
University of Alberta

HIGH-SPEED ALIAS-LOCKED LOOP FREQUENCY SYNTHESIS

by

Leendert Jan van den Berg

A thesis submitted to the Faculty of Graduate Studies and Research in partial ful­
fillment of the requirements for the degree of Master of Science

in

Computer, Microelectronic Devices, Circuits and Systems

Department of Electrical and Computer Engineering

Edmonton, Alberta
Fall 2008

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-55121-9
Our file Notre reference
ISBN: 978-0-494-55121-9

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lntemet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

• + •

Canada

We are at the very beginning of time for the human race. It is not unreasonable
that we grapple with problems. But there are tens of thousands of years in the

future. Our responsibility is to do what we can, learn what we can, improve the
solutions, and pass them on.

- Richard Feynman

To Mom and Dad,
and all ancestors who came before.

Abstract

This work presents a divider-less frequency synthesis architecture called an alias-

locked loop. The division in the feedback path of the phase-locked loop (PLL) is

modified by the addition of a latch that samples the local oscillator at a much lower

frequency. Thus, rather than just performing frequency division, the local oscillator

is sub-sampled, generating a lower-frequency aliased signal, which is utilized as

in any standard PLL. Using a sampling latch rather than a divider significantly

loosens the constraints placed on the feedback circuits. With a non-linear simulation

model that describes the time-domain behaviour of our architecture, stable modes of

operation with bounded orbits in phase-space are demonstrated. Simulations of an

implementation in 90-nm CMOS technology confirm the feasibility of the aliasing

approach. In noise and offset free circuit simulations of sampling latches using

a 90-nm CMOS process, we demonstrate successful sub-sampling of a 230 GHz

signal, which is greater than fmax.

Acknowledgements

The research presented here has been supported by the Natural Sciences and Engi­
neering Research Council of Canada (NSERC), CMC Microsystems and the Uni­
versity of Alberta.

First of all, I would like thank my supervisor, Dr. Duncan Elliott, for his advice,
guidance, and continuous support during my research. His unusually astute insights
into the engineering of various electronic systems and circuits have shown me how
to look at design challenges from a new perspective. Additionally, I appreciate the
freedom granted to me during my studies, which have enriched my experience by
allowing me to be involved in various projects not related to my thesis topic.

Additionally, I would like to thank the professors that have shaped the atmo­
sphere of the lab into a stimulating and welcoming environment with ample op­
portunities for collaboration: Dr. Bruce Cockburn, Dr. Vincent Gaudet, and Dr.
Stephen Bates.

I also wish to thank all the individuals that have been part of the VLSI and
HDCD labs for their friendship and camaraderie, including: John Koob, Tyler
Brandon, Ramkrishna Swamy, Maziyar Khorasani, Dr. Amirhossein Alimoham-
mad, Saeed Fouladi Fard, Wesam Al-Haddad, Anthony Ho, and Russell Dodd.

Finally, I wish to thank my parents and sibblings for their unconditional love
and support independent of my achievements and choices in life.

Table of Contents

1 Introduction 1
1.1 Thesis Organization 3

2 Background 5
2.1 Overview 5
2.2 Frequency Synthesizer History 6
2.3 Frequency Synthesizer Properties 7

2.3.1 Tuning Range 7
2.3.2 Settling Time 8
2.3.3 Output Signal Statistics 8

2.3.3.1 Time Domain 8
2.3.3.2 Frequency Domain 9

2.3.4 Other Concerns 10
2.4 Frequency Synthesis Methods 10

2.4.1 Direct Synthesis 11
2.4.1.1 Direct Analog Synthesis 11
2.4.1.2 Direct Digital Synthesis 11

2.4.2 Indirect Synthesis 14
2.4.2.1 Delay-Locked Loop Frequency Synthesis 14
2.4.2.2 Phase-Locked Loop Frequency Synthesis 16

2.4.3 Hybrid Frequency Synthesis 18
2.5 Phase-Locked Loop Implementation 19

2.5.1 Common Building Blocks 19
2.5.1.1 Oscillator 19
2.5.1.2 Phase Comparator 20
2.5.1.3 Loop Filter 21
2.5.1.4 Feedback Divider 22

2.6 Aliasing 22
2.6.1 Previous Subsampling Architectures 25

2.7 Current High-Frequency Synthesis Methods 25
2.7.1 Direct Analog and Hybrid Systems 26
2.7.2 PLLOnly 26

2.8 Summary 27

3 Alias-Locked Loop Architecture 28
3.1 Overview 28
3.2 Proposed Architecture 28

3.2.1 Alias-Locked Loop Frequency Synthesis 29
3.2.2 Implications 31

3.2.2.1 Feedback Signal Time Discretization 32
3.2.2.2 VCO Frequency Determination 34
3.2.2.3 Loop Filter Design 35

3.2.3 Variations 35
3.2.3.1 Sampler and Divider in Feedback Path 36
3.2.3.2 Multiple Sample Frequencies 37
3.2.3.3 Digital Phase-Error Processing 37

3.3 Sampling Circuit Requirements 38
3.3.1 Sampling Latch Properties 39
3.3.2 Duty Cycle Correction 40

3.3.2.1 Duty Cycle Measurement Algorithm 41
3.4 Summary 42

4 Sampler Circuit Design and Simulation 43
4.1 Overview 43
4.2 Latch Circuits 43

4.2.1 Latch Performance Evaluation Methodology 44
4.2.1.1 Maximum Frequency Test 44
4.2.1.2 Latch Sensitivity Function Analysis 46

4.2.2 Standard Cell D Hip-Flop 48
4.2.2.1 Circuit Design 48
4.2.2.2 Circuit Simulation 49

4.2.3 Differential Pass-Transistor Pulsed Latch 51
4.2.3.1 Circuit Design 52
4.2.3.2 Circuit Simulation 52
4.2.3.3 Latch Hysteresis Buffer 55

4.2.4 Sense-Amplifying Latch Circuit 58
4.2.4.1 Circuit Design 58
4.2.4.2 Circuit Simulation 58

4.2.5 Latch Simulation Results Summary 61
4.3 Input Threshold Correction 61

4.3.1 Circuit Design 62
4.3.1.1 Duty-Cycle Tolerance Circuit 65

4.3.2 Circuit Simulation 67
4.4 Summary 70

5 Analysis and System Simulation Results 72
5.1 Overview 72
5.2 Non-Linear Model 72

5.2.1 Model Assumptions 73
5.2.2 Model Description 73

5.3 Non-Linear Model Simulation 77
5.3.1 Jitter and Phase Noise 82
5.3.2 Impact of Sample and Reference Signals Choices 84

5.3.2.1 Increasing the Sampling Clock Frequency 85
5.3.2.2 Non-Integer Ratio of Sample and Reference Clock

Frequencies 85
5.3.2.3 Subsampling and Frequency Division 86

5.4 90-nm CMOS Implementation 88
5.4.1 90-nm Simulation Versus Non-Linear Model 88
5.4.2 90-nm Pull-In Simulation 91

5.5 Summary 92

6 Conclusion 94
6.1 Accomplishments 95
6.2 Future Work 95

Bibliography 98

A Spice Circuit Simulation Settings 104
A.l Sample Circuit Simulations 104
A.2 Duty Cycle Detection Simulation 105
A.3 90-nm ALL model 106

B Source Code 108
B.l Alias-Locked Loop Simulation Program 108
B.2 Alias-Locked Loop Histogram Generation Program 114
B.3 Latch Sensitivity Plot Generation Program 115
B.4 Latch Sampling Window Sensitivity Plot Generation Program . . . 117

C Circuit Diagrams for 90-nm Implementation 121
C.l Latches and Latch Test Benches 121
C.2 Latch Threshold Correction and Detection Circuits 125
C.3 90-nm CMOS ALL Circuit Implementation 129

List of Tables

2.1 Comparison of fastest VCOs and frequency dividers in the litera­
ture, given as maximum operating frequency (GHz) 27

4.1 Maximum input frequencies for latch designs 61

A.l Latch circuit transient noise simulation settings 105
A.2 Latch circuit transient simulation parameters 105
A.3 Left DAC output voltage transient simulation parameters 106
A.4 Simulation parameters for generation of phase-space orbit and pull-

in plots 107

List of Figures

2.1 Illustrative power spectral density plot of an oscillator 9
2.2 A direct analog synthesis system block diagram, based on [1] . . . 12
2.3 High-level direct digital synthesis architecture block diagram . . . 12
2.4 Block diagram of a tapped delay-line delay-locked loop frequency

multiplier 15
2.5 Block diagram for a multiplying delay-locked loop 16
2.6 Block diagram of a frequency synthesis phase-locked loop 17
2.7 Phase-frequency detector circuit 21
2.8 Graphical illustration of oversampling, showing the original signal,

double oversampling impulse train and reconstructed signal 23
2.9 Graphical illustration of subsampling, showing the original signal,

subsampling impulse train and reconstructed signal 24

3.1 Block diagram of a frequency synthesis alias-locked loop 30
3.2 Graphical illustration of binary sampling, showing the original sig­

nal, subsampling impulse train and binary aliased signal 32
3.3 Graphical illustration of binary sampling, showing the original sig­

nal, subsampling impulse train and binary aliased signal 33
3.4 Block diagram of a modified frequency synthesis alias-locked loop 36

4.1 Block diagram of a test bench for a sampling latch 44
4.2 Standerd cell master-slave D flip-flop circuit 49
4.3 Alias signal for standerd cell D flip-flop subsampling simulation

with a 13.1 GHz sinusoidal signal sampled at 1 GHz 49
4.4 Alias signal for standard cell D flip-flop subsampling simulation

with a 13.001 GHz sinusoidal signal sampled at 1 GHz 50
4.5 Latch sensitivity plot for standard cell D flip-flop 51
4.6 Latch sampling window plot for standard cell D flip-flop 51
4.7 Differential pass-transistor pulsed latch circuit 53
4.8 Pulse generator circuit for pulsed latch 54
4.9 Toggling alias signal at the switching threshold of a DPTPL sub-

sampling circuit, simulated with transient noise and a 58.001 GHz
sinusoidal input signal sampled at 1 GHz 54

4.10 Latch sensitivity plot for DPTPL 55
4.11 Latch sampling window plot for DPTPL 56

4.12 Hysteresis buffer for sampling latches 57
4.13 Sense-Amplifying Flip-Flop 59
4.14 Latch sensitivity plot for SAFF 60
4.15 Latch sampling window plot for SAFF 60
4.16 Block diagram of basic duty cycle correction system 63
4.17 Differential pass-transistor pulsed latch circuit with input threshold

correction transistors 64
4.18 Block diagram of decoder circuit with up/down counter 65
4.19 Block diagram of duty cycle detector with periodic reset 66
4.20 Left DAC output voltage versus time for various duty cycle input

signals 69
4.21 Mismatched DPTPL duty cycle versus applied offset correction volt­

age with a 150.1 GHz input signal 70

5.1 Alias-locked loop timing for non-linear model 74
5.2 Low-pass Filter Waveform 77
5.3 Phase-space diagram of PFD phase error 4> and the steady-state loop

filter voltage with a -9.5 ns initial phase-error 78
5.4 Phase-space diagram of PFD phase error <j) and the steady-state loop

filter voltage with a -0.5 ns initial phase-error 79
5.5 Phase-space diagram of PFD phase error </> and the steady-state loop

filter voltage with a -0.1 ns initial phase-error 79
5.6 Phase-space diagram of VCO phase error ip and the steady-state

loop filter voltage with a -9.5 ns initial phase-error 80
5.7 Phase-space diagram of VCO phase error ip and the steady-state

loop filter voltage with a-0.5 ns initial phase-error 81
5.8 Phase-space diagram of VCO phase error ip and the steady-state

loop filter voltage with a-0.1 ns initial phase-error 81
5.9 Phase-space diagram of VCO phase error ip and the steady-state

loop filter voltage with a -0.005 ns initial phase-error 82
5.10 Phase-space diagram of VCO phase error ip and the steady-state

loop filter voltage with a -0.0005 ns initial phase-error 83
5.11 Histogram plot comparing the steady-state frequency distribution

for initial phase-errors of-0.5 ns and-0.001 ns 84
5.12 Phase-space diagram of VCO phase error ip and the steady-state

loop filter voltage with a -0.5 ns initial phase-error for a toggling
alias period 86

5.13 Phase-space diagram of PFD phase error 4> and the steady-state loop
filter voltage with a -9.5 ns initial phase-error, obtained from a 90-
nm transistor-level simulation 89

5.14 Phase-space diagram of VCO phase error ip and the steady-state
loop filter voltage with a -9.5 ns initial phase-error, obtained from a
90-nm transistor-level simulation 90

5.15 Phase-space diagram of VCO phase error ip and the steady-state
loop filter voltage with a -0.5 ns initial phase-error, obtained from a
90-nm transistor-level simulation 91

5.16 Loop filter voltage versus time, showing the ALL pull-in process
and locking at 10.1 GHz 92

C.l dflipflop.tb: D flip-flop maximum frequency test bench 121
C.2 dge_sampler_no_offset_tb: DPTPL maximum frequency test bench .122
C.3 dge_sampler_no_offset: DPTPL schematic 122
C.4 pulse-gen: DPTPL pulse generator circuit 123
C.5 JK_FF_NoDriver: JK flip-flop, cascaded after the SAFF and DPTPL

circuits to hold the output during during precharge of the latch . . . 123
C.6 hysteresis_buffer: two memory-element hysteresis buffer for DPTPL

and SAFF 123
C.7 sampler_saff_tb: SAFF maximum frequency test bench 124
C.8 sampler_saff: SAFF schematic 124
C.9 dge_sampler_offset_test: DPTPL offset transistor test bench 125
CIO dge_sampler.offset: DPTPL with offset transistors 125
C.ll offset_tuner_test: Test bench for duty-cycle based latch threshold

correction circuit 126
C.l2 offsetJunerJiysteresis: Duty cycle detection and correction with

hysteresis 126
C. 13 ud_counterl6Jrysteresis: 16-bit up/down counter with separate LSB

reset (hysteresis) 126
C.14 DACctrLleft: Control signal generation for DAC for left tuning

signal 127
C.15 DAC_ctrl_right: Control signal generation for DAC for right tuning

signal 127
C. 16 DAC_R2R: DAC based on R-2R ladder network 128
C.l7 ALL_core_only_test: Test bench for 90-nm ALL circuit implemen­

tation 129
C.l8 ind_complete: ASITIC Pi model for a 0.9nh inductor. Parameters:

indRs = 1.8 kVt; indC = 29 pF; inhL = 285 pH; indR = 0.5 fi; k =
0.495 130

C. 19 core_all: Top level core circuit for 90-nm ALL circuit 130
C.20 DIO_buffer: Driver circuit for output pad 131
C.21 core: Top level circuit without IO drivers 131
C.22 VCCLcomplete: Differential VCO based on oscillating LC tank . . 132
C.23 switched_tuning_cap: Switched varactor bank and tuning varactor

for VCO frequency control 133
C.24 VCO_current_src: PMOS current source for the VCO 133
C.25 crossJran: Cross-coupled transistors driving the VCO 134
C.26 sampler .complete: DPTPL based sampling latch 134
C.27 PFD_charge_pump: Phase-frequency detector and charge pump . . 135

C.28 latch_PFD: Latch-based phase-frequency detector 135
C.29 latchJPFD.branch: Transistor branch inside the latch-based PFD . . 136
C.30 up_down_gen: Differential control signal generator for charge pump

137
C.31 up_down_gen_diff_create: Single-ended to differential signal gener­

ation for charge pump 137
C.32 charge_pump_diff: Charge pump with dummy branches and differ­

ential inputs 137

Nomenclature

List of Acronyms
ALL Alias-Locked Loop, page 1

BBPLL Bang-Bang Phase-Locked Loop, page 72

CMOS Complementary Metal-Oxide Semiconductor, page 2

DAC Digital-to-Analog Converter, page 11

DAS Direct Analog Synthesis, page 11

DC Direct Current, page 39

DDS Direct Digital Synthesis, page 11

DLL Delay-Locked Loop, page 5

DPTPL Differential Pass-Transistor Pulsed Latch, page 51

DRO Dielectric Resonator Oscillator, page 26

DSP Digital Signal Processing, page 22

GaAs Gallium Arsenide, page 2

GP General Purpose, page 45

HEMT High Electron Mobility Transistor, page 38

IC Integrated Circuit, page 7

InP Indium Phosphide, page 2

LCM Least Common Multiple, page 86

LPF Low-Pass Filter, page 73

MDLL Multiplying Delay-Locked Loop, page 15

MMIC Monolithic Microwave Integrated Circuit, page 26

MSB

PFD

PLL

PSD

PVT

RC

RF

RMS

ROM

SAFF

SNR

VCO

Most Significant Bit, page 64

Phase-Frequency Detector, page 20

Phase-Locked Loop, page 1

Power-Spectral Density, page 9

Process Voltage Temperature, page 10

Resistive-Capacitive, page 73

Radio Frequency, page 2

Root Mean Square, page 9

Read-Only Memory, page 12

Sense-Amplifying Flip-Flop, page 58

Signal-to-Noise Ratio, page 16

Voltage Controlled Oscillator, page 2

List of Terms
aliasing The effect that causes different frequency content in a signal

to become indistinguishable due to subsampling, page 1

delta-sigma modulation From the view of fractional-N synthesis, delta-sigma mod­
ulators generate an output stream of bits to control the dual-
modulus counter, and where distribution the distribution of
these bits is such that spurious tones in the frequency syn­
thesizer output are minimized, page 18

Dirac comb function Infinite series of Dirac delta functions spaced at a regular
interval. Also known as an impulse train, page 73

frequency reduction circuit Used to refer to the circuits in the feedback path that
perform some scaling or reduction of the oscillator frequency.
The output of this circuit is at lower frequency than the os­
cillator signal and is suitable for phase matching with a ref­
erence signal. Frequency reduction in the feedback path is
traditionally done with frequency divider circuits, page 1

group III-V device Compound semiconductor device primarily composed of
two or more elements from group three and group five of
the periodic table of elements. Typically used for very high-
performance radio-frequency integrated circuits, page 2

A time-domain measure of short-term variations of a signal
relative to some reference or ideal signal, page 8

Resonant circuit built with an inductor and capacitor, which
are symbolically represented by L and C, respectively, page 19

The time required before a PLL becomes phase locked after
a startup or when disturbed, page 18

Millimeter-wave, referring to a radio frequency band rang­
ing from roughly 30 GHz to 300 GHz, page 2

Minimum sampling rate required to completely reconstruct
a signal from it samples, described by the Shannon-Nyquist
theorem, page 1

phase comparator A circuit element for producing an output signal that cor­
responds to the phase difference between two input wave­
forms, page 15

jitter

LC circuit

lock time

mm-wave

Nyquist rate

PLL feedback path

prescaler

Q factor

spectral purity

SR Latch

subsampling

switching threshold

transceiver

W/L

word

The signal path in a PLL that connects the local oscillator to
the phase comparison unit. In frequency synthesizers, this
typically includes a frequency scaling unit, page 1

A frequency divider circuit specifically designed for high­
speed operation, page 2

Quality factor of oscillating system - representing the ratio
between energy stored and energy dissipated per cycle in
the system, page 19

A measure of the quality of the frequency output spectrum
of a signal, with a more spectrally pure signal exhibiting
fewer or less significant undesirable components in its fre­
quency output spectrum, page 11

Set-Reset latch, page 52

Sampling below the Nyquist rate of the highest frequency
content of a given signal, sometimes referred to as under-
sampling, page 1

The input signal decision level at which a latch or flip-flop
output has an equal probability of logic high or logic low
value. Also know as logic threshold., page 28

A device that incorporates both transmitter and receiver
functionality into a single unit, page 2

Width-over-Length ratio, physical dimensions for the drawn
gate of a transistor, page 52

In digital circuits or computing, a word refers to a grouping
of bits that are processed in unison, page 11

XOR Exclusive-OR logical operation, page 20

Chapter 1

Introduction

Frequency synthesizers are circuits that take one or more input signals with known

frequencies and produce one or more output signals at other frequencies. In most

cases, frequency synthesizers accept one or more low frequency stable reference

signals as inputs and generate a range of higher frequency signals that are math­

ematically related to the frequencies of the reference signals. Frequency synthe­

sizers are found in virtually all modern communication systems, including wire­

less data networks, cellular phones, radio and televisions receivers, and fiber optic

transceivers. Frequency synthesizers are not just found in communication systems,

however, as they are also used as clock sources in other applications such as digital

logic and radar systems.

Most frequency synthesizers designs are in fact phase-locked loop (PLL) cir­

cuits with some type of frequency reduction circuit in the PLL feedback path be­

tween the oscillator and the phase detector. In most frequency synthesizers, this

feedback path contains a frequency divider circuit. This thesis concerns itself with

a novel frequency reduction circuit in the feedback path of the PLL. In this work,

I propose to perform frequency reduction by replacing the frequency divider with

a sampling latch circuit operated at a frequency well below the Nyquist rate of the

latch input signal. By subsampling the oscillator signal, a low frequency alias signal

is produced, which can subsequently be utilized in the same manner as a frequency

divided signal. We refer to a frequency synthesis PLL that uses an alias frequency

as an alias-locked loop (ALL).

1

Section

As predicted by Gordon E. Moore [2], the dimensions of complementary metal-

oxide semiconductor (CMOS) devices have continued to shrink, and over the past

forty years CMOS processes have become the technology of choice for cost-effective

implementations of a wide variety of digital, analog, and to some extent, radio-

frequency (RF) circuits. As device geometries have shrunk, the figures-of-merit

used to measure the high-frequency performance of CMOS circuits have contin­

ued to improve. In particular, the maximum unity current-gain cut-off frequency,

(fr), and maximum unity power-gain frequency, (fmax) make it possible to build

complete RF transceiver circuits in CMOS technology. For 45-nm bulk CMOS

technologies fr and fmax frequencies are reported to be 280 GHz and 350 GHz,

respectively [3]. With such high frequency capabilities in CMOS, fully-integrated

transceivers for millimetre-wave (mm-wave) frequencies are no longer the exclu­

sive domain of group III-V devices. Traditionally, esoteric semiconductor tech­

nologies such as Gallium-Arsenide (GaAs) or Indium-Phosphide (InP) have been

the dominant semiconductor devices in RF front-end circuits [4].

A key building block for fully integrated transceivers is the frequency synthesis

PLL used to generate the mm-wave frequency signals required in the transceiver.

Building integrated PLLs at any frequency is challenging, since the design of these

circuits requires knowledge of control systems theory, digital, analog and RF cir­

cuit design. PLLs for mm-wave frequencies present additional challenges to the de­

signer because of poorly characterized device technology at such high frequencies

and difficulties encountered in testing systems at these frequencies. Furthering the

effort toward integrating mm-wave PLLs, several CMOS voltage-controlled oscil­

lator (VCO) circuits have been published operating at mm-wave frequencies [5, 6].

Some of these VCOs [7, 8, 9] operate at or exceed the fmax of the process they are

implemented in.

The critical component that limits the maximum operating frequency for PLLs

[10], and the focus of this work, is the development of an alternative to high speed

frequency prescalers or dividers that operate at frequencies near the fmax of the

process. This thesis suggests that using a sampling latch, rather than a frequency

2

Section 1.1: Thesis Organization

divider, may aid in this effort, since the sampling latch output is at a much lower

frequency than the VCO frequency. Using a sampling latch that is operated in

this fashion significantly relaxes the constraints placed on the feedback circuit. A

sampling latch can have reset and clock-to-output delays that span multiple VCO

clock cycles. The sampling window for such a latch need not be shorter than the

VCO cycle time either, as long as the latch output value consistently represents

the phase of the VCO signal at the sampling instant. Problems with DC bias and

mismatch in such a latch can cause the duty cycle of its output signal to deviate

from 50 %, which in the worst case is evident as a stuck-at-one or stuck-at-zero

output. This duty cycle deviation can be corrected with appropriate control and

tuning circuitry in the latch. Finally, power consumption for a subsampling latch is

reduced compared to a frequency divider, mostly due to the much lower operating

frequency of the sampling latch.

1.1 Thesis Organization

The remainder of this dissertation discusses ALL-based frequency synthesizers in

further detail. Chapter 2 provides background information on frequency synthe­

sizers and discusses important properties used to quantitatively evaluate frequency

synthesizers designs. A number of common frequency synthesis circuits are dis­

cussed along with the suitability of each such circuit for high-speed operation. To

set the context for the alias-locked loop, a brief overview of the basic building

blocks of a frequency synthesis PLL is provided. The chapter concludes with the

latest research on frequency synthesis at mm-wave frequencies, with specific atten­

tion paid to CMOS-based mm-wave PLLs. Chapter 3 describes the ALL architec­

ture in detail, discusses the impact of subsampling on the PLL design, and describes

the constraints that guide the design of the sampling latch. Chapter 4 presents circuit

designs and simulation results for several sampling latch topologies, and discusses

their suitability as aliasing units in the feedback path. Chapter 5 describes an ideal­

ized non-linear time-domain model used to simulate the ALL architecture, presents

the results of the non-linear simulations, and shows successful simulated operation

3

Section 1.1: Thesis Organization

of an ALL system in 90-nm CMOS technology. Finally, chapter 6 concludes this

thesis by summarizing the results and suggesting future research to be carried out.

4

Chapter 2

Background

2.1 Overview

This chapter starts by presenting the history of frequency synthesis. Next, the key

measures used to evaluate frequency synthesizers are introduced, including con­

cerns such as settling time and output signal statistics. Then a large section is de­

voted to describing various frequency synthesis methods. A distinction is made

between direct, indirect, and hybrid synthesis methods. A brief description and ex­

planation of the operating principle is provided for direct analog and direct digital

synthesizers. For indirect synthesis methods both the delay-locked loop (DLL) and

the PLL are described, together with an example of a hybrid synthesis circuit.

Since the ALL is essentially a PLL circuit, the chapter then outlines the key

building blocks that make up most ordinary PLLs. To explain the operating princi­

ple behind the ALL, a section is devoted to an explanation of aliasing as it applies

to frequency reduction in the PLL feedback path. This section also includes a re­

view of previous work done on the use of aliasing in PLLs. Finally, the chapter

concludes with a review of the state-of-the-art in high-speed frequency synthesis.

We note that for modern CMOS processes, the fastest frequency dividers in the

literature are nowhere near fast enough to keep up with the fastest reported VCOs.

5

Section 2.2: Frequency Synthesizer History

2.2 Frequency Synthesizer History

For efficient usage of the frequency spectrum a method of distinguishing between

the various users of the medium needed to be developed. In modern communica­

tion systems with advanced signal processing algorithms the same span of wire­

less spectrum can have multiple users. Early wireless communications systems in­

stead avoided interference between users of the medium by dividing the frequency

spectrum into channels. This can be achieved by assigning the transmitter and

transceiver a fixed frequency for communication, but the ability to select a particu­

lar channel as needed allows for much greater flexibility.

As the popularity of wireless transmission grew, the bandwidth and spacing for

radio channels became more well defined in order to better utilize the available

spectrum. This development necessitated the need for improved frequency control,

and early radio systems incorporated manually tuned oscillators, which, although

tunable, suffered from drift in the output frequency. Then, the advent of crystal

oscillators made frequency sources that have very good phase noise and frequency

stability properties commonplace. Unfortunately crystal oscillators have very lit­

tle tuning capability, and in early systems each channel used by the system would

require a separate crystal oscillator specifically tuned for that channel. The limi­

tations and expense of systems containing multiple oscillators set the stage for the

development of frequency synthesis circuits.

Circuits that achieve good tuning range and phase noise are mixing synthesizers.

These synthesizers combine the output of two or more crystal oscillators at different

frequencies, producing an output signal that contains the various beat and harmonic

frequencies given by the sum and difference of the crystal oscillator frequencies.

The complexity of selecting the desired frequency, which would usually require

filtering operations, makes these mixing synthesizers systems unattractive in most

situations. Instead, PLL-based techniques have become the method of choice for

most frequency synthesis applications [11].

Although some of the concepts underlying PLLs were published by Appleton

6

Section 2.3: Frequency Synthesizer Properties

[12] in 1922 and De Bellescize [13] in 1932, it was not until the advent of televi­

sion in the 1950's that the PLL became widely used, although in this role, the PLL

did not act as a frequency synthesizer. An early design with frequency division in

the feedback path of the PLL was patented in 1970 [14]. Around the same time,

integrated circuits (ICs) started to take off, and as with other circuits, the PLL has

benefited from the continued reduction of feature sizes in semiconductor technolo­

gies. The improvements in IC technology permitted the eventual full integration of

all of the building blocks of PLL into a single device, while simultaneously reduc­

ing power consumption and increasing the frequency capability of PLLs.

2.3 Frequency Synthesizer Properties

Several measures can be used in the specification of the output of a frequency syn­

thesizer. The specification for a frequency synthesizer will depend on the applica­

tion because the constraints for a system clock generator for a high-speed digital

IC will be different from the specification of a frequency synthesizer for a wire­

less transceiver. The properties of the reference clock signal will also guide the

design. When only a lower frequency reference signal is available, the frequency

synthesizer must perform frequency multiplication to reach the desired output fre­

quency. The remainder of this section provides some of the key specification used

to describe a frequency synthesizer.

2.3.1 Timing Range

The tuning range is the range of frequencies that can be synthesized by the sys­

tem. Besides specifying the maximum and minimum frequencies synthesizable,

the granularity of increments in synthesized frequency is also important, especially

in wireless transceivers where predefined channel frequencies specify the synthe­

sized frequencies that must be generated. With a fixed reference clock, this will

determine the frequency multiplication factors that the system must support.

7

Section 2.3: Frequency Synthesizer Properties

2.3.2 Settling Time

Another measure of frequency synthesizer performance is how fast the system can

switch between generated frequencies, and whether such switching has any side

effects on the output signal. Rapid switching between synthesized frequencies

is required by certain wireless standards that change the radio channel that the

transceiver occupies while in use. A somewhat related measure is the start-up time

required before the system becomes locked to the reference signal and produces the

desired frequency at its output port. In certain frequency synthesizer architectures,

the desired synthesized frequency is available in a single reference clock cycle,

while in others architectures, such as PLLs, the system can take a many reference

clock cycles before it reaches steady state.

2.3.3 Output Signal Statistics

Of great importance in the specification for a frequency synthesizer are the statistics

of the output signal. The synthesized signal can be looked at from a time and

frequency domain perspective. In most frequency synthesizers applications, short

and long-term stability of the signal statistics are desirable. In reality, periodic and

random variations in frequency synthesizers affect the quality of the output signal.

A brief overview of the different measures of the signal quality is presented in this

section.

2.3.3.1 Time Domain

Clock generators for digital ICs are often evaluated on the basis of the time domain

behaviour. The short-term measure of random and periodic time domain variations

of the output signal relative to a reference or ideal signal is usually termed "jitter",

and is usually measured for each cycle. Several types of jitter are commonly used

[15] in specifications and the literature. A widely used measure is period jitter,

which represents the clock period deviation of the measured signal from an ideal

signal. Cycle-to-cycle jitter is another common term, and is usually defined as a

measure in the variation in the clock period between adjacent cycles of the signal.

8

Section 2.3: Frequency Synthesizer Properties

Whatever measure of jitter is applied, it is the statistical calculations on the jitter

measurements that are usually of interest. In practice, jitter statistics are commonly

expressed in terms of the peak-to-peak or root mean square (RMS) values of the

jitter distribution.

2.3.3.2 Frequency Domain

The output of frequency synthesizers for communication systems are typically eval­

uated on the basis of the frequency domain behaviour of the system. For most com­

munication systems, the power spectral density (PSD) plot of the generated signal

would ideally look like an impulse at the desired frequency. In reality, random noise

sources in circuits will cause phase noise, which is in essence a frequency domain

measure of jitter. More formally, phase noise is the short-term random variation in

the frequency (and phase) of a signal [16]. The random noise will cause the output

spectrum of the synthesizer output to be distributed in frequency. When plotted, the

PSD graph for a free-running oscillator tends to have a sharp peak at the desired

frequency, with smoothly decreasing sides. For illustration, Figure 2.1 shows the

power spectrum of an oscillator, centred at a frequency fc.

8

fc Frequency

Figure 2.1: Illustrative power spectral density plot of an oscillator

Rather than using absolute power levels, phase noise figures are most often

given relative to the carrier power at fc. Such phase noise figures are quoted per

9

Section 2.4: Frequency Synthesis Methods

unit bandwidth (one Hertz) at some frequency offset relative to the carrier frequency

[16]. A typical performance figure for phase noise may thus be expressed like: "the

output phase noise is -90 dBc/Hz at a 100 kHz offset".

Although the output spectrum of a free-running oscillator may look like that

in Figure 2.1, most frequency synthesizers are synchronized with some reference

frequency, which usually introduce additional peaks at specific frequencies into

the output spectrum. Peaks caused by the reference clock are usually referred to

as reference spurs. Spurious tones may also arise from other non-idealities in the

circuits used to implement the frequency synthesizer, and vary depending on the

type of architecture used for frequency synthesis. Like phase noise measures, the

power of spurious tones in the spectrum is expressed relative to the power of the

carrier frequency.

2.3.4 Other Concerns

When manufacturing a frequency synthesizer for commercial purposes, cost sensi­

tivity and competitive reasons also give rise to several other concerns that play a role

in the design process. For mobile applications, power consumption is of key im­

portance, and high speed circuits like frequency synthesizers can be power hungry.

When a frequency synthesizer is implemented on an IC, the silicon area occupied

by the chip plays a significant factor in the total manufacturing cost of the design.

The cost of IC based implementations must also consider packaging issues and the

testability of the design. Further concerns that should be evaluated for commercial

designs include the suitability of the design for rapid and reliable reproduction of

the device on a mass scale and across variations in process, voltage and temperature

(PVT).

2.4 Frequency Synthesis Methods

As alluded to in the history section of this chapter, PLL-based systems are not the

only way to perform frequency synthesis. Frequency synthesis methods can be

classified into the following three categories [17]:

10

Section 2.4: Frequency Synthesis Methods

• Direct synthesis

• Indirect synthesis

• Hybrid synthesis

2.4.1 Direct Synthesis

Direct synthesis generates the desired frequency using open loop methods only, Di­

rect synthesis methods can be further classified into direct analog synthesis (DAS)

and direct digital synthesis (DDS).

2.4.1.1 Direct Analog Synthesis

DAS uses analog processing elements such as mixers, filters, multipliers, dividers

and switches and operates on one or more stable reference frequency sources. One

of main benefits of the DAS approach over other methods is that very fast frequency

switching is possible. If carefully designed, a DAS system can also achieve a very

high spectral purity [1] with low phase noise and spurious tones. However, the ana­

log approach becomes complicated and expensive when a large number of distinct

output frequencies are required, since the number of filters, multipliers and mixers

is directly dependent on the number of output frequencies required. Because all

the components operate in the analog domain, the frequency capability of DAS cir­

cuits are primarily limited by the process technology itself, and can thus generate

high output frequencies through upconversion or multiplication methods. An block

diagram of a sample DAS system is shown in Figure 2.2

2.4.1.2 Direct Digital Synthesis

A more common direct synthesis approach includes a large number of digital cir­

cuits to generate signals of an arbitrary frequency. An early DDS system was de­

scribed by Tierney, et al. in 1971 [18]. The basic idea behind DDS is to use a digital

circuit to generate digital control words for a digital-to-analog converter (DAC). By

generating an appropriate sequence of control words for the DAC, it is possible to

11

Section 2.4: Frequency Synthesis Methods

Multiplier

Switch

Oscillators

Amplifier

Bandpass

Filter

Output

Lowpass

Filter

Figure 2.2: A direct analog synthesis system block diagram, based on [1]

produce a sinusoidal output. The high-level architecture of a direct digital frequency

synthesizer is depicted in Figure 2.3. The figure shows the waveforms before and

after the low-pass filter, which is connected to most DDS systems in order to smooth

out the DAC output.

Reference

Clock

Frequency _\
- t°~W Select \ ROM \ DAC

Output

Phase Lookup

Accumulator Table

Lowpass

Filter

Figure 2.3: High-level direct digital synthesis architecture block diagram

To generate a sinusoidal output of a programmable frequency, the blocks in a

typical DDS circuit may behave as follows. Referencing Figure 2.3, the external

clock source, Clock, drives all the digital components in the phase accumulator,

lookup table and DAC. A simple phase accumulator may consist of a counter that

counts up to a programmable value, which when reached, causes the counter to

wrap and start over. The counter output is then scaled to represent a phase between 0

12

Section 2.4: Frequency Synthesis Methods

and 2ir. This phase value is then directed to the lookup table that maps phase values

to the corresponding sine wave amplitude values. At its simplest, the lookup table

could be as simple as a read-only memory (ROM). The amplitude values are then

used to control the DAC that converts the binary representation of the amplitude to

an analog voltage. Finally, a low-pass filter eliminates the staircase-like output of

the DAC to smooth the waveform. Several improvements and modifications for the

described architecture have been published [19],[20], but the principle of operation

remains the same.

The flexibility of the digital logic in the DDS architecture means this system

is not just limited to generating sinusoidal outputs. Given the appropriate lookup

table programming, a DDS can generate almost arbitrary periodic waveforms. Fur­

thermore, the programmability allows for a wide range of frequencies to produced.

Since a DDS system does not contain a feedback loop, switching between different

frequencies can take as little as one cycle of the input clock and can be done without

introducing phase discontinuities.

Because DDS circuits reconstruct a waveform from sampled data, the maximum

output frequency of such a circuit is limited by the Nyquist-Shannon sampling theo­

rem [21]. This theorem holds that to completely reconstruct a given signal, the sam­

pling rate must be at least twice the maximum frequency contained by the given sig­

nal. Although the external reference clock can be operated at a very high frequency,

the digital circuitry and DAC will limit the maximum frequency achievable. For

Nyquist limited DDS circuits the maximum output frequency that can be produced

is about 40 % of the clock signal [22]. DDS systems can change their output fre­

quency in very fine steps, but suffer from spurious signals in their output spectrum.

These spurious signals are in part attributable to quantization noise arising from the

digital representation of the amplitude and truncation errors when low-order bits of

the phase are discarded [23]. These spurious signals can thus be reduced by increas­

ing the resolution of the phase and amplitude representation, but this requires larger

look-up tables, DACs and phase accumulators. High-speed high-resolution DACs

are difficult to design and DDS systems with low spurious noise are therefore more

13

Section 2.4: Frequency Synthesis Methods

expensive in area utilization, complexity and power consumption. Because CMOS

based DDS is severely limited in frequency by the maximum operating speed of

the digital components and the DAC, the highest speed DDS circuits are imple­

mented in esoteric semiconductors families [22], and DDS is generally not suitable

for frequency synthesis anywhere near the fmax of a process.

2.4.2 Indirect Synthesis

Indirect synthesis refers to those systems that utilize a feedback loop to control and

stabilize the output frequency. Indirect synthesis systems include DLL and PLL

circuits. The main difference between DLL and PLL circuits is that PLL circuits

use feedback to control the frequency of a local oscillator, while DLL circuits use

feedback to adjust the delay of one or more delay elements. While DLL circuits are

rarely used for frequency synthesis, PLL circuits are widely used and very popular

as frequency synthesizers, with a large number of books and papers that describe

their operation and design.

2.4.2.1 Delay-Locked Loop Frequency Synthesis

Although typically used for clock alignment or clock deskewing in settings such

as interface circuits for computer memories [24], a DLL can also be used as a

frequency synthesis system [25]. One method [26] to perform frequency multipli­

cation with a DLL uses an input reference clock that is passed through a tapped

delay line constructed from a number of tunable delay elements connected in se­

ries. A block diagram for the tapped delay-line based DLL is graphically depicted

in Figure 2.4.

In the delay-line based DLL, feedback is used to adjust the total delay through

all stages of the delay line so that the phase of the input and output signals of

the delay line match. If the input and output phases are matched, the waveforms

at the taps on the delay line are then at regularly spaced phase offset and equally

distributed over one period of the reference clock. The edges of these waveforms

can then be combined in an edge combiner to generate a frequency that is a multiple

14

Section 2.4: Frequency Synthesis Methods

Reference

Clock

Phase

Detector

Lowpass

Filter

Voltage Controlled Delay Line

Edge Combiner
Output

Figure 2.4: Block diagram of a tapped delay-line delay-locked loop frequency mul­
tiplier

of the reference clock.

An improvement on the line-delay based DLL is the multiplying delay-locked

loop (MDLL) [25]. The MDLL uses a single delay element, avoiding some of

spurious tones that appear when the delay elements in a delay line are not closely

matched. In this method, the single inverting delay element is connected to the

reference clock through a multiplexer, as shown in Figure 2.5. The logic block is

used to control the multiplexer and tune the delay element. This logic typically

includes at least a counter, a phase comparator, and a loop filter.

The general operating principle for an MDLL architecture is as follows. At

the rising edge of every reference clock period, the reference clock is connected

to the delay element through a multiplexer. After the arrival of a rising edge on

the reference clock the multiplexer is switched immediately, connecting the delay

element to itself in feedback mode and essentially creating a ring oscillator. After

having counted iV rising edges at the output of the delay element, the multiplexer

is switched back to the reference clock input, resetting the counter and activating

a phase detector. With the multiplexer switched back to the reference clock signal

15

Section 2.4: Frequency Synthesis Methods

1 °
Output

Figure 2.5: Block diagram for a multiplying delay-locked loop

(which is still low), a new rising edge at the output of the delay element output is

generated and compared to the next rising edge on the reference clock by the phase

detector. The measured phase error is then used to tune the delay element so that

in locked operation exactly iV clock cycles of identical duration are generated for

every reference clock period.

Since DLL architectures do not accumulate jitter over multiple reference clock

cycles like PLLs do, DLL based frequency synthesizers can achieve very good

phase-noise measures. The periodic correction of phase alignment does, however,

cause this architecture to suffer from some deterministic jitter [27]. Overall, the

DLL is a suitable architecture for many frequency synthesis applications. Unfortu­

nately, the current-starved delay line construct limits the maximum operating speed

to frequencies well below the fmax of the process.

2.4.2.2 Phase-Locked Loop Frequency Synthesis

PLL circuits find application in a wide range of settings, and one way of viewing the

principles that guide their design is by examining the signal-to-noise ratio (SNR)

of the signal used for phase-locking. Frequency synthesis PLLs usually operate

in a high SNR environment, since the reference clock is produced locally by a

strong and stable oscillator such as a quartz crystal. In contrast, PLLs used for

carrier recovery from wireless signals operate in low SNR environments where the

Reference

Clock

Mux Delay

Select Tune

Logic

16

Section 2.4: Frequency Synthesis Methods

reference signal is received with noise and the carrier attenuated and distorted by

several radio propagation effects that characterize wireless channels. Since SNR

impacts the design of a PLL significantly, this thesis concerns itself solely with

high SNR applications.

As previously mentioned, a PLL uses feedback methods to control a local oscil­

lator. A standard frequency synthesis PLL is depicted in Figure 2.6. The principle

of operation for a basic frequency synthesis PLL like the one shown in Figure 2.6 is

as follows. The output signal of the PLL is generated by a tunable local oscillator,

usually implemented as a VCO. The VCO output is also connected to a frequency

divider in the feedback path. The frequency divided VCO signal is compared to a

reference clock signal in a phase comparator. The phase comparator generates an

error signal that corresponds to the phase error between the divided signal and ref­

erence clock. This error signal is then processed by a low-pass loop filter, and the

output signal from the low-pass filter in turn tunes the VCO. This feedback system

attempts to adjust the phase error to zero and results output signal that is phase-

locked to the reference clock. This frequency of this output signal is a multiple of

the reference clock frequency, with the frequency multiplication factor determined

the frequency divider.

vco

y. Output

-rN L

Figure 2.6: Block diagram of a frequency synthesis phase-locked loop

In the most basic PLL, the frequency divider in the feedback path divides by an

integer factor N, and hence this type of PLL is referred to as an integer-N frequency

synthesizer. If the divide factor N is programmable, an integer-N frequency synthe-

Phase

Detector

Lowpass

Filter

Reference

Clock Divider

17

Section 2.4: Frequency Synthesis Methods

sizer can be coarsely tuned, with the frequency resolution increments equal to the

reference clock frequency. Thus, for closely spaced channels in wireless standards,

the reference clock frequency should be small, and N correspondingly large. A

large multiplication factor is detrimental because it degrades the output frequency

spectrum with closely spaced spurious tones and requires loop filter parameters that

result in an increased lock time and poorly suppressed VCO phase noise [10].

To overcome the shortcomings of integer-N PLLs, the divide operation can be

modified to perform non-integer division. To achieve such fractional-N frequency

synthesis, the frequency division factor in the feedback path is made to vary be­

tween two different division factors, typically done using a dual-modulus divider.

One method, called pulse swallowing, switches the division factor at a regular in­

terval. The regular switching in a pulse swallowing fractional-N design, however,

introduces a spurious tone in the frequency synthesizer output. These spurious tones

can be minimized by using a higher-order delta-sigma modulator that randomizes

the switching of the division factor [28].

The relative simplicity of PLLs makes them a common choice for frequency

synthesis applications, and with fractional-N synthesizers, a wide range of closely

spaced frequencies can be generated. Phase noise and jitter measures are dependent

on the type of PLL components used in the implementation, with the loop filter pa­

rameters being of particular importance to the nature of the PLL synthesizer output.

In terms of frequency capability, the upper limit for PLL frequency synthesis is

usually limited by the maximum divider speed [10]. For traditional frequency di­

viders, this means that the highest speed PLLs can perform frequency synthesis at

frequency significantly higher than the fastest DLL or DDS implementations.

2.4.3 Hybrid Frequency Synthesis

Although a frequency synthesis system can rely exclusively on direct or indirect

synthesis methods, both techniques can also be applied in combination. For in­

stance, a DDS synthesizer can be used as reference frequency source for a PLL,

resulting in a frequency synthesizer with better switching times or improved fre-

18

Section 2.5: Phase-Locked Loop Implementation

quency resolution [29, 30]. Unfortunately, the PLL transfers the spurious tones

from the DDS to its output. This is avoided in another hybrid frequency synthesizer

architecture that mixes the output of a DDS frequency synthesizer into the feed­

back loop of a PLL [31]. For very high speed frequency synthesizers, one hybrid

architecture approach uses a PLL followed by RF upconversion circuits [32]. In

summary, hybrid system can be used to avoid some of the drawbacks associated

with one particular method. However, due to the combination of multiple tech­

niques hybrid frequency systems tend to be more complex.

2.5 Phase-Locked Loop Implementation

When developing a frequency synthesis PLL, the designer is faced with several im­

plementation choices. A PLL can be implemented with purely analog components,

digital components, a mix of digital and analog components, and designs can even

include software modules. Frequency synthesis PLLs, whether digital or analog,

still share a common set of components, including oscillators, loop filters, phase

detectors and frequency dividers. This section will provide a brief overview of the

most common building blocks found in most PLL frequency synthesizer implemen­

tations.

2.5.1 Common Building Blocks

Figure 2.6 shows typical components in a frequency synthesis PLL. The function

of each component, as well as some common implementations, are described.

2.5.1.1 Oscillator

For a PLL to be of any use, the oscillator that generates the synthesized frequency

must be tunable, typically through voltage control. High-speed integrated VCOs

are most frequently implemented as a ring oscillator or using a LC circuits. Ring

oscillators generally have a wider tuning range and are more compact than LC cir­

cuits, but consume more power and have a lower quality factor, Q, than an LC

19

Section 2.5: Phase-Locked Loop Implementation

oscillator [33] for the same frequencies. In applications such as wireless commu­

nications, where phase noise is important, LC oscillators are typically used. Due

to their smaller size, ring oscillators are most often found in frequency synthesizers

for digital ICs, where phase noise requirements are less stringent. In some digital

circuits, phase noise may even be desirable to ensure that emissions from the clock-

triggered digital circuits minimize the electro-magnetic interference. The fastest

reported CMOS VCO in the literature runs at 410 GHz and is implemented in a

45 nm process [8]. Push-push VCOs like this have a lower fundamental oscillation

frequency, but attenuate the fundamental signal and extract, for instance, the second

harmonic in order to generate output frequencies in excess of fmax.

2.5.1.2 Phase Comparator

The phase comparator's role is to transform a phase difference between the ref­

erence clock and feedback signal to a control output for the PLL loop filter. A

very simple phase detector can be built using an exclusive-OR gate (XOR) and can

be directly connected to an analog low-pass filter. In this configuration an XOR

gate functions as a phase detector, but the maximum phase difference detectable is

± | . A more common phase detector topology is a phase-frequency detector (PFD).

PFDs are capable of discerning a phase error of ±2n, and can also be said to detect

frequency errors. A basic PFD [34], can be built from two flip-flops and an AND

gate, configured as seen in Figure 2.7. A PFD produces either an Up or Down pulse

that directs the VCO to speed up or slow down, where the duration of the pulse cor­

responds to the phase error between the reference and feedback signals. Usually a

PFD is coupled to a charge pump that converts the Up and Down pulses to signals

processable by a loop filter. The charge pump does this by pushing current into or

pulling current out of a low-pass filter while the Up or Down signals are asserted,

respectively.

Another phase detector that is worth a brief mention in the context of an alias-

locked loop is the binary phase detector, also known as bang-bang phase-detector

[35]. A bang-bang phase detector only detects which signal is leading or lagging,

20

Section 2.5: Phase-Locked Loop Implementation

Reference

VDD

-O UP

Feedback

-O Down

Figure 2.7: Phase-frequency detector circuit

and its output signal does not contain any information on the magnitude of the phase

error. The inputs are evaluated once per input clock cycle, and the output value is

the sign of the phase error between the feedback signal and reference clock. The

bang-bang PLLs and ALL architecture are similar in that both systems produce a

phase error signal that is discretized. Further detail on the discrete nature of the

phase error signal in the ALL architecture is described in chapter 3. Bang-bang

phase detectors typically find application in systems that utilize very high-speed

reference signals [36].

2.5.1.3 Loop Filter

PLL loop filters are low-pass filters that act on the error signal produced by the

phase detector. The filter bandwidth and frequency response will determine the

PLL loop bandwidth and affects parameters like lock time and phase noise suppres­

sion. From an oscillator perspective, the PLL acts as a high pass filter, controlling

low-frequency (long-term) deviations from the reference frequency and keeping the

21

Section 2.6: Aliasing

output phase locked, while passing high frequency noise from the oscillator. Loop

filters can be implemented in the analog domain using only passive components

such as capacitors and resistors, or they can include active components that may

reduce the area required for large passives. It is also possible to perform the same

filtering operation digitally, using digital signal processing (DSP) techniques.

2.5.1.4 Feedback Divider

Frequency synthesis PLLs need some sort of frequency reduction in the feedback

path in order to perform frequency multiplication. A simple frequency divider

can be built using toggling flip-flops connected in series to form an asynchronous

counter. The asynchronous counter operates on the VCO output, and each flip-flop

performs a divide by two operation on the frequency. Such counters works well for

low frequencies, but the fastest static CMOS flip-flops consume significant power

and can toggle at only a fraction of fmax- Rather than using static flip-flops, the

fastest frequency synthesis PLLs published [37] use different frequency divider cir­

cuits for different frequency ranges. High-speed frequency divide circuits can also

be referred to as "prescalers".

2.6 Aliasing

As alluded to earlier, aliasing can be used to perform frequency reduction in the

feedback path of a PLL-like frequency synthesizer. If a periodic signal is sampled

at a rate that satisfies the Shannon-Nyquist theorem, that signal can be fully recon­

structed from the sampled data. The plots in Figure 2.8 show such a process, where

the original signal with a frequency of 1 Hz is sampled at 4 Hz. For illustration,

the sampled data is graphically interpolated using the cubic spline method, result­

ing in a reconstructed signal with the same frequency as the original. Figure 2.9

shows a repeat of the same experiment, but now sampling the 1 Hz signal at 0.4 Hz.

The subsampling process results in aliasing, with the lowest frequency alias signal

having a frequency of 0.2 Hz.

To determine the frequency of the subsampled signal, the sampling theorem

22

Section 2.6: Aliasing

1 Hz original signal and 4 Hz sampling impulse train

ft 1
- r

l i
r

U
Y
u l i

r

1 <
r

i

1 1 f t '
r

\

r
f

-
J I I I I I I UJ I I I I l_l LJ I I I I I I 11 I I I I I I I Lu I I I I I I U_L

0 2 4 6 8 10
Reconstructed signal at 1 Hz

iVVWWWW.
i i i i i

0 2 4 6 8 10
Figure 2.8: Graphical illustration of oversampling, showing the original signal, dou­
ble oversampling impulse train and reconstructed signal

can be used to arrive at an equation that predicts the alias frequency. We define a

time-domain signal x(t) with a Fourier transform of X(f). If this signal x(t) is

uniformly sampled at a frequency of fsample,me Fourier transform of the sampled

waveform Xs(f) will be given by [38]:

oo

X a (/) =] T X (/ - K • fsamPle) (2.1)
K=-oo

Assume that x(t) is sinusoidal VCO signal with a frequency of fvco- Then the

Fourier transform of the VCO signal is given by X(f) = 5(f ± fvco) [38], with

frequency components at ±fvco- The sampled signal is thus given by:

oo

* » (/) = X) Hf ± fvco - K • fsample) (2.2)
K = - o o

From this equation, the alias frequencies, falias, f°r a uniformly sampled sinu­

soidal signal that fit the sampled data are given by:

23

Section 2.6: Aliasing

1 Hz original signal and 0.4 Hz sampling impulse train

4 6 8
Reconstructed signal at 0.2 Hz

Figure 2.9: Graphical illustration of subsampling, showing the original signal, sub-
sampling impulse train and reconstructed signal

falias — fvCO ~ fsample ' K (2.3)

where K is any integer, with the special case K — 0 resulting in the original signal.

The lowest alias frequency generated is given by the difference between fvco and

the nearest harmonic of fsampie'

falias = fvCO — fsampie " TOUnd
h vco (2.4)

where round{x) rounds x to the nearest integer value. The lowest frequency pro­

duced by the aliasing operation therefore falls in the following range:

fsampie . , , fsampie
_: J alias _; (2.5)

Q — j twwe —; c\

Examining the relationship between the alias frequency and the VCO frequency,

it can be recognized that subsampling can be used to generate an aliased signal

24

Section 2.7: Current High-Frequency Synthesis Methods

with a frequency that is significantly lower than the VCO signal. Thus, a sampler

operated below the Nyquist rate can be inserted in the feedback path of a PLL

to perform frequency reduction, resulting in a system that can perform frequency

synthesis.

2.6.1 Previous Subsampling Architectures

The notion of subsampling the VCO signal in the feedback loop to perform fre­

quency reduction was first introduced by Amr N. Hafez and M. I. Elmasry in [39],

further described in [40] and patented in [41, 42]. In these previously reported de­

signs the reasons for introducing a subsampling circuit in the feedback path are

cited as lower power consumption and improved phase-noise performance. Be­

cause the designs in the cited papers use analog sample-and-hold circuits that sub-

sample VCO, any harmonics in the VCO signal are also present as problematic

low-frequency harmonics in the subsampled output signal. Using sample-and-hold

circuits to perform subsampling therefore requires a separate low-pass filter at the

output of the sample-and-hold unit to filter out problematic harmonics. Another

invention disclosed in a patent by G. E. Von Dolteren Jr. [43] replaces the analog

sample-and-hold circuit by an ADC converter that samples below the Nyquist rate.

The subsampled output of this ADC is digitally processed to find the phase error,

which subsequently filtered by DSP techniques after which a DAC converts the loop

filter value back to a voltage that steers the VCO. Unfortunately, the approaches re­

ported previously in literature and patents are not targeted toward higher frequency

operation.

2.7 Current High-Frequency Synthesis Methods

Although PLLs are very popular as frequency synthesizers for current wireless stan­

dards that go up to about 10 GHz, frequency sources for millimetre frequencies have

traditionally been the domain of direct analog synthesis or hybrid synthesis meth­

ods.

25

Section 2.7: Current High-Frequency Synthesis Methods

2.7.1 Direct Analog and Hybrid Systems

Much published work on mm-wave frequency sources describes systems that use

compound semiconductor microwave circuits. Integrated microwave circuits are

known as monolithic microwave integrated circuits (MMICs). These MMICs usu­

ally consist of microstrip networks and amplifiers that form dielectric resonator

oscillators (DROs), stubs, mixers and frequency doublers. These systems are usu­

ally not locked to a lower reference frequency, and their tuning capability depends

on the oscillator type, relying on mechanically tuned oscillators for example [44].

Hybrid approaches using a PLL to produce a stable frequency at one-third [45],

one-half [32] or other large fraction [46] of the desired output frequency. Then,

cascading frequency triplers, doublers, or mixers generate the desired output fre­

quency. The hybrid approach with a PLL and upconversion stage improve over

the approaches outlined in the previous paragraph by simplifying the tuning pro­

cess, which can be done by changing the PLL reference clock frequency or using a

programmable divider.

2.7.2 PLL Only

In recent years, a number of papers [47, 48] have been published that describe

CMOS-based high-speed frequency dividers for millimetre wave PLLs, with the

fastest CMOS frequency divider operating at 95 GHz [49]. A handful of fully in­

tegrated CMOS PLL frequency synthesizers for millimetre wave frequencies have

appeared as well, with some PLLs operating around 60 GHz [50, 51] and the fastest

fully-integrated PLL at 75 GHz [37]. These high-speed PLLs use cross-coupled dif­

ferential LC VCOs, and specialized prescalers. Because many of these high-speed

prescalers only operate over a narrow range of frequencies, a number of divider

topologies are cascaded. For instance, the PLL in [37] uses injection-locked di­

viders for the first divider stage, a Miller (also know as regenerative) divider for the

second stage, and static dividers for the remaining stages. The maximum frequency

achieved in these PLLs is clearly much slower than the fastest reported VCOs, and

Table 2.1 shows the frequency discrepancy between the fastests reported frequency

26

Section 2.8: Summary

dividers and VCOs for current state-of-the-art CMOS processes. Of note for this

table is that no standalone high-speed VCOs faster than the design in [49] have

been reported. One problem with the high-speed PLLs in the literature is that the

frequency division ratio is fixed. A programmable division factor is required when

a fixed reference frequency prevents multichannel tuning of the PLL. Frequency

synthesis for multiple channels is a requirement in most wireless systems. In most

cases a programmable divider relies on a fractional-N synthesis approach, which re­

quires precise control of the division modulus of the first frequency prescaler stage.

The delay of the modulus control signal that alters the modulus, however, is too

long at the oscillation frequencies in question [32].

Table 2.1: Comparison of fastest VCOs and frequency dividers in the literature,
given as maximum operating frequency (GHz)

technology
VCO
divider

90 nm
324 [9]
75 [37]

65 nm
95 [49]
95 [49]

45 nm
410[8]

2.8 Summary

This chapter has provided a brief overview of the history behind frequency synthe­

sizers, described some quantitative measurements used to compare frequency syn­

thesizers. Several frequency synthesis methods have been presented, as well as the

basic building blocks of a frequency synthesis PLL. Finally, a brief overview of the

state of the art in high-frequency synthesis methods has been described, with a spe­

cial focus on high-speed CMOS PLL designs. Although the latest PLLs discussed

can achieve very high frequencies indeed, the highest VCO frequencies reported

still exceed the capabilities of fastest frequency dividers by a significant margin,

limiting the maximum frequency that can be synthesized. In the next chapter, we

show a solution that addresses the discrepancy between the maximum frequencies

of VCOs and frequency dividers.

27

Chapter 3

Alias-Locked Loop Architecture

3.1 Overview

This chapter presents the modified PLL architecture that uses subsampling in the

feedback loop to create an ALL and discusses the impact of this modification on

PLL design and behaviour. The attributes required for the subsampling unit are

then presented together with a method to maintain the performance of subsampling

circuits when suffering from switching threshold offset problems.

3.2 Proposed Architecture

The central idea presented in this thesis concerns itself with the frequency reduc­

tion performed in the feedback path of the PLL. While frequency synthesis PLLs

perform frequency division in the feedback path as shown in Figure 2.6. We in­

stead propose that a sampling circuit in the feedback path can be used to build a

functional frequency synthesis system. An ALL frequency synthesizer is largely

identical to a traditional PLL, and only differs in the feedback path.

As mentioned in chapter 2, frequency synthesizers relying on aliasing have been

published previously, this thesis departs from earlier works in two ways. The pri­

mary reason for using a subsampling architecture in the previously cited works has

been to improve phase-noise properties of the synthesized signal. The reason why

subsampling is explored in this work is to investigate new architectures that could

help in building high-speed frequency synthesizers, potentially for frequencies near

28

Section 3.2: Proposed Architecture

or above fma,x- The second way in which this work departs from previously pub­

lished work is in a redefinition functionality required from the sampling circuit.

While previous papers and patents use sample-and-hold circuits or ADCs that pro­

vide an accurate sampling of the voltage level of the input signal at the sampling

instant, this thesis instead suggests that a sampling latch circuit with a binary output

not only suffices but also relaxes the design constraints in a fashion that allows for

higher frequency operation. Thus, rather than providing an analog or multi-level

digital representation of the subsampled VCO signal, a regenerative circuit in the

latch creates a decision circuit that evaluates the VCO signal at the sampling in­

stant to either a logic-high or logic-low value. The benefit of using a static latch,

including most conventional digital latches, is that they store a binary value using

internal positive feedback or regeneration. Such regenerative sampling latches can

take a small signal near the switching threshold on their input, and over time am­

plify the input signal to a high or low logic level. Using a regenerative sampling

latch in this fashion eliminates problematic low-frequency harmonics and requires

a much shorter sampling time than sample-and-hold circuits because only a small

differential signal on the input is needed by the internal regerenerative circuits. Fur­

thermore, a properly designed sampling latch can consistently sample fast changing

inputs and can thus be used to develop high-speed frequency synthesis systems.

An architecture with a sampling latch, which essentially behaves like an edge-

triggered flip-flop, is shown in Figure 3.1. This architecture is the same as that of

Figure 2.6, but with the divider replaced by a sampling latch that is operated by a

sample clock.

3.2.1 Alias-Locked Loop Frequency Synthesis

Subsampling, whether with a sample-and-hold circuit or with a sampling latch,

results in aliasing of the VCO frequency around the sampling frequency. A normal

frequency divided VCO signal produces an output frequency that is related to the

VCO frequency as follows:

29

Section 3.2: Proposed Architecture

Reference

Clock

Phase

Detector

+

Sample

Clock

Lowpass

Filter

Subsampler

Q D

vco
Output V

Figure 3.1: Block diagram of a frequency synthesis alias-locked loop

where /$„ is the frequency of signal at the divider output and N the division ratio

of the frequency divider. For a PLL that is locked to the reference signal and has a

division ratio of N, the output frequency can be computed directly from the division

ratio and reference clock frequency, fref\

fvCO — fref • N (3.2)

When using a subsampling circuit, the output frequency from the aliasing circuit,

falias, is instead determined by the sampling frequency fsample, and is given by

equation 2.4. An interesting result is that for an ALL system in the locked state,

the output frequency of the VCO cannot be uniquely determined from a single sam­

pling rate and reference frequency at the phase detector. For a VCO with a tuning

range greater than the sampling frequency, there are in fact multiple VCO frequen­

cies at which the ALL could lock. To overcome this ambiguity in VCO frequency,

an approach with multiple sampling clocks is discussed in subsection 3.2.3.2. Ref­

erencing equation 2.4, when the ALL is implemented like a PLL and the feedback

signal provides negative feedback the VCO frequency is related to the sampling rate

and reference frequency by:

fvCO = K • fsample + fref (3.3)

30

Section 3.2: Proposed Architecture

where K is some unknown positive integer, and the minimum and maximum fre­

quency of fvco are bounded by the frequency range of the VCO. Relating the VCO

frequency to the reference clock, it is possible to determine an effective multiplica­

tion factor. A locked ALL frequency synthesizer multiplies the reference clock by

an effective frequency multiplication factor, L, of:

L = round f—^-) • ~ ^ + 1 (3.4)
\ J sample J Jref

It is also possible for the VCO to operate at frequencies where the alias fre­

quency would match the reference clock:

fvCO = K • fsample ~ fref (3.5)

but, in such a configuration the negative feedback would prevent the system from

locking. For instance, with reference to equation 2.4, consider the VCO oscillating

at a frequency given by 3.5. At this frequency, an increase in fvco will decrease

falias and result in feedback that would increase the VCO frequency even further,

steering the VCO away from operating at the frequency given by equation 3.5. If

the ALL is built with positive feedback instead, the system would lock at VCO

frequencies given by equation 3.5 and fail to lock at VCO frequencies given by 3.3.

3.2.2 Implications

It is immediately obvious from Figure 3.1 that an additional clock source is required

to operate the sampling circuit, and, in total, two clock sources are required to

operate the system. However, there is not necessarily a need for two stable and

independent clock signals. The reference clock frequency is necessarily lower than

the sampling clock, as per equation 2.5. It is therefore possible for the reference

clock to be derived from the sample clock through for example frequency division.

This would eliminate the requirement for two separate clock signals. Appropriate

frequency ratios and phase relationships between the sample and reference clock

are further investigated in chapter 5.

31

Section 3.2: Proposed Architecture

3.2.2.1 Feedback Signal Time Discretization

Equation 2.4 precisely describes the frequency of the signal produced by the analog

output of a sample-and-hold circuit. Using a sampling latch with binary outputs,

however, digitizes the sampler output and produces a square wave signal with clock

edges discretized in time. Because the sampler changes output in response to the

sample clock, these clock edges are necessary aligned with the sampling clock.

Figure 3.2 shows a 1 Hz sampled by a regenerative latch with a sampling rate of

0.4 Hz, resulting in a 0.2 Hz square wave signal.

1 Hz original signal and 0.4 Hz sampling impulse train

2 4 6 8
Square wave aliased signal at 0.2 Hz

Figure 3.2: Graphical illustration of binary sampling, showing the original signal,
subsampling impulse train and binary aliased signal

When the VCO is sampled by a latch with a binary output, the period of the

aliased signal must be an integer multiple of the sampling period, since the output

of the sampler only changes its output when it is activated by the sample clock.

As a result, the instantaneous frequency of the aliased signal does not necessarily

match the frequency given by equation 2.4. Although the square wave in Figure

32

Section 3.2: Proposed Architecture

3.2 is precisely the frequency predicted by equation 2.4, Figure 3.3 shows a case

where the aliased signal is not the exact frequency predicted. In this figure, it can

be observed that the period of the alias signal alternates between 4 s and 6 s, which

does not match the predicted 5 s alias period.

1.2 Hz original signal and 0.5 Hz sampling impulse train

0 5 10 15 20
Square wave aliased signal with an average frequency of 0.2 Hz

Figure 3.3: Graphical illustration of binary sampling, showing the original signal,
subsampling impulse train and binary aliased signal

The long-term average frequency of the aliased signal does, however, match

equation 2.4, assuming a constant sampling rate and steady VCO frequency. For

the special case in Figure 3.2, where the period of the aliased signal is a multiple

of the sampling period, the instantaneous frequency will not vary. From observa­

tion of a variety of alias signal and sampling periods, it appears that in the general

case the frequency of the aliased signal will alternate proportionally between two

frequencies, governed by the sampling period. This proportion appears to be such

that the average frequency produced by subsampling will match equation 2.4.

Analyzing Figure 3.3 more closely, a 1.2 Hz signal is sampled at 0.5 Hz, where

every sample with a value below 0.5 evaluates to 0, while those samples at 0.5

33

Section 3.2: Proposed Architecture

or larger evaluate to 1. The lowest predicted alias frequency is 0.2 Hz, which is

equivalent to a clock period of 5 s. The sampling frequency is 0.5 Hz, however,

which implies that the period of the signal at the sampler output must be a multiple

of 2 s and cannot generate a clock period of 5 s. The resultant waveform at the

sampler in fact alternates evenly between clock periods of 4 s and 6 s, in such a

proportion that the clock period averages out to 5 s.

The side effects of discretization in time of the feedback signal also merit some

consideration. When using a sampler with analog output levels, like the sample-

and-hold circuits used in [39], the phase of the sampler output varies continuously.

This contrasts with a sampling latch that produces a digital output with clock edges

that are aligned on with the sampling clock. While a PLL with integer frequency

division eventually reduces the phase error between the feedback signal and the

reference clock to a value that is close to zero, the ALL proposed in this thesis never

achieves true phase lock at the PFD. Although the phase error can be zero when

the sampling clock is in phase with the reference clock, the next increment in phase

error that would arise from a drift in the VCO frequency will be at least one sample

clock period in magnitude. This means that the phase error will jump in increments

of one sample clock period, causing constant corrections to the VCO frequency

that show up as spurious tones in the output spectrum. This periodic correction

behaviour, however, is not unlike that exhibited by bang-bang phase detectors or

fractional-N synthesizers. Behaviour of bang-bang PLLs is analyzed in [36, 35],

while a further analysis of the ALL as proposed in this thesis is provided in chapter

5.

3.2.2.2 VCO Frequency Determination

Another interesting result, and potentially problematic, that arises when subsam-

pling in the feedback path is that the exact frequency of the VCO signal is not

uniquely determined by frequencies of the reference and sample clocks. Again,

referencing equation 2.4 it is clear that multiple VCO frequencies, separated in fre­

quency by integer multiples of fsamPie, can give rise to the same alias frequency at

34

Section 3.2: Proposed Architecture

which the ALL can lock. The number of possible frequencies at which the ALL

locks will generally be limited by the tuning range of the oscillator. The next

subsection present some potential solutions to uniquely determine the oscillating

frequency of the VCO during operation of the system.

3.2.2.3 Loop Filter Design

It can be noted that if traditional control system analysis were to be performed, the

feedback division factor for an alias-locked loop would approximate to unity. This

follows from equation 2.4, from which it is obvious that when the VCO frequency

changes by some small amount, the frequency of the subsampler output will change

by the same small amount. Intuitively, this also makes sense, since the frequency

and phase of the VCO are not scaled in a sampling operation. Although the phase

of the subsampler output is discretized, any phase change in the VCO signal that

is larger than the smallest phase increment in the subsampler output results in an

equivalent phase change in this subsampled output. This result contrasts with typi­

cal frequency dividers, where VCO phase and frequency are scaled proportionally

to the division ratio. Since the phase of the VCO is not divided down in an ALL,

calculations done for the purpose of determining the loop filter parameters should

assume a frequency division factor of unity in the feedback path.

One additional parameter in loop filter design that requires some consideration

is the location of reference spurs in the frequency spectrum that arise from the

discretization of the phase error. If spurious tones are a concern, loop-filter de­

sign principles for bang-bang PLLs and fractional-N synthesizers can be used as

a guideline. Both bang-bang PLLs and fractional-N synthesizers have the same

discrete steps in phase-error as an ALL.

3.2.3 Variations

Several modifications can be made to the basic architecture presented above. Per­

haps there is some benefit in combining a subsampling circuit with a frequency

divider in the feedback path. And, as alluded to earlier, multiple sampling frequen-

35

Section 3.2: Proposed Architecture

ties can be used to disambiguate the VCO frequency. Finally, many of the variations

applied to standard PLL designs can also be applied to the ALL. In particular, the

discrete nature of subsampling makes the ALL architecture a good candidate for

digital filtering of the phase error.

3.2.3.1 Sampler and Divider in Feedback Path

Although the basic architecture relies on just a sampling latch in the feedback path,

if the alias frequency is still too high for a given sample frequency, frequency di­

viders can be inserted after the sampling unit. Such an arrangement is shown in

Figure 3.4. One benefit introduced by a frequency divider is that it may reduce

spurs in the output spectrum, since the regular repetition of two clock periods at

the subsampler output can be eliminated if the modulus of the divider is an integer

multiple of the period of alternation of the subsampler output. For instance, if the

output of a subsampler remains at one frequency for three clock periods and pro­

duces a second frequency for the fourth cycle, a divide by four operation on the

output of the subsampler would eliminate the phase error jump that would occur

every fourth cycle without a divider in place.

Reference

Clock

Phase

Detector

+

Divider

Lowpass

Filter VCO

Sample

Clock

Output

Subsampler

Q D

T

Figure 3.4: Block diagram of a modified frequency synthesis alias-locked loop

36

Section 3.2: Proposed Architecture

3.2.3.2 Multiple Sample Frequencies

As mentioned in the previous subsection, the VCO frequency is not uniquely de­

termined from the frequencies of the sample and reference clock. However, if the

ability to change the sample clock is present, one approach that could be used to re­

duce the number of frequencies at which the VCO might be oscillating is to change

the sample clock to another frequency. For instance, if a VCO signal is sampled

at 1 Hz and the reference clock is 0.2 Hz, the possible VCO frequencies that could

be synthesized, as per equation 3.3, are: 1.2Hz, 2.2 Hz, 3.2Hz, 4.2 Hz, etc. Now,

if the reference frequency is kept the same and the sample frequency is changed

to 0.6 Hz, the possible VCO frequencies are now: 0.8 Hz, 1.4 Hz, 2.0 Hz, 2.6 Hz,

3.2 Hz, etc. Combining the two sampling frequencies, the number of possible VCO

frequencies are now 3.2 Hz, 6.2 Hz, 9.2 Hz, 12.2 Hz, etc. Having knowledge of the

VCO tuning range and the reduced number of possible VCO frequencies possible

with two sampling frequencies. The VCO frequencies at which the ALL locks with

two different sampling frequencies, fsampiei and fSampie2'
 and a reference frequency,

fref, is given by:

fvCO = K • lcm(faamplei, fsamplev) + fref (3-6)

where K is any positive integer and the function lcm() finds the lowest common

multiple of its arguments. Choosing two sample frequencies with a large common

multiple such that there is only one solution to equation 3.6 within the tuning range

can ensure that the VCO locks at the desired frequency. Of course, more than two

sample frequencies can be used as well, and equation 3.6 can be extended for more

than two sample frequencies.

3.2.3.3 Digital Phase-Error Processing

Many of the modifications made to the basic architecture of frequency synthesis

PLLs can also be applied to the basic frequency synthesis ALL outlined in this

chapter. Because the ALL architecture proposed herein operates with discretized

phase errors, a logical method of processing discretized data is to work in the digital

37

Section 3.3: Sampling Circuit Requirements

domain. So, like many bang-bang PLLs [36], processing the phase error using

digital filters may be worth examining. For instance, in an architecture with phase

aligned reference and sampling clocks the discretized phase errors are limited to a

small set of possible values. These phase errors can be kept in the digital domain

and processed by a digital loop filter that controls a DAC connected to the VCO.

3.3 Sampling Circuit Requirements

The distinguishing component in an ALL architecture is the circuit that performs the

subsampling operation in the feedback path. The analog sample-and-hold or ADC

circuits described in previous papers and patents works well for low-frequency ap­

plications, but to sample high-frequency VCO outputs, a sampling latch with inter­

nal generation and a binary output is simpler and can generally operate at higher

frequencies.

The desired behaviour for the sampling latch is like that of a D-type flip-flop:

the sampling latch evaluates its input signal to a logic-low or logic-high value on a

transition of a clocking signal and subsequently propagates this logic value to the

latch output. Although much has been written on flip-flop circuits in the literature,

most of these flip-flops are used as storage elements in digital circuits. Storage ele­

ments in digital circuits are optimized for figures-of-merit such as the power-delay

product and circuit size, which are not of particular relevance for a single high-speed

sampling unit. The design criteria that are imposed on high performance D-latch

circuits found in retiming circuits of high-speed interfaces such as the serializer-

deserializer chips in fibre optic and backplane communications systems, however,

align more closely with the constraints placed on a high-speed sampling latch for

an ALL. In D-latch retiming circuits power consumption and latency are less of a

concern and greater emphasis is placed on high-speed operation. In the literature,

retiming circuits have been reported capturing data at rates of 75 Gbit/s using high

electron mobility transistor (HEMT) technology in a 0.13-um III-V process [52]

and 40Gbit/s in 90-nm CMOS technology [53].

38

Section 3.3: Sampling Circuit Requirements

3.3.1 Sampling Latch Properties

Although the sampling latch should behave as a D-type flip-flop, several constraints

normally placed on flip-flops are relaxed for the sampling latch in an ALL. Specif­

ically, the clock-to-output propagation delay through the sampling latch does not

need to be minimized. Furthermore, the reset time during which the latch is pre­

pared for the next sampling operation can take most of one period of the sample

clock. This means that, unlike in a frequency divider or prescaler and depending on

the frequency of the sample and input signals, the clock-to-output and reset time of

the latch circuit can take multiple cycles of the VCO signal. Furthermore, with a

periodic input signal from the VCO, the setup and hold time for the sampling latch

are irrelevant, but the latch circuit must consistently and predictably sample the in­

put signal from cycle to cycle in such a fashion that the phase of the input signal is

properly represented at the latch output. In fact, the sampling window of the latch

can span more than one VCO cycle, as long as the VCO phase is consistently passed

to the latch output. Finally, any DC offset in the sampler that biases the sampler to­

ward a particular logic level is not problematic, as long as the sampler outputs both

ones and zeros and is still periodic and representative of the periodicity of the input

signal. These severely loosened restrictions on the latch behaviour allow for more

design freedom with a focus on the capability to sample very fast changing inputs.

Because the sampling latch is not operated at the frequency of the input signal,

but rather at the frequency of the sampling signal, power consumption will be re­

duced compared to traditional high-speed prescaler and divider circuits. To estimate

power consumption, the activity factors of the signals in a frequency divider can be

compared with a sampling latch. A series of toggling flip-flops in a counter-based

frequency divider toggle at 1/2,1/4,1/8,1/16, etc. of the VCO frequency, adding up

to an average activity factor of 1. For a sampling latch, the activity factor is driven

by the sampling clock instead. Assuming that the sampler produces the highest

alias frequency it is capable of, the worst case activity factor is 1/2 of the sampling

frequency. Since the sampling frequency can be an order of magnitude lower than

the VCO frequency, the power consumption for the feedback circuits in ALL is in-

39

Section 3.3: Sampling Circuit Requirements

deed much lower than that of a frequency divider based PLL for equivalent VCO

frequencies.

3.3.2 Duty Cycle Correction

One problem in high-speed sampling that can be detected and potentially corrected

is a DC offset in the sampling latch that biases the sampler output to a particular

logic value, or in the worst case, causes the sampler output to be stuck at a logic

low or logic high value. Many high speed systems use differential circuits, but any

imbalance or mismatch in the symmetry of the circuit will cause such DC offsets.

Careful consideration of geometry choices and their impact on device matching

during the layout of a circuit does aid in minimizing the effects of device and par­

asitic mismatch. But, as device geometries shrink, practically unavoidable random

variations are becoming more pronounced. In an attempt to correct latch circuits

with threshold problems, a feedback mechanism is proposed that adjusts the input

switching threshold of a circuit, counteracting any DC offsets at the input.

The detection mechanism used to adjust circuit input thresholds relies on a de­

viation of the duty cycle of the latch output. In a perfectly balanced sampling latch,

the subsampling operation on the VCO signal should result in a square wave output

signal with a duty cycle that tends to 50 %. Several methods for duty cycle mea­

surement have been reported [54], using analog, digital, or mixed digital/analog

approaches. Most of the methods for measuring the duty cycle in previously pub­

lished work, however, rely on complex circuits that are needed for systems where

the frequency of the duty-cycle signal being measured is on the same order or higher

than the system clock frequency. When measuring the duty cycle of the latch out­

put signal, however, the sampling clock can be used as the relevant clock, because

the frequency of latch output signal is lower than the system (sampling) clock. This

greatly simplifies measuring the duty cycle, since the sample clock can then be used

to sample the output values of the latch.

40

Section 3.3: Sampling Circuit Requirements

3.3.2.1 Duty Cycle Measurement Algorithm

The proposed method to measure the duty cycle calculates a running sum of the

output values produced by the sampling circuit. Logic-high values at the sampler

output increment this running sum, while logic-low values decrement the running

sum. If the duty cycle of the sampler output is 50 %, the running sum will tend to

zero. Any DC bias that increases the probability of logic-high output will cause the

running sum to increase over time, while a DC bias toward logic-low output causes

the running sum to decrease. The rate of increase or decrease will be proportional

to the severity of the DC bias. Over a single period of the alias signal at the sam­

pler output the running sum will go up and down, so small changes in the running

sum value should be discarded. In a binary representation of the running sum, this

would mean discarding a number of low-order bits in the sum. The high-order bits

can then be used to adjust the threshold levels for the sampling circuit. The mech­

anism through which to achieve this is dependent on the specific circuit used. In

a differential circuit, for instance, an extra biasing transistor could be inserted in

each differential branches of the circuit. These biasing transistors could then be

individually controlled to alter the symmetry in the circuit.

The proposed duty cycle correction scheme creates a feedback system that con­

tinually adjusts the biasing transistors so that the duty cycle is as close to 50 % as

the DAC quantization permits. However, as with any feedback system, such an ar­

rangement may be unstable or oscillate, as it attempts to achieve a 50 % duty cycle.

This target duty cycle is not achievable under all conditions, however, since the duty

cycle of the signal is determined by the number of sampling impulses per alias clock

period. If the number of sampling impulses per alias clock period is odd, a perfect

50 % duty cycle is not possible, and the threshold level will continually vary, and

thus continually alter the phase relationship between the sampler input and output

signals. This is undesirable, as it affects the ability of an ALL to maintain lock.

An improved duty cycle correction system with hysteresis will only adjust the input

threshold of the sampler if the duty cycle deviates by more than a specified margin,

e.g. ±10 %. To implement this acceptable margin, the biasing transistors only need

41

Section 3.4: Summary

adjusting when the rate of increase or decrease of the running sum exceeds a speci­

fied amount. Specific circuit solutions, such as those in Figure 4.16, to achieve this

type of duty cycle control mechanism are discussed in chapter 4.

3.4 Summary

This chapter has provided an overview of the operating principles that allow an

ALL to perform frequency synthesis. The mathematical relationships between in­

put and output frequencies of an ALL system have been presented. An overview of

a sampling latch based architecture has been provided, along with several possible

variations that could be made to this architecture. The predicted effects of subsam-

pling in the feedback path has been discussed, along with specific considerations

that must be taken when designing an ALL frequency synthesizer. Finally, the con­

straints and desired behaviour expected from the subsampler are described, together

with a method to tune out any DC bias in a sampling latch.

Replacing the high-speed frequency dividers by a sampling latch relaxes the

constraints on the circuits in the feedback path. This has the potential to allow for

the development of faster frequency synthesizers than what is possible with current

state-of-the-art frequency dividers. An additional benefit of using a subsampling

latch is that the power consumption is significantly reduced when compared to a fre­

quency divider. One side-effect of using a sampling latch that discretizes the phase

error is that measures of jitter and phase noise spectra for ALL-based frequency

synthesizers are, although similar to bang-bang PLLs or fractional-N synthesizers,

most likely worse than integer-N frequency divider PLLs.

42

Chapter 4

Sampler Circuit Design and
Simulation

4.1 Overview

The operation that limits the maximum frequency of modern high-speed frequency

synthesis PLLs is the frequency division that needs to be performed in the feedback

path [10]. In frequency dividers and prescalers, the first stage division circuit is

connected directly to the oscillator and must operate at very high frequencies. In

contrast, the sampling latch generates a new output signal at the frequency of the

sampling clock, rather than half the frequency of the VCO clock. Although it must

still consistently sample a very high speed input signal, the loosened constraints

outlined in chapter 3 allows for more freedom in design trade-offs. Section 4.2

presents a number of potential sampling latch circuits and evaluates their suitability

as subsampling unit in a frequency synthesis ALL through simulations in a modern

CMOS process. Section 4.3 concludes with a description of threshold correction

circuits for sampling latches, again providing simulation demonstrating their func­

tionality.

4.2 Latch Circuits

In this section, several latch circuits will be evaluated for their suitability as a high­

speed subsampling latch. Each latch circuit is presented and subsequently evaluated

43

Section 4.2: Latch Circuits

through analysis and simulation. The suitability of a sampler is determined by

verifying that the candidate circuit produces the correct aliased output signal when

subsampling a periodic input signal.

4.2.1 Latch Performance Evaluation Methodology

To evaluate the suitability of each latch, two simulations are performed on the can­

didate circuits. The first simulation consists of a test bench that aims to determine

the maximum input frequency at which the sampling latch still produces the correct

alias frequency. The second method for evaluating latches defines an input sensitiv­

ity function for each latch by modelling the latch as a linear correlation followed by

a binary decision. This analysis provides some insight on the size of the sampling

window, and provides a relative basis for comparison of minimum detectable pulse

widths and that the sampling window need not be shorter than the input cycle time.

4.2.1.1 Maximum Frequency Test

The first evaluation strategy aims to replicate the conditions that a real sampling

circuit operates under. To do so, a simulation test bench has been configured with

a sinusoidal input that models the VCO signal and a square wave sample clock that

triggers the sampler. The time between rising edges at the sampler output is plotted

versus time, and this period is compared to the alias frequency predicted by 2.4. A

block diagram of the test bench is shown in Figure 4.1.

Input
Clock Subsampler

Output

Figure 4.1: Block diagram of a test bench for a sampling latch

All simulations are done at the transistor level in a 90-nm general purpose (GP)

44

Section 4.2: Latch Circuits

CMOS process using Spectre as the simulator. The simulation parameters, design

kit version and software simulator version are specified in appendix A. A simulation

to determine the performance of the logic SPICE models in the design kit shows that

the fT is optimistically high at about 200 GHz, while publications with measured

data indicate that a 90-nm GP CMOS process has an fT and fmax of about 120 GHz

and 170GHz, respectively [53]. This is not unexpected, since the design kit is not

intended for RF circuit design, and the device models do not include effects such as

gate resistance. Nonetheless, simulations can still be used to relatively compare the

merits of sample circuit architectures, even if the predicted performance is likely

optimistic when compared to actual implementations.

To determine the maximum frequency that can be sampled by a latch, the input

clock frequency is increased until the latch fails, meaning that the period at the

output of the latch no longer matches the alias frequency predicted by equation

2.4. Since a latch is likely to fail around its input switching threshold, failures are

best identified by verifying that the sampler functions deterministically around the

input switching threshold. When the phase relationship between the input clock

and sample clock has been found at which the sampler operates near the switching

threshold, it is possible to run a parametric sweep that varies the phase by small

increments across the phase at which the input switch threshold lies. This type of

parametric sweep, however, does not take into account hysteresis effects that may be

present in the latch. Instead of a parametric sweep, the input clock and sample clock

are configured to ensure a large number of sample points across the whole phase

of the input clock signal. To achieve this, the predicted alias frequency is made

small in comparison to the sample clock frequency, thereby forcing a large number

of samples to be taken across each period of the alias signal, which corresponds to

the same number of samples taken across one cycle (a phase of 2n) of the input

clock. Although a latch can be similarly indeterministic around the input switching

threshold for alias frequencies that are close to the sampling frequency, it is much

harder to identify these failures in simulation.

Using a low alias frequency, however, is not useful to determine any problems

45

Section 4.2: Latch Circuits

arising from hysteresis or an input switching threshold that is high or low. A low

input switching threshold, for instance, will cause the duty cycle of the output signal

to be high. When the alias frequency is close to the sample frequency, there are only

a small number of sample points per alias period and a low input threshold may in

fact cause the output to be permanently stuck high. For this reason, the samplers

are evaluated at a low and high alias frequency. The high alias frequency detects

problems with high or low switching threshold problems and hysteresis, while a low

alias frequency will find problems related to output signal indeterminism around the

input switching threshold.

For the simulations in this section the sampling frequency has been set to 1 GHz

and the input frequency is configured to produce a low alias frequency of 1 MHz and

a high alias frequency of 100 MHz, which implies an input frequency that is given

by equation 3.3 or 3.5 and therefore must satisfy K ± 0.001 GHz or K ± 0.1 GHz,

where K is any positive integer. The circuit is simulated for at least 1010 us or

20 ns, depending on the alias frequency, and is sufficient to observe one clock period

of the alias signal. To replicate real-world conditions more closely, the transients

analysis is run with transient noise enabled. The noise parameters are based on

recommendations in [55], although loosened to keep simulation times reasonable

at high frequencies. The transient noise maximum frequency is set to 1 THz, with

the minimum noise frequency at 10 MHz, and includes both white (thermal) noise

and flicker noise. These noise parameters are specified along with the simulation

parameters in appendix A.

4.2.1.2 Latch Sensitivity Function Analysis

Although the maximum frequency simulation is a good predictor of performance

for various latch circuits, the determination of the maximum frequency requires

long-duration simulations at high frequencies and is very time consuming. In a

second method we attempt to define an sensitivity function for each latch around

the sampling instant by assuming the latch responds as a linear correlation of the

input and the latch sensitivity function (LSF).

46

Section 4.2: Latch Circuits

D. F. Williams et al. [56] described a similar approach for evaluating sample-

and-hold circuits of oscilloscopes. In their paper they describe a method in which

they treat their sample circuit as a linear time-invariant system, apply a series of in­

put signals that mimics an impulse response and measure the output signal. Using

the output signal they define an impulse response function for the sampling oper­

ation that appears to work reasonably well in predicting the circuit response for a

variety of input signals.

To evaluate sampling latches we assume that the latch circuit is linear, and at­

tempt to define a latch sensitivity function. For a latch with an input switching

threshold (logic threshold) of VLT, input function V(t), and LSF function LSF(t),

the output Q of the latch is given by

Q = sign (J °°(V(t) - VLT) • LSF{t)dt\ (4.1)

where the output of the sign() function can be interpreted to evaluate to a logic low

or logic high value normally seen at the output of a latch circuit.

Unfortunately the non-linearity of the sign() operation prevents a simple recon­

struction of the LSF from the output signal. Instead, to determine the LSF, a large

number of simulations are run, and this data is combined to reconstruct the LSF.

Two different plots are generated. For the first plot the latch circuit is stimulated by

a sinusoidal pulse at the input. The time offset between the centre of the pulse and

sample clock are varied, and for each offset step the minimum width pulse required

to trigger the latch is found. Plotting the inverse of the pulse width at the switching

threshold versus the offset time produces something akin to the LSF. With the LSF

defined for each sampling latch, a relative comparison between latches can be made

on the basis of the LSF. One drawback of this approach is that these plots do not

give a clear indication of the sensitive time window. This is because a sufficiently

wide pulse at a far offset will still overlap the sampling window of the latch. The

generated plots such as the one shown in Figure 4.10 therefore show sensitivity

reaching to very large offset values.

To address this shortcoming, a second sampling window sensitivity plot that

is more indicative of the sampling window width is generated. The data for this

47

Section 4.2: Latch Circuits

plot is collected in a similar manner. Rather than using sinusoidal pulses, square

wave pulses are used instead. These square pulses have rise and fall times that

are equivalent to the slew rates of signals at frequencies on the order of the fmax

of the process. The simulation data is then analyzed to find the minimum pulse

width required to trigger the latch. For the offsets at which the minimum pulse

triggers the latch, data points with values inversely proportional to the minimum

pulse width are used. To determine the sensitivity of the latch with offsets outside

the peak sensitivity, the minimum pulse is delayed by one unit of the plotting time

step. At this delayed offset using the minimum pulse width will cause the latch to

no longer capture the pulse. The pulse width is then increased by maintaining the

offset of the rising edge of the pulse but delaying the falling edge of the pulse. The

pulse width is increased until the latch registers a logic high again. For this offset

increment, the inverse of the triggering pulse width is plotted. This is repeated until

an offset is reached at which there is no pulse width wide enough to trigger the

latch. This point defines the edge of the sampling window after which no data is

captured. The same steps are repeated in reverse to generate the data points prior

to peak sensitivity, advancing the offset by the plotting time step and finding the

minimum pulse width required to trigger the latch at that particular offset.

4.2.2 Standard Cell D Flip-Flop

To get a baseline performance figure for latch circuits, a master-slave D flip-flop

from the digital standard cell library included in the design kit is simulated.

4.2.2.1 Circuit Design

The standard cell D flip-flop from the 90-nm design kit used for simulations is

FD1QSVTX1. The FD1QSVTX1 cell is a rising-edge triggered D flip-flop with Q

output, uses standard threshold transistors and has a normalized output drive of one.

The design is a standard master-slave flip-flop built with inverters and transmission

gates, and is shown in figure 4.2

48

Section 4.2: Latch Circuits

CI CN

Clock [>^Hx> CI
CI

Figure 4.2: Standerd cell master-slave D flip-flop circuit

4.2.2.2 Circuit Simulation

Simulating the standard cell D flip-flop and increasing the input frequency beyond

4 GHz shows that the duty cycle of the alias signal begins deviating from 50 %. At

14.001 GHz the input signal has the proper alias frequency, albeit with a very high

duty cycle. At 14.1 GHz, however, the circuit produces a steady logic high value at

the output. Thus, the baseline figure for comparison for other latch architectures is

approximately 13 GHz for the standard cell D flip-flop. The simulation results with

the high and low frequency alias signals are shown in Figures 4.3 and 4.4.

V
ol

ta
ge

 (
V

)

1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

-0.2
0

-

-

-

0

i i

c)

]

^-~

5.0 10.0

1 1 1

Alias signal
Alias signal period O

< c

1
1

15.0
Time (ns)

)

,
20.0 25.0

-

-

3C

16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0
-2.0

).0

li
as

 p
er

io
d

(n
s)

<

Figure 4.3: Alias signal for standerd cell D flip-flop subsampling simulation with a
13.1 GHz sinusoidal signal sampled at 1 GHz

To determine the LSF for the standard cell D flip-flop, the first step is to deter-

49

Section 4.2: Latch Circuits

4>

3

0.00 0.20 0.40 0.60
Time (̂ is)

0.80 1.00

Figure 4.4: Alias signal for standard cell D flip-flop subsampling simulation with a
13.001 GHz sinusoidal signal sampled at 1 GHz

mine the switching threshold and the minimum pulse width that can be detected.

Simulations reveal that for a supply voltage of 1.2 V the input switching threshold

is approximately 0.553 V. A short parametric sweep of input pulse widths and off­

sets reveals that the minimum pulse width required to trigger the flip-flop is 23 ps,

with the centre of the pulse arriving with an offset between -7 ps and -5 ps before

the rising edge of the sample clock. The parameter space is swept for pulse widths

up to 50 ps, and we find that the minimum and maximum offsets of the centre of the

pulse for which the latch still captures data varies from -46 ps to 9 ps. The LSF plot

is shown in Figure 4.5 and reveals peak sensitivity around 6ps before the sampling

clock edge arrives. The latch sensitivity drops sharply after peak sensitivity in the

latch.

Plotting the sampling window sensitivity shows that any data on the standard

cell D flip-flop input after -2 ps is not captured. Peak sensitivity for a square input

pulse is found for a pulse width of 20 ps between -5ps and -4ps. The sampling

window cut-off is not very sharp prior to peak sensitivity, with wide input pulses af­

fecting the latch output up to 20 ps ahead of peak sensitivity. The sampling window

sensitivity plot is shown in Figure 4.6.

50

Section 4.2: Latch Circuits

%

I — *

1/23 ps

1/25 ps

1/30 ps

1/40 ps

1/50 ps

-

. y
•

i

/

i

i

f j

/'

i

r \
r , s

\

\

i i

-

"

v_

-50 -40 -30 -20 -10 0
Offset (ps)

Figure 4.5: Latch sensitivity plot for standard cell D flip-flop

10

J3

a,

1/20 ps

1/22 ps

1/24 ps

1/28 ps

1/32 ps

1/40 ps

i

-

-

y

i t

\

/
t—f- /

i

i

/

i

-

i

i -

; -

-25 -20 -15 -10
Edge offset increment (ps)

Figure 4.6: Latch sampling window plot for standard cell D flip-flop

4.2.3 Differential Pass-Transistor Pulsed Latch

An improvement on the single-ended standard cell D flip-flop can be made by using

a differential sampling latch design. Inspired by the sense-amplifier circuits used

in computer memories, the differential pass-transistor pulsed latch (DPTPL) [57]

only requires a small input swing on the differential signal, which is then amplified

internally and produces a rail-to-rail voltage at the sampler output.

51

Section 4.2: Latch Circuits

4.2.3.1 Circuit Design

The DPTPL topology, shown in Figure 4.7, is built on two cross-coupled inverters

that provide regenerative feedback using transistors Ml through M4. The circuit

shown in Figure 4.8 is used to generate a pulse that creates a brief sampling window

by enabling transistors M7 and M8. The inverters in the pulse generator circuit are

sized to minimize the pulse length while ensuring that the sampling circuit remains

functional across PVT variations. During the pre-charge phase, when the clock sig­

nal is low, transistors M5 and M6 pull both internal nodes to VQD- A gated set-reset

(SR) latch at the output of the sampler holds the values when the internal nodes of

the cross-coupled inverter go to VOD during the pre-charge phase. When the clock

signal goes high transistor M9 is enabled and the pulse generation circuit creates

a sampling window with a duration that is on the order of 20 ps in 90-nm technol­

ogy. The differential signal between the D and Dinputs is then amplified through

the cross-coupled inverters. All transistors drawn in Figure 4.7 are the smallest size

that does not give rise to dog-bone shaped transistors, which corresponds to a drawn

width-over-length (W/L) gate dimensions of 0.2 urn / 0.1 urn in the 90-nm process

used for simulations.

4.2.3.2 Circuit Simulation

To simulate the DPTPL circuit the test bench from Figure 4.1 is modified to produce

a differential signal, producing a rail-to-rail swing of two sinusoidal input signals

that are 180 degrees out of phase. When configured to produce an alias frequency

of 100 MHz, the DPTPL circuit functions correctly at up to 179 GHz. However,

changing the input signal for an expected alias frequency of 1 MHz, the circuit

produces a noisy result near the switching threshold that requires filtering at input

frequencies higher than 26 GHz. This failure mode is demonstrated in Figure 4.9.

From this figure it can be observed that the latch does not sample consistently when

it is operated near the switching threshold. Instead of a single edge as the input

crosses the switching threshold, the latch output toggles between logic high and

logic low values before it settles.

52

Section 4.2: Latch Circuits

VDD

Clock

Pulse

D

f
M5

J L
M7

r^
Ml

M3

V

-d M<5

M2

M4

7

J L
M8

%

M9

D

Q Q

Figure 4.7: Differential pass-transistor pulsed latch circuit

Simulating the DPTPL circuit with transient noise and a target alias frequency

of 100 MHz, the maximum frequency at which the circuit samples correctly is re­

duced to 100.1 GHz. Simulating with an alias frequency of 1 MHz, however, reveals

that the DPTPL circuit produces noisy results near the switching threshold at fre­

quencies as low as 4 GHz when transient noise is enabled, and again with a failure

behaviour that is similar to that depicted in Figure 4.9.

53

(A
)

V
ol

ta
ge

1.4

1.2

1

0.8

0.6

0.4

0.2

0

-0.2

Clock r-M»-^
Section 4.2: Latch Circuits

Pulse

Figure 4.8: Pulse generator circuit for pulsed latch

100 200 300 400 500 600 700 800 900 1000
Time (ns)

Figure 4.9: Toggling alias signal at the switching threshold of a DPTPL subsam-
pling circuit, simulated with transient noise and a 58.001 GHz sinusoidal input sig­
nal sampled at 1 GHz

As a differential circuit, the DPTPL does not have switching threshold like

single-ended circuits do, and even the smallest difference between the input sig­

nals should consistently evaluate to a specific logic level. To perform the LSF

analysis for the DPTPL, the same approach as for the standard cell D flip-flop is

taken. Initially the input differential signal is at —VDD, resulting in a logic low out­

put. Two differential cosine shaped pulses that reach a peak-to-peak value of VUD

on the latch input should then cause the latch to produce a logic high value when

sampled. A parametric sweep reveals that the minimum detectable pulse width is

9ps, with the centre of the input pulse offset from the rising edge of the sampling

clock between 27 ps and 32 ps. The DPTPL is thus sensitive to pulse widths much

narrower than the standard cell D flip-flop. Repeating the same parametric sweep

for pulse widths up to 50 ps it is found that the minimum and maximum offsets at

which the DPTPL still captures the pulse are 5ps and 54 ps, respectively. The LSF

54

Section 4.2: Latch Circuits

plot is shown in Figure 4.10, and shows a much more symmetric function, with a

broad peak sensitivity around 29 ps. The large positive offset for peak sensitivity

is due to the fact that there is a considerable delay between the arrival of the rising

edge of the sampling clock and the generation of a sampling pulse that enables the

pass transistors in the latch.

1/9 ps
l/10ps

'$
9J

OH

20 30 40
Offset (ps)

Figure 4.10: Latch sensitivity plot for DPTPL

60

The sampling window sensitivity, shown in Figure 4.11, for the DPTPL is much

narrower and sharper than the standard cell D flip-flop, extending from approxi­

mately 26 ps to 33 ps. Peak sensitivity lies between 30 ps and 31 ps, with the small­

est square pulse detected at 8ps. The latch is slightly more sensitivity to input

arriving prior to peak sensitivity.

4.2.3.3 Latch Hysteresis Buffer

To overcome the toggling behaviour at the output of the DPTPL at low sample to

alias period ratios a circuit has been designed that eliminates the high frequency

noisy toggling at the output. Since the frequency of this toggling behaviour is much

higher than the alias frequency, a low-pass filtering approach that eliminates these

high frequency components can be used. Such a low-pass filter could be imple­

mented using an analog approach or could the filtering can be done in the digitally

55

Section 4.2: Latch Circuits

1/8 ps

• 4 — •

$

J l/10ps

l/12ps

25 26 27 28 29 30 31 32 33 34
Edge offset increment (ps)

Figure 4.11: Latch sampling window plot for DPTPL

using digital signal processing techniques.

In a simple but effective implementation for this low-pass filtering operation,

we designed a hysteresis buffer that maintains a history of previous sampling cir­

cuit outputs and compares them with the current sampler output. If these values

are in agreement, the current sampler value is stored in the output buffer, otherwise

the output buffer value remains unchanged. The choice for the number of previ­

ous sampler output values stored and compared with the current value determines

the maximum duration for a toggle before it affects the output. From simulations

the pulse duration of toggles is generally one or two sample clock periods, thus a

reasonable number of previous samples stored in the history for a sampling to ref­

erence clock frequency ratio of 1000 is two. A more generic circuit for an arbitrary

history length, and a larger range of alias frequencies, is depicted in Figure 4.12.

Although the hysteresis buffer circuit presented works well for low alias fre­

quencies, it can prevent proper operation at higher frequencies if the buffer history

is too long. A separate frequency detector could be used that measures long term

frequency trends of the aliased signal and selectively adapts the history length of

the hysteresis buffer to a level appropriate for a given alias frequency.

With the hysteresis buffer connected to the sampler circuit output the test bench

56

1 1 1 1

/

/
/

/
/

/
/

- i
1 1 1 1

1 1 1 1

* • \

/ \
\

/ \
/ \

/ \
\

1 1 1 1 1

Section 4.2: Latch Circuits

Sampler Output

Sample Clock

Alias

Figure 4.12: Hysteresis buffer for sampling latches.

is simulated again to determine the maximum input frequency with the hysteresis

buffer. With an expected alias frequency of 1 MHz, the maximum input frequency

is approximately 180 GHz. Adding transient noise, however, reduces the maximum

input frequency to about 58 GHz.

A more sophisticated approach could likely be used extend the maximum fre­

quency, depending on the behaviour of the latch output. The hysteresis buffer pro­

posed suffices for oscillations that are rapid enough to be eliminated by the latch

buffer. More advanced signal processing could be used to extract the clock period

from different toggling or noisy behaviour. For instance, the duty cycle of the tog­

gling behaviour may be dependent on the phase of the alias frequency. The high

speed latches we evaluated tend to fail at high frequencies by generating a toggling

signal at half the sample frequency, leaving no useful information for the extraction

of the alias frequency. Other latch topologies, however, may have high frequency

57

Section 4.2: Latch Circuits

behaviour that still allows for the extraction of the alias frequency through a suffi­

ciently sophisticated signal processing algorithm.

4.2.4 Sense-Amplifying Latch Circuit

To avoid relying on a pulse generating circuit, which is difficult to design for con­

sistent behaviour across PVT variations a sense-amplifying flip-flop (SAFF), which

was first proposed in [58], is evaluated.

4.2.4.1 Circuit Design

Again, like the DPTPL, this latch uses the regenerative property brought about by

internal positive feedback to amplify a small differential swing on the input to a

rail-to-rail voltages at the output. Similar to the DPTPL design, the S and R outputs

of this sampler connect to a gated SR latch that holds the values when the clock

goes low. Unlike the DPTPL design, however, a SAFF does not use pass transistors

controlled by pulse generation circuit. Instead, the inputs are connected to the gates

of transistors M7 and M8. Using the transistor gate rather than the drain provides

a higher input resistance. Again, pull-up resistors M5 and M6 pull the internal

nodes to VDD, while the drain voltages of transistors M7 and M8 are equalized by

transistor M10, which remains enabled at all times [59]. The data sampling occurs

when clock goes high, causing M9 to turn on and allowing transistors M7 and M8

to amplifying the differential input signal that in turn causes the latch to capture the

input signal. Once the internal nodes have settled, changing input values applied to

transistors M7 and M8 no longer affect the output of the latch.

4.2.4.2 Circuit Simulation

Simulating the latch with an expected alias frequency of 100 MHz, the maximum

input frequency of the latch is approximately 200 GHz. Changing the input signal

to produce an alias frequency of 1 MHz, however, reduced the maximum input fre­

quency to 50 GHz. Simulating the SAFF with transient noise and a 1 MHz predicted

alias frequency reduces the maximum input frequency to 3 GHz.

58

Section 4.2: Latch Circuits

VDD

Clock 1 A

Lfr^R

Figure 4.13: Sense-Amplifying Flip-Flop

Again, using the hysteresis buffer at the S AFF output improves the performance.

When simulated with an input frequency chosen to produce a 1 MHz alias fre­

quency, the sampling latch operates as expected on input frequencies as high as

230 GHz. Adding transient noise reduces the maximum input frequency to 76 GHz.

The LSF simulation test bench for the SAFF is the same as the DPTPL. Like

the DPTPL, the SAFF circuit also has a minimum detectable pulse width is 9ps,

but with a much narrower window where this pulse is detected. A 9 ps pulse is only

detected with the input pulse offset from the rising edge of the sampling clock by

12ps. Repeating the parametric sweep for pulse widths up to 50 ps we find that the

minimum and maximum offsets at which the SAFF still captures the pulse are -7 ps

and 43 ps, respectively. The LSF plot is shown in Figure 4.14. The peak sensitivity

is not centred in the sampling window like the DPTPL, since peak sensitivity lies

at an offset of 12ps but the centre of the sampling window is at approximately

18ps. The LSF for the SAFF is also less symmetric than the DPTPL, and is more

sensitivity after the peak than before.

59

Section 4.2: Latch Circuits

-a

O H

1/9 ps
l/10ps

l/15ps

1/20 ps

1/30 ps -

1/50 ps

- i 1 1 1-

A

" ^ - K

-r"
-10 -5 0 5 10 15 20 25 30 35 40 45

Offset (ps)

Figure 4.14: Latch sensitivity plot for SAFF

The sampling window sensitivity for the SAFF is shown in Figure 4.15. Like

the DPTPL, the narrowest square pulse detectable at peak sensitivity is 8 ps between

offsets of 1 Ops and 11 ps. Unlike the DPTPL, however, the SAFF has a very sharp

cut-off prior to peak sensitivity and instead remains sensitive much longer after the

peak sensitivity. The sampling window for the SAFF is a few picoseconds narrower

than the DPTPL, which in theory results in better high frequency performance.

T3

'%

"3
_OH

1/8 ps

l/10ps

l/12ps

l/16ps

1
f

/
/

/
/

/

/

- /
/

\
\

\

i i

1 1

X

1 1

' 1

-

-

\
\
\

10 11 12 13 14
Edge offset increment (ps)

15 16

Figure 4.15: Latch sampling window plot for SAFF

60

Section 4.3: Input Threshold Correction

4.2.5 Latch Simulation Results Summary

The maximum input frequencies under various operating conditions are tabulated

in table 4.1.

Table 4.1: Maximum input frequencies for latch designs

Alias Frequency
100 MHz
1MHz
1 MHz with noise
1 MHz with hysteresis
1 MHz with hysteresis and noise

D flip-flop
14.100 GHz
13.001GHz

DPTPL
179.100 GHz
26.001 GHz

3.001 GHz
180.001GHz
58.001 GHz

SAFF
215.100 GHz
50.001 GHz

3.001 GHz
230.001 GHz
76.001 GHz

Comparing the LSF for the different latches, it is clear that the ability to detect

a narrower pulse translates to a higher frequency capability. Although the DPTPL

and SAFF have the same peak sensitivity for both square and sinusoidal pulses,

the maximum frequency simulations show the SAFF to have a higher frequency

capability. This is perhaps due to the narrower range of offsets for the SAFF at

which the latch reaches peak sensitivity or the narrower sampling window during

which the SAFF can capture data. The latch sensitivity analysis indicates that the

smallest pulse width that can be captured by the differential designs is on the order

of 8 ps. These latches might then seem appropriate for sampling clock signals at up

to 2.5 GHz, which corresponds to a signal with a 16ps period and a 50 % duty cycle.

In maximum frequency simulations, however, these latches can actually sample

periodic signals at up to 230 GHz.

4.3 Input Threshold Correction

As seen in simulations with the standard cell D flip-flop design and discussed in

chapter 3, an offset in the input threshold can cause the latch output to be biased

to a certain logic level and cause the latch to fail at higher frequencies. A sim­

ilar offset can also arise in differential circuits, which are sensitive to mismatch

between what should be symmetric branches. In this section, an offset correction

circuit for differential circuits is presented and simulated. The duty cycle detection

61

Section 4.3: Input Threshold Correction

circuits apply equally well to single-ended circuits, but would require a different

offset cancellation mechanism inside the latch.

4.3.1 Circuit Design

The duty cycle measurement system proposed uses a single up/down counter that

stores a running sum in two's complement. The up/down mode input of the counter

is evaluated on the rising edge of the sample clock and determines whether the

counter increments or decrements for the given sample clock period. The up/down

mode for the counter is driven directly by the latch output, so while the latch out­

put is low the count value will decrement by one each sample clock period, and

conversely, increment the count value by one when the latch output is high. When

operated in this manner, the counter generates a running sum of output values for

the latch. For an ideal 50 % duty cycle, the long term average value stored in the

counter will thus tend to zero. Deviations from the ideal duty cycle will lead to an

increasing or decreasing value in the counter, with the rate of change of the counter

value dependent on the degree of deviation from a 50 % duty cycle. The value

stored in the up/down counter is then used to program DAC circuits that control

transistors within the latch that counteract asymmetries and correct the duty cycle

of the latch output. A block diagram of such a correction system is shown in Figure

4.16.

A modification to the DPTPL circuit to support duty cycle correction is shown in

Figure 4.17. Two transistors, M9 and M10, are independently controlled by tuning

the voltage on the Left and Right pins. These transistors can then be used counteract

mismatch by biasing one side of the differential circuit.

The bit-width of the counter and the DAC precision will depend on a num­

ber of factors. The DAC should have a sufficiently high resolution to control the

threshold correction transistors finely enough to correct the duty cycle. For differ­

ent latch topologies, the required precision will differ, dependent on the sensitivity

of the latch to threshold correction transistor input levels. The total bit-width of the

counter is determined by the required precision of the DAC and the ratio between

62

Section 4.3: Input Threshold Correction

Input ^.

Sample , > \

D Q
Sampler

Left Right

A A

DAC

A

DAC

A

Decoder

A: •MSfi j_LSB

*>>
Up/Down

Counter

-^. Output

Figure 4.16: Block diagram of basic duty cycle correction system

the period of the latch output signal and the period of the sampling clock. Once

the desired DAC precision has been determined, the next factor that determines the

bit-width of the counter is the fact that the low-order bits in the counter change con­

tinuously as the counter up/down mode input alternates from up to down during a

single period of the latch output. The value of these low-order bits during a single

clock period should have no effect on the DAC output voltage, since they do not

constitute a long term deviation from a 50 % duty cycle. For instance, if the sam­

pling clock has a period of 1 ns and the alias clock period is 32 ns with a 50 % duty

cycle, the up/down counter may increment by as much as 16 before decrementing

by 16. Clearly, in this example, at a minimum, the 4 least-significant bits in the

counter should be ignored by the DAC. In general, the number of bits to be ignored

should practically be at least:

I J sample
log2 (4.2)

\ f Jias

As the number of low order bits ignored by the DAC is increased the number of

sample clock periods that are required before the DAC output value is affected goes

63

Clock

Pulse

D

R

Section 4.3: Input Threshold Correction

VDD

M5

• J • - *
M7

1 J

Ml

M9 M3

<H M6

M2

M8

M4 M10

' 1
Left

Mil

1

D

Right

Figure 4.17: Differential pass-transistor pulsed latch circuit with input threshold
correction transistors

up, causing the response time of the duty cycle correction system to increase.

Another consideration is the total required bit-width of the counter to avoid

overflow of the counter. As the counter value changes and begins to alter the duty

cycle of the latch, the latch output duty cycle will approach 50 %. As a 50 % duty

cycle is approached, the rate at which the counter will change decreases. When a

50 % duty cycle has been reached, the control bits for the DAC should stop changing

altogether. Overflow may still occur if the counter is saturated and the DAC control

values have saturated but the counter value is still changing. In this case the duty

cycle is not correctable by the system, and an eventual overflow or saturation of the

counter is unavoidable, independent of the bit-width of the counter.

A possible configuration of the counter and decoder is shown in Figure 4.18.

The counter value is stored in two's complement, and so bit 15, the most significant

bit (MSB), is used by the decoder to determine whether the duty cycle is below

50 % (MSB is low) or above 50 % (MSB is high). When the MSB is high the next 8

bits (bits 14 through 7) are complemented and activate the left DAC control outputs

DL7 through DL0 while the right DAC control outputs will remain low. When the

64

Section 4.3: Input Threshold Correction

MSB is low, the right DAC is activated with the count value in bits 14 through 7 of

the counter, while the left DAC control outputs are low.

DJ DL6 ... DL0 DR7 DR6 ... DR0

Figure 4.18: Block diagram of decoder circuit with up/down counter

4.3.1.1 Duty-Cycle Tolerance Circuit

The system depicted in Figure 4.16 creates a feedback system that continually ad­

justs the voltage on the balance transistors in the differential latch circuit so that

the duty cycle is exactly 50 %. However, as with any feedback system, this system

may be unstable or oscillate. Because the adjustment steps are discrete, oscillations

in the duty cycle will occur. As mentioned in chapter 3, the duty cycle correction

circuit should only adjust the latch if the duty cycle deviation exceeds a specified

value. To prevent duty cycle correction near 50%, a certain number of low order

bits in the counter can be reset periodically by a second counter. Such a duty cycle

detection mechanism is shown in Figure 4.19.

Demonstrating by example, assume for instance, that the lower five bits of an

up/down counter are reset to a known value every 300 cycles of the sampling clock.

The known value loaded into the counter depends on the MSB of the up/down

65

ToDAC

Section 4.3: Input Threshold Correction

*

15

A

14

*

13 •••

Up/DownCounter

T
From Latch

*

9

*

7 6 5

Up/Down Counter

4 J 2 7 0

* * * r * *

Clock Reset

T
Sample

\f

v

Clock IsZero

Down Counter

Figure 4.19: Block diagram of duty cycle detector with periodic reset

counter. If the MSB is high (1), and the counter value is thus negative, the lower

five bits are reset to a two's complement value representation of -1 (11110 for a

reset of the lower five bits). If the MSB is low (0), the lower five bits are set to

1 (00001 for a reset of the lower five bits). Using 300 cycles for a five bit reset

implies that the up/down count increment or decrement during the 300 cycle period

must exceed 31 to affect the counter value. The difference between the number

of samples that are high {highCount) and low (lowCount) during this cycle must

thus exceed 31. Assuming our duty cycle exceeds 50%, highCount will exceed

lowCount, giving:

highCount — lowCount > = 31 (4.3)

Their sum during a 300 cycle period is:

highCount + lowCount = 300 (4.4)

Thus:

highCount — (300 — highCount) > = 31 (4.5)

66

Section 4.3: Input Threshold Correction

So

highCount >= 331/2 (4.6)

Thus highCount must be at least 166, leaving lowCount at 134. With a 300 cycle

reset period for the five lowest bits in the up/down counter the duty cycle that is

greater than:

DutyCycle = 166/300 • 100 % = 55.3 % (4.7)

is not detected and the input-threshold adjustment controls are not altered by the

system. Similarly, if the duty cycle is less than 44.7 %, the input-threshold adjust­

ment value is not altered. More generally, for a reset period resetPeriod and reset

bit-width of numResetBits, the duty cycle range in which the threshold circuitry

is not activated is given by:

o (numResetBits—1)

DutyCycle = 50 % ± „ . , • 100 % (4.8)

resetPeriod

Some care must be taken to ensure that the low-order bit reset period is not a mul­

tiple of the predicted period of the output latch signal. If these periods are har­

monically related, unfortunate low-order bit reset timing can cause the counter to

count faster than intended. This risk can be minimized by ensuring that the number

of low-order bits reset is sufficiently large that changes in the count value require

multiple periods of the latch circuit.

4.3.2 Circuit Simulation

To demonstrate the feasibility of using the duty cycle detection and correction cir­

cuitry, the DPTPL from Figure 4.17 is used as a design with tunable offset correc­

tion. The addition of transistors M9 and M10 does reduce the maximum operating

frequency for a 100 MHz alias frequency somewhat, as simulations shows proper

functionality with input signals up to about 164.1 GHz, rather than the 179.1 GHz

for the circuit in Figure 4.7.

Although various transistor mismatch mechanisms can arise in modern CMOS

processes, for the purpose of verifying the duty cycle correction circuit, only the

transistor dimensions are modified. Specifically, for the circuit in Figure 4.17, the

67

Section 4.3: Input Threshold Correction

circuit is made asymmetric by increasing the drawn length of transistor Ml from

lOOnm to 130nm. The asymmetric DPTPL fails to operate correctly when simu­

lated with a 164.1 GHz signal, and produces an unchanging output signal, and this

remains true for input signals as low as 64.1 GHz. With the input frequency set

to 63.1 GHz, the mismatched latch produces an output signal with the proper alias

period, albeit with a duty cycle of 80 %. Reducing the input frequency further down

to 44.1 GHz causes the output alias signal to return to a 50 % duty cycle.

Demonstrating the restoration of higher frequency operation, the voltage on the

Right pin is increased to 0.45 V, and the mismatched DPTPL function correctly at

frequencies up to 164.1 GHz, a reduction from the perfectly matching circuit, but

a big improvement over the mismatched DPTPL without tuning voltages applied.

The tuning voltage on the Right pin under which the mismatched DPTPL functions

correctly at a reduced 150.1 GHz ranges from approximately 0.440 V to 0.455 V,

implying that the DAC output step size should be less than 15mV to correct the

latch up to frequencies of 150 GHz and requiring a seven bit DAC for a 1.2 V supply

voltage.

To verify that the duty cycle detection circuit functions as expected a simulation

test bench that generates a configurable duty cycle input and periodic low-order bit

reset signal is created. Using the circuit with a configurable duty cycle tolerance, as

shown in Figure 4.19, this system is simulated with a 1 ns sample clock and a 300 ns

low-order bit reset signal. The DAC outputs are connected to a small capacitor, and

the simulation is run with a duty cycle of 20 %, 42 %, and 47 %. With the number

of reset bits at 5, according to equation 4.8, the DACs should not produce a voltage

for any duty cycle that is greater than 044.7]% or less than 55.3 %. The output

voltages for the left DAC output are plotted in Figure 4.20. The right DAC output

remains at zero for the duration of the simulation. As expected, the 47 % duty cycle

signal does not affect the output, while those signals with duty cycles less than the

threshold cause the DAC output voltage to change.

The previous results demonstrate that a duty cycle correction circuit can detect

DC bias, mismatch or offsets that result in a duty cycle that deviates from 50%,

68

Section 4.3: Input Threshold Correction

,—N >
<u
bO
$
£
*->
3

3
O

u
<
n
< M
u
_1

0.10

0.08

0.06

0.04

0.02

0.00

-0.02
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Time (us)

Figure 4.20: Left DAC output voltage versus time for various duty cycle input
signals

and, in response, produce control voltages that correct these problems. Similarly,

the simulation with the mismatched DPTPL demonstrates that a biased output can

be tuned out by introducing tuning transistors that counteract the effects from prob­

lems such as mismatch. Ideally, to verify the complete system, the mismatched

DPTPL circuit is combined with the duty cycle correction circuit and simulated to

verify that the tuning voltages are indeed adjusted until the duty cycle is within a

predefined margin of 50 % and the alias period is as expected. Unfortunately, such

a simulation, which incorporates hundreds of transistors and combines an oscillator

circuit operating in excess of 150 GHz with a duty cycle correction mechanism that

takes on the order of microseconds to change the tuning voltages, requires weeks of

simulation of time. Instead, to confirm that it is indeed possible to correct any offset

in the input threshold, the mismatched DPTPL latch is simulated to generate a plot

that shows the duty cycle versus the correction voltage, demonstrating that as the

correction voltage monotonically increases, the duty cycle approaches and exceeds

50 %. This plot is shown in Figure 4.21. These results, combined with the informa­

tion in Figure 4.20 shows that it is indeed possible to perform offset correction on a

DPTPL with severe mismatch.

Although some of the above simulations are specific to a DPTPL circuit with

69

Section 4.4: Summary

1 0 0 | 1 1 1 1 1 1 1 1 1—i

80 - r? -

60 - J
j

40 - J

20 - f
]

0 _ - /

_20 I > ' > ' < < ' > '
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Right Tuning Voltage (V)

Figure 4.21: Mismatched DPTPL duty cycle versus applied offset correction volt­
age with a 150.1 GHz input signal

differential mismatch, similar offset correction mechanisms can be conceived for

a variety of latches. The duty cycle detection and output circuitry that drives the

offset correction mechanism can still be used in the same manner.

4.4 Summary

This chapter presented three sampling latch circuits and evaluated their suitability

as aliasing unit for the ALL architecture. The loosened constraints placed on the

behaviour of the latch allows for design optimizations that would not normally ap­

ply to standard latch designs in other digital systems, allowing for the possibility of

building sampling circuits that could operate on input signals that exceed the fmax

of a process. The suitability of each latch architecture is compared by simulation of

each design in a 90-nm CMOS process under the same conditions that the latch is

expected to operate in. To establish a baseline performance figure a single-ended D

flip-flop from a standard cell library is simulated first, and showing that this design

fails to operate correctly at frequency above 14 GHz.

Simulating two differential circuits, the DPTPL and SAFF, reveals much higher

input frequencies can be achieved. The maximum input frequency, however, de-

70

>-.
U
£»
Q
3
&
3

o
si o

Section 4.4: Summary

pends on the alias frequency. We find that at lower alias frequencies the latch

output is indeterministic when the input signal is near the switching threshold of

the latch. At alias frequencies that are one-thousand times lower than the sampling

frequency, the maximum input frequencies under which the DPTPL and SAFF op­

erate correctly are 26 GHz and 50 GHz, respectively. In order to overcome the

indeterminism, a hysteresis buffer is cascaded at the latch output. This improves

the maximum input frequency to 180 GHz and 230 GHz for the DPTPL and SAFF,

respectively. To further accurately replicate real-world conditions the simulations

are repeated with thermal and flicker noise sources that are included through tran­

sient noise. At low alias frequencies this reduces the maximum input frequency at

which the differential designs operate correctly to less than 5 GHz. With the hys­

teresis buffer cascaded, however, these figures improve to 58 GHz and 76 GHz for

the DPTPL and SAFF, respectively.

Finally, this chapter concludes with a set of circuits that can tune out any DC

bias, mismatch or other imbalances that alter the input threshold of the latch and

cause the duty cycle of the sampler output to deviate from 50 %. A detection circuit

with a programmable error margin for duty cycle measurement is presented and

simulated. This circuit, combined with some output circuitry and latch with offset

correction transistors, is then shown, through simulations, to be capable of detecting

and correcting a deliberately and severely mismatched differential DPTPL circuit.

Through this duty cycle correction and detection mechanism the maximum input

frequency of the DPTPL is restored to levels close to those observed in the perfectly

symmetric and matched DPTPL. Although not further explored, the same duty

cycle detection and correction circuits can be applied with minor modifications to

different latch designs.

71

Chapter 5

Analysis and System Simulation
Results

5.1 Overview

To verify that an ALL system can function as a frequency synthesizer, the system

must be able to achieve lock through the normal PLL pull-in process and maintain

lock subsequently. For theoretical validation of the behaviour in the locked state

a mathematical model that describes the locked behaviour of an ALL with ideal

components has been derived. To further verify that the system can obtain lock and

still functions with non-ideal components, a transistor level ALL circuit is designed

and simulated in 90-nm CMOS technology.

5.2 Non-Linear Model

Because the aliased signal is discretized in time, and will typically vary between

two different clock periods, the system never achieves exact phase lock at the PFD.

In an ordinary PLL the VCO control voltage eventually settles on a fixed value, but

an ALL that locks with binary sampling can behave like a fractional-N PLL [28]

or bang-bang PLL (BBPLL) [35], The ALL is similar to a BBPLL in that it never

achieves true phase lock and cannot be accurately described by traditional Laplace

domain analysis. Instead, like the BBPLL, the dynamics of the ALL are governed

by limit cycles in phase-space diagrams that relate the loop filter voltage and phase

72

Section 5.2: Non-Linear Model

error. Using a non-linear time-domain model, the period jitter due to a lack of exact

phase locking can be observed and the ALL behaviour under varying sample clock

and reference clock frequencies can be examined. Both the frequency ratio and

relative offset between the sample and reference clocks influence the trajectory of

the limit cycles observed.

5.2.1 Model Assumptions

To properly analyze the ALL, a time domain model for the system operating in

locked state has been developed, similar to the analysis presented in [35], but

adapted for an ALL frequency synthesizer. The time-domain description uses ide­

alized models for all components. We assume that the input reference clock and

sample clock are free of jitter. The VCO frequency does not drift and its instanta­

neous frequency is given by the equation:

Fvco = (F0 + Kv • VLPF) (5.1)

where FVco is the VCO period, dependent on the base frequency F0, VCO gain

Kv and the low-pass filter (LPF) voltage VLPF that controls the VCO. For the PFD

and charge pump an idealized model is used that will produce a positive or negative

current for a duration that corresponds linearly to the phase difference between

the two input signals of the PFD. The LPF is modelled as a series-connected RC

filter, which essentially provides a proportional and integrating path. The sampler

is assumed to be ideal; that is the sampler acts as a Dirac comb function applied to

the VCO signal. To ensure that an ALL still functions with finite speed transistors

and higher-order effects, a transistor-level simulation is described in section 5.4.

5.2.2 Model Description

To model the ALL, a set of finite-difference equations are found that describe the

next state of the ALL as a function of the previous state in time. The state of

the system is updated every reference clock cycle and can be described by three

variables:

73

0fc

Reference

Alias

Sample

VCO

t

TT

Section 5.2: Non-Linear Model

<f>k+i

-* Alias,k

r
I I M t t t ji

miJiJirLrLruruiJi
Filter Voltage

Figure 5.1: Alias-locked loop timing for non-linear model

• 5: the offset between the rising edge of the VCO clock and the sampling

signal

• 0: the offset between the rising edge of the reference clock and the rising

edge of the aliased signal, that is, the phase error at the PFD inputs

• VLPF,SS'- the steady-state voltage on the LPF

The relation between S and 0 is shown in Figure 5.1. The state variable subscript k

corresponds to the A>th rising edge on the reference clock.

The initial timing relationship between the reference and sample clocks is de­

fined by the state variable 0, which represents the PFD input phase error. Knowing

the initial 4>, the reference clock period TT and the sample clock period Ts further

define how cf) evolves over time. Since the quantization step size for the PFD phase

error is always a multiple of the sampling clock period, the initial 0 value deter­

mines the future PFD phase error offset values possible. For instance, if Ts is 1 ns,

0o is 0.5 ns and Tr is an integer multiple of Ts, then all future 4> values satisfy

0.5 ± I ns, where / is any integer value.

74

Section 5.2: Non-Linear Model

In earlier revisions of the idealized model, 5 was used to determine the dura­

tion of the next alias clock period, TaiiaStk. This method relied on determining the

average VCO frequency during a given reference clock period and assuming that a

voltage change in response to a phase error at the PFD was initiated by the rising

edge of the reference clock, even if the rising edge of the alias clock arrives earlier.

The average VCO frequency was then determined by averaging the injected charge

and new steady-state loop filter voltage over the reference clock period. Other equa­

tions, however, assumed that the average filter voltage applied over the alias clock

period. This model was abandoned due to unrealistic modelling and inconsisten­

cies.

The updated model presented below corrects these inconsistencies and other

problems. Instead of using 5 and an average VCO frequency for a given reference

clock period, the different regions (charge injection and steady state) of the loop

filter state are stored in a table and saved for subsequent phase error calculations.

The alias period is instead calculated by integrating the VCO frequency from every

sample point after the rising edge that starts the alias period. The integration of the

frequency yields a phase value, and the falling edge of the alias clock is detected

by a transition, starting from below, across 0.5 for the fractional part of the phase

value. When the fractional phase value for previous sample point is at or above 0.5

and the next sample point yields a fractional phase that is below 0.5 again the rising

edge of the next alias clock has arrived and this sample point defines the period of

the current alias signal. To cascade a standard frequency divider after the sampling

latch, like in Figure 3.4, a number of alias clock periods are counted to produce the

divided down signal. The process is more formally described in Algorithm 1.

The FractionQ function returns the fractional part of its argument, while the

Integrate(Signal, StartTime, StopTime) function integrates the frequency of

the signal in the first argument between the time between the second and third ar­

gument. In the context of Algorithm 1, a time value of 0 as the StartTime implies

that the Integrate^) function integrates the frequency from the start of the alias

period. Since the rising edge of the VCO clock does not necessarily align with

75

Section 5.2: Non-Linear Model

Algorithm 1 Calculate the period of the feedback signal
AliasPeriod <— 0
for i = 1 to DivideFactor do

repeat
AliasPeriod <— AliasPeriod + SamplePeriod
Phase <— OldPhase + Integrate{V CO Frequency, 0, AliasPeriod)

until Fraction(Phase) > 0.5
AliasPeriod <— AliasPeriod — SamplePeriod
repeat

AliasPeriod <— AliasPeriod + SamplePeriod
Phase <— OldPhase + I ntegrate(V CO Frequency, 0, AliasPeriod)

until Fraction(Phase) < 0.5
end for
return AliasPeriod

the rising edge of the alias clock (it is offset by some amount 5), the phase of the

VCO signal does not start at zero, and starts off at the fractional part of the phase

remaining from the previous alias clock cycle.

Having calculated the period of the alias signal, Taiias, and knowing the previ­

ous PFD phase error <3>fe and reference clock period, Tr, the next PFD phase error

Phik+\ can be found. To find the next phase error at the PFD, <f>k+\, the differ­

ence between the reference clock period and the alias signal period is added to the

previous PFD phase error:

4>k+i = 4>k + TaHas - Tr (5.2)

where the reference clock period, Tr, is subtracted from the alias period, Taiias.

Having found the PFD phase error, the voltage on the low-pass filter can be

calculated. Using an RC filter results in a waveform like that shown in Figure

5.2, with the instantaneous VCO frequency given by the loop filter voltage, these

voltages are used to calculate the next alias period. With an RC filter, the charge

pump current into the resistor gives rise to an immediate step in output voltage,

given by the charge pump current, Icp, and the resistance value in the RC filter, R.

The charge pump remains enabled for a duration of <f>, charging the capacitance C

at a rate of Icp/C. When the charge pump is turned off, the voltage step across

the resistor drop disappears, and the new steady-state voltage of the loop filter has

76

Section 5.3: Non-Linear Model Simulation

Figure 5.2: Low-pass Filter Waveform

changed by <f> • Icp/C

5.3 Non-Linear Model Simulation

With the equations that relate the loop filter voltage and alias signal period defined,

the loop is closed, and the ALL model can be simulated. The actual implementation

of the model is done in C, and the complete source code is available in Appendix

B. For all subsequent simulation results, the parameters used for the simulations

are identical, except when otherwise noted. The intention of these simulations is to

compare the impact of different parameters on the behaviour of the ALL, rather than

demonstrating the process for a particular choice of settings. An interesting plot that

can be generated is a phase-space diagram shows the evolution of the PFD phase

error, <f>, and the steady-state loop filter voltage, VLPF,SS over time. For the results

presented in subsequent simulations the baseline ALL is configured with a target

VCO frequency of 10.1 GHz and a sample frequency of 1 GHz. To demonstrate the

locking behaviour, this ALL configuration is simulated with an initial PFD phase

error 0 of -9.5 ns. The resultant phase-space plot with 0 and VLPF,SS is shown in

Figure 5.3. The discrete steps in the phase-error 4> are clearly visible, and the plot

demonstrates that the PFD phase error between the alias signal and reference signal

is reduced as the ALL locks.

77

Section 5.3: Non-Linear Model Simulation

^^
3

O
fcl
u
<u zn
ca J3
a,

e
a*

4

2

0

-2

-4

-6

-8

-10
0.097 0.098 0.099 0.1 0.101

Steady-state low-pass filter voltage VLPF,SS (V)
0.102

Figure 5.3: Phase-space diagram of PFD phase error 0 and the steady-state loop
filter voltage with a -9.5 ns initial phase-error

When setting the initial PFD phase error 4> to -0.5 ns, the phase-space plot in

Figure 5.4 shows that the PFD phase error remains bounded, and a four-point tra­

jectory is traced out. Although not clearly visible in Figure 5.3, the same trajectory

is evident when examining the centre of that plot. The bounded orbit indicates that

the phase error at the PFD is stable. The initial PFD phase error choice of -0.5 ns,

which exactly half of the sample period, results in a PFD phase error that jumps

between -0.5 ns and 0.5 ns.

Changing the initial PFD phase error <j> to -0.1 ns gives rise to a more compli­

cated trajectory in the phase-space plot of Figure 5.5. This change in offset between

the sample clock and reference clock changes the number of steps in the orbit. With

a sampling period of 1 ns, the PFD phase error for a locked ALL is either -0.1 ns or

0.9 ns, but the steady-state voltage on the loop filter varies over a larger range than

the simple orbit in Figure 5.4.

Although the PFD phase error 4> is interesting, it does not show how well the

VCO signal tracks the reference clock, that is, the phase error between the VCO

signal and the reference clock is not shown. This VCO phase error, I(J, provides

78

Section 5.3: Non-Linear Model Simulation

0.6

0.4

0.2

0

-0.2

-0.4

-0.6
0.09999 0.099995 0.1 0.100005 0.10001

Steady-state low-pass filter voltage VLPF,SS (V)

Figure 5.4: Phase-space diagram of PFD phase error 4> and the steady-state loop
filter voltage with a -0.5 ns initial phase-error

i~

o
b
<u
c«
<T3

J3
Q
OH

-

-

-

-*:
\

\

1

y

\

\ \

1

\
\

\
\

-X

-

-

-

CO

-©-

O

&

OH

e

-0.2
0.09999 0.099995 0.1 0.100005 0.10001

Steady-state low-pass filter voltage VLPF,SS (V)

Figure 5.5: Phase-space diagram of PFD phase error 4> and the steady-state loop
filter voltage with a -0.1 ns initial phase-error

79

Section 5.3: Non-Linear Model Simulation

-80 - " ^ - ^

-100 I • ' ' '
0.097 0.098 0.099 0.1 0.101 0.102

Steady-state low-pass filter voltage VLPF,SS (V)

Figure 5.6: Phase-space diagram of VCO phase error ip and the steady-state loop
filter voltage with a -9.5 ns initial phase-error

information on the statistics of the output signal produced by the VCO and can be

used to predict jitter and phase noise for different sample and reference frequencies.

In order to calculate ip, at the start of the simulation the initial PFD phase error <p

is scaled by the effective frequency multiplication factor achieved by the system

and this value is used as the initial VCO phase error ip. Then, for each reference

clock, the VCO phase error ip is updated by taking the number of ideal VCO clock

cycles (which represents the phase) and using this phase value to calculate the time

difference between the actual and ideal VCO signals. The actual VCO signal time is

based on loop filter voltages previously stored in a table, and which were calculated

when <p was determined. Plotting the data from the simulations used for Figures 5.3,

5.4, and 5.5, but now with ip, the discrete steps disappear and the VCO phase error

is reduced to a value close to zero. Figures 5.6, 5.7, and 5.8 show the corresponding

phase-space plots with ip and the steady-state voltage on the loop filter.

80

Section 5.3: Non-Linear Model Simulation

O,

is-
*-4
O
b

</>
JS
O,

O
U
>

0.1

0.08

0.06

0.04

0.02

0

-0.02

-0.04

-0.06

-0.08 I-

-0.1
0.09999 0.099995 0.1 0.100005 0.10001

Steady-state low-pass filter voltage VLPF,SS (V)

Figure 5.7: Phase-space diagram of VCO phase error tp and the steady-state loop
filter voltage with a -0.5 ns initial phase-error

O

O
U
>

0.09999 0.099995 0.1 0.100005 0.10001

Steady-state low-pass filter voltage VLPF,SS (V)

Figure 5.8: Phase-space diagram of VCO phase error ip and the steady-state loop
filter voltage with a -0.1 ns initial phase-error

81

Section 5.3: Non-Linear Model Simulation

&

o

c3
4 3

vc
o

0.05
0

-0.05
-0.1

-0.15
-0.2

-0.25
-0.3

-0.35
-0.4

-0.45
-0.5

0.09999 0.099995 0.1 0.100005 0.10001
Steady-state low-pass filter voltage VLPF,SS (V)

Figure 5.9: Phase-space diagram of VCO phase error ijj and the steady-state loop
filter voltage with a -0.005 ns initial phase-error

5.3.1 Jitter and Phase Noise

Comparing the VCO phase error %jj for Figures 5.7 and 5.8, it is evident that the

peak-to-peak period jitter for both cases is roughly 0.2 ps. Repeating the same

experiment for a range of initial PFD phase errors 0 from -0.5 ns down to -0.05 ns

shows the same peak-to-peak period jitter of 0.2 ps. However, as the initial 4> value

is set to values that approach zero from -0.05 ps, the period jitter increases until

a new upper-bound is reached, with a peak-to-peak period jitter of approximately

lOps. Figures 5.9 and 5.10 show the changes in the limit cycle orbits as the initial

PFD phase error </> is decreased toward zero.

Comparing the frequency, as given by the steady-state voltage on the loop fil­

ter, for different offsets between the sample and reference clock yield interesting

information as well. Generating a histogram plot for the steady-state filter voltages

essentially gives an indication of the frequency spectrum of the VCO output signal.

One should be reminded that such a histogram of steady-state filter voltages does

not include the spurious tones that arise from temporary spikes in the loop filter

voltage when the charge pump is enabled. Such spikes are especially prominent in

82

Section 5.3: Non-Linear Model Simulation

V.. 11
i i i

0.09998 0.09999 0.1 0.10001 0.10002
Steady-state low-pass filter voltage VLPF,SS (V)

Figure 5.10: Phase-space diagram of VCO phase error ip and the steady-state loop
filter voltage with a -0.0005 ns initial phase-error

a simple RC filter, and can be significantly reduced by using a higher-order loop

filter. For this histogram, a comparison is made between an initial phase-error 4> of

-0.5 ns and -0.001 ns by running the simulation for 10,000 reference clock cycles

and counting the steady-state loop filter voltages into one of 100 bins. To demon­

strate the effect the loop filter has on the location of the spurious tones, the -0.5 ns

simulation is also run with a loop filter with a narrower bandwidth. This loop filter

has its RC time constant increased tenfold, scaling the offset frequency of the spu­

rious tones tenfold and decreasing the PLL natural frequency by a factor of \ / l0-

The resultant histogram is plotted in Figure 5.11. The loop filter bandwidth can be

further narrowed to move these spurious tones so close to the carrier frequency that

other noise effects dominate over limit cycle effects.

Although previous plots showed that the period jitter was much more signifi­

cant for a phase-error offset close to zero, from this plot it is evident that the offset

between the reference clock and sample clock does not significantly affect the fre­

quency deviation from the nominal output frequency. In this particular configura­

tion, the steady-state filter voltage varies between roughly 0.09999 V and 0.10001 V,

&
i -o
&
<D

J3
Q<

O
U
>

-2

-4

-6

-8

-10

. 1 9

83

Section 5.3: Non-Linear Model Simulation

1 1

4>init = -0-5 ns, narrow bandwidth
(pinit = -0.5 ns

(pi„it = -0.001ns

i

ZZ I ! LJ-J i I i= I

-10 -5 0 5 10
Steady-state frequency offset (kHz) from 10.1 GHz carrier

Figure 5.11: Histogram plot comparing the steady-state frequency distribution for
initial phase-errors of -0.5 ns and -0.001 ns
and the effect of loop filter bandwidth changes.

corresponding to a frequency deviation of ± 10 kHz. However, while an initial phase

offset of-0.001 ns produces a broadly distributed frequency spectrum, using -0.5 ns

produces strong spurious tones at offset frequencies of 10 kHz. To eliminate strong-

spurs close to the desired frequency in this configuration, an initial phase offset that

is closer to zero may produce a more desirable output spectrum. In the more general

case, a limit cycle that includes many steps in its orbit will distribute the VCO signal

more evenly over the range of frequencies produced. The width of this distribution

of frequencies or location of spurious tones can be brought closer to the desired

output frequency by increasing the sampling frequency or changing the loop gain

of ALL by adjusting the loop filter parameters.

5.3.2 Impact of Sample and Reference Signals Choices

A number of choices can be made in the configuration of the sample and reference

clock frequencies and their ratio. This subsection explores some of the effects from

different selections for the alias and reference clock signals.

84

W W

5000

4000
c
8 3000
c

2000

1000

Section 5.3: Non-Linear Model Simulation

5.3.2.1 Increasing the Sampling Clock Frequency

Simulations indicate that increasing the sampling clock frequency benefits both the

peak-to-peak period jitter and maximum frequency deviation. Increasing the sam­

pling frequency by a certain factor reduces the peak-to-peak period jitter by the

same factor, both for small limit cycles like those in Figure 5.7 and large limit cy­

cles like those in Figure 5.10. In the frequency spectrum the maximum frequency

deviation and frequency offset for spurious tones is scaled in the same manner. This

is also intuitive, as an increase in the sampling frequency reduces the minimum time

step in the phase discretization, and thus reduces the minimum step in correction

voltages on the loop filter.

5.3.2.2 Non-Integer Ratio of Sample and Reference Clock Frequencies

When the period of the reference is not a multiple of the sampling period, the alias

clock will alternate between two clock periods such that the average alias period

matches the reference clock. To compare the behaviour under this situation to the

previously simulated system the target VCO frequency is changed slightly from

10.1 GHz and set to 10.0952 GHz, which corresponds to a reference clock period

and average alias signal period of 10.5 ns. Figure 5.12 shows the phase-space dia­

gram for the VCO phase-error ip vs the steady-state loop filter voltage. Although

the orbit shape is different from the case where the reference clock is 10 ns, the

peak-to-peak period jitter and maximum frequency deviation are identical, at ap­

proximately 0.2 ps and ±10 kHz, respectively. A histogram plot for the distribution

of frequencies shows the same spectral peaks as Figure 5.11.

Changing the initial PFD phase error </> from -0.5 ns to -0.001 ns for a reference

signal at 10.5 ns shows that the maximum period jitter is approximately 0.3 ps, and

thus has not degraded significantly. Setting the initial $ to -0.25 ns, however, results

in a peak-to-peak period jitter of -5 ps.

Generalizing the results of initial PFD phase error offsets further, simulations

indicate that for a given selection of reference and sample frequencies certain off­

sets between the sample and reference signals give rise to a peak-to-peak period

85

Section 5.3: Non-Linear Model Simulation

.0.15 I . 1 ' 1
0.09523 0.095235 0.09524 0.095245 0.09525

Steady-state low-pass filter voltage VipptSS (V)

Figure 5.12: Phase-space diagram of VCO phase error ip and the steady-state loop
filter voltage with a -0.5 ns initial phase-error for a toggling alias period

jitter that is much larger than the typical case. From observation, these modes of

operation with large peak-to-peak period jitter seem to arise around offset frequen­

cies that are near zero. In other cases, a large peak-to-peak jitter is observed when

the offset that is near the remainder or half of the remainder obtained when dividing

the reference and alias clock periods.

Further simulations with a variety of sample and reference clock period com­

binations show that generally the larger least common multiple (LCM) of the two

clock periods, the larger the peak-to-peak period jitter. From observations, a larger

LCM for the two clock periods results in a limit cycle trajectory with more steps and

more complicated geometry, typically leading to a larger tracking error between the

VCO and reference clock.

5.3.2.3 Subsampling and Frequency Division

In some cases, the alias frequency produced by the sampler can be impractically

high. In these situations, a standard frequency divider can be cascaded after the

frequency synthesizer. To examine the effect of a subsampler and frequency divider

86

Section 5.3: Non-Linear Model Simulation

on the behaviour of an ALL system the non-linear model includes a parameter that

models an integer-N frequency divider after the subsampling latch.

When maintaining the same reference frequency as earlier simulations (10 ns)

and setting the frequency divide factor to two will cause the VCO to lock at 10.2 GHz.

Examining the phase-space diagram, the orbit is identical to Figure 5.7, but offset

by 0.1 V and centred at 0.2 V. The peak-to-peak period jitter is identical and the

spurious tones are of the same magnitude and at the same frequency offset.

When changing the reference frequency to 20 ns and setting the divide factor to

two the VCO locks at 10.1 GHz the orbit is again identical to the base case, with the

same figures for peak-to-peak period jitter and offset frequencies for the spurious

tones.

For cases where the desired VCO frequency requires a ratio of sample and ref­

erence clock frequencies that is not integer, a divider can be added to make this

so. For instance, in a previous simulation run the desired VCO frequency was

10.0952 GHz. This same frequency is also produced when using a reference fre­

quency of 21 ns and a divide-by-two frequency divider after the subsampling latch.

The resultant phase-space orbit that shows ip and the steady-state loop filter voltage

does change from that of Figure 5.12, and instead follows the same trajectory as

the system in Figure 5.7, albeit at a different loop filter voltage. Again, the peak-to-

peak period jitter and frequency offsets of the spurious tones are unchanged by the

addition of a divider in the feedback path.

Generalizing, cascading a frequency divider in the feedback path does not bene­

fit the peak-to-peak period jitter or phase-noise that is attributable to the discretiza­

tion of the PFD phase error. This is expected, since the frequency division does not

change the minimum step size of the phase-error. Consequently, the steps in loop

filter correction voltages remain the same as the case where a frequency divider is

not present.

87

Section 5.4: 90-nm CMOS Implementation

5.4 90-nm CMOS Implementation

Although the theoretical model described in the previous section is useful in pre­

dicting how an idealized ALL system would behave, such a model would be of little

use if practical implementations in silicon would not behave in the same manner.

To verify that a physical ALL frequency synthesizer can work, a circuit implemen­

tation has been developed in a 90-nm process and is simulated with transistor-level

SPICE models provided by the foundry. The 90-nm ALL design uses an LC tank

oscillator, a DPTPL as a sampling latch, a latch-based PFD, a differential charge-

pump, and an ideal RC loop filter. The simulation parameters for the results pre­

sented in this section are available in Appendix A and schematic diagrams for the

circuits are provided in Appendix C.

5.4.1 90-nm Simulation Versus Non-Linear Model

To verify that the non-linear model simulation results can be used to predict the

behaviour of physical implementations, the 90-nm design is simulated with ini­

tial conditions that closely match those used for the results plotted in Figure 5.3.

With the reference frequency set to 100 MHz, the sampling frequency at 1 GHz

and the loop filter voltage at a level that ensures that the VCO is oscillating at a

frequency close to 10.1 GHz a short simulation reveals that the VCO gain is ap­

proximately 1.2 GHz/V. From this short simulation it is also determined that the

steady-state loop filter voltage required to produces a 10.1 GHz signal is 1.0655 V.

The reference clock signal is then adjusted to produce an initial PFD phase error <j>

of -9.5 ns. Measuring the charge-pump current produced at the desired loop filter

voltage, however, shows that the magnitude of the current depends on whether the

charge-pump is sinking or sourcing current. When sinking current, the measured

current is 115 uA, but the sourcing current is -215 uA. Since the non-linear model

assumes that these currents are equal some discrepancy can be expected. With the

initial 4> set to -9.5 ns, the ALL will initially be sinking current.

The 90-nm design is then simulated for 5 us, which corresponds to 500 refer-

88

Section 5.4: 90-nm CMOS Implementation

SO

3
-©-

> - i

rro

o
05
c3
r**
a*
Q
OH

8

6

4

2

0

-2

-4

-6

-10
0.104

•W

I, -fr*-fc^».

90-nm Simulated
Non-Linear Model

^t-i^^mKa^m^^o i -'t.H-i

0.105 0.106 0.107
Steady-state low-pass filter voltage VLPF,SS (V)

0.108

Figure 5.13: Phase-space diagram of PFD phase error <p and the steady-state loop
filter voltage with a -9.5 ns initial phase-error, obtained from a 90-nm transistor-
level simulation

ence clock cycles. Extracting the PFD and VCO phase errors <p and ip along with

the steady-state loop filter voltage allows us to compare the 90-nm data directly

with the simulation results of the non-linear model. The non-linear model is sim­

ulated with the settings that closely match the 90-nm design. To match the initial

operating charge-pump current in the 90-nm circuit simulation the current is also

set to ±115 uA for the non-linear model.

Phase-space diagrams that combine the simulation results of the non-linear

model and 90-nm design are plotted in Figures 5.13 and 5.14. It is clear from

these plots that the results from non-linear model are in good agreement with sim­

ulation data from the 90-nm design for the initial 41 reference clock cycles. After

that point, however, the phase-error becomes positive, and the charge-pump current

levels of the model and 90-nm design no longer match, with the model assuming

a charge pump current of -115uA while the 90-nm design produces a current of

-215 uA. The higher charge-pump current effectively increases the loop-gain for

the system in the 90-nm design and reduces the phase-error overshoot when <fi is

positive.

89

Section 5.4: 90-nm CMOS Implementation

i5-
i -o
&
u
CS

&,
O
U
>

80

60 r

40

20

0

-20

-40

-60

-80

-100
0.104

90-nm Simulated
Non-Linear Model

0.105 0.106 0.107

Steady-state low-pass filter voltage VLPF,SS (V)

0.108

Figure 5.14: Phase-space diagram of VCO phase error ip and the steady-state loop
filter voltage with a -9.5 ns initial phase-error, obtained from a 90-nm transistor-
level simulation

Examining the steady-state behaviour of the 90-nm simulation as it achieves

phase-lock reveals that the trajectory followed in phase-space for ip and the steady-

state loop filter voltage does not match the four-point orbit depicted in Figure 5.7.

Instead, as shown in Figure 5.15, the trajectory traced out is more like that shown in

Figure 5.8. This type of trajectory arises because the sourcing and sinking charge-

pump currents are not equal. Thus, while the PFD phase error </> toggles between

-0.5 ns and 0.5 ns, the charge injection into the loop filter is not equal in magnitude

for the same phase-error magnitudes. One charge injection at a PFD phase error of

0.5 ns requires multiple charge injections at -0.5 ns to return to the same voltage,

thus generating a triangular shape orbit. As expected, the trajectories exhibit more

variation and do not follow a tightly bound limit cycle like the ideal models. Several

reasons, including limited simulator step size resolution and the inclusion of many

higher-order effects that are modelled in a transistor-level simulation, can account

for the variation in trajectories. What can be observed and matches predictions by

the non-linear model, however, is that the peak-to-peak period jitter is still roughly

0.2 ps. This figure is good in comparison to other frequency synthesis PLLs at this

90

Section 5.4: 90-nm CMOS Implementation

T r

J L

W'6Tl0652 0.10653 0.10654 0.10655 0.10656

Steady-state low-pass filter voltage VLPFtSS (V)

Figure 5.15: Phase-space diagram of VCO phase error ip and the steady-state loop
filter voltage with a -0.5 ns initial phase-error, obtained from a 90-nm transistor-
level simulation

frequency, but it must be remembered that the 90-nm CMOS simulations do not

include any device noise.

5.4.2 90-nm Pull-in Simulation

Because the non-linear model as developed and presented in this thesis is only valid

when the phase-error does not exceed one reference clock cycle, the 90-nm design

is simulated outside this range. The pull-in process during which PLLs approach

the lock-range is typically a slower process because phase-detectors cannot detect

phase-errors that exceed one reference clock cycle (2n). During pull-in, the limited

operating range for phase detectors causes cycle-slipping behaviour that temporar­

ily reverses or stalls on the path toward phase-locking. Like typical PLLs, these

cycle slips are visible on loop filter voltage against time as short spikes, temporary

horizontal steps or decreasing slopes in the loop-filter voltage on an otherwise in­

creasing slope (for cases where the loop filter voltage needs to increase to achieve

lock).

Figure 5.16 demonstrates the 90-nm implementation of the ALL completing the

<Z3

is-
l-H

g

a,
O
U
>

\J. i

0.05

-0.05

-0.1

_n 1 s

91

Section 5.5: Summary

E I I I I I I I I 1 I

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Time (us)

Figure 5.16: Loop filter voltage versus time, showing the ALL pull-in process and
locking at 10.1 GHz

pull-in process and locking at 10.1 GHz. As expected, the pull-in and lock process

is similar to traditional PLLs, with the effects of cycle slip seen during the pull-in

step as the VCO frequency increases to 10.1 GHz.

5.5 Summary

This chapter described a non-linear model developed to simulate the ALL architec­

ture. Subsequent simulations of this model demonstrate that an ideal implementa­

tion of the ALL architecture can obtain and maintain lock between the reference

and VCO signals. A more detailed look at different configurations for the refer­

ence and sample clock frequencies, specifically the ratio of these signals and the

time offset between them, reveals different limit cycles in phase-space plots of the

VCO and PFD phase errors and loop filter voltages. The choice of sample and

reference clock offsets generally has little impact on the VCO output signal, with

peak-to-peak period jitter mostly unaffected, except for certain specific choices of

time offsets between the sample and reference clocks or reference and sample clock

periods that only share a large LCM. It is found that the most direct way of reduc-

>

on
<n -t-»

,o
>
(]>

I-H

(X
O
O
,)

0.10

0.08

0.06

0.04

0.02

92

Section 5.5: Summary

ing period jitter and the offset frequency of spurious tones without altering the loop

dynamics of the ALL is to increase the sampling frequency, effectively reducing the

PFD phase error quantization step size that results from the sampling operation.

The validity of the results from the non-linear model are corroborated by a 90-

nm implementation of an ALL circuit, showing good agreement between simula­

tion results from the non-linear model and the transistor-level circuits of the 90-nm

design. To verify the pull-in process of the ALL, the 90-nm implementation is sim­

ulated with a large initial frequency error. This simulation reveals that the ALL

behaves similar to traditional PLLs during the pull-in process. The simulation re­

sults both at the non-linear model level and transistor level reveal that is indeed

feasible to perform frequency reduction in the feedback path by subsampling the

VCO signal and locking into the lower-frequency alias signal produced by this op­

eration.

93

Chapter 6

Conclusion

In this thesis, an ALL architecture is presented. This novel approach to frequency

synthesis replaces the frequency divider in the feedback path between the local os­

cillator and phase detector by a sampling latch operated well below the Nyquist

frequency of the oscillator signal. The subsampling operation produces an alias fre­

quency that is compared to a reference frequency and used to lock the ALL. Using

a sampling latch rather than a traditional frequency divider significantly loosens the

constraints on the feedback circuit. While a frequency divider's output operates

at half the frequency of the oscillator, a sampling latch need only operate at the

sampling frequency. Furthermore, a sampling latch in this application is tolerant of

reset delays and clock-to-output propagation delays that span multiple cycle of the

oscillator. Additionally, the sampling window for these latches can span across mul­

tiple cycles of the oscillator, as long as the latch consistently represents the phase

of the sampled input signal. The loose constraints on the sampling latch lead to the

possibility of building an ALL-based frequency synthesizer at frequencies near or

exceeding the fmax of a process. Additionally, because the sampling operates at a

much lower frequency than a frequency divider, power consumption for sampling

latches is lower than frequency dividers operating on equivalent input frequencies.

94

Section 6.1: Accomplishments

6.1 Accomplishments

This thesis has shown that it is indeed feasible to build a frequency synthesizer that

uses a sampling latch for frequency reduction in the feedback path. Simulations

with both a theoretical model of the ALL and a transistor-level implementation in

90-nm CMOS technology confirm that aliasing can be used instead of frequency

division. Furthermore, the predictions from the idealized theoretical model match

up very well with the more detailed and realistic simulation results of the 90-nm

implementation of the ALL.

Several candidate sampling latch circuits have been evaluated, and show that

appropriate differential latch designs may be able to operate at frequencies near or

exceeding the fmax of a process. To overcome indeterminism near the switching

threshold of these latches a hysteresis buffer can be cascaded to ensure proper op­

eration when the ratio of sample to alias frequency is high. For DC bias, mismatch

and asymmetry in a latch that arise from process variations, a duty-cycle detection

mechanism has been developed, and has been shown to able to re-adjust the switch­

ing threshold of a purposely mismatched differential latch design, restoring high

frequency operation with such a correction mechanism enabled. Transient simula­

tions with a SAFF based-latch in 90-nm process technology show proper aliasing

at 230 GHz, which exceeds the 170 GHz fmax of a typical 90-nm process by 30%,

and it is likely that better optimized latches can be designed.

6.2 Future Work

Although this thesis has laid much of the groundwork for the development of an

ALL, several of the concepts presented in this work require further investigation.

More in depth study of several of the concepts introduced could be carried out. Most

importantly to establishing the ALL approach as a feasible method of frequency

synthesis, however, is actual verification of this concept through an implementation

in silicon. In fact, several chips that test various aspects of ALL frequency synthe­

sizers can be implemented. A reasonable first goal may be to implement a lower

95

Section 6.2: Future Work

frequency ALL that demonstrates the viability of this approach in silicon. Based

on the results from this first design, additional designs can make a push for higher

frequencies.

For this thesis only two high performance sampling latch circuits were evalu­

ated. It is likely that better performing latch architectures for subsampling exist and

it may be interesting to examine a wider variety of latch architectures. Although

simulations can give an indication of the performance achievable with these cir­

cuits, more reliable verification should be done through actual implementation in

silicon. One approach may be to combine an integrated VCO with a number of

candidate latch designs onto a chip, fabricate this chip, and perform a side-by-side

comparison of various designs. Results from the physical implementation of these

latches can then be correlated to the performance figures predicted by simulations.

From an architecture perspective several alternative implementation approaches

could be examined as well. Because the phase error is discretized, this design

naturally lends itself to further digital processing. Thus, rather than relying on

analog charge-pumps, phase detectors and loop filters, the phase error could be

digitized and entirely processed by digital means.

One outstanding problem that may arise in an ALL is that the VCO frequency

is not uniquely determinable from just the sample and reference frequencies. To

overcome this, multiple sampling frequencies could be used to uniquely determine

the frequency the VCO is operating at. This would require the development and

evaluation of some system that utilizes multiple sampling frequencies to ensure the

VCO can only lock at the desired frequency.

Finally, a more in depth analysis of the effect of discretizing phase error may

prove useful. Although the simulation model described in this thesis appears to be

accurate in predicting the jitter and distribution of frequencies of the VCO signal, it

is restricted to a charge-pump based ALL with a simple RC filter. This simulation

model could be made more generic and extended to a variety of architectures used

in PLLs. For those more mathematically inclined, a more formal analysis of the

conditions that give rise to limit cycles in phase-space plots of the loop-filter voltage

96

Section 6.2: Future Work

and phase error might be interesting. A mathematically rigorous analysis could

be useful for developing a concise description of the conditions that give rise to

optimal output signal statistics. This type of model should provide guidance on

appropriate choices for the reference and sample clock frequencies and the timing

and frequency relationship between these clocks.

97

Bibliography

[1] A. Rokita, "Direct analag synthesis modules for an X-Band frequency source,"

in Proc. Int. Conf. Microw. and Radar (MIKON), May 1998, pp. 63-68.

[2] G. E. Moore, "Cramming more components onto integrated circuits," Elec­

tronics, vol. 38, no. 8, pp. 114-117, April 1965.

[3] H. Li, B. Jagannathan, J. Wang, T. chi Su, S. Sweeney, J. J. Pekarik, Y. Shi,

D. Greenberg, Z. Jin, R. Groves, L. Wagner, and S. Csutak, "Technology scal­

ing and device design for 350 GHz RF performance in a 45nm bulk CMOS

process," in Proc. Symp. VLSI Technol, June 2007, pp. 56-57.

[4] Y. K. Chen, Y. Baeyens, N. Weimann, J. Lee, J. Weiner, V. Houtsma, and

Y. Yang, "Recent advances in III-V electronics," in Proc. Custom Integr. Cir­

cuits Conf. (CICC), Sep 2006, pp. 687-690.

[5] N. Fong, J. Kim, J.-O. Plouchart, N. Zamdmer, D. Liu, L. Wagner, C. Plett,

and G. Tarr, "A low-voltage 40-GHz complementary VCO with 15% fre­

quency tuning range in SOI CMOS technology," IEEE J. Solid-State Circuits,

vol. 39, no. 5, pp. 841-846, May 2004.

[6] C. Cao and K. K. O, "A 140-GHz fundamental mode voltage-controlled os­

cillator in 90-nm CMOS technology," IEEE Microw. Wireless Compon. Lett.,

vol. 16, no. 10, pp. 555-557, Oct 2006.

[7] C. Cao, E. Seok, and K. K. O, "192 GHz push-push VCO in 0.13 urn CMOS,"

IEE Electron. Lett, vol. 42, no. 4, pp. 208-210, Feb 2006.

[8] E. Seok, C. Cao, D. Shim, D. J. Arenas, D. B. Tanner, C.-M. Hung, and K. K.

O, "A 410 GHz CMOS push-push oscillator with an on-chip patch antenna,"

in Proc. Int. Solid-State Circuits Conf. (ISSCC), Feb 2008, pp. 472^74.

98

BIBLIOGRAPHY

[9] D. Huang, T. R. LaRocca, L. Samoska, A. Fung, and M.-C. F. Chang, "324

GHz CMOS frequency generator using linear superposition technique," in

Proc. Int. Solid-State Circuits Conf. (ISSCC), Feb 2008, pp. 476^477.

[10] K. Shu and E. Sanchez-Sinencio, CMOS PLL Synthesizers: Analysis and De­

sign. Springer, 2005.

[11] M. J. Underhill, "Frequency control in radio-from quartz to direct digital syn­

thesis," in Proc. Int. Conf. on 100 Years of Radio, Sep 1995, pp. 167-176.

[12] E. V. Appleton, "The automatic synchronization of triode oscillators," Proc.

Cambridge Philosophical Soc, vol. 21, pp. 231-248, 1922-1923.

[13] H. De Bellescize, "La reception synchrone," L'onde electrique, vol. 11, pp.

225-240, May 1932.

[14] R. B. Sepe and R. I. Johnston, "Frequency multiplier and frequency waveform

generator," U.S. Patent 3 551 826, Dec 29, 1970.

[15] I. Zamke and S. Zamek, "Definitions of jitter measurement terms and relation­

ships," in Proc. Int. Test Conf. (ITC), Nov 2008, pp. 1-10.

[16] D. M. Pozar, Microwave Engineering, 3rd ed. John Wiley & Sons, Inc.,

2005.

[17] K. Iniewski, Wireless Technologies: Circuits, System and Devices. CRC

Press, 2007.

[18] J. Tierney, C. M. Rader, and B. Gold, "A digital frequency synthesizer," IEEE

Trans. Audio Electroacoust., vol. 19, no. 1, pp. 48-57, Mar 1971.

[19] U. J. Lyles, T. Copani, B. Bakkaloglu, and S. Kiaei, "An injection-locked

frequency-tracking o5 direct digital frequency synthesizer," IEEE Trans. Cir­

cuits Syst. II, vol. 54, no. 5, pp. 402-406, May 2007.

[20] R. Richter and H.-J. Jentschel, "A virtual clock enhancement method for DDS

using an analog delay line," IEEE J. Solid-State Circuits, vol. 36, no. 7, pp.

1158-1161,Jul 2001.

[21] C. E. Shannon, "Communication in the presence of noise," Proc. of the Insti­

tute of Radio Eng. (IRE), vol. 37, no. 1, pp. 10-21, Jan 1949.

99

BIBLIOGRAPHY

[22] K. Elliott, "High speed direct digital synthesis for next generation if systems,"

in Proc. Radio and Wireless Symp., Jan 2007, pp. 423-426.

[23] S. Cheng, J. R. Jensen, R. E. Wallis, and G. L. Weaver, "Further enhancements

to the analysis of spectral purity in the application of practical direct digital

synthesis," in Proc. Frequency Control Symp. and Exposition, Aug 2004, pp.

462^170.

[24] B. W. Garlepp, K. S. Donnelly, J. Kim, P. S. Chau, J. L. Zerbe, C. Huang, C. V.

Tran, C. L. Portmann, D. Stark, Y.-F. Chan, T. H. Lee, and M. A. Horowitz,

"A portable digital DLL for high-speed CMOS interface circuits," IEEE J.

Solid-State Circuits, vol. 34, no. 5, pp. 632-644, May 1999.

[25] R. Farjad-Rad, W. J. Dally, H.-T. Ng, R. Senthinathan, M.-J. Edward Lee,

R. Rathi, and J. Poulton, "A low-power multiplying DLL for low-jitter multi-

gigahertz clock generation in highly integrated digital chips," IEEE J. Solid-

State Circuits, vol. 37, no. 12, pp. 1804-1812, Dec 2002.

[26] G. Chien and P. R. Gray, "A 900-MHz local oscillator using a DLL-based fre­

quency multiplier technique for PCS applications," IEEE J. Solid-State Cir­

cuits, vol. 35, no. 12, pp. 1996-1999, Dec 2000.

[27] B. M. Helal, M. Z. Straayer, G.-Y. Wei, and M. H. Perrot, "A highly digital

MDLL-based clock multiplier that leverages a self-scrambling time-to-digital

converter to achieve subpicosecond jitter performance," IEEE J. Solid-State

Circuits, vol. 43, no. 4, pp. 855-863, Apr 2008.

[28] T. A. D. Riley, M. A. Copeland, and T. A. Kwasniewski, "Delta-sigma mod­

ulation in fractional-N frequency synthesis," IEEE J. Solid-State Circuits,

vol. 28, no. 5, pp. 553-559, May 1993.

[29] L. Zhai, Y. Jiang, X. Ling, and W. Gao, "DDS-driven PLL frequency syn­

thesizer for X-band radar signal simulation," in Proc. Int. Symp. Systems and

Control inAerosp. and Astronautics, Jan 2006, pp. 344-346.

[30] C. Wagner, A. Stelzer, and H. Jager, "A 77-GHz radar transmitter with par­

allelised noise shaping DDS," in Proc. European Radar Conf., Sep 2006, pp.

335-338.

100

BIBLIOGRAPHY

[31] A. Bonfanti, F. Amorosa, C. Samori, and A. Lacaita, "A DDS-based PLL for

2.4-GHz frequency synthesis," IEEE Trans. Circuits Syst. II, vol. 50, no. 12,

pp. 1007-1010, Dec 2003.

[32] J.-Y. Lee, S.-H. Lee, H. Kim, and H.-K. Yu, "A 28.5-32-GHz fast settling

multichannel PLL synthesizer for 60-GHz WPAN radio," IEEE Trans. Mi-

crow. Theory Tech., vol. 56, no. 5, pp. 1234-1246, May 2008.

[33] Y. A. Eken and J. P. Uyemura, "Multiple-GHz ring and LC VCOs in 0.18

urn CMOS," in Proc. Radio Frequency Integr. Circuits (RFIC), Jun 2004, pp.

475^178.

[34] A. M. Fahim, Clock Generators for SOC Processors. Kluwer Academic

Publishers, 2005.

[35] N. Da Dalt, "A design-oriented study of the nonlinear dynamics of digital

bang-bang PLLs," IEEE Trans. Circuits Syst. I, vol. 52, no. 1, pp. 21-31, Jan

2005.

[36] S. Cheng, H. Tong, J. Silva-Martinez, and A. I. Kar§ilayan, "Steady-state anal­

ysis of phase-locked loops using binary phase detector," IEEE Trans. Circuits

Syst. II, vol. 54, no. 6, pp. 892-832, Jun 2007.

[37] J. Lee, M. Liu, and H. Wang, "A 75-GHz phase-locked loop in 90-nm CMOS

technology," IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1414-1426, Jun

2008.

[38] B. Sklar, Digital Communications, 2nd ed. Prentice Hall P T R, 2001.

[39] A. N. Hafez and M. Elmasry, "A novel low power low phase-noise PLL archi­

tecture for wireless transceivers," in Proc. 9th Great Lakes Symp. VLSI, Mar

1999,pp. 306-309.

[40] , "A low power monolithic subsampled phase-locked loop architecture

for wireless transceivers," in Proc. Int. Symp. Circuits and Systems (ISCAS),

vol. 2, Jul 1999, pp. 549-552.

[41] A. N. Hafez and M. I. Elmasry, "Phase locked-loop using sub-sampling," U.S.

Patent 6 463 112, Oct 8, 2002.

101

BIBLIOGRAPHY

[42] , "Phase locked-loop using sub-sampling," U.S. Patent 6 614 866, Sep 2,
2003.

[43] G. E. Von Dolteren Jr., "Subsampling digitizer-based frequency synthesizer,"

U.S. Patent 6 603 362, Aug 5, 2003.

[44] M. Funabashi, T. Inoue, K. Ohata, K. Maruhashi, K. Hosoya, M. Kuzuhara,

K. Kanekawa, and Y. Kabayashi, "A 60 GHz MMIC stabilized frequency

source composed of a 30 GHz DRO and a doubler," in Proc. Int. Microw.

Symp., May 1995, pp. 71-74.

[45] P.-H. Chen, M.-C. Chen, and C.-Y. Wu, "An integrated 60-GHz front-end re­

ceiver with a frequency tripler using 0.13-um CMOS technology," in Proc.

Int. Conf. Electron. Circuits and Systems (ICECS), Dec 2007, pp. 829-832.

[46] A. Natarajan, A. Komijani, X. Guan, A. Babakhani, and A. Hajimiri, "A 77-

GHz phased-array transceiver with on-chip antennas in silicon: Transmitter

and local LO-path phase shifting," IEEE J. Solid-State Circuits, vol. 41, no. 12,

pp. 2807-2819, Dec 2006.

[47] J. Lee and B. Razavi, "A 40-GHz frequency divider in 0.18-um CMOS tech­

nology," IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 594-601, Apr 2004.

[48] S. P. Voinigescu, R. Aroca, T. O. Dickson, S. T. Nicolson, T. Chalvatzis,

P. Garcia, C. Gamier, and B. Sautreuil, "Towards a sub-2.5V, 100-Gb/s se­

rial transceiver," in Proc. Custom Integr. Circuits Conf. (CICC), Sep 2007, pp.

471^178.

[49] E. Laskin, M. Khanpour, R. Aroca, K. W. Tang, P. Garcia, and S. P.

Voinigescu, "A 95-GHz receiver with fundamental-frequency VCO and static

frequency divider in 65nm digital CMOS," in Proc. Int. Solid-State Circuits

Conf. (ISSCC), Feb 2008, pp. 180-181.

[50] T. Mitomo, R. Fujimoto, N. Ono, R. Tachibana, H. Hoshino, Y. Yoshihara,

Y. Tsutsumi, and I. Seto, "A 60-GHz CMOS receiver front-end with frequency

synthesizer," IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 1030-1037, Apr

2008.

[51] H. Hoshino, R. Tachibana, T. Mitomo, N. Ono, Y. Yoshihara, and R. Fujimoto,

102

BIBLIOGRAPHY

"A 60-GHz phase-locked loop with inductor-less prescaler in 90-nm CMOS,"

in Proc. European Solid-State Circuits Conf. (ESSCIRC), Sep 2007, pp. 472-

475.

[52] T. Suzuki, Y. Kawano, Yasuhiro, S. Yamaura, T. Takahashi, K. Makiyama, and

T. Hirose, "A 50-Gbit/s 450-mW full-rate 4:1 multiplexer with multiphase

clock architecture in 0.13-um InP HEMT technology," IEEE J. Solid-State

Circuits, vol. 42, no. 3, pp. 637-646, Mar 2007.

[53] T. Chalvatzis, K. H. K. Yau, R. A. Aroca, P. Schvan, M.-T. Yang, and

S. P. Voinigescu, "Low-voltage topologies for 40-Gb/s circuits in nanoscale

CMOS," IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1564-1573, Jul 2007.

[54] R. Z. Bhatti, M. Denneau, and J. Draper, "Duty cycle measurement and cor­

rection using a random sampling technique," in Proc. Midwest Symp. Circuits

and Systems, vol. 2, Aug 2005, pp. 1043-1046.

[55] Efficient Noise Analysis for Complex Non-Periodic Analog/RF Blocks, Berke­

ley Design Automation Inc., 2902 Stender Way, Santa Clara, California, USA

95054, 2008.

[56] D. F. Williams, K. A. Remley, and D. C. DeGroot, "Nose-to-nose response

of a 20-GHz sampling circuit," in ARFTG Conference Digest-Spring, vol. 36,

Dec 2000, pp. 1-7.

[57] M. Kim, I. Jung, Y. Kwak, S. Ahn, and C. Kim, "Differential pass transistor

pulsed latch," in Proc. Int. SOC Conference, Sep 2005, pp. 295-300.

[58] M. Matsui, H. Hara, Y Uetani, L.-S. Kim, T. Nagamatsu, Y Watanabe,

A. Chiba, K. Matsuda, and T. Sakurai, "A 200 MHz 13 mm2 2-D DCT macro-

cell using sense-amplifying pipeline flip-flop scheme," IEEE J. Solid-State

Circuits, vol. 29, no. 12, pp. 1482-1490, Dec 1994.

[59] B. Nikolic, V. Stojanovic, V. G. Oklobdzija, W. Jia, J. Chiu, and M. Le­

ung, "Sense amplifier-based flip-flop," in Proc. Int. Solid-State Circuits Conf.

(ISSCC), Feb 1999, pp. 282-283.

103

Appendix A

Spice Circuit Simulation Settings

All transistor-level simulations used the Spectre simulator by Cadence, with a ver­

sion string of CDS: spectre version 6.0.2 11/10/2005 17:40 (usimlxl09). The de­

sign kit used for the simulations is the CMC Microsystems cmos90nm.3.0 release

of ST Microelectronics' 90 nm General Purpose CMOS design kit. The simulation

models in this design kit are not intended for RF design, and do not model cer­

tain parameters such as gate resistance, and simulation results at frequencies near

or exceeding fmax are therefore most likely unrealistically optimistic. The process

corners for all circuit simulations is set to nominal for every device type.

A.l Sample Circuit Simulations

All simulations available in section 4.2 are done using transient analysis use the

simulation parameters set out in table A.l. All these parameters are the default

when simulated using errpreset = conservative, with exception of the step and

maxstep parameters, which have been set manually. These parameters are further

described in the document Virtuoso Spectre Circuit Simulator Reference, Product

Version 6.0, November 2005 and is available from Cadence Design Systems Inc.

The supply voltage is set to 1.2 V. The simulation parameters and transient noise

settings are given in table A.l and are valid for all circuits, except the standard cell

D flip-flop in section 4.2.2.

104

A.2: Duty Cycle Detection Simulation

Table A. 1: Latch circuit transient noise simulation settings

Parameter
noiseseed
noisefmax
noisescale
noisefmin
noisetmin

Value
1

ITHz
1

10 MHz
default (1/noisefmax)

Table A.2: Latch circuit transient simulation parameters

Parameter
step
maxstep
ic
skipdc
reltol
abstol(I)
abstol(V)
temp
tnom
tempeffects
errpreset
method
lteratio
relref
cmin
gmin
maxrsd
mos_method
mos_vres

Value
lOOfs
200 fs

all
no

le-06
lpA
luV
27 C
27 C
all

conservative
gear2only

10
alllocal

OF
lfS
0Q

s
50 mV

A.2 Duty Cycle Detection Simulation

The data for Figure 4.20 was obtained by simulating the design for 1 us with a sup­

ply voltage of 1 V and with the simulation parameters set out in table A.3. The

remaining simulation data provided in section 4.3 are simulated with a supply volt­

age of 1.2 V and the simulation parameters in table A.2.

105

A.3: 90-nm ALL model

Table A.3: Left DAC output voltage transient simulation parameters

Parameter
step
maxstep
ic
skipdc
reltol
abstol(I)
abstol(V)
temp
tnom
tempeffects
errpreset
method
Iteratio
relref
cmin
gmin
maxrsd
mos_method
mosjvres

Value
800 ps
80 ns

all
no

10e-03
lpA
luV
27 C
27 C
all

liberal
gear2
3.5

allglobal
OF
IpS

on
s

50 mV

A.3 90-nm ALL model

The 90-nm simulation used to generate the plots in Figures 5.13, 5.14 and 5.15 was

simulated for 5 us with standard simulator settings. These parameters are provided

in table A.4. The pull-in simulation for figure 5.16 was simulated for 10 us, with

all the same parameters as in table A.4. Unlike simulations of the sampling latch

circuits and duty cycle correction circuits, these circuits are simulated with a supply

voltage of 1 V.

106

A3: 90-nm ALL model

Table A.4: Simulation parameters for generation of phase-space orbit and pull-in
plots

Parameter
step
maxstep
ic
skipdc
reltol
abstol(I)
abstol(V)
temp
tnom
tempeffects
errpreset
method
Iteratio
relref
cmin
gmin
maxrsd
mos_method
mos_vres

Value
5 ns

100 ns
all
no

le-03
lpA
luV
27 C
27 C
all

moderate
traponly

3.5
sigglobal

OF
IpS

on
s

50 mV

107

Appendix B

Source Code

B.l Alias-Locked Loop Simulation Program
/* Copyright 2008 Leendert van den Berg

* C—based implementation of alias —locked loop non—linear model
* Uses the reference clock time to recalculate the state each cycle
*
* Compile with:
* gcc —o phaseAll —Im phaseAll. c
*/

#include < s t d i o . h >
#include < s t d l i b . h>
#include <math .h>

#define NUM.ARGS (13)
#define NDIV.START (0)
#define VC-TABLEiEN (64)
#define MSGJLEN (256)
#define MODR(x,y) ((x)
#define INC.VC(var) (var
#define NO-PHI (999.OL)

typedef s truct {
long double phaseRem;
long double limeRem ;
long double phi ;
long double Vc;

} Vc .h i s to ry ;

int ma in (in t argc , char * a r g v [])
{

int num. i te r , i , j , Ndiv , numVco, numRef, Div;
long double vcoPhase , newPhi , s q r t . a , s q r t . b , s q r t . c ;
long double Tv, Ts , De l t a ;
long double Tr, Phi, Iin , C, R, Kv, F0;
long double Vc, VcEff;
long double c u r r e n t . t i m e ;
long double Psi , T ta rge t ;
long double VcOld;
long double phase , newPhase ;
long double Tal ias , i n t P a r t ;
long double secTime;
char msgfMSGXEN];
Vc .h i s to ry v c . t a b l e [VC.TABLEXEN];
int vc.head = 0, v c . t a i l = 0 ;
if (argc != NUMARGS) {

round ((x)/(y))*(y))
(((v a r) + l) % VC.TABLEXEN))

108

B.l: Alias-Locked Loop Simulation Program

p r i n t f ("Format: %s <number of sample i t e r a t i o n s > <Sample period (Ts)> "
"<Sample delay from VCO (DeltaO)> <Reference period (Tr)> "
"<Reference lead from sample (PhiO)> <Curren t (I)> <Loop Cap. (C)> "
"<Loop Res. (R)> <VCO gain (Kv)> <VCO base (F0)> <F i 1 ter Voltage "
"(Vc)> <Div ide r r a t i o (D i v) > \ n " , a r g v [0]) ;

return 1;
} e lse {

num. i t e r = a toi (argv [1]) ;
Ts = s t r t o l d (a r g v [2] , NULL);
Delta = s t r t o l d (argv [3] , NULL);
Tr = s t r t o l d (a r g v [4] , NULL);
Phi = s t r t o l d (a r g v [5] , NULL);
l in = s t r t o l d (a r g v [6] , NULL);
C = s t r t o l d (argv [7] , NULL);
R = s t r t o l d (argv [8] , NULL);
Kv = s t r t o l d (a r g v [9] , NULL);
FO = s t r t o l d (a r g v [10] , NULL);
Vc = s t r t o l d (a r g v [1 1] , NULL);
Div = a t o i (a r g v [1 2]) ;
p r i n t f ("# Running %d i t e r a t i o n s , Ts = %Le, DeltaO = %Le\n" ,

num. i t e r , Ts , D e l t a) ;
p r i n t f ("# Tr = %Le, PhiO = %Le, l in = %Le, \ n " , T r , Ph i , l i n) ;
p r i n t f ("# C = %Le, R=%Lf, Kv = %Le, FO = %Le\n", C, R, Kv, FO);
p r i n t f ("# Vc = %Lf, Div=%d\n" , Vc, Div) ;
Tv = 1/(F0 + Kv * Vc);
/* Calculate target frequency based on closes current frequency that

* matches sampling + reference frequencies :
* Ttarget = 1 /
* (ratio of sample/ vco frequencies + Div * reference frequency)
*/

Tta rge t = 1/((round (Ts/Tv)/Ts) + D i v / T r) ;
p r i n t f (" # Fref = %Le, Fsample = %Le, Fvco = %Le\n" , 1/Tr, 1/Ts, 1/Tv);
p r i n t f (" # Target Tv = %11.7Le (%Le) \n" , T t a r g e t , 1 / T t a r g e t) ;
p r i n t f ("# modr = %0.8Le; remainder l = %0.8Le\n" , M0DR(Ts, Tv) ,

remainder l (T s . T v)) ;
}
c u r r e n t . t i m e = 0;
/* Initial phase error between VCO

* = number of sample periods in phi , scaled by the ratio of sample
* frequency to reference frequency times the ideal VCO clock , minus the
* small time difference given by delta.
*
* ==> Round up Phi up to nearest multiple fraction of reference period
* (fraction as in number of samples per reference clock). Times the target
* VCO clock (i.e. if Phi is 10% of, VCO phase error is 10 % of the VCO
* clock, less the offset between VCO clock and sampler). This fraction is
* further corrected for the division factor
*/

Psi = (c e i l l (P h i / T s) * D i v * T s / T r) * T ta rge t - De l t a ;
numVco = 0;
numRef = 0 ;
vcoPhase = 0;

/* Calculate initial phase offset between sample clock and VCO using
* initial VCO frequency
*/

Tv = 1/(F0 + Kv * Vc);
/* Initial phase before new voltage takes effect from delta */
phase = De l t a /Tv ;

newPhase = 0.0L;

p r i n t f (" # i n d 2 Time 3 Ndiv
7 Tv

p r i n t f (" # Psi i n i t i a l = %10Le ,
c e i l l (P h i / T s) * T s / T r) ;

109

4 Delta 5 phi 6 Vc"
10 P s i \ n ") ;

Ph i /Tr = %Lf (cei l=%Lf) \ n " , P s i , Ph i /T r ,

B.l: Alias-Locked Loop Simulation Program

/* Find the alias period for the first section of the waveform (no charging)
* => Phi - 0 */

Ndiv = NDIV_START;
for (j = 0 ; j < Div; j++) {

do {
Ndiv++;
Ta l ias = Ndiv*Ts;
if (Phi - Tr + Ta l ias < 0) {

/* Still in flat section of Vc */
newPhase = phase + (FO + Kv * Vc) * Tal ias ;

} e lse {
/* Must keep track of charging section now, as reference edge

* has passed and Vc is changing */
newPhi = Phi - Tr + T a l i a s ;
newPhase = phase + (FO + Kv * Vc) * Tal ias +

newPhi * Iin * Kv * (R + fabsl (newPhi) / C / 2) ;
}

} while (modfl (newPhase , & i n t P a r t) < 0 .5L) ;
Nd iv—;
do {

Ndiv++;
Ta l i a s = Ndiv*Ts;
if (Phi - Tr + Ta l i a s < 0) {

/* Still in flat section of Vc */
newPhase = phase + (FO + Kv * Vc) * Tal ias ;

} e lse {
/* Must keep track of charging section now, as reference edge

* has passed and Vc is changing */
newPhi = Phi - Tr + Ta l ias ;
newPhase = phase + (FO + Kv * Vc) * Tal ias +

newPhi * Iin * Kv * (R + fabsl (newPhi) / C / 2) ;
}

} while (modfl (newPhase , & i n t P a r t) >= 0 .5L) ;
}

phase = modfl (newPhase , & i n t P a r t) ;

/* Add initial vc table entry based on no charging */
v c . t a b l e [vc-head] . phi = NO-PHI;
v c . t a b l e [vc-head] . Vc = Vc;
if (Phi - Tr + Ta l i a s > 0) {

v c . t a b l e [vc.head] . timeRem = Tr - Phi + Del ta ;
} e lse {

v c . t a b l e [vc.head] . timeRem = Ta l ias + De l t a ;
}
v c . t a b l e [vc.head] . phaseRem = v c . t a b l e [vc.head] . timeRem * (FO + Kv * Vc);
INC.VC(v c . h e a d) ;

i = 0;
p r in t f ("%3d %11.5Le % 4d % 9.7Le % 9.5Le %14.12Le %9.5Le % 41d % 4d

"% 14 .12Le\n" , i , c u r r e n t - t i m e , Ndiv, De l t a , Ph i , Vc, Tv,
lround (i * T r / T t a r g e t) — numVco , numRef , P s i) ;

/ * calculate new Phi */
Phi = Phi - Tr + Ta l ias ;

msg[0] = ' \ 0 ' ;
/* Loop through all iterations requested */
for (i = l ; i <= num. i t e r + 1; i++) {

c u r r e n t . t i m e += Tr;

/* Prepare for next iteration */
VcOld = Vc;
Vc = Vc + Iin * Ph i /C ;

110

B.l: Alias-Locked Loop Simulation Program

/* Estimate effect of resistor & charging / \ */
VcEff = Vc + Iin * (R*Phi /Tr - f absl (Phi)* Ph i / (Tr*C* 2)) ;
/* Initial estimate of VCO period to start phase calculation */
Tv = 1/(F0 + Kv * VcEff);

/* Calculate duration of next alias period (including any frequency
* division factor)
* Update for actual voltage wave form shape
* Steps: goes through sloping section , then flat section , then if
* next Phi < 0, new sloping section */

Ndiv = NDIV .START;
for (j = 0 ; j < Div; j++) {

do {
Ndiv++;
Ta l ias = Ndiv*Ts;
if (Phi - Tr + Ta l i a s < 0) {

/* Still in flat section of Vc */
newPhase = phase + (FO + Kv * Vc) * T a l i a s ;

} e lse {
/* Must keep track of charging section now, as reference

* edge has passed and Vc is changing */
newPhi = Phi - Tr + T a l i a s ;
newPhase = phase + (FO + Kv * Vc) * Tal ias +

newPhi * Iin * Kv * (R + fabsl (newPhi) / C / 2) ;
}

} while (modfl(newPhase , & i n t P a r t) < 0 .5L);
Ndiv ;
do {

Ndiv++;
Ta l ias = Ndiv*Ts;
if (Phi - Tr + Ta l i a s < 0) {

/* Still in flat section of Vc */
newPhase = phase + (FO + Kv * Vc) * T a l i a s ;

} e lse {
/* Must keep track of charging section now, as reference

* edge has passed and Vc is changing */
newPhi = Phi - Tr + T a l i a s ;
newPhase = phase + (FO + Kv * Vc) * Tal ias +

newPhi * Iin * Kv * (R + fabsl (newPhi) / C / 2) ;
}

} while (modfl(newPhase , & i n t P a r t) >= 0 .5L);
}

phase = modfl (newPhase , & i n t P a r t) ;
numVco += i n t P a r t ;

/* Charging section of Vc waveform */
v c - t a b l e [vc.head] . phi = Phi ;
v c . t a b l e [v c . h e a d] . Vc = VcOld ;
v c . t a b l e [vc.head] . timeRem = f a b s l (P h i) ;
v c . t ab le [vc.head] . phaseRem = (FO + Kv * VcOld) * f a b s l (P h i) +

Phi * Iin * Kv * (R + fabsl (Phi) / C / 2) ;
INC_VC(v c . h e a d) ;
if (vc .head == v c . t a i l) {

f p r i n t f (s tderr , " I t e r a t i o n %d: No more VCO tab le e n t r i e s "
" a v a i l a b l e \ n " , i) ;

break;
}

/* Flat section of Vc waveform */
v c - t a b l e [vc .head] . phi = NO.PHI;
v c . t a b l e [vc.head] .Vc = Vc;

if (Phi > 0 && Phi - Tr + Ta l i a s > 0) {
v c . t a b l e [vc.head] . timeRem = Tr—Phi ;

} e lse if (Phi < 0 && Phi - Tr + Ta l ias > 0) {

111

B.l: Alias-Locked Loop Simulation Program

v c - t a b l e [vc.head] . timeRem = Tr;
} e lse if (Phi > 0 && Phi - Tr + Ta l ias < 0) {

v c - t a b l e [vc.head] . timeRem = T a l i a s ;
} e lse {

/* Phi < 0 && Phi - Tr + TAlias < 0
* Talias — \Phi\ = Talias + Phi */

v c - t a b l e [vc .head] . timeRem = Ta l ias + Ph i ;
}

v c . t a b l e [vc.head] . phaseRem = v c . t a b l e [vc .head] . timeRem * (FO + Kv * Vc);

INC_VC(v c . h e a d) ;
if (vc .head == v c . t a i l) {

f p r in tf (s tder r , " I t e r a t i o n %d: No more VCD table e n t r i e s "
" a v a i l a b l e \ n " , i) ;

break;
}

/* Calculate number of new cycles for the ideal VCO */
vcoPhase = numRef;
numRef = lround (i * T r / T t a r g e t) — lround ((i —l)*Tr/Ttarget) ;

/* Calculate new phase error */
Phi = Phi - Tr + Tal ias ;

if (f a b s l (P h i) > Tr | | f a b s l (P h i) > T a l i a s) {
f p r in tf (s tder r , " T a l i a s = %Le, phase=%Le, numVco = % i \ n " , Tal ias ,

phase , numVco);
f p r i n t f (s tder r , " I t e r a t i o n %d: Phi > Tr, Tal ias (%9.5Le > %9.5Le,"

"%9.5Le) \n" , i , f a b s l (P h i) , Tr, T a l i a s) ;
break;

}

/* VCO period to calculate an approximate delta */
Tv = 1/(F0 + Kv * Vc);
Delta = phase * Tv;

/* Print current phase error */
if (i > 1) {

/* Calculate the time difference between the ideal and actual VCO
* after numRef cycles, add ideal VCO time, minus actual time */

Psi —= vcoPhase * T ta rge t ;

/* Loop through a phase value of vcoPhase until we hit a table entry
* that has more phase remaining then the amount we wish to take
* Each table entry 's amount of phase and time occupied is taken off
* from the vcoPhase and VCO phase error Psi */

while ((vc .head != v c . t a i l) &&
(v c . t a b l e [v c . t a i l] . phaseRem < vcoPhase)) {

vcoPhase —= v c . t a b l e [v c . t a i 1] . phaseRem ;
Psi += v c . t a b l e [v c . t a i 1] . timeRem ;
INC.VC(v c . t a i l);

}
if (vc .head == v c . t a i l) {

fpr i ntf (s tde r r , " I t e r a t i o n %d : No more VCO data a v a i l a b l e \ n " ,
i - 1) ;

break;
}

/* Now use the remaining phase to calculate the time difference
* between the ideal VCO and actual VCO. This also requires
* updating of the VC table entry from which we are taking phase
* and time */

if (v c - t a b l e [v c . t a i l] . phi >= NO.PHI) {

112

B.l: Alias-Locked Loop Simulation Program

/* Easy to calculate the time taken if the voltage waveform is
* flat: time = phase / vco frequency in the flat section */

secTime = vcoPhase / (FO + Kv* v c . t a b l e [v c . t a i l] .Vc);
v c t a b l e [vc _tai 1] . timeRem —= secTime ;
v c . t a b l e [v c . t a i l] . phaseRem —= vcoPhase;
Psi += secTime;

} e lse {
/*

* must solve square root equation here , solving for time
* which satisfies phase equation is given above as:
* newPhase = phase + (FO + Kv * VcOld) * Talias +
* Phi * lin * Kv * (R - fahsI (Phi)/C/2) +
* Talias * Kv * lin * Phi/C:
*
* Charging part, initial phase = 0:
* == (Fo + Kv * VcOld) * Phi +
* (R + (Phi / C /2) * lin * Kv) * Phi
*
* Rewriting as a x'2 + b x + c for the sloping part,
* newPhase — vcoPhase and phi is given by secTime , assume
* Phi > 0, move newPhase to right —hand side
*
* (Kv * Iin/C/2) * secTime "2 +
* (FO + Kv * Vc + Kv * lin * R) * secTime — vcoPhase

* Instead of Phi, we solve for time (secTime)
*/

if (v c . t a b l e [v c . t a i l] . phi < 0) {
s q r t - a = Kv * l in / C / 2 ;
s q r t - b = FO + Kv * v c . t a b l e [v c . t a i l] . Vc + Kv * l in * R;
s q r t . c = —UvcoPhase;
secTime = (— s q r t - b +

s q r t l (s q r t - b * s q r t . b — 4 * s q r t . a * s q r t . c)) / 2 / s q r t . a ;
} e lse {

/* The case for Phi < 0 is almost the same, with some signs
* reversed for discharging */

s q r t . a = —l*Kv * I i n / C / 2 ;
s q r t - b = FO + Kv * v c _ t a b l e [v c _ t a i l] . V c - K v * l in * R;
s q r t . c = —l*vcoPhase;
secTime = (—sqrt-b +

s q r t l (s q r t . b * s q r t - b — 4 * s q r t - a * s q r t _ c)) / 2 / s q r t _ a ;
}
/* Update the last entry in the table with the time we have

* used in the current cycle */
v c - t a b l e [v c . t a i l] . timeRem —= secTime;
v c . t a b l e [v c . t a i l] . phaseRem —= vcoPhase;
Psi += secTime;

}

p r i n t f (" % s % 14 .12Le\n" , msg, P s i) ;
}
s n p r i n t f (m s g , MSG.LEN,

"%3d %11.5Le % 4d % 9.7Le % 9.5Le %14.12Le %9.5Le % 41d % 4d" ,
i , c u r r e n t - t i m e , Ndiv , D e l t a , Ph i , Vc, Tv,
lround (i * T r / T t a r g e t) — numVco , numRef);

rn 0;

113

B.2: Alias-Locked Loop Histogram Generation Program

B.2 Alias-Locked Loop Histogram Generation Pro­
gram

/* Copyright 2008 Leendert van den Berg
* C—based implementation of histogram counter. Hardcoded to take the psi value
* produced by output from the phaseAll. c program
*
* Compile with :
* gcc —o histo —Im histo.c
*/

#include < s t d i o . h>
#include < s t d l i b . h>
#include <math . h>

#define NUrvLARGS (4)
#define SCAN-STRING ("%d %Le %d %Le %Le %Le %Le %ld %d %Le")
#define BUFXEN (256)

int ma in (in t argc , char * a r g v [])
{

int numBins , binlndex , i ;
long va l sRead=0;
long *bins ;
long double minVal , maxVal , b i n S i z e ;
char readBuf [BUFXEN];

int i ter , Ndiv ;
long double c u r r e n t - t i m e , D e l t a , Ph i , Vc, Tv;
long cycleLen ;
int refCount ;
long double Psi ;

if (argc != N U M J \ R G S) {
f p r i n t f (s t d e r r / ' F o r m a t : %s <number of b ins> <minimum bin value> "

" <maximum bin v a l u e > \ n " , a r g v [0]) ;
return 1;

} e lse {
numBins = a toi (argv [1]) ;
minVal = s t r t o l d (argv [2] , NULL);
maxVal = s t r t o l d (argv [3] , NULL);

}
if (numBins < 0) {

fpri ntf (s tde r r , "Number of bins (%d) should be g rea t e r than 0\n" ,
numBins);

exi t (1) ;
}
if (minVal > maxVal) {

f p r i n t f (s t d e r r , "Minimum bin value (%14.12Le) should be less than "
"maximum bin value (%14.12Le)\n" , minVal, maxVal);

e x i t (1) ;
}
binSize = (maxVal — minVal)/numBins ;

bins = ca l l oc (s i z e o f (long) .numBins) ;
if (b ins == NULL) {

fpri ntf (s t d e r r , "Could not a l l o c a t e memory for b i n n i n g \ n ") ;
exi t (1) ;

}

while (1) {
if (f g e t s (r e a d B u f , BUFXEN, s t d i n) == NULL) {

114

B.3: Latch Sensitivity Plot Generation Program

break;
}
if (r eadBuf [0] == ' # ') {

continue ;
}
sscanf (readBuf , SCAN_STRING, & i t e r , ¤t_t ime , &Ndiv , &Delta , &Phi

&Vc, &Tv, &cycleLen , &refCount , &Ps i) ;
valsRead ++;
if (Vc < minVal | | Vc > maxVal) {

f p r i n t f (s t d e r r , " I t e r a t i o n %ld value outs ide bin range %14.12Le\n",
valsRead , Vc);

} else {
binlndex = (Vc — minVal)/(maxVal — minVal) * numBins;
bins [binlndex]++;

}
}

for (i = 0 ; i < numBins; i++) {
p r i n t f ("%14.12Le %ld \n" , minVal + i*b inSize + b i n S i z e / 2 , b i n s [i]) ;

}

free (b ins);
bins = NULL;

return 0;

B.3 Latch Sensitivity Plot Generation Program

/* Copyright 2008 Leendert van den Berg
* C—based program to collect data from sensitivity analyis
* Expects data file with x,y pairs for each pulse width simulated
*
* X value should be centre location of pulse , y value should be the latch
* output value
*
* Generates a series of x,y pairs for time offset and sensitivity function
* at that value
*
* Compile with :
* gcc —o sensMinPulse —Im sensMinPulse . c
*/

#include < s t d i o . h >
#include < s t d l i b . h>
#include <math . h>

#define NUMJ\RGS (7)
#define SCANJCY1 ("%Le,%Le")
#define SCANJCY (",%Le,%Le")
#define HALF.VDD (0 .6)
#define LARGE.VAL (l e i 5)

int ma in (in t argc , char * a r g v [])
{

int numPw, numTimeBins , i , j ;
long valsRead =0;
long double * b i n s ;
long double pwMinVal , pwMaxVal, pwSizeStep;
long double timeMinVal , timeMaxVal , t imeBinSize

long double xval , yval ;

if (argc != NUNLARGS) {

115

B.3: Latch Sensitivity Plot Generation Program

/*

*/

fpri ntf (s tder r , "Format: %s <number of time offsets > <minimum time "
" offset > <maximum time of fset > <number of pulse widths> "
"<minimum pulse width va lue> <maximum pulse width v a l u e > \ n " ,
argv [0]) ;

return 1;
} e lse {

numTimeBins = a toi (argv [1]) ;
timeMinVal = s t r t o l d (argv [2] , NULL);
timeMaxVal = str tol d (argv [3] , NULL);
numPw = atoi (argv [4]) ;
pwMinVal = s t r t o l d (argv [5] , NULL);
pwMaxVal = s t r t o l d (argv [6] , NULL);

}
if (numTimeBins < 1) {

f p r i n t f (s tder r , "Number of time bins (%d) should be g rea t e r than 0\n" ,
numTimeBins) ;

ex i t (1) ;
}
if (numPw < 1) {

f p r i n t f (s t d e r r , "Number of pulse width (%d) should be g r e a t e r than 0\n" ,
numPw);

exi t (1) ;
}
if (timeMinVal > timeMaxVal) {

f p r i n t f (s t d e r r , "Minimum time value (%14.12Le) should be less than "
"maximum time value (% 14.12Le)\n" , t imeMinVal, timeMaxVal);

exi t (1) ;
}
if (pwMinVal > pwMaxVal) {

fpr in tf (s t d e r r , "Minimum pulse width value (%14.12Le) should be less "
" than maximum pulse width value (%14.12Le)\n" , pwMinVal, pwMaxVal);

ex i t (1) ;
}
t imeBinSize = (timeMaxVal - timeMinVal)/(numTimeBins - 1);
pwSizeStep = (pwMaxVal — pwMinVal)/(numPw-1);

bins = ca l l oc (s i zeof (long double) , numTimeBins) ;
if (b in s == NULL) {

f p r i n t f (s t d e r r , "Could not a l l o c a t e memory for b i n n i n g \ n ") ;
}

/* Initialize to largest bin value possible */
for (i = 0 ; i< numTimeBins; i++) {

//bins[i] = LARGE.VAL;
b i n s [i] = pwMaxVal;
/*
printf ("%l4.12Le %Le\n", timeMinVal + i *timeBinSize , bins[i]);
printf (" Bins[% 2d] centred at %Le\n", i, timeMinVal + timeBinSize *i);
*/

}

for (i=0; i< numPw; i++) {
printf ("Pw[% 2d] size %Le\n", i, pwMinVal + pwSizeStep *i);

}

for (i = 0 ; i < numTimeBins; i++) {
for (j = 0 ; j < numPw; j++) {

if (j == 0) {
if (scanf (SCAN-XY1, &xval , &yval) != 2) {

break;
}

} e lse {
if (scanf (SCANJCY, &xval , &yval) != 2) {

break ;

116

B.4: Latch Sampling Window Sensitivity Plot Generation Program

}
}
valsRead ++;
if (xva l < timeMinVal | | xval > timeMaxVal) {

f p r i n t f (s t d e r r . " I t e r a t i o n %ld value outs ide time bin range "
" %14.12Le\n", va l sRead , x v a l) ;

} e l se if ((xval — (timeMinVal + i * t imeBinSize)) >
t imeBinSize /1000) {

f p r i n t f (s t d e r r , "Unexpected time value not at time bin c e n t r e .
"Line %d, entry %d. Value %Le (expected %Le) \n" ,
i , j , x v a l , timeMinVal + i* t imeBinSize
) ;

} e l se {
/* printf (" Read %Le, %Le\n", xval, yval); */
/*
if (yval < HALF.VDD) {

bins[i] —= l/(j * pwSizeStep + pwMinVal);
} else {

bins I i] += l/(j * pwSizeStep + pwMinVal);

}
*/
if (yval > HALF.VDD && b i n s [i] > j *pwSizeStep + pwMinVal) {

b i n s [i] = j*pwSizeStep + pwMinVal;
}

}

for (i = 0 ; i < numTimeBins; i++) {
p r i n t f ("%14.12Le %Le\n" , timeMinVal + i * timeBinSize , bins [i]) ;

}

free (b ins);
bins = NULL;

return 0;
}

B.4 Latch Sampling Window Sensitivity Plot Gener­
ation Program

/ * Copyright 2008 Leendert van den Berg
* C—based program to collect data from sensitivity analyis
* Expects data file with x,y pairs for each pulse width simulated
*
* X value should be centre location of pulse , y value should be the latch
* output value
*
* Generates a series of x,y pairs for edge time offset and sensitivity
* function at that value. Assumes square wave signal. Finds minimum pulse width
* for each edge increment away from central sensitivity

* Compile with :
* gcc —o sqPulse —Im sqPulse . c
*/

#include < s t d i o , h >
#include < s t d l i b . h>
#include <math .h>

#define NUM.ARGS (7)
#define SCANJCY1 ("%Le,%Le")
#def ine SCANJCY (",%Le,%Le")

117

B.4: Latch Sampling Window Sensitivity Plot Generation Program

#define HALF.VDD (0 .6)
#define GRIDSIZE (256)

int ma in (in t argc , char * a r g v [])
{

int numPw, numTimeBins , i , j , k;
long valsRead =0;
long double pwMinVal, pwMaxVal, pwSizeStep;
long double timeMinVal , timeMaxVal , t imeBinSize ;
int da taGrid [GRIDSIZE] [GRIDSIZE];
int curMinPw = GRIDSIZE, minPwStart , minPwStop;

long double xval , yval ;

if (a rgc != NLTvLARGS) {
f p r i n t f (s tder r , "Format: %s <number of time offsets > <minimum time "

" offset > <maximum time offset > <number of pulse widths> "
"<minimum pulse width va lue> <maximum pulse width v a l u e > \ n " ,
argv [0]) ;

return 1;
} e lse {

numTimeBins = a toi (argv [1]) ;
timeMinVal = s t r t o l d (argv [2] , NULL);
timeMaxVal = s t r t o l d (argv [3] , NULL);
numPw = atoi (argv [4]) ;
pwMinVal = s t r t o l d (argv [5] , NULL);
pwMaxVal = s t r t o l d (argv [6] , NULL);

}
if (numTimeBins < 1) {

fp r in tf (s t d e r r , "Number of time bins (%d) should be g rea t e r than 0\n" ,
numTimeBins);

ex i t (1) ;
}
if (numPw < 1) {

fpri ntf (s t d e r r , "Number of pulse width (%d) should be g r e a t e r than 0\n" ,
numPw);

ex i t (1) ;
}
if (timeMinVal > timeMaxVal) {

f p r i n t f (s t d e r r , "Minimum time value (%14.12Le) should be less than "
"maximum time value (% 14.12Le)\n" , timeMinVal, timeMaxVal);

ex i t (1) ;
}
if (pwMinVal > pwMaxVal) {

fpri ntf (s t d e r r , "Minimum pulse width value (%14.12Le) should be less "
" than maximum pulse width value (% 14 .12Le) \n" , pwMinVal, pwMaxVal);

ex i t (1) ;
}
if (numTimeBins > GRIDSIZE | | numPw > GRIDSIZE) {

fp r in tf (s t d e r r , "Number of pu lsewid ths or of fse t to large >%d\n" ,
GRIDSIZE);

ex i t (1) ;
}
t imeBinSize = (timeMaxVal - timeMinVal)/(numTimeBins - 1);
pwSizeStep = (pwMaxVal — pwMinVal) /(numPw- 1);

for (i = 0 ; i < numTimeBins; i++) {
for (j = 0 ; j < numPw; j++) {

if (j == 0) {
if (scanf (SCANJCY1, &xval , &yval) != 2) {

break ;
}

} e lse {

118

B.4: Latch Sampling Window Sensitivity Plot Generation Program

if (scanf(SCANJCY, &xval , &yval) != 2) {
break;

}
}
valsRead ++;
if ((xva l - timeMinVal) < - U t i m e B i n S i z e / 1 0 0 | |

(xval - timeMaxVal) > t imeBinSize l\ 00) {
f p r i n t f (s t d e r r . " I t e r a t i o n %ld value outs ide time bin range

} e l se i

} e lse i

f pr i

" (%14.12Le)\n" , valsRead, x v a l) ;
((xval — (timeMinVal + i * t imeBinS ize)) >

imeBinSize /1000) {
((xval — (timeMinVal + i * t imeBinSize)) >

imeBinSize /1000) {
i t f (s t d e r r , "Unexpected time value not at time bin centre
Line %d, entry %d. Value %Le (expected %Le) \n" ,
, j , x v a l , timeMinVal + i* t imeBinSize

} e l se {
if (yval > HALF_VDD) {

d a t a G r i d [i][j] = 1;
if (curMinPw > j) {

curMinPw = j ;
minPwStart = i ;
minPwStop = i ;

} e lse if (curMinPw == j) {
if (i < minPwStart) {

minPwStart = i ;
} e lse if (i > minPwStop) {

minPwStop = i ;

}
}

} e lse {
d a t a G r i d [i] [j]

}

printf(" Found minimum pulse of %.lLf ps in range (%.]Le ps,%.lLe ps)\n"
curMinPw * pwSizeStep + pwMinVal , minPwStart*timeBinSize+timeMinVal ,
minPwStop* time Bin Size -vtimeMinVal);

r (i = numTimeBins ; i >=minPwStop;
k = curMinPw ;
for (j = i ; ; j + + , k+=2) {

-) {

printfC'Check %.3Le %.lLf (%.3Lf .. %.3Lf)\n",
j *timeBinSize + timeMinVal ,
k*pwSizeStep + pwMinVal,
I e!2 *(j *timeBinSize VtimeMinVal) — 5e—] *(k*pw Size Step+pwMinVal),
/ el 2 *(j *timeBinSize -vtimeMinVal) + 5e — l*(k*pw Size Step +pwMinVal)
) ;

if (k >= numPw | | j >= numTimeBins) {
printf(" Outside delay / pulsewidth range\n");

break ;

}
if (d a t a G r i d [j] [k]) {

p r i n t f ("%.3Le , %.l Lf \n" , i * t imeBinSize + timeMinVal,
k * pwSizeStep + pwMinVal);

break;

}

119

B.4: Latch Sampling Window Sensitivity Plot Generation Program

for (i=minPwStop- l ; i > 0; i —) {
k = curMinPw ;
for (j = i ; ; j — , k+=2) {

/* print!["Check %.3Le %.lLf <%.3Lf
j *timeBinSize + timeMinVal ,
k*pwSizeStep + pwMinVal,
lel2*(j*timeBinSize+timeMinVal)
leI2*(j*timeBinSize+timeMinVal)
) ;

*/
if (k >= numPw) {

break ;

}
if (k >= numPw | | j < 0) {

break ;
}
if (d a t a G r i d [j] [k]) {

p r i n t f ("%.3Le , %.l Lf\n" , i * t imeBinSize + timeMinVal,
k * pwSizeStep + pwMinVal);

break ;
}

}
}

return 0;
}

%.3Lf)\n",

— 5e —]*(k* pw Size Step+pwMinVal),
+ 5e — l*(k*pwSizeStep+pwMinVal)

120

Appendix C

Circuit Diagrams for 90-nm
Implementation

C.l Latches and Latch Test Benches

vdd!

-e-
a "o -o

"u > >

? o o

-e-
ggdti!

Figure C.l: dflipflop_tb: D flip-flop maximum frequency test bench

121

C.l: Latches and Latch Test Benches

i
-m-Q-,

I!
„ ny«tero»is_buf(e(,u(L

%mPIFB I

Figure C.2: dge_sampler_no_offset_tb: DPTPL maximum frequency test bench

4 D_b

Figure C.3: dge_sampler_no_offset: DPTPL schematic

122

C.l: Latches and Latch Test Benches

Glitch generation circuit
Leendert van den Berg
August 16, 2005

WSVTX4 WSVTX2 WSVTX1 L

ND2SVTX1 1VSVTX1

Figure C.4: pulse_gen: DPTPL pulse generator circuit

w

w

•

elk ^ 1

. B

>

• 8

- A

Y z .
/

ND2SVTX1

ND2SVTX1

" ^ -
A l

. A

. a

• B

• A

V z

/ "
ND2SVTX1

I
NU2oVI X I

\ ,
P Z " '

y is

A

"

A

"

VSVTX2

VSVTX2

Figure C.5: JKJFF_NoDriver: JK flip-flop, cascaded after the SAFF and DPTPL
circuits to hold the output during during precharge of the latch

^

F

i

D 0

D1QSVTX

10

>CP

1

<

F D1QSVTX

in

>CP

1

T • • B

: c _)
z ,

-/ A I N J b V I X 1

- A
" B

: c

NR3SVTX1

D Q

FDH3SVTX i

I . *
B r

_r - ^ 114

\ \ Z .

0R2SVTX1

Figure C.6: hysteresis.buffer: two memory-element hysteresis buffer for DPTPL
and SAFF

123

C. 1: Latches and Latch Test Benches

ui^y
^

-0 -

.HI

L ^ H

i ^ l
, hysteresis.bufle^

Figure C.7: sampler_saff_tb: SAFF maximum frequency test bench

nw 0.200

0.100

Oj5jL,nn,.

m
i - * i (ft
i00 M i ^

i l i ng - l f

hsF «i[

Figure C.8: sampler_saff: SAFF schematic

124

C.2: Latch Threshold Correction and Detection Circuits

Latch Threshold Correction and Detection Cir­
cuits

gure C.9: dge_sampler_offset_test: DPTPL offset transistor test bench

High speed sampling circuit with offset cancellation voriotion 1
Leendert van den Berg
March 21. 2008

vdd!

Figure C. 10: dge_sampler_offset: DPTPL with offset transistors

125

C.2: Latch Threshold Correction and Detection Circuits

r»«.,.

±

• updown offset_tuner_

- lowReset | | |

u , .leftTune h
hysteresis '

j , "-gap
« < * > •

vl-I.B naA*M
v2:0.B J L J l W v 2 =
tr-20p ^ t r -

Tleft
"righi '

1 -

Figure C.l 1: offset-tuner_test: Test bench for duty-cycle based latch threshold cor­
rection circuit

OACI»ft<6:0>
DACie<tCt'KB'.0> 1

B:B> 0ACR2R

unt<12:6> |

l<15:0>

• fZWCr igh ian<6:B> f —OACrigf

iF~

Figure C.l2: offset_tuner_hysteresis: Duty cycle detection and correction with hys­
teresis

Figure C.13: ud_counterl6_hysteresis: 16-bit up/down counter with separate LSB
reset (hysteresis)

126

C.2: Latch Threshold Correction and Detection Circuits

> DACIeft<6:0>

count<6;0>

MSB

Figure C.14: DACLctrlJeft: Control signal generation for DAC for left tuning signal

U3
V

i n
V

-C -C
en

U
< i
o '
NJ

a>
o

1 < •
1 Q I

X M

£ a
{ \^ (

<
0 1

D
0
5

CD

V

c

Z

<

<
1 -Ql

t
CO
in

I

X
h-> :

\ GO

CO

Z

<

A l l 1

inT
v a
*- u c

V

_C
o>
o
<_ Q i

N

1

X
1— > 'r\^

£ CO

311 A l
IT *

3 V
1 —

c

z <

1

V

en

O

<. Q I

N)

t N

1

X

CM
V

x :
CJ-

O

<. o l
N4

£ 2

<
-Ol

CO
C/l

s

CO

1 A l
t o
V

d

Z

<

I -£

a
V

1

X
r— >

r̂ ~

t

31

3
T

CO

1 A |
CN
V

c

z <

1

V

-C
CT^

O
< •
o l
NJ

S

<
1

CD

1

</)

V •
sz.
en

O
i < i
1 o '

X M

£ a

1

X
h->

X L0 / \ 00

CO

A l

V

c

2
<

<
1 -Ol

CO

c/)
2

CO

1 A |

V

c

z <

1

• DACright<6:0>

MSB

count<6 :0>

Figure C.15: DAC_ctrl_right: Control signal generation for DAC for right tuning
signal

127

C.2: Latch Threshold Correction and Detection Circuits

Figure C.16: DACLR2R: DAC based on R-2R ladder network

128

C.3: 90-nm CMOS ALL Circuit Implementation

C.3 90-nm CMOS ALL Circuit Implementation

Figure C.17: ALL_core_only_test: Test bench for 90-nm ALL circuit implementa­
tion

129

C. 3: 90-nm CMOS ALL Circuit Implementation

k = C O U

POS •

C0
- c = indCs

R3
r = indRs

ilinq

C2 "-
- c = 2*indCs

R4
' r = indRs/2

' N E G

C1
- c = indCs

R2
' r = indRs

grid!

Figure C.18: indxomplete: ASITIC Pi model for a 0.9 nh inductor. Parameters:
indRs = 1.8 kfl; indC = 29 pF; inhL = 285 pH; indR - 0.5 fi; k = 0.495

¥ ¥

IOCIk_Ref |
IOClk_somple j

IOcap0 j
lOcapl
I0cap2
lOcopJ
!Ocop4

E
lOtm

Clk_Re(
Clk_Somple
cop0
cap l
coP2

Chorqe_pump_oul
OSC

OSC.bar

Figure C.19: core_all: Top level core circuit for 90-nm ALL circuit

130

C.3: 90-nm CMOS ALL Circuit Implementation

VSVTX2 VSVTX4

Z st3 A

VSVTX8

Z s t 4 l

VSVTX12

TVSVTX 2

VSVTX12

Figure C.20: DIO-buffer: Driver circuit for output pad

F

Figure C.21: core: Top level circuit without 10 drivers

131

C.3: 90-nm CMOS ALL Circuit Implementation

v
VCO_bias_Isrc

CO_cur ren t_s rc

VCO_bias

J3

VCO

VCO„bar

Figure C.22: VCCLcomplete: Differential VCO based on oscillating LC tank

132

C.3: 90-nm CMOS ALL Circuit Implementation

iiiimLLLLLLL M, ,&

Figure C.23: switched_tuning_cap: Switched varactor bank and tuning varactor for
VCO frequency control

"a

VCO„bias
1e
pfevt j.000 W = 8.000'

/CO_bias
current_out

itff
= 0.1t

m = 1
ujlnfing=1 nfing = 1 j ^ur ren

VCO bias
t „ o u l

Z5

o

c
CD

3
O

Figure C.24: VCO_current_src: PMOS current source for the VCO

133

C.3: 90-nm CMOS ALL Circuit Implementation

c
o

c
o

V)

1 = 0.15

m =
nfing = i

w= 16.000 TcVoss„tran.
_trartross_tran_l

ross tran r T w = 1 6 ' 0 0 0

,M1
gnd!

nsvt
l e -9

M0|
gnd!

gnd!

I=0.1C

Hn=1
rjif ing = £

Figure C.25: crossJxan: Cross-coupled transistors driving the VCO

D

0_b |

pre_b glitch_gen_2 sample

Figure C.26: sampler_complete: DPTPL based sampling latch

134

C.3: 90-nm CMOS ALL Circuit Implementation

J f d p d
up_down.gen

^un \

c ha rqe_ p urn p_ d if f

S S

Figure C.27: PFD_charge_pump: Phase-frequency detector and charge pump

Up 4 i -»

ldtch_PFD_brDAch iQt^h.PFD.broncjl

clk_del

IVSVTX4

Figure C.28: latchJPFD: Latch-based phase-frequency detector

135

C.3: 90-nm CMOS ALL Circuit Implementation

reset •.—p. m = 1 m = 1
q- i n

dU|nf ing#i ' fhg=1^-

f
i nt

reset

q_Jnt

w=1.300
i=0.1i;

gn

m = 1
nfing= 1

t
g_i,nt

e lk
elk

net

nsvt
1e-9

reset
nsvt
1e-9

M12
net8

d ^w=1 .300
1 = 0,100
g n d !

M1
d i s l

m = 1
nfing= 1

c l k _ d e l
.del

nsvt
1e-9

i s f fw=1 .300
^ 1 = 0,100

g n d !

M2|
gnd!

"D
C

m = 1
nfing = 1

q _ i n t

r e s e t

Figure C.29: latch_PFD-branch: Transistor branch inside the latch-based PFD

136

C.3: 90-nm CMOS ALL Circuit Implementation

Figure C.30: up_down_gen: Differential control signal generator for charge pump

Figure C.31: up_down_gen_diff_create: Single-ended to differential signal genera­
tion for charge pump

Vref ^

ipump_nbios

Figure C.32: charge_pump_diff: Charge pump with dummy branches and differen­
tial inputs

137

