
Should Models Be Accurate?

by

Esraa M M Saleh

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Esraa M M Saleh, 2023



Abstract

Learning only by direct interaction with the world can be expensive in many

real world applications. In such settings, Model-based Reinforcement Learning

(MBRL) methods are a promising avenue towards data-efficiency. By planning

with a model, a sequential decision making agent can decrease its reliance on

direct interaction with the world. However, when the world is large, complex

or seemingly changing, a learned model will be inevitably imperfect. Past

work demonstrates that the effects of model imperfection can be difficult to

avoid. In this thesis, we question the traditional objective of models that aims

for accuracy in simulating the world. A model really only needs to be useful.

Inspired by advances in meta-learning, we design a novel model learning loss.

We show that a useful but inaccurate model can be learned with this loss so

that it matches or surpasses accurate models in performance.
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Preface

Work in this thesis builds upon my work in [SMK+22]. I presented this work as

an Oral / Contributed Talk at The Multi-disciplinary Conference on Reinforce-

ment Learning and Decision Making (RLDM) in 2022. I plan on submitting

an expanded version of my thesis results for publication.

iii



To Mockingjays

For showing me the art of courage and perseverance.

iv



SAM: It’s like in the great stories, Mr. Frodo. The ones that really

mattered. Full of darkness and danger they were. And sometimes you didn’t

want to know the end. Because how could the end be happy? How could the

world go back to the way it was when so much bad had happened? But in the

end, it’s only a passing thing, this shadow. Even darkness must pass. A new

day will come. And when the sun shines it will shine out the clearer. Those

were the stories that stayed with you. That meant something. Even if you

were too small to understand why. But I think, Mr. Frodo, I do understand.

I know now. Folk in those stories had lots of chances of turning back only

they didn’t. Because they were holding on to something.

FRODO: What are we holding on to, Sam?

SAM: That there’s some good in this world, Mr. Frodo. And it’s worth

fighting for.

– J. R. R. Tolkien in The Lord of the Rings : The Two Towers
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Chapter 1

Introduction

Data efficiency is a characteristic of autonomous agents that we aspire to

build. To learn, agents need to gather information by interacting with the

world. Yet, these interactions are often expensive; they cost time and money.

Giving agents the ability to build an internal model of how the world works

is a promising avenue towards data efficiency, as shown in various settings in

robotics and autonomous vehicles [WEH+23, IFKC16]. By having a model of

the world, agents can decrease their reliance on interactions with the world.

Instead, they can learn more internally by interacting with their model. How-

ever, building a world model is a non-trivial task in reality. If agents were

to operate autonomously in our vast world, they cannot possibly observe the

cause and effect of every event.

Intuitively, we recognize that that our own mental model of our environ-

ment is necessarily imperfect given the vastness of the universe and its intricate

complexities. Yet, we still think with imperfect mental models because they

can be useful. An example of this is in how Physicists sometimes operate on a

model of objects in the world where the irregular is treated as spherical to sim-

plify computations. As illustrated in Figure 1.1, this leads to funny but useful

abstractions like modelling a cow as a spherical object to make computations

on gravity or motion more feasible. If our agents aim towards perfect models,

their models will be inevitably imperfect and the effects of imperfect models

are difficult to mitigate. So the main question driving this thesis is: if we

ignored model accuracy, how can we design an agent with an ability to learn
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a useful world model when the world is large, complex or seemingly changing?

Figure 1.1: Spherical cow by Ingrid Kallick. “Assume a spherical cow” is not a
far fetched phrase to hear in Physics. Spherical cows in Physics are examples
of useful but imperfect models.

We adopt the Reinforcement Learning (RL) problem formalism to structure

agent-environment interactions. We assume that these interactions happen

over discrete time-steps. At every step, an agent observes the environment,

constructs a perception of its state in the environment, takes an action in

the environment and receives a reward from the environment. With trial and

error, the agent learns a policy in order to maximize its expected return, a

discounted sum of rewards. A policy specifies how likely it is for the agent to

take an action from a specific state. In the context of RL, a model is typically

thought of as a function that predicts transitions in the world. Model-based

Reinforcement Learning (MBRL) refers to a set of RL algorithms that use

a model to improve a policy or a value function. Using a model, an agent

can interact or plan with its model to reduce the need for more expensive

interactions with the environment. Model-free Reinforcement Learning refers

to a set of RL algorithms that learn a policy directly from interactions without

constructing a model. Given the potential for greater sample efficiency through

model-supported policy or value function learning, we focus on MBRL.

Despite the demonstrated potential of models in planning, it remains a

challenge to observe that potential in large, complex or seemingly changing

environments [MBT+18]. We will often intentionally say “seemingly changing”

just to highlight that, in our view, the world is what it is and it does not really

change if one takes an omniscient view of it. When the world is too big or

too complex for the agent to fully observe or when some important parts of

the world are impossible to observe, the world can look like it is changing
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from the agent’s point of view. In such situations, the traditional model-

learning objective of simulating an environment with perfect accuracy will

inevitably result in model imperfections that can be detrimental to policy or

value function learning. Using an imperfect model iteratively by composing its

predictions can lead to compounding error [LPC22]. Prior work has attempted

several avenues to tackle this problem. The first general idea is to plan with

imperfect models more strategically. For example, an agent can estimate a

model’s predictive uncertainty and avoid planning in states where there is a

significant risk of model imperfection [ASTW20]. The second general idea is

to learn a model for planning in a compressed or latent space [HS18, HLF+19],

thus reducing the risk of imperfection as there is less to predict. The third

general idea is to shift the objective of models altogether from being accurate

in environment dynamics to being accurate in the corresponding expected

returns. Models learned with such objectives are formalized as value equivalent

models [GBSS20a, SAH+20].

Advances in value equivalent models do show that a model can be highly

performant and be inaccurate in simulating the world. Yet, these models

are still grounded in real world observations and are focused on accuracy in

returns. Our work is an exploration of pushing grounding to an extreme. Could

there be an unexplored space of models that can produce useful experience if

we removed any constraints on how model inputs or outputs should resemble

reality?

In this thesis, we question the need for accuracy focused model learn-

ing objectives. In a complex or changing world, a perfectly accurate model

is not practically achievable, is not necessary and it might not be the most

useful model for policy or value function learning anyways. A model really

only needs to be useful; it needs to aid in policy or value function learning.

We explore these ideas in the context of Dyna-style planning [Sut91], where

model-generated transitions are used to update a value function with the same

learning rule used for updates with real transitions. We use a simple maze with

changing reward placements in our investigations. In Chapter 3, we introduce

formal model properties to clarify what model accuracy and inaccuracy mean
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in the general context of a large, complex, or seemingly changing world. We

disentangle model accuracy from other implicitly associated model properties

that we define formally. We also provide motivating examples of handcrafted,

inaccurate, but still useful models that can surpass handcrafted accurate mod-

els in performance. In Chapter 4, we introduce SynthDynaPrime to answer a

model existence question: Does there exist learnable useful models whose learn-

ing objective does not constrain them to have any of the model-properties we

defined? We design a novel model interface and a meta-learning objective that

is focused on usefulness to learning. Assuming an idealized learning procedure

with offline model training and privileged access to certain training data, we

show that it is possible to learn a model that beats an accurate model. In

Chapter 5 we introduce SynthDyna which relaxes assumptions from Chapter

4 by operating in a single experience stream and without privileged access to

any information. We show that this algorithm can match an accurate model

in aggregate performance. We conclude with a summary and discussion of

future work in Chapter 6. Our contributions are twofold:

(1) We motivate raising a fundamental question: should models be accurate?

(2) We present a novel model learning loss given by a meta-learning optimiza-

tion. We show that a useful but inaccurate model can be learned with it so that

it matches or surpasses accurate models in performance.
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Chapter 2

Background

In this chapter, we highlight the relevant foundations for exploring model-

learning objectives in sequential decision making agents interacting with a

complex or changing world. As humans, we can achieve a goal by interacting

with the world to learn associations between actions and rewarding events. In

Section 2.1, we provide some background on Reinforcement Learning (RL), a

formulation for such learning problems. When we interact with the world, we

often build a mental model of how the world works (e.g. how a car moves

when we turn the steering wheel) and we act based on it. In Section 2.2, we

highlight relevant Model-based Reinforcement Learning (MBRL) algorithms,

where a sequential decision making agent learns a model of how the world

works. In Section 2.3, we build connections to advances in meta-learning that

can help us with our goal: creating model-learning objectives for MBRL with

a focus on usefulness rather than accuracy in order to plan effectively in a

complex or changing world.

2.1 Reinforcement Learning

Reinforcement Learning is a problem formulation for situations that require

sequential decision making. In this formulation, an agent first observes the

environment. Then, the agent takes an action. As a consequence, the agent

receives a scalar reward and it observes the environmental change that its

action induced. An agent’s goal is to learn a policy, a way of behaving, in

order to maximize expected cumulative discounted rewards.
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Many RL problems can be thought of as Markov Decision Processes (MDPs).

Let’s define some MDP to be M = ⟨S,A, R, P ⟩. Here, S is the set of possible

states. In the case of a grid-world, a state might be the position of the agent

in the grid. A is the set of possible actions that can be taken in the environ-

ment at any point in time. In a gridworld, an example of an action might be

a vector encoding of “up”, “down”, “left”, or “right”. P = P (s′, r|s, a) is a

true probability of transitioning to state s′ ∈ S and getting a reward of r ∈ R,

given state s ∈ S and action a ∈ A. From now on, whenever we use a vector,

like a state or action, we mean a column vector.

Since an agent cannot maximize an infinite sum of rewards into the future,

a discount factor γ ∈ [0, 1) is used to allow for the sum of rewards to remain

finite. The higher the discount factor, the more weight is given to longer-term

rewards. We call the discounted sum of rewards at an arbitrary time t, the

return, and formalize it as:

Gt =
∞∑
g=0

γgrt+g (2.1)

A policy, π : S → A, is a function that maps a state to an action. One

simple example of a policy is an ϵ-greedy policy, where an agent can take

either an exploratory random action with ϵ probability or a greedy action

with probability 1 − ϵ. A greedy action in a particular state is the action

that maximizes the estimated expected discounted sum of future rewards if

the agent were to follow the same policy. This estimated expectation is often

described using a state-action value function or Q-value function:

Qπ(s, a) = E[Gt|st = s, at = a, π]. (2.2)

In this context, a greedy action is selected with:

π(s) = argmax
a∈A

Qπ(s, a). (2.3)

Let
∏

be the set of all policies. When an agent has an optimal Q-value

function Q∗(s, a) = max
π∈

∏Qπ(s, a), we say that an agent has an optimal policy,
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π∗, such that:

π(s) = π∗(s) = argmax
π

Qπ(s, a) (2.4)

One simple example of an RL algorithm that estimates Q∗ and uses an ϵ-

greedy policy is Q-learning [WD92]. This algorithm is an example of a model-

free algorithm: it performs an incremental Q-value update based on direct

interaction with the environment, which in turn improves an agent’s policy.

The Q-value update is given by:

Q(s, a)← Q(s, a) + α(r + γ argmax
a′

Q(s′, a′)−Q(s, a)) (2.5)

Here, α is a step size dictating the magnitude of the update based on error

on a single sample (s, a, r, s′). This update is a single sample update that

bootstraps the value of Q(s, a). Q is guaranteed to converge to Q∗ under a

slowly decaying sequence of step-sizes and as long as every state-action pair can

always be visited. In the next subsection, we explore model-based algorithms

which improve an agent’s policy with interactions with a model of the world

in addition to direct experience.

2.2 Model-based Reinforcement Learning

2.2.1 What is a model?

In the most basic sense, we think of a model as an internal agent artifact

that supports policy or value function learning. Model-based RL algorithms

are simply RL algorithms that use such a model. Traditionally, a “model” is

thought of as a function, m : S × A → S × R, that provides a next state s′

and a reward r, given a state s and an action a. P (s′, r|s, a) is regarded as the

probability distribution from which the model draws samples of (s′, r) given

(s, a) 1.

We define models in a slightly broader sense than the traditional definition.

Our definition requires us to introduce slightly different notions of states and

1In the literature, sometimes, the traditional definition of a model is broken down into
two models: a dynamics model (for predicting a next state given a state and action) and
a reward model (predicting a reward given a state). Sometimes, the dynamics model is
referred to as the model.
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actions because they can be helpful for describing models in the context of

a large, complex, seemingly changing world. Considering the true underlying

MDP of an RL problem, we call its set of states, S, environment states and we

call its set of actions, A, environment actions. In the case of a grid-world with

a non-stationary reward, an environment state will include the position of the

agent and underlying variables dictating the non-stationarity. To capture the

generality of models, we want to allow for them to be defined over a space of

states and actions that may or may not reflect true environment states and

actions. In addition, in a large, complex, seemingly changing world, the agent

may never be able to infer the true environment state. So, we call the actions

that an agent uses internally agent actions, and we denote them with the set

Â ∈ Rk. We call the states that an agent uses internally agent states, and we

denote them with the set Ŝ ∈ Rn. From now on, we mean an agent state when

we mention a state without mentioning whether it is an agent or environment

state. Agent states can be states created by the model or states created using

some function of the history, ht, of all past observations, actions and rewards as

in ht = o0, a0, r1, o1, a1, r2..., rt−1, at−1, ot. The observations in the experience

stream are the agent’s raw experience of the world as it transitions through true

environment states. To formally facilitate conversions between environment

and agent versions of states and actions, we define two functions, ψS : S → Ŝ

and ψA : A → Â. Considering a grid-world, an example of ψS can be a function

that takes in a grid cell index and outputs a vector of bit features each giving

an indicator of a wall in each of the cardinal directions. An example of ψA

can be a function that takes in an action index (0 for up, 1 for right, 2 for

down, or 3 for left) and returns a one-hot vector representation of the given

index. The ψS and ψA functions are not assumed to be accessible to the agent.

The agent does not always have access to the environment state outside the

history of observations. Both ψS and ψA will be useful later in Chapter 3 as

we motivate this thesis with simple but effective violations to formalizations

of common assumptions on world models.

We formally define amodel as an entity,m, that provides a tuple, (ŝ, â, r, ŝ′) ∈

Ŝ × Â × R× Ŝ drawn according to a joint probability distribution:

8



P̂ (ŝ, â, r, ŝ′) = P̂ (ŝ, â)P̂ (ŝ′, r|ŝ, â) (2.6)

Here, P̂ (ŝ, â) is the probability of selecting an experience tuple (ŝ, â, r, ŝ′)

that has state ŝ and action â. The selection process with this probability is

called search control in planning. We refer to P̂ (ŝ′, r|ŝ, â) as the transition

probability distribution, which is analogous to the traditional definition of a

model. Our definition combines the traditional notion of a model with search

control. This will become important later as we tackle model-learning objec-

tives with a focus on usefulness rather than accuracy. It allows us to talk

about various MBRL algorithms using a unified language.

2.2.2 Background Planning with Dyna

Planning is the process in which an agent uses its model to support policy or

value function learning. Planning methods generally fall under two categories:

background planning and decision-time planning. Background planning is

the act of using model-generated experience to gradually improve a policy or

value function while interacting with the world [SB18]. Decision-time planning

is the act of using model-generated experience in the process of selecting an

action for the current state [SB18]. In this thesis, we focus on Dyna [Sut91],

a background planning architecture.

The Dyna architecture interleaves planning and learning. Its main idea is in

treating both model-generated and real experience in the same manner while

updating a value function. A basic instantiation of the Dyna architecture

is shown in Algorithm 1 as All Experience Dyna. Here in line 15, a non-

parametric model, m, samples uniformly at random a tuple of experience from

a set of past real experience tuples D. Note that if the number of planning steps

is k = 0, then All Experience Dyna will just be Q-learning [WD92], the model-

free algorithm mentioned earlier in Section 2.2.1. θt represents parameters of

the state-action value function or Q-value function. The Q-learning update

in lines 11 and 17 is an equivalent update to the one previously introduced

in Equation 2.5 but we simply rewrite it here in a different form to allow for
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linear value function approximation. This particular algorithmic instantiation

of Dyna is presented here to provide an intuition for MBRL algorithms. Later

in Section 3, we will use this as a template algorithm to introduce a variety of

Dyna algorithms that provide insight on our research questions around what

useful model experience can be.

Algorithm 1 All Experience Dyna

1: input: state feature transform fs, action feature transform fa
2: initialize: θ0 ∈ Rm×n, D ← {}, ŝ0, a0,o0

3: for t = 1, 2, · · · do
4: Take an action at−1 given by the ϵ-greedy policy, πθt−1(ŝ0) =

argmaxa∈A(θtŝt−1)
T ât−1

5: Observe ot and rt from the environment.
6: ŝt ← fs(ŝt−1, at−1,ot)
7: ât−1 ← fa(at−1)
8: D ← D ∪ {(ŝt−1, ât−1, rt, ŝt)}
9:

10: // Update action-state value parameters, θ, with real experience.
11: δ ← rt + γmax(θtŝt)− (θtŝt−1)

T ât−1

12: θt ← θt + αδ(ât−1 ⊗ ŝt−1)
13:

14: // Update action-state value parameters, θ, with internal experience.
15: for 1, · · · , k do
16: s̃, ã, r̃, s̃′ ∼ D
17: δ̃ ← r̃ + γmax(θts̃

′)− (θts̃)
T ã

18: θt ← θt + βδ̃(ãt ⊗ s̃)

2.2.3 The Landscape of Planning

In a complex or seemingly changing world, having a model that produces

imperfect transitions is inevitable. Planning with such models can lead to

adverse effects on policy learning. In this section, we reflect on past literature

explaining and tackling this problem. To do so easily, when we say “model”

in this section, we mean the traditional definition of a model as given in 2.2.1.

Compounding error can come from using a model iteratively [LPC22].

Given a state and action, a next state and reward are produced. Then, that

next state is fed back into the model along with an action to produce another

next state and reward, and so on. The resulting model-generated sequence of

experience is a rollout. That last state and reward will have accumulated errors
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associated with them. This is because they are a function of multiple nested

operations, each with some result uncertainty. Another issue that can arise

with imperfect models is the generation of states that do not correspond to any

environment state; they are hallucinated. The Hallucinated Value Hypothesis

posits that updates towards hallucinated state values can lead to misleading

state-action value functions which in turn leads to deteriorating policy learn-

ing [JIT+20]. We are specifically interested in planning methods that can deal

with the problems arising from inevitable model imperfection.

One line of research aims for adjusting the planning process to explicitly

account for model imperfection. Long model rollouts can be beneficial as they

are more likely to provide unfamiliar experience to learn from, but such roll-

outs can also compound model error. One idea to combat this problem is to

limit the length and number of rollouts in planning [HTB18]. Another idea

is to estimate a model’s predictive uncertainty in order to avoid planning in

states where the model might be critically inaccurate [ASTW20]. Rather than

focusing exclusively on model outputs, another approach called hallucinated

replay, trains the model on both model-generated experience and real experi-

ence so that the model can correct itself when it receives its own samples as

input [Tal14].

Another line of research accounts for model imperfection implicitly by

learning a policy or selecting actions exclusively based on interaction with

a learned low-dimensional model. These models are commonly referred to

as latent dynamics models. The common theme in this style of work is the

ability to simulate the environment at low computational cost by predicting a

compact latent next state given an action and a compact latent current state

obtained by encoding an observation. The model is trained to produce latent

states with the constraint that they must contain the necessary information

to reconstruct original observations. Having compact latent states allows for

focusing model capacity on more informative parts of the world. By predicting

less, there is less of a chance for the model to make mistakes. World Models in

[HS18] shows that a parametric policy can be learned entirely in a latent dy-

namics model. Then, the policy can be transferred into the agent interacting

11



with the real world. PlaNet [HLF+19], demonstrates that a latent dynamics

model can be learned and used for an online planning process that selects an

action for the agent’s current state. Both World Models and PlaNet are exam-

ples from a line of research that emphasizes a need for model-generated latent

states that are compact yet still represent environment states. We therefore

say that the models in this line of work and the first line of work introduced

before this are aimed at accuracy in simulating the world. However, do models

really need to be aimed at accuracy or can other objectives be equally or more

useful?

A third line of research also accounts for model imperfection implicitly but

by shifting the learning objective of models from accuracy in simulating an

environment to just ensuring that returns are accurate. A model that satisfies

this objective is said to be value equivalent to a perfect model [GBSS20a]. By

aligning the objective of a model with the objective of an agent (maximizing

expected return), the model’s limited capacity can be focused on parts of the

world that are actually going to matter for the agent’s goal of maximizing

return. MuZero is one example of an algorithm that learns a value equivalent

model [SAH+20]. Starting from a state that represents an environment state,

MuZero applies its model iteratively to imagine the long-term expected cumu-

lative reward of various actions if the agent were to move through different

sequences of latent states. Based on that, the model can provide the agent

with a reward-maximizing action to take from a current state. Value Iter-

ation Networks (VINs) contain another example of a value equivalent model

[TWT+16]. A VIN is a network representing a policy. This network is a special

Convolutional Neural Network formulated to embed Value Iteration [SB18], a

standard planning algorithm. Typically, value iteration is introduced in a con-

text where a perfect model is given, but here, the model is entirely based on

learnable parameters that are a subset of the VIN’s parameters. Given that

Value Iteration is expressed in a differentiable Neural Network architecture,

it can be trained like any Neural Network policy in a model-free algorithm.

As a consequence of the model parameters being a subset of the VIN param-

eters, the model’s learning objective is that of the overall policy. MuZero and
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VINs are demonstrations of algorithms with value equivalent models that are

so useful to action selection or policy learning to the extent of beating com-

petitive model-free algorithms and accuracy focused model-based algorithms

in changing and/or complex environments.

This naturally leads us to question whether models should be aimed at

accuracy in simulating the world. To what extent should any input or output

of a model represent the environment? While MuZero’s model is aimed at

accuracy in returns without accuracy in transitions, MuZero still requires that

planning starts at states representing environment states. VINs on the other

hand, have their whole planning process (along with the model) embedded

in a Neural Network blackbox. This makes their embedded model not quite

amenable to examination so that we can look at the nature of the model-

generated data influencing planning.

2.3 Meta-learning

When it is not possible to fully observe the world, it will look as though it

is changing from an agent’s point of view. Fast adaptation to change is a

desirable agent trait in such a situation. Adapting quickly is a matter of

learning how to learn quickly in a new context. Meta-learning refers to a

wide range of methods that enable such a capability. Some of these methods,

such as MAML, allow for quick adaptation in new situations after exposure to

experience across multiple agent lifetimes [FAL17]. In each lifetime, an agent

is initialized and exposed to one configuration of the environment (i.e. a task).

MAML focuses on learning an initialization of a subset of agent parameters

so that they can be learned quickly when the agent is exposed to a new task

that shares some similarities with previously seen tasks. Sometimes, however,

agent parameters need to be adapted online within a single agent lifetime as

the agent encounters changes in the world. One early example of tackling this

setting is IDBD, a method that incrementally adapts individual learning rates

for each input feature of a linear supervised learning system [Sut92].

Partially inspired by IDBD, Reinforcement Learning with meta-gradients
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is one way of adapting a subset of an algorithm’s parameters, called meta-

parameters, within a single agent lifetime [XvHS18]. Lets say we want to

optimize a sequence of gradient updates that are applied to some agent pa-

rameters θ. These updates are a function of meta-parameters η. We define an

outer loss, Louter(θ̃(η)), for optimizing η 2. We define an inner loss Linner(θ; η)

for optimizing θ. Assume that we perform a sequence of updates to agent pa-

rameters θ, as shown below for an arbitrary i-th Stochastic Gradient Descent

(SGD) update3:

θ(η) = θi+1 = θi − α∇θLinner(θ; η) (2.7)

We call this update an inner update. To optimize a sequence of these inner

updates, we can then take the gradient of the outer loss with respect to η

because θ(η) is differentiable:

ηj+1 = ηj − β∇ηLouter(θ(ηj)) (2.8)

This general framework of meta-gradients can be applied to adapt compo-

nents of model-free RL updates like the discount factor or the target [XvHS18,

XvHH+20].

We later build on an instantiation of meta-gradients called bootstrapped

meta-gradients. In this instantiation, the outer loss gradient update to η is

defined as:

ηj+1 = ηj − β∇ηµ
(
θ(ηj)

(k), [[θ′(ηj)]]
)

(2.9)

Here, a matching function, µ, measures the dissimilarity between two versions

of agent parameters θ(η). The first version, θ(ηj)
(k), is the result of applying

k updates to the agent parameters θ as in equation 2.7. The second version,

θ′(ηj), is the result of applying a fixed number of updates to θ(ηj)
(k) also us-

ing 2.7. Since θ′(ηj) is an agent parameter estimate based on another agent

2Notation for meta-gradients here is based on [ZXV+20]
3This does not need to be an SGD update. It just needs to be a differentiable function.

We are just using SGD for simplicity.
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parameter estimate θ(ηj)
(k), we say that θ′(ηj) is bootstrapped from it. For-

mally, θ′(ηj) is called the target bootstrap. Bootstrapped meta-gradients are

appealing because the target bootstrap lets us include future θ learning dy-

namics without the need to backpropagate through them (note how there is a

stop gradient [[·]] on θ′(ηj)). In contrast, to include more θ learning dynamics,

meta-gradients without bootstrapping require increasing the number of inner

updates, k, which are then backpropagated through (note how θ(ηj)
(k) does

not have a stop gradient applied on it). With bootstrapped meta-gradients,

agents are able to achieve better performance than previous meta-gradient ap-

proaches when tested in complex environments or seemingly changing environ-

ments. We later explore bootstrapped meta-gradients as a primary ingredient

for creating useful models that facilitate fast learning in a seemingly changing

world.
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Chapter 3

Inaccurate Models Can be
Useful

“Model accuracy” is a concept that often comes with assumptions apparent

in the context of its usage in language. Conventionally, the context of “model

accuracy” assumes a stationary environment. It also assumes that accurate

models are a productive target to aim for and by extension, inaccurate models

are undesirable. However, we argue that inaccurate models can be desirable.

We define model accuracy in a general manner that allows us to talk about

modelling worlds, whether these worlds are stationary or not. We define new

model properties that provide richer descriptions of models beyond accuracy.

Developing these properties is important as it gives us a unified framework for

describing informative algorithmic baselines used throughout this thesis. We

then give an empirical demonstration of the common expectation model as a

simple example of a useful inaccurate model. This highlights our intuition on

why allowing for model inaccuracy can in fact be a productive design choice.

3.1 Model Properties Beyond Accuracy

The concept of “accurate models” can be an unclear. For example, an accurate

model can mean a model that always produces a restricted set of all true

transitions or it can mean a model that produces all true transitions in the

world. This distinction is especially important in a complex, large or seemingly

changing world as the latter can be hard to guarantee. In addition, describing
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models only in terms of accuracy is insufficient for us to characterize and

understand the wide variety of useful inaccurate models. While there has been

some work in describing models beyond accuracy [GBSS20b], there is a lack of

general descriptive properties that (a) can stand alone without assumed agent

artifacts outside of models like value functions and (b) are general enough to

describe models in a potentially changing world from an agent’s perspective.

In Definitions 3.1.1, 3.1.2 and 3.1.3, we introduce three properties of models

to provide a clear a descriptive language while satisfying (a) and (b). A model

can be accurate, complete, or proper.

Figure 3.1: T-Maze environment. The arrow indicates the start state at 0.
NT and ST indicate the North and South Terminal States.

Definition 3.1.1 (Accurate Model) A model is accurate iff
∀(s, a, r, s′ ∈ S ×A× R× S)[P̂ (ψS(s), ψA(a)) > 0 =⇒
P̂ (ψS(s

′), r|ψS(s), ψA(a)) = P (s′, r|s, a)]

Definition 3.1.2 (Complete Model) A model is complete iff
∀((s, a) ∈ S ×A)[P̂ (ψS(s), ψA(a)) > 0]
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Definition 3.1.3 (Proper Model) A model is proper iff
∀(ŝ, â, r, ŝ′ ∈ Ŝ × Â × R× Ŝ)[P̂ (ŝ, â, r, ŝ′) > 0
=⇒ ∃(s, a, s′ ∈ S ×A× S) ψS(s) = ŝ, ψA(a) = â, ψS(s

′) = ŝ′]

In Definition 3.1.1, we describe an accurate model as a model with a tran-

sition probability that is equal to the true underlying true transition probabil-

ity for any given (ŝ, â) with a non-zero probability of being sampled in search

control. If a (ŝ, â) tuple has zero probability of being sampled, then it has

no influence an agent’s planning process. The model’s transition probability

can give the wrong probability on (ŝ′, r) given (ŝ, â), but that does not matter

and thus, we still regard the model as accurate. If a model’s search control

probability assigns non-zero probabilities to all (ŝ, â) tuples that correspond to

true environment (s, a) pairs, we call the model complete as in Definition 3.1.2.

If a model’s produced experience corresponds to some possible environment

experience, we call the model proper as in Definition 3.1.3.

These properties are best described with concrete examples of model-based

agents in a simple environment. Imagine a T-Maze environment as in Figure

3.1. An agent starts at state 0. It can take actions to move up, down, left

or right. When at the North terminal state, an agent receives a reward of 1

and at the south terminal state, the agent receives a reward of 0. We call

this arrangement of rewards the first reward regime. After a fixed number of

episodes, N , the environment changes. Now, the agent receives a reward of 0 at

the North Terminal (NT) state and a reward of 1 at the South Terminal (ST)

state. We call this reward arrangement the second reward regime. For every

N episodes, the environment switches cyclically between the first and second

reward regimes. To make the tasks more difficult, at any time, the environment

can move the agent one step in a random direction with probability ρ. If the

agent moves into a wall, it simply goes back to the same state it was in before.

An environment state in the TMaze can be thought of as a one-hot encoded

vector of a cell’s index concatenated along with a bit to indicate the current

reward regime and an index in order to indicate the environment’s current
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Accurate Complete Proper
Oracle Model Dyna ✓ ✓ ✓

Null Model Dyna ✓ ✗ ✗

All Experience Dyna ✗ ✓ ✓

NoPTS Stable Experience Dyna ✓ ✗ ✓

NoTNS Stable Experience Dyna ✗ ✓ ✓

NoTNS Expectation Model Dyna ✗ ✓ ✗

NoPTS Expectation Model Dyna ✗ ✗ ✗

SynthDyna ✗ ✗ ✗

Table 3.1: The manifestation of model properties in different agents

episode (from which a reward switch can be inferred). An agent state in the

TMaze is just a one-hot encoded vector of a cell’s index. So here, ψS : S → Ŝ

is a an extractor of the one-hot encoded vector in an environment state. Agent

action and environment actions are the same which means that ψA : A → Â

is the identity function.

Considering the three model properties we introduced previously (Defini-

tion 3.1.1, 3.1.2, 3.1.3) and the TMaze environment described, we now have a

concrete context through which we can understand Dyna agents with different

models. We provide a summary of example agents and the properties that they

satisfy in Table 3.1. Before going into why these agents have various property

combinations, we need to understand how their models are constructed. Lets

assume a Q-learning update for our Dyna agent instantiations and an ϵ-greedy

policy. Oracle Model Dyna cheats; it has access to the true environment

transition probability function at every point in time. Its search control prob-

ability distribution, P̂ (ψS(s), ψA(a)), is a distribution that assigns a non-zero

probability to every possible (s, a) ∈ S × A. This distribution can, for exam-

ple, be a uniform distribution. The extreme opposite to Oracle Model Dyna

is Null Model Dyna. It has a model that can only produce zero vectors for

ŝ, â, and ŝ′. It is equivalent to model-free Q-learning.

Is there a middle ground between the extremes of having a perfect model

and having effectively no model at all? Consider the TMaze in Figure 3.1. As

in All Experience Dyna in Algorithm 1 in Chapter 2, a simple strategy can be

to gather any experience tuple, (ψS(s), ψA(a), r, ψS(s
′)), encountered through
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interaction with the environment and sample uniformly from these tuples in

planning. If a model is simply a set of experiences that the agent encounters,

then the model’s search control probability distribution is the uniform random

distribution over the agent’s set of experience, which will eventually cover all

possible experiences. Given that rewards are switching between two reward

regimes at terminals (NT and ST) in the TMaze, this agent’s model is bound

to gather experience tuples that are identical in agent states, actions and next

states, yet different in rewards. In planning, the agent will sometimes sample

terminating experience tuples with rewards reflecting a reward regime that the

agent is not currently in, which will be misleading for the learning process, as

we will demonstrate empirically later in Section 3.2.

How can we have a simple model that just has experience tuples but that

avoids misleading the learning process? One idea is a model constructed with

gathered interaction experience that excludes any experience where a state

vector represents a pre-terminal state (PTS). In the TMaze, we call states 4

and 8 pre-terminal states. Eliminating any experience tuple with a PTS start-

ing state prevents any learning updates on a PTS. This removes the possibility

of sampling experiences with rewards that are not from the agent’s current re-

ward regime. Experience will look the same or be stable across reward regimes.

We call an agent with such a strategy NoPTS Stable Experience Dyna.

Since changing rewards can only be experienced in terminating transitions in

the TMaze, an alternative experience elimination strategy can be to only fil-

ter out experience tuples with a terminating next state (TNS). We call an

agent with this strategy NoTNS Stable Experience Dyna. Both, NoPTS

Stable Experience Dyna and NoTNS Stable Experience Dyna are exploiting

privileged knowledge of the TMaze domain, although not the unobservable

knowledge indicating anything about upcoming reward regimes. The only

non-stationarity not represented by these agents are rewards on termination.

All of the models that we have introduced so far, produce experience tuples

with agent states that can be mapped back to actual environment states. Is

there a simple agent that can plan well with states that do not map back to

an environment state? This is part of our core goal in this thesis precisely
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because we want to understand how model usefulness manifests without the

need to simulate an environment’s transitions. Expectation models are one an-

swer [SS10]. In Stable Experience’s model, a state is represented as the agent

state is defined: a one-hot encoded vector representation of a TMaze cell.

This representation is also part of the environment state. An Expectation

model, as originally defined, is a model that gives an experience tuple as usual

but the next state vector is an expectation of next state vectors that occur

with that experience tuple’s state and action. To handle an environment with

changing rewards in terminal states, we can derive expectation model agents

with strategies like NoPTS and NoTNS, which we use in Stable Experience

agents. NoPTS Expectation Model Dyna is an agent that gathers expe-

rience tuples except for tuples that have pre-terminal states as starting states.

Before putting an experience tuple in its set of experiences, it transforms its

next state vector into an expectation next state vector, which makes its set of

experience an expectation model. Similarly, NoNTS Expectation Model Dyna

is an agent that gathers experience tuples except for tuples that have terminal

states as next states. It does exactly the same transformation on next state

vectors that NoPTS Expectation Model Dyna does. SynthDyna is an

agent with a learned model that we will be introducing later in this thesis as

our main contribution. In contrast to our Expectation Model and Stable Ex-

perience agents, SynthDyna does not assume knowledge of non-stationarities

in the world, in advance.

The three model properties introduced previously are best understood in

the context of the example agents we have provided so far. Oracle Model

Dyna, Null Model Dyna, and NoPTS Stable Experience Dyna have accurate

models satisfying Definition 3.1.1. An Oracle Model has an omniscient view

of the environment’s dynamics. It is accurate because it has access to the

true environment transition probability function at every point in time. A

Null Model does not even hold a representation of environment dynamics. In-

tuitively, it is accurate as it it claims to know nothing, and by extension, it

does not claim to know something about the world’s dynamics that is actually
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incorrect 1. The Null model is accurate since P̂ (ψS(s), ψA(a)) = 0 for every

environment state and action, (s, a). This is a consequence of the search con-

trol probability being P̂ (ŝ, â) = 1 when ŝ ∈ S and â ∈ Â are zero vectors.

NoPTS Stable Experience is an accurate model because it only gathers expe-

rience tuples with no pre-terminal starting states, and thus, the distribution

of gathered tuples will always be the same regardless of the reward regime. In

contrast, NoTNS Stable Experience is not accurate because it gathers experi-

ence while only eliminating terminating transitions. This makes the model’s

transition probability not equal to the true environment transition probability

given pre-terminal states and their associated actions. Recall that the TMaze

environment has some stochasticity. With some (usually small) probability, an

action at a pre-terminal state that usually leads to a terminal state might be

associated with a non-terminating next state in some experience tuples. So,

with the elimination of terminating transitions, the agent transition probabil-

ity increases for a non-terminating next state and a non-terminating reward,

given a pre-terminal state and the action that usually leads to a terminating

next state. Similarly, All Experience Dyna is inaccurate because mixing expe-

riences from the TMaze’s two reward regimes means that the agent transition

probability is not equal to the true transition probability for any next state

and reward given any pre-terminal state and action. Models in NoTNS Expec-

tation Model Dyna and NoPTS Expectation Model Dyna are all inaccurate

for the same reason; sampled experience tuples from them do not necessarily

have agent states or next states that map back to environment states through

ψS .

Oracle Model Dyna, All Experience Dyna, NoTNS Stable Experience Dyna,

and NoTNS Expectation Model Dyna have complete models satisfying Defi-

nition 3.1.2. Assume that these agents were to be run forever such that their

models will eventually reach a point where every possible agent state-action

pair is present. The mapping from these agent state-action pairs to envi-

ronment state-action pairs is surjective. For every environment state-action

pair (s, a), it is possible for these agents to sample an experience tuple with

1Assume that ψS and ψA will never map an environment state or action to a zero vector
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ψS(s) and action ψA(a). Null Model Dyna, NoPTS Stable Experience Dyna

and NoPTS Expectation Model Dyna are all incomplete models. Null Model

Dyna does not have any experience tuples with agent states and actions that

map back to environment states and actions, so it is impossible to sample such

experience tuples. NoPTS Stable Experience Dyna and NoPTS Expectation

Model Dyna both gather experience tuples yet eliminate experience tuples

containing pre-terminal states as the starting state. So, it becomes impossible

to sample those states.

Oracle Model Dyna, All Experience Dyna, NoPTS Stable Experience Dyna,

and NoTNS Stable Experience Dyna have proper models satisfying Definition

3.1.3. Recall that in the TMaze, we define ψS to be a one-hot encoding extrac-

tor of an environment state’s one-hot encoded cell index. We also define ψA to

be a function that takes in environment action indicating a cardinal direction

with an index (e.g. 0,1,2,3) and returns a one-hot encoded vector of that index.

These agents have proper models because their models can only produce an

experience tuple, (ψS(s), ψA(a), r, ψS(s
′)), with agent states and actions that

map back to environment states and actions. In contrast, Null Model Dyna,

NoTNS Expectation Model Dyna and NoTNS Expectation Model Dyna have

improper models. By definition, the Null Model can only produce a zero vec-

tor state and action, and they do not map back to any environment state and

action. Expectation Models produce expected next state vectors, which do

not map back to any environment state vectors in a stochastic environment

like the TMaze.

Through examples of agents in a stochastic and changing TMaze environ-

ment, we demonstrate how a model can be accurate, complete or proper, yet

we are left with our core questions on the utility of model accuracy.

3.2 Empirical Evidence

Can inaccurate models beat accurate models in performance? To answer this

question, we can compare agents with accurate models to agents with inaccu-

rate models as they are labelled in Table 3.1. We will not be looking at Oracle
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Model Dyna, since it is impossible to discover without assumptions on when

the TMaze’s terminals will switch into a new reward regime. We run all other

agents in the TMaze environment for 30000 episodes. We evaluate agents on

the last 1200 episodes, which we call the evaluation period. The environment

switches between its two reward regimes every N = 600 episodes and it has a

stochasticity degree of ρ = 0.15. We generally follow the result reporting rec-

ommendations from [ASC+21]. We use 30 samples per statistic and %95 (i.e.

α = 0.05) percentile bootstrapped confidence intervals with 100K repetitions.

Such confidence intervals are constructed by first re-sampling the samples we

have (with replacement) for 100K times. Then, we record the statistic of in-

terest for each of the 100K re-sampled groups. After that, we can construct

the confidence interval with the lower limit being the α/2 quantile of the 100K

statistics and the upper limit being the 1−α/2 quantile of the 100K statistics.

Figure 3.2 and Figure 3.3, demonstrate the Mean Squared Return Error

across the episodes happening around the last two reward regime switches

where evaluation period happens. The Return Error is the difference be-

tween the optimal discounted return and the actual discounted return in an

episode. Similarly, Figure 3.4 and Figure 3.5, demonstrate the Inter-quartile

Mean (IQM) Squared Return Error across the same set of episodes. The In-

terquartile Mean is useful for observing mean performance without extreme

values. In Figure 3.6, we highlight aggregate agent performance with Mean

Squared Return Errors (MSRE) over the evaluation period. We show the me-

dian, IQM and the mean of this performance metric across runs. An error here

is the difference between the optimal discounted return and an agent’s actual

discounted return. We use grid search and choose hyperparameters according

to the average MSRE in the last 1200 episodes. After selecting hyperparam-

eters for any agent based on 30 runs per hyperparameter configuration, we

always report results on 30 independent runs.
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Figure 3.2: Around the first reward switch period in evaluation, we observe
the Mean Squared Return Error across episodes, per baseline agent. A dot
summarizes 30 agent runs in the TMaze in environment. A shaded region is
a %95 percentile bootstrap confidence intervals constructed with 100K repe-
titions. The reward regime switch happens at the 28800-th episode indicated
by a dotted line.
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Figure 3.3: Around the second reward switch period in evaluation, we observe
the Mean Squared Return Error across episodes, per baseline agent. A dot
summarizes 30 agent runs in the TMaze in environment. A shaded region is
a %95 percentile bootstrap confidence intervals constructed with 100K repe-
titions. The reward regime switch happens at the 29400-th episode indicated
by a dotted line.
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Figure 3.4: Around the first reward switch period in evaluation, we observe the
Inter-Quartile Mean (IQM) Squared Return Error across episodes, per baseline
agent. A dot summarizes 30 agent runs in the TMaze in environment. A
shaded region is a %95 percentile bootstrap confidence intervals constructed
with 100K repetitions. The reward regime switch happens at the 28800-th
episode indicated by a dotted line.
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Figure 3.5: Around the second reward switch period in evaluation, we observe
the Inter-Quartile Mean (IQM) Squared Return Error across episodes, per
baseline agent. A dot summarizes 30 agent runs in the TMaze in environment.
A shaded region is a %95 percentile bootstrap confidence intervals constructed
with 100K repetitions. The reward regime switch happens at the 29400-th
episode indicated by a dotted line.
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Figure 3.6: Evaluation performance per baseline agent summarized by the
Mean Squared Return Error. We show the Median, Inter-Quartile Mean
(IQM), and Mean of the performance metric over 30 runs. Intervals around
performance point estimates are %95 percentile bootstrap confidence intervals
constructed with 100K repetitions.

First of all, we clearly see from All Experience Dyna that when a model-

based agent operates in the world without accounting for change, its model will

be inevitably inaccurate. All Experience Dyna has large fluctuations in errors

most clearly seen in Figures 3.2 and 3.3. In fact, sampling experience that is

irrelevant for the current reward regime can be so harmful to the extent that

Null Model Dyna, an effectively model-free agent, can beat All Experience

Dyna in aggregate performance as seen in Figure 3.6. So model inaccuracy

can be detrimental. Second, as seen in Figure 3.6, inaccurate models can beat

accurate models in aggregate performance. NoTNS Stable Experience, NoTNS

Expectation Model and NoTNS Expectation Model are all inaccurate models

that perform better than an accurate model, NoPTS Stable Experience. Third,

NoPTS Expectation Model Dyna in Figure 3.6, indicates that a model can

be inaccurate, incomplete and improper, yet still beat an accurate model in

aggregate performance. In this case, the accurate model is the model of NoPTS

Stable Experience. Given that there exists handcrafted inaccurate models that

can perform better than accurate models, this suggests that in the absence of

knowledge on the scheduled nature of non-stationarity in the world, model

accuracy is not necessarily the best objective for model learning. In the next

chapter, we explore an alternative model learning objective with a focus on

usefulness to value function learning without imposing accuracy as a goal and

without restricting the space of models to complete or proper models.
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Chapter 4

Performance Potential of Useful
Models

Handcrafted expectation models show us how a model can be inaccurate yet

more useful than an accurate handcrafted model. In addition, they show us

that a model can be incomplete and improper yet still be useful. What still re-

mains is this model existence question: Does there exist learnable useful models

whose learning objective does not constrain them to be accurate, complete or

proper? Can these models beat accurate models? In Section 5.1, we assume

an idealized learning algorithm and we describe our attempt at designing a

model-learning loss function to answer this existence question. In Section 5.2,

we discuss empirical results for that algorithm.

4.1 SynthDynaPrime: Offline Model Training

and Perfect Loss Targets

As mentioned in Section 2.3, recent meta-learning research highlights its po-

tential to speed up learning in situations similar to ones seen in the past.

When learning is sped up in a certain situation, we simply mean that policy

learning happens faster than if no meta-learning took place beforehand. This

means that the agent adapts its behaviour relatively quickly. For example, let

us reconsider our TMaze in Figure 3.1 from Section 3.1. An agent is exposed

to two situations manifested in the two reward regimes of the TMaze. If an

ideal agent were to navigate this maze, we would expect it to understand that
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terminal rewards are not going to be the same for all time. The agent would

need to understand that its always productive to walk along the initial hallway

of the maze but that the decision point of going north or east at the of the

hallway is important to get right in order to maximize reward. As soon as

the agent is exposed to a reward change on a certain terminal state, it needs

to update their beliefs quickly to explore again and discover that the other

terminal is the rewarding one now. Of course, in an environment as simple

as this, the agent could potentially avoid exploring again by simply memo-

rizing the pattern of reward switches. However, recall that we are assuming

the agent has no knowledge on the consistent nature of the non-stationarity

in the world, as we are not trying to design algorithms that are too specific to

a certain pattern.

How can we induce similar behaviour in agents? One approach taken in the

“meta-gradient” style of RL is to meta-learn more efficient update functions

[XvHS18, XvHH+20, FSZ+22]. For example, an update rule can be completely

parametrized or partially parametrized by components like its discount factor

or its target. Then, parametrized quantities can be learned by taking a gra-

dient through a meta-loss. As stated in our model existence question, we are

interested in understanding whether useful models can be learned with a learn-

ing objective that does not constrain them to be accurate, complete or proper.

In [SRL+20], Generative Teaching Networks are introduced as a method for

meta-learning training data that can speed up learning. So, one promising

idea could be to parameterize data (i.e. experience) in planning updates and

meta-learn a model to generate that data.

Algorithm 2 L : SynthDynaPrime Meta Loss

1: input: θ ∈ Rm×n, θtrue

2: for 1, · · · , k do
3: s̃, ã, r̃, s̃′ ∼ m(η)
4: δ̃ ← r̃ + γmax(θs̃′)− (θs̃)T ã
5: θ ← θ + ζδ̃(ã⊗ s̃)

6: return: ||θ − θtrue||22

In Algorithm 2, we introduce a metaloss for training a generative model
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m with meta-parameters η. We allow this model to generate a whole tuple of

experience (s̃, ã, r̃, s̃′). In order to make the objective of this model aligned with

the objective of the agent, we require that planning with the model (lines 2 to

5) from arbitrary value function parameters θ results in a value function closer

to the target true value function θtrue (line 6), which in turn, should result

in policy improvement. Choosing some proxy for a target value function can

be tricky especially in a seemingly changing world. So for now in line 6, we

assume that the target is given as the true value function (parameters given by

θtrue) in order to explore the potential of models learned with the metaloss in

Algorithm 2. This metaloss is somewhat related in form to the bootstrapped

meta-gradient loss introduced in Chapter 2.3. Here, the outer loss is given by

the matching function, µ(a,b) = ||a − b||22, which was previously studied in

the context of Bootstrapped Meta-learning [FSZ+22]. However, bootstrapping

the target is completely bypassed by our assumption that the target is the true

value function. With these choices on the model’s interface and the meta-loss,

we are effectively giving our model the ability to generate any experience tuple

as long as it is useful for value function learning. The learned model is allowed

to be inaccurate, incomplete and improper.

SynthDynaPrime in Algorithm 3 is an idealization of the algorithm we

aim to develop as it is specifically designed to allow us to focus on develop-

ing the loss function and answer our model existence question. In order to

focus on developing a loss function, we train SynthDynaPrime’s model offline.

This eliminates the possibility of over-fitting on early data or training on non-

iid data. We also make several simplifying assumptions that relate to the

environment: (1) we have the ability to start an agent at a particular task

configuration, (2) we have access to the environment dynamics which allows

us to compute the true value function per task configuration, and (3) we have

the ability to restart an agent arbitrarily many times in the environment.

In lines 4 to 6, SynthDynaPrime starts by computing the true value func-

tion per environment dynamics configuration in set C. An environment con-

figuration in our case is going to be a different placement of rewards in the

environment. In lines 9 to 16, starting τ times from each environment config-

30



uration, we run model-free Q-learning (Null Model Dyna) to gather starting

θ̂t examples along with the corresponding true value function parameters in-

dexed by the current environment configuration c̄ as in Θtrue[c̄]. Tuples of (θ̂t,

Θtrue[c̄]) are gathered in the collection Θ̂. Note that although gathering θ̂t ex-

amples starts from different environment configurations, these configurations

can change as the agent interacts with the environment, hence the need to

index the true value function parameters by the current environment configu-

ration. In lines 19 to 23, we use the data gathered in Θ̂ to train a generative

model m(η) using the SynthDynaPrime metaloss L in Algorithm 2 (in imple-

mentation, we hold out a validation data-set and use early stopping to avoid

over-fitting). In lines 26 to 39, we run an agent with Dyna-style planning. The

agent uses the learned model m(η) in planning which updates the actual value

function θt that parameterizes the agent’s policy πθt−1 .
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Algorithm 3 SynthDynaPrime

1: input: feature transform f , world dynamics configurations C
2: initialize: θ0 ∈ Rm×n, η, Θtrue = dict(), Θ̂ = [] ŝ0 ← f(h0)
3: // Run Value Iteration for each change period, assuming knowledge of

world dynamics
4: for every environment configuration of dynamics in C, indexed by c do
5: θtrue ← value iteration(c, C, γ)
6: Θtrue[c] = θtrue

7:

8: // Gather θ data from model free Q-learning (Null Model Dyna)
9: for every environment dynamics configuration in C, indexed by c do
10: for 1, · · · , τ do // Generate multiple trajectories Initialize θ̂0 ∈ Rm×n

11: set world starting config(c)
12: for t = 1, 2, · · · do
13: δ ← rt + γmax(θ̂tŝt)− (θ̂tŝt−1)

T ât−1

14: θ̂t ← θ̂t + αδ(ât−1 ⊗ ŝt−1)
15: c̄← get current world config()
16: Θ̂.append((θ̂t,Θtrue[c̄]))

17:

18: // Train a model m for e epochs based on gathered data and loss L from
Algorithm 2

19: for 1, · · · , e do
20: for each minibatch-sized part of Θ̂ do
21: // Update SynthDynaPrime model with metaloss L (Alg 2).
22: Sample minibatch B from Θ̂.
23: η ← Optimizer(η,B,L)
24:

25: // SynthDynaPrime’s main loop
26: for t = 1, 2, · · · do
27: Take an action ât−1 given by the ϵ-greedy policy, πθt−1

28: Observe ot and rt from the environment.
29: ŝt ← f(ht)
30:

31: // Update action-state value parameters, θ, with veridical experience.
32: δ ← rt + γmax(θtst)− (θtŝt−1)

T ât−1

33: θt ← θt + αδ(ât−1 ⊗ ŝt−1)
34:

35: // Update action-state value parameters, θ, with internal experience.
36: for 1, · · · , k do
37: s̃, ã, r̃, s̃′ ∼ m(η)
38: δ̃ ← r̃ + γmax(θts̃t)− (θts̃t−1)

T ã
39: θt ← θt + βδ̃(ãt ⊗ s̃t−1)

40:

32



4.2 Empirical Results

We test SynthDynaPrime (Algorithm 3) on the TMaze environment intro-

duced in Section 3.1. We use the same environment settings, evaluation

methodology, and hyperparameter selection strategy in Section 3.2. One key

difference is that we select hyperparameters for SynthDynaPrime based on

running it with a fixed model for 3600 episodes (instead of 30000) and eval-

uating it on the last 1200 episodes. This is just to facilitate more searching

over hyperparameters since performance does not differ too much at 30000

episodes when the model is fixed. After hyperparameter selection, we report

the final performance by running SynthDynaPrime for 30000 episodes with

a fixed model. We use 3600 episodes for each run of the data gathering Q-

learning algorithm in SynthDynaPrime. We build a model as a fully connected

2-layer Neural Network with ReLU activations. The model takes in a Gaussian

noise vector and gives an experience tuple to be used in planning. We train

the model with an Adam optimizer.

In Figures 4.1 and 4.2, we examine the performance of SynthDynaPrime

(along with baselines defined in Section 3.1) in terms of the Mean Squared

return Error at every episode near the last two reward regime switches. In

Figures 4.3 and 4.4, we repeat the same plots but with the Inter-quartile

Mean Squared Return Error as the performance metric, to look at performance

when measurements in the top and lower quartiles are eliminated. These

plots indicate that SynthDynaPrime can facilitate adaptation to changes in

the environment. It is faster in adaptation than Q-learning and unlike All

Experience Dyna, it can roughly settle at a low error. There is some variability

in its performance as highlighted in the difference between Mean Squared

Return Error plots in comparison with Inter-quartile Mean Squared Return

Error plots. We think this can be improved with more data coverage for

gathered θ data. SynthDynaPrime’s relationship to other handcrafted (i.e.

cheating) model-based algorithms is less clear from these plots, so we examine

this in terms of aggregate performance plots.

In Figure 4.5, we summarize performance by first computing the Mean
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Squared Return Error per run over the last 1200 episodes, and then compute

an aggregate metric over runs. The last 1200 episodes cover the last two

reward switches in the TMaze. SynthDynaPrime yields an aggregate Mean

Squared Return Error of 0.02350 with 95% bootstrapped percentile confidence

interval of (0.02304, 0.02396). NoPTS Stable Experience Dyna, the model-

based agent with an accurate model from Chapter 3, yields a Mean Squared

Return Error of 0.02520 with a 95% bootstrapped percentile confidence interval

of (0.02472, 0.02566). Recall that NoPTS Stable Experience Dyna is an agent

whose model consists of a set of every experience tuple encountered except for

experiences where the starting state is a pre-terminal state. This allows NoPTS

Stable Experience Dyna to avoid updating pre-terminal states in planning since

these are the states that can occur before a changing final reward is reached.

Therefore, in terms of aggregate performance, SynthDynaPrime can learn an

inaccurate model that beats an accurate model that is informed of the non-

stationarity in the environment. We can also see this when considering other

metrics that are robust to skewed distributions like the IQM and the median.

These results also show that there exists such a useful model that can be reached

with a learning objective that makes no restrictions on a model being accurate,

complete or proper.

In Appendix A, we include examples of generated experiences from the

SynthDynaPrime model and contrast them to examples of experiences that can

be seen in AllExperienceDyna’s model and StableExperience models. The fact

that synthetic transitions do not correspond to any transitions that can happen

in the TMaze world means that the generative model of SynthDynaPrime is

improper. It is not possible for us to formally claim with complete certainty

that the model is in fact incomplete or inaccurate. This is because the model is

a generative model with continuous outputs representing full experience tuples

(state, action, reward, next state). It is not possible to examine every possible

tuple to check for transitions with elements that map to real transitions, given

the continuous nature of this model’s output. Thus, it becomes impossible to

say with complete certainty if this model is inaccurate or incomplete. However,

no matter how much we tried in our attempts to generate experiences, we
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never obtained any experience tuples with any elements that could potentially

be even close to real experiences.
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Figure 4.1: Around the first reward switch period in evaluation, we observe
the Mean Squared Return Error, per agent, across episodes, in comparison
to SynthDynaPrime. A dot summarizes 30 agent runs in the TMaze in envi-
ronment. A shaded region is a %95 percentile bootstrap confidence intervals
constructed with 100K repetitions. The reward regime switch happens at the
28800-th episode indicated by a dotted line.
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Figure 4.2: Around the second reward switch period in evaluation, we observe
the Mean Squared Return Error, per agent, across episodes, in comparison
to SynthDynaPrime. A dot summarizes 30 agent runs in the TMaze in envi-
ronment. A shaded region is a %95 percentile bootstrap confidence intervals
constructed with 100K repetitions. The reward regime switch happens at the
29400-th episode indicated by a dotted line.
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Figure 4.3: Around the first reward switch period in evaluation, we observe the
Inter-Quartile Mean (IQM) Squared Return Error, per agent, across episodes,
in comparison to SynthDynaPrime. A dot summarizes 30 agent runs in the
TMaze in environment. A shaded region is a %95 percentile bootstrap confi-
dence intervals constructed with 100K repetitions. The reward regime switch
happens at the 28800-th episode indicated by a dotted line.
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Figure 4.4: Around the second reward switch period in evaluation, we ob-
serve the Inter-Quartile Mean (IQM) Squared Return Error, per agent, across
episodes, in comparison to SynthDynaPrime. A dot summarizes 30 agent runs
in the TMaze in environment. A shaded region is a %95 percentile bootstrap
confidence intervals constructed with 100K repetitions. The reward regime
switch happens at the 29400-th episode indicated by a dotted line.
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Figure 4.5: Evaluation performance per agent in comparison with SynthDy-
naPrime, summarized by the Mean Squared Return Error. We show the Me-
dian, Inter-Quartile Mean (IQM), and Mean of the performance metric over 30
runs. Intervals around performance point estimates are %95 percentile boot-
strap confidence intervals constructed with 100K repetitions.

Although our results answer our questions for this section, it is interest-

ing to also observe here that SynthDynaPrime did not learn a model that

can beat other competitive handcrafted inaccurate models like NoPTS Ex-

pectation Model Dyna, NoTNS Expectation Model Dyna and NoTNS Stable

Experience. Why is that? One hypothesis can be that our model cannot ex-

press the data-generating distributions needed given its limited capacity. In

that case, we need to increase our model’s capacity and observe whether that

prompts it to learn even more powerful models. Another hypothesis can be

that SynthDynaPrime’s model does not have enough transition data to learn

the more intricate generative distribution for transitions occurring with pre-

terminal states. In that case, we need to observe performance as a function

of increasing data gathered by Q-learning. We should also consider gathering

data with a policy that has more randomness, to introduce more data diversity.

We leave the investigation of these hypotheses for future work. The model ex-

istence question powered by SynthDynaPrime’s intentionally idealized design

is a fascinating question that can help us explore what performance is possible

in an expanded space of models that is not traditionally fully considered in

MBRL.
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Chapter 5

Useful Model Learning with a
Single Experience Stream

Our results in Chapter 4 confirm that we have a loss function that can help

with finding useful models that can beat our handcrafted accurate models.

The loss function does not place any constraints on the model being accurate,

complete or proper. However, the model training procedure we use with this

loss function is offline and it assumes privileged access to perfect loss targets.

In this Chapter, we consider the idea of training the model within an agent’s

single experience stream and eliminating access to perfect loss targets.

5.1 SynthDyna Algorithm

To remove SynthDynaPrime’s (Algorithm 2) dependence on perfect loss targets

(i.e. the true value function parameters θtrue), we need to find a proxy for

these. One idea is to construct a bootstrapped target as in bootstrapped meta-

gradients described in Chapter 2 and in [FSZ+22]. After imagining planning

in the metaloss from some arbitrary starting θ to obtain θ′, we can apply a

fixed number of additional updates to θ′ with the model in order to construct

a target. This is problematic in our particular case. Since we are learning

the data of the planning update, these additional updates with the model

will be completely un-grounded by any experience from the world. So the

targets can quickly become misleading. In Algorithm 4, we describe our new

metaloss. Here, we adopt a safer idea for constructing targets. We apply
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the additional updates using temporally coherent real experience, V , from

the world rather than using model-generated experience. We require that

experiences in V happen sequentially in the world after the input θ is recorded.

Real experience updates ensure that the targets constructed are productive to

aim for in learning. The sequential nature of θ and V experience ensures that

the real updates are done with experiences that occur as close as possible to

θ. Thus, these experiences can be as relevant as possible to the environment

configuration in which θ occurs. There is an interesting “middle-ground” idea

of including some additional model updates along with real experience updates

in the construction of targets. We leave this as an avenue for future work.

In Algorithm 5, we introduce SynthDyna, an algorithm that uses the loss

in Algorithm 4 to train a model within an agent’s single experience stream

without assumptions of access to perfect loss targets. This algorithm is exactly

like All Experience Dyna in Algorithm 1 except in the construction of the set

of experience D and in the usage of a learned model m(η). We maintain two

temporally coherent queues of length v: Qe for experience tuples and Qθ for

value function parameters. As in line 13, this allows us to build D with tuples of

(a) temporally coherent experiences and (b) the value function parameters that

occur before them. In lines 17 to 25, we have steps identical to All Experience

Dyna except in the fact that planning happens with a learned model in line

23. In lines 27 to 29, we sample a minibatch of tuples from D and use an

optimizer with the metaloss in Algorithm 4 to update model parameters η. In

our implementation, we do this every fixed number of time-steps. We also use

reservoir sampling to keep the experience set’s capacity fixed, but allow the

set to hold a uniform random sample of all past experience [Vit85].
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Algorithm 4 L : SynthDyna Meta Loss

1: input: θ ∈ Rm×n, V =[(ŝ0, â0, r0,ŝ
′
0), ..., (ŝv, âv, rv,ŝ

′
v)]

2: for 1, · · · , k do
3: s̃, ã, r̃, s̃′ ∼ m(η)
4: δ̃ ← r̃ + γmax(θs̃′)− (θs̃)T ã
5: θ ← θ + ζδ̃(ã⊗ s̃)

6: θ′ ← θ
7: for each tuple (ŝ, â, r, ŝ′) in V do
8: δ ← r + γmax(θ′ŝ′)− (θ′ŝ)T â
9: θ′ ← θ′ + ζδ(â⊗ ŝ)

10: return: ||θ − θ′||22
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Algorithm 5 SynthDyna

1: input: feature transform f
2: initialize: θ0 ∈ Rm×n, θp ∈ Rm×n, Qe = queue([]), Qθ = queue([]), η,
D ← {}, ŝ0 ← f(h0)

3: for t = 1, 2, · · · do
4: Take an action ât−1 given by the ϵ-greedy policy, πθt−1

5: Observe ot and rt from the environment.
6: ŝt ← f(ht)
7: Qe.append((ŝt−1, ât−1, rt, ŝt))
8: Qθ.append(θp)
9:

10: // Maintain queues of last v experiences and θ matrices
11: if len(Qθ) == v then
12: θ ← Qθ.pop(0) // Add earliest θ and the v experiences after it
13: D ← D ∪ {(θ, Qe)}
14: Qe.pop(0)

15:

16: // Update action-state value parameters, θ, with veridical experience.
17: δ ← rt + γmax(θtŝt)− (θtŝt−1)

T ât−1

18: θt ← θt + αδ(ât−1 ⊗ ŝt−1)
19: θp ← θt // Save θt for model training
20:

21: // Update action-state value parameters, θ, with internal experience.
22: for 1, · · · , k do
23: s̃, ã, r̃, s̃′ ∼ m(η)
24: δ̃ ← r̃ + γmax(θts̃)− (θts̃)

T ã
25: θt ← θt + βδ̃(ãt ⊗ s̃)

26:

27: // Update SynthDyna model with metaloss L (Alg 4).
28: Sample minibatch B from D.
29: η ← Optimizer(η,B,L)

5.2 Empirical Results

We run SynthDyna (Algorithm 5) on the TMaze environment introduced in

Section 3.1. We use the same environment settings, agent state definitions,

and evaluation methodology in Section 3.2. Using grid search, we select hy-

perparameters for SynthDyna by running it for 30000 episodes and evaluating

it on the last 1200 episodes. We maintain the same model architecture from

SynthDynaPrime (Algorithm 3) and train the model with an RMSProp op-

41



timizer. We use a fixed capacity of 30000 for D. In Figures 5.1 and 5.2, we

observe the performance of SynthDyna (along with SynthDynPrime and base-

lines). We highlight performance in terms of the Mean Squared return Error

at every episode near the last two reward regime switches. In Figures 4.3 and

4.4, we provide the same plots but with the Inter-quartile Mean Squared Re-

turn Error as the performance metric. Once again, these plots indicate that

SynthDyna can adapt to changes in the environment. However, this adap-

tation is (unsurprisingly) slower than SynthDynaPrime. SynthDyna can be

faster in adaptation than Q-learning in some stretches of time, but it is not

always definitively so. In some stretches of time it can roughly settle at a low

error unlike All Experience Dyna. Nevertheless, we can see that it sometimes

has error spikes in later periods where we would like it to settle.

In Figure 5.5, we summarize performance for all algorithms in this thesis

with aggregate metrics over 30 runs per agent. For each agent run, we as-

sess performance with the Mean Squared Return Error (MSRE) over the last

1200 episodes out of 30000 episodes. SynthDyna roughly matches an algo-

rithm with a handcrafted accurate model (NoPTS Stable Experience Dyna)

in the Inter-quartile Mean (IQM). SynthDyna obtains an IQM of 0.02496 and a

%95 boostrapped percentile confidence interval of (0.02435, 0.02572). NoPTS

Stable Experience Dyna obtains an IQM of 0.02530 and a %95 boostrapped

percentile confidence interval of (0.02469, 0.02582). Looking at individual run

MSRE scores for SynthDyna we find that some runs skew the aggregate Mean

MSRE into higher error. This is why we see larger confidence interval bands

for the Mean in Figure 5.5. The IQM, however, is more robust to skews in

data. Overall, these results indicate that SynthDyna can learn a useful model

that at least matches a handcrafted accurate model if we can control for some

runs with a higher error skew in performance.

Learning a generative world model in a single stream of data with no

special phases (like pre-training) is a non-trivial task. We hypothesize that

SynthDyna’s performance can be improved further by utilizing tricks from

the literature within or adjacent to continual learning. For example, we can

try Neural Network layer resetting techniques designed to tackle over-fitting
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on early data in RL [NSD+22]. We can also try aggressive L2 regularization

or Shrink and Perturb both of which result in better model generalization in

situations where new data comes periodically [AA20].
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Figure 5.1: Around the first reward switch period in evaluation, we observe
the Mean Squared Return Error, per agent, across episodes, in comparison to
SynthDyna. A dot summarizes 30 agent runs in the TMaze in environment. A
shaded region is a %95 percentile bootstrap confidence intervals constructed
with 100K repetitions. The reward regime switch happens at the 28800-th
episode indicated by a dotted line.
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Figure 5.2: Around the second reward switch period in evaluation, we observe
the Mean Squared Return Error, per agent, across episodes, in comparison to
SynthDyna. A dot summarizes 30 agent runs in the TMaze in environment. A
shaded region is a %95 percentile bootstrap confidence intervals constructed
with 100K repetitions. The reward regime switch happens at the 29400-th
episode indicated by a dotted line.
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Figure 5.3: Around the first reward switch period in evaluation, we observe the
Inter-Quartile Mean (IQM) Squared Return Error, per agent, across episodes,
in comparison to SynthDyna. A dot summarizes 30 agent runs in the TMaze
in environment. A shaded region is a %95 percentile bootstrap confidence in-
tervals constructed with 100K repetitions. The reward regime switch happens
at the 28800-th episode indicated by a dotted line.
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Figure 5.4: Around the second reward switch period in evaluation, we ob-
serve the Inter-Quartile Mean (IQM) Squared Return Error, per agent, across
episodes, in comparison to SynthDyna. A dot summarizes 30 agent runs in
the TMaze in environment. A shaded region is a %95 percentile bootstrap
confidence intervals constructed with 100K repetitions. The reward regime
switch happens at the 29400-th episode indicated by a dotted line.
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Figure 5.5: Evaluation performance per agent in comparison with SynthDyna,
summarized by the Mean Squared Return Error. We show the Median, Inter-
Quartile Mean (IQM), and Mean of the performance metric over 30 runs.
Intervals around performance point estimates are %95 percentile bootstrap
confidence intervals constructed with 100K repetitions.
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Chapter 6

Conclusion

Our investigations start by asking: “Should models be accurate?” . This is an

important question for Model-based RL as it pushes the limits of our under-

standing on what useful model inputs and outputs can look like, thus expand-

ing our perception of the accessible space of useful world models. In Chapter 3,

our motivating investigations with handcrafted Expectation Models show that

there exists inaccurate models that can be more useful than analogous hand-

crafted accurate models. In fact, there even exists inaccurate, incomplete and

improper models that can beat accurate models. In Chapter 4, we introduce

SynthDynaPrime to consider the useful model existence question: Does there

exist learnable useful models better than accurate models and whose learning

objective does not constrain them to be accurate, complete or proper? Inspired

by meta-gradients research, we design a model learning objective that is fo-

cused on usefulness to learning rather than accuracy. We also give the model

full control over planning data by making it a generative model of full transi-

tion tuples. We investigate the potential of the model learning objective with

this model design by creating a model training procedure with offline model

training and privileged access to true value functions to use as loss targets.

Our experiments support answering the useful model existence question in the

affirmative. In Chapter 5, we introduce SynthDyna where we eliminate special

training phases and consider model-learning within an agent’s single stream of

experience. We also develop a proxy for true value functions to eliminate the

need for them. Our experiments show that SynthDyna can learn a model that
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matches an accurate model when using a performance metric that is robust

to skewed distributions. Ultimately, our work provides evidence that MBRL

can be better served by designing models and learning objectives that allow

models to simply be useful and not necessarily accurate or even complete or

proper.

As mentioned in various chapters, we think that there are various imme-

diate avenues for future work to improve SynthDyna’s performance. First for

SynthDynaPrime (a stepping stone to SynthDyna), we think performance can

be studied with both data scaling and model scaling, to understand if we can

push useful models to the performance of some other inaccurate handcrafted

models. Second, we think that outlier lower performance SynthDyna runs

can be addressed with some tools recommended for better continual learning

like layer weight resets [NSD+22], aggressive L2 regularization or Shrink and

Perturb [AA20]. These strategies can help us in avoiding over-fitting to early

experience.

There also more long-term avenues of future work that we think are par-

ticularly exciting. One idea is to meta-learn the discount factor along with

data for a planning update. This can allow for learning model abstractions

at multiple timescales. Another idea is to make the model more contextually

sensitive by conditioning it on some summary of the current history or the

current state. A third idea is to combine the metaloss presented here with

better model architectures like Dreamer [HLNB20] or like Score-based Dif-

fusion Models. Overall, our investigations represent an initial exploration of

an expanded space of models that are not accessible with traditional model

designs and model learning objectives focused on accuracy. We believe that

there is tremendous potential for developing competitive MBRL algorithms

when the focus is on model usefulness rather than model accuracy.
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Appendix A

Examples of Synthetic and Real
Experience

Below, we provide heatmaps of synthetic experience generated by SynthDy-

naPrime’s model (See Chapter 4). If we contrast these synthetic experience

examples to “real” experience as given by AllExperienceDyna’s model or as

given by models of StableExperience agents, we can see how these synthetic

experience examples do not map to any transitions that can happen in the

world. Each plot below summarizes experience examples by showing values

of a state vector (mapped onto a TMaze to the top left), action vector (the

four boxes to the bottom left, where each box represents a cardinal direction),

reward (the single box on the bottom right), and next state vector (mapped

onto a TMaze to the top right).
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A.1 Real Experience
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A.2 Synthetic Experience
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