NATIONAL LIBRARY OTTAWA

BIBLIOTHÈQUE NATIONALE OTTAWA

NAME OF AUTHOR. Bradford B. Owen Jr
TITLE OF THESIS. The effects of increased
Temperatures on Periphyton communitie
of artificial stream channels
University. U. of Alberta
DEGREE FOR WHICH THESIS WAS PRESENTED
YEAR THIS DEGREE GRANTED
Permission is hereby granted to THE NATIONAL LIBRARY
OF CANADA to microfilm this thesis and to lend or sell copies
of the film.
The author reserves other publication rights, and
neither the thesis nor extensive extracts from it may be
printed or otherwise reproduced without the author's
written permission.
(Signed) & Bradford B. Church .
PERMANENT ADDRESS:
R. P. #. 4
Bethlehem,
Pennsylvania USA.
DATED April 2719

THE UNIVERSITY OF ALBERTA

THE EFFECTS OF INCREASED TEMPERATURES ON PERIPHYTON COMMUNITIES OF ARTIFICIAL STREAM CHANNELS

DDADE

BRADFORD B. OWEN, JR.

by

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
OF DOCTOR OF PHILOSOPHY

IN BIOLOGY

DEPARTMENT OF BOTANY

EDMONTON, ALBERTA
SPRING, 1973

THE UNIVERSITY OF ALBERTA FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and Research, for acceptance, a thesis entitled The Effects of Increased Temperatures on Periphyton Communities of Artificial Stream Channels submitted by Bradford B. Owen, Jr. in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology.

Supervisor

External Examiner

Date April 27.

To my Father, Dr. Bradford B. Owen, Sr., who first introduced me to the exciting world to be discovered in a drop of water.

ABSTRACT

The effects of heat on periphyton communities was studied, using once-through flowing experimental streams with glass substrates. A control stream used Columbia River water, and the other four were maintained at 2.5°, 5.0°, 7.5°, and 10.0°C increments higher.

Standing crops of mature periphyton generally did not vary significantly among the different temperatures. The rate of standing crop accrual from cleaned surfaces increased with increasing temperatures. Net community production was measured from standing crop changes plus export. Heated streams out-produced the control in periods of high light and moderate temperatures. In periods of low light and high temperatures, net production of the heated streams was inhibited. Net annual production of the five streams were similar. Production was modelled as a function of temperatures and light.

Community structures differed considerably among the streams. Melosira varians dominated all fall and early winter communities. By mid-winter, the cooler streams were dominated by Fragilaria and Nitzschia species.

Rhopalodia gibba dominated the +10°C communities in late spring, and by mid-summer also became important in the cooler streams. Melosira regained dominance by mid-summer in the control channel, and by late summer in the

warmer streams.

A species succession was shown to exist in the spring when areas of bare substrate were allowed to colonize.

Shannon diversity indices were inversely correlated to net productivity and to water temperatures.

ACKNOWLEDGEMENTS

This study was funded by the Atomic Energy Commission through the Northwest College and University Association at the Joint Center for Graduate Studies in Richland, Washington. Research facilities and equipment were supplied by Battelle Northwest Ecosystems Department, Hanford Atomic Project, Washington.

I wish to thank the Battelle staff who aided and encouraged my research, and especially Dr. Charles C. Coutant. My thanks to Dr. George H. LaRoi for his suggestions and criticisms, and for helping me view aquatic ecology in refreshing ways. Thanks also to Dr. C. David McIntire for aiding in the identification of several diatoms.

Special thanks are due Marion, my wife, who has patiently typed and aided me in assembling this document.

TABLE OF CONTENTS

Introduction			
Methods and Materials			
The experimental stream system			
Interpretation of data32			
Results and Discussion31			
Climate			
Summary186			
Literature Cited188			
Appendices199			
Vi+a			

LIST OF TABLES

Tab	le Description	Page
1.	Chemical and physical properties of Columbia River water near hatchery intake	40
2.	Comparison of two measurements of standing crop of mature periphyton communities	51
3.	Comparison of three calculations of mean annual net productivity	96
4.	Predicted and actual net productivities of periphyton communities	98
5.	Algal taxa collected from experimental streams from October 1969 to November 1970	100
6.	Mean volumes of diatom cells	104
7.	Seasonal variation in average cell volumes of select important diatoms	105
8.	Number of diatoms actually counted in each sample	106
9.	Numbers of diatoms in periphyton communities of experimental streams of November 17, 1969	110
LO.	Numbers of diatoms in periphyton communities of experimental streams of December 29, 1969	111
ll.	Numbers of diatoms in periphyton communities of experimental streams of January 29, 1970	112
L2.	Numbers of diatoms in periphyton communities of experimental streams of March 4, 1970	113
13.	Numbers of diatoms in periphyton communities of experimental streams of April 7, 1970	114
L4.	Numbers of diatoms in periphyton communities of experimental streams of May 14, 1970	115
L5.	Numbers of diatoms in periphyton communities of experimental streams of June 1, 1970	116

Table	Description	Page
, 16.	Numbers of diatoms in periphyton communities of experimental streams of July 30, 1970	117
17.	Numbers of diatoms in periphyton communities of experimental streams of August 24, 1970	118
18.	Numbers of diatoms in periphyton communities of experimental streams of September 21, 1970	119
19.	Numbers of diatoms in periphyton communities of experimental streams of October 26, 1970	120 .
20.	Species biovolumes of experimental stream periphyton communities of November 17, 1969	121
21.	Species biovolumes of experimental stream periphyton communities of December 29, 1969	122
22.	Species biovolumes of experimental stream periphyton communities of January 29, 1970	123
23.	Species biovolumes of experimental stream periphyton communities of March 3, 1970	
24.	Species biovolumes of experimental stream periphyton communities of April 7, 1970	125
25.	Species biovolumes of experimental stream periphyton communities of May 14, 1970	126
26.	Species biovolumes of experimental stream periphyton communities of June 1, 1970	127
27.	Species biovolumes of experimental stream periphyton communities of July 30, 1970	128
28.	Species biovolumes of experimental stream periphyton communities of August 24,1970	129
29.	Species biovolumes of experimental stream periphyton communities of September 21, 1970	130
30.	Species biovolumes of experimental stream periphyton communities of October 26, 1970	131

Table	Description	Page
31.	Diatom counts of successional periphyton communities vs. a mature periphyton community	141
32.	Species biomass of successional vs. mature periphyton communities	142
33.	Percentage of intact frustules that are empty within the periphyton communities of artificial streams	146
34.	Algal species performances in periphyton communities of artificial streams, November 17, 1969 to October 24, 1970	167

LIST OF FIGURES

Figure		Page
1.	Artificial stream system	11
2.	Upstream ends of artificial streams, showing thermistors and mixing chambers	11
3.	The export net system of the artificial streams	12
4.	The artificially illuminated stream	14
5.	Columbia River control channel	14
6.	Columbia River drainage and study site	15
7.	Outdoor plumbing of the artificial stream system	16
8.	Mean daily insolation at the Hanford Atomic Reservationm 1969-1971	36
9.	Mean monthly cloud cover at the Hanford Atomic Reservation, 1969-1970	39
10.	Temperatures of the five experimental streams, 1969-1970	45
11.	Standing crops of mature periphyton communities of the experimental streams	48
12.	Percent weight loss on ignition of mature periphyton communities of the artificial streams	54
13.	Standing crops of chlorophyll a in mature periphyton communities of the experimental streams	58
14.	Specific pigment content of mature periphyton communities of the experimental streams	61
15.	Periphyton standing crop accrual on bare substrates, October 24-November 17, 1969	65

Figure		Page
29.	Periphyton net community productivity under different light and temperature conditions in experimental streams	92
30.	Temperature defined limits of periphyton net community production	94
31.	Percentages of intact frustules that are empty in periphyton communities of experimental streams	150
32.	Percentage contribution of phytoplankton species to total periphyton biomass in experimental streams	153
33.	Numbers of live and dead Fragilaria crotonensis cells in experimental streams	155
34.	Periphyton species diversity in experimental streams, computed from biomass	159
35.	Periphyton species diversity in experimental streams, computed from biomass contributions of each diatom species	159
36.	Periphyton species diversity in experimental streams, computed from counts of live diatoms	162
37.	Periphyton species diversity in experimental streams, computed from counts of live and dead diatoms	162
38.	Periphyton community evenness (J' index) computed from species biomass contributions	165
39.	Blue-green algal biomass in periphyton communities of experimental streams	170
40.	Melosira varians biomass in periphyton communities of experimental streams	170
41.	Fragilaria construens biomass in periphy- ton communities of experimental streams	174

Figure		Page
42.	Fragilaria crotonensis biomass in periphyton communities of experimental streams	174
43.	Fragilaria vaucheriae biomass in periphyton communities of experimental streams	177
44.	Navicula minima biomass in periphyton communities of experimental streams	177
45.	Epithemia sorex biomass in periphyton communities of experimental streams	179
46.	Rhopalodia gibba biomass in periphyton communities of experimental streams	179
47.	Nitzschia fonticola biomass in periphyton communities of experimental streams	181
48.	Nitzschia dissipata biomass in periphyton communities of experimental streams	182
49.	Nitzschia palea biomass in periphyton communities of experimental streams	183
50.	Nitzschia Kutzingiana biomass in periphyton communities of experimental streams	183
51.	Surirella ovata biomass in periphyton communities of experimental streams	186

INTRODUCTION

The ever increasing needs of our industrialized, mechanized society have placed severe demands on the environment of this planet Earth. To nurture these demands, electrical energy is mainly supplied by inefficient systems of energy conversion, which necessitate the disposal of waste heat. This heat is frequently transferred to bodies of water, resulting in numerous ecological consequences. Although the effects of heat on fish, and to a lesser degree on invertebrates have been investigated, there have been to date few experimental attempts to analyze the effects of the organisms comprising periphyton communities. This thesis describes the results of research conducted to determine the reaction of one food chain base, the periphyton community, to constant thermal additions.

Periphyton may be defined as the community of attached plants, excluding rooted macrophytes, that develops on exposed underwater surfaces (Wetzel and Westlake 1969). It is virtually impossible to separate these largely microscopic plant forms from the protozoa, bacteria, fungi, and small invertebrates that are also an integral part of this attached community. Thus, the term "periphyton" will, in this study, be understood to include all the associated organisms that develop on underwater surfaces.

Periphyton is a source of primary production for

virtually every body of water. It may be an unimportant producer in deep lakes, but in many shallow lakes and streams it may be the major source of production. Wetzel (1963) considered periphyton more important than phytoplankton in streams, rivers, and shallow lakes. In large rivers, such as the Columbia, the relative importances of periphyton and phytoplankton are difficult to assess, as many species are common to both communities. Many investigators (e.g. Butcher 1932, Chandler 1937, Lacky 1942, Whitford 1956, Lund and Talling 1957, Cushing 1964) have demonstrated that the components of river plankton (potamoplankton) are often partially, if not entirely, derived from periphyton. Similarly, species commonly considered to be potamoplankton may be present in periphyton, as will be shown in this study. Macrophytic plants also may be important primary producers in some bodies of water, but are virtually absent from the Columbia River. Thus, in large rivers such as the Columbia, the indirect subject of this study, periphyton may be regarded as a major source of primary production.

The ecology of periphyton communities has been studied extensively. Their importance was probably not recognized, however, until the 1930's when Butcher (1932) investigated the subject. Since then, numerous studies of periphyton from diverse habitats have been reported. No single best method for collection of periphyton organ-

isms has been established or agreed upon. Removal from natural substrates is difficult, and may result in damage to the more vulnerable organisms (Douglas 1958). It is also difficult to quantify data from natural substrates. as the microhabitats available are extremely diverse, and the responses of the communities to these differences are difficult to assess. Consequently, much of the research on periphyton has centered around the use of various types of artificial substrates which provide the communities with uniform surfaces on which to colonize. Some of the artificial substrates used include wood, flat or uniform stones, paraffin, plexiglas, and glass. Much of the literature on the use of these has been reviewed by Cooke (1956), Lund and Talling (1957) and Sladeckova (1962). Glass has been the most widely used substrate. Many investigators (e.g. Patrick, Hohn and Wallace 1954, Lund and Talling 1957, Castenholz 1960, McIntire 1966) consider the plant communities that develop on glass surfaces to be representative of "natural" periphyton.

Although there is considerable literature characterizing the periphyton of many bodies of water, few investigators have attempted to demonstrate experimentally the correlation between specific environmental parameters and changes in various community characteristics. The effects of high temperatures on periphyton communities have been noted by many authors who have studied thermal springs

(Copeland 1936, Brock and Brock 1966, Brock 1967, Kulberg 1968, Stockner 1968, Winterbourn 1969). However, the periphyton of their studies was generally grown at temperatures well above the limits likely to be encountered in waters receiving thermal wastes. There have also been numerous studies of the responses of individual species of algae to temperature (e.g. Wallace 1955, Smayda 1969, Ignatiades and Smayda 1970, Peiterse and Botha 1971), but it is difficult to infer from the data of these reports the responses of communities composed of many species. Phytoplankton communities have been studied in relation to temperature (e.g. Steeman-Nielsen and Hansen 1959, Warinner and Brehmer 1966, Polteracka 1968, Morgan and Stross 1969, Hirayama and Hirano 1970), but while some of the species presented in these studies may occur in periphyton, it is doubtful that they would react similarly under benthic conditions.

Numerous reports are available concerning thermal effects on aquatic ecosystems; these are reviewed by Kennedy and Mihursky (1967), Patrick (1969), Coutant (1970), and Coutant and Goodyear (1972). Several reports concerned with the effects of thermal discharges include data on periphyton. Trembley (1960) states "...it is clear that with rising temperatures blue-green algae and one family of diatoms become relatively much more abundant, while other diatoms and green algae along with most

other members of the periphyton community show a relative decline." This conclusion was based on studies of periphyton in, above, and below a thermal effluent of a steam electric power plant on the Delaware River. He also concluded that total yearly periphyton productivity in the heated zone was probably much greater.

Churchill and Wojtalik (1969) discuss data from several discharge areas. The authors state that below the discharge of the Colbert Steam Plant (Tennessee) the temperatures of Cane Creek increased from 67°F to 86°F in September 1967, while the periphyton changed from a diatom community to a blue-green algae dominated community. Periphyton production was observed to be slightly higher in the heated areas, for the same study period. The authors also discussed the results of research on the effects of thermal discharges of the Paradise Power Plant on the Green River, Kentucky. Periphyton growth rates were "substantially reduced" in the vicinity of the steam plant during summer months; in late fall and early winter, affected areas exhibited "moderately enhanced" growth rates. Buck (1970) compared the periphyton of the Connecticut River above and below the Yankee Atomic plant, Connecticut, during summer and early fall, 1968. He concluded that the thermal additions produced an obvious shift from a diatom dominated community to a blue-green algae dominated community.

Normandeau (1970) studied the periphyton from one collection period in July 1968, and found that in the Merrimack River, New Hampshire, all major groups of periphyton organisms were reduced or absent in a discharge canal where temperatures ranged from 88° to 100° F.

These results are in conflict with others, leading one to suspect that additional factors, such as intake chlorination (Brook and Baker 1972) may have masked his results.

Recently, several researchers have attempted to reduce environmental variables by constructing artificial streams, and studying the periphyton grown under the controlled conditions of the streams. Kevern and Ball (1965) studied the periphyton of recirculating indoor laboratory streams, and found no significant differences in net productivity between two streams maintained at 20.0°C, and 25.6°C. The authors observed that a 10°C increase in mean temperature produced a significantly increased rate of gross oxygen production at light intensities over 11,100 lux. These observations were based on a periphyton community from water of 8.7°C to 12.2°C raised to 18.2°C to 21.1°C. They also concluded that in shallow lotic systems, a Q_{10} of approximately 2 might be applicable to the respiratory rates of communities exposed to temperatures not ranging too far from the acclimation temperature. Patrick, Crum and Coles (1969) studied the attached floras of experimental boxes using non-recirculated

flowing water. They noted that a shift in average temperature from 34°C to 38°C resulted in a shift of dominance from diatoms to blue-green algae.

Patrick (1971) studied the effects of controlled light and temperature increases on the diatom component of artificial stream periphyton communities. The diatoms studied were grown during short and varying periods of colonization at four dates in a year. Based on community structure and diversity, Patrick states "one may conclude that optimum conditions of light and temperature formed a fairly narrow range within the range of tolerance, and that increases induced near the lower end of the range of tolerance improved the structure of the community significantly. Increases near the upper end of the range of tolerance produced severe degradation in community structure."

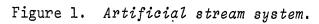
The present study attempts to further define the effects of temperature on periphyton communities. In order to simulate natural systems, a once-through artificial stream system was used. The total periphyton community was studied, as it was felt that although the diatom component was important, other groups might also display significant reactions to thermal additions. In order to examine the total spectrum of potential heat effects, a collection schedule was adopted, with the specific objective of defining the effects of heat on periphyton commun-

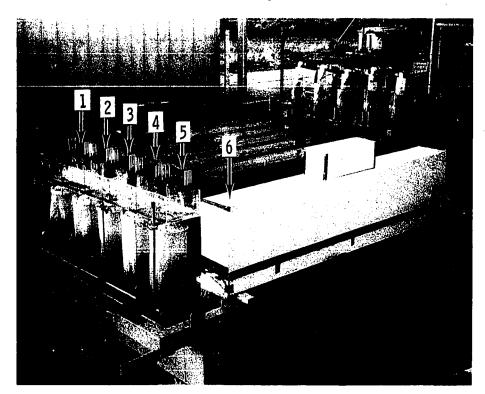
ities of varying maturity.

The general objective of the present investigation is to establish the major effects of sustained elevated temperatures (+2.5°, +5.0°, +7.5°, +10.0°C) above a seasonally varying ambient on undisturbed periphyton communities of outdoor artificial stream channels. An additional objective is to make the data from this research as applicable as possible to the Columbia River System. The search for these effects continued for one year, in order to encompass natural seasonal changes in environmental parameters that might interact with temperature. The specific objectives were to determine if the periphyton of the streams would develop significant differences in standing crop, productivity, and community structure.

ľ

METHODS AND MATERIALS


The Experimental Stream System


Six artificial streams, each consisting of a plexiglas channel 1.83 m long, 15.3 cm wide, and 7.6 cm deep (Figure 1) were constructed. At the head of each stream a deeper chamber was constructed (Figure 2) to provide a mixing area for the water that would be introduced at two temperatures. An additional cylinder of plexiglas was added to further mix the water, by forcing it through a series of holes, and then under a second larger cylinder. The latter additions also aided in allowing the heated water, which was air-supersaturated, to come to equilibrium before being introduced into the channel. Microscope slides were positioned in a double row flat against the bottom of the main channel of each stream, with the long axes perpendicular to the flow. A row of flat strips of plexiglas was run down the center of each channel between the rows of slides. Each plexiglas piece was screwed into the main channel with nylon hardware, and covered the ends of six slides, holding them firmly in place. Five channels were placed on a level steel bench in full sunlight exposure. They were oriented so that the flow was north to south. Each drained into a plexiglas receiver, to which a net was attached (Figures 1 and 3). The nets were nylon monofilament with a mesh opening of 210 microns (which was determined to be the most useful

mesh size, as will be described later). A removable jar was attached to the bottom of each net, to facilitate the frequent collections of stream export. Exported particulate stream material passed into the nets, and remained trapped until it eventually sank into the collection jar. The exported matter was generally collected every second day.

The additional stream channel, to be referred to as "stream 6" of the "light control channel" was modified with a light sealed, hinged lid (Figure 4). Three Sylvania cool-white fluorescent 60 watt tubes supplied light for the stream 12 hours each day, as controlled by a timer. This photoperiod was constant for the whole year of study. Approximately 14.3 langleys (1 langley = 1 gram calorie/cm²) of visible light energy were received at the water surface each twelve-hour photoperiod. This was determined using an "optical power meter" (Model 610 Optics Technology, Inc.). Stream 6 was similarly positioned with the other five in an outdoor location; however, for lack of space, an export net was not attached.

A seventh stream channel, to be referred to as "stream 7" or the "Columbia River control" was constructed of plexiglas, with dimensions similar to the other channels. Styrofoam was attached to each side of the stream, and both ends were left open to allow the river to flow through in a manner similar to the other streams. It was

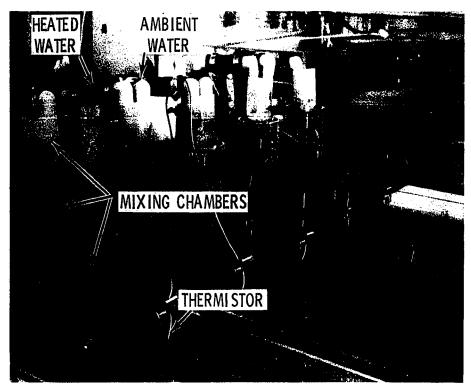
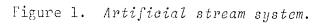
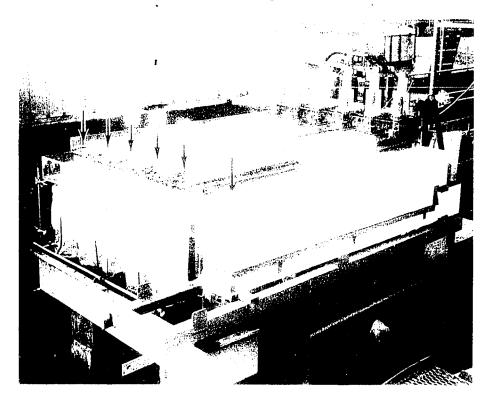




Figure 2. Upstream ends of artificial streams, showing thermistors and mixing chambers.

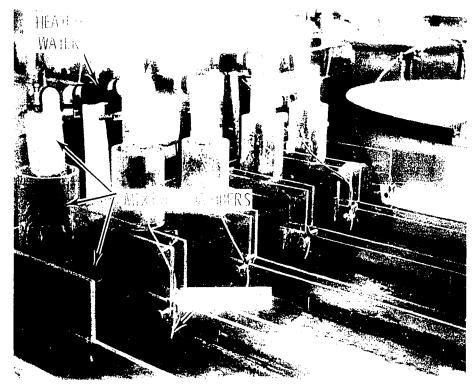


Figure 2. Upstream ends of artificial streams, showing thermistors and mixing chambers.

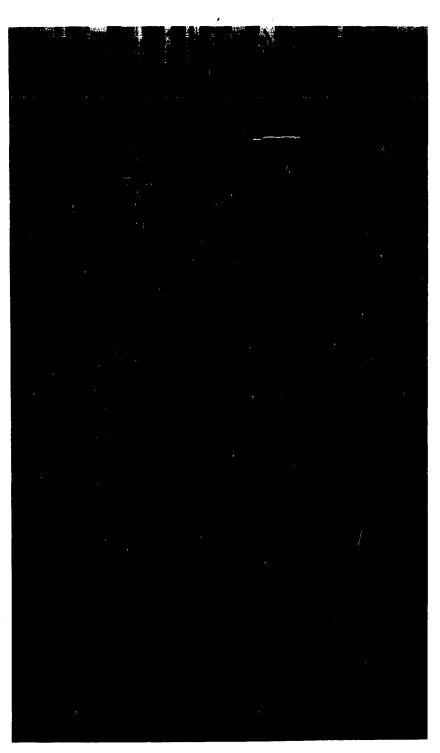
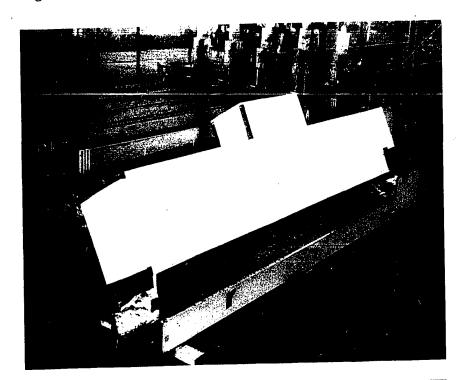


Figure 3. Export net system of the artificial streams.

The grant of the last of a grant of the consent the first order.


then attached to an anchored floating device in the Columbia River (Figure 5), in an area of flow velocity approximating that of the other experimental streams. This flow velocity, however, was not stable, as the Columbia River in this area is regulated by power dams upstream. The channel was lined with microscope slides attached as in the other streams. This stream was also positioned in full sunlight exposure. No net system could be attached to collect export.

Finally, it was deemed necessary to determine the quantity of imported organic matter that would be entering each stream system. To this end, an additional outlet from the river temperature water source was constructed, and a net identical to those described was attached. This net, referred to as the "control net" received water at the same rate as each of the other streams.

The experimental streams were installed at the Battelle Northwest aquatic laboratory facilities about 25 miles north of Richland, Washington, in the Hanford Atomic Reservation (Figure 6). They were situated outdoors, adjacent to the fish hatchery, approximately 150 feet from the Columbia River.

Excepting the Columbia River Control channel, water was supplied to the experimental streams from a large head tank located in the hatchery facilities. The head tank received water pumped about 0.4 km from the Columbia

Figure 4. The artificially illuminated stream (channel 6).

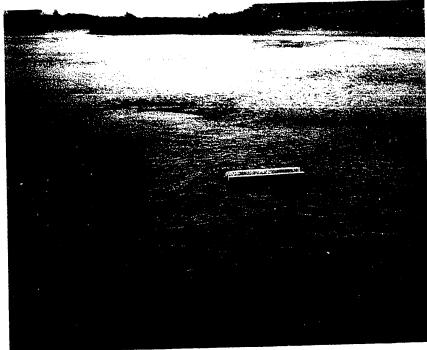
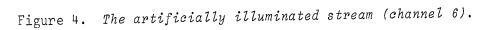
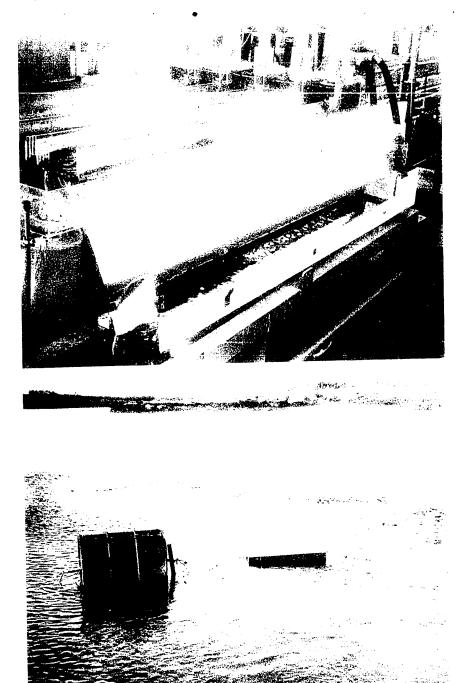



Figure 5. Columbia River control channel (channel 7).

1



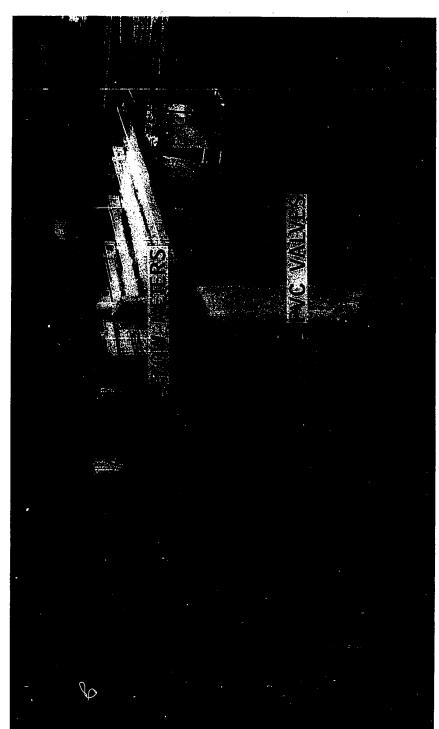

Figure 5. Columbia River control channel (channel 7).


Figure 6. Columbia River drainage and the study site.

Figure 6. Columbia River drainage and the study site.

Outdoor plumbing of the artificial stream system. Figure 7.

River. Water from the head tank was supplied at constant pressure to the streams, through one heated and one unheated system. A steam heat exchanger was automatically controlled to supply water 10°C above river temperatures for the heated system. The river temperatures varied from approximately 5° to 21°C during the year studied. These two water supplies were piped to two manifolds at the head of the streams. Here, the water was supplied to each stream through calibrated flow meters (Figure 7) at the constant rate of 13 liters per minute. This rate of flow gave a surface speed averaging 0.15 m per second. To maintain the desired temperatures of +10.0°, +7.5°, +5.0°, +2.5°C and river temperatures for streams one through five, respectively, the exact proportions of +10.0°C water and river temperature water necessary for each stream were determined. These proportions were marked on the flow meters, and maintained with polyvinyl chloride valves. The settings were checked twice daily. Stream 6, the light control channel, also received river temperature water at 13 liters per minute. All water was wasted after passing through the net system. This was necessary in order to simulate a segment of natural river periphyton habitat, in which the same water passes over the community only once. Recirculating systems may effect changes in species structure (Patrick, Crum and Coles 1969) not correlated with changes in comparable natural

systems.

Tests of the Experimental Stream System

The experimental stream system was designed to simulate natural periphyton habitats, but with uniform substrate and controlled flow. The heated channels simulated conditions directly below outfalls of heated water. For conclusions on the effects of elevated temperatures on the periphyton communities to be valid, four tests were deemed necessary to establish how well the experimental streams and the sampling procedures were functioning.

1) It was important to determine if variations in the quantity and quality of planktonic input occurred among the streams, in order that conclusions on their periphyton species composition, standing crop, and export could be adjusted accordingly, to be comparable. tablish if there were any visible adverse effects to the planktonic organisms exposed to the +10°C heated water, 5 liter samples of the heated and unheated water sources from the points of entry into the streams were millipore filtered. Samples were examined microscopically, and every fourth field from the edge of the filter toward its center was counted. The condition of each encountered cell was evaluated (it was considered dead if the protoplast was missing, or obviously abnormal) and the counts were divided into numbers of live and dead individuals. These data were statistically treated with the student

t-test for each species, to determine if there were significant differences in the numbers of live individuals between the two sources of water for the stream. Two sets of samples were collected on different dates, and analyzed as described. There were no significant differences for counts of any species. Although these data were not conclusive, they did indicate that the short exposure in the heat exchanger (approximately 30 seconds) did not visibly affect planktonic organisms of the Columbia River. Cairns and Lanza (1972) indicated similar results for similar temperatures tested.

there were any planktonic species that were significantly precipitating or being trapped by the established periphyton communities, and 2) if the export material from the periphyton was composed of large enough chunks to pass into the collection jar without being lost through the relatively coarse netting. Millipore samples were collected at the input of one stream, and again after the water had flowed over the periphyton of the same stream, and through the export net. The samples were treated as described above. T-tests indicated no significant differences in the numbers of individuals of any species from the two collections (Appendix 1). Thus, it would seem that the bulk of the potamoplankton input from the Columbia River passes over the periphyton of the artificial

streams, and does not become trapped in the export nets. Further evidence of this was provided by the control export net data (see "Periphyton Community Export"). These data also support the visual observation that periphyton is exported from the streams in large masses, and is captured in the nets, and that there probably is no significant export of cells or groups of cells small enough to be lost through the nets. On the basis of these data, it was decided that the net mesh size of 210 microns was adequate to sample export from the artificial stream communities.

3) As there were temperature differences among the streams, it followed that there could be temperature related differences in either growth or decomposition of the net-collected export that settled into the jars. This could have resulted in misleading differences in biomass after a certain number of days of exposure before the jars were collected. The following experiment was conducted to evaluate this possibility. A large amount of periphyton was collected from the control stream, and mixed thoroughly in a large container until there was a uniform suspension. Eight net sample jars were filled with equal volumes of the periphyton suspension. jars of the samples were oven dried at 60°C, and the other five were covered with the 210 micron netting, and replaced on the net systems of each stream. were first totally cleaned of periphyton, and the temperatures were adjusted to give the maximum possible spread, with temperatures of 30°, 25.8°, 21.5°, 17.3°, and 14°C, for streams one through five, respectively. Flows were maintained at the normal rate of 13 liters per minute. After three days of exposure, the jars were removed, and samples oven dried at 60°C. The eight dried samples were weighed, ashed, and reweighed. Comparisons to the three control samples indicated no significant effects of the three-day exposures. It was therefore decided that a maximum of a three day interval between net collections would be acceptable.

4) Preliminary experiments indicated that there were significantly different rates of periphyton colonization and growth at different temperatures. It was conceivable that the horizontal slides were only collecting the results of different rates of phytoplankton precipitation, and not reflecting periphyton growth rates. Physiological changes in the planktonic organisms exposed to heat could have accelerated their precipitation; or, temperature related changes of the water, such as viscosity decreases, could have produced similar results. To test that the observed differential rates of periphyton growth were not artifacts related to the horizontal position of the slides, a series of slideholders were constructed to position twelve microscope slides vertically in the upper pool section of each stream. The slides were collected

after eight days of exposure. Samples from two sets of six slides from each stream were ashed. None of the ranges of the biomass collected from these vertical surfaces in different streams overlapped. These data were evidence that the horizontally-positioned slides were not producing spurious results.

Non-biological Sampling Procedures

Major chemical and physical parameters of the Columbia River water were monitored twice monthly by the Douglas United Nuclear Company analytical laboratory, located on the Hanford Atomic Reservation. The samples for these analyses were collected near the water intake of the hatchery facilities used in this research, and were thus expected to have equal validity for the experimental stream system. Samples were collected simultaneously from the standard location, and from the experimental stream input at two times during the study, to determine if there were any major alterations in water quality resulting from water passage through the 0.4 km of piping. Daily rates of solar radiation were monitored by the Battelle Northwest Meteorology Station, located approximately 19 km from the experimental streams. This distance was considered to be insignificant, as the weather patterns over the Hanford Project are generally uniform.

Temperatures of the experimental streams were continuously monitored from thermistors (Figure 2). The therm-

istors were connected to a modified Yellow Springs Instrument Company scanning tele-thermometer (model YSI-47). The instrument was modified by R. P. Gribble and N. S. Porter, so that in connection with a strip-chart recorder, it would give temperature recordings approximately 36 times a day for each stream. The recordings were not accurate to more than ± 2°C, and consequently were only of use as a continuous check against major fluctuations. The temperatures of the heated water source were also continually recorded, and changes of 0.2°C could be observed. The latter were of considerable use, as problems in maintaining stable temperatures originated at the heat exchanger. In addition, an alarm system was set to instantly sound if the temperature of the water from the heat exchanger exceeded a preset level, usually about 4°C above the regulated temperature. The most accurate data of the actual temperatures of the streams were obtained twice daily with a hand-held standard mercury thermometer.

Biological Sampling Procedures

As described earlier, the bottom of each stream was lined with two rows of microscope slides. For sampling purposes, each stream was considered to consist of three sections longitudinally, A, B, and C, each containing 36 slides. Section A, the furthest upstream, was always maintained as an undisturbed mature community except for sampling, while sections B and C were seasonally cleaned

bare for the studies of growth and development of immature periphyton communities. No area of growing immature communities was sampled more than once in each seasonal study. For the mature communities, sampling procedures were established so that no area could be sampled more frequently than once every three months. The majority of investigators using glass substrates have considered a period of less than two months sufficient to develop a mature growth of periphyton. However, preliminary work on the experimental streams suggested that there was generally a complete turnover of periphytic material in less than one month, making the above inter-sampling period ample.

Duplicate or triplicate samples of periphyton were collected each month to evaluate quantitatively and qualitatively the standing crops of the mature periphyton communities of each stream. Each sample consisted of from two to four slides. Once during each season, the lower 2/3 of every stream was cleaned bare, and allowed to become recolonized. When possible, standing crop samples were collected from the resulting immature communities at four intervals during the growth phase. The growth phase was defined as the period of net biomass increase prior to the establishment of a more or less stable standing crop. Export net samples were collected every two or three days throughout the study period. Both mature and immature periphyton communities were treated in three

basic ways. One set of replicate samples was used to determine the weight of the periphyton present, a second set of replicate samples was used for the extraction of pigments, and a third set was processed for microscopic studies of actual organisms present.

The 36 Lides in each stream segment were numbered consecutively, and the choice of slides for any sample was based upon random numbers tables. The first encountered number in the range of 1 to 36 was used as the number of the first slide to be collected. The adjacent downstream slide was also collected, as the periphyton growth was usually so thick that inaccuracies would result from breaking up smaller segments of the community. Thus, every sample consisted of at least two adjacent slides. Collections of mature periphyton consisted of three adjacent slides for each replicate, while only two slides were collected from the immature communities. A second area to be sampled was always chosen directly opposite from the first (these two samples were analyzed for different parameters , thus the replicates to be analyzed for the same parameters were from different positions along the length of the stream, but opposite sides). There were two reasons for collecting samples from opposite sides of the stream. 1) Although the streams were transparent, and oriented north-south, there could possibly have been an effect of differences in quality of light

of east versus west exposure. 2) Despite the fact that each sample of slides and periphyton collected was replaced with fresh slides, there was enough change in the bottom configuration to considerably alter the stream flow, i.e., from both sides of the stream. The replicate samples for each analysis were chosen from different areas of the stream, using new random numbers. In the studies of the immature communities, the replicate samples were taken from different sections (B and C). Replicate mature community samples were removed from different areas along the length of section A.

Samples collected in the export nets when the lower sections of each stream were cleaned every season also were analyzed for standing crop, as were collections resulting from a misguided lawn sprinkler that removed all the growth on one date. Other non-scheduled sampling included various collections of the invertebrates that colonized the artificial streams several times. Droppers full of periphyton were also frequently sampled for microscopic examination.

Analyses of Samples

One of the three groups of samples removed from each stream was oven dried at 60°C overnight, then desiccated to a constant weight over CaCl₂. After weighing, these samples were ashed at 550°C as suggested by Wetzel and Westlake (1969), and reweighed. The ashed periphyton was

cleaned from the slides, and the slides were dried and weighed. Standing crops in terms of dry weight, ash-free dry weight, and percent loss on ignition were recorded. The material from the export net samples was treated similarly.

The second set of samples from each stream was partially dried in a dark container into which a fan constantly conducted room temperature air. They were then desiccated in another dark container to a constant weight, and weighed. The periphyton material was scraped from the microscope slides, and the slides re-weighed. The dry weights of the periphyton samples were recorded. moved material was ground with refined sand to break up any cells that might otherwise not be extractable. Pigments were extracted in 90% aqueous acetone, into which a small amount of MgCO₃ was added. The extracting samples were refrigerated in the dark for 24 hours. After centrifuging, the optical densities were read on a Beckman DU-2 Spectrophotometer at 7500, 6650, 6300, 5100, 4800, and 4300 $\mathring{\text{A}}$. Phytopigment concentrations were computed according to the formulae of Parsons and Strickland (Strickland and Parsons 1970). Additional spectrophotometric readings were obtained from one set of collections that were acidified after an initial reading. These data were used to compute the amount of phaeo-pigments present according to the methods of Lorenzen (1967). The 4300 Å readings were used to compute the pigment diversity ratio

D4300/D6650 of Margalef (1965). Another ratio, D4800/ D6650 was also computed.

The third set of samples were processed for microscopic examination. Except during the earliest stages of growth, the periphyton communities were too thick (1cm or more) to be studied intact. Thus, the material was removed from the slides, and processed to make thin microscopic mounts. As it is the firm belief of this author that it is important to study as many components of the periphyton community as possible, the widely accepted acid cleaning methods (described in Patrick and Reimer, 1966) were not used. Acid cleaning the periphyton removes everything except diatom frustules. Many authors consider this cleaning process necessary to facilitate diatom identification. However, since periphyton communities invariably include dead individuals of almost every diatom species, the identifications may be made from these individuals. Comparisons of dead, empty diatoms and acid cleaned ones revealed no differences in the ease of identification. Benefits in not cleaning the periphyton were 1) being able to distinguish the live from the dead diatoms, and 2) having all of the other taxonomic groups of the communities available for identification and counting.

With the above in mind, the following technique was found to be satisfactory. The collected samples were fixed overnight in a solution of chromic acid, acetic acid,

and alcohol (Baker 1960), then washed several times. The periphyton was then scraped from the substrate, put in a Waring blender with a known dilution of water, and blended at low speed. Immediately, as the blender was stopping, a 4 ml sample was withdrawn and placed in a small screw-capped vial, which was centrifuged, decanted, and filled with stain. This stain was a mixture of methylene blue, acid fuchsin, and a small amount of acetic acid. After staining to the desired intensity, a series of dehydrating alcohol solutions were used to prepare the periphyton material for xylene, the final storage solvent. The dehydration was achieved through a lengthy series of centrifugations and decantations which were determined not to damage the organisms to the point where identifications were impossible.

The final permanent mount slide was made with Hyrax mounting medium (Custom Research and Development, Inc., Richmond, California). Several drops of Hyrax and a known number of drops of room temperature xylene-periphyton suspension were placed on a microscope slide, spread evenly, and mixed until the xylene evaporated. Then the slide was heated on a hot plate and covered with a 20 x 60 mm coverglass. The amounts of periphyton and medium were critical in determining the thinness of the mount, as excess material could not be squeezed out, without destroying the basis for computing the actual proportion of the original sample

present.

The final microscopic preparations were an even dispersion of all periphytic organisms and detritus that had been present in the periphyton. The staining procedure allowed the microscopist to distinguish between live and dead organisms by staining the fixed protoplasts pink.

Most organic debris and cellulose walls stained blue, while diatom frustules remained clear. Blue-green and green algae as well as protozoa and bacteria were also stained, and could be at least partially identified. However, live mounts of samples of forms other than diatoms were helpful in identification.

Classification of diatoms generally followed Patrick and Reimer (1966) for the Fragilariales, Achnanthales, and Naviculales, and Cleve-Euler (1951) for all other diatom orders. Other sources used to aid in diatom classification were Hustedt (1930) and Van Heurck (1896).

Green algae were classified according to Prescott (1962) and blue-greens according to Drouet (1968). Attempts to classify and count the protozoa of the periphyton were in vain, as they were unevenly dispersed. It was decided that all microscopic efforts would be devoted to the primary producers.

The prepared slide material was identified and counted with a Leitz microscope, with 16X Periplan oculars, and 3.5X, 10X, 40X, and 100X achromatic objectives, the latter

with a 1.30 numerical aperture. A series of 25 numbered . coordinates were taken from random numbers tables, and used to select the fields to be counted, by matching them with the microscope stage coordinate numbers. For each slide, 25 fields were counted at 640 X, and questionable identifications in any field were checked under oil immersion. The larger species of algae that could be identified with lower power were counted under 160X using the same 25 fields. Filamentous green algae and blue-green algae were counted as the lengths of all the filaments in a field, estimated in tenths of the field width. Diatoms were counted as either live or dead individuals. frustule had any visible protoplast, it was considered alive. All species that were represented only by dead individuals were eliminated from the final counts, as they did not contribute to the biomass of the community.

The resultant counts at three magnifications were summed and converted to numbers per species per square millimeter of the original sample. The conversion factor used depended on the size of the sample, the amount of water used in the blender, the amount withdrawn for staining, the amount of xylene in the final storage, the number of drops of xylene suspension used on the slide, and the actual area counted. To test the reliability of the methods, and to check on community variability within each stream, slides of the duplicate samples from every stream

were counted once every season.

The mean dimensions of an individual of each major species was computed once every season, by averaging measurements of at least ten individuals. The mean volume of an individual of a species was computed from formulae idealizing the shapes to cylinders, cones, spheres, and cubes. The contribution of each species to the biovolume of the community was then computed as the mean volume times the count.

Interpretation of Data

The diversity of a community is one simple expression of its structure, although no precise ecological significance should be attached to such numerical simplifications. The index of diversity used in this study was:

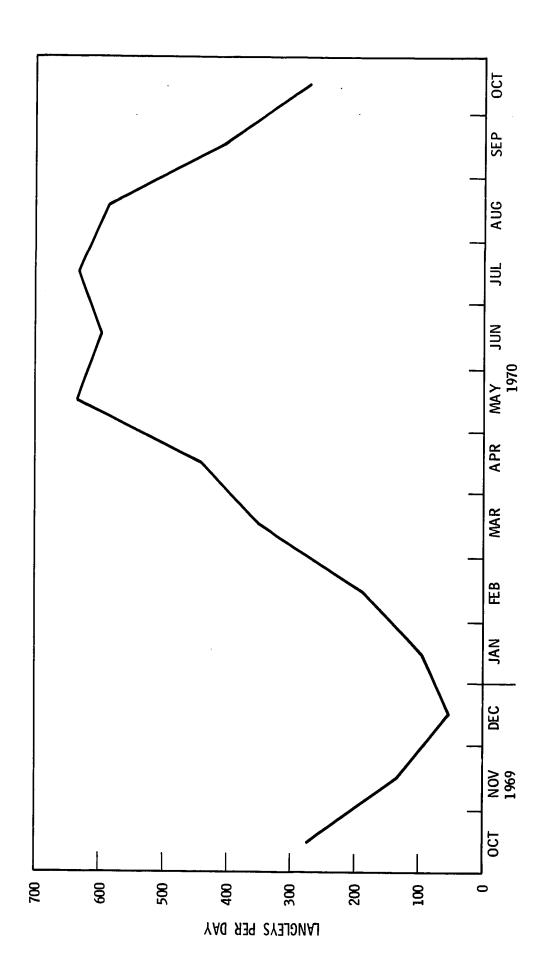
$$H' = -\sum_{i=1}^{s} \frac{n_i}{N} \log_2 \frac{n_i}{N}$$

where "s" is the number of species in the community, "n_i" is the number of individuals in the "i"th species, and "N" is the total number of individuals of all species in the community. This formula, now widely used in ecological studies, was derived by Shannon and Weaver (1948) in a study of information theory. This index is dependent on evenness of the species abundances (Lloyd and Ghelardi 1964). The maximum diversity theoretically possible for a community with "s" number of species was computed using

 $H'_{max} = \log_2 s$, in which each species would have a theoretically equal abundance. To measure the relative abundance component, the index $J' = H'/H'_{max}$ was used (Tramer 1969).

Net community production (Odum 1971) of the periphyton was calculated from export and standing crop data. Changes in the standing crop from one collection to the next were added to the amount of material exported during that period to give the total net community production for that time interval. Attempts were made to measure production in situ from upstream-downstream changes in pH and oxygen content. However, even under temporarily reduced flows, these methods proved much too insensitive to provide accurate measures of production.

Finally, a simple prediction model for net community production was developed with the aid of R. J. Buschbaum (Battelle-Northwest, Reactor Physics). The model is based on light and water temperature, which emerged as the environmental variables of major significance in this study. (Several other variables were tried in the model, but were discarded). The least squares method of curve fitting was applied to data on mean light, temperature, and production rate of mature and immature communities, for twelve periods of approximately one month each.


RESULTS AND DISCUSSION

The site of this investigation was the Hanford Atomic Project in Southeastern Washington (Figure 6). The Columbia River is free-flowing in this area, although the majority of the upstream and downstream sections are now a series of man-made lakes. This section, which is likely to remain free-flowing, is being considered as an important future site for extensive nuclear power generation. This is one of many reports that have attempted to quantify the potential ecological effects of any thermal additions to the river that might result from such development.

Climate

The climate of the Hanford Atomic Project is characterized by long, cloudless summers, and mild cloudy winters. Semi-arid, it has a mean annual precipitation of 16 cm. The light climate has sharply contrasting seasonal means, and daily totals of solar radiation varied during the study period from 14 langleys to 773 langleys (Figure 8). The climate from October 1969 to November 1970 was fairly normal, except for December, which had record low light. These data represent the total direct and scattered solar radiation from 0.3 to 3.6 microns wavelength, received on a horizontal plate. The great seasonal changes in incoming solar radiant energy are accompanied by changes in the energy-wavelength distribution, which may be

Figure 8. Mean daily insolation (Langleys) at the Hanford Atomic Reservation, 1969-1970.

affected by changes in solar angle and cloud cover (Vollenweider 1969). Daytime cloud cover varied sharply from the dense, almost total sky cover in midwinter, to the brilliant cloudless days of summer (Figure 9).

Approximately 45% of the radiation measured may have been in the visible range, and of this, 38-53% has been reported as photosynthetically available (op. cit.). Thus, the amount of usable solar energy that reached the periphyton in the experimental streams (assuming no significant loss through the shallow water) may have been from 17-24% of the values in Figure 8.

Water Chemistry

Chemical and physical data for the Columbia River near the hatchery water intake are presented in Table 1. A comparison of samples taken simultaneously from both the intake and the experimental streams with these river samples indicates that the water quality at the experimental streams is apparently not altered from that of the river (Appendix 2). The possible exception is the suspended solids which may have been significantly reduced by sedimentation in the head tank before reaching the experimental streams. Thus, the data of Table 1 are considered fairly representative of the experimental stream water.

The Columbia is relatively stable in terms of chemical composition. Seasonal patterns are not very evident from the data presented here, although Cushing (1964b) did

Figure 9. Mean monthly cloud cover at the Hanford Atomic reservation, 1969-1970.

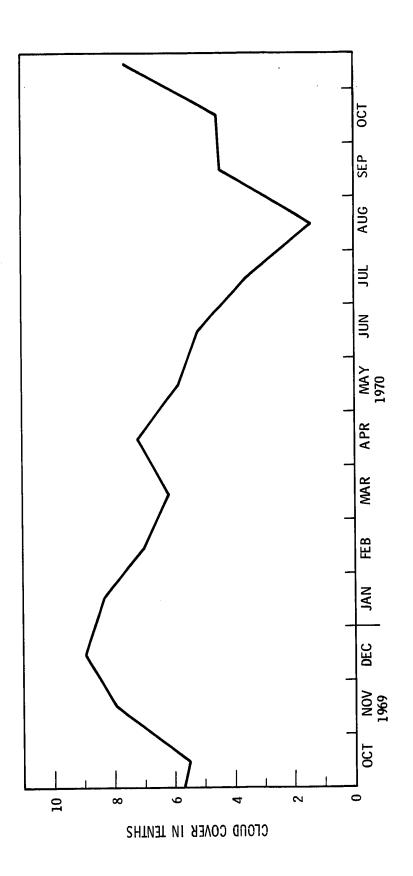


Table 1. Chemical and physical properties of Columbia River water near the hatchery intake of the Hanford Atomic Reservation.

							par	parts per million	ion						
SAMPLING DATE	\$0 4	Mg	Fe	P04	5	3	02	Phth.Alk.	M.O. A1k	Hardness	- డ్	Solids	NO.3	pH (monthly means)	Turbidity J.T.U. (monthly means)
10/20/69	14	2.0	.03	.02	.17	000.	99.6	0	09	89	24	70	.004	7.7	1.8
11/04/69	12	5.0	.04	.02	.33	.010	7.36	ĸ	76	79	24	78	.23	d	
11/18/69	15	5.0	•0•	.02	.28	.002	10.53	8	79	74	21	62	60.	9.0	0.1
12/02/69	15	6.0	.02	90.	36	000.	10.56	ო	20	74	21	84	. 23	•	
12/16/69	14	6.0	•04	.10	99.	.004	10.40	8	70	7.1	18	101	.20	0.7	•
01/06/70	. 51	6.0	.03	8.	.33	.002	:	8	89	74	20	93	.19	}	;
01/20/70	15	4.0	.01	.05	.36	.004	7.80	8	7.1	73	22	84	.31	}	
02/03/70	13	4.5	.01	90.	.33	.002	12.20	8	69	72	21	100	.20	α •	C -
02/11/70	19	4.9	.01	.01	.33	.004	11.20	~	89	75	22	105	00.	9:	
03/03/10	. 17	6.2	.03	•05	.50	-004	13.40	1	65	73	19	81	.16	0	ر بر
03/31/70	17	6.2	.07	.02	.39	.005	12.20	7	69	9/	50	81	.31	?	
04/14/70	20	4.4	.22	.05	.60	.002	11.80	1	99	7.7	24	100	.62	ά	4.6
04/28/70	24	6.3	. 12	.02	.56	.005	12.30	1	70	85	22	115	.13		
05/12/70	23	5.5	.02	.01	.40	.017	11.80	7	72	82	52	104	.16	8.5	2.8
06/16/70	E1 .	4.6	8.	9.	.29	.011	10.70	8	99	68	22	74	.13	8.2	3.1
08/04/70	17	3.9	.02	.02	.46	.007	9.60	-	70	78	52	98	.29		

Table 1.-- Continued.

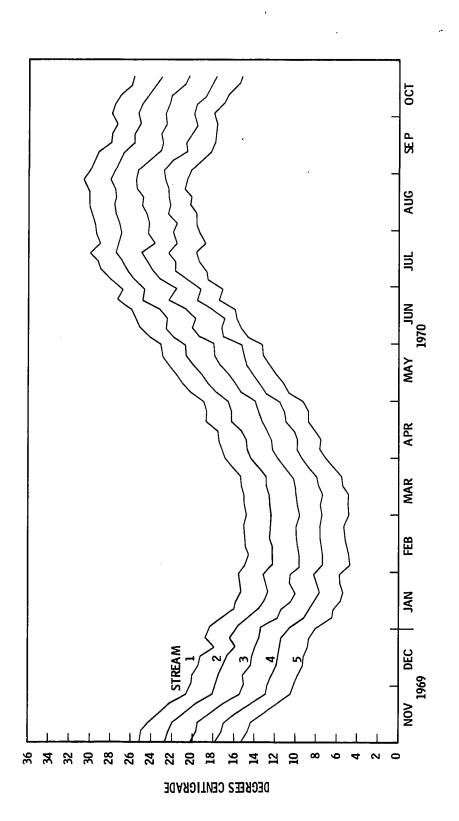
•							,	parts per million	llion						
SAMPLING DATE	S04		Mg Fe	P04	5	n,	z ₀	0 ₂ Phth.Alk. M.O. Alk Hardness	M.O. A1k	Hardness	eg.	Ca Solids	NO.3	pH 3 (monthly means)	Turbidity J.T.U. (monthly means)
08/18/70	13	13 4.0 .03	.03	.02	.26	.004	8.9	1	70	11	24	106	.16	8.4	1.3
04/08/70	15	4.8	.03	.08	.43	.005	9.0	m·	20	7.7	23	73	. 14	•	
09/22/70	13	5.3	-05	.03	.26	.002	9.4	. 7	8	99	11	87	.18	8.2	1.1
10/06/70	20	4.0	.03	.02	99.	.003	8.2	2	99	20	21	66	.51		;
10/20/70	12	5.4	.02	.01	.32	900.	10.6	0	35	99	16	80	.23	8.2	.83
11/03/70	18	5.3	.0	.11	.49	.001	20.0	8	20	89	19	80	.16	8.1	1.4
* Data for July missing, except pH-8.3 and Turbidity-1.7.	July mi	ssing,	except	pH-8.	3 and	Turbidi	ty-1.7.								

note a seasonal pattern of variation in NO₃ and PO₄ in samples from the same area of the river in 1962. (Additional upstream impoundment has occurred since 1962). Cushing also measured silica, and found that it increased during the period that diatom populations were increasing. He concluded that neither silica nor any other nutrients commonly considered limiting to phytoplankton growth were likely to be strongly limiting in the Columbia River, and that the probable causal factors for population changes were changes in light and water temperatures. These conclusions seem equally justified for the periphyton studied in this research, as will be discussed in a later section.

Flow

The flow rate of a river is one physical factor which profoundly affects the natural plankton and periphyton communities (Hynes 1970). Spring snow-melts in the mountains create a yearly peak of flow of nearly three-fold the mean rate (Appendix 3). The artificial stream system could not reflect this factor, as the flows were continuously maintained at one level. However, the increase in river flow is coincident with a great increase in the visible silt load (the "solids" data in Table 1 do not reflect this accurately). This increased silt load combined with the increased flows undoubtedly seriously scoured the periphyton communities in the river.

Nelson et al (1964) observed that large amounts of sedi-


ments were scoured from the Columbia River bottom during the spring freshet. In the artificial streams, the only visible effect was a tendency for the rate of silt collection to almost exceed the rate of periphyton growth in some streams during a short period in late spring.

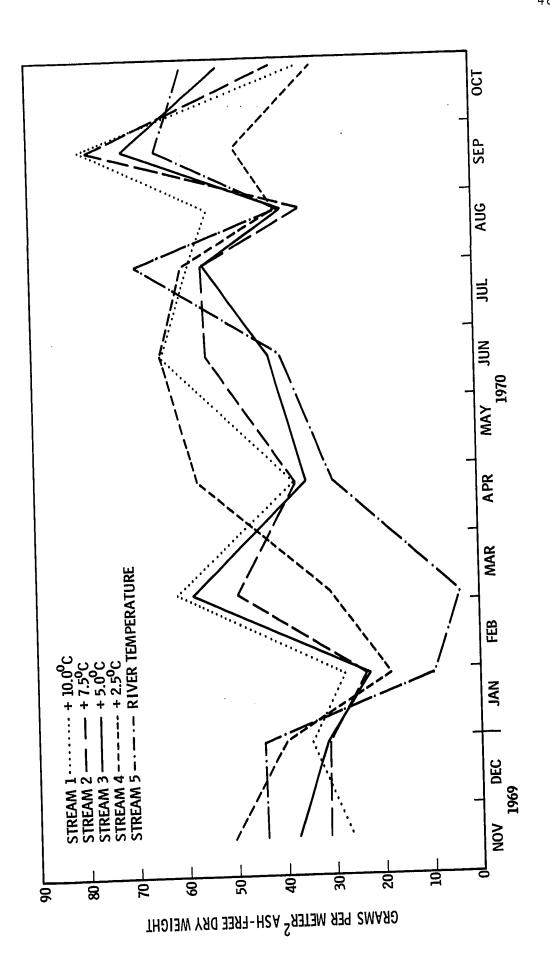
Temperature

Temperature data for the artificial streams are plotted in Figure 10. The graph is based on the hand-held thermometer readings for streams 1 through 5. Stream 6 was always the same temperature as the control channel (5) and the river channel (7) generally had water temperatures of 0.5°C lower. This discrepancy was due to the long distance the river water was piped to the hatchery, and to a lesser degree, its retention in the head tank (approximately 1 minute) which consistently raised the temperature of the water above the ambient river temperatures. Thus, the experimental stream system used water already slightly warmed, although this was preferable to using a chilling system of unknown reliability.

River temperatures make a relatively smooth transition from the February-March minimum to maximum temperatures in late August. The annual maxima and minima lag considerably behind the air temperature maxima and minima. This is partially caused by the numerous dams upstream of the area under discussion. The dams have increased the retention time of the water, thus delaying the seasonal

Figure 10. Temperatures of the five experimental streams, 1969-1970; five-day means of measurements taken twice daily with a hand-held thermometer.

temperature trends (Jaske and Goebel 1967). The maxima and minima now occur almost coincident with the solar equinoxes, which has considerable ecological significance to the primary producers, as will be discussed later.


Small variations in temperature are not shown in figure 10. Daily variations in river temperature seldom exceeded 1.0°C, and generally amounted to only 0.2°C in the winter, and around 0.5°C in the summer.

Mature Periphyton Community Standing Crops

Ash-free dry weight was used as an estimate of the organic matter present in mature periphyton communities (Figure 11). These data show the standing crops of periphyton communities that are not subject to intensive grazing, with the exceptions of data from streams 4 and 5 in January and March, and stream 4 in September, as will be discussed later. There was little pattern to the annual cycle of standing crops of the undisturbed communities, although there was an evident peak in September and a low point in January. Excluding the noted exceptions, each stream maintained a standing crop generally in excess of 30 g/m² and up to 80 g/m² of ash-free dry weight.

Variations among collection periods were considerable, however, two collections -- July and September -- stand out as significantly different from most other dates (Appendix 4). The non-significant variability may largely be considered a product of the natural trend of these un-

Figure 11. Standing crops of mature periphyton communities of the experimental streams.

disturbed communities to become structurally heterogeneous. Growth occurs until a standing crop which cannot be physically maintained attached to the substrate is reached. Both the force of the current and the lifting action of oxygen bubbles during bright days (Drum 1963) caused localized masses of periphyton to break loose and float downstream. Frequently, the loss of one area of periphyton precipitated a chain reaction that resulted in a major reduction of the standing crop of a whole stream. Cycles of growth and export were at times particularly evident, e.g. the +10°C stream in late summer, when bluegreen filamentous algae contributed to the structural instability of the community.

Another source of variability of the standing crop was the limited area that could be sampled each date.

Means and standard deviations show that standing crops of stream 6 exhibited the greatest variability of any stream (Appendix 5). The peak standing crop in January, when the other five streams were at a low point, may have been due to a unique (unusually productive) species composition (see Table 11). Channel 7 maintained a fairly stable standing crop, although these data may not be compared with the data of the other six streams, due to the flow fluctuation in the river.

Temperature increments did not effect major differences in standing crops, although annual means of standing

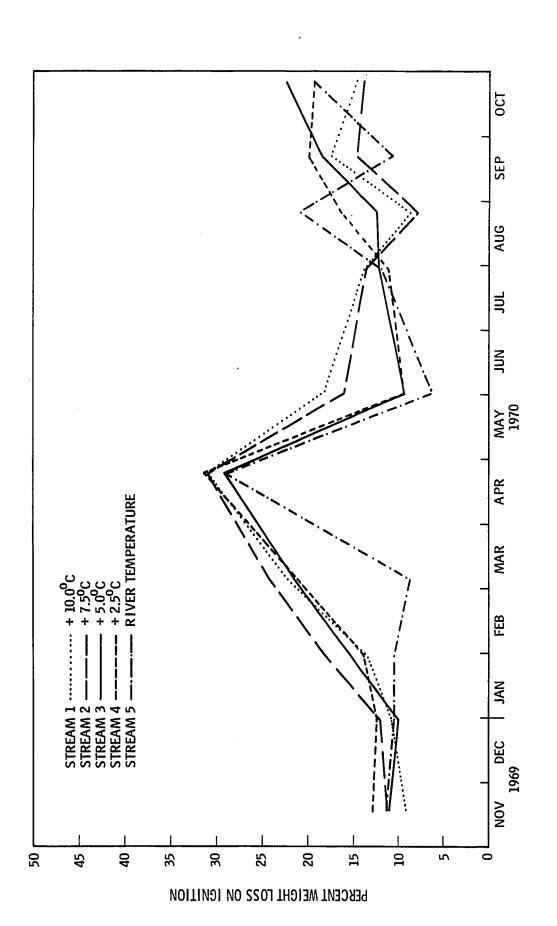
crops are larger for each 2.5°C increment added (Appendix 5). These means, however, failed to test significantly different, using the paired t-test.

Ash-free weights may give a good estimation of the amount of organic matter present, but no distinctions may be made among the forms of organic material. In Table 2 standing crop data computed from ash-free weights are compared to standing crop data computed from organism counts The data calculated from counts represent a total of the counts of individuals of all algal species times their computed cell volumes. This estimate of the cumulative volume of living algal matter was then converted to grams per square meter, following the assumption that the specific gravity of most algal species approximates 1.0. (Specific gravities may vary above and below 1.0 according to Hutchinson, 1967). Thus, these values represent living, wet weights, and should be considerably larger than the ash-free dry weights. This was usually not the case, indicating that the data from ashing are probably measurements of more than just algal organic matter.

Assuming that the ashing did not remove inorganic substances such as carbonates (Vollenweider 1969), the excess organic weight must have been due to non-algal components. Microscopic examinations seldom revealed bacterial, fungal, or protozoan populations of any significance. Recognizable organic detritus such as fibers were occa-

A comparison of two measurements of standing crops of mature periphyton communities of experimental streams. Table 2.

STREAM 11-17-69 12-29-69 1 A 22.59 25.71 B 26.69 34.74 C 84.64\$ 74.01\$ 3 A 43.91 26.44 B 37.63 31.38 C 117.69\$ 84.26\$ 5 A 44.95 32.28 B 44.12 44.44 C 101.88\$ 72.64\$ 6 A 7 A B 67.48 46.66 C 7 A B 12.82 12.13	1-29-70	2 V 70	1 10					
A 22.59 B 26.69 C 84.64% A 43.91 B 37.63 C 117.69% A 44.95 B 44.12 C 101.88% A B 67.48 C A 12.82	l	0/=#=6	0/-/-	6-1-70	7-30-70	8-24-70	0-11-70	0
B 26.69 C 84.64\$ A 43.91 B 37.63 C 117.69\$ A 44.95 B 44.12 C 101.88\$ A B 67.48 C B 67.48	28.12	41.66	17.78	30,38	15.44	48 60	0/-27-0	0/-97-07
C 84.64% A 43.91 B 37.63 C 117.69% A 44.95 B 44.12 C 101.88% A B 67.48 C B 12.82 1	35.41	61,02	60,34	80.44	0 0	0 L	Tq*80	18.81
A 43.91 B 37.63 C 117.69% A 44.95 B 44.12 C 101.88% A B 67.48 C A B 12.82	79.418	68 278	20 478	1 1	50.00	53./5	79.55	39 . 39
B 37.63 A 44.95 B 44.12 C 101.88\$ A B 67.48 C A B 12.82	18 17		9/5-07	9//•//	\$19°97	90.57%	86.25%	47.768
C 117.69% A 44.95 B 44.12 C 101.88% A B 67.48 C A A	/ † • 0 †	4T.03	11.66	12,33	31.55	20.04	34.91	39.42
C 117.69% A 44.95 B 44.12 C 101.88% A B 67.48 C A B 12.82	29.14	58.06	;	52,29	54.80	39.00	70.99	59.41
A 44.95 B 44.12 C 101.88% A B 67.48 C A B 12.82	62,35%	70.678	1	23,58%	57.578	51,38%	49.189	# C
B 44.12 C 101.88% A B 67.48 C A B 12.82	9.03	6.07	13.72	16.06	29.81	47.25	70 · 108	80°00
C 101.88% B 67.48 C A B 12.82	17.54	4.14		46.83	90 09	0 0	13.60	TA • 67
A 67.48 C A B 12.82				•	000	39.19	64.31	57.71
B 67.48 C A B 12.82	J. 488	146.62%	!	34,29%	43,178	118.758	92,168	51.83%
67.48	85.37	!	64.41	1	22.48	i	}	זה הא
12.82	128.17	42.39	ł	51.74	47,43	39.84	25	* *
12.82	66.61	i	ł	ł	47,40	; ; ;	•	# # # # # # # # # # # # # # # # # # #
12.82	;	ļ	ļ			}	;	35.15
70.71	!		!	ļ	9°08	i	;	!
	25.85	15.60	!	ł	28.37	29.85	33.22	82.49
!	;	ŀ	1	1	32.01	ł	ŀ	
(A) Mean live biomass in grams per square meter	ame ner ami	are meter						


Mean live biomass in grams per square meter, as calculated from counts and dimensions of organisms -one sample for each date, except two samples for 1-29-70, 4-7-70, 7-30-70, and 9-21-70.
Mean biomass in grams per square meter as calculated from 2 to 4 samples ash-free dry weight. (E)

sionally encountered, but the bulk of the "missing" organic weight determined by the ashing techniques may have been the mucilage, stalks, and other extracellular products that are present in periphyton communities (Round 1965).

Inorganic components, including both diatom frustules and silt particles, are very abundant in periphyton communities. Figure 12 shows the percent weight loss on ignition of samples of mature periphyton. The remaining fraction of dry weight was assumed to be inorganic matter. The inorganic fraction averaged considerably higher than values reported in the literature. For example, McIntire (1968) found from 32% to 56% of the periphyton dry weight in his recirculating artificial streams was organic material. There appear to be no significant differences among the five test channels over the whole year, the mean organic content being: 16.7%, 16.3%, 16.2%, 16.3%, and 13.9% for streams 1-5 respectively. Additional data are supplied in Appendix 6. The low figure for channel 5 is chiefly due to the low March datum resulting from the intensive chironomid grazing.

Although it may not be statistically sound to select one month to examine for differences, the data do suggest that during June there was a direct relationship between temperature and percent organic content of the periphyton communities. Direct observations of the streams indicated

Figure 12. Percent weight loss on ignition of mature periphyton communities of the experimental streams.

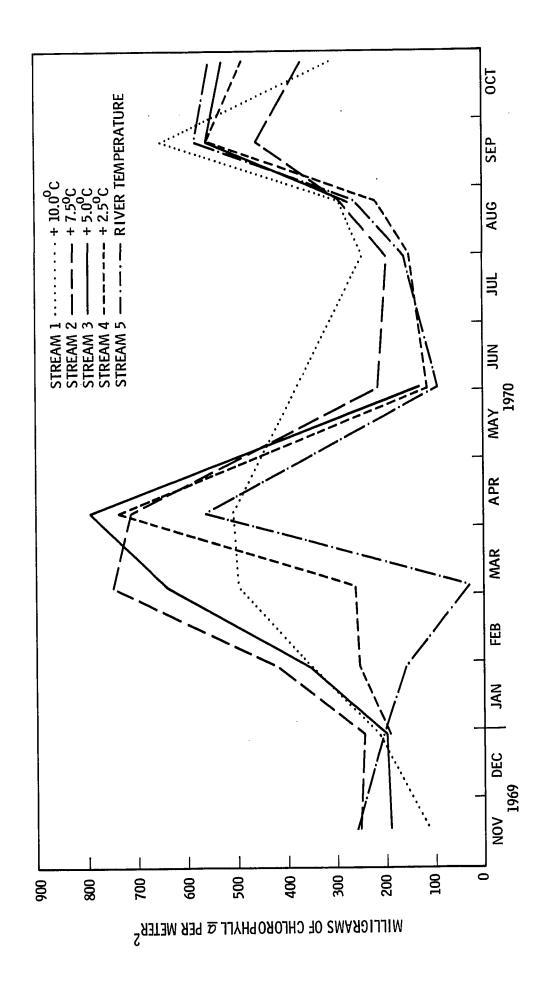
that in June the colder streams were unable to maintain periphyton growth as fast as they were being buried by silt.

The bimodal pattern of percent organic content in Figure 12 is similar to the specific pigment content shown in Figure 14, and inversely related to the percentage of intact diatoms that were empty (Figure 31). The periphyton communities of all the test streams followed a pattern of relatively high percentage of living, photosynthetic matter in spring, and to a lesser degree in early fall, while the amount of inorganic detritus in the communities peaked in mid-summer and mid-winter.

It is impossible to accurately quantify the sources of inorganic components. However, empty diatom frustules were relatively more important in the summer than winter, and contributed considerably to the inorganic content (Figure 31). This could be attributed to several causes:

1) planktonic diatoms of the river may have precipitated as the bloom subsided in early summer with high river flows;

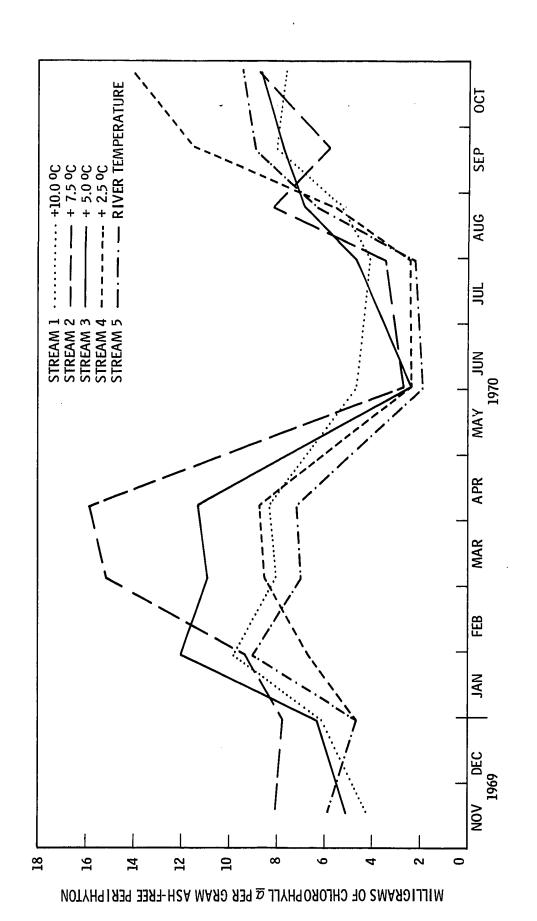
2) diatoms in the winter communities probably reproduced more slowly than their summer counterparts, thus inorganic silts collected at a relatively slow rate;


3) the summer communities were so thick that the shaded diatoms may not have received sufficient light to allow enough carbon to be fixed to compensate for the high respiration losses caused by the high temperatures, and 4)

empty diatoms may have been resuspended, along with the river sediments that Nelson et al (1964) observed during high river flows. Heavy silica walls of freshwater diatoms may form 50% or more of their weights, according to Soeder and Talling (1969). The data represented here indicate that empty diatoms may have comprised a major portion of the inorganic matter present in periphyton communities. Direct microscopic observations confirmed this.

Chlorophyll a is frequently used as an indicator of primary production. Seasonal variations of standing crops of chlorophyll a in the mature periphyton communities are shown in Figure 13. Carotenoid standing crops are supplied in Appendix 8. With the exceptions noted for the gravimetric data, these data represent the pigment standing crops of undisturbed communities. The annual means of pigment (Appendices 7, 8) may indicate that a 5°C increase in temperatures over Columbia River ambient produces a maximum pigment standing crop, averaged over a year.

The two peaks of chlorophyll a standing crops (Figure 13) are apparently not the result of higher standing crops of organic matter (as measured by loss on ignition) at those times (Figure 11). However, biomass estimates based on cell counts (Table 2) also have a weakly bimodal pattern, with the highest peak in September. The


Figure 13. Standing crops of chlorophyll a in mature periphyton communities of the experimental streams.

same bimodal pattern exists in the specific pigment content (Figure 14). These peaks are coincidal with solar equinoxes, indicating a possible relationship to a certain light intensity. However, stream 6 also developed high pigment standing crops at the same time (Appendices 7, 8) in spite of its constant light regime. If pigment content is assumed to be closely correlated with productivity, then peak production occurred in April, with a minor peak in September.

The value of pigment data in estimating production of standing crops of primary producers is debatable. The pigment content of algae is frequently determined by factors unrelated to standing crop or productive capacity (Wetzel and Westlake 1969). Animal pigments and phytopigment degradation products may interfere with measurements, although in this study, one complete set of samples were analyzed for phaeo-pigments, which were found totally lacking. The pigment standing crops presented here seem unrelated to either net production measurements (Figure 27) or standing crops of organic matter as measured by loss on ignition. Although pigment content may be a useful measurement to aid in understanding the physiology of primary production, this study indicates it may have limited use in the analysis of either standing crop or net productivity of mature periphyton communities.

Figure 14. Specific pigment content of mature periphyton communities of the experimental streams.

This study was unable to find any major differences in standing crops of mature periphyton maintained at several increments above Columbia River temperatures. There was little agreement among the three methods of estimating standing crop, either seasonally or annually. It should be stressed that the standing crop measurements discussed were of communities that were not subject to grazing pressures or other disruptive influences that normally occur in natural streams. It is doubtful that "mature" communities ever constitute a major proportion of the total periphyton component of natural streams.

S

Periphyton Colonization and Growth

In natural river ecosystems, there are numerous variable forces such as silt load, flow velocity, and grazing pressure which may prevent periphyton communities from ever reaching a mature condition, as described in the last section. Large areas of substrate may be completely denuded at times. To simulate the latter, lower sections of each experimental stream were allowed to develop periphyton on a bare surface, as described in the Methods section. The accrual of periphyton organic matter on a bare glass surface during each seasonal period of growth is plotted in Figures 15-18. The

data used in these plots are based on standing crops measured by loss on ignition (Appendix 9).

The fall series of collections indicated that when the standing crops exceeded approximately 25 g/m², the warmer streams did not gain biomass as fast as the streams nearer control condition (Figure 15). This may have been caused by differing species compositions. A more likely explanation is that as the biomass developed, the lower layers became light restricted and could not photosynthesize fast enough to keep up with the high respiration rates at the warmer temperatures. Nevertheless, for the first two weeks, each temperature increase accelerated the rate of growth.

The winter series (Figure 16) was not completed, as there was considerable grazing in the cooler channels in the later phases of growth. However, the warmest channel (15°C) did not grow periphyton as fast as the 12.5°C one, although the other streams followed the pattern of higher standing crop development for higher temperatures. This would suggest that temperatures in excess of 12.5°C may allow respiration to increase to levels that are less efficient in the restrictive winter light climate.

The spring series (Figure 17) indicate a direct, positive relationship between temperatures and standing crop development through the period. The high light intensity apparently allows for efficient growth at the

Figure 15. Periphyton standing crop accrual on bare substrates, October 24-November 17, 1969.

Figure 16. Periphyton standing crop accrual on bare substrates, January 30-February 24, 1970.

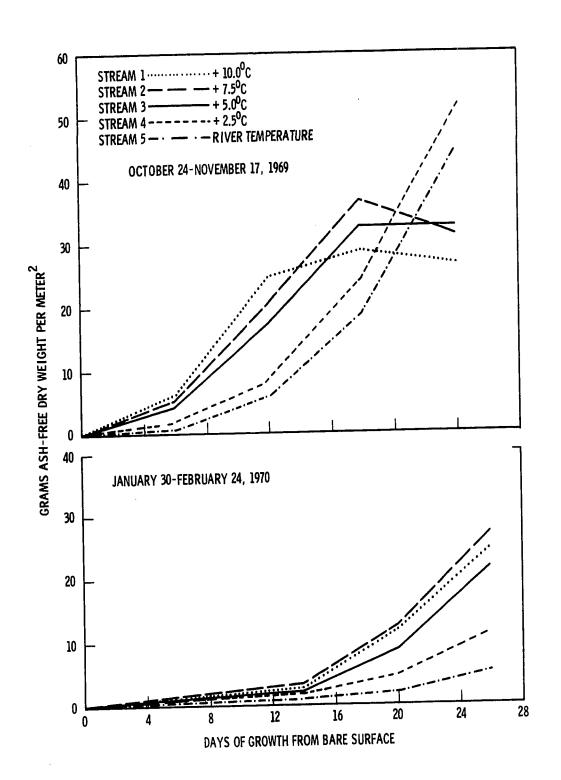
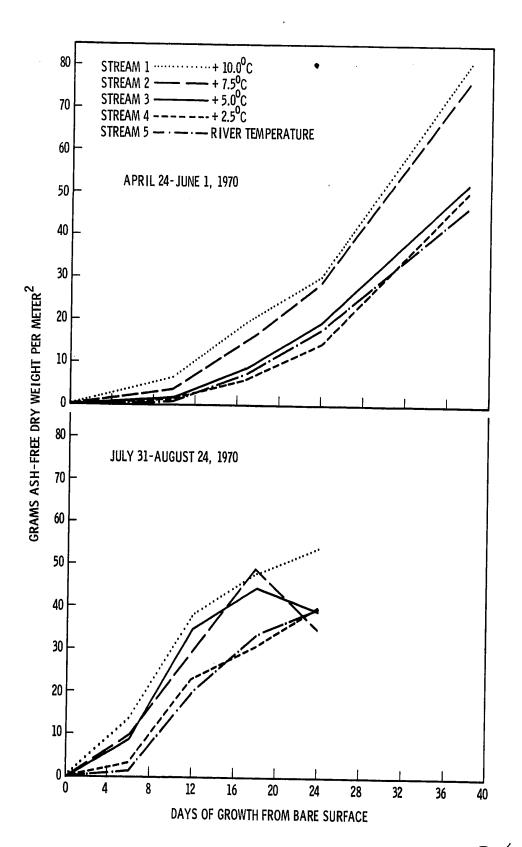



Figure 17. Periphyton standing crop accrual on bare substrates, April 24-June 1, 1970.

Figure 18. Periphyton standing crop accrual on bare substrates, July 31-August 24, 1970.

 \sim

temperatures tested. The large separation between the rates of growth for streams 2 and 3 may be caused by the different species compositions of the two communities. Another possible explanation is that the temperature of 17.5°C may be the threshold above which the community is able to grow faster than it is being smothered by the heavy spring silt load.

The summer series exhibited similar trends to the spring series (Figure 18) except that high standing crops were attained in such a brief time that the last collection started to reflect the normal cycles of gain and loss of material discussed in the section on mature periphyton.

Since the chemical parameters of the Columbia River water are fairly stable annually, comparisons of the above data from different seasons may be made to give indications of the effects of light differences. Figures 19-23 show periphyton standing crop accumulation from streams with the same mean temperatures during periods of growth measurement. These data indicate that at temperatures above approximately 21°C, light increases to summer intensities will increase the rate of standing crop development. For equivalent temperatures, the spring data appear lower than might be expected, considering the high light intensities. Several factors may have affected the spring growth curves: 1) photoinhib-

Figure 19. Periphyton standing crop accrual on bare substrates in different seasons, in 15°C streams.

Figure 20. Periphyton standing crop accrual on bare substrates in different seasons, in 17.5°C streams.

Figure 21. Periphyton standing crop accrual on bare substrates in different seasons in 20°C streams.

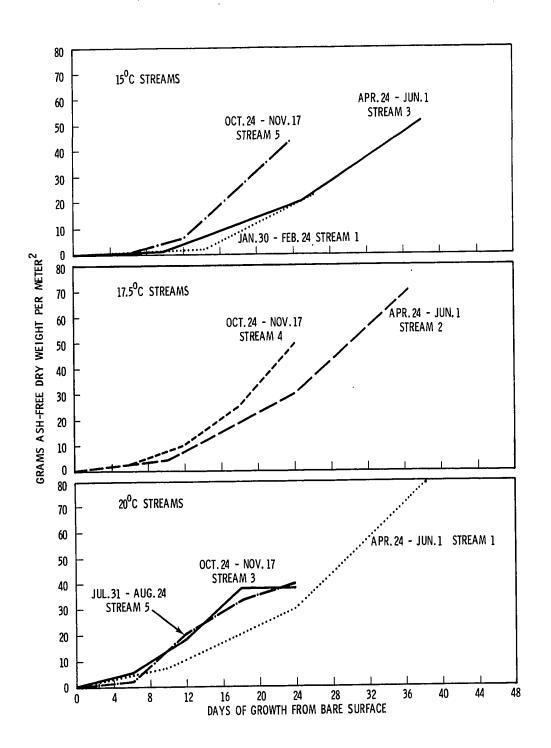
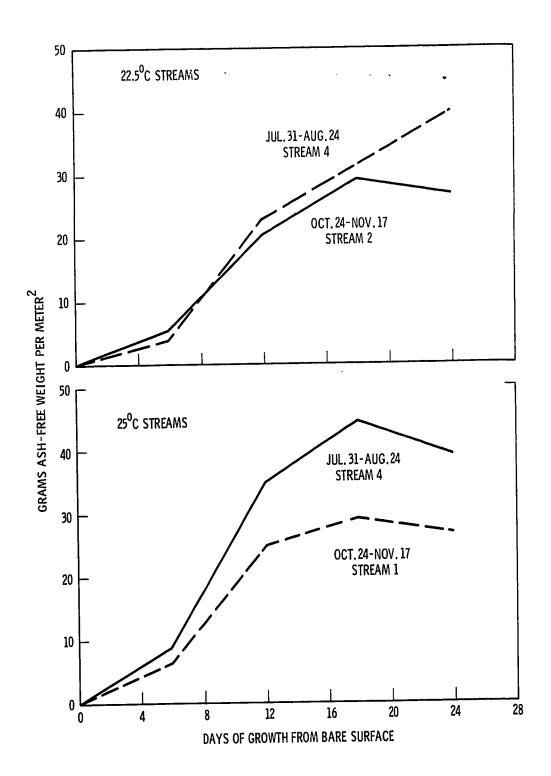
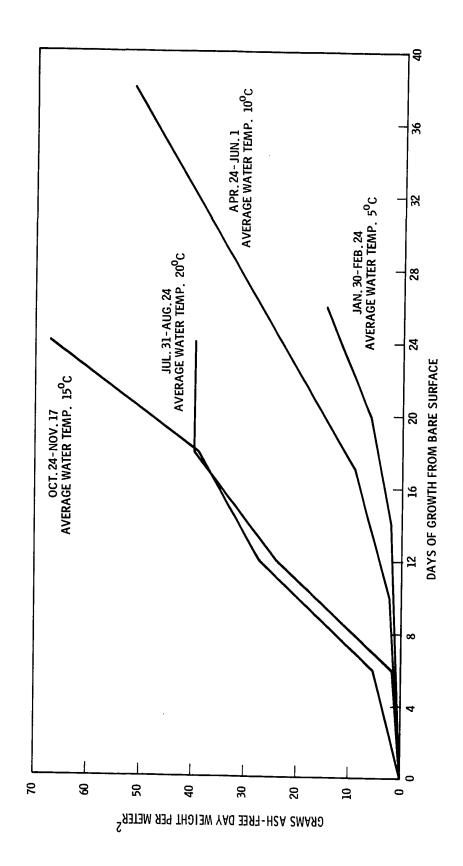



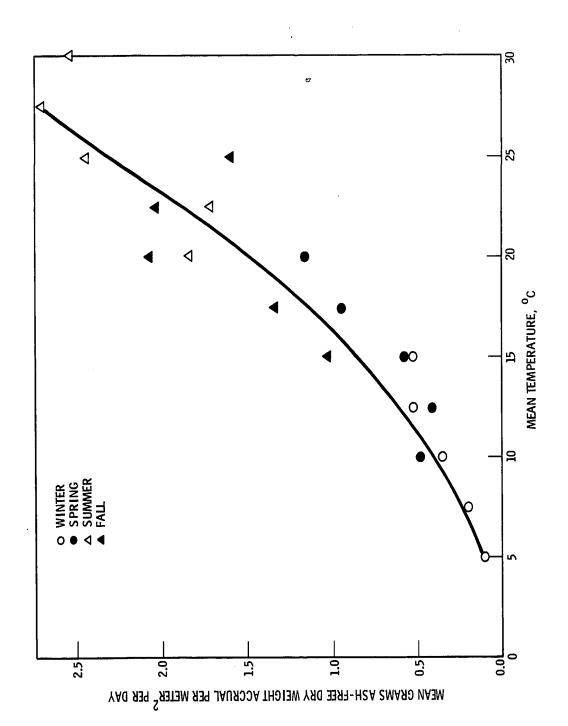
Figure 22. Periphyton standing crop accrual on bare substrates in different seasons, in 22.5°C streams.


Figure 23. Periphyton standing crop accrual on bare substrates in different seasons, in 25°C streams.

ition may have occurred, 2) heavy silt loads may have "smothered" the communities, and 3) the availability of seeding individuals may have been low due to dilution from high water, or other factors. On the other hand, the relatively high rates of periphyton accumulation of the fall cool stream communities may have resulted from a greater abundance of seeding material. Figure 24 may indicate this phenomenon also, in the light-controlled stream. However, Patrick (1967) stated that invasion rate was important to community structure, but not to the standing crop that develops. The relationship of light and temperature will be discussed in a later section.

If all factors such as river chemistry and seeding rate were stable, the data of Figure 24 would indicate that at that light level, 15°C was the optimum tested temperature for the most rapid development of a high standing crop. Compared with the data from the open channels, Figure 24 indicates that the usable light energy in stream 6 may have been higher than the natural fall and winter light. The fall and winter communities of stream 6 grew faster than the communities of equal temperature exposed to natural light. The spring and summer communities grew at nearly the same rates in both the natural light and artificial light streams of equal temperature. Pigment accrual patterns were similar to

Figure 24. Periphyton standing crop accrual on bare substrates in different seasons in the light control stream.

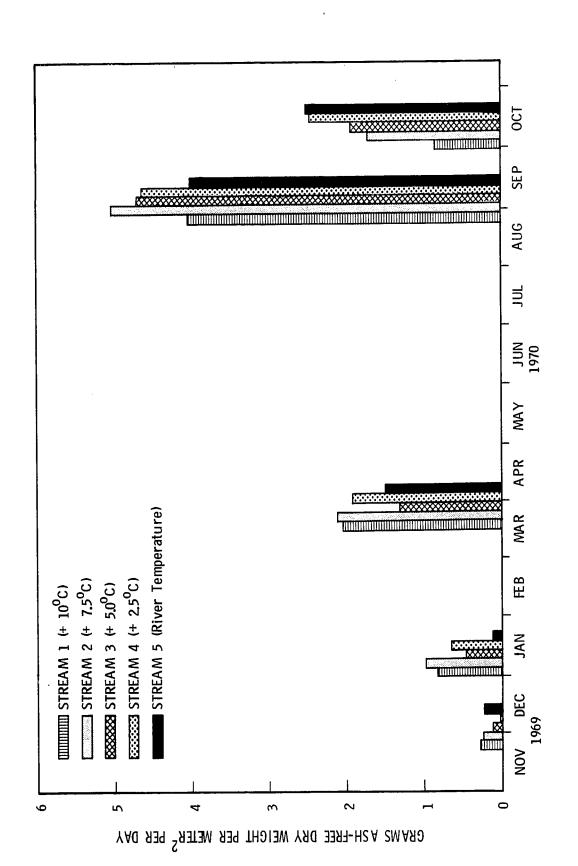


organic weight accrual during equivalent periods (Appendices 10-13). The means and standard deviations of chlorophyll a and carotenoids are supplied in Appendices 14 and 15. Due to the large variability and the inherent weaknesses of pigment data discussed earlier, few conclusions may be drawn from them, save that similar trends appear evident in pigment accrual as were observed for organic matter accrual.

Many investigators collect periphyton on glass slides after a set period of immersion, and use these data to estimate production (Castenholz 1961, Sladacek and Sladeckova 1964, Cushing 1967, American Public Health Service 1971). Figures 15-18 indicate that conclusions based on such a procedure could depend heavily on the immersion time. The rate of biomass accumulation is also a poor measure of net productivity, in that it does not account for biomass that has been produced and lost through grazing or physical disturbances. However, the rate of biomass accumulation may be ecologically significant to the grazers who require a certain amount of food.

Figure 25 shows the mean rate of biomass accumulation in 18 days for all the tested seasons (excluding streams 6 and 7) plotted against temperature. There is an obvious direct relationship of biomass accrual to temperature; this relationship was so strong that the

Figure 25. Rate of biomass accrual on bare substrates in 18 days at different temperatures and seasons.


differing light intensities of the different seasons did not alter the trends. However, it is difficult to accurately compare biomass accumulation from different times of the year, due to the probability that any fixed immersion time would represent a different phase of the growth curves in different seasons.

Periphyton Community Export

A certain amount of export must be a phenomenon common to all periphyton communities of moving bodies of water, and may be caused by changes in flow, scouring by particles in the water, or disturbances from grazing or moving fauna. The latter causes for export are all related to forces external to the community. However, oxygen evolution from active photosynthesis within the community may cause bubbles to form, and provide the necessary buoyancy to lift large sections of the community from the substrate. For the present study, oxygen flotation was probably the major cause of export at certain times of the year, when mats of periphyton were formed by significant populations of filamentous bluegreen algae or Cymbella affinis. Export is not a well documented phenomenon of natural flowing waters, although McIntire (1968) observed export in experimental streams.

Figure 26 shows the rates of export of the mature periphyton communities over a year. These data are

Figure 26. Rate of export of mature periphyton communities grown at different temperatures.

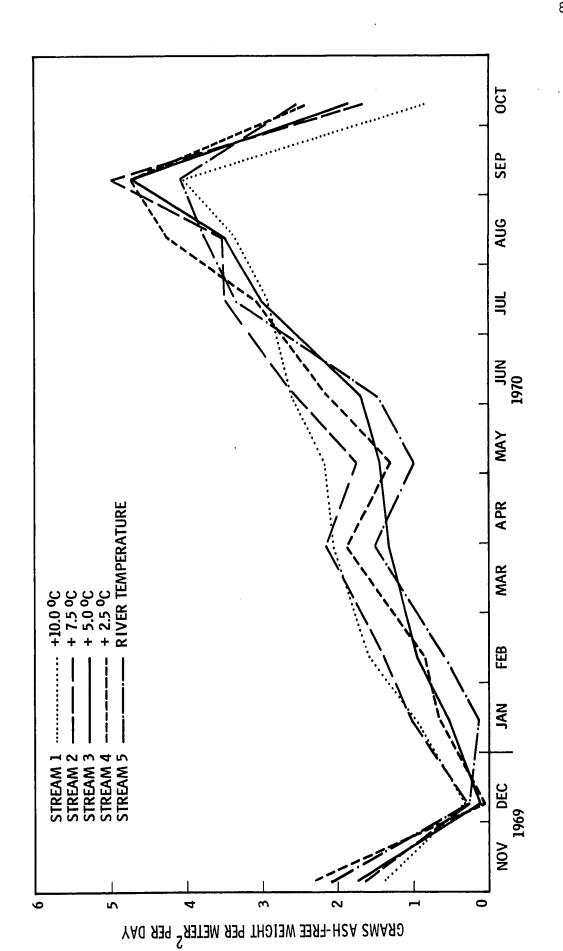
sparse, due to the immature condition of the periphyton of the lower sections of the streams a majority of the time. Additional export data are supplied in Appendix 16. Note that the normal 2-3 day collection periods are not shown in all the data; in some cases the samples for several short collection periods were ashed together. These data may be compared among streams for any single period, as each stream was maintained in the same condition of disturbance. For example, there frequently were large sections that, due to recent sampling, were not mature, but these areas were equivalent for all streams. The data may not be used for comparisons among different dates, excepting those dates plotted in Figure 26.

An additional control net was used on the same water source that the streams received, as described in the Methods section. The data from this net indicated that for most of the year, the weight of trapped material amounted to less than 3% of the export measured for mature communities (Appendix 16). The material collected in the control net appeared to be mainly allochthonous detritus, although some planktonic material was present.

Short term variations in export are reflected to some degree by the export data of Appendix 16. For example, the high export recorded for the February 16-22 period was observed to be caused by bubble flotation on a sunny day that followed a long series of days with very low light. Similar phenomena were observed at intervals

throughout the year. Another characteristic of the export was the tendency for large quantities (up to approximately 20% of the community) to dislodge within a few minutes, followed by a day or more with little visible export. This was apparently a chain reaction not too different from the mass windfalls of certain coniferous forests. The removal of one section of community allowed the current pressure to increase at the edge of the next downstream section, and, as well, it removed the support of the upstream portions. The net result of this phenomenon was a somewhat cyclical pattern of export and growth. The appendicized data do not indicate the latter clearly, as the collection period was often too long to permit the cycles to be seen.

Productivity

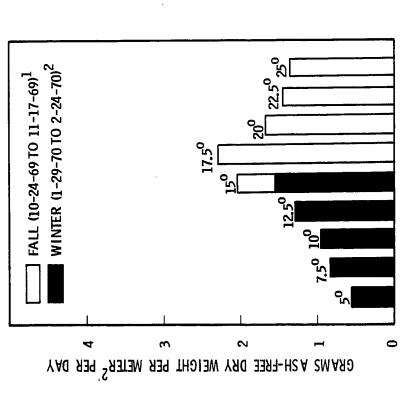

Net primary productivity may be defined as the rate of storage of organic matter in plant tissues in excess of the respiratory utilization by the plants during the period of measurement (Odum 1971). In the present study, net community productivity was measured as the amount of primary productivity in excess of that used by heterotrophs. It was measured as the rate of change in standing crop, plus the rate of export as described in the Methods section. The productivity of the stream systems was continuously monitored with the net collections and

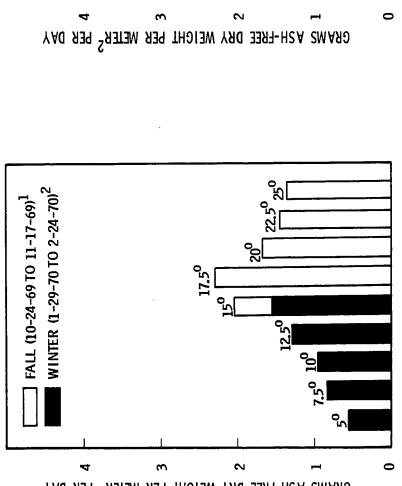
the standing crop measurements. However, the total length of each stream had mature periphyton communities for only short periods. During other periods, there were equal areas of each stream with developing periphyton communities.

There were only six intervals during the study that were considered adequate to yield productivity data of the mature periphyton communities. As these data, and the productivity data from the periods when the majority of the streams supported immature communities appear to measure the same thing, they have been combined in Figure 27, to give one overall picture of seasonal trends. Additional justification for combining these data was the similarity of pattern of the first and last sets of data, plotted in Figure 27. This similarity indicated both that the seasonal productivity patterns may be reproducible, and that the two methods of measuring productivity were compatible (data of early November 1969 were from immature communities, data of October 1970 were from mature communities).

The patterns of productivity shown in Figure 27 do not indicate major temperature-related differences among the streams during a single collection period. All of the periphyton communities appeared to behave similarly over the course of the year. Lacking the statistical comparability of several replicate streams at each temp-

Figure 27. Net community production of periphyton communities of experimental streams.




erature, one may only extrapolate the magnitude of error and/or variability from the variations in standing crop data (Appendices 5 and 9). Standard deviations of standing crop measurements varied considerably, but averaged 10% of the mean. Little error was possible in the export measurements, since total stream export was collected. It thus seems safe to assume that the error of productivity estimates closely follows those of standing crops measurements. A spread of data points of the magnitude shown among streams in spring and early fall is probably significant.

The warmer streams exhibited depressed productivities in the fall, while temperatures were high, and light was relatively low. In late winter through spring, the warmest streams out-produced the cold ones, while the light was relatively strong, and temperatures low. The enhanced spring productivity in the heated streams appears to offset the depressed fall productivity of these streams.

Figure 28 compares the productivities of periphyton communities developed under similar light conditions at different times of the year. There seems to be one temperature that is optimal for periphyton production for each light intensity. The overlap of the data for equivalent temperatures may have been due to differing availability of seeding material, or some other source of error. Nevertheless, Figure 28 indicates that for high

Figure 28. Net community production of periphyton communities grown under two sets of light conditions and in two different seasons.

300

250 27.50

]ஜ

SUMMER (7-30-70 TO 8-24-70)⁴

SPRING (4-24-70 TO 6-1-70)³

194 LANGLEYS PER DAY MEAN INSOLATION 183 LANGLEYS PER DAY MEAN INSOLATION 598 LANGLEYS PER DAY MEAN INSOLATION 614 LANGLEYS PER DAY MEAN INSOLATION

0

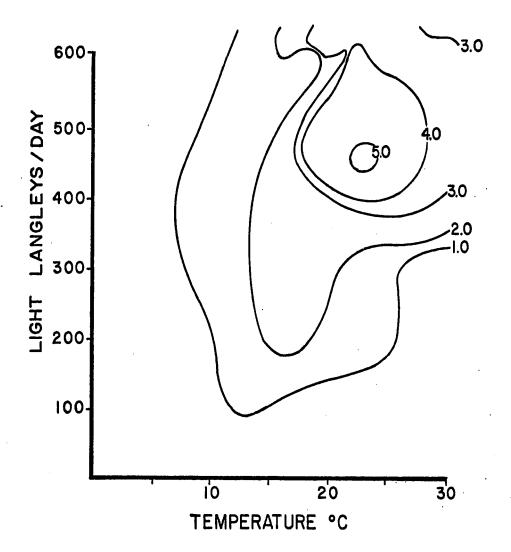
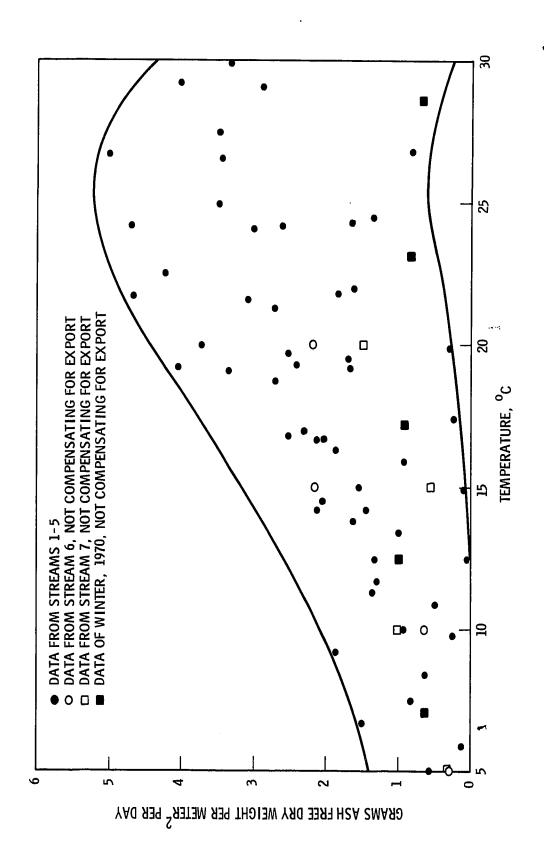

light intensities (600 langleys/day) temperature operated as a limiting factor above (or below) approximately 22.5°C. At low light intensities (200 langleys/day) temperatures above 17.5°C acted as limiting factors. The accelerated respiration at higher temperatures requires more light to manufacture enough food to compensate for respiratory losses. McIntire (1968b) also noted that light could be a limiting factor when periphyton was exposed to increased temperatures.

Figure 29 further illustrates the effects of both light and temperature on the periphyton communities of this study. The features of this plot are idealized by the model that will be discussed. Figure 29 indicates that both high light and high temperature may inhibit net community production. The amount of light or heat required to inhibit this production is dependent on the temperature and light, respectively, that the community grows in.

Figure 30 shows all computed productivities of the communities in the experimental system. This includes data from streams 6 and 7, and estimates of productivity based only on accrual plus a series of data from the winter 1970-1971, not presented elsewhere. The winter data are based on accrual rates for periphyton communities grown at five temperatures from 7°C to 28.6°C. This figure represents the range of productivity likely to

Figure 29. Periphyton net community productivity under different light and temperature conditions in experimental streams (productivity as


grams of ash-free dry weight per square meter per day).

.

ť

Figure 30. Temperature defined limits of periphyton net community production. Based on data from all conditions encountered in the artificial stream study.

exist for all light regimes, for each temperature at the flow used in this experiment. Below 9°C there was no data from naturally illuminated communities grown at peak light intensities, although the data from stream 6 should allow prediction of performance in this range. There is an overall trend to higher productivities for increasing temperatures up to the mid-twenties. Above 25°C there appears to be a depression of the maximum productivity possible. The depression is correlated with a visible change in the structure of the periphyton community. A more mat-like and less filamentous community structure develops at these higher temperatures, accompanied by an increased abundance of blue-green algae. Above 25°C there appears to be a depression of the maximum production possible. At low temperatures, lower limits of production in Figure 30 are determined by data points from December 1969, the darkest month in the meteorological history of Hanford, and thus represent a minimum.

A comparison of the mean annual net production of periphyton communities of each stream is presented in Table 3. The means do not differ enough to draw firm conclusions. The increases in temperature do not appear to greatly modify the total amount of production in one year. The depressed productivities of the heated fall communities were offset by the enhanced spring production of these streams (Figure 27). Although the "total"

A comparison of three calculations of mean annual net productivity of periphyton communities of artificial streams (grams/meter $^2/\mathrm{day}$). . Table

			STREAM		
	1	2		4	5
Total (a)	2.07	2.17	1.91	1.99	1.72
Mature(b)	2.01	2.35	1.93	2.20	1.93
Immature (c) 2.28	2.28	2,35	2.12	2,35	2.15

all the i.e. Computed from the total of all export data, harvest etc. biomass that grew in one year, 10-24-69 to 10-27-70. (a)

Mean productivity of six periods of measurement of changes in standing crop and export data when communities were in undisturbed climax condition. <u>අ</u>

Mean productivity of five periods of measurement of changes in standing crops and export data when communities (at least 2/3 of stream) were in immature stages. <u>©</u>

net productivities (see footnote of Table 3) are considered the most realistic estimates, the other data presented indicate that judicious sampling at appropriate intervals may provide comparable data.

Finally, the productivity data for each stream and all of the accompanying environmental data were utilized to develop an empirical model of productivity. After several attempts to add additional variables into the model (river flow, chemical data) it was evident that the best predictive model was based solely on light and temperature. The model is a simple quadratic expression:

 $Y = B_0 + B_1 X_1 + B_2 X_2 + B_3 X_1^2 + B_4 X_2^2 + B_5 X_1 X_2$, where Y = net periphyton productivity in grams/square meter/day, $X_1 = \text{mean Centigrade temperature at which the}$ periphyton community is grown, $X_2 = \text{light under which}$ the community is grown, in langleys/day. The regression coefficients and their standard deviations are:

В	Mean	SD
0	-1.77962	.66982
1	.21262	.07834
2	.00878	.00230
3	.00923	.00278
4	.000022	.000004
5	.00054	.00011

The above coefficients are all very significant ($p \le .01$) according to the t-test. The model accounts for 77% of the data variability.

The model performed within a tolerable range of error, except for the September and October data (Table

Table 4. Predicted and actual net productivities of periphyton communities at temperature increments above Columbia River ambient.

						
OBSERVATION PERIOD	1	2	STREAM 3	4	5	Mean light Langleys/day
TENTOD					<u> </u>	nangieys/ day
10-24-69 A)	1.39	1.64	1.71	2.32	2.08	
to B)	1.21	1.52	1.71	1.78	1.75	187.1
11-17-69 C)	24.86	22.30	19.76	17.26	15.10	
11-17-69 A)	.32	.28	.13	.04	.24	
to B)	02	.24	.36	.36	.26	65.9
12-29-70 C)	20.04	17.32	14.73		9.86	
12-29-70 A)	٥٣	1 00	.50	.64	.13	
to B)	.95 .66	1.02 .68	.61	.39	.13	89.9
01-29-70 C)	15.95	13.64	11.20	8.50	6.34	03.3
·						
01-29-70 A)	1.58	1.36 1.53	.94	.83	.57	
to B)	1.66	1.53	1.28 9.88	.92 7.48	.44 5.03	182.7
02-24-70 C)	14.91	12.54	9.00	7.40	5.03	
03-04-70 A)	2.05	2.15	1.30	1.89	1.51	
to B)	3.01	2.71	1.30 2.26	1.73	1.12	397.3
04-24-70 C)	17.90	15.42	12.74	10.28	7.95	
04-24-70 A)	2 16	1 73	1 45	1.29	.99	
to B)	2.92	2.48	1.45 1.90	1.25	.54	585.2
05-18-70 C)	20.31	17.85	15.25	12.86	10.59	
OF 10 70 3\	2 60	2 56	1 70	2.15	1 16	
05-18-70 A) to B)	2.60 3.32	2.56 2.99	2.79	2.13	1.46 1.49	598.9
06-20-70 C)	24.01	21.25	18.89	16.25	14.16	3,01,
				•	•	
07-01-70 A)	2.92 3.48	3.48	3.02 3.15	3.10	3.35	
to B) 07-29-70 C)	3.10	3.37 26.48			2.36 19.07	633.9
07-29-70 C)	20.33	20.40	24.02	21.43	19.07	
07-30-70 A)	3.36	3.52	3.49	4.24	3.74	
to B)	3.56	3.53	3.38	3.32	2.79	598.1
08-24-70 C)	29.78	27.40	24.65	22.04	19.96	
08-24-70 A)	4.04	5.03	4.72	4.70	4.07	
to B)	3.33	3.44	3.43	3.31	3.08	449.8
09-21-70 C)	28.32	25.93	23.30	20.80	18.44	
09-21-70 A)	0.1	1 67	1 20	2 43	2 52	
to B)	2.27	2.52	2.66	2.67	2.56	293.5
10-27-70 C)						
12-09-70 A)	.72 -1.91	.86		1.01	.64	107.3
to B)				.85 12.48	.37 7.07	107.3
12-31-10 ()	20113	23.13	1.647	70.40	, , , , ,	

A) Net Productivity
B) Model-predicted net productivity
C) Mean temperature for given period

4). The predicted productivities were consistently low for all streams in September. However, the predicted productivities for October were 300% too high for the warmest stream, and somewhat less high for the others. This sort of systematic error indicates that a variable of significance may be missing.

Community Analysis

Table 5 presents the algal taxa that were collected from the experimental streams during the study. Several anomalous desmids and species of *Scenedesmus* were not recorded, as they were probably not part of the community. The counts that are presented (Tables 9-19) do not indicate taxonomic levels below species, as it was frequently impossible to separate variations quantitatively. This was especially true of the variations of the *Fragilaria* species which could only be determined from valve views of solitary individuals.

The total biomass contributions of all species were not well correlated to the total cell counts for respective samples. This was the result of the great range of volume of individual cells of different taxa. Volumes of the major diatom species extended over three orders of magnitude (Table 6). The volumes computed for other species were generally based on arbitrarily fixed lengths of filament, as counting individual cells was not always feasible.

Table 5. Algal taxa collected from experimental streams from October, 1969 to November, 1970

Cyanophyceae

Microcystis sp.
Schizothrix calcicola (Agardh.) Gomont
Oscillatoria sp.
Calothrix sp.

Chlorophyceae

Ulothrix sp.
Ulothrix zonata (Weber & Mohr) Kütz.
Stigeoclonium lubricum (Dillw.) Kütz.
Oedogonium sp.
Mougeotia sp.
Spirogyra sp.

Bacillariophyceae

Stephanodiscus astraea (Ehr.) Grun. Stephanodiscus Hantzschii Grun. Cyclotella Meneghiniana Kütz. Cyclotella Kutzingiana Chauvin Melosira granulata (Ehr.) Ralfs Melosira granulata var.augustissima O. Muller Melosira italica (Ehr.) Kütz.-and variants Melosira varians Agardh. Tabellaria fenestrata (Lyng.) Kütz. Tabellaria flocculosa (Roth) Kütz. Meridion circulare (Grev.) Agardh. Diatoma tenue Agardh. Diatoma vulgare Bory Asterionella formosa Hassal Fragilaria construens var. binodis (Ehr.) Grun. Fragilaria construens var. pumila Grun. Fragilaria construens var. venter (Ehr.) Grun Fragilaria crotonensis Kitton Fragilaria lepostauron (Ehr.) Hust. Fragilaria vaucheriae (Kütz.) Peters Fragilaria capucina Desm. Fragilaria capucina var. mesolepta Rabh. Fragilaria brevistriata Grun. Fragilaria pinnata var. lancettula (Schum.) Hust. Fragilaria pinnata var. trigona (Brun. & Herib.) Hust. Synedra rumpens Kütz. Synedra ulna (Nitz.) Ehr. Synedra incisa Boyer Synedra socia Wallace Synedra pulchella var. lacerata Hust. Hannaea arcus (Ehr.) Patr. comb. nov.

Table 5 continued.

Bacillariophyceae (continued)

Cocconeis placentula Ehr. Cocconeis pediculus Ehr. Achnanthes lanceolata var. dubia Grun. Achnanthes lanceolata (Bréb.) Grun. Achnanthes lemmermanni Hust. Achnanthes linearis (W. Smith) Grun. Achnanthes linearis f.curta H.L. Sm. Achnanthes minutissima Kütz. Achnanthes clevei Grun. Achnanthes nolii Bock Rhoicosphenia curvata (Kütz.) Grun. ex Rabh. Amphipleura pellucida Kütz. Frustulia rhomboides (Ehr.) DeT. Stauroneis nana Hust. Stauroneis amphioxys Greg. Diploneis elliptica (Kütz.) Cleve Navicula cryptocephala (Kütz.) Navicula minima Grun. Navicula odiosa Wallace Navicula heufleri Grun. Pinnularia mesogongyla Ehr. Gomphonema intricatum Kütz. Gomphonema olivaceum (Lyng.) Kutz. Gomphonema ventricosum Greg. Didymosphenia geminata (Lyng.) M. Schm. Amphora ovalis Kutz. Cymbella affinis Kütz. Cymbella turgida (Greg.) Cleve. Cymbella ventricosa Kütz. Cymbella gastroides Kütz. Cymbella caespitosa f.minor A. Cleve Cymbella sinuata Greq. Epithemia sorex Pant. Epithemia turgida (Ehr.) Kütz. Epithemia zebra (Grun.) A. Mayer Rhopalodia gibba (Ehr.) Muller Rhopalodia gibba var. ventricosa (Ehr.) Grun. Nitzschia acicularis W. Smith Nitzschia Delognei Grun. Nitzschia denticulaGrun. Nitzschia dissipata (Kütz.) Grun. Nitzschia fonticola Grun. Nitzschia frustulum (Kütz.) Grun. (several forms) Nitzschia Kutzingiana Hilse Nitzschia linearis W. Smith Nitzschia palea (Kütz.) W. Smith (several forms) Nitzschia subtilis Grunow

Table 5. continued

Bacillariophyceae (continued)

Cymatopleura solea (Bréb.) W. Smith Cymatopleura elliptica (Balbis) W. Smith Surirella angustata Kütz. Surirella linearis W. Smith Surirella ovata Kütz. (several forms) The cell volumes of major diatoms varied considerably among the seasons; however, there are no indications of any seasonal trends common to all species (Table 7). The data used to compute these means were highly variable. Populations of certain species included individuals with three-fold differences in cell volumes. Centric diatoms exhibited the greatest variability. Although the cell sizes did not consistently vary with season, other cellular features such as chloroplast size and density appeared to follow distinct seasonal trends in some species.

Counts were replicated from streams 1, 3, and 5 once each season, the replicates being of material collected from different areas of each stream. These counts provide estimates of the total error in determining the community structure of each stream. The counts, when compared using an index of similarity (Bray and Curtis 1957) indicated that most of the replicates were over 90% similar in composition (Appendices 17-27). The least similar set of replicates were 72% alike, which still exceeded the similarity of communities of different streams for most dates by a sizeable margin.

The actual numbers of individuals counted from each community are listed in Table 8. Only diatoms are listed, as most other species could not be enumerated by cells. In most cases, several thousand individuals were counted, although as few as 700 were alive, in some cases.

Table 6. Mean volumes of diatom cells in cubic microns.

SPECIES	VOLUME
Cymatopleura solea Epithemia turgida Amphipleura pellucida Rhopalodia gibba Synedra ulna Epithemia zebra Surirella linearis Melosira varians Nitzschia linearis Cymbella turgida Epithemia sorex Cymbella affinis Tabellaria fenestrata Hannaea arcus Gomphonema ventricosum Nitzschia frustulum Fragilaria crotonensis Asterionella formosa Navicula cryptocephala Gomphonema olivaceum Fragilaria lepostauron Stauroneis nana Synedra rumpens Gomphonema intricatum Fragilaria vaucheriae Nitzschia acicularis Nitzschia subtilis Achnanthes lanceolata Navicula odiosa Fragilaria construens	VOLUME 32051 20565 11520 7474 6294 5460 4500 3520 3156 3043 2158 1663 1205 1061 500 462 458 420 406 373 354 305 289 276 264 204 190 175 170 168
Nitzschia palea	165
Nitzschia fonticola	161
Stephanodiscus astraea	85
Nitzschia Kutzingiana	60
Amphora ovalis	52
Navicula minima	48
Achnanthes linearis	36

Table 7. Seasonal variation in average cell volumes (cubic microns) of select

important diatoms.*	*			
SPECIES .	1-29-70	4-7-70	7-30-70	10-26-70
Stephanodiscus hantrschii	88	67	101	001
Melosira varians	3576	2654	4425	35.42
Melosira italica	815	629	520	N 0
Tabellaria fenestrata	1062	1296	1258	0
Asterionella formosa	476	484	300]
Fragilaria lepostauron	297	353	410	! ! !
Fragilaria crotonensis	306	550	446	518
Fragilaria vaucheriae	277	250	295	0 tr 0
Fragilaria construens	171	164	151) « «
Synedra ulna	5857	5619	5332	l M
Rhopalodia gibba	8652	!	5441	8330
Nitzschia dissipata	307	266	287) (C
Nitaschia Kutzingiana	40	78	71) (*)
Nitzschia linearis	3353	3081	2808	3308

*Based on measurements of 10-50 cells per species per season.

Table 8. Number of diatoms actually counted in each sample. *

			<u> </u>	
•	LIVE	DEAD	LIVE & DEAD	LIVE/DEAD
11-17-6	9			
1A 3A 5A	3201 4806 3488	1541 2389 1654	4742 7195 5142	2.1 2.0 2.1
12-12-7	0			
1A 3A 5A	4038 3515 6039	2662 2066 2275	6700 5581 8314	1.5 1.7 2.7
1-29-70				
1A 1B 3A 3B 5A 5B 6A	2987 3071 3765 3158 2006 2807 4831	1487 1910 1237 1910 963 1079 1838	4474 4981 5002 5068 2969 3886 6669	2.0 1.6 3.1 1.7 2.1 2.6 2.6
3-4-70				
1A 3A 5A	7311 30755 2408	3393 2371 1318	10704 33126 3726	2.2 13.0 1.8
4-7-70		•		
1A 1B 3A 3B 5A 5B 6A	2777 2578 4285 3401 5190 4154 4561	863 1019 1484 919 1133 686 1167	3640 3597 5769 4320 6323 4840 5728	3.2 2.5 2.9 3.7 4.6 6.1 3.9
5-14-70				
1A 3A 5A	2993 3997 2584	1703 1927 2364	4696 5924 4948	1.8 2.1 1.1

Table 8. Continued

	LIVE	DEAD	LIVE & DEAD	LIVE/DEAD
6-1-70				
1A 3A 5A	1388 2024 1282	2015 2359 1719	3403 4383 3001	0.7 0.9 0.8
7-30-70				
1A 1B 3A 3B 5A 5B 6A 7A	805 700 2120 2622 2906 2867 3327 1390	1499 1997 1598 1927 1646 1312 2230 1366	2304 2697 3718 4549 4552 4179 5557 2756	0.6 0.4 1.3 1.4 1.8 2.2 1.5
8-24-70			•	
1A 3A 5A	2813 1535 4342	1557 858 1721	4370 2393 6063	1.8 1.8 2.5
9-21-70				
1A 1B 3A 3B 5A 5B	1014 1916 3211 3557 2552 2017	1685 1471 1569 2212 1816 689	2699 3387 4780 5769 4368 2706	0.6 1.3 2.1 1.6 1.4 2.9
10-26-70				
1A 3A 5A 6A	2493 4910 4591 1736	1848 2656 1843 704	4341 7566 6434 2440	1.4 1.9 2.5 2.5

^{*} Actual numbers counted prior to multiplication by constants to provide an equal areal basis for comparison; A and B are replicates.

In this study, qualitative observations indicated that the late summer communities of the artificial channels were not always dominated by the same organisms. For example, in the late summer of 1968, Cymbella affinis was observed as a dominant of the control channel, while 1969 and 1970 counts indicated that Rhopalodia gibba and Melosira varians were dominating. Thus, while communities in this study may be referred to by naming dominant species, no special significance has been attached to these associations. Reference will be made to the percent similarities of the communities under discussion (Appendices 17-27). These compare the communities in terms of the similarities based on biomass contribution of the various species. Unless otherwise mentioned, the following discussion will emphasize biomass data.

The November communities (Tables 9 and 20) from streams 1, 3, and 5 were all dominated by the diatoms Melosira varians and Fragilaria construens. Melosira varians dominated in biomass by at least one order of magnitude. There were, however, subtle differences among the three communities. The Nitzschia species varied among the streams; N. dissipata was abundant in the control channel and almost absent from the +10°C stream; N. Kutzingiana and N. palea were also abundant only in the control stream. On the other hand, the warmer channels appear to have encouraged Navicula minima. Indices of similarity (Appendix

17) indicate that the warm channel community was unique and the control and +5°C communities were 96% similar.

The November collection had been made before the exceptionally dark weather arrived (Figure 8). There was probably not a lot of growth from this date until the December collection was made. The control stream community was similar for the two months, although Nitzschia frustulum became an important biomass contributor in December (Tables 10 and 21). N. frustulum was abundant in stream 5, and to a lesser degree stream 3; however, the warmest channel had none of this species in evidence. Streams 1 and 2 were dominated by Melosira varians as in November, although Fragilaria construens lost importance relative to the sudden abundance of Navicula minima, especially in the warmest stream. N. minima was one of the smallest diatoms in this study (Table 6) and although by far the most numerous in stream 1, it only constituted one tenth the biomass of the dominant species, M. varians. three December communities were fairly similar -- 78% or more. Stream 1 and stream 3 had communities more similar to each other than to the control channel community (Appendix 18).

Temperatures approached minimum in January, while light increased slightly. The periphyton communities collected at the end of the month indicated that the control community had changed considerably (Tables 11 and 22);

Table 9. Numbers of diatoms in periphyton communities of experimental streams of November 17, 1969 (numbers of cells/millimeter2).

			STF	REAM		_
SPECIES	LIVE	1 DEAD	LIVE	3 E DEAD	7 777	5
	TIAE	DEAD	TILVE	DEAD	LIVI	E DEAD
Stephanodiscus astraea						
Stephanodiscus Hantzschii		1171		1391		951
Melosira granulata	439	146	439	586	146	73
Melosira italica	73	586		1099		1317
Melosira varians	5253	2103	11712	5488	11507	3077
Tabellaria fenestrata		5		42	11307	3077
Asterionella formosa		512		659		512
Fragilaria construens	6667	1748	8915	2499	11227	2233
Fragilaria construens Fragilaria crotonensis	1063	1553	946	1022	900	909
Fragilaria lepostauron	1002	1333	740	1022	146	293
	452	112	173	191	849	
Fragilaria vaucheriae	220	220	220			182
Synedra rumpens	220		220 9	439	878	659
Synedra ulna		47		51	37	56
Hannaea arcus						
Achnanthes lanceolata			73		146	73
Achnanthes lemmermanni		73				
Achnanthes linearis	1903	1098	586	1830	951	1464
Navicula cryptocephala	146			146		
Navicula minima	8344	4611	2489	6002	1976	2196
Navicula odiosa	659	366	146	439	73	73
Stauroneis nana	146	146		146		
Gomphonema intricatum		220		73		146
Gomphonema olivaceum						73
Gomphonema ventricosum						
Amphora ovalis						
Cymbella affinis	47	119	51	131	9	19
Cymbella turgida						
Cymbella ventricosa					-	73
Epithemia sorex	47	14		9		
Epithemia turgida	3.3	6.2	.5	4.3	.4	4.6
Epithemia zebra						
R hopalodia gibba	33	19	9	5		
Nitzschia acicularis	220	146			73	220
Nitzschia dissipata	73	512	586	1976	3147	2635
Nitzschia fonticola						
Nitzechia fruetulum	293	659	146	586	512	439
Nitzschia Kutzingiana	146		73	512	1464	805
Nitzschia linearis	19	9	28	5	28	19
Nitzschia palea	659	2562	586	1099	2489	1683
Nitzechia subtilis						
Cymatopleura solea	4.7	5.2				
Surirella angustata	9	5			23	9
Surirella linearis						
Surirella ovata						

ľ

Table 10. Numbers of diatoms in periphyton communities of experimental streams of December 29, 1969 (numbers of cells/millimeter2).

				REAM	5	!
SPECIES	LIVE	l DEAD	LIVE	DEAD	LIVE	DEAD
		73				146
Stephanodiscus astraea	73	1903	73	1610	220	1976
Stephanodiscus Hantzschii		1303		293	366	293
Melosira granulata		732	366	586	146	659
lelosira italica	73	732 1846	5884	3557	6220	4098
Melosira varians	5614	47	9	37		70
Tabellaria fenestrata	23		73	512	73	512
Asterionella formosa	73	73	5572	1879	15395	2466
Praailaria construens	5604	2769		1035	1525	1609
ragilaria crotonensis	695	1431	527 	146		
rragilaria lepostauron				154	3525	392
Fragilaria vaucheriae	79	205	597	146	220	366
Synedra rumpens	439	366	220	61	107	65
Synedra ulna	33	23	74	 01	107	
Hannaea arcus		73			73	146
Achnanthes lanceolata				73		140
Achnanthes lemmermanni		<u></u>		_ _	146	1752
Achnanthes linearis	1464	1171	1097	732		146
Navicula cryptocephala		73	146	73	070	4672
Navicula minima	46696	37840	21509	14632	878	659
Navicula odiosa	366	805	439	439	1317	293
Stauroneis nana	1391	951	1391	220	878	
Gomphonema intricatum				73		146
Gomphonema olivaceum						73
Gomphonema ventricosum						7 -
Amphora ovalis						
Amphora ovalis Cymbella affinis		37	5	56	9	33
cympetia ajjinis						
Cymbella turgida				73		73
Cymbella ventricosa				9		65
Epithemia sorex	1.	3 6.4	1.	6 3.6	•	9 4
Epithemia turgida						
Epithemia zebra	28	18		19		14
Rhopalodia gibba					73	73
Nitzschia acicularis	512	805	1171	1683	2635	5639
Nitzschia dissipata	712					
Nitzschia fonticola		146	1025	73	2708	1391
Nitzschia frustulum	220	73	439	439	1025	439
Nitzschia Kutzingiana	37	73 19	42	33	275	65
Nitzschia linearis	805	1610	1317	1537	1903	2389
Nitzschia palea		.1 4		.1 3	4.	.7 1
Cymatopleura solea	5 14	28			23	9
Surirella angustata	14	20				
Surirella linearis						
Surirella ovata						

Table 11. Numbers of diatoms in periphyton communities of experimental streams of January 29, 1970 (numbers of cells/millimeter 2).

SPECIES	LIVEA	DEAD	LIVE	DEAD	LIVE	LIVE ADEAD	LIVE	BDEAD	LIVEA	DEAD	LIVEB	DEAD	LIVE	DEAD
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1														
Stepnanoarscus astraea	!	1	!	1	!	ŀ	!	!	;	!	!	!	!	!
Stephanodiscus Hantzschii	2	878	73	951	73	366	!	293	!	73	220	512	73	2123
Melosira granulata	1	¦	!	73	952	220	!	1	!	¦	33	47	: 1	!
Melosira italica	220	512	!	586	;	146	146	293	93	112	42	.	73	;
Melosira varians	5702	1753	6546	1739	3212	1464	3017	1609	825	601	1166	718	4122	3874
Tabellaria fenestrata	47	19	42	117	61	37	107	86	75	28	65	42	439	73
Asterionella formosa	!	73	1	73	1	; ;	; !	146	73	73	}	146	146	430
Fragilaria construens	3473	1758	4205	3170	8924	2107	6539	3860	5348	1641	7306	2289	18561	1000
Fragilaria crotonensis	499	858	536	1119	1296	713	1530	1231	1464	863	1734	600	1667	3008
Fragilaria lepostauron	ŀ	;	:	1	146	!) 	1317	: !) 	439	220	1 1	יו מ מ
Fragilaria vaucheriae	396	19	373	140	1366	121	1385	275	583	168	1669	308	203547	13028
Synedra rumpens	;	}	!	!	!	;	1	1	1	1	; ;	}	366	439
Synedra ulna	37	23	21	33	51	33	75	14	6	33	33	'n	28) [c
Hannaea arcus	73	¦	1	;	73	146	!	!	ŀ	293	220	220	146	! !
	73	73	146	146	732	220	220	629	73	366	220	220	; ;	366
Achnanthes lemmermanni	}	1	73	73	1	1	1	1	1		1	}	;	2
Achnanthes linearis	629	3294	439	2342	1463	512	616	440	512	439	439	146	220	366
Navicula cryptocephala	1	73	73	73	146	!	146	146	146	220) 	; ;	}
Navicula minima	48234	25397	27959	25178	29277	10174	11308	8052	4904	4392	3806	7317	1976	2854
Navicula odiosa	146	293	146	439	146	220	586	439	293	220	878	586	220	
Stauroneis nana	4465	732	4538	1244	1683	732	3074	629	1	1	;	1	146	73
Gomphonema intricatum	ł	73	ł	;	i	1	73	1	1	¦	;	ł	; ;	7.3
Gomphonema olivaceum	1	ţ	i	¦	ľ	1	1	;	ł	ł	146	ļ	73	:
Gomphonema ventricosum	ł	;	1	;	1	1	73	1	ł	;	<u> </u>	1	?	
Amphora ovalis	1	1	1	1	1	1	1	¦	73	!	1	ļ	!	¦
Cymbella affinis	. ¦	146	;	1	1	73		;	! 	;	73	i	ļ	;
Cymbella turgida	!	!	!	;		1	ł	:	!	1	ŀ	;	;	:
Cymbella ventricosa	73	1.46	ł	1	ŀ	ł	1	1	293	1	1	73	;	146
Epithemia sorex	1	ស	1	ß	14	6	ł	28	'n	ហ	13	L	ł	6
Epithemia turgida	۳.	3 3.1	-	3.6	-	6 1.9	m	3 3.4	- -	3.1		2.7	:	1.4
Epithemia zebra	!	1	1	1	!	1	!	1	1	1	!	1	ł	
Rhopalodia gibba	!	19	23	14	19	33	6	33	6	ŀ	ľ	σ	0	1
	73	73	!	;	!	1	1	1	1	¦	!	1		805
•	293	366	366	512	586	1464	1171	2562	4465	2928	4977	3440		2342
	220	439	629	732	1683	1025	3220	1610	1976	1830	3294	1610		271
	146	146	220	220	802	439	439	439	293	146	439	1317		220
	73	73	439	146	439	220	586	73	293	146	293	73	_	12369
Nitzschia linearis	23	o	23	Ŋ	14	i	33	19	28	37	42	ī		51
Nitzschia palea	!	146	146	802	3074	1464	1610	805	732	1757	805	586		2437
		3.4	ન	2.4	Ϊ.	4 2.6	2.0	3.6	7	2.5	1.	3.5		3.6
	75	28	70	42	126	42	168	47	6	6	42	ø	5665	2635
	!	;	!	!	0	6	14	o	!	1	;	!		1
Surrrella ovata	¦	1	1	ļ	1		ŀ	1	!	1		1	630	293

* A and B are replicate samples from one stream.

Table 12. Numbers of diatoms in periphyton communities of experimental streams of March 4, 1970 (numbers of cells/millimeter²)

				STREAM		
SPECIES	1 100	1-A		3-A		5-A
	LIVE	DEAD	LIVE	DEAD	LIVE	DEAL DEAL
Stephanodiscus astraea		70				DLA
Stephanodiscus Hantacabi:	659	73	**	146		220
metosira aranulata	146	2123	659	1171	146	586
Melosira italica	586		146	73		200
Melosira varians	9544	512	732	512		220
Tabellaria foncetnata	256	3446	2406	1357	569	331
Asterionella formora		615	173	289	47	
Fragilaria construens	293	951	146	1025		135
Fragilaria crotonensis	6653	1977	128216	4662	6928	146
Fragilaria lepostauron	3264	2993	2592	1250		2047
Fragilaria vaucheriae	_73	73	439	73	196	508
Synedra rumpens	382	210	5161	499	439	73
Synedra ulna	2 9 3	73	220		1184	1874
Hannaea arcus	79	65	61	73		146
Achieuth - 1			5	65	14	14
Achnanthes lanceolata	73			14	14	5
Achnanthes lemmermanni				220	146	732
Achnanthes linearis	951	439				
Navicula cryptocephala		146	805	512	293	366
vavicula minima	95808	42964				
Navicula odiosa	1098		37035	24885	6002	6953
Stauroneis nana	12882	732 2928	439	732	220	366
Comphonema intricatum	220		3147	1098	293	293
iomphonema olivaceum	73		366			233
iomphonema ventricosum	/3	366	220	659	146	732
mphora ovalie			·		. 170	/32
'ymbella affinis	220	439				
ymbella turgida						
ymbella ventricosa					••	~-
pithemia sorex	220	146	1391	586		
pithemia turgida		14	37	14	659	73
pithemia zebra	2	1	4	2	,	5
hopalodia gibba					.4	.7
itzschia acicularis	65	23	65	61		
itzschia dissipata	73			01		
itzschia fonticola	1391	805	1244	2269	146	146
itachia Conticola	1025	1244	16834		366	2635
tzschia frustulum	220	586	2049	6075	3001	3001
tzschia Kutzingiana	439	220	1244	1464	1464	3513
tzschia linearis	112	19		220	293	293
tzechia palea	146	586	23	5	9	14
tzschia subtilis			1683	805	73	293
matopleura solea	2	1				
rirella angustata	19	75	.2	.8	.1	.7
rirella linoania	5		14	5	191	14
rirella ovata	5	9				14
	<u>5</u>		14			

Table 13. Numbers of diatoms in periphyton communities of experimental streams of April ?, 1970 (numbers of cells/millimeter²).

	1-A	٠		1-B	۳ ا	4	"	3-8	4 - C]°			
SPECIES	LIVE	DEAD	LIVE	DEAD	LIVE	DEAD	LIVE	DEAD	LIVE	DEAD	LIVE	DEAD	LIVE	0-A
Stephanodiscus astraea	;	!	}	ł	ł	!	!		1	!				
Stephanodiscus Hantsschii	293	951	381	989	229	1067	610	1296	629	732	293	300	וניני	1775
Melosira granulata	1	!	!	305	1	; ;	} }		3 1	: 1	7	0 1	7/77	/ #TC
Melosira italica	629	586	989	381	457	1220	991	1296	1317	1025	95.5	1 0 1	2054	
Melosira varians	4224	970	4354	1183	1160	431	1218	390	205	326	168	200	800	4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Tabellaria fenestrata	73	439	152	305	534	457	305	762	146	512	73	36.5	900	,,,,
Asterionella formosa	293	586	457	166	;	991	305	989	220	629	586	200	של אל ה	1693
Pragilaria construens	4439	1138	4896	1923	17729	4091	5140	874	11908	1865	6737	000	16305	2262
Fragilaria crotonensis	783	653	828	944	1661	950	2156	863	1072	265	480	א מת מת	2725	7077
Fragilaria lepostauron	1	1	;	!	229	381	76	}	 	146	9 1	י י	0.00	# C
Fragilaria vaucheriae	895	154	909	303	2914	874	9978	1748	8560	839	9637	033	210	נ/ נוכוו
Synedra rumpens	73	146	152	152	381	915	76	: !	73)	000	1	366	7777
Synedra ulna	28	28	17	47	41	58	64	87	242	112	182	16	247	201
Hannaea arcus	!	!	!	1	!	92	ł		73	439	202	1 6	746	1
	!	!	.	}	1	229	1	}	366	878	146	7 7	0 1	200
Achnanthes lemmermanni	;	!	1	!	!	1	1	;	1	}	1	2		?
Achnanthes linearis	293	73	366	73	146	146	73	73	73	220	2.0	9 1	ן מ מ	֡֝֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֓֡֓֓֡
Navicula cryptocephala	ľ	!	1	: 1	! !	: !	:	?	2	2	?	?	TOSO	2633
Navicula minima	25398	5782	33815	6368	4172	4904	2562	2400	346	1 6	1 6	1 6	1 :	1 ;
Navicula odiosa	146	220	152	152	152	305	7007	707	7	# 0 t	273	077	439	659
Stauroneis nana	2196	878	2135	45.5	1 1)	•	2		י ני	ľ	146	1 ;	73
Gomphonema intricatum) -)	֓֞֜֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֡֓֓֓֓֡֓֜֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֡֓֡		 	1		!	?	ľ	/3	293	73
Gomphonema of ingenum	73	220	76	200	100	1 1	!	1 (1 6	1	1	1	!	1
Complete contract	?	220	0	677	677	401	!	79/	1903	1098	2123	439	1903	1025
Ambono onolis	1	ì	!	¦	!	ļ	ļ	1	293	73	512	73	73	732.
C:: F:: 0.04:: 0.0	!	!	!	!	!	ŀ	ŀ	;		!	!	!	!	ł
cympetra allints	1:	H		1	ŀ	ļ	!	ţ	73	1	!	!	!	ł
cymbella turgida	19	19	17	23	12	17	23	12	21	19	42	6	1	¦
Cymbella ventricosa	1	73	!	152	!	381	92	610	366	878	220	293	629	878
	;	¦	1	9	17	9	1	ω	!	1) !) (3 !
Epithemia turgida	6.1	4.1	'n	8 1.8	1.1	3 .4	1.2	8.	•	3.5	•	3,	•	6 2.3
Epithemia zebra	!	1	!	!	!	!	!	!	;	!	!	; ;	` !	
Anopalodia gibba	177	80	221	163	82	47	23	ø	'n	;	1	!	!	;
	!	¦	ľ	!	!	1	1	į	1	!	ł	ļ	146	!
Nitzschia dissipata	220	586	16	534	305	1144	457	305	366	7.3	1	7.3	201	1961
	2123	878	2342	878	6148	8344	5416	4465	20421	3248	13980	3330	2000	1237
Nitzschia frustulum	439	220	839	152	991	3202	534	1067		286	200	2000	100	7 7 7 7
Nitaschia Kutzingiana	146	146	229	1	152	229	534	610	3952	200	2040	622	7	130
Nitzschia linearis	!	1	12	23	٧	٥	9) 	1 tr)	1	ř	777	7/T#
Nitzschia palea	73	73	146	73	146	146	146	73	1098	97.0	73.0	777	177	7,5
Cymatopleura solea	m•	Ε.		4 . 4		9		? -		200	701) 	1400 000	TOTOT
	S	o,	1	23	و	9	17	2	۰	: :	٠	•	7 0	2.3
Surirella linearis	;	i	1	ł	1	· ¦	: !)	1	;	۱'	l	? }	000
Surirella ovata	ł	!	!	}	1	¦	;	i	173	00	1 0	1 6	!	1 6
									1	;	1	7] 	7.

Table 14. Numbers of diatoms in periphyton communities of experimental streams of May 14, 1970 (numbers of cells/millimeter²).

				STREAM	_	
•		1		3		5
SPECIES	LIV	E DEAD	LIV	/E DEAD	LIV	E DEAL
Stephanodiscus astraea						
Stephanodiscus Hantzschii		1647		2562		2489
Melosira granulata						
Melosira italica	14272	46294	17566	12992	12516	12955
Melosira varians	4301	1364	1208	462	312	173
Tabellaria fenestrata	128	501	275	284	186	210
Asterionella formosa	2562	5489	4209	1830	1537	3001
Fragilaria construens	11085	6912	14011	9173	8590	8824
Pragilaria crotonensis	4919	2681	3683	2716	2611	2296
Pragilaria lepostauron				366	146	146
Fragilaria vaucheriae	1935	653	10758	2203	11504	3846
Synedra rumpens	183	366		366		146
Synedra ulna	128	105	186	89	75	107
Hannaea arcus	12	35	5	14	12	175
Ichnanthes lanceolata						439
Achnanthes lemmermanni						
Ichnanthes linearis	732	146	549	183	220	220
lavicula cryptocephala						
Navicula minima	65690	12077	46294	22141	3733	4904
Navicula odiosa					3,33	
Stauroneis nana	9881	7136	4392	3843	73	
Somphonema intricatum	7001	7250				
Comphonema olivaceum		366		183	73	2342
Jomphonema ventricosum						
Imphora ovalis						
Tymbella affinis						
Tymbella turgida					-	
Tymbella ventricosa				915		512
gpithemia sorex	186	105	988	107	12	712
Spithemia turgida	100	2	19	3		4 1
spithemia turgtaa Spithemia zebra			7.7			4 1
Rhopalodia gibba	781	653	247	84		
nopatoara grbba Nitzschia acicularis	101	655	247			
		1464	366	366	73	659
litzschia dissipata	3843	4940	10613	10979	16981	33376
litzschia fonticola						33376
litzschia frustulum	549	1281	366	915	878	
litzschia Kutzingiana	549	366	183	183	805	1903
litzschia linearis	266	 540	100		5	5
Vitzschia palea	366	549	183	549		220
ymatopleura solea	•	8.7		46		5 2
Surirella angustata			5	5	5	14
Surirella linearis				***		
Surirella ovata	35	35	47	33	221	408

Table 15. Numbers of diatoms in periphyton communities of experimental streams of June 1, 1970 (numbers of cells/millimeter2).

			S	TREAM		
		1A		3A		5A
SPECIES	LIVE	DEAD	LIVE	DEAD	LIVE	DEAD
Stephanodiscus astraea		-				
Stephanodiscus Hantzschii	220	3586	146	4465	439	5354
Melosira granulata						
Melosira granatata Melosira italica	3733	32351	5636	20347	4245	15297
Melosira varians	1133	415	340	131	153	135
Tabellaria fenestrata	146	1391	439	732	242	182
Asterionella formosa	293	2562	1098	4026	659	2415
Fragilaria construens	2879	2739	3963	3138	2093	2420
Fragilaria crotonensis	1247	7203	1623	2928	1198	1674
Fragilaria lepostauron						
Fragilaria vaucheriae	1387	991	1776	979	606	452
Synedra rumpens	146	73	73	146	293	146
Synedra ulna	84	168	149	182	289	140
Hannaea arcus					5	42
Achnanthes lanceolata				146		73
Achnanthes lemmermanni						
Achnanthes linearis	659	732	146	1464	732	1830
Navicula cryptocephala						
Navicula minima	1098	878	220	1098		
Navicula odiosa		73		73	73	146
Stauroneis nana	73	73		73		
Gomphonema intricatum						
Gomphonema olivaceum		73	146	659		146
Gomphonema ventricosum		146	730	2196	28	42
Amphora ovalis		73		146		366
Cymbella affinis						
Cymbella turgida						
Cymbella ventricosa		146	73	586	28	51
Epithemia sorex	233	98	79	61		
Epithemia turgida	•	39 .39	2	1.5	•	7 1.2
Epithemia zebra	28	9				
Rhopalodia gibba	2056	718	280	14		
Nitzschia acicularis	-					
Nitzschia dissipata	146	293	73	220	72	220
Nitzschia fonticola	2854	5563	2781	4977	2342	3586
Nitzschia frustulum	73	293		293		293
Nitzschia Kutzingiana	586	586	1903	4684	220	2196
Nitzschia linearis					23	5
Nitzschia palea	146	220	2781	4977	732	439
Nitzschia subtilis						
Cymatopleura solea		2 1	1	2	1	2.3
Surirella angustata	5	33	19	37	9	19
Surirella linearis						
Surirella ovata	37	326	186	275	532	159

Numbers of diatoms in periphyton communities of experimental streams of July 30, 1970 (numbers of cells/millimeter 2). rable 16.

Species	1-A		1-B	1-B	3-A LIVE DEAD		3-B LIVE DEAD	EAD	5-A TIVE DEAD	PAD	5-B	EAD	6-A	uean	7-A	n a d	
22.707.10				1													1
Stephanodiscus astraea	1	!	ł	!	;	586	ı	ļ	73	439	ł	220	1	ł	!	!	
Stephanodiscus Hantsschii	hii	146	1	293	1	1391	73	951	73]	1171	ł	805	73	3147	73	1098	
Melosira granulata	1	!		ł		1		73		ŀ				ŀ	1	1	,
Melosira italica	KO)		512 48	4831	439 7	7246	293 7	539	1976	5563	1025 4	4172	3001	8563	177	606	•
Melosira varians				340		872		960		825		592		853	1156	294	
Tabellaria fenestrata	28 6			353		774		713		737		522		1058	14	275	
Asterionella formosa		33		146		629		439		732		512		805	73	146	
Fragilaria construens	186 5	518	242 13	124		811		1429		6091		2424		3469	3259	3287	
Fragilaria crotonensis		35		534		170		1324		2774		2387		3100	322	713	
Fragilaria lepostauron	!	1	ļ	;	!	;		1		146		;	~	73	73	!	
Fragilaria vaucheriae	84	86	;	75	168	121		191		26		135	173	214	23	112	
Synedra rumpens	1	:	;	;	72	512		220		73		293	m	732	220	220	
Synedra ulna	1	19	0	28	47	65	42	65		161		103	m	117	47	23	
Hannaea arcus	!	!	ł	;	ŀ	!	1	1		!	1	1		14	!	6	
	1	!	1	1	!	293	!	!	!	73	;	73	i	73	73	¦	
Achnanthes lemmermanni	1	!	1	1	!	1		;	!	ļ	1	!	!	1	!	!	
Achnanthes linearis	586	878	439	731	586	1171	586]	1025	802	951	952	1464	805	1903	293	1244	
Navicula cryptocephala	1	ŀ	;	ł	ł	!	!	!	!	1	!	1	1	!	1	ļ	
Navicula minima	1	!	¦	1	ŀ	ł	:	1	1	1	1	;	1	!	ŀ	i	
Navicula odiosa	1	:	į	ŀ	73	146	73	220	73	73	73	;	146	146	1	!	
Stauroneis nana	2	293	1	293	1	1	!	73	!	!	1	!	ļ	73	!	1	
Gomphonema intricatum	;	:	;	73	-	;	1	!	;	;	;	1	1	1	!	146	
	ł	73	ł	1	!	220	ł	1	1	146	1	;	1	366	1	1	
)	į				ŀ	1	į	; ;	ì						
Jomphonema vencircosum		l I]]]))	1))			1 :]	ì)	
Amphora ovalts	!	1 (t	1	i	!	!	1 1	ì	!	1	i	•	!	!	i	
Cymbella affinis	;	73	!	ŀ	ł	¦		73	ł	1	!	1	1	!	1	!	
Cymbella turgida	!	!	!	!	1	1	;	1	1	ŀ	!	1	!	!	1	!	
Cymbella ventricosa	!	73	ŀ	;	!	ļ	!	146		ŀ	!	73	!	!	1	;	
Epithemia sorex	!	23	ł	6	200	79	284	121		270	1161	340	Ŋ	14	685	214	
Epithemia turgida	'n	2.5		3.7	н	5.1	9	5.3	12.	5.8	14.	9.5.6	4	1 4.3	11	3.1	
Epithemia sebra	1	!		ŀ	!		!	!		į	!	¦	ŀ	!	!	!	
Rhopalodia gibba	2569 8	811 1	991	681	1035	448	2611	569	359	149	532	112	0	0	154	33	
Nitzschia acioularis	!	1	1	1 1	1			!		!	!	!		!	!	!	
Nitzschia dissipata	1	73	!	ŀ	;			!	73	146	1	220		366	1	!	
	ł	;	1	!	73			73		146	73	73		1025	293	512	
	;	ł	ł	ł	;			146		146	73	146	146	146	ļ	73	
Nitzechia Kutzingiana	;	73	220	293	878	512		293		146	295	586		586	73	293	
Nitzschia linearis		73		!	ß	'n		ţ		1	S	!		Ŋ	!	σ	
Nitzschia palea		17	731 2	415	1025	805	586	805	731	629	951	805		586	439	286	
Cymatopleura solea	۳.	9.	۲.		•		•	1.1	•	1.4	-	1.6	ij	9 2.1	e.	o.	
Surirella angustata	;	:	;	!	¦	!	!	ł	1	1	1	!	!	;	!	1	
Surirella linearis	1	1	1	1	ł	;	į	1		¦	!	†	ł	1	ł	ı	
Surirella ovata	1	;	!	1	ł	0	1	1	6	Ŋ	Į Į	14	!	33	!	;	

Table 17. Numbers of diatoms in periphyton communities of experimental streams of August 24, 1970 (numbers of cells/millimeter²).

		•		REAM	_	
SPECIES	LIVE	DEAD	LIVE	DEAD	LIVE	DEAD
Stephanodiscus astraea						
stephanodiscus Hantzschii		1171		1025	73	1610
lelosira granulata						73
lelosira italica	146	1610		1464	73	1903
lelosira varians	9432	1082	2797	620	8765	1408
abellaria fenestrata	79	536	65	214	84	420
sterionella formosa	293	3440	73	1025	366	3586
ragilaria construens	732	1063	1436	1063	2895	2187
ragilaria crotonensis	704	1226	937	807	2037	1304
ragilaria lepostauron	703	1220			2037	1304
ragilaria vaucheriae	611	522	261	56	3124	1184
ynedra rumpens	293	1464	366	1171	5124	1391
ynedra rumpens Ynedra ulna	293 9	65	33			
annaea arcus				23	65	93
chnanthes lanceolata		9		9		
chnanthes lemmermanni						
chnanthes linearis			266			
contantnes tinearis	293	951	366	878	878	512
avicula cryptocephala						
avicula minima	586	439				
avicula odiosa	73	73				
tauroneis nana	73	73		146		
omphonema intricatum						
omphonema olivaceum				73		
omphonema ventricosum						146
mphora ovalis						
ymbella affinis	186	182		5		9
ymbella turgida						
ymbella ventricosum		73				
pithemia sorex	5	79	312	84	1786	79
pithemia turgida		11.2	3.2	4.9	12.7	8.
pithemia zebra						
hopalodia gibba	956	555	1021	270	625	182
itzschia acicularis						
itzschia dissipata					146	146
itzschia fonticola						
itzschia frustulum	73			146		73
itzschia Kutzingiana	146	366	439	439	512	878
itzschia linearis	9	14		14	28	5
itzschia palea	2196	9588	732	2708	512	1171
ymatopleura solea	.2		.3	.4	.6	11/1
urirella angustata						
urirella linearis						
				-		

Table 18. Numbers of diatoms in periphyton communities of experimental streams of September 21, 1970 (numbers of cells/millimater²).

	1-A		1-B	B	3A	-	3-B	8	5-A	A		5-B
SPECIES	LIVE	DEAD	LIVE	DEAD	LIVE	DEAD	LIVE	DEAD	7/17	DEAD	TINE	DEAD
Stonhonodiacus astraea	ł	ł	ł	ł	1	;	}	1	!	;	1	ł
Stephanodiscus Hantzschii	73	5416	512	8563	366	3733	146	3220	802	2196	146	3733
Melosina aranulata	439	1	1	951	220	629	629	293	1	293	146	146
Melosira italica	586	6880	1391	5343	878	2708	878	4098	1317	3074	366	1464
Melosira varians	1996	5855	13614	6514	9909	2695	6938	2294	12881	5489	10247	3879
Tobellaria fenestrata	;	1830	;	1683	73	512	!	1464	1	951	220	439
Astonionolla formosa	73	3513	439	3806	366	1903	!	629	439	1171	146	512
Dagging of a constances	925	2294	3040	886	3338	499	4164	3166	4597	2350	4602	839
Fragrens a comprant	200	499	280	669	792	877	597	1417	821	1012	886	396
riagical ta crossesses	1 1	<u> </u>	1	7.3	: 1	1	1	1	1	ļ	!	ł
riaginaria repostarion	200	נוש	1231	800	2993	741	1585	597	1734	631	1949	294
ragitarta vauchertae	0 0	110	100	0 7	746	100	385	905	203	ונונ	293	1025
	203	486	200	0 1	12	77	7.0	7 7	100	100	112	717
Synedra ulna	75	140	ô	T#3	2	1 1	5	ř	2	1	1) ;
Hannaea arcus	!	73	1	¦	1	/3	1	!	ł	:	!	ŀ
Achnanthes lanceolata	!	73	1	ł	!	!	!	!	!	;	;	•
Achnanthes lemmermanni	ļ	1	!	¦	;	ł	!	ŀ	!	!	1	1
	1024	3950	4538	3806	9026	3952	11198	4318	3001	3074	2123	1756
Namion 1a constace pha la		586	439	439	146	293	73	73	146	73	220	73
Nonion 10 minimo		1	1	;	;	;	1	1	!	:	!	1
12777272	¦	293	293	878	146	73	73	73	146	73	220	73
doresta outosa	1	200		28.6	} !	293	73	1	220	220	146	146
Start One to hand		770		146	-	7.3	: :	1	1	1	ł	ļ
	. !		1	146	ļ	: :	1 5	73	ł	ł	1	ļ
compronema orroaceam	1	2		1				: :	1	ì	!	:
Gomphonema ventricosum	1	!	!	!	1	ì						
Amphora ovalis		1	1	1	!	;	!	(}	}		
Cymbella affinis	1244	1025	802	1683	!	;	!	73	!	!	!	
Cymbella turgida	ŀ	!	!	:		1	1	11	;	!	1	1 6
umbella ventricosa	:	146	!	293	1	73	i	73	1	1	1	7
Frithemia sorex	ł	293	ł	366	439	629	354	303	4538	3147	4684	2781
Enithemia turaida	2.3	27.3	ij	8 22.6	6	13.5	25.6	5 13.8	41.	3 12.6	23.	14.
	1	: 1	1	!	;	:	!	!	!	;	;	1
Rhond Lodia aibba	891	871	2629	1548	671	867	667	821	366	951	42	145
Nitzachio ocievlania		1	!	1	1	1	1	ł	!	¦	!	!
2,7500;;74 40;700;74;70 2,4004;4 40;74;4		1830	1	732	439	951	73	439	366	293	1244	586
		220	;	220	73	220	146	439	146	220	146	366
•		366	146	366	439	512	366	512	293	585	366	512
		2 1	1	} }	1	1	1	ł	1	¦	}	!
		3000	4000	15736	586	1610	629	805	586	629	1317	1025
	971	146)	146	73	293		73	1	-	!	1
		7.1	•	7		2.3	,	1.1	•	7 1.4	•	•
Commerce of the contract of th			· ¦	73.1	;	; ;	1	1	1	!	!	ţ
Carrered any document		i		!	;	;	;	1	1	!	!	!
	1											
								(

Table 19. Numbers of diatoms in periphyton communities of experimental streams of October 26, 1970 (numbers of cells/millimeter²).

SPECIES	1-A	DEAD	3-A LIVE	DEAD	5-A	DEAD	LIVE 6-A	DEAD
Stenhanodisans astraea	ł	ł	;	1	ł	1	;	1
Stephonodiscus Hantsschii	146	3806	73	6734	293	4099	512	6002
of the transfer of the transfer	; ;	203	220	805	146	73	ł	1
0,000,000 0,+00,000	439	1464	220	1537	293	1610	512	1683
פוספונים יומויכם			1707	2406	4	3017	25.5	737
e tostra vartans	sons ·	1701	100/		ייייייייייייייייייייייייייייייייייייי	11.) u	
abellaria fenestrata	14	131	1 ;	/07	1:	717		100
Asterionella formosa	:	802	146	732	146	TCA	140	700
racilaria construens	3571	1837	8546	4047	9311	1870	3562	881
Praditaria arotonensis	1180	1324	1497	986	1888	788	863	326
Day of Jours Jones Contestings	•	•	;	ł	!	į	366	!
Danger of the soft of the soft of	476	205	2382	1389	2355	550	331	117
	2 1	100	73	366	512	586	220	805
Syneara rumpens		1 0	25.	7 2 2	100	ā	78	47
Syneara utna	140	507	707	7	101)		•
Наппава апсив	ì	1	!	n	!	!	}	1
Achnanthes lanceolata	:	1	;	73	1	1	:	7
Achnorthes lemmermanni	366	146	1	1	!	i i	;	1
1 4 20	1464	1098	9369	6148	2196	3513	2708	3294
onitarion of the second of the		200	1	: !	:	73	220	1
Markenta eryprocepnata	2 6	210	-	;		: ;	•	1
Navicula minima	9009	4210	1 1	1 6	770	,	000	000
Navicula odiosa	1025	220	215	293	1744	273	770	220
Stauroneis nana	586	366	73	73	73	73	732	220
Comptoned states	!	7.3	!	73	!	ł	1	ŀ
	•	7.	i	203	ł	73	1	!
compronema orroadeum		?			. }	:	1	ł
Сотрнопета ventricoвит	1	!	!	}	1	!		
Amphora ovalis	:	!	!	;	!	!	!	1
umbella affinis	1893	811	61	75	:	1	!	
Cumbella turgida	1	ŀ	1	;	1	!	;	!
Current a south oce	¦	ł	i	!	1	146	!	73
garage and a second	d	101	597	489	681	920	6	6
sorea	7	707	, ני ני		1 5	0	٠-	ì
Epithemia turgida	σ.	T2./	•	17.3	0.01	0.1	7.7	•
Evithemia zebra	;	293	:	!	n.	n	!	1
Phonologia aibba	149	438	322	564	79	79	ŀ	42
Witness Control Control	!	¦	;	i	¦	ł	220	
nersonal account to	7.3	356	746	951	126	439	220	512
	2	9 6	77.	7 7	203	146	732	659
Jours	!	272	7	7	3 1	220	! !)
	1	13	()	1 1	1	0 4 4	1 6	
Nitzschia Kutzingiana	439	146	512	146	280	366	0 0	140
Nitzschia linearis	ហ	ις.	13	n	9	51	?	'n
Nitzschia palea	3879	3220	3367	3147	3513	2196 2196	10A	280
Nitzschia subtilis	366	220	629	1025	366	73	; ·	
Cumatovleura solea	۳.	2.1	2.5	7	1.7	o.		
Surinella linearis	;	;	!	;	;	:	;	1
Sumino 110 outto		ļ	1	;	;	!	;	!
4 6					1	;	14	0
Amparpreura pertuctaa	: -						,	'

Table 20. Species biovolumes of experimental stream periphyton communities of November 17, 1969 (cubic microns/millimeter²).

Species	1-A	3-A	5-A	
Microcystis sp.	220	••	••	
Schizothrix calcicola	69	24	50	
Oscillatoria sp.				
Anabaena sp.			••	
Calothrix sp.				
Stephanodiscus astraea	••		9=	
Stephanodiscus Hantzschii				
Melosira granulata	435	435	145	
Meloeira italica	42		•••	
Melosira varians	18561	40617	39906	
Tabellaria fenestrata	10001	10027	77300 T-	
Asterionella formosa			'	
Fragilaria construens	1133	1516	1909	
Fragilaria crotonensis	325			
		289	275	
ragilaria lepostauron	105	40	43	
Fragilaria vaucheriae	125	48	235	
Synedra rumpens	55	55 .	220	
Synedra ulna	••	53	217	
lannaea arcue				
Achnanthes lanceolata		9	17	
lohnanthee lemmermanni				
lohnanthes linearis	84	26	70	
Navicula cryptocephala	51		••	
lavicula minima	367	110	87	
Navicula odiosa	108	24	12	
Stauroneis nana	45			
Comphonema intricatum			••	
Comphonema olivaceum			••	
Comphonema ventricosum				
Imphora ovalis		••	••	
Cymbella affinis	25	27	5	
Ymbella turgida				
ymbella ventricosa			·	
Spithemia sorex	82			
			••	
Spithemia turgida	67	10	8	
pithemia sebra	100	44	••	
ihopalodia gibba	180	49	••	
litzschia acicularis	45		15	•
litzschia dissipata	22	180	603	
litzschia fonticola			••	
litzechia fruetulum	199	99	347	
litzschia Kutzingiana	6	3	59	
litzechia linearie	64	. 94	94	
litzechia palea	122	108	460	
hitzechia subtilie				
ymatopleura solea	149	138	148	
urirella anguetata	9		22	
urirella linearis		· ·		
urirella ovata			••	
lothrix sp.		•-		
tigeoclonium lubricum		••		
Pedogonium Sp.				
lougeotia Sp.				
				

Table 21. Species biovolumes of experimental stream perighyton communities of December 29, 1969 (cubic microns/millimeter²).

Species	1-A	3-A	* A	
Microcystis sp.		Y-0	5-A	
Schizothrix calcicola				
Oscillatoria sp.	121	37	••	
Anabaena sp.	380		11	
Calothrix sp.				
catothern sp.				
Stephanodiscus astraea				
Stephanodiscus Hantsechii		==		
Melosira granulata	6	6	10	
Melosira italica	••	-	19 363	
Melosira varians	59	298	303 119	
Tabellaria fenestrata	20076	21041	22243	
Asterionella formosa	24	10		
Fragilaria construens	35	35	4-	
Pragilaria crotonensis	958	953	35	
Fragilaria lepostauron	222	169	2633	
ragilaria vaucheriae		103	487	
ynedra rumpens	22	165		
Synedra ulna	110	55	976	
lamaea arous	193	433	55	
abumahan 1		700	627	
chmanthes lanceolata				
chnanthes lemmermanni			10	
chnanthes linearis	64	48	***	
avicula cryptocephala	-	51	6	
avicula minima	2055			
avicula odiosa	60	946	42	
tauroneis nana	427	72	216	
omphonema intricatum		427	270	
omphonema olivaceum	••			
omphonema ventricosum		7-		
mphora ovalis				
mbella affinis				
mbella turgida		3	5	
mbella ventricosa				
rithemia sorex				
ithemia turgida	27			
rithemia zebra		33	19	
opalodia gibba	242			
tzechia acicularie				
tzschia dissipata	157		15	
tzschia fonticola	157	359	809	
tzechia fruetulum				
tzechia Kutzinaiana	9	695	1836	
tzechia linearie	124	18	41	
tzechia palea	149	141	922	
tzechia subtilis	143	244	352	
natopleum solea	163		••	
rirella angustata	13	196	151	
rirella linearie	15 15	••	22	
rirella ovata	15			
thrix sp.				
geoclonium lubricum				
ogonium sp.		••		
geotia sp.	••			
rogyra sp.				

Table 22. Species biovolumes of experimental stream periphyton communities of January 29, 1970 (cubic microns/millimeter2).

Species	1-A	1-B	3-A	3-B	5-A	5-B	6-A
Microcystis sp.					••		
Schizothrix calcicola	124	161	32	50	37	8	29
Oscillatoria sp.	925	925					
Anabaena sp.							
Calothrix sp.		••					
Stephanodiscus astraea							
Stephanodiscus Hantzschii		6	6			2	6
Melosira granulata			943			33	
Melosira italica	179			119	76	34	59
Melosira varians	20390	23408	11486	10789	2956	4170	14295
Tabellaria fenestrata	50	42	65	114	80	69	466
Asterionella formosa					35		69
Fragilaria construens	594	719	1526	1077	915	1249	3179
Fragilaria crotonensis	153	164	397	471	448	531	563
	155	104	43	4/1	440	130	203
Fragilaria lepostauron							
Fragilaria vaucheriae	110	103	378	384	161	462	56383
Synedra rumpens							92
Synedra ulna	217	299	299	439	53	193	164
Hannasa arcus	82		82			248	164
Achnanthes lanceolata	10	19	97	29	10	29	
Achnanthes lemmermanni		3					
Achnanthes linearis	29	19	64	27	23	19	10
Vavicula cryptocephala		26	51	51	51		
Vavicula minima	2122	1230	1288	498	216	167	87
Vavioula odiosa	24	24	24	96	48	144	36
Stauroneis nana	1371	1393	539	944			45
Comphonema intricatum				20			
Somphonema olivaceum						54	27
Comphonema ventricosum				77			
Amphora ovalis					4	••	
lymbella affinis		:-					
ymbella turgida		••					
ymbella ventricosa	37				147		
Spithemia sorex			25		9	33	
Spithemia turgida	17	21	33	69	33	1 9	
Spithemia zebra							
Rhopalodia gibba		199	164	78	78		3
litsschia acicularis			15				403
Vitsschia dissipata	90	112	180	359	1371	1528	292
Vitsschia fonticola	41	122	311	596	366	610	65
Vitzechia fruetulum	99	149	546	298	199	298	199
Vitzechia Kutzingiana	3	18	18	23	12	12	788
litzschia linearis	77	77	47	111	94	141	171
litzschia palea		27	135	298	135	149	585
litzschia subtilis			100		100	173	303
	67	32	45	93	32	51	96
Tymatopleura solea	72	52 67	121	162	32 9	40	5455
Aurirella angustata	14	D/ 	41			-	3433
Aurirella linearis Aurirella ovata			41	63		40	1519
							30
llothrix sp.							
Stigeoclonium lubricum Dedogonium Sp.							
lougeotia Sp.							

Table 23. Species biovolumes of experimental stream periphyton communities of March 3, 1970 (cubic microns/millimeter²).

	3-A	5-A
	110	
	· -	*-
44	44	10
145	145	
369		
25330		1510
332		61
142		
		71
		1136
		108
		155
		349
		79
		16
	i i	19
	35	- 13
	1630	264
	72	36
3903	954	89
61	101	
25		50
11		
•		
110		
		330
		8 .
		•••
		30
		97
		555
		993
	119	28
	71	28
	311	14
		••
	64	3
18	13	18
23		
12	34	
		••
		••
	••	
	••	
		••
	44 145 369 25330 332 142 1118 1795 26 113 74 444 10 42 4216 180 3903 61 25 11 110 110 125 15 370 190 149 42 345 24 64 18 23	181 116 790 44 44 145 145 369 460 25330 6386 332 224 142 71 1118 21027 1795 1426 26 155 113 1290 74 55 4444 343 6 10 -42 35 4216 1630 180 72 3903 954 61 101 25 75 11 110 696 125 125 15 370 331 190 314 <t< td=""></t<>

Table 24. Species biovolumes of experimental stream periphyton communities of April 7, 1970 (cubic microns/millimeter²).

Species	1-A	1-B	3-A_	3-B	5-A	5-B	6-A
Microcystis sp	103	118	51	36			83
Schizothrix calcicola	345	494					
Oscillatoria sp.		434					
Anabaena Sp.							
Calothrix sp.							
Stephanodiecue aetraea			15	41	44	20	78
Stephanodiscus Hantzschii	20	26	15	71			
Melosira granulata				623	828	415	1795
Melosira italica	415	431	289	3233	544	446	2649
Melosira varians	11210	11556	3079	3233 395	189	95	1423
Tabellaria fenestrata	95	197	692		106	284	284
Asterionella formosa	142	221		148	1953	1105	2689
Fragilaria construens	728	803	2908	843		597	2054
Fragilaria crotonensis	431	455	914	1186	590	33/	181
Fragilaria lepostauron			81	. 27	0140	2409	44409
Fragilaria vaucheriae	224	152	729	2495	2140	2409 55	44409 37
Synedra rumpens	18	38	96	19	18		
Synedra ulna	157	96	230	360	1360	1023	1388
Hannaea arcus					73	292	146
Achnanthes lanceolata					101	40	
Achnanthes lemmermanni							
Achnanthes linearis	13	16	6	· 3	3	3	81
Navicula cryptocephala	1118	1488	184	113	6	13	19
Mavicula minima	24	25	25	12	••		
Navicula odiosa	665	647					89
Stauroneis nana		047					
Gomphonema intricatum		26	78		649	724	649
Gomphonema olivaceum	25	20	70		308	538	77
Gomphonema ventricosum							
Amphora ovalis					39		
Cymbella affinis				70	155	• 128	
Cymbella turgida	58	52	37		183	110	330
Cymbella ventricosa				38		110	
Epithemia sorex			30	25		6	13
Epithemia turgida	128	122	27				
Epithemia zebra							-
Rhopalodia gibba	341	425	158	44	10		15
Nitzschia acicularis							
Nitzschia dissipata	59	20	8 <u>1</u> 1137	122	97	0506	156 3304
Nitzschia fonticola	393	433		1002	3778	2586	298
Nitzschia frustulum	298	569	672	362	447	347	
Nitzschia Kutzingiana	14	22	15	51	379	197	682
Nitzechia linearie		37	18	18	15	15	373
	14	27	27	27	203	135	719
Nitzechia palea				'			
Nitzechia subtilis	10	13	19	23	22	25	90
Cymatopleura solea	5		-6	16	9	9	70
Surirella angustata							-
Surirella linearie					417	325	-
Surirella ovata							
Ulothrix Sp.			157	222	427	404	22
Stigeoclonium lubricum			157	222	421	404	
Oedogonium SP.							_
Mougeotia Sp.							-
Spirogyra sp.							-

Table 25. Species biovolumes of experimental stream periphyton communities of May 14, 1970 (cubic microns/millimeter²).

Species	1-A	3-A	5-A	
Microcystis Sp.				
Schizothrix calcicola	392	380	15	
	494		••	
Oscillatoria SP.	727			
Anabaena sp.				
Calothrix SP.				
Stephahodiscus astraea			••	
Stephanodiscus Hantzschii				
Melosira granulata			7873	
Melosira italica	8977	11049		
Melosira varians	11415	3206	828	
Tabellaria fenestrata	166	356	241	
Asterionella formosa	1240	2037	744.	
Fravilaria construens	1818	2298	1409	
Fragilaria crotonensis	2705	2026	1436	
Fragilaria lepostauron			52	
Fragilaria vaucheriae	484	2690	2876	
Synedra rumpens	46			
Synedra Ilna	719 .	1045	421	
Bamaea arcus	12	5	12	
Achmanthes lanceolata		••		
Achanthes lemmermanni				
	32	24	10	
Achnanthes linearis	J2 	4-T	••	
Navicula cryptocephala	2890	2037	164	
Navicula minima	2030 90	90		
Navicula odiosa	2994	1331	22	
Stauroneis nana		1991		
Gomphonema intricatum			25	
Gomphonema olivaceum				
Gomphonema ventricosum				
Amphora ovalis		10		
Cymbella affinis				
Cymbella turgida				
Cumbella ventricosa	••			
Epithemia sorex	326	1734	21	
Epithemia turgida	126	400	8	
Epithemia zebra		••		
Rhopalodia aibba	1503	475		
Nitzechia acicularie		••		
Nitzschia dissipata		97	19	
Nitaschia fonticola	711	1963	3141	
Nitzschia frustulum	372	248	595	
Nitzechia Kutzingiana	53	18	77	
Nitzechia linearie			15	
	68	34		
Nitzschia palea				
Nitzschia subtilis	26	13	16	
Cymatopieura solea	20	5	5	
Surirella angustata				
Surirella linearis	87	116	548	
Surirella ovata	0/	110	UTU	
Ulothrix sp.			••	
Stigeoclonium lubricum				
Oedogonium sp.				
Mougeotia sp.				
Spirogyra sp.				

Table 26. Species biovolumes of experimental stream periphyton communities of June 1, 1970 (cubic microns/millimeter²).

Species	1-A	3-A	5-A
Microcystis sp.			
Schizothrix calcicola	739		
Oscillatoria Sp.	739 296	265	
nabaena sp.			
alothrix sp.	950		
-			
tephanodiscus astraea			
Stephanodiscus Hantaschii	22	15	44
elosira granulata		44	
elosira italica	2128	3213	2420
elosira varians	5014	1505	681
abellaria fenestrata	184	552	789
sterionella formosa	88	329	198
ragilaria construens	435	598	316
ragilaria crotonensis	556	724	534
ragilaria lepostauron			334
ragilaria vaucheriae	409	524	179
ynedra rumpens	37	18	74
ynedra ulna	448	794	1541
annaea aroue		737	1341
chnanthes lanceolata			
chnanthes lemmermanni			
chnanthes linearis	29	6	27
vicula cryptocephala			_,
wicula minima	48	10	
avicula odiosa		10	12
cauroneis nana	22		12
mphonema intricatum			
mphonema olivaceum		59	
mphonema ventricosum			
phora ovalis		767	29
mbella affinie			
mbella turgida			
mbella ventricosa			
ithemia sorex	400	37	14
pithemia turgida	409	139	
rithemia sebra	8	41	14
opalodia gibba	153		
tzechia acioularie	11187	1523	
tsechia dissipata			
trophia forticals	42	21	21
teschia fonticola	528 .	514	433
teschia frustulum	49		
teschia Kutzingiana	42	135	16
sechia linearie			69
tzschia palea	27	41	135
tzschia subtilis	••		100
atopleura solea	6	32	32
rirella angustata	5	18	32 9
irella linearie		10	
rirella ovata	89	448	1283
thrix sp.			
geoclonium lubricum			7186
logonium sp.			
geotia Sp.		••	
rogyra sp.	6434		
W	V434		

Table 27. Species biovolumes of experimental stream periphyton communities of July 30, 1970 (Cubic microns/millimeter²).

	1-A	1-B	3-A	3-8	5-A	5-B	6-A	7-A
Microcystis sp.	32	13		8	4	6		
Schizothrix calcicola	143	86	373	466	194			
Oscillatoria sp.			3/3	400	194	172		108
Anabasna sp.	663	30	75	166	75	105		
Calothrix sp.	476	359	ú3	64	40	105		196
Stephanodiscus astraea					73			
Stephanodiscus Hantzschii				7	77			
Melosira granulata							7	7
Melosira italica	376	292	250	167	1126	584	1711	
Melosira varians	845	1341	16111	19722	22156	19766	1711	101
Tabellaria fenestrata	35	42	352	264	628	486	17081	5115
Asterionella formosa		-:		22	44		469	18
Fragilaria construens	28	37	317	667	582	22 1183	66	22
Fragilaria crotonensis	182	145	1019	830	782	1007	1331	492
Fragilaria lepostauron					30		742	144
Fragilaria vaucheriae	25		50	149	96	30 100	30	30
Synedra rumpens			18	74	92		51	7
Synedra ulna	29	48	251	253	448	183	18	55
Bannaea arcue				233	***0	347	176	251
Achnanthes lanceolata								
Aohnanthes lemmermanni								9
Achnanthes linearis	22	16	22	22	30	75		
Navicula cryptocephala					30	35	30	11
Navicula minima								
Navioula odiosa			12	12	12			
Stauroneis nana			16	12	12	12	24	
Comphonema intricatum							••	
Comphonema olivaceum			••		-			
Comphonema ventricosum								
Imphora ovalis								
lymbella affinis								
lymbella turgida		•						
ymbella ventricosa								
pithemia sorex			351	498	1055	2038		
Spithemia turgida	10	14	124	136	256		9	1202
pithemia sebra			167	130	230	303	202	224
hopalodia gibba	13978	10833	5631	14206	1953	2005	40	
litzschia acicularis			3031	14500	1933	2895	49	838
litzschia dissipata					21	•••	40	
itzschia fonticola			14				42	21
itsschia frustulum					99	14	54	54
itzschia Kutzingiana		16	62	16		49	99	
itsechia linearie			14	10	26 79	21	10	5
itzechia palea	40	100	140	80	100	14	53	
itsschia subtilis	**		140		100	130	41	81
ymatopleura solea	10	3	10	3				
urirella angustata			10		34	34	61	10
urirella linearis								
urirella ovata					22			
lothrix sp.		••			_			
tigeoclonium lubricum								
sdogonium sp.	436	177						79
ougeotia sp.	730	1//	_					
pirogyra sp.							122	
						_		

Table 28. Species biovolumes of experimental stream periphyton communities of August 24, 1970 (cubic microns/millimeter²).

Species	1-A	3-A	5-A
Miorocystis Sp.	17		
Schizothrix calcicola	100	115	93
Oscillatoria Sp.			
lnahaena sp.	45	136	45
alothrix sp.	10	9	3
-	40	•	J
tephanodiscus astraea			
tephanodiscus Hantzschii			7
Melosira granulata			
elosira italica	83		42
elosira varians	41737	12377	37032
Tabellaria fenestrata	99	82	106
lsterionella formosa	88	22	110
ragilaria construens	111	217	437
ragilaria crotonensis	314	418	909
ragilaria lepostauron		·	••
ragilaria vaucheriae	180	77	922
ynedra rumpens	74	92	129
medra ulna	48	176	347
mnaea araus			
chnanthes lanceolata			
chnanthes lemmermanni			
hnanthes linearis	13	14	32
zvicula cryptocephala			
wicula minima	26		
avicula odiosa	12		
tauroneis nana	22		
mphonema intricatum			
mphonema olivaceum			
mphonema ventricosum			
mphora ovalis			
mphora ovatis ymbella affinis	100		
	100		
mbella turgida mbolla vontriacca			
mbella ventricosa			
pithemia sorex	9	548	3134
ithemia turgida		65	258
rithemia zebra			
opalodia gibba	5202	5555	3401
tzechia acicularie			
tsechia dissipata			42
tsschia fonticola			
tsechia fruetulum	49		
tsechia Kutzingiana	10	31	36
tzechia linearie	25		79
tzschia palea	301	100	70
taschia subtilis	••		
matopleura solea	6	9	19
rirella angustata			
rirella linearis			
rirella ovata			
othrix sp.		••	
igeoclonium lubricum doconium en			
dogonium sp.			
geotia Sp.			
rogyra sp.			

Table 29. Species biovolumes of experimental stream periphyton communities of September 21, 1970 (cubic microns/millimeter2).

Species	1-A	1-B_	3-A	3-B	5-A	5-B
Horocystis sp.	98	137	2	15		
Schizothrix calcicola	514	717	789	681	807	771
Decillatoria Sp.	3690	9995				
Inabaena Sp.					60	90
alothrix sp.						
-F-						
Stephanodiscus astraea						15
itephanodiscus Hantzschii	7	52	37	15	81	15
Melosira granulata	318	1005	160	478	1150	106
Melosira italica	520	1235	780	780	1169	325
klosira varians	34219	48221	21486	24574	45625	36295
abellaria fenestrata		100	92		120	277
lsterionella formosa	22	132	110		132	44
ragilaria construens	368	572	628	783	864	865
ragilaria crotonensis	198	145	410	309	425	459
ragilaria lepostauron			700	174	140	450
ragilaria vaucheriae	93	289	703	174	140	459
ynedra rumpene	74	74	37.	37	74 506	74
ynedra ulna	310	469	. 310	310	586	937
lannaea arcue						
chnanthes lanceolata						
chnanthes lemmermanni			210	700	100	
chnanthes linearis	36	159	318	392	105	74
lavicula cryptocephala	34	202	67	34		34
lavicula minima						
kavicula odiosa		52	27	13	26	39
itauroneis nana				133	400	265
omphonema intricatum						
omphonema olivaceum						
omphonema ventricosum	77					••
mphora ovalis	4007					
ymbella affinie	2227	1441			7-	
ymbella turgida					<u>:</u> _	
ymbella ventricosa			1104		11017	11011
pithemia sorex	45		1124	906	11617	11911
pithemia turgida	47	37	189	521	841	470
pithemia zebra	7400	01000	5050		 	250
hopalodia gibba	7422	21900	6260	5556	. 532	350
litzechia acicularie	20		124		105	201
litzechia diesipata	22		134	22	105	381
litzechia fonticola			14	27	27	27
litzechia fruetulum	16		21	20	49	99
litzechia Kutzingiana	16	10	31	26	21	26
litzechia linearie	214	 676	07	100	07	217
litzechia palea	314	676	97	109	97	217
itzschia subtilis	27		14	20	20	20
ymatopleura solea	14	22	83	29	22	29
urirella angustata						
Aurirella linearis						
urirella ovata			••			
llothrix sp.						
itigeoclonium lubricum						
edogonium sp.	11	2				
lougeotia sp.						
ipirogyra sp.						

Table 30. Species biovolumes of experimental stream periphyton communities of October 26, 1970 (cubic microns/millimeter²).

Species	1-A	3-A	5-A	6-A
dicrocystis sp.	131			••
Schisothrix calcicola	717	843	377	79
Oscillatoria sp.				99
nabaena Sp.			75	77
alothrix Sp.				
tephanodisous astraea	••			
Stephanodiscus Hantzschii	15	7	30	52
Islosira granulata		160	106	
lelosira italica	390	195	260	1814
Islosira varians	10637	27844	19651	9050
abellaria fenestrata	18		17071	. 6
sterionella formosa		44	44	44
ragilaria construens	671	1607	1750	670
ragilaria crotonensis	611	775	977	447
ragilaria lepostauron		775	3//	150
ragilaria vaucheriae	112	560	553	
ynedra rumpens	112	21	147	78
ynedra ulna	1214	1364		63
annaea arcus	. 1214	1304	1523	703
chnanthes lanceolata				
chnanthes lemmermanni	13			
ohnanthes linearis	13 261	200		
avioula cryptocephala		328	77	95
avicula minima	101			101
wicula minima wicula odiosa	210			
avicuia caicea mphipleura pellucida	180	90	219	39
	1064	100		161
tauroneis nana	1064	133	133	1329
omphonema intricatum				
omphonema olivaceum				
omphonema ventricosum				
mphora ovalis				
ymbella affinis	339	109	**	
ymbella turgida			-	
ymbella ventricosa				
oithemia sorex	23	1528	1743	23
pithemia turgida	18	142	219	24
pithemia sebra			21	
opalodia gibba	1241	2682	658	
itzechia acicularie				44
itsechia dissipata	22	45	291	67
itsechia fonticola		27	54	135
itzechia fruetulum		18		
tzechia Kutzingiana	14	17	19	27
itzschia linearis	17	63	251	122
itzechia palea	718	623	650	157
tzschia subtilis	68	122	27	107
matopleura solea	9	71	53	59
rirella angustata			5	
rirella linearis				
rirella ovata	••			
othrix sp.		**	••	
tigeoclonium lubricum				
edogonium sp.				
ugeotia Sp.				
rogyra sp.				

having only 34% in common with the December community of the same channel. Melosira varians was less abundant, although still dominant in biomass, and Nitzschia dissipata became the second most important species. Streams 1 and 3 remained essentially unchanged from December, although Stauroneis nana became more abundant. The increase in N. dissipata was limited to the control channel. Stream 6, the light control, developed large populations of Fragilaria vaucheriae, Cymatopleura solea, Surirella ovata and Nitzschia Kutzingiana. These species were less important in the natural light control community, indicating that they were light limited. Indices of similarity (Appendix 19) show that stream 6 periphyton only remotely resembled stream 5 (12-17%), although it was slightly more similar to stream 1 (28-29%) and stream 3 (28-29%). Clearly, this indicates that light is an important factor in determining species composition at this time of year.

During February, water temperatures remained at the lowest yearly levels, and light increased to November levels. The March 4 collection indicates that the cooler temperature channels responded greatly to the light increases (Tables 12 and 23). Navicula minima continued to increase in abundance in the warmer channels, while Melosira varians decreased in the control channel, but maintained its dominance. Fragilaria species all increased, and collectively produced the most biomass of any genus in streams

3 and 5. The outstanding abundance of Fragitaria construens in channel 3 was real, and confirmed by additional counts. Fragitaria crotonensis, a major phytoplankter of the Columbia River (Williams 1964, Cushing 1964) increased somewhat in the warmest stream. The relatively greater total numbers of this species in the warmest channel may indicate it was growing here and not just passively accumulating from plankton precipitation. Stauroneis nana increased considerably in the warmer streams, although it did not develop much of a population in the control channel. In summary, in February the warmest community changed relatively little, while the cooler ones were modified greatly; the end result was three communities with virtually no similarities to each other (Appendix 20).

The April 7 collection (Tables 13 and 24) represented communities that had grown at low temperatures, and medium light intensity. Each stream again developed a distinctive community. The control community became dominated by Fragilaria and Nitzschia species, while Melosira varians became even less abundant than in March. Melosira italica, however, increased slightly in all streams, perhaps reflecting an increased importance of this species in the potamoplankton of the Columbia River. In the control channel Synedra ulna became important, while Navicula minima almost disappeared. Nitzschia fonticola became the dominant species in the control channel, but achieved lesser status

in the heated streams. Fragilaria construens lost its dominance in stream 3, although there was disagreement between the replicate counts as to how abundant the species was. The community of stream 1 was somewhat similar to that of March, although Stauroneis nana and Navicula minima were less important in April. The April communities were dissimilar to each other (Appendix 21). Stream 6 was more similar to stream 5 than it had been in January, although Fragilaria vaucheriae was disproportionately abundant in stream 6. The increased natural light compared to the January period probably made environmental conditions for stream 5 similar to those of the light-control channel, thus resulting in more similar communities.

The May 14 collections (Tables 14 and 25) represented communities grown under high light intensities and low water temperatures. The control stream community was similar to that of the previous month, except that Melosira italica assumed dominance. This species also became dominant in stream 3, and important in stream 1. The ecological status of M. italica in each community is, however, not certain. The count data indicate that great numbers of this species were present in each community, but that in the warmest, many individuals were dead. The filaments were generally observed to be short and broken. Thus it seems plausible to assume this species was largely planktonic in origin, and not actually reproducing to any

extent in the channels. The significant amount of organic material entering the streams in May (Appendix 16 -- control net data) may further substantiate this hypothesis. Asterionella formosa also became abundant in all streams, but it was probably also planktonic in origin. Streams 1 and 3 were not greatly different from the previous month, except as noted. The three communities became more similar to each other than they had been the previous month (Appendix 22).

The communities collected June 1 were not very similar to the previous month's communities. The light regime was near maximum , but temperatures were still low. turbidity of the water, due to spring runoff, probably created additional stress on each community. Nitzschia fonticola was no longer very abundant in the control stream, and Ulothrix sp. became very important. Areas of the river were also observed to support $\mathit{Ulothrix}$ at this time (see "Succession" section). Navicula minima and Stauroneis nana practically disappeared from all streams, while Rhopalodia gibba became dominant in stream 1, although it was absent from the control community. Surirella ovata became important in the control channel; less so in the warmer streams. Spirogyra sp. appeared in stream 1, and was very important. The June 1 communities were all rather distinct, and the maximum similarity among communities was 48% (Appendix 23).

The July 30 collection represented growth over a period of near-maximum temperatures, and maximum light conditions. The communities all developed small populations of blue-green algae. Epithemia sorex and Rhopalodia gibba became important in stream 5. Melosira varians dwindled to very low levels in stream 1, and developed into the dominant in streams 3 and 5. In the heated channels, this species declined in relation to Rhopalodia gibba as the temperature was increased. Stream 6 was similar to the control channel (80%), but completely lacked the Epithemia sorex and Rhopalodia gibba and blue-green populations characteristic of stream 5. Presumably these taxa were stimulated by the higher light environment present in stream 5. The community of stream 7, the river control channel, included the latter "high light" species, and was about equally similar to streams 5 and 6 (45%, 41%). The warmest channel community was 45% similar to stream 3, and much less similar to the others (Appendix 24).

The communities collected August 24 were very low in diversity (discussed later), and rather similar to each other (Tables 17, 28). One unique feature of these communities was the greater similarity between the communities of streams 1 and 5 (78%) than between either of the latter and stream 3(Appendix 25). This was apparently due to the lower population of *Melosira varians* in stream 3. Nevertheless, all streams were dominated by *M. varians*

with Rhopalodia gibba next in significance. In stream 5, Epithemia sorex was also very important. The low populations of Epithemia species in streams 1 and 3 is the only outstanding difference among these three communities. Under the high light conditions of mid-summer, the temperature additions appear to influence community structure very little.

The September 21 communities were not greatly different from those of August 24 (Appendix 26). Although the temperatures remained near maximum, light intensity had decreased considerably. Several subtle changes in the communities may have been attributable to this. Although Melosira varians dominated all communities, the co-dominants differed. The control stream was dominated secondarily by Epithemia sorex, which was much less important in stream 3, and completely absent from stream 1. Rhopalodia gibba continued to be more important in the warmer streams than in the control. The most distinguishing features of the warmest channel were the importance of Oscillatoria sp. and Cymbella affinis, neither of which even appeared in the other communities.

By October 26, the temperatures had dropped some-what, and light was low. The communities of streams 1, 3, and 5 had changed somewhat in the month (36%, 82%, 59% similar, respectively, to the previous month). There were slight increases in Synedra ulna, Nitzschia, and

Fragilaria species. The communities of streams 3 and 5 resembled those of July 30 (Appendix 27). The warmest stream lost its Oscillatoria and Cymbella affinis populations. Melosira varians still dominated all of the communities. The community of stream 6 lacked the Epithemia sorex population of stream 5, but had a greater population of Stauroneis nana. Nevertheless, streams 5 and 6 were 54% similar.

Ŗ,

Physiognomy

One aspect of community structure that merits discussion is its physiognomy, or gross morphology. Periphyton of natural or experimental systems tends to grow to a thickness exceeding several millimeters. The communities of the present study frequently developed mats of growth two centimeters thick. Although no quantitative data are available, visual observations indicate that during the latter third of each year, the communities became stratified. At the base of the community, next to the substrate, a thin layer of blue-green algae developed. These algae were largely filamentous, and intertwined with some bacteria and the bases of the filamentous diatoms. This same periphyton structure was observed in the Columbia River during the fall season.

The vertical stratification described is likely caused by environmental gradients that are a result of the thickness of growth. Both nutrient and light gradients are directly related to the thickness of growth. These

factors are highly significant to the community (Whitford 1960), and result in the stratification of species as well as the death of unfit species that become buried. The death of the lower strata cells is likely one cause for the export (see "Periphyton Community Export"). The higher metabolic rates of the warmer communities probably considerably increased the environmental requirements (e.g. nutrients, light, oxygen) of the living cells of the warmer streams. Thus, the cells of the lower strata would be additionally stressed. This may have been the reason that the warmer streams were unable to develop high standing crops in the high temperature-low light environment in the fall.

Succession

The section describing the composition of the mature periphyton communities of various seasons has the underlying assumption that the species structures present represented conditions similar to those of terrestrial climax communities. During the summer growing season, there is a rapid turnover of periphyton material, which along with the seasonally induced changes in species makes the concept of climax difficult to apply. However, there exists a typical community-type that may be expected if no disturbances occur. The structure of this community will change with season, following a definite pattern.

The periphyton communities of the present study did not develop species compositions in proportion to the

seeding species populations. Some within-season succession therefore had to occur before the mature stage. Rather than continuously monitor these changes to decide when maturity was reached, the colonization and growth studies were terminated when relatively stable standing crops were attained. This was determined by observation at the time when large amounts of the community started to be exported and replaced by new growth. Qualitative examination of the permanent microscope slides made during the colonization and growth studies indicates that succession had occurred prior to the first collection. One major exception was the spring series of April 24 to June 1, 1970. During this period the control stream was the slowest to develop a mature community; it was consequently selected for a more detailed study of succession, as follows.

The Columbia River potamoplankton of late April was collected on millipore filters. The five most abundant taxa in order of relative abundance by cell count were:

Melosira varians Fragilaria crotonensis Tabellaria fenestrata Synedra ulna Asterionella formosa

This was the major seed material for the streams. Tables 31 and 32 compare the periphyton counts and species biomasses of May 4 and May 11 with the mature community of May 14. The collection of May 4 represented ten days of

Table 31. Diatom counts of successional periphyton communities vs. a mature periphyton community; numbers per millimeter 2 .

		4-70		11-70		14-70
SPECIES	LIVE	DEAD	LIVE	DEAD	LIVE	DEAL
Stephanodiscus astraea				49 AM		
Stephanodiscus Hantzschii	13	37	55	256		2489
Melosira granulata						
Melosira italica	80	89	3367	3001	12516	12955
Melosira varians	3	2	12	15	312	173
Tabellaria fenestrata	·ĭ	2	23	28	186	210
Asterionella formosa	6	18	219	256	1537	3001
Fragilaria construens	4	-6	383	174	8590	8824
Fragilaria crotonensis		ĭ	444	115	2611	2296
Fragilaria lepostauron					146	146
Fragilaria vaucheriae	29	6	114	64	1504	3846
Synedra rumpens	3				1504	146
syneara rumpens Synedra ulna	10	2	22	5	75	107
Syneara utha Hannaea arcus	167	ĩ	17	19	12	175
nannaea arcus Achnanthes lanceolata	107	î	18	18		439
Achnanthes lanceotata Achnanthes lemmermanni	10					733
Achnanthes linearis	13	39	73	183	220	220
	13	39	73	103		220
Vavicula cryptocephala					3733	4904
Navicula minima					3/33	4704
Navicula odiosa					73	
Stauroneis nana				1		
Gomphonema intricatum			21	7	73	2342
Gomphonema olivaceum	58	1				2342
Gomphonema ventricosum	8	1	33	12		
Amphora ovalis						
Cymbella affinis						
Cymbella turgida						
Cymbella ventricosa	12	1	7	5		512
Epithemia sorex					12	
Epithemia turgida	.1	.6	1.3	1.3	.4	1
Epithemia zebra						
Rhopalodia gibba	.3		.1	1		
Vitsschia acicularis	8	13		•		
Nitsechia dissipata	3.	3	37	18	73	659
Nitsschia fonticola	118	39	567	403	16981	33376
Nitzschia frustulum	. 8	10	37		878	3879
Nit zschi a Kutzingiana	175	13	1299	604	805	1903
Nitzschia linearis	.3		2	1	5	. 5
Nitzschia palea	10	8	18	18		220
Cymbatopleura solea	.4	.1	1.6	.5	.5	2
Surirella angustata					5	14
Surirella linearis						
Surirella ovata	12	.3	57	15	221	408

Table 32. Species biomass of successional vs. mature periphyton communities; cubic microns per millimeter².

SPECIES	5-4-70	5-11-70	5-14-70
Winnerwatin an			
Microcystis Sp. Schizothrix calcicola			15
Oscillatoria Sp.			
Anabaena Sp.			
Calothrix Sp.			
Catothrix bp.			
Stephanodiscus astraea			
Stephanodiscus Hantzschii	1	6	
Melosira granulata			
Melosira italica	46	1919	7873
Melosira varians	13	52	828
Tabellaria fenestrata	1	29	241
Asterionella formosa	2	66	744
Praailaria construens	1	58	1409
Fragilaria crotonensis		198	1436
Fragilaria lepostauron	2		52
Fragilaria vaucheriae	9	34	2876
Sunedra rumpens	1		
Synedra ulna	53	117	421
Hannasa arcus	166	17	12
Achnanthes lanceolata	1	2	
Achnanthes lemmermanni			
Achnanthes linearis		3	10
Navicula cryptocephala			
Navicula minima		1	164
Navicula odiosa			22
Stauroneis nana	1		
Gomphonema intricatum			25
Gomphonema olivaceum	23	8	25
Gomphonema ventricosum	8	34	
Amphora ovalis			
Cymbella affinis			
Cymbella turgida		3	
Cymbella ventricosa	1		21
Epithemia sorex	2		. 8
Epithemia turgida			
Epithemia zebra	2	1	
Rhopalodia gibba	2		
Nitsechia acicularis	î	10	19
Nitzschia dissipata	22	105	3141
Nitzschia fonticola	5	25	595
Nitzschia frustulum Nigzschia Kutzingiana	12	92	77
Nitzschia linearis	1	7	15
Nitzschia palea	2	3	
Nitzschia subtilis			
Cymatopleura solea	13	51	16
Surirella angustata			5
Surirella linearis		, 	
Surirella ovata	29	138	548
Dar Dr S D Da D D D D D D D D D D D D D D D D	,		
Ulothrix sp.	208	751	
Stigeoclonium lubricum			
Osdogonium sp.			
Mougeotia sp.			
Spirogyra sp.			
• ••			

undisturbed growth at high light intensity, and temperatures averaging approximately 9°C. There are two obvious successional species in this community -- Hannaea arcus and Ulothrix sp. (probably U. zonata). Nitzschia Kutzingiana and Gomphonema olivaceum may also be successional; both were represented by large numbers of individuals in the May 4 collection. N. Kutzingiana was numerically the most abundant alga, although due to its small size, contributed little to the community biomass. The species structure of the May 4 community does not reflect the proportions of available seed species. With the exception of Synedra ulna, which thrives in benthic communities (Owen 1966), the abundant potamoplankton species were rare in the periphyton. Clearly the May 4 community does not represent a passive collection of planktonic species, but rather a distinctive community of species that have grown on the substrate. The physiognomy of this community lends further credence to the latter statement. The counts were made of whole mounts of the undisturbed community. This revealed that many of the non-motile species populations dispersed in radiating clumps; presumably representing the descendents of initial seed organisms.

The May 11 community was more similar to the mature community. Melosira italica had assumed biomass dominance, although Fragilaria vaucheriae had not developed a significant population. Ulothrix sp. was still important,

although it was absent from the May 14 community. The May 11 community was very similar, however, to that of June. This indicates that although there were many dissimilarities compared to the mature May 14 community, the May 11 community probably represented a mature stage itself. Thus, the high populations of Fragilaria vaucheriae, Nitzschia fonticola and N. frustulum in the May 14 community likely represented remnant populations from an earlier period of optimal conditions. (Recall that the May 14 collection was taken from the undisturbed section of the stream, and did not represent a stage of the growth and colonization communities). The high counts of dead individuals of the two Nitzschia may confirm that they represented senescent populations.

In natural systems, "pioneer" species such as Hannaea arcus and Ulothrix sp. may provide the necessary habitat for the colonization of the "climax" species. Ulothrix especially may function in this manner. In the Columbia River, substrate areas that were temporarily disturbed developed luxuriant growths of Ulothrix which were later succeeded by diatom species. Areas where deer waded into the river for water provided constant examples of this situation -- the hoof-marks were demarcated by green patches of Ulothrix. Examination of several stages of the succession from Ulothrix to diatoms indicated that the Ulothrix filaments were gradually covered by diatoms until

then gradually became senescent and disappeared. This process generally took nearly a month in the river, which may indicate that the June 1 counts showing that *Ulothrix* sp. was still important may have been misleading -- succession may not have been completed. The *Ulothrix* succession is strictly a spring and early summer phenomenon in the Columbia River. No marked succession occurred in other seasons, although *Cladophora-dominated communities developed in late summer on certain rocks in the river. The latter condition was never duplicated in the artificial channels; *Cladophora* never colonized the artificial substrates.

Dead Diatoms of the Community

The number of dead or empty diatoms encountered in this study averaged 46-51% of the numbers of live diatoms (Tables 8 and 33). The significance of empty diatoms is difficult to assess, as their origin may not be readily determined. Several factors may be responsible for large numbers of empty frustules: 1) a natural selection against certain species may have occurred due to seasonal environmental factors, 2) certain species may not have been able to grow rapidly enough to compete with others, and died from lack of light or nutrients, as it was buried in the thick mat of growth, 3) individuals may have been imported from outside the community and

Percentage of intact frustules that are empty within the periphyton communities of artificial streams. Table 33.

					į						
		r			STREAM						
DATE	Ą	⊣l×	m	Ą	mlx	Ф	4	ωlχ	Д	9	7
11-17-69	41.7	}	ł	49.0	-		35.8		1	<u>د</u> ا	4
12-29-69	45.2	1	}	42.0	!	!	43.7	;	¦	¦	!
1-29-70	36.4	41.2	45.9	27.6	34.8	42.0	41.5	38.0	34.4	י צו	<u> </u>
3-4-70	32.1	1	į	19.4	ł	ł	52.9	1	; ;	" 	
4-7-70	25.7	24.8	23.9	45.0	41.3	37.6	32.4	27.3	22.2	, א ה	!
5-14-70	44.1	1	1	39.1	1	1	57.8	:	<u> </u>	: 2	!
6-1-70	76.3	}	!	73.5	ł	}	70.9	!	į	!	
7-30-70	74.0	76.4	78.7	9.09	59.4	58.1	50.2	46	2 1	י 1 נ	
8-24-70	59.5	!	ł	57.5	!		45.0	2		6.16	8./6
9-21-70	71.9	9.19	63.3	48.3	47.8	47.2	46.1	43.7	41,3	! !	!
10-26-70	33.3	!	1	45.0	ŀ	;	40.3	: ;) 	20	!
Annual mean*	*	51.0			48.8			46.3		•	

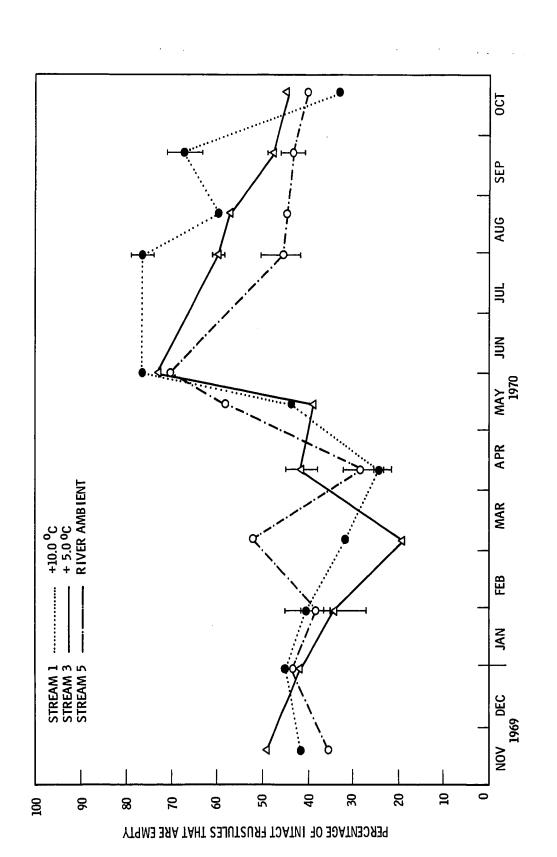
*3-4-70 data are nonrepresentative due to chironomid grazing; annual means computed without these data.

been unable to survive the new environment, and 4) empty frustules may have been imported.

The first factor may be seen in the count tables -species that had passed their seasonal peak abundance and
were rare were still frequently encountered as empty frustules. These empty frustules probably remained after the
species declined in numbers. Although a complete turnover of material theoretically occurred within half a
month to several months, depending on the season (based
on biomass and export data), the community probably lost
and replaced material most rapidly near the upper strata.
Thus, empty diatoms could be retained in the lower strata
for several months.

Species that are unable to compete successfully may include certain successional forms such as Hannaea arcus. The data from May indicate several species were able to thrive only in the absence of strong competition (Table 32). One species of considerable importance was Fragitaria erotonensis, which, although generally regarded as a planktonic species, was observed growing in the early stages of succession in May. However, as succession occurred it too became most commonly observed as empty frustules.

The final reason for finding empty diatoms in periphyton samples is that they were of external origin. Their upstream origin is indeterminable, as individuals could

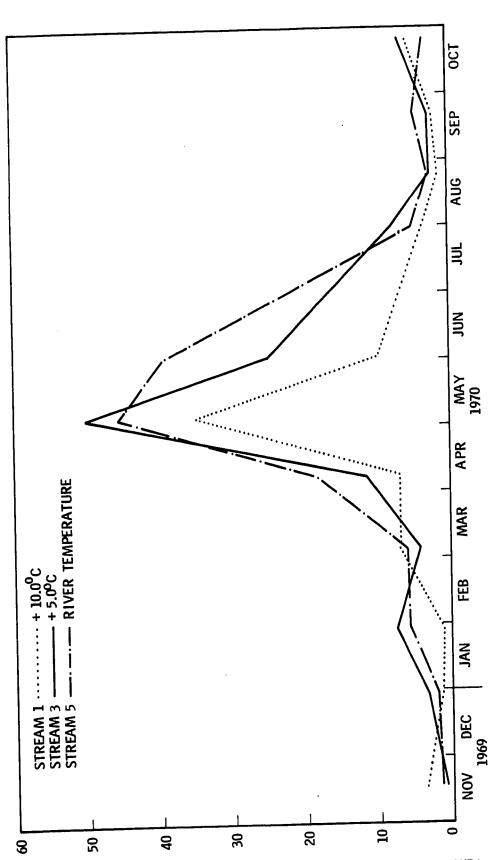

drift hundreds of miles from their origin in tributaries or lakes. Conceivably, diatom frustules could even be representatives of ancient floras dug up from old sediments. These possibilities were the reasons for not counting species that were only present as empty frustules in this study.

There appears to have been a trend of increased numbers of dead diatoms for the three streams (Figure 31) during the summer months. This trend would have been more obvious if the March data were not considered. Stream 5 was heavily grazed in this count, and the high percentage of dead diatoms was attributable to the material having been at least partly digested. The sharp rise in the numbers of dead diatoms in May and June was likely attributable to the following factors: 1) the spring runoff produced heavy siltation, which tended to bury the diatoms rapidly, 2) the temperature and light regimes were favorable to faster growth, which also probably caused many cells to die from being buried under the massive new growths, 3) the runoff probably increased the input of empty frustules scoured from upstream, and 4) there may have been a high number of phytoplankters entering the system.

The spring runoff, which had tapered off by late

July (Appendix 3) probably masked what would otherwise

Figure 31. Percentages of intact frustules that are empty in periphyton communities of experimental streams (ranges shown for replicate samples).


be a positive correlation of productivity to numbers of empty diatoms. The correlation would not be perfect, however, as the additional factor of externally contributed diatoms was not constant. Cushing (1964b) showed several peaks in abundances of major live phytoplankters throughout the year.

The biomass contribution of species that are suspected to be planktonic in origin (based on literature) is separated from the rest of the community in Figure 32.

Most of these "planktonic" species tended to be represented in the counts by a very high proportion of empty individuals (Tables 9-19), indicating that they were unable to thrive as part of an actively growing periphyton community. If consistent, this criterion may be a valid means of separating the euplanktonic species. However, it is likely that most of the species are capable of growth and reproduction in both communities under certain conditions. The very abundant Fragilaria crotonensis considered by Cushing (1964b) to be a major plankter in the Columbia River was observed to be reproducing in the periphyton in early May.

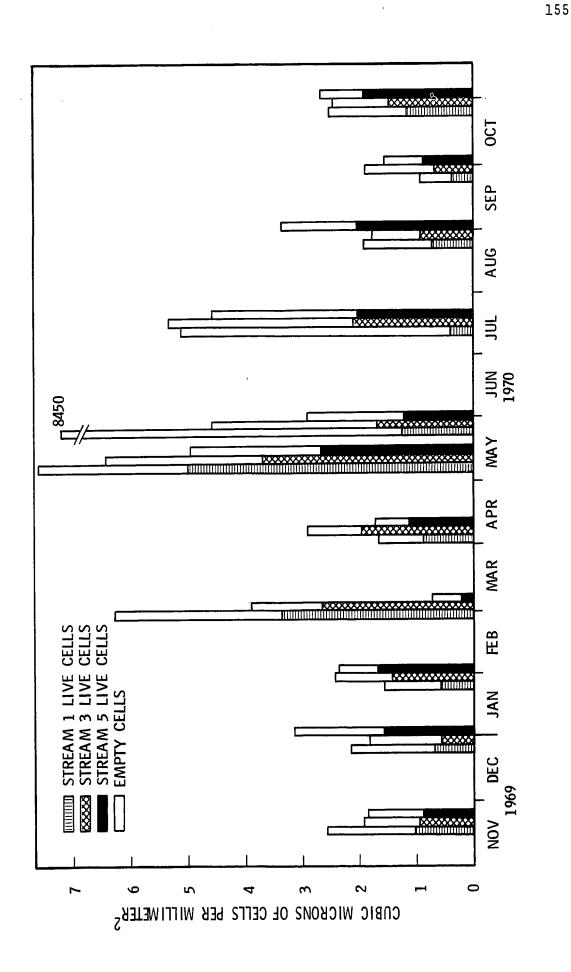

The counts of live and dead Fragilaria crotonensis cells are plotted in Figure 33. With the exceptions of March (when heavy siltation slowed the cooler streams' productivities) the total of live and dead F. crotonensis cells was usually similar, indicating the diatom may have entered the system from outside. Based on the assumption

Figure 32. Percentage contribution of phytoplankton species to total periphyton biomass in experimental streams.

PERCENTAGE OF PERIPHYTON BIOMASS CONTRIBUTED BY PHYTOPLANKTON SPECIES

Figure 33. Numbers of live and dead Fragilaria crotonensis cells in experimental streams.

that this species is imported to, and retained in, equal numbers by each stream, the low proportion of live to dead individuals in the early summer indicates that these river populations are apparently unable to live for long periods of time at 10°C above their acclimation temperature.

Diversity

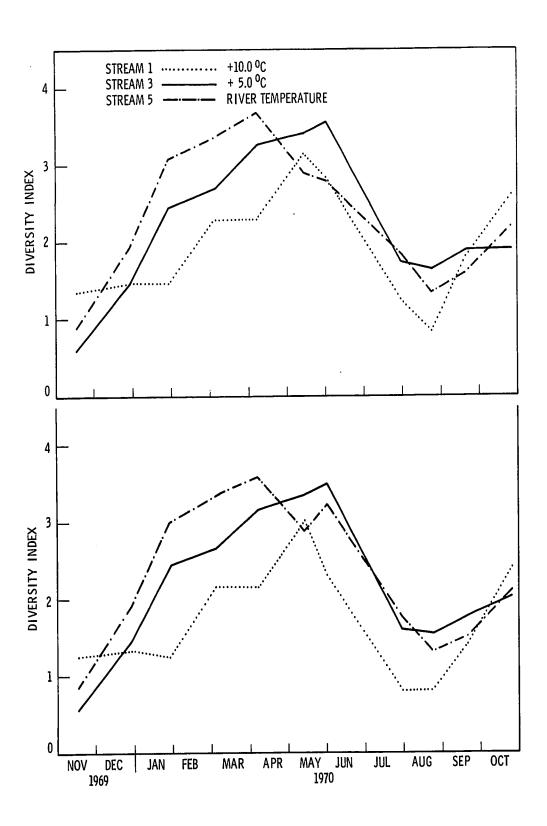
The Shannon diversity index was used to compute the species diversities of the periphyton communities (see Methods). The two components of diversity are richness (number of species) and evenness or equitability (J' index). High diversity may be a function of either high richness or a very even distribution of individuals among species. The theoretical maximum evenness is a J' index of 1.0, representing an equal number of individuals in each species.

Diversity indices were applied to the community data in terms of counts of diatoms, both live and dead, and live only, and biomass of diatoms and of all taxa. It was of interest in this study to see if lesser portions as well as the total community could yield representative information.

The diversities of the communities, based on the biomass contributions of each species were distinctly dissimilar for most months (Figure 34). Although the ranges of the replicate data were small (Appendix 28) the paired

t-test failed to show significant differences among the annual mean diversities (the indices were 1.94, 2.24, and 2.33, for streams 1, 3, and 5, respectively). The data nevertheless indicate a possible trend of lower diversity with higher temperatures.

The seasonal changes of diversity shown in figure 34 are very significantly ($p \le .01$) negatively correlated to the water temperatures (r = -.53) and to net productivity (r = -.35). The inverse correlation with productivities is most pronounced in stream 5 (Appendix 29). The two times the warmest stream developed communities of greater diversity than the cooler streams, it had exceptionally low productivity. This inverse correlation or productivity to community diversity is considered by Margalef (1965) as having predictive utility.

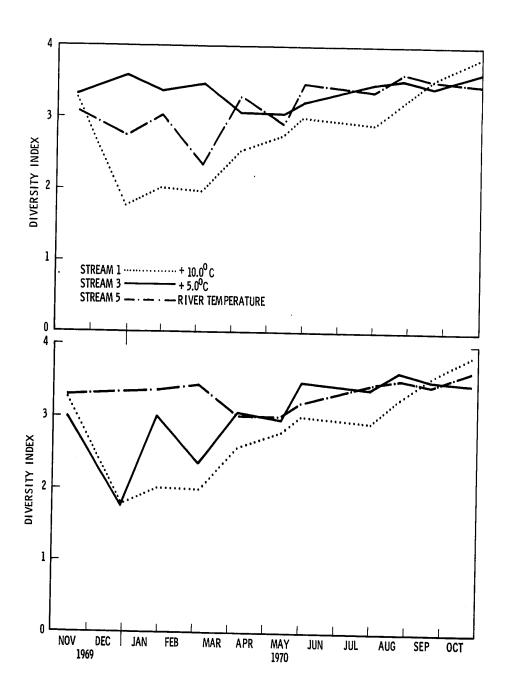

The biomass contributions of diatoms alone were used to compute the diversity indices of the communities plotted in Figure 35. The results were very similar to those shown in Figure 34; all major trends were evident. This may only reflect the fact that diatoms were the major biomass component of these communities. The mean annual diversities were again inversely related to the temperature -- 1.73, 2.17, and 2.33 for streams 1, 3, and 5, respectively.

Diversity indices were also computed from counts of

Figure 34. Periphyton species diversity in experimental streams, computed from biomass contributions of each species.

Figure 35. Periphyton species diversity in experimental streams, computed from biomass contributions of each diatom species.

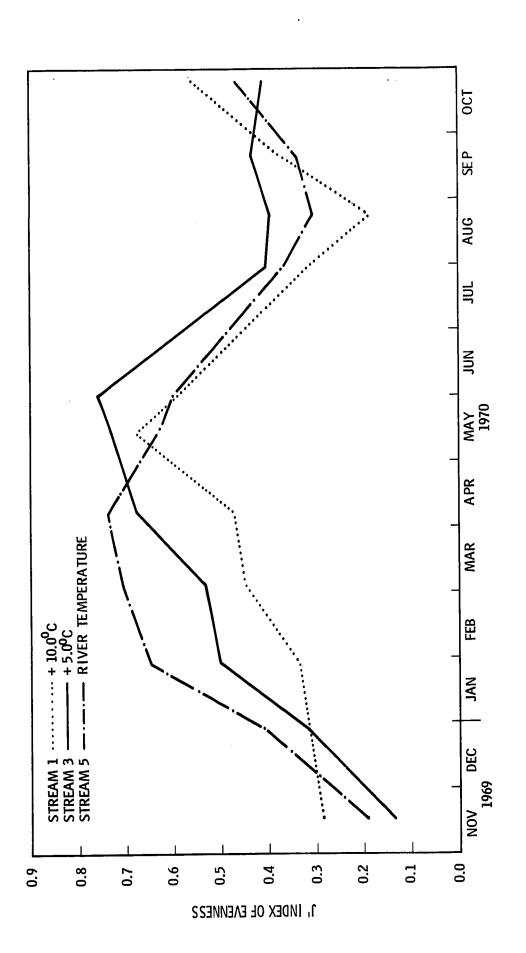
ľ


diatoms (Figure 36). The number of cells was not determined for many species of other groups (see Methods). There are no obvious differences among the streams. The mean annual diversities for the three streams was 2.48, 2.73, and 3.03 for streams 1, 3, and 5, respectively. Diversity indices computed from counts of live and dead cells (Figure 37) are similar to the diversities of live diatoms. This may indicate that dead cells tended to accumulate in similar proportions at all three temperatures. The annual means of these diversity indices was 2.81, 3.18, and 3.37 for streams 1, 3, and 5.

All of the diversity values show an annual trend toward higher diversity in the cooler streams. Although the differences are small, this may represent a biologically significant trend. The ecological maxim of greater diversity representing greater community stability is easily demonstrated in the plankton community. Great biomass fluctuations accompany blooms of single species of phytoplankton. In periphyton communities, however, such examples are lacking. In the present study, a greater short-term fluctuation in biomass has been observed in the warmest streams in late summer (see "export" section). Although this occurred in the period of lowest diversity, there is little evidence to attribute the lack of structural stability to low diversity.

The observed trends in diversity were not caused by

Figure 36. Periphyton species diversity in experimental streams, computed from counts of live diatoms.


Figure 37. Periphyton species diversity in experimental streams, computed from counts of live and dead diatoms.

major fluctuations in the numbers of species present
(Appendix 28). The J' index measures the relative abundance or evenness component of the Shannon-Weaver diversity index. A plot of the J' index (Figure 38) demonstrates that the diversity differences are almost exclusively attributable to differences in evenness.

Diversity indices computed from biomass may be more useful in elucidating community trends than those obtained from counts. It may be argued that each cell represents a genetic entity of unit value in the population pool of the species, and therefore count data (where filaments and other colonials are counted as individuals) are the best means of obtaining a measure of the informational diversity of a community. However, conclusions based on the latter reasoning may not be valid, as it is never possible to determine how many cells represent truly different genetic entities. In the cryptogamic world, the turnover of living matter is usually extremely rapid, and the number of individuals present at any time should be sufficient to supply a very broad genetic spectrum. Ideally, one should be able to use the rate at which biomass is being manufactured by a species (productivity) as a means of evaluating its true functional energy in the community (Whittaker 1966). Dickman (1968) found that productivity per species provided the best diversity information in a community which includes several trophic levels (plankton). For the

Figure 38. Periphyton community evennes (J' index) computed from species biomass contributions.

:

present study, it was not possible to estimate the productivity of each species, although it was assumed to be closely related to the standing crop.

The pigment diversity ratios D4300/D6650 (Margalef 1965) and D4800/D6650 were computed for all collection dates. Both ratios failed to provide meaningful information on community structure. The D4300/D6650 ratio was not positively correlated with the Shannon diversity indices, nor was it negatively correlated with productivity as found by Margalef (1965). Winner (1969) also found no consistent relationship between seasonal changes in plankton diversity, and Margalef's pigment ratio. Winner (1972) further studied the application of this ratio to lakes, and arrived at the conclusion that it contributed no meaningful information about other characteristics of the ecosystem. He also found that the ratio D4800/D6650 was no more useful in evaluating lake ecosystems.

Species Performances in Mature Communities

In this section the individual performances of each species will be discussed, both to further elucidate the temperature effects, and to provide some autecological data on these species. Table 34 presents a summary of the data on species performances. Fragilaria vaucheriae had the highest maximum biomass value, although this occurred in the light control channel. Among the three major sunlit streams compared, Melosira varians had the highest

Table 34. Algal species performances in periphyton communities of artificial streams, November 17, 1969 to October 24, 1970.

	BIOMASS		COUNTS		PERCENT
	Max.value	Av.value	Max.value	Av.value	PRESENCE
	microns	3/mm ²	no. indivi	duals/mm ²	
ut	220	14			24
Microcystis Sp.	843	227			90
Schizothrix calcicola	9995	368			22
Oscillatoria Sp.	950	54			28
Anabaena Sp. Calothrix Sp.	476	21			18
Stephanodiscus astraea	73	2	73	2	2
Stephanodiscus Hantzschii		16	805	183	70
Melosira granulata	943	79	952	100	28
Melosira italica	11049	1088	17566	1704	88
Melosira varians	48221	16172	13614	4730	100
Tabellaria fenestrata	1423	198	534	123	. 80
Asterionella formosa	2037	146	4209	349	. 72
Fragilaria construens	21027	1489	128216	8687	100
Fragituria construent	2705	665	4919	1389	100
Fragilaria crotonensis	181	23	439	51	30
Fragilaria lepostauron	56383	2514	11504	2205	98
Fragilaria vaucheriae	220	51	878	201	76
Synedra rumpens	1541	474	289	74	91
Synedra ulna	292	23	293	17	20
Hannaea arcus		8	732	55	28
Achnanthes lanceolata	101	ů	366	10	-7
Achnanthes lemmermanni	13	_		1463	10
Achnanthes linearis	392	58	11198		20
Navicula cryptocephala	202	17	439	41	6
Navicula minima	4216	473	95808	11913	7
Navicula odiosa	219	44	1317	257	
Amphipleura pellucida	161	3			
Stauroneis nana	3903	393	12882	1197	5
Gomphonema intricatum	101	4	366	15	
Gomphonema olivaceum	724	49	2123	116	20
Gomphonema ventricosum	767	37	730	36	1.
Amphora ovalis	11	1	220	7	_ (
Cymbella affinis .	2227	86	1893	97	2:
Cymbella turgida	155	10	51	4	1
Cymbella ventricosa	696	41	1391	76	2
Epithemia sorex	11911	811	4684	384	5
Epithemia turgida	841	110	41	6	9
Epithemia zebra	153	4	28	1	
Rhopalodia gibba	21900	2559	2629	481	7
Nitzschia acicularis	403	12	220	15	1
Nitzschia dissipata	1528	176	4977	638	8
Nitzechia fonticola	3778	526	20421	2729	6
	1836	244	2708	377	6
Nitzschia frustulum Nitzschia Kutzingiana	788	67	3952	560	9
Nitzschia linearis	922	76	275	22	6
	719	188	4099	1116	9
Nitzschia palea	122	5	659	36	i
Nitzachia subtilis	196	48	6	ì	10
Cymatopleura solea	5455	124	191	20	5
Surirella angustata	5455 63	3	14	1	•
Surirella linearis Surirella ovata	1519	99	532	31	2
	7186	144		-	
Ulothrix sp.	427	30			1
Stigeoclonium lubricum	436	13			
Osdogonium sp.	122	2			
Mougeotia sp.					
Spirogyra sp.	6434	131			

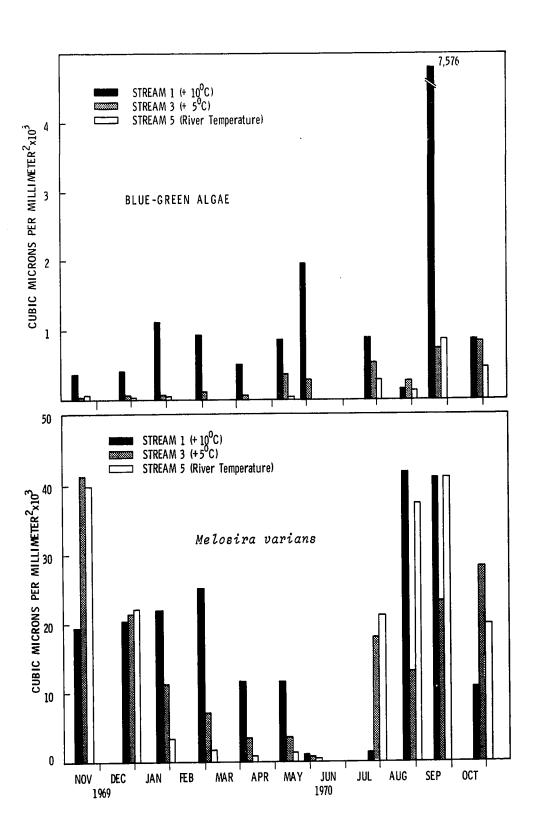
maximum biomass value for any collection, with Rhopalodia gibba and Fragilaria construens almost tied for second place. M. varians maintained the highest mean biomass over the year, having nearly six times the mean value of the next most important biomass contributors, R. gibba and F. vaucheriae.

Navicula minima had the highest average density of individuals (11,900cells/mm²) over the year of study, although the species was only present (in live condition) in 60% of the counts. Fragilaria construens had the greatest numbers of individuals in any single count (128,000 cells/mm²). Cymatopleura solea was one of the five species present in all counts, but averaged only 1.3 cells/mm².

The five species present in every sample were: Melosira varians, Fragilaria construens, F. crotonensis,

Achnanthes linearis, and Cymatopleura solea. Neither A.

linearis nor C. solea contributed large biomasses over

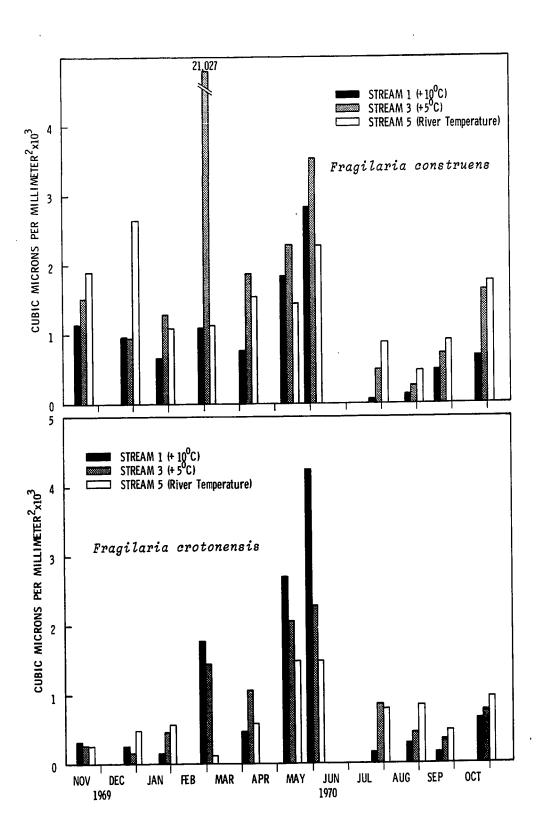

the year, in spite of their universal presence.

There is an evident tendency for blue-green algal standing crops to increase in the heated streams (Figure 39), although only in September did they become a very important part of the community. Increased blue-green algal standing crops in heated waters has been noted by other authors (Cairns 1956, Trembley 1960, Churchill and Wojtalik 1969, Patrick, Crum and Coles 1969).

Melosira varians, quantitatively the most important

Figure 39. Blue-green algal biomass in periphyton communities of experimental streams.

Figure 40. Melosira varians biomass in periphyton communities of experimental streams.


species of the present study, is normally the dominant diatom from July through December in the control community (Figure 40). However, in the heated streams, M. varians continues to be very important until late spring, representing a very significant change in community structure.

most of the communities studied (Figure 41). From July through December, standing crops of this species are lower in the heated streams. The gigantic peak in March may indicate that optimal conditions were present at this time. In channel 6, F. construens was common in the cool seasons and less common in the July and October collections. F. construens thus appears to be somewhat indifferent to light conditions, and possibly prefers cool to intermediate temperatures.

rragilaria crotonensis may be largely planktonic in origin in some months (see "Dead Diatoms"). The biomass contributions of this species are illustrated in Figure 42. There are no outstanding trends in biomass contributions of this species among the streams for each date, except for the greater standing crops in the heated streams in spring. Growth of this species in the benthic community is apparent this time of year (see "Succession" section). The remainder of the year, there are usually similar total numbers of cells in each community, possibly signifying passive accumulation from the phytoplankton community,

Figure 41. Fragilaria construens biomass in periphyton communities of experimental streams.

Figure 42. Fragilaria crotonensis biomass in periphyton communities of experimental streams.

or that temperature is not having a differential effect. If the former is true, then the slightly greater numbers of dead individuals in the heated communities may indicate increased mortality of this important phytoplankter at increased temperatures.

The biomass of Fragilaria vaucheriae was generally greatest in the control stream, and was usually reduced in the +10°C channel (Figure 43). This species was very abundant in channel 6 in January and April, and uncommon in July and October, further indicating a preference for cool temperatures.

Navicula minima, because of its small size (Table 6) developed large populations without developing large biomasses. Figure 44 illustrates clearly that this diatom was stimulated by the increased temperatures in streams 1 and 3. In stream 5, N. minima was never abundant. Apparently the combination of increased temperatures and low to moderate light of winter and spring stimulated this species.

Epithemia sorex (Figure 45) was severely affected by the thermal additions in streams 1 and 3. It was a very important diatom in the control community in late summer to early fall, but was nearly absent from the warmest channel during this period. The slight development of an E. sorex population in stream 3 in May lends credence to the hypothesis that this diatom has a very

Figure 43. Fragilaria vaucheriae biomass in periphyton communities of experimental streams.

Figure 44. Navicula minima biomass in periphyton communities of experimental streams.

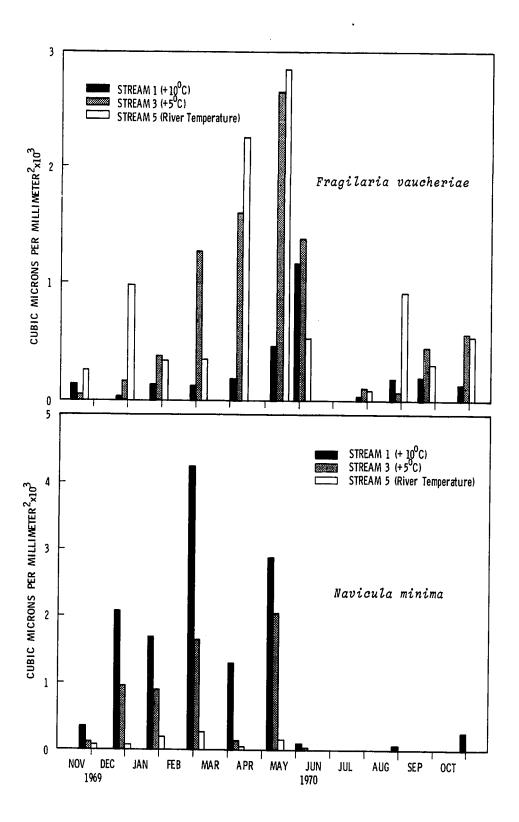
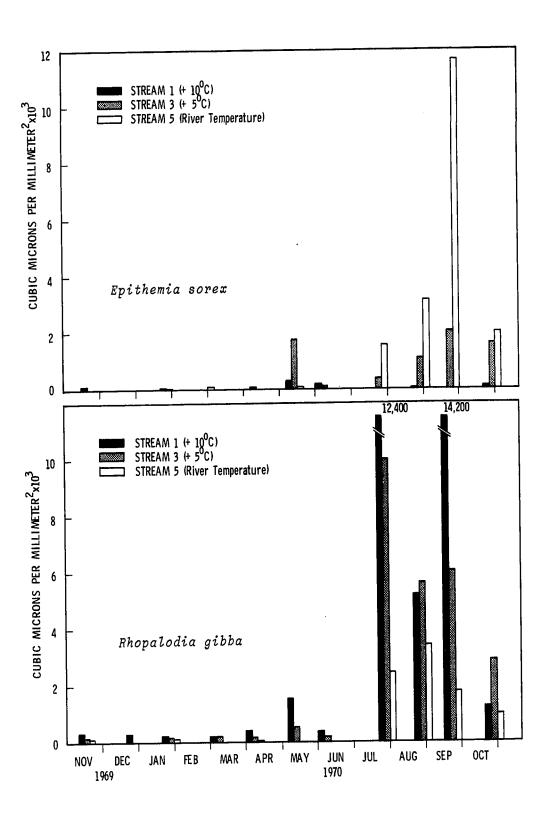
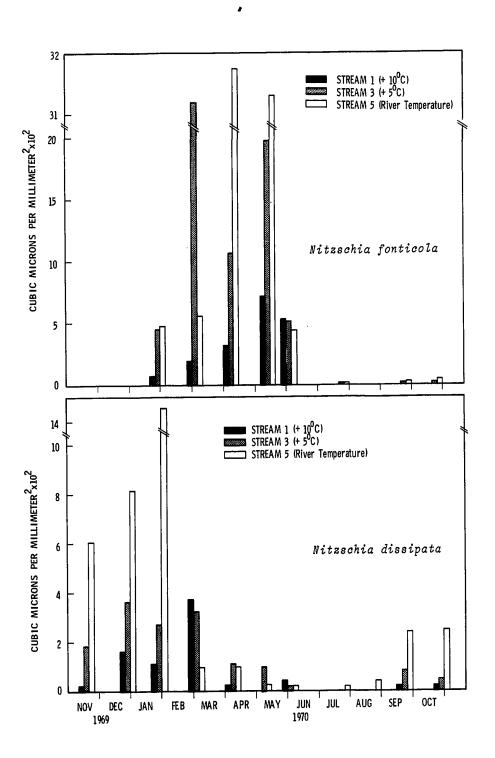



Figure 45. Epithemia sorex biomass in periphyton communities of experimental streams.

Figure 46. Rhopalodia gibba biomass in periphyton communities of experimental streams.

narrow temperature range (15-20°C). The conspicuous absence of E. sorex from channel 6, when it was abundant in the control stream, indicates a preference for high light intensities.

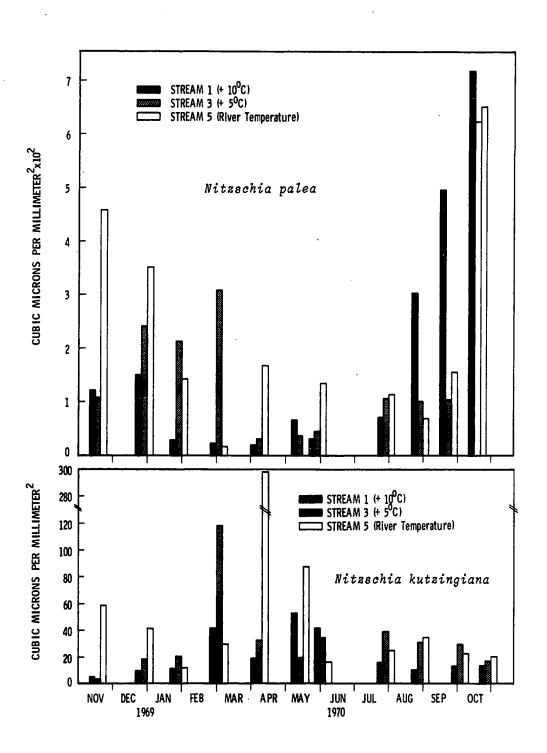

Rhopalodia gibba displayed a pattern of seasonality similar to that of E. sorex (Figure 46). However, this important diatom was apparently stimulated by the addition of heat, and thus had greatest biomass in the warmer streams. R. gibba was almost absent from the light control channel in July, when it was abundant in stream 5, indicating a preference for high light intensities.

Figures 47 through 50 show the population fluctuations of four Nitzschia species. N. fonticola and N. dissipata are important winter and spring species. In most counts, N. dissipata was considerably less abundant in the heated communities, indicating a preference for low temperatures. N. fonticola responded similarly, although it appeared later in the season. N. palea developed a population peak in fall and early winter, but was reasonably common in all collections. In the light of the reputation of pollution tolerance that this species has acquired, the broad spectrum of environmental conditions it tolerated in the present study are not surprising. N. Kutzingiana also responded little to the spectrum of environmental conditions over the year.

Surirella ovata (Figure 51) is a species that

Figure 47. Nitzschia fonticola biomass in periphyton communities of experimental streams.

Figure 48. Nitzschia dissipata biomass in periphyton communities of experimental streams.

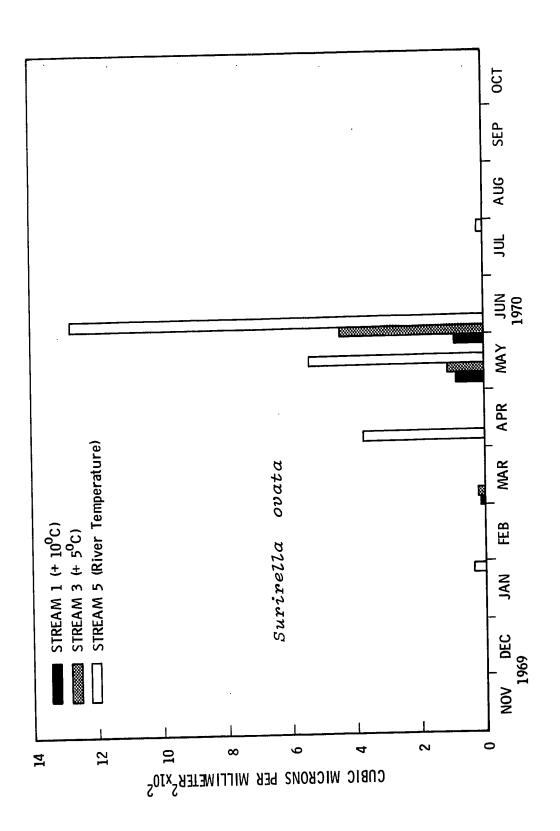


- -

:

Figure 49. Nitzschia palea biomass in periphyton communities of experimental streams.

Figure 50. Nitzschia Kutzingiana biomass in periphyton communities of experimental streams.



attained significance in late spring in the control stream. The heated communities, however, failed to develop large populations of this diatom. S. ovata apparently prefers high light intensities and moderately low temperatures.

The above discussion may add something to what we know about the autecologies of several species. These observations cannot be unique to the system, and may have application elsewhere. The ability of a species to survive or grow and reproduce under a set of abiotic environmental conditions may be secondary to how it interacts with the other members of the community. Examples of the importance of competition are provided in the "Succession" section. Consequently, each of the discussed species will almost certainly react differently in a community of species differing from those described. In any system other than the present one, flow and chemical factors would differ enough to guarantee that species compositions would not be totally comparable to those of this research.

The question of broadest ecological significance in this study is how do the described changes in community composition relate to the rest of the ecosystem? This question will remain largely unanswered until more is understood about the flux of energy from this level to the next.

Figure 51. Surirella ovata biomass in periphyton communities of experimental streams.

SUMMARY AND CONCLUSIONS

Experimental streams were used to study the effects of heat on periphyton communities. The streams were plexiglas, outdoor, once-through, constant-flow systems using Columbia River water at +10.0°, +7.5°, +5.0°, and +2.5°C, and ambient temperatures. Periphyton communities were allowed to develop on level, flat stream bottoms lined with glass slides. Macro-benthic grazers such as aquatic insects were excluded from the experimental streams. Organic matter generated within each stream was collected with "export" nets. Mature and immature periphyton communities were sampled at biweekly and monthly intervals for one year (November 1969-October 1970).

In natural stream systems, periphyton communities are subjected to varying intensities of scouring and grazing over the year. These influences probably cause a large proportion of the periphyton community area to exist in an immature condition at any given time. Scouring and grazing stresses in the experimental streams were simulated periodically be removing mature growth from the lower sections of the channels.

Standing crops of the mature undisturbed periphyton communities (ash-free dry weight) were not significantly different among the five temperature regimes when compared on an annual basis. The heated channels had

slightly larger standing crops from February through July, while the cooler channels had slightly larger standing crops from August through January. However, the rate of standing crop accrual on cleaned segments of the stream bottoms was positively correlated with increasing temperature (Figure 25). For the range of water temperatures studied (5-30°C) the increased rate of accrual for the first 18 days was approximately 1.2 g/m²/day/10°C increase.

Net community production (sensu Odum 1971) was computed from export and standing crop changes in mature and immature periphyton communities. Annual net community production was not significantly different among the five thermal regimes. However, thermal additions apparently altered the seasonal march of net production in the five streams (Figure 27). The heated streams outproduced the control in spring and early summer when there was moderate to high light, but river temperatures were relatively cool. In late summer and fall when water temperatures were highest and light was moderate to low, the control stream outproduced the heated ones. Increased temperatures apparently enhanced net community production only when there was sufficient light to more than compensate for the increased respiration.

Changing the seasonal pattern of production would considerably alter the ability of the periphyton community to supply food for grazers. Light would be more limiting

in natural streams for periphyton growing at greater depths than those in this study. This would likely result in a prolonged period in which increased temperatures would tend to depress net community production. However, the ability of the community to regenerate standing crops may be greater than apparent from productivity data. In natural streams where perturbations likely maintain most periphyton communities in an immature state, this regenerative ability will be important. In highly disturbed situations, standing crops would likely develop more rapidly and be maintained at higher levels with thermal additions of the magnitude studied here. The rapid regeneration of standing crop could enhance the growth of benthic organisms.

Species compositions of the periphyton communities were different in the 5 thermal regimes. Late fall and early winter communities were all fairly similar, and were dominated by Melosira varians. Mid-winter through spring communities were different from each other; M. varians continued to dominate the +10°C community, while Fragilaria and Witzschia species became more important in the cooler streams. By late spring, Rhopalodia gibba dominated the +10°C community, and as temperatures rose, this species gained importance in the cooler streams. However, M. varians reassumed and maintained dominance in the cooler streams all summer. Indices of similarity indicated that in both spring and summer, the communities

of the control and the +10°C streams were occasionally less than 15% alike in species composition.

The majority of these species composition changes were confined to the diatoms. There were only slight increases on blue-green algae in the heated streams; reaching levels of less than 2% of the community biomass. On one occasion (early June) a green algae, Spriogyra sp., was abundant in the +10°C stream, and absent in the cooler streams. A number of species were shown to be diminished in the heated streams (Fragilaria vaucheriae, Epithemia sorex, Nitzschia spp. and Surirella ovata) while others developed larger populations in the heated streams (Rhopalodia gibba, Navicula minima, blue-green algae).

The observed shifts in diatom species may modify the food value of the periphyton to potential grazers. The impact of the presence of grazers on periphyton was not evaluated in this study. However, selective feeding of grazers is likely to encourage certain species or groups, such as blue-green algae, to develop populations in excess of those observed in this study.

Species diversities were negatively correlated with net community productivity and water temperature. The temperature regimes tested in this study did not change the seasonal pattern of maximum diversity in the spring and minimum diversity in late summer, although mean diversity was lower for each +5°C increment.

LITERATURE CITED

- American Public Health Service. 1971. Standard methods for the examination of water and wastewater. American Public Health Association, New York. 874 p.
- Baker, J. R. 1960. Cytological technique. John Wiley and Sons, Inc., New York. 150 p.
- Bray, J. R. and J. T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27:325-349.
- Brock, T. D. 1967. Relationship between standing crop and primary productivity along a hot spring thermal gradient. Ecol. 48:566-571.
- Brook, A. J. and A. L. Baker. 1972. Chlorination at power plants: impact on phytoplankton productivity. Science 176:1414-1415.
- Brock, T. D. and M. L. Brock. 1966. Temperature optima for algal development in Yellowstone and Iceland hot springs. Nature 209:733-734.
- Buck, J. D. 1970. Connecticut River microbiology, October 1965-September, 1969. Marine Research Laboratory, University of Connecticut, Noank. 162 p.
- Butcher, R. W. 1932. Studies in the ecology of rivers. II. Microflora of rivers with special reference to the algae on the river bed. Ann. Bot. 46:813-861.
- Cairns, J. 1956. Effects of increased temperatures on aquatic organisms. Industr. Wastes 1:150-152.
- Cairns, J. and G. R. Lanza. 1972. The effects of heated waste waters on some microorganisms. Virginia Polytechnic Institute and State University, Blacksburg, Water Resources Research Center Bull. 48. 101 p.
- Castenholz, R. W. An evaluation of a submerged glass method of estimating production of attached algae. Verh. int. Verein. Limnol. 14:155-159.
- Chandler, D. .C 1937. Fate of typical lake plankton in streams. Ecol. Monogr. 7:445-479.

- Churchill, M. A. and T. A. Wojtalik. 1969. Effects of heated discharges: the TVA experience. Nuclear News 12:80-86.
- Cleve-Euler, A. 1951. Die diatomeen von Schweden und Finland. Reprint. 1968. Verlag J. Cramer, Germany. 5 volumes.
- Cooke, W. B. 1956. Colonization of artificial bare areas by microorganisms. Bot. Rev. 22:613-638.
- Copeland, J. J. 1936. Yellowstone thermal myxophyceae.
 Ann. N. Y. Acad. Sci. xxxvi:1-232.
- Coutant, C. C. 1970. Biological aspects of thermal pollution. I. Entrainment and discharge canal effects. Crit. Rev. in Envir. Control 1:341-381.
- Coutant, C. C. and C. P. Goodyear. 1972. Thermal effects. J. Water Poll. Contr. Fed. 44:1250-1294.
- Curtis, J. T. 1959. The vegetation of Wisconsin. University of Wisconsin Press, Madison. 657 p.
- Cushing, C. E. 1964a. Plankton and water chemistry in the Montreal river-lake-stream system, Saskatchewan. Ecol. 45:306-313.
- Cushing, C. E. 1964b. Plankton-water chemistry cycles. HW-80500 Hanford Atomic Products Operation, Richland, Washington.
- Cushing, C. E. 1967. Periphyton productivity and radionuclide accumulation in the Columbia River, Washington, U.S.A. Hydrobiol. 29:125-139.
- Dickman, M. 1968. Some indices of diversity. Ecol. 49:1191-1193.
- Douglas, B. 1958. The ecology of the attached diatoms and other algae in a small stony stream. J. Ecol. 46:295-433.
- Drouet, F. 1968. Revision of the classification of the Oscillatoriaceae. Acad. Nat. Sci. of Phila. Monogr. 15. 370 p.
- Drum, R. W. 1963. Notes on Iowa diatoms. V. Epilithic diatom biomass in the Des Moines River. Iowa Acad. Sci. 70:74-79.

- Hamilton, D. H. Jr., D. A. Flemer, C. W. Keefe. and J. A. Mihursky. 1970. Power plants: effects of chlor-ination on estuarine primary production. Science 169:197-198.
- Hirayama, K. and R. Hirano. 1970. Influences of high temperature and residual chlorine on marine phytoplankton. Mar. Biol. 7:205-213.
- Hustedt, F. 1930. Die kieselalgen Deutschlands, Osterreichs und der Schweiz. Repr. Johnson Reprint Corp., New York. 920 p.
- Hutchinson, G. E. 1967. A treatise on limnology.
 Volume II. Introduction to lake biology and the
 limnoplankton. John Wiley and Sons, Inc., New
 York. 1115 p.
- Hynes, H. B. N. 1970. The ecology of running waters. University of Toronto Press, Toronto. 555 p.
- Ignatiades, L. and T. J. Smayda. 1970. Autecological studies of the marine diatom Rizosolenia fragilissima Bergon. I. The influence of light, temperature, and salinity. J. Phycol. 6:332-339.
- Jaske, R. T. and J. B. Goebel. 1967. Effects of dam construction on temperatures of the Columbia River. Jour. Am. Wat. Works Assoc. 59:935-942.
- Kennedy, V. S. and J. S. Mihursky. 1967. Bibliography on the effects of temperature on aquatic environment. University of Maryland Natural Resources Institute. Contrib. 326.
- Kevern, N. R. and R. C. Ball. 1965. Primary productivity and energy relationship in artificial streams. Limnol. and Oceanogr. 10:76-87.
- Kullberg, R. C. 1968. Algal diversity in several thermal spring effluents. Ecol. 49:751-755.
- Lackey, J. B. 1942. The plankton algae and protozoa of two Tennessee rivers. Am. Midl. Nat. 24:191-202.
- Levandowsky, M. 1972. An ordination of phytoplankton populations in ponds of varying salinity and temperature. Ecol. 53:398-407.

- Lloyd, M. and R. J. Ghelardi. 1964. A table for calculating the "equitability" component of species diversity. J. Anim. Ecol. 33:217-225.
- Lorenzen, C. J. 1967. Determination of chlorophyll and phaeo-pigments: spectrophotometric equations. Limnol. and Oceanogr. 12:343-346.
- Lund, J. W. and J. F. Talling. 1957. Botanical limnological methods with special references to the algae. Bot. Rev. 23:489-583.
- Margalef, R. 1965. Ecological correlations and the relationship between primary productivity and community structure. p. 357-364 in C. R. Goldman [ed] Primary productivity in aquatic environments. Mem. Ist. Ital. Idrobiol. 18 suppl. 2. University of California Press, Berkely.
- McIntire, C. D. 1968a. Structural characteristics of benthic algal communities in laboratory streams. Ecol. 49:520-537.
- McIntire, C. D. 1968b. Physiological-ecological studies of benthic algae in laboratory streams. J. Water Poll. Contr. Fed. 40:1940-1952.
- Morgan, R. P. and R. G. Stross. 1969. Destruction of phytoplankton in the cooling water supply of a steam electric station. Ches. Sci. 10:165-171.
- Nelson, J. L., R. W. Perkins and J. M. Nielsen. 1964.
 Progress in studies of radionuclides in Columbia
 River sediments. HW-83614. Hanford Atomic Products
 Operation, Richland, Washington.
- Normandeau, D. A. 1970. The effects of thermal releases on the ecology of the Merrimack River. Institute for Research and Services, St. Anselm's College, Manchester, New Hampshire.
- North, W. J. 1969. Biological effects of a heated water discharge at Morro Bay, California. Proc. Intl. Seaweed Symp. 6:275-286.
- Odum, E. P. 1971. Fundamentals of ecology. W. B. Saunders Co., Philadelphia. 574 p.
- Owen, B. B. 1966. A comparative study of the spring and summer periphyton of the Perkiomen Watershed. Unpublished ms. 25 p.

- Patrick, R. 1967. The effect of invasion rate, species pool, and size of area on the structure of the diatom community. Proc. Nat. Acad. Sci. 58:1335-1342.
- Patrick, R. 1968. Some effects of temperature on freshwater algae. p. 161-189 in P. A. Krenkel and F. L. Parker [eds.] Biological aspects of thermal pollution. Vanderbilt University Press, Nashville.
- Patrick, R. 1971. The effects of increasing light and temperature on the structure of diatom communities. Limnol. and Oceanogr. 16:405-521.
- Patrick, R., B. Crum, and J. Coles. 1969. Temperature and manganese as determining factors in the presence of diatom or blue-green algal floras in streams. Proc. Nat. Acad. Sci. 64:472-478.
- Patrick, R. and C. W. Reimer. 1966. The diatoms of the United States. Acad. Nat. Sci. Phila. Monogr. 13. 688 p.
- Pieterse, A. J. H. and P. J. Botha. 1971. The influence of light, temperature and solid substrata on the production of *Oscillatoria raoi*. S. African Jour. Sci. 67:332-339.
- Polteracka, J. 1968. Specific composition of phytoplankton in a lake warmed up by waste water from a thermal power station, and in lakes with normal temperatures. Acta Soc. Bot. Pol. 37:297-325.
- Prescott, G. W. 1962. Algae of the western Great Lakes area. Wm. C. Brown Company Publishers, Dubuque, Iowa. 977 p.
- Round, F. E. 1965. The biology of the algae. Edward Arnold Ltd., London. 269 p.
- Shannon, E. C. and W. Weaver. 1949. The mathematical theory of communication. Univ. of Illinois Press, Urbana. 125 p.

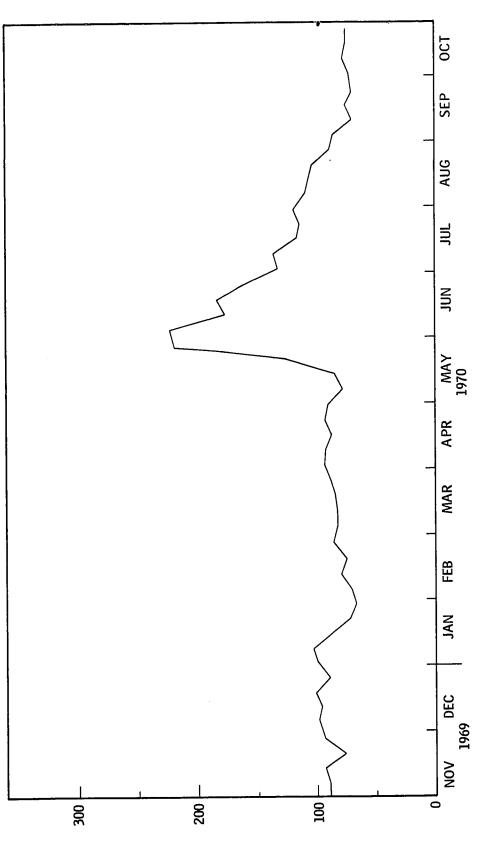
7

- Sladecek, V. and A. Sladeckova. 1964. Determination of periphyton production by means of the glass slide method. Hydrobiol. 23:125-158.
- Sladeckova, A. 1962. Limnological investigation methods for the periphyton ("aufwuchs") community. Bot. Rev. 28:286-350.
- Smayda, T. J. 1969. Experimental observations on the influence of temperature, light and salinity on cell division of the marine diatom *Detonula confervacea*. J. Phycol. 5:150-157.
- Soeder, C. J. and J. F. Talling. 1969. Estimating quantity and quality of biomass; dry weight and ash content. p. 19-20 in R. A. Vollenweider [ed.] A manual on methods for measuring primary production in aquatic environments. IBP handbook 12. F. A. Davis Co., Philadelphia.
- Steemann-Nielsen, E. and U.K. Hansen 1959. Light adaptation in marine phytoplankton and its interrelation with temperature. Physiol. Plant. 12: 353-370.
- Stockner, J. G. 1968. The ecology of a diatom community in a thermal stream. Br. Phycol. Bull. 3:501-514.
- Strickland, J. D. H. and T. R. Parsons. 1968. A practical handbook of seawater analysis. Fisheries Research Board of Canada Bull. 167. 311 p.
- Swan, J. M. A., R. L. Dix, and C. F. Wehrhahn. 1969.
 An ordination technique based on the best possible stand-defined axes and its application to vegetational analysis. Ecol. 50:206-212.
- Tramer, E. J. 1969. Bird species diversity: components of Shannon's formula. Ecol. 50:927-929.
- Trembley, F. J. 1960. Research project on the effects of condenser discharge water on aquatic life. The Institute of Research, Lehigh University, Bethlehem, Pennsylvania.
- Van Heurck, H. 1896. A treatise on the Diatomaceae. Repr. 1962. Wheldon and Wesley Ltd., and Verlag J. Cramer. 558 p.

7

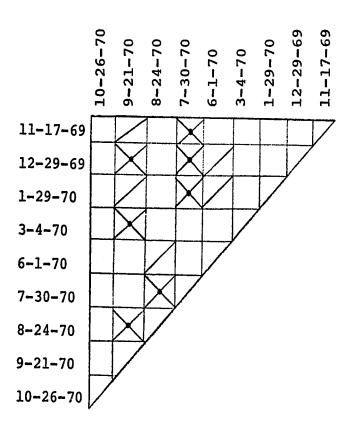
- Vollenweider, R. A. 1969. Environmental factors linked with primary production. p 152-171 in R. A. Vollenweider [ed.] A manual on methods for measuring primary production in aquatic environments. IBP handbook 12. F. A. Davis Co., Philadelphia.
- Wallace, N. M. 1955. The effect of temperature on the growth of some fresh water diatoms. Not. Nat. Acad. Nat. Sci. Phila 280:1-11.
- Warriner, J. E. and M. L. Brehmer. 1966. The effects of thermal effluents on marine organisms. Int. Jour. of Air and Water Poll. 10:277-289.
- Wetzel, R. G. 1963. Primary productivity of periphyton. Nature 197:1026-1027.
- Wetzel, R. G. and D. F. Westlake. 1969. Periphyton. p. 33-40 in R. A. Vollenweider [ed.] A manual on methods for measuring primary production in aquatic environments. IBP handbook 12. F. A. Davis Co., Philadelphia.
- Whitford, L. A. 1956. The communities of algae in the springs and spring streams of Florida. Ecol. 37: 433-442.
- Whitford, L. A. 1960. The current effect of growth on freshwater algae. Trans. Amer. Micro. Soc. 79: 302-309.
- Whitford, L. A. and G. J. Schumacher. 1961. Effect of current on mineral uptake and respiration by a freshwater alga. Limnol. and Oceanogr. 6:423-425.
- Whittaker, R. H. 1966. Forest dimensions and production in the Great Smoky Mountains. Ecol. 47:103-121.
- Williams, L. G. 1964. Possible relationships between plankton diatom species numbers and water quality estimates. Ecol. 45:809-823.
- Winterbourn, M. J. 1969. The distribution of algae and insects in hot spring thermal gradients at Waimangu, New Zealand. N. Z. Jour. Mar. Freshwater Res. 3:459-465.
- Winner, R. W. 1969. Seasonal changes in biotic diversity and in Margalef's pigment ratio in a small pond. Verh. int. Verein. Limnol. 17:503-510.
- Winner, R. W. 1972. An evaluation of certain indices of eutrophy and maturity in lakes. Hydrobiol. 40:223-245.

I-tests of suspended algae in water above stream 3, versus suspended algae in water exiting stream 3 after passing through export net. Appendix 1.


Major taxa	Mean numbers of cells/ field counted* above str. 3 below str	s of cells/ unted* below str. 3	"4"	Significance
Melosira italica	7.6	6.3	93	N.S.
Stephanodiscus Hantzschii	16.4	17.1	26	N.S.
Asterionella formosa	1.6	1.2	.30	N.S.
Tabellaria fenestrata	1.5	1.7	20	N.S.
Fragilaria crotonensis	8.4	7.6	41	N.S.
Navicula cryptocephala	6.0	9.0	.78	N.S.
Nitzschia palea	1.1	1.4	64	N.S.
Nitzschia dissipata	1.1	0.7	68.	N.S.

*Number of fields counted = 10.

Appendix 2. A comparison of physical and chemical measurements of the Columbia River near the hatchery


	intak	intake, and	the in	out wat	er of	the ar	tificiai	the input water of the artificial stream 8!stem.	tem.				
						part	parts per million	illion					
SAMPL ING DATE	S04	Mg	Fe	P04	ເລ	no	₂ 0	O ₂ Phth.Alk.	M.O. Alk.	Hardness	Са	Ca Solids	NO3
9/9/69 (RIVER)	12	3.0	.02	90.	.33	.001	8.48	1	54	75	21	82	.044
9/9/69 (STREAM INPUT)	13	2.5	.03	90.	. 35	000	8.32		54	72	25	70	990.
2/17/70 (RIVER)	19	4.9	.01	.01	.33	.004 11.20	11.20	8	89	75	22	105	. 000
2/17/70 (STREAM INPUT)	19	5.6	00.	.01	.40	.003 11.68	11.68	1	69	74	50	91	90.

Appendix 3. Discharge of the Columbia River at Priest Rapids Dam.

FLOW IN CUBIC FEET PER SECOND x 10^3

Appendix 4. Comparisons of standing crops of organic matter of all streams: paired t-test.

not sign very

not significant $p \le .05$ very significant $p \le .01$

Appendix 5. Mean biomass of mature periphyton communities of the experimental streams.

Collection	Ę		grams per	square meter loss STREAM	o	ignition		
date		1	2	3.	4	5	9	7
11-17-69	ıχΩ	26.67 6.06	31.27 8.00	37.64	50.79 10.33	44.39	67.48 24.99	12.82
12-29-69	SD	34.75	30.91 5.47	31.37 8.44	40.04	44.44	46.67	12.21
01-29-70	ß,×I	35.41 2.42	44.42	29.13 .38	37.60 11.21	17.54*	128.18 2.85	25.84
03-04-70	SD XI	61.03 33.68	49.23 1.92	58.08 6.38	30.30	4.14* 3.66	42.38 16.26	15.59
04-07-70	ıx g	60.34 25.52	44.71 5.07	11			11	
06-01-70	SixI	80.45 3.82	76.30	52.30 4.48	50.52 18.39	46.85	51.76 3.33	11
07-30-70	SDXI	58.04 3.37	55.17 8.55	54.81 2.57	59.19 4.53	69.07	47.43 5.94	28.38
08-24-70	lx &	53.76 16.48	34.82 2.85	39.00 4.21	40.09 12.55	39.79 9.82	39.85 10.55	29.85
09-21-70	ı× g	79.55 32.15	78.00 20.36	71.00	48.27	64.30 21.06	83.64 32.52	33.21 19.85
10-26-70	ıx g	39.39 9.15	41.18	59.42 24.61	34.30 1.91	57.73 37.30	44.48 3.79	22.03
yearly means less 4-7-70	ans 70	52.12	49.03	48.08	43.46	43.14	61 - 32	22.48

Appendix 6. Mean percentage weight loss on ignition of mature periphyton communities

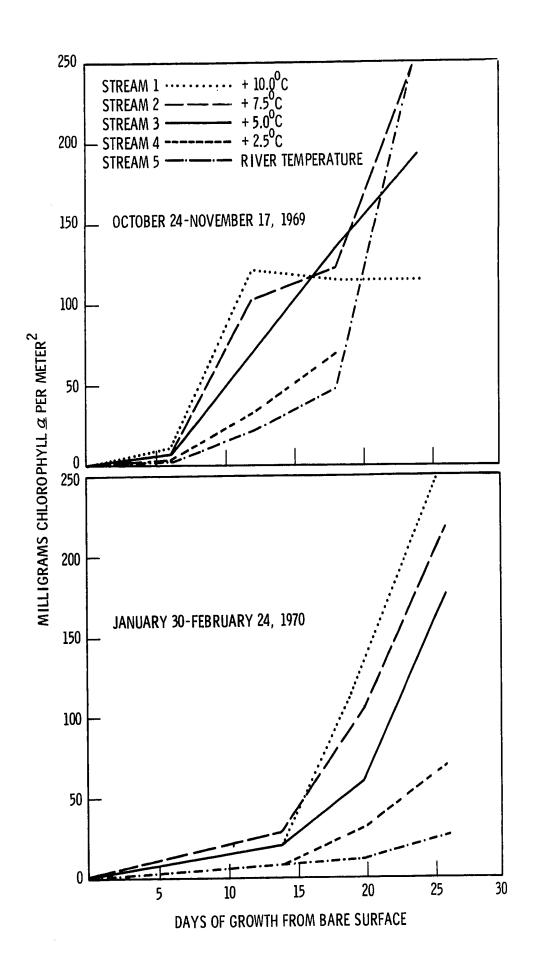
COLLECTION DATE: (NUMBER OF SAMPI		2	3	4	5	6	7	
11-17-69 (4)	9.1	11.1	11.0	12.8	12.1	12.3	6.2	
12-29-69 (2)	10.8	12.0	10.1	12.2	10.5	16.4	8.0	
1-29-70 (2)	13.7	18.0	15.4	13.8	10.5	24.0	8.6	
1-30-70*	21.5	21.1	22.1	21.2	19.0	22.9		
3-4-70**	22.3	24.2	21.7	21.4	8.8*	*24.9	5.1	
4-7-70 (2)	25.8							
4-24-70*	31.1	31.0	29.1	31.4	29.2	21.7		
6-1-70 (3)	18.3	16.0	9.4	9.4	6.3	6.7		
6-20-70*	14.0	13.0	10.8	9.0	6.9	6.3		
7-30-70 (3)	13.9	13.7	12.2	11.1	11.8	8.5	10.8	
8-24-70 (3)	8.8	7.8	12.5	16.6	21.2	17.0	10.0	
9-21-70 (3)	17.3	14.7	18.4	19.9	10.6	21.0		
10-26-70 (3)	14.6	13.8	22.7	19.4	19.5	15.3	7.7	
10-27-70*	13.7	14.2	15.3	17.4	14.3			•
ANNUAL MEAN LESS 4-7-70	16.1	16.2	16.2	16.6	13.9	15.4	7.7	

^{*} One sample of 1/3 to 2/3 of the total stream bottom.

** Heavy chironomid grazing; very low standing crop of living periphyton organisms.

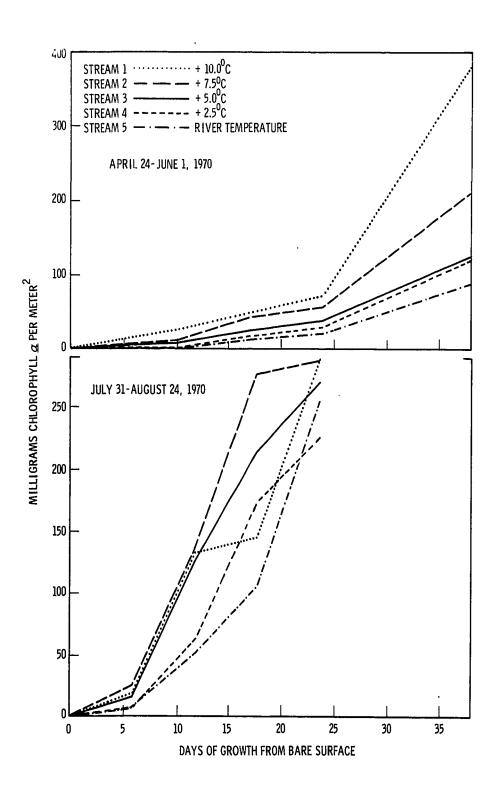
Standing crops of mature community chlorophyll a of experimental streams. Appendix 7.

					A K CTCTO			
DATE		Н	7	ო	STREAM 4	5	9	7
11-17-69	ı×	114	253	192	1	260	357	12
	SD	1	93	62	l L		!	i
12-29-69	i×	212	241	198	190	206	146	95
	SD	19	24	51	51			
1-29-70	i×	349	417		251	159	451	240
	SD	r d	6	58	32		7	1
3-4-70	۱×	495	748	637	259	29	616	98
) 	SD	55	271	87	17	15	202	
4-7-70	l×	507	710	890	4	561	833	286
•	SD	118	319	24	269		Н	25
6-1-70	I×	378	211	126	122	91	185	ŀ
1	SD	16	29	17	17	14		1 1
7-30-70	۱×	242	193	260	148	159	190	136
	SD	31	24	101	32			12
8-24-70	١×٤	289	287	270	226	256	386	234
9-21-70	או ב	41 649	459	557			565	130
	SD	65	69	N	J.	/.OT	ע ע	77
10-26-70	S XI	305 19	365 28	522 98	484 33	550 19	348 63	142 16
yearly x 11-17-69	less	381	403	424	331	228	413	140


38 Standing crops of mature community carotenoids of experimental streams. 79 31 24 34 184 98 183 23 107 18 31 20 ហ STREAM 40 121 24 33 31 96 50 16 11 34 67 51 52 28 233 31 12 286 28 yearly X less 11-17-69 303 63 18 29 29 19 102 SD×I S XI S ×I Soxi lx G lx G IX B Appendix 8. 10-26-70 12-29-69 9-21-70 11-17-69 8-24-70 7-30-70 1-29-70 6-1-70 4-7-70 3-4-70 DATE

Appendix 9. Biomass of immature periphyton communities of experimental streams (means of 3 samples for all dates except 4 samples for fall series).

	Days of growth Collection date	1	Grams per	square m	eter loss STREAM 4	on ignit	ion 6	7	
6 10-24-69 10-24-69	SD 11-11-69 SD	6.45 .76 24.79 6.52 29.00 8.48 26.67 6.06	5.42 .58 20.52 3.76 36.73 12.73 31.27 8.00	4.45 1.61 17.42 1.42 37.64 10.06 37.64 .85	1.85 1.15 8.24 1.61 24.30 5.73 50.79 10.33	.70 .64 5.76 2.91 18.76 5.27 44.39	5.30 2.42 27.52 4.76 39.00 12.42 67.48 24.99	3.55 7.42 1.58 10.15 1.61 12.82 2.55	
04-20	SD 2-18-70	2.85 1.06 12.73 2.33 27.09 2.67	3.42 .42 12.52 4.58 27.39 4.52	2.21 .21 8.64 1.58 21.76	2.03 .76 4.45 1.82 11.52 2.12	1.06 .61 2.24 1.03 5.36 2.85	2.21 .30 6.33 2.18 14.85 2.09	2.52 1.06 6.33 2.03 24.48	
10 17 24 38	5-11-70 SD 5-18-70 SD	6.52 1.24 19.55 3.82 30.18 5.18 80.45 3.82	3.67 1.79 15.27 1.79 28.76 6.85 76.30 18.70	1.76 .27 8.82 4.18 19.27 .70 52.30 4.48	1.73 1.36 6.18 1.36 14.39 1.94 50.52 18.39	1.15 .36 7.30 2.33 17.61 2.45 46.85 5.67	2.18 .67 9.09 1.15 23.21 .09 51.76 3.33	8.67 .85 17.03 .09 23.91 .39	<u>. </u>
6 12 18 24	SD 8-18-70 SD	13.58 2.52 37.94 2.06 47.73 6.03 53.76 16.48	9.61 1.03 29.64 3.97 49.00 1.64 34.82 2.85	5.36 .91 34.91 11.42 44.45 5.82 39.00 4.21	3.36 1.36 23.00 6.48 33.24 6.21 40.09 12.55	1.36 .06 19.61 3.70 33.39 6.00 39.79 9.82	1.64 .58 24.15 6.09 39.73 10.00 39.85 10.55	4.45 1.06 18.06 2.00 27.12 8.03 29.85 2.70	


Appendix 10. Accumulation of chlorophyll a standing crops on bare substrates, October 24-November 17, 1970.

Appendix 11. Accumulation of chlorophyll a standing crops on bare substrates, January 30-February 24, 1970.

Appendix 12. Accumulation of chlorophyll a standing crops on bare substrates, April 24-June 1, 1970.

Appendix 13. Accumulation of chlorophyll a standing crops on bare substrates, July 31 - August 24, 1970.

19/m2).																ļ
experimental streams (mg/m²).	7	12	32	34	12	14 9	87 40	127	1.0	53 2.8	41	11	16 5	63	60 15	234 6
f experime	9	50	65 19	121	357	æ n	59 55	93	ოო	38 6	71	185 27	13	152	165	286 47
ropy11 a of	2	2.5	22 10	47 18	260 24	œ 4	11.4	27	1.3	14	21,	91 14	. 29	51	105 49	256
unity chlo	STREAM 4	ώ rů	ម ម	88	11	ω ιΛ	30 13	67 18	е т	18	29	122 32	97	63 14	174 38	226 32
crops of immature community chloropyll	m	2	70	13.4	192 62	19	60 10	176 23	90	25 9	36 10	126 17	17	124 38	214 39	270
ops of imm	7	71	102	123 19	253 93	26 7	102	214 46	11	4. 5.8	57	211 29	23	133	276	287
Standing or	1	12.5	122	114 36	114	19	112 15	257	23	4 © ru	70	378 16	19	132	144 60	289
		Σ XI	SDXI	S XI	SDXI	ix Q	SD XI	SD XI	lx G	SD×I	S XI	SDXI	SD XI	SDXI	ix Q	SXI
Appendix 14.	DATE	10-30-69	11-5-69	11-11-69	11-17-69	2-13-70	2-18-70	2-24-70	5-4-70	5-11-70	5-18-70	6-1-70	8-6-70	8-12-70	8-18-70	8-24-70

			STREAM	۳	STREME 4	ស	9	7
DATE	- 1	1	7				3	2
69-0	ı× g	9	φ m •	Ф.		4.4	1.5	T
11-5-69	ix	55	45	29	14	11	30 15	14 3
; 99-11-11	g !x	29	84	08	31	23	67 21	14
	SD	20	16	57	•	, !	0	u
11-17-69	ا ای ×۱	85.1	212 70	144 55	11	205 14	268. 1	• <u> </u>
2-13-70	l× 8	17	24 6	119 113	ஏ ம	តហ	6 -	15 10
2-18-70	ا کا ×ا	99	97	65 12	34 15	13	63	39
2-24-70	l× B	231 32	208 40	287 19	23	35	101	148.5
5-4-70	lx 8	28	14	r. w	e = -	2.5	L 4	23 1
5-11-70	l× G	99	57 10	34 12	25 5	18	46 10	5 2 3
5-18-70	SxI	87 6	81	55	46	13	9	24. ® QJ
6-1-70	ı× ç	311	179 31	131	141 40	110	190. 27	11
8-6-70	i×6	22	24 6	1.9 8	L 63	10 6	10	16 .5
8-12-70	lx g	118	118	101 29	55	94 0	136 15	7
8-18-70		116	223 14	146	140	109 58	114 53	12
8-24-70		225	211	198	168	199	294 34	219

Appendix 16. Stream export (grams ash-free dry weight per stream). Each datum represents material for the total previous period in which data are not indicated.

COLLECT:	1 1	2	3	4 .	5
1969					
Oct 27	.0226	.0240	.0213	.0786	.0453
Oct 29	.0270	.1095	.0777	.1059	.1179
Oct 31	.0413	.0434	.0616	.0495	.0788
Nov 3	.1105	.1466	.2654	.2216	.1690
Nov 3	.0589	.0117	.0511	.0138	.0391
Nov 3	.0250	.0329	.0156	.0289	.0322
Nov 4	.0669	.0860	.0213	.0272	.0352
Nov 7	.2715	.1270	.0398	.0970	.2337
Nov 10	. 2497	.2019	.0395	.1420	.2256
Nov 10	.0292	.0998	.0623	.0034	.0746
Nov 10	.0086	.0083	.0128	.0044	.0247
Nov 11	.0131	.0407	.0387	.0109	.0200
Nov 14	.1344	.2752	.1469	.1500*	.1662
Nov 17	.7140	.9718	.0893	.3497	.3086
Nov 19	.0888	.1776	.1481	.1352	.3536
Nov 21	.1267	.5110	.1843	.0950	.1244
Nov 24	.1082	.1440	.0710	.1271	.1127
Nov 25	.0389	.1632	.0555	.0518	.0288
Nov 28	.1498	.2254	.3237	.3147	.3720
Dec 1	.0291	.1603	.0456	.1731	.0694

Appendix 16 Continued.

COLLECT DATE	ION 1	2	3	4	5
1969					
Dec 5	.0515	.1604	.1240	.0953	.2782
Dec 8	.0162	.1117	.0858	.1326	.0711
Dec 9	.0519	.0825	.0429	.0185	.0282
Dec 11	.2879	.8772	.9621	.7221	.4995
Dec 15	.1098	.4833	.4801	.5618	.5426
Dec 19	.1515	.0920	.1716	.1387	.0836
Dec 22	.0818	.0529	.0845	.1247	.0557
Dec 29	.3354	.1398	.3926	.2761	.1699
1970					
Jan 2	.2096	.2913	.1729	.3358	.1453
Jan 5	.2441	.1977	.2247	.1723	.0968
Jan 9	.3667	.5835	.6415	.3033	.2047
Jan 12	.5814	.6067	.4705	.7364	.1836
Jan 16	.6713	.2678	.4221	.5127	.1869
Jan 19	.6713	.8035	.7660	1.2930	3.1982
Jan 20	1.0193	.3605	.3626	.5007	1.3853
Jan 23	1.0650	.9044	.8824	1.3496	2.5662
Jan 27	.4250	.7194	.7999	.7334	.5147
Jan 27	.1100	.0797	.1287	.0737	.0243
Jan 30	.4025	.2597	.0990	.0954	.0335
Feb 6	.4246	.5543	.4502	.2557	.1065
Feb 11	.9406	.4065	.2248	.4752	.1170
Feb 12	.1059	.1589	.0363	.0408	.0634

Appendix 16 Continued.

COLLECTION	N 1	2	3	4	5	Control net
1970		•				
Feb 13	.1173	.5654	.2629	.1614	.0281	
Feb 16	1.1128	1.2554	.8005	1.3664	.4484	
Feb 22	2.2513	1.1328	.8572	1.0792	1.5878	
Feb 24	1.2162	.5472	.4752	.3618	.6124	
Feb 27	.3027	.2814	.1645	.0852	.1625	
Mar 2	2.6824	1.7664	1.3472	.3092	.5513	
Mar 6	.1875	1.1340	.7430	.2704	.2898	
Mar 10	.8705	1.4895	1.5605	.2434	.0965	
Mar 15	3.8843	2.7677	2.0302	.7776	.1768	
Mar 19	1.3728	1.8732	1.3459	.6239	.0801	
Mar 23	3.6692	2.5091	1.9834	1.3664	.2322	
Mar 27	2.2195	2.6998q	1.7558	1.5950	.2627	
Mar 31	4.1923	3.8130 .	2.0666	2.0904	.2989	
Apr 3	2.7423	2.9414	2.4732	1.5484	.2650	
Apr 8	2.7345	3.2744	2.5200	2.9170	.9387	
Apr 10	2.3320	1.6954	.0824	1.1344	1.5636	
Apr 13	2.0835	1.0880	.8347	1.5522	.6784	
Apr 17	3.9981	2.0093	2.0263	1.7945	1.6578	
Apr 19	2.6340	1.9592	1.5456	1.2137	1.7041	
Apr 24	1.6247	4.0291	2.7095	1.7015	5.8435	
Apr 30	1.8734	2.2264	1.9769	1.5621	1.0791	
May 6	2.1792	1.0952	1.2030	1.9810	.6297	control net installed
May 13	2.6325	1.8628	1.9102	1.5328	1.0070	

Appendix 16 Continued.

COLLECTION DATE	11	2	3	4	5	Control net
1970						
May 20	1.1763	1.1828	1.1249	.9290	.6908	
May 27	2.2563	5.1686	2.0614	1.1539	1.0385	
Jun 4	3.4760	3.6330	2.3435	2.3505	1.8027	.2328
Jun 9	8.3060	6.5090	3.9000	5.1855	4.7950	
Jun 16	2.7545	2.1097	1.2719	1.1588	.2088	
No data Ju	ne 16 to J	Tuly 12; str	eams start	ed again Ju	ly 2	
Jul 16	1.6410	2.9132	1.1563		1.5455	.8591
Jul 23	2.0445	2.0640	1.0970	1.4497	1.4778	.7643
Jul 28	2.6850	6.3830	5.7160	4.1120	3.5775	.2415
No data Ju	ly 28 to A	ugust 3				
Aug 7	.8199	1.5430	3.1225	2.5415	2.8220	.2805
Aug 10	1.8590	3.1260	2.4100	2.9344	2.5973	.0995
Aug 14	2.2788	3.8664	2.6520	4.3505	4.0388	.2625
Aug 18	2.1842	3.0180	3.3218	4.4164	2.8220	.1535
Aug 24	4.8468	4.8979	3.8847	5.8655	4.6974	.2025
Aug 27	1.4633	3.0302	3.1262	3.5871	3.8483	
Aug 31	3.3705	3.7594	4.1621	4.7090	4.8143	.0402
Sep 3	2.0597	6.2130	4.9541	5.8249	3.0359	.0497
Sep 8	3.5568	2.6753	2.0510	3.1054	2.4830	
Sep 10	2.4245	1.2111	1.7491	1.1103	1.2167	
Sep 14	2.9063	2.8819	2.2214	3.6545	2.5859	
Sep 16	3.1943	2.0229	2.4443	4.4387	1.7103	

Appendix 16 Continued.

COLLECTION DATE	1	2	3	4	5	Control net
1970						
Sep 18	1.2556	2.4280	2.0418	3.2530	1.4625	.2604
Sep 21	3.2220	1.6489	4.1200	3.3937	2.7989	
Sep 23	1.5278	1.4911	1.2771	2.0428	1.9184	
Sep 25	2.2379	.6631	1.5643	.3202	.5680	.1955
Sep 28	2.7557	1.7467	3.4500	3.2683	2.0192	
Sep 30	.5793	1.2462	.5463	2.5283	3.9651	
Oct 2	1.6989	5.0528	2.4380	2.4276	1.5990	
Oct 5	2.8322	4.5565	3.2974	4.4073	3.8223	
Oct 8	1.2492	1.5415	1.7322	3.2890	1.4867	•
Oct 12	1.6868	2.8325	3.0704	1.1333	3.0359	
Oct 15	.5920	2.8829	1.4416	3.1411	2.3163	
Oct 19	2.1473	2.0907	2.2816	1.4057	3.0033	
Oct 22	2.0780	.5183	.6303	1.8002	.7280	
Oct 26	.5643	1.3649	1.7355	2.0020	1.4869	

^{*}Estimated.

Appendix 17. Indices of similarity for the 11-17-69 communities (A and B are replicate samples).

		imunities A an	a B are repli	cate samples).
COLLECTIO DATE	N		STREAM	
	·	1A	3a	5A
11-17-69	lA	1.000	620	
, 05	3A		.638	.635
	5A	.638	1.000	.963
	ЭA	.625	.963	1.000
12-29-70	1A	.871	.636	.633
	3A	.862	.658	.673
	5A	.781	.644	.694
1-29-70	1A	.820	<i>C</i> 1 F	
	1B		.615	.613
		.793	.682	.679
	3A	.710	.436	.468
	3B	.684	.427	.449
	5A	.352	.] 95	.214
	5B	.402	.241	.252
	6A	.310	.263	.252
3-4-70	1A	.670	.658	.671
	3A	.300	.218	.248
	5A	.248	.131	.149
1-7-70	1A	.680	47.0	
	1B		.419	.425
	3A	.679	.424	.427
		.322	.198	.230
•	3B	.300	.180	.198
	5A	.140	.097	.133
	5B	.143	.081	.103
	6A	.117	.097	.123
5-14-70	lA	.475	.338	.355
	3A	.214	.144	.164
	5A	.137	.091	
		• • • • • • • • • • • • • • • • • • • •	• 031	.110
-1-70	1A	.247	.166	.173
	3A	.178	.096	.108
	5A	.096	.057	.068
-30-70	1A	.074	.041	040
	1B	.109	.062	.040
	3A	.729	.494	.060
	3B	.672		.493
	5A		.515	.515
	5B	•776	.639	.637
	6A	.801	.591	•593
		.848	.579	.573
	7A	.403	.230	.232

Appendix 17. Continued.

		1A	3A	5A
8-24-70	1A 3A	.555 .637	.897 .414	.878 .413
	5A	.577	.839	.839
9-21-70	1A	.554	.751	.743
	1B	.372	.641	.636
	3A	.731	.595	.596
	3B	.719	.664	.656
	5A	.480	.786	.771
	5B	.542	.776	.782
10-26-70	1A	.623	.387	.397
	3A	.687	.730	.739
	5A	.809	.604	.626
	6A	.569	.355	.362

. (

Appendix 18. Indices of similarity for the 12-29-69 communities (A and B are replicate samples).

11-17-69	COLLECTION	V		STREAM	
3A	DATE		1A	3A	5A
3A					
5A .633 .673 .694 12-29-69 1A 1.000 .910 .781 3A .910 1.000 .852 1.000 1-29-70 1A .929 .880 .755 1B .868 .869 .790 3A .687 .688 .618 3B .650 .681 .602 5A .309 .330 .304 5B .354 .379 .390 6A .300 .306 .341 3-4-70 1A .751 .747 .734 3A .325 .338 .377 5A .209 .254 .241 4-7-70 1A .696 .675 .556 1B .710 .682 .564 3A .281 .318 .376 3B .274 .310 .310 5A .118 .166 .238 5B .117 .162 .200 6A .111 .130	11-17-69				
12-29-69		3A	.636	.658	
3A .910 1.000 .852 1.000 1-29-70 1A .929 .880 .755 1B .868 .869 .790 3A .687 .688 .618 .602 .5A .309 .330 .304 .5B .354 .379 .390 .6A .300 .306 .341 3-4-70 1A .751 .747 .734 .3A .325 .338 .377 .5A .209 .254 .241 4-7-70 1A .696 .675 .556 .1B .710 .682 .564 .3A .281 .318 .376 .3B .274 .310 .310 .310 .5A .118 .166 .238 .5B .117 .162 .200 .6A .111 .130 .188 5-14-70 1A .518 .485 .456 .55 .113 .160 .191 6-1-70 1A .518 .485 .456 .55 .113 .160 .191 6-1-70 1A .246 .242 .232 .3A .168 .177 .185 .5B .094 .117 .117 7-30-70 1A .076 .070 .053 .8B .094 .117 .117 7-30-70 1A .076 .070 .053 .8B .094 .117 .117		5A	.633	.673	.694
3A .910 1.000 .852 5A .781 .852 1.000 1-29-70 1A .929 .880 .755 1B .868 .869 .790 3A .687 .688 .618 3B .650 .681 .602 5A .309 .330 .304 5B .354 .379 .390 6A .300 .306 .341 3-4-70 1A .751 .747 .734 3A .325 .338 .377 5A .209 .254 .241 4-7-70 1A .696 .675 .556 1B .710 .682 .564 3A .281 .318 .376 3B .274 .310 .310 5A .118 .166 .238 5B .117 .162 .200 6A .111 .130 .188 5-14-70 1A .518 .485 .456	12-29-69	1A	1.000	.910	.781
5A .781 .852 1.000 1-29-70 1A .929 .880 .755		3A		1.000	.852
1B					1.000
1B	1-29-70	1 A	. 929	- 880	.755
3A	1 25 70				
3B					
5A					
5B					
6A .300 .306 .341 3-4-70					
3-4-70					
3A .325 .338 .377 5A .209 .254 .241 4-7-70		φA	.300	.306	*24T
5A .209 .254 .241 4-7-70	3-4-70				
4-7-70					
1B .710 .682 .564 3A .281 .318 .376 3B .274 .310 .310 5A .118 .166 .238 5B .117 .162 .200 6A .111 .130 .188 5-14-70 1A .518 .485 .456 3A .263 .240 .261 5A .113 .160 .191 6-1-70 1A .246 .242 .232 3A .168 .177 .185 5B .094 .117 .117 7-30-70 1A .076 .070 .053 1B .108 .103 .080 3A .689 .676 .612 3B .678 .667 .617 5A .788 .821 .782 5B .796 .689 .724 6A .786 .785 .718		5A	.209	.254	.241
3A .281 .318 .376 3B .274 .310 .310 5A .118 .166 .238 5B .117 .162 .200 6A .111 .130 .188 5-14-70	4-7-70	lA	.696	.675	
3B .274 .310 .310 5A .118 .166 .238 5B .117 .162 .200 6A .111 .130 .188 5-14-70		1B	.710	.682	.564
5A .118 .166 .238 5B .117 .162 .200 6A .111 .130 .188 5-14-70		3A	.281	.318	.376
5A .118 .166 .238 5B .117 .162 .200 6A .111 .130 .188 5-14-70		3B	.274	.310	.310
5B .117 .162 .200 .188 5-14-70 1A .518 .485 .456 .3A .263 .240 .261 .5A .113 .160 .191 6-1-70 1A .246 .242 .232 .3A .168 .177 .185 .5B .094 .117 .117 7-30-70 1A .076 .070 .053 .1B .108 .103 .080 .3A .689 .676 .612 .3B .678 .667 .617 .5A .788 .821 .782 .5B .796 .689 .724 .6A .786 .785 .718		5A	.118	.166	.238
5-14-70		5B		.162	.200
3A .263 .240 .261 5A .113 .160 .191 6-1-70 1A .246 .242 .232 3A .168 .177 .185 5B .094 .117 .117 7-30-70 1A .076 .070 .053 1B .108 .103 .080 3A .689 .676 .612 3B .678 .667 .617 5A .788 .821 .782 5B .796 .689 .724 6A .786 .785 .718	•	6A		.130	.188
3A .263 .240 .261 5A .113 .160 .191 6-1-70 1A .246 .242 .232 3A .168 .177 .185 5B .094 .117 .117 7-30-70 1A .076 .070 .053 1B .108 .103 .080 3A .689 .676 .612 3B .678 .667 .617 5A .788 .821 .782 5B .796 .689 .724 6A .786 .785 .718	5-14-70	1.A	.518	.485	.456
5A .113 .160 .191 6-1-70 1A .246 .242 .232 3A .168 .177 .185 5B .094 .117 .117 7-30-70 1A .076 .070 .053 1B .108 .103 .080 3A .689 .676 .612 3B .678 .667 .612 3B .678 .667 .617 5A .788 .821 .782 5B .796 .689 .724 6A .786 .785 .718	•				
3A .168 .177 .185 5B .094 .117 .117 7-30-70 1A .076 .070 .053 1B .108 .103 .080 3A .689 .676 .612 3B .678 .667 .617 5A .788 .821 .782 5B .796 .689 .724 6A .786 .785 .718					
3A .168 .177 .185 5B .094 .117 .117 7-30-70 1A .076 .070 .053 1B .108 .103 .080 3A .689 .676 .612 3B .678 .667 .617 5A .788 .821 .782 5B .796 .689 .724 6A .786 .785 .718	6-1-70	1 2	246	. 242	.232
5B .094 .117 .117 7-30-70 1A .076 .070 .053 1B .108 .103 .080 3A .689 .676 .612 3B .678 .667 .617 5A .788 .821 .782 5B .796 .689 .724 6A .786 .785 .718	0 1 70				
7-30-70 1A .076 .070 .053 1B .108 .103 .080 3A .689 .676 .612 3B .678 .667 .617 5A .788 .821 .782 5B .796 .689 .724 6A .786 .785 .718					
1B .108 .103 .080 3A .689 .676 .612 3B .678 .667 .617 5A .788 .821 .782 5B .796 .689 .724 6A .786 .785 .718					
3A .689 .676 .612 3B .678 .667 .617 5A .788 .821 .782 5B .796 .689 .724 6A .786 .785 .718	7-30-70				
3B .678 .667 .617 5A .788 .821 .782 5B .796 .689 .724 6A .786 .785 .718					
5A .788 .821 .782 5B .796 .689 .724 6A .786 .785 .718					
5B .796 .689 .724 6A .786 .785 .718					
6A .786 .785 .718					
		5B	.796		
75 200 200 200		6A	.786		
/A .380 .360 .30/		7A	.380	.360	.307

Appendix 18. Continued.

		1A	3A	5A
8-24-70	1A	.572	.590	.582
	3A	.597	.573	.517
	5A	.597	.614	.625
9-21-70	1A 1B 3A 3B 5A 5B	.576 .396 .742 .719 .506	.591 .412 .770 .747 .529 .598	.582 .411 .735 .725 .523
10-26-70	1A	.592	.597	.533
	3A	.693	.723	.745
	5A	.805	.809	.796
	6A	.554	.563	.496

are replicate samples). .288 .283 .283 .123 .167 **6A** .300 .294 .212 .088 .265 .270 .179 .175 .144 .126 .323 .312 .541 .601 .790 1.000 354 .298 .343 .570 .499 .475 .637 .606 .353 .380 Indices of similarity for the 1-29-70 communities (A and B .273 .271 .447 .513 1.000 .790 .309 .330 .248 .266 .585 .453 .597 .595 .295 .313 **5A** STREAM .636 .617 .854 1.000 .513 .601 .684 .427 .449 .857 .824 .475 .476 .280 .287 .650 .681 .602 .423 .397 3B .655 1.000 1.000 .854 .447 .541 .556 .421 .381 .855 .857 .548 .417 .262 .236 .710 .463 .687 .688 .618 3A. 1.000 640 617 271 312 .868 .869 .790 .495 .252 .109 .818 .306 .194 .658 .661 .254 .107 .105 .793 .682 .679 **1B** 1.000 .911 .655 .655 .273 .323 .776 .321 .194 .929 .880 .755 .681 .255 .262 .108 lA 1A 3A 5A 11A 11B 13B 33B 53B 64 64 14 34 54 54 11A 11B 33A 33B 55A 6A Appendix 19. COLLECTION 11-17-69 12-29-69 5-14-70 1-29-70 3-4-70 4-7-70 DATE

Appendix	19.	Continued						
		1.8	ÌВ	3A	3B	5A	58	6А
6-1-70	1A 3A 5A	.239 .159	.237 .161 .086	.299 .253	.331 .306 .187	.261 .366 .216	.326	.129 .098 .083
7-30-70	11A 11B 33A 33B 53A 64A 7A	.066 .095 .663 .776 .757 .757	. 066 092 633 637 735 338	.078 .120 .589 .472 .553 .676	.085 .130 .589 .467 .557 .669	.114 .184 .265 .209 .338	.091 .150 .316 .349 .304 .409	.025 .037 .291 .291 .300 .323
8-24-70	11 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 581 . 585 . 581 . 581	000 047 240 440	700 800	740 4 40 0 2 C C C C C C C C C C C C C C C C C	400 40 0	744 748	223 223 213 213
10-26-70	23 23 34 54 54		. 553 . 613 . 569 . 741	.518 .400 .712 .516		.142 .180 .379 .221	. 258 . 168 . 218 . 432 . 289	. 252 . 252 . 250 . 251 . 293
	6A	ဖ၂	54	r 1	n l	4.	48	77

Appendix 20. Indices of similarity for the 3-4-70 communities (A and B are replicate samples)

COLLECTION	I		STREAM	
DATE	•'	1A	3A	5A
<u> </u>				
11-17-69	1A	.670	.300	.248
TT-T1-03	3A	.658	.218	.131
			.248	.149
	5A	.671	. 240	• 147
12-29-70	lA	.751	.325	.209
	3A	.747	.338	.254
	5A	.734	.377	.241
	1.5	.776	.321	.194
1-29-70	1A			.194
	1B	.818	.306	
	3 N	.556	.421	.381
	3B	.537	.423	.397
	5A	.248	.266	.585
	5B	.298	.242	.570
	6A	.294	.212	.088
2 4 70	lA	.000	.367	.176
3-4-70			1.000	.255
	3A	.367		1.000
	5A	.176	.255	1.000
4-7-70	1A	.551	.396	.346
	1B	.573	.413	.351
	3A	.296	.418	.558
	3B	.283	.366	.491
	5A	.178	.351	.360
		.149	.297	.371
	5B	.174	.269	.144
	6A	.1/4	. 209	• 7 4 4
5-14-70	1A	.594	.395	.215
	3A	.336	.396	.235
	5A	.182	.333	.311
C 1 70	1A	.232	.243	.186
6-1-70		.186	.214	.379
	3A		.131	.188
	5A	.121	• ТЭТ	• 100
7-30-70	lA	.063	.063	.095
•	1B	.079	.083	.166
	3A	.563	.277	.142
	3B	.567	.235	.122
	5A	.714	.276	.152
	5B	.667	.298	.179
			.316	.234
	6Λ	.645	.272	.317
	7A	.262	. 414	• 3 1 1

Appendix 20. Continued

		1A	3A	5A
8-24-70	lA	.590	.179	.083
	3A	.447	.261	.164
	. 5A	.629	.225	.103
9-21-70	1A	.610	.190	.080
	1B	.445	.142	.059
	3A	.646	.269	.151
	3B	.704	.244	.137
	5A	.547	.190	.090
	5B	.609	.225	.113
10-26-70	1A	.489	.350	.236
	3A	.729	.280	.155
	5A	.694	.337	.200
	6A	.464	.365	.286

.111 .130 .188 .104 .103 .162 .175 .157 .188 .117 .162 .200 .107 .105 .236 .287 .313 .380 .108 .107 .262 .280 .353 .140 .097 .133 .118 .166 STREAM 3B .300 .180 .262 .258 .417 .476 .595 .606 .322 .198 .230 .255 .254 .468 .475 .597 .637 .710 .682 .564 .694 .661 .857 .824 .435 .696 .675 .556 .681 .658 .855 .857 .453 1A 3A 5A 1A 3A 5A 118 118 338 338 558 568 COLLECTION 11-17-69 12-29-69 1-29-70

Appendix 21. Indices of similarity for the 4-7-70 communities (A and B are replicate samples). .145 .149 .269 .281 .335 .149 .297 .371 .239 .240 .450 .601 .825 L.000 .178 .351 .360 226 232 492 555 000 335 335 .458 .448 .729 1.000. .555 .283 .366 .491 1.000 1.000 7229 .4992 .450 .296 .148 .573 .413 .351 .551 .396 .346 1.000 .947 .440 .458 .226 .239 1A 3A 5A 11A 11B 33A 33B 53A 53B 5-14-70 4-7-70

.158 .205 .168 .041 .055 .117 .103 .146 .146 .073 .093 .106 .080 .088 .121 .102 .145 .164 .054 .101 .069 .055 .145 .111 .087 .079 .087 .122 .103 .163 .172 .172 .075 .065 .160 .124 .057 .097 .106 1114 163 1234 1312 1312 1333 1488 1488 146 280 217 159 114 286 241 164 196 1172 172 301 301 331 384 444 144 281 204 149 260 223 149 190 34 1119 627 500 593 605 691 393 684 419 .747 .495 .596 .705 1117 156 623 623 586 595 595 518 .388 .688 .416 396 266 550 523 357 400 Continued lA Appendix 21. 118 118 338 338 538 568 578 1A 3A 5A 11A 33A 33B 53A 53B 14 34 54 64 10-26-70 7-30-70 9-21-70 6-1-70

Appendix 22. Indices of similarity for the 5-14-70 communities (A and B are replicate samples).

COLLECTION	i		STREAM	
DATE		1A	3A	5A
11-17-69	1A	.475	.214	.137
	3A	.338	.144	.091
	5A	.355	.164	.110
12-29-69	lA	.518	.263	.113
	3A	.485	.240	.160
	5A	.456	.261	.191
1-29-70	1A	.529	.275	.108
	1B	.495	.252	.109
	3A	.600	.331	.233
•	3B	.587	.336	.243
	5A	.258	.286	.244
	5B	.336	.324	.302
	6A	.252	.171	.138
3-4-70	1A	.594	.336	.182
· -	3A	.395	.396	.333
	5A	.215	.235	.311
4-7-70	1A	.616	.336	.213
	1B.	.639	.351	.230
	3A	.349	.436	.416
	3B	.344	.480	.520
	5A	.251	.407	.584
	5B	.220	.382	.559
	6A	.223	.321	.307
5-14-70	lA	1.000	.687	.509
	3A	.687	1.000	.673
	5A	.509	.673	1.000
6-1-70	1A	.371	.299	.232
	3A	.417	.422	.489
	5A	. 221	.258	.331
7-30-70	lA	.118	.087	.082
	1B	.141	.108	.085
	3A	.508	.233	.136
	3B	.428	.199	.111
	5A	.505	.278	.174
	5B	.512	.305	.180
	6A	.536	.292	.252
	7A	.331	.299	.137

Appendix 22. Continued

		1A	3A	5A
8-24-70	lA	.329	.119	.055
	3A	.505	.204	.094
	5A	.379	.217	.113
9-21-70	lA	.351	.136	.068
	1B	.272	.118	.069
	3A	.469	.255	.147
	3B	.447	.230	.119
	5A	.331	.209	.099
	5B	.352	.228	.104
10-26-70	1A	.577	.321	.170
	3A	.467	.283	.147
	5A	.520	.349	.186
	6A	.552	.355	.257

Appendix 23. Indices of similarity for the 6-1-70 communities (A and B are replicate samples).

COLLECTION			STREAM		
DATE		1A	3A	5A	
21114					
	13	.247	.178	.096	
11-17-69	1A		.096	. 057	
	3A	.166	.108	.068	
	5A	.173	•100	••••	
12-29-69	1A	.246	.168	.094	
12-29-09	3A	.242	.177	.117	
	5A	.232	.185	.117	
	3A		•=••		
1-29-70	1A	.239	.159	.091	
1-23-70	1B	.237	.161	.086	
	3A	.299	.253	.147	
	3B	.331	.306	.187	
		.261	.366	.216	
	5A	.326	.369	.212	
	5B		.098	.083	
	6A	.129	.030	••••	
2 4 70	1A	.232	.186	.121	
3-4-70	3A	.243	.214	.131	
		.186	.379	.188	
	5A	•100	••••		
4-7-70	1A	.348	.312	.178	
4-1-10	1B	.344	.313	.184	
	3A	.295	.448	.256	
	3B	.323	.479	.281	
	5A	.191	.423	.337	
	5B	.174	.445	.302	
	6A	.158	.205	.168	
	OA	•130	121		
5-14-70	1A	.371	.417	.221	
3 21 14	3A	.299	.422	.258	
	5A	.232	.489	.331	**
			205	.226	
6-1-70	1A	1.000	.395	.477	
	3A	.395	1.000		
	5A	.226	.477	1.000	
	1 7	.569	.219	.086	
7-30-70	1A		.278	.094	
	1B	.588	.296	.130	
	3A	.474	.229	.097	
	3B	.561	.337	.185	
•	5A	.356		.149	
	5B	.368	.304	.223	
	6A	.322	.321	.143	
	7A	.391	.358	1142	

Appendix 23. Continued.

		1A	3A	5A
8-24-70	la	.290	.136	.058
	3a	.490	.273	.105
	5a	.287	.193	.083
9-21-70	1A 1B 3A 3B 5A 5B	.368 .342 .472 .419 .207	.160 .127 .280 .242 .150 .162	.074 .068 .127 .111 .095
10-26-70	1A	.372	.365	.202
	3A	.320	.252	.133
	5A	.298	.273	.175
	6A	.284	.402	.294

Appendix 2	4.	Indices of	similarity	for the	7-20-70 0	communities	(A and B	are	replicate	samples).
COLLECTION DATE		1.8	1B	3A	STREAM 3B	1 5A	5B	6A	7.A	
11-17-69	1A 3A 5A	.074	.109	.729 .494 .493	.672 .515	.776 .639 .637	.801 .591	.848 .579	.403 .230	
12-29-69	1A 3A 5A	.076 .070 .053	.108 .103	.689 .676 .612	.678 .667 .617	.788 .821 .782	.796 .789	.786 .785 .718	380	
1-29-70	118 118 318 318 518 518	. 066 . 066 . 078 . 114 . 021	.095 .120 .130 .130			.776 .809 .553 .557 .258	.757 .735 .582 .576 .274 .333	.756 .720 .676 .838 .409		
3-4-70	1A 3A 5A	.063	68 4	9 7 4	539	7 7 2	967		7	
4-7-70	11 11 11 11 11 11 11 11 11 11 11 11 11	.117 .119 .117 .079 .080	.156 .155 .172 .087 .088	.623 .627 .301 .311 .122	.494 .500 .234 .103	.586 .593 .312 .163 .145	595 333 .172 .164	.689 .691 .384 .218	.518 .444 .444 .156	
5-14-70	11 33 54 54	.118	.141.08	.508 .233 .136	.428 .199	.505 .278	.512 .305 .180	. 536 252 552	.331 .299 .137	

Appendix 24.	24.	Continued. 1A	1.B	3A	3B	5A	53	6А	7.A
6-1-70	1A 3A 5A	.569 .219 .086	.588 .278	.474 .296 .130	.561 .229 .097	.356 .337 .185	.368 .304	.322 .321 .223	.391 .358 .143
7-30-70	11 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13	1.000 .838 .347 .571 .161	1.000 .403 .503 .191	.347 .403 1.000 .785 .761	. 571 . 503 . 785 1.000 . 736	.161 .191 .761 .736 1.000	.203 .236 .811 .773 .892	. 083 . 113 . 768 . 646 . 795	181. 2444. 2442. 2443. 2443.
8-24-70	7A 1A 3A 5A	8 0 7 4	24 44 17	44 60 86 60	34 60 68 60	44 64 65 71	61 69 71	.50 .63 .55	23 23 30
9-21-70	118 118 338 538 538	.270 .302 .313 .273 .057	.297 .354 .310 .069	. 617 . 418 . 817 . 781 . 428	.655 .808 .762 .459		615 837 806 547	.510 .359 .702 .672	.241 .152 .400 .373 .233
10-26-70	1A 3A 5A 6A	.166 .148 .099	.208 .177 .127 .144	.635 .664 .717 .526	.507 .665 .700	.592 .805 .816	.597 .789 .868	.619 .651 .774	. 520 . 443 . 529

Appendix 25. Indices of similarity for the 8-24-70 communities (A and B are replicate samples)

	con	munities (A an	nd B are repli	cate samples)	
COLLECTION	N		STREAM		
DATE		1A	3A	5A	
11-17-69	lA	.555	.637	.577	
	3A	.897	.414	.839	
	5A	.878	.413	.839	
12-29-69	1A	.572	.597	.597	
	3A	.590	.573	.614	
	5A	.582	.517	.625	

1-29-70	1A	.561	•563	.585	
	1B	.624	.545	.652	
	3A	.375	.656	.409	
	3B	.370	.647	.404	
	5A	.149	.298	.168	
	5B	.177	.349	.215	
	6A	.235	.259	.256	
	UA	.233	.233	. 250	
3-4-70	1A	.590	.447	620	
3 4 / 0	3A	.179		.629	
	5A		.261	.225	
	JA	.083	.164	.103	
4-7-70	13	200	600	49.0	
4-7-70	1A	.388	.688	.416	
	1B	.393	.684	.419	
	3A	.144	.281	.204	
	3B	.146	.280	.217	
	5A	.057	.097	.106	
	5B	.054	.101	.108	
	6A	.073	.093	.106	
				•	
5-14- 70	lA	.329	.505	.379	•
	3A	.119	.204	.217	
	5A	.055	.094	.113	
6-1-70	1A	.290	.490	.287	
	3A	.136	.273	.193	
	5A	.058	.105	.083	
7-30-70	la	.202	.376	.149	
	18	.230	.443	.174	
	3A	.606	.686	.606	
	3B	.604	.689	.609	
	5A	.644	.654	.718	
	5B	.611	.699	.712	
	6A	.508	.638	.550	
	7A	.232	.519	.306	

Appendix 25. Continued.

		1A	3A	5A
8-24-70	1A	1.000	.541	.869
0-24-70	3A	.541	1.000	.527
	5A	.869	.527	1.000
9-21-70	1A	.817	.537	.797
J	1B	.713	.355	.630
	3A	.675	.735	.706
	3B	.729	.701	.739
	5A	.773	.354	.772
	5B	.737	.395	.831
10-26-70	lA	.391	.673	.416
10 20 .0	3A	.725	.567	.802
	5A	.552	.600	.652
	6A	.315	.578	.347

replicate samples).		5B	.542	^	œ		. 564	ð	0	.550	Н	0	0	œ	Н	S)	609.	S	-	.40	0.4	•	. T.	.19	.12	r.	.11	C	. 200.	ָרְיָּרָהְיִרָּהְיִרָּהְיִרְיִּרְיִּרְיִרְיִּרְיִרְּיִרְיִּרְיִּ
and B are		5A	œ	α	.771		.506	2	2	.495	S	4	m	14	9	22	 	.547	σ	O	in	9	٠,	4	9	9	ω	.104		Tee.	
communities (A	STREAM	3	.719	9	65		.719	4	2	.702	.778	.518	.492	.219	.258	26	0	.704	4	m	~	5	1 (N	4	2	H	.110		/ 55.	•
the 9-21-70 c		3A	.731	.595	.596		.742	^	.735	.726	m	m	N	ന	28	20	1	4	9	.151	T.	•	* 1	9	œ	9	4	.128	•	.469	Į
similarity for		1.8	I ►	4	. 636		.396	.412	.411	.401	.448	.253	3	094	1117	001		₹	4	.059	26	1 6	617.	.102	.114	90	0.5	980.		212.	4
es of		1A	.554	1	.748		.576	. 591	. 582	œ	4	38	v	143	_	٠,	?	.610	190	080	306	•	*O **	.149	.159	07	690	.083	1	.351	
26.	2	i	1A	3.0	5A	}	1A	34	5 A	1A	1B	3A	38	کا (۵ کا (۵	. E	ָ פֿע	¥0	1.8	3.8	5A	ر د	4	7 P	3A	3B	4	a z	6 9	,	IA	
Appendix 26. Indic	COLLECTION	DATE	11-17-69				12-29-70			1-29-70								3-4-70			7 7 7	0/1/15								5-14-70	

:

Appendix	į	26. Continued 1A	18	3A	3B	58	5B
6-1-70	1A 3A 5A	.368 .160 .074	.342 .127 .068	.472 .280 .127	.419 .242 .111	.207 .150	.216
7-30-70	118 118 338 338 538 638 73	. 270 . 297 . 617 . 647 . 615 . 510		.313 .354 .817 .808 .858 .702	.310 .310 .781 .762 .843 .672	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	000 000 000 000 000 000
8-24-70	1A 3A 5A	. 817 . 537	.713 .355 .630	.675 .735	.729 .701 .739	757	89.4
9-21-70	117 337 337 537 537	1.000 .720 .715 .757 .648	.720 1.000 .517 .543 .664		.757 .543 .910 1.000 .602	.648 .664 .552 .602 1.000	000000
10-26-70	1A 3A 5A 6A	.422 .733 .561	.300 .540 .402	. 570 . 795 . 778	. 549 . 839 . 736	. 358 . 652 . 544	.407 .730 .626

Appendix 27. Indices of similarity for the 10-26-70 communities (A and B are replicate samples).

COLLECTIO	N			REAM _	<u> </u>
DATE		1A	3A	5A	6A
11-17-69	1A	.623	.687	.809	.569
	3A	.387	.730	.604	.355
	5A	.397	.739	.626	.362
12-29-69	lA	.592	.693	.805	.554
	3A	.597	.723	.809	.563
	5A	.533	.745	.796	.496
29-70	1A	.588	.669	.757	.569
	1B	.569	.741	.736	.543
	3A	.712	.516	.620	.679
	3B	.791	.503	.616	.758
	5A	.397	.221	.293	.429
	5B	.432	.289	.376	.488
	6A	.251	.293	.327	.223
-4-70	1A	.489	.729	.694	.464
	3A	.350	.280	.337	.365
	5A	.236	.155	.200	.286
-7-70	1A	,773	.492	.596	.736
	1B	.747	.495	.596	.705
	3A	.365	.271	.356	.392
	3B	.377	.248	.323	.435
	5A	.229	.196	.248	.248
	5B	.223	.164	.207	.231
	6A	.162	.161	.194	.187
5-14-70	1A	.577	.467	.520	.552
	3A	.321	.283	.349	.355
	5A	.170	.147	.186	.257
-1-70	la	.372	.320	.298	.384
	3A	.365	.252	.273	.402
	5A	.202	.133	.175	.294
7-30-70	1A	.166	.148	.099	.100
	1B	.208	.177	.127	.144
	3A	.635	.644	.717	.526
	3B	.507	.665	.700	.412
	5A	.592	.805	.816	.539
	5B	.597	.789	.868	.517
	6A	.619	.651	.774	.659
	7A	.520	.355	.443	.529
8-24-70	1A	.391	.725	.552	.315
	3A	.673	.567	.600	.578
	5A	.416	.802	.652	.347

Appendix 27. Continued.

		1A	3A	5A	6A
9-21-70	1A 1B 3A 3B 5A 5B	.422 .300 .570 .549 .358	.733 .540 .795 .839 .652	.561 .402 .778 .736 .544	.335 .241 .483 .460 .328
10-26-70	1A 3A 5A 6A	1.000 .577 .645 .754	.577 1.000 .813 .435	.645 .813 1.000 .535	.754 .435 .535 1.000

Appendix 28. P. DATE; StreamMean	Periphyt TOTA n # sp.	L COMMUNIT Mean H'	phyton species diversity TOTAL COMMUNITY BIOMASS Sp. Mean H' Range H'*	indioes Mean J'	Appendix 28. Periphyton species diversity indices from experimental streams. TOTAL COMMUNITY BIOMASS DIATOM BIOMASS DIATOM COL ATE; StreamMean # sp. Mean H' Range H' Mean J' Mean H' Mean J' 25 2.81	al streams. Ind DIATOM COUNT Mean H' 2.81	Indices based on: INT DIATOM COUNT LIVE + DEAD Mean H 3.28
23 23				21. 91.	09.	2.25	3.05
26 26 27		1.47		.32	1.35 1.93	1.59 2.51 3.05	1.78 2.74 3.60
24	24 27	1.47 2.45 3.08	##.14 .00 .05	. 54	1.27 2.44 3.07	1.79 2.42 3.23	2.01 3.07 3.37
m m N	33 27	2.29 2.69 3.36		. 53 . 71	2.16 2.67 3.36	1.82	1.99 2.35 3.44
	27 28 30	2.30 3.26 3.68	##.14 #.01	. 47 . 68 . 74	2.15 3.17 3.60	2.20 2.84 2.84	2.57 3.31 3.08
	25 26 25	3.16 3.41 2.90		.63	3.04 2.90	2.42 2.76 2.79	2.77 2.96 3.01
	29 25 25	2.85 3.57 2.78		.59 .76	2.33 3.50 3.23	3.553 3.453 3.365	3.01 3.49 3.21
	17 22 27	1.26 1.74 1.85	#.05 #.20	.32	.81 1.61 1.77	2.44 2.97 3.07	2.92 3.392 3.44 44
	25 22	1.84 1.63		.18	.81 1.53 1.32	2.46 3.01 2.88	3.23 3.62 3.52
	224 254	1.79	### 1.19 1.99	.33	1.40	2.78 2.84 2.98	3.55 3.51 3.43
	7 7 7 7 8	1.90		. 55 . 40 . 46	2.41 1.79 2.11	3.41 2.96 3.26	3.84 3.46 3.63
ġ		1	a Shannon	diversit	valudex	T. EVenness	

Correlation analyses of periphyton diversity versus temperature, diversity versus temperature erature, and productivity versus temperature. Appendix 29.

. Dive tream	n	r	emperature A	В	Significance of r*
1	11	33	27.06	-2.42	~ •
3	11	47	23.85	-2.69	
5	11	78	23.73	-4.61	v.s.
All	33	53	26.82	-4.11	v.s.

II.	Diversity	versus	productivity.		Significance
Strea	im n	r	A	В	of r
1	11	11	2.35	17	
3	11	24	2.68	35	
5	11	62	4,12	96	s.
Al:	L 33	35	3.07	52	v.s.

III.	Temperature	versus	productivit	y si	ignificance
Stream	n n	r	A	В	of r
1 1	11	.58	84	.12	
3	11	.82	-1.82	.21	v.s.
5	11	.91	-1.22	.24	v.s.
Al1	33	.64	26	.12	v.s.
			26	.12	v.s.

^{* -- =} not significant
s. = p between .05 and .01
v.s. = p less than .01

VITA

NAME:

Bradford B. Owen, Jr.

PLACE OF BIRTH:

Philadelphia, Pennsylvania

YEAR OF BIRTH:

1943

POST-SECONDARY EDUCATION AND DEGREES:

Moravian College Bethlehem, Pennsylvania 1962-1966 B.S.

Lehigh University
Bethlehem, Pennsylvania
1966-1967 M.S.

University of Alberta Edmonton, Alberta 1967-1973

HONOURS AND AWARDS:

University of Alberta Teaching Fellowship 1967-1969

Lehigh University Research Assistant, summer 1966

RELATED WORK EXPERIENCE:

Research Assistant, summer Lehigh University 1966

Teaching Assistant University of Alberta 1967-1969

1

Graduate Fellow and Battelle Staff member, Hanford Atomic Project 1969-1971

Fisheries Biologist II University of Washington 1972

Assistant Technical Associate Project Manager C. W. Rice Division, N. U. S. Corporation 1972

Technical Associate Project Manager C. W. Rice Division N. U. S. Corporation 1973

PUBLICATIONS:

- (1) Owen, B. B., "Aquatic Insect Populations Reduced by Aerial Spraying of Insecticide Sevin," Proceedings of the Pennsylvania Academy of Sciences, Vol. XL, 1967
- (2) Trembley, F. J., B. B. Owen, D. W. Broadfoot, and J. A. Mihursky, "A Biological Survey of the Perkiomen Creek System," Institute of Research, Lehigh University, 1967.
- (3) Coutant, C. C., and B. B. Owen, "Productivity of Periphyton Communities Under Thermal Stress," Annual Progress Report for 1969, Battelle Northwest (BNWL-1306, Part 2), 1970.
- (4) Owen, B. B., "Columbia River Periphyton Communities Under Thermal Stress," Annual Progress Report for 1970, Battelle Northwest (BNWL-1550 Vol. 1, Part 2), 1971.

Indices of similarity for the 1-29-70 communities (A and B are replicate samples). .288 .283 .290 .283 .123 .300 .306 .341 .294 .212 .088 .323 .312 .541 .601 .790 1.000 .298 .343 .499 .475 .637 .606 .353 .380 .354 .273 .271 .447 .513 1.000 .790 .453 .597 .595 .295 .313 .248 .266 .585 STREAM .650 .681 .602 .636 .617 .854 1.000 .513 .537 .423 .397 .857 .824 .475 .476 .280 .287 .175 3B .655 .640 1.000 .854 .447 .541 .556 .421 .381 .855 .857 .548 .417 .262 .236 .687 .688 .618 468 1.000 1.000 640 617 .271 .312 .868 .869 .790 .818 .306 .194 .658 .661 .254 .258 .107 .105 1.000 .911 .655 .636 .273 .323 .776 .321 .194 .681 .255 .262 .108 118 118 338 338 538 64 118 118 338 338 538 64 1A 3A 5A 1A 3A 5A Appendix 19. COLLECTION 12-29-69 11-17-69 5-14-70 1-29-70 3-4-70 4-7-70