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Abstract

The fundamental objective of this research project is to develop an enzymatic reac-

tion kinetic model for coal bioconversion which, on integration with multiscale trans-

port models, would allow simulation and optimization of field scale biogenic coalbed

methane production.

Biogenic coalbed methane (CBM) is an unconventional source of natural gas produced

by microbial anaerobic breakdown of coal. Given the many advantages of convert-

ing coal to natural gas, much research has been conducted on the enhancement of

this natural process at the laboratory scale, and some field scale tests have also been

conducted. Commercialization of any such technology requires conceptualization and

optimization of field scale strategies. This is a challenge given the complexity and

variability of coal, the associated transport processes and the microbial processes

involved. In this study, we have used a scaling-up approach starting with the de-

velopment of reaction kinetics at the smallest scale and the addition of appropriate

transport effects at each successive scale to build a model for simulation of CBM in

coalbed reservoirs.

The first challenge is to develop a suitable microbial kinetic model with reasonable

predictive capability. To this end, microbial reaction networks involved in coal biocon-

version were extensively reviewed and complemented with analysis and interpretation

of data from laboratory experiments to propose a simplified reaction pathway. An en-

zymatic reaction kinetic model based on simple and modified Monod models was then

derived using lumped species, an approach common in kinetic descriptions of complex
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reaction mixtures such as those found in fluid catalytic cracking. The model was then

validated by nonlinear regression of data from various coal enrichment cultures.

The kinetic model was next applied to a coreflooding experiment, which is a labora-

tory scale representation of field conditions, with the inclusion of gas diffusion and

sorption behaviour. The model was simplified using computational singular pertur-

bation analysis and an optimal model-based experimental design was devised.

Next, a set of partial differential equations were derived to model the multiple gas

transport/storage processes occurring in a coalbed reservoir characterized by dual

porosity. After discretization using forward difference formulas and non-dimensionalization,

the stiff transport model was solved using the Levenberg-Marquardt algorithm. Di-

mensionless numbers derived in the course also allow analysis of dominant processes

at changing scales. History matching of the transport model was performed against

gas production data from Manville wells in Alberta. Finally, gas transport and reac-

tion kinetics were coupled for simulation of biogenic coalbed methane flow and then

advanced to multiphase, multicomponent reservoir simulations in CMG STARS for

estimation and optimization of commercial biogenic coalbed methane production.

Polynomial chaos expansion (PCE) was used to quantify the effect of parametric

uncertainty in the model on estimates of methane production. Legendre orthogo-

nal polynomials were applied in conjunction with PCEs to generate stochastic proxy

models for coalbed methane production. In an alternate approach, coefficients of

time series models (AR/ARMAX/BJ) were expanded in PCEs to account for dy-

namic operating variables. Since reservoir models are large and complex with multi-

ple parameters and operating variables, sparse meta models can be employed in proxy

model development. The proxy model was then applied for robust optimization based

on computationally efficient evaluation of statistical metrics of the costs function at

varying operating conditions.
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Chapter 1

Introduction

1.1 Introduction to coalbed methane (CBM)

Coalbed methane (CBM) is in fact a mixture of gases, with methane being predomi-
nant. Owing to the structural stress caused by the high pressure of the gases, CBM
was considered to be a major mine hazard in the early nineteenth century1. However,
significant research towards identification of alternate unconventional gas resources
during the late twentieth century paved the path for CBM’s status today as an im-
portant unconventional natural gas resource2. CBM has higher energy efficiency than
coal and burns clean as well, leaving no ash and emits lower GHG and other toxic
emissions3,4. The International Energy Agency (IEA) reports that in 2008, CBM
contributed to 10% natural gas production in the United States, 4% in Canada, and
8% in Australia. Also, there has been increased interest in CBM production in other
countries with large coal reserves, such as India, China, Russia, and Indonesia4. Ac-
cording to a report on global market volume by Grand View Research in 2014, the
power sector is the largest consumer of CBM. In 2013, 35.3% of the total CBM pro-
duced globally was used for power generation, with an estimate that the usage would
grow at a compound annual growth rate of 8.5% from 2014 to 20205.

CBM is generally produced from relatively shallow coal beds (about 1000 -1500 ft)
as compared to conventional sources that are contained within sharply defined ge-
ological formations (at about 3000 ft). For a coal seam to be economically viable
for CBM production, it must typically be at least 20 ft thick, produce 50 - 70 ft3

of gas/ton of coal, contain 77% - 87% of carbon (normally found in sub-bituminous
coal) and contain sufficient water pressure to hold the gas in place6. CBM exists
in coal seams in three basic states: free gas, gas dissolved in formation waters, and
gas adsorbed on solid coal surfaces7. When a production well is drilled for CBM
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extraction, the hydrostatic pressure decreases to produce formation water, which is
followed by the production of free gas and adsorbed gases (which are about 91% -
95% of the total gas content) 8. The life span of a CBM well typically lies between
5 and 15 years. The three stages of production (U.S. EPA 2010b) are (1) an early
stage where the hydrostatic pressure is reduced by the production of formation wa-
ter, (2) a stable stage where natural gas production increases and water production
decreases, and (3) a late stage where gas production declines and water production
remains low. Gas transport in coal is a multi-step process consisting of gas diffusion
in micropores, gas diffusion through partly blocked microfractures, gas flow through
open, un-mineralized microfractures and gas movement through main fractures9. For
simplification in numerical simulations, this is usually modeled as a two-step trans-
port process consisting of gas diffusion through micropores (or matrix) and gas flow
through macropores (or fractures).

There are many issues affecting a CBM project. For high CBM production from wells,
desorbed gases have to be able to flow out easily. This depends a great deal on the
presence of preexisting natural fracture systems. In the absence of natural fractures
(which is typically the case), artificial stimulation by hydraulic fracturing is required.
Also, owing to low productivity of gas wells (about 100 - 500 MCF/day), sustained
CBM production often requires continued drilling of production wells, causing drilling
costs to account for 74% of the total cost that is incurred. Similarly, uncertainties
in projected gas and water production due to the vast heterogeneity of coal beds,
high investment costs, economics of gas demand and supply, water and environmental
management, availability of gas and water pipelines, availability of land and ownership
issues are some of the hurdles faced by this industry.

The economic profitability of CBM production can be improved by enhancement of
gas recovery. Conventional CBM recovery by reservoir pressure depletion typically
recovers only 50% of the gas in place. The recovery of gases adsorbed in the coal ma-
trix can be improved by the use of well-known techniques such as inert gas stripping
using nitrogen injection and displacement desorption by CO2 injection. This process
is referred to as enhanced CBM recovery (ECBM)10. Nitrogen injection ECBM (N2-
ECBM) works by decreasing the partial pressure of methane in the porous spaces of
coal to promote desorption, while carbon dioxide injection (CO2-ECBM) works on the
principle that carbon dioxide preferentially adsorbs in coalbed matrix and promotes
methane desorption. In addition, CO2-ECBM sequesters CO2, which is a high potent
greenhouse gas, simultaneously. Alternatively, CBM production can also be increased
by the generation of additional methane. Microbially enhanced CBM (MECoM) is
one such technique that has gained interest since it was discovered that approximately
20% natural gas is microbial in origin11. This practice of microbial enhancement is
in fact already well-known to the oil industry. U.S. Pat. No. 3,185,216,12 for ex-
ample, discusses oil metabolization by bacteria injected into oil reservoirs to produce
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byproducts and enhance mobility. The method is referred to as microbially enhanced
oil recovery (MEOR).

1.2 Microbially enhanced coalbed methane

CBM gases formed from coal are classified as primary, secondary biogenic gas and
thermogenic gas based on their source and origin. Primary biogenic CBM is the gas
eliminated by aerobic microbial attack of cellulose during coal formation13. Thermo-
genic CBM is the gas generated by catalytic cracking of deeply buried coal beds under
high temperature and pressure conditions. Finally, gas produced by anaerobic micro-
bial attack of coal substrate following renewed microbial activity in deeply buried coal
beds is known as secondary biogenic CBM14,15. High CBM-producing zones in many
basins around the world contain a large proportion of secondary biogenic methane
generated by microbes transported during water recharge through permeable coal
seams16,17. Studies by various research groups have shown that secondary biogenic
methane generation is still active in many basins around the world18–21.

The various factors controlling the extent of microbial activity are the bioavailabil-
ity of coal carbon, the presence of a microbial community to convert coal carbon to
methane, and a suitable environment for microbial growth22. Theoretically, micro-
bially generated coalbed methane can be increased if the appropriate conditions are
made available either by the introduction of anaerobic bacterial consortia, consisting
of hydrolyzers, acetogens and methanogens, and/or nutrients into coalbed methane
wells23. To achieve this, researchers have primarily studied four strategies: microbial
stimulation by the addition of nutrients, microbial augmentation by the addition of
microbes, physically increasing fracture spacing to provide more access to microbes
and nutrient amendments, and chemically increasing the bioavailability of coal organ-
ics11.

Laboratory incubation studies on lignite and subbituminous coals by Harris et al.24

showed that substantial methane production occurs in the presence of H2/CO2 and
inorganic nutrient ammendments. Studies by Singh et al.25 on an Indian coal bed
sample showed that methane production in the presence of formation waters and
native microbial population improved considerably with the addition of nitrite. Ex-
periments by Opara et al.26 on lignite, bitminous coal and coal wastes with selected
microbial inocula and different types and levels of nutrient amendments showed that
methane production increased with increasing nutrient concentrations. The addition
of organic nutrients such as tryptone and Brain Heart Infusion (BHI) was shown to
improve methane production in sub-bituminous coal samples from western Canada
by Penner et al27. Jones et al.28 observed that bioaugmentation with a consortium of
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bacteria and methanogens enriched from wetland sediment accompanied by biostim-
ulation with nutrient amendments generated methane more rapidly and to a higher
concentration as compared to biostimulation without the amendments. Experiments
by Papendick et al.29 on native Walloon coal with produced waters from the Surat
basin showed that initial methane production rate and final methane yield increased
by 240% and 180%, respectively on the addition of a Zonyl FSN surfactant to im-
prove coal bioavailability. Similarly, Huang et al.30 showed that methane production
increased when coal samples were treated with potassium permanganate, a depoly-
merization agent that aids in coal solubilization.

Many field scale studies have also been carried out on biogenic methane production.
Succesful pilot scale field tests for microbial stimulation of CBM production were
conducted by Luca Technologies, Inc to restore gas production in existing wells in
the Powder River Basin, Wyoming. Similarly, Crisis Energy, and Next Fuel, Inc.
have also conducted smaller field scale tests. Also, Archtech, Synthetic Genomics
and ExxonMobil hold patents related to MECoM11. US patent 769613231 describes
methods for stimulating biogenic production with enhanced hydrogen content using a
combination of hydrogen and phosphorous compounds, US patent 542419532 describes
a method using household sewage injection into an abandoned coal mine to provide
feedstock for the bacteria, US patent 2004003355733 describes a method for injection
of bacteria and nutrients under pressure into naturally occurring fractures or cleats
as well as fractures induced during the stimulation of coalbed methane gas wells, US
patent 2014003429734 describes methods for dispersion of nutrient amendments and
US 764097835 describes methods for contacting subsurface coalbeds with microbes
under anaerobic conditions to form a reaction mixture.

Although numerous studies have been carried out, a key link in the commercialization
of any such technology development is the capacity to conduct model-based analysis
for technology transfer over increasing scales along with process estimation, optimiza-
tion and control at field scales. For instance, Luca’s operational approach was batch
treatment of wells with nutrient amendments, followed by the assessment of new
gas formation after many months or years, whereas Ciris adopted a continuous-flow
injection process using 4 injection wells surrounded by 13 production wells, recircu-
lating 1000 - 2000 barrels of water every day. Since there is no rigorous approach
for the appraisal of these operating procedures, optimum injection procedures cannot
be resolved and process efficiency is compromised. Thus, in the absence of suitable
simulation tools, all decisions related to production forecasting, well completions, etc.
are likely to be sub-optimal.
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1.3 Thesis contributions

Thus, in the light of the above discussion, it is evident that the progress of MECoM
projects that can make CBM a long term viable energy source is intertwined with the
development of a numerical model that seamlessly and dynamically links reactive and
transport phenomena occuring in a coal bed across multiple length and time scales36.
Such a model that can predict the quantity of biogenic methane production reason-
ably can play a huge role in the commercialization of microbially enhanced CBM
recovery by enabling process analysis, optimization and control. While the modeling
of fluid transport in coal beds with multiscale porosities is mature, coupled kinetic
and transport models for the simulation of ongoing biogenic methane production are
not available. The complexity and variability of coal and the associated microbiota,
complicated biodegradation systematics that are not fully understood, ignorance of
reactant transport within coal and the inaccessible nature of coal seams are some of
challenges in developing such models. Addressing these issues, the work described in
this thesis develops a multiscale model by incorporating information from the labo-
ratory to the field scale.

The first step is the modeling of enzymatic reaction kinetics related to coal biocon-
version. Since coal biodegradation occurs through a complicated network of many
series and parallel reactions, detailed microkinetic models are difficult to develop.
Therefore, we identify an approximate simplified reaction pathway based on lumping
techniques and use it for developing kinetic models. The estimated kinetic model
is then employed to quantify the production of methane and other gases as well as
intermediates under different nutrient loadings and injection rates. Model reduction
was performed by a time scale analysis of the metabolic network to differentiate fast
and slow time scales at different times. It is to be noted that the multistep kinetic
scheme proposed in this work for anaerobic coal breakdown is the first of its kind and
its predictive ability has been validated for various coal samples.

The next step is to develop a multiscale fluid transport model, which is performed in
two stages. In the first stage, we develop a single phase 1D radial gas transport model
accounting for adsorption and desorption of methane, surface and bulk diffusion, and
convection. Following a global sensitivity analysis of model parameters based on
the Morris OAT (one-at-a-time) method, non-dimensionalized implicit formulations
of the stiff partial differential transport equations are solved at different parameter
value sets for history matching of the real-time gas production data from Manville
wells in Alberta, Canada. After validation, the gas transport model is then coupled
with the derived microbial kinetic model based on the assumption that microbes
reside in the macropore spaces containing residual moisture. Apart from evaluation
of the effect of transport parameters based on dimensionless numbers, the effect of
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the various kinetic parameters on the enhancement of methane production is also
studied. Although gas transport modeling has been dealt with adequately prior to
this work, reactive-transport models for simulation of microbially enhanced coalbed
methane were not available.

In the second stage, we use the model parameter values in multicomponent two-
phase reservoir simulations in CMG STARS (Steam, Thermal and Advanced Pro-
cesses Reservoir Simulator).37 A physical model for the coal reservoir is simulated
using the Warren-Root dual porosity model with matrix-fracture flow transmissi-
bility defined by Kazemi-Gilman formulations. The coal component is assumed to
react only in the fractures (macropores) where microbes exist, while the matrix (mi-
cropores) only functions as a storage medium for the gases. Using this field scale
reservoir model, biogenic methane production is optimized based on model analysis
under different nutrient loadings and injection systems including well configuration,
injection rates and pressures. The integrated efforts for model development in this
study traversing across multiple scales, finally produce simulation tools required in
the assessment of commercial recovery of microbially enhanced coalbed methane. The
motivation behind this multiscale modeling approach is prediction and control of the
various phenomena occurring at different length and time scales. Ultimately, we
aim to achieve robust optimization of commercially produced microbially enhanced
coalbed methane, based on manipulating operation scale variables.38 The schematic
representation of the scaling approach adopted in this study is shown in Figure 1.1.

Physical systems that are of multiscale nature require mathematical models that look
beyond differential equations at the continuum level. This coupled with the rapid
growth in computational speed has resulted in widespread use of multiscale modeling
approaches in various scientific and engineering applications. 38,39 Several multiscale
model simulation approaches exist in literature. Based on the distance of separation
between scales, they are broadly classified as hybrid & multi-grid hybrid type simu-
lations. Hybrid simulations are conducted by advancing a large scale model at large
length and time scales with simultaneous information transfer from small scale model
simulations. Multi-grid type hybrid simulations on the other hand employ coarse grid
models with small scale information estimated from small model simulations on fine
grids.38 The various algorithms for conducting multiscale simulations and multiscale
model reduction based on user-accepted error thresholds are summarized in Givon et
al.40

Another research challenge that is dealt with is the computational expense attached
to model-based optimization studies combined with effects of parameter uncertainty.
Since parametric uncertainty can significantly affect the optimality of the calculated
solution, robust optimization incorporating a degree of caution in the results is also
considered. Several uncertainty propagation methods are available from literature.
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Among them, the traditional approach is Monte Carlo based on standard or Latin
Hypercube sampling. A low-cost alternative to this is the perturbation method or
sensitivity analysis, which produces reliable predictions for small perturbations with-
out predicting the shape of the whole distribution. Overcoming these drawbacks,
computationally efficient uncertainty propagation methods based on probability the-
ory are also available. One of these is the use of first and second order power series
approximations which combines sensitivity analysis & probability theory techniques.
Since these expansions do not capture the shape and tails of non Gaussian distri-
butions, in this study, we employ the more generic method known as polynomial
chaos expansion - a method in which model output is expanded as sum of orthog-
onal polynomials in the underlying random variables.41 By retaining the functional
relation between input and output variables in the polynomial chaos expansion, we
have proposed proxy/surrogate models that can be employed to perform low cost ro-
bust optimization of commercially enhanced coalbed methane production at varying
injection pressures and nutrient injection compositions.
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Figure 1.1: Schematic of the scaling approach adopted in this work.
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1.4 Thesis outline

The following is a brief description of each chapter in this thesis:

Chapter 2: Kinetic modeling of the biogenic production of coalbed methane

In this chapter, a simplified reaction pathway using lumped species is derived for
coal bioconversion based on data from laboratory scale experiments. Kinetic models
are then developed for single substrate (carbon) limitation using simple and modi-
fied Monod models. The model is validated against experimental data from anaerobic
serum bottle experiments with crushed coal in the presence of inoculum and nutrients.

Chapter 3: Modeling, estimation and optimization in coreflood experiments for coalbed
methane production

In this chapter, coreflooding experiments conducted to mimic field operations on lab-
oratory scale are modeled using a tanks-in-series model with an enzymatic reaction
kinetic model modified from the previous chapter to account for multiple substrate
(carbon and nitrogen) limitations. Since the coreflood is simulated with an overbur-
den pressure, sorption processes are also accounted for in the model.

Chapter 4: Modeling of methane production in coal seams with dual porosity char-
acteristics in the presence of microbial activity

In this chapter, a dual porosity coalbed is projected on a 1D radial co-ordinate sys-
tem and multiscale coalbed methane gas transport and storage processes are modeled.
The stiff transport equations are non-dimensionalized and solved with implicit for-
mulations. The transport model is then coupled with enzymatic reaction kinetics,
based on the assumption that microbial growth is supported by residual pore water
in the macropores/fractures.

Chapter 5: Stochastic proxy modeling of coalbed methane production using orthog-
onal polynomials

In this chapter, a proxy model is built for the stochastic solutions of transport equa-
tions describing coalbed methane (CBM) production at different well bottomhole
pressures, based on a polynomial chaos framework. The proxy model enables compu-
tationally efficient robust optimization using statistical metrics of CBM production
calculated over the entire parameter space, as opposed to running multiple full model
simulation runs, which would be computationally expensive.

Chapter 6: Multiphase reactive-transport simulations for estimation and robust op-
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timization of the field scale production of microbially enhanced coalbed methane

In this chapter, multiphase multi-component enzymatic kinetic models and trans-
port models are simulated for field scale gas production from dual porosity coal bed
reservoirs in STARS. Simulations are used to evaluate the effect of changing operating
conditions such as injection pressure, nutrient composition in injection fluid and well
patterns. Robust optimization in the presence of uncertainty in model parameters is
also performed based on the technique developed in the previous chapter, to identify
the optimal values of injection bottomhole pressure and nutrient composition.

Chapter 7: Conclusions

This chapter summarizes the thesis, provides conclusions and discusses future research
directions.

Finally, it is to be noted that since the thesis is paper-based, repetitions may occur,
especially in the “Introduction” section of each chapter.
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Chapter 2

Kinetic modeling of the biogenic
production of coalbed methane
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Abstract

Biogenic production of coalbed methane under anaerobic conditions occurs through
a large number of reactions involving a community of micro-organisms. A kinetic
scheme for such a complicated reaction network has been proposed using lumped
species reacting in a series of enzymatic reaction blocks consisting of coal solubiliza-
tion, hydrolysis, acidogenesis, acetogenesis and methanogenesis. Amongst these path-
ways, acetoclastic methanogenesis is assumed to be dominant. Based on implications
from experimental data, tryptone (a nitrogen rich nutrient used in the stimulation
of methane production) is assumed to produce aromatic ring intermediates. Monod
kinetics is applied to the enzymatic reactions, but methanogenesis is modeled with
modified Monod kinetics to account for substrate inhibition. The kinetic model thus
established can estimate the concentration of products as well as intermediate species
in the conversion of coal. An analytical solution to the model is derived and its pa-
rameter sensitivity is investigated at different operating regions. Model parameters
are estimated for data from various anaerobic bottle experiments by nonlinear re-
gression using the particle swarm optimization algorithm, and the model’s predictive
ability has been validated for various coal samples.
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2.1 Introduction

Gases stored at high densities (approximately between 0.0003 and 18.66 m3/metric
ton)1 in the multi-porous structure of coalbeds2 are known as coalbed methane
(CBM). The gas consists of methane (80 - 99% by volume) and minor amounts of car-
bon dioxide, nitrogen, hydrogen sulphide, sulphur dioxide and heavier hydrocarbons
such as ethane, propane and butane. In the early 19th century, CBM was recognised
as a major mine hazard before being commercially produced as an unconventional
resource of natural gas in the 1970’s. Compared to coal, CBM is a better fuel with
higher calorific value and burns cleaner with lower greenhouse gas emissions, particu-
late emissions and other toxic emissions, while also producing no solid wastes3. CBM
is produced by two major processes - thermogenic and biogenic. Biogenic CBM is
produced by the anaerobic microbial attack of organic matter in coal and thermo-
genic CBM is generated by thermal cracking. Biogenic gas generation is very often
triggered in coal seams that are no longer conducive to microbial activity by events
such as basin uplift and cooling, flow of associated ground water, and the dilution of
salinity levels4.

Various factors are evaluated for assessing the desirability of CBM extraction in a
certain coal seam. These include gas content, gas sorption capacity, permeability,
reservoir pressure, and geometry and coal chemistry5. Conventional core/rock sam-
ples, full size wellbores and five-spot pilot production tests provide data that can be
used to estimate characteristics of coal seams and their production potential. How-
ever, in the case of coalbeds with microbial activity, it is also necessary to quantify the
reaction kinetics. A possibility that is currently being researched is the enhancement
of the microbial processes producing biogenic CBM6–10.

To address the rate of gas production from microbial activity, we identify a simplified
reaction pathway for coal bioconversion and develop the corresponding reaction ki-
netic model and overall reaction rate using experimental data and existing literature
on anaerobic digestion processes. The identification of reaction kinetics provides a
rational basis for process analysis, control and design11. At smaller scales (laboratory
experiments), the kinetic model can aid in the design of experiments to study opti-
mum reaction conditions. At larger scales, simulation of a flow model coupled with
the kinetic model will aid in estimating commercial gas production from coal seams
on field scales while taking ongoing bioconversion into account.
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2.2 Coal degradation reaction network

2.2.1 Coal and coal precursor: Lignin

CBM associated with coal deposits consists of gas molecules that are either elimi-
nated from organic matter during compaction/transformation processes associated
with coal formation or produced by microbial attack or thermal cracking of coal.
Based on the source/origin, CBM is classified as primary biogenic, thermogenic and
secondary biogenic gas. Primary biogenic gas begins in peat swamps12 by aerobic mi-
crobial attack on cellulosic material leading to the formation of anaerobic conditions.
As coalification progresses, the anaerobic microbial attack on cellulosic breakdown
products occurs in the presence of inorganic electronic acceptors such as CO2 and
H2 ultimately providing the substrates for methanogenesis. The degraded peat ma-
terial becomes deep coal beds over geological time and generates thermogenic gas
by thermal cracking. Microbial activity in these coal beds is suppressed or killed
due to extreme conditions of pressure and temperature. Microbial activity may be
renewed or the population re-inoculated in these layers by changes in geochemical
conditions or triggering events4,13. The new microbial communities in these layers
feed on the highly recalcitrant organic matter and continue to evolve by adapting
a strategy of high biomass and low growth rate thus producing secondary biogenic
gas4. An example of secondary biogenic gas generation is the Sydney Basin formed
post the cretaceous uplift (during which a large quantity of thermogenic gases were
lost)14. Various production data indicate that coal deposits of high rank with intense
secondary biogenic gas generation have high gas content and hydrostatic pressure
conditions approaching their maximum sorption capacity. Apart from gas produced
in-situ by the degradation of coal/gas components, CBM beds are also saturated with
allochthonous gas components that migrated from other strata.

Since coalification occurs by compaction of peat swamps through cycles of subsidence
and emergence, plant organic matter spends quite some time under microbial attack.
From petrographic studies15, it has been shown that coalification does not occur
as degradation followed by the re-organisation/condensation of smaller molecules to
form larger ones. The preservation of parts of plant material as fossils is proof of this.
Coal is formed from transformations of the resistant biopolymers (e.g., cutan, lignin,
alganean) that are left behind in plant matter after the rapid elimination of cellu-
lose by aerobic bacteria. Hence, lignin, the largest fraction amongst the biopolymer
constituents, is generally considered the precursor of coal16. Lignin is a random, com-
plex, irregular, heterogeneous, three dimensional (3D), varyingly branched network
of cross linked phenolic (aromatic) biopolymers.
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2.2.2 Anaerobic breakdown of coal: Ongoing biogenic gas
generation

The biogenic CBM gas found in coal beds is the product of the anaerobic breakdown
of the complex structure of coal by a microbial food chain. This is established from
various anaerobic microcosm studies such as those by Ulrich et al.13. The anaer-
obic breakdown or digestion of coal is similar to the anaerobic breakdown of any
complex organic matter. It is broadly classified into (1) hydrolysis/fermentation of
coal macromolecules into smaller molecules (2) acidogenesis (3) acetogenesis, and (4)
methanogenesis.13,17 Since all of these reaction steps are microbial processes, the coal
substrate must be solubilised in water. Thus, the coal solubilisation rate is a variable
in coal degradation.

2.2.3 Solubilization

Coal is a large cross linked 3D network of macromolecules and lower molecular sub-
stances18–20 held together by attractive forces such as pi-pi interactions, hydrogen
bonds, electrostatic and electrodynamic interactions. Therefore, it is generally very
insoluble in water or organic solvents at ambient temperatures and pressures. Lignin,
the structure that coal preserves, also has poor solubility owing to its large molecu-
lar size, complex cross linking and aromaticity.16 Studies on extraction indicate that
solubility can be improved by increasing cooperative interactions between coal and
solvents through hydrogen bonds and aromatic pi-pi interactions. Adding a base (nu-
cleophile/electron donor) significantly affects these interactions. In the presence of
a base, the solubilization mechanism is a substitution reaction of an electron-donor
participating in the intermolecular forces of coal19–21. The complete solubilization
mechanism, identifying which covalent bonds are broken by the solvent, is not known
yet. Studies have also shown that solubilization can occur even at room temperature
in the presence of microbes.22–24

Biological solubilization of coal is an area that gained interest in 1982 following a
report that lignite could be degraded to recoverable liquid products by a certain
fungus22. Since then, several works have been published22–24 which suggest that
the biocatalytic solubilization of coal can be mediated by microbes and enzymes in
aqueous or other organic media; specifically, the alkaline cell metabolites produced
by these microbes.24. Apart from requiring mild physiological conditions, coal bio-
solubilisation is also dependent on many other factors such as the size of coal particles,
pH, the concentration of free cells and the concentration of other inorganic ions.25
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2.2.4 Hydrolysis

Hydrolysis of complex coal macromolecules in the soluble phase produces simpler
polymers or monomers. Products of hydrolysed coal have been identified in many ex-
periments such as those by Young et al.26. These products are acids and alcohols that
bear structural similarities to the constituents of lignin or lignin monomers such as
vanillic acid, ferullic acid, cinnamic acid, benzoic acid, catechol, protocatechuic acid,
phenol, p-hydroxybenzoic acid, syringic acid and syringaldehyde. This is consistent
with the theory that lignin structure is preserved in coal formations.

2.2.5 Acidogenesis and acetogenesis

Hydrolysed products are then fermented into fatty acids, volatile fatty acids, ketones,
alcohols and even simple one-carbon compounds such as acetate and carbon dioxide.
This process is known as acidogenesis and is aided by acidogenic bacteria. Several
other factors such as temperature, pH and the availability of nutrients determine
favourable conditions for acidogenesis. Acetogenesis is the anaerobic breakdown of
the products of acidogenesis, producing smaller acids such as acetate, formate and
hydrogen and carbon dioxide. This process is aided by acetogenic bacteria. Ferry
and Wolfe17 indicate that benzoate degradation (an acidogenesis reaction) proceeds
only with the continuous removal of the products acetate, formate, and hydrogen.

2.2.6 Methanogenesis

Methanogenesis is the terminal step where microbes known as methanogens produce
methane by the conversion of methanogenic substrates such as acetate, formate, hy-
drogen and carbon dioxide. The various possible pathways of methanogenesis are
acetoclastic methanogenesis, hydrogenotrophic methanogenesis, syntrophic acetate
oxidation followed by hydrogenotrophic methanogenesis and acetogenesis followed by
acetoclastic methanogenesis13. Each of these pathways employs different substrates.
Numerous studies have indicated that methanogenesis may occur via different pre-
dominant mechanisms in different coal beds with varying conditions27. For example,
laboratory and field studies by Ulrich et al.13 on coal seams in Powder River Basin
(where acetate was found to be an important intermediate) or rapid stimulation
of methane production in the presence of acetate as compared to hydrogen in coal
samples from an abandoned coal mine in the Ruhr basin28 provide evidence that
acetoclastic methanogenesis is the dominant pathway. However, a few other studies
such as the work by Harris et al.29, which proved that methane production from
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coals in the Powder River Basin improved in the presence of H2/CO2 amendments,
and that by Thielemann et al.30 on methane production in samples from the Ruhr
basin which were incubated in the presence of H2 and fatty acids, show that hy-
drogenotrophic methanogenesis is the dominant pathway. It would appear that the
dominant methanogenetic pathways may differ from basin to basin and within a basin
itself, and the relation between carbon isotopes of methane and carbon dioxide that
has been used to infer methanogenetic pathways may more accurately describe the
extent of methanogenesis31.

A very significant factor affecting the dominant methanogenesis pathway is temper-
ature. Investigation of the effect of temperature on methanogenesis32 has shown
that in a psychrophilic community (enriched at about 5◦C), 95% of the methane
originated from acetate, whereas for a thermophilic community (50◦C), 98% of the
methane was formed from bicarbonate. A mesophilic community (at 30◦C) exhibited
both pathways, but about 80% methane was produced using acetate as precursor.
Also, it is observed that in young organic systems, acetoclastic methanogenesis is the
dominant pathway while carbon dioxide reduction is predominant in older systems.
Methanogenesis is usually inhibited at low pH values (< 6)33,34.

2.3 Kinetic model development

2.3.1 Experimental methods

Coal bioconversion experiments were conducted using accepted standard anaerobic
culturing techniques35. Two different methanogenic enrichment cultures, T-1610 and
QSAF, which had been enriched from coal cuttings obtained from drilling operations
in two different coal formations in the Western Canadian Sedimentary Basin, Al-
berta6, were used. Different batch experiments were conducted in the presence of
these two enrichment cultures in bottles containing mineral salts medium (MSM)36

amended with tryptone (nutrient). Tryptone is a nitrogen-rich, protein-based nutri-
ent proven to be effective in stimulating biogenic methane production6. The coal
used was the same source coal used in the original enrichments. The cultures were
incubated stationary at 30◦C in the dark. The initial headspace was 100% N2 and the
subsequent gas production was measured by gas chromatography35. Replicate sam-
ples of each culture were periodically sacrificed in order to collect the culture fluid
for volatile fatty acid analyses (Extractable Priority Pollutants in Water Method,
Alberta Innovates - Technology Futures Method 2054M-EC 3/11 version 9.1).

A kinetic model for biogenic methane production from coal is presented in the fol-
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lowing sub-sections.

2.3.2 Simplified reaction pathway

Coal degradation occurs through a complicated reaction network involving many dif-
ferent species (summarized by Jones et al.37) It is impractical to build a kinetic
model by evaluating all the elementary reaction steps. Parameter estimation for such
a model would also be unworkable, given the minimal availability of data on the inter-
mediates. A reasonable kinetic model can be built by lumping intermediates belonging
to the major steps involved in coal degradation. We consider these to be solubilization,
hydrolysis, acidogenesis, acetogenesis and methanogenesis. Solubilization/hydrolysis
and methanogenesis are known to be the slowest steps. The reactants for acidoge-
nesis (lignin and lignin-like monomers) and acetogenesis (benzoate-like components)
are found at significant concentration in many experimental studies conducted on
coal degradation and in formation waters13,38–42. Components belonging to each of
the reaction classes - hydrolysis, acidogenesis and acetogenesis, are lumped and rep-
resented with a compound or marker that is the most common structure involved in
the process. This marker is used to represent the aggregate kinetic characteristics of
the components involved. This is similar to the method of lumping (grouping) for
kinetic modeling that is employed in complex chemical reaction systems43,44. The
various assumptions in our kinetic model are:

1. Each reaction step (i) is carried out by one class of microbes Xi and its corre-
sponding enzyme Ei.

2. The carbon source is considered to be the only limiting nutrient for all the
microbes. The nitrogen source (tryptone) is assumed to be in excess and does
not appear explicitly in the model.

3. The product of solubilization is solubilized coal and is considered to have the
same molar mass as coal.

4. The product of hydrolysis/fermentation is fragmented coal. This represents
smaller fragments of the coal macromolecule which are compositionally similar
to lignin and lignin-like monomers. Therefore, we choose the representative
compound to be syringic acid, a common lignin monomer.

5. The products of acidogenesis are putative aromatic ring intermediates which are
lumped and represented by benzoate/benzoic acid, since benzoate is a dominant
intermediate in coal formation waters13,27,42.
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6. Short chain acids, which are the products of acetogenesis, are lumped and rep-
resented by acetate/acetic acid, since they are among the most common inter-
mediates found in coal formation waters13,37,45,46.

7. The main products of methanogenesis are methane, carbon dioxide and hy-
drogen. Acetoclastic methanogenesis is assumed to be the major pathway,
since H2 and CO2 feeding hydrogenotrophic methanogens usually favor high
temperatures and are found in deeper layers of sediments47, while acetoclas-
tic methangens favour low/moderate temperatures and are found in relatively
young systems, which is the case with the anaerobic microcosm systems under
study. Thus, acetate is the substrate for methanogenesis.

8. A negative effect on rate of methanogenesis has been observed with increasing
acetate concentration in many studies47–52. Further, acetate is usually found
in low concentrations in formation waters of coal seams with ongoing gas gen-
eration 13,42,46. This implies inhibition to acetoclastic methanogenesis from its
substrate (acetate). Lokshina et al.50 have implemented this effect in the kinetic
rate expression for methanogenesis, using Haldane models (which are modified
Monod models accounting for substrate inhibition) and have proved that these
explain experimental data better than Monod kinetics.

9. Among the products of methanogenesis, only methane is modeled quantita-
tively.

10. To account for the initial inoculation period, a delay that is estimated from the
experimental data is introduced into the kinetic model.

2.3.3 Stoichiometry

Coal is very heterogeneous and does not have a constant composition; however, prox-
imate and ultimate analysis can provide an estimate of its stoichiometry53. Us-
ing Buswell’s equation for methane fermentation by bacteria54, CnHaOb + (n − a

4
−

b
2
) H20 → (n

2
− a

8
+ b

4
) CO2 + (n

2
+ a

8
− b

4
) CH4, and extrapolation of the methano-

genesis rate from Strapoc et al.46, we obtain an approximate molecular formula for
sub-bituminous coal as C100H100O9 (sub-bituminous coal is commonly associated with
CBM). The rest of the dominant reaction intermediates are fragmented coal (syringic
acid, C10H10O5), benzoate/benzoic acid (C7H6O2), acetate/acetic acid (CH3COOH)
and the products CH4, CO2 and H2. Therefore, the stoichiometry for the lumped
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reaction system is

C100H100O9 + 41H2O → 10C10H10O5 + 41H2

C10H10O5 + 3H2O → C7H6O2 + 5H2 + 3CO2

C7H6O2 + 6H2O → 3CH3COOH + 3H2 + CO2

CH3COOH → CH4 + CO2

In cases where other dominant methanogenic pathways are present, the stoichiometry
and kinetic model can be modified appropriately.

2.3.4 Model

In this section, reaction kinetics are modeled for the lumped reaction system: coal
→ solubilized coal → fragmented coal → benzoate → acetate → products. The con-
centrations of coal, solubilised coal, fragmented coal, benzoate, acetate and products
are represented by C, S,W,B,A and P , respectively.

Crushed coal particles in water first undergo solubilization. Let the initial mass of
coal be m0 and its density be ρ0. The particles are assumed to be uniformly spherical
with initial radius r0. The rate of solubilization of coal is modeled according to
the dissolution rate law of Noyes and Whitney based on diffusion layer model/film
theory55. The model assumes that

• There exists an interface between the solid and liquid phases.

• Equilibrium exists at the interface, i.e., the rate of transfer to the interface is set
equal to the rate of transfer from the interface. The resistance to mass transfer
is a combination of resistances in both phases.

• The concentration in the bulk liquid phase is constant throughout the volume.

The solubilization rate is given by

R = − 1

X1

dC

dt
= K1A(S∗ − S) = K1

3m0

r0ρ
fb

(
C

C0

)2/3

(S∗ − S) (2.1)

whereK1 is the overall mass transfer coefficient, S∗ is the equilibrium solubility of coal,
C0 is the initial concentration of coal, A is the cross-sectional area of coal particles in
contact with water, fb is the fraction of the surface area covered by microbes and X1

is the concentration of microbes involved in solubilization.
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The rest of the enzymatic reactions, each assumed to be a single-substrate limited
microbial process, are modeled by the empirical Monod equation for a substrate,
Q. The Monod equation generates a sigmoidal curve for the growth rate. At high
substrate concentrations, the growth rate is constant, while at low concentrations,
the growth rate is first order.

µ =
µmaxQ

K +Q
; q =

qmaxQ

K +Q
(2.2)

(2.3)

where µ = 1
X
dX
dt

is the specific growth rate of microbes and q = 1
X
dQ
dt

is the substrate
utilization/removal rate. µmax and qmax are the maximum growth rates and K is the
substrate concentration at half the maximum growth rate. To account for inhibition
to methanogenesis at high acetate concentrations, the Monod model is modified as50

q =
qmaxQ

K +Q+ Q2

I

where I is the inhibition constant. (2.4)

By considering bacterial density to be high relative to substrate concentrations, the
kinetic equations are considered for the case of no-growth kinetics, i.e, the organism
concentration is assumed to remain essentially constant even as the substrate is de-
graded56,57. In other words, the Michaelis-Menten kinetic model is applied. Based
on the derived stoichiometry, the overall model describing the chain of enzymatic
reactions using a series of Monod models is

dC

dt
= −K1X1

3m0

r0ρ
fb

(
C

C0

)2/3

(S∗ − S) (2.5a)

dS

dt
= K1X1

3m0

r0ρ
fb

(
C

C0

)2/3

(S∗ − S)− k2X2S

K2 + S
(2.5b)

dW

dt
= 10

k2X2S

K2 + S
− k3X3W

K3 +W
(2.5c)

dB

dt
=

k3X3W

K3 +W
− k4X4B

K4 +B
(2.5d)

dA

dt
= 3

k4X4B

K4 +B
− k5X5A

K5 + A+ A2/K ′5
(2.5e)

dP

dt
=

k5X5A

K5 + A+ A2/K ′5
(2.5f)

Figure 2.1 shows results of GC-MS analysis on samples from the anaerobic serum
bottle study conducted with QSAF enrichment culture in the presence of coal and
a mineral salts medium (MSM) amended with tryptone. As is seen, benzeneacetic
acid is a common intermediate at all times (even at t = 0). Short chain acids such as
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pentanoic acid and butanoic acid, which would be lumped into acetate due to similar
kinetic characteristics, are also present at t = 0. Lumped acetate and benzoate con-
centrations from GC/MS analysis on samples from the anaerobic serum bottle study
conducted with T-1610 enrichment culture and a mineral salts medium amended with
tryptone with/without coal are seen in Figure 2.2a. These results also indicate that
a benzoate and an acetate pool were present at t = 0 even when coal was absent.
Also, results of GC/MS analysis on an uninoculated tryptone medium are shown in
Figure 2.2b58.

Figure 2.1: GC-MS analysis on samples of an anaerobic serum bottle study con-
ducted with QSAF enrichment culture in the presence of coal and MSM amended with
tryptone.

These observations lead us to believe that a benzoate pool becomes available from
tryptone and this, on undergoing acetogenesis, produces acetate. To account for this,
we modify the rate of change of benzoate concentration in the model as

dB

dt
=

k3X3W

K3 +W
+ ν − k4X4B

K4 +B
(2.6)

where ν is the zero-order rate of benzoate generation from tryptone, which is assumed
to be present in excess.

To simplify the model, the Monod expressions are reduced to first order rate expres-
sions by assuming low substrate concentrations (since the coal solubilization rate is
very low). However, substrate inhibition is preserved in methanogenesis to account
for acetate inhibition. At high methanogenesis rates where the acetate concentration
is quite low, there is no difference in the Monod and first order rates. However, at low
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(a) (b)

Figure 2.2: Results of GC/MS analysis (a) From analysis on samples from experi-
ments conducted with/without coal in the presence of tryptone (b) From analysis on
uninoculated tryptone medium.58

methanogenesis rates, acetate accumulation and consequently the cut-off of product
generation is manifested only with the modified Monod model with the substrate-
inhibition component. The reduced model is

dC

dt
= −a([S∗]− [S])(

C

C0

)2/3 (2.7a)

dS

dt
= a([S∗]− [S])(

C

C0

)2/3 − b[S] (2.7b)

dW

dt
= 10b[S]− r[W ] (2.7c)

dB

dt
= r[W ] + ν − d[B] (2.7d)

dA

dt
= 3d[B]− e[A]

f + [A] + [A]2

g

(2.7e)

dP

dt
=

e[A]

f + [A] + [A]2

g

(2.7f)

where a = K1
3m0

r0ρ
fb; b =

k2X2

K2

; r =
k3X3

K3

; d =
k4X4

K4

; e = k5X5; f = K5; g = K ′5

(2.7g)

2.4 Analytical solution

It is difficult to obtain analytical solutions for the model described above. However,
by making the assumption that solubilisation is the slowest step (dC

dt
≈ 0), the equa-
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tions can be solved using Laplace transforms. The analytical solutions are found in
Equation 2.8. For b 6= r 6= d 6= e

f
,

S(t) = S0e
−bt (2.8a)

W (t) = W0e
−rt +

10bS0

(b− r)
(e−rt − e−bt) (2.8b)

B(t) = B0e
−dt +

∫
t

νe−dtdt+
rW0

(r − d)
(e−dt − e−rt) +

10brS0

b− r

(
e−dt − e−rt

(r − d)
− e−dt − e−bt

(b− d)

)
(2.8c)

when A(t) is low;

A(t) = A0e
− e
f
t +

3dB0

d− e
f

(e−
e
f
t − e−dt) +

3drW0

(r − d)

(
e

−e
f
t − e−dt

d− e
f

e
−e
f
t − e−rt

r − e
f

)
+ (2.8d)

30dbrS0

(b− r)

(
e

−e
f
t − e−dt

(d− e
f
)(r − d)

− e
−e
f
t − e−dt

(d− e
f
)(b− d)

− e
−e
f
t − e−rt

(r − e
f
)(r − d)

+
e

−e
f
t − e−bt

(b− e
f
)(b− d)

)
(2.8e)

and P (t) = P0 +
e

f

∫
t

A(t)dt

when A(t) is high; A(t) = A0 + 3d

∫
t

B(t)dt; and
dP

dt
= 0 (2.8f)

where S0, W0, B0, A0 and P0 are the initial concentrations of solubilised coal, frag-
mented coal, benzoate, acetate and product. Concentration profiles of coal, inter-
mediates and products in the presence of low and high acetate concentrations were
computed using the analytical solution. The results are seen in Figure 2.3. As is seen
in Figure 2.3a, product generation continues as acetate decreases as compared to
Figure 2.3b, where product generation is inhibited due to high acetate concentration.

2.5 Parametric sensitivity analysis

We use sensitivity analysis to reduce the number of parameters to be estimated. Since
we are interested in the concentrations of produced methane, normalized sensitivity
coefficients are evaluated for methane with respect to various model parameters.

NSC =
(P − P0)/P0

(p− p0)/p0

where p and P are the parameter and the corresponding output, and p0 and P0 repre-
sent nominal values, respectively. The sensitivity analysis is based on the numerical
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(a)

(b)

Figure 2.3: Profiles of intermediate products using the analytical solution from Equa-
tion 2.8. S,W,B,A and P denote concentrations of solubilized coal, fragmented coal,
benzoate, acetate and products in µmol/ml, respectively. (a) Low acetate concen-
tration with methane production (b) High acetate concentration inhibiting methane
production.

solution of the model in Equation 2.7 for two different sets of nominal parameter
values. Nominal set 1 is [a = 0.025 , S∗ = 75 , b = 5 , r = 5 , d = 2 , e = 1 , f =
1 , g = 0.1] and nominal set 2 is [a = 0.001 , S∗ = 10 , b = 10 , r = 5 , d = 1 , e =
0.04 , f = 1 , g = 1]; ν was chosen to be 0.01 in both the cases. Set 1 operates in a
region of high acetate and low product concentration, while set 2 operates in a region
of low acetate and high product concentration.

Normalized sensitivity analysis reveals that a, S∗ and e are the most sensitive param-
eters. Apart from this, f is sensitive in regions of low acetate concentrations and g
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is sensitive in regions of high acetate concentrations (when its nominal value is not
large). a, S∗ and e, f, g together control solubilization and methanogenesis, respec-
tively. b, r and d are not very sensitive parameters and ν is not a sensitive parameter
at large times. In spite of this, we include b, r, d and ν in the estimation to ensure
accurate prediction of product concentrations.

2.6 Parameter estimation

Having identified the most sensitive parameters, we use particle swarm optimization
(PSO) to solve the nonlinear regression problem to estimate these parameters. PSO
is a population-sample based optimization algorithm inspired by social behaviour in
animals such as bird flocking, fish schooling and bees swarming59. In this method,
randomly generated particles (parameter sets) are allowed to move around the solu-
tion space with velocities determined by the algorithm so that they move towards a
global optimal solution60. The various experimental data sets employed were:

1. Enrichment studies using only coal as carbon substrate conducted by Harris et
al.29. Two low rank (lignite A) coal samples were obtained from separate coal
seams at different depths (referred to as Alaska deep and Alaska shallow) in a
single borehole in Fort Yukon, Alaska, USA. The experiments were conducted
with 8 g of crushed coal transferred to 10 ml of inorganic medium (which is a
solution of trace metals, minerals and 40mM bicarbonate).

The rate of methane production was higher in Alaska shallow coals (obtained
at a depth of 381 m) compared to Alaska deep coals (obtained at a depth of 582
m). Harris et al. also observed that high acetate concentration amendments to
enrichment cultures do not support substantive methane production, indicating
that acetoclastic methanogenesis may not occur. However, in the absence of
H2 and CO2 measurements, this cannot be verified and the low activity could
also be attributed to inhibition at high acetate concentrations. Based on this
assumption, the kinetic model derived with acetoclastic methanogenesis as the
dominant pathway was still applied to the data set and a good fit was observed.
ν is set as zero as there is no addition of nitrogen-rich nutrient (tryptone).

2. Methane production data from degradation experiments conducted by us with
two different enrichment cultures, T-1610 and QSAF, on 5 g coal cuttings, with
other conditions such as bottle volume and tryptone concentration being kept
constant in both cases.
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Table 2.1 shows the estimated model parameters, while Figure 2.4 shows the compar-
ison of model predictions against experimental data for the cases mentioned above.
Parameters b, r and d were kept constant as they have very low sensitivity values.
Parameter g is more sensitive in the case of studies conducted by Harris et al.29 due
to inhibition from acetate.

3. A series of anaerobic serum bottle studies conducted with different quantities
of coal (at constant volume) and with a constant coal ratio (while varying the
quantity of coal and bottle volume), both in the presence and absence of tryptone.

Tables 2.2 and 2.3 show the estimated model parameters, while Figures 2.5 to 2.8
show the comparison of model predictions against experimental data for data set 3.
As is seen, K1fb, S

∗ and e are generally higher for the case with tryptone as compared
to that without tryptone. For the experiments conducted in the absence of tryptone,
it is seen that K1fb decreases when the quantity of coal increases. This could indicate
the effect of crowding of coal particles in solution. It does not affect the experiments
conducted in the presence of tryptone significantly, since a benzoate pool is already
available. Since the role of ν diminishes with increasing time, it is kept constant in
our model in all of the cases.

The developed model can be applied for quantification of methane and other gases, as
well as other intermediates in the coal bio-degradation network. It can then be used
to optimize the recovery of other value-added products also using the intermediates
that are produced (such as aromatic compounds, which are lumped as benzoate in
our model, and short chain acids, which are lumped as acetate in our model, and
so on). Figure 2.9 shows intermediate profiles in anaerobic experiments conducted
at constant volume and coal ratio, predicted up to a year of production. It is seen
that intermediate concentrations are higher when the nutrient (tryptone) is available.
Acetate concentrations are highest and continue to increase as compared to other
intermdiates. The constant increase is due to inhibition of methane production by
acetate.

We present a simple example to illustrate the use of the model in optimization studies
at different scales. Let us consider a continuous stirred tank reactor (CSTR) with
anaerobic coal bioconversion. To improve product generation by removing acetate,
water (amended with tryptone) can be continuously injected into the CSTR. Fig-
ure 2.10 shows product profiles at different flow rates (F = 0, 0.04, 5 ml/day) and
it can be seen that with an increase in the flow rate, there is almost a 10-fold im-
provement in product generation along with acetate recovery in the outlet stream.
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(a) Alaska deep.29 (b) Alaska shallow.29

(c) T-1610 (d) QSAF

Figure 2.4: Comparison of model predictions against methane production data. (a)
Alaska coal (deep), (b) Alaska coal (shallow), (c) T-1610 enrichment culture, and (d)
QSAF enrichment culture. Data sets for (a) and (b) were obtained from Harris et
al.29. Data sets for (c) and (d) were obtained from experiments conducted by us.

(a) Methane production for
m0 = 0.1g.

(b) Methane production for
m0 = 0.5g.

(c) Methane production for
m0 = 1g.

Figure 2.5: Regression of kinetic model against data from experiments conducted
without tryptone at constant volume for different quantities of coal.
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Table 2.1: Estimated model parameters based on anaerobic studies conducted with
enrichment cultures T-1610 and QSAF, and anaerobic studies conducted by Harris et
al.29.

Parameter unit
Alaska
shallow

Alaska
deep

T1610 QSAF

a day−1 0.0005 0.0001 0.00155 0.0175

S∗
µmol
ml

56 43 38.67 3.4

b day−1 10 10 5 5

r day−1 10 10 5 5

d day−1 10 10 5 5

e
µmol
ml day

10 1 24.2 61.22

f
µmol
ml

4.66 1 4 30

g
µmol
ml

0.15 0.01 0.1 0.1

ν
µmol
ml day

0 0 0.01 0.01

(a) Methane production for
m0 = 0.1g.

(b) Methane production for
m0 = 0.5g.

(c) Methane production for
m0 = 1g.

Figure 2.6: Regression of kinetic model against data from experiments conducted
with tryptone at constant volume for different quantities of coal.
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(a) Methane production at
V = 2ml.

(b) Methane production for
V = 10ml.

(c) Methane production for
V = 20ml.

Figure 2.7: Regression of kinetic model against data from experiments conducted
without tryptone at a constant coal ratio (even though the quantity of coal and the
volume were varied).

(a) Methane production at
V = 2ml.

(b) Methane production for
V = 10ml.

(c) Methane production for
V = 20ml.

Figure 2.8: Regression of kinetic model against data from experiments conducted
with tryptone at a constant coal ratio (even though the quantity of coal and the volume
were varied).

This strategy (and other similar approaches) can be mimicked in laboratory scale and
coreflooding experiments and also be extended to methane production at field scales
through optimally placed and operated injection wells.

To adapt the kinetic model for different coals, the following considerations exist:
stoichiometric ratios will vary with the rank of coal, nutrient limitations may need to
be taken into account, and the dominant methanogenic pathway may change based on
the operating conditions. However, all of these can be captured in the same modeling
framework.

The reaction kinetic model, in conjunction with a fluid transport/storage model, can
be adapted for reservoir simulation of CBM production with ongoing bioconversion at
the field scale. The effect of varying injection systems, producing well configurations

34



Table 2.2: Estimated model parameters based on anaerobic serum studies conducted
at constant volume and differing quantities of coal. N0 ml/ml is the tryptone concen-
tration, m0 g is the mass of coal, V ml is the volume of the bottle, and C0 µmol/ml
is the initial concentration of coal. Units of model parameters are identical to those
defined in Table 2.1.

N0 m0 V [C0] a 3m0

ρr0
K1fb S∗ b r d e f g ν

Without tryptone

0 0.1 10 6.9 0.001 10.55 9e-5 10 10 5 1 0.04 1 1 0

0 0.5 10 34.77 0.005 52.75 9e-5 10 10 5 1 4.15 1 1 0

0 1 10 69.44 0.001 105.45 9e-6 10 10 5 1 0.043 1 1 0

With tryptone

0.1 0.1 10 6.9 0.001 10.55 9e-5 10 10 5 1 1 1 1 0.01

0.1 0.5 10 34.77 0.005 52.75 9e-5 10 10 5 1 4.44 1 1 0.01

0.1 1 10 69.44 0.005 105.45 4.5e-5 10 10 5 1 4.455 1 1 0.01

and nutrient loadings can be predicted and optimized for such cases. Along with
core-holder studies, this forms the basis of our future work.
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Table 2.3: Estimated model parameters based on anaerobic serum studies conducted
at a constant coal ratio (even though the quantity of coal and the volume were varied).
N0 ml/ml is the tryptone concentration, m0 g is the mass of coal, V ml is the volume
of the bottle, and C0 µmol/ml is the initial concentration of coal. Units of model
parameters are identical to those defined in Table 2.1.

N0 m0 V [C0] a 3m0

ρr0
K1fb S∗ b r d e f g ν

Without tryptone

0 0.1 2 34.7 0.0001 10.55 9.5e-6 10 10 5 1 0.005 1 1 0

0 0.5 10 34.7 0.001 52.75 1.9e-5 15 10 5 1 0.05 1 1 0

0 1 20 34.7 0.001 105.45 9.5e-6 15 10 5 1 0.03 1 1 0

With tryptone

0.1 0.1 2 34.7 0.0005 10.55 4.7e-5 10 10 5 1 0.44 1 1 0.01

0.1 0.5 10 34.7 0.005 52.75 9.5e-5 10 10 5 1 4.44 1 1 0.01

0.1 1 20 34.7 0.005 105.45 4.75e-5 10 10 5 1 4.36 1 1 0.01

2.7 Conclusions

By considering the major reaction classes in coal bioconversion, i.e., solubilization,
hydrolysis, acidogenesis, acetogeneis and methanogenesis; and taking into account
information on dominant intermediates, we have simplified the reaction pathway to a
series of enzymatic reactions using lumped species, with acetoclastic methanogenesis
being assumed to be the dominant methanogenic pathway in the microcosm studies
considered in this work. The rate of coal solubilisation was described by a diffusion
layer model; hydrolysis, acidogenesis and acetogenesis were based on Monod kinetics
(reduced to first order rates for low substrate concentrations), and the methanogene-
sis rate was modeled with modified Monod kinetics to account for substrate inhibition
from acetate. Anaerobic serum bottle culture experiments conducted with and with-
out tryptone, a nutrient, revealed that the addition of tryptone produces a pool of
benzoate.

A kinetic model was developed using the these observations and assumptions, and
was validated against experimental coal bioconversion data for many different coal
samples, both with and without nutrient addition. The estimates of the parameters
of the model were consistent with the assumption that the addition of the nutrient,
tryptone, led to the production of a pool of benzoate. Additionally, the parameters
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controlling solubilization and methanogenesis were found to be the most sensitive
parameters that affected the methane production predicted by the model. The ki-
netic model was also used to infer the concentrations of intermediate products in the
bioconversion of coal and to devise optimal operating strategies for maximizing the
production of methane and/or intermediate products. Our future work focuses on the
use of the kinetic model in conjunction with fluid transport and storage models to
predict the performance of enhanced biogenic methane production in the presence of
nutrient amendments and/or varying production cycles8 at reservoir and field scales.
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(a) Intermediate profiles for anaerobic bottle experiments at constant volume.

(b) Intermediate profiles for anaerobic bottle experiments at constant coal ratio.

Figure 2.9: Profiles of intermediate products for anaerobic experiments at constant
volume and coal ratio.
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Figure 2.10: Increased product generation along with the recovery of lumped acetate
components at the outlet for anaerobic bioconversion coal in a continuous stirred tank
reactor with water (amended with tryptone) injection.
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Chapter 3

Modeling, estimation and
optimization in coreflood

experiments for coalbed methane
production
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Abstract

We extend a previously derived kinetic model for coal bioconversion and couple it
with a transport model to simulate coreflooding experiments with packed crushed
coal, which are representations of a coalbed methane (CBM) reservoir at the lab-
oratory scale. We apply a tanks-in-series model to simulate plug flow in the core,
and the nonlinear model is regressed against experimental data using particle swarm
optimization. The validated model is used to analyze CBM production at different
operating conditions and subsequently for optimization of gas production. Model-
based experimental design is applied to improve the accuracy of parameter estima-
tion, and computational singular perturbation analysis is applied to develop a better
understanding of the important species and reaction at each stage of the coreflooding
experiment, and to develop reduced order kinetic models that can be used in process
optimization.
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3.1 Introduction

Gases produced and stored or trapped in coalbeds with multiple scales of porosity are
known as coalbed methane (CBM). They are usually a mixture of methane (80 - 99%
by volume) and minor amounts of carbon dioxide, nitrogen, hydrogen sulphide, sul-
phur dioxide and heavier hydrocarbons such as ethane, propane and butane. CBM
is an unconventional resource of natural gas and is a better fuel than its precursor,
coal, in terms of calorific value and impact on the environment. Interest in CBM
extraction for commercial production began in the 1970s and has rapidly increased
since the early 1990s.

CBM is produced by two major processes, biogenic and thermogenic. While thermo-
genic CBM is produced by thermal cracking at elevated pressure and temperature,
biogenic methane is produced by anaerobic microbial attack on the organic matter in
coal. Various events such as basin uplift/cooling, the flow of associated groundwater
or dilution in salinity levels can trigger biogenic methane generation in coal beds that
are no longer conducive to any microbial growth, and this methane is referred to as
secondary biogenic CBM. Simulation of CBM production in the presence of ongoing
microbial activity requires quantification of reaction kinetics along with characterisa-
tion of the coalbeds. To address this, we have developed a simplified reaction pathway
and a corresponding kinetic model based on existing literature on anaerobic digestion
processes and experimental data from anaerobic microcosm studies conducted with
crushed coal in serum bottles1–4. However, these closed system laboratory culture
bottle experiments are conducted at very high ratios of medium to coal substrate.
Since this is not the case in an actual CBM reservoir, models estimated with such
experimental data cannot be applied directly for the simulation of biogenic CBM
production at commercial field scales.

To overcome these limitations of the bottle experiments, coreflooding experiments,
similar in principle to coreflooding experiments conducted by petroleum reservoir en-
gineers for studies related to crude oil and gas recovery5–7, were conducted by Stephen
et al.8. These laboratory scale experiments mimic underground reservoir conditions
more closely, in the sense that they treat the coal sample as a porous medium that
permits migration of fluids (flow of water, microbes and flow/diffusion/sorption of
gases) at high operating pressures. Data from these experiments is therefore more
suitable for use in scale-up.

In this study, we have developed a fundamental model that includes reaction kinetics
describing the coreflooding experiments of Stephen et al.8, conducted parameter es-
timation and model validation, analyzed the dynamic features of the model and used
it for process optimization. First, we modify our previously developed enzymatic
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kinetic model1 to accommodate for varying nutrient limitations along with the inte-
gration of gas diffusion and sorption kinetics. A tanks-in-series model is then built
to simulate the flow and changing species concentrations within the core. Particle
swarm optimization is used for estimation of the parameters of the model to validate
it against the production data from the experiment. The validated model is then
used for model-based analysis of the effects of varying operating conditions, which
subsequently enables optimization of gas production. In addition, we devise an op-
timal experimental design for parameter estimation based on a D-optimal measure.
Analysis of the important species and reactions at different stages of the coreflooding
experiments is also performed using computational singular perturbation (CSP).

3.2 Coreflooding experiments

For clarity of exposition, we provide a brief description of the coreflooding experiments
of Stephen et al.8, for which we develop a model in this work.

A core holder was filled with crushed coal of different mesh sizes simulating a het-
erogeneous porous medium as in an actual reservoir. Before starting the coreflood
experiment, 3 pore volumes of MSM-tryptone solution were injected (until saturation)
followed by inoculation with 1.25 pore volumes of microbial culture and two weeks of
incubation at room temperature. During the experiment, the core was continuously
flooded with MSM-tryptone solution (nutrient) at 0.006 ml/min and the effluent
sample was collected at the downstream section of the core holder. Dissolved gases
were desorbed from the effluent by pressure reduction,and were then analysed for the
presence of CH4 and CO2 in a gas chromatograph (GC) using two different methods.
In one, the gas collected in a Tedlar bag was directly injected into the GC column,
and in the other, the gas samples were transferred to a sealed vial before injection
into the GC. Gas chromatography-mass spectrometry (GC-MS) was performed on
the effluent to analyse the composition of the intermediate products8. Table 3.1 lists
the properties of the coal sample and core holder used in these experiments.

3.3 Kinetic model development

In our previous work1, the complicated reaction network for biogenic CBM produc-
tion from coal was simplified by using lumped species reacting in a series of enzymatic
reaction blocks consisting of coal solubilization, hydrolysis, acidogenesis, acetogenesis
and methanogenesis. The lumped components involved in each block are coal (C),
solubilized coal (S), i.e., coal solubilized in water, fragmented coal (W ) denoting

49



Coal:

Mass 300.4 g

Average particle
size

200 µm

Density
1422
kg/m3

Core

Length 30.5 cm

Diameter 3.81 cm

Bulk volume 347.5 ml

Pore volume 131.95 ml

Table 3.1: Coal and core holder properties.

the products of hydrolysis and represented by a common lignin monomer (syringic
acid), benzoate (B) denoting the products of acidogenesis and represented by ben-
zoate/benzoic acid, which is the most common aromatic ring intermediate found in
these systems, acetate (A) denoting products of acetogenesis and represented by ac-
etate/acetic acid and finally the products (P ) of methanogenesis, which are methane,
carbon dioxide and hydrogen. Thus, the simplified reaction pathway is

Coal C→ Solubilized coal S→ Fragmented coal W→ Benzoate B→
Acetate A→ Products P

A kinetic model was proposed for this reaction scheme using a series of Monod models
which was then validated against experimental data from various closed static low
pressure anaerobic microcosm studies conducted in bottles with crushed coal1. Vari-
ous assumptions were considered in the development of the kinetic model, including
assuming that carbon is the only limiting substrate while nitrogen (from the nutri-
ent, tryptone) is present in excess for the entire microbial chain. This was reasonable
in the case of bottle experiments where the medium to substrate ratios were high.
However, in the case of coreflooding experiments, the concentration of nitrogen (from
tryptone) is not in excess in different parts of the core at all times. For instance,
for a core with volume V = 347.5 ml and tryptone supplied at a feed flow rate of
F = 0.006 ml/min, there is a constant fresh supply of tryptone at the inlet, while
there is a fresh supply only every 40 days (the residence time) at the outlet. Thus,
nitrogen limitations due to low tryptone concentrations have to be introduced into
the kinetic model for coal breakdown.
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Table 3.4 lists the notation for all the variables introduced in the following sections.

Nitrogen as a limiting substrate

Tryptone, which is the nutrient used in the experiment, is an assortment of peptides
providing a source of amino acids (i.e., supply of nitrogen [N]) to growing bacteria.
The growth rate in the presence of heterogeneous limiting substrates, i.e., the carbon
and nitrogen sources ([C] and [N] respectively), can be expressed by modifying the
Monod model as9

µ = µm
[N ]

KN + [N ]

[C]

KC + [C]
(3.1)

Since the nitrogen is derived from tryptone, [N ] is replaced by [Nu], which denotes
the concentration of the external nutrient supply (tryptone). It is to be noted that
complex structures such as peptides and amino acids present in tryptone are usually
broken down by higher microbes10, making simpler compounds available to the rest
of the microbial chain.

Apart from providing a source of nitrogen, anaerobic digestion of tryptone also pro-
duces a pool of aromatic ring intermediates lumped into benzoate, as established in
our previous study1. Figure 3.1 shows the concentrations of benzoate-like and acetate-
like components from GC/MS analysis on uninoculated tryptone medium.8,11 Com-
pounds such as p-tolylacetic acid, phenylacetic acid, o-pthalate were lumped under
the marker benzoate, whereas compounds such as methyl succinate and succinic acid
were lumped under the marker acetate. A high concentration of benzoate-like com-
ponents indicates that the benzoate pool was produced from tryptone in the presence
of indigenous microbes present in the inoculum.

Since benzoate-like components are produced by acidogenesis of fragmented coal com-
ponents as well as by microbial attack on tryptone, they are both assumed to be com-
peting substrates at low concentrations. To model this, the Monod model is modified
based on the purely competitive substrate kinetics proposed by Yoon et al.12.

Apart from this, tryptone is also assumed to influence the rate of coal solubilisation
owing to its nucleophilic property. The solubilisation constant in the kinetic model
is accordingly modified as keSn[Nu]. A schematic of the reaction network is shown in
Figure 3.2.
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Figure 3.1: Lumped benzoate and
acetate concentrations from GC/MS
analysis on MSM-tryptone medium.

Benzoate

Fragemented
Coal

Solubilised
Coal

Coal

Nutrient

Acetate

CH4 CO2

Figure 3.2: Schematic of the reaction
network.

Acetoclastic methanogenesis with substrate inhibition

In our previous study1, the dominant pathway for methanogenesis was assumed to
be acetoclastic methanogenesis with substrate inhibition. The results from 16s rRNA
pyrotag sequencing of the core material from the inlet, center and outlet sections
reported in Stephen et al.8 further support this claim.

According to the results of the 16S rRNA gene pyrotag sequencing, Methanobac-
terium, a methanogen that uses the hydrogenotrophic pathway is found at 17.9%
relative abundance at the inlet of the core, but completely disappears at the out-
let. The absence of Methanobacterium at the core outlet where there is a high con-
centration of CO2 implies that hydrogenotrophic methanogenesis is not dominant.
Methanosarcina, a methanogen that uses the acetoclastic pathway, is found at 5.4%
relative abundance at the inlet, but also completely disappears towards the center
and outlet of the core. However, this can be explained by inhibition to microbial
activity of these methanogens from growing acetate concentrations along the core;
this is supported by the decrease in the average pH of the effluent from 6.04 to 5.9.
The dominance of Clostridia, which are fermentative anaerobic bacteria, at the core
outlet further supports the claim that methanogenesis is highly inhibited at high con-
centrations of acetate (A), leaving fermentation/hydrolysis as the dominant reaction.
The only inconsistency with this description is the relatively higher survival rate of

52



hydrogenotrophic methangens at the inlet of the core. It can be reasoned that hy-
drogenotrophic methanogens thrive at the inlet because of the constant fresh supply
of MSM (containing NH4Cl), as they are a source of simple nitrogen containing com-
pounds for these methanogens. The absence of acetoclastic methanogens here can be
attributed to their low activity in the presence of free ammonia13. This speculation
can be clarified by performing pyrotag sequencing of the core material at different
times in the coreflooding experiment.

Gas sorption

Since the coreflooding experiment was conducted at different pressure conditions
(3.45 MPa at the beginning and 0.069 MPa towards the end), the rate of gas diffu-
sion between different phases and sorption on solid coal must also be considered in the
kinetic model. First, since the experiment is conducted at relatively high operating
pressures, the gases produced during methanogenesis are assumed to be completely
dissolved in the water. Hence, all components are assumed to be present in the water
phase. At high pressures, the gas dissolved in the liquid phase is assumed to diffuse
and adsorb on to the surface of the solid. By assuming that the rate of attachment is
fast14, the rate of gas diffusion from water to the surface of the solid is expressed as

rad = kadM([G]− [G]s) (3.2)

where kad is the diffusion rate constant (1/s.m2), M is the surface area available
for adsorption, [G] is the gas concentration in the liquid bulk (mol/m3) and [G]s is
the concentration of gas molecules attached to the surface of the coal (mol

m2
m2

m3 ). CO2

is also quantified in this kinetic model, and it is assumed to face competition from
CH4 during sorption. Competition for solid sites between the gases is reflected in the
available surface area M as

dM =
∂M

∂[CH4s]
d[CH4s] +

∂M

∂[CO2s]
d[CO2s]

= −kadsm[M ]d[CH4s]− kadsc[M ]d[CO2s]

M = M0 exp(−kadsm[CH4s]− kadsc[CO2s]) (3.3)

When the pressure drops, gas molecules desorb and are assumed to follow a simple
first order reaction law

rd = kd[Gas]s where kd is the desorption rate constant (3.4)
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The rate constants corresponding to adsorption and desorption, i.e., kad and kd are
dependent on pressure. We assume all the reactions to occur under non-growth
conditions (i.e., the total microbe quantity is constant). With these assumptions, the
kinetic model is derived as

rC = −keSn[Nu]︸ ︷︷ ︸
Effect of [Nu] on solubilization rate

(
C

C0

)2/3

([S∗]− [S]) (3.5a)

rS = keSn[Nu]

(
C

C0

)2/3

([S∗]− [S])− b[S]

(
[Nu]

k1 + [Nu]

)
︸ ︷︷ ︸

Limiting [Nu] in Hydrolysis

(3.5b)

rW = 10b
[Nu][S]

k1 + [Nu]
− µ1

(
[Nu]

k2 + [Nu]

)
︸ ︷︷ ︸

Limiting [Nu] in Acidogenesis

(
[W ]

Ks1 + [W ] + Ks1
Ks2

[Nu]

)
(3.5c)

rB = µ1

(
[Nu]

k2 + [Nu]

)(
[W ]

Ks1 + [W ] + Ks1
Ks2

[Nu]

)
︸ ︷︷ ︸

[B] from [W ] under competition from [Nu]

+
µ2[Nu]

Ks2 + [Nu] + Ks2
Ks1

[W ]︸ ︷︷ ︸
[B] from [Nu] under competition from [W ]

(3.5d)

− d[B]

(
[Nu]

k3 + [Nu]

)
︸ ︷︷ ︸

Limiting [Nu] in Acetogenesis

(3.5e)

rA =
3d[Nu][B]

k3 + [Nu]
−

(
[Nu]

k4 + [Nu]

)
︸ ︷︷ ︸

Limiting [Nu] in Methanogenesis

(
e[A]

f + [A] + [A]2/g

)
(3.5f)

rNu = − µ3[Nu]

Ks2 + [Nu] + Ks2
Ks1

W ]︸ ︷︷ ︸
Nutrient consumed to produce [B]

− KNus [Nu]︸ ︷︷ ︸
Total [Nu] consumed to provide [N] to microbes

(3.5g)

rCH4 =
e[Nu][A]

(k4 + [Nu])(f + [A] + [A]2/g)
−rCH4ads

+ rCH4des︸ ︷︷ ︸
Net [CH4] molecules available after adsorption/desorption

(3.5h)

rCO2 =

(
µ1[Nu][W ]

(k2 + [Nu])(Ks1 + [W ] + Ks1
Ks2

[Nu])

)
+
d[Nu][B]

k3 + [Nu]
+ rCH4 (3.5i)

−rCO2ads
+ rCO2des︸ ︷︷ ︸

Net [CO2] molecules available after adsorption/desorption

(3.5j)
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rCH4ads
= kadmM([CH4]− [CH4s]) (3.5k)

rCH4des
= kdm[CH4s] (3.5l)

rCO2ads
= kadcM([CO2]− [CO2s]) (3.5m)

rCO2des
= kdc[CO2s] (3.5n)

k = k0Xfb
mcoal/n

rcoalρcoal
(3.5o)

3.4 Tanks-in-series model

A tanks-in-series model is developed to simulate the rate of change of various species
concentrations along the core. The first assumption made is that the fluid present in
the core moves as a series of plugs with no mixing in the axial direction and perfect
mixing in the radial direction, which is reasonable based on the low flow rate of
the injected fluid in the experiment (0.006 ml/min). Using a sufficient number of
continuous stirred tank reactors (CSTRs) in series reduces the error arising from this
approximation of the plug flow.

Figure 3.3: Tanks-in-series model for coreflood experiments.

Figure 3.3 shows the core volume divided into n CSTRs. The coupled differential
equations used to simulate the coreflooding experiment are shown in Equation 3.6
below, and the rates of reactions for the species are obtained from the kinetic model
described above in Equation 3.5. Simultaneous integration of the coupled differential
equations for all of the tanks provides us with the dynamic variation of the concen-
trations of the species in different regions of the core holder.

In any tank i,

d[Ci]

dt
= rCi (3.6a)

d[Si]

dt
=
F

V
([Si−1]− [Si]) + rSi (3.6b)
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d[Wi]

dt
=
F

V
([Wi−1]− [Wi]) + rWi

(3.6c)

d[Bi]

dt
=
F

V
([Bi−1]− [Bi]) + rBi (3.6d)

d[Ai]

dt
=
F

V
([Ai−1]− [Ai]) + rAi (3.6e)

d[CH4i]

dt
=
F

V
([CH4i−1]− [CH4i]) + rCH4i

− rCH4adsi + rCH4desi (3.6f)

d[CH4is]

dt
= rCH4adsi − rCH4desi (3.6g)

d[CO2i]

dt
=
F

V
([CO2i−1]− [CO2i]) + rCO2i

− rCO2adsi + rCO2desi (3.6h)

d[CO2is]

dt
= rCO2adsi − rCO2desi (3.6i)

d[Nui]

dt
=
F

V
([Nui−1]− [Nui]) + rNui (3.6j)

3.5 Estimation and model-based optimal experi-

mental design

Parameter estimation was carried out with the nonlinear model and the coreflooding
data for generated methane and carbon dioxide using particle swarm optimization
(PSO). PSO is a population sample-based optimization algorithm inspired by social
behaviour in animals such as bird flocking, fish schooling and bees swarming15. In
this method, randomly chosen samples are allowed to move around a solution space
with velocities that are iteratively updated so as to converge at a global optimal
solution16.

We also explore the use of optimal experimental design for improving the accuracy
of the parameter estimation. Model based design of experiments (DOE) for dynamic
systems typically uses scalar metrics of the Fischer Information Matrix (FIM)17.

FIM = NT
SCNSC (3.7)

where NSC is the sensitivity matrix containing normalized sensitivity coefficients of
the response of the model with respect to its various parameters. In this work, we
use the D-optimal criterion, which maximizes the determinant of the FIM. Underde-
termined systems have FIM of low rank18, and this can be avoided by reducing the
parameter space based on identifiability analysis using the sensitivity matrix.
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3.6 Computational singular perturbation

The reaction kinetic model developed for coal bioconversion in Equation 3.5 faces
various difficulties during estimation and simulation. First, the large dimension of
the parameter space added to limited availability of observed model responses leads
to reduced identifiability. Second, the presence of coupled equations with different
time scales coupled together leads to a stiff system of equations. Model reduction can
be used to address both issues, and a method that identifies rate-controlling reactions
and the subset of reactions that are active at each time can also aid in analysis and
optimization. We employ computational singular perturbation (CSP)19–21 for this
purpose. CSP seeks to iteratively separate the fast and slow reaction subspaces by
finding a transformation for the vector of the rate of change of species concentrations
(g). Given a kinetic model with N species and R reactions, the rate of change of
species concentrations is expressed as

g =
dy

dt
=

R∑
r=1

SrF r (3.8)

where y is the species vector at any time t, Sr is the stoichiometric matrix and F r is
the reaction rate vector. g can be transformed to N modes using a set of N linearly
independent row basis vectors bi as

g =
N∑
i=1

aif
i (3.9)

where f i = bi � g, i = 1, .., N . ai represents the direction of the modes and f i, the
corresponding amplitude. Vectors aj are the inverse of the column basis vectors, i.e.,
bi, bi � aj = δij, i, j = 1 to N . The rate of change of amplitude of the modes, f i is
given by

df i

dt
=

N∑
j=1

[
dbi

dt
+ bi � ∂g

∂y

]
� ajf j =

N∑
j=1

Λi
jf

j (3.10)

Reciprocals of the eigen values of Λ are the time scales of the N modes, denoted by
τ(i), where i is the index of the mode. Modes can be speed ranked by ordering the
time scales in increasing magnitudes as,

|τ(1)| < · · · |τ(i)| < · · · |τ(N)| (3.11)

The fast modes are those with time scale τ(m) smaller than a desired time resolution
δt. In our analysis, since we are interested in exhausted modes at all times, δt is
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considered to be the current time scale. A set of ideal basis vectors would be one
that block diagonalizes Λ, separating the fast and slow modes with as little mixing
as possible, and it can be identified using refinement strategies19–21. Information on
kinetic model reduction can then be recovered from the CSP radical pointers and
reaction pointers. For instance, the species yi contributing the most to a certain
fast mode j can be deduced from the largest value in the corresponding diagonal
matrix ajb

j. It is known as the CSP radical pointer. The corresponding fast reaction
attributed to the exhaustion of yi can then be derived from reaction pointers given by
Pj(r) = s−1

r � ajbj � sr, where sr is the stoichiometric column vector corresponding
to the reaction rate F r. g can be represented with the elimination of fast modes as

gslow(M) = (I −Q(M))� g, where

Q(M) =
M∑
m=1

amb
m;M is the number of fast modes

(3.12)

3.7 Results

Estimation using particle swarm optimization

As mentioned earlier, particle swarm optimization was used to fit the tanks-in-series
model incorporating the reactions for biogenic methane production and the coreflood-
ing data for generated methane and carbon dioxide. 70 particles were employed and
updated over 5 iterations to obtain a suitable parameter set. 10 tanks in series were
chosen in the model, and it was verified that increasing the number of tanks beyond
this did not change the outputs of the model significantly. The estimated values of
the parameters of the model are shown in Table 3.2, and the performance of the
model predictions against experimental data in shown in Figure 3.4. The predicted
concentrations of methane and carbon dioxide match the experimental data closely.
The lumped acetate concentration from GC/MS analysis of the effluent and that pre-
dicted by the model have similar trends (increasing with time) but are of different
scales of magnitude. However, the trends in the simulated benzoate concentration
do not match the lumped benzoate concentration from the GC/MS analysis data at
smaller times; however, there is potentially greater error in the benzoate data due to
incomplete information from GC/MS analysis.

Stephen et al.8 have speculated that methane production by hydrogenotrophic methano-
genesis might be responsible for the observed decrease in the CO2 : CH4 ratio over
time in the coreflooding experiment. However, they did not consider the fact that
CO2 adsorbs better than CH4

22,23, and the large volume of CO2 collected at the end of
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the experiment when the operating pressure was lowered to 0.069 MPa supports the
conclusion that acetoclastic methanogenesis is dominant. Running the coreflooding
experiment with methanogenesis inhibitors could resolve this issue unambiguously.
Further, running a coreflood experiment with inert packing material and a contin-
uous feed of nutrient would allow for accurate quantitative estimation of methane
production from tryptone alone. The availability of such data can improve the iden-
tification of model parameters involving the production of the benzoate pool from
tryptone.

The validated kinetic model was used to simulate experiments conducted with and
without tryptone, the nutrient source. Figure 3.4e) reveals that the model respects the
nitrogen requirement of microbes. The estimated values of the half-saturation con-
stants k1, k2, k3, k4, which correspond to tryptone limitations, are very low (see the
highlighted values in Table 3.2). Since this implies that the model is not very sensitive
to tryptone limitation in the hydrolysis, acidogenesis, acetogenesis and methanogen-

esis steps, the simplification
[Nu]

k+[Nu]
= 1 is applied to the model in the following

analysis.

Model-based analysis of the effect of varying operating condi-
tions

Figure 3.5a shows the cumulative methane generated at different initial nutrient con-
centrations. The cumulative methane produced increases with an increase in the ini-
tial nutrient concentration initially, starts decreasing later before leveling out. This
is due to the increase in acetate acumulation, which will inhibit methanogenesis. Fig-
ure 3.5b shows that with an increase in the feed flow rate, i.e., a decrease in the
residence time, the cumulative methane produced decreases. Since the removal of ac-
etate will improve methane production, we simulate a series of experiments using the
coreflood model with injection of a fresh batch of nutrient rich fluid at each successive
tank i (apart from the inlet tank) in succesive runs at a flow rate Fi. When nutrient
is injected closer to the core outlet, more methane is generated. Also, the effect of
residence time varies with the location of the injection point. Closer to the core inlet,
methane generation is higher at low flow rates. However, closer to the core outlet,
methane generation is higher at intermediate flow rates. The observations indicate
that methane generation improves with the removal of acetate, which is effected by
the dilution caused by nutrient injection.
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Model based D-optimal experiment design

As mentioned earlier, a D-optimal experimental design was carried out using the
estimated model with the feed flow rate and initial nutrient concentration are the
inputs to be varied, the results of which are shown in Figure 3.6. The optimal
experimental conditions where the D-optimal metric is highest are at a feed flow rate
of F = 0.009 ml/min and an initial nutrient concentration of Nu0 = 0.5 mol/m3.

Computational singular perturbation-based analysis of the ki-
netic model

Computational singular perturbation (CSP) is used for model analysis and reduction;
g, which represents the rate of change of the species concentrations, is transformed
to an alternate basis that separates the fast and slow reaction subspaces. The pe-
riod of initial delay in the methane production is disregarded in this analysis. The
reaction rate vectors are analysed only up to 80 days, at which time desorption is
limited due to the large operating pressure (between 1.7 MPa and 3.5 MPa). Trial

basis vectors were chosen by computing the left and right eigenvectors of
∂g
∂y

. The

refinement strategy19–21 is then iteratively applied to the basis vectors to block di-
agonalise Λ at all instants such that the ten modes corresponding to the ten species
[C], [S], [W ], [B], [A], [Nu], [CH4], [CH4s], [CO2], [CO2s] are separated with little mix-
ing. Figure 3.7d shows the trends of the time scales of the modes with increasing
time; the nonlinear nature of the model results in variations in the time scales with
time. Figure 3.7c shows the number of exhausted modes, which are those modes

with time scales lesser than the current time and negligible contribution to
dg
dt

(of

order <1E − 4). Radical pointers indicate which components may be chosen as CSP
radicals to provide equations of state and reaction pointers indicate which reaction
associated with each exhausted mode is fast. Dormant reactions have low reaction
rates that do not exhaust over long periods. The reduced reaction rate vector, g, after
the identification of fast reactions and CSP radicals is shown in Table 3.3. As seen,

after 28 days, there is one exhausted mode

(
d[S]
dt
≈ 0

)
, a second mode is exhausted

after 37 days

(
d[CO2]
dt

+ d[CO2s]
dt

≈ 0

)
and a third mode is exhausted after 40

days

(
d[B]
dt
≈ 0

)
. The exhausted reactions corresponding to the fast exhausted

modes are hydrolysis rate b[S], the carbon dioxide adsorption rate rCO2ads
and the

acetogenesis rate d[B], respectively. The mode
d[CO2]
dt

+ d[CO2s]
dt

connected with
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the exhausted reaction rCO2ads
= kadcM([CO2]− [CO2s]) ≈ 0 indicates that the rate

of carbon dioxide production is approximately equal to the rate of its adsorption

onto the surface of the coal. Reflecting on its insignificant presence in
d[S]
dt

, rC is
considered to be a dormant reaction.

Thus, accounting for only the slow reactions, the use of CSP results in a reduction in
the parameter dimensions by 5 in the reduced model. Figures 3.7a and 3.7b compare
the performances of the original and reduced models, and prove that the predictions of
the reduced order model do not deviate significantly from that of the original model.
Due to the elimination of exhausted modes, the issue of stiffness of the system of
differential equations is also resolved, thereby making it suitable for use in simulation
at larger length and time scales. The differential equation system corresponding to
the reduced kinetic model is shown in the Appendix A.1.
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Parameter Value Unit

k 7.8× 10−6 h−1

Sn 10−4 m3

mol

b 0.1 h−1

k1 10−5 mol
m3

µ1 0.001
mol
m3.h

µ2 0.0312
mol
m3.h

µ3 0.0029
mol
m3.h

Ks1 0.3842
mol
m3

Ks2 0.4922
mol
m3

k2 10−5 mol
m3

d 0.015 h−1

k3 10−5 mol
m3

e 19.608
mol
m3.h

k4 10−5 mol
m3

f 215.805
mol
m3

g 0.0011
mol
m3

KNus 10−5 h−1

kadm 0.0017
1

m2.h

kadsm 0.01
m3

mol

kdm 10.5 h−1

kadc 0.01
1

m2.h

kadsc 0.01
m3

mol

kdc 10−4 h−1

Table 3.2: Values of model parameters estimated using particle swarm optimization.
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(a) Comparison of the experimental cu-
mulative CH4 production data against
model predictions.

(b) Comparison of the experimental cu-
mulative CO2 production data against
model predictions.

(c) Comparison of the lumped ben-
zoate concentration from GC/MS analy-
sis against model predictions.

(d) Comparison of the lumped ac-
etate concentration from GC/MS analy-
sis against model predictions.

(e) Cumulative methane generation with
and without nutrient addition.

Figure 3.4: Comparison of model predictions against the experimental coreholder
data.
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(a) Cumulative methane generated at
the end of 90 days for different initial
nutrient concentrations.

(b) Cumulative methane generated at
the end of 90 days for different feed flow
rates.

(c) Cumulative methane generated at the end of 90 days with additional fresh nutrient
injection in the core.

Figure 3.5: Model-based analysis of the effect of varying operating conditions.
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Figure 3.6: D-optimal metric at different operating conditions.
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g Stoichiometry Reaction rate

t > 28 days, One mode exhausted; CSP radical: d[S]/dt = 0

d[C]
dt

-1 0 0 0 0 0 0 0 0 0 0
keSn[Nu]

(
C

C0

)2/3

([S∗]− [S])︸ ︷︷ ︸
Dormant

d[S]
dt

0 0 0 0 0 0 0 0 0 0 0 b[S]

d[W ]
dt

10 0 -1 0 0 0 0 0 0 0 0
µ1[W ]

Ks1+[W ]+Ks1/Ks2[Nu]

d[B]
dt

0 0 1 1 -1 0 0 0 0 0 0
µ2[Nu]

Ks2+[Nu]+Ks2/Ks1[W ]

d[A]
dt

0 0 0 0 3 -1 0 0 0 0 0 d[B]

d[Nu]
dt

0 0 0 0 0 0 1 0 0 0 0
e[A]

f+[A]+[A]2/g

d[CH4]
dt

0 0 0 0 0 1 0 -1 0 0 0 rNu

d[CH4s]
dt

0 0 0 0 0 0 0 1 0 0 0 rCH4ads

d[CO2]
dt

0 0 3 0 1 1 0 -1 0 -1 0 rCH4des

d[CO2s]
dt

0 0 0 0 0 0 0 0 0 1 0 rCO2ads

Indicating fast reaction identified by reaction pointer; b[S]
corresponding to hydrolysis

rCO2des

Indicating CSP radical; [S]

Brief time, 37 < t < 40 days, Two modes exhausted; CSP radicals
d[S]
dt

= 0,
d[CO2]

dt
+

d[CO2s]
dt

= 0

40 <= t < 80 days, Three modes exhausted; CSP radicals
d[S]
dt

= 0,
d[CO2]

dt
+

d[CO2s]
dt

= 0,
d[B]
dt

= 0

d[C]
dt

-1 0 0 0 0 0 0 0 0 0 0
keSn[Nu]

(
C

C0

)2/3

([S∗]− [S])︸ ︷︷ ︸
Dormant
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d[S]
dt

0 0 0 0 0 0 0 0 0 0 0 b[S]

d[W ]
dt

10 0 -1 0 0 0 0 0 0 0 0
µ1[W ]

Ks1+[W ]+Ks1/Ks2[Nu]

d[B]
dt

0 0 0 0 0 0 0 0 0 0 0
µ2[Nu]

Ks2+[Nu]+Ks2/Ks1[W ]

d[A]
dt

0 0 2 3 0 -1 -0.7 0 0 0 0 d[B]

d[Nu]
dt

0 0 0 0 0 0 1 0 0 0 0
e[A]

f+[A]+[A]2/g

d[CH4]
dt

0 0 0 0 0 1 0 -1 0 0 0 rNu

d[CH4s]
dt

0 0 0 0 0 0 0 1 0 0 0 rCH4ads

d[CO2]
dt

0 0 2 0.5 0 0.5 0 -0.5 0 0 0 rCH4des

d[CO2s]
dt

0 0 2 0.5 0 0.5 0 -0.5 0 0 0 rCO2ads

Indicating fast reaction identified by reaction pointer; b[S]
corresponding to hydrolysis; d[B] corresponding to acidoge-
nesis and rCO2ads corresponding to CO2 adsorption are the
fast reactions in this case

rCO2des

Indicating CSP radicals; [S], [B] and
d[CO2]

dt
+

d[CO2s]
dt

= 0

0 since desorption rates are not applicable under high pressure at t < 80 days

Table 3.3: Reduced model based on computational singular perturbation (CSP) with the matrix representation g =
Stoichiometry× Reaction rate.
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(a) Prediction of methane production
with the reduced model.

(b) Prediction of carbon dioxide produc-
tion with the reduced model.

(c) Number of exhausted modes.

3.8 Conclusions

In this work, we extend a kinetic model derived to describe the bioconversion of
crushed coal in bottles for use in coreflooding experiments, which are used to mimic
coalbed methane (CBM) reservoir conditions in terms of porosity, fluid migration and
high pressure conditions. Since the concentration of nutrient amendment in the form
of tryptone varies along the core (unlike in a small scale bottle), nitrogen-limited
microbial growth is included into the model, along with kinetics of the adsorption
and desorption of dissolved gases on the surface of the coal. A tanks-in-series model
is used to simulate the plug flow in the core, and particle swarm optimization is used
to estimate the parameters of the model by minimizing the error between the model
predictions and experimental data for methane and carbon dioxide production. The
estimated model is then used to study the effect of varying operating conditions and
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(d) Time scales of different modes at dif-
ferent times.

Figure 3.7: Analysis based on computational singular perturbation.

to evaluate alternate injection patterns to maximize methane production, and we
show that additional nutrient injection at different points in the core can reduce the
effects of acetate inhibition and boost methane production. In addition, we suggest
operating conditions to perform additional experiments to improve the parameter
estimation and the predictive capabilities of the model using the D-optimal criterion.
Finally, computational singular perturbation is used to build a reduced order model
(with the number of parameters reduced by 5) that can be used more effectively for
estimation, prediction and optimization. Our future work focuses on extending the
coupled transport and kinetic models to the field scale for estimation and optimization
of CBM production.
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mcoal Mass of coal in core holder (kg)
rcoal Average radius of coal particle (m)
ρcoal Density of coal (kg/m3)
n Number of tanks in series
V Volume of each tank (m3)
F Feed flow rate into the core (ml/min)
C0 Initial coal concentration (mol/m3), mcoal

Vcore

M
Total surface area of coal available for adsorption in

any tank (m2)

[Nu]
Total concentration of the nitrogen-providing nutrient,

tryptone (mol/m3)
[C] Concentration of coal in any tank (mol/m3)
[S] Concentration of solubilised coal (mol/m3)

[W ]
Concentration of fragmented coal components

(mol/m3)

[B]
Concentration of the lumped ”benzoate-like”

intermediates (mol/m3)

[A]
Concentration of the lumped ”acetate-like”

intermediates (mol/m3)
[CH4] Concentration of methane (mol/m3)
[CO2] Concentration of carbon dioxide (mol/m3)
[CH4s] Concentration of adsorbed methane
[CO2s] Concentration of adsorbed carbon dioxide

k
Reaction rate for microbe-aided solubilization under

non-growth conditions (h−1)

k0
Mass transfer coefficient for coal solubilisation in the

absence of nutrient (mol/m
3/h.m2

mol/m3 )

X
Quantity of microbes aiding coal solubilization

(m3/m3)

fb
Fraction of the surface area of coal particles available

for solubilisation; fb = kb

(
ε
ε0

)
Sn

Factor in the exponential scaling of the solubilization
rate with respect to the nutrient concentration

b
Rate constant for enzymatic hydrolysis with excess

nutrient (h−1)

k1

Nutrient concentration at half the maximum rate of
enzymatic hydrolysis under limiting solubilized coal

(mol
m3 )

µ1
Maximum reaction rate of of enzymatic acidogenesis at

excess fragmented coal and excess nitrogen ( mol
m3.h

)
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µ2
Maximum rate of lumped benzoate produced from

tryptone when it is present in excess ( mol
m3.h

)

µ3

Maximum rate at which the nutrient (tryptone) is
consumed to produce lumped benzoate when tryptone

is in excess ( mol
m3.h

)

Ks1

Fragmented coal concentration at half the maximum
rate of benzoate, produced in the absence of significant

competition from the nutrient (mol/m3)

Ks2

Nutrient concentration at half the maximum rate of
benzoate produced, in the absence of significant

competition from fragmented coal (mol/m3)

k2

Nutrient concentration at half the maximum rate of
enzymatic acidogenesis under limiting fragmented coal

(mol
m3 )

d
Rate constant for enzymatic acetogenesis reaction with

excess nutrient

k3
Nutrient concentration at half the maximum rate of

enzymatic acetogenesis under limiting benzoate (mol
m3 )

k4
Nutrient concentration at half the maximum rate of
enzymatic acidogenesis under limiting acetate (mol

m3 )

e/f
First order rate constant for of methanogenesis at low

acetate concentrations (h−1)

eg
Negative first order rate constant for methanogenesis

at high acetate concentrations ((mol/m3)
2
h−1)

KNus
First order reaction rate for nutrient consumed while

providing nitrogen to microbes (h−1)

kadm
Rate constant for diffusion of methane from liquid bulk

to the solid surface (1/h.m2)

kadsm
Fraction of surface area occupied per mole of methane

per m2 area available (m3/mol)
kdm Desorption rate constant for adsorbed methane (h−1)

kadc
Rate constant for diffusion of carbon dioxide from

liquid bulk to the solid surface (1/h.m2)

kadsc
Fraction of surface area occupied per mole of carbon

dioxide per m2 area available (m3/mol)
kdc Desorption rate constant for adsorbed methane (h−1)
ri Reaction rate for species i

Table 3.4: Table of Notation

71



References

[1] Senthamaraikkannan, G., Budwill, K., Gates, I., Mitra, S., and Prasad, V. Ki-
netic modeling of the biogenic production of coalbed methane. (submitted), 2015.

[2] Harris, S. H., Smith, R. L., and Barker, C. E. Microbial and chemical factors
influencing methane production in laboratory incubations of low-rank subsurface
coals. International Journal of Coal Geology, 76(1):46–51, 2008.

[3] D Strapoc, D., Mastalerz, M., Dawson, K., Macalady, J., Callaghan, A. V.,
Wawrik, B., Turich, C., and Ashby, M. Biogeochemistry of microbial coal-bed
methane. Annual Review of Earth and Planetary Sciences, 39:617–656, 2011.

[4] Budwill, K., Koziel, S., and Vidmar, J. Advancements in understanding and
enhancing biogenic methane production from coals. In Canadian Unconventional
Resources Conference. Society of Petroleum Engineers, 2011.

[5] Mazumder, S., Wolf, K., Van Hemert, P., and Busch, A. Laboratory experiments
on environmental friendly means to improve coalbed methane production by
carbon dioxide/flue gas injection. Transport in porous media, 75(1):63–92, 2008.

[6] Nobakht, M., Moghadam, S., and Gu, Y. Mutual interactions between crude oil
and CO2 under different pressures. Fluid Phase Equilibria, 265(1):94–103, 2008.

[7] Shen, P., Wang, J., Yuan, S., Zhong, T., Jia, X., et al. Study of enhanced-oil-
recovery mechanism of alkali/surfactant/polymer flooding in porous media from
experiments. SPE Journal, 14(02):237–244, 2009.

[8] Stephen, A., Adebusuyi, A., Baldygin, A., Shuster, J., Southam, G., Budwill,
K., Foght, J., Nobes, D. S., and Mitra, S. K. Bioconversion of coal: new insights
from a core flooding study. RSC Advances, 4(43):22779–22791, 2014.

[9] Davidson, K. Modeling microbial food webs. Marine Ecology Progress Series,
145(1):279–296, 1996.

[10] Bryant, M., Tzeng, S., and Robinson, I. Nutrient requirements of methanogenic
bacteria. Urbana, 101:61801, 1971.

[11] Stephen, A. private communication, 2015.

[12] Yoon, H., Klinzing, G., and Blanch, H. Competition for mixed substrates by
microbial populations. Biotechnology and Bioengineering, 19(8):1193–1210, 1977.

[13] Demirel, B. and Scherer, P. The roles of acetotrophic and hydrogenotrophic
methanogens during anaerobic conversion of biomass to methane: a review. Re-
views in Environmental Science and Bio/Technology, 7(2):173–190, 2008.

72



[14] Jalali, J. A Coalbed Methane simulator designed for the independent producers.
Master’s thesis, West Virginia University, 2004.

[15] Kennedy, J. and Eberhart, R. Particle swarm optimization. In Encyclopedia of
Machine Learning, pages 760–766. Springer, 2010.

[16] Lee, C. J., Prasad, V., and Lee, J. M. Stochastic nonlinear optimization
for robust design of catalysts. Industrial & Engineering Chemistry Research,
50(7):3938–3946, 2011.

[17] Asprey, S. and Macchietto, S. Designing robust optimal dynamic experiments.
Journal of Process Control, 12(4):545–556, 2002.

[18] Vlachos, D., Mhadeshwar, A., and Kaisare, N. S. Hierarchical multiscale model-
based design of experiments, catalysts, and reactors for fuel processing. Com-
puters & Chemical Engineering, 30(10):1712–1724, 2006.

[19] Lam, S. Using CSP to understand complex chemical kinetics. Combustion Sci-
ence and Technology, 89(5-6):375–404, 1993.

[20] Lam, S. and Goussis, D. The CSP method for simplifying kinetics. International
Journal of Chemical Kinetics, 26(4):461–486, 1994.

[21] Zagaris, A., Kaper, H. G., and Kaper, T. J. Two perspectives on reduction of
ordinary differential equations. Mathematische Nachrichten, 278(12-13):1629–
1642, 2005.

[22] Burruss, R. C. CO2 adsorption in coals as a function of rank and composition:
A task in USGS research on geologic sequestration of CO2. In Presentation
on the Second International Forum on Geologic Sequestration of CO2 in Deep,
Unmineable Coalseams (Coal-Seq II), Washington DC. 2003.

[23] Bromhal, G. S., Sams, W. N., Jikich, S., Ertekin, T., and Smith, D. H. Simulation
of CO2 sequestration in coal beds: The effects of sorption isotherms. Chemical
Geology, 217(3):201–211, 2005.

73



Chapter 4
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Abstract

In this chapter, we develop a multiscale model to simulate coalbed methane (CBM)

production from reservoirs along with the inclusion of secondary biogenic gas gener-

ated by the continued anaerobic breakdown of coal. A two-step gas transport model is

derived for this purpose, based on the assumption that coal porosity can be classified

into two scales, macropores and micropores. The model assumes laminar gas flow

in macropores and diffusive flow in micropores, driven by desorption. Surface diffu-

sion of gas due to the Klinkenberg effect occurring at low permeability and pressure

conditions is also considered. The transport model built for gas flow simulation in a

1D radial reservoir is non-dimensionalized and solved using the Levenberg-Marquardt

method. The Morris OAT (one-at-a-time) method for global sensitivity analysis is

used to identify important gas transport/storage parameters to perform model re-

finement for history matching of production data from the gas producing phase of

Manville wells found in Alberta. The validated transport model is then combined

with a suitably modified enzymatic reaction kinetic model for coal bioconversion that

was originally developed by us for lab-scale experiments. Finally, parametric investi-

gations revealed that an increase in the methanogenesis rate can significantly improve

biogenic gas recovery, and the next most significant parameter is the solubilization

rate.
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4.1 Introduction

Coalbed methane (CBM) is a mixture of methane (approximately 80 - 99% by volume)
and other gases such as carbon dioxide, nitrogen, hydrogen sulphide, sulphur dioxide
and heavier hydrocarbons such as ethane, propane and butane. It is an unconventional
source of natural gas produced from gas wells drilled into relatively shallow coal beds
(typically around 1000-1500 ft). Today, it is a rapidly growing significant energy
source for various reasons, the most attractive of them being the higher calorific
value and cleaner burning properties as compared to coal. According to reports
from the International Energy Agency in 2008, CBM contributed to 10% of natural
gas production in US, followed by 4% in Canada and 8% in Australia. It is also
being extracted in countries with large coal reserves such as India, China, Russia and
Indonesia1.

CBM is produced in coalbeds either by thermocatalytic cracking at elevated pres-
sures and temperatures (known as thermogenic methane) or by the anaerobic attack
of organic matter in coal (known as biogenic methane). Biogenic methane produc-
tion in coalbeds following the restoration of viable conditions for microbial growth
is known as secondary biogenic methane production. A rational approach to im-
prove or enhance biogenic methane generation requires real-time dynamic modeling
and simulation of CBM generation and recovery from coal fields. However, this is a
challenging proposition mainly because of the presence of heterogeneous multiscale
porous structures in coalbeds and the associated multiscale gas transport and stor-
age processes coupled with complicated heterogeneous networks for enzymatic coal
breakdown. While production curves were used in the past, many models are avail-
able today for the prediction of gas production in CBM reservoirs, following the use
of dual mechanism gas transport models by King2 in 1985. However, the models do
not account for ongoing microbial activity.

In this study, we have simulated coalbed methane production with ongoing microbial
activity by solving gas transport equations that contain source terms relating to
gas production due to coal bioconversion. For simplification, we have analysed gas
flow in a one dimensional (1D) radial field. The sequence of model development is
presented in the following sections. A gas transport model is derived based on dual
porosity characteristics and scaling analysis is performed to deduce dimensionless
numbers useful in scale-up applications. The transport model is validated by history
matching production data from different Manville wells in Alberta and later simulated
in conjunction with an enzymatic reaction kinetic model for coal bioconversion that
was developed in our previous study3. This model simulating secondary biogenic
CBM production can potentially be upscaled for multi-phase field scale reservoir
simulations of commercial CBM production.
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4.2 Gas transport in coal seams

4.2.1 Dual porosity characterization of coalbeds

CBM reservoirs are highly heterogeneous with pore scales varying on a wide range.
Based on SEM studies on Australian coals, pore structures (occurring in varying pro-
portions depending on the type/rank of coal) were classified into micropores (<2 nm),
mesopores (2-50 nm) macropores (>50 nm), open fractures (0.05 - 20µ m wide) and
main fractures (0.1 - 2 mm wide).4–6 However since there are many validated math-
ematical models simulating coalbeds with only two scales of porosity, dual porosity
has been accepted as a reasonable assumption. The two levels of pore spaces in a
dual porosity model are macropores and micropores, interchangeably referred to as
fracture porosity and matrix porosity, respectively. Macropores are the natural frac-
tures inherent in coal seams and micropores, surrounded by macropores constitute
the primary porosity system. While only a small amount of gas is present in its free
state within macropore spaces, micropores usually account for as much as 85% of
total coal porosity,7 storing most of the gas in its adsorbed state. Also, micropores
are considered inaccesible to water owing to small pore dimensions.8

4.2.2 Dual mechanism gas transport

Methane drainage process from dual porosity reservoirs is treated as a two-step pro-
cess, consisting of laminar flow through macropores and diffusional flow out of micro-
pores. When production begins, water filled in macropores starts draining out. This
leads to reduced pressure in coal seams causing the flow of free gas in macropores as
well as desorption and diffusion of stored gases out of the micropores towards a pro-
ducer well. Based on dual porosity characteristics, there are many available models
for simulation of fluid flow in coal seams. King et al.8 and Remner et al.9 developed
single permeability flow models based on non-equilibrium sorption using a pseudo
steady-state formulation that was extended to hydraulically fractured coal seams by
Sung et al.10 Clarkson et al.11 incorporated a pressure dependent sorption component
to a gas flow model and Sawyer et al.12 simulated two phase flow in 3-dimensional
grid blocks with multiple wells, accounting for matrix shrinkage and swelling. Manik
et al.13 introduced dual permeability for application in ECBM (enhanced coal bed
methane) recovery, while Thararoop et al.14 developed a dual porosity dual perme-
ability model by considering the presence of water within the micropore matrix, too.

In this work, gas transport equations in a dual porosity single permeability reservoir
with non-equilibrium sorption proposed by King et al.8 are coupled with a reaction
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kinetic model for coal bioconversion to simulate radial gas inflow into a horizontal well.
Since the model only considers gas flow, the water required for the survival and growth
of microbes is assumed to be available from residual water left in macropore spaces
after drainage. Also, since microbes can only access fractures15,16 and micropores
are inaccessible to water,6,8,17–20 microbial activity is assumed to occur only on the
surface of the macropores.

4.3 Gas transport model development

First, gas transport equations are derived by superimposing a one-dimensional (1D)
radial coordinate system on a coal seam and performing material balances on an
elemental volume of the coal seam (or reservoir). Darcy’s law is applied to model
laminar flow of gases in the macropores. Since coal seams usually have low pressures
and low absolute permeabilities, gas slippage is also included in the transport equation
by introducing an effective permeability. Based on the Klinkenberg effect, the effective
gas permeability k′ at a finite pressure is given by21,22

k′ = k

(
1 +

b(Pg)

Pg

)
where b =

cgPgDmaµ

k
(4.1)

Gas diffusion in coals from micropores into the macropore spaces is controlled by
desorption and diffusion rates. The two processes are generally lumped in numerical
models. Among the different models available for simulating gas diffusion23, the non-
equilibrium sorption model with a pseudo steady-state formulation as proposed by
King8 is considered. The various assumptions in model development are listed below.

4.3.1 Assumptions in modeling

1. The flow velocity is assumed to have only a radial component, −→u = u ∗−→e radial,
since 1D radial gas inflow into a horizontal well is modeled (Figure 4.1a).

2. Gas flow through macropores follow Darcy’s law and obey the real gas law. Since
the gas deviation factor Z changes insignificantly with pressure, it is considered
to be constant. Similarly, the gas viscosity µ is also assumed to remain constant.

3. There is no change in the temperature during degasification. The isothermal
gas compressibility cg in Equation 4.1 is approximated as cg ≈ 1/Pg.

4. Gas found adsorbed in micropores is always at a pseudo steady-state or pseudo
equilibrium with gas pressure in the macropores and is modeled by the Langmuir
isotherm.

78



5. The permeability of gas in the macropores, surface diffusion constant, micropore
gas diffusion time constant and the corresponding geometry dependent factor
are assumed to be homogeneous and isotropic.

6. All water in the coal seam is assumed to be produced, and only the gas phase
is considered. Water necessary for microbial activity is assumed to be available
between macropore spaces.

7. Also, it is assumed that the gas phase contains a single component - methane.

8. Changes in the macropore porosity and permeability due to matrix shrinkage or
swelling caused by gas sorption is not considered by assuming that these effects
are negligible.

(a) Gas inflow into a horizontal well in a one-
dimensional radial gas reservoir.

(b) Logarithmically spaced ra-
dial co-ordinates

Figure 4.1: Coalbed methane reservoir model for radial gas inflow.

4.3.2 Coupled nonlinear gas transport equations

Single phase radial gas transport in a dual porosity coalbed reservoir is described by
the equation of continuity as

−1

r

∂

∂r
(rρg ~ug) +

Qt

Vbma
=

∂

∂t
(ρgφma),

−→ug = −k
µ

∂Pg
∂r

(4.2)
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where Vbma is the macropore volume, ~ug is the laminar gas velocity defined by Darcy’s

law,
k
µ

or λ is the mobility of gas in macropores,
Qt
Vbma

is the amount of gas diffusing

from micropores per unit macropore volume, ρg is the gas density and φma is the

macropore porosity. Based on the real gas law, ρg =
PgM

ZRT
. Substituting for ρg and

−→ug , we get

1

r

∂

∂r

(
rPg
Z

k

µ

∂Pg
∂r

)
+
PscT

Tsc

qt
Vbma

=
∂

∂t

(
Pgφma
Z

)
(4.3)

where
qt

Vbma
is the amount of gas diffusing from micropores per unit macropore vol-

ume, at standard conditions and Psc, Tsc are the standard pressure and temperature,
respectively.

To account for gas slippage, macropore permeability is replaced with effective perme-
ability (from Equation 4.1) giving

1

r

∂

∂r

(
rPg
Z

(
k

µ
+
Dma

Pg

)
∂Pg
∂r

)
+
PscT

Tsc

qt
Vbma

=
∂

∂t

(
Pgφma
Z

)
(4.4)

where Dma is the Klinkenberg factor.

Integrating Equation 4.4 over Vbma, we obtain the volumetric weighted average of the

quantity of gas diffusing from micropores, denoted by

[
qt

Vbma

]
.

∫
Vbma

1

r

∂

∂r
(
rPg
Z

(
k

µ
+
Dma

Pg
)
∂Pg
∂r

)dV +
PscT

Tsc

[
qt
Vbma

]
︸ ︷︷ ︸

(averaged quantity)

=

∫
Vbma

∂

∂t
(
Pgφma
Z

)dV

(4.5)

Based on a lumped diffusion-desorption model, which assumes desorption to be a fast

step,

[
qt

Vbma

]
is evaluated as

[
qt
Vbma

]
= −Lmi

∂Vmi
∂t

; where
∂Vmi
∂t

= τmi(VE(Pg)− Vmi) (4.6)

where τmi is the micropore gas diffusion time constant, Lmi is the corresponding
geometry dependent factor, Vmi is the gas quantity within the micropores and VE is
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the pseudo equilibrium quantity of gas adsorbed on the surface of micropores, defined

by the Langmuir isotherm as, VE =
VlPg
Pl+Pg

.

Discretising Equations 4.5 and 4.6 with forward derivative approximations, we get

(PFma)i+1/2

[
Pg
Z

(
k

µ
+
Dma

Pg

)N+1

i+1/2

(Pg
N+1
i+1 − Pg

N+1
i )

]
−

(PFma)i−1/2

[
Pg
Z

(
k

µ
+
Dma

Pg

)N+1

i−1/2

(Pg
N+1
i − PgN+1

i−1 )

]

+
PscT

Tsc

[
qt
Vbma

]N+1/2

i

=
1

δt

(
φmaPg
Z

N+1

i
− φmaPg

Z

N

i

)
(4.7a)

where (PFma)i+1/2 =
2ri+1/2

(r2
i+1/2 − r2

i−1/2)(ri+1 − ri)

and (PFma)i−1/2 =
2ri−1/2

(r2
i+1/2 − r2

i−1/2)(ri − ri−1)

[
qt
Vbma

]N+1/2

i

= Lmi

(
1− exp(− δt

τ
)

δt

)(
Vmi

N
i − VE(Pg)

N
i

)
where,

Vmi
N+1
i = exp(−δt

τ
)Vmi

N
i +

(
1− exp(−δt

τ
)

)
VE(Pg)

N
i and

VE(PN
g i

) =
VE(PN+1

g i
) + VE(PN

g i
)

2

(4.8)

The implicit formulations in coupled Equations 4.7a and 4.8 are solved by the Levenberg-
Marquardt algorithm for an initial reservoir gas pressure P 0

g and an initial micropore

surface gas concentration, V 0
mi =

VlP
0
g

Pl+P 0
g

. The boundary conditions are defined by a

constant well operating pressure Pwf , applied at the inner boundary and a pressure
far field condition applied at the external boundary (as seen in Equation 4.9).

∂Pg
∂r

∣∣∣∣
External boundary

= α(Pg − P 0
g ) (4.9)

Thus coalbed methane gas flow in a dual porosity reservoir is evolved based on the
above gas transport model. Solutions are obtained at logarithmically spaced radial
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co-ordinates, ri = rw

(
re
rw

) i−1
NI−1

and discrete time steps, 0 δt 2δt . . . T ; where NI

is the number of radial grids the reservoir volume is divided into and T is the total
simulation time. Logarithmic grid spacing (shown in Figure 4.1b) is relevant because
pressure gradients are higher in the vicinity of well bores23.

4.3.3 Non-dimensionalization of the gas transport model

We introduce the dimensionless variables

r̃ =
r

R0

, P̃g =
Pg
P0

, t̃ =
t

t0
(4.10)

where R0, P0 and t0 are the reference length, pressure and time, characteristic of the
system. Substituting the dimensionless variables in Equation 4.10 into Equations 4.7a
and 4.8, we get dimensionless equations of the form

(P̃Fma)i+1/2

Π′1

[
P̃N+1
gi+1/2 +

Π′1
Π′2

](
P̃N+1
gi+1 − P̃N+1

gi

)
−

(P̃Fma)i−1/2

Π′1

[
P̃N+1
gi−1/2 +

Π′1
Π′2

](
P̃N+1
gi − P̃N+1

gi−1

)
+
PscTZLmi
P0Tsc

(1− exp(−δt̃Π′3))

δt̃

(
V N
mi − VE(Pg)

N
i

)
=

(
P̃N+1
gi − P̃N

gi

)
δt̃/φma

(4.11a)

Vmi
N+1
i = exp(−δt̃Π′3)Vmi

N
i + (1− exp(−δt̃Π′3))VE(Pg)

N
i (4.11b)

where Π′1 =
R2

0

λP0t0
, Π′2 =

R2
0

Dmat0
and Π′3 =

t0
τ

(4.11c)

By combining Π′1 and Π′2, we get

Π′4 =
Π′1
Π′2

=
Dma/P0

λ
≡ Klinkenberg effect

Laminar flow
(4.12)

where Π′4 is a measure of the ratio between Klinkenberg effect and laminar Darcy
flow in macroporous spaces. When Π′4 is low, gas flow is dominated by Darcy’s flow,
whereas, gas slippage (or Knudsen diffusion) dominates at high values. Under such
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conditions, molecules no longer behave as a viscous fluid; instead they act like inde-
pendent molecules, colliding back and forth between flow boundaries as they travel

through pore spaces24. Similarly, Π′3 =
t0
τ

is a measure of the ratio between the
characteristic time scale and the micropore diffusion time constant. The contribution
of micropore diffusion is significant only at low characteristic reservoir pressure, P0.
Table 4.1 shows the role of dimensionless numbers Π′3 and Π′4 in the analysis of the dif-
ferent forms of gas transport occurring in the dual porosity reservoir. Apart from this,
when values of reference variables are appropriately chosen, non-dimensionalization
also reduces the computational difficulty involved in solving stiff multiscale transport
equations.

Laminar flow Gas Slippage
Micropore gas

diffusion

Π′4
>> P̃N+1

gi+1/2

7 3

Π′4
<< P̃N+1

gi+1/2

3 7

Π′3 << 1
∝

Π′3(V N
mi − VE(PN

gi )) ↓ P0

Π′3 >> 1 ∝
(V N

mi − VE(PN
gi ))

δ̃t

≈ 0 ↑ P0

Table 4.1: Analysis of laminar flow and gas slippage in macropores and gas diffusion
from micropores, based on dimensionless numbers Π′3 and Π′4.

4.4 Model validation based on history matching of

production data

History matching is the process of reservoir model refinement to match historical
production data. To validate the transport model developed in the previous sections,
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we perform history matching of coalbed methane production data from Manville wells
in Alberta as available from public databases25. Prior to this, we perform sensitivity
analysis to identify the most important parameters in the model.

4.4.1 Sensitivity analysis

Global sensitivity analysis was conducted for the model described above based on the
Morris one-at-a-time (OAT) sensitivity method. In this method, each parameter in
the parameter space is scaled to the unit interval [0, 1] and partitioned into (p − 1)
intervals26,27. Nominal parameter sets are then chosen by randomly selecting values
from the set

{
0, 1/(p− 1), 2/(p− 1), ...1−∆

}
, where ∆ =

p
2(p−1)

is the fixed in-

crement added to each parameter in random order to compute elementary effects of
each parameter. The elementary effect of each parameter is then computed as

EEi =
1

∆

P (p1, · · · pi + ∆, · · · pn)− P (p1 · · · pn)

τy

where i is the index of the parameter, P is the gas production evaluated at [p1 · · · pn]
and τy is the output scaling factor. Statistical metrics of elementary effects (EE)
computed for each parameter over an ensemble of nominal parameter sets are then
evaluated, with the mean value representing the average effect of each parameter and
the standard deviation representing nonlinearities and/or interaction effects.26

The range of model parameters considered for global sensitivity sensitivity analysis
in this study is shown in Table 4.2.

Parameter Unit Range

λ mD [0.01 - 0.1]

Dma cm2/s [0.0001 - 0.01]

τ days [12 - 60]

Vl
m3

m3 [150 - 300]

Pl MPa [0.5 - 10]

Table 4.2: Range of the model parameters analysed using global sensitivity.

Gas production at each parameter set is evaluated based on solutions to the non-
dimensional gas transport model in Equation 4.11. The reference scales are chosen as

R0 =
√
Dmaτ , P0 =

Dma
λ

and t0 = τ such that Π′1 = Π′2 = Π′3 = 1, indicating that
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flow in macropores is a combination of laminar flow and gas slippage with significant
contribution from micropore gas diffusion as well. Figure 4.2 shows the mean and
standard deviation of the ensemble of elementary effects of each parameter, evaluated
at an initial reservoir pressure of P 0

g = 1 MPa and a constant well operating pressure
of Pwf = 0.14 MPa. It is to be noted that elementary effects may vary with change
in initial and boundary conditions.

Figure 4.2a shows the average of the ensemble of elementary effects for each parameter
with time. Dma is the most sensitive parameter, followed by λ. However, the effects
of both Dma and λ diminish with time. Vl is the next most sensitive parameter, with
its effect on gas production increasing over time. Pl has low sensitivity, whereas τ has
a negative effect on production, indicating that production decreases with increase in
τ . The effects of both τ and Pl remain almost constant with time.

Figure 4.2b shows the standard deviation of the ensemble of elementary effects for each
parameter with time. Since the standard deviation reflects nonlinearities/interaction
effects, we interpret that τ has the least effect on the response, followed by Pl. λ and
Dma are affected the most, although this diminishes with time. Vl, on the other hand,
appears undisturbed in the beginning, but gradually responds significantly to other
parameter value changes.

4.4.2 Results of history matching of gas production from
Manville wells

In this section, reservoir parameters in the gas transport model (in Equation 4.7a) are
estimated based on history matching of gas production data from 8 different Manville
wells, managed and made commercially available to the public by IHS Inc.25 The ap-
propriate single phase gas production is obtained by truncation of the water produc-
ing phase occurring prior to the gas producing phase (as seen in Figure 4.3). During
history matching, transport model parameters λ and Dma are varied, based on the
results of sensitivity analysis. Apart from reservoir parameters, the initial reservoir
pressure P 0

g and α, determining the external boundary condition (Equation 4.9), are
also varied. The reservoir model variables that are unchanged during history match-
ing of all the 8 wells are shown in Table 4.3. Results of history matching and the
corresponding model parameters are shown in Figure 4.4 and Table 4.4, respectively.
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Parameter Value
Coal seam thickness (drainage

radius) re
15 m

Reservoir temperature T 300 K
Well radius rw 0.086 m

Length of horizontal well h 630 m
Well operating pressure Pwf 0.14 MPa

Number of radial grid points NI 40
Simulation time step dt 8640 s

Table 4.3: Values of reservoir model variables that are unchanged during history
matching of gas production from 8 different Manville wells.

λ Dma τ Vl Pl P 0
g φma α

mD cm2/s days m3/m3MPa MPa % -
W172 0.5 0.013 12 150 1 10 2 -0.01

W188 0.5 0.02 12 150 1 10 2
-

0.005
W191 0.1 0.012 12 150 1 10 2 -0.01
W205 0.1 0.03 12 150 1 10 2 -0.02
W209 0.1 7× 10−3 12 150 1 10 2 0
W263 0.06 10−4 12 150 1 20 2 0
W270 0.1 0.02 12 150 1 10 2 -0.04
W284 0.07 7× 10−3 12 150 1 12 2 -0.01

Table 4.4: Input parameters used in the history matching of production data from
the Manville wells.
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(a) Expectation of the ensemble of elementary effects (EE), eval-
uated for each parameter.

(b) Standard deviation of the ensemble of elementary effects
(EE), evaluated for each parameter.

Figure 4.2: Results of global sensitivity analysis by the Morris OAT (one-at-a-time)
method.

87



Figure 4.3: Gas production after the end of the dewatering phase.

(a)
(b)

(c) (d)
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(e) (f)

(g) (h)

Figure 4.4: History matching of production from various Manville wells.
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4.5 Development of coupled reaction and trans-

port models

Microbially generated coalbed methane can be increased if appropriate conditions
are provided to enhance microbial activity. In connection to this, researchers have
conducted many laboratory incubation studies with crushed coal based on the in-
troduction of new microbial consortia, supply of additional nutrients, increase in the
availability of carbon substrate, etc.28–34 To analyse and compare the rate of coal
bioconversion in various experiments, we proposed enzymatic reaction kinetic models
with reasonable predictive capabilities in our previous studies.3,35 Following that, we
develop multiscale microbial reaction coupled transport models to enable knowledge
transfer from laboratory to field scales in this study. Apart from investigation of
the effects of kinetic, transport/storage parameter effects on field scale gas produc-
tion, such models are potentially instrumental in developing field scale strategies for
microbially enhanced coalbed methane production also.

4.5.1 Enzymatic reaction kinetic model

In our previous study,3 we proposed a simplified reaction pathway involving lumped
components for coal breakdown, based on literature and experimental data. Major
steps in coal bioconversion are coal solubilization, hydrolysis, acidogenesis, acetoge-
nesis and methanogenesis were considered in the reaction network. The products of
hydrolysis were represented by a representative lignin monomer, syringic acid. The
products of acidogenesis were lumped and represented by benzoate/benzoic acid,
which is a common intermediate and the products of acetogenesis were lumped and
represented by acetate, a small chain acid with similar characteristics as other prod-
ucts of acetogenesis. The products of methanogenesis are considered to be methane,
carbon dioxide and hydrogen.

Coal C→ Solubilized coal S→ Fragmented coal W→ Benzoate B→
Acetate A→ Products P

The corresponding enzymatic reaction kinetic model was built with a series of simple
and modified Monod models. The resulting kinetic model was validated for different
laboratory scale bottle experiments conducted with crushed coal in the presence of
tryptone which is a source of nitrogen for the microbes. Also, in another one of our
studies, we have addressed nitrogen limitations based on varying tryptone concentra-
tion along the core in a coreflooding experiment35.
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Figure 4.5: Schematic of spherical shaped particles constituting macropore spaces

4.5.2 Assumptions in the enzymatic reaction kinetic model

• For simplicity, we assume only carbon substrate limitation in the microbial
reactions.3

• Since the transport model is developed only for gas flow, the water required for
microbial growth is assumed to be available from the residual water concentra-
tion in the macropore spaces (micropores are inaccessible to water).6,8

• Coal particles composing the reservoir macropore spaces are assumed to be
spherical with pore radius R0. Figure 4.5 represents a schematic of the spherical
shaped particles constituting the macropore spaces. With the progress of coal
bioconversion, the particle radius R decreases and the macropore porosity φma
increases.

4.5.3 Integration of kinetic and transport models

In this section, we discuss the integration of the validated kinetic and transport
models. First, the coal solubilization rate is given by

1

X

dC

dt
= −KA(S∗ − [S]) (4.13)

where X is the quantity of microbes, K is the solubilization constant and A =
4πR2Nfb is the surface area available. R is the size of particles composing the macro-
pore space, N is the total number of particles and fb is the fraction of the surface
area available. All particles are assumed to degrade at the same rate; consequently,
N is assumed to be constant. Equation 4.13 is rewritten as

dC

dt
= −K ′

(
C

C0

)2/3

(S∗ − [S]) (4.14)

91



where K ′ = XK
3mcoalfb
R0ρcoal

, mcoal is total mass of coal present in the reservoir and

ρcoal is the coal density. As the reaction progresses, coal is consumed and the particle
size reduces to R. The increase in porosity corresponding to reducing the particle size
is manifested by the correlation in Equation 4.15, where the correlation exponent nc
is negative.

R

R0

=

(
C

C0

)1/3

=

(
φma
φ0
ma

)nc
(4.15)

nc can be experimentally determined by measuring porosity over time in coreflood-
ing experiments. The empirical correlation between porosity and permeability as
proposed by Advanced Resources International (ARI)36 is shown in Equation 4.16.

k

k0

=

(
φma
φ0
ma

)3

(4.16)

Finally, on coupling the kinetic and transport equations based on the above assump-
tions and modifications, we get

(P̃Fma)i+1/2

Π′1

[
P̃N+1
gi+1/2 +

Π′1
Π′2

](
P̃N+1
gi+1 − P̃N+1

gi

)
−

(P̃Fma)i−1/2

Π′1

[
P̃N+1
gi−1/2 +

Π′1
Π′2

](
P̃N+1
gi − P̃N+1

gi−1

)
+

PscTZLmi
P0Tsc

(1− exp(−δt̃Π′3))

δt̃

(
V N
mi − VE(Pg)

N
i

)
+
t0PscT

P0Tsc

[
qR
Vbma

]N+1

i

=

(
P̃N+1
gi − P̃N

gi

)
δt̃/[φma]

N+1
i

(4.17a)

where k and φma vary according to Equations 4.15 and 4.16 and

qR
Vbma

≡ standard gas volume from methanogenesis

macropore volume

Vmi
N+1
i = exp(−δt̃Π′3)Vmi

N
i + (1− exp(−δt̃Π′3))VE(Pg)

N
i (4.17b)

[
qR
Vbma

]N+1

i

m3/m3 = 0.022
m3

mol

[
d[CH4]

dt

]N+1

i

mol

m3
=

0.022e[A]N+1
i

f + [A]N+1
i +

([A]N+1
i )2

g

m3

m3

(4.17c)

where e, f and g are kinetic parameters related to methanogenesis.
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[
d[A]

dt

]N+1

i

= 3d[B]N+1
i − e[A]N+1

i

f + [A]N+1
i +

([A]N+1
i )2

g

(4.17d)

d is the kinetic parameter related to acetogenesis.

[
d[B]

dt

]N+1

i

= r[W ]N+1
i + ν − d[B]N+1

i (4.17e)

r and ν are the kinetic parameters related to acidogenesis.

[
d[W ]

dt

]N+1

i

= 10b[S]N+1
i − r[W ]N+1

i (4.17f)

b is the kinetic parameter related to hydrolysis.

[
d[S]

dt

]N+1

i

= K ′
(
C

C0

)2/3

([S∗]− [S]]N+1
i )− b[S]N+1

i (4.17g)

K ′is the solubility constant and S∗ is the equilibrium coal solubility concentration

[
dC

dt

]N+1

i

= −K ′
(
C

C0

)2/3

([S∗]− [S]]N+1
i ) (4.17h)

All the variables and parameters in the model are defined in Table 4.6.

Coupled Equations 4.17a to 4.17h are solved by the Levenberg-Marquardt method
for an initial reservoir pressure of 10 MPa, well operating pressure of 0.14 MPa, a no-
flow external boundary condition and reaction kinetic parameter values obtained by
the nonlinear regression of data from coreflood experiments in our previous study,35

modified for excess nitrogen concentration. Accordingly, ν, representing the kinetics
of nitrogen concentration in acidogenesis, is a zero-order rate term. Also, a large
absolute value of nc is chosen to minimize large changes in macropore porosity with
progress in coal bioconversion.

Figure 4.6 compares gas production over 20 months with and without the inclusion of
coal bioconversion reaction kinetics, for the nominal kinetic parameter values shown in
Table 4.5. The increase in gas production is small, although it appears to improve with
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Parameter Unit Value

e mol/m3h 20

f mol/m3 215

g mol/m3 0.0011

r mol/m3h 0.1

ν mol/m3h 10−4

d h−1 0.015

b h−1 0.1

S∗ mol/m3 1

K ′ h−1 10−7

nc - -20

Table 4.5: Kinetic parameters for enzymatic bioconversion.

time. The model was then employed to observe the effect of an increase in biogenic
gas production over a period of 5 months with respect to changes in individual kinetic
rate parameters. Figure 4.7 compares the increase in gas production for a ten-fold
increase in the solubilization rate (K ′ = 10K ′nominal). It is seen that K ′ has quite
a large effect on biogenic gas production. Figure 4.8 compares the increase in gas
production for a ten-fold increase in the methanogenesis rate (e = 10enominal). An
increase in e significantly improves biogenic gas recovery at field scales. Figure 4.9
shows an increase in gas production for a ten-fold increase in the acidogenesis rate (d =
10dnominal). Its effect is small, although it appears to increase with time. For small
changes in parameter values b and r, the model is insensitive. It is to be noted that the
effect of parameters f and g can be evaluated only if the acetate concentrations are
significant. This will be analysed in our future work, which will consider multiphase
multicomponent coupled reactive and transport models for simulation of microbially
enhanced coalbed methane.

4.6 CONCLUSION

In this study, we have developed a multiscale microbal reaction kinetics coupled gas
transport model for simulation of coalbed methane (CBM) production from reservoirs
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Figure 4.6: a) Comparison of coalbed methane production with and without coal
bioconversion b) Enlarged view of Figure 4.6a between months 15 - 20.

Figure 4.7: a) Increase in coalbed methane production for a 10-fold increase in
solubilization rate (K ′ = 10K ′nominal), and b) Enlarged view of Figure 4.7a between
months 3 - 5 .
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Figure 4.8: a) Increase in coalbed methane production for a 10-fold increase in
methanogenesis rate (e = 10enominal), and b) Enlarged view of Figure 4.8a between
months 2 - 4.

Figure 4.9: Increase in coalbed methane production for a 10-fold increase in acido-
genesis rate (d = 10dnominal

.)
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with ongoing anaerobic breakdown of coal. Based on the assumption of dual porosity
characteristics in coal seams, gas transport equations were derived for a one dimen-
sional (1D) radial coal bed reservoir by considering laminar flow and gas slippage in
macropores and gas diffusion from micropores driven by desorption. The multiscale
stiff transport equations were non-dimensionalized to produce dimensionless numbers
that can provide insights on the dominant physical process at various scales. A global
sensitivity analysis of transport model parameters was conducted by the Morris OAT
(one-at-a-time) method, which indicated that gas mobility and the surface diffusion
constant affect the gas production the most. Following this, history matching of gas
production data from Manville wells in Alberta was performed by solving the trans-
port equations by the Levenberg-Marqardt method. The validated transport model
was then combined with an enzymatic reaction kinetic model for coal bioconversion
developed in the previous chapters. Based on an analysis of the effects of kinetic rate
parameters on gas production, it was observed that an increase in the methanogen-
esis rate can significantly improve biogenic gas recovery, followed by an increase in
the coal solubilization rate. These effects maybe brought out by a combination of
strategies such as - biostimulation, bioaugmentation, increase of bioavailability and
increased fracture spacing for greater nutrient dispersion and physical space for mi-
crobial growth. With the inclusion of the water phase in the macropore system and
nitrogen’s role as a limiting substrate in the kinetic model35, the transport model
can be updated for application to field scale simulations in the presence of nutrient
injection. The effect of varying injection rates, varying nutrient concentrations and
varying production rates on CBM production can then be studied and optimized with
model-based computational experiments. This forms the basis for our future work.
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Symbol
Units Description

T K Reservoir temperature
Pg0 MPa Initial reservoir pressure
Pwf MPa Well operating pressure
µ kg/s.m Gas viscosity
φma Macropore porosity

Qt
Vbma

kg/m3 Amount of gas diffusing from micropore
surface per unit macropore volume

qt
Vbma

kg/m3

Volume of gas at standard conditions
diffusing from micropore surface per unit

macropore volume
re m Coal seam thickness (Extent of reservoir)
rw m Well radius
h m Length of horizontal well bore
Psc Pa Pressure at standard conditions
Tsc K Temperature at standard conditions
P0 Pa Reference pressure
R0 m Reference radius
t0 s Reference time with respect to dt
k m2 Absolute permeability

Dma m2/s Diffusion coefficient in Klinkenberg effect
τ s Time constant for micropore gas diffusion
Lmi - Geometry prefactor for micropore diffusion
Vl m3/m3 Langmuir volume constant
Pl MPa Langmuir pressure constant
[S] mol/m3 Solubilised coal concentration
[W ] mol/m3 Fragmented coal components concentration

[B] mol/m3 Lumped “benzoate-like” intermediate
concentration

[A] mol/m3 Lumped “acetate-like” intermediate
concentration

[CH4] mol/m3 Methane concentration (mol/m3)

b h−1

First order reaction constant for the
enzymatic hydrolysis reaction at low

concentrations of [S]

r h−1

First order reaction constant for the
enzymatic acidogenesis reaction at low

concentrations of [W ]

d h−1

First order reaction constant for the
enzymatic acetogenesis reaction at low

concentrations of [B]
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ν mol/m3h
Zero order reaction rate corresponding to
benzoate pool production from tryptone

e mol
m3.h

Maximum rate for methanogenesis under
non-growth conditions

f mol/m3 Methanogenic substrate concentration at
half the maximum rate of methanogenesis

g mol/m3 Substrate inhibition constant for
methanogenesis

S∗ mol/m3 Equilibrium solubility concentration of
solubilised coal [S]

K ′ h−1 Rate constant of solubilisation

nc -
Exponent in the correlation between R and

φma

Table 4.6: Table of Notation

99



References

[1] Senthamaraikkannan, G. and Prasad, V. Coalbed methane. In M.R.Riazi and
Gupta, R., editors, Coal Production and Processing Technology. Taylor & Francis
Group, (in press).

[2] King, G. Numerical simulation of the simultaneous flow of methane and water
through dual porosity coal seams during the degasification process. Technical
report, Pennsylvania State Univ., University Park (USA), 1985.

[3] Senthamaraikkannan, G., Budwill, K., Gates, I., Mitra, S., and Prasad, V. Ki-
netic modeling of the biogenic production of coalbed methane. (submitted), 2015.

[4] Laxminarayana, C. and Crosdale, P. J. Role of coal type and rank on methane
sorption characteristics of Bowen Basin, Australia coals. International Journal
of Coal Geology, 40(4):309–325, 1999.

[5] Gamson, P., Beamish, B., and Johnson, D. Coal microstructure and secondary
mineralization: their effect on methane recovery. Geological Society, London,
Special Publications, 109(1):165–179, 1996.

[6] Wei, X., Wang, G., Massarotto, P., Golding, S., and Rudolph, V. Numerical
simulation of multicomponent gas diffusion and flow in coals for CO2 enhanced
coalbed methane recovery. Chemical Engineering Science, 62(16):4193–4203,
2007.

[7] Mohaghegh, S. and Ertekin. A type-curve solution for coal seam degasifica-
tion wells producing under two-phase flow conditions. In SPE Annual Technical
Conference and Exhibition. Society of Petroleum Engineers, 1991.

[8] King, G. R., Ertekin, T., and Schwerer, F. C. Numerical simulation of the
transient behavior of coal-seam degasification wells. SPE Formation Evaluation,
1(02):165–183, 1986.

[9] Remner, D. J., Ertekin, T., Sung, W., and King, G. R. A parametric study
of the effects of coal seam properties on gas drainage efficiency. SPE Reservoir
Engineering, 1(6):633–646, 1986.

[10] Sung, W., Ertekin, T., and Schwerer, F. The development, testing, and applica-
tion of a comprehensive coal seam degasification model. In SPE Unconventional
Gas Technology Symposium. Society of Petroleum Engineers, 1986.

[11] Clarkson, C. R., Jordan, C. L., Ilk, D., and Blasingame, T. A. Production
data analysis of fractured and horizontal CBM wells. In SPE Eastern Regional
Meeting. Society of Petroleum Engineers, 2009.

100



[12] Sawyer, W., Paul, G., and Schraufnagel, R. Development and application of
A 3-D coalbed simulator. In Annual Technical Meeting. Petroleum Society of
Canada, 1990.

[13] Manik, J., Ertekin, T., and Kohler, T. Development and validation of a com-
positional coalbed simulator. In Canadian International Petroleum Conference.
Petroleum Society of Canada, 2000.

[14] Thararoop, P., Karpyn, Z. T., and Ertekin, T. Development of a multi-
mechanistic, dual-porosity, dual-permeability, numerical flow model for coalbed
methane reservoirs. Journal of Natural Gas Science and Engineering, 8:121–131,
2012.

[15] Ritter, D., Vinson, D., Barnhart, E., Akob, D. M., Fields, M. W., Cunningham,
A. B., Orem, W., and McIntosh, J. C. Enhanced microbial coalbed methane
generation: A review of research, commercial activity, and remaining challenges,
2015.

[16] Scott, A. and Guyer, J. Method of generating and recovering gas from subsurface
formations of coal, carbonaceous shale and organic-rich shales, February 2004.

[17] Bustin, R. and Clarkson, C. Geological controls on coalbed methane reservoir
capacity and gas content. International Journal of Coal Geology, 38(1):3–26,
1998.

[18] Kolesar, J., Ertekin, T., and Obut, S. The unsteady-state nature of sorption
and diffusion phenomena in the micropore structure of coal: Part 1-theory and
mathematical formulation. SPE Formation Evaluation, 5(01):81–88, 1990.

[19] Prinz, D. and Littke, R. Development of the micro-and ultramicroporous
structure of coals with rank as deduced from the accessibility to water. Fuel,
84(12):1645–1652, 2005.

[20] Goktas, B. and Ertekin, T. Production performance analysis of cavity-completed
wells. In SPE Eastern Regional Meeting. Society of Petroleum Engineers, 1998.

[21] Ertekin, T., King, G. A., and Schwerer, F. C. Dynamic gas slippage: a unique
dual-mechanism approach to the flow of gas in tight formations. SPE formation
evaluation, 1(01):43–52, 1986.

[22] Wu, Y.-S. and Pruess, K. Gas flow in porous media with Klinkenberg effects.
Transport in Porous Media, 32(1):117–137, 1998.

[23] Jalal, J. and Mohaghegh, S. D. A coalbed methane reservoir simulator designed
and developed for the independent producers. In SPE Eastern Regional Meeting.
Society of Petroleum Engineers, 2004.

101



[24] Heller, R., Vermylen, J., and Zoback, M. Experimental investigation of matrix
permeability of gas shales. AAPG bulletin, 98(5):975–995, 2014.

[25] IHS Inc. AccuMap oil and gas database for Alberta, Canada, 2013.

[26] Wainwright, H. M., Finsterle, S., Jung, Y., Zhou, Q., and Birkholzer, J. T.
Making sense of global sensitivity analyses. Computers & Geosciences, 65:84–94,
2014.

[27] Saltelli, A. Sensitivity analysis: Could better methods be used? Journal of
Geophysical Research: Atmospheres (1984–2012), 104(D3):3789–3793, 1999.

[28] Harris, S. H., Smith, R. L., and Barker, C. E. Microbial and chemical factors
influencing methane production in laboratory incubations of low-rank subsurface
coals. International Journal of Coal Geology, 76(1):46–51, 2008.

[29] Singh, D. N., Kumar, A., Sarbhai, M. P., and Tripathi, A. K. Cultivation-
independent analysis of archaeal and bacterial communities of the formation
water in an Indian coal bed to enhance biotransformation of coal into methane.
Applied microbiology and biotechnology, 93(3):1337–1350, 2012.

[30] Opara, A., Adams, D., Free, M., McLennan, J., and Hamilton, J. Microbial
production of methane and carbon dioxide from lignite, bituminous coal, and
coal waste materials. International Journal of Coal Geology, 96:1–8, 2012.

[31] Penner, T. J., Foght, J. M., and Budwill, K. Microbial diversity of western
canadian subsurface coal beds and methanogenic coal enrichment cultures. In-
ternational Journal of Coal Geology, 82(1):81–93, 2010.

[32] Jones, E. J., Voytek, M. A., Corum, M. D., and Orem, W. H. Stimulation
of methane generation from nonproductive coal by addition of nutrients or a
microbial consortium. Applied and Environmental Microbiology, 76(21):7013–
7022, 2010.

[33] Papendick, S. L., Downs, K. R., Vo, K. D., Hamilton, S. K., Dawson, G. K.,
Golding, S. D., and Gilcrease, P. C. Biogenic methane potential for Surat Basin,
Queensland coal seams. International Journal of Coal Geology, 88(2):123–134,
2011.

[34] Huang, Z., Urynowicz, M. A., and Colberg, P. J. Stimulation of biogenic methane
generation in coal samples following chemical treatment with potassium perman-
ganate. Fuel, 111:813–819, 2013.

[35] Senthamaraikkannan, G., Gates, I., and Prasad, V. Modeling estimation and
optimization in coreflooding experiments for coalbed methane production. (sub-
mitted), 2015.

102



[36] Pekot, L. J. Matrix shrinkage and permeability reduction with carbon dioxide
injection. Coal-Seq II Forum, Washington DC, 2003.

103



Chapter 5
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Abstract

Uncertainty in data or in the parameters of models occurs in many real world ap-
plications. Quantifying this uncertainty and its effects is required for robust design,
control and optimization. In this chapter, we attempt to build a proxy model for
the stochastic solutions of coupled governing equations describing coalbed methane
(CBM) production at different well bottomhole pressures. To achieve this, monthly
production from wells (output) is expanded as a linear combination of Legendre or-
thogonal polynomials in the input (well bottomhole pressure) and the Wiener-Askey
polynomial chaos is used to propagate the uncertainty of the model parameters. A
Gaussian quadrature technique is then employed to solve for the coefficients of the
basis functions in the proxy model. Alternatively, nonlinear least squares curve fitting
using the Levenberg-Marquardt algorithm (LMA) is also used with polynomial chaos
expansion to generate the stochastic proxy model. The proxy model now enables
robust optimization using statistical metrics of CBM production calculated over the
entire parameter space. In the case of multiple decision variables, the appropriate
proxy model built using these techniques will allow for robust optimization without
the use of any search algorithms.
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5.1 Introduction

Many applications in science and engineering require mathematical models which
can simulate solutions for a physical variable of interest along spatial and temporal
dimensions. The simulations are usually not fully deterministic due to the presence
of uncertain parameters/input random variables1. Different methods are available
for the propagation of uncertainty. The Monte Carlo method is a popular technique
where simulations are performed for a large number of values sampled from a known
distribution of the random source. Although this method is robust, it requires a large
number of simulations, and is therefore computationally expensive. Another method,
the power series expansion (PSE), coupled with contour mapping techniques was
explored for distributional robustness analysis in the work by Nagy et al.2. However,
the same work establishes that the polynomial chaos expansion (PCE) method for
uncertainty propagation usually gives better results even with relatively lower order
approximations.

PCE is a method used for uncertainty propagation in nonlinear dynamic systems and
was introduced by Wiener as homogeneous chaos. It is derived from the Cameron-
Martin theorem which states that an expansion in Hermite polynomials in Gaussian
random variables converges in the L2 sense for any arbitrary stochastic process with
finite second moment3. Xiu et al.4 extended these results to represent stochastic pro-
cesses with an optimum trial basis from the Askey family of orthogonal polynomials
that reduces dimensionality of the polynomial chaos expansions and leads to expo-
nential convergence of error. This came to be known as the Wiener-Askey polynomial
chaos. It expands a stochastic output X as

X(θ) =

p∑
j=0

ajΨj(ξ)

where Ψj is the polynomial basis (in the random variable ξ) belonging to a complete
orthogonal basis. The best choice of orthogonal polynomials for a PCE is related
to the probability distribution of the random source. Projection of the PCE onto
each polynomial basis Ψj will result in estimation of expansion coefficients aj and the
expansion error is orthogonal to the functional space spanned by the basis functions5.

PCE for an output variable is thus an effective way to track uncertainty evolution.
In this chapter, we introduce the input variable also into the PCE, thus developing
a robust proxy model that can significantly reduce computational time in optimiza-
tion studies. The main concern in building the proxy model, however, is obtaining
the underlying functional relation between the input and output in the presence of
uncertainty. When the analytical structure of the relation is explicitly known, the
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Levenberg-Marquardt algorithm (LMA) is used with PCE to generate the stochastic
proxy model.When this is not the case, we suggest the use of orthogonal polynomials
to weave the input variable(s) into the PCE. Orthogonal polynomials in the input
variable will allow accurate evaluation of coefficients of the proxy model (by Gaussian
quadrature rules) using only a few simulations according to the dimensionality. Thus,
a robust proxy model can be built for a certain output variable by expansion with
two orthogonal basis sets, the Legendre orthogonal polynomials corresponding to the
input (assuming uniform distribution for the input to avoid any preferences while
choosing collocation points) and the Hermite orthogonal polynomials corresponding
to the random source from a known/assumed distribution or a Bayesian estimate
as suggested by Mandur et al.6. This technique would be computationally superior
to other robust optimization methods presented by Mandur et al.6, Xiong et al.7

and Molina-Cristobal et al.8, which evaluate metrics of the objective function (by
constructing a PCE) at each decision variable (input) value in the search space.

The approach to proxy model development is demonstrated on coalbed methane pro-
duction. Coalbed methane is the gas naturally occuring in coalbeds due to thermo-
genic or biogenic processes, and is an important unconventional source of natural gas.
Geologic heterogeneity, the existence of multiple porosity scales, coal matrix shrink-
age/swelling, varying pressure-temperature conditions and many other phenomena
lead to significant uncertainty in assessing CBM production. For simplicity, a proxy
model for monthly coalbed methane gas production is built with respect to the in-
put parameter (well bottomhole pressure), while considering uncertainty only in the
micropore diffusion time constant (τ).

5.2 CBM Model

Coalbed seams are highly heterogeneous with a wide range in the scale of pore spaces
occurring within coal. For simulation purposes, coal seams are broadly assumed to
have two levels of porosity - micropores and macropores. In this study, the production
of gas from a hortizontal well drilled into a coalbed seam containing only gas phase is
simulated by solving a 1D radial equation representing the multi-step transport pro-
cess described using a pseudo steady-state sorption model for gas desorption, Fick’s
law for diffusion through micropores, Darcy’s law for gas flow through open fractures
(i.e., the macroporous spaces) and gas slippage factor for surface diffusion through
the surface of solid coal9,10. A cylindrical volume of a coal reservoir, considered for
simulations with a horizontal well drilled at its center, is shown in Figure 5.1. The
other assumptions made in the model are:

1. Gas permeability through macropores, the gas diffusion constant and the geom-
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etry dependent factor for diffusion through the micropore matrix are constant
throughout the spatial volume and over time.

2. The flow velocity is assumed to have only a radial component.

3. There is no change of temperature in the coal seam during degasification. The
gas compressibility factor Z and viscosity µ are considered to be constant.

Consider a small cylindrical control volume dV in the macroporous space consisting
of micropores. The following coupled governing equations are derived for radial gas
flow into a producer well operating at a constant pressure of Pwf :∫

Vbma

1

r

∂

∂r
(
rPg
Z

(
k

µ
+
Dma

Pg
)
∂Pg
∂r

)dV+∫
Vbma

PscT

Tsc

qt
Vbma

dV =

∫
Vbma

∂

∂t
(
Pgφma
Z

)dV

(5.1a)

qt
Vbma

=
dVmi
dt
− Lmiτ(VE(Pg)− Vmi);V 0

mi =
VlPg0
Pl + Pg0

(5.1b)

Production = 2πrwellhwell

(
λ+Dma/Pg)

dP

dr

)
well

(5.1c)

The partial differential equations were discretised at equally separated time intervals
and logarithmically spaced spatial co-ordinates, and was solved using the implicit
method. The model variables and parameters are defined in Table 5.1. The nominal
values of all the parameters were obtained by history matching the model against
existing CBM production data from Manville wells.

π1

(
˜PFmaP̃

N+1
g

)
i+1/2

(π2 +
1

P̃N+1
gi+1/2

)(P̃N+1
gi+1 − P̃N+1

gi )−

π1

(
˜PFmaP̃

N+1
g

)
i−1/2

(π2 +
1

P̃N+1
gi−1/2

)(P̃N+1
gi − P̃N+1

gi−1 )+

π3(V N
mi −

PN
gi Vl

Pl + PN
gi

) =
(P̃N+1

gi − P̃N
gi )

δT

(5.2a)

Vmi
N+1
i = exp(−τδt)VmiNi + (1− exp(−τδt))VE(Pg)

N
i (5.2b)

Production =

2πrwellhwell(λ+Dma/P
N
grwell

)

(
PN
g(rwell−1) − Pwf
rwell − rwell−1

)
(5.2c)
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Table 5.1: Model parameters and variables.

λ = k/µ Mobility

Dma Gas slippage

τ Micropore diffusion time constant

Lmi Geometry dependent factor for micro-
pore diffusion

Pl, Vl Langmuir adsorption constants

φma Macropore porosity

Vbma Macropore volume

rwell, hwell Dimensions of producing well

r, t Continuous spatial and temporal coor-
dinate

N N th discrete spatial co-ordinate

i ith discrete time step

PFmai+1/2
2ri+1/2

(r2
i+1/2

−r2
i−1/2

)(ri+1−ri)

Pg Gas pressure at r, t

Vmi Volume of gas from micropores diffus-
ing into the macroporous space

VE Volume of gas adsorbed in micropore
spaces

π1
Dmat0
R2

0φ

π2
λP0

Dma

π3
PscTLmit0Z
P0Tscτφ
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Figure 5.1: Gas production from a horizontally drilled well in a cylindrical reservoir
volume.

A proxy to the above model is built with Pwf , the well bottomhole pressure, as
the input (u) and τ , the micropore diffusion time constant, as the only source of
uncertainty (ξ). The operating range of Pwf is assumed to lie between 1× 106 N/m2

to 1×107 N/m2. τ is assumed to belong to a Gaussian distribution with mean value of
5000 s and standard deviation of 500 s. The output is the CBM gas production in the
first month (m3), denoted as Y . The functional dependence of the CBM production
on time can be estimated by aggregating proxy models built at different time instants.
It is to be noted here that including all the input variables and uncertain sources into
the proxy model will increase dimensionality and consequently, the computational
expense.

5.3 Proxy model development

The first step is to establish a functional relation between the input (u) and the output
(Y ). Any given function f(x) can be approximated by minimizing the inner product
〈f(x) − p(x), f(x) − p(x)〉, where p(x) is a combination of a sequence of orthogonal
polynomials, p0(x), ...., pk(x). The chosen family of orthogonal polynomials represent
an orthogonal basis for the subspace of polynomial functions of degree ≤ k. The inner
product is defined as

〈g, h〉 =

∫ b

a

g(x)h(x)w(x)dx =
n∑
i=1

g(xi)h(xi)w(xi) (5.3)

where g(x) and h(x) belong to the class of orthogonal polynomials and w(x) is the
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weighting function.

Thus, Y can be expanded as

Y = a0 + a1L1(u) + a2L2(u) + a3L3(u) + .... (5.4)

where u is the input variable and L0, L1, .. belong to the sequence of Legendre poly-
nomials that are orthogonal on the interval [−1, 1]. Legendre polynomials are chosen
because their weighting function is a constant (this will prevent any bias in the se-
lection of the input variable during estimation or prediction). The range for Pwf is
projected onto a range of [−1, 1] for u.

The next step is uncertainty propagation on the orthogonal polynomials in the expan-
sion of Equation 5.4 using Wiener-Askey chaos. To illustrate this, let Y be defined
as a second-order polynomial (in u) and the stochastic process in each direction (i.e.,
the orthogonal basis used to define Y ) be approximated by second order Hermite
polynomials in the standard Gaussian random variable, ξ. Hermite polynomials are

orthogonal on [−∞,∞] relative to the weight function e
−x2
2 , which is similar to the

probability density function of a Gaussian distribution.

Y = a0(b1
0 + b1

1H1(ξ) + b1
2H2(ξ))(L0(u))

+a1(b2
0 + b2

1H1(ξ) + b2
2H2(ξ))(L1(u))

+a2(b3
0 + b3

1H1(ξ) + b3
2H2(ξ))(L2(u))

(5.5)

The random variable τ in the CBM model and ξ are linearly related as τ−5000
500

= ξ.

The first few Legendre and Hermite polynomials are shown in Table 5.2. These are
generated using ORTHOPOL.11

At certain known values of the input, the expansion in Equation 5.5 reduces to

Y = (a0b
1
0L0(u) + a1b

2
0L1(u) + a2b

3
0L2(u))

+ (a0b
1
1L0(u) + a1b

2
1L1(u) + a2b

3
1L2(u))H1(ξ)

+ (a0b
1
2L0(u) + a1b

2
2L1(u) + a2b

3
2L2(u))H2(ξ))

(5.6)

The statistical moments (mean and variance) of the output distribution would then
be

µ = a0b
1
0L0(u) + a1b

2
0L1(u) + a2b

3
0L2(u) (5.7a)

var = (a0b
1
1L0(u) + a1b

2
1L1(u) + a2b

3
1L2(u))2 + (a0b

1
2L0(u) + a1b

2
2L1(u) + a2b

3
2L2(u))2

(5.7b)

The accuracy of this proxy model depends on the set of basis polynomials chosen for
the expansion and accurate evaluation of the coefficients of the basis polynomials in
the proxy model.
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Table 5.2: Orthogonal polynomials.

Hermite Legendre

H0(ξ) = 1 L0(u) = 1

H1(ξ) = ξ L1(u) = u

H2(ξ) = ξ2 − 1 L2(u) = u2 − 0.33

H3(ξ) = ξ3 − 3ξ L3(u) = u3 − 0.6u

H4(ξ) = ξ4 − 6ξ2 + 3 L4(u) = u4 − 0.8571u2 + 0.0848

H5(ξ) = ξ5 − 10ξ3 + 15ξ L5(u) = u5 − 1.11u3 + 0.2372u

H6(ξ) = ξ6 − 15ξ4 + 45ξ2 − 15 L6(u) = u6−1.364u4 +0.4549u2−
0.0214

5.4 Estimating coefficients of basis functions in the

proxy model

The coefficients of the basis functions in the proxy model are estimated using the
orthogonal property of the expanding polynomials. A simple model of Y expanded
using first order polynomials in u and ξ is considered to illustrate this.

Y = a0(b1
0 + b1

1(ξ)) + a1(b2
0 + b2

1(ξ))(u) (5.8)

The inner product of Y with each of the Hermite polynomials and Legendre polyno-
mials (according to the definition in Equation 5.3) give

∫ 1

−1

∫ ∞
−∞

Y

5
e

−ξ2
2 dξdu = a0b

1
0;

∫ 1

−1

∫ ∞
−∞

Y

5
ξe

−ξ2
2 dξdu = a0b

1
1 (5.9a)∫ 1

−1

∫ ∞
−∞

Y

1.67
e

−ξ2
2 dξudu = a1b

2
0;

∫ 1

−1

∫ ∞
−∞

Y

1.67
ξe

−ξ2
2 dξudu = a1b

2
1 (5.9b)

The parameters of the proxy model are estimated by evaluating the above integrals.
If an analytical expression was available for Y , the integrals could be evaluated eas-
ily. In its absence, non-intrusive methods characterised either as Galerkin projection
methods or least squares methods are used. Galerkin projection evaluates the inte-
grals in Equation 5.9 using sampling approaches or Gaussian quadrature rules. The
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linear least squares method employed is a regression approach, also known as point
collocation or the stochastic response surface method.12,13

The sampling approach evaluates products in the integrals of Equation 5.9 at samples
within the density of the weighting function. The quadrature approach evaluates the
inner products as a summation of the product of basis functions at the roots of the
next higher order polynomials as described by the Gaussian quadrature technique14.
According to Gaussian quadrature rules

if

∫ b

a
f(x)dx =

∫ b

a
w(x)g(x)dx; then

∫ b

a
f(x)dx '

∑
c

w(x)g(x)dx

where there are c roots of the next higher order orthogonal polynomial h(x);
∫ b
a
w(x)g(x)h(x)dx =

0. It is a very useful method when the number of basis functions in the proxy model
are small, since the number of collocation points exponentially increases with an in-
crease in the dimensionality of the expansion. The regression approach uses a linear
squares solution of the form Ψα = R to solve for expansion coefficients that provide
the best match for a set of response values R. However, it requires oversampling, i.e.,
the number of samples needs to be at least twice the number of parameters. In spite
of this, the approach may still be significantly more affordable than quadrature for
large problems.

Since there are only two variables in the proxy model developed in this study, the
Gaussian quadrature approach is chosen as it provides accurate results with a lower
number of samples. Figure 5.2 represents the work flow for building the proxy model.
Along with the application of this technique, a nonlinear least squares method em-
ploying the Levenberg-Marquardt algorithm for parameter estimation is also used
to estimate the proxy model, provided that the structure of the functional relation
between Y and u is identified. For example,

Y = Y0(u) + Y1(u)H1(ξ) + Y2(u)H2(ξ) (5.11a)

if it is known that the relation between Y and u is expontential

Y = aef(u) + beg(u)H1(ξ) + ceh(u)H2(ξ) + ... (5.11b)

Y0, Y1, Y2 for a set of collocation points in ξ are evaluated at different values of u.
These values are regressed against the functions aef(u), beg(u), ceh(u) at the correspond-
ing values of u.

5.5 Results and discussion

Four different model orders - [1, 1], [2, 1], [3, 1], [3, 2] (denoting the model order in
u and ξ, respectively) were tested. The expansion coefficients of the basis functions
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Polynomial Model order in u and ξ

[1, 1] [2, 1] [3, 1] [3, 2]
1 185215 200030 204450 204490
ξ 303 396 -436 -4976
u -174081 -228396 -244600 -244830
uξ 422 717 851 9709
u2 − 0.33 188730 245050 245160
u2 − 0.33.ξ -767 -1164 -13267
u3 − 0.6u -202320 -202270
u3 − 0.6u.ξ 1135.4 12991
ξ2 − 1 -4350
ξ2 − 1.u 1820
ξ2 − 1.u2 −
0.33u

38820

ξ2 − 1.u3 −
0.6u

34770

Table 5.3: Coefficients corresponding to each polynomial in proxy model.

for all the four models are shown in Table 5.3. Collocation points of prediction were
chosen to be zeros of polynomials two orders higher than the order of the model.
Model predictions were compared against data obtained from simulations of the orig-
inal model (Equation 5.1), and the results are shown in Figure 5.3. The adjusted
coefficient of determination (R2

a) was computed in each case to test the goodness of
fit. Figure 5.4 shows that R2

a increases with an increase in model order with respect to
u but decreases when the order of the polynomial in ξ is increased to 2. The decrease
in R2

a at this model order could indicate over-fitting. However, computation of the
expansion coefficients at this model order ([u(3), ξ(2)]) also involved the division of
very small numbers, which could have led to numerical issues. It is to be noted that
R2
a as a criterion discredits increase in number of model parameters. Thus, the model

of order [u(3), ξ(1)] has the lowest prediction error. Thus, it is accepted as the proxy
model for Y = F (Pwf , τ(θ)), where Y is the CBM production in the first month, Pwf
is the bottomhole pressure and τ(θ) represents the uncertain value of the micropore
diffusion time constant. Moments of the distribution at a known value of input u
obtained from this proxy model are

µ = 204450− 244600u+ 245050(u2 − 0.33)− 202320(u3 − 0.6u) (5.14a)

σ =
√

4362 + 8512u2 + 11642(u2 − 0.33u)2 + 11352(u3 − 0.6u)2 (5.14b)
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Figure 5.6 shows the probability distribution of the normalized values of τ , the un-
certain parameter and Y , the output at different input values, u.

Since there is approximation in the way Gaussian quadrature evaluates integrals, some
inner products < ΨiΨj > with i 6= j are not equal to zero. As a result, the error of
the estimated proxy model is not orthogonal to the subspace spanned by the basis
functions present in it. Thus, the best values are not obtained for the coefficients in
the proxy model resulting in errors when using it for the evaluation of higher order
statistical moments of the output distribution. The inaccurate approximation of inner
products also increases computational expense.

Nonlinear least squares regression was also applied for the proxy model development.

Plotting
∫∞
−∞Y e

−ξ2
2 dξ against u revealed that the underlying functional relation be-

tween Y and u is exponential. The proxy model was developed by considering it to be
second order in ξ. Model coefficients were evaluated using just 16 collocation points
(chosen as roots of 4th order Legendre and Hermite polynomials for a good sample
space). The proxy model obtained is

Y = 7525e−4.305u + 129800e−0.7288u

− 7.648e−6.066uξ − 141.8e−1.398uξ

+ 3.639e−4.5625uξ2 − 1 + 6.604e−0.4735u(ξ2 − 1)

(5.15)

Figure 5.5 compares the prediction (over a large number of simulation points) based
on models of order [u(3)ξ(1)], [u(3), ξ(2)] and when the relation between Y and u is
considered to be exponential. The model of order [u(3)ξ(2)] does not have adequate
predictive capability whereas the model considering an exponential input-output re-
lation displays more accurate prediction with Hermite polynomials in ξ of the order
2. This indicates that the model with order [u(3), ξ(2)] would perform better if inter-
actions between third order terms in u and second order terms in ξ are omitted.

5.6 Robust optimization

Robust optimization is usually performed as a trade-off between maximum perfor-
mance and robustness6. In this study, we employ a weighted mean-variance for-
mulation for the robust optimization strategy, as seen in Equation 5.16, to find an
optimum bottomhole pressure value compromising between maximum gas production
(performance) and variability (robustness).

max
u

L = (1− α) ∗ E(Y, u, ξ)− α ∗ V (Y, u, ξ) (5.16)
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where α is the degree of caution in the results, and E and V are the expectation
and variance of production Y . Equation 5.14 provides both E and V as functions of
u (Pwf ). As is seen in Figure 5.7, the expectation of the production value increases
with decreasing u, while the variance has a minimum at u = 0. Figure 5.8 shows per-
formance and robustness at varying degrees of caution. As expected, with increasing
degree of caution, robustness is increased at the cost of a lower performance.

5.7 Conclusions

We have developed a stochastic proxy model that propagates uncertainty in the micro-
pore diffusion time constant (random source) sampled from a Gaussian distribution,
to the monthly coalbed methane gas production (output) at different well bottomhole
pressures (input) using Legendre polynomials and Hermite polynomial chaos. The
coefficients of the basis functions in the proxy model are estimated by Galerkin pro-
jection using the Gaussian quadrature technique. Trial and error evaluation of model
structures in increasing order shows that a model that is third order in the input vari-
able and first order in the random source has the lowest relative sum square-root error
of prediction. Although Gaussian quadrature is an efficient non-intrusive method of
evaluating coefficients of basis functions, the computational expense increases with
increasing dimension of the proxy model. The error of approximation of inner prod-
ucts occurring from use of Gaussian quadrature reduces accuracy of the higher order
statistical moments of the distribution of the gas production obtained from a proxy
model that appears to predict well at the collocation points. Nonlinear least squares
regression was also tested for developing a proxy model, and can be employed if the
underlying functional relation between the input and output variables is identifiable.
The results indicate that the least squares method gives better predictions compared
to Galerkin projection of the expansion of output in an orthogonal polynomial basis.
However, the input-output relation is not always easily identifiable. The stochastic
proxy model developed was then used for robust optimization of gas production. It is
seen that the optimal point varies depending on whether performance or robustness
is weighed more in the objective function.
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Start with
the lowest

order

Choose collocation points J,K as zeroes of the next higher order
polynomials

Obtain response values Y at c = J ×K

Estimate proxy model coefficients

c∑
i=1

Y.H0 =
c∑
i=1

H2
0a0b0

· · ·
c∑
i=1

Y.HmLn =
c∑
i=1

(HmLn)2ambn

(5.12)

Use model for prediction at zeroes of next higher order polynomials
J ≡ J + 1 or/and K ≡ K + 1

Compute Adjusted covariance,

R2
a = 1−

∑c
i=1 (Ytrue − Yi)2fuξ/(c− p)∑c
i=1(Yi − Yavg)2/(c− 1)

(5.13)

where fuξ : Joint probability density and p: No of parameters in
proxy model

Error
large?

Update
model to

next higher
order

Accept
model

No

Yes

Figure 5.2: Work flow for proxy model development.
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Figure 5.3: Comparing performances of models built with Gaussian quadrature with
simulation data from original model, Equation 5.1.

Figure 5.4: Adjusted coefficient of determination for different models.
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Figure 5.5: Comparing third order models built with Gaussian quadrature and the
Levenberg-Marquardt algorithm for a large number of collocation points against sim-
ulation data.

Figure 5.6: Probability distribution of the normalized values of τ and Y at different
input values, u
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Figure 5.7: Expectation & Variance of production.

Figure 5.8: Performance and robustness at varying degrees of caution.
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Chapter 6

Multiphase reactive-transport
simulations for estimation and
robust optimization of the field
scale production of microbially

enhanced coalbed methane
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Abstract

The discovery that approximately 20% of natural gas is microbial in origin has ele-

vated interest in microbially enhanced coalbed methane (MECoM). However, a ra-

tional approach to exploit this calls for the development of reservoir scale models

that includes the effect of microbial activity. To address this, we have developed a

multiscale, multiphase, multicomponent reactive-transport model for the production

of microbially enhanced coalbed methane (MECoM) that includes microbial kinetics.

The model is used to evaluate field scale strategies for commercial MECoM pro-

duction. Optimization studies are also conducted over a range of injection nutrient

composition and injector bottomhole pressures. In order to account for the effect

of uncertainty in the model parameters, robust optimization is performed. Proxy

models are constructed using a multivariate polynomial chaos expansion framework

to evaluate the cost functions involved in the robust optimization. The use of sparse

polynomial chaos expansions to deal with issues related to high dimensionality is also

explored. The results of robust optimization indicate local as well as global optimal

points. Also, since the measure of robustness from the proxy model is independent

of input variables, the location of the robust optimal point does not vary for different

degrees of caution.

124



6.1 Introduction

Coalbed methane (CBM) is the gas stored/trapped in coalbeds. It is a mixture of
methane (80 - 90% by volume) and minor amounts of carbon dioxide, nitrogen, hydro-
gen sulphide, sulphur dioxide and heavier hydrocarbons such as ethane, propane and
butane. CBM was first explored as a source of fuel in the 1990s. Since then, rapid
technology developments, coupled with CBM’s higher efficiency, lower GHG/toxic
gas emissions and zero waste disposal compared to its predecessor coal, has elevated
CBM’s status as a significant source of natural gas. The International Energy Agency
reports that in 2008, CBM accounted for 10%, 4% and 8% of natural gas production
in the United States, Canada and Australia respectively. Countries with large coal
reserves such as India, China, Russia and Indonesia are also investing in CBM extrac-
tion on large scales1,2. However, there are many key issues impeding the development
of commercial scale CBM production. Amongst these, the low productivity of gas
wells and the ensuing high investment requirement in drilling multiple wells is a big
challenge, apart from the issues of heterogeneity of coal beds, economics of gas de-
mand and supply, water and environmental management, the availability of gas and
water pipelines and land and ownership issues.3

There are two dominant processes by which CBM is produced - thermocatalytic crack-
ing at elevated temperatures and pressures, and anaerobic microbial attack of organic
matter. When thermal processes begin to dominate during coal formation, microbial
activity is usually suppressed. However, recent laboratory and field experiments have
indicated that in addition to microbial CBM generated in the past, many basins have
active ongoing biogenic methane generation.4–6 Restoration of microbial activity in
these basins is considered to be the result of triggering events such as basin uplift and
cooling, the flow of underground water, and the dilution of salinity levels.6,7 The mi-
crobial CBM produced after these events is referred to as secondary biogenic methane.
It is estimated that approximately 20% of the methane produced worldwide is micro-
bial in origin8. Microbially enhanced coal bed methane production (MECoM) seeks
to enhance the production of secondary biogenic methane through improved produc-
tivity of existing gas wells along with bioconversion of deep, unmineable coal into
fuels.

6.2 Microbially enhanced coalbed methane

The four primary strategies employed for MECoM are microbial stimulation by addi-
tion of nutrients, microbial augmentation by addition of microbes, physically increas-
ing fracture spacing to provide more access to microbes and nutrient amendments, and
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chemically increasing the bioavailability of coal organics4. Many laboratory studies
have been conducted to evaluate each of these effects. Laboratory incubation studies
on lignite and subbituminous coals by Harris et al.9 showed that substantial methane
production occurs in the presence of H2/CO2 and inorganic nutrient amendments.
Studies by Singh et al.10 on an Indian coal bed sample showed that methane produc-
tion in the presence of formation waters and native microbial population improved
considerably with the addition of nitrite. Experiments by Opara et al.11 on lignite,
bitminous coal and coal wastes with selected microbial inocula and different types
and levels of nutrient amendments showed that methane production increased with
increasing nutrient concentrations. The addition of organic nutrients such as tryp-
tone and Brain Heart Infusion (BHI) was shown to improve methane production
in sub-bituminous coal samples from western Canada by Penner et al.12. Jones et
al.13 observed that bioaugmentation with a consortium of bacteria and methanogens
enriched from wetland sediment accompanied by biostimulation with nutrient amend-
ments generated methane more rapidly and to a higher concentration as compared to
biostimulation without the amendments. Experiments by Papendick et al.14 on na-
tive Walloon coal with produced waters from the Surat basin showed that the initial
methane production rate and the final methane yield increased by 240% and 180%,
respectively, on the addition of a Zonyl FSN surfactant to improve coal bioavailabil-
ity. Similarly, Huang et al.15 showed that methane production increased when coal
samples were treated with potassium permanganate, a depolymerization agent that
aids in coal solubilization.

Many field scale studies have also been carried out on biogenic methane production.
Succesful pilot scale field tests for microbial stimulation of CBM production were
conducted by Luca Technologies, Inc. to restore gas production in existing wells in
the Powder River Basin, Wyoming. Similarly, Crisis Energy and Next Fuel, Inc.
have also conducted smaller field scale tests. Also, Archtech, Synthetic Genomics
and ExxonMobil hold patents related to MECoM4. US patent 769613216 describes
methods for stimulating biogenic production with enhanced hydrogen content using a
combination of hydrogen and phosphorous compounds, US patent 542419517 describes
a method using household sewage injection into an abandoned coal mine to provide
feedstock for the bacteria, US patent 2004003355718 describes a method for injection
of bacteria and nutrients under pressure into naturally occurring fractures or cleats
as well as fractures induced during the stimulation of coalbed methane gas wells, US
patent 2014003429719 describes methods for dispersion of nutrient amendments and
US 764097820 describes methods for contacting subsurface coalbeds with microbes
under anaerobic conditions to form a reaction mixture.

Although numerous studies have been carried out, a key link in the commercialization
of any such technology development is the capacity to conduct model-based analysis
for technology transfer over increasing scales along with process estimation, optimiza-
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tion and control at field scales. For instance, Luca’s operational approach was batch
treatment of wells with nutrient amendments, followed by the assessment of new gas
formation after many months or years, whereas Ciris adopted a continuous-flow injec-
tion process using 4 injection wells surrounded by 13 production wells, recirculating
1000 - 2000 barrels of water every day. Since there is no rigorous approach for the
appraisal of these operating procedures, optimum injection procedures cannot be re-
solved and process efficiency is likely to be compromised. Thus, in the absence of
suitable simulation tools, decisions related to production forecasting, well comple-
tions, etc. are likely to be sub-optimal.

In this work, we construct a field scale reservoir simulator in the simulation en-
vironment of CMG STARS21 and use it to conduct studies on enhancement and
optimization of microbial methane production.

6.3 Development of the reactive-transport model

In our previous study,22 we developed a gas phase transport model for dual poros-
ity coalbed reservoirs and coupled it with a kinetic model based on the assumption
that microbes survive only on residual pore water. However, this is not directly
applicable in the assessment of commercial field applications where formation and
injection waters are present in excess. Moreover, since studies have indicated that
native microorganisms found in coal formations are usually nutrient-limited12, it is
also necessary to include nitrogen limitations in the kinetic model. Thus, in this
study, we develop reservoir simulations in the Advanced Process and Thermal Reser-
voir Simulator 2011.10 (STARS),21 by the Computer Modelling Group (CMG) with
enzymatic reaction kinetics described for a multi-substrate limited case (developed in
our previous study23). Results of gas prediction from the simulations are subsequently
employed in field scale process optimization.

As described in our previous study,22 multi-porosity coalbeds can be characterized
satisfactorily by dual porosity, with the primary and secondary porosity being re-
ferred to interchangeably as macropores and micropores or fractures and matrix,
respectively. Primary porosity consists of fractures or macropores (> 50 nm) and
mesopores of dimensions 2− 50 nm, while secondary porosity consists of micropores
of dimension < 2 nm24–26. Gas transport in this dual scale porous system is mod-
eled by a dual step transport mechanism consisting of Darcy’s flow in macropores
and diffusive flow in the micropores. Micropore gas diffusion is controlled by surface
desorption and diffusion through coal matrix, both of which are lumped based on a
pseudo steady-state approach to treat diffusion as a one-step process. This method
models matrix reponse relative to pseudo steady-state adsorbed gas concentrations
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in a lumped parameter fashion; hence, it neglects the true spatial variation of the gas
concentration and is therefore less accurate for the early stages of production.24 Based
on the above assumptions, we build a CMG STARS21 physical model to conduct field
scale simulations of coalbed methane production in the presence of microbial activity.

6.3.1 Reservoir characteristics

First, dual porosity characteristics of coalbeds are implemented in CMG STARS using
the standard dual-porosity (DP) model.27 According to this model, fluid transfer only
occurs between matrices and fractures, and there is no direct communication between
interblock matrices. Figure 6.1 shows the representation of a standard DP model.
Next, since microbes can only access fractures4,18 (or macropores of dimension >1
µm) and micropores are inaccessible to water24,28–32 (which is required for microbial
growth), microbial activity is assumed to occur only in the fractures. Hence, in our
model, coal exists as a reactive component only in the fractures while the role of
micropores is limited to storage.

The properties of the standard DP model are assigned as follows. The fracture volume
fraction, which is the ratio between the fracture volume and the gross volume, is set
to to 3%, and its total porosity is set to 100%. On filling these fractures with solid

coal component at 200
gmol

m3 pore volume
, the effective fracture porosity becomes 80%,

making the total fracture porosity 0.8× 0.03 = 0.024 or 2.4%. Similarly, the matrix
porosity can be set to a high value and then filled with coal for an effective porosity
of approximately 10%. Alternatively, the matrix porosity can be initialized directly
to 10%, since the rock (or coal) present here does not participate in bioconversion.
A description of reservoir properties and initial conditions in the porous system are
shown in Table 6.1 and Table 6.2, respectively. Adsorption of gases in the porous
spaces are defined using the ADSCOMP, ADSLANG, ADSROCK and ADMAXT
functions in STARS. Parameter values corresponding to adsorption of CH4, CO2

and H2 based on the Langmuir isotherm are shown in Table 6.3. Liquid- gas relative
permeability values are obtained by linear/quadratic interpolation of the values shown
in Table 6.4.

Communication between the matrix and fracture domains is controlled by a factor
known as interporosity transmissibility. This is a function of σ, which is a shape
factor depending on matrix block sizes. Among the different methods available for
evaluating σ, the Kazemi-Gilman formulation is chosen. According to this,

σ = 4Vb
∑
i

kmi
L2
i
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Figure 6.1: Schematic representation of dual porosity reservoirs

where Vb is the block volume, kmi is the effective matrix permeability in all directions
and Li is the fracture spacing in x, y, z directions21,33,34.

6.3.2 Reaction kinetic model

Having defined the reservoir properties for the model, the next issue is the reaction
kinetic model. Figure 6.2 depicts the fate of matrix and fractures during coal biocon-
version and shows that with an increase in reaction progress, coal is consumed only
from the fractures, while the coal in the micropore blocks remain inert participating
only in the diffusion of its gases. All of the components in the model are defined
in Table 6.5. Gas components are defined separately for those already present in
the reservoir (denoted by CH4i, CO2i, H2i) and those produced by microbial activity
(denoted by CH4, CO2, H2). The multi-substrate limited enzymatic reaction kinetic
model to be coupled with the transport model is based on the simplified reaction
pathway in lumped species developed in our previous studies23,35. This is described
by Equation 6.1, where rC , rS, rW , rB, rA, rCH4 , rCO2 are the rate of change of con-
centration of coal (C), solubilized coal (S), fragmented coal (W), lumped benozate
(B), lumped acetate (A), methane and carbon dioxide; undergoing coal solubiliza-
tion, hydrolysis, acidogenesis, acetogenesis and methanogenesis, respectively. [Nu]
represents the concentration of the protein-based nitrogen rich nutrient, tryptone,
that was tested in anaerobic serum bottle and coreflooding experiments for micro-
bial stimulation to produce microbially enhanced coalbed methane12,23,35. Kinetic
parameter values obtained by the regression of gas production data from coreflooding
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Property Unit Value/Description

Grid System - Cartesian Rectangular

Number of grid blocks (I, J directions) - 10

Thickness of grid block (I, J
directions)

m 100

Number of grid blocks (K) - 5

Thickness of grid block (K direction) m 6

Depth of grid bottom from surface m 1000

Fracture spacing (I, J directions) m 10

Fracture spacing (K direction) m 1

Fracture volume (as fraction of gross
volume)

% 3

Matrix porosity (constant over grid
system)

% 98

Fracture porosity (constant over grid
system)

% 99.9

Matrix permeability (I, J, K
directions)

mD 0.001

Fracture permeability
(Unstimulated)(I, J, K directions)

mD 0.1

Fracture permeability (Stimulated)(I,
J, K directions)

mD 5

Transmissibility factor σ for
fracture-matrix flow

-
Kazemi-Gilman
formulation21

Effective micropore porosity % 10

Overall macropore porosity % 2.4

Table 6.1: Reservoir properties in the CMG STARS model.
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Property unit Value

Reservoir pressure MPa 10

Sw matrix - 0

Sw fracture - 0.5

Sg matrix - 1

Sg fracture - 0.5

Fraction of methane and carbon dioxide adsorbed
in the matrix in gas phase

- 0.5

Fraction of free methane and carbon dioxide in
gas phase in fractures

- 0.5

Fraction of H2O in water phase in fractures - 0.99

Fraction of [A] in water phase in fractures - 0.01

Coal concentration in matrix
gmol

m3 pore volume 850

Coal concentration in fracture
gmol

m3 pore volume 200

Table 6.2: Initial reservoir conditions for the base case run.

CH4 CO2 H2

ADSLANG Term 1 100 250 50

ADSLANG Term 3 10000 10000 10000

Maximum rock adsorption capacity specified by ADMAXT

ADMAXT (macropores) 0.1 0.2 0.005

ADMAXT (micropores) 0 0 0

Table 6.3: Adsorption properties of gas components in micropore spaces. ADSLANG
inputs Langmuir isotherm parameters, Term 1 corresponding to Vl (m3/m3), Term 3
corresponding to Pl (kPa).
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MATRIX; Linear Interpolation

Sl Krg Krog

0 0.0001 0

1 0 1

FRACTURE; Quadratic Interpolation

Sl Krg Krog

0 1 0

1 0 1

Table 6.4: End points for linear/quadratic interpolation of liquid-gas relative perme-
ability values. Krg and Krog are the relative gas and water permeabilities, respectively.

Figure 6.2: Depiction of coal concentrations in primary and secondary porosities
with progress of bioconversion.
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Component Unit Value/Description

Solid components - Coal (C)

Coal molecular weight kg/gmol 1.444

Coal solid density kg/m3 1422

Water phase components -

Water (H2O)

Solubilized coal (S)

Fragmented coal (W)

Lumped benzoate (B)

Lumped acetate (A)

Nutrient (nitrogen-rich)
(Nu)

Gas phase components -

Free/desorbed methane
(CH4i)

Free/desorbed carbon
dioxide (CO2i)

Free/desorbed
hydrogen(H2i)

Biogenic methane(CH4)

Biogenic carbon
dioxide(CO2)

Biogenic hydrogen(H2)

Table 6.5: Components/species used in the CMG STARS model.
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experiments are retained23 in this model.

rC = −keSn[Nu]

(
C

C0

)2/3

([S∗]− [S]) (6.1a)

rS = keSn[Nu]

(
C

C0

)2/3

([S∗]− [S])− [Nu]

k1 + [Nu]
b[S] (6.1b)

rW = 10
[Nu]

k1 + [Nu]
b[S]− [Nu]

k2 + [Nu]

(
µ1[W ]

Ks1 + [W ] + Ks1
Ks2

[Nu]

)
(6.1c)

rB =
[Nu]

k2 + [Nu]

(
µ1[W ]

Ks1 + [W ] + Ks1
Ks2

[Nu]

)
+

µ2[Nu]

Ks2 + [Nu] + Ks2
Ks1

[W ]
− d [Nu]

k3 + [Nu]
[B]

(6.1d)

rA = 3
[Nu]

k3 + [Nu]
d[B]− [Nu]

k4 + [Nu]

(
e[A]

f + [A] + [A]2/g

)
(6.1e)

rNu = − µ3[Nu]

Ks2 + [Nu] + Ks2
Ks1

W ]
−KNus [Nu] (6.1f)

rCH4 =
[Nu]

k4 + [Nu]

e[A]

(f + [A] + [A]2/g)
(6.1g)

rCO2 =

(
µ1[Nu][W ]

(k2 + [Nu])(Ks1 + [W ] + Ks1
Ks2

[Nu])

)
+
d[Nu][B]

k3 + [Nu]
+ rCH4 (6.1h)

These enzymatic kinetics for coal bioconversion are incorporated into the CMG
STARS model. Reaction stoichiometry is defined with functions STOREAC, STO-
PROD and RPHASE. Reaction rates of the form r = kCa

1C
b
2 are defined using

RORDER (for a, b), FREQFAC (for k) and RXCRITCON (in the case of solid com-
ponents). For reactions of the form r′ =

r
(1+Ax)B

, where x is a component con-

centration, RXCMPFAC is used. Due to limitations of the input format in CMG
STARS, some modifications have to be made to the kinetic model, as discussed in
the following section.

Incorporation of reaction kinetics into the CMG STARS model

• Similar to our previous study,22 coal solubilization reaction kinetics is modeled
based on the assumption that macropore spaces are composed of N spherical
coal particles of radius R0. The corresponding solubilization rate is incroporated
into CMG STARS by two parallel reactions as

d[C]

dt
= r1 + r2; r1 = k[S∗]

(
C

C0

)2/3

and r2 = −k[S]

(
C

C0

)2/3
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where r1 and r2 are the rates of reaction 1 and 2 respectively (see Table C1).

Also, we assume the solubilization rate constant to increase with increase in
porosity (i.e., decrease in particle radius), so as to denote the increase in the
surface area made available for solubilization. This is defined with the functions
PERMCK and PERMSCALE in CMG STARS. Using PERMCK, the perme-
ability is made to vary with fluid porosity via the Carmen-Kozeny formulation,

k(φ) = kφ0

(
φ
φ0

)2.5 (
1−φ
1−φ0

)2

. PERMSCALE is then used to define scaling

factors for the solubilization rate constant at different permeability values.

• Kinetic parameter values used in the simulation are obtained from our previous
study.23 Since the values of k1, k2, k3, k4 are low, the kinetic rate terms corre-
sponding to nutrient limitation in solubilization, acidogenesis, acetogenesis and

methanogenesis are approximated as
[Nu]

ki+[Nu]
≈ 1.

• The reaction rate for methanogenesis is given by

rA =
e[A]

f + [A] + [A]2/g
; with e = 471

mol

m3
day−1, f = 215

mol

m3
, g = 0.0011

mol

m3

(6.2)
In accordance with the Haldane model structure for the kinetic rate in Equa-
tion 6.2, the reaction rate profile increases from zero within a narrow concen-
tration range and then decreases to zero (refer Figure 6.3a). Since the available
functional capabilities in STARS does not permit input of the reaction rate
expression in this form, we rewrite the rate expression with a perturbation vari-

able ε =
[A]
c2

, where c2 is a large number relative to low acetate concentrations,
as

rA =
e′

1 + k′[A]
−
(

1− ε
ε

)
K + constant (6.3)

On nonlinear regression of Equation 6.4 against rate data generated with Equa-
tion 6.2, we get

rA =
0.52

1 + 0.68[A]
− 10000

[1 + 6666667[A]]
(6.4)

which is formatted in CMG STARS as two reactions (reactions 7 and 8 in Table
C1). Figure 6.3 compares the rate data generated by Equations 6.2 and 6.4. The
regressed model deviates from the original kinetic expression (in Equation 6.2)
at very low acetate concentrations. Thus, the initial acetate concentration in
the simulations is kept at non-zero values to avoid errors in estimation.

• Finally, lumped benzoate production rates in the presence of competition be-
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(a) (b)

Figure 6.3: (a) Comparison of rate data generated using the Haldane model (Equa-
tion 6.2) and the regressed model (Equation 6.4), (b) zoomed view of Figure 6.3a,
indicating deviation of regressed model at low acetate concentrations.

tween [W ] and [Nu] is given by

r[B] from [W ] =
µ1[W ]

Ks1 + [W ] + Ks1
Ks2

[Nu]
; r[B] from [Nu] =

µ2[Nu]

Ks2 + [Nu] + Ks2
Ks1

[Nu]

are simplified by the approximation,
[W ]
Ks1

≈ 0; eliminating the competition of

[W ] against [Nu] to produce benzoate. The simplified form is

r[B] from [W ] =

µ1

Ks1
[W ]

1 + 1
Ks2

[Nu]
; r[B] from [Nu] =

µ2

Ks2
[Nu]

1 + 1
Ks2

[Nu]

Incorporation of the reaction kinetic model into CMG STARS is described in Ta-
ble C.1 in the appendix.

6.3.3 Well patterns and operating conditions

A horizontal producer well is simulated with perforations running through grid blocks
[1:10, 5, 1], while four 4 horizontal injector wells are simulated at each corner of the
grid block. The injector and the producer wells are all considered to be of the same ra-
dius, approximately 3 inches. Well perforations and operating constraints are shown
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Figure 6.4: Well perforations in the vertical layers of the reservoir.

in Table 6.6. Figure 6.4 shows the perforations of the wells at different layers in
the vertical direction (K). It is to be noted that directional drilling is the common
technique applied to coal seams since they are generally interspersed between differ-
ent geologic formation layers.36,37 The physical model built in CMG STARS is then
employed for simulations of microbially enhanced coalbed methane. Simulations are
performed in reservoirs with natural fractures (low permeability) and stimulated frac-
tures (high permeability). In practice, the low permeability of pre-existing fractures
can be modified by artificial stimulation methods such as hydraulic fracturing. Apart
from water, fracturing can also be achieved with inert gases such as nitrogen and
carbon dioxide or foams containing water and inert gases with a foaming agent, air
or air-to-air mixture injection and electrothermal bed stimulation.38–40

6.4 Optimization studies

Finally, the results of the model-based simulation runs are applied in the optimization
of methane production under varying operating conditions. The cumulative methane
generation is considered to be the objective cost function, which can be modified with
weighed penalties for high nutrient costs, operating pressure requirements, related
water management costs, etc. Optimization is performed using the CMG DECE
algorithm available in the CMG CMOST toolbox. CMG DECE is an optimization
method that sequentially applies an exploration stage, where the parameter space
is randomly explored, and a controlled evolution stage, where candidate values are
evaluated and rejected or retained.
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Well

Producer

Index Perforations FLOW TO

1 1 5 5 SURFACE

2 1 5 1 1

3 10 5 1 2

Minimum Bottom Hole operating pressure 300 kPa

Injector 1

Index Perforations FLOW FROM

1 10 1 5 SURFACE

2 10 1 3 1

3 7 3 3 2

Injector 2

Index Perforations FLOW FROM

1 10 10 5 SURFACE

2 10 10 3 1

3 7 7 3 2

Injector 3

Index Perforations FLOW FROM

1 1 1 5 SURFACE

2 1 1 3 1

3 3 3 3 2

Injector 4

Index Perforations FLOW FROM

1 1 10 5 SURFACE

2 1 10 3 1

3 3 7 3 2

Table 6.6: Well perforations and operating constraints of the injector and producer
wells.
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Proxy model and robust optimization

Uncertainty persists in the parameter values for kinetic and transport, since many
of these are extrapolated from smaller scales to the reservoir model. We perform
robust optimization to account for this uncertainty; however, this places a prohibitive
computational burden. We resolve this by developing proxy/surrogate models based
on a multivariate polynomial chaos expansion framework developed in our previous
study41.

Polynomial chaos expansion (PCE) is a method used for uncertainty propagation in
nonlinear dynamic systems. It was first introduced by Wiener as homogeneous chaos
in 193842, and is derived from the Cameron Martin theorem which states that an
expansion in Hermite polynomials in Gaussian random variables converges in the L2

sense for any arbitrary stochastic process with a finite second moment43. Xiu et al.44

later identified optimal trial bases from the Askey family of orthogonal polynomials
to represent stochastic processes, which became known as the Wiener-Askey polyno-
mial chaos. A stochastic ouptut X is represented by a truncated polynomial chaos
expansion as

X(θ) =

p∑
j=0

ajΨj(ξ)

where Ψj belongs to an orthogonal basis set, chosen based on the probability distri-
bution of the random source.

A stochastic proxy model incroporating uncertainty information into an input-output
relation can be built in this framework using Legendre orthogonal polynomials (as-
sociated with a constant weighing function) in the input variables41. The method is
motivated by the rationale that an input variable varying within a specified range
may be represented by a random variable belonging to a uniform distribution. Al-
though this is a computationally superior technique for robust optimization compared
to other methods,45–47 its reliability depends on the accuracy of the proxy model pa-
rameters. Parameter estimation is usually performed using two approaches: Galerkin
projection,48 with Gaussian quadrature rules applied for evaluation of the resulting
multivariate integrals, and linear regression. A key issue with this method is the large
dimensionality of the expansions, which increases with the number of input variables
and the degree of nonlinearity. To deal with this, we propose that the polynomi-
als in the expansion be chosen based on ranking of correlation indices. However,
other methods such as hyperbolic index sets or least-angle regression, which are used
extensively in sparse polynomial expansions, may also be suitable.49–51
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6.5 Results and discussion

Simulation of microbially enhanced methane production is performed for two cases:
one corresponding to natural fractures, with fracture permeability = 0.1 mD (obtained
on history match of production data from Manville wells in our previous study22),
and the other for the case of stimulated fractures, with fracture permeability = 5
mD. Injector and producer wells are configured as discussed in section 3.3. During
operation, injectors are assigned a maximum bottomhole pressure constraint of 10
MPa, and the nutrient fraction in the injected fluid is assigned to be 0.3. For cases
where the external nutrient supply is cut off, the injectors are shut down. Thus, a
total of four different cases are simulated. Cases 1 and 2 simulate low permeability
reservoirs in the absence and presence of external nutrient injection, respectively, and
cases 3 and 4 are the corresponding simulations for high permeability reservoirs.

Figure 6.5 shows nutrient dispersion in reservoirs with low and high permeabilities
and shows that nutrient dispersion (over a period of 200 days) is greater when the
permeability is higher. Figures 6.6 and 6.7 show the quantities of biogenic and free
& desorbed methane for each of the cases. It is to be noted that these simulations
are performed for a non-zero initial acetate concentration in the fractures. The net
cumulative methane generation in high permeability reservoirs is almost an order of
magnitude higher than that in low permeability reservoirs. Figure 6.8 compares bio-
genic methane generation, while Table 6.7 shows the percentage of biogenic methane
in the total methane recovery for each of the cases. The absolute biogenic methane
recovery as well as the percentage of biogenic methane in the total methane recovered
are the highest for case 4 (high permeability with nutrient injection), while these in-
dicators are almost similar for cases 1 and 2 (low permeability reservoirs). Although
the absolute value of biogenic methane generated is higher, the percentage of biogenic
methane recovery is lower in case 3 compared to cases 1 and 2. This is due to the
increase in free and desorbed methane production in the high permeability reservoir
(case 3) compared to the low permeability reservoirs.

Since the reservoir with stimulated fractures responds better to nutrient injection, it
was investigated for maximization of total methane recovery. The nutrient fraction
in the injection fluid (fnutrient) and maximum bottomhole pressure (BHP ) at all
four injectors were the operating conditions that were varied. Figure 6.9a shows
a 3D surface plot of cumulative methane production at nutrient fractions varying
between 0 - 0.5 and injector bottomhole pressures (BHP) varying between 10 - 20
MPa. Figure 6.9b provides the contours of this surface based on varying the BHP. It
can be observed that the cumulative methane production increases with an increase
in nutrient fraction at lower BHP. However, at higher BHP, an increase in the nutrient
fraction causes the cumulative methane production to increase to a maximum before
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reducing, with the nutrient fraction at which the maximum is reached being smaller
as the BHP increases.

Proxy model and Robust optimization

The output variable Y is the cumulative methane generated at the end of 200 days.
The subset of input variables and uncertain model parameters chosen is shown in
Table 6.8. The input variables u1 and u2 are scaled such that they can be expanded
with a sequence of Legendre polynomials orthogonal on the interval [−1, 1]. Similarly,

uncertain parameters ξ1 and ξ2 are normalized by scaling the variables as
ξi−µi
σi

,

where µi and σi are the mean and standard deviation of ξi, i = 1, 2. Equation 6.5a
shows the output variable Y , expanded with first order Legendre polynomials in
u1 and u2, followed by expansion of the deterministic coefficients L,M and N in
Equation 6.5b using first order Hermite polynomials in ξ1 and ξ2.

Y = L+Mu1 +Nu2 (6.5a)

≡ (Y0 + Y1ξ1 + Y2ξ2) + (Y3 + Y4ξ1 + Y5ξ2)u1 + (Y6 + Y7ξ1 + Y8ξ2)u2 (6.5b)

As the order of the expansion increases, the number of terms in the expansion can

increase upto Nterms =
(n+p)!
n!p!

, where n is the number of parameters in the expansion

and p is the order of the expansion. In order to choose the dominant terms in the
expansion, the pairwise linear correlation coefficients between the output Y and the
expansion polynomials u1, u2, u1ξ1, u

2
1 − 0.33, . . . are evaluated and ranked. Based

on this, it was observed that the terms ξ1, u
2
1 − 0.33, u1u2 & u1 × u2

1 − 0.33 have
the most correlation with the output variable, Y . Thus, a proxy model is built as
shown in Equation 6.6 with model parameters estimated by linear regression against
the simulation output of the CMG STARS model at 88 randomly generated sets
of [u1, u2, ξ1, ξ2]. Figure 6.10 compares simulations of the full model at about 1000
collocation points, against the estimated proxy model at those points.

Y = Y0 + Y1ξ1 + Y2(u2
1 − 0.33) + Y3u1u2 + Y4u1(u2

1 − 0.33)

Y0 = 577250, Y1 = 28600, Y2 = 84390, Y3 = 57970, Y4 = 28830
(6.6)

It is seen that the significant terms in the proxy model only contain ξ1. This indicates
that the effect of uncertainty in the quantity of coal in macropores is lesser compared
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to permeability of the reservoir. Next, the proxy model is used in robust optimization
with an objective function defined as

max
u1,u2

P = (1− α) ∗ E(Y, u1, u2, ξ1, ξ2)− αV (Y, u1, u2, ξ1, ξ2) (6.7)

where P is the cumulative methane production, E and V are the expectation and
variance of the cumulative methane production predicted by the proxy model over
ξ1, ξ2 and α is the degree of caution in the results. Statistical metrics E and V are
easily evaluated using Equation 6.6 giving

E(Y, u1, u2, ξ1, ξ2) = Y0 + Y2(u2
1 − 0.33) + Y3u1u2 + Y4u1(u2

1 − 0.33)

V (Y, u1, u2, ξ1, ξ2) = Y 2
1

(6.8)

Figure 6.11 shows the objective cost function P over a range of u1 and u2, while
Figure 6.12 provides the contours of this surface at varying BHP. A local optimum
occurs at low nutrient fraction and high injector BHP, whereas the global optimum
occurs at high nutrient fraction and high injector BHP. The value of the expectation
of the cumulative methane production at low nutrient fraction and high injector BHP,
which was the global maximum in the nominal deterministic optimization procedure,
is in fact very low under the robust optimization strategy. This indicates the strong
effect of the macropore permeability ξ1 under such operating conditions since, any
uncertainty in its value can lead to the deterministic optimum no longer being valid.
Thus, operating at low nutrient fraction at high injector pressures could result in large
variability and therefore unreliability of the deterministic optimization. It is to be
noted that in this case, since the variance of the objective function V is independent
of u1 or u2, the location of the robust optimal point does not vary with changing
degree of caution α.
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(a) Tight reservoir (fracture permeability = 0.1 mD).

(b) Reservoir with stimulated fractures (fracture per-
meability = 5 mD).

Figure 6.5: Nutrient concentration in coalbed reservoirs with natural and stimulated
fractures.
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(a)

(b)

Figure 6.6: Quantities of biogenic, free and desorbed methane from CBM reservoirs
with natural fractures (permeability = 0.1 mD) (a) with and (b) without nutrient
injection.
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(a)

(b)

Figure 6.7: Quantities of biogenic, free and desorbed methane from CBM reservoirs
with stimulated fractures (permeability = 5 mD) (a) with and (b) without nutrient
injection.
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Figure 6.8: Comparison of biogenic methane generated in CBM reservoirs with
natural and stimulated fractures, with and without nutrient injection.

Index Case
Percentage of

biogenic
methane

1
Low permeability without nutrient

injection
4.53

2
Low permeability with nutrient

injection
4.54

3
High permeability without nutrient

injection
3.75

4
High permeability with nutrient

injection
5.17

Table 6.7: Percentage of biogenic methane in total methane recovery.

146



(a) 3D surface plot for cumulative biogenic methane production at varying
nutrient fractions and injection bottomhole pressures (kPa).

(b) Contour plots depicting variation of cumulative biogenic methane
production with nutrient injection at different injection BHP pressures
(kPa).

Figure 6.9: The variation of microbially enhanced biogenic methane production with
nutrient injection and injection bottomhole pressure (BHP).
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Variable Description Parameter range

u1

Fraction of nutrient
composition in injection

fluid
[0.001 0.5]

u2
Injector bottomhole

pressure
[10 20] MPa

ξ1
Isotropic fracture

permeability
Gaussian distribution; N(5, 1)

mD

ξ2
Initial coal quantity in

fractures

Gaussian distribution;

N(200, 25)
gmol
m3

Table 6.8: Inputs and uncertain parameters in the proxy model.

Figure 6.10: Comparison of predictions of cumulative methane production for the
reservoir model in CMG STARS and the proxy model.
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Figure 6.11: Response surface for the robust optimization strategy.

Figure 6.12: Contour plots depicting variation of expectation of the cumulative
biogenic methane production over the range of normally distributed values of mcropore
permeability, with nutrient injection at different injection BHP pressures (kPa).
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6.6 Conclusion

Simulations of microbially enhanced coal bed methane were performed with the reser-
voir simulator, CMG STARS. A standard dual porosity model was described with the
matrix-fracture transmissibility factor evaluated by the Kazemi-Gilman formulation.
Since microbes and water required for microbial growth can exist only in macropores,
coal bioconversion was assumed to occur only in the fractures with the coal in the
micropores acting only as a storage reserve for the gases. The sorption behaviour
of methane, carbon dioxide and hydrogen was defined by Langmuir isotherms, and
finally, the microbial chain reactions were incorporated into the simulator. The phys-
ical model was then simulated for a specific well pattern, with and without external
nutrient injection. Since naturally occurring coal fractures are insufficient for nutrient
dispersion, nutrient effects were significant only under high permeability, which can
be obtained by stimulated fractures. Next, the model based simulations were used
in the optimization of coalbed methane production at varying nutrient fraction in
the injected fluid and injector bottomhole pressures (BHP). It was observed that at
lower injector BHP, the cumulative methane generation increases with an increase in
the nutrient fraction in the injection fluid. However, at higher BHP, the cumulative
methane generation reaches a maximum and then decreases with an increase in nu-
trient concentration. Lastly, in order to account for model parameter uncertainties,
robust optimization strategies were tested based on a stochastic proxy model built
in a polynomial chaos expansion framework. The stochastic proxy model was built
for coal bed methane production at varying nutrient fraction and injector bottom-
hole pressure, in the presence of uncertainty from macropore permeability and coal
quantity in macropores. Robust optimal points evaluated based on the proxy model
indicate a local optimum at low nutrient concentration and low injector BHP, and a
global optimum at high nutrient concentration and high injector BHP. Moreover, it
was observed that the effect of uncertainty in macropore permeability is significant at
the optimum operating regions evaluated under nominal optimization studies, imply-
ing that under those conditions, there is a high chance for field tests to deviate from
model-based predictions, unless uncertainty is taken into account in the prediction
and optimization. Also, since there is no significant interaction between uncertain
variables and input variables, the location of the robust optimal point did not shift
for varying degrees of caution.
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Chapter 7

Conclusions and Future work

7.1 Concluding remarks

Microbial enhancement of coalbed methane is a valuable prospect for improved recov-
ery from existing as well as new gas wells. Although there is a growing body of work
on fundamental and commercial research of MECoM (microbially enhanced coalbed
methane), several key questions related to effective implementation of MECoM tech-
nology on a commercial scale still remain. The major factors deterring the develop-
ment of simulation tools that can aid in the conceptualization and assessment of field
scale MECoM recovery are the complexity and variability of coal and the associated
microbiota, complicated biodegradation mechanisms that are not fully understood,
incomplete knowledge of reactant transport within coal and the inaccessible nature
of coal seams. Addressing these issues, we have developed multiscale models with
reasonable predictive capabilities for the quantification of biogenic methane produc-
tion based on a scaling approach, incorporating information from the laboratory to
the field scale. The work presented in this thesis hence provides a framework for the
analysis, optimization and control of commercial MECoM recovery.

In Chapter 2, we focussed on the first challenge - kinetic modeling of coal biocon-
version. By considering the major reaction classes in coal bioconversion, i.e., solu-
bilization, hydrolysis, acidogenesis, acetogeneis and methanogenesis; and taking into
account information on dominant intermediates from anaerobic serum bottle exper-
iments, we have proposed a simplified reaction pathway using lumped species, with
acetoclastic methanogenesis as the dominant methanogenic pathway and the nutrient
tryptone being assumed to produce a pool of benzoate. A kinetic model was then
derived using a diffusion layer model for solubilization, simple Monod models for hy-
drolysis, acidogenesis and acetogenesis and a Haldane type model for methanogenesis
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to account for substrate inhibition from acetate. Following model validation against
experimental coal bioconversion data from many different coal samples, both with and
without nutrient addition, a sensitivity analysis revealed that parameters controlling
solubilization and methanogenesis affect methane production the most. Additionally,
the kinetic model was used to infer the concentrations of intermediate products in
the bioconversion of coal and to devise optimal operating strategies for maximizing
the production of methane and/or intermediate products.

In Chapter 3, we applied the kinetic model to predict methane production in core-
flooding experiments, which attempt to mimic CBM reservoir conditions in terms
of porosity, fluid migration and high pressure conditions. The kinetic model was
modified to accomodate varying nitrogen substrate limitations along the core and
the adsorption kinetics of the dissolved gases onto solid coal. Using a tanks-in-series
model to simulate plug flow in the core, kinetic parameters were estimated by non-
linear regression against experimental data using particle swarm optimization (PSO).
The estimated model was then used to study the effect of operating conditions and
alternate injection patterns. Model-based experimental design was evaluated using
D-optimal criterion. Finally, model reduction based on computational singular per-
turbation was conducted, reducing the number of parameters by 5 without much
effect on the simulated model responses.

In Chapter 4, we developed a multiscale microbal reaction kinetic-coupled gas trans-
port model for simulation of coalbed methane (CBM) production from reservoirs with
ongoing anaerobic breakdown of coal. Based on the assumption of dual porosity char-
acteristics in coal seams, gas transport equations were derived for a 1D radial coal bed
reservoir by considering laminar flow and gas slippage in macropores and gas diffusion
from micropores, driven by desorption. The multiscale stiff transport equations were
non-dimensionalized to produce dimensionless numbers that can provide insight into
the dominant physical process at various scales. A global sensitivity analysis of trans-
port model parameters was conducted by the Morris OAT (one-at-a-time) method,
which indicated that gas mobility and the surface diffusion constant affected the gas
production the most. Following this, history matching of gas production data from
Manville wells in Alberta was performed by solving the transport equations using the
Levenberg-Marquardt method.

To deal with the effects of parametric uncertainty, we developed a technique of
stochastic proxy modeling based on a multivariate polynomial chaos expansion frame-
work in Chapter 5. For simplification, proxy model was built for coalbed methane
production Y in the absence of microbial kinetics at varying producer well bottom-
hole pressures, in the presence of uncertainty from normally distributed parameter
values of the micropore diffusion time constant. By treating the input variable as a
random variable from a uniform distribution, the output is expanded with Legendre
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polynomials in the input and the associated deterministic coefficients are expanded
with Hermite polynomials in the uncertain parameter. The coefficients of the basis
functions in the proxy model are estimated by Galerkin projection using Gaussian
quadrature. Alternatively, a proxy model was also developed based on knowledge of
the underlying functional relation between the input and output variables. The re-
sults indicate that the latter method gives better predictions compared to the former,
although the input-output relation is not always easily identifiable. The stochastic
proxy model developed was then used for robust optimization of gas production. It
is seen that the optimal point varies depending on the degree of caution in the robust
optimization strategy.

In Chapter 6, model development in the previous chapters were integrated in the sim-
ulation of microbially enhanced coal bed methane in the simulation environment of
CMG STARS. A standard dual porosity model was described with the matrix-fracture
transmissibility factor evaluated by the Kazemi-Gilman formulation. Since microbes
and water required for microbial growth can exist only in macropores, coal biocon-
version was assumed to occur only in the fractures with the coal in the micropores
acting only as a storage reserve for the gases. Sorption behaviour and reaction kinet-
ics were incorporated into the simulator. The physical model was then simulated for
a specific well pattern, with and without external nutrient injection. Since naturally
occurring coal fractures are insufficient for nutrient dispersion, nutrient effects were
significant only under high permeability, which can be obtained by stimulated frac-
tures. The simulations were used in the optimization of coalbed methane production
at varying nutrient fractions in the injected fluid and injector bottomhole pressures
(BHP). Finally, in order to account for uncertainties in the macropore permeability
and the coal quantity in the macropores, robust optimization strategies were tested
based on a stochastic proxy model built in a polynomial chaos expansion framework.
It was observed that the effect of uncertainty in macropore permeability is significant
at the optimum operating regions evaluated under nominal optimization studies, im-
plying that under those conditions, there is a high chance for field tests to deviate
from model-based predictions. Also, since there is no significant interaction between
the uncertain parameters and the input variables, the location of the robust optimal
point did not shift for varying degrees of caution.

Thus we have presented a multiscale modeling framework for analysis, optimization
and control of commercial MECoM recovery. The proposed models assess kinetic
effects at the scale of bottle experiments, kinetic effects in the presence of gas at-
tachment behaviour at the scale of coreflooding experiments, transport effects at the
reservoir scale and finally coupled transport and kinetic effects at reservoir as well
as field scales. As was seen, the effect of microbial kinetics in an already producing
coal seam is not significant, unless a combination of stimulation strategies can im-
prove methanogenesis, followed by solubilization rate parameters by 10-folds along
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with increased fracture spacing that will allow dispersion of nutrients aiding in bios-
timulation.

7.2 Future work

The work in this thesis provides a framework for building simulation tools that can be
enable commercial applications of microbially enhanced coalbed methane. However,
there is a lot of scope for improvement, too. Some of the work that will be pursued
in the near future are presented below.

• Coal seams are usually interspersed between geological layers of fine-grained
sediments (shales and limestones) and coarser sediments (siltstones and sand-
stones) due to the sedimentation of sand, silt and clay along over buried swamps.
Production simulations can therefore be performed for such field scale models
interconnected by layers of varying permeabilities.

• The objective cost functions considered in this work only maximize cumulative
methane generation. There are no penalties attached to increased nutrient
consumption or pump operating capacity. Based on real-time estimates of such
costs, we would rework the optimization strategies employed in this study can
be reworked.

• The proxy model developed in this study contains only two operating parame-
ters and two uncertain parameters. However, the number of uncertain param-
eters are much higher and so are the number of operating parameters in real
application. Moreover, we have considered parameters such as macopore poros-
ity and permeability to be isotropic, when they are usually highly anisotropic.
The following modifications can be made to deal with these issues.

– If it can be assumed that the uncertainty in the intrinsic hydaulic conduc-
tivity of the macropore porosity is a second order process with a known
covariance, the stochastic process can be expanded into a denumerable
number of random variables using Karhunen-Loeve expansions. Based on
the resulting subset of random variables, proxy models that account for
spatially varying uncertain parameters can be constructed.

– In order to identify significant terms in the polynomial expansion for proxy
model development, pairwise correlations were employed. However, there
are many other techniques related to sparse PCE meta-models. It would
be a good idea to compare results from different approaches in order to
improve the accuracy of the resulting proxy model.
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Appendix A

Appendix to Chapter 3

A.1 Reduced kinetic model obtained on ignoring

the fast reaction subspace : CSP

At t0 > 28 days, one mode is exhausted.

d[C]

dt
= −keSn[Nu]

(
C

C0

)2/3

([S∗]− [S]) ≈ 0 (dormant)

d[S]

dt
≈ 0

d[W ]

dt
≈ 10keSn[Nu]

(
C

C0

)2/3

([S∗]− [S])− µ1[W ]

Ks1 + [W ] +Ks1/Ks2[Nu]

d[B]

dt
=

µ1[W ]

Ks1 + [W ] +Ks1/Ks2[Nu]
+

µ2[Nu]

Ks2 + [Nu] +Ks2/Ks1[W ]
− d[B]

d[A]

dt
= 3d[B]− e[A]

f + [A] + [A]2/g

d[CH4]

dt
=

e[A]

f + [A] + [A]2/g
− rCH4ads

d[CH4s]

dt
= rCH4ads

d[CO2]

dt
=

3µ1[W ]

Ks1 + [W ] +Ks1/Ks2[Nu]
+ d[B] +

e[A]

f + [A] + [A]2/g
− rCH4ads − rCO2ads;

d[CO2s]

dt
= rCO2ads
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d[Nu]

dt
= rNu

For a brief period between 37 and 40 days, one more mode is exhausted, giving
rCO2des ≈ 0. However, after 40 days, there are a total of 3 exhausted modes.

d[C]

dt
= −keSn[Nu]

(
C

C0

)2/3

([S∗]− [S]) ≈ 0(dormant)

d[S]

dt
≈ 0

d[W ]

dt
≈ 10keSn[Nu]

(
C

C0

)2/3

([S∗]− [S])− µ1[W ]

Ks1 + [W ] +Ks1/Ks2[Nu]

d[B]

dt
≈ 0

d[A]

dt
≈ 10keSn[Nu]

(
C

C0

)2/3

([S∗]− [S]) +
2µ1[W ]

Ks1 + [W ] +Ks1/Ks2[Nu]

+
3µ2[Nu]

Ks2 + [Nu] +Ks2/Ks1[W ]
− e[A]

f + [A] + [A]2/g
− 0.7rNu

d[Nu]

dt
= rNu

d[CH4]

dt
=

e[A]

f + [A] + [A]2/g
− rCH4ads; and

d[CH4s]

dt
= rCH4ads

d[CO2]

dt
+
d[CO2s]

dt
≈ 4µ1[W ]

Ks1 + [W ] +Ks1/Ks2[Nu]
+

µ2[Nu]

Ks2 + [Nu] +Ks2/Ks1[W ]

+
e[A]

f + [A] + [A]2/g
− rCH4ads; rCO2 ≈ 0
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Appendix B

Appendix to Chapter 5

B.1 Proxy model development for dynamic input

variables

This work was presented in the poster session at the FEGRS symposium, 2013.

When input variables are dynamic, proxy models accounting for uncertainty cannot

be developed by the use of orthogonal polynomials, as described in Chapter 5. To

deal with such cases, we have developed an alternate technique, wherein an ensem-

ble of black-box time series models are identified at different collocation points and

the deterministic coefficients of the time series model are then regressesed against a

polynomial chaos expansion.

A short experiment of this technique was conducted with the tanks-in-series-model

for the coreflooding experiment, developed in Chapter 3. The dynamic feed rate

is considered to be the input parameter in the proxy model, whereas the initial coal

quantity is assumed to tbe the uncertain parameter. Figure B.1 shows the input PRBS

signal used in the identification of time series models at an ensemble of collocation

points. Figure B.2 shows good prediction by a second order ARX model at one

collocation point. Coefficients of time series models are then regressed against a
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Figure B.1: PRBS input signal used in model identfication

polynomial chaos expansion as shown in Figure B.3.
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Figure B.2: ARX model at one collocation point
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Figure B.3: Polynomial chaos expansion of the coefficients of the ensemble of ARX
models
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Appendix C

Appendix to Chapter 6

C.1 Enzymatic reaction network input to the CMG

STARS model
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’H2O’ ’S’ ’W’ ’B’ ’A’ ’Nu’ ’CH4’ ’CO2’ ’H2’ ’Coal’ ’CH4i’ ’CO2i’ ’H2i’

Reaction 1: C → S Reaction rate:−k[S∗]
(
C
C0

)2/3
STOREAC 0 0 0 0 0 0 0 0 0 1 0 0 0

STOPROD 0 0 0 0 0 0 0 0 0 0 0 0 0

RPHASE 0 1 0 0 0 0 0 0 0 4 0 0 0

RORDER 0 0 0 0 0 0 0 0 0 0.67 0 0 0

RXCRITCON ’Coal’ 0.01

FREQFAC 2× 10−7

’H2O’ ’S’ ’W’ ’B’ ’A’ ’Nu’ ’CH4’ ’CO2’ ’H2’ ’Coal’ ’CH4i’ ’CO2i’ ’H2i’

Reaction 2: S → C Reaction rate: k[S]
(
C
C0

)2/3
STOREAC 0 1 0 0 0 0 0 0 0 0 0 0 0

STOPROD 0 0 0 0 0 0 0 0 0 1 0 0 0

RPHASE 0 1 0 0 0 0 0 0 0 4 0 0 0

RORDER 0 1 0 0 0 0 0 0 0 0.67 0 0 0

RXCRITCON ’Coal’ 0.01

FREQFAC 10−8

PERMSCALE defined for reactions 1 and 2 to indicate variation in solubilization rate constant with permeability

’H2O’ ’S’ ’W’ ’B’ ’A’ ’Nu’ ’CH4’ ’CO2’ ’H2’ ’Coal’ ’CH4i’ ’CO2i’ ’H2i’

Reaction 3: S + 41H2O → 10W + 41H2 Reaction rate: b[S]

STOREAC 41 1 0 0 0 0 0 0 0 0 0 0 0

STOPROD 0 0 10 0 0 0 0 0 41 0 0 0 0

RPHASE 1 1 1 0 0 0 0 0 3 0 0 0 0

RORDER 0 1 0 0 0 0 0 0 0 0 0 0 0

FREQFAC 2.4

’H2O’ ’S’ ’W’ ’B’ ’A’ ’Nu’ ’CH4’ ’CO2’ ’H2’ ’Coal’ ’CH4i’ ’CO2i’ ’H2i’

Reaction 4: W + Nu + 3H2O → B + 5H2 + 3CO2 + Nu Reaction rate:
µ′
1[W ]

1+1/Ks2[Nu]

STOREAC 3 0 1 0 0 1 0 0 0 0 0 0 0

STOPROD 0 0 0 1 0 1 0 3 5 0 0 0 0

RPHASE 1 0 1 1 0 1 0 3 3 0 0 0 0
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RORDER 0 0 1 0 0 0 0 0 0 0 0 0 0

RXCMPFAC ’N ’ W 2 1

FREQFAC 0.024

’H2O’ ’S’ ’W’ ’B’ ’A’ ’Nu’ ’CH4’ ’CO2’ ’H2’ ’Coal’ ’CH4i’ ’CO2i’ ’H2i’

Reaction 5: Nu → Nu + B Reaction rate:
µ′
2[Nu]

1+1/Ks2[Nu]

STOREAC 0 0 0 0 0 1 0 0 0 0 0 0 0

STOPROD 0 0 0 0.01 0 0.999 0 0 0 0 0 0 0

RPHASE 0 0 0 1 0 1 0 0 0 0 0 0 0

RORDER 0 0 0 0 0 1 0 0 0 0 0 0 0

RXCMPFAC ’N’ W 2 1

FREQFAC 1.5

’H2O’ ’S’ ’W’ ’B’ ’A’ ’Nu’ ’CH4’ ’CO2’ ’H2’ ’Coal’ ’CH4i’ ’CO2i’ ’H2i’

Reaction 6: B + 6H2O → 3A + 3H2 + CO2 Reaction rate: d[B]

STOREAC 6 0 0 1 0 0 0 0 0 0 0 0 0

STOPROD 0 0 0 0 3 0 0 1 3 0 0 0 0

RPHASE 1 0 0 1 1 0 0 3 3 0 0 0 0

RORDER 0 0 0 1 0 0 0 0 0 0 0 0 0

FREQFAC 0.1

’H2O’ ’S’ ’W’ ’B’ ’A’ ’Nu’ ’CH4’ ’CO2’ ’H2’ ’Coal’ ’CH4i’ ’CO2i’ ’H2i’

Reaction 7: A → P Reaction rate:
0.52

1+0.68[A]

STOREAC 0 0 0 0 1 0 0 0 0 0 0 0 0

STOPROD 0 0 0 0 0 0 1 1 0 0 0 0 0

RPHASE 0 0 0 0 1 0 3 3 0 0 0 0 0

RORDER 0 0 0 0 0 0 0 0 0 0 0 0 0

RXCMPFAC ’A’ W 0.68 1

FREQFAC 0.52

Reaction 8: A → P Reaction rate: − 10000
1+6666667[A]

STOREAC 0 0 0 0 1 0 0 0 0 0 0 0 0

STOPROD 0 0 0 0 0 0 1 1 0 0 0 0 0

RPHASE 0 0 0 0 1 0 3 3 0 0 0 0 0
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RORDER 0 0 0 0 -1 0 0 0 0 0 0 0 0

RXCMPFAC ’A’ W 6.6E+6 1

FREQFAC 10000
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C.2 Input data file for CMG STARS

The following is the DAT file corresponding to flow in high permeability reservoir in

the presence of nutrient injection

RESULTS SIMULATOR STARS 201110

INUNIT SI

WSRF WELL TIME

WSRF GRID TIME

WSRF SECTOR TIME

OUTSRF GRID CMPDENO CMPDENW FLUXRC FLUXSC FPOROS MOLD-

ENG MOLDENO MOLDENW PERMI PERMJ PERMK PRES SG SO MOLE SOL-

CONC SW VPOROS VPOROSGEO W WATMOB Y Z

OUTSRF GRID PRES SG SO SOLCONC SW TEMP W X Y Z

OUTSRF WELL LAYER ALL

OUTSRF WELL MASS COMPONENT ALL

OUTSRF WELL MOLE COMPONENT ALL

WPRN GRID 0

OUTPRN GRID NONE

OUTPRN RES NONE

RESULTS XOFFSET 0.0000

RESULTS YOFFSET 0.0000
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RESULTS AXES-DIRECTIONS 1.0 1.0 1.0

**21 ============== GRID AND RESERVOIR DEFINITION =================

grid cart 10 10 5 ** 3D cartesian grid

depth 1 1 1 1000

NULL MATRIX CON 1

NULL FRACTURE CON 1

kdir UP

di con 100

dj con 70

dk con 6

dualpor

difrac con 10

djfrac equalsi

dkfrac con 1

frfrac con 0.03

por matrix con 0.98

POR FRACTURE CON 0.999

permi matrix con 0.001

permi fracture con 5 ** Fracture properties
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permj matrix con 0.001

permj fracture con 5 ** Fracture properties

permk matrix con 0.001

permk fracture con 5 ** Fracture properties

PINCHOUTARRAY CON 1

SECTORARRAY ’Matrix’ MATRIX CON 1

SECTORARRAY ’Fracture’ FRACTURE CON 1

*end-grid

ROCKTYPE 1

permck 2.5

MODEL 13 12 6 6

COMPNAME H2O S W B A N H2O CH4 CO2 H2 CH4i CO2i H2i

CMM

0.018 1.444 0.21 0.122 0.06 1.22 0.016 0.044 0.002 0.016 0.044 0.002 1.444

IDEALGAS

TCRIT

0 0 0 0 0 0 0 0 0 0 0 0

TEMR 25

TSURF 25

188



SOLIDDEN coal 1422 0 0

MASSDEN

0 0 0 0 0 0

CP

0 0 0 0 0 0

AVISC

0 0 0 0 0 0

**COMPNAME H2O S W B A N H2O CH4 CO2 H2 CH4i CO2i H2i coal

**CMM 0.018 1.444 0.21 0.122 0.06 1.22 0.016 0.044 0.002 0.016 0.044 0.002 1.444

** Reaction specification

STOREAC

0 0 0 0 0 0 0 0 0 0 0 0 1

STOPROD 0 1 0 0 0 0 0 0 0 0 0 0 0 RPHASE

0 1 0 0 0 0 0 0 0 0 0 0 4 RORDER

0 0 0 0 0 0 0 0 0 0 0 0 0.67

FREQFAC 2.00E-07

RXCRITCON coal 0.01

PERMSCALE

** effpt freqt 5 1
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5.5 1.2

6 1.3

**COMPNAME H2O S W B A N H2O CH4 CO2 H2 CH4i CO2i H2i coal

**CMM 0.018 1.444 0.21 0.122 0.06 1.22 0.016 0.044 0.002 0.016 0.044 0.002 1.444

** Reaction specification STOREAC

0 1 0 0 0 0 0 0 0 0 0 0 0 STOPROD

0 0 0 0 0 0 0 0 0 0 0 0 1

RPHASE

0 1 0 0 0 0 0 0 0 0 0 0 4

RORDER

0 1 0 0 0 0 0 0 0 0 0 0 0.67

FREQFAC 1.00E-08

RXCRITCON coal 0.01

PERMSCALE

** effpt freqt

5 1 5.5 1.2

6 1.3

**COMPNAME H2O S W B A N H2O CH4 CO2 H2 CH4i CO2i H2i coal

**CMM 0.018 1.444 0.21 0.122 0.06 1.22 0.016 0.044 0.002 0.016 0.044 0.002 1.444
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STOREAC

41 1 0 0 0 0 0 0 0 0 0 0 0

STOPROD

0 0 10 0 0 0 0 0 41 0 0 0 0

RPHASE

1 1 1 0 0 0 0 0 3 0 0 0 0

RORDER

0 1 0 0 0 0 0 0 0 0 0 0 0 FREQFAC 2.4

**COMPNAME H2O S W B A N H2O CH4 CO2 H2 CH4i CO2i H2i coal

**CMM 0.018 1.444 0.21 0.122 0.06 1.22 0.016 0.044 0.002 0.016 0.044 0.002 1.444

STOREAC 3 0 1 0 0 1 0 0 0 0 0 0 0

STOPROD

0 0 0 1 0 1 0 3 5 0 0 0 0

RPHASE

1 0 1 1 0 1 0 3 3 0 0 0 0

RORDER

0 0 1 0 0 0 0 0 0 0 0 0 0 FREQFAC 0.024

RXCMPFAC N W 2 1

**COMPNAME H2O S W B A N H2O CH4 CO2 H2 CH4i CO2i H2i coal
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**CMM 0.018 1.444 0.21 0.122 0.06 1.22 0.016 0.044 0.002 0.016 0.044 0.002 1.444

STOREAC

0 0 0 0 0 1 0 0 0 0 0 0 0 STOPROD

0 0 0 0.01 0 0.999 0 0 0 0 0 0 0 RPHASE

0 0 0 1 0 1 0 0 0 0 0 0 0

RORDER

0 0 0 0 0 1 0 0 0 0 0 0 0

FREQFAC 1.5

RXCMPFAC N W 2 1

**COMPNAME H2O S W B A N H2O CH4 CO2 H2 CH4i CO2i H2i coal

**CMM 0.018 1.444 0.21 0.122 0.06 1.22 0.016 0.044 0.002 0.016 0.044 0.002 1.444

STOREAC

6 0 0 1 0 0 0 0 0 0 0 0 0 STOPROD

0 0 0 0 3 0 0 1 3 0 0 0 0

RPHASE 1 0 0 1 1 0 0 3 3 0 0 0 0

RORDER

0 0 0 1 0 0 0 0 0 0 0 0 0

FREQFAC 0.1 **COMPNAME H2O S W B A N H2O CH4 CO2 H2 CH4i CO2i H2i

coal

**CMM 0.018 1.444 0.21 0.122 0.06 1.22 0.016 0.044 0.002 0.016 0.044 0.002 1.444
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STOREAC

0 0 0 0 1 0 0 0 0 0 0 0 0

STOPROD

0 0 0 0 0 0 1 1 0 0 0 0 0 RPHASE

0 0 0 0 1 0 3 3 0 0 0 0 0 RORDER

0 0 0 0 0 0 0 0 0 0 0 0 0 FREQFAC 0.52

RXCMPFAC ’A’ W 0.68 1

**COMPNAME H2O S W B A N H2O CH4 CO2 H2 CH4i CO2i H2i coal

**CMM 0.018 1.444 0.21 0.122 0.06 1.22 0.016 0.044 0.002 0.016 0.044 0.002 1.444

STOREAC

0 0 0 0 0 0 1 1 0 0 0 0 0

STOPROD

0 0 0 0 1 0 0 0 0 0 0 0 0 RPHASE

0 0 0 0 0 0 3 3 0 0 0 0 0

RORDER 0 0 0 0 0 0 0 0 0 0 0 0 0

FREQFAC 10000

RXCMPFAC ’A’ W 6666667 1

solidden CH4i 0.66 0 0

solidden CO2i 1.98 0 0 solidden H2i 0.09 0 0

solidden CH4 0.66 0 0
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solidden CO2 1.98 0 0 solidden H2 0.09 0 0

**124 ============== ROCK-FLUID PROPERTIES ======================

rockfluid

rpt 1 WATWET ** ———– MATRIX ————

swt smoothend quad

** Sw krw krow 0 0 1 1 1 0

slt ** Liquid-gas relative permeabilities smoothend linear

** Sl Krg Krog ** —- —— ——

0 0.0001 0

1 0 1

rpt 2 WATWET ** ———– FRACTURE ————

swt

smoothend quad ** Sw krw krow 0 0 1

1 1 0

slt ** Liquid-gas relative permeabilities

smoothend cubic

** Sl Krg Krog ** —- —— ——

0 1 0

1 0 1
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**155 Assign rel perm sets

krtype matrix con 1

krtype fracture con 2

adscomp CH4i gas ** Reversible adsorption of aqueous surfactant

adslang 100 0 10000 ** Langmuir isotherms at 2 tempertures adsrock 1

admaxt 0.1

adsrock 2

admaxt 0

adscomp CO2i gas

adslang 250 0 10000 adsrock 1

admaxt 0.2

adsrock 2

admaxt 0

adscomp H2i gas

adslang 50 0 10000

adsrock 1

admaxt 0.05 adsrock 2

admaxt 0

adscomp CH4 gas ** Reversible adsorption of aqueous surfactant
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adslang 100 0 10000 ** Langmuir isotherms at 2 tempertures

adsrock 1

admaxt 0.1

adsrock 2 admaxt 0

adscomp CO2 gas

adslang 250 0 10000

adsrock 1

admaxt 0.2

adsrock 2

admaxt 0

adscomp H2 gas

adslang 50 0 10000

adsrock 1

admaxt 0.05

adsrock 2

admaxt 0

**158 ============== INITIAL CONDITIONS ======================

initial VERTICAL OFF

INITREGION 1

196



pres matrix con 10000

pres fracture con 10000

sw matrix con 0 ** So by difference, since Sg = 0

sg matrix con 1

sw fracture con 0.5 ** So by difference, since Sg = 0

sg fracture con 0.5

**Property: Gas Mole Fraction(CH4i) Max: 0.5 Min: 0.5

MFRAC GAS CH4i MATRIX CON 0.5

**Property: Gas Mole Fraction(CO2i) Max: 0.5 Min: 0.5

MFRAC GAS CO2i MATRIX CON 0.5

**Property: Water Mole Fraction(H2O) Max: 0.9 Min: 0.9 MFRAC WAT H2O

FRACTURE CON 0.99

**Property: Water Mole Fraction(A) Max: 0.1 Min: 0.1 MFRAC WAT A FRAC-

TURE CON 0.01

**Property: Gas Mole Fraction(CH4i) Max: 0.5 Min: 0.5 MFRAC GAS CH4i FRAC-

TURE CON 0.5

**Property: Gas Mole Fraction(CO2i) Max: 0.5 Min: 0.5

MFRAC GAS CO2i FRACTURE CON 0.5 **Property: Initial Solid Concentra-

tion(coal) (gmole/m3) Max: 850 Min: 850

CONC SLD coal MATRIX CON 850

**Property: Initial Solid Concentration(coal) (gmole/m3) Max: 200 Min: 200 CONC
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SLD coal FRACTURE CON 200

temp matrix con 25

temp fracture con 25

**177 ============== NUMERICAL CONTROL ======================

numerical ** All these can be defaulted. The definitions ISOTHERMAL

CONVERGE TOTRES NORMAL UPSTREAM KLEVEL

RUN

DATE 2015 5 25

DTWELL 0.1 **

WELL Producer

PRODUCER Producer

OPERATE MIN BHP 300. CONT **UBA ff Status Connection

** rad geofac wfrac skin

GEOMETRY K 0.086 0.08 1. 0.

PERF GEOA Producer

**UBA ff Status Connection 1 5 5 1. OPEN FLOW-TO ’SURFACE’ REFLAYER

1 5 1 1. OPEN FLOW-TO 1

10 5 1 1. OPEN FLOW-TO 2 **

WELL injector1
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INJECTOR UNWEIGHT injector1

INCOMP WATER 0.7 0. 0. 0. 0 0.3

OPERATE MAX BHP 15000. CONT

** rad geofac wfrac skin

GEOMETRY K 0.086 0.249 1. 0.

PERF GEOA injector1

**UBA ff Status Connection

10 1 5 1. OPEN FLOW-FROM ’SURFACE’ REFLAYER

10 1 3 1. OPEN FLOW-FROM 1

7 3 3 1. OPEN FLOW-FROM 2

** WELL injector2

INJECTOR UNWEIGHT injector2

INCOMP WATER 0.7 0. 0. 0. 0 0.3

OPERATE MAX BHP 15000. CONT

**UBA ff Status Connection ** rad geofac wfrac skin

GEOMETRY K 0.086 0.08 1. 0.

PERF GEOA injector2 **UBA ff Status Connection

10 10 5 1. OPEN FLOW-FROM ’SURFACE’ REFLAYER 10 10 3 1. OPEN FLOW-

FROM 1

7 7 3 1. OPEN FLOW-FROM 2
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**

WELL injector3

INJECTOR UNWEIGHT injector3

INCOMP WATER 0.7 0. 0. 0. 0 0.3 OPERATE MAX BHP 15000. CONT

** rad geofac wfrac skin GEOMETRY K 0.086 0.249 1. 0.

PERF GEOA injector3

**UBA ff Status Connection

1 1 5 1. OPEN FLOW-FROM ’SURFACE’ REFLAYER

1 1 3 1. OPEN FLOW-FROM 1 3 3 3 1. OPEN FLOW-FROM 2

**

WELL injector4 INJECTOR UNWEIGHT injector4

INCOMP WATER 0.7 0. 0. 0. 0 0.3

OPERATE MAX BHP 15000. CONT

** rad geofac wfrac skin

GEOMETRY K 0.086 0.249 1. 0.

PERF GEOA injector4

** UBA ff Status Connection

1 10 5 1. OPEN FLOW-FROM ’SURFACE’ REFLAYER 10 3 1. OPEN FLOW-

FROM 1

3 7 3 1. OPEN FLOW-FROM 2
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DTMAX 0.5

NCUTS 15

UNRELAX 0.5

time 5

time 10

time 15

time 20

time 25 time 30 time 35 time 40 time 45 time 50 time 60 time 70 time 80 time 90

time 100 time 120 time 125 time 130 time 135 time 140 time 145 time 150 time 155

time 160 time 165 time 170 time 175 time 180 time 185 time 190 time 195 time 200

STOP
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