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We are at the very beginning of time for the human race. It is not unreasonable 
that we grapple with problems. But there are tens of thousands of years in the 

future. Our responsibility is to do what we can, learn what we can, improve the 
solutions, and pass them on. 

- Richard Feynman 
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Abstract 

This work presents a divider-less frequency synthesis architecture called an alias-

locked loop. The division in the feedback path of the phase-locked loop (PLL) is 

modified by the addition of a latch that samples the local oscillator at a much lower 

frequency. Thus, rather than just performing frequency division, the local oscillator 

is sub-sampled, generating a lower-frequency aliased signal, which is utilized as 

in any standard PLL. Using a sampling latch rather than a divider significantly 

loosens the constraints placed on the feedback circuits. With a non-linear simulation 

model that describes the time-domain behaviour of our architecture, stable modes of 

operation with bounded orbits in phase-space are demonstrated. Simulations of an 

implementation in 90-nm CMOS technology confirm the feasibility of the aliasing 

approach. In noise and offset free circuit simulations of sampling latches using 

a 90-nm CMOS process, we demonstrate successful sub-sampling of a 230 GHz 

signal, which is greater than fmax. 
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Chapter 1 

Introduction 

Frequency synthesizers are circuits that take one or more input signals with known 

frequencies and produce one or more output signals at other frequencies. In most 

cases, frequency synthesizers accept one or more low frequency stable reference 

signals as inputs and generate a range of higher frequency signals that are math­

ematically related to the frequencies of the reference signals. Frequency synthe­

sizers are found in virtually all modern communication systems, including wire­

less data networks, cellular phones, radio and televisions receivers, and fiber optic 

transceivers. Frequency synthesizers are not just found in communication systems, 

however, as they are also used as clock sources in other applications such as digital 

logic and radar systems. 

Most frequency synthesizers designs are in fact phase-locked loop (PLL) cir­

cuits with some type of frequency reduction circuit in the PLL feedback path be­

tween the oscillator and the phase detector. In most frequency synthesizers, this 

feedback path contains a frequency divider circuit. This thesis concerns itself with 

a novel frequency reduction circuit in the feedback path of the PLL. In this work, 

I propose to perform frequency reduction by replacing the frequency divider with 

a sampling latch circuit operated at a frequency well below the Nyquist rate of the 

latch input signal. By subsampling the oscillator signal, a low frequency alias signal 

is produced, which can subsequently be utilized in the same manner as a frequency 

divided signal. We refer to a frequency synthesis PLL that uses an alias frequency 

as an alias-locked loop (ALL). 
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Section 

As predicted by Gordon E. Moore [2], the dimensions of complementary metal-

oxide semiconductor (CMOS) devices have continued to shrink, and over the past 

forty years CMOS processes have become the technology of choice for cost-effective 

implementations of a wide variety of digital, analog, and to some extent, radio-

frequency (RF) circuits. As device geometries have shrunk, the figures-of-merit 

used to measure the high-frequency performance of CMOS circuits have contin­

ued to improve. In particular, the maximum unity current-gain cut-off frequency, 

(fr), and maximum unity power-gain frequency, (fmax) make it possible to build 

complete RF transceiver circuits in CMOS technology. For 45-nm bulk CMOS 

technologies fr and fmax frequencies are reported to be 280 GHz and 350 GHz, 

respectively [3]. With such high frequency capabilities in CMOS, fully-integrated 

transceivers for millimetre-wave (mm-wave) frequencies are no longer the exclu­

sive domain of group III-V devices. Traditionally, esoteric semiconductor tech­

nologies such as Gallium-Arsenide (GaAs) or Indium-Phosphide (InP) have been 

the dominant semiconductor devices in RF front-end circuits [4]. 

A key building block for fully integrated transceivers is the frequency synthesis 

PLL used to generate the mm-wave frequency signals required in the transceiver. 

Building integrated PLLs at any frequency is challenging, since the design of these 

circuits requires knowledge of control systems theory, digital, analog and RF cir­

cuit design. PLLs for mm-wave frequencies present additional challenges to the de­

signer because of poorly characterized device technology at such high frequencies 

and difficulties encountered in testing systems at these frequencies. Furthering the 

effort toward integrating mm-wave PLLs, several CMOS voltage-controlled oscil­

lator (VCO) circuits have been published operating at mm-wave frequencies [5, 6]. 

Some of these VCOs [7, 8, 9] operate at or exceed the fmax of the process they are 

implemented in. 

The critical component that limits the maximum operating frequency for PLLs 

[10], and the focus of this work, is the development of an alternative to high speed 

frequency prescalers or dividers that operate at frequencies near the fmax of the 

process. This thesis suggests that using a sampling latch, rather than a frequency 

2 



Section 1.1: Thesis Organization 

divider, may aid in this effort, since the sampling latch output is at a much lower 

frequency than the VCO frequency. Using a sampling latch that is operated in 

this fashion significantly relaxes the constraints placed on the feedback circuit. A 

sampling latch can have reset and clock-to-output delays that span multiple VCO 

clock cycles. The sampling window for such a latch need not be shorter than the 

VCO cycle time either, as long as the latch output value consistently represents 

the phase of the VCO signal at the sampling instant. Problems with DC bias and 

mismatch in such a latch can cause the duty cycle of its output signal to deviate 

from 50 %, which in the worst case is evident as a stuck-at-one or stuck-at-zero 

output. This duty cycle deviation can be corrected with appropriate control and 

tuning circuitry in the latch. Finally, power consumption for a subsampling latch is 

reduced compared to a frequency divider, mostly due to the much lower operating 

frequency of the sampling latch. 

1.1 Thesis Organization 

The remainder of this dissertation discusses ALL-based frequency synthesizers in 

further detail. Chapter 2 provides background information on frequency synthe­

sizers and discusses important properties used to quantitatively evaluate frequency 

synthesizers designs. A number of common frequency synthesis circuits are dis­

cussed along with the suitability of each such circuit for high-speed operation. To 

set the context for the alias-locked loop, a brief overview of the basic building 

blocks of a frequency synthesis PLL is provided. The chapter concludes with the 

latest research on frequency synthesis at mm-wave frequencies, with specific atten­

tion paid to CMOS-based mm-wave PLLs. Chapter 3 describes the ALL architec­

ture in detail, discusses the impact of subsampling on the PLL design, and describes 

the constraints that guide the design of the sampling latch. Chapter 4 presents circuit 

designs and simulation results for several sampling latch topologies, and discusses 

their suitability as aliasing units in the feedback path. Chapter 5 describes an ideal­

ized non-linear time-domain model used to simulate the ALL architecture, presents 

the results of the non-linear simulations, and shows successful simulated operation 

3 



Section 1.1: Thesis Organization 

of an ALL system in 90-nm CMOS technology. Finally, chapter 6 concludes this 

thesis by summarizing the results and suggesting future research to be carried out. 

4 



Chapter 2 

Background 

2.1 Overview 

This chapter starts by presenting the history of frequency synthesis. Next, the key 

measures used to evaluate frequency synthesizers are introduced, including con­

cerns such as settling time and output signal statistics. Then a large section is de­

voted to describing various frequency synthesis methods. A distinction is made 

between direct, indirect, and hybrid synthesis methods. A brief description and ex­

planation of the operating principle is provided for direct analog and direct digital 

synthesizers. For indirect synthesis methods both the delay-locked loop (DLL) and 

the PLL are described, together with an example of a hybrid synthesis circuit. 

Since the ALL is essentially a PLL circuit, the chapter then outlines the key 

building blocks that make up most ordinary PLLs. To explain the operating princi­

ple behind the ALL, a section is devoted to an explanation of aliasing as it applies 

to frequency reduction in the PLL feedback path. This section also includes a re­

view of previous work done on the use of aliasing in PLLs. Finally, the chapter 

concludes with a review of the state-of-the-art in high-speed frequency synthesis. 

We note that for modern CMOS processes, the fastest frequency dividers in the 

literature are nowhere near fast enough to keep up with the fastest reported VCOs. 

5 



Section 2.2: Frequency Synthesizer History 

2.2 Frequency Synthesizer History 

For efficient usage of the frequency spectrum a method of distinguishing between 

the various users of the medium needed to be developed. In modern communica­

tion systems with advanced signal processing algorithms the same span of wire­

less spectrum can have multiple users. Early wireless communications systems in­

stead avoided interference between users of the medium by dividing the frequency 

spectrum into channels. This can be achieved by assigning the transmitter and 

transceiver a fixed frequency for communication, but the ability to select a particu­

lar channel as needed allows for much greater flexibility. 

As the popularity of wireless transmission grew, the bandwidth and spacing for 

radio channels became more well defined in order to better utilize the available 

spectrum. This development necessitated the need for improved frequency control, 

and early radio systems incorporated manually tuned oscillators, which, although 

tunable, suffered from drift in the output frequency. Then, the advent of crystal 

oscillators made frequency sources that have very good phase noise and frequency 

stability properties commonplace. Unfortunately crystal oscillators have very lit­

tle tuning capability, and in early systems each channel used by the system would 

require a separate crystal oscillator specifically tuned for that channel. The limi­

tations and expense of systems containing multiple oscillators set the stage for the 

development of frequency synthesis circuits. 

Circuits that achieve good tuning range and phase noise are mixing synthesizers. 

These synthesizers combine the output of two or more crystal oscillators at different 

frequencies, producing an output signal that contains the various beat and harmonic 

frequencies given by the sum and difference of the crystal oscillator frequencies. 

The complexity of selecting the desired frequency, which would usually require 

filtering operations, makes these mixing synthesizers systems unattractive in most 

situations. Instead, PLL-based techniques have become the method of choice for 

most frequency synthesis applications [11]. 

Although some of the concepts underlying PLLs were published by Appleton 
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[12] in 1922 and De Bellescize [13] in 1932, it was not until the advent of televi­

sion in the 1950's that the PLL became widely used, although in this role, the PLL 

did not act as a frequency synthesizer. An early design with frequency division in 

the feedback path of the PLL was patented in 1970 [14]. Around the same time, 

integrated circuits (ICs) started to take off, and as with other circuits, the PLL has 

benefited from the continued reduction of feature sizes in semiconductor technolo­

gies. The improvements in IC technology permitted the eventual full integration of 

all of the building blocks of PLL into a single device, while simultaneously reduc­

ing power consumption and increasing the frequency capability of PLLs. 

2.3 Frequency Synthesizer Properties 

Several measures can be used in the specification of the output of a frequency syn­

thesizer. The specification for a frequency synthesizer will depend on the applica­

tion because the constraints for a system clock generator for a high-speed digital 

IC will be different from the specification of a frequency synthesizer for a wire­

less transceiver. The properties of the reference clock signal will also guide the 

design. When only a lower frequency reference signal is available, the frequency 

synthesizer must perform frequency multiplication to reach the desired output fre­

quency. The remainder of this section provides some of the key specification used 

to describe a frequency synthesizer. 

2.3.1 Timing Range 

The tuning range is the range of frequencies that can be synthesized by the sys­

tem. Besides specifying the maximum and minimum frequencies synthesizable, 

the granularity of increments in synthesized frequency is also important, especially 

in wireless transceivers where predefined channel frequencies specify the synthe­

sized frequencies that must be generated. With a fixed reference clock, this will 

determine the frequency multiplication factors that the system must support. 
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2.3.2 Settling Time 

Another measure of frequency synthesizer performance is how fast the system can 

switch between generated frequencies, and whether such switching has any side 

effects on the output signal. Rapid switching between synthesized frequencies 

is required by certain wireless standards that change the radio channel that the 

transceiver occupies while in use. A somewhat related measure is the start-up time 

required before the system becomes locked to the reference signal and produces the 

desired frequency at its output port. In certain frequency synthesizer architectures, 

the desired synthesized frequency is available in a single reference clock cycle, 

while in others architectures, such as PLLs, the system can take a many reference 

clock cycles before it reaches steady state. 

2.3.3 Output Signal Statistics 

Of great importance in the specification for a frequency synthesizer are the statistics 

of the output signal. The synthesized signal can be looked at from a time and 

frequency domain perspective. In most frequency synthesizers applications, short 

and long-term stability of the signal statistics are desirable. In reality, periodic and 

random variations in frequency synthesizers affect the quality of the output signal. 

A brief overview of the different measures of the signal quality is presented in this 

section. 

2.3.3.1 Time Domain 

Clock generators for digital ICs are often evaluated on the basis of the time domain 

behaviour. The short-term measure of random and periodic time domain variations 

of the output signal relative to a reference or ideal signal is usually termed "jitter", 

and is usually measured for each cycle. Several types of jitter are commonly used 

[15] in specifications and the literature. A widely used measure is period jitter, 

which represents the clock period deviation of the measured signal from an ideal 

signal. Cycle-to-cycle jitter is another common term, and is usually defined as a 

measure in the variation in the clock period between adjacent cycles of the signal. 
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Whatever measure of jitter is applied, it is the statistical calculations on the jitter 

measurements that are usually of interest. In practice, jitter statistics are commonly 

expressed in terms of the peak-to-peak or root mean square (RMS) values of the 

jitter distribution. 

2.3.3.2 Frequency Domain 

The output of frequency synthesizers for communication systems are typically eval­

uated on the basis of the frequency domain behaviour of the system. For most com­

munication systems, the power spectral density (PSD) plot of the generated signal 

would ideally look like an impulse at the desired frequency. In reality, random noise 

sources in circuits will cause phase noise, which is in essence a frequency domain 

measure of jitter. More formally, phase noise is the short-term random variation in 

the frequency (and phase) of a signal [16]. The random noise will cause the output 

spectrum of the synthesizer output to be distributed in frequency. When plotted, the 

PSD graph for a free-running oscillator tends to have a sharp peak at the desired 

frequency, with smoothly decreasing sides. For illustration, Figure 2.1 shows the 

power spectrum of an oscillator, centred at a frequency fc. 

8 

fc Frequency 

Figure 2.1: Illustrative power spectral density plot of an oscillator 

Rather than using absolute power levels, phase noise figures are most often 

given relative to the carrier power at fc. Such phase noise figures are quoted per 
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unit bandwidth (one Hertz) at some frequency offset relative to the carrier frequency 

[16]. A typical performance figure for phase noise may thus be expressed like: "the 

output phase noise is -90 dBc/Hz at a 100 kHz offset". 

Although the output spectrum of a free-running oscillator may look like that 

in Figure 2.1, most frequency synthesizers are synchronized with some reference 

frequency, which usually introduce additional peaks at specific frequencies into 

the output spectrum. Peaks caused by the reference clock are usually referred to 

as reference spurs. Spurious tones may also arise from other non-idealities in the 

circuits used to implement the frequency synthesizer, and vary depending on the 

type of architecture used for frequency synthesis. Like phase noise measures, the 

power of spurious tones in the spectrum is expressed relative to the power of the 

carrier frequency. 

2.3.4 Other Concerns 

When manufacturing a frequency synthesizer for commercial purposes, cost sensi­

tivity and competitive reasons also give rise to several other concerns that play a role 

in the design process. For mobile applications, power consumption is of key im­

portance, and high speed circuits like frequency synthesizers can be power hungry. 

When a frequency synthesizer is implemented on an IC, the silicon area occupied 

by the chip plays a significant factor in the total manufacturing cost of the design. 

The cost of IC based implementations must also consider packaging issues and the 

testability of the design. Further concerns that should be evaluated for commercial 

designs include the suitability of the design for rapid and reliable reproduction of 

the device on a mass scale and across variations in process, voltage and temperature 

(PVT). 

2.4 Frequency Synthesis Methods 

As alluded to in the history section of this chapter, PLL-based systems are not the 

only way to perform frequency synthesis. Frequency synthesis methods can be 

classified into the following three categories [17]: 
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• Direct synthesis 

• Indirect synthesis 

• Hybrid synthesis 

2.4.1 Direct Synthesis 

Direct synthesis generates the desired frequency using open loop methods only, Di­

rect synthesis methods can be further classified into direct analog synthesis (DAS) 

and direct digital synthesis (DDS). 

2.4.1.1 Direct Analog Synthesis 

DAS uses analog processing elements such as mixers, filters, multipliers, dividers 

and switches and operates on one or more stable reference frequency sources. One 

of main benefits of the DAS approach over other methods is that very fast frequency 

switching is possible. If carefully designed, a DAS system can also achieve a very 

high spectral purity [1] with low phase noise and spurious tones. However, the ana­

log approach becomes complicated and expensive when a large number of distinct 

output frequencies are required, since the number of filters, multipliers and mixers 

is directly dependent on the number of output frequencies required. Because all 

the components operate in the analog domain, the frequency capability of DAS cir­

cuits are primarily limited by the process technology itself, and can thus generate 

high output frequencies through upconversion or multiplication methods. An block 

diagram of a sample DAS system is shown in Figure 2.2 

2.4.1.2 Direct Digital Synthesis 

A more common direct synthesis approach includes a large number of digital cir­

cuits to generate signals of an arbitrary frequency. An early DDS system was de­

scribed by Tierney, et al. in 1971 [18]. The basic idea behind DDS is to use a digital 

circuit to generate digital control words for a digital-to-analog converter (DAC). By 

generating an appropriate sequence of control words for the DAC, it is possible to 
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Figure 2.2: A direct analog synthesis system block diagram, based on [1] 

produce a sinusoidal output. The high-level architecture of a direct digital frequency 

synthesizer is depicted in Figure 2.3. The figure shows the waveforms before and 

after the low-pass filter, which is connected to most DDS systems in order to smooth 

out the DAC output. 

Reference 

Clock 

Frequency \_\ 
- t°~W Select \ ROM \ DAC 

Output 

Phase Lookup 

Accumulator Table 

Lowpass 

Filter 

Figure 2.3: High-level direct digital synthesis architecture block diagram 

To generate a sinusoidal output of a programmable frequency, the blocks in a 

typical DDS circuit may behave as follows. Referencing Figure 2.3, the external 

clock source, Clock, drives all the digital components in the phase accumulator, 

lookup table and DAC. A simple phase accumulator may consist of a counter that 

counts up to a programmable value, which when reached, causes the counter to 

wrap and start over. The counter output is then scaled to represent a phase between 0 

12 



Section 2.4: Frequency Synthesis Methods 

and 2ir. This phase value is then directed to the lookup table that maps phase values 

to the corresponding sine wave amplitude values. At its simplest, the lookup table 

could be as simple as a read-only memory (ROM). The amplitude values are then 

used to control the DAC that converts the binary representation of the amplitude to 

an analog voltage. Finally, a low-pass filter eliminates the staircase-like output of 

the DAC to smooth the waveform. Several improvements and modifications for the 

described architecture have been published [19],[20], but the principle of operation 

remains the same. 

The flexibility of the digital logic in the DDS architecture means this system 

is not just limited to generating sinusoidal outputs. Given the appropriate lookup 

table programming, a DDS can generate almost arbitrary periodic waveforms. Fur­

thermore, the programmability allows for a wide range of frequencies to produced. 

Since a DDS system does not contain a feedback loop, switching between different 

frequencies can take as little as one cycle of the input clock and can be done without 

introducing phase discontinuities. 

Because DDS circuits reconstruct a waveform from sampled data, the maximum 

output frequency of such a circuit is limited by the Nyquist-Shannon sampling theo­

rem [21]. This theorem holds that to completely reconstruct a given signal, the sam­

pling rate must be at least twice the maximum frequency contained by the given sig­

nal. Although the external reference clock can be operated at a very high frequency, 

the digital circuitry and DAC will limit the maximum frequency achievable. For 

Nyquist limited DDS circuits the maximum output frequency that can be produced 

is about 40 % of the clock signal [22]. DDS systems can change their output fre­

quency in very fine steps, but suffer from spurious signals in their output spectrum. 

These spurious signals are in part attributable to quantization noise arising from the 

digital representation of the amplitude and truncation errors when low-order bits of 

the phase are discarded [23]. These spurious signals can thus be reduced by increas­

ing the resolution of the phase and amplitude representation, but this requires larger 

look-up tables, DACs and phase accumulators. High-speed high-resolution DACs 

are difficult to design and DDS systems with low spurious noise are therefore more 
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expensive in area utilization, complexity and power consumption. Because CMOS 

based DDS is severely limited in frequency by the maximum operating speed of 

the digital components and the DAC, the highest speed DDS circuits are imple­

mented in esoteric semiconductors families [22], and DDS is generally not suitable 

for frequency synthesis anywhere near the fmax of a process. 

2.4.2 Indirect Synthesis 

Indirect synthesis refers to those systems that utilize a feedback loop to control and 

stabilize the output frequency. Indirect synthesis systems include DLL and PLL 

circuits. The main difference between DLL and PLL circuits is that PLL circuits 

use feedback to control the frequency of a local oscillator, while DLL circuits use 

feedback to adjust the delay of one or more delay elements. While DLL circuits are 

rarely used for frequency synthesis, PLL circuits are widely used and very popular 

as frequency synthesizers, with a large number of books and papers that describe 

their operation and design. 

2.4.2.1 Delay-Locked Loop Frequency Synthesis 

Although typically used for clock alignment or clock deskewing in settings such 

as interface circuits for computer memories [24], a DLL can also be used as a 

frequency synthesis system [25]. One method [26] to perform frequency multipli­

cation with a DLL uses an input reference clock that is passed through a tapped 

delay line constructed from a number of tunable delay elements connected in se­

ries. A block diagram for the tapped delay-line based DLL is graphically depicted 

in Figure 2.4. 

In the delay-line based DLL, feedback is used to adjust the total delay through 

all stages of the delay line so that the phase of the input and output signals of 

the delay line match. If the input and output phases are matched, the waveforms 

at the taps on the delay line are then at regularly spaced phase offset and equally 

distributed over one period of the reference clock. The edges of these waveforms 

can then be combined in an edge combiner to generate a frequency that is a multiple 

14 



Section 2.4: Frequency Synthesis Methods 
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Figure 2.4: Block diagram of a tapped delay-line delay-locked loop frequency mul­
tiplier 

of the reference clock. 

An improvement on the line-delay based DLL is the multiplying delay-locked 

loop (MDLL) [25]. The MDLL uses a single delay element, avoiding some of 

spurious tones that appear when the delay elements in a delay line are not closely 

matched. In this method, the single inverting delay element is connected to the 

reference clock through a multiplexer, as shown in Figure 2.5. The logic block is 

used to control the multiplexer and tune the delay element. This logic typically 

includes at least a counter, a phase comparator, and a loop filter. 

The general operating principle for an MDLL architecture is as follows. At 

the rising edge of every reference clock period, the reference clock is connected 

to the delay element through a multiplexer. After the arrival of a rising edge on 

the reference clock the multiplexer is switched immediately, connecting the delay 

element to itself in feedback mode and essentially creating a ring oscillator. After 

having counted iV rising edges at the output of the delay element, the multiplexer 

is switched back to the reference clock input, resetting the counter and activating 

a phase detector. With the multiplexer switched back to the reference clock signal 
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1 ° 
Output 

Figure 2.5: Block diagram for a multiplying delay-locked loop 

(which is still low), a new rising edge at the output of the delay element output is 

generated and compared to the next rising edge on the reference clock by the phase 

detector. The measured phase error is then used to tune the delay element so that 

in locked operation exactly iV clock cycles of identical duration are generated for 

every reference clock period. 

Since DLL architectures do not accumulate jitter over multiple reference clock 

cycles like PLLs do, DLL based frequency synthesizers can achieve very good 

phase-noise measures. The periodic correction of phase alignment does, however, 

cause this architecture to suffer from some deterministic jitter [27]. Overall, the 

DLL is a suitable architecture for many frequency synthesis applications. Unfortu­

nately, the current-starved delay line construct limits the maximum operating speed 

to frequencies well below the fmax of the process. 

2.4.2.2 Phase-Locked Loop Frequency Synthesis 

PLL circuits find application in a wide range of settings, and one way of viewing the 

principles that guide their design is by examining the signal-to-noise ratio (SNR) 

of the signal used for phase-locking. Frequency synthesis PLLs usually operate 

in a high SNR environment, since the reference clock is produced locally by a 

strong and stable oscillator such as a quartz crystal. In contrast, PLLs used for 

carrier recovery from wireless signals operate in low SNR environments where the 
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reference signal is received with noise and the carrier attenuated and distorted by 

several radio propagation effects that characterize wireless channels. Since SNR 

impacts the design of a PLL significantly, this thesis concerns itself solely with 

high SNR applications. 

As previously mentioned, a PLL uses feedback methods to control a local oscil­

lator. A standard frequency synthesis PLL is depicted in Figure 2.6. The principle 

of operation for a basic frequency synthesis PLL like the one shown in Figure 2.6 is 

as follows. The output signal of the PLL is generated by a tunable local oscillator, 

usually implemented as a VCO. The VCO output is also connected to a frequency 

divider in the feedback path. The frequency divided VCO signal is compared to a 

reference clock signal in a phase comparator. The phase comparator generates an 

error signal that corresponds to the phase error between the divided signal and ref­

erence clock. This error signal is then processed by a low-pass loop filter, and the 

output signal from the low-pass filter in turn tunes the VCO. This feedback system 

attempts to adjust the phase error to zero and results output signal that is phase-

locked to the reference clock. This frequency of this output signal is a multiple of 

the reference clock frequency, with the frequency multiplication factor determined 

the frequency divider. 

vco 

y. Output 

-rN L 

Figure 2.6: Block diagram of a frequency synthesis phase-locked loop 

In the most basic PLL, the frequency divider in the feedback path divides by an 

integer factor N, and hence this type of PLL is referred to as an integer-N frequency 

synthesizer. If the divide factor N is programmable, an integer-N frequency synthe-
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sizer can be coarsely tuned, with the frequency resolution increments equal to the 

reference clock frequency. Thus, for closely spaced channels in wireless standards, 

the reference clock frequency should be small, and N correspondingly large. A 

large multiplication factor is detrimental because it degrades the output frequency 

spectrum with closely spaced spurious tones and requires loop filter parameters that 

result in an increased lock time and poorly suppressed VCO phase noise [10]. 

To overcome the shortcomings of integer-N PLLs, the divide operation can be 

modified to perform non-integer division. To achieve such fractional-N frequency 

synthesis, the frequency division factor in the feedback path is made to vary be­

tween two different division factors, typically done using a dual-modulus divider. 

One method, called pulse swallowing, switches the division factor at a regular in­

terval. The regular switching in a pulse swallowing fractional-N design, however, 

introduces a spurious tone in the frequency synthesizer output. These spurious tones 

can be minimized by using a higher-order delta-sigma modulator that randomizes 

the switching of the division factor [28]. 

The relative simplicity of PLLs makes them a common choice for frequency 

synthesis applications, and with fractional-N synthesizers, a wide range of closely 

spaced frequencies can be generated. Phase noise and jitter measures are dependent 

on the type of PLL components used in the implementation, with the loop filter pa­

rameters being of particular importance to the nature of the PLL synthesizer output. 

In terms of frequency capability, the upper limit for PLL frequency synthesis is 

usually limited by the maximum divider speed [10]. For traditional frequency di­

viders, this means that the highest speed PLLs can perform frequency synthesis at 

frequency significantly higher than the fastest DLL or DDS implementations. 

2.4.3 Hybrid Frequency Synthesis 

Although a frequency synthesis system can rely exclusively on direct or indirect 

synthesis methods, both techniques can also be applied in combination. For in­

stance, a DDS synthesizer can be used as reference frequency source for a PLL, 

resulting in a frequency synthesizer with better switching times or improved fre-
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quency resolution [29, 30]. Unfortunately, the PLL transfers the spurious tones 

from the DDS to its output. This is avoided in another hybrid frequency synthesizer 

architecture that mixes the output of a DDS frequency synthesizer into the feed­

back loop of a PLL [31]. For very high speed frequency synthesizers, one hybrid 

architecture approach uses a PLL followed by RF upconversion circuits [32]. In 

summary, hybrid system can be used to avoid some of the drawbacks associated 

with one particular method. However, due to the combination of multiple tech­

niques hybrid frequency systems tend to be more complex. 

2.5 Phase-Locked Loop Implementation 

When developing a frequency synthesis PLL, the designer is faced with several im­

plementation choices. A PLL can be implemented with purely analog components, 

digital components, a mix of digital and analog components, and designs can even 

include software modules. Frequency synthesis PLLs, whether digital or analog, 

still share a common set of components, including oscillators, loop filters, phase 

detectors and frequency dividers. This section will provide a brief overview of the 

most common building blocks found in most PLL frequency synthesizer implemen­

tations. 

2.5.1 Common Building Blocks 

Figure 2.6 shows typical components in a frequency synthesis PLL. The function 

of each component, as well as some common implementations, are described. 

2.5.1.1 Oscillator 

For a PLL to be of any use, the oscillator that generates the synthesized frequency 

must be tunable, typically through voltage control. High-speed integrated VCOs 

are most frequently implemented as a ring oscillator or using a LC circuits. Ring 

oscillators generally have a wider tuning range and are more compact than LC cir­

cuits, but consume more power and have a lower quality factor, Q, than an LC 

19 



Section 2.5: Phase-Locked Loop Implementation 

oscillator [33] for the same frequencies. In applications such as wireless commu­

nications, where phase noise is important, LC oscillators are typically used. Due 

to their smaller size, ring oscillators are most often found in frequency synthesizers 

for digital ICs, where phase noise requirements are less stringent. In some digital 

circuits, phase noise may even be desirable to ensure that emissions from the clock-

triggered digital circuits minimize the electro-magnetic interference. The fastest 

reported CMOS VCO in the literature runs at 410 GHz and is implemented in a 

45 nm process [8]. Push-push VCOs like this have a lower fundamental oscillation 

frequency, but attenuate the fundamental signal and extract, for instance, the second 

harmonic in order to generate output frequencies in excess of fmax. 

2.5.1.2 Phase Comparator 

The phase comparator's role is to transform a phase difference between the ref­

erence clock and feedback signal to a control output for the PLL loop filter. A 

very simple phase detector can be built using an exclusive-OR gate (XOR) and can 

be directly connected to an analog low-pass filter. In this configuration an XOR 

gate functions as a phase detector, but the maximum phase difference detectable is 

± | . A more common phase detector topology is a phase-frequency detector (PFD). 

PFDs are capable of discerning a phase error of ±2n, and can also be said to detect 

frequency errors. A basic PFD [34], can be built from two flip-flops and an AND 

gate, configured as seen in Figure 2.7. A PFD produces either an Up or Down pulse 

that directs the VCO to speed up or slow down, where the duration of the pulse cor­

responds to the phase error between the reference and feedback signals. Usually a 

PFD is coupled to a charge pump that converts the Up and Down pulses to signals 

processable by a loop filter. The charge pump does this by pushing current into or 

pulling current out of a low-pass filter while the Up or Down signals are asserted, 

respectively. 

Another phase detector that is worth a brief mention in the context of an alias-

locked loop is the binary phase detector, also known as bang-bang phase-detector 

[35]. A bang-bang phase detector only detects which signal is leading or lagging, 
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Figure 2.7: Phase-frequency detector circuit 

and its output signal does not contain any information on the magnitude of the phase 

error. The inputs are evaluated once per input clock cycle, and the output value is 

the sign of the phase error between the feedback signal and reference clock. The 

bang-bang PLLs and ALL architecture are similar in that both systems produce a 

phase error signal that is discretized. Further detail on the discrete nature of the 

phase error signal in the ALL architecture is described in chapter 3. Bang-bang 

phase detectors typically find application in systems that utilize very high-speed 

reference signals [36]. 

2.5.1.3 Loop Filter 

PLL loop filters are low-pass filters that act on the error signal produced by the 

phase detector. The filter bandwidth and frequency response will determine the 

PLL loop bandwidth and affects parameters like lock time and phase noise suppres­

sion. From an oscillator perspective, the PLL acts as a high pass filter, controlling 

low-frequency (long-term) deviations from the reference frequency and keeping the 

21 



Section 2.6: Aliasing 

output phase locked, while passing high frequency noise from the oscillator. Loop 

filters can be implemented in the analog domain using only passive components 

such as capacitors and resistors, or they can include active components that may 

reduce the area required for large passives. It is also possible to perform the same 

filtering operation digitally, using digital signal processing (DSP) techniques. 

2.5.1.4 Feedback Divider 

Frequency synthesis PLLs need some sort of frequency reduction in the feedback 

path in order to perform frequency multiplication. A simple frequency divider 

can be built using toggling flip-flops connected in series to form an asynchronous 

counter. The asynchronous counter operates on the VCO output, and each flip-flop 

performs a divide by two operation on the frequency. Such counters works well for 

low frequencies, but the fastest static CMOS flip-flops consume significant power 

and can toggle at only a fraction of fmax- Rather than using static flip-flops, the 

fastest frequency synthesis PLLs published [37] use different frequency divider cir­

cuits for different frequency ranges. High-speed frequency divide circuits can also 

be referred to as "prescalers". 

2.6 Aliasing 

As alluded to earlier, aliasing can be used to perform frequency reduction in the 

feedback path of a PLL-like frequency synthesizer. If a periodic signal is sampled 

at a rate that satisfies the Shannon-Nyquist theorem, that signal can be fully recon­

structed from the sampled data. The plots in Figure 2.8 show such a process, where 

the original signal with a frequency of 1 Hz is sampled at 4 Hz. For illustration, 

the sampled data is graphically interpolated using the cubic spline method, result­

ing in a reconstructed signal with the same frequency as the original. Figure 2.9 

shows a repeat of the same experiment, but now sampling the 1 Hz signal at 0.4 Hz. 

The subsampling process results in aliasing, with the lowest frequency alias signal 

having a frequency of 0.2 Hz. 

To determine the frequency of the subsampled signal, the sampling theorem 
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1 Hz original signal and 4 Hz sampling impulse train 
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Figure 2.8: Graphical illustration of oversampling, showing the original signal, dou­
ble oversampling impulse train and reconstructed signal 

can be used to arrive at an equation that predicts the alias frequency. We define a 

time-domain signal x(t) with a Fourier transform of X(f). If this signal x(t) is 

uniformly sampled at a frequency of fsample,me Fourier transform of the sampled 

waveform Xs(f) will be given by [38]: 

oo 

X a ( / ) = ] T X (/ - K • fsamPle) (2.1) 
K=-oo 

Assume that x(t) is sinusoidal VCO signal with a frequency of fvco- Then the 

Fourier transform of the VCO signal is given by X(f) = 5(f ± fvco) [38], with 

frequency components at ±fvco- The sampled signal is thus given by: 

oo 

* » ( / ) = X ) Hf ± fvco - K • fsample) (2.2) 
K = - o o 

From this equation, the alias frequencies, falias, f°r a uniformly sampled sinu­

soidal signal that fit the sampled data are given by: 
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1 Hz original signal and 0.4 Hz sampling impulse train 
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Figure 2.9: Graphical illustration of subsampling, showing the original signal, sub-
sampling impulse train and reconstructed signal 

falias — fvCO ~ fsample ' K (2.3) 

where K is any integer, with the special case K — 0 resulting in the original signal. 

The lowest alias frequency generated is given by the difference between fvco and 

the nearest harmonic of fsampie' 

falias = fvCO — fsampie " TOUnd 
h vco (2.4) 

where round{x) rounds x to the nearest integer value. The lowest frequency pro­

duced by the aliasing operation therefore falls in the following range: 

fsampie . , , fsampie 
_: J alias _; (2.5) 

Q — j twwe —; c\ 

Examining the relationship between the alias frequency and the VCO frequency, 

it can be recognized that subsampling can be used to generate an aliased signal 
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with a frequency that is significantly lower than the VCO signal. Thus, a sampler 

operated below the Nyquist rate can be inserted in the feedback path of a PLL 

to perform frequency reduction, resulting in a system that can perform frequency 

synthesis. 

2.6.1 Previous Subsampling Architectures 

The notion of subsampling the VCO signal in the feedback loop to perform fre­

quency reduction was first introduced by Amr N. Hafez and M. I. Elmasry in [39], 

further described in [40] and patented in [41, 42]. In these previously reported de­

signs the reasons for introducing a subsampling circuit in the feedback path are 

cited as lower power consumption and improved phase-noise performance. Be­

cause the designs in the cited papers use analog sample-and-hold circuits that sub-

sample VCO, any harmonics in the VCO signal are also present as problematic 

low-frequency harmonics in the subsampled output signal. Using sample-and-hold 

circuits to perform subsampling therefore requires a separate low-pass filter at the 

output of the sample-and-hold unit to filter out problematic harmonics. Another 

invention disclosed in a patent by G. E. Von Dolteren Jr. [43] replaces the analog 

sample-and-hold circuit by an ADC converter that samples below the Nyquist rate. 

The subsampled output of this ADC is digitally processed to find the phase error, 

which subsequently filtered by DSP techniques after which a DAC converts the loop 

filter value back to a voltage that steers the VCO. Unfortunately, the approaches re­

ported previously in literature and patents are not targeted toward higher frequency 

operation. 

2.7 Current High-Frequency Synthesis Methods 

Although PLLs are very popular as frequency synthesizers for current wireless stan­

dards that go up to about 10 GHz, frequency sources for millimetre frequencies have 

traditionally been the domain of direct analog synthesis or hybrid synthesis meth­

ods. 
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2.7.1 Direct Analog and Hybrid Systems 

Much published work on mm-wave frequency sources describes systems that use 

compound semiconductor microwave circuits. Integrated microwave circuits are 

known as monolithic microwave integrated circuits (MMICs). These MMICs usu­

ally consist of microstrip networks and amplifiers that form dielectric resonator 

oscillators (DROs), stubs, mixers and frequency doublers. These systems are usu­

ally not locked to a lower reference frequency, and their tuning capability depends 

on the oscillator type, relying on mechanically tuned oscillators for example [44]. 

Hybrid approaches using a PLL to produce a stable frequency at one-third [45], 

one-half [32] or other large fraction [46] of the desired output frequency. Then, 

cascading frequency triplers, doublers, or mixers generate the desired output fre­

quency. The hybrid approach with a PLL and upconversion stage improve over 

the approaches outlined in the previous paragraph by simplifying the tuning pro­

cess, which can be done by changing the PLL reference clock frequency or using a 

programmable divider. 

2.7.2 PLL Only 

In recent years, a number of papers [47, 48] have been published that describe 

CMOS-based high-speed frequency dividers for millimetre wave PLLs, with the 

fastest CMOS frequency divider operating at 95 GHz [49]. A handful of fully in­

tegrated CMOS PLL frequency synthesizers for millimetre wave frequencies have 

appeared as well, with some PLLs operating around 60 GHz [50, 51] and the fastest 

fully-integrated PLL at 75 GHz [37]. These high-speed PLLs use cross-coupled dif­

ferential LC VCOs, and specialized prescalers. Because many of these high-speed 

prescalers only operate over a narrow range of frequencies, a number of divider 

topologies are cascaded. For instance, the PLL in [37] uses injection-locked di­

viders for the first divider stage, a Miller (also know as regenerative) divider for the 

second stage, and static dividers for the remaining stages. The maximum frequency 

achieved in these PLLs is clearly much slower than the fastest reported VCOs, and 

Table 2.1 shows the frequency discrepancy between the fastests reported frequency 
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dividers and VCOs for current state-of-the-art CMOS processes. Of note for this 

table is that no standalone high-speed VCOs faster than the design in [49] have 

been reported. One problem with the high-speed PLLs in the literature is that the 

frequency division ratio is fixed. A programmable division factor is required when 

a fixed reference frequency prevents multichannel tuning of the PLL. Frequency 

synthesis for multiple channels is a requirement in most wireless systems. In most 

cases a programmable divider relies on a fractional-N synthesis approach, which re­

quires precise control of the division modulus of the first frequency prescaler stage. 

The delay of the modulus control signal that alters the modulus, however, is too 

long at the oscillation frequencies in question [32]. 

Table 2.1: Comparison of fastest VCOs and frequency dividers in the literature, 
given as maximum operating frequency (GHz) 

technology 
VCO 
divider 

90 nm 
324 [9] 
75 [37] 

65 nm 
95 [49] 
95 [49] 

45 nm 
410[8] 

2.8 Summary 

This chapter has provided a brief overview of the history behind frequency synthe­

sizers, described some quantitative measurements used to compare frequency syn­

thesizers. Several frequency synthesis methods have been presented, as well as the 

basic building blocks of a frequency synthesis PLL. Finally, a brief overview of the 

state of the art in high-frequency synthesis methods has been described, with a spe­

cial focus on high-speed CMOS PLL designs. Although the latest PLLs discussed 

can achieve very high frequencies indeed, the highest VCO frequencies reported 

still exceed the capabilities of fastest frequency dividers by a significant margin, 

limiting the maximum frequency that can be synthesized. In the next chapter, we 

show a solution that addresses the discrepancy between the maximum frequencies 

of VCOs and frequency dividers. 
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Chapter 3 

Alias-Locked Loop Architecture 

3.1 Overview 

This chapter presents the modified PLL architecture that uses subsampling in the 

feedback loop to create an ALL and discusses the impact of this modification on 

PLL design and behaviour. The attributes required for the subsampling unit are 

then presented together with a method to maintain the performance of subsampling 

circuits when suffering from switching threshold offset problems. 

3.2 Proposed Architecture 

The central idea presented in this thesis concerns itself with the frequency reduc­

tion performed in the feedback path of the PLL. While frequency synthesis PLLs 

perform frequency division in the feedback path as shown in Figure 2.6. We in­

stead propose that a sampling circuit in the feedback path can be used to build a 

functional frequency synthesis system. An ALL frequency synthesizer is largely 

identical to a traditional PLL, and only differs in the feedback path. 

As mentioned in chapter 2, frequency synthesizers relying on aliasing have been 

published previously, this thesis departs from earlier works in two ways. The pri­

mary reason for using a subsampling architecture in the previously cited works has 

been to improve phase-noise properties of the synthesized signal. The reason why 

subsampling is explored in this work is to investigate new architectures that could 

help in building high-speed frequency synthesizers, potentially for frequencies near 
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or above fma,x- The second way in which this work departs from previously pub­

lished work is in a redefinition functionality required from the sampling circuit. 

While previous papers and patents use sample-and-hold circuits or ADCs that pro­

vide an accurate sampling of the voltage level of the input signal at the sampling 

instant, this thesis instead suggests that a sampling latch circuit with a binary output 

not only suffices but also relaxes the design constraints in a fashion that allows for 

higher frequency operation. Thus, rather than providing an analog or multi-level 

digital representation of the subsampled VCO signal, a regenerative circuit in the 

latch creates a decision circuit that evaluates the VCO signal at the sampling in­

stant to either a logic-high or logic-low value. The benefit of using a static latch, 

including most conventional digital latches, is that they store a binary value using 

internal positive feedback or regeneration. Such regenerative sampling latches can 

take a small signal near the switching threshold on their input, and over time am­

plify the input signal to a high or low logic level. Using a regenerative sampling 

latch in this fashion eliminates problematic low-frequency harmonics and requires 

a much shorter sampling time than sample-and-hold circuits because only a small 

differential signal on the input is needed by the internal regerenerative circuits. Fur­

thermore, a properly designed sampling latch can consistently sample fast changing 

inputs and can thus be used to develop high-speed frequency synthesis systems. 

An architecture with a sampling latch, which essentially behaves like an edge-

triggered flip-flop, is shown in Figure 3.1. This architecture is the same as that of 

Figure 2.6, but with the divider replaced by a sampling latch that is operated by a 

sample clock. 

3.2.1 Alias-Locked Loop Frequency Synthesis 

Subsampling, whether with a sample-and-hold circuit or with a sampling latch, 

results in aliasing of the VCO frequency around the sampling frequency. A normal 

frequency divided VCO signal produces an output frequency that is related to the 

VCO frequency as follows: 
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Figure 3.1: Block diagram of a frequency synthesis alias-locked loop 

where /$„ is the frequency of signal at the divider output and N the division ratio 

of the frequency divider. For a PLL that is locked to the reference signal and has a 

division ratio of N, the output frequency can be computed directly from the division 

ratio and reference clock frequency, fref\ 

fvCO — fref • N (3.2) 

When using a subsampling circuit, the output frequency from the aliasing circuit, 

falias, is instead determined by the sampling frequency fsample, and is given by 

equation 2.4. An interesting result is that for an ALL system in the locked state, 

the output frequency of the VCO cannot be uniquely determined from a single sam­

pling rate and reference frequency at the phase detector. For a VCO with a tuning 

range greater than the sampling frequency, there are in fact multiple VCO frequen­

cies at which the ALL could lock. To overcome this ambiguity in VCO frequency, 

an approach with multiple sampling clocks is discussed in subsection 3.2.3.2. Ref­

erencing equation 2.4, when the ALL is implemented like a PLL and the feedback 

signal provides negative feedback the VCO frequency is related to the sampling rate 

and reference frequency by: 

fvCO = K • fsample + fref (3.3) 
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where K is some unknown positive integer, and the minimum and maximum fre­

quency of fvco are bounded by the frequency range of the VCO. Relating the VCO 

frequency to the reference clock, it is possible to determine an effective multiplica­

tion factor. A locked ALL frequency synthesizer multiplies the reference clock by 

an effective frequency multiplication factor, L, of: 

L = round f—^-) • ~ ^ + 1 (3.4) 
\ J sample J Jref 

It is also possible for the VCO to operate at frequencies where the alias fre­

quency would match the reference clock: 

fvCO = K • fsample ~ fref (3.5) 

but, in such a configuration the negative feedback would prevent the system from 

locking. For instance, with reference to equation 2.4, consider the VCO oscillating 

at a frequency given by 3.5. At this frequency, an increase in fvco will decrease 

falias and result in feedback that would increase the VCO frequency even further, 

steering the VCO away from operating at the frequency given by equation 3.5. If 

the ALL is built with positive feedback instead, the system would lock at VCO 

frequencies given by equation 3.5 and fail to lock at VCO frequencies given by 3.3. 

3.2.2 Implications 

It is immediately obvious from Figure 3.1 that an additional clock source is required 

to operate the sampling circuit, and, in total, two clock sources are required to 

operate the system. However, there is not necessarily a need for two stable and 

independent clock signals. The reference clock frequency is necessarily lower than 

the sampling clock, as per equation 2.5. It is therefore possible for the reference 

clock to be derived from the sample clock through for example frequency division. 

This would eliminate the requirement for two separate clock signals. Appropriate 

frequency ratios and phase relationships between the sample and reference clock 

are further investigated in chapter 5. 
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3.2.2.1 Feedback Signal Time Discretization 

Equation 2.4 precisely describes the frequency of the signal produced by the analog 

output of a sample-and-hold circuit. Using a sampling latch with binary outputs, 

however, digitizes the sampler output and produces a square wave signal with clock 

edges discretized in time. Because the sampler changes output in response to the 

sample clock, these clock edges are necessary aligned with the sampling clock. 

Figure 3.2 shows a 1 Hz sampled by a regenerative latch with a sampling rate of 

0.4 Hz, resulting in a 0.2 Hz square wave signal. 

1 Hz original signal and 0.4 Hz sampling impulse train 

2 4 6 8 
Square wave aliased signal at 0.2 Hz 

Figure 3.2: Graphical illustration of binary sampling, showing the original signal, 
subsampling impulse train and binary aliased signal 

When the VCO is sampled by a latch with a binary output, the period of the 

aliased signal must be an integer multiple of the sampling period, since the output 

of the sampler only changes its output when it is activated by the sample clock. 

As a result, the instantaneous frequency of the aliased signal does not necessarily 

match the frequency given by equation 2.4. Although the square wave in Figure 
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3.2 is precisely the frequency predicted by equation 2.4, Figure 3.3 shows a case 

where the aliased signal is not the exact frequency predicted. In this figure, it can 

be observed that the period of the alias signal alternates between 4 s and 6 s, which 

does not match the predicted 5 s alias period. 

1.2 Hz original signal and 0.5 Hz sampling impulse train 

0 5 10 15 20 
Square wave aliased signal with an average frequency of 0.2 Hz 

Figure 3.3: Graphical illustration of binary sampling, showing the original signal, 
subsampling impulse train and binary aliased signal 

The long-term average frequency of the aliased signal does, however, match 

equation 2.4, assuming a constant sampling rate and steady VCO frequency. For 

the special case in Figure 3.2, where the period of the aliased signal is a multiple 

of the sampling period, the instantaneous frequency will not vary. From observa­

tion of a variety of alias signal and sampling periods, it appears that in the general 

case the frequency of the aliased signal will alternate proportionally between two 

frequencies, governed by the sampling period. This proportion appears to be such 

that the average frequency produced by subsampling will match equation 2.4. 

Analyzing Figure 3.3 more closely, a 1.2 Hz signal is sampled at 0.5 Hz, where 

every sample with a value below 0.5 evaluates to 0, while those samples at 0.5 
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or larger evaluate to 1. The lowest predicted alias frequency is 0.2 Hz, which is 

equivalent to a clock period of 5 s. The sampling frequency is 0.5 Hz, however, 

which implies that the period of the signal at the sampler output must be a multiple 

of 2 s and cannot generate a clock period of 5 s. The resultant waveform at the 

sampler in fact alternates evenly between clock periods of 4 s and 6 s, in such a 

proportion that the clock period averages out to 5 s. 

The side effects of discretization in time of the feedback signal also merit some 

consideration. When using a sampler with analog output levels, like the sample-

and-hold circuits used in [39], the phase of the sampler output varies continuously. 

This contrasts with a sampling latch that produces a digital output with clock edges 

that are aligned on with the sampling clock. While a PLL with integer frequency 

division eventually reduces the phase error between the feedback signal and the 

reference clock to a value that is close to zero, the ALL proposed in this thesis never 

achieves true phase lock at the PFD. Although the phase error can be zero when 

the sampling clock is in phase with the reference clock, the next increment in phase 

error that would arise from a drift in the VCO frequency will be at least one sample 

clock period in magnitude. This means that the phase error will jump in increments 

of one sample clock period, causing constant corrections to the VCO frequency 

that show up as spurious tones in the output spectrum. This periodic correction 

behaviour, however, is not unlike that exhibited by bang-bang phase detectors or 

fractional-N synthesizers. Behaviour of bang-bang PLLs is analyzed in [36, 35], 

while a further analysis of the ALL as proposed in this thesis is provided in chapter 

5. 

3.2.2.2 VCO Frequency Determination 

Another interesting result, and potentially problematic, that arises when subsam-

pling in the feedback path is that the exact frequency of the VCO signal is not 

uniquely determined by frequencies of the reference and sample clocks. Again, 

referencing equation 2.4 it is clear that multiple VCO frequencies, separated in fre­

quency by integer multiples of fsamPie, can give rise to the same alias frequency at 
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which the ALL can lock. The number of possible frequencies at which the ALL 

locks will generally be limited by the tuning range of the oscillator. The next 

subsection present some potential solutions to uniquely determine the oscillating 

frequency of the VCO during operation of the system. 

3.2.2.3 Loop Filter Design 

It can be noted that if traditional control system analysis were to be performed, the 

feedback division factor for an alias-locked loop would approximate to unity. This 

follows from equation 2.4, from which it is obvious that when the VCO frequency 

changes by some small amount, the frequency of the subsampler output will change 

by the same small amount. Intuitively, this also makes sense, since the frequency 

and phase of the VCO are not scaled in a sampling operation. Although the phase 

of the subsampler output is discretized, any phase change in the VCO signal that 

is larger than the smallest phase increment in the subsampler output results in an 

equivalent phase change in this subsampled output. This result contrasts with typi­

cal frequency dividers, where VCO phase and frequency are scaled proportionally 

to the division ratio. Since the phase of the VCO is not divided down in an ALL, 

calculations done for the purpose of determining the loop filter parameters should 

assume a frequency division factor of unity in the feedback path. 

One additional parameter in loop filter design that requires some consideration 

is the location of reference spurs in the frequency spectrum that arise from the 

discretization of the phase error. If spurious tones are a concern, loop-filter de­

sign principles for bang-bang PLLs and fractional-N synthesizers can be used as 

a guideline. Both bang-bang PLLs and fractional-N synthesizers have the same 

discrete steps in phase-error as an ALL. 

3.2.3 Variations 

Several modifications can be made to the basic architecture presented above. Per­

haps there is some benefit in combining a subsampling circuit with a frequency 

divider in the feedback path. And, as alluded to earlier, multiple sampling frequen-
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ties can be used to disambiguate the VCO frequency. Finally, many of the variations 

applied to standard PLL designs can also be applied to the ALL. In particular, the 

discrete nature of subsampling makes the ALL architecture a good candidate for 

digital filtering of the phase error. 

3.2.3.1 Sampler and Divider in Feedback Path 

Although the basic architecture relies on just a sampling latch in the feedback path, 

if the alias frequency is still too high for a given sample frequency, frequency di­

viders can be inserted after the sampling unit. Such an arrangement is shown in 

Figure 3.4. One benefit introduced by a frequency divider is that it may reduce 

spurs in the output spectrum, since the regular repetition of two clock periods at 

the subsampler output can be eliminated if the modulus of the divider is an integer 

multiple of the period of alternation of the subsampler output. For instance, if the 

output of a subsampler remains at one frequency for three clock periods and pro­

duces a second frequency for the fourth cycle, a divide by four operation on the 

output of the subsampler would eliminate the phase error jump that would occur 

every fourth cycle without a divider in place. 

Reference 

Clock 

Phase 

Detector 

+ 

Divider 

Lowpass 

Filter VCO 

Sample 

Clock 

Output 

Subsampler 

Q D 

T 

Figure 3.4: Block diagram of a modified frequency synthesis alias-locked loop 

36 



Section 3.2: Proposed Architecture 

3.2.3.2 Multiple Sample Frequencies 

As mentioned in the previous subsection, the VCO frequency is not uniquely de­

termined from the frequencies of the sample and reference clock. However, if the 

ability to change the sample clock is present, one approach that could be used to re­

duce the number of frequencies at which the VCO might be oscillating is to change 

the sample clock to another frequency. For instance, if a VCO signal is sampled 

at 1 Hz and the reference clock is 0.2 Hz, the possible VCO frequencies that could 

be synthesized, as per equation 3.3, are: 1.2Hz, 2.2 Hz, 3.2Hz, 4.2 Hz, etc. Now, 

if the reference frequency is kept the same and the sample frequency is changed 

to 0.6 Hz, the possible VCO frequencies are now: 0.8 Hz, 1.4 Hz, 2.0 Hz, 2.6 Hz, 

3.2 Hz, etc. Combining the two sampling frequencies, the number of possible VCO 

frequencies are now 3.2 Hz, 6.2 Hz, 9.2 Hz, 12.2 Hz, etc. Having knowledge of the 

VCO tuning range and the reduced number of possible VCO frequencies possible 

with two sampling frequencies. The VCO frequencies at which the ALL locks with 

two different sampling frequencies, fsampiei and fSampie2'
 and a reference frequency, 

fref, is given by: 

fvCO = K • lcm(faamplei, fsamplev) + fref (3-6) 

where K is any positive integer and the function lcm() finds the lowest common 

multiple of its arguments. Choosing two sample frequencies with a large common 

multiple such that there is only one solution to equation 3.6 within the tuning range 

can ensure that the VCO locks at the desired frequency. Of course, more than two 

sample frequencies can be used as well, and equation 3.6 can be extended for more 

than two sample frequencies. 

3.2.3.3 Digital Phase-Error Processing 

Many of the modifications made to the basic architecture of frequency synthesis 

PLLs can also be applied to the basic frequency synthesis ALL outlined in this 

chapter. Because the ALL architecture proposed herein operates with discretized 

phase errors, a logical method of processing discretized data is to work in the digital 
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domain. So, like many bang-bang PLLs [36], processing the phase error using 

digital filters may be worth examining. For instance, in an architecture with phase 

aligned reference and sampling clocks the discretized phase errors are limited to a 

small set of possible values. These phase errors can be kept in the digital domain 

and processed by a digital loop filter that controls a DAC connected to the VCO. 

3.3 Sampling Circuit Requirements 

The distinguishing component in an ALL architecture is the circuit that performs the 

subsampling operation in the feedback path. The analog sample-and-hold or ADC 

circuits described in previous papers and patents works well for low-frequency ap­

plications, but to sample high-frequency VCO outputs, a sampling latch with inter­

nal generation and a binary output is simpler and can generally operate at higher 

frequencies. 

The desired behaviour for the sampling latch is like that of a D-type flip-flop: 

the sampling latch evaluates its input signal to a logic-low or logic-high value on a 

transition of a clocking signal and subsequently propagates this logic value to the 

latch output. Although much has been written on flip-flop circuits in the literature, 

most of these flip-flops are used as storage elements in digital circuits. Storage ele­

ments in digital circuits are optimized for figures-of-merit such as the power-delay 

product and circuit size, which are not of particular relevance for a single high-speed 

sampling unit. The design criteria that are imposed on high performance D-latch 

circuits found in retiming circuits of high-speed interfaces such as the serializer-

deserializer chips in fibre optic and backplane communications systems, however, 

align more closely with the constraints placed on a high-speed sampling latch for 

an ALL. In D-latch retiming circuits power consumption and latency are less of a 

concern and greater emphasis is placed on high-speed operation. In the literature, 

retiming circuits have been reported capturing data at rates of 75 Gbit/s using high 

electron mobility transistor (HEMT) technology in a 0.13-um III-V process [52] 

and 40Gbit/s in 90-nm CMOS technology [53]. 
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3.3.1 Sampling Latch Properties 

Although the sampling latch should behave as a D-type flip-flop, several constraints 

normally placed on flip-flops are relaxed for the sampling latch in an ALL. Specif­

ically, the clock-to-output propagation delay through the sampling latch does not 

need to be minimized. Furthermore, the reset time during which the latch is pre­

pared for the next sampling operation can take most of one period of the sample 

clock. This means that, unlike in a frequency divider or prescaler and depending on 

the frequency of the sample and input signals, the clock-to-output and reset time of 

the latch circuit can take multiple cycles of the VCO signal. Furthermore, with a 

periodic input signal from the VCO, the setup and hold time for the sampling latch 

are irrelevant, but the latch circuit must consistently and predictably sample the in­

put signal from cycle to cycle in such a fashion that the phase of the input signal is 

properly represented at the latch output. In fact, the sampling window of the latch 

can span more than one VCO cycle, as long as the VCO phase is consistently passed 

to the latch output. Finally, any DC offset in the sampler that biases the sampler to­

ward a particular logic level is not problematic, as long as the sampler outputs both 

ones and zeros and is still periodic and representative of the periodicity of the input 

signal. These severely loosened restrictions on the latch behaviour allow for more 

design freedom with a focus on the capability to sample very fast changing inputs. 

Because the sampling latch is not operated at the frequency of the input signal, 

but rather at the frequency of the sampling signal, power consumption will be re­

duced compared to traditional high-speed prescaler and divider circuits. To estimate 

power consumption, the activity factors of the signals in a frequency divider can be 

compared with a sampling latch. A series of toggling flip-flops in a counter-based 

frequency divider toggle at 1/2,1/4,1/8,1/16, etc. of the VCO frequency, adding up 

to an average activity factor of 1. For a sampling latch, the activity factor is driven 

by the sampling clock instead. Assuming that the sampler produces the highest 

alias frequency it is capable of, the worst case activity factor is 1/2 of the sampling 

frequency. Since the sampling frequency can be an order of magnitude lower than 

the VCO frequency, the power consumption for the feedback circuits in ALL is in-
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deed much lower than that of a frequency divider based PLL for equivalent VCO 

frequencies. 

3.3.2 Duty Cycle Correction 

One problem in high-speed sampling that can be detected and potentially corrected 

is a DC offset in the sampling latch that biases the sampler output to a particular 

logic value, or in the worst case, causes the sampler output to be stuck at a logic 

low or logic high value. Many high speed systems use differential circuits, but any 

imbalance or mismatch in the symmetry of the circuit will cause such DC offsets. 

Careful consideration of geometry choices and their impact on device matching 

during the layout of a circuit does aid in minimizing the effects of device and par­

asitic mismatch. But, as device geometries shrink, practically unavoidable random 

variations are becoming more pronounced. In an attempt to correct latch circuits 

with threshold problems, a feedback mechanism is proposed that adjusts the input 

switching threshold of a circuit, counteracting any DC offsets at the input. 

The detection mechanism used to adjust circuit input thresholds relies on a de­

viation of the duty cycle of the latch output. In a perfectly balanced sampling latch, 

the subsampling operation on the VCO signal should result in a square wave output 

signal with a duty cycle that tends to 50 %. Several methods for duty cycle mea­

surement have been reported [54], using analog, digital, or mixed digital/analog 

approaches. Most of the methods for measuring the duty cycle in previously pub­

lished work, however, rely on complex circuits that are needed for systems where 

the frequency of the duty-cycle signal being measured is on the same order or higher 

than the system clock frequency. When measuring the duty cycle of the latch out­

put signal, however, the sampling clock can be used as the relevant clock, because 

the frequency of latch output signal is lower than the system (sampling) clock. This 

greatly simplifies measuring the duty cycle, since the sample clock can then be used 

to sample the output values of the latch. 
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3.3.2.1 Duty Cycle Measurement Algorithm 

The proposed method to measure the duty cycle calculates a running sum of the 

output values produced by the sampling circuit. Logic-high values at the sampler 

output increment this running sum, while logic-low values decrement the running 

sum. If the duty cycle of the sampler output is 50 %, the running sum will tend to 

zero. Any DC bias that increases the probability of logic-high output will cause the 

running sum to increase over time, while a DC bias toward logic-low output causes 

the running sum to decrease. The rate of increase or decrease will be proportional 

to the severity of the DC bias. Over a single period of the alias signal at the sam­

pler output the running sum will go up and down, so small changes in the running 

sum value should be discarded. In a binary representation of the running sum, this 

would mean discarding a number of low-order bits in the sum. The high-order bits 

can then be used to adjust the threshold levels for the sampling circuit. The mech­

anism through which to achieve this is dependent on the specific circuit used. In 

a differential circuit, for instance, an extra biasing transistor could be inserted in 

each differential branches of the circuit. These biasing transistors could then be 

individually controlled to alter the symmetry in the circuit. 

The proposed duty cycle correction scheme creates a feedback system that con­

tinually adjusts the biasing transistors so that the duty cycle is as close to 50 % as 

the DAC quantization permits. However, as with any feedback system, such an ar­

rangement may be unstable or oscillate, as it attempts to achieve a 50 % duty cycle. 

This target duty cycle is not achievable under all conditions, however, since the duty 

cycle of the signal is determined by the number of sampling impulses per alias clock 

period. If the number of sampling impulses per alias clock period is odd, a perfect 

50 % duty cycle is not possible, and the threshold level will continually vary, and 

thus continually alter the phase relationship between the sampler input and output 

signals. This is undesirable, as it affects the ability of an ALL to maintain lock. 

An improved duty cycle correction system with hysteresis will only adjust the input 

threshold of the sampler if the duty cycle deviates by more than a specified margin, 

e.g. ±10 %. To implement this acceptable margin, the biasing transistors only need 
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adjusting when the rate of increase or decrease of the running sum exceeds a speci­

fied amount. Specific circuit solutions, such as those in Figure 4.16, to achieve this 

type of duty cycle control mechanism are discussed in chapter 4. 

3.4 Summary 

This chapter has provided an overview of the operating principles that allow an 

ALL to perform frequency synthesis. The mathematical relationships between in­

put and output frequencies of an ALL system have been presented. An overview of 

a sampling latch based architecture has been provided, along with several possible 

variations that could be made to this architecture. The predicted effects of subsam-

pling in the feedback path has been discussed, along with specific considerations 

that must be taken when designing an ALL frequency synthesizer. Finally, the con­

straints and desired behaviour expected from the subsampler are described, together 

with a method to tune out any DC bias in a sampling latch. 

Replacing the high-speed frequency dividers by a sampling latch relaxes the 

constraints on the circuits in the feedback path. This has the potential to allow for 

the development of faster frequency synthesizers than what is possible with current 

state-of-the-art frequency dividers. An additional benefit of using a subsampling 

latch is that the power consumption is significantly reduced when compared to a fre­

quency divider. One side-effect of using a sampling latch that discretizes the phase 

error is that measures of jitter and phase noise spectra for ALL-based frequency 

synthesizers are, although similar to bang-bang PLLs or fractional-N synthesizers, 

most likely worse than integer-N frequency divider PLLs. 
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Chapter 4 

Sampler Circuit Design and 
Simulation 

4.1 Overview 

The operation that limits the maximum frequency of modern high-speed frequency 

synthesis PLLs is the frequency division that needs to be performed in the feedback 

path [10]. In frequency dividers and prescalers, the first stage division circuit is 

connected directly to the oscillator and must operate at very high frequencies. In 

contrast, the sampling latch generates a new output signal at the frequency of the 

sampling clock, rather than half the frequency of the VCO clock. Although it must 

still consistently sample a very high speed input signal, the loosened constraints 

outlined in chapter 3 allows for more freedom in design trade-offs. Section 4.2 

presents a number of potential sampling latch circuits and evaluates their suitability 

as subsampling unit in a frequency synthesis ALL through simulations in a modern 

CMOS process. Section 4.3 concludes with a description of threshold correction 

circuits for sampling latches, again providing simulation demonstrating their func­

tionality. 

4.2 Latch Circuits 

In this section, several latch circuits will be evaluated for their suitability as a high­

speed subsampling latch. Each latch circuit is presented and subsequently evaluated 
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through analysis and simulation. The suitability of a sampler is determined by 

verifying that the candidate circuit produces the correct aliased output signal when 

subsampling a periodic input signal. 

4.2.1 Latch Performance Evaluation Methodology 

To evaluate the suitability of each latch, two simulations are performed on the can­

didate circuits. The first simulation consists of a test bench that aims to determine 

the maximum input frequency at which the sampling latch still produces the correct 

alias frequency. The second method for evaluating latches defines an input sensitiv­

ity function for each latch by modelling the latch as a linear correlation followed by 

a binary decision. This analysis provides some insight on the size of the sampling 

window, and provides a relative basis for comparison of minimum detectable pulse 

widths and that the sampling window need not be shorter than the input cycle time. 

4.2.1.1 Maximum Frequency Test 

The first evaluation strategy aims to replicate the conditions that a real sampling 

circuit operates under. To do so, a simulation test bench has been configured with 

a sinusoidal input that models the VCO signal and a square wave sample clock that 

triggers the sampler. The time between rising edges at the sampler output is plotted 

versus time, and this period is compared to the alias frequency predicted by 2.4. A 

block diagram of the test bench is shown in Figure 4.1. 

Input 
Clock Subsampler 

Output 

Figure 4.1: Block diagram of a test bench for a sampling latch 

All simulations are done at the transistor level in a 90-nm general purpose (GP) 

44 



Section 4.2: Latch Circuits 

CMOS process using Spectre as the simulator. The simulation parameters, design 

kit version and software simulator version are specified in appendix A. A simulation 

to determine the performance of the logic SPICE models in the design kit shows that 

the fT is optimistically high at about 200 GHz, while publications with measured 

data indicate that a 90-nm GP CMOS process has an fT and fmax of about 120 GHz 

and 170GHz, respectively [53]. This is not unexpected, since the design kit is not 

intended for RF circuit design, and the device models do not include effects such as 

gate resistance. Nonetheless, simulations can still be used to relatively compare the 

merits of sample circuit architectures, even if the predicted performance is likely 

optimistic when compared to actual implementations. 

To determine the maximum frequency that can be sampled by a latch, the input 

clock frequency is increased until the latch fails, meaning that the period at the 

output of the latch no longer matches the alias frequency predicted by equation 

2.4. Since a latch is likely to fail around its input switching threshold, failures are 

best identified by verifying that the sampler functions deterministically around the 

input switching threshold. When the phase relationship between the input clock 

and sample clock has been found at which the sampler operates near the switching 

threshold, it is possible to run a parametric sweep that varies the phase by small 

increments across the phase at which the input switch threshold lies. This type of 

parametric sweep, however, does not take into account hysteresis effects that may be 

present in the latch. Instead of a parametric sweep, the input clock and sample clock 

are configured to ensure a large number of sample points across the whole phase 

of the input clock signal. To achieve this, the predicted alias frequency is made 

small in comparison to the sample clock frequency, thereby forcing a large number 

of samples to be taken across each period of the alias signal, which corresponds to 

the same number of samples taken across one cycle (a phase of 2n) of the input 

clock. Although a latch can be similarly indeterministic around the input switching 

threshold for alias frequencies that are close to the sampling frequency, it is much 

harder to identify these failures in simulation. 

Using a low alias frequency, however, is not useful to determine any problems 

45 



Section 4.2: Latch Circuits 

arising from hysteresis or an input switching threshold that is high or low. A low 

input switching threshold, for instance, will cause the duty cycle of the output signal 

to be high. When the alias frequency is close to the sample frequency, there are only 

a small number of sample points per alias period and a low input threshold may in 

fact cause the output to be permanently stuck high. For this reason, the samplers 

are evaluated at a low and high alias frequency. The high alias frequency detects 

problems with high or low switching threshold problems and hysteresis, while a low 

alias frequency will find problems related to output signal indeterminism around the 

input switching threshold. 

For the simulations in this section the sampling frequency has been set to 1 GHz 

and the input frequency is configured to produce a low alias frequency of 1 MHz and 

a high alias frequency of 100 MHz, which implies an input frequency that is given 

by equation 3.3 or 3.5 and therefore must satisfy K ± 0.001 GHz or K ± 0.1 GHz, 

where K is any positive integer. The circuit is simulated for at least 1010 us or 

20 ns, depending on the alias frequency, and is sufficient to observe one clock period 

of the alias signal. To replicate real-world conditions more closely, the transients 

analysis is run with transient noise enabled. The noise parameters are based on 

recommendations in [55], although loosened to keep simulation times reasonable 

at high frequencies. The transient noise maximum frequency is set to 1 THz, with 

the minimum noise frequency at 10 MHz, and includes both white (thermal) noise 

and flicker noise. These noise parameters are specified along with the simulation 

parameters in appendix A. 

4.2.1.2 Latch Sensitivity Function Analysis 

Although the maximum frequency simulation is a good predictor of performance 

for various latch circuits, the determination of the maximum frequency requires 

long-duration simulations at high frequencies and is very time consuming. In a 

second method we attempt to define an sensitivity function for each latch around 

the sampling instant by assuming the latch responds as a linear correlation of the 

input and the latch sensitivity function (LSF). 
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D. F. Williams et al. [56] described a similar approach for evaluating sample-

and-hold circuits of oscilloscopes. In their paper they describe a method in which 

they treat their sample circuit as a linear time-invariant system, apply a series of in­

put signals that mimics an impulse response and measure the output signal. Using 

the output signal they define an impulse response function for the sampling oper­

ation that appears to work reasonably well in predicting the circuit response for a 

variety of input signals. 

To evaluate sampling latches we assume that the latch circuit is linear, and at­

tempt to define a latch sensitivity function. For a latch with an input switching 

threshold (logic threshold) of VLT, input function V(t), and LSF function LSF(t), 

the output Q of the latch is given by 

Q = sign (J °°(V(t) - VLT) • LSF{t)dt\ (4.1) 

where the output of the sign() function can be interpreted to evaluate to a logic low 

or logic high value normally seen at the output of a latch circuit. 

Unfortunately the non-linearity of the sign() operation prevents a simple recon­

struction of the LSF from the output signal. Instead, to determine the LSF, a large 

number of simulations are run, and this data is combined to reconstruct the LSF. 

Two different plots are generated. For the first plot the latch circuit is stimulated by 

a sinusoidal pulse at the input. The time offset between the centre of the pulse and 

sample clock are varied, and for each offset step the minimum width pulse required 

to trigger the latch is found. Plotting the inverse of the pulse width at the switching 

threshold versus the offset time produces something akin to the LSF. With the LSF 

defined for each sampling latch, a relative comparison between latches can be made 

on the basis of the LSF. One drawback of this approach is that these plots do not 

give a clear indication of the sensitive time window. This is because a sufficiently 

wide pulse at a far offset will still overlap the sampling window of the latch. The 

generated plots such as the one shown in Figure 4.10 therefore show sensitivity 

reaching to very large offset values. 

To address this shortcoming, a second sampling window sensitivity plot that 

is more indicative of the sampling window width is generated. The data for this 
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plot is collected in a similar manner. Rather than using sinusoidal pulses, square 

wave pulses are used instead. These square pulses have rise and fall times that 

are equivalent to the slew rates of signals at frequencies on the order of the fmax 

of the process. The simulation data is then analyzed to find the minimum pulse 

width required to trigger the latch. For the offsets at which the minimum pulse 

triggers the latch, data points with values inversely proportional to the minimum 

pulse width are used. To determine the sensitivity of the latch with offsets outside 

the peak sensitivity, the minimum pulse is delayed by one unit of the plotting time 

step. At this delayed offset using the minimum pulse width will cause the latch to 

no longer capture the pulse. The pulse width is then increased by maintaining the 

offset of the rising edge of the pulse but delaying the falling edge of the pulse. The 

pulse width is increased until the latch registers a logic high again. For this offset 

increment, the inverse of the triggering pulse width is plotted. This is repeated until 

an offset is reached at which there is no pulse width wide enough to trigger the 

latch. This point defines the edge of the sampling window after which no data is 

captured. The same steps are repeated in reverse to generate the data points prior 

to peak sensitivity, advancing the offset by the plotting time step and finding the 

minimum pulse width required to trigger the latch at that particular offset. 

4.2.2 Standard Cell D Flip-Flop 

To get a baseline performance figure for latch circuits, a master-slave D flip-flop 

from the digital standard cell library included in the design kit is simulated. 

4.2.2.1 Circuit Design 

The standard cell D flip-flop from the 90-nm design kit used for simulations is 

FD1QSVTX1. The FD1QSVTX1 cell is a rising-edge triggered D flip-flop with Q 

output, uses standard threshold transistors and has a normalized output drive of one. 

The design is a standard master-slave flip-flop built with inverters and transmission 

gates, and is shown in figure 4.2 
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Figure 4.2: Standerd cell master-slave D flip-flop circuit 

4.2.2.2 Circuit Simulation 

Simulating the standard cell D flip-flop and increasing the input frequency beyond 

4 GHz shows that the duty cycle of the alias signal begins deviating from 50 %. At 

14.001 GHz the input signal has the proper alias frequency, albeit with a very high 

duty cycle. At 14.1 GHz, however, the circuit produces a steady logic high value at 

the output. Thus, the baseline figure for comparison for other latch architectures is 

approximately 13 GHz for the standard cell D flip-flop. The simulation results with 

the high and low frequency alias signals are shown in Figures 4.3 and 4.4. 

V
ol

ta
ge

 (
V

) 

1.6 
1.4 
1.2 
1.0 
0.8 
0.6 
0.4 
0.2 
0.0 

-0.2 
0 

-

-

-

0 

i i 

c ) 

] 

^-~ 

5.0 10.0 

1 1 1 

Alias signal 
Alias signal period O 

< c 

1 
1 

15.0 
Time (ns) 

) 

, 
20.0 25.0 

-

-

3C 

16.0 
14.0 
12.0 
10.0 
8.0 
6.0 
4.0 
2.0 
0.0 
-2.0 

).0 

li
as

 p
er

io
d 

(n
s)

 

< 

Figure 4.3: Alias signal for standerd cell D flip-flop subsampling simulation with a 
13.1 GHz sinusoidal signal sampled at 1 GHz 

To determine the LSF for the standard cell D flip-flop, the first step is to deter-

49 



Section 4.2: Latch Circuits 

4> 

3 

0.00 0.20 0.40 0.60 
Time (̂ is) 

0.80 1.00 

Figure 4.4: Alias signal for standard cell D flip-flop subsampling simulation with a 
13.001 GHz sinusoidal signal sampled at 1 GHz 

mine the switching threshold and the minimum pulse width that can be detected. 

Simulations reveal that for a supply voltage of 1.2 V the input switching threshold 

is approximately 0.553 V. A short parametric sweep of input pulse widths and off­

sets reveals that the minimum pulse width required to trigger the flip-flop is 23 ps, 

with the centre of the pulse arriving with an offset between -7 ps and -5 ps before 

the rising edge of the sample clock. The parameter space is swept for pulse widths 

up to 50 ps, and we find that the minimum and maximum offsets of the centre of the 

pulse for which the latch still captures data varies from -46 ps to 9 ps. The LSF plot 

is shown in Figure 4.5 and reveals peak sensitivity around 6ps before the sampling 

clock edge arrives. The latch sensitivity drops sharply after peak sensitivity in the 

latch. 

Plotting the sampling window sensitivity shows that any data on the standard 

cell D flip-flop input after -2 ps is not captured. Peak sensitivity for a square input 

pulse is found for a pulse width of 20 ps between -5ps and -4ps. The sampling 

window cut-off is not very sharp prior to peak sensitivity, with wide input pulses af­

fecting the latch output up to 20 ps ahead of peak sensitivity. The sampling window 

sensitivity plot is shown in Figure 4.6. 
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Figure 4.5: Latch sensitivity plot for standard cell D flip-flop 
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Figure 4.6: Latch sampling window plot for standard cell D flip-flop 

4.2.3 Differential Pass-Transistor Pulsed Latch 

An improvement on the single-ended standard cell D flip-flop can be made by using 

a differential sampling latch design. Inspired by the sense-amplifier circuits used 

in computer memories, the differential pass-transistor pulsed latch (DPTPL) [57] 

only requires a small input swing on the differential signal, which is then amplified 

internally and produces a rail-to-rail voltage at the sampler output. 
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4.2.3.1 Circuit Design 

The DPTPL topology, shown in Figure 4.7, is built on two cross-coupled inverters 

that provide regenerative feedback using transistors Ml through M4. The circuit 

shown in Figure 4.8 is used to generate a pulse that creates a brief sampling window 

by enabling transistors M7 and M8. The inverters in the pulse generator circuit are 

sized to minimize the pulse length while ensuring that the sampling circuit remains 

functional across PVT variations. During the pre-charge phase, when the clock sig­

nal is low, transistors M5 and M6 pull both internal nodes to VQD- A gated set-reset 

(SR) latch at the output of the sampler holds the values when the internal nodes of 

the cross-coupled inverter go to VOD during the pre-charge phase. When the clock 

signal goes high transistor M9 is enabled and the pulse generation circuit creates 

a sampling window with a duration that is on the order of 20 ps in 90-nm technol­

ogy. The differential signal between the D and Dinputs is then amplified through 

the cross-coupled inverters. All transistors drawn in Figure 4.7 are the smallest size 

that does not give rise to dog-bone shaped transistors, which corresponds to a drawn 

width-over-length (W/L) gate dimensions of 0.2 urn / 0.1 urn in the 90-nm process 

used for simulations. 

4.2.3.2 Circuit Simulation 

To simulate the DPTPL circuit the test bench from Figure 4.1 is modified to produce 

a differential signal, producing a rail-to-rail swing of two sinusoidal input signals 

that are 180 degrees out of phase. When configured to produce an alias frequency 

of 100 MHz, the DPTPL circuit functions correctly at up to 179 GHz. However, 

changing the input signal for an expected alias frequency of 1 MHz, the circuit 

produces a noisy result near the switching threshold that requires filtering at input 

frequencies higher than 26 GHz. This failure mode is demonstrated in Figure 4.9. 

From this figure it can be observed that the latch does not sample consistently when 

it is operated near the switching threshold. Instead of a single edge as the input 

crosses the switching threshold, the latch output toggles between logic high and 

logic low values before it settles. 
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Figure 4.7: Differential pass-transistor pulsed latch circuit 

Simulating the DPTPL circuit with transient noise and a target alias frequency 

of 100 MHz, the maximum frequency at which the circuit samples correctly is re­

duced to 100.1 GHz. Simulating with an alias frequency of 1 MHz, however, reveals 

that the DPTPL circuit produces noisy results near the switching threshold at fre­

quencies as low as 4 GHz when transient noise is enabled, and again with a failure 

behaviour that is similar to that depicted in Figure 4.9. 
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Figure 4.8: Pulse generator circuit for pulsed latch 
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Figure 4.9: Toggling alias signal at the switching threshold of a DPTPL subsam-
pling circuit, simulated with transient noise and a 58.001 GHz sinusoidal input sig­
nal sampled at 1 GHz 

As a differential circuit, the DPTPL does not have switching threshold like 

single-ended circuits do, and even the smallest difference between the input sig­

nals should consistently evaluate to a specific logic level. To perform the LSF 

analysis for the DPTPL, the same approach as for the standard cell D flip-flop is 

taken. Initially the input differential signal is at —VDD, resulting in a logic low out­

put. Two differential cosine shaped pulses that reach a peak-to-peak value of VUD 

on the latch input should then cause the latch to produce a logic high value when 

sampled. A parametric sweep reveals that the minimum detectable pulse width is 

9ps, with the centre of the input pulse offset from the rising edge of the sampling 

clock between 27 ps and 32 ps. The DPTPL is thus sensitive to pulse widths much 

narrower than the standard cell D flip-flop. Repeating the same parametric sweep 

for pulse widths up to 50 ps it is found that the minimum and maximum offsets at 

which the DPTPL still captures the pulse are 5ps and 54 ps, respectively. The LSF 
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plot is shown in Figure 4.10, and shows a much more symmetric function, with a 

broad peak sensitivity around 29 ps. The large positive offset for peak sensitivity 

is due to the fact that there is a considerable delay between the arrival of the rising 

edge of the sampling clock and the generation of a sampling pulse that enables the 

pass transistors in the latch. 

1/9 ps 
l/10ps 

'$ 
9J 

OH 

20 30 40 
Offset (ps) 

Figure 4.10: Latch sensitivity plot for DPTPL 

60 

The sampling window sensitivity, shown in Figure 4.11, for the DPTPL is much 

narrower and sharper than the standard cell D flip-flop, extending from approxi­

mately 26 ps to 33 ps. Peak sensitivity lies between 30 ps and 31 ps, with the small­

est square pulse detected at 8ps. The latch is slightly more sensitivity to input 

arriving prior to peak sensitivity. 

4.2.3.3 Latch Hysteresis Buffer 

To overcome the toggling behaviour at the output of the DPTPL at low sample to 

alias period ratios a circuit has been designed that eliminates the high frequency 

noisy toggling at the output. Since the frequency of this toggling behaviour is much 

higher than the alias frequency, a low-pass filtering approach that eliminates these 

high frequency components can be used. Such a low-pass filter could be imple­

mented using an analog approach or could the filtering can be done in the digitally 
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Figure 4.11: Latch sampling window plot for DPTPL 

using digital signal processing techniques. 

In a simple but effective implementation for this low-pass filtering operation, 

we designed a hysteresis buffer that maintains a history of previous sampling cir­

cuit outputs and compares them with the current sampler output. If these values 

are in agreement, the current sampler value is stored in the output buffer, otherwise 

the output buffer value remains unchanged. The choice for the number of previ­

ous sampler output values stored and compared with the current value determines 

the maximum duration for a toggle before it affects the output. From simulations 

the pulse duration of toggles is generally one or two sample clock periods, thus a 

reasonable number of previous samples stored in the history for a sampling to ref­

erence clock frequency ratio of 1000 is two. A more generic circuit for an arbitrary 

history length, and a larger range of alias frequencies, is depicted in Figure 4.12. 

Although the hysteresis buffer circuit presented works well for low alias fre­

quencies, it can prevent proper operation at higher frequencies if the buffer history 

is too long. A separate frequency detector could be used that measures long term 

frequency trends of the aliased signal and selectively adapts the history length of 

the hysteresis buffer to a level appropriate for a given alias frequency. 

With the hysteresis buffer connected to the sampler circuit output the test bench 
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Sampler Output 

Sample Clock 

Alias 

Figure 4.12: Hysteresis buffer for sampling latches. 

is simulated again to determine the maximum input frequency with the hysteresis 

buffer. With an expected alias frequency of 1 MHz, the maximum input frequency 

is approximately 180 GHz. Adding transient noise, however, reduces the maximum 

input frequency to about 58 GHz. 

A more sophisticated approach could likely be used extend the maximum fre­

quency, depending on the behaviour of the latch output. The hysteresis buffer pro­

posed suffices for oscillations that are rapid enough to be eliminated by the latch 

buffer. More advanced signal processing could be used to extract the clock period 

from different toggling or noisy behaviour. For instance, the duty cycle of the tog­

gling behaviour may be dependent on the phase of the alias frequency. The high 

speed latches we evaluated tend to fail at high frequencies by generating a toggling 

signal at half the sample frequency, leaving no useful information for the extraction 

of the alias frequency. Other latch topologies, however, may have high frequency 

57 



Section 4.2: Latch Circuits 

behaviour that still allows for the extraction of the alias frequency through a suffi­

ciently sophisticated signal processing algorithm. 

4.2.4 Sense-Amplifying Latch Circuit 

To avoid relying on a pulse generating circuit, which is difficult to design for con­

sistent behaviour across PVT variations a sense-amplifying flip-flop (SAFF), which 

was first proposed in [58], is evaluated. 

4.2.4.1 Circuit Design 

Again, like the DPTPL, this latch uses the regenerative property brought about by 

internal positive feedback to amplify a small differential swing on the input to a 

rail-to-rail voltages at the output. Similar to the DPTPL design, the S and R outputs 

of this sampler connect to a gated SR latch that holds the values when the clock 

goes low. Unlike the DPTPL design, however, a SAFF does not use pass transistors 

controlled by pulse generation circuit. Instead, the inputs are connected to the gates 

of transistors M7 and M8. Using the transistor gate rather than the drain provides 

a higher input resistance. Again, pull-up resistors M5 and M6 pull the internal 

nodes to VDD, while the drain voltages of transistors M7 and M8 are equalized by 

transistor M10, which remains enabled at all times [59]. The data sampling occurs 

when clock goes high, causing M9 to turn on and allowing transistors M7 and M8 

to amplifying the differential input signal that in turn causes the latch to capture the 

input signal. Once the internal nodes have settled, changing input values applied to 

transistors M7 and M8 no longer affect the output of the latch. 

4.2.4.2 Circuit Simulation 

Simulating the latch with an expected alias frequency of 100 MHz, the maximum 

input frequency of the latch is approximately 200 GHz. Changing the input signal 

to produce an alias frequency of 1 MHz, however, reduced the maximum input fre­

quency to 50 GHz. Simulating the SAFF with transient noise and a 1 MHz predicted 

alias frequency reduces the maximum input frequency to 3 GHz. 
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Figure 4.13: Sense-Amplifying Flip-Flop 

Again, using the hysteresis buffer at the S AFF output improves the performance. 

When simulated with an input frequency chosen to produce a 1 MHz alias fre­

quency, the sampling latch operates as expected on input frequencies as high as 

230 GHz. Adding transient noise reduces the maximum input frequency to 76 GHz. 

The LSF simulation test bench for the SAFF is the same as the DPTPL. Like 

the DPTPL, the SAFF circuit also has a minimum detectable pulse width is 9ps, 

but with a much narrower window where this pulse is detected. A 9 ps pulse is only 

detected with the input pulse offset from the rising edge of the sampling clock by 

12ps. Repeating the parametric sweep for pulse widths up to 50 ps we find that the 

minimum and maximum offsets at which the SAFF still captures the pulse are -7 ps 

and 43 ps, respectively. The LSF plot is shown in Figure 4.14. The peak sensitivity 

is not centred in the sampling window like the DPTPL, since peak sensitivity lies 

at an offset of 12ps but the centre of the sampling window is at approximately 

18ps. The LSF for the SAFF is also less symmetric than the DPTPL, and is more 

sensitivity after the peak than before. 
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Figure 4.14: Latch sensitivity plot for SAFF 

The sampling window sensitivity for the SAFF is shown in Figure 4.15. Like 

the DPTPL, the narrowest square pulse detectable at peak sensitivity is 8 ps between 

offsets of 1 Ops and 11 ps. Unlike the DPTPL, however, the SAFF has a very sharp 

cut-off prior to peak sensitivity and instead remains sensitive much longer after the 

peak sensitivity. The sampling window for the SAFF is a few picoseconds narrower 

than the DPTPL, which in theory results in better high frequency performance. 
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Figure 4.15: Latch sampling window plot for SAFF 
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4.2.5 Latch Simulation Results Summary 

The maximum input frequencies under various operating conditions are tabulated 

in table 4.1. 

Table 4.1: Maximum input frequencies for latch designs 

Alias Frequency 
100 MHz 
1MHz 
1 MHz with noise 
1 MHz with hysteresis 
1 MHz with hysteresis and noise 

D flip-flop 
14.100 GHz 
13.001GHz 

DPTPL 
179.100 GHz 
26.001 GHz 

3.001 GHz 
180.001GHz 
58.001 GHz 

SAFF 
215.100 GHz 
50.001 GHz 

3.001 GHz 
230.001 GHz 
76.001 GHz 

Comparing the LSF for the different latches, it is clear that the ability to detect 

a narrower pulse translates to a higher frequency capability. Although the DPTPL 

and SAFF have the same peak sensitivity for both square and sinusoidal pulses, 

the maximum frequency simulations show the SAFF to have a higher frequency 

capability. This is perhaps due to the narrower range of offsets for the SAFF at 

which the latch reaches peak sensitivity or the narrower sampling window during 

which the SAFF can capture data. The latch sensitivity analysis indicates that the 

smallest pulse width that can be captured by the differential designs is on the order 

of 8 ps. These latches might then seem appropriate for sampling clock signals at up 

to 2.5 GHz, which corresponds to a signal with a 16ps period and a 50 % duty cycle. 

In maximum frequency simulations, however, these latches can actually sample 

periodic signals at up to 230 GHz. 

4.3 Input Threshold Correction 

As seen in simulations with the standard cell D flip-flop design and discussed in 

chapter 3, an offset in the input threshold can cause the latch output to be biased 

to a certain logic level and cause the latch to fail at higher frequencies. A sim­

ilar offset can also arise in differential circuits, which are sensitive to mismatch 

between what should be symmetric branches. In this section, an offset correction 

circuit for differential circuits is presented and simulated. The duty cycle detection 
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circuits apply equally well to single-ended circuits, but would require a different 

offset cancellation mechanism inside the latch. 

4.3.1 Circuit Design 

The duty cycle measurement system proposed uses a single up/down counter that 

stores a running sum in two's complement. The up/down mode input of the counter 

is evaluated on the rising edge of the sample clock and determines whether the 

counter increments or decrements for the given sample clock period. The up/down 

mode for the counter is driven directly by the latch output, so while the latch out­

put is low the count value will decrement by one each sample clock period, and 

conversely, increment the count value by one when the latch output is high. When 

operated in this manner, the counter generates a running sum of output values for 

the latch. For an ideal 50 % duty cycle, the long term average value stored in the 

counter will thus tend to zero. Deviations from the ideal duty cycle will lead to an 

increasing or decreasing value in the counter, with the rate of change of the counter 

value dependent on the degree of deviation from a 50 % duty cycle. The value 

stored in the up/down counter is then used to program DAC circuits that control 

transistors within the latch that counteract asymmetries and correct the duty cycle 

of the latch output. A block diagram of such a correction system is shown in Figure 

4.16. 

A modification to the DPTPL circuit to support duty cycle correction is shown in 

Figure 4.17. Two transistors, M9 and M10, are independently controlled by tuning 

the voltage on the Left and Right pins. These transistors can then be used counteract 

mismatch by biasing one side of the differential circuit. 

The bit-width of the counter and the DAC precision will depend on a num­

ber of factors. The DAC should have a sufficiently high resolution to control the 

threshold correction transistors finely enough to correct the duty cycle. For differ­

ent latch topologies, the required precision will differ, dependent on the sensitivity 

of the latch to threshold correction transistor input levels. The total bit-width of the 

counter is determined by the required precision of the DAC and the ratio between 
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Figure 4.16: Block diagram of basic duty cycle correction system 

the period of the latch output signal and the period of the sampling clock. Once 

the desired DAC precision has been determined, the next factor that determines the 

bit-width of the counter is the fact that the low-order bits in the counter change con­

tinuously as the counter up/down mode input alternates from up to down during a 

single period of the latch output. The value of these low-order bits during a single 

clock period should have no effect on the DAC output voltage, since they do not 

constitute a long term deviation from a 50 % duty cycle. For instance, if the sam­

pling clock has a period of 1 ns and the alias clock period is 32 ns with a 50 % duty 

cycle, the up/down counter may increment by as much as 16 before decrementing 

by 16. Clearly, in this example, at a minimum, the 4 least-significant bits in the 

counter should be ignored by the DAC. In general, the number of bits to be ignored 

should practically be at least: 

I J sample 
log2 (4.2) 

\ f Jias 

As the number of low order bits ignored by the DAC is increased the number of 

sample clock periods that are required before the DAC output value is affected goes 
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Figure 4.17: Differential pass-transistor pulsed latch circuit with input threshold 
correction transistors 

up, causing the response time of the duty cycle correction system to increase. 

Another consideration is the total required bit-width of the counter to avoid 

overflow of the counter. As the counter value changes and begins to alter the duty 

cycle of the latch, the latch output duty cycle will approach 50 %. As a 50 % duty 

cycle is approached, the rate at which the counter will change decreases. When a 

50 % duty cycle has been reached, the control bits for the DAC should stop changing 

altogether. Overflow may still occur if the counter is saturated and the DAC control 

values have saturated but the counter value is still changing. In this case the duty 

cycle is not correctable by the system, and an eventual overflow or saturation of the 

counter is unavoidable, independent of the bit-width of the counter. 

A possible configuration of the counter and decoder is shown in Figure 4.18. 

The counter value is stored in two's complement, and so bit 15, the most significant 

bit (MSB), is used by the decoder to determine whether the duty cycle is below 

50 % (MSB is low) or above 50 % (MSB is high). When the MSB is high the next 8 

bits (bits 14 through 7) are complemented and activate the left DAC control outputs 

DL7 through DL0 while the right DAC control outputs will remain low. When the 
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MSB is low, the right DAC is activated with the count value in bits 14 through 7 of 

the counter, while the left DAC control outputs are low. 

DJ DL6 ... DL0 DR7 DR6 ... DR0 

Figure 4.18: Block diagram of decoder circuit with up/down counter 

4.3.1.1 Duty-Cycle Tolerance Circuit 

The system depicted in Figure 4.16 creates a feedback system that continually ad­

justs the voltage on the balance transistors in the differential latch circuit so that 

the duty cycle is exactly 50 %. However, as with any feedback system, this system 

may be unstable or oscillate. Because the adjustment steps are discrete, oscillations 

in the duty cycle will occur. As mentioned in chapter 3, the duty cycle correction 

circuit should only adjust the latch if the duty cycle deviation exceeds a specified 

value. To prevent duty cycle correction near 50%, a certain number of low order 

bits in the counter can be reset periodically by a second counter. Such a duty cycle 

detection mechanism is shown in Figure 4.19. 

Demonstrating by example, assume for instance, that the lower five bits of an 

up/down counter are reset to a known value every 300 cycles of the sampling clock. 

The known value loaded into the counter depends on the MSB of the up/down 
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Figure 4.19: Block diagram of duty cycle detector with periodic reset 

counter. If the MSB is high (1), and the counter value is thus negative, the lower 

five bits are reset to a two's complement value representation of -1 (11110 for a 

reset of the lower five bits). If the MSB is low (0), the lower five bits are set to 

1 (00001 for a reset of the lower five bits). Using 300 cycles for a five bit reset 

implies that the up/down count increment or decrement during the 300 cycle period 

must exceed 31 to affect the counter value. The difference between the number 

of samples that are high {highCount) and low (lowCount) during this cycle must 

thus exceed 31. Assuming our duty cycle exceeds 50%, highCount will exceed 

lowCount, giving: 

highCount — lowCount > = 31 (4.3) 

Their sum during a 300 cycle period is: 

highCount + lowCount = 300 (4.4) 

Thus: 

highCount — (300 — highCount) > = 31 (4.5) 
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So 

highCount >= 331/2 (4.6) 

Thus highCount must be at least 166, leaving lowCount at 134. With a 300 cycle 

reset period for the five lowest bits in the up/down counter the duty cycle that is 

greater than: 

DutyCycle = 166/300 • 100 % = 55.3 % (4.7) 

is not detected and the input-threshold adjustment controls are not altered by the 

system. Similarly, if the duty cycle is less than 44.7 %, the input-threshold adjust­

ment value is not altered. More generally, for a reset period resetPeriod and reset 

bit-width of numResetBits, the duty cycle range in which the threshold circuitry 

is not activated is given by: 

o (numResetBits—1) 

DutyCycle = 50 % ± „ . , • 100 % (4.8) 

resetPeriod 

Some care must be taken to ensure that the low-order bit reset period is not a mul­

tiple of the predicted period of the output latch signal. If these periods are har­

monically related, unfortunate low-order bit reset timing can cause the counter to 

count faster than intended. This risk can be minimized by ensuring that the number 

of low-order bits reset is sufficiently large that changes in the count value require 

multiple periods of the latch circuit. 

4.3.2 Circuit Simulation 

To demonstrate the feasibility of using the duty cycle detection and correction cir­

cuitry, the DPTPL from Figure 4.17 is used as a design with tunable offset correc­

tion. The addition of transistors M9 and M10 does reduce the maximum operating 

frequency for a 100 MHz alias frequency somewhat, as simulations shows proper 

functionality with input signals up to about 164.1 GHz, rather than the 179.1 GHz 

for the circuit in Figure 4.7. 

Although various transistor mismatch mechanisms can arise in modern CMOS 

processes, for the purpose of verifying the duty cycle correction circuit, only the 

transistor dimensions are modified. Specifically, for the circuit in Figure 4.17, the 
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circuit is made asymmetric by increasing the drawn length of transistor Ml from 

lOOnm to 130nm. The asymmetric DPTPL fails to operate correctly when simu­

lated with a 164.1 GHz signal, and produces an unchanging output signal, and this 

remains true for input signals as low as 64.1 GHz. With the input frequency set 

to 63.1 GHz, the mismatched latch produces an output signal with the proper alias 

period, albeit with a duty cycle of 80 %. Reducing the input frequency further down 

to 44.1 GHz causes the output alias signal to return to a 50 % duty cycle. 

Demonstrating the restoration of higher frequency operation, the voltage on the 

Right pin is increased to 0.45 V, and the mismatched DPTPL function correctly at 

frequencies up to 164.1 GHz, a reduction from the perfectly matching circuit, but 

a big improvement over the mismatched DPTPL without tuning voltages applied. 

The tuning voltage on the Right pin under which the mismatched DPTPL functions 

correctly at a reduced 150.1 GHz ranges from approximately 0.440 V to 0.455 V, 

implying that the DAC output step size should be less than 15mV to correct the 

latch up to frequencies of 150 GHz and requiring a seven bit DAC for a 1.2 V supply 

voltage. 

To verify that the duty cycle detection circuit functions as expected a simulation 

test bench that generates a configurable duty cycle input and periodic low-order bit 

reset signal is created. Using the circuit with a configurable duty cycle tolerance, as 

shown in Figure 4.19, this system is simulated with a 1 ns sample clock and a 300 ns 

low-order bit reset signal. The DAC outputs are connected to a small capacitor, and 

the simulation is run with a duty cycle of 20 %, 42 %, and 47 %. With the number 

of reset bits at 5, according to equation 4.8, the DACs should not produce a voltage 

for any duty cycle that is greater than 044.7]% or less than 55.3 %. The output 

voltages for the left DAC output are plotted in Figure 4.20. The right DAC output 

remains at zero for the duration of the simulation. As expected, the 47 % duty cycle 

signal does not affect the output, while those signals with duty cycles less than the 

threshold cause the DAC output voltage to change. 

The previous results demonstrate that a duty cycle correction circuit can detect 

DC bias, mismatch or offsets that result in a duty cycle that deviates from 50%, 
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Figure 4.20: Left DAC output voltage versus time for various duty cycle input 
signals 

and, in response, produce control voltages that correct these problems. Similarly, 

the simulation with the mismatched DPTPL demonstrates that a biased output can 

be tuned out by introducing tuning transistors that counteract the effects from prob­

lems such as mismatch. Ideally, to verify the complete system, the mismatched 

DPTPL circuit is combined with the duty cycle correction circuit and simulated to 

verify that the tuning voltages are indeed adjusted until the duty cycle is within a 

predefined margin of 50 % and the alias period is as expected. Unfortunately, such 

a simulation, which incorporates hundreds of transistors and combines an oscillator 

circuit operating in excess of 150 GHz with a duty cycle correction mechanism that 

takes on the order of microseconds to change the tuning voltages, requires weeks of 

simulation of time. Instead, to confirm that it is indeed possible to correct any offset 

in the input threshold, the mismatched DPTPL latch is simulated to generate a plot 

that shows the duty cycle versus the correction voltage, demonstrating that as the 

correction voltage monotonically increases, the duty cycle approaches and exceeds 

50 %. This plot is shown in Figure 4.21. These results, combined with the informa­

tion in Figure 4.20 shows that it is indeed possible to perform offset correction on a 

DPTPL with severe mismatch. 

Although some of the above simulations are specific to a DPTPL circuit with 
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Figure 4.21: Mismatched DPTPL duty cycle versus applied offset correction volt­
age with a 150.1 GHz input signal 

differential mismatch, similar offset correction mechanisms can be conceived for 

a variety of latches. The duty cycle detection and output circuitry that drives the 

offset correction mechanism can still be used in the same manner. 

4.4 Summary 

This chapter presented three sampling latch circuits and evaluated their suitability 

as aliasing unit for the ALL architecture. The loosened constraints placed on the 

behaviour of the latch allows for design optimizations that would not normally ap­

ply to standard latch designs in other digital systems, allowing for the possibility of 

building sampling circuits that could operate on input signals that exceed the fmax 

of a process. The suitability of each latch architecture is compared by simulation of 

each design in a 90-nm CMOS process under the same conditions that the latch is 

expected to operate in. To establish a baseline performance figure a single-ended D 

flip-flop from a standard cell library is simulated first, and showing that this design 

fails to operate correctly at frequency above 14 GHz. 

Simulating two differential circuits, the DPTPL and SAFF, reveals much higher 

input frequencies can be achieved. The maximum input frequency, however, de-
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pends on the alias frequency. We find that at lower alias frequencies the latch 

output is indeterministic when the input signal is near the switching threshold of 

the latch. At alias frequencies that are one-thousand times lower than the sampling 

frequency, the maximum input frequencies under which the DPTPL and SAFF op­

erate correctly are 26 GHz and 50 GHz, respectively. In order to overcome the 

indeterminism, a hysteresis buffer is cascaded at the latch output. This improves 

the maximum input frequency to 180 GHz and 230 GHz for the DPTPL and SAFF, 

respectively. To further accurately replicate real-world conditions the simulations 

are repeated with thermal and flicker noise sources that are included through tran­

sient noise. At low alias frequencies this reduces the maximum input frequency at 

which the differential designs operate correctly to less than 5 GHz. With the hys­

teresis buffer cascaded, however, these figures improve to 58 GHz and 76 GHz for 

the DPTPL and SAFF, respectively. 

Finally, this chapter concludes with a set of circuits that can tune out any DC 

bias, mismatch or other imbalances that alter the input threshold of the latch and 

cause the duty cycle of the sampler output to deviate from 50 %. A detection circuit 

with a programmable error margin for duty cycle measurement is presented and 

simulated. This circuit, combined with some output circuitry and latch with offset 

correction transistors, is then shown, through simulations, to be capable of detecting 

and correcting a deliberately and severely mismatched differential DPTPL circuit. 

Through this duty cycle correction and detection mechanism the maximum input 

frequency of the DPTPL is restored to levels close to those observed in the perfectly 

symmetric and matched DPTPL. Although not further explored, the same duty 

cycle detection and correction circuits can be applied with minor modifications to 

different latch designs. 
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Chapter 5 

Analysis and System Simulation 
Results 

5.1 Overview 

To verify that an ALL system can function as a frequency synthesizer, the system 

must be able to achieve lock through the normal PLL pull-in process and maintain 

lock subsequently. For theoretical validation of the behaviour in the locked state 

a mathematical model that describes the locked behaviour of an ALL with ideal 

components has been derived. To further verify that the system can obtain lock and 

still functions with non-ideal components, a transistor level ALL circuit is designed 

and simulated in 90-nm CMOS technology. 

5.2 Non-Linear Model 

Because the aliased signal is discretized in time, and will typically vary between 

two different clock periods, the system never achieves exact phase lock at the PFD. 

In an ordinary PLL the VCO control voltage eventually settles on a fixed value, but 

an ALL that locks with binary sampling can behave like a fractional-N PLL [28] 

or bang-bang PLL (BBPLL) [35], The ALL is similar to a BBPLL in that it never 

achieves true phase lock and cannot be accurately described by traditional Laplace 

domain analysis. Instead, like the BBPLL, the dynamics of the ALL are governed 

by limit cycles in phase-space diagrams that relate the loop filter voltage and phase 
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error. Using a non-linear time-domain model, the period jitter due to a lack of exact 

phase locking can be observed and the ALL behaviour under varying sample clock 

and reference clock frequencies can be examined. Both the frequency ratio and 

relative offset between the sample and reference clocks influence the trajectory of 

the limit cycles observed. 

5.2.1 Model Assumptions 

To properly analyze the ALL, a time domain model for the system operating in 

locked state has been developed, similar to the analysis presented in [35], but 

adapted for an ALL frequency synthesizer. The time-domain description uses ide­

alized models for all components. We assume that the input reference clock and 

sample clock are free of jitter. The VCO frequency does not drift and its instanta­

neous frequency is given by the equation: 

Fvco = (F0 + Kv • VLPF) (5.1) 

where FVco is the VCO period, dependent on the base frequency F0, VCO gain 

Kv and the low-pass filter (LPF) voltage VLPF that controls the VCO. For the PFD 

and charge pump an idealized model is used that will produce a positive or negative 

current for a duration that corresponds linearly to the phase difference between 

the two input signals of the PFD. The LPF is modelled as a series-connected RC 

filter, which essentially provides a proportional and integrating path. The sampler 

is assumed to be ideal; that is the sampler acts as a Dirac comb function applied to 

the VCO signal. To ensure that an ALL still functions with finite speed transistors 

and higher-order effects, a transistor-level simulation is described in section 5.4. 

5.2.2 Model Description 

To model the ALL, a set of finite-difference equations are found that describe the 

next state of the ALL as a function of the previous state in time. The state of 

the system is updated every reference clock cycle and can be described by three 

variables: 
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Figure 5.1: Alias-locked loop timing for non-linear model 

• 5: the offset between the rising edge of the VCO clock and the sampling 

signal 

• 0: the offset between the rising edge of the reference clock and the rising 

edge of the aliased signal, that is, the phase error at the PFD inputs 

• VLPF,SS'- the steady-state voltage on the LPF 

The relation between S and 0 is shown in Figure 5.1. The state variable subscript k 

corresponds to the A>th rising edge on the reference clock. 

The initial timing relationship between the reference and sample clocks is de­

fined by the state variable 0, which represents the PFD input phase error. Knowing 

the initial 4>, the reference clock period TT and the sample clock period Ts further 

define how cf) evolves over time. Since the quantization step size for the PFD phase 

error is always a multiple of the sampling clock period, the initial 0 value deter­

mines the future PFD phase error offset values possible. For instance, if Ts is 1 ns, 

0o is 0.5 ns and Tr is an integer multiple of Ts, then all future 4> values satisfy 

0.5 ± I ns, where / is any integer value. 
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In earlier revisions of the idealized model, 5 was used to determine the dura­

tion of the next alias clock period, TaiiaStk. This method relied on determining the 

average VCO frequency during a given reference clock period and assuming that a 

voltage change in response to a phase error at the PFD was initiated by the rising 

edge of the reference clock, even if the rising edge of the alias clock arrives earlier. 

The average VCO frequency was then determined by averaging the injected charge 

and new steady-state loop filter voltage over the reference clock period. Other equa­

tions, however, assumed that the average filter voltage applied over the alias clock 

period. This model was abandoned due to unrealistic modelling and inconsisten­

cies. 

The updated model presented below corrects these inconsistencies and other 

problems. Instead of using 5 and an average VCO frequency for a given reference 

clock period, the different regions (charge injection and steady state) of the loop 

filter state are stored in a table and saved for subsequent phase error calculations. 

The alias period is instead calculated by integrating the VCO frequency from every 

sample point after the rising edge that starts the alias period. The integration of the 

frequency yields a phase value, and the falling edge of the alias clock is detected 

by a transition, starting from below, across 0.5 for the fractional part of the phase 

value. When the fractional phase value for previous sample point is at or above 0.5 

and the next sample point yields a fractional phase that is below 0.5 again the rising 

edge of the next alias clock has arrived and this sample point defines the period of 

the current alias signal. To cascade a standard frequency divider after the sampling 

latch, like in Figure 3.4, a number of alias clock periods are counted to produce the 

divided down signal. The process is more formally described in Algorithm 1. 

The FractionQ function returns the fractional part of its argument, while the 

Integrate(Signal, StartTime, StopTime) function integrates the frequency of 

the signal in the first argument between the time between the second and third ar­

gument. In the context of Algorithm 1, a time value of 0 as the StartTime implies 

that the Integrate^) function integrates the frequency from the start of the alias 

period. Since the rising edge of the VCO clock does not necessarily align with 
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Algorithm 1 Calculate the period of the feedback signal 
AliasPeriod <— 0 
for i = 1 to DivideFactor do 

repeat 
AliasPeriod <— AliasPeriod + SamplePeriod 
Phase <— OldPhase + Integrate{V CO Frequency, 0, AliasPeriod) 

until Fraction(Phase) > 0.5 
AliasPeriod <— AliasPeriod — SamplePeriod 
repeat 

AliasPeriod <— AliasPeriod + SamplePeriod 
Phase <— OldPhase + I ntegrate(V CO Frequency, 0, AliasPeriod) 

until Fraction(Phase) < 0.5 
end for 
return AliasPeriod 

the rising edge of the alias clock (it is offset by some amount 5), the phase of the 

VCO signal does not start at zero, and starts off at the fractional part of the phase 

remaining from the previous alias clock cycle. 

Having calculated the period of the alias signal, Taiias, and knowing the previ­

ous PFD phase error <3>fe and reference clock period, Tr, the next PFD phase error 

Phik+\ can be found. To find the next phase error at the PFD, <f>k+\, the differ­

ence between the reference clock period and the alias signal period is added to the 

previous PFD phase error: 

4>k+i = 4>k + TaHas - Tr (5.2) 

where the reference clock period, Tr, is subtracted from the alias period, Taiias. 

Having found the PFD phase error, the voltage on the low-pass filter can be 

calculated. Using an RC filter results in a waveform like that shown in Figure 

5.2, with the instantaneous VCO frequency given by the loop filter voltage, these 

voltages are used to calculate the next alias period. With an RC filter, the charge 

pump current into the resistor gives rise to an immediate step in output voltage, 

given by the charge pump current, Icp, and the resistance value in the RC filter, R. 

The charge pump remains enabled for a duration of <f>, charging the capacitance C 

at a rate of Icp/C. When the charge pump is turned off, the voltage step across 

the resistor drop disappears, and the new steady-state voltage of the loop filter has 
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Figure 5.2: Low-pass Filter Waveform 

changed by <f> • Icp/C 

5.3 Non-Linear Model Simulation 

With the equations that relate the loop filter voltage and alias signal period defined, 

the loop is closed, and the ALL model can be simulated. The actual implementation 

of the model is done in C, and the complete source code is available in Appendix 

B. For all subsequent simulation results, the parameters used for the simulations 

are identical, except when otherwise noted. The intention of these simulations is to 

compare the impact of different parameters on the behaviour of the ALL, rather than 

demonstrating the process for a particular choice of settings. An interesting plot that 

can be generated is a phase-space diagram shows the evolution of the PFD phase 

error, <f>, and the steady-state loop filter voltage, VLPF,SS over time. For the results 

presented in subsequent simulations the baseline ALL is configured with a target 

VCO frequency of 10.1 GHz and a sample frequency of 1 GHz. To demonstrate the 

locking behaviour, this ALL configuration is simulated with an initial PFD phase 

error 0 of -9.5 ns. The resultant phase-space plot with 0 and VLPF,SS is shown in 

Figure 5.3. The discrete steps in the phase-error 4> are clearly visible, and the plot 

demonstrates that the PFD phase error between the alias signal and reference signal 

is reduced as the ALL locks. 
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Figure 5.3: Phase-space diagram of PFD phase error 0 and the steady-state loop 
filter voltage with a -9.5 ns initial phase-error 

When setting the initial PFD phase error 4> to -0.5 ns, the phase-space plot in 

Figure 5.4 shows that the PFD phase error remains bounded, and a four-point tra­

jectory is traced out. Although not clearly visible in Figure 5.3, the same trajectory 

is evident when examining the centre of that plot. The bounded orbit indicates that 

the phase error at the PFD is stable. The initial PFD phase error choice of -0.5 ns, 

which exactly half of the sample period, results in a PFD phase error that jumps 

between -0.5 ns and 0.5 ns. 

Changing the initial PFD phase error <j> to -0.1 ns gives rise to a more compli­

cated trajectory in the phase-space plot of Figure 5.5. This change in offset between 

the sample clock and reference clock changes the number of steps in the orbit. With 

a sampling period of 1 ns, the PFD phase error for a locked ALL is either -0.1 ns or 

0.9 ns, but the steady-state voltage on the loop filter varies over a larger range than 

the simple orbit in Figure 5.4. 

Although the PFD phase error 4> is interesting, it does not show how well the 

VCO signal tracks the reference clock, that is, the phase error between the VCO 

signal and the reference clock is not shown. This VCO phase error, I(J, provides 
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Figure 5.6: Phase-space diagram of VCO phase error ip and the steady-state loop 
filter voltage with a -9.5 ns initial phase-error 

information on the statistics of the output signal produced by the VCO and can be 

used to predict jitter and phase noise for different sample and reference frequencies. 

In order to calculate ip, at the start of the simulation the initial PFD phase error <p 

is scaled by the effective frequency multiplication factor achieved by the system 

and this value is used as the initial VCO phase error ip. Then, for each reference 

clock, the VCO phase error ip is updated by taking the number of ideal VCO clock 

cycles (which represents the phase) and using this phase value to calculate the time 

difference between the actual and ideal VCO signals. The actual VCO signal time is 

based on loop filter voltages previously stored in a table, and which were calculated 

when <p was determined. Plotting the data from the simulations used for Figures 5.3, 

5.4, and 5.5, but now with ip, the discrete steps disappear and the VCO phase error 

is reduced to a value close to zero. Figures 5.6, 5.7, and 5.8 show the corresponding 

phase-space plots with ip and the steady-state voltage on the loop filter. 
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5.3.1 Jitter and Phase Noise 

Comparing the VCO phase error %jj for Figures 5.7 and 5.8, it is evident that the 

peak-to-peak period jitter for both cases is roughly 0.2 ps. Repeating the same 

experiment for a range of initial PFD phase errors 0 from -0.5 ns down to -0.05 ns 

shows the same peak-to-peak period jitter of 0.2 ps. However, as the initial 4> value 

is set to values that approach zero from -0.05 ps, the period jitter increases until 

a new upper-bound is reached, with a peak-to-peak period jitter of approximately 

lOps. Figures 5.9 and 5.10 show the changes in the limit cycle orbits as the initial 

PFD phase error </> is decreased toward zero. 

Comparing the frequency, as given by the steady-state voltage on the loop fil­

ter, for different offsets between the sample and reference clock yield interesting 

information as well. Generating a histogram plot for the steady-state filter voltages 

essentially gives an indication of the frequency spectrum of the VCO output signal. 

One should be reminded that such a histogram of steady-state filter voltages does 

not include the spurious tones that arise from temporary spikes in the loop filter 

voltage when the charge pump is enabled. Such spikes are especially prominent in 
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Figure 5.10: Phase-space diagram of VCO phase error ip and the steady-state loop 
filter voltage with a -0.0005 ns initial phase-error 

a simple RC filter, and can be significantly reduced by using a higher-order loop 

filter. For this histogram, a comparison is made between an initial phase-error 4> of 

-0.5 ns and -0.001 ns by running the simulation for 10,000 reference clock cycles 

and counting the steady-state loop filter voltages into one of 100 bins. To demon­

strate the effect the loop filter has on the location of the spurious tones, the -0.5 ns 

simulation is also run with a loop filter with a narrower bandwidth. This loop filter 

has its RC time constant increased tenfold, scaling the offset frequency of the spu­

rious tones tenfold and decreasing the PLL natural frequency by a factor of \ / l0-

The resultant histogram is plotted in Figure 5.11. The loop filter bandwidth can be 

further narrowed to move these spurious tones so close to the carrier frequency that 

other noise effects dominate over limit cycle effects. 

Although previous plots showed that the period jitter was much more signifi­

cant for a phase-error offset close to zero, from this plot it is evident that the offset 

between the reference clock and sample clock does not significantly affect the fre­

quency deviation from the nominal output frequency. In this particular configura­

tion, the steady-state filter voltage varies between roughly 0.09999 V and 0.10001 V, 
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Figure 5.11: Histogram plot comparing the steady-state frequency distribution for 
initial phase-errors of -0.5 ns and -0.001 ns 
and the effect of loop filter bandwidth changes. 

corresponding to a frequency deviation of ± 10 kHz. However, while an initial phase 

offset of-0.001 ns produces a broadly distributed frequency spectrum, using -0.5 ns 

produces strong spurious tones at offset frequencies of 10 kHz. To eliminate strong-

spurs close to the desired frequency in this configuration, an initial phase offset that 

is closer to zero may produce a more desirable output spectrum. In the more general 

case, a limit cycle that includes many steps in its orbit will distribute the VCO signal 

more evenly over the range of frequencies produced. The width of this distribution 

of frequencies or location of spurious tones can be brought closer to the desired 

output frequency by increasing the sampling frequency or changing the loop gain 

of ALL by adjusting the loop filter parameters. 

5.3.2 Impact of Sample and Reference Signals Choices 

A number of choices can be made in the configuration of the sample and reference 

clock frequencies and their ratio. This subsection explores some of the effects from 

different selections for the alias and reference clock signals. 

84 

W W 

5000 

4000 
c 
8 3000 
c 

2000 

1000 



Section 5.3: Non-Linear Model Simulation 

5.3.2.1 Increasing the Sampling Clock Frequency 

Simulations indicate that increasing the sampling clock frequency benefits both the 

peak-to-peak period jitter and maximum frequency deviation. Increasing the sam­

pling frequency by a certain factor reduces the peak-to-peak period jitter by the 

same factor, both for small limit cycles like those in Figure 5.7 and large limit cy­

cles like those in Figure 5.10. In the frequency spectrum the maximum frequency 

deviation and frequency offset for spurious tones is scaled in the same manner. This 

is also intuitive, as an increase in the sampling frequency reduces the minimum time 

step in the phase discretization, and thus reduces the minimum step in correction 

voltages on the loop filter. 

5.3.2.2 Non-Integer Ratio of Sample and Reference Clock Frequencies 

When the period of the reference is not a multiple of the sampling period, the alias 

clock will alternate between two clock periods such that the average alias period 

matches the reference clock. To compare the behaviour under this situation to the 

previously simulated system the target VCO frequency is changed slightly from 

10.1 GHz and set to 10.0952 GHz, which corresponds to a reference clock period 

and average alias signal period of 10.5 ns. Figure 5.12 shows the phase-space dia­

gram for the VCO phase-error ip vs the steady-state loop filter voltage. Although 

the orbit shape is different from the case where the reference clock is 10 ns, the 

peak-to-peak period jitter and maximum frequency deviation are identical, at ap­

proximately 0.2 ps and ±10 kHz, respectively. A histogram plot for the distribution 

of frequencies shows the same spectral peaks as Figure 5.11. 

Changing the initial PFD phase error </> from -0.5 ns to -0.001 ns for a reference 

signal at 10.5 ns shows that the maximum period jitter is approximately 0.3 ps, and 

thus has not degraded significantly. Setting the initial $ to -0.25 ns, however, results 

in a peak-to-peak period jitter of -5 ps. 

Generalizing the results of initial PFD phase error offsets further, simulations 

indicate that for a given selection of reference and sample frequencies certain off­

sets between the sample and reference signals give rise to a peak-to-peak period 
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Figure 5.12: Phase-space diagram of VCO phase error ip and the steady-state loop 
filter voltage with a -0.5 ns initial phase-error for a toggling alias period 

jitter that is much larger than the typical case. From observation, these modes of 

operation with large peak-to-peak period jitter seem to arise around offset frequen­

cies that are near zero. In other cases, a large peak-to-peak jitter is observed when 

the offset that is near the remainder or half of the remainder obtained when dividing 

the reference and alias clock periods. 

Further simulations with a variety of sample and reference clock period com­

binations show that generally the larger least common multiple (LCM) of the two 

clock periods, the larger the peak-to-peak period jitter. From observations, a larger 

LCM for the two clock periods results in a limit cycle trajectory with more steps and 

more complicated geometry, typically leading to a larger tracking error between the 

VCO and reference clock. 

5.3.2.3 Subsampling and Frequency Division 

In some cases, the alias frequency produced by the sampler can be impractically 

high. In these situations, a standard frequency divider can be cascaded after the 

frequency synthesizer. To examine the effect of a subsampler and frequency divider 
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on the behaviour of an ALL system the non-linear model includes a parameter that 

models an integer-N frequency divider after the subsampling latch. 

When maintaining the same reference frequency as earlier simulations (10 ns) 

and setting the frequency divide factor to two will cause the VCO to lock at 10.2 GHz. 

Examining the phase-space diagram, the orbit is identical to Figure 5.7, but offset 

by 0.1 V and centred at 0.2 V. The peak-to-peak period jitter is identical and the 

spurious tones are of the same magnitude and at the same frequency offset. 

When changing the reference frequency to 20 ns and setting the divide factor to 

two the VCO locks at 10.1 GHz the orbit is again identical to the base case, with the 

same figures for peak-to-peak period jitter and offset frequencies for the spurious 

tones. 

For cases where the desired VCO frequency requires a ratio of sample and ref­

erence clock frequencies that is not integer, a divider can be added to make this 

so. For instance, in a previous simulation run the desired VCO frequency was 

10.0952 GHz. This same frequency is also produced when using a reference fre­

quency of 21 ns and a divide-by-two frequency divider after the subsampling latch. 

The resultant phase-space orbit that shows ip and the steady-state loop filter voltage 

does change from that of Figure 5.12, and instead follows the same trajectory as 

the system in Figure 5.7, albeit at a different loop filter voltage. Again, the peak-to-

peak period jitter and frequency offsets of the spurious tones are unchanged by the 

addition of a divider in the feedback path. 

Generalizing, cascading a frequency divider in the feedback path does not bene­

fit the peak-to-peak period jitter or phase-noise that is attributable to the discretiza­

tion of the PFD phase error. This is expected, since the frequency division does not 

change the minimum step size of the phase-error. Consequently, the steps in loop 

filter correction voltages remain the same as the case where a frequency divider is 

not present. 
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5.4 90-nm CMOS Implementation 

Although the theoretical model described in the previous section is useful in pre­

dicting how an idealized ALL system would behave, such a model would be of little 

use if practical implementations in silicon would not behave in the same manner. 

To verify that a physical ALL frequency synthesizer can work, a circuit implemen­

tation has been developed in a 90-nm process and is simulated with transistor-level 

SPICE models provided by the foundry. The 90-nm ALL design uses an LC tank 

oscillator, a DPTPL as a sampling latch, a latch-based PFD, a differential charge-

pump, and an ideal RC loop filter. The simulation parameters for the results pre­

sented in this section are available in Appendix A and schematic diagrams for the 

circuits are provided in Appendix C. 

5.4.1 90-nm Simulation Versus Non-Linear Model 

To verify that the non-linear model simulation results can be used to predict the 

behaviour of physical implementations, the 90-nm design is simulated with ini­

tial conditions that closely match those used for the results plotted in Figure 5.3. 

With the reference frequency set to 100 MHz, the sampling frequency at 1 GHz 

and the loop filter voltage at a level that ensures that the VCO is oscillating at a 

frequency close to 10.1 GHz a short simulation reveals that the VCO gain is ap­

proximately 1.2 GHz/V. From this short simulation it is also determined that the 

steady-state loop filter voltage required to produces a 10.1 GHz signal is 1.0655 V. 

The reference clock signal is then adjusted to produce an initial PFD phase error <j> 

of -9.5 ns. Measuring the charge-pump current produced at the desired loop filter 

voltage, however, shows that the magnitude of the current depends on whether the 

charge-pump is sinking or sourcing current. When sinking current, the measured 

current is 115 uA, but the sourcing current is -215 uA. Since the non-linear model 

assumes that these currents are equal some discrepancy can be expected. With the 

initial 4> set to -9.5 ns, the ALL will initially be sinking current. 

The 90-nm design is then simulated for 5 us, which corresponds to 500 refer-
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Figure 5.13: Phase-space diagram of PFD phase error <p and the steady-state loop 
filter voltage with a -9.5 ns initial phase-error, obtained from a 90-nm transistor-
level simulation 

ence clock cycles. Extracting the PFD and VCO phase errors <p and ip along with 

the steady-state loop filter voltage allows us to compare the 90-nm data directly 

with the simulation results of the non-linear model. The non-linear model is sim­

ulated with the settings that closely match the 90-nm design. To match the initial 

operating charge-pump current in the 90-nm circuit simulation the current is also 

set to ±115 uA for the non-linear model. 

Phase-space diagrams that combine the simulation results of the non-linear 

model and 90-nm design are plotted in Figures 5.13 and 5.14. It is clear from 

these plots that the results from non-linear model are in good agreement with sim­

ulation data from the 90-nm design for the initial 41 reference clock cycles. After 

that point, however, the phase-error becomes positive, and the charge-pump current 

levels of the model and 90-nm design no longer match, with the model assuming 

a charge pump current of -115uA while the 90-nm design produces a current of 

-215 uA. The higher charge-pump current effectively increases the loop-gain for 

the system in the 90-nm design and reduces the phase-error overshoot when <fi is 

positive. 
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Figure 5.14: Phase-space diagram of VCO phase error ip and the steady-state loop 
filter voltage with a -9.5 ns initial phase-error, obtained from a 90-nm transistor-
level simulation 

Examining the steady-state behaviour of the 90-nm simulation as it achieves 

phase-lock reveals that the trajectory followed in phase-space for ip and the steady-

state loop filter voltage does not match the four-point orbit depicted in Figure 5.7. 

Instead, as shown in Figure 5.15, the trajectory traced out is more like that shown in 

Figure 5.8. This type of trajectory arises because the sourcing and sinking charge-

pump currents are not equal. Thus, while the PFD phase error </> toggles between 

-0.5 ns and 0.5 ns, the charge injection into the loop filter is not equal in magnitude 

for the same phase-error magnitudes. One charge injection at a PFD phase error of 

0.5 ns requires multiple charge injections at -0.5 ns to return to the same voltage, 

thus generating a triangular shape orbit. As expected, the trajectories exhibit more 

variation and do not follow a tightly bound limit cycle like the ideal models. Several 

reasons, including limited simulator step size resolution and the inclusion of many 

higher-order effects that are modelled in a transistor-level simulation, can account 

for the variation in trajectories. What can be observed and matches predictions by 

the non-linear model, however, is that the peak-to-peak period jitter is still roughly 

0.2 ps. This figure is good in comparison to other frequency synthesis PLLs at this 
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Figure 5.15: Phase-space diagram of VCO phase error ip and the steady-state loop 
filter voltage with a -0.5 ns initial phase-error, obtained from a 90-nm transistor-
level simulation 

frequency, but it must be remembered that the 90-nm CMOS simulations do not 

include any device noise. 

5.4.2 90-nm Pull-in Simulation 

Because the non-linear model as developed and presented in this thesis is only valid 

when the phase-error does not exceed one reference clock cycle, the 90-nm design 

is simulated outside this range. The pull-in process during which PLLs approach 

the lock-range is typically a slower process because phase-detectors cannot detect 

phase-errors that exceed one reference clock cycle (2n). During pull-in, the limited 

operating range for phase detectors causes cycle-slipping behaviour that temporar­

ily reverses or stalls on the path toward phase-locking. Like typical PLLs, these 

cycle slips are visible on loop filter voltage against time as short spikes, temporary 

horizontal steps or decreasing slopes in the loop-filter voltage on an otherwise in­

creasing slope (for cases where the loop filter voltage needs to increase to achieve 

lock). 

Figure 5.16 demonstrates the 90-nm implementation of the ALL completing the 
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Figure 5.16: Loop filter voltage versus time, showing the ALL pull-in process and 
locking at 10.1 GHz 

pull-in process and locking at 10.1 GHz. As expected, the pull-in and lock process 

is similar to traditional PLLs, with the effects of cycle slip seen during the pull-in 

step as the VCO frequency increases to 10.1 GHz. 

5.5 Summary 

This chapter described a non-linear model developed to simulate the ALL architec­

ture. Subsequent simulations of this model demonstrate that an ideal implementa­

tion of the ALL architecture can obtain and maintain lock between the reference 

and VCO signals. A more detailed look at different configurations for the refer­

ence and sample clock frequencies, specifically the ratio of these signals and the 

time offset between them, reveals different limit cycles in phase-space plots of the 

VCO and PFD phase errors and loop filter voltages. The choice of sample and 

reference clock offsets generally has little impact on the VCO output signal, with 

peak-to-peak period jitter mostly unaffected, except for certain specific choices of 

time offsets between the sample and reference clocks or reference and sample clock 

periods that only share a large LCM. It is found that the most direct way of reduc-
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ing period jitter and the offset frequency of spurious tones without altering the loop 

dynamics of the ALL is to increase the sampling frequency, effectively reducing the 

PFD phase error quantization step size that results from the sampling operation. 

The validity of the results from the non-linear model are corroborated by a 90-

nm implementation of an ALL circuit, showing good agreement between simula­

tion results from the non-linear model and the transistor-level circuits of the 90-nm 

design. To verify the pull-in process of the ALL, the 90-nm implementation is sim­

ulated with a large initial frequency error. This simulation reveals that the ALL 

behaves similar to traditional PLLs during the pull-in process. The simulation re­

sults both at the non-linear model level and transistor level reveal that is indeed 

feasible to perform frequency reduction in the feedback path by subsampling the 

VCO signal and locking into the lower-frequency alias signal produced by this op­

eration. 
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Chapter 6 

Conclusion 

In this thesis, an ALL architecture is presented. This novel approach to frequency 

synthesis replaces the frequency divider in the feedback path between the local os­

cillator and phase detector by a sampling latch operated well below the Nyquist 

frequency of the oscillator signal. The subsampling operation produces an alias fre­

quency that is compared to a reference frequency and used to lock the ALL. Using 

a sampling latch rather than a traditional frequency divider significantly loosens the 

constraints on the feedback circuit. While a frequency divider's output operates 

at half the frequency of the oscillator, a sampling latch need only operate at the 

sampling frequency. Furthermore, a sampling latch in this application is tolerant of 

reset delays and clock-to-output propagation delays that span multiple cycle of the 

oscillator. Additionally, the sampling window for these latches can span across mul­

tiple cycles of the oscillator, as long as the latch consistently represents the phase 

of the sampled input signal. The loose constraints on the sampling latch lead to the 

possibility of building an ALL-based frequency synthesizer at frequencies near or 

exceeding the fmax of a process. Additionally, because the sampling operates at a 

much lower frequency than a frequency divider, power consumption for sampling 

latches is lower than frequency dividers operating on equivalent input frequencies. 
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6.1 Accomplishments 

This thesis has shown that it is indeed feasible to build a frequency synthesizer that 

uses a sampling latch for frequency reduction in the feedback path. Simulations 

with both a theoretical model of the ALL and a transistor-level implementation in 

90-nm CMOS technology confirm that aliasing can be used instead of frequency 

division. Furthermore, the predictions from the idealized theoretical model match 

up very well with the more detailed and realistic simulation results of the 90-nm 

implementation of the ALL. 

Several candidate sampling latch circuits have been evaluated, and show that 

appropriate differential latch designs may be able to operate at frequencies near or 

exceeding the fmax of a process. To overcome indeterminism near the switching 

threshold of these latches a hysteresis buffer can be cascaded to ensure proper op­

eration when the ratio of sample to alias frequency is high. For DC bias, mismatch 

and asymmetry in a latch that arise from process variations, a duty-cycle detection 

mechanism has been developed, and has been shown to able to re-adjust the switch­

ing threshold of a purposely mismatched differential latch design, restoring high 

frequency operation with such a correction mechanism enabled. Transient simula­

tions with a SAFF based-latch in 90-nm process technology show proper aliasing 

at 230 GHz, which exceeds the 170 GHz fmax of a typical 90-nm process by 30%, 

and it is likely that better optimized latches can be designed. 

6.2 Future Work 

Although this thesis has laid much of the groundwork for the development of an 

ALL, several of the concepts presented in this work require further investigation. 

More in depth study of several of the concepts introduced could be carried out. Most 

importantly to establishing the ALL approach as a feasible method of frequency 

synthesis, however, is actual verification of this concept through an implementation 

in silicon. In fact, several chips that test various aspects of ALL frequency synthe­

sizers can be implemented. A reasonable first goal may be to implement a lower 
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frequency ALL that demonstrates the viability of this approach in silicon. Based 

on the results from this first design, additional designs can make a push for higher 

frequencies. 

For this thesis only two high performance sampling latch circuits were evalu­

ated. It is likely that better performing latch architectures for subsampling exist and 

it may be interesting to examine a wider variety of latch architectures. Although 

simulations can give an indication of the performance achievable with these cir­

cuits, more reliable verification should be done through actual implementation in 

silicon. One approach may be to combine an integrated VCO with a number of 

candidate latch designs onto a chip, fabricate this chip, and perform a side-by-side 

comparison of various designs. Results from the physical implementation of these 

latches can then be correlated to the performance figures predicted by simulations. 

From an architecture perspective several alternative implementation approaches 

could be examined as well. Because the phase error is discretized, this design 

naturally lends itself to further digital processing. Thus, rather than relying on 

analog charge-pumps, phase detectors and loop filters, the phase error could be 

digitized and entirely processed by digital means. 

One outstanding problem that may arise in an ALL is that the VCO frequency 

is not uniquely determinable from just the sample and reference frequencies. To 

overcome this, multiple sampling frequencies could be used to uniquely determine 

the frequency the VCO is operating at. This would require the development and 

evaluation of some system that utilizes multiple sampling frequencies to ensure the 

VCO can only lock at the desired frequency. 

Finally, a more in depth analysis of the effect of discretizing phase error may 

prove useful. Although the simulation model described in this thesis appears to be 

accurate in predicting the jitter and distribution of frequencies of the VCO signal, it 

is restricted to a charge-pump based ALL with a simple RC filter. This simulation 

model could be made more generic and extended to a variety of architectures used 

in PLLs. For those more mathematically inclined, a more formal analysis of the 

conditions that give rise to limit cycles in phase-space plots of the loop-filter voltage 
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and phase error might be interesting. A mathematically rigorous analysis could 

be useful for developing a concise description of the conditions that give rise to 

optimal output signal statistics. This type of model should provide guidance on 

appropriate choices for the reference and sample clock frequencies and the timing 

and frequency relationship between these clocks. 
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Appendix A 

Spice Circuit Simulation Settings 

All transistor-level simulations used the Spectre simulator by Cadence, with a ver­

sion string of CDS: spectre version 6.0.2 11/10/2005 17:40 (usimlxl09). The de­

sign kit used for the simulations is the CMC Microsystems cmos90nm.3.0 release 

of ST Microelectronics' 90 nm General Purpose CMOS design kit. The simulation 

models in this design kit are not intended for RF design, and do not model cer­

tain parameters such as gate resistance, and simulation results at frequencies near 

or exceeding fmax are therefore most likely unrealistically optimistic. The process 

corners for all circuit simulations is set to nominal for every device type. 

A.l Sample Circuit Simulations 

All simulations available in section 4.2 are done using transient analysis use the 

simulation parameters set out in table A.l. All these parameters are the default 

when simulated using errpreset = conservative, with exception of the step and 

maxstep parameters, which have been set manually. These parameters are further 

described in the document Virtuoso Spectre Circuit Simulator Reference, Product 

Version 6.0, November 2005 and is available from Cadence Design Systems Inc. 

The supply voltage is set to 1.2 V. The simulation parameters and transient noise 

settings are given in table A.l and are valid for all circuits, except the standard cell 

D flip-flop in section 4.2.2. 
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A.2: Duty Cycle Detection Simulation 

Table A. 1: Latch circuit transient noise simulation settings 

Parameter 
noiseseed 
noisefmax 
noisescale 
noisefmin 
noisetmin 

Value 
1 

ITHz 
1 

10 MHz 
default (1/noisefmax) 

Table A.2: Latch circuit transient simulation parameters 

Parameter 
step 
maxstep 
ic 
skipdc 
reltol 
abstol(I) 
abstol(V) 
temp 
tnom 
tempeffects 
errpreset 
method 
lteratio 
relref 
cmin 
gmin 
maxrsd 
mos_method 
mos_vres 

Value 
lOOfs 
200 fs 

all 
no 

le-06 
lpA 
luV 
27 C 
27 C 
all 

conservative 
gear2only 

10 
alllocal 

OF 
lfS 
0Q 

s 
50 mV 

A.2 Duty Cycle Detection Simulation 

The data for Figure 4.20 was obtained by simulating the design for 1 us with a sup­

ply voltage of 1 V and with the simulation parameters set out in table A.3. The 

remaining simulation data provided in section 4.3 are simulated with a supply volt­

age of 1.2 V and the simulation parameters in table A.2. 
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A.3: 90-nm ALL model 

Table A.3: Left DAC output voltage transient simulation parameters 

Parameter 
step 
maxstep 
ic 
skipdc 
reltol 
abstol(I) 
abstol(V) 
temp 
tnom 
tempeffects 
errpreset 
method 
Iteratio 
relref 
cmin 
gmin 
maxrsd 
mos_method 
mosjvres 

Value 
800 ps 
80 ns 

all 
no 

10e-03 
lpA 
luV 
27 C 
27 C 
all 

liberal 
gear2 
3.5 

allglobal 
OF 
IpS 

on 
s 

50 mV 

A.3 90-nm ALL model 

The 90-nm simulation used to generate the plots in Figures 5.13, 5.14 and 5.15 was 

simulated for 5 us with standard simulator settings. These parameters are provided 

in table A.4. The pull-in simulation for figure 5.16 was simulated for 10 us, with 

all the same parameters as in table A.4. Unlike simulations of the sampling latch 

circuits and duty cycle correction circuits, these circuits are simulated with a supply 

voltage of 1 V. 
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A3: 90-nm ALL model 

Table A.4: Simulation parameters for generation of phase-space orbit and pull-in 
plots 

Parameter 
step 
maxstep 
ic 
skipdc 
reltol 
abstol(I) 
abstol(V) 
temp 
tnom 
tempeffects 
errpreset 
method 
Iteratio 
relref 
cmin 
gmin 
maxrsd 
mos_method 
mos_vres 

Value 
5 ns 

100 ns 
all 
no 

le-03 
lpA 
luV 
27 C 
27 C 
all 

moderate 
traponly 

3.5 
sigglobal 

OF 
IpS 

on 
s 

50 mV 
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Appendix B 

Source Code 

B.l Alias-Locked Loop Simulation Program 
/* Copyright 2008 Leendert van den Berg 

* C—based implementation of alias —locked loop non—linear model 
* Uses the reference clock time to recalculate the state each cycle 
* 
* Compile with: 
* gcc —o phaseAll —Im phaseAll. c 
*/ 

#include < s t d i o . h > 
#include < s t d l i b . h> 
#include <math .h> 

#define NUM.ARGS (13) 
#define NDIV.START (0) 
#define VC-TABLEiEN (64) 
#define MSGJLEN (256) 
#define MODR(x,y) ( (x ) 
#define INC.VC(var) (var 
#define NO-PHI (999.OL) 

typedef s truct { 
long double phaseRem; 
long double limeRem ; 
long double phi ; 
long double Vc; 

} Vc .h i s to ry ; 

int ma in ( in t argc , char * a r g v [ ] ) 
{ 

int num. i te r , i , j , Ndiv , numVco, numRef, Div; 
long double vcoPhase , newPhi , s q r t . a , s q r t . b , s q r t . c ; 
long double Tv, Ts , De l t a ; 
long double Tr, Phi, Iin , C, R, Kv, F0; 
long double Vc, VcEff; 
long double c u r r e n t . t i m e ; 
long double Psi , T ta rge t ; 
long double VcOld; 
long double phase , newPhase ; 
long double Tal ias , i n t P a r t ; 
long double secTime; 
char msgfMSGXEN]; 
Vc .h i s to ry v c . t a b l e [VC.TABLEXEN]; 
int vc.head = 0, v c . t a i l = 0 ; 
if (argc != NUMARGS) { 

round (( x )/( y ))*( y )) 
( ( ( v a r ) + l ) % VC.TABLEXEN)) 
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B.l: Alias-Locked Loop Simulation Program 

p r i n t f ("Format: %s <number of sample i t e r a t i o n s > <Sample period (Ts)> " 
"<Sample delay from VCO (DeltaO)> <Reference period (Tr)> " 
"<Reference lead from sample (PhiO)> <Curren t ( I )> <Loop Cap. (C)> " 
"<Loop Res. (R)> <VCO gain (Kv)> <VCO base (F0)> <F i 1 ter Voltage " 
"(Vc)> <Div ide r r a t i o ( D i v ) > \ n " , a r g v [ 0 ] ) ; 

return 1; 
} e lse { 

num. i t e r = a toi ( argv [ 1 ] ) ; 
Ts = s t r t o l d ( a r g v [2] , NULL); 
Delta = s t r t o l d (argv [3] , NULL); 
Tr = s t r t o l d ( a r g v [4] , NULL); 
Phi = s t r t o l d ( a r g v [5] , NULL); 
l in = s t r t o l d ( a r g v [6] , NULL); 
C = s t r t o l d (argv [7] , NULL); 
R = s t r t o l d (argv [8] , NULL); 
Kv = s t r t o l d ( a r g v [9] , NULL); 
FO = s t r t o l d ( a r g v [10] , NULL); 
Vc = s t r t o l d ( a r g v [1 1] , NULL); 
Div = a t o i ( a r g v [ 1 2 ] ) ; 
p r i n t f ("# Running %d i t e r a t i o n s , Ts = %Le, DeltaO = %Le\n" , 

num. i t e r , Ts , D e l t a ) ; 
p r i n t f ("# Tr = %Le, PhiO = %Le, l in = %Le, \ n " , T r , Ph i , l i n ) ; 
p r i n t f ("# C = %Le, R=%Lf, Kv = %Le, FO = %Le\n", C, R, Kv, FO); 
p r i n t f ("# Vc = %Lf, Div=%d\n" , Vc, Div) ; 
Tv = 1/(F0 + Kv * Vc); 
/* Calculate target frequency based on closes current frequency that 

* matches sampling + reference frequencies : 
* Ttarget = 1 / 
* ( ratio of sample/ vco frequencies + Div * reference frequency) 
*/ 

Tta rge t = 1/(( round (Ts/Tv )/Ts ) + D i v / T r ) ; 
p r i n t f ( " # Fref = %Le, Fsample = %Le, Fvco = %Le\n" , 1/Tr, 1/Ts, 1/Tv); 
p r i n t f ( " # Target Tv = %11.7Le (%Le) \n" , T t a r g e t , 1 / T t a r g e t ) ; 
p r i n t f ("# modr = %0.8Le; remainder l = %0.8Le\n" , M0DR(Ts, Tv) , 

remainder l ( T s . T v ) ) ; 
} 
c u r r e n t . t i m e = 0; 
/* Initial phase error between VCO 

* = number of sample periods in phi , scaled by the ratio of sample 
* frequency to reference frequency times the ideal VCO clock , minus the 
* small time difference given by delta. 
* 
* ==> Round up Phi up to nearest multiple fraction of reference period 
* (fraction as in number of samples per reference clock). Times the target 
* VCO clock (i.e. if Phi is 10% of, VCO phase error is 10 % of the VCO 
* clock, less the offset between VCO clock and sampler). This fraction is 
* further corrected for the division factor 
*/ 

Psi = ( c e i l l ( P h i / T s ) * D i v * T s / T r ) * T ta rge t - De l t a ; 
numVco = 0; 
numRef = 0 ; 
vcoPhase = 0; 

/* Calculate initial phase offset between sample clock and VCO using 
* initial VCO frequency 
*/ 

Tv = 1/(F0 + Kv * Vc); 
/* Initial phase before new voltage takes effect from delta */ 
phase = De l t a /Tv ; 

newPhase = 0.0L; 

p r i n t f ( " # i n d 2 Time 3 Ndiv 
7 Tv 

p r i n t f ( " # Psi i n i t i a l = %10Le , 
c e i l l ( P h i / T s ) * T s / T r ) ; 
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4 Delta 5 phi 6 Vc" 
10 P s i \ n " ) ; 

Ph i /Tr = %Lf ( cei l=%Lf ) \ n " , P s i , Ph i /T r , 



B.l: Alias-Locked Loop Simulation Program 

/* Find the alias period for the first section of the waveform (no charging) 
* => Phi - 0 */ 

Ndiv = NDIV_START; 
for ( j = 0 ; j < Div; j++) { 

do { 
Ndiv++; 
Ta l ias = Ndiv*Ts; 
if (Phi - Tr + Ta l ias < 0 ) { 

/* Still in flat section of Vc */ 
newPhase = phase + (FO + Kv * Vc) * Tal ias ; 

} e lse { 
/* Must keep track of charging section now, as reference edge 

* has passed and Vc is changing */ 
newPhi = Phi - Tr + T a l i a s ; 
newPhase = phase + (FO + Kv * Vc) * Tal ias + 

newPhi * Iin * Kv * ( R + fabsl (newPhi ) / C / 2 ) ; 
} 

} while (modfl (newPhase , & i n t P a r t ) < 0 .5L) ; 
Nd iv—; 
do { 

Ndiv++; 
Ta l i a s = Ndiv*Ts; 
if (Phi - Tr + Ta l i a s < 0 ) { 

/* Still in flat section of Vc */ 
newPhase = phase + (FO + Kv * Vc) * Tal ias ; 

} e lse { 
/* Must keep track of charging section now, as reference edge 

* has passed and Vc is changing */ 
newPhi = Phi - Tr + Ta l ias ; 
newPhase = phase + (FO + Kv * Vc) * Tal ias + 

newPhi * Iin * Kv * ( R + fabsl ( newPhi ) / C / 2 ) ; 
} 

} while (modfl (newPhase , & i n t P a r t ) >= 0 .5L) ; 
} 

phase = modfl ( newPhase , & i n t P a r t ) ; 

/* Add initial vc table entry based on no charging */ 
v c . t a b l e [vc-head ] . phi = NO-PHI; 
v c . t a b l e [ vc-head ] . Vc = Vc; 
if (Phi - Tr + Ta l i a s > 0 ) { 

v c . t a b l e [ vc.head ] . timeRem = Tr - Phi + Del ta ; 
} e lse { 

v c . t a b l e [ vc.head ] . timeRem = Ta l ias + De l t a ; 
} 
v c . t a b l e [ vc.head ] . phaseRem = v c . t a b l e [ vc.head ] . timeRem * (FO + Kv * Vc); 
INC.VC( v c . h e a d ) ; 

i = 0; 
p r in t f ( "%3d %11.5Le % 4d % 9.7Le % 9.5Le %14.12Le %9.5Le % 41d % 4d 

"% 14 .12Le\n" , i , c u r r e n t - t i m e , Ndiv, De l t a , Ph i , Vc, Tv, 
lround ( i * T r / T t a r g e t ) — numVco , numRef , P s i ) ; 

/ * calculate new Phi */ 
Phi = Phi - Tr + Ta l ias ; 

msg[0] = ' \ 0 ' ; 
/* Loop through all iterations requested */ 
for ( i = l ; i <= num. i t e r + 1; i++) { 

c u r r e n t . t i m e += Tr; 

/* Prepare for next iteration */ 
VcOld = Vc; 
Vc = Vc + Iin * Ph i /C ; 
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/* Estimate effect of resistor & charging / \ */ 
VcEff = Vc + Iin * (R*Phi /Tr - f absl ( Phi )* Ph i / (Tr*C* 2 ) ) ; 
/* Initial estimate of VCO period to start phase calculation */ 
Tv = 1/(F0 + Kv * VcEff); 

/* Calculate duration of next alias period (including any frequency 
* division factor) 
* Update for actual voltage wave form shape 
* Steps: goes through sloping section , then flat section , then if 
* next Phi < 0, new sloping section */ 

Ndiv = NDIV .START; 
for ( j = 0 ; j < Div; j++) { 

do { 
Ndiv++; 
Ta l ias = Ndiv*Ts; 
if (Phi - Tr + Ta l i a s < 0 ) { 

/* Still in flat section of Vc */ 
newPhase = phase + (FO + Kv * Vc) * T a l i a s ; 

} e lse { 
/* Must keep track of charging section now, as reference 

* edge has passed and Vc is changing */ 
newPhi = Phi - Tr + T a l i a s ; 
newPhase = phase + (FO + Kv * Vc) * Tal ias + 

newPhi * Iin * Kv * ( R + fabsl (newPhi ) / C / 2 ) ; 
} 

} while (modfl( newPhase , & i n t P a r t ) < 0 .5L); 
Ndiv ; 
do { 

Ndiv++; 
Ta l ias = Ndiv*Ts; 
if (Phi - Tr + Ta l i a s < 0 ) { 

/* Still in flat section of Vc */ 
newPhase = phase + (FO + Kv * Vc) * T a l i a s ; 

} e lse { 
/* Must keep track of charging section now, as reference 

* edge has passed and Vc is changing */ 
newPhi = Phi - Tr + T a l i a s ; 
newPhase = phase + (FO + Kv * Vc) * Tal ias + 

newPhi * Iin * Kv * ( R + fabsl (newPhi ) / C / 2 ) ; 
} 

} while (modfl( newPhase , & i n t P a r t ) >= 0 .5L); 
} 

phase = modfl (newPhase , & i n t P a r t ) ; 
numVco += i n t P a r t ; 

/* Charging section of Vc waveform */ 
v c - t a b l e [ vc.head ] . phi = Phi ; 
v c . t a b l e [ v c . h e a d ] . Vc = VcOld ; 
v c . t a b l e [ vc.head ] . timeRem = f a b s l ( P h i ) ; 
v c . t ab le [vc.head ] . phaseRem = (FO + Kv * VcOld) * f a b s l ( P h i ) + 

Phi * Iin * Kv * ( R + fabsl (Phi ) / C / 2 ) ; 
INC_VC( v c . h e a d ) ; 
if (vc .head == v c . t a i l ) { 

f p r i n t f ( s tderr , " I t e r a t i o n %d: No more VCO tab le e n t r i e s " 
" a v a i l a b l e \ n " , i ) ; 

break; 
} 

/* Flat section of Vc waveform */ 
v c - t a b l e [vc .head ] . phi = NO.PHI; 
v c . t a b l e [ vc.head ] .Vc = Vc; 

if (Phi > 0 && Phi - Tr + Ta l i a s > 0) { 
v c . t a b l e [ vc.head ] . timeRem = Tr—Phi ; 

} e lse if (Phi < 0 && Phi - Tr + Ta l ias > 0) { 

111 



B.l: Alias-Locked Loop Simulation Program 

v c - t a b l e [ vc.head ] . timeRem = Tr; 
} e lse if (Phi > 0 && Phi - Tr + Ta l ias < 0) { 

v c - t a b l e [vc.head ] . timeRem = T a l i a s ; 
} e lse { 

/* Phi < 0 && Phi - Tr + TAlias < 0 
* Talias — \Phi\ = Talias + Phi */ 

v c - t a b l e [vc .head ] . timeRem = Ta l ias + Ph i ; 
} 

v c . t a b l e [ vc.head ] . phaseRem = v c . t a b l e [vc .head ] . timeRem * (FO + Kv * Vc); 

INC_VC( v c . h e a d ) ; 
if (vc .head == v c . t a i l ) { 

f p r in tf ( s tder r , " I t e r a t i o n %d: No more VCD table e n t r i e s " 
" a v a i l a b l e \ n " , i ) ; 

break; 
} 

/* Calculate number of new cycles for the ideal VCO */ 
vcoPhase = numRef; 
numRef = lround ( i * T r / T t a r g e t ) — lround ( ( i —l)*Tr/Ttarget ) ; 

/* Calculate new phase error */ 
Phi = Phi - Tr + Tal ias ; 

if ( f a b s l ( P h i ) > Tr | | f a b s l ( P h i ) > T a l i a s ) { 
f p r in tf ( s tder r , " T a l i a s = %Le, phase=%Le, numVco = % i \ n " , Tal ias , 

phase , numVco ); 
f p r i n t f ( s tder r , " I t e r a t i o n %d: Phi > Tr, Tal ias (%9.5Le > %9.5Le," 

"%9.5Le) \n" , i , f a b s l ( P h i ) , Tr, T a l i a s ) ; 
break; 

} 

/* VCO period to calculate an approximate delta */ 
Tv = 1/(F0 + Kv * Vc); 
Delta = phase * Tv; 

/* Print current phase error */ 
if ( i > 1) { 

/* Calculate the time difference between the ideal and actual VCO 
* after numRef cycles, add ideal VCO time, minus actual time */ 

Psi —= vcoPhase * T ta rge t ; 

/* Loop through a phase value of vcoPhase until we hit a table entry 
* that has more phase remaining then the amount we wish to take 
* Each table entry 's amount of phase and time occupied is taken off 
* from the vcoPhase and VCO phase error Psi */ 

while ( (vc .head != v c . t a i l ) && 
( v c . t a b l e [ v c . t a i l ] . phaseRem < vcoPhase)) { 

vcoPhase —= v c . t a b l e [ v c . t a i 1 ] . phaseRem ; 
Psi += v c . t a b l e [ v c . t a i 1 ] . timeRem ; 
INC.VC( v c . t a i l ); 

} 
if (vc .head == v c . t a i l ) { 

fpr i ntf ( s tde r r , " I t e r a t i o n %d : No more VCO data a v a i l a b l e \ n " , 
i - 1 ) ; 

break; 
} 

/* Now use the remaining phase to calculate the time difference 
* between the ideal VCO and actual VCO. This also requires 
* updating of the VC table entry from which we are taking phase 
* and time */ 

if ( v c - t a b l e [ v c . t a i l ] . phi >= NO.PHI) { 
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/* Easy to calculate the time taken if the voltage waveform is 
* flat: time = phase / vco frequency in the flat section */ 

secTime = vcoPhase / (FO + Kv* v c . t a b l e [ v c . t a i l ] .Vc); 
v c t a b l e [ vc _tai 1 ] . timeRem —= secTime ; 
v c . t a b l e [ v c . t a i l ] . phaseRem —= vcoPhase; 
Psi += secTime; 

} e lse { 
/* 

* must solve square root equation here , solving for time 
* which satisfies phase equation is given above as: 
* newPhase = phase + (FO + Kv * VcOld) * Talias + 
* Phi * lin * Kv * ( R - fahsI (Phi )/C/2) + 
* Talias * Kv * lin * Phi/C: 
* 
* Charging part, initial phase = 0: 
* == (Fo + Kv * VcOld) * Phi + 
* (R + (Phi / C /2) * lin * Kv) * Phi 
* 
* Rewriting as a x'2 + b x + c for the sloping part, 
* newPhase — vcoPhase and phi is given by secTime , assume 
* Phi > 0, move newPhase to right —hand side 
* 
* (Kv * Iin/C/2) * secTime "2 + 
* ( FO + Kv * Vc + Kv * lin * R) * secTime — vcoPhase 

* Instead of Phi, we solve for time (secTime) 
*/ 

if ( v c . t a b l e [ v c . t a i l ] . phi < 0) { 
s q r t - a = Kv * l in / C / 2 ; 
s q r t - b = FO + Kv * v c . t a b l e [ v c . t a i l ] . Vc + Kv * l in * R; 
s q r t . c = —UvcoPhase; 
secTime = (— s q r t - b + 

s q r t l ( s q r t - b * s q r t . b — 4 * s q r t . a * s q r t . c ) ) / 2 / s q r t . a ; 
} e lse { 

/* The case for Phi < 0 is almost the same, with some signs 
* reversed for discharging */ 

s q r t . a = —l*Kv * I i n / C / 2 ; 
s q r t - b = FO + Kv * v c _ t a b l e [ v c _ t a i l ] . V c - K v * l in * R; 
s q r t . c = —l*vcoPhase; 
secTime = (—sqrt-b + 

s q r t l ( s q r t . b * s q r t - b — 4 * s q r t - a * s q r t _ c ) ) / 2 / s q r t _ a ; 
} 
/* Update the last entry in the table with the time we have 

* used in the current cycle */ 
v c - t a b l e [ v c . t a i l ] . timeRem —= secTime; 
v c . t a b l e [ v c . t a i l ] . phaseRem —= vcoPhase; 
Psi += secTime; 

} 

p r i n t f ( " % s % 14 .12Le\n" , msg, P s i ) ; 
} 
s n p r i n t f ( m s g , MSG.LEN, 

"%3d %11.5Le % 4d % 9.7Le % 9.5Le %14.12Le %9.5Le % 41d % 4d" , 
i , c u r r e n t - t i m e , Ndiv , D e l t a , Ph i , Vc, Tv, 
lround ( i * T r / T t a r g e t ) — numVco , numRef); 

rn 0; 
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B.2 Alias-Locked Loop Histogram Generation Pro­
gram 

/* Copyright 2008 Leendert van den Berg 
* C—based implementation of histogram counter. Hardcoded to take the psi value 
* produced by output from the phaseAll. c program 
* 
* Compile with : 
* gcc —o histo —Im histo.c 
*/ 

#include < s t d i o . h> 
#include < s t d l i b . h> 
#include <math . h> 

#define NUrvLARGS (4) 
#define SCAN-STRING ("%d %Le %d %Le %Le %Le %Le %ld %d %Le") 
#define BUFXEN (256) 

int ma in ( in t argc , char * a r g v [ ] ) 
{ 

int numBins , binlndex , i ; 
long va l sRead=0; 
long *bins ; 
long double minVal , maxVal , b i n S i z e ; 
char readBuf [BUFXEN]; 

int i ter , Ndiv ; 
long double c u r r e n t - t i m e , D e l t a , Ph i , Vc, Tv; 
long cycleLen ; 
int refCount ; 
long double Psi ; 

if (argc != N U M J \ R G S ) { 
f p r i n t f ( s t d e r r / ' F o r m a t : %s <number of b ins> <minimum bin value> " 

" <maximum bin v a l u e > \ n " , a r g v [ 0 ] ) ; 
return 1; 

} e lse { 
numBins = a toi ( argv [ 1 ] ) ; 
minVal = s t r t o l d ( argv [2] , NULL); 
maxVal = s t r t o l d ( argv [3] , NULL); 

} 
if (numBins < 0) { 

fpri ntf ( s tde r r , "Number of bins (%d) should be g rea t e r than 0\n" , 
numBins); 

exi t ( 1 ) ; 
} 
if (minVal > maxVal) { 

f p r i n t f ( s t d e r r , "Minimum bin value (%14.12Le) should be less than " 
"maximum bin value (%14.12Le)\n" , minVal, maxVal); 

e x i t ( 1 ) ; 
} 
binSize = (maxVal — minVal )/numBins ; 

bins = ca l l oc ( s i z e o f ( long ) .numBins ) ; 
if (b ins == NULL) { 

fpri ntf ( s t d e r r , "Could not a l l o c a t e memory for b i n n i n g \ n " ) ; 
exi t ( 1 ) ; 

} 

while (1) { 
if ( f g e t s ( r e a d B u f , BUFXEN, s t d i n ) == NULL) { 
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break; 
} 
if ( r eadBuf [0 ] == ' # ' ) { 

continue ; 
} 
sscanf (readBuf , SCAN_STRING, & i t e r , &current_t ime , &Ndiv , &Delta , &Phi 

&Vc, &Tv, &cycleLen , &refCount , &Ps i ) ; 
valsRead ++; 
if (Vc < minVal | | Vc > maxVal) { 

f p r i n t f ( s t d e r r , " I t e r a t i o n %ld value outs ide bin range %14.12Le\n", 
valsRead , Vc); 

} else { 
binlndex = (Vc — minVal )/(maxVal — minVal) * numBins; 
bins [ binlndex ]++; 

} 
} 

for ( i = 0 ; i < numBins; i++) { 
p r i n t f ("%14.12Le %ld \n" , minVal + i*b inSize + b i n S i z e / 2 , b i n s [ i ] ) ; 

} 

free (b ins ); 
bins = NULL; 

return 0; 

B.3 Latch Sensitivity Plot Generation Program 

/* Copyright 2008 Leendert van den Berg 
* C—based program to collect data from sensitivity analyis 
* Expects data file with x,y pairs for each pulse width simulated 
* 
* X value should be centre location of pulse , y value should be the latch 
* output value 
* 
* Generates a series of x,y pairs for time offset and sensitivity function 
* at that value 
* 
* Compile with : 
* gcc —o sensMinPulse —Im sensMinPulse . c 
*/ 

#include < s t d i o . h > 
#include < s t d l i b . h> 
#include <math . h> 

#define NUMJ\RGS (7) 
#define SCANJCY1 ("%Le,%Le") 
#define SCANJCY ( ",%Le,%Le" ) 
#define HALF.VDD (0 .6 ) 
#define LARGE.VAL ( l e i 5 ) 

int ma in ( in t argc , char * a r g v [ ] ) 
{ 

int numPw, numTimeBins , i , j ; 
long valsRead =0; 
long double * b i n s ; 
long double pwMinVal , pwMaxVal, pwSizeStep; 
long double timeMinVal , timeMaxVal , t imeBinSize 

long double xval , yval ; 

if (argc != NUNLARGS) { 
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/* 

*/ 

fpri ntf ( s tder r , "Format: %s <number of time offsets > <minimum time " 
" offset > <maximum time of fset > <number of pulse widths> " 
"<minimum pulse width va lue> <maximum pulse width v a l u e > \ n " , 
argv [ 0 ] ) ; 

return 1; 
} e lse { 

numTimeBins = a toi ( argv [ 1 ] ) ; 
timeMinVal = s t r t o l d ( argv [2] , NULL); 
timeMaxVal = str tol d ( argv [3] , NULL); 
numPw = atoi ( argv [4 ] ) ; 
pwMinVal = s t r t o l d ( argv [5] , NULL); 
pwMaxVal = s t r t o l d ( argv [6] , NULL); 

} 
if (numTimeBins < 1) { 

f p r i n t f ( s tder r , "Number of time bins (%d) should be g rea t e r than 0\n" , 
numTimeBins ) ; 

ex i t ( 1 ) ; 
} 
if (numPw < 1) { 

f p r i n t f ( s t d e r r , "Number of pulse width (%d) should be g r e a t e r than 0\n" , 
numPw); 

exi t ( 1 ) ; 
} 
if (timeMinVal > timeMaxVal) { 

f p r i n t f ( s t d e r r , "Minimum time value (%14.12Le) should be less than " 
"maximum time value (% 14.12Le)\n" , t imeMinVal, timeMaxVal); 

exi t ( 1 ) ; 
} 
if (pwMinVal > pwMaxVal) { 

fpr in tf ( s t d e r r , "Minimum pulse width value (%14.12Le) should be less " 
" than maximum pulse width value (%14.12Le)\n" , pwMinVal, pwMaxVal); 

ex i t ( 1 ) ; 
} 
t imeBinSize = (timeMaxVal - timeMinVal )/( numTimeBins - 1); 
pwSizeStep = (pwMaxVal — pwMinVal )/( numPw-1); 

bins = ca l l oc ( s i zeof ( long double ) , numTimeBins ) ; 
if ( b in s == NULL) { 

f p r i n t f ( s t d e r r , "Could not a l l o c a t e memory for b i n n i n g \ n " ) ; 
} 

/* Initialize to largest bin value possible */ 
for ( i = 0 ; i< numTimeBins; i++) { 

//bins[i] = LARGE.VAL; 
b i n s [ i ] = pwMaxVal; 
/* 
printf ("%l4.12Le %Le\n", timeMinVal + i *timeBinSize , bins[i]); 
printf (" Bins[% 2d] centred at %Le\n", i, timeMinVal + timeBinSize *i); 
*/ 

} 

for (i=0; i< numPw; i++) { 
printf ("Pw[% 2d] size %Le\n", i, pwMinVal + pwSizeStep *i); 

} 

for ( i = 0 ; i < numTimeBins; i++) { 
for ( j = 0 ; j < numPw; j++) { 

if (j == 0) { 
if ( scanf (SCAN-XY1, &xval , &yval ) != 2) { 

break; 
} 

} e lse { 
if ( scanf (SCANJCY, &xval , &yval) != 2) { 

break ; 
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} 
} 
valsRead ++; 
if (xva l < timeMinVal | | xval > timeMaxVal) { 

f p r i n t f ( s t d e r r . " I t e r a t i o n %ld value outs ide time bin range " 
" %14.12Le\n", va l sRead , x v a l ) ; 

} e l se if ( (xval — (timeMinVal + i * t imeBinSize )) > 
t imeBinSize /1000) { 

f p r i n t f ( s t d e r r , "Unexpected time value not at time bin c e n t r e . 
"Line %d, entry %d. Value %Le (expected %Le) \n" , 
i , j , x v a l , timeMinVal + i* t imeBinSize 
) ; 

} e l se { 
/* printf (" Read %Le, %Le\n", xval, yval); */ 
/* 
if (yval < HALF.VDD) { 

bins[i] —= l/(j * pwSizeStep + pwMinVal); 
} else { 

bins I i] += l/(j * pwSizeStep + pwMinVal); 

} 
*/ 
if (yval > HALF.VDD && b i n s [ i ] > j *pwSizeStep + pwMinVal) { 

b i n s [ i ] = j*pwSizeStep + pwMinVal; 
} 

} 

for ( i = 0 ; i < numTimeBins; i++) { 
p r i n t f ("%14.12Le %Le\n" , timeMinVal + i * timeBinSize , bins [ i ] ) ; 

} 

free (b ins ); 
bins = NULL; 

return 0; 
} 

B.4 Latch Sampling Window Sensitivity Plot Gener­
ation Program 

/ * Copyright 2008 Leendert van den Berg 
* C—based program to collect data from sensitivity analyis 
* Expects data file with x,y pairs for each pulse width simulated 
* 
* X value should be centre location of pulse , y value should be the latch 
* output value 
* 
* Generates a series of x,y pairs for edge time offset and sensitivity 
* function at that value. Assumes square wave signal. Finds minimum pulse width 
* for each edge increment away from central sensitivity 

* Compile with : 
* gcc —o sqPulse —Im sqPulse . c 
*/ 

#include < s t d i o , h > 
#include < s t d l i b . h> 
#include <math .h> 

#define NUM.ARGS (7) 
#define SCANJCY1 ("%Le,%Le") 
#def ine SCANJCY (",%Le,%Le") 
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#define HALF.VDD (0 .6 ) 
#define GRIDSIZE (256) 

int ma in ( in t argc , char * a r g v [ ] ) 
{ 

int numPw, numTimeBins , i , j , k; 
long valsRead =0; 
long double pwMinVal, pwMaxVal, pwSizeStep; 
long double timeMinVal , timeMaxVal , t imeBinSize ; 
int da taGrid [GRIDSIZE] [GRIDSIZE]; 
int curMinPw = GRIDSIZE, minPwStart , minPwStop; 

long double xval , yval ; 

if (a rgc != NLTvLARGS) { 
f p r i n t f ( s tder r , "Format: %s <number of time offsets > <minimum time " 

" offset > <maximum time offset > <number of pulse widths> " 
"<minimum pulse width va lue> <maximum pulse width v a l u e > \ n " , 
argv [ 0 ] ) ; 

return 1; 
} e lse { 

numTimeBins = a toi ( argv [ 1 ] ) ; 
timeMinVal = s t r t o l d ( argv [2] , NULL); 
timeMaxVal = s t r t o l d ( argv [3] , NULL); 
numPw = atoi ( argv [ 4 ] ) ; 
pwMinVal = s t r t o l d ( argv [5] , NULL); 
pwMaxVal = s t r t o l d ( argv [6] , NULL); 

} 
if (numTimeBins < 1) { 

fp r in tf ( s t d e r r , "Number of time bins (%d) should be g rea t e r than 0\n" , 
numTimeBins); 

ex i t ( 1 ) ; 
} 
if (numPw < 1) { 

fpri ntf ( s t d e r r , "Number of pulse width (%d) should be g r e a t e r than 0\n" , 
numPw); 

ex i t ( 1 ) ; 
} 
if (timeMinVal > timeMaxVal) { 

f p r i n t f ( s t d e r r , "Minimum time value (%14.12Le) should be less than " 
"maximum time value (% 14.12Le)\n" , timeMinVal, timeMaxVal); 

ex i t ( 1 ) ; 
} 
if (pwMinVal > pwMaxVal) { 

fpri ntf ( s t d e r r , "Minimum pulse width value (%14.12Le) should be less " 
" than maximum pulse width value (% 14 .12Le) \n" , pwMinVal, pwMaxVal); 

ex i t ( 1 ) ; 
} 
if (numTimeBins > GRIDSIZE | | numPw > GRIDSIZE) { 

fp r in tf ( s t d e r r , "Number of pu lsewid ths or of fse t to large >%d\n" , 
GRIDSIZE); 

ex i t ( 1 ) ; 
} 
t imeBinSize = (timeMaxVal - timeMinVal )/( numTimeBins - 1); 
pwSizeStep = (pwMaxVal — pwMinVal ) /(numPw- 1); 

for ( i = 0 ; i < numTimeBins; i++) { 
for ( j = 0 ; j < numPw; j++) { 

if (j == 0) { 
if ( scanf (SCANJCY1, &xval , &yval) != 2) { 

break ; 
} 

} e lse { 
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if (scanf(SCANJCY, &xval , &yval) != 2) { 
break; 

} 
} 
valsRead ++; 
if ( (xva l - timeMinVal) < - U t i m e B i n S i z e / 1 0 0 | | 

(xval - timeMaxVal) > t imeBinSize l\ 00) { 
f p r i n t f ( s t d e r r . " I t e r a t i o n %ld value outs ide time bin range 

} e l se i 

} e lse i 

f pr i 

" (%14.12Le)\n" , valsRead, x v a l ) ; 
( (xval — (timeMinVal + i * t imeBinS ize ) ) > 

imeBinSize /1000) { 
( (xval — (timeMinVal + i * t imeBinSize ) ) > 

imeBinSize /1000) { 
i t f ( s t d e r r , "Unexpected time value not at time bin centre 
Line %d, entry %d. Value %Le (expected %Le) \n" , 
, j , x v a l , timeMinVal + i* t imeBinSize 

} e l se { 
if (yval > HALF_VDD) { 

d a t a G r i d [ i ][ j ] = 1; 
if (curMinPw > j ) { 

curMinPw = j ; 
minPwStart = i ; 
minPwStop = i ; 

} e lse if (curMinPw == j ) { 
if ( i < minPwStart) { 

minPwStart = i ; 
} e lse if (i > minPwStop) { 

minPwStop = i ; 

} 
} 

} e lse { 
d a t a G r i d [ i ] [ j ] 

} 

printf(" Found minimum pulse of %.lLf ps in range (%.]Le ps,%.lLe ps)\n" 
curMinPw * pwSizeStep + pwMinVal , minPwStart*timeBinSize+timeMinVal , 
minPwStop* time Bin Size -vtimeMinVal); 

r ( i = numTimeBins ; i >=minPwStop; 
k = curMinPw ; 
for ( j = i ; ; j + + , k+=2) { 

-) { 

printfC'Check %.3Le %.lLf (%.3Lf .. %.3Lf)\n", 
j *timeBinSize + timeMinVal , 
k*pwSizeStep + pwMinVal, 
I e!2 *( j *timeBinSize VtimeMinVal) — 5e—] *(k*pw Size Step+pwMinVal), 
/ el 2 *( j *timeBinSize -vtimeMinVal) + 5e — l*(k*pw Size Step +pwMinVal) 
) ; 

if (k >= numPw | | j >= numTimeBins) { 
printf(" Outside delay / pulsewidth range\n"); 

break ; 

} 
if ( d a t a G r i d [ j ] [ k ] ) { 

p r i n t f ( "%.3Le , %.l Lf \n" , i * t imeBinSize + timeMinVal, 
k * pwSizeStep + pwMinVal); 

break; 

} 
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B.4: Latch Sampling Window Sensitivity Plot Generation Program 

for ( i=minPwStop- l ; i > 0; i — ) { 
k = curMinPw ; 
for ( j = i ; ; j — , k+=2) { 

/* print!["Check %.3Le %.lLf <%.3Lf 
j *timeBinSize + timeMinVal , 
k*pwSizeStep + pwMinVal, 
lel2*(j*timeBinSize+timeMinVal) 
leI2*(j*timeBinSize+timeMinVal) 
) ; 

*/ 
if (k >= numPw ) { 

break ; 

} 
if (k >= numPw | | j < 0) { 

break ; 
} 
if ( d a t a G r i d [ j ] [ k ] ) { 

p r i n t f ("%.3Le , %.l Lf\n" , i * t imeBinSize + timeMinVal, 
k * pwSizeStep + pwMinVal); 

break ; 
} 

} 
} 

return 0; 
} 

%.3Lf)\n", 

— 5e —]*(k* pw Size Step+pwMinVal), 
+ 5e — l*(k*pwSizeStep+pwMinVal) 
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Appendix C 

Circuit Diagrams for 90-nm 
Implementation 

C.l Latches and Latch Test Benches 
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Figure C.l: dflipflop_tb: D flip-flop maximum frequency test bench 
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C.l: Latches and Latch Test Benches 
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Figure C.2: dge_sampler_no_offset_tb: DPTPL maximum frequency test bench 
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Figure C.3: dge_sampler_no_offset: DPTPL schematic 
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C.l: Latches and Latch Test Benches 

Glitch generation circuit 
Leendert van den Berg 
August 16, 2005 
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Figure C.4: pulse_gen: DPTPL pulse generator circuit 
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Figure C.5: JKJFF_NoDriver: JK flip-flop, cascaded after the SAFF and DPTPL 
circuits to hold the output during during precharge of the latch 
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Figure C.6: hysteresis.buffer: two memory-element hysteresis buffer for DPTPL 
and SAFF 
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C. 1: Latches and Latch Test Benches 
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Figure C.7: sampler_saff_tb: SAFF maximum frequency test bench 
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Figure C.8: sampler_saff: SAFF schematic 
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C.2: Latch Threshold Correction and Detection Circuits 

Latch Threshold Correction and Detection Cir­
cuits 

gure C.9: dge_sampler_offset_test: DPTPL offset transistor test bench 

High speed sampling circuit with offset cancellation voriotion 1 
Leendert van den Berg 
March 21. 2008 

vdd! 

Figure C. 10: dge_sampler_offset: DPTPL with offset transistors 
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C.2: Latch Threshold Correction and Detection Circuits 
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Figure C.l 1: offset-tuner_test: Test bench for duty-cycle based latch threshold cor­
rection circuit 
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Figure C.l2: offset_tuner_hysteresis: Duty cycle detection and correction with hys­
teresis 

Figure C.13: ud_counterl6_hysteresis: 16-bit up/down counter with separate LSB 
reset (hysteresis) 
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C.2: Latch Threshold Correction and Detection Circuits 
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Figure C.14: DACLctrlJeft: Control signal generation for DAC for left tuning signal 
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Figure C.15: DAC_ctrl_right: Control signal generation for DAC for right tuning 
signal 
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C.2: Latch Threshold Correction and Detection Circuits 

Figure C.16: DACLR2R: DAC based on R-2R ladder network 
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C.3: 90-nm CMOS ALL Circuit Implementation 

C.3 90-nm CMOS ALL Circuit Implementation 

Figure C.17: ALL_core_only_test: Test bench for 90-nm ALL circuit implementa­
tion 
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C. 3: 90-nm CMOS ALL Circuit Implementation 
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Figure C.18: indxomplete: ASITIC Pi model for a 0.9 nh inductor. Parameters: 
indRs = 1.8 kfl; indC = 29 pF; inhL = 285 pH; indR - 0.5 fi; k = 0.495 
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Figure C.19: core_all: Top level core circuit for 90-nm ALL circuit 
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C.3: 90-nm CMOS ALL Circuit Implementation 
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Figure C.20: DIO-buffer: Driver circuit for output pad 
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Figure C.21: core: Top level circuit without 10 drivers 

131 



C.3: 90-nm CMOS ALL Circuit Implementation 
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Figure C.22: VCCLcomplete: Differential VCO based on oscillating LC tank 
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C.3: 90-nm CMOS ALL Circuit Implementation 
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Figure C.23: switched_tuning_cap: Switched varactor bank and tuning varactor for 
VCO frequency control 
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Figure C.24: VCO_current_src: PMOS current source for the VCO 
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C.3: 90-nm CMOS ALL Circuit Implementation 
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Figure C.25: crossJxan: Cross-coupled transistors driving the VCO 
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Figure C.26: sampler_complete: DPTPL based sampling latch 
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C.3: 90-nm CMOS ALL Circuit Implementation 
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Figure C.27: PFD_charge_pump: Phase-frequency detector and charge pump 
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Figure C.28: latchJPFD: Latch-based phase-frequency detector 
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C.3: 90-nm CMOS ALL Circuit Implementation 
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Figure C.29: latch_PFD-branch: Transistor branch inside the latch-based PFD 
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C.3: 90-nm CMOS ALL Circuit Implementation 

Figure C.30: up_down_gen: Differential control signal generator for charge pump 

Figure C.31: up_down_gen_diff_create: Single-ended to differential signal genera­
tion for charge pump 
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Figure C.32: charge_pump_diff: Charge pump with dummy branches and differen­
tial inputs 
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