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Abstract

In this thesis, I developed the ideas of applying the variational method in geometric

mechanics to the porous media described as solid elastic materials with embedded ideal

(incompressible) fluid, also known as Eulerian fluid. The work includes four chapters and

a conclusion. In the Introduction, I familiarize the reader with basic variational princi-

ples and their applications. Chapter 2 has the statement and motivation for studying

the porous medium, the derivation of the Lagrangian and the constraints, the geometric

variational derivation of the equations of motion, and the discussion of the result and its

applications. Chapter 3 contains the investigation of the properties of the poromechanics

dynamical system, derived in the previous chapter, as well as the results of numerical

simulations of the acoustic/seismic wave propagation. The comparison with the famous

Biot poroelasticity equations shows the equivalence of the linearizations. Chapter 4 in-

troduces the application of the previously developed theory to the living organisms and

provides the results of computational experiments. Also, I present the investigation of

the totally incompressible case of the porous medium as it may have broad physical

applications.

The work concludes that the geometric variational method is an elegant and efficient

instrument in the derivation of dynamics of complex multi-phase systems with an arbi-

trary number of incompressible components, including the poromechanics considered in

my work. The derived system could explain physical phenomena that were previously

attributed to unknown parameters of the porous medium, such as in Biot’s theory. The

nonlinear equations of poromechanics could be used in numerical modeling to explain

the behavior of a wide range of physical phenomena, including biological systems.
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The major part of the research conducted for this thesis forms part of an international

research collaboration, with my supervisor Dr. Vakhtang Putkaradze (University of Al-

bert and the ATCO Transformation Team), and Dr. François Gay-Balmaz (LMD, Ecole

Normale Supérieure de Paris, and CNRS). While the project was strongly collaborative,
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collaboration with Drs. Gay-Balmaz and Putkaradze.
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Porous Media” on several conferences, including SIAM Conference on Applications of

Dynamical Systems 2019, Snowbird, UT, the U.S. in 2019, 2018 CMS Winter Meeting,

Vancouver, BC, Canada in 2018, and PIMS Workshop on Stochastic and Deterministic

Modelling in Biology, Jasper, AB, Canada, 2018.

Chapter 4 is based on a paper submitted for publication as an article “Actively de-

forming porous media in an incompressible fluid: a variational approach” and submitted

in Physica D: Nonlinear Phenomena at the moment of the completion of this manuscript.

Initial stages of this work (Chapters 2-3) were done at the University of Alberta, and

the work outlined in Chapter 4 was completed while I was PIMS-MITACS Intern at the
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Chapter 1

Introduction into the geometric
variational approach and its
applications

1.1 Introduction to geometric variational methods

This chapter will present the background of the geometric variational approach for the

mechanics of physical systems, starting with the basic Hamilton’s principle. The Euler-

Poincaré theory for the reduction of left- and right- invariant physical systems will

follow afterward. The handling of constraints and the presence of external forces will be

covered further. Several examples of the derivation of equations of motion for various Lie

groups using the Euler-Poincaré theory are provided. The applications of the method to

incompressible fluid and elasticity theory are discussed as they are used in this thesis to

obtain the equations of dynamics of elastic porous medium filled with an incompressible

fluid.

1.1.1 Hamilton’s principle

One of the most fundamental statements in classical mechanics is the principle of critical

action or Hamilton’s principle, according to which the motion of a mechanical system

between two given positions is given by a curve that makes the action (integral of the

Lagrangian) of the system critical (see, for instance, [51]).

Consider a mechanical system with configuration manifold Q and Lagrangian L :

TQ → R defined on the tangent bundle of Q. The Lagrangian L is usually given by

the kinetic minus the potential energy of the system as L(q, v) = K(q, v) − U(q). The
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Hamilton principle reads

δ

∫ T

0

L(q, q̇)dt = 0 , (1.1.1)

for arbitrary variations δq with δq(0) = δq(T ) = 0, and yields the Euler-Lagrange

equations, given in coordinates as

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, i = 1, ..., n. (1.1.2)

The Hamilton principle has a natural extension to continuum systems, for which the

configuration manifold becomes infinite dimensional, typically a manifold of maps, and

which will be of crucial use in this chapter. For instance, let us assume that the motion

of the continuum system is described by a curve of embeddings ϕt : B → R3, where B

is the reference configuration of the continuum. The current position at time t of the

particle with label X ∈ B is x = ϕt(X) ∈ R3. In this case, the configuration manifold Q

of the system is infinite dimensional and given by all smooth embeddings of B into R3,

i.e., Q = Emb(B,R3). Given a Lagrangian L : TQ → R, Hamilton’s principle formally

takes the same form as equation (1.1.1), namely

δ

∫ T

0

L(ϕ, ϕ̇)dt = 0 , (1.1.3)

for variations δϕ such that δϕ(0) = δϕ(T ) = 0. A detailed account of Hamilton’s

principle and its symmetry reduced versions in continuum mechanics can be found in

[35]. Hamilton’s principle could be extended to include irreversible processes. For a

detailed presentation, the reader could be referred to [36].

While the method described by Euler-Lagrange equations (1.1.2) is elegant and

widely used, it often needs appropriate extensions and developments to become prac-

tical. In order to illustrate this point, let us start with the derivation of perhaps the

simplest possible mechanical model, namely, the rigid body moving about its fixed cen-

ter of mass in space. While such a model may seem quite detached from the scope of

the paper, the reader will note that our approach uses essentially the same method in

spirit, so the understanding of this problem is useful for further study. A rigid body

position is described by a 3× 3 orientation matrix Λ satisfying ΛTΛ = ΛΛT = Id3×3, or,

in other words, the configuration space Q of a rigid body is the group SO(3) of rotation

matrices. A Lagrangian depending on the configurations and velocities, can be con-

structed and has the form L(Λ, Λ̇). A naive application of the Hamilton’s principle that
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handles the holonomic constraints coming from ΛΛT = Id3×3 using Lagrange multipliers

will lead to the Euler-Lagrange equations for 9 matrix coordinates of Λ, coupled with 6

constraints. While the total number of equations is 3, as expected, the equations of mo-

tion obtained by this method are excessively complex. One can parameterize the group

SO(3) using, for example, three Euler angles, in which case the critical action principle

will give highly non-intuitive equations for these angles. It is, however, known, since the

time of Euler, that such an approach is not fruitful. Instead, Euler has derived elegant

equations of motion by going to the variables of angular velocity, which we today call

the symmetry-reduced variables. In 1901, Poincaré [66] carried out a modern derivation

of these equations, which we will briefly outline here.

The key to Poincaré’s method is to notice that since the whole system is invariant

with respect to arbitrary rotations of space, the Lagrangian should also be invariant

with respect to such rotations. More precisely, for any fixed rotation matrix A ∈ SO(3),

we have L(AΛ, AΛ̇) = L(Λ, Λ̇). The fact that Λ is multiplied from the left by A comes

from physics; as a rule, the elastic and rigid bodies have a left-invariant dynamical

description. Then, the Lagrangian can be brought to a form that depends on the single

variable ω = Λ−1Λ̇, called the angular velocity in the body frame. Poincaré’s method

works, in fact, for any Lie group, not necessarily SO(3), and has been useful for deriving

the equations for complex systems consisting of interacting parts, fluids, liquid crystals

and other components. The principle remains the same; only the group and configuration

manifolds change. In these notes, we shall only consider the case when the configuration

manifold is itself the symmetry group.

1.1.2 Introduction of external forces through Lagrange-d’Alembert’s
principle

Suppose there is external non-potential force F ext, such as friction, acting on the system.

This force has to be defined a priori and not derived from any equations of motion. Such

force should depend on the position and velocity, F ext = F ext(q, q̇), and is mathematically

given by a fiber preserving map F ext : TQ→ T ∗Q, where fiber preservation simply means

that for each fixed q ∈ Q, it restricts to a map from the fiber TqQ to the fiber T ∗qQ,

at the same point q. In other words, F ext takes the value in the cotangent space and

depends only on the value of q and q̇, as expected from physics. For example, we do
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not consider physical forces that depend on q̈ and higher derivatives, as such forces are

difficult to justify from postulates of classical mechanics such as Newton’s second law of

motion. The aforementioned external forces F ext should be be included in the augmented

Hamilton principle, also called the Lagrange-d’Alembert’s principle, by considering the

modified action

δ

∫ T

0

L(q, q̇)dt+

∫ T

0

〈F ext, δq〉dt = 0 . (1.1.4)

1.1.3 Holonomic constraints

Hamilton’s principle can be naturally extended to include constraints, should they be

holonomic or not. In the holonomic case, which is the case that we will need, the

constraint defines a submanifold N ⊂ Q of the configuration manifold. Assuming that

N = Φ−1(0), for a submersion Φ : Q → Rr, the equations of motion follow from the

Hamilton principle with Lagrange multipliers

δ

∫ T

0

[
L(q, q̇) + λαΦα(q)

]
dt = 0 , (1.1.5)

in which one considers arbitrary variations δλα. In this holonomic case, the equations

of motion can also be directly obtained by applying the Hamilton principle to the La-

grangian L restricted to TN , but in most examples in practice, as it will be the case

for us, the constraint submanifold N takes such a complicated expression that it is

impossible to avoid the use of (1.1.5).

1.1.4 Lagrangian reduction by symmetry

When symmetry is available in a mechanical system, it is often possible to exploit it in

order to reduce the dimension of the system and thereby to facilitate its study. This

process, called reduction by symmetry, is well developed both on the Lagrangian and

Hamiltonian sides; see [58] for an introduction and references.

While on the Hamiltonian side, this process is based on the reduction of symplectic

or Poisson structures; on the Lagrangian side, it is usually based on the reduction of

variational principles, see [22], [59], [60]. Consider a mechanical system with configu-

ration manifold Q and Lagrangian L : TQ → R and also consider the action of a Lie

group G on Q, denoted here simply as q 7→ g · q, for g ∈ G, q ∈ Q. This action naturally
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induces an action on the tangent bundle TQ, denoted here simply as (q, v) 7→ (g ·q, g ·v),

called the tangent lifted action. We say that the action is a symmetry for the mechanical

system if the Lagrangian L is invariant under this tangent lifted action. In this case, L

induces a symmetry reduced Lagrangian ` : (TQ)/G→ R defined on the quotient space

(TQ)/G of the tangent bundle with respect to the action. The goal of the Lagrangian

reduction process is to derive the equations of motion directly on the reduced space

(TQ)/G. Under standard hypotheses on the action, this quotient space is a manifold

and one obtains the reduced Euler-Lagrange equations by computing the reduced vari-

ational principle for the action integral
∫ t2
t1
` dt induced by Hamilton’s principle (1.1.1)

for the action integral
∫ t2
t1
L dt. The main difference between the reduced variational

principle and Hamilton’s principle is the occurrence of constraints on the variations to

be considered when computing the critical curves for
∫ t2
t1
` dt. These constraints are

uniquely associated with the reduced character of the variational principle but not with

physical constraints.

1.2 Euler-Poincaré equation for an arbitrary Lie group

We shall only consider the case when then configuration manifold is a Lie group G, and

the invariance of the manifold is given with respect to the same Lie group. Suppose

Q = G, and L = L(g, ġ), g ∈ G. In the left-invariant systems, the Lagrangian satisfies

the following property

L(g, ġ) = L(hg, hġ), g, h ∈ G, (1.2.1)

and can be reduced to l = l(Ω), so that

L(g, ġ) = l(Ω), with Ω = g−1ġ ∈ g,

where g is the Lie algebra of G. The similar reduction is applicable to the right-invariant

case, where

L(g, ġ) = L(gh, ġh) = l(Ω), with Ω = ġg−1 ∈ g. (1.2.2)

Let us consider the left-invariant case; the right-invariant case is computed equivalently.

Suppose also there is a pairing 〈 , 〉 between the Lie algebra g and its dual g∗.

Suppose δg(t) ∈ TgG for every t. Let us define Σ = g−1δg ∈ g. Then, since δ and
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time derivatives are derivatives with respect to different independent variables, we write

Σ̇ = −g−1ġg−1δg + g−1δġ = −ΩΣ + g−1δġ

δΩ = −g−1δgg−1ġ + g−1δġ = −ΣΩ + g−1δġ
(1.2.3)

Then, we have

δΩ = Σ̇ + ΩΣ− ΣΩ = Σ̇ + adΩΣ, (1.2.4)

where the adjoint representation adΩΣ is derived as the matrix commutator

adΩΣ := ΩΣ− ΣΩ. (1.2.5)

Then, the critical action principle is

0 = δ

∫
`(Ω)dt =

∫ 〈
∂`

∂Ω
, δΩ

〉
dt =

∫ 〈
∂`

∂Ω
, Σ̇ + adΩΣ

〉
dt

=

∫ 〈
− d

dt

∂`

∂Ω
+ ad∗Ω

∂`

∂Ω
, Σ

〉
dt

(1.2.6)

Since Σ(t) is arbitrary, we get the evolution equation for the momentum

Π̇∓ ad∗ΩΠ = 0 , Π :=
∂`

∂Ω
. (1.2.7)

The choice of the sign in the equations above is as follows: minus sign for left-

invariant dynamical systems as defined in (1.2.1) (such as rigid bodies, elastic materials)

and plus sign for right-invariant systems as defined in (1.2.2), such as fluids.

Passing from the Hamilton principle and Euler-Lagrange equations to their symme-

try reduced versions corresponds in practical examples to pass from the material (or

Lagrangian) description to either the spatial (or Eulerian) description (in case of sym-

metries associated to actions on the right), or to the convective (or body) description

(in case of symmetries associated to actions on the left), see [35]. Mixing of the two

descriptions could also arise in physical settings where both left- and right- invariant

components are presented.

1.3 Equations of motion with advected parameters

Let us consider the evolution equations for the case when in addition to the dynamics

quantities like Ω in (1.2.7), there is another advected quantity a. Passively advected
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quantity means that the evolution of a is ’slaved’ to the evolution of Ω. Using the

notations for previous section, evolution equation for a is

ȧ+ LΩa = 0 , (1.3.1)

where LΩ is the Lie derivative with respect to vector field Ω. In case of heavy top

motion, a will be the vector of the vertical direction seen from the body frame. In the

case of porous media, a will be density. Suppose we have ` = `(Ω, a). Then, equations

of motion are derived from the variational principle

δ

∫
`(Ω, a)dt = 0 , δΩ = Σ̇ + adΩΣ , δa+ LΣa = 0 (1.3.2)

The last condition on variation is obtained from the Lagrange-d’Alembert’s principle of

computing variations from equations of motion, namely, ’dots to deltas’. Since Ω = g−1ġ,

and Σ = g−1δg, then changing ∂t to δ in (1.3.1), we get exactly the variational principle

(1.3.2). Then, performing variations, we have

0 =

∫ 〈
∂`

∂Ω
, δΩ

〉
+

〈
∂`

∂Ω
, δa

〉
dt

=

∫ 〈
∂t
∂`

∂Ω
− ad∗Ω

∂`

∂Ω
,Σ

〉
+

〈
∂`

∂Ω
� a,Σ

〉
dt

(1.3.3)

where we have defined the diamond operator for arbitrary a, u ∈ g and Π ∈ g∗

〈Π � a , u〉 := −〈Π,Lua〉 (1.3.4)

The equations of motion are then

Π̇− ad∗ΩΠ + Π � a = 0, ȧ+ LΩa = 0 (1.3.5)

Next, we discuss the applications of the geometric variational principle to mechanical

systems, described by various Lie groups and other important applications of the theory.

We start with the famous example of the rigid body motion.

1.3.1 Variational derivation of Euler’s equations for rigid body

Normally, the equations of motion of a rigid body are obtained using the balance of

angular momentum in the body frame, see, for example, [53]. We have also included

this derivation in Appendix C for completeness. In this section, we show how to derive

this equation using the variational principle using the Euler-Poincaré method.

7



Let us now return to the question of a rigid body dynamics and consider a left-

invariant Lagrangian L(Λ, Λ̇) with respect to arbitrary rotations of space Λ ∈ SO(3).

As we mentioned, we can rewrite this Lagrangian as a function of the angular velocity

only, i.e., we have L(Λ, Λ̇) = `
(
(Λ−1Λ̇)∨

)
= `(Ω) for a function ` defined on 3-vectors

and given by the kinetic energy: `(Ω) = 1
2
IΩ · Ω. How do we write the analogue of

the Euler-Lagrange equations for the Lagrangian `(ω)? If we write the variations of the

action as

δ

∫ t1

t0

L(Λ, Λ̇)dt = δ

∫ t1

t0

`(Ω)dt =

∫ t1

t0

∂`

∂Ω
· δΩdt ,

we need to compute the variations δΩ that are induced by the variations δΛ. Defining

Σ = ΛT δΛ which is also an antisymmetric matrix or, equivalently, its associated vector

Σ = Σ∨, we compute

δΩ = δΛ−1Λ̇ = δ
(
Λ−1

)
Λ̇ + Λ−1δΛ̇ = −Λ−1δΛΛ−1Λ̇ + Λ−1δΛ̇ = −ΣΩ + Λ−1δΛ̇

Σ̇ =
d

dt

(
Λ−1δΛ

)
=

d

dt

(
Λ−1

)
δΛ + Λ−1δΛ̇

= −Λ−1Λ̇Λ−1δΛ + Λ−1δΛ̇ = −ΩΣ + Λ−1δΛ̇.

(1.3.6)

In (1.3.6), we have used the fact that the δ derivative and the time derivative commute

and
d

dt
A−1 = −A−1ȦA−1 , consequently, δA−1 = −A−1 (δA)A−1 ,

since the variation δ is, formally, the derivative with respect to some parameter before

setting the value of that parameter to 0. Subtracting the equations (1.3.6) to eliminate

the cross-derivatives δΛ̇, we obtain the expression for the variation of ω in terms of Σ as

δΩ = Σ̇ +
[
Ω,Σ

]
⇔ δΩ = Σ̇ + Ω×Σ . (1.3.7)

Substitution of (1.3.7) into the variational principle, integrating by parts once and using

that Σ(t0) = Σ(t1) = 0 as a consequence of δΛ(t0) = δΛ(t1) = 0, gives

δ

∫ t1

t0

`(Ω)dt =

∫ t1

t0

∂`

∂Ω
· δωdt =

∫ t1

t0

∂`

∂Ω
·
(
Σ̇ + ω ×Σ

)
dt

= −
∫ t1

t0

(
d

dt

∂`

∂Ω
+ Ω× ∂`

∂Ω

)
·Σdt .

(1.3.8)

Since Σ(t) is an arbitrary function of time, the equations of motion are

d

dt

∂`

∂ω
+ Ω× ∂`

∂Ω
= 0 ⇒ d

dt
IΩ = IΩ×Ω , (1.3.9)
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which are the well-known Euler equations for the motion of a rigid body. We would

like to draw the attention of the reader to the fact that the function multiplying Σ in

(1.3.8) is exactly the angular momentum balance. We refer the reader to Appendix C for

the connection between the vectors and antisymmetric matrices we have employed here.

This connection is known as the hat map.

Thus, the advantage of the variational derivation is that the angular and, as we

shall see, the linear momentum balance are computed automatically through a well-

defined procedure, no matter how complex the Lagrangian may be. In contrast, trying

to compute the angular and linear momentum balance equations by equating terms

from Newton’s laws is, perhaps, extremely difficult, if not impossible, when the system

is highly complex.

1.4 Application of Euler-Poincare theory for other

Lie groups

In this section, we include the applications of Euler-Poincare principle to the dynamics

on several Lie groups, that have applications in physics to demonstrate the convenience

of the variational approach for finite-dimensional systems. The examples are taken from

Darryl D Holm’s lecture notes on Geometric Mechanics, part II, 1, see also [47]. The

groups covered below include the Heisenberg group, Elliptic group, SO(n), and SE(3).

For each of the groups above, the overview will contain a brief description of

1. The multiplication of elements for a Lie group G,

2. The group automorphism ADBA := BAB−1, A,B ∈ G,

3. Derivation of the adjoint representations for a Lie group (Ad) and corresponding

Lie algebra (ad), defined respectively as the following operators:

AdAb :=
d

dt
ADAB(t)|t=0 Ḃ(0) = b, B(0) = Idg, and (1.4.1)

adab :=
d

dt
AdA(t)b|t=0 Ȧ(0) = a, A(0) = Idg, (1.4.2)

1http://wwwf.imperial.ac.uk/~dholm/classnotes/
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4. Illustration of group coadjoint (Ad∗) and coadjoint (ad∗) representations, using

the pairing between elements of the Lie algebra g, and its dual g∗

〈Ad∗Ab, α〉 = 〈b,AdAα〉 , ∀b ∈ g, α ∈ g∗, A ∈ G, and

〈ad∗ab, α〉 = 〈b, adaα〉 , ∀(a, b) ∈ g, α ∈ g∗,

5. Computation of Euler-Poincare equations, that will be written in terms of ad∗.

1.4.1 The Heisenberg Lie group

Definitions for the Heisenberg group

1. The elements of the Heisenberg Lie group are 3× 3 real upper triangular matrices

of the form

H =


 1 a c

0 1 b
0 0 1

 , a, b, c ∈ R

 . (1.4.3)

The set H ⊂ SL(3,R) defines a Lie group under matrix multiplication. Let A,B ∈

H, namely

A =

 1 a1 a3

0 1 a2

0 0 1

 , B =

 1 b1 b3

0 1 b2

0 0 1

 . (1.4.4)

The group commutator of elements A and B is

[A,B] := ABA−1B−1 =

 1 0 a1b2 − b1a2

0 1 0
0 0 1

 . (1.4.5)

Adjoint actions: AD, Ad, and ad

1. The group automorphism is given by

ADBA = BAB−1 =

 1 a1 a3 − a1b2 + b1a2

0 1 a2

0 0 1

 . (1.4.6)

2. Linearizing the group automorphism ADBA in A at the identity, as defined in

(1.4.1), yields the Ad operation,

AdBξ = Bξ| IdB−1 = B

 0 ξ1 ξ3

0 0 ξ2

0 0 0

B−1 =

 0 ξ1 ξ3 + b1ξ2 − b2ξ1

0 0 ξ2

0 0 0

 .
(1.4.7)
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This is the Ad operation of the Heisenberg group H on its Lie algebra h(R) ' R3 :

Ad: H(R)× h(R)→ h(R). (1.4.8)

3. One defines the right-invariant tangent vector,

ξ = ȦA−1 =

 0 ȧ1 ȧ3 − a2ȧ1

0 0 ȧ2

0 0 0

 =

 0 ξ1 ξ3

0 0 ξ2

0 0 0

 ∈ h, (1.4.9)

and the left invariant tangent vector,

Ξ = A−1Ȧ =

 0 ȧ1 ȧ3 − a1ȧ2

0 0 ȧ2

0 0 0

 =

 0 Ξ1 Ξ3

0 0 Ξ2

0 0 0

 ∈ h. (1.4.10)

Next, we linearize AdBξ in B around the identity as defined in (1.4.2) to find the

adjoint representation, i.e. ad operator of the Heisenberg Lie algebra on itself,

ad : h× h→ h. (1.4.11)

Omitting the details of the computation, the result is given explicitly by

adηξ = [η, ξ] := ηξ − ξη =

 0 0 η1ξ2 − ξ2η1

0 0 0
0 0 0

 . (1.4.12)

Coadjoint actions: Ad∗ and ad∗

The inner product on the Heisenberg Lie algebra h × h → R is defined by the matrix

trace pairing

〈η, ξ〉 = Tr
(
ηT ξ
)

= η · ξ. (1.4.13)

Thus, elements of the dual Lie algebra h∗(R) may be represented as lower triangular

matrices,

µ =

 0 0 0
µ1 0 0
µ3 µ2 0

 ∈ h∗(R). (1.4.14)

The Ad∗ operation of the Heisenberg group H(R) on its dual Lie algebra h∗ ' R3 is

defined in terms of the matrix pairing by

〈Ad∗Bµ, ξ〉 := 〈µ,AdBξ〉. (1.4.15)
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Explicitly, one may compute

〈µ,AdBξ〉 = Tr

 0 0 0
µ1 0 0
µ3 µ2 0

 0 ξ1 ξ3 + b1ξ2 − b2ξ1

0 0 ξ2

0 0 0


= µ · ξ + µ3(b1ξ2 − b2ξ1)

= Tr

 0 0 0
µ1 − b2µ3 0 0

µ3 µ2 + b1µ3 0

 0 ξ1 ξ3

0 0 ξ2

0 0 0


= 〈Ad∗Bµ, ξ〉.

(1.4.16)

Thus, the formula for Ad∗Bµ reads

Ad∗Bµ =

 0 0 0
µ1 − b2µ3 0 0

µ3 µ2 + b1µ3 0

 . (1.4.17)

The ad∗ operation of the Heisenberg Lie algebra h on its dual lh is defined similarly in

terms of the matrix pairing by

〈ad∗ηµ, ξ〉 := 〈µ, ad∗ηξ〉. (1.4.18)

Computing the expression on the right hand side of the definition above yields

〈µ, ad∗ηξ〉 = Tr

 0 0 0
µ1 0 0
µ3 µ2 0

 0 0 η1ξ2 − ξ1η2

0 0 0
0 0 0


= µ3(η1ξ2 − η2ξ1)

= Tr

 0 0 0
−η2µ3 0 0

0 η1µ3 0

 0 ξ1 ξ3

0 0 ξ2

0 0 0


= 〈ad∗ηµ, ξ〉,

(1.4.19)

so the formula for ad∗ηµ reads

ad∗ηµ =

 0 0 0
−η2µ3 0 0

0 η1µ3 0

 . (1.4.20)

Coadjoint motion equation for the path in the Heisenberg Lie group H

Let A(t) be a path in the Heisenberg Lie group H and µ(t) be a path in h∗. Then we

compute
d

dt

(
Ad∗A(t)−1µ(t)

)
= Ad∗A(t)−1

[
dµ

dt
− ad∗η(t)µ(t)

]
(1.4.21)
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with η(t) = A(t)−1Ȧ(t). The differential equation for the coadjoint orbit reads

µ(t) = Ad∗A(t)µ(0), (1.4.22)

and the desired coadjoint motion equation

µ̇ = ad∗ηµ. (1.4.23)

If we define the linear map h→ h∗ : (µ1, µ2) = (I1η1, I2η2), the equation takes the form

d

dt
(µ1, µ2, µ3) =

(
−µ3µ2

I2

,
µ1µ3

I1

, 0

)
. (1.4.24)

Therefore, planar isotropic harmonic oscillators describe coadjoint orbits on the

Heisenberg Lie group.

1.4.2 Special orthogonal group SO(n)

To describe the dynamics of a system (further referred in this subsections as the rigid

body) with configurations O ∈ SO(n), we derive Euler’s equations in the matrix com-

mutator form, similar to regular rigid dynamics on SO(3). The reduced Lagrangian of

the rigid body, depending only on angular velocity Ω, has the form

l(Ω) = −1

2
Tr (ΩAΩ) ,

where Ω = O−1Ȯ ∈ so(n), a skew-symmetric matrix, and A is symmetric.

Using Hamilton’s principle, we compute the variation of action,

δS = δ

∫ b

a

l(Ω)dt = −1

2

∫ b

a

Tr (δΣ(AΩ + ΩA)) dt = −1

2

∫ b

a

Tr (δΩM) dt,

where we cyclically permuted the order of matrix multiplication under the trace and

substituted M ← AΩ + ΩA. Using the variational formula (1.2.4) that applies for δΩ

with Σ = O−1δO the variation takes the form

δS = −1

2

∫ b

a

Tr
(

(Σ̇ + ΩΣ− ΣΩ)M
)
dt.

Integrating by parts and permuting under the trace then yields the equation

δS =
1

2

∫ b

a

Tr
(

Σ(Ṁ + ΩM −MΩ)
)
dt.

Finally, invoking stationary action principle for arbitrary Σ, implies the
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Theorem 1.4.1 (Manakov’s proposition) Euler’s equations for a rigid body on SO(n)

take the matrix commutator form,

dM

dt
= [M,Ω] with M = AΩ + ΩA. (1.4.25)

The interesting fact is that the equations of motion in SO(4) are integrable, according

to Manakov. The reader can be referred to [57] to familiarize themselves with the proof.

Manakov’s method is extendable, and in fact, one can prove the integrability of all the

rigid bodies on SO(n). The moments of inertia of these bodies possess only 2n − 3

parameters, and they are algebraically solvable.

1.4.3 Special Euclidean group SE(3)

Definitions for the Special Euclidean group

The special Euclidean group corresponds to configurations of rigid bodies in three di-

mensions and is defined as the semi-direct product SE(3) := SO(3)sR3, i.e. it acts on

R3 by rotations and translations x→ Rx+ v, where R ∈ SO(3), a matrix in the special

orthogonal group, corresponding to rotational configuration of the rigid body and v ∈ R3

corresponds to translations in space. The general case of the special orthogonal group

SO(n) was discussed in the paragraph above, and the special case for 3 dimensions was

considered in (1.3.1). The group action may be represented by the matrix multiplication

as follows

(R, v)

[
x
1

]
:=

[
R v
0 1

] [
x
1

]
=

[
Rx+ v

1

]
. (1.4.26)

The group operation in SE(3) is therefore equivalent to the matrix multiplication and

in the so-called top-row notation reads

(R2, v2)(R1, v1) = (R2R1, R2v1 + v2). (1.4.27)

Adjoint actions: AD, Ad, and ad

The group adjoint operation

AD: SE(3)× SE(3)→ SE(3)
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is conveniently expressed in the top-row notation as

AD(R,v)(R̃, ṽ) = (R, v)(R̃, ṽ)(R, v)−1

= (R, v)(R̃, ṽ)(R−1,−R−1v)

= (R, v)(R̃R−1, ṽ − R̃R−1v)

= (RR̃R−1, v +Rṽ −RR̃R−1v).

(1.4.28)

The Ad operation is obtained by taking time derivatives of R̃ and ṽ at the identity

( ˜R(t), ˜v(t))|t=0 = ( Id , 0). This yields

Ad(R,v)(
˙̃R(0), ˙̃v(0)) = (AdR

˙̃R(0),−AdR
˙̃R(0)v +R ˙̃v(0)). (1.4.29)

Setting ˙̃R(0) = ξ and ˙̃v(0) = α defines the Ad action of SE(3) on its Lie algebra

with elements (ξ, α) ∈ se(3) as Ad : SE(3)× se(3)→ se(3),

Ad(R,v)(ξ, α) = (AdRξ,−AdRξv +Rα)

= (RξR−1,−RξR−1v +Rα),
(1.4.30)

The adjoint action ad of se(3) onto itself is expressed as the time derivatives of Ad

at the identity,

ad(Ṙ(0),v̇(0))(ξ, α)

= (ṘξR−1−Ṙξ̃R−1ṘR−1−Ṙξ̃R−1v+Rξ̃R−1ṘR−1v−Rξ̃R−1v̇+Ṙα̃)| Id .
(1.4.31)

As before, we set Ṙ(0) = ξ, v̇(0) = α, with (R(0), v(0) = ( Id , 0). In this notation,

the ad operation for the right-invariant Lie algebra action of se(3) may be rewritten as

ad(ξ,α)(ξ̃, α̃) = (ξξ̃ − ξ̃ξ,−(ξξ̃ − ξ̃ξ)v − ξ̃(ξv + α̃) + ξα̃)| Id

= ([ξ, ξ̃],−ξξ̃v + ξα̃− ξ̃α̃)| Id

= (adξ ξ̃, ξα̃− ξ̃α).

(1.4.32)

Coadjoint actions: Ad∗ and ad∗

The pairing 〈·, ·〉 : se(3)∗×se(3)⇒ R is obtained by the identification SE(3) ' SO(3)×

R3 and taking the sum

〈(µ, β), (ξ, α)〉 :=
1

2
Tr
(
µT ξ

)
+ β · α, (1.4.33)
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with µ ∈ so(3)∗, ξ ∈ so(3), skew-symmetric matrices and β, α ∈ R3, in vector notation.

One computes Ad∗ operation as〈
Ad∗(R,v)−1(µ, β), (ξ, α)

〉
=
〈
(µ, β),Ad(R,v)−1(ξ, α)

〉
=
〈
(µ, β), (R−1ξR,R−1α +R−1ξv)

〉
=
〈
µ,R−1ξR

〉
+
〈
β,R−1α +R−1ξv

〉
=
〈
RµR−1, ξ

〉
+ 〈Rβ, α + ξv〉

(1.4.34)

The second term of the last pairing in the equation above could be rewritten as

〈Rβ, ξv〉 = 〈skew(v ⊗Rβ), ξ〉 , (1.4.35)

where skew is the skew-symmetric part of the matrix

skewA := (A− AT )/2. (1.4.36)

Coadjoint motion equation for the path in the SE(3)

One computes the ad∗ action of se(3) on its dual se(3)∗ by using the pairing,〈
ad∗(ξ,α)(µ, β), (ξ̃, α̃)

〉
=
〈

(µ, β), ad(ξ,α)(ξ̃, α̃)
〉

=
〈

(µ, β), (adξ ξ̃, ξα̃− ξ̃α)
〉

=
〈
µ, adξ ξ̃

〉
+ 〈β, ξα̃〉 −

〈
β, ξ̃α

〉
=
〈

ad∗ξµ, ξ̃
〉

+ 〈−ξβ, α̃〉+ 〈β � α, ξ̃〉

=
〈

(ad∗ξµ+ β � α, ξβ), (ξ̃, α̃)
〉
,

(1.4.37)

where the diamond operation arises by the dual Lie algebra actions,

〈β � α, ξ̃〉 = −〈β, ξ̃α〉.

1.5 Continuum mechanics using geometric variational

principle

Most of discussion in this thesis will pertain to the variational derivation of combined

behavior of fluid and elastic media. For physical examples I consider in this thesis,

it is reasonable to assume that the fluid is incompressible, such as water in normal

conditions. We shall also later assume the incompressibility of elastic material for the

biological media. For that reason, it is useful to develop the introductory exposition of

an incompressible fluid, and elastic media, which we shall do in this Section.
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1.5.1 Arnold’s derivation of inviscid, incompressible Euler equa-
tions

We follow the framework developed by V. I. Arnold [1], see also [48] for a more detailed

and expanded interpretation and other examples of fluid models. The fluid flow is defined

as a smooth invertible time-dependent transformation of initial conditions X ∈ M at

t = 0, regarded as fluid particle labels taking values in a configuration manifold M ⊆ R3

acted on by smooth invertible maps Diff(M). Thus, we lift the motion of fluid parcels

x ∈M with initial condition X ∈M to the manifold of diffeomorphisms by identifying

it with a time-dependent curve ϕt ∈ Diff(M) with ϕt|t=0 = Id , whose action from the

left generates the motion x = ϕtX. We can introduce an alternative notation using the

transformation ϕt, as the ”embeddings” ϕ(X, t) := ϕtX. So, the equation

x = ϕ(X, t),

is the Lagrangian mapping starting at X. The incompressibility constraint preserves

volumes, so the Jacobian of the transformation satisfies the condition

J(x, t) := det

∣∣∣∣ ∂ϕ∂X ◦ ϕ−1(x, t)

∣∣∣∣ = 1 , (1.5.1)

where ϕ−1 is the inverse transformation, i.e. ϕ (ϕ−1(x, t), t) = Id . Suppose p = p(x, t)

is the Lagrange multiplier for the incompressibility constraint (1.5.1).

The Eulerian velocity, also known as the spatial velocity of the fluid is given by

u(x, t) = ϕ̇ ◦ ϕ−1(x, t) (1.5.2)

and its variation reads η(x, t) = δϕ ◦ ϕ−1. Notice that if we replace ϕt by ϕt ◦ ϕ0 for

a fixed (time-independent) ϕ0 ∈ Diff(M), then Eulerian velocity will not change; this

reflects the right invariance of the Eulerian description (u is invariant under composition

of ϕt by an element of Diff(M) on the right). This is also called the particle relabeling

symmetry of fluid dynamics.

The variations of η and u are given by

δJ + div(ηJ) = 0 , δu = ηt + u · ∇η − η · ∇u . (1.5.3)

Equations of motion are obtained from the variational principle. The action integral

S is written in the same way as in [46] and uses the augmented Lagrangian, consisting
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of the kinetic energy and the incompressibility constraint, multiplied by p,

S[u, p, J ] :=

∫ t1

t0

dt

∫
M

1

2
ρJ(x, t)|u(x, t)|2 − p(x, t)(J(x, t)− 1)dx, ρ = const. (1.5.4)

Here, we have assumed ρ = const which makes u satisfy the incompressibility condition

divu = 0 . (1.5.5)

The variation of the action according to the Lagrange-d’Alembert principle is

δS =

∫ t1

t0

dt

∫
M

1

2
ρJu · δu− (J − 1)δp+

(
1

2
ρ|u|2 − p

)
δJ dx

=

∫ t1

t0

dt

∫
M

1

2
ρJu · (ηt + u · ∇η − η · ∇u)

− (J − 1)δp−
(

1

2
ρ|u|2 − p

)
div(Jη) dx

=

∫ t1

t0

dt

∫
M

−ρ ·
(

(Ju)t +∇j

(
ujuiJ

)
+

1

2
ρJ∇|u|2

)
− (J − 1)δp+

(
1

2
ρJ∇|u|2 −∇p

)
· η dx

=

∫ t1

t0

dt

∫
M

−ηρ · (ut + u · ∇u+ udivu+∇p) · η − (J − 1)δp dx = 0.

(1.5.6)

Setting the term proportional to δp to vanish simply enforces J = 1 constraint. Setting

J = 1 and enforcing incompressibility conditions (1.5.5), and further collecting the

coefficients proportional to η gives the Euler equations for ideal incompressible fluid

∂u

∂t
+ u · ∇u = −1

ρ
∇p , divu = 0 . (1.5.7)

Notice, that external forces can be trivially included in the equation (1.5.7) above,

as they do not affect the dynamic terms from the variational principle. In addition to

this, one can include additional dissipation due to viscosity.

1.5.2 Variational derivation of Elasticity equations in spatial
coordinates.

Elastic bodies are usually computed in a left-invariant framework, as opposed to right-

invariant systems used for fluid dynamics. Physically, the equivalent statement is that

the equations of the elastic body are usually written in the Lagrangian and not the

Eulerian frame. The equations of motion for a fluid (1.5.7), on the other hand, are
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written in the Eulerian frame. We will use the Eulerian description to compute equations

of a porous media containing fluid since the equations of motion of the fluid are most

conveniently written in the spatial frame. Thus, the derivation of equations of motion

for an elastic body is of relevance to the main topic of this thesis.

The configuration of elastic body is described by embeddings Ψ = Ψ(x, t). The spatial

velocity is expressed as

us(t,x) = ∂tΨ
(
t,Ψ−1(t,x)

)
, (1.5.8)

and the density ρs is advected by the motion of solid.

The Lagrangian is given by

`(us, ρs, b) =

∫
B

[
1

2
ρs|us|2 − V (b)

]
d3x . (1.5.9)

In the right-invariant framework, we need to use Finger tensor b. Then, using the

definition of the diamond,∫
Bt

〈
δ`

δb
, δb

〉
d3x dt =

∫
Bt

〈
δ`

δb
,−£ηb

〉
d3x dt =

∫
Bt

〈
δ`

δb
� b,η

〉
d3x dt.

We compute the diamond operator explicitly using the expression for Lie derivatives of

(2, 0) tensor b in Cartesian coordinates

(Π � b)k = −Πij
∂bij

∂xk
− 2

∂

∂xi
(
Πkjb

ij
)

(1.5.10)

whose coordinate-free form reads

Π � b = −Π : ∇b− 2div (Π · b) . (1.5.11)

The equations of motion also naturally involve the expression of the Lie derivative

of a momentum density, whose global and local expressions are

£um = u · ∇m+∇uT ·m+m divu

(£um)i = ∂jmiu
j +mj∂iu

j +mi∂ju
j .

(1.5.12)

Proceeding with the computation of variations according to the Lagrange-d’Alembert

principle, we derive

δS =

∫
Bt

[
δ`

δus
· δus +

δ`

δρs
δρs +

δ`

δb
: δb

]
d3x dt = 0 . (1.5.13)
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After substitution of functional derivatives and corresponding variations, the equa-

tion of dynamics takes the form

∂t
δ`

δus
+ £us

δ`

δus
= ρs∇

δ`

δρs
+
δ`

δb
� b. (1.5.14)

The equations of motion can be further simplified to
ρs(∂tus+us · ∇us) = ∇V + 2 div

∂V

∂b
· b

∂tρs + div(ρsus) = 0, ∂tb+ £usb = 0.

(1.5.15)

Equations (1.5.15) are equations of motion for elastic body in the spatial coordinates

(Eulerian frame).

One can write (1.5.15) in a more familiar form by defining a tensor

σ = V Id + 2
∂V

∂b
· b . (1.5.16)

The physical meaning of σ is the stress tensor written in the Eulerian frame. Then,

equations of motion for an elastic body (1.5.15) become
ρs(∂tus+us · ∇us) = div σ

∂tρs + div(ρsus) = 0, ∂tb+ £usb = 0.
(1.5.17)

External forces can be included in the equation above, as they do not affect the

dynamic terms from the variational principle. In addition to this, one can include

dissipation in the resulting system (1.5.16) using viscosity assumptions.
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Chapter 2

Geometric variational approach to
the dynamics of porous medium,
filled with incompressible fluid

This chapter represents the derivation of the equations of motion for the dynamics of a

porous media filled with an incompressible fluid. The presentation follows the approach

outlined in [32], where we use the geometric variational method. The Lagrangian of

the porous media is the sum of terms representing the kinetic and potential energy of

the elastic matrix, and the kinetic energy of the fluid, coupled through the constraint

of incompressibility. As an illustration of the method, the equations of motion for both

the elastic matrix and the fluid are derived in the spatial (Eulerian) frame. Such an

approach is of relevance e.g. for biological problems, such as sponges in water, which

is discussed further in this thesis. In biological applications, the elastic porous media is

highly flexible, and the motion of the fluid has a ’primary’ role in the dynamics of the

whole system.

2.1 Introduction

The coupled dynamics of porous media filled with fluid, also known as poromechanics,

has been the subject of an active research for many decades. The foundational works

in the area were driven by applications to soil dynamics and geophysics, whereas in the

latter years the applications also included biomedical fields. The earlier developments

were associated with the works of K. von Terzaghi [77] and M. Biot [9], [10], [15] in

the consolidation of porous media, and subsequent works by M. Biot which derived the
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time-dependent equations of motion for poromechanics, based on certain assumptions

on the media, and considered the wave propagation in both low and high wavenumber

regime [11]–[14]. There has been substantial amount of new work in the field of porous

media, see [19], [21], [30], [31], [44], [49] and subsequent mathematical analysis of the

models [6], [16], [76]. We refer the reader interested in the history of the field to the

review [67] for a more detailed exposition of the literature.

While Biot’s equations, especially with respect to acoustic propagation in porous

media, still remain highly influential today, subsequent investigations have revealed diffi-

culties in the interpretation of various terms through the general principles of mechanics,

such as material objectivity, frequency-dependent permeability and changes of porosity

in the model, as well as the need to describe large deformations of the model [82]. The

above-cited paper then proceeds in outlining a detailed derivation for the modern ap-

proach to saturated porous media equations which does not have the limitations of the

Biot’s model. We shall also mention here two recent papers [23], [24] where the equations

for saturated porous media were further developed based on the general thermodynamics

principles of mechanics.

By their very nature, variational methods involve fully nonlinear treatment of the

inertial terms. The mainstream approach to the porous media has been to treat the

dynamics as being friction-dominated by dropping the inertial terms from the equa-

tions. The equations we will derive here, without the viscous terms, will be of infinite-

dimensional Hamiltonian type. On the other hand, the friction-dominated approach

gives equations of motion that are of gradient flow type. The seminal book of Coussy

[26] contains a lot of background information and analysis. For more recent work, we

will refer the reader to, for example, the studies of multi-component porous media flow

[70], as well as the gradient approach to the thermo-poro-visco-elastic processes [18].

Fluid-filled elastic porous media, by its very nature, is a highly complex object in-

volving both the individual dynamics of fluid and media, and a highly nontrivial in-

teractions between them. The pores in the elastic matrix, and the fluid motion inside

them, are micro-structured elements that contribute to the macro-structured dynamics.

Thus, the porous media must include the interaction between the large scale dynam-

ics and an accurate, and yet treatable, description of micro-structures. It has long been

known in mechanics that variational principles are ideally suited to treat complex, multi-
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component systems. Variational methods proceed formally by describing the Lagrangian

of the system on an appropriate configuration manifold, and proceeding with variations

to obtain the equations of motion in a systematic way. The advantage of the variational

methods is their consistency, as opposed to the theories based on balancing the con-

servation laws for a given point, or volume, of fluid. In a highly complex system like

poromechanics, especially when written in the non-inertial Lagrangian frame associated

with the matrix, writing out all the forces and torques to obtain correct equations is

very difficult. In contrast, the equations of motion, as well as the conservation laws,

come out of variational methods automatically without the need to find all the forces

and torques involved. Thus, porous media looks like an ideal application for applications

of variational principles. Before we proceed further, however, we would like to give a

verbatim quote of an inspiring sentence from the conclusion of [82]:

It seems to be also clear that it is a waste of effort to try to construct a true variational

principle as the Biot model contains a nonequilibrium variable, the increment of fluid

contents which rules out the existence of such a principle.

In spite of this difficulty, variational methods were actively applied to the field porome-

chanics. One of the earliest papers papers in the field was [7] where the kinetic energy of

expansion was incorporated into the Lagrangian to obtain the equations of motion. In

that work, several Lagrange multipliers were introduced to enforce the continuity equa-

tion for both solid and fluid. The works [3], [4] use variational principles for explanation

of the Darcy-Forchheimer law. Furthermore, [54], [55] derive the equations of porous

media using additional terms in the Lagrangian coming from the kinetic energy of the

microscopic fluctuations. Of particular interest to us are the works on the Variational

Macroscopic Theory of Porous Media (VMTPM) which was formulated in its present

form in [2], [28], [29], [68], [69], [71]–[73], [75], [78], also summarized in a recent book

[74]. In these works, the microscopic dynamics of capillary pores is modelled by a sec-

ond grade material, i.e. such material, where the internal energy of the fluid depends

on both the deformation gradient of the elastic media, and the gradients of local fluid

content. In contrast to this approach, we tried to avoid the second-grade assumptions

in our research and used only explicit dependencies. The study of a pre-stressed system

using variational principles and subsequent study of propagation of sound waves was

undertaken in [65].
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One of the main assumptions of the VMTPM is the dependence of the internal energy

of the fluid on the quantity measuring the micro-strain of the fluid, or, alternatively, the

fluid content or local density of fluid, including, in some works, the gradients of that

quantity. This assumption is physically relevant for compressible fluid, but, in our view,

for an incompressible fluid (which, undoubtedly, is a mathematical abstraction), such

dependence is difficult to interpret. For example, for geophysical applications, fluids are

usually considered compressible because of the large pressures involved. In contrast, for

biological applications like the dynamics of highly porous sponges in water, the com-

pressibility effects can be neglected. For a truly incompressible fluid, it is difficult to

assign a physical meaning to the dependence of internal energy of the fluid on the param-

eters of the porous media. We refer the reader to the the classical Arnold’s description

of incompressible fluid [1] as geodesic motion on the group of volume-preserving dif-

feomorphism in the three-dimensional space, in the absence of external forces. In that

theory the Lagrangian is simply the kinetic energy, as the potential energy of the fluid

is absent, and the fluid pressure enters the equations from the incompressibility condi-

tion. The main result of the present paper is to extend this geometric description to

the motion of the fluid-filled porous media, for the case when the fluid inside the pores

is incompressible, and, neglecting all thermal effects, without considering the internal

energy of fluid.

Before we delve into detailed derivations, it is useful to have a discussion on the

physics of what is commonly considered the saturated porous media. In most, if not

all, previous works, the saturated porous media is a combined object consisting of an

(elastic) dense matrix, and a network of small connected pores filled with fluid. The fluid

encounters substantial resistance when moving through the pores due to viscosity and

the no-slip condition on the boundary. In such a formulation, it is easier to consider the

motion of the porous matrix to be ’primary’, and the motion of the fluid to be computed

with respect to the porous matrix itself. Because the motion of the elastic matrix is

’primary’, the equations are written in the system of coordinates consistent with the

description of the elastic media, which is the material frame associated with the media.

In this paper, we take an alternative view where we choose the same coordinate system

of the stationary observer (Eulerian frame) for the description of both the fluid and the

elastic media. Such system is more frequently used in the classical fluid description,
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but is less common in the description of elastic media. Physically, our description is

more relevant for the case of a porous media consisting of a dense network of elastic

’threads’ positioned inside the fluid, which is a case that has not been considered before.

In our formulation, we choose the Eulerian description for both the fluid and the elastic

matrix. It is worth noting that the combined Eulerian description is also applicable to

the regular porous media with a ’dense’ matrix, and is also well suited for the description

of wave propagation in such media. Finally, we shall also point out that our theory can

be reformulated and is applicable for the familiar choice of the Lagrangian material

description with respect to the elastic porous matrix. These descriptions are completely

equivalent from the mathematical point of view, and this is rigorously justified by using

the process of Lagrangian reduction by symmetry in continuum mechanics [38].

2.2 Equations of motion for porous media in spatial

coordinates

In this Section we derive the equations of motion for a porous medium filled with an

incompressible fluid by using a variational formulation deduced from Hamilton’s prin-

ciple.We will follow the description of both fluid and elastic matrix, individually, as

outlined in the book by Marsden and Hughes [62], where the reader can find the back-

ground and fill in technical details of the description of each media. This derivation

closely follows the approach developed in [32] to which the reader is referred for tech-

nical details. This derivation is presented here, first, to make this paper self-consistent,

and second, in order to introduce the definitions of the variables. We start with some

necessary background information on the description of the combined dynamics of the

elastic media and fluid that is contained in it.

2.2.1 Definition of variables

We shall remark that the preferred description for the motion of an elastic body is

achieved through the Lagrangian coordinates of the media as being the independent

variables, and balancing the forces in the spatial frame or the frame attached to the

media. On the other hand, the description of the fluid equation is traditionally done

in the Eulerian (spatial) frame. The combined mixed fluid-material motion for porous
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media can thus be described in either frame. In order to connect with the earlier works

by Biot and subsequent analysis of wave propagation in the porous media, we compute

the equations of motion in spatial coordinates throughout the paper.

Configuration of the elastic body and the fluid. Suppose that at t = 0 the

fluid and the elastic body occupy completely a given volume B ⊂ R3. The motion of

the elastic body (indexed by s) and the fluid (indexed by f) is defined by two time

dependent maps Ψ(t, ) : Bs → R3 and ϕ(t, ) : Bf → R3 with variables denoted as

x = Ψ(t,X) and x = ϕ(t,Y ) .

Here Bs and Bf denote the reference configurations containing the elastic and fluid labels

X and Y . We assume that there is no fusion of either fluid or elastic body particles,

so the map Ψ and ϕ are embeddings for all times t, defining uniquely the back-to-labels

maps X = Ψ−1(t,x) and Y = ϕ−1(t,x).

By default, we are working with a three-dimensional system, although the equations

of motion reduce trivially to the two- and one-dimensional cases. The motion of the

elastic body (indexed by s) and the fluid (indexed by f) is defined by two time dependent

maps Ψ and ϕ defined on B with values in R3, with variables denoted as x = Ψ(t,Xs)

and x = ϕ(t,Xf ). We assume that there is no fusion of either fluid or elastic body

particles, so the map Ψ and ϕ are embeddings for all times t, defining uniquely the

mappings Xs = Ψ−1(t,x) and Xf = ϕ−1(t,x) 1.

We also assume, for now, that the fluid cannot escape the porous medium or create

voids, so at all times t, the domains occupied in space by the fluid Bt,f = ϕ(t,B) and

the elastic body Bt,s = Ψ(t,B) coincide: Bt,f = Bt,s = Bt. Finally, we shall assume for

simplicity that the domain Bt does not change with time, and will simply call it B, hence

both ϕ : Bf → B and Ψ : Bs → B are diffeomorphisms for all time t. An extension to the

case of the fluid escaping the boundary is possible, although it will require appropriate

modifications in the variational principle and we shall not consider it in general for now,

but only in a specific case later.

1We prefer to use the term embedding as in [62] which is correct for arbitrary setting, such as three-
dimensional media, and also the motion of two-dimensional shells and rods in three-dimensional space.
In contrast, the notion ’homeomorphism’ is only applicable to the motion of three-dimensional bodies
in three-dimensional space.
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Velocities of the elastic body and the fluid. The fluid velocity uf and elastic

solid velocity us, measured relative to the fixed coordinate system, i.e., in the Eulerian

representation, are given as usual by

uf (t,x) = ∂tϕ
(
t,ϕ−1(t,x)

)
, us(t,x) = ∂tΨ

(
t,Ψ−1(t,x)

)
, (2.2.1)

for all x ∈ B. Note that since ϕ and Ψ keep the boundary ∂B invariant, the vector

fields uf and us are tangent to the boundary, i.e.,

uf · n = 0 , us · n = 0 , (2.2.2)

where n is the unit normal vector field to the boundary. One can alternatively impose

that ϕ and Ψ (or only Ψ) keeps the boundary ∂B pointwise fixed. In this case, one gets

no-slip boundary conditions

uf |∂B = 0 , us|∂B = 0 , (or only us|∂B = 0). (2.2.3)

Elastic deformations of the dry media. In order to incorporate the description of

the elastic deformations of the media in the potential energy, we consider the deformation

gradient of Ψ denoted

F(t,Xs) = ∇Ψ(t,Xs) . (2.2.4)

In the spatial frame, we consider the Finger deformation tensor b(t,x) defined by

b(t,x) = FFT(t,Xs) , (2.2.5)

where x = Ψ(t,Xs), see the paragraph below for the intrinsic geometric definition of b.

In coordinates, we have

FiA =
∂Ψi

∂XA
s

, bij =
∂Ψi

∂XA
s

∂Ψj

∂XA
s

with the summation over A is assumed.

In general the deformation of an elastic media without fluid leads to b 6= Id (the

unit tensor). The potential energy V of deformation of the dry media thus depends on

b. However, in our case there is another part that leads to the elastic potential energy,

namely, the microscopic deformations of the pores that we shall describe below.
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Internal deformation of the pores, microscopic volume and concentration.

Out of many microscopic variables presented in the solid, the geometric shape of pores

and their connectivity are most important for computing the volume occupied by the

fluid. In my thesis, as well as several previous works in literature, c.f. [65], [71], [74]

and others, the internal ’microscopic’ volume of the pores is chosen as an important

variable affecting potential energy of the solid. The further text closely follows the

corresponding description in our paper [32]. This choice is true for the case when the

pores’ geometry will be roughly similar throughout the material. The model will need

to be corrected when there is a drastic change of pores’ geometry (e.g. from roughly

spherical to elliptical pores, for merging of pores etc). For now, we consider that the

locally averaged internal volume of the pores is represented by the local variable v(t,x) in

the Eulerian description. We will take into account that the pores themselves can expand

and contract, which one can understand as modeling the pores through infinitesimally

small elastic volumes filled with fluid. When the pores expand, they generate stress in

the material; however, the stress averaged over any volume that is much larger than the

size of the pores, is going to vanish. We thus introduce an additional dependence of the

elastic part of the media on the infinitesimal volume denoted

V(t,X) = v(t,Ψ(t,X)) (2.2.6)

in the Lagrangian description. Since we are concentrating on the Eulerian description,

we will focus on v(t,x). Thus, in our model, the elastic energy of the solid will depend

on the Finger deformation tensor b and the infinitesimal pore volume v. Physically, this

assumption is equivalent to stating that the internal volume variable v will encompass

all the effects of microscopic deformations on the elastic energy.

Let us now consider the volume occupied by the fluid in a given spatial domain. We

assume that the fluid fills the pores completely, so the volume occupied by the fluid in

any given spatial domain is equal to the net volume of pores in that volume. Let us

take the infinitesimal Eulerian volume d3x and define the pore volume fraction g(t,x),

so that the volume of fluid is given by g(t,x)d3x. Then, one must take into account the

available volume to the fluid, namely, the local concentration of pores c(t,x) and the

infinitesimal pore volume v(t,x). This consideration leads to the following constraint on
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the total volume of pores, which is more easily written in the spatial description:

g(t,x) = c(b(t,x))v(t,x) . (2.2.7)

If, for example, the pores are “frozen” in the material, they simply move as material

moves. Then, the change of the local concentrations of pores c(t,x) due to deformations

is given by

c
(
t,Ψ(t,X)

)
JΨ(t,X) = c0(X) , JΨ = |det(∇Ψ)| = |det(F)| , (2.2.8)

where c0(X) is the initial concentration of pores in the Lagrangian point X. Using the

definition (2.2.5) of the Finger tensor b gives det b(t,x) = |detF(t,Xs)|2, hence we can

rewrite the previous relation as

c(t,x)
√

det b(t,x) = c0(X).

In the case of an initially uniform porous media, i.e., c0 = const, this formula shows

that the concentration c(t,x) is a function of the value b(t,x) of the Finger deformation

tensor

c(b) =
c0√
detb

. (2.2.9)

Note that from (2.2.8), the concentration of pores satisfies

∂tc+ div(cus) = 0 .

Conservation law for the fluid. In what follows, we will consider an incompressible

fluid, as that case has not been studied in the literature in sufficient details. The

density of the fluid itself is denoted as ρ0
f = const, therefore the discussion involves the

conservation of the volume of fluid rather than its mass. Let us now look at the volume

of fluid g(t,x)d3x from a different point of view. The fluid must fill all the available

volume completely, and it must have come from the initial point Xf = ϕ−1(t,x). If the

initial volume fraction at that point was g0(Xf )d
3Xf , then at a point t in time we have

g(t,x) = g0

(
ϕ−1(t,x)

)
Jϕ−1(t,x) , Jϕ−1 := det

(
∇ϕ−1

)
. (2.2.10)

Differentiating (2.2.10), we obtain the conservation law for g(t,x) written as

∂tg + div(g uf ) = 0 . (2.2.11)
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The mass of the fluid in the given volume is ρ0
fgd3x. Note that the incompressibility

condition of the fluid does not mean that divuf = 0. That statement is only true for

the case where no elastic matrix is present, i.e., for pure fluid. In the porous media case,

a given spatial volume contains both fluid and elastic parts. The conservation of volume

available to the fluid is thus given by (2.2.11).

Conservation law for the elastic body. The mass density of the elastic body,

denoted ρs, satisfies an equation analogous to (2.2.10), namely,

ρs(t,x) = ρs,0
(
Ψ−1(t,x)

)
JΨ−1(t,x) , (2.2.12)

where ρs,0(Xs) is the mass density in the reference configuration. The corresponding

differentiated form is

∂tρs + div(ρsus) = 0 . (2.2.13)

Intrinsic geometric formulation. To understand the transport equation of the Fin-

ger deformation tensor, it is advantageous to reformulate geometrically its definition. We

assume that the reference configuration B is endowed with a reference Riemannian metric

G, locally denoted G = GABdX
A
s dX

B
s and we consider its inverse G−1. It is a symmet-

ric two-contravariant tensor locally denoted G−1 = GAB ∂
∂XA

s

∂
∂XB

s
with GABGBC = δAC .

Then, the Finger deformation tensor is the symmetric two-contravariant tensor obtained

by pushing forward G−1 by the elastic configuration Ψ, namely

b = Ψ∗G
−1 . (2.2.14)

For a domain in three-dimensional Euclidean space, the Riemannian metric is simply

an identity, and is often not included in the considerations. However, the differential-

geometric considerations here are important, e.g. for evolution of porous shells, which

we do not consider here. The geometric description presented here is explained in details

in [62]. Using local coordinates, one notes that when G is the Euclidean metric, (2.2.14)

reduces to (2.2.5). Using (2.2.14) and (2.2.1), we get the transport equation for b as

∂tb+ £usb = 0 ,

where £us denotes the Lie derivative of a two-contravariant tensor, given in coordinates

by

(£usb)
ij =

∂bij

∂xk
uks − bkj

∂uis
∂xk
− bik ∂u

j
s

∂xk
. (2.2.15)

30



Let us now formulate (2.2.9) intrinsically i.e., without the use of the local coordinates.

Given a Riemanian metric γ on the spatial domain, the Jacobian JΨ of Ψ is defined

by Ψ∗µγ = JΨµG, where µγ =
√

det γ d3x and µG =
√

detG d3Xs are the Riemannian

volume forms. From this, one expresses intrinsically the Jacobian of Ψ in terms of the

Finger deformation tensor as

JΨ ◦Ψ−1 =
µγ
µb−1

,

where the Riemannian metric b−1 is the inverse of b, and f ◦ g denotes the composition

of mappings or functions.

Since equation (2.2.8) can be written intrinsically as (c ◦Ψ)JΨ = c0, we get

c =
c0 ◦Ψ−1

JΨ ◦Ψ−1 = (c0 ◦Ψ−1)
µb−1

µγ
.

If c0 = const, we get the expression

c(b) = c0
µb−1

µγ

which is the intrinsic version of (2.2.9).

Summary of the variables in the Lagrangian and Eulerian descriptions. From

the discussion above, the independent variables in the Lagrangian descriptions are the

two embeddings and the infinitesimal volume, i.e.,

Ψ(t,Xs), ϕ(t,Xf ), V(t,Xs). (2.2.16)

In the Eulerian description the variables are

uf (t,x), us(t,x), v(t,x), g(t,x), ρs(t,x), b(t,x) , (2.2.17)

defined from the Lagrangian variables in (2.2.1), (2.2.6), (2.2.10), (2.2.12), (2.2.14),

respectively.

2.2.2 Lagrangian and variational principle in spatial variables

Lagrangian. For classical elastic bodies, the potential energy in the spatial description

depends on the Finger deformation tensor b, i.e., V = V (b). As we discussed above,

in the porous media case, we consider the potential energy to depend on b and v, and

we write V = V (b, v). Then, the Lagrangian of the porous medium is the sum of the
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kinetic energies of the fluid and elastic body minus the potential energy of the elastic

deformations:

`(uf ,us, ρs, b, g, v) =

∫
B

[
1

2
ρ̄0
fg|uf |2 +

1

2
ρs|us|2 − V (b, v)

]
d3x . (2.2.18)

Note that the expression (2.2.18) explicitly separates the contribution from the fluid and

the elastic body in simple physically understandable terms. The interaction between the

fluid and the media comes from the critical action principle involving the incompress-

ibility of the fluid. We shall derive the equations of motion for an arbitrary (sufficiently

smooth) expression for `(us,uf , ρs, b, g, v), and will use the physical Lagrangian (2.2.18)

for all computations in the paper.

Variational principle and incompressibility constraint. Condition (2.2.7) rep-

resents a scalar constraint for every point of an infinite-dimensional system. Formally,

such constraint can be treated in terms of Lagrange multipliers. The application of the

method of Lagrange multipliers for an infinite-dimensional system is quite challenging,

see recent review papers [8], [27]. In terms of classical fluid flow, in the framework of

Euler equations, the variational theory introducing incompressibility constraint has been

developed by V. I. Arnold [1], with the Lagrange multiplier for incompressibility related

to the physical pressure in the fluid. We will follow in the footsteps of Arnold’s method

and introduce a Lagrange multiplier for the incompressibility condition (2.2.7). By anal-

ogy with Arnold, we will also treat this Lagrange multiplier as related to pressure, as

it has the same dimensions, and denote it p. Since (2.2.7) refers to the fluid content,

the Lagrange multiplier p relates to the fluid pressure. This will be further justified by

the equations of motion (2.2.32) below, connecting pressure with the derivatives of the

potential energy with respect of the pores’ volume. Note that p may be different from

the actual physical pressure in the fluid depending on the implementation of the model.

From the Lagrangian (2.2.18) and the constraint (2.2.7), we define the action functional

in the Eulerian description as

S =

∫ T

0

[
`(uf ,us, ρs, b, g, v)−

∫
Bt
p
(
g − c(b)v

)
d3x

]
dt . (2.2.19)

The equations of motion are obtained by computing the critical points of S with

respect to constrained variations of the Eulerian variables induced by free variations of
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the Lagrangian variables. Indeed, it is in the Lagrangian description that the varia-

tional principle is justified, as being given by the Hamilton principle with constraint.

One also notes that the constraint (2.2.7) is holonomic when expressed in terms of the

Lagrangian variables (2.2.16) via the relations (2.2.6), (2.2.10), (2.2.14). This justifies

that this constraint can be incorporated via the introduction of a Lagrange multiplier.

The constrained variations of the Eulerian variables induced by the free variations δΨ,

δϕ vanishing at t = 0, T are computed by using the relations (2.2.1), (2.2.10), (2.2.12),

(2.2.14). This yields
δuf = ∂tηf + uf · ∇ηf − ηf · ∇uf

δus = ∂tηs + us · ∇ηs − ηs · ∇us

δg = − div(gηf )

δρs = − div(ρsηs)

δb = −£ηs
b ,

(2.2.20)

where ηf and ηs are defined

ηf = δϕ ◦ϕ−1 , ηs = δΨ ◦Ψ−1 (2.2.21)

and the variations δv and δp are arbitrary. In the case of the boundary conditions

(2.2.2) it follows from (2.2.21) that ηf and ηs are arbitrary time dependent vector fields

vanishing at t = 0, T and tangent to the boundary ∂B:

ηs · n = 0 , ηf · n = 0 . (2.2.22)

In the case of no-slip boundary conditions (2.2.3), we have

ηf |∂B = 0 , ηs|∂B = 0 , (or only ηs|∂B = 0). (2.2.23)

Incorporation of external and friction forces. Frictions forces, or any other forces,

acting on the fluid F f and the media F s can be incorporated into the variational for-

mulation by using the Lagrange-d’Alembert principle for external forces. This principle

reads

δS +

∫
Bt

(
F f · ηf + F s · ηs

)
d3x dt = 0 , (2.2.24)

where S is defined in (2.2.19) and the variations are given by (2.2.20). Such friction

forces are usually postulated from general physical considerations. If these forces are
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due exclusively to friction, the forces acting on the fluid and media at any given point

must be equal and opposite, i.e. F f = −F s, in the Eulerian treatment we consider here.

For example, for porous media it is common to posit the friction law

F f = −F s = K(us − uf ) , (2.2.25)

with K being a positive definite matrix potentially dependent on material parameters

and variables representing the media. In particular, the matrix K depends on the local

porosity, composition of the porous media, deformation and other variables. The general

functional form of dependence of K on the variables should be of the form K = K(b, g).

For example, when deformations of porous media are neglected, i.e., assuming isotropic

and a non-moving porous matrix with b = Id, Kozeny-Carman equation is often used,

which in our notation is written in the form K = κg3/(1− g)2, with κ being a constant,

see [25] for discussion. In general, the derivation of the dependence of tensor K on vari-

ables g and b from the first principles is difficult, and should presumably be obtained

from experimental observations. In general, the anisotropy of K is related to the geom-

etry of the pores. The shape of the pores and their distribution in space will dictate the

numerical values of K for each given point in space, and the deformation of the pores’

geometry will determine the functional dependence K = K(b, g). For the purpose of this

paper, we will implicitly assume the dependence on flow variables without specifying

them explicitly in the formulas. For computations in Section 3 dedicated to the descrip-

tion of propagation of linear disturbances about the steady state, such dependence of K

on variables is not important. If there are other external forces acting on the system,

then, in general, F f +F s 6= 0. This situation can happen, for example, if either the fluid

or the media is either electrostatically charged or laden with magnetic particles, and is

subjected to the electric or magnetic field. The equations that we derive in the general

setting are valid for arbitrary external forces F f and F s. For explicit computations, we

assume the expression (2.2.25).
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2.2.3 General form of the equations of motion

In order to derive the equations of motion, we take the variations in the Lagrange-

d’Alembert principle (2.2.24) as

δS +

∫
Bt

(
F f · ηf + F s · ηs

)
d3x dt

=

∫
Bt

[
δ`

δuf
· δuf +

δ`

δus
· δus +

δ`

δρs
δρs +

(
δ`

δb
+ pv

∂c

∂b

)
: δb

+

(
δ`

δg
− p
)
δg +

(
δ`

δv
+ pc(b)

)
δv +

(
g − c(b)v

)
δp

+F f · ηf + F s · ηs
]

d3x dt = 0 .

(2.2.26)

The symbol “ : ” denotes the contraction of tensors on both indices. Substituting the

expressions for variations (2.2.20), integrating by parts to isolate the quantities ηf and

ηs, and dropping the boundary terms leads to the expressions for the balance of the

linear momentum for the fluid and porous medium, respectively, written in the Eulerian

frame. This calculation is tedious yet straightforward for most terms and we omit it

here. The main difficulty is the calculation of the terms related to the evolution of the

tensor b, which we now show in some details.

Denoting by Π the 2-covariant symmetric tensor field δ`
δb

+ pv ∂c
∂b

, we compute the

fourth term on the right hand side of (2.2.26) by using (2.2.15) as follows:∫
B

Π : δb = −
∫
B
(Π : £ηb)d

3x

= −
∫
B

Πij

(
∂bij

∂xk
ηk − bkj ∂η

i

∂xk
− bik ∂η

j

∂xk

)
d3x

= −
∫
B

(
Πij

∂bij

∂xk
ηk + ηi

∂

∂xk
(
Πijb

kj
)

+ ηj
∂

∂xk
(
Πijb

ik
))

d3x

+

∫
B

∂

∂xk
(
Πijb

kjηi + Πijb
ikηj
)

d3x

= −
∫
B

(
Πij

∂bij

∂xk
+

∂

∂xi
(
Πkjb

ij
)

+
∂

∂xj
(
Πikb

ij
))

ηkd3x

+ 2

∫
∂B

Πijb
kjηinkds

= −
∫
B

(
Πij

∂bij

∂xk
+ 2

∂

∂xi
(
Πkjb

ij
))

ηkd3x + 2

∫
∂B

(Πijb
kjnk)η

ids ,

(2.2.27)

where in three-dimensional case, ni are the components of the normal vector n 2. For

2For a general metric G, the rigorous statement is that ni is the one form associated to the normal
vector field n via the Riemannian metric.

35



compactness of notation, we denote the one-form appearing in the first term above with

the diamond operator

(Π � b)k = −Πij
∂bij

∂xk
− 2

∂

∂xi
(
Πkjb

ij
)

(2.2.28)

whose coordinate-free form reads

Π � b = −Π : ∇b− 2div (Π · b) . (2.2.29)

The result of (2.2.27) thus reads∫
B

Π : δb =

∫
B
(Π � b) · η d3x + 2

∫
∂B

[(Π · b) · n] · η ds. (2.2.30)

The equations of motion also naturally involve the expression of the Lie derivative

of a momentum density, whose global and local expressions are

£um = u · ∇m+∇uT ·m+m divu

(£um)i = ∂jmiu
j +mj∂iu

j +mi∂ju
j .

(2.2.31)

With these notations, the Lagrange-d’Alembert principle (2.2.26) yields the system

of equations

∂t
δ`

δuf
+ £uf

δ`

δuf
= g∇

(
δ`

δg
− p
)

+ F f

∂t
δ`

δus
+ £us

δ`

δus
= ρs∇

δ`

δρs
+

(
δ`

δb
+ pv

∂c

∂b

)
� b+ F s

δ`

δv
= −pc(b) , g = c(b)v

∂tg + div(guf ) = 0 , ∂tρs + div(ρsus) = 0 , ∂tb+ £usb = 0 .

(2.2.32)

When the boundary conditions (2.2.3) are used, no additional boundary condition arise

from the variational principle. In the case of the free slip boundary condition (2.2.2),

the variational principle yields the condition

[σp · n] · η = 0, for all η parallel to ∂B, (2.2.33)

where

σp := −2

(
δ`

δb
+ pv

∂c

∂b

)
· b. (2.2.34)

This is shown by using (2.2.30). Physically, the condition (2.2.33) states that the force

t = σ · n exerted at the boundary must be normal to the boundary (free slip).
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The first equation arises from the term proportional to ηf in the application of

the Lagrange-d’Alembert principle. The second condition and the boundary condition

(2.2.33) arise from the term proportional to ηs and via the use of (2.2.30). The third

and fourth equations arise from the variations δv and δp. The last three equations

follow from the definitions (2.2.10), (2.2.12), (2.2.14), respectively. In the derivation of

(2.2.32), we have used the fact that on the boundary ∂B, ηs and ηf satisfy the boundary

condition (2.2.22).

Remark 2.2.1 (Discussion of the Lagrangian) Equations (2.2.32) allow for an ar-

bitrary form of the dependence of the Lagrangian on the variables. The derivatives of

the Lagrangian with respect to the variables entering (2.2.32) should be considered to

be variational derivatives. For example, if the integrand of the Lagrangian depends on

both ρs and its spatial derivatives ∇ρs, e.g.

` =

∫
B
`0(ρs,∇ρs,us, . . .)dx

then
δ`

δρs
=
∂`0

∂ρs
− div

∂`0

∂∇ρs
,

and similarly with other variables such as us, ρf , v etc. Thus, equations (2.2.32) are

capable of incorporating very general physical models of the porous media. However,

it is important to note that in our model, we do not assume that the energy of the

fluid depends on any kind of strain measure of the solid or the fluid. These energy

considerations only refer to the fluid; the energy of the solid, of course, depends on b,

the strain measure of the solid. The pressure p in (2.2.32) is obtained purely from the

action principle with the action (2.2.19). In that sense, our paper follows the framework

of fluid description due to Arnold [1].

Specific form of the equations. We now use the Lagrangian function ` defined in

(2.2.18) and compute the derivatives
δ`

δuf
= ρfguf ,

δ`

δus
= ρsus ,

δ`

δρs
=

1

2
|us|2 ,

δ`

δb
= −∂V

∂b
,

δ`

δg
=

1

2
ρf |uf |2 ,

δ`

δv
= −∂V

∂v
.

(2.2.35)
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For the Lagrangian in (2.2.18), using (2.2.29) and the third and fourth equations in

(2.2.32), the diamond term in (2.2.32) simplifies as(
−∂V
∂b

+ pv
∂c

∂b

)
� b = −

(
pv
∂c

∂b
− ∂V

∂b

)
: ∇b− 2 div

[(
pv
∂c

∂b
− ∂V

∂b

)
· b
]

= g∇p+∇
(
V − ∂V

∂v
v

)
− 2 div

[(
pv
∂c

∂b
− ∂V

∂b

)
· b
]
.

Then, the equations of motions (2.2.32) become

ρf (∂tuf + uf · ∇uf ) = −∇p+
1

g
F f

ρs(∂tus+us · ∇us) = g∇p+∇
(
V − ∂V

∂v
v

)
−2 div

[(
pv
∂c

∂b
− ∂V
∂b

)
· b
]

+F s

∂V

∂v
= pc(b), g = c(b)v

∂tg + div(guf ) = 0, ∂tρs + div(ρsus) = 0, ∂tb+ £usb = 0.

(2.2.36)

together with the boundary condition (2.2.33) in which the stress tensor σp in (2.2.34)

reads

σp = −2

(
pv
∂c

∂b
− ∂V
∂b

)
· b , (σp)

i
k = −2

(
pv

∂c

∂bkj
− ∂V

∂bkj

)
bij . (2.2.37)

The divergence term in the media momentum equation (second equation above) is

the analogue of the divergence of the stress tensor for an ordinary elastic media: This

term, however, contains the contribution from both the potential energy and the fluid

pressure.

These equations define the coupled motion of an incompressible fluid and porous

media. We are not aware of these equations having been derived before.

Remark 2.2.2 (Equations of motion with external equilibrium pressure) If the

media is subjected to a uniform external pressure p0, then the equations of motion are

derived by changing the Lagrangian to `p → `+ (p− p0)(g − c(b)v). In that case, equa-

tions (2.2.32), and, similarly, (2.2.36) are altered by simply substituting p − p0 instead

of p. In what follows, we shall put p0 = 0.
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2.2.4 Energy dissipation

We are now going to proceed to prove that our model yields strict dissipation of mechan-

ical energy in the presence of friction forces. This is important in order to demonstrate

that our derivation is physically consistent. Fortunately, variational methods are guar-

anteed to provide energy conservation for the absence of friction, and when the friction

forces are introduced correctly, also guaranteed to provide energy dissipation. Let us

consider the energy density associated to the Lagrangian ` given by

e = uf ·
δ`

δuf
+ us ·

δ`

δus
+ v̇

δ`

δv̇
− L , (2.2.38)

where L denotes the integrand of `. Note that in our case ` does not depend on v̇ hence

the third term vanishes. For the general system (2.2.32), and its explicit form (2.2.36),

to be physically consistent, we need to prove that in the absence of forces F s and F f ,

the total energy E =
∫
B e d3x is conserved. When these forces are caused by friction, we

must necessarily have Ė ≤ 0.

We begin by noticing the formula

u ·£um = u ·
(
u · ∇m+∇uT ·m+m divu

)
= div

(
u (m · u)

)
, (2.2.39)

which easily follows from its coordinates expression in (2.2.31). Then, using equation

(2.2.39) and system (2.2.32), we compute

∂te = uf ·
∂

∂t

δ`

δuf
+ us ·

∂

∂t

δ`

δus
− δ`

δρs
∂tρs −

δ`

δb
: ∂tb−

δ`

δg
∂tg −

δ`

δv
∂tv

= −div

[
uf

(
uf ·

δ`

δuf

)
+ us

(
us ·

δ`

δus

)
−
(
δ`

δg
− p
)
guf

− δ`

δρs
ρsus + 2us ·

(
δ`

δb
+ pv

∂c

∂b

)
· b
]

+

(
δ`

δg
− p
)
∂tg +

δ`

δρs
∂tρs +

(
δ`

δb
+ pv

∂c

∂b

)
∂tb

− δ`

δρs
∂tρs −

δ`

δb
: ∂tb−

δ`

δg
∂tg −

δ`

δv
∂tv + us · F s + uf · F f

= −divJ − p∂tg + pv
∂c

∂b
: ∂tb−

δ`

δv
∂tv + us · F s + uf · F f ,

(2.2.40)

where we denoted by J the vector field in the brackets inside the div operator. The last

term in these brackets has the local expression(
2us ·

(
δ`

δb
+ pv

∂c

∂b

)
· b
)k

= 2uis

(
δ`

δbij
+ pv

∂c

∂bij

)
bjk = −σp · us .
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The sum of the second, third, and fourth terms in last line of (2.2.40) cancel thanks to

the third and fourth equations in (2.2.32). We thus get the energy balance

∂te+ divJ = us · F s + uf · F f .

Thus, the balance of total energy is

Ė =

∫
B

(us · F s + uf · F f ) d3x−
∫
∂B
J · n ds . (2.2.41)

From the boundary conditions (2.2.2) and (2.2.33) we have us · n = 0, uf · n = 0, and

[σp · n] · us = 0 on the boundary ∂B, so that J · n = 0 at the boundary. In the case of

the boundary conditions (2.2.3), we have J|∂B = 0. In the absence of external forces,

when F f and F s are caused exclusively by the friction between the porous media and

the fluid, we have F f = −F s. Since in that case Ė ≤ 0, we must necessarily have

Ė =

∫
B
F s · (us − uf ) d3x ≤ 0 . (2.2.42)

If one assumes (2.2.25) for the friction, i.e., F s = K(us−uf ), then K must be a positive

operator, i.e., Kv · v ≥ 0, for all v ∈ R3 and for any point x ∈ B.

2.3 Connection with the previously derived models

of porous media

2.3.1 The case of a compressible porous media filled with com-
pressible fluid

Let us start with connecting to the case considered frequently in the literature, namely,

the case of a compressible fluid moving inside a matrix made out of elastic compressible

material. In this case, the fluid pressure is no longer a Lagrange multiplier, but has to

be found from the identities regarding the internal energy of the fluid as a function of

its density. We refer the reader to [52] for background in classical thermodynamics. If

the volume fraction occupied by the fluid is φ, the volume fraction of the elastic matrix

is then 1− φ. In the general thermodynamic description, the specific internal energy of

the material e is a function of its density ρ and specific entropy S, with the pressure

being given as p = ρ2 ∂e
∂ρ

. This formula is correct whether the thermodynamics effects

are considered, i.e. S is varying, or ignored, i.e. S =const. If the effective density of
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the fluid is ρf , and its volume fraction is φ, then the microscopic density of the fluid

is ρ̄f = ρf/φ, so the internal energy of the fluid is a function of ρ̄f , i.e., ef = ef (ρ̄f ).

Similarly, the microscopic density of the solid is ρ̄s = ρs/(1 − φ). It is natural to

assume that the internal energy of the elastic solid depends on both ρ̄s and the Finger

deformation tensor b, es = es(ρ̄s, b). Thus, the physically relevant Lagrangian takes the

form

`(uf ,us, ρf , ρs, b, φ) =

∫
B

[
1

2
ρf |uf |2 +

1

2
ρs|us|2

−ρfef
(
ρf
φ

)
− ρses

(
ρs

1− φ
, b

)]
dx.

(2.3.1)

Proceeding as in the derivation of (2.2.32), we obtain the following system, written in

terms of a general Lagrangian:

∂t
δ`

δuf
+ £uf

δ`

δuf
= ρf∇

δ`

δρf

∂t
δ`

δus
+ £us

δ`

δus
= ρs∇

δ`

δρs
− δ`

δb
: ∇b− 2 div

δ`

δb
· b

∂tρf + div(ρfuf ) = 0, ∂tρs + div(ρsus) = 0, ∂tb+ £usb = 0

δ`

δφ
= 0

(2.3.2)

When the particular form of the Lagrangian (2.3.1) is assumed, the equations take the

form:

ρf (∂tuf + uf · ∇uf ) = −ρf∇
(
ef + ρ̄f

∂ef
∂ρ̄f

)
= −φ∇

(
ρ̄2
f

∂ef
∂ρ̄f

)
ρs(∂tus + us · ∇us) = −ρs∇

(
es + ρ̄s

∂es
∂ρ̄s

)
− ρs

∂es
∂b

: ∇b

+2 div
∂es
∂b
· b = −(1− φ)∇

(
ρ̄2
s

∂es
∂ρ̄s

)
+ 2 div

∂es
∂b
· b

∂tρf + div(ρfuf ) = 0, ∂tρs + div(ρsus) = 0, ∂tb+ £usb = 0

ρ̄2
f

∂ef
∂ρ̄f

= ρ̄2
s

∂es
∂ρ̄s

=: p where ρ̄f :=
ρf

1− φ
, ρ̄s =

ρs
φ
.

(2.3.3)

The last equation, coming from the variation in δφ, states the equality of pressure in

both elastic and fluid part of the system. We can transform the system to the following

form:
ρf (∂tuf + uf · ∇uf ) = −φ∇p
ρs(∂tus + us · ∇us) = −(1− φ)∇p+ div σel

∂tρf + div(ρfuf ) = 0, ∂tρs + div(ρsus) = 0, ∂tb+ £usb = 0

(2.3.4)
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where

p := ρ̄2
f

∂ef
∂ρ̄f

= ρ̄2
s

∂es
∂ρ̄s

, σel := 2
∂es
∂b
· b

Equations similar to (2.3.4) appear, for example in [23], with additional thermodynami-

cal effects. These thermodynamics effects can be incorporated in our model as well if we

allow the energies of the fluid and solid part in the Lagrangian (2.3.1) to depend on the

entropies of fluid Sf and solid Ss, such as ef = ef (ρ̄f , Sf ) and es = ef (ρ̄s, Ss), with addi-

tional equations for advection of the entropy and heat exchange between the two phases.

We shall postpone this discussion of thermal effect for our follow-up work in order not

to distract from the main message of the paper. However, within the framework of this

paper, it is worth noting that the internal energies of the fluid and solid are completely

separated: the internal energy of the fluid depends only on the internal variables of the

fluid, and, correspondingly, the internal energy of the elastic matrix depends only on

the internal variables of the elastic material. The interaction between the terms comes

from equality of pressure and follows from the equations of motion; it does not have

to be assumed a priori. Thus, we believe, our approach is consistent with the classical

Lagrangian approach of dealing with the systems with several interacting parts.

2.3.2 Compressible media with incompressible fluid

Let us now connect this description of compressible fluid and solid to the case of in-

compressible fluid and compressible solid. We shall keep the same variables as in the

derivation of (2.3.3) to keep the notation consistent, and then show how to connect the

resulting equations with (2.2.32). The difference between the cases of compressible and

incompressible fluids comes to two fundamental restrictions:

1. Since the microscopic density of fluid ρ̄f , also denoted ρ0
f earlier, is constant, the

internal energy of the fluid do not depend on ρ̄f .

2. There is an incompressibility condition φ = (φ0 ◦ϕ−1)Jϕ−1 , equivalent to (2.2.10).

We remind the reader that ϕ−1(x, t) is the inverse of the Lagrangian mapping for

fluid particles, also known as the back-to-labels map. Physically, this law states

that all the fluid in a given microscopic volume of porous media has appeared from

its initial source at t = 0.
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Note that the incompressibility condition presented above is similar to the conservation

of mass in [7] (Eq. (10) taken for the case of fluid only). In spite of this similarity, there

is an important difference to keep in mind: in [7], the conservation law is written for

both compressible fluid and solid parts. In our case, no additional conservation laws are

necessary in the case of compressible fluid and solid, so there is only one incompressibil-

ity condition for fluid for the incompressible fluid case, and none for the compressible

fluid case. The conservation law for the compressible part in our theory is satisfied

automatically, and no extra Lagrange multipliers are necessary. The action functional

(2.2.19), incorporating the constraint with the Lagrange multiplier p, rewritten in the

new variables, becomes

Sp =

∫ T

0

[
`(uf ,us, ρf , ρs, b, φ) +

∫
B
p
(
φ− (φ0 ◦ϕ−1)Jϕ−1

)
dx

]
dt . (2.3.5)

While the method works for an arbitrary Lagrangian, the physically relevant form of the

Lagrangian to consider is given by

`(uf ,us, ρf , ρs, b, φ) =

∫
B

[
1

2
ρf |uf |2 +

1

2
ρs|us|2 − ρses

(
ρs

1− φ
, b

)]
dx. (2.3.6)

Note that compared to the previous form for compressible fluid case (2.3.1), the term

ρfef (ρ̄f ) is now absent from (2.3.6). Using the identity

δ
[
(φ0 ◦ϕ−1)Jϕ−1

]
= − div

(
(φ0 ◦ϕ−1)Jϕ−1ηf

)
, (2.3.7)

we get the following set of equations written for a general Lagrangian `:

∂t
δ`

δuf
+ £uf

δ`

δuf
= ρf∇

δ`

δρf
− φ∇p

∂t
δ`

δus
+ £us

δ`

δus
= ρs∇

δ`

δρs
− δ`

δb
: ∇b− 2 div

δ`

δb
· b

∂tρf + div(ρfuf ) = 0, ∂tρs + div(ρsus) = 0, ∂tb+ £usb = 0

φ = (φ0 ◦ ϕ−1
f )Jϕ−1

f
,

δ`

δφ
+ p = 0.

(2.3.8)

43



In the case of the physically relevant Lagrangian (2.3.6), we obtain

ρf (∂tuf + uf · ∇uf ) = −φ∇p

ρs(∂tus + us · ∇us) = −ρs∇
(
es + ρ̄s

∂es
∂ρ̄s

)
− ρs

∂es
∂b

: ∇b+ 2 div
∂es
∂b
· b

= −(1− φ)∇
(
ρ̄2
s

∂es
∂ρ̄s

)
+ 2 div

∂es
∂b
· b

∂tρf + div(ρfuf ) = 0, ∂tρs + div(ρsus) = 0, ∂tb+ £usb = 0

∂tφ+ div(φuf ) = 0, ρ̄2
s

∂es
∂ρ̄s

= p.

(2.3.9)

Equations ∂tρf + div(ρfuf ) = 0 and ∂tφ+ div(φuf ) = 0 imply that ρf = ρ̄fφ with ρ̄f a

constant. Note that the last equation of (2.3.9), states that the thermodynamic pressure

in the solid, defined through the derivatives of the internal energy function es, is equal

to the Lagrange multiplier p. Thus, physically, the Lagrange multiplier p is equal to the

pressure inside the solid, so it also acquires the physical meaning of the pressure in the

fluid. However, that physical meaning is elucidated only after the equations of motion

(2.3.9) are derived and cannot be inferred a priori.

A quick calculation shows that the system (2.3.9) is equivalent to the equations

(2.2.32) derived earlier, under the change of variables

g = φ, c(b) = ρs, v =
1

ρs
− 1

ρ̄s
. (2.3.10)

That equivalence is proved by assuming the internal energy of the solid in the form

V (b, v) = ρs(b)es (ρ̄s, b) , ρ̄s :=
ρs(b)

1− ρs(b)v
. (2.3.11)

Substitution of that expression for the internal energy of the solid into (2.2.32) gives

(2.3.9). We believe that such calculation is useful since it connects our earlier derivation

(2.2.32) with the information on the compressible case, and also elucidates the nature of

the variable φ. It is useful to recall the quote from [82] mentioned in the Introduction,

where the nature of this variable was suggested to preclude the existence of a variational

principle. Our theory presented here shows that the variable describing the fluid content

has to be considered carefully in the variational principle (2.3.5), or, equivalently, in

(2.2.19) earlier, as a constraint through the geometric variational formulation presented

here. The understanding of the role of this variable, we believe, is the key to the
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derivation of the variational principle for porous media, and was perhaps the source of

difficulty in explaining the incompressible fluid case in previous works.

The physical meaning of v becomes clear from the last formula of (2.3.10). Indeed,

choose ms to be a given mass of elastic solid, then ms

ρs
is the volume occupied by the

porous elastic solid, and ms

ρ̄s
is the volume occupied by the (imaginary) elastic solid

without any porosity. Thus, the quantity ms

(
1
ρs
− 1

ρ̄s

)
is the volume occupied by the

fluid per unit mass of the solid, and therefore the quantity v = 1
ρs
− 1

ρ̄s
is the physical

meaning of specific volume of the fluid’s content, measured per unit mass of the elastic

solid.

2.3.3 Static media with ideal gas and connection to the porous
medium equation (PME)

Let us consider a physical system that describes a polytropic flow of an ideal gas through

a homogeneous static porous medium. For such a system, the kinetic and potential

energies of the solid matrix are no longer relevant and we only have the terms, describing

the gas component. The state equation for pressure has the form

p = p0ρ
γ, (2.3.12)

where γ ≥ 1 is the polytropic exponent. The choice of the exponent could describe

among others isentropic (adiabatic and reversible, γ = γ0 > 0) and isothermal (with

γ = 1) flows. To apply the variational geometric formulation to such system, we need

to compute the potential energy of the gas. In case p0(x) = const we simply have

V (ρ, T ) = V0ρ
γ. (2.3.13)

The corresponding Lagrangian takes the form

`(u, ρ) =

∫
B

[
1

2
ρ|u|2 − V0ρ

γ

]
dx. (2.3.14)

With these notations, the variations in the Lagrange-d’Alembert principle (2.2.24)

yields the system of equations
∂t
δ`

δu
+ £u

δ`

δu
= ρ∇ δ`

δρ
+ F

∂tρ+ div(ρu) = 0 ,
(2.3.15)
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where for the friction force we posit F := −µρu, according to the linear Darcy’s law.

After computing the explicit form of functional derivatives and collecting the terms,

the equations of motion (2.3.15) become
ρ(∂tu+ u · ∇u) = −ρ∇∂V

∂ρ
− µρu

∂tρ+ div(ρu) = 0 .
(2.3.16)

Let us consider the special case of a degenerate Lagrangian without kinetic energy term

`(u, ρ) = −
∫
B
V0ρ

γdx. (2.3.17)

The application of Lagrange-d’Alembert’s principle to (2.3.17) will formally yield a sys-

tem with no dynamic terms in the left hand side of the first equation of (2.3.15), namely
µu = −∇∂V

∂ρ
= −γV0ρ

γ−1∇ρ = −V0

p0

∇p

∂tρ+ div(ρu) = 0 .
(2.3.18)

We substitute the velocity from the first equation into the continuity equation in the

system (2.3.18) to get a closed form equation for the density

∂tρ =
V0

µ
div(ρ∇ργ). (2.3.19)

The equation (2.3.19) is known as the porous medium equation (PME).

We should notice, that while this result was obtained simply by dropping the inertial

term 1
2
ρ|u|2 from the Lagrangian, the correctness of this approach goes beyond the scope

of this paper, as it employs a degenerate Lagrangian. The use of a small parameter ε→ 0

as a coefficient for the inertial term would lead to the singular perturbations and will not

yield the same result immediately. The solutions of systems with singular perturbations

may employ asymptotic methods, see for example [80].

The porous medium equation (2.3.19) could be nondimensionalized by scaling out

the constant and rewritten in the form

∂tu = ∆(um), m := 1 + γ > 1, (2.3.20)

which is a nonlinear heat equation, formally of parabolic type [79]. The interesting

property of this porous medium equation, that does not hold for the linear heat equation
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∂tu = ∆u is that (2.3.20) has finite speed for the propagation of disturbances from the

level u = 0.

The PME (2.3.20) has a special solution representing mass or heat release from a

point source [79], that was obtained by Zeldovich, Kompaneets and Barenblatt, and the

terms source solution, Barenblatt-Pattle solution, Barenblatt solution or ZKB solution

are often used for this solution. The ZKB solution has the self-similar form: u = t−αf(ξ)

with ξ = ‖x‖t−β, see [5]. For equation (2.3.20), this self-similar solution can be written

explicitly as

u(x, t) := t−α
(
C − k‖x‖2t−2β

) 1
m−1

+
, (2.3.21)

where (f)+ := max{f, 0},

α =
d

d(m− 1) + 2
, β =

α

d
, k =

α(m− 1)

2md
, (2.3.22)

C > 0 is an arbitrary constant and d is the dimension of the space. The constant C is

chosen in such a way that the mass of the solution M is equal to a given value. The initial

data in (2.3.21) as t→ 0 is a Dirac mass u(x, t)→Mδ(x), where M = M(C,m, d). The

source solution has compact support in space for every fixed time, in other words, the

solution is non-zero only for ‖x‖ ≤ R(t), with the radius of the support R(t) = tβ
√
C/k,

and the mass of the solution conserved for all times,
∫
Rd u(x, t)dx = M = const.

2.3.4 Connections with (quasi-static) equations of porous me-
dia (Poroelasticity Equations)

Another important equation related to porous media is the so-called poroelasticity equa-

tions [16], [17]. which are sometimes also called the equations for the porous media, or

the (nonlinear) Biot model for quasi-static porous media. See also [76] for literature

review and mathematical analysis of solutions for related models. These equations de-

scribe slow, inertia-less deformation of the porous media filled with an incompressible

fluid. If we neglect the kinetic energy terms in the Lagrangian and assume

` =

∫
B
es(b, φ) + p

(
φ− φ0 ◦ϕ−1Jϕ−1

)
dx (2.3.23)
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the equations of motion in our case become
0 =− φ∇p+ K(us − uf )

0 =− (1− φ)∇p+ divσe + K(uf − us)

0 =
∂`

∂φ
(φ, b)− p.

(2.3.24)

If we linearize the elastic stress tensor σe in above equations as

σe ' Λε+Gdivε− (1− φ)pId, ε ' 1

2
(b− Id) (2.3.25)

and neglect the gradients of∇φ in the second equation of (2.3.24), the first two equations

demonstrating the balance of momenta for the fluid and the solid, reduce to the quasi-

static porous media equations from [16] (without the viscoelastic terms) and [17] as

µ∇p = K(uf − us) , divσtot + K(uf − us) = 0 , (2.3.26)

The last equation of our reduced equations (2.3.24), obtained with respect to variations

with respect to φ, connects the pressure, which is the Lagrange multiplier for incom-

pressibility, with the fluid content and deformations. In contrast, the nonlinear Biot

model uses an alternative Bio-Willis relationship for the quantity ζ = φ(x, t)− φ(x, 0),

which in our notation reads:

ζ = c0p+ α divΨ ◦Ψ−1(x, t) (2.3.27)

For incompressible fluid, one takes c0 = 0 and α = 1, attributing all the change in

available volume to the dilation of the media. In our opinion, that is a highly simplified

assumption which is difficult to justify mathematically, especially for the elastic media

that is incompressible as well, so, technically speaking, divΨ = 0, leading to ζ = 0.

Thus, in case of both the fluid and solid being incompressible, the equation (2.3.27)

states that φ(x, t) = φ(x, 0) which is in general incorrect.

In contrast, we do not need that additional constraint (2.3.27) as the relationship

connecting ζ, p and automatically follows from the last equation of (2.3.24). Moreover,

we have automatic dissipation of energy quantity due to the existence of variational

principle. In contrast, finding the energy-like quantity for the nonlinear porous media

(Biot) model is highly nontrivial, as the works [16], [17] illustrate. We thus believe

that in spite of higher apparent complexity compared to the simplified models used in
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the literature in the field, our equations are actually mathematically simpler to analyze

from the point of view of functional analysis, and hope that experts in analysis of PDEs

will have an opportunity to perform rigorous analysis of existence and uniqueness of

solutions to our equations.
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Chapter 3

Linear stability analysis

This chapter is dedicated to the analysis of the linearized equations of porous dynamics

(2.2.36), derived in the previous chapter. The linearization describes the propagation

of waves through the media, which is essential for acoustic and seismic applications. In

particular, the presentation includes the derivation of the propagation of S-waves and

P -waves in isotropic media. The analysis includes the stability criteria for the wave

equations and demonstration of their equivalence to the physicality conditions of the

elastic matrix. The final part of the chapter shows that the celebrated Biot’s equations

for waves in porous media are obtained for certain values of parameters in our models.

3.1 Derivation of the linearized equations of motion

We linearize equations (2.2.36) about the equilibrium state

(uf ,us, ρs, b, g, v, p) = (0,0, ρ0
s, b0, g0, v0, p0) , (3.1.1)

where each component on the right-hand side of (3.1.1) with a subscript 0 is a constant.

The equilibrium condition reads

∂V

∂v

∣∣∣∣
0

= p0c0 . (3.1.2)

where F |0 denotes the value of a function F taken at the equilibrium (3.1.1). We consider

the potential V (b, v) to be general and assume, for simplicity, an unstressed state b0 = Id

and p0 = 0. Throughout this section, we shall assume friction forces of the form (2.2.25)

with a given constant general permeability tensor K. For simplicity of computations, we

will eventually further assume isotropic and uniform media, so the permeability tensor

K will be taken proportional to a unity matrix.
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Notation. In this chapter on linearization, we denote the value of a variable f eval-

uated at the equilibrium with the index 0, i.e., f0. The spatiotemporal deviation from

the equilibrium is then denoted as δf(x, t) ' f(x, t)− f0(x, t), with δf assumed small.

Note that this is the same notation δ as for the variations used in the previous chapter.

We hope that no confusion arises due to that clash of notation.

Expression of the stress tensor. The full stress tensor computed from (2.2.37) is

σp = σel +
c0vp

J
Id = σel + cvp Id = σel + gp Id , J =

√
det b ,

where for c(b) = c0/J , we used
∂c

∂b
= − c0

2J
b−1

and where

σel = 2
∂V

∂b
· b

is the elastic stress tensor associated to the potential V . The linearization of the full

stress tensor is

δσp = δσel + g0δp Id , (3.1.3)

where we recall that we chose p0 = 0 and that b0 = Id , so J |0 = 1. The linearization of

the elastic stress tensor is written as

δσel =
∂σel

∂b

∣∣∣∣
0

: δb+
∂σel

∂v

∣∣∣∣
0

δv = 2
∂2V

∂b2

∣∣∣∣
0

: δb+ 2
∂V

∂b

∣∣∣∣
0

· δb+ 2
∂2V

∂b∂v

∣∣∣∣
0

δv. (3.1.4)

Linearization. The system (2.2.36) is linearized as follows:

g0ρf∂tδuf = −g0∇δp+ K(δus − δuf )

ρ0
s∂tδus = ∇

(
∂V

∂b

∣∣∣∣
0

: δb

)
+ div δσp + K(δuf − δus)

∂2V

∂v2

∣∣∣∣
0

δv +
∂2V

∂v∂b

∣∣∣∣
0

: δb = c0δp , δg = −c0

2
Tr (δb) v0 + c0δv

∂tδg + div(g0δuf ) = 0 , ∂tδρs + div(ρ0
sδus) = 0 ,

∂tδb− 2 Def δus = 0 , where Def δus := 1
2

(
∇δus + [∇δus]T

)
.

(3.1.5)

To get the linearized balance of elastic momentum, we used the fact that the linearization

of the term ∇(V − v ∂V
∂v

) = ∇(V − pg) for p0 = 0 in the second equation of (2.2.36) is
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computed as

δ∇ (V − pg) = ∇
( ∂V

∂v

∣∣∣
0︸ ︷︷ ︸

=p0c0=0

δv +
∂V

∂b

∣∣∣
0

: δb
)
− g0∇δp . (3.1.6)

The last term in (3.1.6) then cancels with the linearization of the first term on the right

hand side of (2.2.36), thus yielding the second equation in (3.1.5).

To get the last equation in (3.1.5) we used that the linearization of the Lie derivative

£usb at us,0 = 0 and b0 = Id is −2 Def δus as a direct computation using (2.2.15) shows.

For the linearized equations, we shall only need the coefficients of the linear and the

quadratic expansions of the potential V (b, v) about the equilibrium. We thus define the

coefficients:

σ0 =
∂V

∂b

∣∣∣∣
0

, ζ =
v0

c0

∂2V

∂v2

∣∣∣∣
0

, C =
∂2V

∂b2

∣∣∣∣
0

, D =
∂2V

∂v∂b

∣∣∣∣
0

. (3.1.7)

The coefficient ζ, from its definition, has the order of magnitude of the bulk modulus

of the microscopic material itself, although it can depend on the concentration of pores

and their arrangement in the matrix. Using this, the potential energy of the elastic

deformation V (b, v) about the equilibrium, up to the second order in deviations from

equilibrium, and assuming V (b0, v0) = 0, is represented as

V (b, v) ' σ0 : (b− b0) +
1

2
(b− b0) : C : (b− b0)

+
c0ζ

2v0

(v − v0)2 + D : (b− b0)(v − v0) .
(3.1.8)

From (3.1.7) and (3.1.4), we have

δσp = δσel + g0δp Id = 2C : δb+ 2σ0 · δb+ 2Dδv + g0δp Id . (3.1.9)

The first term identifies the Hooke law connecting the linearized stress and linearized

strain ε as follows

σ1 := 2
∂2V

∂b2

∣∣∣∣
0

: δb = 2C : δb = 4C : ε , ε :=
1

2
δb ' 1

2
(b− b0) , (3.1.10)

where the definition of ε above is understood as a linearization of b about the equilibrium.

We have intentionally denoted this linearized part of Finger tensor as ε since it happens

to be exactly the standard linear strain used in elasticity, see (3.1.11) below.
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We shall now assume an isotropic and uniform material, which will be the case of

study for the remainder of the paper. Then, the tensor C in (3.1.10) has only two inde-

pendent coefficients, and (3.1.10) becomes the familiar Hooke law for isotropic uniform

materials, i.e.,

σ1(ε) = 4C : ε = 2Gε+ ΛTr (ε) Id , (3.1.11)

where Λ and G are well known as Lamé parameters for isotropic materials in continuum

mechanics 1. Furthermore, the tensors σ0 and D in (3.1.7) are proportional to the unit

tensor, and it is convenient to express them as follows:

σ0 =
1

2
g0µ Id , D =

1

2
c0ξ Id , with µ, ξ = const. (3.1.12)

The constants µ and ξ, defined above, as well as coefficient ζ defined by (3.1.7), have

the dimension of Young’s modulus, i.e., pressure. With all these assumptions (3.1.9)

becomes

δσp =
Λ

2
Tr (δb) Id + (G+ g0µ)δb+ c0ξδv Id + g0δp Id . (3.1.13)

Linear stability. We now set

δus = λveλt+ik·x , δuf = λueλt+ik·x , δρs = ρs,1e
λt+ik·x , δb = b1e

λt+ik·x ,

δg = g1e
λt+ik·x , δv = v1e

λt+ik·x , δp = p1e
λt+ik·x .

(3.1.14)

and equations (3.1.5) become

g0ρfλ
2u = −g0p1ik + λK(v − u)

ρ0
sλ

2v =
1

2
(Λ + g0µ)Tr (b1) ik + i(G+ g0µ)b1 · k

+ik(g0p1 + c0ξv1) + λK(u− v)

ζ

v0

v1 +
ξ

2
Tr (b1) = p1 , g1 = −c0

2
Tr (b1) v0 + c0v1 ,

g1 + g0i(u · k) = 0 , ρs,1 + ρ0
si(v · k) = 0 ,

b1 − i(v ⊗ k + k⊗ v) = 0 .

(3.1.15)

By using the expression c(b) = c0/J and the last equation in (3.1.15), we get c1 =

−c0Tr (b1) /2 = −c0i(v · k) so, from the constraint g = cv we have

g1 = c0v1 + c1v0 = c0(v1 − iv0(v · k)) . (3.1.16)

1Sometimes Lamé coefficients are denoted λ and µ. We will avoid that notation since it clashes with
the notation used here, where λ denotes the growth rate of the disturbances as defined in (3.1.14), and
µ characterizing the residual stress according to (3.1.12). We hope no confusion arises from our use of
notation for Lamé coefficients.
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From the linearized continuity equation for g in (3.1.15) we get g1 = −ig0(u · k), so

combining this with (3.1.16) we obtain the expression of v1 as

v1 = iv0 (v · k− u · k) , (3.1.17)

and then, substituting this result into the third equation of (3.1.15), we deduce

p1 = i ((ζ + ξ) (v · k)− ζ(u · k)) . (3.1.18)

From (3.1.17) and (3.1.18), we get

g0p1 + c0ξv1 = ig0 ((ζ + 2ξ)(v · k)− (ζ + ξ)(u · k)) , (3.1.19)

and the first two equations in (3.1.15) become
g0ρfλ

2u = g0k ((ζ + ξ) (v · k)− ζ(u · k)) + λK(v − u)

ρ0
sλ

2v = −(Λ + g0µ)(v · k)k− (G+ g0µ)(v|k|2 + k(v · k))

+g0k[(ζ + ξ)(u · k)− (ζ + 2ξ)(v · k)] + λK(u− v) .

(3.1.20)

Let us now compute the dispersion relation explicitly for the case when the dissipation

in the media is isotropic, so K = β Id for some β > 0. In that case, we obtain the

dispersion relation detS = 0 with the matrix S of the form

S =

[
λ2ρfg0 Id 0

0 λ2ρ0
s

]
+ λβ

[
Id − Id
− Id Id

]
+

[
g0ζA −g0(ζ + ξ)A

−g0(ζ + ξ)A g0(ζ + ξ)A + B

]
,

(3.1.21)

where

A := k⊗ k , B := (Λ +G+ g0(2µ+ ξ))A + (G+ g0µ)|k|2 Id . (3.1.22)

Remark 3.1.1 (On formal equivalence of Lamé coefficients) One can notice that

in (3.1.21), G, Λ and µ only enter in combinations G+ g0µ and Λ + g0µ. Therefore, the

acoustic properties of the media with Lamé coefficients G, Λ and with ∂V
∂b

∣∣
0

= 1
2
µg0 6= 0

are the same as the acoustic properties of the media with the Lamé coefficients replaced

by the shifted values

G→ G+ g0µ , Λ→ Λ + g0µ, and with
∂V

∂b

∣∣∣∣
0

= 0 . (3.1.23)

Since G > 0 for consistency of the media, we must have

G+ g0µ > 0 . (3.1.24)

Or, more generally, two medias with Gi,Λi and ∂V
∂b

∣∣
0

= 1
2
µig0, i = 1, 2 are equivalent if

G1 + g0µ1 = G2 + g0µ2 and Λ1 + g0µ1 = Λ2 + g0µ2.
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Nondimensionalization. It is convenient to define the dimensionless growth rates

and wavenumbers by choosing the length scales L and time scales T :

λ∗ = Tλ , k∗ = Lk . (3.1.25)

and δ = ρfg0/ρ
0
s is the ratio between the effective equilibrium density of the fluid and

the equilibrium density of the elastic material.

Let us define the following dimensionless matrices

A∗ = k∗ ⊗ k∗ , B∗ =

(
1 +

Λ + g0(2µ+ ξ)

G

)
A∗ +

(
1 +

g0µ

G

)
|k∗|2 Id . (3.1.26)

Then, dividing S defined by (3.1.21) by ρ0
s, we obtain the following dimensionless dis-

persion matrix defining the equation for nonlinear eigenvalues (growth rates) λ∗

S∗ = λ2
∗

[
δ Id 0
0 Id

]
+ λ∗

βT

ρ0
s

[
Id − Id
− Id Id

]
+
g0T

2

ρ0
sL

2

[
ζA∗ −(ζ + ξ)A∗

−(ζ + ξ)A∗ (ζ + ξ)A∗

]
+
GT 2

ρ0
sL

2

[
0 0
0 B∗

]
.

(3.1.27)

We are free to choose the time and length scales T and L, and we choose them in such

a way that the coefficients of λ∗ (friction term) and the last term in (3.1.27) are equal

to unity. This corresponds to choosing

T =
ρ0
s

β
, L = T

√
G

ρ0
s

. (3.1.28)

Physically, T is the typical relaxation time in the porous media; L is the distance the

elastic sound waves in the matrix filled with fluid propagate during that relaxation time.

We then define the dimensionless quantities

ζ∗ =
g0T

2

ρ0
sL

2
ζ = g0

ζ

G
, ξ∗ =

g0T
2

ρ0
sL

2
ξ = g0

ξ

G
, µ∗ =

g0µ

G
. (3.1.29)

With these definitions, the nondimensionalized dispersion matrix takes the form:

S∗ =

[
Id (δλ2

∗ + λ∗) − Idλ∗
− Idλ∗ Id (λ2

∗ + λ∗)

]
+

[
ζ∗A∗ −(ζ∗ + ξ∗)A∗

−(ζ∗ + ξ∗)A∗ (ζ∗ + ξ∗)A∗ + B∗

]
. (3.1.30)

Equation det S∗ = 0 defines a 12-th order polynomial in λ∗, and thus there are exactly

12 roots λ∗ = λ∗(k∗) in the complex plane. We now show that given k∗, all these roots

can be computed as S- and P -waves by considering subspaces parallel and orthogonal

to a given k∗.
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3.2 S-waves

Let us consider the case in which (u,v) ⊥ k∗. Since A∗ = k∗ ⊗ k∗, we have A∗u =

A∗v = 0. In other words, we only consider the displacements orthogonal to the wave

vector k∗, which is exactly the definition of an S-wave. We can set u⊥ and v⊥ to be

parallel to a given vector ξ in the plane k⊥∗ , i.e., u⊥ = uξ and v⊥ = vξ. The eigenvalues

have multiplicity 1 and are computed from the 2× 2 matrix:

S∗,s =

[
(δλ2

∗ + λ∗) −λ∗
−λ∗ (λ2

∗ + λ∗)

]
+ |k∗|2

[
0 0
0 1 + µ∗

]
. (3.2.1)

Since the space k⊥∗ is two-dimensional, all the eigenvalues of detS∗ = 0 given by (3.1.30)

with u ‖ ξ and v ‖ ξ have multiplicity 2. The equation det S∗,s = 0 given by (3.2.1)

defines a fourth-order polynomial having 4 roots. Because of the multiplicity 2 of the

S-waves, the total number of roots for S-waves is 8.

The condition detS∗,s = 0 gives either λ∗ = 0, or λ∗ satisfying the following cubic

equation:

δλ3
∗ + λ2

∗(1 + δ) + λ∗k
2
∗(1 + µ∗)δ + k2

∗(1 + µ∗) = 0 , k∗ := ‖k∗‖ . (3.2.2)

By Routh-Hurwitz’ stability criterion (for the detailed description, see [34]), the poly-

nomial s3 + a2s
2 + a1s + a0 is stable if a2a1 > a0. Thus, (3.2.2) is stable, i.e., for any

real k∗, Reλ∗ < 0, as long as δ > 0 (which is natural since δ is the ratio of densities),

and µ∗ > −1. Note that this is exactly the requirement (3.1.24) for consistency of the

media.

Alternatively, instead of the dispersion relation λ∗ = λ∗(k∗), it is common in the

literature to compute the attenuation of harmonic signals in porous media, in other

words, k∗(ω∗) when λ∗ = iω∗, with ω∗ ∈ R being the frequency of forcing. In that case,

from (3.2.2) we obtain

k∗(ω∗) = ±ω∗

√
1 + δ + iδω∗

(1 + µ∗)(1 + iδω∗)
. (3.2.3)

As one can see, for δ > 0 and µ∗ > −1, Im k∗ → 0 when ω∗ → 0, so the attenuation of

low-frequency waves decreases with decreasing frequency, which is physically reasonable.

If one considers propagation of waves for x > 0, one needs to choose the sign in the

equation for k∗(ω∗) in such a way that Im k∗(ω∗) > 0, so the waves will be decaying as

x→∞.
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3.3 P-waves

Consider the case (u,v) ‖ k. In other words, we consider the disturbances parallel to

the wave vector k, which is the definition of a P -wave. Then A∗u = (k∗ ·u)k∗ = |k∗|2u,

and A∗v = (k∗ · v)k∗ = |k∗|2v, and the dispersion relation det S∗ = 0 takes the form

detS∗,p = 0 for the 2× 2 matrix

S∗,p =

[
δλ2
∗ + λ∗ −λ∗
−λ∗ λ2

∗ + λ∗

]
+ k2

∗

[
ζ∗ −(ζ∗ + ξ∗)

−(ζ∗ + ξ∗) ζ∗ + 2ξ∗ + Z

]
, (3.3.1)

where we defined for shortness

k∗ := ‖k‖ , Z := 2 +
Λ

G
+ 3µ∗ (3.3.2)

and we used g0ξ
G

= ξ∗ by (3.1.28) and (3.1.29). We rewrite this dispersion relation as

det

[
δλ2
∗ + λ∗ + k2

∗ζ∗ −λ∗ − (ζ∗ + ξ∗)k
2
∗

−λ∗ − k2
∗(ζ∗ + ξ∗) λ2

∗ + λ∗ + (ζ∗ + 2ξ∗ + Z)k2
∗

]
= 0. (3.3.3)

Equation (3.3.3) defines a fourth-order polynomial for λ∗, thus, for a given k∗ there

are 4 roots corresponding to the P -waves. Combining with 8 roots for S-waves, we

get the total number of roots found being equal to 12, which is exactly the number

of solutions for λ∗(k∗) expected from (3.1.30). Thus, we have found all the roots of

the equation (3.1.30). After computing the determinant in (3.3.3) we get the following

polynomial

δλ4
∗+λ

3
∗(δ + 1)+λ2

∗k
2
∗ (ζ∗+δ(Z + 2ξ∗ + ζ∗)) + λ∗k

2
∗Z+k4

∗(ζ∗Z−ξ2
∗)=0 . (3.3.4)

For the stability of polynomial (3.3.4) we investigate the principal minors ∆i, i = 1, . . . 4

of the Hurwitz matrix associated with the polynomial (Liénard-Chipart form of the

criterion), for the detailed description, see Gantmacher’s book [34]. The Hurwitz matrix

corresponding to the polynomial (3.3.4) has the form
δ + 1 Zk2

∗ 0 0
δ K1 K2 0
0 δ + 1 Zk2

∗ 0
0 δ K1 K2

 (3.3.5)

where we have defined

K1 = (ζ∗(δ + 1) + δ(Z + 2ξ∗)) k
2
∗, K2 =

(
ζ∗Z − ξ2

∗
)
k4
∗ . (3.3.6)
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All ∆i (with their exact forms given below) must be positive for stability. First, we

notice that the conditions ∆1 > 0 and ∆3 > 0 read

∆1 = δ + 1 > 0 and ∆3 = (δZ + (δ + 1)ξ∗)
2k4
∗ > 0, (3.3.7)

and are trivially satisfied.

Next, we study the condition ∆4 > 0. Since ∆3 > 0, we can write, equivalently,

∆4

∆3k4
∗

= ζ∗Z − ξ2
∗ > 0 ⇔ ζ∗

(
Λ

G
+ 2 + 3µ∗

)
> ξ2

∗ . (3.3.8)

Finally, we compute the condition ∆2 > 0:

∆2

k2
∗

= δ2Z + 2δ(δ + 1)ξ∗ + (δ + 1)2ζ∗. (3.3.9)

For stability of the steady state, we must have ζ∗ > 0, otherwise v = v0 is not a stable

equilibrium. Multiplying condition (3.3.9) by ζ∗, and adding/subtracting the term δ2ξ2
∗ ,

we obtain an equivalent formulation

∆2

k2
∗
ζ∗ = δ2

(
Zζ∗ − ξ2

∗
)

+ (δξ∗ + (δ + 1)ζ∗)
2 > 0 . (3.3.10)

which is satisfied as long as (3.3.8) is true. Since for physical reasons we necessarily have

G > 0, the stability condition for the P -waves can be rewritten as

ζ∗ > 0 and 2 (G+Gµ∗) +

(
Λ +Gµ∗ −G

ξ2
∗
ζ∗

)
> 0 . (3.3.11)

Using the conditions (3.1.28) and (3.1.29), we can transform (3.3.11) to the following

form which will be useful for using the Sylvester criterion (3.3.20) below:

2 (G+ g0µ) +

(
Λ + g0µ− g0

ξ2

ζ

)
> 0 . (3.3.12)

We shall now show that the condition for the stability of the P -waves (3.3.8) is

exactly equivalent to the requirement for consistency of modified P -wave modulus in an

isotropic medium.

A digression: Linear stability of purely elastic media. Let us now elucidate the

physical meaning of (3.3.8), which, as we show, is simply the condition on the stability

of propagation of P -waves in an elastic media. Suppose a wave is propagating in an
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elastic media with Lamé coefficients (Λ, G) in accordance with (3.1.11). The linearized

equation for wave propagation is

ρ0
s∂tδus = div σ1(ε) ⇔ λ2v = −Gv|k|2 − (Λ +G)(k · v)k , (3.3.13)

where we assumed unstressed or relaxed elastic media i.e. σ0 = ∂V
∂b

∣∣
0

= 0 so that µ = 0.

For S-waves, v ⊥ k, and λ is purely imaginary if and only if G > 0. For P -waves, λ

is purely imaginary if 2G+ Λ > 0. The coefficient 2G+ Λ is also known as the P -wave

modulus of the elastic media. As we shall see, the condition of positive P -wave modulus

will play the crucial part in the stability considerations.

For further discussion, it is interesting to compute the general condition on the

convexity of the potential energy in the purely elastic case. In this case (3.1.8) reduces

to

V0(b) ' 1

2
(b− b0) : C : (b− b0) ' Gε : ε+

1

2
Λ(Tr (ε))2

= 2G
∑
i>j

ε2ij +
1

2
XT

0 Q0X0 , X0 := (ε11, ε22, ε33),
(3.3.14)

and we have defined the quadratic form Q0 to be

Q0 :=

 2G+ Λ Λ Λ
Λ 2G+ Λ Λ
Λ Λ 2G+ Λ

 . (3.3.15)

Assuming that the coefficients εij are independent numbers for a given deformations, the

condition on V0 to be positive definite is equivalent to the condition that the quadratic

form Q0 is positive definite. By the Sylvester criterion, the quadratic form is positive

definite if and only if all the leading principal minors are positive, leading to

a) 2G+ Λ > 0 , b) 2G+ 2Λ > 0 , c) 2G+ 3Λ > 0 . (3.3.16)

The first minor, i.e., condition a) is exactly the stability of P -waves. The third condition

c) is equivalent to the positivity of the bulk modulus of the material. The second

condition b) follows from the first and the third conditions.

As we shall see immediately below, the conditions for the well-posedness of the P -

waves and positive definite nature of the potential energy for the porous media follows

closely the purely elastic framework, with the appropriate corrections due to the dynam-

ics of the pores v.
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Justification of (3.3.8) from the potential energy considerations. Let us now

consider the case of a general potential energy V (b, v) locally expressed about the equi-

librium according to the quadratic expansion (3.1.8). Without loss of generality we

consider the case with no linear terms, i.e. µ = 0, since the terms proportional to µ can

be absorbed into G and Λ according to (3.1.23), with G→ G + µ and Λ→ Λ + µ. We

have

V (b, v) ' 1

2
(b− b0) : C : (b− b0) +

c0ζ

2v0

(v − v0)2 + c0ξTr (ε) (v − v0)

' Gε : ε+
1

2
Λ(Tr (ε))2 +

c0ζ

2v0

(v − v0)2 + c0ξTr (ε) (v − v0),

(3.3.17)

hence V is a quadratic form of 7 variables: (εij) (6 elements from symmetry) and (v−v0).

However, the off-diagonal elements of tensor ε, namely (ε12, ε23, ε13) enter only in terms

of squares multiplied by G > 0. Thus, we rewrite (3.3.17) in the following form:

V (b, v) ' 2G
∑
i>j

ε2ij +
1

2
XT ·Q ·X, X := (v − v0, ε11, ε22, ε33)T , (3.3.18)

where we have defined a 4× 4 quadratic form Q as

Q :=


c0ζ
v0

c0ξ c0ξ c0ξ

c0ξ 2G+ Λ Λ Λ
c0ξ Λ 2G+ Λ Λ
c0ξ Λ Λ 2G+ Λ

 . (3.3.19)

Assuming the independence of all components of the strain tensor εij, we see that V is a

convex, positive definite function if and only if the quadratic form Q is positive definite.

The Sylvester criterion gives four stability conditions:

∆1 =
c0ζ

v0

> 0

∆2 =
c0ζ

v0

(
2G+ Λ− g0ξ

2

ζ

)
> 0

∆3 =
4Gζc0

v0

(
G+ Λ− g0ξ

2

ζ

)
> 0

∆4 = detQ =
4c0G

2ζ

v0

[
2G+ 3

(
Λ− g0ξ

2

ζ

)]
> 0 ,

(3.3.20)

where we recall that g0 = c0v0. The first condition of this system simply enforces the

convexity of V with respect to the small changes in v about the equilibrium, and is thus

very natural. To investigate the remaining three conditions, let us denote

Λ̃ = Λ− g0ξ
2

ζ
. (3.3.21)
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We notice that the conditions for ∆2 > 0, ∆3 > 0 and ∆4 > 0 in (3.3.20) are equivalent

to the conditions (3.3.16) with the substitution Λ→ Λ̃. Thus, the new variable defined

by (3.3.21) acquires the physical meaning of the effective value of the second Lamé

coefficient for the porous media. We remind the reader that the coefficients ζ and ξ

encode the values of the second derivatives of V with respect to v and (v, b) respectively,

and are thus appearing only in the description of the porous media. No corresponding

values exist for the purely elastic media. It is thus even more surprising that the stability

criteria for the porous media can be written in the form very similar to the elastic media

through the combination of variable (3.3.21).

Note also that the condition for the P -wave stability (3.3.11) for a general µ∗ can

now be written using the shift (3.1.23) as ∆2 > 0 in (3.3.20). The last condition of

(3.3.20), i.e., ∆4 > 0, is equivalent to the requirement that the effective bulk modulus of

a dry porous matrix is positive, which is trivially satisfied for all materials unless they

demonstrate strongly nonlinear or non quasi-stationary behaviour (for example local

phase transitions).

3.4 Comparison with Biot’s theory

The dispersion relation S(u,v)T described by (3.1.21) can be mapped to a system of

linear PDEs. Let us assume, for simplicity, an isotropic media and take K = β Id . We use

the mapping of powers of k to differential operators in Fourier space as k⊗k→ −∇div

and |k|2 → −∆ to get
ρfg0

∂2

∂t2
u+ β

∂

∂t
(u− v)− g0ζ∇divu+ g0(ζ + ξ)∇divv = 0

ρ0
s

∂2

∂t2
v − β ∂

∂t
(u− v) + g0(ζ + ξ)∇divu

− (g0(ζ + 2ξ + 2µ) + Λ +G)∇divv − (G+ g0µ) ∆v = 0 .

(3.4.1)

Note that the contribution from pressure in our system exactly cancel, which is reason-

able, as the pressure fluctuations generated by the motion of porous media in an internal

force and thus must vanish. The corresponding Biot’s system is given by
∂2

∂t2
(ρ

(f)
22 u+ ρ12v) + β

∂

∂t
(u− v)−∇div (Ru+Qv) = 0,

∂2

∂t2
(ρ

(s)
11 v + ρ12u)− β ∂

∂t
(u− v)−∇div (Qu+ Pv) +N∇×∇× v = 0

(3.4.2)
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with N being shear modulus of the skeleton and the fluid/elastic body, assumed to be the

same. We shall note that Biot’s equations is not directly applicable to an incompressible

fluid, since the expressions for the variables P,Q and R in (3.4.2) involve explicitly the

bulk modulus of the fluid. However, if we proceed formally and use the equations from

the literature and put Kf =∞ for an incompressible fluid, the expressions for P,Q and

R in terms of the bulk moduli of the porous skeleton Kb and the elastic body itself Ks,

see e.g., [33] are given by

P = (1− g0)Ks +
4

3
N , Q = g0Ks , R =

g2
0Ks

1− g0 −Kb/Ks

. (3.4.3)

Let us turn our attention to our theory described in (3.4.1), where we have set ρ12 =

ρ21 = 0. The case of ρ12 6= 0 and ρ21 6= 0 can be easily incorporated by considering a

more general inertia matrix in the Lagrangian. There is also an exact correspondence

between the friction terms. Thus, we need to compare the coefficients of the spatial

derivative terms. A direct comparison between Biot’s linearized system (3.4.2) and

(3.4.1) gives R = g0ζ by observing the coefficients of the terms proportional to ∇divu

from the equations (3.4.2). From the term proportional to ∇divv in the first equation

of (3.4.2), we obtain Q = −g0(ξ + ζ). Finally by using ∇×∇ × v = ∇divv −∆v we

obtain the expressions of N and P . To summarize, the Biot’s coefficients (P,Q,R,N)

are given by
R = g0ζ,

Q = −g0(ξ + ζ),

N = G+ g0µ,

P = (Λ + g0µ) + 2(G+ g0µ) + g0(ζ + 2ξ) .

(3.4.4)

Note that the expression Λ + 2G is also known as the P−wave modulus. In our case,

this P -wave modulus is modified by a shift of Lamé coefficients by g0µ and additional

terms ξ and ζ coming from the elasticity properties of the porous matrix.

3.5 Numerical investigation of phase and group ve-

locities and attenuation

We investigate the non-dimensionalized dispersion relations (3.2.2) and (3.3.4) derived

above in order to explore the phase velocity, group velocity, and attenuation coefficients
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of wave propagation in porous media. Instead of computing the roots λ = λ(k), we

consider the response of the system to a fixed frequency, as is common in the literature.

We shall notice, that due the linear stability of the wave propagation, the growth expo-

nent, i.e. the real part Reλ(k) ≤ 0 for all wave vectors k, so the system is well behaved.

Thus, we take λ = iω as a fixed parameter, and compute k = k(ω) from the dispersion

relations. Then, the phase velocity is given by vp = Reω/k(ω). Once k(ω) is known,

we compute the group velocity vg = Re dω/dk = Re (dk/dω)−1 by directly differentiat-

ing the dispersion relations as an implicit function and substituting (ω, k = k(ω)). We

also present the attenuation coefficient for the wave Im k(ω) and attenuation per cycle

Im k(ω)/Re k(ω).

According to (3.1.29), and the fact that ζ has the order of magnitude of the micro-

scopic bulk modulus, most materials will have ζ∗ ∼ 1, ξ∗ ∼ 1, Z ∼ 1 at the order of

magnitude. For biological materials, δ tends to be large whereas for porous media made

out of dense materials conveying gas, δ is small. We thus explore both large and small

values of δ in the simulations. In Figures 3.5.1-3.5.3 we present the results of computa-

tion of dispersion relation for the P -waves for a set of different parameters δ, Z, ζ∗ and

ξ∗. Only two roots of equation (3.3.4) are shown since the equation is a quadratic equa-

tion in k2. The other roots correspond to the waves propagating with the same velocity

and attenuation coefficient in the opposite direction. In Figures 3.5.4-3.5.6 we present

the results of computation of dispersion relation for the S-waves for a set of different

parameter δ. The axes variables in the figures are dimensionless, rescaled according to

the time and length scales defined in (3.1.28).
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Figure 3.5.1: Velocities and attenuation coefficients for P -waves with δ = 3, Z = 3,
ζ∗ = 2 and ξ∗ = 0.
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Figure 3.5.2: Velocities and attenuation coefficients for P -waves with δ = 1, Z = 3,
ζ∗ = 2 and ξ∗ = 0.
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Figure 3.5.3: Velocities and attenuation coefficients for P -waves with δ = 1, Z = 1,
ζ∗ = 1 and ξ∗ = 1.
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Figure 3.5.4: Velocities and attenuation coefficients for S-waves with δ = 0.1 and µ∗ = 0.
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Figure 3.5.5: Velocities and attenuation coefficients for S-waves with δ = 1 and µ∗ = 0.
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Figure 3.5.6: Velocities and attenuation coefficients for S-waves with δ = 10 and µ∗ = 0.
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Chapter 4

Actively deforming porous media

Many parts of biological organisms are comprised of deformable porous media. The

biological media is both pliable enough to deform in response to an outside force and

can deform by itself using the work of an embedded muscle. For example, the recent

work [56] has demonstrated interesting ’sneezing’ dynamics of a freshwater sponge, when

the sponge contracts and expands to clear itself from surrounding polluted water.

In this Chapter, I present the derivation of the equations of motion for the dynamics

of such an active porous media (i.e., a deformable porous media that is capable of

applying a force to itself with internal muscles), filled with an incompressible fluid. These

equations of motion extend the earlier derived equation for a passive porous media filled

with an incompressible fluid. We use a variational approach with a Lagrangian written as

the sum of terms representing the kinetic and potential energy of the elastic matrix, and

the kinetic energy of the fluid, coupled through the constraint of incompressibility. We

then proceed to extend this theory by computing the case when both the active porous

media and the fluid are incompressible, with the porous media still being deformable,

which is often the case for biological applications. For the particular case of a uniform

initial state, we rewrite the equations of motion in terms of two coupled telegraph-

like equations for the material (Lagrangian) particles expressed in the Eulerian frame

of reference, particularly suitable for numerical simulations, formulated for both the

compressible media/incompressible fluid case and the doubly incompressible case. We

derive interesting conservation laws for the motion, perform numerical simulations in

both cases and show the possibility of self-propulsion of a biological organism due to

particular running wave-like application of the muscle stress.
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4.1 Introduction

The mechanics of deformable porous media filled with fluid, also known as porome-

chanics, plays an important role in understanding the dynamics of biological organisms.

From arterial walls to fibrous spider silk and to sea sponges, multi-layer materials with

the complex internal structure are ubiquitous in nature [63], [64]. When such porous

materials are immersed in fluids, for example, as is the case for underwater organisms

or various internal organs of the human body, the porous media interacts with the fluid

permeating it [50]. Thus the understanding of the dynamics of such a system is im-

portant for our comprehension of the science of biological tissue. In many biological

applications, there is an additional complication due to an internal muscle acting on

the material and deforming it. In this case, the effect of the muscle stress should be

combined with the dynamics of the elastic matrix (we call it ’solid’ for briefness in this

article) and of the fluid permeating the matrix. Finally, an essential feature of many

biological materials is the large percentage of water in the elastic matrix itself, leading

to virtual incompressibility of the elastic material. This paper addresses these challenges

using a variational approach to the motion of active porous media.

It is useful to start with a short review of earlier works in poromechanics. Due to

the large amount of work in the area, our description must necessarily be brief and

only focus on the works essential to this discussion. The earlier developments in the

field of poromechanics are due to K. von Terzaghi [77] and M. Biot [9], [10], [15] in the

consolidation of porous media, and subsequent works by M. Biot which derived the time-

dependent equations of motion for poromechanics, based on certain assumptions on the

media. M. Biot also considered the wave propagation in both low and high wavenumber

regime [11]–[14]. The amount of recent work in the field of porous media is vast, both

in the field of model development [19], [21], [30], [31], [44], [49] and their subsequent

mathematical analysis [6], [16], [76]. We refer the reader interested in the history of the

field to the review [67] for a more detailed exposition of the literature.

Biot’s work still remains highly influential today, especially in the field of acoustic

propagation of waves through porous media. However, subsequent careful investigations

have revealed difficulties in the interpretation of various terms through the general prin-

ciples of mechanics, such as material objectivity, frequency-dependent permeability and
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changes of porosity in the model, as well as the need to describe large deformations of the

model [82]. Based on this criticism, [82] develops an alternative approach to saturated

porous media equations which does not have the limitations of the Biot’s model. Alter-

natively, [23], [24] develop equations for saturated porous media based on the general

thermodynamics principles of mechanics.

The mainstream approach to the porous media has been to treat the dynamics as

being friction-dominated by dropping the inertial terms from the equations. The seminal

book of Coussy [26] contains a lot of background information and analysis on that

approach. For more recent work, we will refer the reader to, for example, the studies

of multi-component porous media flow [70], as well as the gradient approach to the

thermo-poro-visco-elastic processes [18]. Our work, in contrast, is dedicated to the

development of modes using variational principles of mechanics, which is a sub-field of all

the approaches to porous media. The equations we will derive here, without the viscous

terms, will be of an infinite-dimensional Hamiltonian type and approximate the inertia

terms and large deformations consistently. On the other hand, the friction-dominated

approach gives equations of motion that are of gradient flow type.

Fluid-filled elastic porous media, by its very nature, is a highly complex object in-

volving both the individual dynamics of the fluid and the media and highly nontrivial

interactions between them. It is not realistic to assume complete knowledge of the

micro-structured geometry of pores in the elastic matrix and the details of fluid motion

inside the pores. Hence, models of porous media must include interactions between the

macroscopic dynamics and an accurate, and yet treatable, description of relevant aspects

of the micro-structures. Because of the large variations of the geometry and dynamics

of micro-structures between different porous media (e.g. biological materials vs geo-

physical applications), the task of deriving a detailed, unified theory of porous media

suitable for all applications is most likely not possible. However, once a detailed set of

assumptions is provided and their limitation is understood, deriving a consistent theory

is possible. In such a framework, we believe, the variational theory is advantageous since

it can develop a consistent mathematical model satisfying the physical assumptions on

the system. Variational methods are developed by first describing the Lagrangian of the

system on an appropriate configuration manifold, and then computing the critical curves

of the associated action functional to obtain the equations of motion in a systematic way.
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The advantage of the variational methods is their consistency, as opposed to approaches

based on balancing the conservation laws for a given point, or volume, of fluid. In a

highly complex system like poromechanics, primarily when written in the non-inertial

Lagrangian frame associated with the matrix, writing out all the forces and torques to

obtain correct equations is very difficult. In contrast, the equations of motion follow from

variational methods automatically, and the conservation laws are obtained in a general

setting, i.e. for arbitrary Lagrangians, as long as necessary symmetry arguments are

satisfied.

One of the earliest papers in the field of variational methods applied to the porous

media was [7] where the kinetic energy of microscopic expansion was incorporated into

the Lagrangian to obtain the equations of motion. In that work, several Lagrange

multipliers were introduced to enforce the continuity equation for both solid and fluid.

The works [3], [4] use variational principles for explanation of the Darcy-Forchheimer law.

Furthermore, [54], [55] derive the equations of porous media using additional terms in the

Lagrangian coming from the kinetic energy of the microscopic fluctuations. Of particular

interest to us are the works on the Variational Macroscopic Theory of Porous Media

(VMTPM) which was formulated in its present form in [2], [28], [29], [68], [69], [71]–

[73], [75], [78], also summarized in a recent book [74]. In these works, the microscopic

dynamics of capillary pores is modelled by a second-grade material, where the internal

energy of the fluid depends on both the deformation gradient of the elastic media and

the gradients of local fluid content. The study of a pre-stressed system using variational

principles and subsequent study of the propagation of sound waves was undertaken in

[65].

One of the main assumptions of the VMTPM is the dependence of the internal energy

of the fluid on the quantity measuring the micro-strain of the fluid, or, alternatively, the

fluid content or local density of the fluid, including, in some works, the gradients of

that quantity. This assumption is physically relevant for compressible fluid, but, in our

view, for an incompressible fluid (which, undoubtedly, is a mathematical abstraction,

as bulk moduli or inverse compressibilities of physical materials, including fluids can

not be infinite), such dependence is difficult to interpret. For example, for geophysical

applications, fluids are usually considered compressible because of the high pressures

involved. In the biological applications like the dynamics of highly porous sponges in
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the water we are interested in, the compressibility effects of the water, and, as we shall

discuss here, of the sponge itself, can be neglected. For a truly incompressible fluid,

it is difficult to assign physical meaning to the dependence of internal energy of the

fluid on the parameters of the porous media. The paper [82] points out the difficulties

of developing the true variational principle for Biot’s model because of the difficulty of

interpreting the fluid content through a variational principle. This difficulty in the

interpretation of the fluid content was explained in [32], in terms of the fluid content

being a constraint in the fluid incompressibility, and the fluid pressure being a Lagrange

multiplier related to the incompressibility. Interestingly, Biot model for acoustic wave

propagation in porous media was developed in that paper as the linearized case of wave

propagation for certain Lagrangians.

In this paper, we go one step beyond the initial variational approach developed in

[32] and show that the additional complexity of matrix incompressibility for biologically

relevant materials can be treated similarly, as the solid’s incompressibility constraint

introduces another Lagrange multiplier related to the pressure inside the solid. Math-

ematically, we base our methods on the classical Arnold description of incompressible

fluid [1] as geodesic motion on the group of volume-preserving diffeomorphisms of the

fluid domain, in the absence of external forces. In Arnold’s theory, the Lagrangian is

simply the kinetic energy, as the potential energy of the fluid is absent, and the fluid

pressure enters the equations from the incompressibility condition. This paper continues

the initial derivation of [32], and achieves new results in the following directions:

1. We introduce incompressibility of both the fluid and the elastic matrix in the

variational approach.

2. We also include the actions of the muscle by using a variational approach and show

that the application of the muscle and its effect on the boundaries follows from a

modified Lagrange-d’Alembert principle.

3. We show an exact reduction of the model for one-dimensional motion and derive

integrals of motion, such as the net momenta and, in the case of double incom-

pressibility, an affine relationship between the Lagrangian variables of the fluid

and the solid.
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4. We perform numerical simulations of the resulting reduced one-dimensional equa-

tions for incompressible fluid, for both compressible and incompressible matrix.

We illustrate the difference between these cases and show the possibility of self-

propulsion of the porous matrix (solid) while preserving the net-zero momentum

of the fluid and solid.

It is also useful to have a short discussion on the choice of coordinates and physics of

what is commonly considered the saturated porous media. In most, if not all, previous

works, the saturated porous media is a combined object consisting of an (elastic) dense

matrix, and a network of small connected pores filled with fluid. The fluid encounters

substantial resistance when moving through the pores due to viscosity and the no-slip

condition on the boundary. In such a formulation, it is easier to consider the motion of

the porous matrix to be ’primary’, and the fluid motion to be computed relative to the

porous matrix coordinates. Because the motion of the elastic matrix is ’primary’, the

equations are written in the system of coordinates consistent with the description of the

elastic media, which is the material frame associated with the media. In this paper, we

take an alternative view where we choose the same coordinate system of the stationary

observer (Eulerian frame) for the description of both the fluid and the elastic media. Such

a system is more frequently used in the classical fluid description but is less common in

the description of elastic media. Ironically, the Eulerian frame is also frequently used in

the description of wave propagation in the media, in particular, classical Biot’s theory

[11]–[14]. Physically, our description is more relevant for the case of a porous media

consisting of a dense network of elastic ’threads’ positioned inside the fluid, which is a

case that has not been considered before apart from [32]. In our formulation, we choose

the Eulerian description for both the fluid and the elastic matrix. It is worth noting

that the combined Eulerian description is also applicable to the traditional porous media

with a ’dense’ matrix, and is also well suited for the description of wave propagation in

such media as shown in [32] comparing the results of variational models with that of

Biot. We shall also point out that our theory can be reformulated and is applicable for

the familiar choice of the Lagrangian material description of the elastic porous matrix.

These descriptions are completely equivalent from the mathematical point of view, and

this is rigorously justified by using the process of Lagrangian reduction by symmetry in

continuum mechanics [38].
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4.2 Elastic muscle stress in the case of living organ-

isms

Let us now consider a model for a porous living organism that can generate internal

stress in the solid matrix in addition to the elastic stress experienced by the matrix from

the deformation. The physical context of this work are the sponges generating their own

internal stress to contract and expunge water from themselves. The sponges generate

their own internal muscle stress which we call s̄, when we compute that stress in the

Eulerian frame of reference. The forces div s̄ generated by this stress in the spatial frame

have to be considered as external in Hamilton’s principle (2.2.24), acting only on the

solid part of the system.

In this work, we shall only consider the mechanical effect of the muscle stress, without

getting into the details of the actual mechanism of generation of stress itself. The

microscopic dynamics of the muscle itself is highly complex [43], and is not essential at

this point. It may, however, become important later when thermodynamics effects are

considered.

There are two ways to introduce the muscle force by modifying (2.2.24). One way is

to consider the muscle stress through the typical way of adding external forces via the

Lagrange-d’Alembert principle. In that modification, the muscle forces divs are added

to the force acting on the solid F s, as:

δS +

∫ T

0

∫
B

(
F f · ηf + (F s + div s̄) · ηs

)
d3x dt = 0 . (4.2.1)

Another way is to consider the muscle action as an internal force through an alternative

formulation of the critical action principle as

δS +

∫ T

0

∫
B

(
F f · ηf + F s · ηs − s̄ : ∇ηs

)
d3x dt = 0 . (4.2.2)

At the first sight, both formulations are equivalent since application of integration over

the volume to the last term brings (4.2.2) to (4.2.1), except for the boundary terms. The

action (4.2.2) generates an additional force on the boundary given by −s ·n, with n(x)

the normal to the boundary at x ∈ ∂B.

Let us now consider the following thought experiment: a volume of solid is acted

upon with the uniform muscle stress s = const. Then, div s = 0 inside the volume B.
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However, uniform stress will affect the boundary in the formulation (4.2.2) and not in

the formulation (4.2.1). Thus, in our opinion, it is more natural to consider the approach

(4.2.2) and not (4.2.1).

This variational principle leads to the modified version of (2.2.32) for the active

porous media:

∂t
δ`

δuf
+ £uf

δ`

δuf
= g∇

(
δ`

δg
− p
)

+ F f

∂t
δ`

δus
+ £us

δ`

δus
= ρs∇

δ`

δρs
+

(
δ`

δb
+ pv

∂c

∂b

)
� b+ div s̄+ F s

δ`

δv
= −pc(b) , g = c(b)v

∂tg + div(guf ) = 0 , ∂tρs + div(ρsus) = 0 , ∂tb+ £usb = 0 .

(4.2.3)

For the particular case of Lagrangian given by (2.2.18) the equations become

ρ̄0
f (∂tuf + uf · ∇uf ) = −∇p+

1

g
F f

ρs(∂tus+us · ∇us) = g∇p+∇
(
V − ∂V

∂v
v

)
+ div (σp + s̄) + F s

∂V

∂v
= pc(b), g = c(b)v

∂tg + div(guf ) = 0, ∂tρs + div(ρsus) = 0, ∂tb+ £usb = 0 .

(4.2.4)

In the case of the free slip boundary condition (2.2.2), the variational principle yields

boundary conditions similar to (2.2.33)

[(σp + s) · n] · η = 0, for all η parallel to ∂B, (4.2.5)

and the same definition of the stress tensor σp in (2.2.34). When the boundary conditions

(2.2.3) are used, no additional boundary condition arise from the variational principle.

Thus, physically, the muscle stress s̄ is simply added to the effective stress σp in equations

(4.2.4) and the boundary conditions (4.2.5).

Remark 4.2.1 (On the free flow of fluid through the boundary) Suppose the elas-

tic solid is fixed in space in a domain Ds ⊂ R3. If the fluid can leave or enter the domain,

it is natural to assume that all fluid particles are included in a domain Df that always

contains the solid, Ds ⊂ Df , for example, Df = R3, i.e. the fluid occupies the whole

space. Then, the back-to-labels maps in that case are given by

X(t, ) : Ds → Bs and Y (t, ) : Ds → R3 , (4.2.6)
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where X(t, x) ∈ Bs is a diffeomorphism with Bs the set of all solid labels as before, and

Y (t, x) is an embedding with B(t) := Y (t,Ds) the set of all fluid labels corresponding

to fluid particles that are in the elastic solid at time t. Consequently, fluid labels in

R3 − B(t) correspond to fluid particles that are not in the elastic solid at time t. Such

particle may, e.g., have already left the solid at time t or will penetrate into the solid at

a later time. We shall also note that the accurate representation of the moving material

boundary needs to be treated carefully, see [29], as the boundary of the elastic matrix

material presents a singularity. We shall postpone the quite complex and technical

discussion of the free fluid outflow of the boundary to a follow up work.

Under the assumptions leading to the concentration dependence c = c0/
√

det b, equa-

tions (4.2.4) simplify further to

ρ̄0
f (∂tuf + uf · ∇uf ) = −∇p+

1

g
F f

ρs(∂tus+us · ∇us) = g∇p+ div (σe + s̄)+F s

∂V

∂v
= pc(b), g = c(b)v

∂tg + div(guf ) = 0, ∂tρs + div(ρsus) = 0, ∂tb+ £usb = 0 ,

(4.2.7)

where σe is the elastic stress

σe = 2
∂V

∂b
· b+ V Id. (4.2.8)

This formula follows from the equality ∇
(
V − ∂V

∂v
v
)

+div(σp) = div σe which holds when

c = c0/
√

det b since in this case ∂c
∂b
· b = −1

2
cId. We can further put F f = −F s =

K(us − uf ) to introduce the friction according to the Darcy law.

For the developments below, we also need to introduce the equation for the back-to-

labels maps. Recall that the Lagrangian label of the solid is denoted X and we use the

same notation for the back-to-labels map defined by X(t,x) = Ψ−1(t,x) where Ψ(t,X)

denotes the configuration map for the solid. Recall also that the Eulerian velocity of the

solid is given by

us = ∂tΨ ◦Ψ−1 i.e. us(t,x) = ∂tΨ
(
t,Ψ−1(t,x)

)
. (4.2.9)

Differentiating the identity Ψ ◦ X = Id, or, in coordinates, Ψ(t,X(t,x)) = x, with

respect to time, we obtain:

∇Ψ ◦X · ∂tX + us = 0 ⇔ ∂tX = − (∇Ψ ◦X)−1 · us (4.2.10)
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which can be written as

∂tX = −∇X · us ⇔ us = − (∇X)−1 · ∂tX . (4.2.11)

The strain tensor b and, correspondingly, stress tensor σe depend on the spatial gradients

of that map, i.e., ∇X(t,x), as well as possibly x and v, since V depends on both b and

v. Thus, the second equation of (4.2.7) becomes a set of coupled elliptic equations for

∇X and v. On the other hand, the muscle action depends only on X and t.

4.2.1 Simplification: one-dimensional dynamics

Let us now compute the equations (4.2.7) for one dimensional reduction. The physical

model is as follows: suppose there is an elastic porous media filled with an incompressible

fluid, positioned inside a perfectly slippery one-dimensional pipe with a circular cross-

section. The elastic media has a muscle inside which can contract and expand. Since the

space occupied by the muscle is fixed in space, its back-to-labels map is a diffeomorphism

of the form X(t, ) : [−L,L] → [−L,L], X = X(t, x). The fluid can leave or enter the

muscle hence its back-to-labels map is an embedding Y (t, ) : [−L,L]→ R, Y = Y (t, x).

Equation (4.2.11) for solid and fluid become simply

Xt(t, x) = −Xx(t, x)us(t, x) , Yt(t, x) = −Yx(t, x)uf (t, x). (4.2.12)

Using the assumption of the Darcy law of friction in one dimension, we derive the one-

dimensional version of (4.2.7) as

ρ̄0
f (∂tuf + uf∂xuf ) = −∂xp+

1

g
K(us − uf )

ρs(∂tus + us∂xus) = g∂xp+ ∂x (σe + s̄)+K(uf − us)
∂V

∂v
= pc(b), g = c(b)v

∂tg + ∂x(guf ) = 0, ∂tρs + ∂x(ρsus) = 0, ∂tb+ £usb = 0 .

(4.2.13)

In one dimension, the Finger tensor becomes simply

b(t, x) = (Xx(t, x))−2. (4.2.14)

The densities g and ρs with reference values g0(X) and ρ0
s(X) are expressed as

ρs(t, x) = ρ0
s(X(t, x))Xx(t, x) and g(t, x) = g0(X(t, x))Xx(t, x) . (4.2.15)
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The third equation in (4.2.13) expresses p as an explicit function of v and b hence from

(4.2.14) the pressure becomes a function p = p(Xx, v). Since v = g/c(b) from the fourth

equation in (4.2.13), we obtain explicitly the pressure as a function p = p(Xx, g). In one

dimension, the elastic stress tensor (4.2.8) is

σe = 2
∂V

∂b
(b, v)b+ V (b, v). (4.2.16)

From (4.2.14) and v = g/c(b), we get an explicit expression

σe = σe(Xx, g).

4.2.2 A reduction of the equation of motion for Lagrangian
variables

We now show how to reduce the system (4.2.13) to two coupled PDEs for the two

variables describing the Lagrangian coordinates of the solid and fluid. Suppose that at

t = 0, the state is non-deformed so X(0, x) = x and ρs(0, x) = ρ0
s for all x, where ρ0

s is

the reference density of the porous media assumed to be a constant in space. Thus from

the first equation in (4.2.15), we have

ρs(t, x) = ρ0
sXx(t, x) . (4.2.17)

Similarly, we also assume that at t = 0, the fluid is undisturbed, Y (0, x) = x and

g(0, x) = g0, for some constant g0. From the second equation in (4.2.15), we have

g(t, x) = g0Yx(t, x) . (4.2.18)

On the other hand, the velocities can also be expressed from (4.2.12) as

us = −Xt

Xx

, uf = − Yt
Yx

. (4.2.19)

We also note that since the pressure depends on Xx and g, from (4.2.18) we have

p = p(Xx, g) = P (Xx, Yx) (4.2.20)

a given function of (Xx, Yx).

Substitution of (4.2.19) together with (4.2.17) and (4.2.18) into the first two equations

of (4.2.13) gives a closed system of two coupled PDEs for the back-to-labels maps X
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and Y :

ρ̄0
fg0

(
−Ytt + 2

YtYtx
Yx
− Y 2

t Yxx
Y 2
x

)
= −g0Yx∂x

(
P (Xx, Yx)

)
+K

(
Yt
Yx
− Xt

Xx

)
ρ0
s

(
−Xtt + 2

XtXtx

Xx

− X2
tXxx

X2
x

)
= g0Yx∂x

(
P (Xx, Yx)

)
+ ∂x

(
σe(Xx, Yx) + s

)
+K

(
Xt

Xx

− Yt
Yx

)
.

(4.2.21)

In addition to lowering the number of equations, in our opinion equation (4.2.21) is

easier to implement than its Eulerian version since in nature, one would expect the

muscle stress to be a function of the Lagrangian variable of the solid X, i.e., a given

muscle fiber, rather than the spatial coordinate x, so s = s(X, t). It can be written as an

explicit function of x only for given solution X(t, x), which is awkward from the point

of view of numerical solution, as the last equation of (4.2.13) describing evolution of X

has to be explicitly computed at every time step. In the formulation (4.2.21), where the

equation is formulated in terms of back-to-labels maps (X, Y ), specifying s = s(X, t) to

be a given function of X does not present any fundamental problem for implementing

the numerical solution.

Remark 4.2.2 (Conservation of total momentum) The total momentum of the

fluid is Mf =
∫ L
−L ρ̄

0
fgufdx = −

∫ L
−L ρ̄

0
fg0Ytdx, and the total momentum of the solid

is Ms =
∫ L
−L ρsusdx = −

∫ L
−L ρsXtdx. Then, the total fluid+solid momentum

M =

∫ L

−L

(
ρ̄0
fguf + ρsus

)
dx = −

∫ L

−L

(
ρ̄0
fg0Yt + ρ0

sXt

)
dx

is conserved for periodic boundary conditions. Indeed,

Ṁ =

∫ L

−L

(
−2ρ0

s

XtXtx

Xx

+ ρ0
s

X2
tXxx

X2
x

−2ρ̄0
fg0

YtYtx
Yx

+ ρ̄0
fg0

Y 2
t Yxx
Y 2
x

+ ∂x (σe + s)

)
dx

=

∫ L

−L
∂x

(
−ρ0

s

X2
t

Xx

− ρ̄0
fg0

Y 2
t

Yx
+ σe + s

)
dx

=

∫ L

−L
∂x
(
−ρsu2

s − ρ̄0
fgu

2
f + σe + s

)
dx

=
[
− ρsu2

s − ρ̄0
fgu

2
f + σe + s

]L
−L .

(4.2.22)
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The boundary terms vanish for periodic boundary conditions. For other cases, for exam-

ple, fixed boundary conditions for the solid, us(±L, t) = 0, the conservation of momen-

tum depends on the cancellation of the fluid momentum through the boundary, elastic

stress and muscle stress contributions in the boundary term of (4.2.22).

4.2.3 Numerical solution of the equations (4.2.21)

Choice of potential. For the numerical solution, we postulate the following choice of

potential energy:

V (Xx, g) =
1

2
α (Xx − 1)2 +

1

2
β
(
g + (1− g0)Xx − 1

)2
. (4.2.23)

The terms have the following physical sense: the expression proportional to α corre-

sponds to the linear elasticity term (Hooke’s law), the second term, proportional to β, is

the difference of g and the “totally-incompressible porosity”, a quantity, that would be

equal to the porosity in the case if the solid was totally incompressible. The potential

energy “penalizes” changes in microscopic volume of the solid.

Remark 4.2.3 Note that (4.2.23) is the physical description of the potential as a func-

tion of Xx and g, consistent with our description V = V (b, v) in general case. For

initially uniform system, using g = g0Yx we can express V as

V (Xx, Yx) =
1

2
α (Xx − 1)2 +

1

2
β
(
g0Yx + (1− g0)Xx − 1

)2
(4.2.24)

in terms of Xx and Yx, the latter related to the state of fluid. However, we do not assume

that the potential energy of the solid is dependent on the state of the fluid here, it is

an inference based on the properties of the solution. Thus, the potential energy defined

by (4.2.23) depends only on the properties of the solid, consistent with our description.

This is in contrast, for example, with works [68], [69] where the energy of the porous

media is dependent on the states of fluid and solid. The expression (4.2.24) provides

a formal connection between two approaches, as the solid energy formally depends on

the state of the fluid after the substitution g = g0Yx, even though the physics of two

approaches is quite different.

In order to compute the associated stress σ0 and pressure p, we need to express V

as a function V (b, v). Recalling that in one dimension, b = X−2
x , and using

g = c(b)v =
c0√
b
v
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we can rewrite (4.2.23) as

V (b, v) =
α

2

(
1√
b
− 1

)2

+
β

2

(
c0v√
b

+
1− g0√

b
− 1

)2

. (4.2.25)

Now we are able to compute the stress terms from (4.2.16) as follows

σe = 2b
∂

∂b
V (b, v) + V (b, v)

=

(
1− 1√

b

)
− β√

b
(c0v + 1− g0)

(
−1 +

c0v√
b

+
1− g0√

b

)
+ V (b, v)

=
α

2

(
1− 1

b

)
− β

2b

(
−b+ (c0v + (1− g0))2

) (4.2.26)

and the pressure is found as

pc(b) =
∂V

∂v
=

β√
b
c0

(
−1 +

c0v√
b

+
1− g0√

b

)
. (4.2.27)

Substituting b = X−2
x and c0v = g

√
b = g0YxX

−1
x in (4.2.26) and (4.2.27) yields σe and

p as functions of Xx and Yx as

σe(Xx, Yx) = −α
2

(X2
x − 1)− β

2

(
(Xx(1− g0) + Yxg0)2 − 1

)
(4.2.28)

p(Xx, Yx) = βg0 (g0Yx + (1− g0)Xx − 1) . (4.2.29)

We will use also the formula

∂xσe = −αXxXxx − β (g0Yx + (1− g0)Xx) (g0Yxx + (1− g0)Xxx) .

For simulations, it is useful to define ξ(t, x) and φ(t, x) such that

X(t, x) = x+ ξ(t, x), Y (t, x) = x+ φ(t, x) . (4.2.30)

Then V is a quadratic, positive definite function of (ξx, φx), as expected:

V (ξx, φx) =
1

2
αξ2

x +
1

2
β
(
g0φx + (1− g0) ξx

)2
. (4.2.31)

For the temporally and spatially bound muscle stress, we take

s(t,X) = S0e
−t/T−X2/W 2

, (4.2.32)

where S0, T and W are the given parameters of amplitude, time scale and width of

applied muscle stress.
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Discretization. Let us consider the system (4.2.21) on a finite space interval x ∈

[−L,L]. We discretize the system by considering theN+2 discrete data points {x0, . . . xN+1},

with x0 = −L and xN+1 = L. We assume, for simplicity, a uniform discretization step

h = xi+1 − xi.

There are several types of boundary conditions: fixed, free or periodic. Let us for

simplicity assume that the total extent of the x-domain occupied by the system is fixed,

due to implemented boundary conditions holding the elastic material in a fixed place

in space and not preventing the escape of fluid. Hence regarding the discretization of

X(t, x) we assume X(t,−L) = X1(t) = −L and X(t, L) = XN+1(t) = L. Since X0 and

XN+1 do not have any dynamics, we only consider the dynamics of X1, X2, . . . XN . Then,

if the outflow of fluid from the boundaries is blocked, then we will have Y (t,−L) = −L

and Y (t, L) = L. If there is a fluid outflow from the boundaries, the nature of the

boundary conditions will depend on many factors, i.e. the need to overcome external

pressure of the outside fluid, and the exact nature of the outflow. Thus, even for the

fixed boundary conditions for the solid, the setting of boundary conditions for the fluid

is non-trivial. The simplest ones are periodic boundary conditions, where ξ = X−x and

φ = Y − x are periodic with period 2L. We shall thus use periodic boundary conditions

in our simulations.

For periodic boundary conditions, (Xx, Xt, Yx, Yt) and their spatial derivatives are

periodic function in x with the period 2L. The forward ∆f
i and backward ∆b

i derivatives

of any periodic function F for the periodic boundary conditions is
∆f
i F =

Fi+1 − Fi
h

, 1 ≤ i < N, ∆f
NF = ∆f

1F

∆b
iF =

Fi − Fi−1

h
, 1 < i ≤ N, ∆b

1F = ∆b
NF .

(4.2.33)

Then, we can approximate the first derivative by ∆0
i = (∆f

i +∆b
i)/2 and second derivative

by ∆2
i = ∆f

i ∗∆b
i .

The results for numerical solution for (ξ, φ) with periodic boundary conditions are

presented on Figure 4.2.1. An initial disturbance caused by the muscle action on the

matrix in the center of the elastic body is propagating along the matrix, both for fluid

and for elastic material, although the shape of wave propagation is different.
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Figure 4.2.1: Example of numerical solution of (4.2.21). Left panel: solution for
ξ(t, x) = X(t, x) − x (solid), right panel: η(t, x) = Y (t, x) − x (fluid). For simulations
presented here, the parameters for the stress in (4.2.32) are S0 = 0.1, W = 1, T = 1.
The material parameters are g0 = 0.5, K = 1 and α = 1, β = 1 in (4.2.23).
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4.2.4 Self-propulsion by periodic motion of the stress

Let us now consider periodic boundary conditions, ξ(t, x+2L) = ξ(t, x) and φ(t, x+2L) =

φ(t, x), with ξ(t, x) = X(t, x) − x and φ(t, x) = Y (t, x) − x, and also consider the case

when there is a periodic motion of the muscle’s stress along the porous media. More

precisely, let us consider the prescribed motion of the muscle stress in the form

s(t,X) = S0e
−(X−Ut)2per/W 2

,

(X − Ut)per := (X − Utmod 2L)− L.
(4.2.34)

One can also express (4.2.34) by saying (X − Ut)per is a periodic function of X with

the same period as X, with the values contained in the interval between −L and L.

Another interesting problem is to see if a periodic in time and space muscle stress along

the porous body can create self-propulsion of the elastic matrix. Of course, due to the

conservation of momentum given in Remark 4.2.2, equation (4.2.22), it is not possible

to accelerate both the fluid and solid in the same direction. However, it is possible to

have opposite, and non-zero net momenta of solid and fluid, as shown on Figure 4.2.2.

One can see that the amplitude of the net momentum is quite small.

One could conjecture that the system is converging to a traveling wave solution,

with small persistent oscillations about a steady state as illustrated on Figure 4.2.2. In

the steady scenario, the average power of muscle stress balances the dissipation due to

friction forces. Presumably, for biological applications, organisms would optimize the

efficiency of motion and not smoothness. Thus, while considerations of traveling wave

solutions are certainly possible, we will skip them here as they have, in our opinion,

limited value for applications.

4.3 Equations for the case when both the fluid and

the solid are incompressible

4.3.1 Physical justification and derivation of equations

From the physical point of view we may notice that for many biological materials the

bulk modulus K has the same order of magnitude or sometimes higher than the bulk

modulus of water (2.2 GPa). The physics of this effective incompressibility can be

understood from the fact that the elastic matrix consists of cells which are en large
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Figure 4.2.2: Momenta for solid Ms = −ρ0
s

∫ L
−LXtdx (blue line) and fluid Mf =

−ρ̄0
fg0

∫ L
−L Ytdx (red line) and total momentum M = Mf + Ms (black line) for a given

numerical solution with zero initial conditions and prescribed traveling muscle force
given by (4.2.34) with parameters S0 = 1, W = 1 and U = 1. The total momentum
Ms + Mf is close to 0 with expected accuracy throughout the simulation, starting at
10−6 and increasing to a fraction of 10−5 during the computation presented.
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composed of incompressible water. Thus, the porous matrix can be effectively treated

as incompressible elastic material. Physically, if we select an arbitrary region in porous

media filled with fluid and ’lock’ the fluid inside the porous matrix by an impermeable

flexible membrane, the volume of such region shall not change under the assumption of

total incompressibility. We can express the incompressibility of the solid as follows

1− g(t,x) = (1− g0)
(
Ψ−1(t,x)

)
JΨ−1(t,x). (4.3.1)

Notice the similarity with the incompressibility of fluid given by (2.2.10). One way to

include the incompressibility of the solid given in (4.3.1) is by adding an extra term

in the action enforcing this condition with a Lagrange multiplier. There is although a

simpler way to reach the answer. We differentiate (4.3.1) with respect to time to get

∂t(1− g) + div
(
(1− g)us

)
= 0. (4.3.2)

(compare with (2.2.11) and (2.2.13)) which can be written as

div(guf + (1− g)us) = 0 . (4.3.3)

Since the constraint on the velocities is holonomic, we can also infer the following rela-

tionship between the variations ηs and ηf

div
(
gηf + (1− g)ηs

)
= 0 . (4.3.4)

We introduce a Lagrange multiplier µ for (4.3.4) and add it to the action S in (2.2.19)

as

SI = S −
∫ T

0

∫
B
µ div(gηf + (1− g)ηs)d

3x dt

= S +

∫ T

0

∫
B

(
g∇µ · ηf + (1− g)∇µ · ηs

)
d3x dt .

(4.3.5)

The Lagrange-d’Alembert principle with friction forces applied to SI reads, similarly to

(4.2.2),

δSI +

∫ T

0

∫
B

(
F f · ηf + F s − s̄ : ∇ηs · ηs

)
d3x dt = 0 (4.3.6)
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and yields the system

∂t
δ`

δuf
+ £uf

δ`

δuf
= g∇

(
δ`

δg
− (p+ µ)

)
+ F f

∂t
δ`

δus
+ £us

δ`

δus
= −(1− g)∇µ+ ρs∇

δ`

δρs

+

(
δ`

δb
+ pv

∂c

∂b

)
� b+ div s+ F s

δ`

δv
= −pc(b) , g = c(b)v

∂tg + div(guf ) = 0 , ∂tρs + div(ρsus) = 0 , ∂tb+ £usb = 0

∂t(1− g) + div((1− g)us) = 0 ⇒ div(guf + (1− g)us) = 0 .

(4.3.7)

Using the physical Lagrangian (2.2.18), the expanded form of totally incompressible

equations of motion becomes

ρ̄0
f (∂tuf + uf · ∇uf ) = −∇(p+ µ) +

1

g
F f

ρs(∂tus+us · ∇us) = g∇p− (1− g)∇µ

+∇
(
V − ∂V

∂v
v

)
+ div(σp + s) + F s

∂V

∂v
= pc(b), g = c(b)v

∂tg + div(guf ) = 0, ∂tρs + div(ρsus) = 0, ∂tb+ £usb = 0,

div(guf + (1− g)us) = 0 .

(4.3.8)

As before, under the assumptions leading to the concentration dependence c = c0/
√

det b

given by (2.2.9), the solid momentum equation in (4.3.8) simplifies further to

ρs(∂tus+us · ∇us) = g∇p− (1− g)∇µ+ div (σe + s̄) + F s (4.3.9)

with σe the elastic stress given in (4.2.8).

Note that in the above equations, the pressure, while being a Lagrange multiplier

for the fluid incompressibility condition, is actually specified due to the δv condition,

i.e., the third equation of (4.3.8) for the pressure, exactly as in (2.2.36) and (4.2.4). In

contrast, µ, the Lagrange multiplier for the incompressibility of elastic matrix, does not

have an explicit expression and must be found so the solution satisfies the last equation

of (4.3.8). The equation for µ can be derived explicitly by taking a time derivative of
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the last equation of (4.3.8). For simplicity, let us rewrite the equations for velocities uf

and us as

∂tuf = Rf −
1

ρf
∇µ , ∂tus = Rs −

1− g
ρs
∇µ , (4.3.10)

where Rf,s are the right-hand sides of the fluid and solid equations excluding the µ-

term, which depend on the variables (uf ,us, b, g, ρs) but not on their time derivatives.

Differentiating the last equation of (4.3.8) with respect to time, we obtain

div

[(
g

ρ̄0
f

+
(1− g)2

ρs

)
∇µ

]
= div

(
− div(guf )(uf − us) + gRf + (1− g)Rs

) (4.3.11)

which is an elliptic equation for µ, reminding of the regular pressure equation in a

fluid. It is also useful to interpret the equation for the fluid pressure p in the doubly

incompressible media. When interpreting the physical nature of the potential energy

V = V (b, v), one notices that if the solid is incompressible as well, then v is no longer

a free variable, but has a dynamics slaved to that of b which, in the simplest case of

uniform initial conditions, is written as v = v(b), so V (b, v) = V (b, v(b)) = W (b). Thus,

the equation for the fluid pressure seemingly would give p = 0 since W (b) does not

depend on v. That conclusion, however, would be incorrect. One has to first write the

expression for the potential energy in terms of the microscopic volume v, and only then

connect v to the Finger tensor b after taking the derivative in the pressure equation.

Thus, in general, the pressure in the fluid is not going to vanish. While this approach

requires careful consideration, in our opinion, it does have merit since it is easier to

compute V (b, v) from general principles and then substitute v = v(b). If one insists on

using the expression for potential energy W = W (b) = V (b, v(b)) then one needs to

accurately compute the derivatives of W (b) as a complex function of b, leading to the

same terms as in (4.3.8).

We shall further note that equations (4.3.8), while correct, are somewhat difficult

to interpret physically because of the presence of two pressures, p and µ being the

Lagrange multipliers for incompressibility of fluid and solid, respectively. With these

two pressures, the interpretation of Terzaghi’s principle of equating pressures within the

matrix and the fluid becomes non-apparent.
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4.3.2 Alternative derivation emphasizing the physical nature
of pressure

We give an alternative derivation which will allow elucidating the physical meaning

behind the pressure-like terms coming from the Lagrange multipliers. We show that

these multipliers are related to the physical pressure in the fluid. While the resulting

equations are the same as derived above, we believe that this derivation is useful since

it appeals to the physical meaning behind the quantities, and not just their formal

mathematical origin. Moreover, the derivation presented in this Section will be useful

for further studies of thermodynamic effects in porous media which will be undertaken

in follow-up work. Let us start by introducing the actual densities of the material

ρf :=
ρf
g
, ρs :=

ρs
1− g

. (4.3.12)

These densities correspond to the physical density of the fluid or the matrix, taken by

themselves, for example, water only, or the elastic matrix with all voids filled with the

same material as the matrix itself. Next, the fluid and solid specific internal energy

should depend only on the combinations ρf and ρs, respectively, and not, for example,

on the densities and g. In addition, the internal energy of the solid should also depend

on the Finger deformation tensor b. Therefore, we put the specific internal energies of

the fluid and solid to be Ef = Ef (ρf ) and Es = Es(ρs, b) and take the Lagrangian

`(uf ,us, ρf , ρs, b, g) =

∫
B

[1

2
ρf |uf |2 +

1

2
ρs|us|2

− ρfEf (ρ̄f )− ρsEs(ρ̄s, b)
]
d3x.

(4.3.13)

Recall that the specific internal energy is the energy density per mass. Since the mass

of the solid is proportional to the local density, we have dms = ρsdx, so the energy

density per volume is then Vs = ρsEs(ρ̄s, b), and not, for example, V 6= ρ̄sEs. Similar

consideration also applies to the fluid, with the energy density per volume is Vf =

ρfEf (ρ̄f ).

The case of fluid and matrix both being compressible. Neglecting the thermal

effects, this is the simplest case to consider. The action is defined as

S =

∫ T

0

`(uf ,us, ρf , ρs, b, g)d3x dt (4.3.14)
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and we use the Lagrange-d’Alembert principle (4.2.2)

δS +

∫ T

0

∫
B

(
F f · ηf + F s · ηs − s̄ : ∇ηs

)
d3x dt = 0 . (4.3.15)

Here the variation δg is arbitrary and the variations of the other variables (δuf , δus, δρs, δρf )

are given by
δuf = ∂tηf + uf · ∇ηf − ηf · ∇uf

δus = ∂tηs + us · ∇ηs − ηs · ∇us

δρs = − div(ρsηs)

δρf = − div(ρfηf )

δb = −£ηs
b .

(4.3.16)

The variation with respect to g is particularly interesting and gives

ρ2
f

∂Ef
∂ρf
− ρ2

s

∂Es
∂ρs

= 0 ⇒ ρ2
f

∂Ef
∂ρf

= ρ2
s

∂Es
∂ρs

=: P . (4.3.17)

Thus, from the variation with respect to g we obtain that the thermodynamic pressure

in the fluid and solid are equal. The equations of motion are thus:

ρf (∂tuf + uf · ∇uf ) = −g∇
(
ρ̄2
f

∂Ef
∂ρ̄f

)
+ F f

ρs(∂tus + us · ∇us) = −(1− g)∇
(
ρ̄2
s

∂Es
∂ρ̄s

)
+2 div

(
ρs
∂Es
∂b
· b
)

+ div s̄+ F s

∂tρf + div(ρfuf ) = 0, ∂tρs + div(ρsus) = 0, ∂tb+ £usb = 0

ρ̄2
f

∂Ef
∂ρ̄f

= ρ̄2
s

∂Es
∂ρ̄s

=: P .

(4.3.18)

The variable g is determined in terms of the other variables from the last equality, which

can be written as a condition g = g(ρf , ρs, b).

The case of a compressible solid and incompressible fluid. In this case, we need

to augment the action principle by adding the fluid incompressibility condition with a

Lagrange multiplier pf . The Lagrange-d’Alembert principle now reads

δ

∫ T

0

[
`(uf ,us, ρf , ρs, b, g) +

∫
B
pf

(
g − (g0 ◦ ϕ−1

f )Jϕ−1
f

)
d3x

]
dt

+

∫ T

0

∫
B

(
F f · ηf + F s · ηs − s̄ : ∇ηs

)
d3x dt = 0 ,

(4.3.19)
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with arbitrary variations δg and δpf , the same Lagrangian (4.3.13) as before and varia-

tions of other variables given by (4.3.16). This yields the following system:

ρf (∂tuf + uf · ∇uf ) = −g∇
(
ρ̄2
f

∂Ef
∂ρ̄f

)
− g∇pf + F f

ρs(∂tus + us · ∇us) = −(1− g)∇
(
ρ̄2
s

∂Es
∂ρ̄s

)
+2 div

(
ρs
∂Es
∂b
· b
)

+ div s̄+ F s

∂tρf + div(ρfuf ) = 0, ∂tρs + div(ρsus) = 0, ∂tb+ £usb = 0

∂tg + div(guf ) = 0

ρ̄2
f

∂Ef
∂ρ̄f

+ pf = ρ̄2
s

∂Es
∂ρ̄s

=: P .

(4.3.20)

Note the difference between the last equality in (4.3.20) and that of system (4.3.18).

Note also that with the last equality, the first two equations of motion for fluid can be

written as
ρf (∂tuf + uf · ∇uf ) = −g∇P + F f

ρs(∂tus + us · ∇us) = −(1− g)∇P + 2 div

(
ρs
∂Es
∂b
· b
)

+ div s̄+ F s ,
(4.3.21)

with P = ρ̄2
s
∂Es

∂ρ̄s
. Hence the first six equations in (4.3.20), in which the first two equations

are rewritten as (4.3.21) with P = ρ̄2
s
∂Es

∂ρ̄s
, can be solved for the six variables uf , us, ρf ,

ρs, b, g. Then pf is found from the last equality pf = ρ̄2
s
∂Es

∂ρ̄s
− ρ̄2

f
∂Ef

∂ρ̄f
.

This shows that the internal energy of the fluid ρfEf (ρ̄f ) can be neglected in the

Lagrangian without affecting the dynamics. Furthermore, notice that from the ρf and

g equations, we get ∂tρ̄f +uf · ∇ρ̄f = 0, so ρ̄f is a constant, if it is a constant ρ̄0
f at the

initial time t = 0. This corresponds to the case of a homogeneous incompressible fluid.

As we will show below, the link with our variable v describing internal volume, used

in (2.2.18), is

κv = vs − v̄s =
1

ρs
− 1

ρ̄s
, (4.3.22)

where the constant κ is given by κ = c0/ρ
0
s. Thus, the volume v introduced in Section 2.2

is proportional to the effective specific volume of solid vs minus the microscopic specific

volume of solid v̄s. Note that vs and v̄s defined in (4.3.22) have the dimensions of inverse

density, with the physical meaning of available free volume per mass. As we shall also

explain below, in this description ρs(b) takes place of the concentrations of pores c(b)

with the relation c(b) = κρs(b).
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The case when both fluid and solid are incompressible. In this case, we take

the Lagrange-d’Alembert action principle to be enforcing both the incompressibility of

the fluid and the solid using the Lagrange multipliers pf and ps as

δ

∫ T

0

[
`(uf ,us, ρf , ρs, b, g) +

∫
B
pf

(
g − (g0 ◦ ϕ−1

f )Jϕ−1
f

)
d3x

+

∫
B
ps
(
(1− g)− ((1− g0) ◦ ϕ−1

s )Jϕ−1
s

)
d3x

+

∫
B

(
F f · ηf + F s · ηs − s̄ : ∇ηs

)
d3x

]
dt = 0 ,

(4.3.23)

with arbitrary variations δg, δpf , and δps, and the same Lagrangian (4.3.13) as before.

We get the following system of equations:

ρf (∂tuf + uf · ∇uf ) = −g∇
(
ρ̄2
f

∂Ef
∂ρ̄f

)
− g∇pf + F f

ρs(∂tus + us · ∇us) = −(1− g)∇
(
ρ̄2
s

∂Es
∂ρ̄s

)
− (1− g)∇ps

+2 div

(
ρs
∂Es
∂b
· b
)

+ div s̄+ F s

∂tρf + div(ρfuf ) = 0, ∂tρs + div(ρsus) = 0, ∂tb+ £usb = 0

∂tg + div(guf ) = 0, ∂t(1− g) + div((1− g)us) = 0

ρ̄2
f

∂Ef
∂ρ̄f

+ pf = ρ̄2
s

∂Es
∂ρ̄s

+ ps =: P .

(4.3.24)

The last equation, obtained from the variations δg, defines the effective pressure P

expressed in terms of two Lagrange multipliers (pf , ps) enforcing the incompressibility

of fluid and solid, respectively. We note that we can rewrite the system in an equivalent

way as

ρf (∂tuf + uf · ∇uf ) = −g∇P + F f

ρs(∂tus + us · ∇us) = −(1− g)∇P

+2 div

(
ρs
∂Es
∂b
· b
)

+ div s̄+ F s

∂tρf + div(ρfuf ) = 0, ∂tρs + div(ρsus) = 0, ∂tb+ £usb = 0

∂tg + div(guf ) = 0

div(guf + (1− g)us) = 0

ρ̄2
f

∂Ef
∂ρ̄f

+ pf = ρ̄2
s

∂Es
∂ρ̄s

+ ps = P .

(4.3.25)

The pressure P appearing in the first two equations is computed from the elliptic equa-

tion deduced from taking the time derivative of the next to last equation of (4.3.25)
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which is the incompressibility constraint. The Lagrange multipliers pf and ps are then

computed from the last equation. As earlier, the internal energy of the fluid can be

neglected without changing the dynamics. From the ρf , ρs, g and g − 1 equations, we

get ∂tρ̄f + uf · ∇ρ̄f = 0 and ∂tρ̄s + us · ∇ρ̄s = 0, so ρ̄f , ρ̄s are constant, if they are

constant at the initial time t = 0:

ρ̄f = ρ̄0
f = const, ρ̄s = ρ̄0

s = const . (4.3.26)

This corresponds to the case when both the incompressible fluid and solid are homoge-

neous.

Remark 4.3.1 (On the mixture of N incompressible materials) The variational

approach presented above generalizes to a mixture of N incompressible or compressible

fluids and solids, e.g. if a single incompressible matrix is filled with N−1 incompressible

fluids like oil and water, or incompressible water and compressible air. In that case, we

just consider g1, ..., gN with g1 + ...+ gN = 1 and as many constraints pk(...) as there are

incompressible components.

Relation with the previous variational derivation. We shall now relate the vari-

ational treatment carried out in this paragraph with that of §4.2 and §4.3.1 which uses

c(b) and v. We focus on the concentration dependence given in (2.2.9). We start with the

case of a compressible solid filled with an incompressible fluid and show that equations

(4.2.7) reduce to (4.3.20) when V and Es are related as

V (b, v) = ρs(b)Es(ρ̄s(b, v), b)

ρ̄s(b, v) =
ρs(b)

1− ρs(b)κv
, or κv =

1

ρs
− 1

ρ̄s
,

(4.3.27)

with κ = c0/ρ
0
s. Then c(b) and ρs(b) take the form

c(b) =
c0

√
det b

, ρs(b) =
ρ0
s√

det b
(4.3.28)

hence they are related as

c(b) = κρs(b). (4.3.29)

Additionally, ρf in (4.3.20) defined by ρf := ρ̄0
fg. As we have seen, we can assume

Ef = 0 without loss of generality. Using the formulas

∂ρs
∂b
· b = −1

2
ρs and

∂ρ̄s
∂b
· b = −1

2

ρ̄2
s

ρs
,

92



we have the relations

σe = 2
∂V

∂b
· b+ V Id = −ρ̄2

s

∂Es
∂ρ̄s

Id + 2ρs
∂Es
∂b
· b and

∂V

∂v
= κρsρ̄

2
s

∂Es
∂ρ̄s

. (4.3.30)

From the second relation in (4.3.30), the third equation in (4.2.4) and (4.3.29) yield

p = ρ2
s
∂Es

∂ρ̄s
and then using the first relation in (4.3.30) and ρf := ρ̄0

fg, we obtain that the

two momentum equations in (4.2.7) reduce to those of (4.3.20). The equations for ρs, g,

and b coincide while the equation for ρf in (4.3.20) follows from the definition ρf := ρ̄0
fg

and the equation for g. In particular, we have the relations p = ρ2
s
∂Es

∂ρ̄s
= pf = P between

the pressures appearing in (4.2.7) and (4.3.20) (recall that Ef = 0 here).

The case when both the solid and fluid are incompressible, i.e. the relation between

equations (4.3.8) and (4.3.25) is shown in a similar way. In this case the pressures are

related as pf = P = p+ µ and ps = µ (recall again that Ef = 0 here).

Remark 4.3.2 (On neglecting internal energies in the incompressible case) We

have seen in the above calculation that in the incompressible case, the internal energy

of the fluid can be neglected, i.e. we can set Ef = 0. One could therefore be tempted to

conclude that in the case of an incompressible solid and fluid, the corresponding spatial

derivatives ∂Es

∂ρ̄s
can be neglected as well. Setting

∂Ef (ρ̄f )

∂ρ̄f
= 0 ,

∂Es(ρ̄s, b)

∂ρ̄s

?
= 0 (4.3.31)

in the last equation of (4.3.25) yields simply pf = ps which gives, in the notation above,

µ = P and p = 0. That assumption, however, is incorrect due to (4.3.30). This is true

even when the solid is incompressible, and ρ̄s is an advected quantity, and thus can be

a constant in space. However, setting the partial derivative of Es(ρ̄s, b) with respect to

ρ̄s to zero in (4.3.31) is incorrect, even in that case, since Es depends additionally on b.

The derivatives
∂Ef

∂ρ̄f
or ∂Es

∂ρ̄s
can be dropped only if there is no dependence of Ef or Es

on other quantities, like coordinates or, in our case, Finger’s deformation tensor b. In

our case, the derivative of Es with respect to ρ̄s has to be taken first and then evaluated

at the physically relevant value ρ̄s, leading, in general, to pf 6= ps in the last equation of

(4.3.25). In general, the internal energies of either fluid Ef or solid Es cannot be dropped

if there is a dependence of the variables, such as b in our case, or the coordinates x.

An explicit dependence on coordinates for fluid Ef and solid Es energies appears, for
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example, from the introduction of the effects of gravity for fluid and solid, leading to

terms proportional to the vertical coordinate x3 for both fluid and solid. In that case,

neither
∂Ef

∂ρ̄f
nor ∂Es

∂ρ̄s
can be neglected in (4.3.25).

4.3.3 Reduction for 1D motion

In what follows, we shall proceed with further simplification of equation (4.3.8), see

also (4.3.25), to one dimension and its subsequent numerical analysis. We follow the

derivation of (4.2.21) applied now to the doubly incompressible system (4.3.8), with the

solid momentum equation given in (4.3.9), which leads to

ρ̄0
fg0

(
−Ytt + 2

YtYtx
Yx
− Y 2

t Yxx
Y 2
x

)
= −g0Yx∂x(p+ µ) +K

(
Yt
Yx
− Xt

Xx

)
ρ0
s

(
−Xtt + 2

XtXtx

Xx

− X2
tXxx

X2
x

)
= g0Yx∂xp− (1− g0Yx)∂xµ

+ ∂x (σe(Xx, Yx) + s) +K

(
Xt

Xx

− Yt
Yx

)
∂x

(
g0Yt + (1− g0Yx)

Xt

Xx

)
= 0, p =

1

c(b)

∂V

∂v
, b = X−2

x

(4.3.32)

where, as before, σe := 2∂V
∂b
b+V is the elastic stress tensor reduced to the 1-dimensional

case.

The last equation of (4.3.32) follows from the last equation of (4.3.8) since g = g0Yx

by the incompressibility of fluid (2.2.10) in one dimension. We can further use the

reduction of solid incompressibility (4.3.1) to one dimension to get

1− g = 1− g0Yx = (1− g0)Xx , (4.3.33)

so the last equation of (4.3.38) reduces to

∂x ((1− g0)Xt + g0Yt) ⇒ (1− g0)Xt + g0Yt = C(t), (4.3.34)

where the integration ’constant’ in the right hand side can depend on time.

One can see that the net momentum defined as

M :=

∫ L

−L

(
ρ̄0
fguf + ρsus

)
dx = −

∫ L

−L

(
ρ̄0
fg0Yt + ρ0

sXt

)
dx
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is still conserved:

Ṁ = −
∫ L

−L

(
ρfg0Ytt + ρ0

sXtt

)
dx

=

∫ L

−L
∂x

(
−ρ0

s

X2
t

Xx

− ρ̄0
fg0

Y 2
t

Yx
− p+ σe + s

)
dx

=

(
−ρ0

s

X2
t

Xx

− ρ̄0
fg0

Y 2
t

Yx
− p+ σe + s

) ∣∣∣∣L
−L

,

(4.3.35)

provided the boundary conditions are periodic, or chosen in such a way that the boundary

terms in (4.3.35) vanish.

Using the initial conditions for the Lagrangian variables X(t = 0, x) = x and Y (t =

0, x) = x, we obtain a connection between the Lagrangian variables for all x and time

(1− g0)X(t, x) + g0Y (t, x) = D(t) + x , D(t) =

∫ t

0

C(s)ds . (4.3.36)

This connection between the Lagrangian variables in porous media is, in our opinion,

quite unexpected, as we started with the spatial description of the dynamics and the

incompressibility.

To proceed, we also need to compute the pressure p which can be done from the

double incompressibility condition, i.e., the last equation of (4.3.32). We rewrite the

first two equations of that system as

Xtt = RX +
1− g0Yx

ρ0
s

∂xµ , Ytt = RY +
Yx
ρ̄0
f

∂xµ . (4.3.37)

where RX and RY are the right-hand sides of the corresponding equations (4.3.32)

without the p terms. Differentiating equation (4.3.34) with respect to time gives[
Yxg0

ρf
+ (1− g0)

(1− g0Yx)

ρ0
s

]
µx = − (g0RY + (1− g0)RX) + C ′(t) , (4.3.38)

from which we express µx as

µx(Xt, Xx, Xxt, Yx, Yxt, RX , RY , C
′(t); g0, ρ

0
s, ρf ) = −A+ C ′(t)B with

A :=
g0RY + (1− g0)RX

Yxg0
ρf

+ (1− g0) (1−g0Yx)
ρ0s

, B :=
1

Yxg0
ρf

+ (1− g0) (1−g0Yx)
ρ0s

.
(4.3.39)

Note that (4.3.39) is the one-dimensional analogue of (4.3.11) which also uses (4.3.34)

for the definition of C(t).

The solution for µx computed from the condition (4.3.38) can be put back into the

first two equations of (4.3.32) to form a closed system in terms of (X, Y,Xt, Yt) and its
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spatial derivatives. The value of C ′(t) is computed in such a way that the mean value

of µx is zero for periodic boundary conditions, which gives:

C ′(t) =

∫ L
−LAdx∫ L
−L Bdx

. (4.3.40)

This adjustment is necessary since we have implicitly assumed that all functions, includ-

ing the Lagrange multipliers, are periodic and thus all their derivatives have zero mean.

The modification (4.3.40) is not necessary for simulations on the line.

To derive the potential, we consider the following physical realization of one dimen-

sional, doubly incompressible porous media. Consider a tube filled with an incompress-

ible fluid, and suppose there are elastic muscle threads of negligible volume that are

running along the axis of the tube. On each thread, there are rigid (and hence in-

compressible) beads attached to a given point on a particular thread, as illustrated on

Figure 4.3.1. When the threads are stretched, the beads move inside the fluid and change

the local volume of the fluid g at the given Eulerian point. Then, the elastic energy is

proportional to the deformation energy of the thread times the number of threads per

given interval x.

Based on considerations above, we suggest using the following potential V (b, v):

V =
α

2
(Xx − 1)2 =

α

2

(
1√
b
− 1

)2

, (4.3.41)

where in the physical realization presented in Figure 4.3.1, the constant α is dependent

on the number of the strings for a cross-section of the tube and a typical elasticity of

each string. This potential is just the first term of (4.2.23) with β = 0, since the second

term in (4.2.23) proportional to β describes the elastic energy due to the deformation of

the pores. With the potential (4.3.41), we obtain

σe = 2
∂V

∂b
b+ V = −α

2
(X2

x − 1) , p =
1

c

∂V

∂v
= 0 . (4.3.42)

We now present the results of numerical solutions obtained for the potential (4.3.41).

First, we present a doubly incompressible computation equivalent to the case of the

compressible solid presented in Figure 4.2.1, for the same values of parameters except

setting β = 0 in the the potential given by (4.2.23), i.e., using the potential (4.3.41).

Notice that the motion of the solid and the fluid acquire ’jerkiness’ in the double incom-

pressible case, since the motion is less smooth than that illustrated on the Figure 4.2.1.
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x

Figure 4.3.1: A sketch of the physical realization of a one dimensional, doubly incom-
pressible case, justifying the potential (4.3.41). A channel is filled with incompressible
fluid and holds solid particles on elastic strings running parallel to the axis of the channel
(the x-axis). The space available to the fluid is dependent on the density of solid parti-
cles in a given interval [x, x + dx]. The potential V depends on the local deformations
of the strings caused by the motion of the particles, the elastic properties of the strings
and the number of the strings running through the channel.
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Figure 4.3.2: Example of numerical solution of (4.3.32). Left panel: solution for
X(t, x) − x (solid), right panel: Y (t, x) − x (fluid). All parameters are as for solution
presented in Figure (4.2.1) except for the extra incompressibility condition for the solid
in (4.3.32) and change β = 0 in potential (4.2.23), i.e., taking the the potential (4.3.41)
with elastic stress σe given by (4.3.42).
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Next, we show the self-propulsion due to the generation of momentum due to the

traveling wave motion of the muscle stress as was discussed in Section 4.2.4 and further

illustrated in (4.2.2). Figure 4.3.3 shows the possibility of generating self-propulsion of

the solid from rest due to non-zero momenta of the solid and fluid, while the net momen-

tum of both solid and fluid is conserved and equal to 0. Furthermore, on Figure 4.3.4,

0 100 200 300 400 500

0.0006

0.0004

0.0002

0.0000

0.0002

0.0004

0.0006

Momentum
Solid
Fluid
Net

Figure 4.3.3: Momenta for solid Ms = −ρ0
s

∫ L
−LXtdx (blue line), Mf = −ρfg0

∫ L
−L Ytdx

(red line) and the total Mf + Ms (black line) for a given numerical solution with zero
initial conditions and prescribed traveling muscle force given by (4.2.34) with parameters
S0 = 0.1, W = 1 and U = 1. As in Figure 4.3.3, the net momentum Ms+Mf is close to 0
with expected accuracy throughout the simulation. All other parameters for simulations
are taken exactly the same as in Figure 4.2.2, i.e. g0 = 0.5, K = 1, with the same total
time of simulation t = 500. We note that compared to (4.2.2), the stabilization of motion
occurs on a much faster time scale compared with the compressible case.

we illustrate how well the incompressibility condition is satisfied. In other words, we

plot the term (1− g0)X + g0Y − x as a function of x for all available values of t, which,

according to the last equation in (4.3.32), must be equal to D(t), which is a constant as

a function of x, but can vary in time. Finally, on Figure 4.3.5, we present the variable

D(t) = (1 − g0)X + g0Y − x, expected to be independent of x, as defined by the last

equation of (4.3.32). Figure 4.3.4 confirms that this variable, taken as a function of x for
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Figure 4.3.4: The value of (1 − g0)X + g0Y − x computed for a set of values of t in
simulation output (t = 0, 50, 100, . . . , 500), presented as a function of x. According to
the equation (4.3.34), that expression should be independent of x, although can vary
with t, which is consistent with results presented here. All solutions (1−g0)X+g0Y −x
presented as a function of x are close to horizontal lines. The distance of these horizontal
lines from the x-axis is dependent on time as is permitted by (4.3.34).
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a fixed t, is indeed almost a constant within numerical accuracy. Thus, we compute D(t)

as the mean value of (1− g0)X + g0Y − x. It is worth noting that our numerical scheme

0 2 4 6 8 10
t
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0.000

D(
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Incompressibility vs time

Figure 4.3.5: The value of D(t), computed as the mean value of (1 − g0)X + g0Y − x
(mean computed with respect to the x-variable), as a function of time t, for the results
presented in Figure 4.3.4.

does not take into account the variational structure of equations. For the time scales

we have computed the solutions for, t ∼ 103, no apparent loss of accuracy was observed

in simulations. However, the computation of much longer times may need the use of

variational integrators. Variational integrators conserve momenta-related quantities to

machine precision and allow for accurate imposition of the friction. In our case, since

the friction is strictly internal to the system, variational methods can still be beneficial

for long-term preservation of momenta. We refer the reader to [61], [81] for the general

theory of variational integrators and to [41], [42] for the derivations of variational inte-

grators for fluid-structure interactions with incompressibility constraint, in particular,

for the application to the motion of an elastic tube filled with an incompressible fluid.
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Chapter 5

Conclusion

This thesis is a development of a fully variational geometric approach to handle the

problem of elastic porous media filled with incompressible inviscid Eulerian fluid. The

derivations of the dynamics equations cover two cases: the case when the solid material

is compressible and where it is incompressible (total incompressibility). The analysis in-

cludes the linearization of the derived dynamical system to show the stability of acoustic

wave propagation and proof of the conservation of energy to demonstrate that physical

assumptions are satisfied in the resulting equations. The acoustic properties of S- and

P- waves are documented for different non-dimensionalized system parameters.

For the derivation of the equations of motion for a porous media filled with an

incompressible fluid, our research team has chosen to use the Eulerian frame for both

the fluid and the porous media. Our equations are valid for arbitrary deformations and,

as far as we are aware, are new. We have compared the linearized equations of motion to

Biot’s equations and found a correspondence between our equations and Biot’s equations,

with a clear and physical interpretation of the parameters.

The explicit reduction of the derived systems to the one-dimensional case allows to

prove the conservation of total momenta, and perform numerical simulations, showing

the potential of self-propulsion of a porous elastic body under moving muscle stress. An

important application of this theory is the dynamics of active biological porous materials

(such as sea sponges). The thesis illustrates the numerical simulations of the nonlinear

dynamics in 1d and the nonlinear phenomena in the case of total incompressibility.

This research concludes that the geometric variational method is an elegant and effi-

cient instrument in the derivation of equations of dynamics of complex multi-component

systems with an arbitrary number of incompressible phases, including the poromechan-
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ics system, studied in course of this work. The derived systems could explain various

physical phenomena that were previously attributed to unknown parameters of the me-

dia. This is seen, for example, from the comparison with the linearization of Biot’s

poromechanics dynamics. The nonlinear dynamics equations of could be used in numer-

ical experiments to explain and predict the behavior of a wide range of the multi-phase

systems, including biological systems, that could activate endogenous muscle stress and

respond to stimuli.

In the future, it will be interesting to combine this research to include additional bi-

ologically relevant problems. For example, one could introduce the variational approach

in combination with the previous work by the research team on the geometric variational

approach to elastic tubes conveying fluid [37], [39], [40]. Making the tube’s wall porous

will be relevant to other engineering [45] and biological applications like arterial flow

[20]. For the successful implementation of variational methods for the fluid-structure

interaction problems, the boundary conditions for moving boundaries need to be con-

sidered in more detail, as outlined in Remark 4.2.1. In general, further applications of

variational methods for fluid-structure interactions look promising and warrant future

studies.
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conducting tubes,” Comptes Rendus Mécanique, vol. 342, no. 2, pp. 79–84, 2014.

[40] ——, “On flexible tubes conveying fluid: Geometric nonlinear theory, stability and
dynamics,” Journal of Nonlinear Science, vol. 25, no. 4, pp. 889–936, 2015.

[41] ——, “Variational discretizations for the dynamics of fluid-conveying flexible tubes,”
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Appendix A

Geometric structure of classical
mechanics

A.1 Manifolds

The contents of this appendix refer to definitions and examples of smooth manifolds
that are collected here for ready reference. We closely follow D. D. Holm’s Lecture notes
1, see also [47], [48].

Definition A.1.1 A smooth (i.e., differentiable) manifold M is a set of points together
with a finite (or perhaps countable) set of subsets Uα ⊂ M and one-to-one mappings
φα : Uα → Rn such that

•
⋃
α Uα = M ;

• for every nonempty intersection Uα ∩ Uβ , the set φα(Uα ∩ Uβ) is an open subset
of Rn and the one-to-one mapping φ ◦ φ−1

α is a smooth function φα(Uα ∩ Uβ).

Remark A.1.2 The sets Uα in the definition are called coordinate charts. The map-
pings φα are called coordinate functions or local coordinates. A collection of charts
satisfying both conditions is called an atlas.

Definition A.1.3 (Tangent vector) The tangent space TxM at a point x of a mani-
fold M is a vector space. The elements of this space are called tangent vectors (Figure
A.3).

Definition A.1.4 (Tangent bundle) The tangent bundle of a manifold M, denoted
by TM, is the smooth manifold whose underlying set is the disjoint union of the tangent
spaces to M at the points x ∈M (Figure A.4); that is,

TM =
⋃
x∈M

TxM.

Thus, a single point of TM is (x, v) where x ∈M and v ∈ TxM.

Definition A.1.5 (Lie group and Lie subgroup manifolds) A Lie group is a group
that is also a manifold. A Lie subgroup is a submanifold that is invariant under group
operations. That is, Lie subgroups are injective immersions.

1http://wwwf.imperial.ac.uk/ dholm/classnotes/
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A.2 Motion: Tangent vectors and flows

Envisioning our later considerations of dynamical systems, we shall consider motion
along curves c(t) parameterized by time t on a smooth manifold M. Suppose these curves
are trajectories of a flow φt along the tangent vectors of the manifold. We anticipate
this means φt(c(0)) = c(t) and φt ◦ φs = φt+s (flow property). The flow will be tangent
to M along the curve. To deal with such flows, we will need to know more about tangent
vectors.

A.2.1 Vector fields, integral curves and flows

Definition A.2.1 A vector field on a manifold M is a map X : M → TM that
assigns a vector X(x) at each point x ∈M. This implies that τM ◦X = id.

Definition A.2.2 An integral curve of X with initial conditions x0 at t = 0 is a
differentiable map c :]a, b[→ M, where ]a, b[ is an open interval containing 0, such that
c(0) = x0 and c′(t) = X(c(t)) for all t ∈]a, b[.

A.2.2 Differentials of functions: The cotangent bundle

We are now ready to define differentials of smooth functions and the cotangent bundle.
Let f : M → R be a smooth function. We differentiate f at x ∈ M to obtain Txf :

TxM → Tf(x)R. As is standard, we identify Tf(x)R with R itself, thereby obtaining
a linear map df(x) : TxM → R. The result df(x) is an element of the cotangent space
T ∗xM, the dual space of the tangent space TxM. The natural pairing between elements
of the tangent space and the cotangent space is denoted as 〈·, ·〉 : T ∗xM × TxM 7→ R.

In coordinates, the linear map df(x) : TxM → R may be written as the directional
derivative,

〈df(x), x〉 = df(x) · v =
∂f

∂xi
· vi, for all v ∈ TxM.

(Reminder: The summation convention is applied over repeated indices.) Hence,
elements df(x) ∈ T ∗xM are dual to vectors v ∈ TxM with respect to the pairing 〈·, ·〉.

Definition A.2.3 df is the differential of the function f.

Definition A.2.4 The dual space of the tangent bundle TM is the cotangent bundle
T ∗M. That is,

(TxM)∗ = T ∗xM and T ∗M =
⋃
x

T ∗xM.

Thus, replacing v ∈ TxM with df ∈ Tx∗M , for all x ∈ M and for all smooth functions
f : M → R, yields the cotangent bundle T ∗M.

A.3 Tangent and cotangent lifts

We next define derivatives of differentiable maps between manifolds (tangent lifts).
We expect that a smooth map f : U → V from a chart U ⊂ M to a chart V ⊂ N

will lift to a map between the tangent bundles TM and TN so as to make sense from
the viewpoint of ordinary calculus,

U × R ⊂ TM −→ V × Rn ⊂ TN
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(q1, . . . , qm;X1, . . . , Xm) 7→ (Q1, . . . , Qm;Y 1, . . . , Y m).

Namely, the relations between the vector field components should be obtained from
the differential of the map f : U → V. Perhaps not unexpectedly, these vector field
components will be related by

Y i ∂

∂Qi
= Xj ∂

∂qj
, so Yi =

∂Qi

∂qj
Xj,

in which the quantity called the tangent lift

Tf =
∂Q

∂q

of the function f arises from the chain rule and is equal to the Jacobian for the trans-
formation Tf : TM 7→ TN.

The dual of the tangent lift is the cotangent lift. Roughly speaking, the cotangent
lift of the function f,

T ∗f =
∂q

∂Q
,

arises from

βidQ
i = αjdq

j, so βi = αj
∂qj

∂Qi,

and T ∗f : T ∗N 7→ T ∗M. Note the directions of those maps.

A.3.1 Summary of derivatives on manifolds

Definition A.3.1 (Differentiable map) A map f : M → N from manifold M to
manifold N is said to be differentiable (resp. Ck) if it is represented in local coordinates
on M and N by differentiable (resp. Ck) functions.

Definition A.3.2 (Derivative of a differentiable map) The derivative of a dif-
ferentiable map

f : M → N

at a point x ∈M is defined to be the linear map

Txf : TxM → TxN,

constructed as follows. For v ∈ TxM, choose a curve that maps an open interval (−ε, ε)
around the point t = 0 to the manifold M,

c : (−ε, ε)⇒M,

with c(0) = x,

and velocity vector
dc

dt

∣∣∣∣
t=0

= v.

Then Txf · v is the velocity vector at t = 0 of the curve f ◦ c : R→ N. That is,

Txf · v =
d

dt
f(c(t))

∣∣∣∣
t=0

.

Definition A.3.3 The union Tf =
⋃
x Txf of the derivatives Txf : TxM → TxN over

points x ∈M is called the tangent lift of the map f : M → N.
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Appendix B

Lie groups, algebras and their
applications

Similar to Appendix A, the contents of this appendix refer to definitions and examples
of Lie groups that are collected here for reference purposes. Again, we closely follow
Lecture notes by D. D. Holm 1, see also [47], [48].

B.1 Matrix Lie groups

Definition B.1.1 (Group) A group G is a set of elements possessing

• A binary product (multiplication), G×G→ G, such that the following properties
hold:
– The product of g and h is written gh.
– The product is associative, (gh)k = g(hk).

• Identity element e : eg = g and ge = g,∀g ∈ G.

• Inverse operation G→ G, so that gg−1 = g−1g = e.

Definition B.1.2 (Lie group) A Lie group is a smooth manifold G which is also a
group and for which the group operations of multiplication, (g, h) → gh for g, h ∈ G,
and inversion, g → g−1 with gg−1 = g−1g = e, are smooth functions.

Definition B.1.3 A matrix Lie group is a set of invertible n × n matrices which is
closed under matrix multiplication and which is a submanifold of Rn×n.

Example B.1.4 (The general linear group GL(n,R)) The matrix Lie group GL(n,R)
is the group of linear isomorphisms of Rn to itself. The dimension of the n×n matrices
in GL(n,R) is n2, the number of independent elements.

B.2 Defining matrix Lie algebras

Definition B.2.1 (Matrix Lie algebra) A matrix Lie algebra g is a set of n × n
matrices which is a vector space with respect to the usual operations of matrix addition
and multiplication by real numbers and which is closed under the matrix commutator
[·, ·].

1http://wwwf.imperial.ac.uk/ dholm/classnotes/
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B.3 Examples of matrix Lie groups

Example B.3.1 (The orthogonal group O(n)) The set of n×n real matrices satis-
fying ATA = AAT = 1 defines the orthogonal group O(n), the group of n×n orthogonal
matrices.

Example B.3.2 (The special orthogonal group SO(n)) If, in addition to the condition
ATA = AAT = 1 above we require detA = 1, we get the Special Orthogonal group, called
SO(n). This group plays a particular important role in mechanics.

Example B.3.3 (The general linear group GL(n,R)) The set of all n×n real, in-
vertible matrices is called GL(n,R), General Linear Group.

Example B.3.4 (The special linear group SL(n,R)) The subgroup of GL(n,R) with
detU = 1 is called SL(n,R).

Example B.3.5 (Tangent space of SO(n) at the identity) Suppose A(t) is a smooth
curve in SO(n), with A(0) = Id, −ε < t < ε. Differentiating the condition AT (t)A(t) =
Id with respect to t and setting t to 0 gives ȦT + Ȧ = 0. Thus, Ȧ(0) are antisymmetric
matrices. Lying in the tangent space at the identity of a matrix Lie group, this linear
vector space forms the matrix Lie algebra so(n).

Example B.3.6 (The special unitary group SU(n)) The Lie group SU(n) com-
prises complex n×n unitary matrices U with U †U = Id and unit determinant detU = 1.
An element u in its tangent space at the identity satisfies u + u† = 0 for u ∈ TISU(n),
so that u ∈ su(n) is an n× n traceless skew Hermitian matrix.

Example B.3.7 (The symplectic group Sp(l)) Suppose n = 2l (that is, let n be
even) and consider the nonsingular skew-symmetric matrix

J =

(
O I
−I O

)
(B.3.1)

where I is the l × l identity matrix and O is the l × l zero matrix.
One may verify that the matrices U ∈ Sp(l), where

Sp(l) := {U ∈ GL(2l,R) | UTJU = J}

form a group. The group of these matrices is called the symplectic group. Reasoning as
before, the matrix algebra TISp(l) is defined as the set of n × n matrices A satisfying
JAT + AJ = 0. This matrix Lie algebra is denoted as sp(l).

Example B.3.8 (The special Euclidean group SE(3)) Consider the Lie group of
4× 4 matrices of the form

A =

(
R v
0T 1

)
(B.3.2)

where R ∈ SO(3) and v ∈ R3. and 0T is a length 3 row vector. This is the special
Euclidean group, denoted SE(3). The special Euclidean group is of central interest in
mechanics since it describes the set of rigid motions of objects in the three-dimensional
space.
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B.4 Lie group actions

The action of a Lie group G on a manifold M is a group of transformations of M
associated with elements of the group G, whose composition acting on M corresponds
to group multiplication in G.

Definition B.4.1 (Left action of a Lie group) Let M be a manifold and let G be a
Lie group. A left action of a Lie group G on M is a smooth mapping Φ: G×M → M
such that

• Φ(e, x) = x ∀x ∈M ;

• Φ(g,Φ(h, x)) = Φ(gh, x) for all g, h ∈ G and x ∈M ; and

• Φ(g, ·) is a diffeomorphism on M for each g ∈ G.

We often use the convenient notation gx for Φ(g, x) and think of the group element g
acting on the point x ∈ M. The associativity condition (ii) then simply reads (gh)x =
g(hx). Similarly, one can define a right action, which is a map Ψ : M×G→M satisfying
Ψ(x, e) = x and Ψ(Ψ(x, g), h) = Ψ(x, gh). The convenient notation for right action is
xg for Ψ(x, g), the right action of a group element g on the point x ∈ M. Associativity
Ψ(Ψ(x, g), h) = Ψ(x, gh) may then be expressed conveniently as (xg)h = x(gh).

Example B.4.2 (Properties of Lie group actions) The action Φ : G×M →M of
a group G on a manifold M is said to be

1. transitive, if for every x, y ∈M there exists a g ∈ G, such that gx = y;

2. free, if it has no fixed points, that is, Φg(x) = x implies g = e; and

3. proper, if whenever a convergent subsequence {xn} in M exists, and the mapping
gnxn converges in M, then {gn} has a convergent subsequence in G.

Definition B.4.3 (Group orbits) Given a Lie group action of G on M, for a given
point x ∈M, the subset Orbx = {gx | g ∈ G} ⊂M is called the group orbit through x.

B.4.1 Left and right translations on a Lie group

Left and right translations on the group are denoted Lg and Rg, respectively. For
example, Lg : G→ G is the map given by h→ gh, while Rg : G→ G is the map given
by h → hg, for g, h ∈ G. Left translation Lg : G → G;h → gh defines a transitive and
free action of G on itself. Right multiplication Rg : G → G;h → hg defines a right
action, while h→ hg−1 defines a left action of G on itself.

G acts on G by conjugation, g → Ig = Rg − 1 ◦ Lg. The map Ig : G → G given by
h→ ghg−1 is the inner automorphism associated with g. Orbits of this action are called
conjugacy classes.

Differentiating conjugation at the identity e gives the adjoint action Adg of G on g.
Explicitly, the adjoint action of G on g is given by Adg

Ad : G× g→ g, Adg(ξ) = Te(Rg−1 ◦ Lg)ξ.

We have used the adjoint action for matrix Lie groups acting on matrix Lie algebras,
when we defined Adg for matrix Lie groups in 1.4.
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The coadjoint action of G on g∗, the dual of the Lie algebra g of G, is defined using
the above definition of Adg and pairing between g and g∗. Let Ad∗g : g∗ → g∗ be the
dual of Adg, defined by

〈Ad∗gα, ξ〉 = 〈α,Adgξ〉

or α ∈ g∗, ξ ∈ g and pairing 〈·, ·〉 : g∗ × g → R. Then the map Φ∗ : G × g∗ → g∗ given
by (g, α)→ Ad∗g−1α is the coadjoint action of G on g∗.

B.5 Lie derivative and Jacobi–Lie bracket

The physical meaning of Lie derivative LXT of a geometric quantity T with respect to
vector field X is the rate of change of this quantity when the underlying coordinates are
flowing by the observer with the speed defined by the vector field X. There are several
definitions of Lie derivative which are equivalent in the case when the manifold M , on
which X is defined, is finite-dimensional. One definition is computed through the flow
of X. Another definition is axiomatic, simply stating that

1. For any scalar function f ,
LXf = (X · ∇)f

An equivalent notation for the directional derivative is (X · ∇)f = X(f).

2. For vector fields X and Y ,

LXY = [X,Y ] = (X · ∇)Y − (Y · ∇)X (B.5.1)

3. For one-form α and arbitrary vector field Y we have

〈LXα,Y 〉 = 〈α, [X,Y ]〉+ (Y · ∇) 〈α,X〉

4. For arbitrary tensor fields S and T we have Leibnitz rule:

LX(S ⊗ T ) = LX ⊗ T + S ⊗ LXT (B.5.2)

This Lie derivative (B.5.1), known as a commutator of vector fields, plays an important
role in the derivation of continuum mechanics. Lie derivaties of arbitrary tensor fields
can be then computed using (B.5.2).
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Appendix C

Rigid body dynamics

C.1 Notation: vectors as antisymmetric matrices

and vice versa

Here, we explain the notation related to rigid body rotations related to the motion on
the group SO(3). A careful reader has noticed that the object ω = Λ−1Λ̇, that we
have called the angular velocity, is an antisymmetric 3× 3 matrix. This can be seen by
differentiating the identity for orientation matrices:

d

dt
ΛTΛ = Id3×3 ⇒ Λ̇TΛ + ΛT Λ̇ = 0 ⇒ ωT + ω = 0 . (C.1.1)

As it turns out, these matrices are equivalent to vectors in three-dimensional space
through the so-called hat map, which is defined as follows. To a given antisymmetric
3× 3 matrix ω, we associated a vector ω according to the following rule:

ω =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ⇒ ω =

 ω1

ω2

ω3

 . (C.1.2)

Then, for any column vector v = (v1, v2, v3)T ∈ R3, we have

ωv =

 ω2v3 − ω3v2

ω3v1 − ω1v3

ω1v2 − ω2v1

 = ω × v . (C.1.3)

Thus, to every antisymmetric 3 × 3 matrix ω we can associate a vector ω through the
rule (C.1.2). The mapping from vectors to antisymmetric matrices is called the hat map,
and we use the notation ω̂ = ω. The inverse procedure, taking an antisymmetric matrix
and producing a vector, is called the inverse hat map and is denoted as ω∨ = ω. In
coordinates we have ωij = −εijkωk where εijk is the completely antisymmetric tensor
with ε123 = 1. Because of this property, the notation ω̂ = ω× is also used, although we
will not employ it here. Another useful property of the hat map relates the commutator
of matrices a and b to the cross product of vectors a = a∨ and b = b∨ as

(ab− ba)∨ = [a, b]∨ = a× b ⇔ ab− ba = [a, b] = â× b . (C.1.4)
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Thus, we can treat the angular velocity ω to be both an antisymmetric matrix when it is
defined as ω = Λ−1Λ̇, and, in the same time, a 3-vector using ω = ω∨ = (Λ−1Λ̇)∨ through
the hat map. These representations are completely equivalent and are fundamental for
our further discussions.

In addition, it is also useful to review the concept of differentiation with respect to
vectors and matrices, in order to make the meaning of equations more precise. Clearly,
the derivative of a scalar function, such as the Lagrangian, with respect to a column
vector is a row vector, and their product can be computed using either the dyadic algebra
or scalar product. In other words, for column vectors a and b, and a function F (a), we
have

∂F

∂a
b =

(
∂F

∂a

)T
· b =

∑ ∂F

∂ai
bi = (row)(vector) = (scalar). (C.1.5)

The equivalent representation of derivatives in terms of matrices is less straightforward.
First, we need to introduce the pairing (scalar product) between two 3 × 3 matrices A
and B 〈

A , B
〉

=
1

2
tr
(
ATB

)
. (C.1.6)

We will typically take derivatives of functions of the type F (a) = 1
2

〈
Da, a

〉
for anti-

symmetric matrices a and a diagonal matrix D = diag(d1, d2, d3), having the physical
meaning of the inertia matrix. One can readily check that the matrix ∂F

∂a
= Da is, in

general, not antisymmetric so it cannot be directly interpreted as a vector. However, for
any antisymmetric matrix b, the product

〈
∂F
∂a
, b
〉

only depends on the antisymmetric

part of ∂F
∂a

. Thus, the following quantity is readily interpreted as a vector

∂F

∂a
=

1

2

[
∂F

∂a
−
(
∂F

∂a

)T]∨
. (C.1.7)

Because of the apparent complexity of (C.1.7), we shall mostly use vector derivatives
(C.1.5) in the formulas in this thesis.

C.1.1 Rotation matrices

Suppose a rigid body is fixed at point O which we choose as the origin. Let us mark a
point X on the rigid body and observe where this point moves after time t. We mark
this point as x(t,X). The key assumption of the rigid body is that all points of the
rigid body move in unison, i.e.

x(t,X) = A(t)X , A(t) is a 3× 3 matrix. (C.1.8)

The fundamental assumption about the rigid body is that the distance between any two
points remains the same under the evolution. Thus, if x = A(t)X and y = A(t)Y .
Then, remembering that a · a = aTa for any vector a ∈ R3, we compute

|x− y|2 = (x− y) · (x− y) = (X − Y )ATA(X − Y ) = |X − Y |2 (C.1.9)

for any X and Y in the body, so ATA = Id. Such matrices are called orthogonal.
We remember that det(AB) = detAdetB, and detAT = detA. so if matrices are

orthogonal,
det(ATA) = (detA)2 = detId = 1 ,
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so there are two options, detA = 1 and detA = −1. If we choose detA = 1, the matrices
form a group under multiplication, which has the name of SO(3) - special orthogonal
group, or the group of rotations. Let us choose a fixed bases (E1,E2,E3) frozen in the
body, and the basis (e1, e2, e3) that is stationary in the fixed frame. We define the α-th
column of A as the coordinates of the vectors Eα in the fixed spatial frame (e1, e2, e3).

C.1.2 Description of rotations: Euler’s angles

Let us now describe rotations using different methods. We start first with the description
using Euler’s angles. In description of rotation matrices, it is useful to remember the
following

Theorem C.1.1 (Euler’s theorem on rotations) Any matrix in SO(3) can be ob-
tained as a rotation about a fixed axis n by some angle α.

In what follows, we shall denote rotation matrices by R(α,n). Usually, one uses the
right-hand rule to determine the direction of rotations about the given axis. We can
see that R(ϕ,n) = −R(−ϕ,−n), so the same matrix can be represented in two different
ways.

In the literature, it is also common to denote the body axes (E1,E2,E3) as (X, Y, Z),
and denote the rotation about these axes by a given angle ϕ as RX(ϕ),RY (ϕ) and RZ(ϕ).
The matrices are written in coordinates as follows:

RX(ϕ) =

 1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ


RY (ϕ) =

 cosϕ 0 − sinϕ
0 1 0

sinϕ 0 cosϕ


RZ(ϕ) =

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1


(C.1.10)

The Euler’s angles (or generalized Euler’s angles, or Tait-Bryan angles, or other names
associated with these rotations) consist of combinations of 3 rotations about the body
(sometimes called intrinsic) axes. The sequence of rotations is denoted by a sequences
of three letters, for example, Z −X − Z.

There is some ambiguity in the literature as to which matrices represent the rotations,
and what is the order of notation. We shall use the notation matrices being operations
on vectors, so if there is a fixed vector v, the first rotation changes it to R1v, the second
rotation as R2R1v and the third rotation as R3R2R1v. We shall denote the rotations in
the order they multiply matrices, i.e., from right to left. For example, ZY X means first
rotation about X by some angle α, second rotation about Y by another angle β and third
rotation about Z by angle γ. The rotation matrix for ZY X is, in our notation, given
by RZ(γ)RY (β)RX(α). To find the corresponding rotation matrix, you would multiply
three matrices as given by (C.1.10).

C.1.3 Angular velocity expressed through the rate of change
of a matrix

During rotations, the orientation matrix of the rigid body R(t) changes with time. Let

us consider the matrix Ṙ, and notice that the following two matrices are antisymmetric
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ω̂ = ṘRT and Ω̂ = RT Ṙ (hats above letters denote antisymmetric matrices). This can
be seen by differentiating the condition on the SO(3) matrices RRT = Id:

d

dt
RRT = 0 , ṘRT + RṘT = ṘRT +

(
ṘRT

)T
= 0 ⇒ ω̂ + (ω̂)T = 0 (C.1.11)

and similarly with Ω̂ by differentiating RTR = Id.

Antisymmetric matrices and cross-product Suppose b̂ is a 3 × 3 antisymmetric
matrix. Because of antisymmetry, the diagonal elements are 0, and the matrix can be
written as

b̂ =

 0 −b3 b2

b3 0 −b1

−b2 b1 0

 , or b̂ij = −εijkbk . (C.1.12)

Then, one can see that for any vector v = (v1, v2, v3)T , equation (C.1.12) gives b̂v =
b×v, with the vector b defined as b = (b1, b2, b3)T . Thus, 3× 3 antisymmetric matrices

and 3-vectors are equivalent through (C.1.12). We will sometime write b̂ = b×. The

mapping from vectors b = (b1, b2, b3)T to antisymmetric matrices b̂ defined by (C.1.12)
is called the hat map.

There is an inverse mapping from antisymmetric matrices to vectors. It is obtained

by reading the off-diagonal elements in the matrix b̂ and inserting them in the vector
elements of b. That map is denoted by the inverted hat, and we write b∨ = b for any

antisymmetric matrix b̂.
Coming back to the rotations, we can define two useful quantities.

1. ω̂ = ṘRT is the angular velocity of rotation expressed in the spatial frame. The

corresponding vector ω =
(
ṘRT

)∨
is the vector of angular velocities observed

from the spatial frame.

2. Ω̂ = RT Ṙ is the angular velocity of rotations expressed in the body frame. The

corresponding vector Ω =
(
RT Ṙ

)∨
is the vector of angular velocities observed

from the body frame.

bf Notation. Here and below, we have used capital letters to denote quantities as seen
in body frame, and script letters to determine the quantities seen in body frame.

Let us determine the rule of transformation of vectors between body and spatial
frames. Suppose A is any antisymmetric matrix, and A = A∨ is its vector equivalent
under the inverse hat map. Let us take any vector v and write Av = A×v. If we apply
any rotation matrix R to this statement, and remember that R(a× b) = Ra× Rb, we
get

RAv = R (A× v) = RA× Rv . (C.1.13)

On the other hand, we can notice that A′ = RART is an antisymmetric matrix, and
RAv = RARTRv = A′ × Rv. Remembering (C.1.13), we obtain the law of transforma-
tions of matrices and vectors under multiplication by R

A→ RART , A = A∨ → RA∨ . (C.1.14)

Remember the expressions of the spatial ω̂ = ṘRT and body Ω̂ = RT Ṙ angular velocities.
Thus, we have the following correspondence between these matrices and vectors

ω̂ = RΩ̂RT by definition, ω = RΩ by (C.1.13) . (C.1.15)
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Similarly, any vector vector can be seen in both spatial and body frames. If the vector
in spatial frame is v, the corresponding vector seen in body frame will be V = RTv,
and, vice versa, v = RV .

Remark C.1.2 (On a common misconception) One often hears that the angular
velocity as seen in body frame must be zero, since the body is not rotating with respect
to itself. That is incorrect. The vector of angular velocity in spatial frame ω is clearly
is non-zero, and the same vector, seen from the body frame, cannot be zero since it is
obtained by the application of a rotation matrix.

C.1.4 Euler’s equations of motion for a rigid body

Suppose we have a rigid body consisting of N material particles with masses mi and
positions, in body frame, X i. The corresponding positions in the spatial frame are
xi = RX i, with X i fixed. The velocity of these particles in spatial frame is then

vi = ẋi = ṘX i = R
(
RT ṘX i

)
= R (Ω×X i) (C.1.16)

The total angular momentum of these particles in spatial frame is computed as

l =
∑
i

mixi × vi =
∑
i

miRX i × R (Ω×X i) =
∑
i

miX i × (Ω×X i) (C.1.17)

Note that the angular momentum in the spatial frame depends on the orientation. How-
ever, the angular momentum in the body frame is independent of orientation, and is a
linear operator in the body angular velocity. That operator is represented by a 3 × 3
matrix called the moment of inertia I, and is only constant when computed in the body
frame. This matrix is symmetric, IT = I, and positive definite.

Let us also notice that the matrix I is real, symmetric, and positive definite, so the
eigenvalues of this matrix (I1, I2, I3) are real and positive. We can choose the axes Ei
to coincide with the eigenvector directions of I. Then, the matrix I is diagonal in that
basis:

I =

 I1 0 0
0 I2 0
0 0 I3

 (C.1.18)

In almost all work on the subject, the matrix I is assumed in the diagonal form (C.1.18),
since this form can be achieved without the loss of generality. We shall assume that
diagonal form of I as well.

Therefore, we write the expressions for the angular momenta in the spatial l and in
the body L frames

l = RIΩ , L = IΩ . (C.1.19)

Given the torque in the spatial frame t, the conservation of angular momentum in the
spatial frame is written as

dl

dt
= t . (C.1.20)

Equation (C.1.20) is rather awkward to use since it involves, explicitly, the rotation
matrices R. We want to rewrite it in the body frame, so we multiply (C.1.20) by RT

and use (C.1.19):

RT d

dt
(RIΩ) = IΩ̇ + RT ṘIΩ = IΩ̇ + Ω× IΩ = RT t = T . (C.1.21)
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This equation, deserves to be written explicitly, as it forms the foundation of all work
on the theory of rotation of rigid bodies and heavy tops:

IΩ̇ + Ω× IΩ = T . (C.1.22)

Note that the equation for the rigid body is written in the body frame. Unless you
have a very good reason, there is no point in writing these equations in the spatial
frame: the moment of inertia of a rigid body in the spatial frame is not constant, but
depends explicitly on the orientation matrix, more precisely, Isp = RT IR. It makes
the computations very awkward. The only potential exception is the case when the
matrix I is proportional to the identity matrix, and the body is dynamically spherically
symmetric. In that case, Isp = I =const. However, this is a very particular case, rarely
encountered in practice.

C.1.5 Euler’s equations for the rigid body motion

One of the particular cases of the rigid body motion is given when the motion is free, so
there is no external torque on the body, i.e., T = 0 in (C.1.22). In that particular case,
the equations of motion reduce to the Euler’s equations of motion:

IΩ̇ + Ω× IΩ = 0 . (C.1.23)

These are called Euler’s equations for a rigid body.

Constants of motion There are two constants of motion for equations (C.1.23). One
is energy 1

2
Ω · IΩ:

d

dt
Ω · IΩ = Ω · IΩ̇ + Ω̇ · IΩ = Ω · IΩ̇ + Ω · ITΩ = −2Ω · (Ω× IΩ) = 0 . (C.1.24)

The second constant of motion is the absolute value of the angular momentum |IΩ|2:

d

dt
|IΩ|2 = 2IΩ · IΩ̇ = −2IΩ · (Ω× IΩ) = 0 . (C.1.25)

Physically, this constant of motion can be understood as the consequence of the conser-
vation of angular momentum in spatial frame, l = RIΩ. Taking |l|2 yields exactly |IΩ|2
and hence the result (C.1.25).

These two constants are ellipsoids in the three-dimensional Ω space. The intersection
of these ellipsoids selects a closed curve in that space. Thus, all solutions of (C.1.23)
are periodic, and the motion is integrable. It is also known that the solutions can be
expressed in terms of elliptic integrals.

For future reference, it is also useful to write (C.1.23) explicitly in terms of the
components of Ω = (Ω1,Ω2,Ω3):

I1Ω̇1 + (I3 − I2)Ω2Ω3 = 0

I2Ω̇2 + (I1 − I3)Ω3Ω1 = 0

I3Ω̇3 + (I2 − I1)Ω1Ω2 = 0

(C.1.26)
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