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Abstract 

 

In recent years, the use of self-associating block copolymer based drug delivery 

systems have attracted increasing attention as nanoscopic carriers for the 

encapsulation and the controlled delivery of water insoluble drugs. Currently, 

most of the drug formulations proceed by “trial and error” method with no 

distinct method to predict the right combination of block copolymers and drugs to 

give all the desired functional properties. This is simply because such drug 

delivery systems involve complex intermolecular interactions and geometric 

fitting of molecules of different shapes. So, in the context of block copolymer 

design process, quantification and prediction of the interactions between potential 

block copolymers and the target drug are of great importance. Computer 

simulations that can predict the level and type of interactions encountered in 

drug/block copolymer pairs will enable researchers to make educated decisions on 

choosing a particular polymeric carrier for a given drug, avoiding time consuming 

and expensive trial and error based formulation experiments.  

In the present thesis, we reported the use of molecular dynamics (MD) 

simulation to predict the solubility of sets of hydrophobic drug molecules having 

different spatial distribution of hydrogen bond forming moieties in a series of 

micelle-forming PEO-b-PCL block copolymers with and without functionalized 

PCL blocks.  The solubility predictions based on the MD results were then 

compared with those obtained from the solubility experiments and those obtained 

   
  
 



by the commonly used group contribution method (GCM). MD analysis 

techniques like radial distribution functions provided useful atomistic details to 

understand the molecular origin of miscibility and/or immiscibility observed 

between drugs and di-block copolymers. Based on the evidence of reported work, 

intermolecular specific interactions, intra-molecular interactions, local molecular 

packing, and stereochemistry of the hydrophobic block all play important roles in 

inducing miscibility between drugs and block copolymers. Additionally, not only 

the architecture of block copolymers but also the molecular characteristics of drug 

molecules, e.g., spatial distributions of hydrogen bond donors and acceptors on 

their molecules can affect the miscibility characteristics of binary mixtures. 

Depending on the groups present on drugs and block copolymers, any of the 

above factors can play vital role in the process of favouring encapsulation. The 

understanding of relative contributions of these interactions can help us to 

customize the performance of drug carriers by engineering the structure of block 

copolymers.  
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Chapter 1 

 

Introduction 

 

 

1.1 Block Copolymer Micelles 

Amphiphilic block copolymers consist of hydrophilic and hydrophobic blocks 

that can spontaneously self-assemble in aqueous solutions above a threshold 

concentration, the critical micelle concentration (CMC), to form micelles. These 

polymeric micelles are several tens of nanometres in size and have emerged as 

novel nanoscopic vehicles for the delivery of water insoluble drugs in a controlled 

manner [1-5]. These micelles are characterized by their unique core-shell 

structure, in which the core is composed of hydrophobic blocks that are 

surrounded by a corona of hydrophilic blocks (Figure 1.1). Generally, the 

hydrophobic core acts as a micro reservoir for the solubilisation of water insoluble 

drugs while the hydrophilic outer shell provides stealth properties.  
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Figure 1.1 Schematic Diagram of a Block Copolymer Micelle. 
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Drug carriers at this scale (< 200 nm) escape from being detected and 

eliminated by the reticuloendothelial system (RES). Moreover, their sizes are 

large enough (> 10 nm) to avoid renal excretion. As a consequence, these drug 

carriers possess a very desirable property of being able to circulate in the 

vasculature for extended periods of time after intravenous administration and 

show facilitated extravasation at sites with leaky vasculature, e.g., tumour sites. 

Poly(ethylene oxide)–b–poly(-caprolactone) (PEO-b-PCL) is one of the 

most widely studied and applied micelle-forming block copolymer system in drug 

delivery. Since PEO is biocompatible, non-toxic and has a high degree of 

hydration, it has been approved by the Food and Drug Administration (FDA) in 

the United States. PEO chains form shell and offer “stealth” behaviour in vivo due 

to its ability to minimize cell and protein interactions, whereas PCL due to its 

high hydrophobicity, biocompatibility and biodegradability forms an ideal 

reservoir for hydrophobic drugs. 

 

1.2 Block Copolymer-Drug Compatibility 

The degree of compatibility between the block copolymer and the drug in such 

micelle-based drug delivery systems can affect their performance related 

characteristics like stability of the micelle, drug encapsulation efficiency and drug 

release kinetics [1, 6]. The knowledge of block copolymer-drug compatibility is 

important for designing drug formulations and determining the effectiveness of 

polymeric delivery systems. In practice, the Flory-Huggins interaction parameter 

() is used to assess the extent of compatibility between the core of the micelle 
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and the solute (drug). Lower the  value, more compatible the drug is with the 

core of micelle and hence higher the predicted amount of drug solubilisation. This 

interaction parameter has been used to qualitatively elucidate the different levels 

of solubilisation of various water insoluble drugs in block copolymer micelles 

based drug delivery systems [1, 6-10]. The Flory-Huggins interaction parameter 

can be calculated either based on the knowledge of the solubility parameters of 

pure components used in the formulation or from the enthalpy of mixing both 

components. The concept of solubility parameters and interaction parameters 

along with their methods of measurement will be reviewed briefly in the next few 

sections. 

 

1.3 Solubility Parameters  

The concept of solubility parameter is used to quantify the strength of 

intermolecular interactions.  The two most common solubility parameters used are 

the Hildebrand () and Hansen solubility parameters (d, p and h). This concept 

was introduced for the first time by Hildebrand and Scott [11]. They defined the 

solubility parameter () as the square root of cohesive energy density as shown in 

the following expression: 

 

V

RTH

V

E vv 



       (1.1) 
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where  is the Hildebrand solubility parameter; Ev, Hv, and V are energy of 

vaporization, heat of vaporization and molar volume of the material, respectively. 

Unfortunately, this equation is only suitable for non-polar fluids containing non-

directional dispersion forces.  

A polar fluid, generally, has three major components of intermolecular 

forces: Dispersion (London) forces (d); Polar/Electrostatic forces (p); and 

Hydrogen bonding forces (h). Utilizing these three intermolecular attractions, 

Hansen divided the cohesive energy, i.e., the Hildebrand solubility parameter, into 

three components as shown in the following expression: 

 

2222
hpd        (1.2) 

 

Hansen solubility parameters are also referred to as 3D solubility parameters. The 

decomposition of cohesive energy into three components does not have a simple 

experimental analogue and this concept seems appealing only from the 

application point of view. The three components are empirically adjusted to 

define the miscibility characteristics of the solvent. In general, compatible 

materials tend to have comparable solubility parameters (either  or d, p and h). 

 

1.4 Determination of Solubility Parameters of Polymers and Drugs 

The Hildebrand and Hansen solubility parameters of materials can be determined 

using various experimental methods as reviewed by Hancock et al.[12]. In 

particular, the solubility parameters of low molecular weight compounds are 
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determined by direct measurement of heat of vaporization (Hv) using 

calorimetry. However, polymer, owing to their extremely low vapour pressures, 

cannot be vaporized. Hence, in another approach, polymer’s solubility/miscibility 

is measured in solvents with known cohesive energies [13]. The solubility 

parameter of the solvent which swells the polymer sample the most is assigned to 

the polymer. This approach is quite subjective and gives different results for the 

same polymer, depending on the polarity and hydrogen bonding characteristics of 

the solvent. Moreover, the indirect experimental procedures employed are usually 

time consuming and tedious as described by Archer [14]. Additionally, because of 

the thermal instabilities of polymer/drug systems, in many circumstances, this 

approach fails to provide their solubility parameters.  

The most convenient way to obtain a quick estimation of solubility 

parameters is to use group contribution tables [15]. The Group Contribution 

Method (GCM) is based on the idea that the total intermolecular interactions 

between the molecules in a liquid are linear sum of the contributions from various 

chemical moieties within the molecules. Following equations signify such an idea. 

 

V

Fdi
d
       (1.3) 

V

Fpi

p


2

       (1.4) 

V

Ehi

h

       (1.5) 
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Here, Fdi, Fpi and Ehi refer to the contributions from various chemical moieties 

and such values can be obtained from the Hoftyzer-Van Krevelen’s method [16]. 

The molar volume (V) of the material can be determined by the Fedors method 

[17] or by a newly developed group contribution method GCVOL [18-20] as 

described in the Appendix B. The GCM is simple to use and generally provides 

reasonable solubility predictions for compounds with simple chemical 

architectures involving non-directional intermolecular interactions like dispersion 

forces. Nevertheless, the GCM fails to provide a good estimation for the solubility 

of complex drug molecules and copolymers for the following reasons [16, 21]: a) 

the method fails to take into consideration the geometry of the molecules 

involved, b) it also fails to take into account the excluded volume interactions 

which are especially prevalent for long chain copolymers, c) The GCM would 

yield the same values of solubility parameters for isomers due to their inability to 

distinguish between isomers that have identical chemical structures but different 

constitution and/or configuration, and d) the GCM tends to underestimate p [22]. 

More details on the use of GCM in the pharmaceutical research will be discussed 

later in Chapter 4. 

Recently, a computational approach (Molecular modelling) has also been 

applied to determine the Hildebrand and Hansen solubility parameters of various 

polymers and surfactants [21-26]. Molecular dynamics (MD) simulation is one of 

the most widely used molecular modelling techniques to obtain the molecular 

level insights into the problem of interest. Utilizing the simple laws of classical 

mechanics, MD simulations compute the motions of individual molecules in the 
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models of solids, liquids and gases. This approach shows a great potential 

especially in the case of polymer/drug binary systems and the simulation results 

are usually in good agreement with the experimental results. The MD approaches 

seem to outperform the GCM [21]. The fundamentals behind the working of MD 

simulation will be discussed in Chapter 3. Later in Chapter 4, we will compare the 

two different MD approaches to predict the solubilities of a selected polymer/drug 

system. Generally, the major limiting factors in such computational approaches 

are proper choice of force field parameters and the system size we can study. 

However, continuously improving computational facilities have improved the 

accuracy of such calculations. 

 

1.5 Interaction Parameters and their Estimation 

The importance of the prediction of compatibility between block copolymers and 

drug molecules was described in the Section 1.2. Since the interaction parameter 

approach is used to assess the extent of compatibility, we hereby briefly review 

this concept. The origin of these parameters lies in the various statistical 

thermodynamic theories of polymer solutions and mixtures, which will be further 

discussed in details in Chapter 2.  

Within this approach, the miscibility prevails if the measured parameter lies 

below a critical value. The interaction parameter originates from the statistical 

mechanical theory of liquids – the lattice model of concentrated solutions. The 

concept of interaction parameter was introduced for the first time for small 
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molecules mixtures by Bragg and Williams [27] and later Flory and Huggins 

independently generalized the theory to polymer solutions [28-31]. 

Interaction parameters describe the relative strength of cohesive and adhesive 

interactions (intermolecular interactions) and hence the enthaplic interactions 

(enthalpy change on mixing) are reflected in this term (Chapter 2). Entropic 

component of the Gibbs free energy of mixing is generally not considered in this 

approach. Nonetheless, the mixing process is entropically favourable process and 

hence will always favour the miscibility. Hence, in the framework of the Flory-

Huggins lattice theory, the enthalpic interaction between the components will be 

reflected in the sign and magnitude of the interaction parameter which will 

eventually determine the miscibility between the components of a mixture.  

Generally, the system having strong cohesion interactions will be characterized by 

positive interaction parameters, while the system having stronger adhesive 

interactions (favouring miscibility) will be described by negative interaction 

parameters. This point will be further elaborated in Chapter 2. 

The polymer-solvent interaction parameter has been estimated using several 

experimental methods like small angle neutron scattering (SANS), melting point 

depression (for semi-crystalline polymers), osmotic pressure, and inverse gas 

chromatography (IGC). Interested readers should refer the book by Olabisi et al. 

[32] and references therein for detailed descriptions of aforementioned methods. 

Unfortunately, most of these experimental techniques are not applicable to the 

polymer-drug systems, due to their viscous and non-volatile characteristics. 

Hence, using the expressions derived in appropriate polymer solution 
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thermodynamic theory (Chapter 2), we can estimate the polymer-drug interaction 

parameter either using the pure component properties, i.e., the solubility 

parameters of drugs and polymers or using the mixture properties, i.e., the 

enthalpy of mixing both components. Again, the solubility parameters can be 

predicted using one of the methods described in the Section 1.4, while the 

enthalpy of mixing can be estimated using the computational approaches 

described in Section 4.2.4. 

 

1.6 Scope of the Thesis 

General hypothesis and objective of research:  

As the title of this thesis indicates, we are interested in the application of MD 

simulation in predicting the solubility of different drugs in polymeric micellar 

delivery systems. Polymeric micelles are of great interest for encapsulating 

hydrophobic drugs and their controlled delivery. In order to achieve maximum 

solubility and control over release, for any given drug molecule, a certain polymer 

structure showing maximum compatibility with the drug of interest should be 

designed.  The challenge is to identify the molecular structure of the blocks in the 

block copolymer that can encapsulate the drug of interest and at the same time 

would provide the desired release properties. As discussed earlier, the knowledge 

of block copolymer-drug compatibility is important for designing drug 

formulations and determining the effectiveness of such delivery systems. 

Additionally, such drug delivery systems involve complex intermolecular 

interactions and fittings of molecules of different shapes.  Obviously, being able 
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to quantify such interactions between various drugs and block copolymers with 

different chemical moieties will definitely facilitate the block copolymer design 

process. Hence, the crux of this thesis is to develop valuable tools for predicting 

binary interactions between di-block copolymers and hydrophobic drugs that 

provide useful atomistic details related to forces contributing to the 

thermodynamic compatibility. Molecular simulation seems to be the method of 

choice. 

Specific objectives: 

The first objective of this thesis is to test if the MD simulation would be a better 

method to determine the compatibility of drug/block copolymer systems than the 

GCM that is commonly used in the pharmaceutical research. Owing to the several 

disadvantages associated with the GCM (Section 1.4), it fails to predict the 

solubility of complex drugs in block copolymers. In order to overcome these 

limitations of the GCM, we will be developing two different MD approaches. The 

pros and cons of both the approaches in predicting the polymer-drug compatibility 

will also be discussed. Using MD approach, the Flory-Huggins interaction 

parameters between drugs and block copolymers will be computed in order to 

assess the power of this approach in predicting the experimental solubility trends. 

The effect of drug loading on the interaction parameter will also be studied.  

The second objective of this work is to generate useful information related to 

the molecular origin of the miscibility observed between hydrophobic drugs and 

di-block copolymers. The relative contributions of non-polar and polar 

intermolecular interactions in inducing the miscibility will also be discussed. 
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Various MD analysis techniques will be applied to generate useful atomistic 

details related to intermolecular specific interactions. The effect of molecular 

weights of the blocks of block copolymer on the interaction parameters will also 

be studied. 

The third objective of this thesis is to study the interactions between the 

tailor-made di-block copolymers and hydrophobic drugs. We will apply the 

developed MD simulation technique to various engineered block copolymers 

having controlled molecular architecture either by introducing functional groups 

or by introducing branches of homologous segments to generate multi-

hydrophobic block copolymers. Introduction of various functional groups on the 

blocks of block copolymer is also known to introduce stereochemistry into the 

block copolymer, which indirectly affects the interactions of these block 

copolymers with drug molecules. Hence, we will also study the role of 

stereochemistry in the process of inducing polymer/drug miscibility. 

To properly address all the above-described objectives, we selected two 

different sets of model hydrophobic drugs with distinctively different molecular 

structures. Set-I consists of cucurbitacin drugs (Cucurbitacin B and Cucurbitacin 

I) having multiple hydrogen bond donors and acceptors (hydroxyl and carbonyl 

groups) evenly distributed on their molecules while Set-II consists of fenofibrate 

and nimodipine drugs having essentially only clustered hydrogen bond acceptors. 

In particular, these different sets of hydrophobic drugs will help us to study the 

relative contributions of polar and non-polar intermolecular interactions to the 

process of inducing polymer/drug compatibility. The study performed in the 
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present thesis will serve as the first attempt to provide an atomistic understanding 

of the differences in the encapsulation mechanisms of linear as well as engineered 

block copolymers.  

The thesis is organized into four major sections. Section 1, which is mainly 

composed of Chapter 2, describes various statistical theories related to polymer 

solutions and mixtures along with a brief review of concepts of solubility 

parameters and interaction parameters. The Chapter 3 forms the part of Section 2, 

which covers various methodologies used in MD simulation that were used in the 

present work. Section 3 (Chapters 4 to 7) forms the major part of the thesis, where 

we apply MD simulation techniques to the systems of various hydrophobic drugs 

(Set-I and Set-II) and di-block copolymers and their engineered forms. Atomistic 

details obtained from results and discussion in the Section 3 helps to achieve three 

major objectives of the thesis described above. In the final section (Chapter 8) 

major conclusions along with the future outlook is provided. 
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Chapter 2 

 

Thermodynamic Theories of Polymer  

Solutions and Mixtures 

 

 

2.1 Thermodynamic Compatibility 

In general, the term miscibility applies to the case where constituents mix on a 

molecular scale and mixture exist in single phase with uniform chemical 

composition throughout. An ideal solution signifies such situation. Nonetheless, 

in real solutions, even those containing only low molecular weight substances, 

exhibit non-ideal behaviour. In the case of polymers, it is very rare that we can 

observe miscibility at molecular scale and instead, we observe miscibility at the 

segmental scale with the formation of micro domains. In fact, various techniques 

like small angle neutron scattering (SANS) and Nuclear magnetic resonance 

(NMR) have provided the evidence of the mixing at segmental level for various 

polymer blends [33, 34]. However, thermodynamics offers a unique definition of 

miscibility for both low and high molecular weight substances. 
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2.2 Thermodynamics of Mixing 

For mixing processes at constant temperature and pressure, equations (2.1) and 

(2.2) describe the thermodynamic criteria for achieving the miscibility between 

the components in a mixture.  

 

0 mG       (2.1) 
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Gm is Gibbs free energy of mixing and equation 2.2 describes the second 

derivative of Gm with respect to the concentration (mole or volume fraction) of 

one of the components, across the entire composition range. Equation (2.1) is a 

necessary requirement for any spontaneous mixing process, while the equation 

(2.2) ensures the stability of the mixture. Figure 2.1 illustrates three possible kinds 

of Gibbs free energy of mixing diagrams for a binary mixture. The curve (i) is the 

only one which obeys both equations (2.1) and (2.2) for the entire range of 

compositions and hence indicates a miscible mixture. The curve (ii) disobeys both 

the criteria and hence would yield immiscible mixtures for the entire range of 

compositions.  
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Figure 2.1 Three possible types of Gibbs free energy of mixing diagrams for 

binary mixtures. 
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The curve (iii) follows equation (2.1) but does not follow equation (2.2) for the 

composition range where the slope is positive and hence they form partially 

miscible mixture with miscible and immiscible regions at different concentrations. 

The Gibbs free energy of mixing represents the algebraic sum of the two 

contributions – the enthalpic and the entropic contributions as shown in the 

following expression: 

 

mmm STHG       (2.3) 

 

where Gm, Hm, and Sm represent the free energy, enthalpy, and entropy 

changes on mixing, respectively. The entropic contribution is always favourable 

(i.e., Sm > 0) for any spontaneous mixing process, since the mixing process 

generates more available configurations for the whole system. However, the 

enthalpic contribution can be positive, negative or even zero depending on the 

nature of intermolecular interactions between the components. For the polymeric 

systems, owing to their high molecular weight, there is less dependence of the 

free energy of mixing on the entropic contributions as compared to the enthalpic 

contributions. As a result, the sign of Gm depends essentially upon the sign and 

magnitude of the Hm. Several solution theories of varying complexity have been 

developed to describe the changes in Gibbs free energy of mixing. The primary 

problem in any solution theory is to estimate thermodynamic properties of a given 

mixture based on intermolecular forces. We start with the solutions of low 

molecular weight compounds which are described by the ideal solution theory and 
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later we develop upon this theory to attain the final goal of discussing the polymer 

solution theory. 

  

2.3  Ideal Solution Theory 

An ideal solution is defined as the one in which the intermolecular interactions 

between all the components are comparable. This is simplest theory based on 

three basic assumptions: 

a) The sizes of molecules of all the components are approximately the 

same. 

b) The intermolecular interactions are non-directional (e.g., dispersion 

forces) and comparable in magnitude. 

c) The mixing is totally a purely statistical process (i.e., random mixing 

condition). 

As a result of the assumption (b), we have Hm = 0 for ideal solutions and 

hence, in such cases, the change in the free energy of mixing is given by 

 

ideal
mm STG       (2.4) 

 

The ideal entropy of mixing, , for binary mixtures can be derived using 

the lattice theory of solutions and the Boltzmann law of entropy. For details, 

please refer to Section 2.5.1. For now, we directly accept the following final 

expression for the ideal entropy of mixing. 

ideal
mS
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)lnln( 2211 xxxxRS ideal
m       (2.5) 

 

Here, R is ideal gas constant and xi is mole fraction of the component i. Since the 

mole fractions are always less than 1, will always be positive. ideal
mS

In an ideal solution, mainly due to the assumption (c) of random mixing 

condition, the molecules distribute themselves uniformly in the mixture according 

to the Boltzmann law. But in real solutions and/or polymer solutions involving the 

mixing of low molecular weight solvent with a high molecular weight polymer, 

the individual repeating units are linked along a polymer chain or sometimes 

molecules of one type may tend to associate and hence this leads to a loss of 

conformational entropy. Due to this, the entropy change on mixing in real 

solutions is lower than that predicted by the random mixing condition signified in 

the equation (2.5). 

 

2.4  Regular Solution Theory 

The term ‘regular’ solutions was coined for the first time by Hildebrand in 1927 

[35] and later in 1929 [36], he discussed the thermodynamic significance of such 

solutions. The regular solution deviates only moderately from the ideal solution. 

All the deviations from ideality are ascribed to the enthalpic effects and hence in 

this case, the enthalpy of mixing, Hm  0. But, still the assumption of random 

mixing condition (i.e., random distribution and orientation of molecules) holds 

true and hence, the entropy effects are still ideal in this theory. The regular 

solution theory of liquid mixtures is based on the following major assumptions as 
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described by Longuet-Higgins [37]: (i) the molecules are arranged in a regular 

lattice, (ii) liquid components have ordered structures of the same type, and (iii) 

the intermolecular potential energy is the sum of contributions from nearest 

neighbours in the lattice and these contributions depend only on their chemical 

nature (i.e., non-directional). 

The entropy of mixing is approximated by  expression (2.5) derived in 

the ideal solution theory. The non-zero Hm is given by: 

ideal
mS

 

21xnzwxHm          (2.6) 

 

where z, the coordination number, describes the effective number of nearest 

neighbours, and w is pair interaction energy. For a binary mixture of components 

1 and 2, the pair interaction energy is defined using the mean field expression as 

follows: 

 

122211 2
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2

1
wwww      (2.7) 

 

wij is interaction energy between components i and j. We derive expressions (2.5) 

and (2.6) in Section 2.5.1, utilizing the lattice models of concentrated solutions 

with Bragg-Williams mean-field approximation. Combining equations (2.5) and 

(2.6), we get the following expression for the free energy of mixing for real 

solutions: 
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)lnln( 221121 xxxxRTxnzwxGm    (2.8) 

 

The pair interaction energy, w, may be regarded as the free energy of 

formation of a single contact between two molecules of different types. The 

physical meaning and thermodynamic properties of w has been studied in detail 

by Guggenheim [38]. The fundamental approximation in the regular solution 

theory is that w is independent of the composition and temperature of the mixture. 

Later, it was shown by Guggenheim that w has to vary with temperature. This is 

understandable, since the temperature-independent w would always lead to 

negative values of excess entropy of mixing which eventually shows a 

quantitative disagreement with the experiment. Nonetheless, the mixing is not 

really a purely statistical process due to intermolecular interactions and local 

concentration fluctuations and hence, such a variation is to be expected. But, the 

regular solution theory provides no clue to the actual value of dw/dT. It is worth 

noting that the applicability of the ideal entropy approximation is no longer 

guaranteed, if the constituents of a mixture experiences strong attractive or 

repulsive forces (a large absolute value of w). The greater the w value is, the 

larger the deviation of the entropy expression. It is worth noting that the theory of 

regular solutions has been successful in describing the mixtures of only non-polar 

liquids lacking directional intermolecular forces. 
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2.5  Hildebrand-Scatchard Equation 

The enthalpy of mixing (Hm) expression (2.6), in its present form, is not of any 

practical use, due to the presence of experimentally immeasurable terms. Thus, 

we need to transform this expression in order to make the enthalpy of mixing 

calculations feasible from the experimental point of view. Hildebrand-Scatchard 

equation serves this purpose and is utilized to develop the concept of Hildebrand 

solubility parameters described in the Section 1.3. The pair interaction energy, w 

in the expression of Hm is calculated from the equation (2.7). In this equation, 

interaction energies, w11 and w22 are the energy changes involved in transferring 

molecules of types 1 and 2 to their vapour states at infinite dilution, respectively, 

and w12 corresponds to the energy liberated by considering molecules 1 and 2 

back into the solution state. So, the first step involves proper approximation of the 

values of w12. Here, if w12 is the arithmetic mean of w11 and w22 (i.e., w12 = 

(w11+w22)/2), then Hm equals zero which is not true for the case of regular 

solution. However, if w12 is the geometric mean of w11 and w22 (i.e., w12 = 

(w11w22)
1/2), then w can be written as (w11

1/2 – w22
1/2)2. This approximation is also 

known as the Scatchard geometric mean assumption and works well for low 

molecular weight non-polar materials. When dealing with the mixtures, in which 

there is a large disparity between the sizes of various kinds of molecules; e.g., 

polymer solutions, an alternative and more appropriate way to express the relative 

amounts of the various components is volume fraction (i) rather than the mole 

fraction (xi). [39]. Replacing mole fractions with volume fractions in equation 
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(2.6) and introducing the geometric mean approximation, one can re-write it to 

obtain the heat of mixing per unit volume of mixture: 

 

2
2121 ][  


V

Hm     (2.9) 

 

where i is defined as the solubility parameter of component i, V is total volume 

of mixture and i is volume fraction of component i. The solubility parameter is 

the square root of wii which is also called cohesive energy density (CED). CED 

(sum of intermolecular energies per unit volume) is defined as the energy required 

to vaporize a molar volume of the material at constant temperature. The 

relationship between the Hildebrand solubility parameters and CED is expressed 

in equation (1.1).  

From the inspection of equation (2.9), it is clear that this formula always 

predicts Hm  0 (i.e., endothermic heats of mixing), which holds true only for 

the regular solutions. Since,  in equation (2.5) is always positive, the 

components of a mixture are assumed to be compatible only if Hm  TSm. 

Thus, the miscibility can be predicted based on the pure component property i. In 

general, if the absolute value of (1 - 2) difference is zero or small i.e., if two 

materials have approximately same Hildebrand solubility parameters, they would 

be thermodynamically compatible. The convenience of the solubility parameter 

approach lies in the feasibility of assigning  values a priori to the individual 

ideal
mS
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components of the mixture. Various techniques used to determine the solubility 

parameters of polymers and drugs have been described in the Section 1.4. 

 

2.6 Statistical Theories of Liquid Mixtures 

Statistical thermodynamics provide molecular theory of the macroscopic 

properties of a thermodynamic system. Dilute and concentrated solutions behave 

quite differently and hence their statistical mechanical treatments are also 

different. In a dilute solution, the solute molecules are surrounded by many pure 

solvent molecules so that the interactions between solute molecules can be 

neglected. These solutions behave very similar to dilute gases and hence 

application of an exact approach like a series expansion approach is possible [27]. 

On the other hand, for a concentrated solution, the solute-solute interactions are 

too strong to be neglected. In fact, if a phase separation occurs in the solution at a 

higher concentration, then the series expansion often diverges beyond the 

concentration of phase separation. One way to describe such solutions is to utilize 

various approximate theories. Prevailing theories of concentrated solutions utilize 

highly idealized ‘coarse-grained’ lattice models to capture important aspects of 

their behaviour. In the next section, we will work through the basic assumptions 

and features of the lattice theory for concentrated solutions of small molecules. 

The discussion of this theory will eventually form the base for developing the 

Flory-Huggins Lattice theory for polymer solutions. 
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2.6.1 The Lattice Model of Small-molecule Solutions 

Consider a simple example of a binary mixture comprising of low-molecular 

weight solute (component 1) and low-molecular weight solvent (component 2). A 

schematic representation of a two-dimensional lattice model of concentrated 

binary solutions of small molecules is illustrated in Figure 2.2. In such a simple 

lattice model of solutions, the following major assumptions are involved: (a) The 

sizes and shapes of solute and solvent molecules are assumed to be approximately 

the same with preferably a spherical shape. Therefore, only one solute or one 

solvent molecule can occupy a single lattice site at any given instant, (b) The 

determination of probable statistical mechanical states depends solely on 

translational degrees of freedom, i.e., the states of the system are simply defined 

by the number of unique ways the molecules can be arranged on such lattice, (c) 

The volume of each lattice site is fixed under the condition of constant 

temperature, (d) The lattice is assumed to be incompressible and hence all the 

pressure-volume effects due to mixing are neglected, and (e) No vacant sites are 

allowed. The different spatial arrangements of all the molecules in the lattice give 

rise to the configurational entropy term or the entropy change on mixing 

expression (Equation (2.5)) that is valid for both ideal and regular solutions. 

Additionally, an expression for the enthalpy change on mixing (Equation (2.6)) 

can also be derived based on this lattice model. 
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Figure 2.2  Schematic representation of the lattice model of concentrated 

binary solutions of small molecules. 
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The configurational entropy is related to the total number of 

distinguishable ways of arranging molecules () by following Boltzmann 

relation: 

 

 lnbm kS      (2.10) 

 

where kb is Boltzmann’s constant (1.38 x 10-23 J/K). Here,  is the number of 

distinguishable ways of arranging n1 solute molecules and n2 solvent molecules 

on the lattice with N = n1 + n2, being the total number of sites. In order to 

evaluate , we utilize the Bragg-Williams mean-field approximation, which 

simply states that the arrangement of the  molecules is totally random despite the 

presence of intermolecular interactions. The  is given by the following 

expression: 

 

!!

!

21 nn

N
        (2.11) 

 

Using the Stirling’s approximation: 

 

nnnn  ln!ln     (2.12) 

 

And combining equations (2.10) and (2.11), leads to the following expression for 

the configurational entropy:  
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Next, based on the random mixing approximation, we derive the 

expression for Hm in following way. The lattice coordination number, z, is the 

number of cells that are first neighbours to a given cell. Now, the average number 

of type 2 molecules being nearest neighbour to a chosen type 1 molecule is zx1. 

Multiplying this with the n1 will provide the average number of 1-2 interactions. 

Therefore, 

  The average number of 1-2 interactions is:    n1zx1  

The average number of 1-1 interactions is:     n1zx1/2  

The average number of 2-2 interactions is:     n2zx2/2  

Now, the change in energy of mixing (Um) is given by: 

 

][ 21 UUUU mixm     (2.14) 

 

As a result, the energy change on mixing can be expressed as follows: 
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Simplification of the above expression and utilizing the assumption (d) for lattice 

models, will lead to expression (2.16). 
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Here, w is energy change associated with the formation of one solute-solvent 

contact and is estimated based on the equation (2.7). 

 

2.6.2 Flory-Huggins Lattice Theory for Polymer Solutions 

In the last section, the lattice model of small-molecule solutions was described. In 

this section, we extend those mechanics to statistically more complex systems of 

polymer solutions. The lattice theory of polymer solutions is known as the Flory-

Huggins theory, which was independently developed by Flory and Huggins as a 

generalization of Bragg-Williams lattice model of concentrated binary solutions 

[28-31]. This theory was developed to provide a molecular theoretical basis for 

the free energy predictions which will in turn allow the predictions of miscibility 

behaviour of such polymer solutions. Hence, this theory provides the simplest 

approximation for terms Hm and Sm appearing in the free energy expression of 

equation (2.3). Figure 2.3 represents a schematic representation of the lattice 

model of polymer solutions. Each filled circle represents a chain segment, a piece 

of polymer that is about the same size of a solvent molecule. A chain segment is 

not necessarily a monomer. All the assumptions related to the lattice theory 

(Section 2.6.1) still apply here. In the case of polymer solutions, the mixing 

occurs at the segmental level due to presence of connected polymer segments 

instead of individual molecules. 
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Figure 2.3   Schematic representation of the lattice model of a polymer 

solution. 
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The expressions for entropy change and enthalpy change on mixing are 

given as follows (Please see Appendix A for detailed derivation) 
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21RTHm        (2.18) 

 

Here, it is worth noting that Hm and Sm are defined per mole of lattice sites. i 

and DPi are volume fraction and degree of polymerization of component i, 

respectively. R is universal gas constant and T is absolute temperature. , the 

Flory-Huggins interaction parameter, is defined as zw/RT. The z is coordination 

number of a lattice site while w is pair interaction energy per mole of lattice sites. 

Although, this theory considers  as a dimensionless concentration-independent 

quantity, inversely proportional to the temperature, the experimental data reveals 

that this parameter largely depends on the concentration [39].  

 

2.6.2.1 Miscibility predictions based on the Flory-Huggins Theory 

Combining equations (2.3), (2.17) and (2.18), we obtain the free energy of mixing 

expression for polymer solutions: 
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The last two terms originated from the expression (2.17) of entropy 

change on mixing. The entropy gain predicted based on this expression can be 

thought of as the maximum achievable entropy gain through the mixing process 

since this expression was deduced based on the athermal mixing condition 

assumption. This assumption requires that the polymer molecules in the mixture 

have no preferred conformations on molecular level and do not interact with each 

other through orientation-dependent interactions. Unfortunately, this mixing 

condition would be appropriate only for the mixtures of two non-polar amorphous 

polymers interacting mainly through non-directional interactions like dispersive 

interactions. In polymer mixture systems, if components possess strong 

correlations in their local structures or interact through directional interactions 

like electrostatic or hydrogen bonding interactions, then the entropy gain through 

mixing will be significantly less than that predicted by the equation (2.17). For 

polymers with high molecular weight (DPi  ), the entropic contribution is very 

small or very near to zero and hence for such systems, the miscibility predictions 

would mainly depend on the values of enthalpy change on mixing which mainly 

depends upon the nature of intermolecular interactions between the components 

of the mixture. Hence, within the context of the Flory-Huggins lattice model, the 

miscibility prediction will be mainly dependent on the values of the interaction 

parameters. Therefore, in the present case, we require very small or negative 

values of  in order to achieve miscibility. In general, for binary mixtures of long 

polymers, the miscibility is achieved when the  values are less than the  value 

at critical point (critical). The expression for critical (Equation (2.20)) can be 
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obtained by applying the definition of critical point on equation (2.19), i.e., setting 

the 2nd and 3rd derivatives of Gm with respect to volume fractions (i) equal to 

zero. 
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This expression implies that the miscibility of binary polymer blend 

depends only on the chain length or degree of polymerization of the components. 

In the case of polymer blends,  DP1  DP2  , and hence the critical = 0. This 

implies that the polymer mixing always takes place if the  parameter is negative. 

Miscible polymer mixtures with negative χ exist due to specific interactions like 

electrostatic charge, hydrogen bonding, etc., between given polymer segments. 

For a polymer solution, DP1 = 1 and DP2  , the critical = 0.5. 

For polymer blends, the presence of orientation-dependent interactions 

(i.e., specific interactions) can possibly induce miscibility in spite of an extremely 

small entropy gain [40]. On the other hand, for non-polar polymers, the 

miscibility can only be achieved through near to zero values of the enthalpy 

change on mixing. From the Hildebrand-Scatchard equation discussed earlier, this 

implies that the Hildebrand solubility parameters of the constituent polymers 

should be very close. Thus, one can easily relate the Hm from the Hildebrand-

Scatchard equation (Equation (2.9)) with the Hm from the Flory-Huggins theory 

(Equation (2.18)) to get a useful working relationship between interaction 
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parameters and solubility parameters of polymers. This concept is best illustrated 

by the following approximate equation [15]: 

 

 2
2112  

RT

Vr      (2.21) 

 

Here, 1 and 2 are Hildebrand solubility parameters of polymers 1 and 2, 

respectively. Vr is reference molar volume. The choice of this reference volume is 

somewhat arbitrary, but it is usual practice to choose the smallest volume among 

the molar volumes of the components of polymer blends or solutions. The 

equation (2.21) provides means of predicting a mixture’s property () from pure 

component properties (). Thus, equation (2.21) in conjunction with the equation 

(2.20) provides a straightforward scheme for predictions of polymer miscibility; 

once the solubility parameters and molecular weights of the polymers are known. 

 

2.6.2.2 Limitations of  the Flory-Huggins Theory 

The Flory-Huggins theory captures some essential features of the mixing process 

of polymer blends and solutions and provides a simple expression for describing 

its thermodynamics through the introduction of an important parameter, 12. Yet, 

there are number of limitations to the original formulation of this theory. It is 

worth noting that this theory is a mean-field theory (assumption used while 

deriving the expression for the internal energy change of mixing, equation (2.18)). 

Many of the deficiencies are related to the major approximations and assumptions 

associated with treating such polymeric systems using the simple lattice models. 
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In particular, no vacant sites are allowed in the lattice, no pressure volume effects, 

polymer molecules are of same size (i.e., mono disperse). Moreover, due to the 

fitting of molecules on a fixed lattice, this theory fails to take into account the 

molecular characteristics like: the size and shape of the polymer segments, the 

flexibility and local structures of the chain molecules, and the van der Waals radii 

of atoms. The major deficiencies of the Flory-Huggins theory have been reviewed 

in great detail in articles by Dudowicz et al. [41, 42]. 

Over the last few decades, numerous developments to the original theory 

have been made by many authors [43-46]. Most of these theories fall into the 

category of equation-of-state theories which adopts statistical thermodynamics 

approach based upon the equation of state to include the pressure volume effects 

on mixing and to take into account the polydispersity of the polymers. Due to the 

intricate nature of equations resulting from these modified theories, they are rarely 

used for practical purposes. Hence, the Flory-Huggins theory is still the most 

widely used thermodynamic theory with interaction parameters being extensively 

used to judge the miscibility in many practical situations.    
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Chapter 3 

 

Foundations of Molecular Dynamics Simulation 

 

 

This chapter briefly describes some of the major aspects of molecular dynamics 

(MD) simulation, with a main focus put on the calculation methods used in the 

current thesis. Most of the methodologies used are well-established techniques 

and are extensively explained in classical texts on molecular simulation [47-49]. 

Therefore, only the basic foundations of these subjects will be treated here. 

     

3.1 Introduction  

The macroscopic properties of interest are generally the result of statistical 

averages over many microstates over a much longer time scale than rapid 

electronic motions. Depending on the mechanical approach we use, the definition 

of microstate varies. For example, in terms of quantum mechanics, the wave 

functions are referred to as microstates. Theoretically, these wave 

functions/microstates can be obtained by solving the Schrodinger equation. On 

the other hand, classical mechanics uses positions and momenta of constituent 
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atoms of the material to specify microstates. The collection of position and 

momentum variables constitute a phase space. The quantum mechanical 

approach, because of the limited computational resources, fails to describe 

systems containing large number of atoms and molecules (e.g., polymeric 

systems). Hence, approximate methods like Monte Carlo (MC) or Molecular 

Dynamics (MD), which uses classical mechanics, are more popular methods to 

generate such microstates. These microstates can be averaged using the tools of 

statistical mechanics to compute the desired macroscopic property. The MC 

method generates microstates by exploring positions of atoms through ‘energy 

directed’ random walks, by placing molecular models mostly on cubic lattices. 

The combination of all the accessible positions is termed as the “Configuration 

Space” and the average equilibrium thermodynamic property obtained is usually 

referred to as an ensemble average. On the other hand, MD methods are 

deterministic and all the generated states are connected in time since they are 

obtained by numerically solving the Newton’s equation of motion. The MD 

method generates microstates by exploring the “Phase Space”, i.e., both positions 

and velocities of the constituent atoms in the continuous space as compared to the 

lattices in the MC method. Due to this, the MD method is preferable for 

computational studies of systems containing molecules having complex structures 

(e.g., drug molecules used in present thesis), which tend to loose important 

atomistic details if fitted on simple lattices. An additional advantage of MD 

methods is that it allows the study of time-dependent or transport properties like 

diffusion and viscosity.   
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In statistical mechanics, an average value is defined in terms of an ensemble 

average, an average taken over large number of replicas of systems considered 

simultaneously. Generally, this average corresponds to an experimentally 

observable quantity. MD simulation, generally, yields time average values of a 

particular quantity. Equation (3.1) illustrates an expression for the time average 

( A ) of a thermodynamic quantity A.  
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lim dttAA     (3.1) 

 

According to the ergodic hypothesis, the ensemble average computed from 

MC simulation should be equal to the time average obtained from a comparable 

MD simulation [50]. This hypothesis simply states that if one allows the system to 

evolve in time indefinitely, then the system will eventually pass through all the 

possible states. In other words, the time average should not depend on the chosen 

initial configuration. In practice, the ergodicity of a system is always assumed but 

non-ergodic systems do exist. If a realistic initial configuration is selected, it is 

very likely that the MD trajectory would satisfy the equality of ergodic 

hypothesis. The MD scheme that we adopted in this work has been shown to be 

ergodic by Cho and Jonnaopulos [51]. 

MD simulation requires numerical solutions of second order differential 

equations of Newtonian mechanics at every time step along with the generation 

and storage of positions and velocities of all constituent atoms in MD trajectory 

files. Due to this, MD simulations are computationally expensive and are often 
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limited by the speed of computers used. Additionally, these simulations are often 

limited to the systems containing 1000 to 1500 atoms. MD simulations for 

systems with large number of atoms typically require days or weeks to perform 

even with the use of current high end workstations. Consequently, only hundred 

or thousand of picoseconds simulation regime is accessible by this technique.  

Unfortunately, this is insufficient time for many systems such as polymers in the 

condensed state to undergo very drastic reorientation and relaxation.  It is 

therefore imperative that the initial state of the system be as representative of the 

equilibrated state as possible. The Rotational Isomeric State (RIS) theory has been 

often used to generate initial structures in order to overcome these difficulties. 

This theory will be discussed in detail in Section 3.6 and later in Section 4.2.2, we 

will describe the application of this theory to generate equilibrated initial 

structures of block copolymers used in the present thesis.  

 

3.2 Equations of Motion 

The MD simulation neglects quantum effects and treats all atoms as classical 

particles and hence it depicts the dynamic behaviour of molecules based on 

classical Newton’s second law of motion.  

 

2

2

dt

rd
m

dt

dv
mmaF      (3.2) 

 

where m is mass of the particle, a is its acceleration and r is its position or 

coordinates and F is force acting on each atom, which can be obtained from the 
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potential energy, U(r), which is function of all atomic positions. Since the force is 

conservative, it is defined as negative gradient of the potential energy function of 

the system, which is readily differentiable with respect to the atomic positions.   
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      (3.3) 

 

Generally, the potential energy, U(r), is defined by a force field, constructed 

out of a combination of pair wise interactive terms, as described in the next 

section. Given a set of initial conditions (velocities and positions), the equation 

(3.2) can be integrated numerically in discrete time steps using finite difference 

methods (Section 3.4.1) for all the particles in the simulated system, to yield the 

positions and momenta of these particles as functions of time, which are stored in 

a trajectory. From this trajectory, the average values of properties can be 

determined. The MD method is deterministic in the sense that once the positions 

and velocities of each atom are known at time t = 0, the state of the system can be 

predicted at any later time. 

 

3.3 Force Fields 

 The functional form along with the parameter sets used to describe the potential 

energy of a system within MD simulation is referred to as force field [52]. The 

force field uses a set of empirical formulas to mimic all interactions between 

atoms that are covalently bonded as well as non-bonded interactions between 

atoms and molecules in molecular systems. Their development and application 
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lies on the validity of several assumptions [49]. The most important assumption is 

the Born-Oppenheimer approximation, which assumes that the electrons attain 

their optimum distribution fast enough to adjust to any movement of nuclei based 

on the fact that the nuclear mass is far greater than the electronic mass. In other 

words, we ignore the electronic motions and express the energy of a system as a 

function of the nuclear coordinates only. Transferability is another key issue in 

application of such force fields, since the set of parameters derived from relatively 

small number of cases of probably small molecules needs to be applied to much 

wider range of molecular systems. Finally, we make an approximation that 

interactions among atoms and molecules can be described using simple analytical 

functions and their corresponding parameters can model the chemistry. Force 

field functions and associated parameter sets are derived from both experimental 

work and high-level ab initio (first principle quantum mechanical) calculations. 

The quality of the force field determines the quality of the resultant data and 

hence different force fields are designed for different purposes. Roughly, force 

fields are classified into three classes: 

 

Generic Force Fields: They are all purpose force fields used for all types of 

materials including organic, inorganic and metallic materials. They contain 

simplified form of the potential energy function in order to enhance their general 

applicability. But these types of force fields have limited transferability. 

DRIEDING I and II [53], and Universal Force field (UFF) [54] are few examples 

of force fields belonging to this class. 
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Classical First Generation Force Fields: These force fields were mainly 

developed for specific applications in the field of biochemistry. Major force fields 

belonging to this class are AMBER [55] and CHARMM [56]. These force fields 

were mainly applied to the simulations of biological macromolecules like proteins 

and DNA. 

 

Second Generation Force Fields: These types of force fields have extended form 

of the potential energy function mainly including the cross terms. This increases 

their transferability. Examples include, MMFF [57], MM2 [58], CFF [59]. The 

parameters in the CFF force field were modified to extend its applicability into 

the field of organic polymers and zeolites. The resultant force field was termed as 

the PCFF [60, 61]. Later, to extend the applicability of this force field to 

condensed phase applications, the COMPASS (Condensed-phase Optimized 

Molecular Potentials for Atomistic Simulation Studies) [62] force field was 

developed, where the non-bond parameters were re-parameterized and optimized 

to fit the condensed-phase properties. This is a classical force field but since most 

of its parameters were derived based on ab initio data; this is sometimes also 

referred to as an ab initio force field.  

It has been shown that the COMPASS force field is able to make accurate 

predictions of structural, conformational, cohesive, and other physical properties 

for a wide range of molecules and polymers [62]. Rigby has demonstrated that the 

COMPASS force field is able to reproduce liquid density for a variety of 

substances with complex molecular structures [63]. In this thesis, we are mainly 
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interested in studying the role of non-bond interactions in inducing compatibility 

between di-block copolymers and drugs having complex molecular structures. 

Hence, the COMPASS force field has been selected as a force field of choice.  

The functional form of total potential energy of the system, as described by 

the COMPASS force field, is composed of several terms arising from the 

parameterization of the bonding and non-bonding interactions as shown in the 

following equation: 

 

Etotal =Eb + E + E + E + Ecross + EvdW + EQ  (3.4) 

 

The first five valence terms parameterize the short ranged intra-molecular 

interactions which correspond to internal coordinates bond (b), angle (), torsion 

angle (), Wilson out-of-plane angle (), and cross-coupling terms (Ecross).  These 

cross-coupling terms are generally included in the second generation force fields 

to achieve higher accuracy. They include combinations of two or more internal 

coordinates (e.g., bond-bond, bond-angle and bond-torsion) that would predict 

vibration frequencies and structural variations associated with the conformational 

changes. The last two terms of equation (3.4) represent non-bonded interactions 

consisting of Lennard Jones (LJ) 9-6 function for the dispersive interactions and 

Coulombic function for electrostatic interactions. 

The COMPASS force field uses quartic polynomials for bond stretching (Eb) 

and angle bending (E) as shown in expressions (3.5) and (3.6). 
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where bo and o are equilibrium bond length and angle, respectively. Torsion 

angles or dihedral angles () existing between four atoms is described using a 

three-term Fourier expansion as given in the equation (3.7). 
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An out-of-plane angle or improper torsion coordinate, defined according to 

Wilson et al. [64], arises when the local molecular structure consists of four atoms 

with three valence bonds formed to one center atom. It is easy to visualize the 

presence and importance of such angles in ammonia (NH3) molecule having 

trigonal pyramid structure. This type of angle is also useful in molecular systems 

involving aromatic rings in their structure. The expression describing improper 

torsion angle () is shown in the equation (3.8). 
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The expression for Ecross (Equation (3.9)) includes six cross-coupling terms 

arising from interactions among above four types of internal coordinates. 
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Induced dipole interactions in a molecule are defined by dispersion terms in 

the force field. These dispersion interactions along with short distance repulsions 

are described by LJ-9-6 function (Equation (3.10)), which is collectively referred 

to as van der Waals (vdW) interactions. A steep repulsion at short separations is 

caused by Pauli repulsion associated with the overlap of electron clouds 

belonging to the approaching non-bonded atoms/molecules.  
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where ij is interaction strength and is equilibrium intermolecular distance. 

These LJ-9-6 parameters are given for like atom pairs. For unlike atom pairs, a 

6th-order combination rule [65] is used to calculate the off-diagonal parameters: 

o
ijr
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The electrostatic interaction energy (EQ) is described using the Coulombic 

function as shown in the equation (3.12). 
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Here, qi and qj are partial atomic charges on atoms i and j. In certain force fields 

(e.g., DRIEDING II [53]), an additional term describing the interactions due to 

hydrogen bonding is used. But in the COMPASS force field, there is no explicit 

term in the potential energy function to describe such interactions and in fact the 

term EQ describes such interactions along with the interactions between the point 

charges. In this force field, the partial atomic charges of a molecule are calculated 

from the charge bond increment, ij, which represents the charge separation 

between two valence-bonded atoms i and j [62].  Thus, the net partial atomic 

charge qi on an atom i is considered to be the summation of all the charge bond 

increments. 
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where j represents all the atoms that are valence-bonded to atom i. The charge 

bond increment parameters were derived by fitting to ab initio electrostatic 

potentials (ESP) of the molecule. More details on calculating qi can be found in 

the reference by Sun H. [62]. Briefly, the ab initio data includes ESP, energies, 

and the first and second derivatives of the energies.  In order to maintain the 

transferability of these charge parameters, a constrained ESP (CESP) method is 

employed in which all the previously determined bond increments are fixed and 

are transferred while only the unknown ‘new’ parameters are relaxed to fit the 

ESP. The default parameters of the COMPASS force field available in the 

commercial software package Materials Studio (MS Modeling version 4.2, 

Accelrys) have been used for all the simulation work reported in this thesis. 

 

3.3.1 Non-bonded Interactions 

In a typical MD simulation, most of the CPU time is invested in the calculations 

of non-bonded interactions. In order to evaluate all non-bonded pairs in a 

molecular system of N atoms, we need to perform the O(N2) calculation (i.e., 

CPU time  N2). The dispersion interactions are short-ranged and hence, a cut-off 

method is employed to reduce the computational requirement. On the other hand, 

the electrostatic interactions are long-ranged and truncation using cut-offs affect 

the results significantly [66]. Hence, such interactions need to be treated with 

special methodologies. Generally, the Ewald procedure [48, 67] is employed to 

deal with electrostatics in simulations. Note that this procedure can only be 

  47 
  
 



 

performed on the systems subjected to periodic boundary conditions. This will be 

discussed in more detail in Section 3.6.1. 

 

3.4 Molecular Dynamics Algorithms 

The heart of any MD algorithm is to numerically integrate the Newton’s second 

law of motion (Equation (3.2)) in discrete time steps (t). Generally, the finite 

difference method is used to solve this second-order differential equation. Given a 

set of initial positions (ri) and velocities (vi) at time t, the positions and velocities 

at time t+t are calculated. All the atoms are assigned initial velocities according 

to the Maxwell-Boltzmann distribution at the temperature of interest. In Figure 

3.1, a global flow scheme for a typical MD algorithm is given. Utilizing 

appropriate force field, forces on each atoms are calculated from the functions 

describing the distance-derivative of the interaction potentials (i.e., . 

Usually, three-body and/or higher body interactions are ignored in order to keep 

the computation in a manageable manner, since CPU time  for n-body 

interactions. Hence, pair-wise additive assumption is used during force/interaction 

calculations. The Materials Studio software package used in this thesis applies 

velocity Verlet algorithm to integrate the equation of motion as explained in the 

next section. The collection of positions and velocities of the atoms for the pre-

determined period of simulation time (i.e., the number of time steps) is called MD 

trajectory. The properties of interest can then be averaged, over the whole 

trajectory, using equation (3.1) to obtain the final results.  

ii rrU  /)( )
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 Positions(ri); Velocities (vi) of 
all atoms in the system

Figure 3.1 The global flow scheme for a typical MD Algorithm. 
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3.4.1 Integration Algorithms 

Integration algorithms utilize finite difference methods to perform the dynamics 

incrementally making use of constant time-steps t. The Verlet algorithms [68] 

are perhaps the most widely used integration algorithms in MD simulations. The 

Verlet algorithm uses positions, accelerations at time t and positions from the 

previous time step to determine new positions. This algorithm is stable, accurate 

and simple to implement. A problem with this version of Verlet algorithm is that 

the velocities are not calculated explicitly at each time step, which are normally 

required to evaluate the values of kinetic energy in order to test the conservation 

of energy at all points of simulation time. To overcome this difficulty, some 

variants of Verlet algorithm has been developed, which mainly differs in terms of 

what variables are stored in memory at what times. The leap-frog algorithm is one 

of such variants where velocities are handled explicitly but unfortunately, they are 

not defined at the same time as the positions and are half a time step out of 

synchrony. As a result, in this scheme, kinetic and potential energy are not 

defined at the same time, and hence one cannot compute the total energy directly. 

The velocity Verlet algorithm overcomes this shortcoming of the leap-frog 

algorithm. In the velocity Verlet algorithm, for given positions, velocities and 

accelerations at time t, we can compute: 
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    (3.14) 

Hence, we get positions, velocities and accelerations at the same time. 

Consequently, this algorithm consumes less memory compared to previous 

algorithms because one does not need to keep track of velocities at different time 

steps. Since, these integration methods are approximate methods derived based on 

the Taylor expansions, they involve truncation as well as round-off errors. These 

errors are generally dependent on the values of integration time step (t). For 

example, in the Verlet algorithm, the truncation error is proportional to t4. Thus, 

the integration time step (t) is a key parameter determining the accuracy and 

stability of any integration algorithm. It is obvious that a short time step would 

generate a stable trajectory but the time scale of a process that can be accessed 

would be rather limited. The choice of a particular time step depends on the 

integrators as well as the system. The main assumption involved in the Verlet 

algorithm is that the accelerations and velocities are constant over a time step 

used. Hence, in order to satisfy this assumption, we must split the highest 

vibrational frequency in a particular molecular system into 8 to 10 segments. For 

most of the molecular systems, the highest vibrational frequency is 10-14 s (i.e., 10 

femtosecond) for C-H bond stretching. Therefore, the time step should be about 

0.5 to 1 femtosecond (fs). Though longer time steps upto 5 fs can be used for 
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studying much simpler molecular systems. For all the simulations in this thesis, 

we have used 1 fs integration time step. 

  

3.5 Molecular Dynamics in Various Thermodynamic Ensembles 

MD studies are based on statistical thermodynamics rules and hence they provide 

direct route from microscopic details of a system to macroscopic properties of 

interest. To serve this purpose, it is crucial to imitate the dynamics similar to the 

experimental conditions using the corresponding correct ensemble for the 

property of interest. In classical mechanics, Newton’s equation of motion 

conserves energy and hence conventional MD describes a system with constant 

number of particles (N), volume (V), and energy (E) (i.e., NVE or microcanonical 

ensemble). However, this ensemble does not resemble standard experimental 

conditions where a system is generally exposed to external pressure and/or 

exchanges heat with the environment and therefore, several other algorithms are 

available to sample in different ensembles. In most cases, temperature (T) and 

pressure (P) are most crucial properties which one would like to control. Most 

common thermodynamic ensembles relevant to the experimental conditions are 

canonical (NVT) or isothermal-isobaric (NPT) ensembles. One needs to 

reformulate the equations of motion by adding new degrees of freedom in order to 

regulate temperature and pressure of the system. Simulations performed in this 

work has been carried out in NVT and NPT ensembles using the temperature and 

pressure couplings as described in next few sections. 
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3.5.1 Thermal Coupling 

In MD simulation, most of the thermostats essentially belong to three major 

classes: (a) Scaling velocities (e.g., velocity-scaling and Berendsen Thermostat); 

(b) Adding stochastic forces and/or velocities (e.g., Andersen, Langevin, and 

Dissipative Particle Dynamics Thermostats); and (c) Using “extended 

Lagrangian” formalisms (e.g., Nosé-Hoover thermostat). Each of these classes of 

schemes has advantages and disadvantages, depending on their application. 

Velocity-scaling procedure is one of the earliest methods used to perform 

canonical simulations. This scheme works by scaling the velocities of particles at 

each time step in order to keep the effective system temperature constant. 

However, this procedure suppresses the natural fluctuations of kinetic energy of 

the system and hence they do not produce realistic canonical trajectories. On the 

other hand, the stochastic methods work by adding a friction and noise term to the 

Newton’s equation of motion. This scheme generates an exactly defined canonical 

ensemble, but the presence of random noise does disturb the actual dynamics of 

the system.  

The extended system (ES) methods (Nosé-Hoover thermostat) belonging 

to the class (c) was introduced by Nosé [69, 70] and subsequently reformulated by 

Hoover [71] to eliminate the time scaling so that the trajectories in real time and 

with evenly spaced time points can be obtained. This is one of the most widely 

used methods for performing canonical simulations that produces true canonical 

ensembles. Since this thermostat was used to control temperature in all the 

simulations described in the present thesis, we hereby briefly review this 
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thermostat algorithm. In this method, one incorporates an additional (fictitious) 

degree of freedom to the real physical system to represent interaction of the 

system with heat bath. The additional dynamic variable is believed to have mass 

Q, whose magnitude determines the coupling between the reservoir and the real 

system and hence influences the temperature fluctuations. The Lagrangian 

expression for the total system (reservoir + real system) is given by: 
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where f is degrees of freedom of the physical system (e.g., 3N) and T is the 

desired temperature. The parameter s is a dynamical variable that represents the 

extra degree of freedom of the reservoir. It is worth noting that if s = 1, the 

original Lagrangian is recovered. The third and fourth terms in the above 

Lagrangian expression represent the kinetic energy and (negative) potential 

energy of the reservoir, respectively. Equations of motion, in terms of the virtual 

variables for the system, are derived from the Hamiltonian, which is in turn 

derived from the above extended Lagrangian (Equation (3.15)). Equations of 

motion can be written in real as well as virtual variable but for the sake of 

convenience, real-variable formulation is recommended. Introducing the 

thermodynamic friction coefficient Qps s / , equations of motion in terms of 

the real variables can be recovered as follows: 
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The choice of this user-defined fictitious mass Q of additional degree of 

freedom is rather arbitrary and is generally based on the balance between the 

stability of the solution and the highest-frequency motions of the system. If Q is 

high (i.e., loose coupling), the flow of energy between the physical system and the 

reservoir will be too slow and consequently, infinite Q corresponds to a NVE MD 

system. On the other hand, if Q is too low (i.e., tight coupling), then the energy 

oscillates unphysically, causing equilibration problems. If the energy of the 

extended system is conserved, then the Nosé-Hoover thermostat reproduces the 

canonical ensemble of the real physical system in every respect. 

 

3.5.2 Pressure Coupling 

Pressure can only be defined when the system is placed in a container having a 

definite volume. In a computer simulation, the unit cell subjected to periodic 

boundary conditions is viewed as a container. We describe the important features 

of periodic boundary conditions in the next section. To control the pressure in MD 

simulation, the volume of the simulation box is considered as a dynamical 

variable. For NPT simulation performed in the present thesis, the Andersen 
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barostat [72] has been used to control the pressure, and hence this method is 

described briefly over here. Andersen method was developed to adjust the 

pressure in a simulation of interacting particles. Here, the volume of cell is 

allowed to change but its shape is preserved by allowing the cell to change 

isotropically. In a simulation box of volume V, Andersen proposed to replace the 

coordinates ri by scaled coordinates i defined by: 
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Consider the following new Lagrangian, in which a new variable Q appears: 
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If one interprets Q as the volume V, the first two terms on the right are just the 

Lagrangian of unscaled system. The third term is kinetic energy for the motion of 

Q, and the fourth term represents the potential energy associated with Q. Here,  

and M are constants. A physical interpretation of these additional terms in 

equation (3.18) would be: Assume that the system is simulated in a container 

which can be compressed by a piston. Thus, Q, whose value is volume V, is 

coordinate of the piston. V is potential derived from the external pressure  

acting on the piston and M is mass of the piston. In the process of constructing 

modified Lagrangian of scaled system, we have to decide upon the values of 
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constants  and M. The value of  is chosen to be the value of pressure of the 

fluid and M is mass of the piston whose motion expands or compresses the fluid. 

The trajectory averages calculated from a simulation are independent of the value 

of M, as long as M is finite and positive. Hence, if the only goal of a simulation is 

to calculate the equilibrium averages, then any finite positive value of M can be 

chosen [72]. 

 

3.6 Periodic Boundary Conditions 

Periodic boundary conditions are employed to simulate bulk liquid state 

properties by eliminating the unnecessary surface effects. These boundary 

conditions are implemented by replicating a cubic simulation box of volume V 

(primary cell) throughout the space to form an infinite lattice. The replicated cells 

are called image cells and have the same number of particles as the primary cell. 

A two dimensional version of such a periodic system is shown in Figure 3.2. It is 

worth noting that there are no surface molecules and no walls at the boundary of 

each cell and hence particles are free to enter or leave any cell. However, the 

number of particles in each cell is kept constant. During the course of simulation, 

as an atom moves in the primary cell, its periodic images in all the image cells 

move in exactly the same way. Since all the images are just shifted copies of an 

original atom, it is not necessary to store the coordinates of all the images in a 

simulation and we only keep the track of coordinates of the atoms in the primary 

cell. When an atom leaves the primary cell by crossing a boundary, attention is 

switched to the image just entering.  
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Figure 3.2   Periodically repeated images of an original simulation box (solid 

line) in two dimensions.  
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For short-range interactions, we normally apply a spherical cut-off in order to 

improve the computational efficiency. The cut-off radius should be chosen such 

that a particle in the primary cell does not see its own image in the surrounding 

image cells. The atoms within this cut-off are kept in neighbour lists, which are 

named Verlet list, and updated at certain time intervals. In order to reduce the 

computational cost for long-range electrostatics, special tricks like Ewald 

summation are applied, which will be discussed in the next section.  

 In the present thesis, we apply periodic boundary conditions to construct 

amorphous state models of block copolymers, drugs and their binary mixtures. 

The liquid state models are built using the methodologies developed by 

Theodorou and Suter [73].  In order to model the bulk liquid states of block 

copolymers, single chain conformations in the unit cell subjected to periodic 

boundary conditions are used. First, a unit cell is created whose size is determined 

based on the density, the molecular weight and the number of polymer chains. 

Then, the centre of each molecule is placed in a random position within the unit 

cell and structures are grown from the middle outwards. As the single chain 

conformations are grown, several constraints are imposed.  Hard overlaps are 

avoided by ascribing a hard core radius to each atom equal to 0.3 times of its van 

der Waals radius.    

For systems with large number of atoms (e.g., block copolymers), the number 

of MD time steps one can access in practice is still rather limited. Hence, to 

properly sample the conformation of the block copolymer to generate average 

final properties free from any artefacts of the input initial structure, it is very 
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important to use a realistic way to generate initial structures which are close to 

‘true’ structures. In other words, we need to fulfil the important condition of 

ergodic hypothesis discussed in Section 3.1. For this purpose, the use of RIS 

model developed by Flory [74] is inevitable in order to generate realistic 

copolymer configurations. The RIS theory is standard method used to compute 

the conformational statistics of polymer chains based on the Boltzmann 

distribution. In this theory, each bond is assumed to adopt a small number of 

discrete torsion angles representing the lowest energy. One can easily identify 

such RIS energy states based on the distribution of torsion angles of skeletal 

bonds of the copolymers. More details on the RIS theory [74] and its application 

to the system of di-block copolymers used in the present thesis will be presented 

later in the Section 4.2.2. 

 

3.6.1 Ewald Summation 

 Ewald summation [75] was introduced in 1921 as a technique to sum the long-

range electrostatic interactions between particles and all their infinite periodic 

images efficiently. This method is based on the representation of the electrostatics 

in a system by Coulombic point charges q. Hence, first, we assume a collection of 

N charged particles in a cubic box with side length L, with periodic boundary 

conditions. The total electrostatic energy in this system is given by: 
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The prime  in the sum over periodic images n indicates that the particle self-

interaction i = j should be skipped when i and j are in the same periodic image 

(n=0). The above sum in the equation (3.19) is conditionally convergent and 

hence the main idea in the Ewald summation is to convert one conditionally 

convergent sum into two absolutely convergent sums. To evaluate UELEC 

efficiently, we break it into two parts: (i) a short-ranged potential treated with a 

simple cut-off; and (ii) a long-ranged potential which is periodic and slowly 

varying, which can therefore be represented to an acceptable level of accuracy by 

a finite Fourier series. This is achieved by surrounding each discrete point charge 

using the Gaussian charge distribution of opposite sign and equal magnitude. In 

this way, the interactions are screened so that they are short-ranged and then the 

sum of interactions is absolutely convergent. After this, a compensating charge 

density is added so that the overall potential is identical to the original one. 

Summation of this compensating distribution is performed in a reciprocal space so 

that it is absolutely convergent. This part is treated using the Fourier series. The 

Ewald sum (Equation (3.20)) is therefore written as the sum of three parts, the 

short-ranged real (direct) space sum ( ), the long-ranged calculated in the 

reciprocal (imaginary or Fourier) space sum ( ), and a self-interaction constant 

term ( ).  
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The reciprocal space part extends infinitely over all periodic images. The 

actual charge distribution is described by a set of Gaussian charge clouds, for 

which an interaction in reciprocal space can be written as sum over the set of k 

vectors: 
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Here,  is the inverse length (an Ewald parameter), which is used to determine the 

relative weight of real and reciprocal space contributions. (k) is given by: 
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The real space part is calculated in a similar way as normal Coulomb 

interactions, except that the Gaussian functions (  nLrerf ij  ) needs to be 

subtracted from the point charges, in order to cancel charges added to the system 

in equation (3.21). Hence is given by the equation (3.23). rU
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Here, erfc is complimentary error function defined as erfc(x)  1 – erf(x). The 

error function is defined as follows: 

 

 
x

r drexerf
0

22
)(


     (3.24) 

 

The system now contains both point charges and Gaussian charge clouds 

around a single charge point, and for a single charge point there can be a charge 

interaction with itself. To remove this term, a self-interaction correction is 

performed: 
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Chapter 4 

 

Prediction of Compatibility between Water Insoluble 

Drugs and Self Associating PEO-b-PCL Block 

Copolymers1  

 

 

4.1 Introduction 

Block copolymers can self-associate to form polymeric micelles, which can serve 

as nanoscopic vehicle for the delivery of water insoluble drugs in a controlled 

manner [1, 3, 5, 6]. The challenge is to identify the molecular structure of the 

blocks in the block copolymer that can encapsulate the drug of interest and 

provide the desired release properties.  It is believed that compatibility between a 

drug and the hydrophobic block of a block copolymer determines the 

encapsulation capacity of the micelles [6, 76, 77]. Nonetheless, use of drug 

compatible moieties in the micellar core has been shown to lower the rate of drug 

release from the carrier [6].  To optimize the properties of polymeric micelles and 

                                                 
1 A version of this chapter has been published. Patel, S.; Lavasanifar, A.; Choi, P. (2008). 
Biomacromolecules. 9, 3014-23. 
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achieve maximum encapsulation and sustained rate of drug release from these 

carriers, the current practice is to synthesize the target block copolymer and 

examine the solubility of drugs by carrier using a trial and error approach.  This is 

simply because such drug delivery systems involve complex intermolecular 

interactions and fittings of molecules of different shapes.  Obviously, being able 

to quantify such interactions between various drugs and block copolymers with 

different chemical moieties will definitely facilitate the block copolymer design 

process.  This will, in turn, avoid cumbersome and expensive trial and error 

formulation studies.  The molecular simulation seems to be the method of choice 

in this regard.  Ideally, one would like to simulate block copolymer micelles to 

determine how block copolymer structure and its block lengths affect drug 

loadings and encapsulation efficiency for the drug of interest.  Nevertheless, 

simulating such systems at the atomistic level on a routine basis is totally 

impossible at the time being as the computational costs are prohibitively high.  

Therefore, we have focused on studying binary interactions between the drugs and 

the block copolymers of interest in their liquid state rather than in a micelle 

environment.  In particular, the aim of the present work is to test if MD simulation 

would be a better method to determine the compatibility of drug/block copolymer 

systems than the GCM that is commonly used in the pharmaceutical research.  

And as shown in this chapter, the MD approaches we used seem to outperform the 

GCM.    

  The concept of solubility parameter is used to quantify the strength of 

intermolecular interactions. The details on the Hildebrand () and Hansen 
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solubility parameters (d, p and h) can be found in Sections 1.3 and 1.4. 

According to different formalism of the solubility parameter as depicted in 

equation (4.1), it is related to the interaction energy potential, u(r) and the local 

arrangement of molecules in the liquid state, g(r) (i.e., the radial distribution 

function). 
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where Ev/V is cohesive energy density (CED); n is number of molecules.  

Equation (4.2) shows the relationship between the Hildebrand and Hansen 

solubility parameters. 

 

2222
hpd        (4.2) 

 

Here, the subscripts d, p and h refer to the contributions due to dispersion forces, 

polar forces, and hydrogen bonding, respectively.  In general, compatible 

materials tend to have comparable solubility parameters (either  or d, p and h).  

One common method to obtain the Hildebrand and Hansen solubility parameters 

is the GCM.  The details on the GCM method can be found in the Section 1.4. 

The GCM is simple to use and generally provides reasonable compatibility 

predictions for compounds with simple chemical structures.  Nevertheless, the 

GCM fails to provide a good estimation for the solubility of complex drug 
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molecules and copolymers owing to several disadvantages as described in the 

Section 1.4.  

Forrest et al.[78] used the GCM to calculate the Hildebrand solubility 

parameters of a few lipophilic drugs and of the hydrophobic block (i.e., the PCL 

block) of a commonly used block copolymer poly(ethylene oxide)-b-poly(-

caprolactone) (PEO-b-PCL, see Figure 4.1(A)).  Using such , they calculated the 

Flory-Huggins interaction parameters (χ), which quantify the difference in 

intermolecular interactions of the components in a binary mixture, thereby the 

compatibility for various pairs of drugs and the PCL block of PEO-b-PCL.  

According to the Flory-Huggins solution theory, lower χ values indicate better 

solubility.  It is evident in their results that χ between hydrophobic drugs such as 

fenofibrate and nimodipine (see Figures 4.1(B) and 4.1(C)) and the PCL block of 

PEO-b-PCL predicted using the GCM are inconsistent with their solubility in 

caprolactone obtained by experimental means (see Table 4.1).  In particular, the 

Hildebrand solubility parameters of fenofibrate and nimodipine computed by the 

GCM are 22.5 and 21.6 (J/cm3)1/2, respectively, and the corresponding  values 

between them and the PCL block are 0.539 and 0.250, respectively.  However, the 

caprolactone solubility of fenofibrate and nimodipine was 120 and 20 mmol:mol, 

respectively (see Table 4.1).  Higher solubility of fenofibrate in PEO-b-PCL was 

unexpected because their χ parameter is greater than that of nimodipine/PCL 

block of PEO-b-PCL pair.  

 

 

  67 
  
 



 

 

H3C O C

H

H

C

H

H

O C

O

C O

m
n

(A)

C C C C

H

H

H

H

H

H

H

H

H

H

H

 

 

O

Cl O

O

O

(B)

 

 

N

H

CH3
H3C

NO2

COOCH2CH2OCH3
(H3C)2HCOOC

(C)

 

 

Figure 4.1 Chemical Structures of (A) PEO-b-PCL; (B) Fenofibrate; and (C) 

Nimodipine. 
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Table 4.1 Reported experimental solubility of fenofibrate and nimodipine in 

caprolactone along with the solubility parameters of both the 

drugs and PCL block calculated by Forrest et al. using the GCM.  

 

Drug  
(J/cm3)1/2 

drug-PCL Drug:Caprolactone 
(mmol:mol)a 

PCL 20.20 - - 
Fenofibrate 22.50 0.539 120 

Nimodipine 21.60 0.250 12 
a solubility reported based on maximum incorporation reported by referenced authors in 
PEG-b-PCL or PEG-b-PCL-b-PEG nanocarrier (See text for details) 
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It is worth noting that the experimental solubility data reported by Forrest et al. 

was obtained from Jette et al. [79] and Ge et al. [80] and it signifies the amount of 

drug soluble in the micelles formed by the corresponding di-block and tri-block 

block copolymers made up of PEO and PCL blocks for fenofibrate and 

nimodipine respectively but was converted to a basis of mmol drug/mol of 

caprolactone. In the case of nimodipine, no drug loading data is available for di-

block PEO-b-PCL. 

Considering the inadequacy of the GCM, in the present work, we therefore 

applied the technique of MD simulation to determine whether MD simulation 

would provide better compatibility predictions for the systems that the GCM 

yielded incorrect results. The motivation originates from the work of Choi et al. 

[22-25] in which the authors have utilized the MD simulation to obtain better 

estimation of the solubility parameters of surfactants as compared to the GCM 

and have shown that such an approach can rectify some of the drawbacks of the 

GCM.  Because one can account not only for the interactions between the drug 

and the PCL block but also for the interactions between the drug and the PEO 

block in the MD simulation, we carried out simulations using PEO-b-PCL with 

different hydrophilic (PEO) and hydrophobic (PCL) block lengths. 

Recently, an in silico model has been proposed by Huynh et al. [26], which 

involves calculations of the solubility parameters, of an anticancer agent 

docetaxel and various small molecule excipients, using semi-empirical methods 

and MD simulation. The relative in silico solubility of Docetaxel in various 

excipients was in good agreement with the experimental solubility data and hence 
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validated the use of computational model as a reliable tool for designing drug-

excipient mixture formulations. Nevertheless, our study concentrates on the 

prediction of thermodynamic compatibility between drug and long chain block 

copolymer.  Two different MD strategies were used so that the effects of drug 

loading and of hydrophilic and hydrophobic block lengths of PEO-b-PCL on 

drug/PEO-b-PCL compatibility could be investigated. 

 

4.2 Simulation Details 

4.2.1 Software and force field 

All MD simulations were performed using Materials Studio Software package 

(MS Modeling Version 4.0 from Accelrys Inc.) run on a Silicon Graphics (SGI) 

workstation cluster.  The initial block copolymer conformations were generated 

using the rotational isomeric state (RIS) theory.  The COMPASS force field [62] 

was used throughout to describe bonded and non-bonded interactions (See Section 

3.3 for details). Based on first principle quantum mechanical calculations, the 

partial atomic charges on the molecules were preset by the COMPASS force field. 

The electrostatic interaction was calculated using the Ewald summation method 

(Section 3.6.1) since it provides a more effective way of handling long-range 

interactions. [67] 

 

4.2.2 Construction of liquid-state models 

The liquid state models of the block copolymers, drugs and their mixtures were 

built using the methodologies developed by Theodorou and Suter. [73] Such 
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structures were constructed using the amorphous builder module available in 

Cerius2. Three PEO-b-PCL block copolymers with different hydrophilic (PEO) 

and hydrophobic (PCL) block lengths were used.  They were PEO(1250)-b-

PCL(2500), PEO(2500)-b-PCL(2500) and PEO(2500)-b-PCL(1250), where the 

number in the bracket signifies the molecular weight of the block.  Snapshots of 

liquid state models of PEO(2500)-b-PCL(2500) block copolymer and mixture of 

PEO(2500)-b-PCL(2500) block copolymer and fenofibrate drugs [40% (w/w) 

drug/polymer] are shown in Figures 4.2 and 4.3, respectively. 

In the cases of block copolymers, single chain conformations in unit cells 

subjected to three-dimensional periodic boundary conditions were used.  Here, the 

periodic boundary conditions provide means to model bulk liquid state using only 

single chains. As single chain conformations were grown, several constraints were 

imposed.  Hard overlaps were avoided by ascribing a hard core radius to each 

atom equal to 0.3 times of its van der Waals radius.  The unit cell was also 

subjected to the density constraint.  Since experimental density values of the 

drugs and their mixtures with various block copolymers at 140 C (i.e., 413 K) 

were not available, we carried out an isobaric-isothermal (NPT) ensemble MD 

simulation (P = 1 atm; T = 413 K) using the density values from the GCM as the 

initial values to determine their density.  Here, the Nose thermostat [69] and 

Andersen barostat [72] were used to control the temperature and pressure of the 

systems.  In the NPT MD simulation, the volume of the periodic unit cell (i.e., 

density) is allowed to fluctuate.   
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Figure 4.2   Snapshot of the liquid model of pure PEO(2500)-b-PCL(2500) 

subjected to 3D periodic boundary conditions. 
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Figure 4.3   Snapshot of the liquid model of binary mixture of PEO(2500)-b-

PCL(2500) and fenofibrate drug molecules (40% (w/w) 

drug/block copolymer) subjected to 3D periodic boundary 

conditions. 
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The final, and perhaps the most important constraint imposed, was the 

distribution of the torsion angles of the skeletal bonds in the copolymers, which 

was determined using the RIS theory [81, 82]. Nevertheless, it should be noted 

that the RIS theory cannot be used for polymers in their crystalline state. In 

particular, the torsion angle distribution was determined by applying the 

Boltzmann weighting factor to the energies of the RIS minima. In this work, the 

initial distribution of torsion angles was determined by the following method. We 

identified a total of seven torsion angles for PEO-b-PCL and they are described in 

Tables 4.2 and 4.3. A conformational energy map was constructed for each of 

these torsion angles by rotating the torsion angle through 360 degrees in ten-

degree intervals while simultaneously relaxing all other degrees of freedom to 

achieve a root mean square force of below 1.0 kcal/(mol Å). A representative 

conformational energy map is shown in Figure 4.4 for the torsion angle 5. From 

this figure, one can readily identify two rotational isomeric states and they are two 

minima at approximately 60 and 240 degrees.  Next, we determined the width of 

each RIS at a point 0.6 kcal/mol above the minimum. This value was used as the 

torsion angle tolerance 5, for constructing the amorphous structures.  In Table 

4.4, we list the values of RIS minima and respective tolerances for all seven 

torsion angles that have significant influence to the conformation of the 

copolymer.  Once the RIS state distribution was determined, the RIS states were 

populated allowing for angle tolerances stated in Table 4.4.  
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Table 4.2    Unique torsion angles for the PEO block. 
 

 
Angle Terminology Torsion Angle 
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Table 4.3    Unique torsion angles for the PCL block. 
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Figure 4.4     Conformational energy map of the torsion angle labelled 5 in 

Table 4.3. 
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Table 4.4    Rotational isomeric states for all torsion angles of PEO-b-PCL. 

 

Skeletal 
Bond 

State 1* State 2* State 3* State 4* 

1 170  20 300  10 330  10 N/A 
2 40  10 60  10 280  10 350  10 
3 80  10 250  10 N/A N/A 
4 170  10 200  10 N/A N/A 
5 60  10 240  15 N/A N/A 
6 70  15 180  10 230  5 N/A 
7 190  10 220  10 N/A N/A 

     *Data are Torsion angle ± Tolerance 
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It is worth noting that the initial conformations of the copolymers used in the NPT 

MD simulations were subjected to the RIS constraints as well.   

The reason for using the RIS theory in the construction of the liquid state 

models was discussed in Section 3.6. In our simulations, we have utilized the fact 

that the distribution of torsion angles, in the bulk amorphous state, are the same as 

those of an isolated molecule; that is, the molecular conformation in the bulk is 

unperturbed by the excluded volume effect and non-bonded intermolecular 

interactions. This approximation, which is attributed to Flory [83], has been 

supported by extensive experimental data in the polymer field [74]. Other 

conformational features such as bond lengths and bond angles were set based on 

their experimental values. These values generally adjust very quickly during the 

course of a MD simulation.  Upon application of the aforementioned constraints, 

the size of the simulation cells obtained was about 3 nm which is generally 

sufficient to represent the bulk amorphous state of the systems, especially 

subjected to three dimensional periodic boundary conditions.  And conformation 

of the block copolymers is fairly close to that in equilibrium. 

 

4.2.3 MD Simulation 

The initial amorphous structure formed using the method described above is in a 

relatively high energy state and hence before performing MD, energy 

minimization was carried out using the conjugate gradient method.  This 

minimization step often helps to remove strong van der Waals overlaps. 
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Canonical (NVT) MD simulations for all the structures were carried out 

using the Nose thermostat [69] at a constant temperature of 413 K. The 

temperature is well above the melting points of fenofibrate, nimodipine, and the 

block copolymers to ensure that all materials are in the liquid (i.e., amorphous) 

state.  A time step of 1 fs was used to ensure the stability of the simulation.  The 

simulations were carried out until the total energy of the systems stabilized.  

Simulations of drug molecules were carried out for 1000 ps, while the simulations 

of the block copolymers and mixtures were carried out for 2000 ps.  The last few 

hundred ps of the trajectory files were used to calculate the physical properties of 

interest. The simulation time used for the pure drug systems should be long 

enough for the drug molecules to equilibrate.  It is worth noting that the computed 

root mean square displacement over a time period of 1000 ps of fenofibrate and 

nimodipine are 7.0 and 5.0 Å, respectively, which are comparable to that their 

radii of gyration, 6.0 and 4.5 Å, respectively, indicating that equilibration was 

achieved.  Finally, to get potential energy in vacuum state (Evac), a single chain of 

copolymer or a single drug molecule without being subjected to periodic 

boundary conditions was simulated for 2000 ps at 413 K. 

 

4.2.4 Calculation of Flory-Huggins Interaction Parameters using MD 

Simulation 

Hildebrand solubility parameter () is the square root of cohesive energy density 

(CED). 
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 
V

EE
CED bulkvac       (4.3) 

 

where Evac is potential energy in the vacuum state, Ebulk is potential energy in the 

amorphous state, and V is molar volume given by the ratio of density to molecular 

weight.  Evac and Ebulk were calculated from MD simulation and were used to 

calculate the corresponding . The Flory-Huggins interaction parameter  was 

then calculated using following equation (derived in Section 2.6.2.1): 

 

 
RT

2
21rV  

       (4.4) 

 

where R is universal gas constant and Vr is reference volume. The choice of 

reference volume is somewhat arbitrary but it is a usual practice to choose the 

smallest one among the molar volumes of drugs and of repeating units of the 

blocks of the block copolymer. The molar volumes of the drug molecules can be 

computed directly from the knowledge of their densities and molecular weights. 

The molar volumes of fenofibrate and nimodipine at 413 K were found to be 

322.17 cm3/mol and 391.06 cm3/mol, respectively. But, since the densities of 

repeating units of the blocks of the copolymer are not known, we predict their 

molar volumes using a group contribution method called GCVOL [18-20] as 

described in the Appendix B. The predicted values of the molar volumes of 

repeating units of PEO and PCL blocks at 413 K were 91.41 cm3/mol and 108.46 

cm3/mol, respectively. Since, the molar volume of the repeating unit of PEO 
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block was the smallest, it was chosen as the Vr. Although this is the simplest 

method to calculate , it suffers from several disadvantages.  In particular, it 

yields only positive  values and secondly, it is unable to describe the 

concentration dependence of  (i.e., local molecular packing effect in a mixture 

environment) as  is calculated using the properties of pure components. 

Considering the drawbacks of the first approach, another approach was 

used in which the internal energy changes on mixing for drug/block copolymer 

pairs were calculated.  The internal energy change on mixing can be readily 

calculated from MD simulation by comparing the internal energies of mixture and 

pure state block copolymer and pure state drugs as shown below: 

 

2211 EnEnEE mixturem      (4.5) 

 

where Emixture is the enthalpy of block copolymer and drug mixtures; E1 and E2 are 

enthalpies of pure state block copolymer and drugs, respectively; n1 and n2 are 

moles of pure block copolymer and drug, respectively. While performing NPT 

MD simulations on such mixtures, we noted negligible volume changes on mixing 

and hence we ignored the (PV) effect. The PV for most of the systems was 

found to be on the order of 10-3 (kcal/mol). As a result, Hm is approximately 

equal to Em. Subsequently, the Flory-Huggins interaction parameter can be 

calculated using following equation (Section 2.6.2): 

 

21RTHm       (4.6) 
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where 1 and 2 are the volume fractions of the block copolymer and drug.  It is 

evident from the equation (4.6) that the second approach allows us to study the 

concentration dependence of .  The simulation methodology for pure and binary 

mixed systems is outlined in Figure 4.5. 

As mentioned earlier, since the equilibration of block copolymers both in 

the pure and mixture states could not be achieved over the simulation times we 

could practically use, we used the RIS theory to generate their initial 

conformations that should not be far from equilibrated structures. Conformations 

generated in this way follow the spirit of the Flory-Huggins theory. Obviously, it 

would be better if we could carry out more MD simulations using more initial 

conformations generated by the RIS theory for each mixture.  Nevertheless, the 

computational cost is prohibitively high. 

 

4.3 Results and Discussion 

Table 4.5 shows computed density values of PEO-b-PCL, drugs and their 

mixtures in their liquid state obtained from the NPT MD simulations at 1 atm and 

413 K.  The experimental density values were not available.  Nevertheless, Rigby 

has demonstrated that the COMPASS force field is able to reproduce liquid 

density for a variety of substances with complex molecular structures. [63]. We 

feel that computed density values for drugs and drug/block copolymer mixtures 

should be reliable.  The density was then used in the subsequent NVT MD 

simulations to determine  and .  
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Hm = RT12 

Hm = Hmixture – n1H1 – n2H2 

Obtain H1, H2, Hmixture 

 = Vr (1 - 2)
2/ RT 

 = [(Evac – Ebulk)/V]1/2 

Obtain Ebulk & Evac  

Run NVT MD Simulations 

Perform Energy Minimization 

Construct liquid state models using correct 
density (BCP, drugs & mixtures) 

RIS, PBC 

Density prediction of liquid state models using 
NPT MD Simulations

Build BCP* with required DOP* 

Build Monomers & Drug molecules 

*Note: BCP – Block Copolymers; DOP – Degree of Polymerization 
 

Figure 4.5   Flowchart of approaches taken for MD simulation of the pure and 

binary mixed systems of drugs and block copolymers.  
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The NVT MD trajectory files were created for each structure in the amorphous 

and vacuum states. The mean potential energies of the bulk and vacuum states 

were then calculated by using time average of the potential energy over the last 

100 ps of the trajectory. 

Table 4.6 summaries the computed solubility parameters of both drugs and of 

three model PEO-b-PCL block copolymers.  And such values were used to 

calculate the corresponding  parameters for various drug/block copolymer pairs 

using equation (4.4) and results are listed in the Table 4.7. The higher  values for 

nimodipine/PEO-b-PCL pair than those of fenofibrate/PEO-b-PCL pair 

(especially those two PEO-b-PCL models with long PCL blocks) by MD 

simulation reflect that nimodipine exhibits lower solubility than fenofibrate in 

three PEO-b-PCL block copolymers, which are consistent with the experimental 

solubility results of the above systems.   

For both drugs, an increase in the molecular weight of the PCL block was also 

shown to decrease the  values, an indication for higher drug solubility in PEO-b-

PCL micelles with longer PCL blocks, which has also been observed 

experimentally by Jette et al.[79] and Ge et al.[80]. The MD results suggest that it 

is desired to include the PEO block in the calculation of , thereby χ to yield the 

correct compatibility predictions. Paradoxically, Table 4.7 also shows that an 

increase in the molecular weight of the PEO block (same PCL molecular weight) 

has almost no effect on the  values. 
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Table 4.5   Computed densities of drugs, block copolymers and their mixtures 

at 1 atm and 413 K along with the number of drug molecules 

involved. 

 

Block copolymer/Drug/mixture Density 
(g/cm3) 

No. of drug 
molecules 

Fenofibrate (F) 1.12 - 

Nimodipine (N) 1.07 - 

PEO(1250)-b-PCL(2500) (P1) 1.15 - 

Mixture of P1 & F (70 wt% drug) 1.14 24 

Mixture of P1 & F (40 wt% drug) 1.15 7 

Mixture of P1 & F (10 wt% drug) 1.15 1 

Mixture of P1 & N (70 wt% drug) 1.13 21 

Mixture of P1 & N (40 wt% drug) 1.13 6 

Mixture of P1 & N (10 wt% drug) 1.14 1 

PEO(2500)-b-PCL(2500) (P2) 1.15 - 

Mixture of P2 & F (70 wt% drug) 1.14 32 

Mixture of P2 & F (40 wt% drug) 1.14 9 

Mixture of P2 & F (10 wt% drug) 1.15 2 

Mixture of P2 & N (70 wt% drug) 1.12 28 

Mixture of P2 & N (40 wt% drug) 1.14 8 

Mixture of P2 & N (10 wt% drug) 1.14 1 

PEO(2500)-b-PCL(1250) (P3) 1.20 - 

Mixture of P3 & F (70 wt% drug) 1.18 24 

Mixture of P3 & F (40 wt% drug) 1.20 7 

Mixture of P3 & F (10 wt% drug) 1.20 1 

Mixture of P3 & N (70 wt% drug) 1.15 21 

Mixture of P3 & N (40 wt% drug) 1.17 6 

Mixture of P3 & N (10 wt% drug) 1.18 1 
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Table 4.6   Solubility parameters of fenofibrate, nimodipine and different 

PEO-b-PCL calculated by MD simulation. 

 

Drug/Block copolymer 
Solubility 

Parameters () 
(J/cm3)1/2 

Fenofibrate 16.06  0.51 
Nimodipine 14.49  0.40 

PEO(1250)-b-PCL(2500) 17.49  0.18 
PEO(2500)-b-PCL(2500) 17.57  0.10 
PEO(2500)-b-PCL(1250) 19.55  0.18 

 
 
 
 
 
 
Table 4.7    parameters computed using the  values listed in Table 4.6 for 

various drug/block copolymer pairs. 

 

  
Flory-Huggins interaction parameter (χ) for various 

drug/block copolymer pairs  

Drug  
PEO(1250)-b-

PCL(2500) 
PEO(2500)-b-

PCL(2500) 
PEO(2500)-b-

PCL(1250) 
Fenofibrate 0.05  0.02 0.06  0.03 0.33  0.09 
Nimodipine 0.23  0.05 0.26  0.05 0.68  0.11 
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This observation is also consistent with the conventional drug/block copolymer 

solubility studies in which only the interaction between the drug and the 

hydrophobic block of a block copolymer is considered. [6, 78].  

The above MD approach (i.e., the calculation of  using the  of pure 

components) yield better compatibility predictions as compared to the GCM, 

possibly due to rectification of many of the drawbacks of the GCM discussed 

earlier (in Section 1.4) by the MD simulation approach. One key difference 

between these two approaches is that the GCM basically uses only the interaction 

energy potential u(r) to obtain the  while MD simulation includes not only the 

interaction energy potential, u(r), but also the local arrangement of the molecules 

(i.e., g(r)) to compute the  (Equation (4.1)).  Nevertheless,  computed using the 

above MD approach still suffers from the drawback that it cannot capture the g(r) 

of the molecules, both drug and block copolymer molecules, in a mixture 

environment (i.e., the concentration dependence of  cannot be assessed). We 

therefore used the second approach (i.e., Equations (4.5) and (4.6)) to investigate 

the concentration dependence of . The enthalpy changes on mixing between 

block copolymer and drug molecules were computed using NVT MD simulation 

to obtain Em ( Hm) and were used to calculate the  values for various 

drug/block copolymer pairs at the concentrations of 10, 40 and 70 wt% of drugs. 

The average total energy is more commonly expressed per mole of copolymer or 

mixture. To calculate the , all the calculated enthalpy changes on mixing were 

converted to per mole of the lattice sites as described in the Appendix C. In 

calculations of the free energy of the pure drugs, we have accounted for the drug-
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drug interactions by using 25 molecules to represent their pure liquid state. The 

relationship between the  values and polymer concentrations in drug/block 

copolymer pairs are plotted in Figures 4.6(A), 4.6(B), and 4.6(C).  The error bars 

shown in the figures are ensemble fluctuations determined based on the data of 

MD trajectories. 

The above described procedure is justified by the finding of Gadelle et al. In 

particular, they have shown, using the example of the solubilization of aromatic 

solutes (benzene and chlorobenzene) in PEO-b-PPO-b-PEO micelles, that the 

interaction parameter between the solute and the hydrophobic cores (PPO core in 

their case) is insufficient to characterize the solubilization in micelles formed by 

block copolymers [84]. According to their observation, such interaction 

parameters can be quite misleading and there are equal chances of existence of 

interactions between aromatic solutes and corona of a micelle. Therefore, it is 

always beneficial to consider the interaction parameter between entire block 

copolymer and the drugs of interest. It is worth noting that χ calculated from the 

above MD approaches is between drugs and entire copolymer, not between drugs 

and the PCL block only. As a result, the effect of the PEO block on χ can be 

evaluated.  According to the Flory-Huggins theory, the critical χ value above 

which a polymer and a low molecular weight compound (e.g., drug) become 

immiscible is 0.5 (Refer Section 2.6.2.1). In other words, if χ for drug/block 

copolymer pair is lower than 0.5 or negative, they are soluble into each other. 
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Figure 4.6(A)  Concentration dependence of the  parameters for 

drugs/PEO(1250)-b-PCL(2500) pairs. 
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Figure 4.6(B)  Concentration dependence of the  parameters for 

drugs/PEO(2500)-b-PCL(2500) pairs. 
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Figure 4.6(C) Concentration dependence of the  parameters for 

drugs/PEO(2500)-b-PCL(1250) pairs. 
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However, as the theory was developed mainly for solvent and polymer that 

interact mainly through non-polar dispersion forces, use of 0.5 for our systems, 

which involves both Coulombic and hydrogen bonding interactions, is not 

suitable.  Therefore, we judge whether compatibility prediction is successful or 

not by comparing the trend of the computed interaction parameters, either from 

MD or GCM, with the observed experimental solubility trend. 

It can be seen from Figures 4.6(A), (B), and (C) that the computed  increases 

(miscibility decreases) as the hydrophilicity of the block copolymer increases. 

These results on decreasing compatibility with increasing PEO chain length are 

consistent with the observation of Aliabadi et al. [85] that an increase in the 

percentage of PEO in PEO-b-PCL micelles results in a decrease in the loading 

capacity of the micelles and encapsulation efficiency of model drug cyclosporine 

A (CyA).  Nevertheless, at low drug loading (i.e., 10 wt% drug), we can observe 

that  for nimodipine-copolymer pair is always greater than  for fenofibrate-

copolymer pair regardless of the molecular weight of the block copolymer, which 

is in agreement with the experimental solubility data shown in Table 4.1 and with 

the results obtained from the first approach (Table 4.7).  However, the numerical 

values are quite different from those obtained from the first approach.  This is 

reasonable as the first approach does not include the effect of geometry fittings of 

the drug molecules and the block copolymers.  The interesting observation is that 

the trend of the 10 wt% drug was not followed when the concentration of the drug 

was 40 wt% or higher except the case with 70 wt% drug in PEO(2500)-b-

PCL(1250). It should be noted that the drug loading used in practice is around 10 
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– 15 wt% of drug. [79, 80]. At higher drug loadings, drugs tend to precipitate as 

reported by Kahori et al.[86] and Leroux et al.[87]. Therefore, one can consider 

that the data of 10 wt% drug is most relevant to the practical situations.  However, 

it is worth pointing out that the  values reported in the present work were 

computed based on a randomly mixed mixture of the block copolymer and drug 

while drug loadings reported in the literature correspond to the situation in which 

drug molecules are more or less surrounded by the copolymer in the form of 

micelle.  In other words, spatial arrangement of the copolymer molecules in the 

experimental system is not the same as that in our simulation system even though 

both systems share the same concentration.   

Nevertheless, to understand the miscibility behaviour at low block copolymer 

concentrations (i.e., high drug loadings), we examined the radial distribution 

functions (i.e., RDF or g(r)), which signify the local molecular packing of 

molecules of the mixtures.  Since we observe completely reverse trends for 70 

wt% drug in the cases of PEO(1250)-b-PCL(2500) and PEO(2500)-b-PCL(1250), 

we calculated the RDFs of those two cases for the pairs of atoms consisting of 

oxygen atoms of drug molecules and hydrogen atoms of PEO and PCL blocks.  In 

total, eight RDF plots (Figure 4.7) were generated for the two drugs with two 

copolymers having different molecular weights (PEO(1250)-b-PCL(2500) and 

PEO(2500)-b-PCL(1250)).  Here, the continuous dark line in the plots 

corresponds to the intermolecular association between the oxygen atoms of the 

drug molecules and hydrogen atoms of either PEO or PCL blocks of PEO-b-PCL, 
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while the broken line in the plots signifies the intra-molecular association among 

the oxygen and hydrogen atoms of drug molecules themselves.  

In general, comparing the RDF plots, we found that inter-RDF values of 

nimodipine molecules is much higher in the vicinity of PCL block only, while 

those of the fenofibrate molecules are comparable for both PEO and PCL blocks. 

These results lead us to conclude that fenofibrate molecules exhibit comparable 

tendency to associate themselves with both the PEO and PCL blocks, while 

nimodipine molecules show strong association with the PCL block but not the 

PEO block. This leads to the situation that fenofibrate would exhibit higher 

compatibility (i.e., lower χ) than nimodipine with PEO(2500)-b-PCL(1250) as the 

PEO block in such a block copolymer is longer than the PCL block.  On the other 

hand, when the PEO block is shorter than the PCL block, the opposite 

compatibility trend would be observed (see Figures 4.6(A) and 4.6(C)).  These 

results show that when the concentration of PEO-b-PCL is low (i.e., system 

contains more drug molecules), local molecular packing between the drug 

molecules and segments of both the PEO and PCL blocks should be considered in 

the determination of their compatibility. In other words, the inclusion of the PEO 

block in the calculation of χ is needed at high drug loadings when PEO-b-PCL 

concentration is low. 
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Figure 4.7     RDF plots for 70 wt% drug in (I) PEO(1250)-b-PCL(2500) for 
(A) O atoms of fenofibrate and H atoms of PEO block; (B) O 
atoms of fenofibrate and H atoms of PCL block; (C) O atoms of 
nimodipine and H atoms of PEO block; (D) O atoms of 
nimodipine and H atoms of PCL block and in (II) PEO(2500)-b-
PCL(1250) for (E) O atoms of fenofibrate and H atoms of PEO 
block; (F) O atoms of fenofibrate and H atoms of PCL block; (G)  
O atoms of nimodipine and H atoms of PEO block; (H) O atoms 
of nimodipine and H atoms of PCL block. Key: solid line, intermolecular 
association; dashed line, intra-molecular association 
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4.4 Summary 

Flory-Huggins interaction parameters between two water-insoluble drugs, 

fenofibrate and nimodipine, and three PEO-b-PCL block copolymers with varying 

PEO and PCL block lengths were calculated using two MD simulation 

approaches.  In one approach, we calculated χ values by using δ values derived 

from MD simulations of drugs and PEO-b-PCL in their pure component forms.  

The results are consistent with the observed solubility of fenofibrate and 

nimodipine in liquid caprolactone, which indicates that the inclusion of the PEO 

block in the calculation of , and thereby that of χ, yields a better compatibility 

prediction than the GCM.  Paradoxically, the results of this approach also indicate 

that the computed  is insensitive to the PEO chain length but depends strongly 

on the PCL chain length, which supports the conventional compatibility studies 

that are focused on the interaction between the hydrophobic block of a block 

copolymer and the drug of interest.   

To further investigate the role of PEO block, we used a second approach in 

which heats of mixing were computed from MD data of binary mixtures of drugs 

and block copolymers at three different concentrations. We found that at a 

concentration of 10 wt% drug, the computed  values between fenofibrate and 

nimodipine and the block copolymers are consistent with their experimental 

solubility results.  Nevertheless, the numerical  values are different from those 

obtained from the first approach.  This is attributed to the fact that the local 

packing of drug molecules and segments of the block copolymers in a mixture 

environment is taken into account in the latter approach.  At low block copolymer 
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concentrations, the nimodipine exhibits lower  values (i.e., higher solubility in 

caprolactone) than does the fenofibrate with the block copolymers when the 

molecular weight of PCL block is 2500.  This is due to the fact that fenofibrate 

more-or-less exhibits the same tendencies to cluster around PEO and PCL blocks, 

whereas nimodipine mostly clusters around the PCL block, as illustrated by the 

computed intermolecular radial distribution functions.  The observation of the 

effect of local packing on compatibility may explain why the inclusion of the 

PEO block in the calculation of  is needed in the first approach. Our results 

confirm that both the interaction energy potential and the local molecular 

arrangement play vital roles in the correct prediction of solubility parameters and 

Flory-Huggins interaction parameters. 
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Chapter 5 

 

Improvement of the Drug Loading Capacity of PEO-b-

PCL with Increasing PCL Content for Two Hydrophobic 

Cucurbitacin Drugs: Roles of Non-Polar and Polar 

Intermolecular Interactions2  

 

 

 

5.1 Introduction 

In the previous chapter, we demonstrated the superiority of MD simulation over 

the existing group contribution method in the prediction of the solubility of two 

hydrophobic drugs, fenofibrate and nimodipine, in PEO-b-PCL di-block 

copolymer based nano-carriers.  It was found that in addition to the interaction 

energy potential (i.e., u(r)), the local molecular arrangement characterized by the 

radial distribution function (i.e., g(r)) plays an important role in determining the 

drug solubility. In the present chapter, our aim is to determine whether MD 

simulation can provide insights into the involvement and relative contribution of 

                                                 
2 A version of this chapter has been published. Patel, S.K.; Lavasanifar, A.; Choi, P. (2009). 
Biomacromolecules. 10, 2584-91.  
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different possible inter/intra molecular interactions of drug/di-block copolymer 

pairs (e.g., dispersive interactions, electrostatic interactions and hydrogen bonding 

interactions) in the drug solubilisation of di-block copolymer carriers.  For this 

purpose, two hydrophobic drugs bearing several hydrogen bonding moieties in 

their structure, Cucurbitacin-B (CuB) and Cucurbitacin-I (CuI) (see Figure 5.1) 

were chosen and the role of non-polar and polar intermolecular interactions on 

their solubilisation in PEO-b-PCL based carriers with increasing PCL content was 

evaluated by MD simulation.   

Cucurbitacins are complex compounds found primarily in plants belonging to 

the cucumber family (Cucurbitaceae).  This family of plants tend to contain a 

group of substances classified as triterpenoid that are well-known for their 

bitterness and toxicity.  Cucurbitacins are structurally characterized by tetracyclic 

cucurbitane nucleus skeleton, with a variety of oxygenation functionalities at 

different positions [88]. Cucurbitacins have shown cyctotoxic, anti-inflammatory 

and hepatoprotective effects [89-91]. Among the twelve different categories of 

Cucurbitacins, CuB and CuI are noted for their cytotoxic and anticancer activity 

and have been shown to be effective inhibitors of signal transducer and activator 

of transcription 3 (STAT3) pathways. [92-94]. Despite the potency of CuB and 

CuI as effective anticancer agents, their clinical application has been hindered 

mainly due to their non-specific cytotoxicity and low water solubility.   
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Figure 5.1     Chemical structures of (A) Cucurbitacin B; and (B) Cucurbitacin I 
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To overcome such limitations, development of nanometre scale polymeric 

formulations that increase the solubilisation levels of CuB and CuI and also limit 

their premature release in systemic circulation and restrict the distribution of these 

toxic drugs to tumour tissue has been pursued by our research group. [95, 96].  

Consistent with our experimental observations, MD simulation predicted an 

increase in the level of encapsulated drug for both CuB and CuI as a result of an 

increase in PCL/PEO (w/w) ratio on the basis of molecular weights of the 

corresponding blocks. The predictions, from MD simulation, were based on the 

calculations of  parameters using random binary mixture models containing 10 – 

12 wt% drug and remaining PEO-b-PCL. As demonstrated in the present work, 

the increased drug solubilisation, however, was attributed to the enhanced polar 

interactions and to the hydrogen bonds formed between single hydrogen bond 

sites on the drugs and multiple hydrogen bond sites on the PCL block at high 

PCL/PEO ratio rather than to the increase in the hydrophobic characteristics of the 

di-block copolymer. The implications of the presence of additional hydrogen 

bonds on comparative release rates of these drugs were also studied. The 

information on the nature of intermolecular interactions contributing to drug 

solubilisation in di-block copolymer based carriers provided by the MD 

simulation, is expected to allow for the better prediction of drug solubility levels 

as well as the rate of drug release from di-block copolymers of different 

hydrophobic/hydrophilic block ratios. 
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5.2  Simulation Details 

The simulation procedures are very similar to those described in the Chapter 4. In 

particular, the method of Theodorou and Suter [73] was employed to build the 

amorphous unit cells of pure di-block copolymers, drugs and their mixtures 

subjected to the density constraint. Such amorphous structures were constructed 

using the amorphous builder module available in Cerius2. Three PEO-b-PCL 

block copolymers with different hydrophilic (PEO) and hydrophobic (PCL) block 

lengths were used.  They were PEO(1250)-b-PCL(2500), PEO(2500)-b-

PCL(2500) and PEO(2500)-b-PCL(1250), where the number in the bracket 

signifies the molecular weight of the particular block and the corresponding 

PCL/PEO (w/w) ratios are 2, 1 and 0.5, respectively.  

Since experimental density values of the drugs and their binary mixtures with 

aforementioned di-block copolymers at 200 C (i.e., 473 K) were not available, 

we carried out NPT MD simulation (P = 1 atm; T = 473 K) using density values 

from the GCM as the initial values to determine the density values of pure 

substances. Here, the temperature was chosen to ensure that both the drug 

molecules and the di-block copolymers are in the liquid state. Nose thermostat 

[69] and Andersen barostat [72] methods were employed to control the 

temperature and pressure of the systems, respectively. It is worth noting that we 

only used NPT MD simulation to determine the density of pure substances.  The 

resultant values were then used to calculate the density values of mixtures by 

assuming that the volume change on mixing is negligible. The mixture density 

values were used in the subsequent canonical MD simulations to determine the  
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values.  NVT MD simulation requires much less computational time than NPT 

MD for the same system (saving of 1 day of CPU time) as only one intensive 

variable (i.e., T) is required to be controlled.     

The distribution of torsion angles of skeletal bonds in di-block copolymers 

were determined using the RIS theory.[81, 82]. The Boltzmann weighting factor 

was applied to the energies of the RIS minima to determine this distribution. The 

detailed method for describing the initial distribution of torsion angles for PEO-b-

PCL di-block copolymer is given in the Section 4.2.2. The initial conformations 

of the di-block copolymers used in the NPT MD simulations were also subjected 

to the RIS constraints.   

All the initial structures were energy-minimized using the conjugate gradient 

method in order to remove strong van der Waals overlaps. The COMPASS force 

field [62] was used to describe inter-atomic potentials. The partial atomic charges 

were assigned by the COMPASS force field using the method described in 

Section 3.3. NVT MD simulations were carried out at 473 K using the Nose 

thermostat.[69]  The velocity Verlet method, with a time step of 1 fs, was used as 

an integrator in all simulations.  The non-bonded dispersive interactions were 

evaluated using atom based cut-off distance of 9.50 Å with a spline width of 1 Å, 

while the long-range electrostatic interactions especially important in polymeric 

and 3D periodic systems were evaluated using the well-known Ewald summation 

method [67]. Long-range tail corrections were applied to the non-bonded 

interactions during MD simulations.  Simulations were carried out until the total 

energy of the system was stabilized.  Each simulation was carried out for a total of 
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2000 ps.  The properties of interest (e.g., the total energy, radial distribution 

function, etc.) were calculated by averaging over the last five hundred ps of the 

corresponding trajectory file.  As discussed in the previous chapter, owing to the 

several drawbacks associated with the use of the Hildebrand solubility parameters 

of pure substances to calculate the  values for drug/di-block copolymer pairs, we 

adopted the MD simulation approach in which the internal energy changes on 

mixing were calculated and then used to obtain the  values for drug/di-block 

copolymer pairs. [21] 

 

5.3 Results and Discussion 

5.3.1 MD Simulation 

Table 5.1 summarizes the computed density values for di-block copolymers, 

drugs and their mixtures (10 – 12 wt% drug) at a pressure of 1 atm and a 

temperature of 473 K.  It should be noted that the density values of mixtures were 

calculated using those of the pure components obtained from MD simulation, not 

directly from the MD simulation of the mixture.  Nevertheless, we have carried 

out additional NPT MD simulations on two drug/PEO(2500)-b-PCL(2500) 

mixtures to determine their density values and found that such results and those 

calculated based upon the density values of pure components are in good 

agreement, indicating that the assumption of negligible volume change on mixing 

is valid.  Therefore, we feel justified to use the canonical MD to calculate the 

internal energy change on mixing (i.e., Em ( Hm)), thereby the  parameters 

(Equations (4.5) and (4.6)).      
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Table 5.1    Computed density values of CuB, CuI, PEO-b-PCL and their 

mixtures (10 – 12 wt% drug) at 1 atm and 473 K along with the 

number of drug molecules involved. 

 

Drug/Block 

Copolymer/Mixture 

Density 

(g/cm3) 

No. of 

Drug 

Molecules

No. of 

Block 

Copolymer 

Chains 

Drug 

Concentration

(wt%) 

Cucurbitacin B (CuB) 1.15 - - - 

Cucurbitacin I (CuI) 1.12 - - - 

PEO(1250)-b-

PCL(2500) (P1) 
1.14 - 1 - 

CuB & P1 1.14 1 1 12 

CuI & P1 1.14 1 1 12 

PEO(2500)-b-

PCL(2500) (P2) 
1.13 - 1 - 

CuB & P2 1.13 1 1 10 

CuI & P2 1.13 1 1 10 

PEO(2500)-b-

PCL(1250) (P3) 
1.18 - 1 - 

CuB & P3 1.17 1 1 12 

CuB & P3 1.17 1 1 12 
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In regard with the reliability of the computed density of pure substances, we have 

demonstrated in our previous work (Chapter 4) that the COMPASS force field 

was able to reproduce the density values for PEO-b-PCL and two other water 

insoluble drugs. [21]. The mean potential energies of the bulk states of pure di-

block copolymers, drugs and mixtures of them were calculated by using time 

average of the potential energy over the last five hundred ps of the corresponding 

trajectory of 2000 ps at equal interval of 2 ps. Note that the velocity 

autocorrelation functions of the drug molecules de-correlated in less than 2 ps. 

The analysis of mean values and standard errors were performed using the Sigma 

Plot version 11.0 (Systat Software, Inc.). 

The computed  values are plotted in the Figure 5.2(A).  We note that the 

error bars shown in the figure are ensemble fluctuations and were determined 

using the data of last 500 ps of the corresponding MD trajectories.  According to 

the Flory-Huggins solution theory, lower  values indicate higher affinity 

between the components and hence better solubility of one component into the 

other.  We can see that for PCL/PEO ratio of 1, the  values of CuB and CuI/di-

block copolymer pairs are very close, indicating that both drugs have similar 

affinity for PEO-b-PCL.  Comparing this observation with the experimental drug 

loading data (mole drug/mole di-block copolymer) (Figure 5.2(B)) of CuB and 

CuI in PEO(5000)-b-PCL(5000), i.e., PCL/PEO ratio of 1, our MD results are 

consistent with the experiment.   
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Figure 5.2(A) Plot of the computed χ values of binary mixtures of two 

cucurbitacins and three model PEO-b-PCL with different 

PCL/PEO ratio (w/w).  
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Figure 5.2(B) Plot of experimentally measured drug loading capacity of  PEO-b-

PCL micelles with two different PCL/PEO ratio (w/w) for 

cucurbitacins as reported by Molavi et al.  
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Another important observation from Figure 5.2(A) is that when the PCL/PEO 

ratio increases from 0.5 to 2 (4 times increase),  decreases for both drugs, from 

positive to negative values which indicate that increasing the PCL/PEO ratio 

increases the solubility of both drugs.  Similar to the experimental observation, 

increasing the PCL/PEO ratio from 1 to 4.8 leads to a significant change in the 

solubility of both drugs (Figure 5.2(B)).  In short, the trend of the computed  

values reflects very well the experimental trend in the solubility of these drugs.  

The question is what is the molecular origin for such an observation. 

 

5.3.2 Non-bond Energy Analysis 

To answer the above question, we first examined the non-bonded energy of model 

mixture systems with PCL/PEO ratios of 0.5 and 2.0 [i.e., PEO(2500)-b-

PCL(1250) and PEO(1250)-b-PCL(2500)].  The total non-bonded energy data of 

the two mixtures along with its dispersive energy and electrostatic energy 

contributions, which were calculated by using the time average of the non-bonded 

energy over the last 500 ps of the corresponding trajectory of 2000 ps, are shown 

in the Table 5.2.  It is obvious that as the PCL/PEO ratio is increased from 0.5 to 

2.0, the total non-bonded energy decreases considerably indicating that the latter 

system is more stable than the former one.  However, such decrease in the non-

bonded energy is not due to the decrease in the dispersive energy (i.e., increase in 

hydrophobicity of PEO-b-PCL) with increasing PCL content.  In fact, the 

dispersive energy increases slightly.  And it is due to the substantial decrease in 

electrostatic energy contribution that led to negative χ.   
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Table 5.2    Contributions of dispersive and electrostatic energy to non-bonded 

energy of mixtures of both drugs with PEO(2500)-b-PCL(1250) 

and PEO(1250)-b-PCL(2500). 

  

Block 
Copolymer 

Drug Total non-
bonded 
energy* 

(Kcal/mol) 

Dispersive 
Energy* 

(Kcal/mol) 

Electrostatic 
Energy* 

(Kcal/mol) 

 
CuB 

 
-4.45 ± 5.81 -197.15 ± 10.49 192.99 ± 2.23 

PEO(2500)-b-
PCL(1250) 

  
CuI 

 
-21.65  ± 2.25 -208.01 ± 5.08 186.7  ± 2.08 

 
CuB 

 
-162.70 ± 2.94 -182.31 ± 7.10 19.55 ± 1.83 

PEO(1250)-b-
PCL(2500) 

  
CuI 

 
-148.36 ± 4.31 -170.17 ± 7.82 21.79 ± 2.85 

*Data are Means ± Standard Errors  
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This clearly indicates that increasing PCL/PEO ratio increases the attractive 

interactions between drugs and the PCL block that lead to stronger affinity.  Such 

an increase in attractive interactions can be attributed to the increase in the 

attractive forces due to more atoms carrying opposite charges and the number of 

hydrogen bonds formed.  Here, it should be pointed out that the electrostatic 

energy contribution originates from both Columbic interactions and hydrogen 

bonds formed between cucurbitacins and di-block copolymers. To determine the 

contribution from hydrogen bonds (H-bonds), we determined the average number 

of H-bonds formed between two drugs and three PEO-b-PCL di-block 

copolymers based on the definition discussed below.  This is because a 

considerable amount of hydroxyl and carbonyl groups are present on the drug 

molecules and the PCL block, respectively.  Figures 5.3 and 5.4 show that H-

bonds could form between drug molecules and two respective blocks of PEO-b-

PCL.  

 

5.3.3  Hydrogen Bond Definition 

The commonly used H-bond definitions are either based on energetic criteria or 

geometric criteria.[97, 98] In MD simulation, the intermolecular energy of the 

system is depicted by a continuous interaction potential and hence it is difficult to 

distinguish with accuracy whether two molecules are H-bonded or not.   
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                   *For clarity purpose, only a single monomer of PCL block is shown. (Red: O atom; White: H   

atom; Gray: C atom) 

 

Figure 5.3     Snapshot of H-bond formed between H atom of one of the –OH 

groups of CuB with O atom of carbonyl group of PCL block of 

PEO(1250)-b-PCL(2500).  
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                    *For clarity purpose, only a single monomer of PEO block is shown. (Red: O atom; White: H   

atom; Gray: C atom) 

 

 

Figure 5.4     Snapshot of H-bond formed between H atom of one of the –OH 

groups of CuB with the O atom of PEO block of PEO(2500)-b-

PCL(1250).  
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Therefore, we adopted a geometric definition, i.e., we assume that H-bond exists 

between hydrogen bond donor and acceptor atoms of two different molecules if 

following conditions are fulfilled: 

1. The distance between hydrogen atom and the acceptor atom (RHA) is less than 

or equal to Rc
HA. 

2. The angle between the donor, hydrogen and acceptor atom () is greater than 

or equal to 90 degrees. 

The positions of the first minima of the radial distribution functions gOH(r) gave 

us an indication of the cut-off value Rc
HA.  In the present work, we used Rc

HA = 

2.6 Å as the cut-off value.   

The major advantage of using the geometric definition is that we can 

identify which atoms are participating in each H-bond.  The list of probable 

hydrogen bond donors includes nitrogen, oxygen, sulphur and carbon atoms.  

Feeding this definition into the MD simulation trajectory files, we could then 

calculate the average number of intermolecular H-bonds formed between drug 

molecules and the entire di-block copolymer, which is shown in the form of 

stacked bar graph in Figure 5.5.  The average values and errors associated with 

the number of H-bonds were also calculated based on the time average of last 200 

ps of the trajectory files.  In order to check the reproducibility of the results of 

Figure 5.5, we repeated the MD simulations with three different initial structures 

and counted the total number of intermolecular H-bonds in the systems containing 

PEO(2500)-b-PCL(2500) for both drugs.  Results were found to be highly 

reproducible (data not shown).   
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Figure 5.5     Plot showing the total number of intermolecular H-bonds formed 

by CuB and CuI with the block copolymers shown in the form of 

sum of contribution from H-bond with PEO and PCL blocks.  
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It is clear from Figure 5.5 that there is an increase in average total number of H-

bonds as the PCL/PEO ratio is increased from 0.5 to 2.  This indicates that the 

decrease in electrostatic energy is at least partly attributed to the formation of 

additional H-bonds as H-bonds would lower the electrostatic energy of the 

system.  However, it is impossible to determine the respective contributions of 

Coulombic interactions and H-bonds to the non-bonded electrostatic energy.  It is 

also clear that the average number of H-bonds formed between drugs and the PCL 

block increases while this number decreases for the PEO block with increasing 

PCL/PEO ratio suggesting that H-bonds formed between two drugs and the PCL 

block favour encapsulation.  

It is worth pointing out that in our solution models, which were subjected to 

three-dimensional periodic boundary conditions, intra- and inter-chain hydrogen 

bonds could form between the PEO-b-PCL molecule in the primary cell and its 

periodic images.  And such interactions were included in the calculations of the 

interaction parameter and the number of intermolecular H-bonds formed between 

the di-block copolymer and the drugs.  Considering the fact that there are only a 

small number of hydrogen bond donors and acceptors present in the backbone of 

PEO-b-PCL that could form intra- and inter-chain hydrogen bonds, we believe 

that the effect should be minor.   However, it is unlikely that such inter-chain H-

bonds could be formed between two PEO-b-PCL chains in the micelle 

environment. 
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5.3.4 Radial Distribution Functions  

To examine the nature of the H-bonds, we also calculate the radial distribution 

functions between various pairs of interacting hydrogen and oxygen atoms (i.e., 

gOH(r)) present in two drugs and PEO-b-PCL with PCL/PEO ratios of 0.5 and 2.  

In the context of the present work, the radial distribution function (RDF) is 

defined as the ratio of the local density of the intermolecular O-H pairs to their 

average density of the entire simulation system at various inter-atomic distances.  

To compute gOH(r), we have considered the interactions between the hydrogen 

atoms of hydroxyl groups of CuB and CuI with the oxygen atoms of carbonyl 

groups of the PCL block and the oxygen atoms of the PEO block as well as the 

interactions between the oxygen atoms of carbonyl groups of CuB and CuI with 

the hydrogen atoms of the PCL block.  The reasons for including the hydrogen 

atoms of the PCL block as hydrogen bond donors are explained below.  

Generally, hydrogen bonds formed between the hydrogen atoms of methylene 

and/or methine groups and the oxygen atoms (CH…O) is observed in proteins 

especially when the C-H group is present close to electron withdrawing groups 

like carbonyl and amide groups.  As a result, the carbon atom of C-H group 

becomes electronegative and is generally termed as ‘activated carbon’.  The 

hydrogen atom attached to such activated carbon shows tendency to form 

hydrogen bond with other electronegative atoms like oxygen atom. [99]. In PEO-

b-PCL, carbonyl groups (-C=O) are present in the PCL block and hence activated 

carbons (carbon atoms of methylene group) are present in the PCL block.  

However, such activated carbon atoms are not present in the PEO block due to the 
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absence of strongly electron withdrawing groups.  The other way of confirming 

this is to examine the partial atomic charges on the carbon atoms of the PCL and 

PEO blocks.  Figure 5.6 shows partial atomic charges present on the various 

atoms of PEO and PCL monomers.  It is obvious that the majority of carbon 

atoms have 0.054 and -0.106 partial atomic charges on PEO and PCL blocks, 

respectively.  Due to the presence of negative partial atomic charges on the carbon 

atoms of PCL block, they can be considered as activated and consequently 

hydrogen atoms attached to them will have greater tendency to attract oxygen 

atoms from drug molecules. Since there are several carbonyl and hydroxyl groups 

on both drugs, we adopt a numbering scheme as shown in Figures 5.7 (A) and (B) 

to designate the oxygen and hydrogen atoms of the two moieties. Table 5.3 shows 

the first peak locations of gOH(r) values in terms of the inter-atomic distance from 

the corresponding RDF plots of the drug/di-block copolymer mixtures.  For 

clarity, we do not show the original RDF plots here.  The positions of peaks in a 

RDF plot signify the preferred inter-atomic distances between the atoms of 

interest (intermolecular O and H in this case).  The position of the first peak in the 

gOH(r) plot denotes the maximum probability of finding O-H pair at that inter-

atomic distance.  According to generally accepted geometric definition of H-bond, 

close proximity of H-bond donor/acceptor pair atoms (O-H pair) at distances less 

than or equal to 2.6 Å may possibly lead to H-bond formation. [97, 98] This can 

be further reinforced by an observed decrease in electrostatic energy.   
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 *Red : O atom; Gray: C atom 

Figure 5.6    Partial atomic charges on the atoms of PEO and PCL block 

monomers. 
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Figure 5.7     Numbering scheme of H and O atoms of Hydroxyl and Carbonyl 

groups in (A) CuB; and (B) CuI. 
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Table 5.3     Locations of the first intermolecular OH peaks obtained from 

gOH(r) of mixtures containing 12 wt% drug (CuB and CuI) and 

remaining di-block copolymer with PCL/PEO (w/w) ratio of 0.5 

and 2.0. 

 

Drug Potential intermolecular 
hydrogen bonds 

Position of 
first peak (Å) 

for 
PCL/PEO 
(w/w) = 0.5 

Position of 
first peak (Å) 

for 
PCL/PEO 
(w/w) = 2 

(CuB)C=O(1)---H(PCL) ~ 2.45 ~ 2.55 
(CuB)C=O(2)---H(PCL) ~ 5.45 ~ 1.95 
(CuB)C=O(3)---H(PCL) ~ 2.65 ~ 2.35 
(CuB)C=O(4)---H(PCL) ~ 2.55 ~ 3.20 

(CuB)H(1)---O=C(PCL) ~ 5.95 ~ 4.10 

(CuB)H(2)---O=C(PCL) ~ 2.95 ~ 4.55 

(CuB)H(3)---O=C(PCL) ~ 4.95 ~ 2.15 

(CuB)H(1)---O(PEO) ~ 1.65 ~ 3.85 

(CuB)H(2)---O(PEO) ~ 3.65 ~ 6.15 

CuB 

(CuB)H(3)---O(PEO) ~ 1.55 ~ 5.25 
(CuI)C=O(1)---H(PCL) ~ 4.85 ~ 3.05 
(CuI)C=O(2)---H(PCL) ~ 2.35 ~ 2.45 
(CuI)C=O(3)---H(PCL) ~ 2.25 ~ 2.55 
(CuI)H(1)---O=C(PCL) ~ 6.25 ~ 1.75 

(CuI)H(2)---O=C(PCL) ~ 5.85 ~ 3.65 

(CuI)H(3)---O=C(PCL) ~ 7.25 ~ 1.65 

(CuI)H(4)---O=C(PCL) ~ 1.95 ~ 4.65 

(CuI)H(1)---O(PEO) ~ 1.75 ~ 1.95 
(CuI)H(2)---O(PEO) ~ 1.85 ~ 4.65 
(CuI)H(3)---O(PEO) ~ 1.95 ~ 4.65 

CuI 

(CuI)H(4)---O(PEO) ~ 1.55 ~ 3.25 
Note: O: Oxygen atom; H: Hydrogen atom. The bold figures in dark boxes represent inter-
atomic distance capable of forming H-bond. 
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The bold figures in Table 5.3 represent the inter-O-H distances of the first peak 

locations that fall under the above mentioned category.  In other words, these 

pairs can be considered as probable H-bond sites.  This indirectly allows us to 

count the approximate number of available H-bond sites between drugs and di-

block copolymers.  Accordingly, it can be seen from Table 5.3 that in the case of 

PCL/PEO ratio of 0.5, there are approximately 6 (CuB) to 7 (CuI) H-bond sites 

while in the case of ratio of 2.0, there are only approximately 4 (CuB) to 5 (CuI) 

H-bond sites.  It is expected that a higher number of available H-bond sites would 

indicate higher chance for forming more H-bonds and that the di-block copolymer 

with PCL/PEO ratio of 0.5 would yield lower  value.  However, this is not the 

case (see Figures 5.2(A) and 5.5). Instead, on average, there are about 6 to 7 H-

bonds and about 9 to 10 H-bonds formed in the cases of PCL/PEO ratio of 0.5 and 

2.0, respectively.  These results suggest that multiple H-bonds are formed per 

available site on the drug molecules (about two per site) in the higher PCL/PEO 

ratio case but single H-bonds in the other case.  In fact, it was observed that 

multiple H-bond sites on the PCL block, mainly in the form of hydrogen atoms 

attached to ‘activated carbon’ formed H-bonds with single carbonyl groups on the 

drug molecules.  In the case of low PCL/PEO ratio, more single H-bonds formed 

between the H-bonds of the drugs and the PEO block.  The result suggests that H-

bond sites (hydrogen atoms attached to the activated carbons) on the PCL block 

is much more useful than those of the PEO block on inducing drug/di-block 

copolymer affinity.  In the next chapter, we will be focusing on studying the effect 
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of varying the chemical architecture of the PCL block on drug/PEO-b-PCL 

compatibility. 

 

5.3.5 Implications on in vitro Drug Release Profiles 

The release profiles of both drugs (CuB and CuI) encapsulated by PEO-b-PCL 

micelles with two different PCL/PEO ratios of 1 and 4.8 corresponding to 

PEO(5000)-b-PCL(5000) and PEO(5000)-b-PCL(24000), respectively, were 

measured by Molavi et al.[95] and were analyzed here with the aforementioned 

findings.  In brief, it was found experimentally that the accumulative release 

within 8 h, expressed in terms of percentage of encapsulated drugs, decreases for 

both drugs when PCL/PEO ratio increases from 1 to 4.8.  In particular, CuB 

shows a drastic 37.5% decrease (from 64% to 40% of encapsulated drugs) in 

accumulative release within 8 h, while in the case of CuI, there is only 11.1% 

decrease (from 90% to 80% of encapsulated drugs) in the accumulative release.  

Thus, CuB, as compared to CuI, shows substantial decrease in the release rates 

when PCL/PEO ratio increases by 4.8 times.  In the literature, several studies have 

demonstrated that the presence of specific interactions like H-bonding between 

probe/drug and polymer molecules significantly affects the diffusion 

characteristics of probe/drug molecules through polymer matrix.  Lee et al.[100, 

101] reported that the retarded diffusion of methyl red (MR) in the presence of 

poly(vinyl acetate) (PVAc)/toluene solutions and poly(methyl methacrylate) 

(PMMA)/toluene as compared to the polystyrene (PS)/toluene solutions was 

ascribed to the H-bonding between MR and carbonyl groups present in PVAc and 
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PMMA polymers.  Another study of Lee et al.[102] reported retarded release of 

Papaverine drug from carboxylic acid group substituted PEO-b-PLA micelles.  

Again, the presence of H-bonds between carboxylic groups of the di-block 

copolymer and the drug slows down the drug release from such micelles.  

H-bond analysis (Figure 5.5) shows that when PCL/PEO ratio is increased 

from 0.5 to 2 (4 times increase), there is a substantial increase of  6 times in the 

number of H-bonds formed between CuB and the PCL block.  On the other hand, 

there is only about 3.6 times increase in the number of H-bonds formed between 

CuI and the PCL block.  It seems that this result may explain the experimental 

result that the release rate of CuB is drastically reduced compared to that of CuI. 

 

5.4 Summary 

Two hydrophobic anti cancer drugs, CuB and CuI show  similar solubility trends 

in PEO-b-PCL di-block copolymer micelles experimentally, where with an 

increase in PCL/PEO (w/w) ratio, both drugs show an increase in solubility.  We 

computed the  parameters between two drugs and di-block copolymers at three 

different PCL/PEO ratios using the MD approach in order to assess the power of 

this approach in predicting the experimental solubility trends.  The MD approach 

predicted the experimental solubility trends very well.  Our results confirm that 

besides the local molecular packing and non-polar intermolecular interactions like 

short-range dispersive interactions which are generally believed to be dominant 

forces in the system of hydrophobic drugs, the electrostatic intermolecular 

interactions also play a vital role in inducing the compatibility in drug/di-block 
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copolymer systems.  In fact, in the present set of hydrophobic drugs, we found 

that the dispersive interactions did not contribute positively in inducing 

compatibility while the electrostatic interactions, in the form of H-bonding, 

contributed positively, leading to lower  values for drug/PEO-b-PCL systems 

with high PCL/PEO ratios.   

The average number of H-bonds and gOH(r) computed from the MD 

trajectories show that H-bonding is the key feature of specific 

interactions/favourable interactions in this kind of drugs with multiple H-bond 

donors and acceptors.  It was also apparent that multiple H-bond sites on the PCL 

block of the di-block copolymer formed H-bonds with single H-bond sites on 

drug molecules inducing compatibility of them. This type of information can 

surely help us tailor-make the di-block copolymers to induce favourable 

interactions with the groups present on drugs.   

In addition, the effect of PCL/PEO ratio on in vitro drug release rate can be 

explained by the number of H-bonds formed between drugs and the PCL block of 

di-block copolymer. MD simulation proves to be a valuable tool for predicting 

binary interactions between di-block copolymer and hydrophobic drug and 

provides useful atomistic details related to forces contributing to thermodynamic 

compatibility. 
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Chapter 6 

 

Molecular Origin of Solubility of Water Insoluble Drugs 

in PEO-b-Poly(-Benzyl Carboxylate -Caprolactone) 

with Different Tacticities3 

 

 

6.1 Introduction 

One key concept used by many researchers to increase the loading capacity of a 

self-associating block copolymer for a given hydrophobic drug is to introduce 

certain chemical moieties into the backbone of the block copolymer that are 

capable of interacting with the drug, with specific interactions of the types leading 

to negative heat of mixing [102-104].  In such studies, the block copolymer 

structure suitable for the solubilization of a given drug is usually selected based 

on the predictions of  parameters calculated by the GCM [6, 78, 96, 105].  

However, the stereochemistry and tacticity of polymer are not taken into account 

in predicting the solubility of drugs in block copolymers this way. The objective 

of this study was to assess whether the application of MD simulation for the 

                                                 
3 A version of this chapter has been published. Patel, S.K.; Lavasanifar, A.; Choi, P. (2010). 
Biomaterials. 31, 345-57.  
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determination of drug/block copolymer interaction parameter can address the 

shortcoming of GCM in this aspect and provide a reliable means to predict the 

solubilisation of drugs in block copolymers having different tacticities.  

Recently, Mahmud et al. [106] have reported successful synthesis of self-

associating tailor-made carriers having pendant aromatic and/or other reactive 

functional groups on the PCL block of PEO-b-PCL block copolymers.  These 

core-functionalized micelles especially PEO-b-poly(α-benzyl carboxylate -

caprolactone) (PEO-b-PBCL) (Figure 6.1) have shown great potential in 

improving the loading capacity of two anti-cancer drugs CuB and CuI [95]. The 

presence of pendant benzyl carboxylate groups on the PCL block may induce the 

formation of additional inter or intra-molecular specific interactions (e.g.,  -  

interactions, hydrogen bonds, etc.) which would eventually lead to the 

improvement of drug loading capacity of the di-block copolymer.  

PEO-b-PBCL di-block copolymers are synthesized by ring opening 

polymerization of α-benzyl carboxylate--caprolactone using methoxy-PEO as an 

initiator and stannous octoate as a catalyst [106].  It is worth noting that benzyl 

carboxylate--caprolactone monomer possesses one asymmetric carbon and is 

used in the polymerization reaction as a racemic mixture. Upon polymerization, 

the hydrophobic block of the di-block copolymer can potentially contain similar 

or different stereo isomers leading to different tacticities, viz., isotactic, 

syndiotactic and atactic forms.  The site labelled C* in Figure 6.1, is termed 

pseudo-asymmetric or chiral carbon atom center in the PBCL repeating unit.   
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Figure 6.1    Chemical Structure of PEO-b-PBCL. 
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The stereo chemical configurations of successive chiral carbon atoms in the 

backbone of di-block copolymer will define its tacticity.  Figure 6.2 shows a 

schematic diagram of three possible stereo isomers of the PBCL block.  If 

configurations of all the successive chiral carbon atoms are same (i.e., the 

substituent branches lie on the same side of the reference plane), the PBCL block 

is termed isotactic (Figure 6.2(A)).  If configurations of successive chiral carbon 

atoms differ (i.e., the substituent branches appear alternatively above and below 

the reference plane), the PBCL block is termed syndiotactic (Figure 6.2(B)).  

Alternatively, when configurations at the chiral centers are more or less random 

then the PBCL block is termed atactic (Figure 6.2(C)).  Since specific interactions 

depend on tacticity of a polymer [74], tacticity of the di-block copolymer is 

expected to affect the solubility of drug in the micelle formed by such di-block 

copolymers.  And it is expected that the differences in intermolecular interactions 

between the drug and the di-block copolymer could be captured by the 

corresponding  values.  Therefore, in this work, we applied the technique of MD 

simulation to determine the compatibility between two hydrophobic drugs (Set-I 

(CuB and CuI)) used by Molavi et al. [95] and PEO-b-PBCL with different 

tacticities. This set of drugs are ideal for studying intermolecular interactions 

between drugs and functionalized block copolymers since they contain multiple 

H-bond donors and acceptors evenly distributed on their molecules. To this end, 

the stereo configuration of PEO-b-PBCL that would yield higher solubility can be 

determined.  
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Figure 6.2    Schematics of the PBCL block with different tacticities. (A) 

Isotactic; (B) Syndiotactic; and (C) Atactic. 
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Such molecular level understanding can also aid in the process of chemical 

tailoring of the di-block copolymer to obtain drug carriers with optimized 

functional properties. Later in Section 6.3.2, we will apply the MD simulation 

strategy developed above to examine the potential of PEO-b-PBCL to encapsulate 

another set of drugs (Set-II (fenofibrate and nimodipine)) that contain only 

clustered hydrogen bond acceptors (Figure 4.1 (B) and (C)), in their structures. 

 

6.2 Simulation Details 

All MD simulations reported here were performed using the Materials Studio (MS 

Modeling version 4.2, Accelrys) run on a SGI workstation cluster. The initial 

liquid state models of all di-block copolymers were generated based on the RIS 

theory using the amorphous builder module available in another commercial 

software Cerius2. The inter-atomic interactions were modeled with the 

COMPASS force field [62] (Section 3.3).  

Three tactic forms (i.e., isotactic, syndiotactic and atactic) of PEO-b-PBCL 

(Figure 6.2) with a molecular weight of 2500 for each block, were built. The 

amorphous builder module in Cerius2 defines the tacticity of a polymer using 

meso-diad ratio, which is generally defined as the relative proportion of isotactic 

monomer pairs in a given polymer.  Thus, a polymer with a meso-diad ratio of 0.0 

is a syndiotactic polymer and a polymer with a ratio of 1.0 is an isotactic polymer. 

A meso-diad ratio of 0.5 was used to build an atactic polymer. Throughout the 

chapter, the di-block copolymers with isotactic, syndiotactic, and atactic stereo 

configurations of PBCL repeating unit will be denoted as PEO-b-iPBCL, PEO-b-
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sPBCL, and PEO-b-aPBCL, respectively.  The method of Theodorou and Suter 

[73] was employed in the amorphous builder module of Cerius2 to build the bulk 

amorphous states of pure di-block copolymers, drugs and their mixtures subjected 

to periodic boundary conditions and density constraint. The detailed procedure for 

constructing such initial structures has been described in Section 4.2.2.  

In order to acquire the density values of the pure di-block copolymers and 

drugs at simulation temperatures of 413 K and 473 K, we carried out MD 

simulation in NPT statistical ensemble (P = 1 atm; T = 413 K & 473 K). In order 

to be consistent with the studies performed in Chapters 4 and 5, the simulation 

temperature of 413 K was chosen for studying the binary mixtures containing 

fenofibrate and nimodipine drugs, while simulation temperature of 473 K was 

chosen for studying the binary mixtures containing CuB and CuI drugs. The 

pressure and temperature of the systems were controlled using the Andersen 

barostat [72] and the Nose thermostat [69] algorithms, respectively.   

During the model construction, the distribution of torsion angles of the 

skeletal bonds in the di-block copolymers was determined using the RIS theory 

[81, 82]. The distribution of torsion angles was determined by applying the 

Boltzmann weighting factor to the energies of the RIS minima to determine the 

distribution of torsion angles.  The initial distribution of torsion angles for the 

PEO block of PEO-b-PBCL di-block copolymer remains the same as it was in 

PEO-b-PCL di-block copolymer.  The detailed method can be found in Section 

4.2.2. We identified a total of nine torsion angles for PEO-b-PBCL and they are 

depicted in Figure 6.3.   
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Figure 6.3    Schematics of all torsion angles identified in PEO-b-PBCL. 
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In Table 6.1, we list the values of RIS minima and respective tolerances for all 

nine torsion angles that have significant influence on the conformation of di-block 

copolymer.  Once the RIS state distribution was determined, the RIS states were 

populated allowing for angle tolerances stated in Table 6.1.  

All the initial amorphous structures are in relatively high energy state and 

hence before performing MD simulations, they were subjected to energy 

minimization step using the conjugate gradient method. NVT MD simulations 

were carried out at required simulation temperature using the Nose thermostat 

[69]. The velocity Verlet method, with a time step of 0.001 ps, was used as an 

integrator in all simulations.  The non-bonded dispersive interactions were 

evaluated using the atom based cut-off distance of 9.50 Å with a spline width of 1 

Å, while the long-range electrostatic interactions especially important in 3D 

periodic systems were evaluated using the well-known Ewald summation method 

[67]. Each simulation was carried out for a total of 2000 ps.  The properties of 

interest (e.g., the total energy, radial distribution function, etc.) were calculated by 

averaging over the last five hundred ps of the corresponding trajectory file. Here, 

we adopted the MD simulation approach in which the internal energy changes on 

mixing were calculated and then used to obtain    parameters for the drug/di-

block copolymer pairs. [21] 
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Table 6.1    Rotational isomeric states for all torsion angles of PEO-b-PBCL. 

 
 

Skeletal 
Bond 

State 1* 
 

State 2* State 3* State 4* 

1 170  20 300  10 330  10 N/A 
2 40  10 60  10 280  10 350  10 
3 270  10 290  10 330  10 N/A 
4 130  10 300  10 N/A N/A 
5 50  10 90  10 120  10 N/A 
6 110  10 N/A N/A N/A 
7 70  15 180  10 230  5 N/A 
8 70  10 N/A N/A N/A 
9 140  10 160  10 330  10 N/A 

      *Data are Torsion angle ± Tolerance 
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6.3 Results and Discussion 

6.3.1 PEO-b-PBCL/Cucurbitacin Drugs 

6.3.1.1 MD Simulation 

Table 6.2 summarizes the computed density values for di-block copolymers, 

cucurbitacin drugs and their mixtures (10 wt% drug) at a pressure of 1 atm and a 

temperature of 473 K. It is worth noting that density values for all three tactic 

forms, viz., PEO-b-iPBCL, PEO-b-sPBCL and PEO-b-aPBCL were assumed to 

be the same.  Therefore, only the density of PEO-b-iPBCL was calculated.  

Generally, density values of stereo isomers of polymers differ only in the 

crystalline state due to their different packing characteristics while their density 

values are essentially the same in the amorphous state. For example, the densities 

of i-Polypropylene (i-PP) and s-Polypropylene (s-PP) are identical in the liquid 

(amorphous) state while differ significantly in their solid state [107]. In the 

present work, since the amorphous state of the di-block copolymer was of interest, 

we feel justified to use the same density value for all three tactic forms of PEO-b-

PBCL. We have demonstrated in our previous work [21] that the density values 

for di-block copolymers and hydrophobic drugs computed using the COMPASS 

force field are reproducible and reliable. The mean potential energies of the bulk 

states of the pure di-block copolymers, drugs and their mixtures were calculated 

by using the time average of the potential energy over the last 500 ps of the 

corresponding trajectories of 2000 ps at equal interval of 2 ps.        
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Table 6.2     Computed densities of CuB, CuI, all tactic forms of PEO(2500)-b-

PBCL(2500) and their mixtures (10 wt% drug) at 1 atm and 473 K 

along with the number of drug molecules involved. 

 

Drug/Block 

Copolymer/Mixture 

Density 

(g/cm3) 

No. of 

Drug 

Molecules 

No. of Block 

Copolymer 

Chains 

Cucurbitacin B (CuB) 1.15 - - 

Cucurbitacin I (CuI) 1.12 - - 

PEO-b-iPBCL (P1) 

PEO-b-sPBCL (P2) 

PEO-b-aPBCL (P3) 

1.18 - 1 

CuB & P1 

CuB & P2 

CuB & P3 

1.18 1 1 

CuI & P1  

CuI & P2 

CuI & P3 

1.18 1 1 
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The velocity autocorrelation functions of the drug molecules, not shown here, 

indicated that the drug molecules de-correlated in less than 2 ps.  The analysis of 

mean values and standard errors were performed using the Sigma Plot version 

11.0 (Systat Software, Inc.). 

The computed  values are plotted in the Figure 6.4(A). We note that the 

error bars shown in the figure are ensemble fluctuations and were determined 

using the data of last 500 ps of the corresponding MD trajectories. Since the 

solubility prediction from simulation is solely based on the qualitative trend in  

values of different systems, we have compared the  values of the current 

systems, viz., PEO(2500)-b-PBCL(2500) with those of PEO(2500)-b-PCL(2500) 

(Chapter 5).  

Figure 6.4(A) shows negative  values only for binary mixtures containing 

syndiotactic version of di-block copolymer (i.e., PEO-b-sPBCL). Comparing 

these  values with those of non-functionalized mixture systems containing PEO-

b-PCL, these  values decreased by about three times.  Comparing this 

observation with the experimental drug loading data (mole drug/mole di-block 

copolymer) (Figure 6.4(B)) of CuB and CuI in PEO(5000)-b-PCL(5000) and 

PEO(5000)-b-PBCL(4700), our MD results on PEO-b-sPBCL are consistent with 

the experiment.  It should be pointed out that the tacticity of PEO-b-PBCL was 

unknown in the experimental case.  However, the simulation data strongly suggest 

that the tacticity of the experimentally synthesized PEO-b-PBCL should be 

syndiotactic.   
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Figure 6.4(A)   Plot of the computed χ values of binary mixtures of two 

cucurbitacins and three tactic forms of PEO-b-PBCL compared 

with the data for PEO-b-PCL. 
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Figure 6.4(B)   Comparison plot of experimentally measured drug loading 

capacity of PEO-b-PCL and PEO-b-PBCL micelles for 

cucurbitacins as reported by Molavi et al. 
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Various mechanistic and NMR studies along with predictions from Monte Carlo 

calculations performed by Kricheldorf et al.[108, 109] and Thakur et al.[110, 

111] demonstrate that stannous octoate, an achiral catalyst, commonly used in the 

ring opening polymerization of lactides shows a clear preference for syndiotactic 

addition. Since our synthesis process of PEO-b-PBCL uses stannous octoate 

catalyst for the ring opening polymerization of α-benzyl carboxylate--

caprolactone, it is likely that stereo form of the di-block copolymer is 

syndiotactic.  However, further NMR experiment is needed to verify the tacticity 

of di-block copolymer.   

The next step is to identify the factors that contribute to the favourable 

interactions in the mixture containing PEO-b-sPBCL and the drugs.  

Functionalization of the PCL core of PEO-b-PCL with aromatic benzyl 

carboxylate group is expected to affect the intra-molecular interactions to a 

certain extent in pure polymer state due to the presence of aromatic rings in the 

di-block copolymer structure. The strength of these intra-molecular interactions 

indirectly affects the strength of intermolecular interactions between the di-block 

copolymer and drug molecules in the mixture environment because these 

intermolecular associations would have to overcome existing intra-molecular 

associations in the pure polymer. 

 

6.3.1.2 Intra-molecular Non-bonded Energy 

In order to assess the intra-molecular specific interactions, a preliminary study on 

the electrostatic and dispersive contributions to the intra-molecular non-bonded 
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energy values for pure PBCL was carried out and compared with the values for 

pure PCL. Figure 6.5 shows the time average values of electrostatic and 

dispersive energy values for pure states of PEO-b-iPBCL, PEO-b-sPBCL, and 

PEO-b-aPBCL along with the values for pure state PEO-b-PCL for the sake of 

comparison. The energy values were averaged over the last 500 ps of the 

corresponding trajectory of 2000 ps.  It is clear from Figure 6.5 that the dispersive 

energy became unfavourable in PBCL while the electrostatic energy became 

favourable. In fact, due to the functionalization, the electrostatic energy decreased 

substantially from positive to negative values, indicating stronger intra-molecular 

interactions in the cases of PEO-b-PBCL as compared to the case of PEO-b-PCL.  

This is also consistent with our experimental observation showing a higher 

rigidity of the PBCL compared to the PCL core structures estimated by a 

fluorescence probe study [96].  An increase in the attractive interactions can be 

attributed to the increase in attractive forces due to more atoms carrying opposite 

charges and the number of hydrogen bonds formed.  Here, it should be pointed 

out that the electrostatic energy contribution originates from Columbic 

interactions and specific interactions like intra-molecular hydrogen bonds,  -  

interactions, etc. Since the commercial software package Materials Studio was 

unable to display the hydrogen bonds formed with aromatic rings, we could not 

carry out the counting of hydrogen bonds in this case.  Instead, we examined the 

radial distribution functions (RDF) among different intra-molecular and 

intermolecular segments in the pure and mixture states of the systems.   
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Figure 6.5     Comparison of electrostatic and dispersive energy values for PEO-

b-PCL and all the tactic forms of PEO-b-PBCL in their pure state.  
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Hence, we will be defining a particular pair to be interacting only based on RDF 

plots showing the proximity of different segments. But before discussing RDF 

calculations, we briefly describe different types of specific interactions probable 

between the different segments of di-block copolymers and between those with 

the drug molecules in the following section. 

 

6.3.1.3 Specific Interactions 

In systems involving long chain di-block copolymers, specific interactions play a 

vital role in inducing miscibility by achieving negative heats of mixing.  Figure 

6.6 shows all probable intra-molecular and intermolecular specific interactions 

between di-block copolymers and drug molecules.  The numbering of all these 

interactions is listed in Table 6.3. 

 

Aromatic --- aromatic /  -  interactions: Benzene rings are generally considered 

to be non-polar but their electron distribution is a complex multi-pole with no net 

dipole moment.  This multi-polar distribution makes benzene have electron rich 

faces and partial positive charges on hydrogen atoms around the edges.  Hence, 

when benzene rings centroid comes between 4.5 and 7.0 Å separation distance 

[112], the positively charged edge interacts with negatively charged faces.  Such 

type of interaction is termed as  -  interactions.  In a study by Barlow et al. 

[113], this type of interaction between aromatic rings of Polystyrene (PS) and 

Tetramethyl bisphenol-A polycarbonate (TMPC) polymers were found to be 

responsible for inducing miscibility in their corresponding blends.   
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Figure 6.6    Different types of intra-molecular and intermolecular interactions 

probable in the binary mixtures of PEO-b-PBCL and cucurbitacin 

drug molecules. 
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Table 6.3     Numbering of intra-molecular and intermolecular interactions 

shown in Figure 6.6. 

 

Interaction 
Number 

Interacting Pair 
Type of 

Interaction 
1 Aromatic --- Aromatic /  ---   Intra-molecular 
2 Drug --- H(Chain) Intermolecular 
3 Drug --- C=O(Chain) Intermolecular 
4 Drug --- C=O(Branch) Intermolecular 
5 Drug ---   (C=O or -OH groups of drug) Intermolecular 
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In the present work, we have aromatic rings on substituent branches of di-block 

copolymers and hence intra-molecular  -  interactions would be important. 

 

Drug --- H(Chain): The H(Chain) are hydrogen atoms attached to activated 

carbons on the backbone of di-block copolymer.  The carbonyl groups on drug 

molecules favourably interact and form multiple hydrogen bonds with these 

hydrogen atoms.  This type of conventional hydrogen bonding has already been 

discussed in our previous work (Chapter 5). 

  

Drug --- C=O(Chain): The hydroxyl (-OH) groups present in drug molecules 

interact and form hydrogen bonds with the carbonyl (-C=O) groups present in the 

backbone of di-block copolymer. For details, refer Chapter 5. 

  

Drug --- C=O (Branch): This type of interaction is similar to the previous one 

except that the drug molecules interact with the carbonyl (-C=O) groups present 

in the substituent branches. 

 

Drug ---  interactions: Drug molecules contain various carbonyl and hydroxyl 

groups. These groups could interact with  aromatic rings either by n ---  / C=O --

-   or  --- hydrogen bonding interactions (i.e., OH ---  interactions).  The 

miscibility is induced in polyester/PC blend through the formation of n ---  

complex between ester carbonyl and PC aromatic rings [114].  In another 

example,  --- hydrogen bonding interactions between  electrons of PC aromatic 
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groups and –OH groups of styrene-co-4-vinyl phenol copolymer was responsible 

for inducing the miscibility in their corresponding polymer blends [115]. 

 

6.3.1.4 Radial Distribution Function 

The spatial correlation between any two molecules or segments of molecules can 

be described using radial distribution function (RDF). The value of RDF is a 

relative measure rather than an absolute one.  The RDF gAB(r) between two 

selected groups A and B can be calculated using following general expression: 

 

drrNNN

VrN
g

ABBA

AB
AB 24)(

)(




      (6.1) 

 

where NA and NB are number of atoms in groups A and B, respectively, NAB is 

number of atoms common to both groups A and B, and V is unit cell volume. 

 

Intra-molecular  -  interactions 

Figure 6.7 (A) and (B) shows RDF plots for intra-molecular  -  interactions in 

PEO-b-PBCL and binary mixtures formed by the di-block copolymer and drugs, 

respectively.  It is worth noting that throughout the plots of RDF analysis, the 

iPBCL is used interchangeably for PEO-b-iPBCL and similarly sPBCL for PEO-

b-sPBCL and aPBCL for PEO-b-aPBCL.   
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Figure 6.7     RDF plots for Interaction No. 1 (listed in Table 6.3) in (A) pure 

di-block copolymer system; and (B) mixture system of drug/di-

block copolymer.  
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It is obvious from Figure 6.7(A) that  -  correlation is highest in the case of 

iPBCL while lowest in the case of sPBCL indicating favourable  -  interactions 

in the case of iPBCL. In order to establish favourable intermolecular 

interactions/contacts between di-block copolymer and drug molecules, the 

existing intra-molecular interactions in the di-block copolymer needs to be 

overcome.  Thus, due to lowest  -  correlation in the case of sPBCL, we expect 

to observe maximum intermolecular associations between this di-block copolymer 

and drug molecules. In Figure 6.7(B) we compare  -  correlation of different di-

block copolymers in a mixture environment of both drugs.  In the PEO-b-

PBCL/CuB mixtures, the intra-molecular  -  correlation is still strong in the 

isotactic form of the copolymer while in the mixture containing CuI, the intra-

molecular  -  correlation decreases drastically for all tactic forms, which we 

believe is due to strong correlation of CuI drug with aromatic rings. In a later 

section (Refer OH--- interactions), we will show that the intermolecular OH --- 

 interactions between the CuI drug and the aromatic ring has weakened the intra-

molecular  -  interactions.  It is obvious that the local packing of substituent 

branches will be different in different stereo isomers and the effect of this local 

packing is visible on the strength of  -  interactions. 

 

Intermolecular Specific Interactions for CuB 

RDF plots showing correlations for interaction no. 2, 3, 4, and 5 listed in Table 

6.3 are shown in Figures 6.8 (A), (B), (C), and (D), respectively, for all the tactic 

forms of di-block copolymer and CuB mixture.   

  150 
  
 



 

(A)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7 8 9

r(

iPBCL
sPBCL
aPBCL
PCL

g(
r)

 Å)

 

Figure 6.8(A)   RDF plot of CuB drug in PEO-b-PBCL for Interaction No. 2. 
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Figure 6.8(B)   RDF plot of CuB drug in PEO-b-PBCL for Interaction No. 3. 
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Figure 6.8(C)   RDF plot of CuB drug in PEO-b-PBCL for Interaction No. 4. 
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Figure 6.8(D)   RDF plot of CuB drug in PEO-b-PBCL for Interaction No. 5. 
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Since the  values of PEO-b-sPBCL has decreased (almost three times) as 

compared to that of PEO-b-PCL, we try to compare the correlations for 

interactions no. 2 and 3 between PEO-b-PBCL and PEO-b-PCL. From Figures 6.8 

(A) and (B), it is clear that the correlation of CuB with H(Chain) and C=O(Chain) 

in PEO-b-PBCL is similar to those in PEO-b-PCL.  While the correlation for the 

isotactic form is found to be slightly higher than the other forms of di-block 

copolymer. Figure 6.8 (C) shows higher correlation between CuB and 

C=O(Branch) for PEO-b-sPBCL and PEO-b-aPBCL.  The probable reason 

behind this observation is more free space available for interaction with the 

carbonyl groups of the substituent branches in such copolymers.  From Figure 6.8 

(D), it is clear that for PEO-b-sPBCL, the correlation of CuB with the aromatic 

ring is a lot higher than other di-block copolymers.  There are two probable 

reasons: (i) due to the alternating arrangement of branches in the syndiotactic 

version of di-block copolymer, the exposure of CuB drug is more with aromatic 

rings; and (ii) CuB drug is not able to pierce through the strong intra-molecular  

-  interactions present in isotactic and atactic forms of the di-block copolymer.  

Here,  -  interactions are strong in the mixtures with CuB as compared to with 

CuI, as shown in Figure 6.7(B). 

 

Comparison between CuB and CuI 

Since the difference between  values of CuB and CuI is negligible in the case of 

PEO-b-iPBCL as compared to PEO-b-sPBCL and PEO-b-aPBCL, we compare 

correlations for CuB and CuI drugs for the latter two cases only. 

  153 
  
 



 

(a) PEO-b-sPBCL 

Figures 6.9 (A) – (D) show RDF plots comparing correlations for CuB and 

CuI in PEO-b-sPBCL. Compared to CuI, CuB shows more correlations with 

the backbone atoms like H(Chain) and C=O(Chain) indicating its favourable 

interactions with them. Since the carbonyl groups present on drug molecules 

are responsible for favourable interactions (through hydrogen bonding) with 

the H atoms attached to the activated carbon atoms, CuB with more carbonyl 

groups, shows more correlation with backbone H atoms. Both drugs show 

almost similar correlations/interactions with the carbonyl group and aromatic 

rings of substituent branches (Figures 6.9 (C) and (D)). 

  

(b) PEO-b-aPBCL 

Figures 6.10 (A) – (D) compare RDF plots for CuB and CuI in PEO-b-

aPBCL.  In this case, both drugs show almost similar correlations with the 

H(Chain), while for the correlation with C=O(Chain) (Figure 6.10 (B)), the 

first coordination shell signified by the first peak (at ~ 1.96 Å in the present 

case) for CuB is absent in CuI.  This first coordination shell is an indication of 

favourable interactions (mainly specific interactions like hydrogen bonding).  

Thus, Figure 6.10 (B) implies that CuB has strong favourable interactions 

with C=O(Chain) but not CuI.  The correlations of drug molecules with 

C=O(Branch) is similar for both drugs (Figure 6.10 (C)).  The surprising 

result was found for the correlation between drug molecules and aromatic 

rings for the present atactic form of copolymer.   
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Figure 6.9(A) RDF plot of comparison of CuB and CuI drugs in PEO-b-sPBCL 

for Interaction No. 2. 
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Figure 6.9(B) RDF plot of comparison of CuB and CuI drugs in PEO-b-sPBCL 

for Interaction No. 3. 

  155 
  
 



 

(C)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7 8 9

 r(Å)

g(
r)

CuB

CuI

 

Figure 6.9(C) RDF plot of comparison of CuB and CuI drugs in PEO-b-sPBCL 

for Interaction No. 4. 
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Figure 6.9(D) RDF plot of comparison of CuB and CuI drugs in PEO-b-sPBCL 

for Interaction No. 5. 
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Figure 6.10(A) RDF plot of comparison of CuB and CuI drugs in PEO-b-

aPBCL for Interaction No. 2. 
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Figure 6.10(B) RDF plot of comparison of CuB and CuI drugs in PEO-b-

aPBCL for Interaction No. 3. 
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Figure 6.10(C) RDF plot of comparison of CuB and CuI drugs in PEO-b-

aPBCL for Interaction No. 4. 
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Figure 6.10(D) RDF plot of comparison of CuB and CuI drugs in PEO-b-

aPBCL for Interaction No. 5. 
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 The correlation of CuI with aromatic rings was much higher than that found in 

the CuB case (Figure 6.10 (D)). The probable reasons behind this surprising 

result will be discussed later. 

The above comparison can be summarized as follows: for the PEO-b-

sPBCL/drug binary mixture case, there are almost equal correlations/interactions 

between drugs and functional groups of substituent branches, i.e., carbonyl groups 

and aromatic rings.  CuB shows more interactions with the backbone atoms 

(H(chain) and C=O(Chain)), while CuI interacts mainly with the substituent  

branch atoms (C=O(Branch) and aromatic rings). This is because CuI has 4 

hydroxyl groups as compared to 3 in the CuB case. 

For the PEO-b-aPBCL/drug binary mixture case, the intra-molecular  -  

interactions between aromatic rings are strong compared to the previous case and 

hence both drugs show almost equal and reduced interactions with the backbone 

atoms and carbonyl groups of branches.  As stated earlier, the only surprising part 

was the large difference between the correlations/interactions of the drugs with 

the aromatic rings.  CuI has much higher correlation as compared to CuB.  It is 

evident in  -  interactions graph for binary mixtures of di-block copolymers and 

drugs (Figure 6.7(B)) that CuI reduces intra-molecular  -  interactions 

drastically. To find the possible reasons behind these two inter-related 

observations, we further examined the correlation functions of specific groups 

(especially hydroxyl groups) on drug molecules with aromatic rings.  Here, the 

drug molecules could interact with the aromatic ring either by OH ---  

interactions or C=O ---  interactions. Since the focus was particularly on the 
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intermolecular interactions between drug molecules and aromatic rings of di-

block copolymer, we examined the PEO-b-sPBCL case, which has minimal intra-

molecular  -  interactions. 

 

OH ---  interactions 

Figure 6.11 shows RDF plot for the correlation between all hydroxyl (–OH) 

groups of each drug and aromatic rings of the di-block copolymer.  The hydroxyl 

groups of CuI, having higher correlation, are in fact closer to the aromatic rings as 

compared to CuB.  We also examined such correlations of individual –OH groups 

on the drug molecules.  Here, we adopted a numbering scheme shown in Figure 

6.12 (A) and (B) to identify different groups present on drug molecules.  Figure 

6.13 shows RDF plots for the correlations of individual hydroxyl groups of CuI 

and compared them with the –OH group (1) of CuB.  CuIH(1) and CuIH(4) are 

closer to aromatic rings as compared to the other –OH groups. CuIH(4), being 

attached to the free end of the molecule, is relatively flexible compared to other 

hydroxyl groups and hence it can easily adjust itself to have maximum 

interactions with the aromatic ring.  This particular –OH group is absent in CuB.  

The maximum correlation was observed for CuIH(1).  This correlation was much 

higher compared to that of CuBH(1).  This observation was very surprising.  

However, it may be attributed to the differences in the partial atomic charges on 

the drug molecules.  Figure 6.14 (A) and (B) show structures of CuB and CuI, 

respectively, along with the partial atomic charges displayed on –OH groups of 

interest.   
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Figure 6.11     RDF plot showing the comparison of correlation between –OH 

groups of CuB and CuI and aromatic rings of the di-block 

copolymer.  
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Figure 6.12    Numbering scheme of H and O atoms of Hydroxyl and Carbonyl 

groups in (A) CuB; and (B) CuI. 
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Figure 6.13     RDF plot showing correlations between all the –OH groups of 

CuI, the –OH(1) group of CuB and aromatic rings of the di-block 

copolymer. 
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Figure 6.14    Partial atomic charges of –OH(1) group on (A) CuB; and (B) CuI. 
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Owing to the presence of double bond near the –OH(1) group in CuI, the partial 

atomic charge of oxygen atom in this –OH group is less negative than that of 

CuB.  Due to this, the electro negativity disparity of -OH(1) is different in both 

cases as seen in the Figure 6.14. The –OH (1) group is more polar in CuB as 

compared to the one in CuI.  The more polar –OH bond forms strong dipole and 

has tendency to get attracted to other strong dipoles like carbonyl groups (-C=O) 

rather than engaging themselves with relatively weak OH ---  interactions. Thus, 

the less polar OH(1) group of CuI will have favourable interactions with the 

aromatic ring while OH(1) group of CuB will have favourable interactions with 

the carbonyl groups. All the above factors contribute towards higher correlation of 

CuIH with the aromatic ring.  Moreover, CuI interacts mostly through –OH 

groups with  electrons of the aromatic ring while CuB interacts through carbonyl 

groups –C=O with the edges (-CH) of aromatic ring.  

In general, from the above RDF plots, we found that for drugs like CuB and 

CuI, with multitude of hydroxyl and carbonyl groups, to be miscible in 

functionalized block copolymers, the drugs need to interact not only with the 

substituent branches but also with the backbone atoms (in the form of multiple 

hydrogen bonding with backbone atoms). These intermolecular associations in the 

mixture of drug/copolymer largely depends on the strength of intra-molecular  - 

 interactions between aromatic rings of pure di-block copolymer. MD simulation 

is a powerful tool to predict this interplay of intra and inter molecular interactions. 
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6.3.2 PEO-b-PBCL/Fenofibrate & Nimodipine Drugs 

The simulation procedures were similar to the one described earlier in the Section 

6.3.1.1, except that the simulation temperature was 413 K. The computed  values 

are plotted in Figure 6.15. Again, we have compared the  values of the current 

systems, viz., PEO(2500)-b-PBCL(2500) with those of PEO(2500)-b-PCL(2500) 

(Chapter 4).  

It is clear from Figure 6.15 that none of the tactic forms of PEO-b-PBCL 

shows a significant decrease in  values when compared to the case of 

unfunctionalized block copolymer (PEO-b-PCL). In other words, the presence of 

substituent branches of -benzyl carboxylate groups on the hydrophobic block 

does not favour the process of encapsulation for fenofibrate and nimodipine 

drugs. On the other hand, the syndiotactic version of PEO-b-PBCL was more 

compatible with cucurbitacin drugs compared to PEO-b-PCL (Section 6.3.1). We 

believe that differences in molecular characteristics of both sets of drugs are 

responsible for such an observation. In particular, cucurbitacin drugs contain 

multiple H-bond donors and acceptors while fenofibrate and nimodipine drugs 

contain only H-bond acceptors. As discussed previously in the Section 6.3.1, the 

substituent branches containing only H-bond acceptors (i.e., -C=O(Chain) and 

Aromatic rings) were able to interact favourably with H-bond donors (e.g., -OH 

groups) present on drug molecules (i.e., through Interaction No. 4 and 5 listed in 

Table 6.3).  
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Figure 6.15   Plot of the computed χ values of binary mixtures of fenofibrate 

and nimodipine and three tactic forms of PEO-b-PBCL compared 

with the data for PEO-b-PCL.  
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Owing to the absence of H-bond donors on Set-II drug molecules, they are not 

able to establish favourable interactions like Interaction No. 3, 4, and 5 (Table 

6.3) with the di-block copolymer which were found to be important in enhancing 

the solubility of cucurbitacin drugs. The only intermolecular interaction that can 

be established between drugs and di-block copolymers is Interaction No. 2 (i.e., 

Drug---H(Chain)). But, before establishing this interaction, the drug molecules 

need to overcome the existing intra-molecular interactions (e.g.,  -  and  - 

H(Chain) interactions) by establishing Interaction No. 4 and 5 with the substituent 

branches which are essentially absent in this set of drugs. Due to this, we also 

expect to see less interaction of these drugs with the hydrogen atoms of PCL 

block (H(Chain)). To confirm this, we perform RDF analysis between drug 

molecules and H(Chain) atoms of hydrophobic block and H-atoms of PEO block. 

Figures 6.16 and 6.17 compare such correlations with that in the system of PEO-

b-PCL. It is clearly evident from this RDF analysis that the correlations of 

fenofibrate and nimodipine drugs has decreased with the H-atoms of PBCL block 

and increased with the H atoms of PEO block when compared with the case of 

PEO-b-PCL. Hence, owing to the unfavourable interactions with the substituent 

branches, we observe less correlation of these drugs with PBCL block which, in 

turn, is responsible for higher  values for such systems.    
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Figure 6.16  RDF plot showing correlation of H(Chain) atoms with (A) 

Fenofibrate; and (B) Nimodipine.  
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Figure 6.17  RDF plot showing correlation of H atoms of PEO block with (A) 

Fenofibrate; and (B) Nimodipine. 
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6.4 Summary 

Finally, we shall conclude this study with the following comments. MD 

simulation approach was used to compute the  parameters for the binary di-block 

copolymer/drug mixtures formed by two sets of hydrophobic drugs (Set-I (CuB 

and CuI) and Set-II (fenofibrate and nimodipine)) and PEO-b-PBCL with three 

different tacticities viz. PEO-b-iPBCL, PEO-b-sPBCL, and PEO-b-aPBCL. For 

comparing our simulation results, the experimental data were only available for 

the system of binary mixtures of PEO-b-PBCL/Set-I drugs. Hence, we validated 

and established the current method firstly on this system and then later extended it 

to another system of binary mixtures of PEO-b-PBCL/Set-II drugs.  

Based on the study performed on cucurbitacin drugs, it was found that only 

the  values for binary mixtures containing PEO-b-sPBCL agree with the 

experiment.  In particular, the  values of two other stereo isomers of PEO-b-

PBCL are even much higher than those of the mixtures containing PEO-b-PCL.  

The results suggest that the syndiotactic configuration is the ideal stereo isomer 

for inducing the miscibility between these drugs and the PEO-b-PBCL.  The 

strength of the intra-molecular  -  interactions was found to be dependent on 

stereo configurations of di-block copolymers.  In order to induce the miscibility in 

drug/copolymer mixture, intermolecular associations/interactions need to be 

established through specific interactions which aid in achieving negative values of 

heats of mixing and hence negative  values. The formation of such 

intermolecular specific interactions is largely hindered by the presence of intra-

molecular  -  interactions.  Hence, the syndiotactic version of the di-block 
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copolymer which exhibits minimal  -  interactions succeeds in establishing 

favourable intermolecular specific interactions between the drug molecules and 

the di-block copolymer.  

On the other hand, none of the tactic forms of PEO-b-PBCL showed a 

potential in encapsulating Set-II drugs consisting of fenofibrate and nimodipine 

drugs which contain only clustered H-bond acceptors. It is believed that the 

absence of H-bond donors on these drugs restricted their interaction with the 

substituent branches of the hydrophobic block. Consequently, the strong intra-

molecular interactions existing in pure di-block copolymers could not be 

overcome which, in turn, led to increased  values in such binary mixture 

systems.   
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Chapter 7 

 

Encapsulation Capability of a Multi-block Copolymer 

Containing Three PCL Blocks Connected to One End of a 

PEO Block4 

 

 

7.1  Introduction 

It was evident from the study described in Chapter 5 that polar interactions 

between drug and the entire block copolymer play important roles in enhancing 

the drug loading capacity in a given polymeric carrier.  In addition, the extent of 

drug solubilisation by a block copolymer based carrier was found to be dependent 

on the intra- as well as intermolecular interactions of the copolymer chains 

(Chapter 6). The purpose of the present study was to apply the MD simulation 

strategy developed so far to examine the potential of using a multi-block 

copolymer with three PCL blocks connected to one end of a PEO block 

(designated as PEO-b-3PCL, see Figure 7.1) in encapsulating two sets of 

hydrophobic drugs with distinctively different molecular structures.   

                                                 
4 A version of this chapter has been accepted for publication. Patel, S.K.; Lavasanifar, A.; Choi, P. 
(2009). Biomaterials. Article in Press, doi:10.1016/j.biomaterials.2009.11.060. 
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Figure 7.1    Chemical Structure of PEO-b-3PCL. 
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The reason for choosing the multi-hydrophobic block architecture is that such 

architecture is expected to contain a higher concentration of H-bond donors 

because the radius of gyration of three PCL blocks would be lower than that of a 

linear PCL with equivalent molecular weight.  It is worth noting that as 

demonstrated in Chapter 5, increase in the drug loading capacity of PEO-b-PCL 

with higher PCL/PEO (w/w) ratios is attributed to the presence of multiple 

hydrogen bond donors on the PCL block (hydrogen atoms connected to the 

activated carbons). 

The Set-I drugs used in the present work consisted of cucurbitacin drugs (CuB 

and CuI (Figure 5.1(A) and (B)) that contain multiple H-bond donors and 

acceptors in their structures, while the Set-II drugs, fenofibrate and nimodipine  

(Figure 4.1(B) and (C)), contain only clustered hydrogen bond acceptors.  The 

results of PEO-b-3PCL will then be compared with results of the linear di-block 

copolymer PEO-b-PCL with the same PCL/PEO (w/w) ratio of 1 reported in 

Chapters 4 and 5.  Binary liquid mixtures containing a drug and PEO-b-3PCL at 

10 wt% of drug were used to determine their corresponding  parameters, which 

will in turn help to infer the drug solubility.  The present study also serves as the 

first attempt to provide an atomistic understanding of the differences in the drug 

encapsulation mechanisms of the multi-block copolymer-based carriers compared 

to those of the linear di-block copolymers with comparable molecular weights.  
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7.2  Model Building and Simulation Methodology 

The model multi-block copolymer was generated by connecting three PCL 

blocks, each having a molecular weight of 800 g/mol, to one end of a PEO block 

having molecular weight of 2500 g/mol as shown in Figure 7.1.  We designate 

this block copolymer as PEO(2500)-b-3PCL(2400), where the number in bracket 

signifies the molecular weights of the corresponding block(s). The initial liquid 

state structure of PEO-b-3PCL was generated based on the rotational isomeric 

state (RIS) theory [81, 82] using the amorphous builder module in commercially 

available software Cerius2 from Accelrys.  All MD simulations reported here were 

performed using another commercially available software package Materials 

Studio (MS Modeling version 4.2, Accelrys) run on a Silicon Graphics (SGI) 

workstation cluster.  The COMPASS force field [62] was used to model the intra- 

and intermolecular interactions.  Detailed description of this force field can be 

found in Section 3.3. The procedures of constructing initial liquid state models are 

very similar to those described in the Chapter 4.    

The density values of the pure multi-block copolymer and drugs at two 

simulation temperatures (413 K and 473 K) were determined by performing 

isobaric-isothermal (NPT) MD simulations (P = 1 atm; T = 413 K & 473 K). 

Owing to the differences in the melting temperatures of the drugs of interest, 413 

K was used for the binary mixtures containing fenofibrate and nimodipine drugs, 

while 473 K was chosen for those containing CuB and CuI drugs. These 

temperatures were selected so that results can be compared directly to our 

previous studies (Chapters 4 and 5). The pressure and temperature of the systems 
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are controlled using Andersen barostat [72] and Nose Thermostat [69] algorithms, 

respectively. The densities of binary mixtures of multi-block copolymer and drugs 

(10 wt% drug concentration) were calculated based on the densities of the pure 

components with the assumption of no volume changes on mixing. These mixture 

and pure substance density values were used in the subsequent canonical (NVT) 

MD simulations to determine the  parameters.   

Due to the fact that the simulation times normally is insufficient for systems 

such as polymers in the amorphous state to undergo very drastic reorientation and 

relaxation, it is crucial that the initial state of system of the multi-block copolymer 

to be as close to the equilibrated state as possible.  This was why the RIS theory 

was used. The distribution of torsion angles was determined by applying the 

Boltzmann weighting factor to the energies of the RIS minima.  The initial 

distribution of torsion angles for the PEO block of PEO-b-3PCL is the same as 

that of the PEO block in the PEO-b-PCL di-block copolymer, but in the case of 

the three PCL blocks, they are different from that of the corresponding di-block 

copolymer.  Here, we identified a total of nine torsion angles for PEO-b-3PCL 

and they are depicted in Figure 7.2.  In Table 7.1, we list the values of RIS 

minima and the respective tolerances for all nine torsion angles that have 

significant influence on the conformation of the multi-block copolymer.  Once the 

RIS state distribution was determined, the RIS states were populated allowing for 

the angle tolerances stated in Table 7.1.   

All initial amorphous structures were subjected to energy minimization step 

using the conjugate gradient method, before performing MD simulations.  

  177 
  
 



 

    

 

 

 

 

 

H3C O C

H

H

C

H

H

O C

O

C O

m

n

C C C C

H

H

H

H

C

C

O

(CH2)5 O H

O

(CH2)5 O H

n

n-1
C

O

(CH2)5 O H

H

H

H

H













  





 

 

 

Figure 7.2    Schematics of all torsion angles identified in PEO-b-3PCL. 
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Table 7.1    Rotational isomeric states for all torsion angles of PEO-b-3PCL. 

 
 

Skeletal 
Bond 

State 1* 
 

State 2* State 3* State 4* 

1 170  20 300  10 330  10 N/A 
2 40  10 60  10 280  10 350  10 
3 270  10 290  10 330  10 N/A 
4 130  10 300  10 N/A N/A 
5 70  15 180  10 230  5 N/A 
6 60  10 240  15 N/A N/A 
7 200  5 N/A N/A N/A 
8 140  5 N/A N/A N/A 
9 60  5 170  5 N/A N/A 

      *Data are Torsion angle ± Tolerance 
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NVT MD simulations were carried out at 473 K and 413 K for Set-I and Set-II 

drugs, respectively.  The velocity Verlet method, with a time step of 0.001 ps, was 

used as an integrator in all simulations.  The non-bonded dispersive interactions 

were evaluated using atom based cut-off distance of 9.50 Å with a spline width of 

1 Å, while the long-range electrostatic interactions especially important in three-

dimensional periodic systems were evaluated using the well-known Ewald 

summation method [67]. Long-range tail corrections were applied to the non-

bonded interactions during MD simulations.  Each simulation was carried out for 

a total of 2000 ps.  The properties of interest (e.g., the total energy) were 

calculated by averaging over the last five hundred ps of the corresponding 

trajectory file.  Here, we adopted the MD simulation approach in which the 

internal energy changes on mixing were calculated and then used to obtain   

parameters for the drug/multi-block copolymer pairs of interest (Equations (4.5) 

and (4.6)) . 

 

7.3 Results and Discussion 

Table 7.2 summarizes the computed density values for PEO(2500)-b-

3PCL(2400), CuB, CuI, fenofibrate, nimodipine and their binary mixtures (10 

wt% drug) at a pressure of 1 atm and two simulation temperatures (413 K and 473 

K).  The density values of the binary mixtures were calculated using those of the 

pure components obtained from the corresponding MD simulations.  Here, it is 

assumed that the volume change of mixing is negligible.  
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Table 7.2     Liquid density values of CuB, CuI, Fenofibrate, Nimodipine, 

PEO(2500)-b-3PCL(2400) and of their binary mixtures (10 wt% 

drug) computed at 1 atm and two temperatures (473 K and 413 K). 

 

Temperature 

(K) 

Drug/Block 

Copolymer/Mixture 

Density 

(g/cm3) 

No. of 

Drug 

Molecules

No. of 

Block 

Copolymer 

Chains 

Cucurbitacin B (CuB) 1.15 - - 

Cucurbitacin I (CuI) 1.12 - - 

PEO-b-3PCL (P) 1.08 - 1 

CuB & P 1.10 1 1 

473 

CuI & P 1.09 1 1 

Fenofibrate (F) 1.12 - - 

Nimodipine (N) 1.07 - - 

PEO-b-3PCL (P) 1.10 - 1 

F & P 1.10 2 1 

413 

N & P 1.09 1 1 
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 parameters of all the aforementioned binary mixtures were then computed using 

the MD simulation strategy described in previous chapters. In particular, the mean 

potential energies of the bulk liquid states of the pure multi-block copolymer, of 

the pure drugs and of their binary mixtures were calculated by time averaging the 

potential energy of the corresponding trajectories over the last 500 ps at an equal 

interval of 2 ps.   

The computed  values are plotted in Figures 7.3 and 7.4.  The error bars 

shown in the figures are ensemble fluctuations and were also determined using the 

data of the last 500 ps of the corresponding MD trajectories.  According to the 

Flory-Huggins solution theory, the lower the , the higher the affinity between the 

components, thereby better solubility of one component into the other.  Since the 

solubility prediction from simulation is based on the qualitative trend of the 

computed  values of different systems, we have compared the four  values of 

the current systems containing PEO(2500)-b-3PCL(2400) with those of 

previously reported for PEO(2500)-b-PCL(2500) (Chapters 4 and 5). 

Figure 7.3 clearly shows that the  values of the mixtures composed of 

cucurbitacin drugs and PEO-b-3PCL are approximately four times more negative 

than those containing PEO-b-PCL with roughly the same PCL/PEO (w/w) ratio of 

1.0.  On the other hand,  values of the binary mixtures containing other set of 

drugs (i.e., fenofibrate and nimodipine) and the multi-block copolymer are about 

two times more positive that those containing the linear di-block copolymer 

(Figure 7.4).   
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Figure 7.3     Plot of the computed χ values of binary mixtures of cucurbitacin 

(Set-I) drugs and PEO-b-3PCL along with the data for PEO-b-

PCL.  
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Figure 7.4     Plot of the computed χ values of binary mixtures containing PEO-

b-3PCL and fenofibrate and nimodipine (Set-II) drugs along with 

the data for PEO-b-PCL.  
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This suggests that PEO-b-3PCL is much more compatible with the first set of 

drugs compared to its linear counterpart, but it is not the case for fenofibrate and 

nimodipine. Hence, depending on the set of hydrophobic drugs, we may observe 

increase or decrease in the encapsulation capability of the multi-hydrophobic 

block architecture when compared to that in the linear architecture.  The 

following data analysis addresses the above observation.  

It has been shown in our previous work (Chapter 5) that the formation of 

more H-bonds between drugs and the H-bond donors (hydrogen atoms connected 

to the activated carbons) on the PCL block is responsible for the increase in the 

drug loading capacity of PEO-b-PCL with higher PCL/PEO (w/w) ratios.  In the 

present case, the multi-hydrophobic block architecture would contain a higher 

concentration of H-bond donors because the radius of gyration of three PCL 

blocks is lower than that of a linear PCL with equivalent molecular weight.  Since 

both sets of drug molecules contain comparable numbers of H-bond acceptors 

(See Figures 4.1(B), (C) and 5.1 (A), (B)), it is expected that additional 

intermolecular H-bonds would form between both sets of drugs and PEO-b-3PCL.  

To determine whether this is the case, we determined the average number of 

intermolecular H-bonds formed for all four binary mixtures based on the 

geometric definition of H-bond of Bertolini et al. and Geiger et al. [97, 98] 

described in Section 5.3.3.  Figure 7.5 shows the results for cucurbitacin drugs 

along with the previous reported data for linear di-block PEO-b-PCL while Figure 

7.6 shows the same quantities for fenofibrate and nimodipine drugs.   
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Figure 7.5     Plot showing the total number of intermolecular H-bonds formed 

by CuB and CuI with the PEO-b-3PCL in the form of sum of 

contributions from H-bond with PEO and PCL blocks.  
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Figure 7.6  Plot showing the total number of intermolecular H-bonds formed 

by fenofibrate and nimodipine drugs with the PCL blocks of the 

PEO-b-PCL and PEO-b-3PCL.  
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Here, the average values and errors associated with the number of H-bonds were 

calculated based on the time averages of the last 200 ps of the trajectory files.  It 

is clear from Figure 7.5 that the increase in the average total number of H-bonds 

from PEO-b-PCL to PEO-b-3PCL is attributed to the additional H-bonds formed 

between cucurbitacin drugs and the PCL blocks in PEO-b-3PCL. Here, the 

number of H-bonds formed between the drugs and the PEO block remains 

unchanged.  On the other hand, fenofibrate and nimodipine exhibit a completely 

opposite trend as depicted in Figure 7.6.  One of the reasons is the absence of H-

bond donors on the molecules of such drugs (nimodipine contains a very weak H-

bond donor) which makes them not able to interact with H-bond acceptors (e.g., 

carbonyl groups) present on the PCL blocks that was found to be important in 

enhancing solubility of cucurbitacin drugs (Chapter 5). Nevertheless, as discussed 

above, the concentration of H-bond donors on the multi-hydrophobic block 

architecture is higher than that of the linear architecture with equivalent molecular 

weight; the decrease in the number of H-bonds in the cases of fenofibrate and 

nimodipine was somewhat unexpected.  Thus, a further investigation on the H-

bonds formed between them and the PCL blocks was carried out. 

To examine the H-bonds formed between the H-bond acceptors on drug 

molecules (O atoms) and the H-bond acceptors on the PCL blocks (H atoms 

attached to the activated carbons), we calculated the radial distribution functions 

(RDF) for such interacting pairs of oxygen and hydrogen atoms (i.e., gOH(r)) 

present in the drugs and block copolymers, respectively.  Here, the RDF is 
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defined as the ratio of the local density of the intermolecular O-H pairs to their 

average density of the entire simulation system at various inter-atomic distances.  

Since there are several H-bond acceptors on both sets of drugs, we adopt a 

numbering scheme as shown in Figure 7.7 to designate the oxygen atoms present 

on the drug molecules. Table 7.3 summarizes the locations of the first peak of the 

corresponding gOH(r) plots of the drug/block copolymer mixtures.  For clarity, we 

do not show the original RDF plots here.  The positions of the peaks in a RDF 

plot signify the preferred inter-atomic distances between the atoms of interest 

(intermolecular O and H in this case).  According to the geometric definition of 

H-bond adapted in the present work, close proximity of H-bond acceptor/donor 

pair atoms (O-H pair) at distances less than or equal to 2.6 Å may possibly lead to 

H-bond formation [97, 98].  The bold figures in Table 7.3 represent the inter-O-H 

distances of the first peak locations that fall into the aforementioned H-bond 

definition.  In other words, these pairs can be considered as probable H-bond 

sites.  This allows us to count the approximate number of available H-bond sites 

between drugs and the block copolymers with respect to only H-bond acceptor 

groups on the drug molecules. It can be seen from Table 7.3 that for cucurbitacin 

drugs, there are approximately the same number of H-bond sites (about 2 to 3) in 

both PEO-b-PCL and PEO-b-3PCL cases, suggesting that the additional H-bonds 

formed in the PEO-b-3PCL system (Figure 7.5) is attributed to the ability of the 

H-bond donors on the PCL blocks to form H-bonds with individual H-bond 

acceptors on the cucurbitacin molecules.   
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Figure 7.7 Numbering scheme of H-bond acceptor atoms of (A) CuB; (B) 

CuI; (C) Fenofibrate; and (D) Nimodipine. 
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Table 7.3 Locations of the first intermolecular OH peaks obtained from 

gOH(r) of mixtures containing 10 wt% drug (CuB, CuI, fenofibrate, 

and nimodipine) and remaining block copolymer – PEO(2500)-b-

PCL(2500) and PEO(2500)-b-3PCL(2400). 

 

 
Drug 

Potential 
intermolecular 

hydrogen bonds 

Position of 
first peak (Å)  

for 
PEO-b-PCL 

Position of first 
peak (Å)  

for 
PEO-b-3PCL 

(CuB)C=O(1)---H(PCL) ~ 2.45 ~ 1.75 
(CuB)C=O(2)---H(PCL) ~ 2.25 ~ 2.35 
(CuB)C=O(3)---H(PCL) ~ 2.75 ~ 2.75 

CuB 

(CuB)C=O(4)---H(PCL) ~ 2.45 ~ 2.25 

(CuI)C=O(1)---H(PCL) ~ 2.75 ~ 5.55 
(CuI)C=O(2)---H(PCL) ~ 2.45 ~ 5.05 CuI 
(CuI)C=O(3)---H(PCL) ~ 2.65 ~ 1.95 

(F)O(1)---H(PCL) ~ 1.75 ~ 1.75 
(F)O(2)---H(PCL) ~ 2.55 ~ 4.25 
(F)O(3)---H(PCL) ~ 2.65 ~ 2.55 

Fenofibrate 
(F) 

(F)O(4)---H(PCL) ~ 2.55 ~ 3.25 
(N)O(1)---H(PCL) ~ 3.05 ~ 3.75 
(N)O(2)---H(PCL) ~ 2.65 ~ 2.65 
(N)O(3)---H(PCL) ~ 2.35 ~ 2.75 
(N)O(4)---H(PCL) ~ 2.35 ~ 2.65 

Nimodipine 
(N) 

(N)O(5)---H(PCL) ~ 2.65 ~ 3.25 
Note: O: Oxygen atom; H: Hydrogen atom. The bold figures in dark boxes represent  

inter-atomic distance capable of forming H-bond. 
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On the other hand, for fenofibrate and nimodipine drugs, the number of H-bond 

sites decreases significantly from approximately 4 (PEO-b-PCL) to 2 (PEO-b-

3PCL) (See Table 7.3), leading to a decrease in the number of H-bonds formed 

(Figure 7.6).  Results in Table 7.3 also suggest that only H-bond acceptors that are 

far apart from each other on the fenofibrate and nimodipine molecules could form 

H-bonds with the PCL blocks.  In other words, clustering of H-bond acceptors 

restricts their interactions with the PCL blocks in the multi-block architecture.  

This is obviously not the case for the cucurbitacin drugs as their H-bond acceptors 

are evenly distributed on the drug molecules.  The above findings suggest that 

multi-hydrophobic block architecture could potentially increase the drug loading 

for hydrophobic drugs with structures containing evenly distributed multiple H-

bond donors and acceptors.     

 

7.4  Summary 

Molecular dynamics simulation was utilized to determine the drug encapsulation 

capability of PEO-b-3PCL by computing the  parameters for the corresponding 

binary drug/multi-block copolymer mixtures (10 wt% of drug) containing 

hydrophobic drugs with very different spatial distribution of H-bond donors and 

acceptors on their molecular structures.  The computed  values were used to 

infer the solubility of the drugs in PEO-b-3PCL by comparing that for the most 

commonly used linear di-block PEO-b-PCL with comparable molecular weights.  

It was found that PEO-b-3PCL shows a great potential in encapsulating 

cucurbitacin drugs, which have an even distribution of H-bond donors and 
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acceptors on their molecules. The reason for such an observation was mainly 

attributed to the increase in the number of hydrogen bonds formed between the 

drugs and the PCL blocks, leading to much lower  values.  In the cases of 

fenofibrate and nimodipine, since they contain only clustered H-bond acceptors, 

the multi-hydrophobic block architecture of PEO-b-3PCL could not interact 

effectively through H-bonds with such drugs, leading to much higher  values.  

This study shows the potential of using multi-block copolymers with multi-

hydrophobic blocks as nano-carriers for encapsulating drugs that contain evenly 

distributed multi-H-bond donors and acceptors such as cucurbitacin drugs. By 

providing the atomistic details, the present study opens very interesting 

perspectives in drug delivery by showing the potential use of polymeric micelles 

made up of block copolymers with very different morphologies. 
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Chapter 8 

 

Conclusion and Outlook 

 

 

In this thesis, MD simulation approach was utilized to compute the Flory-Huggins 

interaction parameters (χ) between various water insoluble drugs and di-block 

copolymers in order to assess the power of this computational approach in 

predicting experimental solubility trends. The MD approach predicted the 

experimental solubility trends very well. Additionally, this approach provides 

useful atomistic details related to not only intermolecular interactions but also to 

intra-molecular interactions contributing to the thermodynamic compatibility. 

Based on the present work, the MD approaches outperformed the commonly used 

GCM in many aspects. MD simulation was able to capture most of the 

thermodynamic aspects of the drug solubility in di-block copolymers. It was 

evident from the study described in the Chapter 6 that the MD simulation can 

describe the effect of stereochemistry of the hydrophobic block on the 

polymer/drug miscibility. It is worth noting that the GCM fails to distinguish 

among different stereoisomers of block copolymers.  
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There are essentially two different approaches to calculate the χ values 

between drugs and di-block copolymers, as described in the Chapter 4. In one 

approach, the χ values were calculated using the solubility parameters () derived 

from MD simulations of the drugs and di-block copolymers in their pure 

component form. This approach is still the most widely used approach to calculate 

the χ values in the pharmaceutical research, due to its ease of applicability. Even, 

the GCM method utilizes this basic approach to predict the miscibility. But, 

unfortunately, in this approach, the effect of concentration on the χ values, which 

allows us to study the effect of drug loadings, cannot be studied. Moreover, using 

this approach, one cannot predict negative χ values which generally results due to 

the presence of specific interactions in the mixture systems. Consequently, this 

approach completely neglects the presence of such intermolecular specific 

interactions. Because of these limitations, we adopted another approach in which 

the χ values are calculated based on the heats of mixing obtained from the 

simulation. The local packing of the drug molecules and segments of the block 

copolymers in a mixture environment is taken into account in the latter approach. 

In other words, the calculated χ manifests the behaviour of the drugs and PEO-b-

PCL in the presence of each other.  

The conventional compatibility studies focus on the interaction between the 

hydrophobic block of a block copolymer and the drug of interest. But the 

investigations of effect of local packing on compatibility (described in Chapter 4) 

supports the inclusion of hydrophilic block (PEO block) as well into the 

calculations of  and χ. In other words, interactions of drug with the whole di-
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block copolymer have to be considered.  Our results confirm that both the 

interaction energy potential and the local molecular packing play vital roles in the 

correct prediction of  and χ  values. In the following Sections 8.1 and 8.2, we 

summarize the findings related to the Set-I (CuB and CuI) and the Set-II 

(fenofibrate and nimodipine) drugs, respectively.  

 

8.1 Cucurbitacin Drugs 

Two hydrophobic anti-cancer cucurbitacin drugs, CuB and CuI, with multiple H-

bond donors and acceptors evenly distributed on their molecules were selected as 

model drugs to study the roles of polar and non-polar intermolecular interactions 

in the improvement of drug loading capacity of di-block copolymers. In the 

system of hydrophobic drugs, non-polar intermolecular interactions like short-

range dispersive interactions are generally believed to be dominant forces 

influencing the drug loading capacity of di-block copolymers. But, our results in 

Chapter 5 confirm that besides these interactions, electrostatic intermolecular 

interactions also play a vital role in inducing compatibility in these drug/di-block 

copolymer systems.  In fact, in the present set of hydrophobic drugs, we found 

that dispersive interactions did not contribute positively to inducing compatibility 

while electrostatic interactions, in the form of H-bonding, contributed positively, 

leading to lower  values for the drug/PEO-b-PCL systems with high PCL/PEO 

(w/w) ratios. RDF and H-bond analysis of model mixtures performed in the 

Chapter 5, confirmed that the formation of H-bonds between multiple H-bond 

sites on the PCL block (hydrogen atoms of activated carbons) and single H-bond 
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sites on the drug molecules were responsible for inducing drug/ PEO-b-PCL 

affinity.  

Further, we extended this study to functionalized di-block copolymers with 

substituent branches of benzyl carboxylate group, i.e., PEO-b-PBCL block 

copolymer with different tacticities. The tacticity of the di-block copolymer was 

found to influence significantly the solubility of cucurbitacin drugs in it. Based on 

MD simulation results obtained in the Chapter 6, the syndiotactic configuration 

was found to be the ideal stereo isomer for inducing the miscibility between these 

drugs and PEO-b-PBCL. The solubility of the drugs in the syndiotactic version of 

di-block copolymers was attributed to the favourable intramolecular interaction ( 

-  interaction) of the di-block copolymer and favourable intermolecular 

interaction between the di-block copolymer and the drugs. Favourable 

intermolecular associations/interactions are generally established through specific 

interactions which aid in achieving negative values of heats of mixing and hence 

negative  values.  The formation of such intermolecular specific interactions is 

largely hindered by the presence of intra-molecular  -  interactions.  Hence, the 

syndiotactic version of the di-block copolymer which exhibits minimal  -  

interactions succeeds in establishing favourable intermolecular specific 

interactions between the drug molecules and the di-block copolymer.  

Finally, the multi-hydrophobic block architecture (PEO-b-3PCL) was able to 

encapsulate more cucurbitacin drugs compared to linear di-block copolymer PEO-

b-PCL with the same PCL/PEO (w/w) ratio of 1.0. Analysis of the intermolecular 

interactions indicates that the number of hydrogen bonds formed between the 
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three PCL blocks and cucurbitacin drugs is significantly higher than that of the 

linear di-block copolymer. The study performed in Chapter 7 shows the potential 

of using multi-hydrophobic block copolymers as nano-carriers for encapsulating 

drugs that contain evenly distributed multi-H-bond donors and acceptors such as 

cucurbitacin drugs.  

 

8.2 Fenofibrate and Nimodipine Drugs 

Unlike cucurbitacin drugs, this set of drugs essentially contains only clustered H-

bond acceptors. In the binary mixtures containing this set of drugs and PEO-b-

PBCL, the absence of H-bond donors on their molecules was found to be 

responsible for their unfavourable interactions with substituent branches (benzyl 

carboxylate group) containing essentially only H-bond acceptors (e.g., -

C=O(Chain) and Aromatic rings). Due to this, the strong intra-molecular 

interactions (e.g.,  -  interactions and  - H(Chain) interactions) existing in such 

di-block copolymers could not be overcome, which consequently led to an 

increase in  values for their binary mixtures.  

In the multi-hydrophobic block architecture (PEO-b-3PCL), the clustering of 

H-bond acceptors restricted their interactions with the H-bond donors present on 

the PCL blocks, leading to much higher  values. Thus, owing to the absence of 

hydrogen bond donors and the clustering of the H-bond acceptors on the 

fenofibrate and nimodipine molecules, this significantly reduces the number of 

hydrogen bonds formed in the multi-PCL block environment even though the 
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number of H-bond acceptors of this set of drugs is comparable to that of the 

cucurbitacin drugs (Set-I).  

 

8.3 Limitations and Assumptions 

There are various limitations and assumptions to the methodologies employed in 

the present research work. Few of them are related to the modeling part while 

others to the simulation part. Few most important of them will be discussed below 

along with their justification and treatment in the context of the purpose of the 

present work.  

(a) Molecular Models: The molecular models used throughout the 

thesis are thermodynamically different from the reality that the di-

block copolymers form micelles in the presence of drugs and water 

molecules. Hence, ideally one would like to simulate di-block 

copolymer micelles to determine how block copolymer structures 

and its block lengths affect drug loadings and encapsulation 

efficiency for the drug of interest. Nevertheless, simulating such 

systems at the atomistic level is totally impossible at the time being 

as the computational costs are prohibitively high. Therefore, in the 

present work, we have focussed on investigating binary interactions 

between drugs and di-block copolymers of interest in their liquid 

state rather than in micelle environment. Additionally, simulating di-

block copolymers, drug molecules, and their mixtures in amorphous 

state is relevant as such molecules should not exhibit any long range 
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order when they form micelles. Moreover, using such amorphous 

structures to represent the mixture systems to compute the χ  values 

is consistent with the spirit of the Flory-Huggins solution theory and 

with the fact that the drug reside not only in the core but also in the 

corona of the micelles. 

(b) Absence of Water: Here, we are aware of the fact that in real 

micelle environment, the water molecules are present outside and 

inside the PEO corona of the micelles. Hence, there are chances of 

interactions of PEO with water as well, which will definitely affect 

the interactions between drug molecules and the PEO or even the 

PCL block. In fact, when PEO is dissolved into water, water 

molecules always wrap around the PEO molecules. And this is not 

the case for PPO and PMO. However, given the intention of the 

present work and the limitation of the available computational 

resources, we were not able to determine the effect of water on the 

computed χ parameters. In future, a systematic study might provide a 

key to deal with this problem efficiently. 

(c) Equilibration issues: MD simulations are computationally 

expensive and hence, in order to fulfill the condition of ergodic 

hypothesis (Refer Section 3.1), we have to run the simulation long 

enough to ensure the stability and equilibration of the systems so that 

the values of final property we obtain are statistically significant. The 

simulation times, we used were long enough to equilibrate the 
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systems of drug molecules. But, unfortunately, equilibration of block 

copolymers both in pure and mixture states could not be achieved 

over the simulation times we could practically use. Hence, to 

overcome this equilibration issue, we utilized the RIS theory to 

generate their initial conformations which could not be far from the 

equilibrated structures. Additionally, to render the collected sample 

uncorrelated for the mixture systems, we chose sampling interval 

based on the calculations of the velocity autocorrelation functions of 

the drug molecules. 

   

8.4 Implications and Future Work 

The contributions of the analysis of the discussed methods for designing 

polymeric drug delivery systems are of relevance to industrial practitioners and 

academicians alike. Various atomistic details available from the MD analysis 

gave useful information about the type and nature of existing inter as well as 

intra-molecular interactions. In the future, the methodologies discussed in the 

present thesis have great potential to provide an alternative to cumbersome and 

expensive “trial and error” type of formulation studies. By extending this 

approach to other block copolymer/drug systems, we can easily test the success of 

this approach as a predictive tool for defining the best block copolymer among the 

library of different block copolymers synthesized in lab.  

Drug loading capacity and drug release kinetics are two critical functional 

properties of any drug carrier. In the present work, the molecular origin of the 
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increase/decrease of drug loading capacity of di-block copolymers was studied. 

The study of different types of specific interactions gave a better picture of the 

solubilisation of hydrophobic drugs in such di-block copolymers. In one of the 

study described in the Chapter 5, we briefly discussed the implications of the 

presence of hydrogen bonding between drugs and di-block copolymers on 

experimentally observed in vitro drug release kinetics of these drugs. In one of the 

studies by La et al. [116], the strength of interactions between the drug and the 

core-forming block was found to influence its release rate. Hence, a systematic 

study similar to one presented in this thesis, needs to be performed in order to find 

out the importance and influence of inter or intra-molecular interactions on in 

vitro drug release kinetics. In particular, the release of drugs from these block 

copolymer micelles will depend upon the rate of diffusion of the drugs from the 

micelles which will eventually depend on diffusion coefficients of these drugs. An 

ideal drug carrier possesses high drug loading with controlled release kinetics and 

minimum burst release. Polymer-drug compatibility measured using  parameters 

tends to have opposite effects on both of these functional properties. The lower  

values give possibility of having higher drug loading with much slower drug 

release while, on the other hand, higher  values generate lower drug loading with 

possibility of more burst release. Hence, an optimized  value is required in order 

to have optimized functional properties. This thesis describes a qualitative method 

of estimating these parameters which compares performance based on comparison 

and/or experimental data. In the future, by extending methodologies described in 

the current thesis, one can come up with quantitative methods of estimating , 
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which can relate drug loading and diffusion coefficient at the same time. This will 

probably help us to choose the right block copolymer having optimized  values. 

During the diffusion of drug from core to targeted tissue, the drug has to pass 

through the water medium present outside the micelles and partly in the PEO 

corona. Hence, the diffusion study can be designed in two parts, one in the 

absence of water and the other in the presence of water on the side of PEO block. 

This will help us compare the diffusion processes in these two situations.  

We studied the effect of tacticity of functionalized block copolymers (PEO-b-

PBCL) on  parameters of binary mixtures and/or drug loading capacities of these 

block copolymers. The methodologies used for studying stereoisomers can be 

readily extended to study constitutional isomers of PEO-b-PBCL, by placing 

functional groups on different carbon positions other than -position used in the 

previous study. Several groups [117-119] have reported the synthesis of 

homopolymers of -caprolactone bearing benzyl carboxylate, carboxyl or 

benzyloxy group on the methylene group in the -position of -caprolactone by 

ring opening polymerization of the functionalized -caprolactone monomer. 

Hence, as a next step, it would be interesting to study the systems containing 

PEO-b-PBCL with benzyl carboxylate group substituted at the -position.     

Based on the brief study on multi-block copolymers described in the Chapter 

7, one would be highly interested in the molecular level study of drug loading 

capacity of other unique carriers like star shaped block copolymers and 

dendrimers which act as unimolecular micelles. The methodologies described in 

Chapter 7 can be readily applied to these types of carriers. 
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Appendix A 

 

Flory-Huggins Lattice Theory  

of Polymer Solutions 

 

 

Consider the lattice model of a polymer solution as shown in the Figure 2.3. This 

theory considers volume of each lattice site equal to the size of the solvent 

molecule and the segmental volume is considered to be approximately the same. 

If nS is the number of solvent molecules and nP and N are the number of polymer 

chains and the number of segments per polymer chain, respectively, then the total 

number of lattice sites, M, is equal to (nS + NnP). The volume fractions of 

polymer (P) and solvent (S) are given by following expressions: 

 

M

n

M

Nn

S
S

P
P









     (A.1) 

 

Here, P + S = 1. 
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The change in the entropy of mixing ( mixS ) for polymer solutions can be 

calculated using: 

 

SPmixmix SSSS      (A.2) 

 

mixS is entropy of the mixture while and  are entropies of pure polymer and 

pure solvent, respectively. In the lattice model, the entropy of pure solvent is zero, 

i.e., = 0. Now, utilizing the Boltzmann law of entropy (S = kb ln), the  

can be given as: 

PS SS

SS mixS

 

]ln[ln Pmixbmix kS     (A.3) 

 

where is the number of ways of arranging (nP + nS) molecules into the lattice 

having M sites and  is the number of ways of arranging nP molecules into the 

lattice with NnP sites. In general, 

mix

P

mix can be expressed as follows: 

 

!
1

P

n

i
i

mix n

P





      (A.4) 

 

where i is the number of ways of arranging the i-th polymer molecule in the 

lattice when there are already (i – 1) polymer molecules in the lattice. The factor 

of nP! corrects for the over-counting since polymer chains are indistinguishable 
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and it is hard to tell the difference between the two configurations having same 

polymer distributions but different chain identities. The term nS! is not needed as 

there is only one way of placing the solvent molecules into the lattice after the 

placement of all polymer molecules.  

Now, the next task is to derive a mathematical expression for the i . Let us 

start with the calculation of placing a single polymer chain on the lattice, which 

will be denoted by 1. Since there are total M sites, the number of locations for 

placing the first segment of a polymer chain is M. With the first segment placed 

on the lattice, the fraction of available sites now becomes M – 1/M. If z is the 

coordination number describing the number of neighbouring sites then, the 

number of possible locations for placing the second segment will become 







 

M

M
z

1
. Similarly, for the third segment it becomes   






 

M

2


M
z 1 . The 

number of locations for placing the Nth segment of the chain would be 

  













 


M

NM
z

)1(
1 . Hence, 1 would be the product of all these expression, 

which will be given by 
)!(

!1
1

NM

M

M

z
N








  

. Now, we follow the same above 

procedure to obtain the number possible configurations for a set of nP such chains 

in the whole lattice model. Hence, the number of configurations of placing the 

first segment of all nP chains ( 1 ) would be 
)!(

!

PnN

M


 . Now, the number of 

configurations for placing the remaining (N-1) segments of all chains ( ) 


Pn

i
i

2


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would be given by  
)!(

)!(1
)1(

P

P

Nn

NnM

nM

M

z P










  

. Multiplying these two counts 

together will give the expression for . Putting this in the equation (A.4) 

along with M = nS + NnP, we get the following expression for 




Pn

i
i

1



mix : 

 

!!

!1
)1( Nn

n

P 

P

PS
mix n

M

M

z






 

     (A.5) 

 

Putting M = NnP, we get the expression for : 

 











(
)1(NP








 


!

)!1

P

P

n

P
P n

Nn

Nn

z
     (A.6) 

 

Substituting (A.5) and (A.6) in (A.3), we get: 

 

)!(!

!
ln

)1(

PS

Nn

P

M

Nn P





bmix Nnn

M
kS





    (A.7) 

 

Apply the Stirling’s approximation (Equation (2.12)) and simplify further using 

the expression (A.1) to get the following final expression for the entropy change 

on mixing: 

 

]lnln[ PPSSbmix nnkS      (A.8) 
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Utilizing the random mixing assumption and utilizing the volume fractions 

in place of the mole fractions, we follow derivations similar to the one described 

in the Section 2.6.1, to get the following expression for the enthalpy change on 

mixing: 

 

SPmix MzwH       (A.9) 
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Appendix B 

 

Prediction of the Molar Volume of the  

Repeating Units of Blocks of Copolymer 

 

 

The group contribution method, GCVOL, first proposed by Elbro et al.[18], was 

used to predict the molar volumes of the repeating units of blocks of copolymer. 

According to this method, the molar volume V, is given by: 

 

  ii vnV      (B.1) 

 

where ni is the number of groups i appearing in the compound, while  are 

group volume increments, which is given by the following polynomial function of 

absolute temperature: 

iv

 

2TCTBAv iiii      (B.2) 

 

where T is in Kelvin. The values of parameters Ai, Bi, and Ci are listed in the 

tables in the paper by Ihmels et al. [20]. 
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 The calculation of the molar volume of the repeating unit of PCL block at 

413 K was taken as an example here. The following table shows the type and the 

number of groups present in the repeating unit of PCL block along with their Ai, 

Bi, and Ci values taken from the paper of Ihmels et al. 

 

Group 

Number 
of 

groups 
present 

A 
cm3/mol 

103B 
cm3/(mol K) 

105C 
cm3/(mol K2) 

-COO 1 14.23 11.93 0.00 

-CH2-
(chain) 

5 12.52 12.94 0.00 

 

(1) -COO group: 

04131093.1123.14 3  
COOv  

  . 16.19 molcm /3

 

(2) -CH2- (chain) group: 

04131094.1252.12 3

2
 

CHv  

   . 86.17 molcm /3

 

46.10886.17516.19 V  . molcm /3
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Appendix C 

 

Calculations of Flory-Huggins Interaction Parameters  

from MD Data 

 

 

The calculation of Flory-Huggins interaction parameter for binary system of 

PEO(2500)-b-PCL(2500)/CuB was taken as an example here. From NVT MD 

simulation, the average total energies were determined as follow: 

        (Kcal/mol) 

 Mixture of one PEO-b-PCL chain and one CuB molecule  : 473.03  0.50 

 PEO-b-PCL chain (Pure)         : 436.13  0.85  

 CuB drug (Pure)          : 40.54  0.03  

 

The enthalpy change on mixing for a mole of mixture, , can be 

calculated using the equation (4.5) and assuming (PV ~ 0) as follows: 

mH

 

54.4013.436.0.473  mH  

   

         . 99.064.3  molkcal /
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We take the molar volume of the repeating unit of PEO block (VPEO) as the 

reference volume, i.e., the volume of one site. Hence, we convert the above 

enthalpy change on mixing into the enthalpy change on mixing for a mole of 

lattice site, ,using the following expression: latticemH ,

 

L

m
latticem N

H
H


 ,  

 

where NL is the total number of lattice sites in the mixture, which is calculated 

using the following equation: 

 

PEO

mixture
L V

V
N   

 

At 473 K, VPEO is 98.17 cm3/mol and Vmixture for the mixture of one CuB, 56 

repeating units of the PEO block, and 22 repeating units of the PCL block is 

8470.28 cm3/mol. Using these values, NL was found to be approximately 86. 

Hence, 

 

011.0042.0
86

99.064.3
, 


 latticemH  . molkcal /

 

Putting this value in the equation (4.6), one can obtain the value of the 

Flory-Huggins interaction parameter (). 


