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Abstract: This series of studies present the state-of-the-art for the solution of the transient stability constrained optimal power
flow problem (TSC-OPF). Three different classes of solution techniques: dynamic optimisation-based, SIME method, and
computational intelligence, are discussed in detail. Moreover, discussed are issues to consider while solving such problems,
various application areas, and future directions in this research area. A comprehensive resource of the available literature,
publicly available test systems, and relevant numerical libraries is also provided. This study presents the TSC-OPF formulation
and discusses various dynamic optimisation-based approaches. Two optimisation techniques, full-space and reduced-space
method, are presented for solving the resulting non-linear optimisation problem.

1Introduction
The economic and secure operation of electric power systems is of
paramount importance to the utilities and regulatory authorities
around the world. Deregulation of vertically integrated utilities,
while ensuring an optimal operation of the power grid, has pushed
the operation to its limits. Moreover, in recent years an effort has
been made to utilise clean renewable generation sources and more
efficient units such as combined-cycle units. The introduction of
these units and their proliferation in the future implies a reduction
in the system inertia that has been regarded as a concern [1]. This
situation presents new technical challenges, particularly in the
reduction of system inertia through the displacement of
conventional generation resources during light load periods [1].

The security analysis of electrical power systems is done by a
steady state optimisation technique, referred to as security
constrained optimal power flow (SCOPF) in power system
parlance. An SCOPF determines a secure and optimal operating
point given the different steady-state security constraints such as
power balance, line flows, voltage, and capacity constraints.
However, such a solution is valid only for steady-state operation
since SCOPF ignores transient stability constraints. As a result, the
system may undergo instability on the inception of credible
transient events even though the SCOPF solution is secure. The
existing industry practice to maintain transient stability is by
planning mitigation schemes based on off-line stability studies.
Since these schemes are primarily targeted at maintaining system
reliability, they may not be optimal. Moreover, they may cause

discrimination in the market players, particularly when the system
is stressed [2]. Thus, ensuring dynamic security while maintaining
cost-effective operation is an important emerging problem.

This series of papers present the state-of-the-art for optimal
power flow (OPF) solution while considering transient stability
constraints. This problem has been given acronyms such as SOPF
(stability constrained OPF), OTS (OPF with transient stability
constraints) or TSOPF or TSC-OPF or TSC-OPF (transient
stability-constrained OPF). In this series, we refer to the problem
as TSCOPF. This series of papers offers a rich single resource to
the readers by (i) providing a comprehensive survey of TSC-OPF
techniques including explanation of their key concepts, (ii)
identifying the challenges in solving such problems, (iii) providing
an extensive and comprehensive list of literature on TSC-OPF
methods, (iv) including information on test data systems for
simulation and analysis, and (v) providing directions of future
research work.

The taxonomy of methods for solving the TSC-OPF problem is
shown in Fig. 1. This paper focuses on the dynamic optimisation
methods for solving TSC-OPF. The SIME method and
computationally intelligent approaches are described in Part II of
this series of papers. 

We note that among all the TSC-OPF approaches surveyed in
this two-part paper, the selection of a proper one for a given
research topic or practical application is highly dependent on end-
user requirement. There is no optimal method that is able to solve
all the problems. One has to select a proper approach from the

Fig. 1 Taxonomy of dynamic constraints incorporating methods for TSC-OPF problems
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trade-off between model complexity and computational efficiency,
according to its own need.

A TSC-OPF problem with very detailed model is able to
capture realistic system dynamics but commonly suffers from low-
computational efficiency. For example, one may interface an
external time-domain simulator (e.g. PSS/E) with a meta-
heuristics-based searching algorithm, as described in Section 3 of
Part II. Then, the solution is guaranteed to be consistent with the
simulator and able to describe detailed system dynamics. However,
the computational burden may be unacceptable due to large
number of simulation requests and possible unsatisfied
convergence performance. Therefore, this setup is only useful for
the application scenarios with no or less computational time
requirement, e.g. system planning or day-ahead decision-making.

On the other hand, in the context of fast decision-making, such
as real-time or hour-ahead operation, one has to tailor the TSC-
OPF formulation so as to ensure its computational performance. In
this circumstance, simplification-based method such as SIME is
preferred, which is discussed in Section 2 of Part II. Even though it
is unable to provide a very accurate description of system
dynamics, it is still capable enough to provide a rough estimation
on certain stability constraints, e.g. first swing of rotor-angle
stability. Similar comparison is provided in Table 2 of Part I, in the
framework of numerical optimisation.

In summary, as a general recommendation from the authors, one
is suggested to choose a proper TSC-OPF approach according to
the request of computational time frame and system dynamic
model. For planning stage problems where long computing time is
permitted, it is recommended to use computational intelligence or
constraint transcription approaches, so as to interface with external
time-domain simulator with detailed dynamic model. For operation
stage problems where computing time is a concern, SIME and
simultaneous discretisation approaches is recommended as they are
commonly fast and robust, despite of some limitations in
describing complicated system dynamic behaviour. Multiple
shooting approach is right in the middle of the aforementioned
trade-off, it is able to be gain additional acceleration through the
parallel processing of multiple shooting intervals.

2TSC-OPF formulation
TSC-OPF is an optimal control or dynamic optimisation problem
that extends the OPF problem to include system dynamics
equations and transient stability constraints. In compact form, the
TSC-OPF can be described by the following set of equations

min or max C(p) (1)

s . t . gs(p) = 0 (2)

hs
− ≤ hs(p) ≤ hs

+ (3)

p
− ≤ p ≤ p

+ (4)

ẋ = f (x, y, p), x(t0) = Ix0(p) (5)

0 = g(x, y, p), y(t0) = Iy0(p) (6)

h(x(t), y(t)) ≤ 0, ∀(t) (7)

In the following subsections we describe the different components
in (1)–(7) that are also used in the description of the different
dynamic optimisation methods. Contingencies can be also included
in this formulation for both steady state and transient state. For

notational ease, we have avoided incorporating contingencies in the
formulation.

In the following subsections we describe the different
components of this formulation.

2.1 Objective function

The objective function (1), depending on the study of interest, can
involve minimising the generation cost, minimising the
transmission line losses or maximising the available transfer
capability.

Here, p ≡ [Pg, Qg, θ, V]T ∈ ℝnp are the optimising variables
inherited from OPF, namely, the real and reactive power generation
and the bus voltage angles and magnitudes. Table 1 lists the
different objective functions used in the literature. 

2.2 Steady-state equality constraints

The steady state equality constraints (2) consist of nodal power
balance or current balance equations. As an example, the nodal
power balance equality constraints with the voltage expressed in
polar form are given by

Pi
inj − ∑

k = 1

n

ViVk(Gikcos(θik) + Biksin(θik)) = 0 (8)

Qi
inj − ∑

k = 1

n

ViVk(Giksin(θik) − Bikcos(θik)) = 0 (9)

2.3 Steady state inequality constraints

The apparent power, real power or current flow along transmission
lines typically constitute the steady-state inequality constraints (3)
as given by

Ψl
− ≤ Ψl ≤ Ψl

+, l = 1…nlines (10)

Here, Ψl represents the constrained flow on the transmission line l.

2.4 Steady-state voltage limits and capacity limits

Equations (11)–(13) represent the constraints on voltages and the
generator real and reactive powers that constitute the box
constraints in (4)

PGk
− ≤ PGk ≤ PGk

+ , k = 1…ngen (11)

QGk
− ≤ QGk ≤ QGk

+ , k = 1…ngen (12)

Vi
− ≤ Vi ≤ Vi

+, i = 1…nbus (13)

PGk and QGk are the real and reactive power of generator k,
respectively, and Vi is the voltage magnitude of bus i.

2.5 System dynamics equations [21, 22]

The analysis of power systems when subjected to large
disturbances such as faults or equipment outages, is done using a
set of differential-algebraic equations (DAE) (5) and (6). x ∈ ℝnx

represents the dynamic states that have power system models
described by differential equations, and y ∈ ℝny represents the
algebraic states. Typically, the differential equations describe the
electromechanical machine dynamics, while the network equations
form the algebraic equations. Ix0 and Iy0 are functions that describe
the relation between the initial condition, (x(t0), y(t0)), of the
dynamic states and the optimisation variables p.

The most widely used generator model described in the
literature is the second-order classical generator model that
describes the dynamics for the machine rotor angle and speed

Table 1 TSC-OPF objective function
Objective function References
minimise generation cost [2–14]
minimise transmission losses [8, 9]
maximise transfer capability [4, 14–20]
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dδ

dt
= Δω

2H

ωs

dΔω

dt
= Pm − Pe − DΔω

(14)

Here δ and Δω are the machine rotor angle and the speed
deviation, respectively. The algebraic network equations in the
current balance form are given by:

YR −YI

YI YR

VR

VI
=

IR

II
(15)

In (15), subscripts R and I denote the real and imaginary parts, Y is
the complex admittance matrix; V is the vector of complex bus
voltages; and I is the vector of complex current injections from the
generators and loads. The action of discrete events, such as fault
incidence/removal, transmission line switching, load loss or
generation tripping, is incorporated by modifying the differential or
algebraic equations at the time of the discrete event. This involves
computing a predisturbance and postdisturbance solution. The
mechanism of incorporating such discrete events in a transient
stability simulation is described in detail in [21].

The representation of such discrete events and the trajectory
sensitivity analysis were investigated in the vision of hybrid
system, discussed in [23]. By describing the jump conditions,
discrete events observed in system dynamics, including switching
and state resetting, are modelled and analysed. This enables one to
model such discrete events in a trajectory sensitivity enabled TSC-
OPF approach, including constraint transcription and multiple
shooting. However, their convergence property and other
performance issues remain to be investigated.

2.6 Transient stability constraints

The transient stability constraints (7) yield a measure of the
security and stability of the system. These could express a measure
of the instability of the system or the violation of the dynamic
states. When satisfied, the constraints ensure that the system is
transiently secure for the given generation dispatch. The transient
stability could be assessed by different measures. We highlight a
few as used in the literature.

• A common measure used in the literature is the deviation of the
machine rotor angle from its centre of inertia reference [2, 12,
18]

δi(t) −
1

∑i = 1
ngen

Hi

∑
i = 1

ngen

Hiδi t ≤ δ
+ (16)

Here, Hi is the inertia constant of the ith generator, and δi(t)
is its machine rotor angle at time t. The maximum rotor angle
deviation δ+ is the maximum allowed rotor angle deviation. The
typical values used for δ+ can be found in [24].

• Literature [3, 25, 7] use a dot product test based on potential
energy boundary surface

∑
i

ngen

Pai δi − δs . e . p . (17)

Here, Pai is the accelerating power of the ith generator with
corresponding machine angle δi, and δs . e . p .  is its machine angle
at the stable equilibrium point.

• Constraints can be also imposed on the network voltages and the
transmission line flows through the postdisturbance period as
considered in [7, 22]. Paramsivam et al. [26] define a voltage
performance criterion that takes into account transient voltage
dips and delayed voltage recovery phenomena.

• There are approaches to transient stability-constrained optimal
power flow, in which the SIME method provides stability
constraints that are directly expressed in terms of the power

limit of critical generators or in terms of the power limits in
lines, that do not need to include the sets of stability constraints
and of dynamic constraints in the formulation, and that can use a
conventional OPF for the system optimisation [15, 27]. These
methods were able from the beginning to analyse large power
systems using detailed modelling, as shown in the references
[14, 15, 20, 27].

From the viewpoint of formulating and solving TSC-OPF
problems, the stability criteria are essentially functions of post-
disturbance state variables of the studied system. Basically, there
are two approaches to integrate the criterion into the optimisation
formulation.

(i) Individual constraints on the post-disturbance state variables,
e.g. rotor angle constraints 16 used in [2, 12, 18]. This approach
results in a large amount of constraints that may slow down the
solving process. It is able to provide better convergence property
by considering explicit constraints for various time steps.
(ii) Aggregated constraints on the post-disturbance state variables,
e.g. [4, 7, 28, 29]. Instead of enforcing a large number of state
variables in a given region, a stability index in the form of the
integral of state variables exceeding given thresholds over time is
established, then an aggregated constraint is set up to make sure the
value of the stability index equal to zero. This approach is able to
significantly reduce the dimension of resultant non-linear
programming (NLP) model but may encounter convergence issue.

In its existing form, as given by (1)–(7), the TSC-OPF problem
cannot be solved by using a non-linear optimisation solver because
of the presence of differential equations. In the following sections
we discuss different solution approaches such as simultaneous
discretisation or discretise-then-optimise, constraint transcription
or semi-infinite programming, and the multiple shooting.

3Dynamic optimisation methods
TSC-OPF is a non-linear programming problem with DAE
constraints. Mathematically, such problems can be solved by either
indirect or direct dynamic optimisation methods [30]. Indirect
methods, also known as variational methods, are based on the
calculus of variations and Pontryagin's minimum principle in
optimal control. On the other hand, direct methods use NLP
algorithms after incorporating dynamic constraints into the
optimisation formulation. Various TSC-OPF problems in the
literature have been solved by direct methods because of their
robustness in convergence, and capability to treat inequality
constraints. Three main variants of direct methods for solving
dynamic optimisation problems are simultaneous discretisation
[31], constraint transcription [32], and multiple shooting [33].
These are described in Sections 3.1, 3.2, and 3.3, respectively. A
comprehensive comparison among direct methods-based TSC-OPF
algorithms from a qualitative and quantitative perspective is given
in Table 2. 

3.1 Simultaneous discretisation [2, 8, 22, 35]

In the direct simultaneous or discretise-then-optimise approach, the
differential equations for all time steps are discretised to non-linear
algebraic equations by using a numerical integration scheme. These
non-linear algebraic equations are then incorporated as equality
constraints in the TSC-OPF formulation. Note that any implicit/
explicit single/multiple-step discretising method can be used in this
approach. For example, using the second order implicit trapezoidal
method, a common choice for the numerical discretisation, the
resultant discretised non-linear equations for each integration step
with time step Δt are given as follows

x(t) −
Δt

2
f (x(t), y(t), p) − x(t − Δt)

−
Δt

2
f (x(t − Δt), y(t − Δt), p) = 0

g(x(t), y(t)) = 0

(18)
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The converted constraints are considered in the NLP formulation
(19)–(25)

min or max C(p) (19)

s . t . gs(p) = 0 (20)

hs
− ≤ hs(p) ≤ hs

+ (21)

p
− ≤ p ≤ p

+ (22)

F(x(t), x(t − Δt), y(t), y(t − Δt), p) = 0, ∀(t) (23)

0 = g(x(t), y(t), p) ∀(t) (24)

h(x(t), y(t)) ≤ 0, ∀(t) (25)

The resultant NLP can be solved by using any standard NLP solver
such as interior-point, reduced-space or active-set method. When
the NLP solver reaches an optimal solution, all the resultant
algebraic constraints are satisfied. Thus, a set of continuous
trajectories for system state variables is achieved. That is, the
simulation problem is solved simultaneously with the optimisation
problem. The advantage of the simultaneous discretisation
approach is that it can treat unstable systems and handle different
constraints robustly [22]. Another advantage is that obtaining the
analytical Hessian matrix is relatively easy. The availability of the
Hessian greatly improves the convergence of the NLP solver.

However, the discretise-then-optimise approach leads to a large
number of equality constraints to be incorporated. If N is the
number of time steps considered for the length of the time horizon,
x ∈ ℝnx, y ∈ ℝny, and transient stability criteria inequality
constraints h ∈ ℝnh, then this approach has the approximate
dimension ℝN(nx + ny + nh). Thus, this formulation quickly becomes
computationally intractable having a very large dimension even for
medium-sized systems with a moderate time horizon. Another
issue with the simultaneous discretisation approach is the difficulty
in using adaptive time-steps because of the embedding of the
discretised differential equations, since the value of the state
variables is unknown during discretisation.

3.2 Constraint transcription [26, 36]

Constraint transcription is an algorithmic framework that decouples
optimisation algorithms and simulation tools. Differential

equations are integrated outside the optimisation process and
interfaced with NLP solvers. Many investigations in dynamic
optimisation, including the direct sequential approach, direct
single-shooting method, and control vector parameterisation, can
be classified into this framework.

The general procedure of constraint transcription is expressed
as the iterative process shown in Fig. 2. The goal is to find a proper
value of decision variable p to minimise a given objective defined
in NLP formulation and satisfy a number of constraints over not
only decision variable p but also state variable x(t) and y(t). The
procedure starts with an initial guess of p determined by user's
preference, then the external DAE solver (i.e. time-domain
simulator) is called to obtain x(t) and y(t) based on the provided p.
Moreover, trajectory sensitivity analysis is performed to find the
gradients (∂x(t)/∂p) and (∂y(t)/∂p). Based on the obtained state
variable values and its sensitivity w.r.t. decision variables, the NLP
algorithm is able to find out a proper way to adjust p in a new
iteration so as to satisfy all the constraints while minimising the
value of objective function. After a new p is obtained, DAE solver
is called again to compute the updated state variables. This loop
iterates until the optimality and feasibility criteria are satisfied. 

Since the TSC-OPF problem is an infinite-dimensional problem
with infinite dynamic constraints, semi-infinite programming,
which is a typical approach of constraint transcription methods, is
able to reduce the dimensionality of the problem by considering the
dynamic states x, y as implicit functions of the optimisation
variables p. Thus, the optimisation problem becomes finite
dimensional.

In semi-infinite programming, only the path constraints are
incorporated, not the DAE equations. The DAE equations are
solved separately in order to obtain path constraints. This process
leads to an optimisation problem that has a finite number of
variables and an infinite number of constraints. Further, in order to
reduce the dimensionality and to allow for smooth approaches, a
constraint aggregating procedure, based on smoothing the minmax
constraint, is used [36]. Instead of enforcing the constraints at each
time step, the evolution of the constraint surface at some final time
is used as a constraint, as given by

H(x(p, t), y(p, t)) = σ∫
0

T

max 0, h(x(p, t), y(p, t) ηdt = 0(26)

Here, η is an exponent to ensure sufficient smoothness of (26), and
σ is a multiplier, similar to a penalty cost term, to ensure a decent
progress of the optimisation. Since the equality constraint in (26)
cannot be easily handled by optimisation solvers [4], an inequality
constraint H(x, y) ≤ ρ is used instead, where ρ is a positive small
number.

With this formulation, replacing the path constraints by
H(x, y) ≡ H(p) with H defined by (26) completely defines a
smooth problem in p only that can be solved with smooth
optimisation tools

min or max C(p)

s . t . gs(p) = 0

hs
− ≤ hs(p) ≤ hs

+

p
− ≤ p ≤ p

+

H(p) ≤ ρ

(27)

Table 2 Comparison of dynamic optimisation approaches
Attribute Simultaneous

discretisation
Constraint

transcription
Multiple
shooting

problem
dimension

very large same as OPF moderate
(depends on
number of
shooting
steps)

floating-point
operations

most least moderate

convergence fast slow moderate
time-step
adaptivity

no yes yes

computational
bottleneck

linear solve
update

sensitivity
calculation

sensitivity
calculation

sparsity very sparse similar to the OPF
problem with
dense blocks

moderate

Hessian exact Hessian
can be calculated

BFGS (Broyden-
Fletcher-

Goldfarb-Shanno)
algorithm [34]
approximated

Hessian

BFGS
(Broyden-
Fletcher-
Goldfarb-
Shanno)

algorithm [34]
 

Fig. 2 Algorithmic framework for constraint transcription
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With finite constraints, (27) represents a finite-dimensional
problem in p. The major advantage of the constraint transcription
approach is that the DAE system can be solved separately, thus
utilising the merits of numerical integration schemes such as local
truncation error control and adaptive time-stepping.

However, optimisation solvers require the derivative of
H(x(p), y(p)) with respect to optimisation variables p, that is, the
gradient ∇pH. Computing this gradient is a non-trivial task;
different trajectory sensitivity analysis approaches are given in
Section 4. With the gradient thus computed, any standard non-
linear optimisation solver can be used to solve the TSC-OPF
problem.

3.3 Multiple shooting [22, 37]

Multiple shooting, also known as direct multiple shooting, is a
hybridisation of simultaneous discretisation and constraint
transcription. This combination inherits the advantages of its two
predecessors and avoids their drawbacks. This method was well
developed for chemical engineering [37, 38] and was recently
introduced to solve TSC-OPF problems [22].

In the multiple-shooting approach, a partial discretisation is
performed on a coarse, fixed grid on the simulating time window.
The time horizon is divided into NS time intervals, which are called
shooting intervals in the context of multiple shooting. State
variables at the end of ith shooting interval are defined as ith
shooting node si and incorporated as the variables to be optimised
in the optimisation formulation.

The idea of multiple shooting is that the final value of the DAE
integration on ith shooting interval (i.e. use si − 1 as initial value)
should be consistent with the shooting node si at the optimal point;
then a set of continuous, bounded, and optimised trajectories can
be achieved. This desired property is described as the boundary
continuity condition (28) and is incorporated as equality constraints
in the optimisation formulation

si = Si(si − 1, p), ∀i ∈ 1, …, NS (28)

Here, Si is actually an implicit function that can be evaluated by
interfacing with external time-domain simulation tools. Its
returning value is the state variables at the end of simulation on the
ith shooting interval, initiated from control variable p and initial
value si − 1. Corresponding first-order sensitivities (∂Si/si − 1), (∂Si/ p)
can be obtained by using trajectory sensitivity analysis.

The principle of multiple shooting is demonstrated in Fig. 3.
During the iterations of the NLP solver, the piece-wise trajectories
on different shooting intervals will gradually connect as the
boundary continuity condition (28) forces the continuity of the
piecewise trajectories. 

After incorporating shooting nodes and boundary continuity
conditions into the TSC-OPF problem, the following multiple-
shooting-based optimisation formulation given is obtained

min or max C(p)

s . t . gs(p) = 0

hs
− ≤ hs(p) ≤ hs

+

p
− ≤ p ≤ p

+

si = Si(si − 1, p), ∀i ∈ 1…NS

h(si) ≤ 0, ∀i ∈ 1…NS

(29)

The selection of Ns is dependent on the required length of
simulation time window and the available parallel processing units.
According to the results reported in [24], the setting of Ns up to 60
is able to provide sufficient benefit of parallel acceleration for
TSC-OPF problems.

The gradients (i.e. sensitivities (∂Si/∂si − 1) and (∂Si/∂p)) used in
multiple shooting method can be obtained in a similar way as
constraint transcription method, i.e. using any of the trajectory
sensitivity analysis approaches discussed in Section 4. The benefit
of gradient computation in multiple shooting is the parallelism
enabled by this method, gradient matrices of different shooting
nodes can be concurrently computed as they are completely
decoupled. However, one of possible drawbacks of this method is
that one has to compute the sensitivity w.r.t. a complete set of state
variables at previous shooting node (i.e. (∂Si/∂si − 1)) along with
(∂Si/∂p), while most of constraint transcription methods only
require (∂Si/∂p). That means more total computing time and
storage are required in terms of gradient computation for multiple
shooting approach, compared with constraint transcription.

Note that initial value for system DAE s0 is decided by steady-
state operating condition p, their relationship is not explicitly stated
in this formulation. The multiple-shooting method combines
algorithm features from both simultaneous discretisation and
constraint transcription. It can interface with external, adaptive
time-step DAE solvers with an error control mechanism to solve
time-domain simulation precisely, just like constraint transcription
(it follows the same framework as Fig. 2). Moreover, the DAE is
partially discretised into intervals and implicitly solved in the
optimisation layer, which is similar to the simultaneous approach.
Unlike its predecessors, the multiple-shooting approach can
balance overall algorithm performance between computational
efficiency and convergence property, by choosing NS appropriately.
Moreover, the multiple-shooting approach offers the potential of
parallel computation. Time-domain simulation and trajectory
sensitivity analysis on different shooting intervals utilise only
localised information (i.e. control variable p and initial value si),
hence these computing tasks can be distributed on different
processing units and processed concurrently.

4Trajectory sensitivity analysis [22, 39–43]
Trajectory sensitivity analysis provides valuable information about
the change in the system variables as a result of small perturbations
in initial conditions and/or control variables. Hiskens and Pai [39]
highlight several applications of trajectory sensitivity analysis in
the context of power systems. Gradient calculation using trajectory
sensitivities is an essential component of the constraint
transcription and multiple-shooting methods. In the following
subsections, we discuss different approaches for computing the
trajectory sensitivities.

4.1 Forward method

Forward sensitivity approaches are so termed because the
sensitivities are computed by using a forward integration. The
sensitivity equations are integrated along with the original DAE
equations. Forward sensitivity analysis is most economical to use
when the number of parameters is small, since the computational
complexity of forward sensitivity analysis is O(np), that is, np

forward integrations need to be performed to compute the
sensitivities. Readers are referred to [41] for a detailed description
of the different methods of computing the sensitivity vectors.

Consider a general DAE

Fig. 3 Principle of multiple shooting method
 

IET Gener. Transm. Distrib., 2017, Vol. 11 Iss. 12, pp. 3177-3185
© The Institution of Engineering and Technology 2017

3181

READ O
NLY



F(ẋ(t), x(t), p) = 0 (30)

where p are the parameters to be analysed.
Forward sensitivity analysis uses the following variational DAE

is integrated along with original DAE (30) to generate sensitivity

∂F

∂ẋ
ṡ +

∂F

∂x
s +

∂F

∂p
= 0 (31)

with initial condition s(t0) = (∂x(t0)/∂p).
Note that the variational DAE (31) is essentially a time-variant

linear system, it shares the same Jacobian matrix with the original
DAE system, which makes the computational procedure faster by
reusing intermediate results.

4.2 Adjoint method

Computing the derivative information by using forward sensitivity
analysis requires np forward integration and thus is
computationally intensive in the presence of large number of
parameters. In such a case, adjoint sensitivity analysis is more
economical since it needs only one integration in order to compute
the sensitivities. To obtain the sensitivities, an adjoint DAE is
formulated and is integrated backwards in time. A detailed
description of the adjoint method is given in [42].

Different from forward method, which calculates the sensitivity
of all the state variables w.r.t. to p, adjoint sensitivity analysis is
focusing on the sensitivity of a relatively few functionals of the
state variables. This property enables this method to work with
constraints transcription approaches such as [44] to save computing
time, compared with forward method. Consider the same DAE
system (30), assume the gradient of (∂G/∂p) is desired, where

G(p) = ∫
t0

T

g(x, p)dt . (32)

The desired gradient (∂G/∂p) is able to be computed as

∂G

∂p
= ∫

t0

T ∂g

∂p
− λ

T ∂F

∂p
dt (33)

Multiplier λ(t) is the solution of the following co-state equations:

λ˙ = −
∂g

∂p
+ λ

T ∂F

∂x
(34)

where λ(T) = 0.
Note that the solution of λ(t) requires integration from T to t0,

this backward integration is based on the solution of state variables
x(t). Therefore, additional procedure is required to store the value
of x(t) during forward integration of the original DAE (30), which
leads to more memory consumption compared with forward
method.

4.3 Finite differences

Derivative calculation with finite differencing is an easy, yet
powerful, approach used in various fields where the derivative is
unavailable or difficult to obtain. It is based on Taylor series
truncated at various orders of expansion. The sensitivities are
computed by integrating the original DAE (30) with a small
perturbation of each parameter p [13].

4.4 Automatic differentiation

Automatic differentiation (AD) [43] is able to efficiently generate
derivatives of a given function without additional hand coding. AD
applies the chain rule on the functions described by elementary
arithmetic operations (+, * etc) and functions (exp, sin etc.) in the
source code, so that the computing path from input variables to
output variables can be traced and analysed. The use of AD for
solving TSC-OPF has been investigated by Geng et al. [22]. AD is

essentially a tool to find derivatives for an analytical expression,
but not a computational procedure such as time-domain simulation.
Therefore, AD has to be used along with either forward of adjoint
sensitivity analysis method, so as to complete the computation of a
trajectory sensitivity analysis.

5Optimisation algorithms
After incorporating dynamic constraints into the optimisation,
TSC-OPF problem is transformed into an NLP problem. We note
here that the NLP transformation assumes that the discrete
variables, such as tap changers and shunt elements, are treated as
continuous or fixed. Incorporation of discrete variables in TSC-
OPF is an open research question. NLP problems are typically
solved by interior point method (IPM) and active set methods with
the former being more popular for solving OPF. IPMs have proven
advantageous in solving NLP problems since the 1990s [35, 45]
and have been applied to a large variety of optimal power flow
problems [46]. Another interesting area of research for TSC-OPF is
the use of convex relaxation [47–50], that yields global optimality
for OPF. This needs development of the theoretical foundation of
convexification of the TSC-OPF problem. For an in-depth
discussion on advanced optimisation algorithms for solving OPF,
the reader is referred to [51].

In this section, we present the algorithmic description of two
variants of the IPM that have been used for solving TSC-OPF.

5.1 Full-space interior point method [6]

A general form of NLP (35) can be used to describe the resultant
TSC-OPF problems. The optimising variable v includes the
parameter p and discretised variables. Steady-state constraints and
converted constraints from the DAE are included in equality
constraints g and inequality constraints h.

min C(v)

s . t . g(v) = 0

h
− ≤ h(v) ≤ h

+

(35)

Inequality constraints are transformed into equality constraints by
adding slack variables. Then a Lagrange function is built by using
barrier functions. Newton's method is applied on the optimal
condition of Lagrange function. The process of Newton iterations
comprises two major phases of algorithm procedures: obtaining
searching directions and determining searching step length. The
former occupies most of the computing time; the latter affects the
convergence of IPM. Assume v and λ are primal and dual variables
in the NLP formulation. In phase 1, the search directions are
obtained by solving the primal-dual system (36), which is a
symmetric indefinite sparse linear system

A Jeq
T

Jeq 0

Δv

Δλ
=

Lv

Lλ

(36)

Here, A and Jeq are Hessian and Jacobian matrix, respectively; Lv

and Lλ are residuals for first-order optimality conditions; and Δv

and Δλ represent the searching directions of primal and dual
variables. In the conventional full-space IPM algorithm, (36) is
solved by a general-purpose direct sparse linear solver.

Phase 2 consists of computing the step lengths, αv and αλ, along
the search direction in order to move closer to optimum solution

v := αvΔv + v

λ := αλΔλ + λ
(37)

Different strategies are available to determine the step length for
better optimum searching performance in the framework of IPM.
Basic primal-dual path-following IPM [52], predictor-corrector
IPM [53], multiple predictor-corrector IPM [54], multiple
centrality corrections (MCC) IPM [55], and weighted MCC IPM
[56] were developed in order to improve robustness and reduce the
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number of IPM iterations. In practical implementations, Mehrotra's
predictor-corrector algorithm [53] provides the basis for the major
applications of this class of methods; most of power system
optimisation research follow this predictor-corrector algorithm
[57]. MCC on IPM-based OPF has been applied by Torres and
Quintana [58], and weighted MCC has been applied by Huang and
Jiang [59].

Full-space IPM algorithm is comprehensively described in [60].
Matrix structure of primal-dual systems for TSC-OPF problem was
investigated in [6].

5.2 Reduced-space interior point method (RIPM) [9, 61, 62]

RIPM is an extension of conventional full-space IPM, specially
designed for NLP with relatively few degrees of freedom (DOF). It
was originally developed to solve optimisation problems in
chemical engineering with low DOF [61, 62]. DOF is defined as
(38) as follows:

DOF = n − m (38)

Here, n and m are the dimension of variables and equality
constraints in the NLP optimisation formulation, respectively.

The TSC-OPF problem after discretisation is a typical NLP
with low DOF; the reason is the process of discretisation does not
add new DOF into the optimisation formulation. The converted
NLP may have a large number of inequality constraints and
variables, but the DOF will be constant before and after DAE
discretisation or constraint transcription. RIPM is able to accelerate
the solution of the primal-dual system, which is the most
computational-intensive algorithmic procedure in IPM. Jiang and
Geng [9] introduced RIPM to solve the TSC-OPF problems and
reported significant computational performance improvement. We
present a brief algorithm description of RIPM next.

First, the Jacobian matrix of equality constraints is partitioned
as (39) as follows

Jeq = N C (39)

Here, C ∈ ℜNeq × Neq and N ∈ ℜNeq × Ndof. Neq and Ndof are the
dimensions of equality constraints and DOF, respectively. The
range-subspace basis matrix Y and null-subspace basis matrix Z
can be calculated with coordinate decomposition

Y =
0

INeq

, Z =
I

−C
−1

N
(40)

Then, search directions on range- and null-subspace are determined

pY = − C
−1

Lλ

pZ = (ZTHZ)−1
Z

T(Lv − HYpY) = B
−1

ω
(41)

Here, the reduced Hessian R and extended cross-term ω are defined
as ZTHZ and ZT(Lv − HYpY), respectively.

Based on the obtained search directions in the subspaces, the
search direction of the primal variables Δv can be determined by
linear combination from the subspaces

Δv = Y pY + Z pZ (42)

Then, Δλ can be solved by backward-substitution in (36). Instead
of solving (36) directly, RIPM follows the procedures (39)–(42) to
gain better computational performance while sharing the same
solution results as with the full-space approach.

6Implementation issues for dynamic
optimisation methods

6.1 Initialisation [22, 27]

The initialisation of the transient stability-constrained optimal
power flow is an important issue because it influences the
convergence of the algorithm. Most transient stability programs use
a power flow solver to initialise the machine dynamic variables.
For the TSC-OPF problem, the solution from a steady-state optimal
power flow has been typically used as a starting point for TSC-
OPF. While considering TSC-OPF with multiple contingencies, a
filtering procedure can be adopted to consider only credible
contingencies [27]. In the framework of multiple shooting, a DAE
relaxation technique was proposed in [22] to avoid initialisation
failure when external simulation tools were requested to start from
an infeasible point generated by IPM-based optimisation algorithm.

6.2 Hessian calculation for constraint transcription
approaches [16, 28, 63]

Optimisation methods such as IPMs also need an accurate Hessian
for fast convergence. Unfortunately, analytical Hessian calculation
for constraint transcription approaches is extremely hard. Instead,
the Hessian matrix can be approximated using the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm [34] that uses rank-
one updates specified by gradient evaluations. Because of the
approximated Hessian, the constraint transcription approaches
suffer from slow convergence of the optimisation. Another point to
note is that the BFGS approximated Hessian is dense due to the
low-rank updates leading to storage problems. In such cases, the
limited-memory BFGS algorithm can be used to directly obtain the
approximate of the inverse Hessian [63].

6.3 Contingencies [22, 27, 64]

TSC-OPF with the consideration of multiple contingencies is a
form of dynamic security assessment problem. Selection of
credible contingencies to be considered with TSC-OPF is a
challenging task given the plethora of ways (fault types, strength,
location, load loss, generator loss, clearing time etc.) that a
contingency can occur. Thus, a proper selection of credible
contingencies is important in order to avoid overwhelming the
computational problem.

Bettiol et al. [27] use a filtering SIME scheme to obtain the set
of credible contingencies. Jiang et al. [64, 65] have proposed
preliminary approaches to filter contingencies and identify the
active set, with and without transient stability constraints. Geng et
al. [22] have investigated different types of faults, as well as
clearing times, while solving the TSC-OPF problem.

In the context of SCOPF, several interesting approaches have
been developed that may be utilised for TSC-OPF for contingency
filtering. Contingency filtering techniques based on severity index
(SI) that rank the contingencies have been developed in [44, 66,
67]. However, the selection of the top-ranked contingencies and the
selection of SI weights are heuristic measures that need to be
tuned. Capitanescu et al. [68, 69] presented a non-dominated
contingency filtering approach for the preventive and corrective
security-constrained optimal power flow. The Bender's
decomposition approach [46] successively adds or eliminates
contingencies as the solution process progresses and is favourable
for a distributed computing approach. An approach based on
compression of the network that retains the sub-network of interest
in detail and approximates the remainder was proposed in [70]
reducing the number of contingencies to be considered.

7Conclusions
In this paper, we presented state-of-the-art techniques for solving
the TSC-OPF problem by simultaneous discretisation, constraint
transcription, and multiple-shooting approaches. A brief
description of trajectory sensitivity analysis was given. Two
variants of the IPM to solve the resultant optimisation problem
were presented. We also discussed issues that should be considered
while solving such problems.
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