Derk(g⌦k R)⌦R S)e' �! Derk((g⌦k S)'),

To avoid confusion, for any y 2 (Derk(g ⌦k R))e', we denote by �S|(y) = �S(y)|
to mean that it is restricted to (g ⌦k S)'. By definition of �S|, it is an R-module
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homomorphism. Then we can get an S-module homomorphism

�S|⌦R idS : (Derk(g⌦k R)⌦R S)e' ⌦R S �! Derk((g⌦k S)')⌦R S.

Next we will show that �S|⌦R idS is actually an isomorphism. Let

f' : (g⌦k S)' ⌦R S �! (g⌦k R)⌦R S

be the S-module isomorphism defined by (
P

i
yi ⌦ si) ⌦ s 7!

P
i
yi ⌦ ssi, note

yi 2 g ⌦k R, so it induces an S-module isomorphism (conjugation by f') on the
derivations

Cf' : Derk((g⌦k S)' ⌦R S) �! Derk((g⌦k R)⌦R S) (5.1.23)

d 7! f' � d � f�1
'

.

Let
�',S : Derk((g⌦k S)')⌦R S �! Derk((g⌦k S)' ⌦R S)

be the canonical S-module isomorphism obtained by Proposition 4.5. Then the
composition Cf' � �',S gives an S-module isomorphism

Cf' � �',S : Derk((g⌦k S)')⌦R S �! Derk((g⌦k R)⌦R S). (5.1.24)

On the other hand, since (Derk(g⌦k R)⌦R S)e' is a descended module,

fe' : (Derk(g⌦k R)⌦R S)e' ⌦R S �! Derk(g⌦k R)⌦R S

(
X

i

di ⌦ si)⌦ s 7!
X

i

di ⌦ sis

is an S-module isomorphism and the composition �S � fe' gives an S-module iso-
morphism

�S � fe' : (Derk(g⌦k R)⌦R S)e' ⌦R S �! Derk(g⌦k R⌦R S). (5.1.25)

In the following we will show that

�S � fe' = Cf' � �',S � (�S|⌦R idS),
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which gives that �S|⌦RidS is an S-module isomorphism. With S/R being faithfully
flat we will get that �S| is an R-module isomorphism and then we are done.

Since all maps are S-module homomorphisms, we only need to check their
action on the element of form

P
n
dn ⌦ sn ⌦ 1S , where

P
n
dn ⌦ sn 2 (Derk(g⌦k

R)⌦R S)e' as before. Now

�S � fe'(
X

n

dn ⌦ sn ⌦ 1S) = �S(
X

n

dn ⌦ sn)

=
X

n

(↵n ⌦ snidS) � (d'S)
�1 � dS,gS ,k

which we denote by d. Then

Cf' � �',S � (�S|⌦ idS)(
X

n

dn ⌦ sn ⌦ 1S)

= Cf' � �',S(d|⌦ 1S) = f' � �',S(d|⌦ 1S) � f�1
'

.

Note d| is the same as d, just that its action is restricted on (gS)', so it suffices to
show that

d � f' = f' � �',S(d|⌦ 1S). (5.1.26)

For simplicity, we denote by L = (gS)', say  �1
R,L(d|) = ↵, then ↵ � dR,L,k = d|, so

�',S(d|⌦ 1S) = (↵⌦ idS) � (d'L)
�1 � dS,LS ,k,

where d'L : ⌦R,L/k ⌦R S �! ⌦S,LS/k
is an isomorphism defined in the same way

as d'S , i.e.

d'L(dR,L,k(y)⌦ s) = sdS,LS ,k(y ⌦ 1S), 8 y 2 L, s 2 S

with inverse

(d'L)
�1(dS,LS ,k(y ⌦ s)) = dR,L,k(y)⌦ s+ �L � ✏�1

L (dS/k(s)⌦ (y ⌦ 1S))

for all y 2 L, s 2 S, and �L, ✏L defined in the same way as �S , ✏S .
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Hence it suffices to show

X

n

(↵n ⌦ snidS) � (d'S)
�1 � dS,gS ,k � f'

= f' � (↵⌦ idS) � (d'L)
�1 � dS,LS ,k. (5.1.27)

Consider their action on an element of the form (
P

u
xu ⌦ su)⌦ s 2 L⌦ S, where

P
u
xu ⌦ su 2 L. Applying both sides of (5.1.27) to (

P
u
xu ⌦ su)⌦ s we get

LHS =
X

n

(↵n ⌦ snidS) � (d'S)
�1 � dS,gS ,k(

X

u

xu ⌦ ssu)

=
X

n,u

dn(xu)⌦ snssu +
X

n,u

(↵n ⌦ snidS) � �S � ✏�1
S
(dS/k(ssu)⌦ (xu ⌦ 1S)).

We denote the two terms in the last equation by A and B respectively.

RHS = f' � (↵⌦ idS) � (d'L)
�1 � dS,LS ,k((

X

u

xu ⌦ su)⌦ s)

= f' � (↵⌦ idS) � �L � ✏�1
L

"
dS/k(s)⌦ ((

X

u

xu ⌦ su)⌦ 1S)

#

+ f'(d|(
X

u

xu ⌦ su)⌦ s),

and we denote the two terms in the last equation by C and D respectively. Then

D = sd|(
X

u

xu ⌦ su)

=
X

n,u

dn(xu)⌦ snssu +
X

n,u

(↵n ⌦ ssnidS) � �S � ✏�1
S
(dS/k(su)⌦ (xu ⌦ 1S)).

Denote by

X

n,u

(↵n ⌦ ssnidS) � �S � ✏�1
S
(dS/k(su)⌦ (xu ⌦ 1S)) = C1,

so
D = A+ C1.
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Since dS/k(ssu) = sdS/k(su) + sudS/k(s),

B = C1 +
X

n

(↵n ⌦ snidS) � �S � ✏�1
S
(dS/k(s)⌦ (

X

u

xu ⌦ su)).

Hence now it suffices to show

P
n
(↵n ⌦ snidS) � �S � ✏�1

S
(dS/k(s)⌦ (

P
u
xu ⌦ su)) =

f' � (↵⌦ idS) � �L � ✏�1
L (dS/k(s)⌦ ((

P
u
xu ⌦ su)⌦ 1S)). (5.1.28)

Say d��1
S
(dS/k(s)) =

P
v
dR/k(rv)⌦ sv, then dS/k(s) =

P
v
svdS/k(rv), and

✏
�1
L (dS/k(s)⌦ ((

X

u

xu ⌦ su)⌦ 1S)) =
X

v

dR/k(rv)⌦ (
X

u

xu ⌦ su)⌦ sv,

so

RHS of (5.1.28) =
X

v

sv

"
d|(rv(

X

u

xu ⌦ su))� rvd|(
X

u

xu ⌦ su)

#
.

Note
P

u
xu ⌦ su 2 L, and it may not that each term xu ⌦ su 2 L, so we can’t take

the sum
P

u
to be in front. Now

d|(rv(
X

u

xu ⌦ su))

=
X

u,n

dn(xu)⌦ snrvsu +
X

n,u

(↵n ⌦ snidS) � �S � ✏�1
S
(dS/k(rvsu)⌦ (xu ⌦ 1S)),

and

rvd|((
X

u

xu ⌦ su))

=
X

u,n

dn(xu)⌦ rvsnsu +
X

n,u

(↵n ⌦ rvsnidS) � �S � ✏�1
S
(dS/k(su)⌦ (xu ⌦ 1S)).

Using
dS/k(rvsu) = rvdS/k(su) + sudS/k(rv)
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we get

RHS of (5.1.28) =
X

n

(↵n ⌦ snidS) � �S � ✏�1
S
(
X

v

svdS/k(rv)⌦ (
X

u

xu ⌦ su)).

Therefore, (5.1.28) holds (note dS/k(s) =
P

v
svdS/k(rv)).

Proposition 5.5 implies that e' = �
�1
S
00 � C' � �S00 is the descent data that leads

to the twisted form Derk(L) up to isomorphism. It also shows that the map defined
in Proposition 5.4 for L = g ⌦k R is indeed the one implied by Theorem 4.8 and
Theorem 4.2 under étale covers.

5.2 Galois descent

In this Section, we will review some notions and results related to Galois descent
theory, and we will study analogous results for derivation algebras of R-forms of
g under Galois ring extensions, where g is again a finite dimensional perfect Lie
algebra over a field k of characteristic 0, and R is a k-algebra of finite type.

We first recall some concepts of (non-abelian) cohomology set ([S], [W]). Let �
be any group acting as automorphisms of a group G. The maps µ : � �! G, � 7!
µ� satisfying

µ�⌧ = µ� ·� µ⌧

are 1-cocycles, where �µ⌧ denotes the �-action on G. Two 1-cocycles µ, µ0 are said
to be cohomologous if there exists some � 2 G such that

µ
0

�
= � · µ� · (��)�1

for all � 2 �. It is an equivalence relation and the set of equivalence classes of
1-cocycles from � to G is denoted by H1(�, G).

Recall some general results of Galois descent theory. Let S be in R-alg, and
denote by AutR(S) the group of automorphisms of S which fix R.

Definition 5.6. Let � be a finite subgroup of AutR(S). We say that S/R is Galois
with Galois group � if the following conditions hold

(i) S/R is faithfully flat.
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(ii) The map

⇢ : S ⌦R S �!
Y

�

S; a⌦ b 7! (�(a)b)�2�

is an isomorphism.

Suppose that S/R is Galois with finite Galois group �. Then S/R is an étale
cover (c.f. Remark 2.24 of [Mil]). Let N be any R-module. Let Aut(N) be the
group functor defined as before. In this Section, we fix the �-action on the group
Aut(N)(S) = AutS�mod(N ⌦R S) by

�
f = (idN ⌦ �) � f � (idN ⌦ ��1) = CidN⌦�(f)

for all � 2 �, f 2 Aut(N)(S). The maps µ : � �! Aut(N)(S), � 7! µ�

satisfying

µ�1�2 = µ�1 ·�1 µ�2

are called Galois 1-cocycles, which we denote by µ = (µ�)�2�. Similarly, two
Galois 1-cocycles µ = (µ�)�2� and µ

0
= (µ

0
�
)�2� are said to be cohomologous if

there exists some � 2 Aut(N)(S) such that

� · µ� · (��)�1 = µ
0

�
, 8� 2 �.

The set of equivalence classes of Galois 1-cocycles is denoted byH1(�,Aut(N)(S))

and we call it the first (non-abelian) Galois cohomology set.
Fix the �-action on N ⌦R S by acting on S, i.e. for any m 2 N ⌦R S, and for

any � 2 �, �m = (idN⌦�)(m). For a Galois 1-cocycle µ = (µ�)�2�, its descended
module can be characterized as

(N ⌦R S)µ = {m 2 N ⌦R S | µ�(�m) = m, 8� 2 �}

such that
f : (N ⌦R S)µ ⌦R S �! N ⌦R S; m⌦ s 7! sm

is an S-module isomorphism. Similarly as in the faithfully flat descent theory, one
has (c.f. § 17.7 of [W]) the following one-to-one correspondence.
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Theorem 5.7. Let S/R be Galois with finite Galois group �. Then the isomorphism

classes of S/R-forms of N correspond to H
1(�,Aut(N)(S)), where for any Ga-

lois 1-cocycle µ = (µ�)�2�, the above defined (N ⌦R S)µ is the corresponding

S/R-form of N .

Let S/R be Galois with finite Galois group �. Let P� :
Q

� S �! S be the
standard projection to the �-component, for any � 2 �. For µ 2 Aut(N)(S

00
), let

µ� := Aut(N)(P�⇢)(µ) 2 Aut(N)(S), 8 � 2 �.

If µ is a 1-cocycle, i.e. a representative of an element in H
1(S/R,Aut(N)), then

it can be checked that the above defined (µ�)�2� is a Galois 1-cocycle, and the two
first cohomology setsH1(S/R,Aut(N)) andH1(�,Aut(N)(S)) can be identified
(c.f. § 17.7 of [W]).

Now we are going to study the Galois descent theory of derivation algebras of
R-forms of g. Let L be an S/R-form of g for S/RGalois with finite Galois group �.
Suppose µ = (µ�)�2� is the Galois 1-cocycle that determines L, i.e. L = (g⌦kS)µ.
Again by Proposition 4.7, Derk(L) is an S/R-form of Derk(g ⌦k R). We will first
construct the Galois 1-cocycle that leads to Der(L) and then get maps between the
two corresponding Galois cohomology sets.

For any � 2 �, denote by h� = µ� � (idgR ⌦R �), gR = g ⌦k R, so h� 2
Autk�Lie(gR ⌦R S). There is a natural �-action on Derk(gR ⌦R S) given by Ch� ,
for all � 2 �, i.e. Ch� (d) = h� � d � h�1

�
, d 2 Derk(gR ⌦R S). There is then an

induced �-action on Derk(g⌦k R)⌦R S via ��1
S
� Ch� � �S for all � 2 �. Define

eµ : � �! AutS�mod(Derk(g⌦k R)⌦R S), � 7! eµ�, (5.2.1)

where

eµ� = �
�1
S
� Ch� � �S � (id⌦ ��1) (5.2.2)

for all � 2 �. Consider the following defined R-module determined by eµ

(Derk(g⌦k R)⌦R S)eµ

= {m 2 Derk(g⌦k R)⌦R S | eu�(id⌦ �)(m) = m, 8� 2 �}. (5.2.3)
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Similarly as in Proposition 5.5, one has

Proposition 5.8. Let S/R be Galois with finite Galois group �.

(1) For any Galois 1-cocycle µ : � �! Aut(gR)(S)), the above defined eµ :

� �! Aut(Derk(gR))(S) is also a Galois 1-cocycle.

(2) There exists an R-module isomorphism

(Derk(g⌦k R)⌦R S)eµ ⇠= Derk((g⌦k S)µ) = Derk(L)

which is again induced from the isomorphism �S.

Proof. (1) For any �1, �2 2 �, note h�1�2 = h�1 � h�2 . And

eµ�1�2 = �
�1
S
� Ch�1�2

� �S � (id⌦ (�1�2)
�1)

eµ�1 ·�1 eµ�2 = �
�1
S
� Ch�1

� Ch�2
� �S � (id⌦ ��1

2 ) � (id⌦ ��1
1 ),

so
eµ�1�2 = eµ�1 ·�1 eµ�2 ,

eµ is a Galois 1-cocycle.

(2) Now it is easier to check than the one in Proposition 5.5 that the map induced
by �S , which we denoted by �S|, is well-defined. So

�S| : (Derk(g⌦k R)⌦R S)eµ �! Derk(L), � 7! �S(�)|L

is an R-mdoule homomorphism. Then one can use the same method as the
proof of Proposition 5.5 to show that �S|⌦ idS is an isomorphism. Hence �S|
is an isomorphism as S/R is faithfully flat.

It is straightforward to check that if

µ ⇠ µ
0
via � 2 Aut(gR)(S),

then
eµ ⇠ eµ0 via �

�1
S
� C� � �S 2 Aut(Derk(gR))(S),
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where
C� : Derk(gS) �! Derk(gS), d 7! � � d � ��1

,

is an S-module isomorphism. Therefore we get

Proposition 5.9. Let S/R be Galois with finite Galois group �. Then there is a

well-defined map between Galois cohomology sets

H
1(�,Aut(gR)(S)) �! H

1(�,Aut(Derk(gR))(S)), [µ] 7! [eµ],

where eµ� = �
�1
S
� Ch� � �S � (id⌦ ��1), and h� = µ� � (idgR ⌦ �), for all � 2 �.

Remark 5.10. Again Proposition 5.8 shows that eµ is the Galois 1-cocycle that
determines Derk(L) and the map defined in Proposition 5.9 is the one implied by
Theorem 4.8 and Theorem 5.7 in Galois case.

5.3 Descent construction of extended affine Lie alge-
bras

In this Section, we use the Galois descent data of multiloop Lie algebras to con-
struct the descent data that leads to extended affine Lie algebras, more precisely, fgc
EALAs. We will take G to be a group generated by elements acting on extended
affine Lie algebras defined below and study the descent construction of extended
affine Lie algebras.

In the following, k will be an algebraically closed field of characteristic 0, and
g will be a finite dimensional simple Lie algebra over k. Let E be an extended
affine Lie algebra, then its centreless core Ecc is a centreless Lie torus. By Theorem
2.19, if Ecc is fgc, then Ecc is of the form of a multiloop Lie algebra. Multiloop Lie
algebras can be viewed as twisted forms under Galois ring extensions, and we know
the Galois descent data that leads to multiloop Lie algebras. For fgc EALA, we will
use its realization of multiloop Lie algebra and the descent data of multiloop Lie
algebra to construct the descent data (1-cocycle) that leads to itself.

We first look at multiloop Lie algebras from twisted forms point of view. Let

L = L(g,�,m) =
M

(i1,...,in)2Zn

g
i1,...,in

⌦k t

i1
m1
1 · · · t

in
mn
n ⇢ g⌦k S (5.3.1)
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be a multiloop Lie algebra determined by g,�,m. Let S,R be the Laurent polyno-
mial rings as in Section 2.3. Then L is an R-Lie algebra and L ⌦R S ⇠= g ⌦k S as
S-Lie algebras, so L is an S/R-form of g. Actually, L is determined by the Galois
1-cocycle

u : � �! Aut(g)(S) (5.3.2)

(i1, . . . , in) 7! (��i1
1 ⌦ idS) · · · (��in

n
⌦ idS).

Write L = (g⌦k S)u, where

u� = ��� ⌦ idS = (��i1
1 ⌦ idS) · · · (��in

n
⌦ idS)

for � = (i1, . . . , in) 2 � = Z/m1Z⇥ · · ·⇥ Z/mnZ.

Now letE be any fgc EALA. ThenEcc is of the form of a multiloop Lie algebra,
say Ecc = L(g,�,m) := L for some g, � = (�1, . . . , �n), m = (m1, . . . ,mn).
And E can be constructed in the form

E = L�D
gr⇤ �D (5.3.3)

for some (unique) graded subalgebra D ⇢ SCDerk(L) of the skew centroidal
derivations of L. The descent data of L(g,�,m) is known to be the u defined
as above. We are going to construct the descent data that leads to E.

Let ES = (g⌦k S)�D
gr⇤�D for the sameD as above. By the identifications

explained in Section 3.1 (c.f. Section 4.2 of [CNPY]), ES is also an EALA and it is
an untwisted EALA. We know that the descended object of g ⌦k S determined by
the descent data u is the multiloop Lie algebra L. Let now

h� = u� � (idg ⌦ �),

for any � 2 �, where each u� is defined as above. For any � 2 �, we denote by

�̂ : Dgr⇤ �! D
gr⇤

, f 7! �̂.f,

where
(�̂.f)(d) = f(C

h
�1
�
(d)),
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for any d 2 D. Then �̂1 � �̂2 = ˆ(�1�2) for �1, �2 2 �. Note our u� above actually
satisifes u�1 � u�2 = u�1�2 for �1, �2 2 � (remember that � is an additive group).

Consider the group G generated, under composition, by triples (u�, �̂, Ch� ) for
all � 2 �. Let G act on the elements in ES by acting on each component, i.e. for
any x� f � d 2 ES , define

(u�, �̂, Ch� ).(x� f � d) = u�(x)� �̂.f � Ch� (d)

for all � 2 �, f 2 D
gr⇤, d 2 D. It is a well-defined action as proved in Lemma 3.1.

Actually, from Lemma 3.1 we see that for any element d 2 D ⇢ SCDerk(L), any
f 2 D

gr⇤, Ch� (d) = d and �̂.f = f , i.e. the actions on D
gr⇤ and D defined above

are actually trivial because D ⇢ SCDerk(L).
It is straightforward to check thatG is a subgroup of the k-Lie algebra automor-

phism group Autk�Lie(ES) of the Lie algebra ES .
Consider the following action of the finite abelian group � = Z/m1Z�· · ·Z/mnZ

on G:

�
0
(u�, �̂, Ch� ) = (C

idg⌦�0 (u�), �̂, Ch� ) (5.3.4)

for any �, � 0 2 �, where

C
idg⌦�0 (u�) = (idg ⌦ �

0
) � u� � (idg ⌦ �

0
)�1

.

Again by our definition of u� we actually have Cidg⌦�0 (u�) = u� for any �, �
0 2 �.

Define a map

eu : � �! G, � 7! eu� = (u�, �̂, Ch� ). (5.3.5)

Proposition 5.11. Let S,R,� be defined as above. Let E,ES be extended affine

Lie algebras as above.

(1) Let u : � �! Aut(g)(S) = AutS�Lie(g ⌦k S) be the 1-cocycle that deter-

mines the multiloop Lie algebra L. Then the above defined eu : � �! G is

also a 1-cocycle with the above defined �-action on G.

(2) Consider the �-action on ES by (idg ⌦ �, id, id). Then the descended object

of ES determined by the 1-cocycle ũ in (1) is the extended affine Lie algebra
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E, i.e.

(ES)eu := {x� f � d 2 ES | eu� ·� (x� f � d) = x� f � d, 8� 2 �} = E.

Proof. (1). For any �1, �2 2 �,

eu�1�2 = (u�1�2 , ˆ�1�2, Ch�1�2
)

and

eu�1 ��1 eu�2 = (u�1 , �̂1, Ch�1
) � (Cidg⌦k�1

(u�2), �̂2, Ch�2
)

= (u�1 � Cidg⌦k�1
(u�2), �̂1 � �̂2, Ch�1

� Ch�2
)

= (u�1 ��1 u�2 , ˆ�1�2, Ch�1�h�2
)

= (u�1�2 , ˆ�1�2, Ch�1�2
)

= eu�1�2 ,

so the defined eu is a 1-cocycle.

(2). Now for any x� f � d 2 (ES)eu = (g⌦k S �D
gr⇤ �D)eu we have

x� f � d = eu� ·� (x� f � d)

= eu�((idg ⌦ �)(x)� f � d)

= (u� � (idg ⌦ �)(x)� �̂.f � Ch� (d)).

Since �̂(f) = f , Ch� (d)) = d automatically hold, we actually get that x must
satisfy u� � (idg ⌦ �)(x) = x for any � 2 �, which implies x 2 L. Hence
x � f � d 2 E = L �D

gr⇤ �D. Conversely, for any x � f � d 2 E, x 2 L, we
have

u� � (idg ⌦ �)(x) = x

for any � 2 �. Again by that D ⇢ SCDerk(L) and the definition of the �-actions
on Dgr⇤ and D, we have

�̂.f = f, Ch� (d) = d, � 2 �, f 2 D
gr⇤

, d 2 D.
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So
eu� ·� (x� f � d) = x� f � d

for any � 2 �, i.e. x� f � d 2 (ES)eu. Therefore (ES)eu = E.

In summary, for any multiloop Lie algebra L ✓ g ⌦k S, and for any D ✓
SCDerk(L) which satisfies the condition in the construction of EALAs, if u =

(u�)�2� = (��� ⌦ idS)�2� is the descent data such that the descended object of
g ⌦k S is L, then the above defined eu is the descent data such that the descended
object of the untwisted EALA ES = g⌦k S �D

gr⇤ �D is the extended affine Lie
algebra E = L�D

gr⇤ �D.

Remark 5.12. (i) Let L be the multiloop algebra defined in (5.3.1). Let E be
the fgc EALA given in (5.3.3). We can also consider

ES = (g⌦k S)� eDgr⇤ � eD

for any eD a graded subalgebra of the skew-centroidal derivation algebra
SCDerk(g ⌦k S) with the property that it contains D as a graded subalge-
bra and eDµ = D

µ for all µ 2 ⌅, where ⌅ is the centroid grading group of L.
Let e⌧ : eD ⇥ eD  � eDgr⇤ be a map defined by e⌧ |D⇥D is the 2-cocycle ⌧ that
appeared E and e⌧ = 0 on all other elements. Then this ES (with the defined
e⌧ ) is also an EALA (Section 3.2). Consider the same action ofG on such ES .
It is well-defined (Lemma 3.1), and now the actions on eDgr⇤ and eD may not
be trivial. With the same �-action on G, one can get the same results as in
Proposition 5.11. But note now G is not a subgroup of Autk�Lie(ES) since
the Lie bracket on this ES may not be G-equivariant.

(ii) If we take eD to be the whole skew-centroidal derivation algebra SCDerk(g⌦k

S), then (g⌦k S)� eDgr⇤ is the universal central extension of g⌦k S with Lie
bracket

[x1 � f1, x2 � f2] = [x1, x2]� �D(x1, x2)

for any x1, x2 2 g ⌦k S, f1, f2 2 (SCDerk(g ⌦k S))gr⇤. Then consider the
group G generated by two-tuples (u�, �̂) for all � 2 � (i.e. removing the
action on SCDerk(g⌦kS)). Define all actions analogously. Then bu = (bu�)�2�
with bu� = (u�, �̂), is also a 1-cocycle from � to the defined G. And the
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descended object of (g ⌦k S) � (SCDerk(g ⌦k S))gr⇤ determined by bu is
actually the universal central extension L� (SCDerk(L))gr⇤ of L.
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Chapter 6

Conclusion
This thesis studies extended affine Lie algebras (EALAs for short) from both the
point of vew of fixed point subalgebras and of descended objects of some untwisted
extended affine Lie algebras. It also studies the descent considerations necessary to
study the Lie algebra of derivations of certain Lie algebras (which include multiloop
algebras).

The two most important results used in the fixed point subalgebra part are the
construction of EALAs introduced by Neher, and the identification of the skew-
centroidal derivation algebras of multiloop Lie algebras as subalgebras of the cor-
responding one of untwisted multiloop Lie algebras.

On the one hand, let g be any finite dimensional simple Lie algebra over an
algegraically closed field k of characteristic 0. Let � be a finite abelian group which
is determined by some finite order commuting automorphisms of g. Then there
exists a Laurent polynomial ring S and an action of � on g ⌦k S such that the
fixed point subalgebra of the defined action is actually a multiloop Lie algebra (see
Section 3.1). By Neher’s construction, starting from g ⌦k S, there are untwisted
EALAs

ES = (g⌦k S)� D̃
gr⇤ � D̃

for any suitable graded subalgebra D̃ of the skew-centroidal derivation algebra
SCDerk(g ⌦k S). We showed that � also acts on D̃ and D̃

gr⇤, and the fixed point
subalgebra

(ES)
� = (g⌦k S)

� � (D̃gr⇤)� � D̃
�

is also an EALA; these are results of Lemma 3.1 and Theorem 3.3.

On the other hand, any multiloop Lie algebra L can be viewed as a fixed point
subalgebra of some untwisted multiloop Lie algebra g⌦k S for some finite abelian
group �:

L = (g⌦k S)
�
.
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And we know that for any suitable D ⇢ SCDerk(L), the direct sum

E = L�D
gr⇤ �D

is an EALA. The result in Theorem 3.4 tells us that there exists an untwisted EALA
such that the fixed point subalgebra of it is the EALA E above. But this untwisted
EALA may not be unique unless the nullity = 1 as explained in Section 3.2 and
Section 3.3. The results in this part also tell us how to construct the descent data
so that the descended object of the untwisted EALA is also an EALA, which is the
result of Proposition 5.11.

The second part is about descent theory in the study of Lie algebra of derivations
of certain Lie algebras and descent construction of extended affine Lie algebras. De-
scent theory and non-abelian cohomology are important and effective tools to study
infinite dimensional Lie theory, especially in the study of multiloop Lie algebras.
Multiloop Lie algebras can not only be viewed as fixed point subalgebras, but they
can also be viewed as twisted forms. More precisely, for any multiloop Lie algebra
L over k, it is also a Lie algebra over some Laurent polynomial ring R. And when
we view L as a Lie algebra over R, there exists a ring extension S/R such that

L⌦R S ⇠= g⌦k S
⇠= (g⌦k R)⌦R S

for some finite dimensional simple Lie algebra g over k. This tells us that L is a
twisted form of the untwisted multiloop Lie algebra g⌦k R. Hence descent theory
comes into the picture. By classical results, isomorphism classes of twisted forms
can be classified by non-abelian first cohomology sets. The classification of mul-
tiloop Lie algebras is a particular example of this, see [GP2], [GP4]. From EALA
theory, we know that besides the centreless core itself (which is a multiloop Lie
algebra in our considerations), its derivation algebra, central extensions of it and
invariant bilinear forms also play important roles. The derivation algebras of mul-
tiloop Lie algebras have been determined using descent theory in [P5]. Descent
construction of central extensions of certain Lie algebras has been studied in [PPS].
Invariant bilinear forms were studied in [NPPS] using descent. Hence, by look-
ing at multiloop Lie algebras as twisted forms, and then using descent theory and
non-abelian cohomology, one can get many results about the structure of the Lie
algebras.

72



Now from the work in [KP], we know that derivation algebras of twisted forms
of certain Lie algebras are also twisted forms under suitable ring extensions. This
motivates our study of derivation algebras of such Lie algebras from the twisted
forms point of view. Generally, for any perfect finite dimensional Lie algebra g

over a field k of characteristic 0, for any k-algebra R of finite type, if L is a twisted
form of g ⌦k R, it can be deduced from the results in [KP] that there exists an
S-module isomorphism

Derk(L)⌦R S ⇠= Derk(g⌦k R)⌦R S

for some étale cover S/R. So Derk(L) is a twisted form of Derk(g ⌦k R). We
showed the results regarding Derk(L) from the descent point of view in Proposition
5.5. As Galois ring extensions are always faithfully flat and étale, and the Laurent
polynomial ring extensions we are interested in are Galois, we also considered the
questions in the Galois case. The result is Proposition 5.8. Besides, Proposition
5.4 and Proposition 5.9 tell us that the relation between the isomorphism of Lie
algebras and the isomorphism of their derivation algebras can be characterized by
the property of the maps between corresponding non-abelian cohomology sets, i.e.
the map

H
1(S/R,Aut(L)) �! H

1(S/R,Aut(Derk(L))); ['] 7! ['̃]

for S/R an étale cover, where

'̃ = �
�1
S
00 � C' � �S00 ,

and the map

H
1(�,Aut(gR)(S)) �! H

1(�,Aut(Derk(gR))(S)), [µ] 7! [eµ]

for S/R Galois with Galois group �, where gR = g⌦k R,

eµ� = �
�1
S
� Ch� � �S � (id⌦R �

�1),

h� = µ� � (idgR ⌦R �), for all � 2 �. Of course, to better understand these non-
abelian cohomology sets, one needs to know the automorphism group functors,
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which are unknown except for some special cases.
In summary, our results of fgc extended affine Lie algebras (“almost all” ex-

tended affine Lie algebras) reduces the study of extended affine Lie algebras to the
study of untwisted extended affine Lie algebras and their fixed point subalgebras, or
to the study of untwisted extended affine Lie algebras and their descended objects.
The structure of untwisted extended affine Lie algebras is much simpler.
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