
University of Alberta

USING BEHAVIOUR PATTERNS TO GENERATE SCRIPTS FOR
COMPUTER ROLE-PLAYING GAMES

by

Maria Cutumisu

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

c©Maria Cutumisu
Fall 2009

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only. Where the thesis is converted to, or otherwise made available in
digital form, the University of Alberta will advise potential users of the thesis of these

terms.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as herein before provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever

without the author’s prior written permission.

Examining Committee

Duane Szafron, Computing Science

Michael Mateas, Computer Science, University of California, Santa Cruz

Michael Carbonaro, Educational Psychology

Jonathan Schaeffer, Computing Science

Paul Lu, Computing Science

Abstract

Character behaviours in computer role-playing games have a significant impact on

game-play, but are often difficult for story authors to implement and modify. Many

computer games use custom scripts to control the behaviours of non-player char-

acters (NPCs). Therefore, a story author must write fragments of computer code

for the hundreds or thousands of NPCs in the game world. The challenge is to cre-

ate non-repetitive (more entertaining) behaviours for the NPCs without investing

substantial programming effort to write custom non-trivial scripts for each NPC.

Consequently, current computer games mostly rely on simplistic non-interactive

behaviours for NPCs. This research describes the design and implementation of

a novel behaviour model for interacting NPCs, based on generative design pat-

terns, that requires no manual script writing. In this model, NPCs assume different

roles during the story and select behaviours based on static probabilities or dynamic

motivations. We also devised a reinforcement learning algorithm, ALeRT, based

on Sarsa(λ) and we extended our behaviour model to support behaviour selection

based on learning. In our model, an NPC can exhibit proactive, reactive, or latent

behaviours that may be independent or collaborative. This behaviour architecture

supports behaviours that can be interrupted and resumed based on priorities. The

implementation of this model produces scripting code for BioWare Corp.’s Never-

winter Nights computer role-playing game.

Acknowledgements

I would like to thank my supervisor, Duane Szafron, for his continuous support,

guidance, and enthusiasm, as well as to the members of my dissertation committee:

Michael Mateas, Michael Carbonaro, Jonathan Schaeffer, and Paul Lu for their

valuable comments and suggestions that helped me write a better manuscript.

I would also like to thank the members of the ScriptEase group, past and present,

for their help and always entertaining company in the Software Systems lab. I would

especially like to thank Kevin Waugh and Matt McNaughton for their support and

advice regarding behaviour patterns and encounter patterns, respectively.

Table of Contents

1 Introduction 1
1.1 Interactive Character Behaviours 5
1.2 Behaviours in ScriptEase . 6
1.3 Research Contributions . 7
1.4 Organization . 9

2 Related Work 10
2.1 The State of NPC Behaviours . 10
2.2 Requirements for NPC Behaviours 18
2.3 Chapter Summary . 20

3 NPC Behaviours 21
3.1 Behaviour Model . 22
3.2 Behaviour Patterns . 28
3.3 Use of Behaviour Patterns . 30
3.4 The Structure of Behaviour Patterns 33

3.4.1 Cues . 35
3.4.2 Performances and Roles 39
3.4.3 Motivations . 42
3.4.4 Basic Behaviours . 47
3.4.5 Proactive Behaviours . 48
3.4.6 Reactive Behaviours . 51
3.4.7 Latent Behaviours . 52
3.4.8 Tasks . 54

3.5 Collaborative Behaviours . 56
3.6 Behaviour Dispatch and Implementation 63

3.6.1 Latent Queue . 74
3.6.2 Collaborative Queue . 75
3.6.3 Independent Queue . 77
3.6.4 Behaviour Dispatch Summary 77

3.7 Concurrency Control Model . 86
3.7.1 Synchronization . 87
3.7.2 Deadlock . 89
3.7.3 Indefinite Postponement 92

3.8 Chapter Summary . 93

4 Reinforcement Learning in ScriptEase 94
4.1 Introduction . 94
4.2 Related Work . 98
4.3 Algorithm . 100

4.3.1 Sarsa(λ) . 100
4.3.2 ALeRT . 103

4.4 Implementing ALeRT in NWN . 115
4.5 Using RL in ScriptEase . 120

4.5.1 Using an RL Performance 121
4.5.2 RL Cue Components . 122
4.5.3 Creating and Adding RL Behaviours 127
4.5.4 Creating and Adding RL Roles 128

4.6 Integrating RL in ScriptEase . 129
4.6.1 The RL Auxiliary File . 133
4.6.2 Changes to Spronck’s Arena Module 134

4.7 Experiments and Evaluation . 135
4.7.1 Motivation - ALeRT, M1, and RL vs. Static Opponents . . . 138
4.7.2 Dynamic Opponents - ALeRT and RL vs. M1 142
4.7.3 Adaptability in a Dynamic Environment 143

4.8 Observations . 147
4.9 Chapter Summary . 148

5 Evaluation of the Behaviour Pattern Model 151
5.1 Evaluation from a Usability Perspective 151
5.2 Behaviour Pattern Efficacy . 156

5.2.1 Correctness - Case Study 156
5.2.2 Expressiveness - Case Study 159
5.2.3 Inheritance of Behaviour Patterns - Case Study 171

5.3 Evaluation Measures . 174
5.4 Chapter Summary . 179

6 Conclusions and Future Work 180

Bibliography 185

A An Introduction to ScriptEase 191

B Behaviour Pattern Catalogue Description 197
B.1 Approacher . 197
B.2 Attacker . 198
B.3 Beckoner . 198
B.4 Beseecher . 198
B.5 Challenger . 199
B.6 Checker . 199
B.7 Destroyer . 199
B.8 Dispossessor . 200
B.9 Exclaimer . 200
B.10 Exclaimer with Animation . 200
B.11 Expert . 201
B.12 Follower . 201
B.13 Guard . 201
B.14 Interactor . 202
B.15 Loiterer . 202
B.16 Manipulator . 203
B.17 Patroller . 203
B.18 Poser . 203
B.19 Rester . 204
B.20 Returner . 204
B.21 Spawner . 204
B.22 Spellcaster . 205

B.23 Striker . 205
B.24 User . 205
B.25 Vanisher . 206
B.26 Wanderer . 206
B.27 Withdrawer . 206

C Changes to the Arena Module 208

List of Figures

1.1 ScriptEase generates NWScript code automatically from patterns.
The generated NWScript code is compiled into bytecodes that are
interpreted by BioWare Corp.’s Aurora Engine. 4

3.1 The types of NPC behaviours: independent or collaborative, as well
as proactive, reactive, or latent. 23

3.2 The multiple roles of a guard NPC. 26
3.3 NWScript code for an NWN guard. 29
3.4 Using a performance in ScriptEase: setting the Actor option of a

ScriptEase Guard performance. 31
3.5 Using behaviour patterns in ScriptEase: setting the Guarded op-

tion of a ScriptEase role in the Guard performance. 32
3.6 The structure of the Guard performance in ScriptEase. 34
3.7 The cues that activate the components of a performance. 40
3.8 The components of a simple Rumour performance in ScriptEase. . 41
3.9 The proactive vector used to determine the probability of selecting

a proactive behaviour. 44
3.10 The update of the Rest proactive vector: the values of the Duty

and Threat motivational attributes increase, while the value of the
Tiredness attribute decreases. 46

3.11 The guard NPC is motivated by Duty (D), Tiredness (Ti), and
Threat (Th) as it patrols (left), rests (center), and checks (right).
The bars show the changes of the motivational attributes. 47

3.12 The Rest proactive independent behaviour of the Guard role. . . . 49
3.13 The Guard role reveals three proactive independent behaviours. . . 50
3.14 Setting the selection probability for the Patrol proactive indepen-

dent behaviour of the Guard role. 51
3.15 The Patrol task of the Patrol proactive independent behaviour. . . 52
3.16 Each pair of tasks in a protocol completes successfully before a new

pair of tasks can be executed. 57
3.17 The proactive-reactive pairs Converse-Talk and Pose, as well as

Converse-Talk and Converse-Listen collaborative behaviours may
have different lengths. At run-time, Listen tasks are added to the
shorter chain (Pose) until the chains are identical in length. 59

3.18 The lengths of reactive behaviours cannot be computed at compile-
time due to multiple roles on each side of a collaboration and due
to multiple collaborators. 62

3.19 Behaviour dispatch of the proactive, reactive, and latent behaviours.
If no queued task is available, the dispatcher enqueues a new be-
haviour. 64

3.20 The NWScript events attached by ScriptEase to an NPC with be-
haviour patterns, shown as they appear in the Aurora Toolset. . . . 65

3.21 NWN event loop for NPCs. 66

3.22 The behaviour selector for a guard NPC in our behaviour model. . . 68
3.23 A tavern server and a patron performing a collaborative behaviour:

the server initiates a proactive Offer-fetch behaviour and the patron
responds with a reactive Receive behaviour. 71

3.24 Behaviour dispatch detail for an NPC with two roles, Guard and
Patron. 71

3.25 Behaviour dispatch algorithm. 73
3.26 The Warn latent behaviour interrupts the Rest proactive indepen-

dent behaviour of a guard NPC when an intruder is near the guarded
chest. 81

3.27 The Converse-Listen reactive behaviour interrupts the Patrol proac-
tive independent behaviour, since a proactive independent behaviour
has a lower priority than a reactive behaviour. 82

3.28 After Bob and Mary finish their latent collaborative behaviour, Bob
and the server resume their proactive collaborative behaviour. Then,
Bob and Sally resume their interrupted proactive collaborative be-
haviour. 83

3.29 The Overhear-Talk latent collaborative behaviour interrupts the
Converse-Talk proactive collaborative behaviour when the PC walks
near the NPCs, since a latent behaviour has a higher priority than a
proactive behaviour. 85

3.30 The barrier and eye-contact mechanisms that ensure behaviour syn-
chronization. 89

4.1 The Sarsa(λ) linear gradient-descent algorithm. 102
4.2 The ALeRT algorithm. 104
4.3 Exploration/exploitation (epsilon) values when the phase changes

from a Melee to a Ranged equipment configuration. The x-axis
shows episodes starting with episode 500 and the y-axis shows ep-
silon values between εmin = 0.005 and εmax = 0.015. 106

4.4 A trend is detected for the speed action starting with episode 408
of a Melee configuration. The upper trace represents the δ values
for the speed action, while the lower trace represents the delta-bar-
delta (dbd) values for speed immediately after the NPC drank a
speed potion. 109

4.5 We compute the delta-bar and the average delta-bar, µδ , for the
speed action to determine whether the trend for the speed action
is significant. 110

4.6 We identify a significant trend for the speed action: the current vari-
ation of delta-bar from the average delta-bar, µδ , exceeds the stan-
dard deviation (f = 1) of delta-bar, σδ , for the speed action, while
delta-bar-delta is positive. 110

4.7 When a significant trend for the speed action is detected, the value
of the alpha parameter for the speed action is increased, so that the
NPC learns faster. 111

4.8 No trend is detected for the melee action at episode 38 of a Melee
configuration, therefore the value of the alpha parameter for the
melee action is decreased. 112

4.9 Phase change from a Melee to a Ranged configuration: after the
NPC learns to favour the ranged action, the values of the alpha pa-
rameters for both the melee and the ranged actions decrease. 114

4.10 Four of the states in the state space for the Fighter role: HSL (the
NPC is injured), EA (the NPC has the speed enhancement potion in
hand), EO (the NPC has just drunk the speed enhancement potion),
and DM (the NPCs are within melee distance). The constant state
is not represented in this figure. 117

4.11 The action space for the Fighter role. 117
4.12 An RL performance in ScriptEase that contains the RL-Combat

and RL-Listener-Combat roles. 121
4.13 The Activate RL cue action starts a generic RL step, the Activate

RL early cue action starts an early RL combat step, and the End
episode action ends a generic RL episode. 123

4.14 The components of the RL role cue. The default parameter values
were determined empirically by the pattern designer. 125

4.15 NWScript code for the update of the reward function. 128
4.16 The events that activate the RL role cue for combat. 130
4.17 The cues used in combat RL for a fighter NPC. 131
4.18 Two fighters in Spronck’s arena performing a ranged (left) and a

melee (right) action, respectively. 135
4.19 RL0 and RL3 vs. NWN and OPT. 137
4.20 ALeRT and M1 vs. NWN and OPT. 139
4.21 ALeRT vs. NWN and OPT. 140
4.22 M1 vs. NWN and OPT. 141
4.23 RL0 and ALeRT vs. M1 - Phase 1 (500 episodes). 142
4.24 RL0 and ALeRT vs. M1. 144
4.25 ALeRT vs. M1 - Melee-Ranged&Heal. 145
4.26 ALeRT vs. M1 - Ranged-Melee&Heal. 146
4.27 ALeRT vs. M1 - Heal-Melee&Ranged. 146

5.1 Behaviour and encounter patterns used by all 25 high-school stu-
dents participating in the study. Individual behaviour patterns are
grouped into one category. 152

5.2 Behaviour and encounter patterns used by nine high-school stu-
dents in their interactive stories. 153

5.3 Pattern instances (encounter and behaviour) used by all students.
Behaviour patterns are grouped into one category. 154

5.4 An owner, two tavern servers, and a patron exhibiting ScriptEase-
generated behaviours in a tavern scene. 157

5.5 Encounter pattern reuse by module in the NWN campaign. 161
5.6 Generated behaviours in the Prelude: Duet-Converser-Converser. 163
5.7 Generated behaviours in the Prelude: Duet-Spawner-Destroyer. . 165
5.8 Manually written NWScript code for the spawner and destroyer NPCs.166
5.9 An instance of the Duet-Spawner-Destroyer pattern in the NWN

Prelude. 167
5.10 The Spawner and Destroyer pattern instances in the NWN Prelude. 168
5.11 Using ScriptEase encounter patterns to generate behaviour scripts

in the NWN Prelude. 169
5.12 The inheritance hierarchy of ScriptEase behaviours using encounter

patterns. 172

A.1 Creating and placing a container using the Aurora Toolset. 192
A.2 A generative pattern, its description and a dialog being used to set

an option. 193
A.3 A portion of the code generated for the pattern in Fig. A.2. 194
A.4 Adapting a pattern by adding an action. 195

C.1 ud igor 01 script . 208
C.2 os learn 01 script . 209
C.3 in learn generic script . 209
C.4 ou learnlever 02 script . 209
C.5 The constants defined in the i se rl modific file. 210
C.6 Nera’s Scripts: ALeRT learning algorithm. 210
C.7 Blanche’s Scripts: Spronck’s rule-based learning algorithm. 211

List of Tables

4.1 Agent equipment configurations and optimal strategies. 137

5.1 Tavern behaviours for three types of NPCs: a tavern server (S), a
tavern patron (P), and a tavern owner (O). 158

5.2 ScriptEase encounter pattern statistics. Chapter One* consists of
the Prelude, Chapter One Finale, and Chapter One modules. 160

Chapter 1

Introduction

Computer role-playing game (CRPG) designers have recently shifted their focus to

enhancing the sophistication, excitement, and depth of their stories rather than just

enhancing the realism of their graphics. Content creation has become the bottleneck

in the production of current games due to consumer demand for richer content, as

well as continuing advances in hardware that have helped game developers place

more emphasis on content rather than form. Since most authors of interactive stories

are writers and artists rather than programmers, new tools are needed to speed up

this process and to allow authors to express their ideas easily and reliably, without

manually scripting their stories. This dissertation addresses the content bottleneck

for behaviour scripting.

A CRPG contains an engine designed to dispatch game events to scripts and

play stories composed of individual modules that are constructed by story authors

(game designers). A module is a self-contained file that includes areas, non-player

characters (NPCs), and other game objects (props) that can be scripted to respond to

game events. The state-of-the-art in game scripting is to manually script individual

game objects that interact in the game. For example, if a game object must interact

with the player character (PC) or another game object, a script must be written. For

each scripted object in the game, a text-based scripting language is used to specify

actions that run in response to game events. The game engine renders the story

world’s objects, generates events on the objects, dispatches events to scripts and ex-

ecutes the scripts. The construction of a complex story requires the author to script

a considerable number of interacting game objects, such as props and NPCs. Thou-

1

sands of such objects must be tracked using criteria that include their physical areas,

their associated sub-plots, and their static/adaptive status. Tracking the objects in

this manner is hard, but tracking the scripts is even more difficult since most scripts

involve the interaction of several objects. Scripts communicate with each other

through global variables, object state, or events. The large number of objects in

a CRPG virtual world requires story authors to focus their scripting efforts on a

privileged set of objects vital to the story line. This situation has a negative effect

on the breadth and immersiveness of the game experience. Since programmers are

currently writing scripts manually, serious concerns about programming effort, reli-

ability, and testability are raised. The scripting process can be particularly difficult

for story authors who lack a programming background.

Different stories can be “played” with the same game engine using story-specific

objects and scripts. Programmers create game engines using programming lan-

guages such as C or C++. The goal of this research is to improve the way game

stories, not game engines, are created. A story author who is not usually a pro-

grammer [64] writes game stories by creating thousands of game objects and scripts

for each story. For example, Neverwinter Nights (NWN) [58] is an award-winning

CRPG from BioWare Corp. that uses the NWScript language to expose powerful

scripting facilities to professional and amateur story authors. The NWN campaign

story contains 54,300 game objects of which 29,510 are scripted, including 8,992

objects with custom scripts, while the others share a set of predefined scripts. The

scripts consist of 141,267 lines of NWScript code in 7,857 script files [19]. Many

games have a toolset that allows an author to create game objects and attach scripts

to them. Examples are BioWare Corp.’s Aurora Toolset [1] that uses NWScript and

Epic Game’s UnrealEd [28] that uses UnrealScript. NWN is a popular game that

has a vibrant community of story writers, in addition to professional story authors

from BioWare Corp. Thousands of individuals write and share their own game ad-

ventures on the web. For example, there are over 5,000 adventure stories posted

in a common repository and the most popular adventure has been downloaded over

274,110 times [59]. Authors demand the ability to create custom scripts without

relying on a set of predefined scripts or on a programmer to write custom scripts.

2

However, story creation should be more like story writing than programming, so an

author should not have to write scripts either.

The interactive nature of games offers the player a plethora of possibilities, but

raises as many difficulties for the story authors. An interactive story adds a new

dimension over a traditional pen-and-paper linear story and the story authors have

to be aware of this situation when creating their story concepts. Testing non-linear

stories with a large number of scripts introduces additional challenges for the story

authoring process. Many common errors are difficult to detect without playing

through all of the game scenarios and trying all of the different combinations of

player choices. For example, scripts are often created using cut-and-paste tech-

niques and it is not uncommon for the programmer to cut-and-paste scripts without

performing any changes needed for the new context. In addition to being time

consuming, manual scripting causes errors due to mislabeled objects with obscure

names such as “M1S04CPATRON”. There are so many game objects and scripts

that it has become standard practice to use object numbers or script numbers as part

of their names. An off-by-one error in a name often results in a syntactically legal

script that performs incorrectly. In addition, the scripting code is repeated among

scripts that have obscure names as well. The lack of comments or the existence of

misleading comments left in the script file, even after the code has been changed

or commented out, participates in creating scripts that are hard to understand. This

problem is exasperated by the growing number of story authors who do not have

programming skills and who must rely on programmers to write their scripts.

Researchers [50] proposed a fast and easy way of solving these problems through

the use of generative design patterns [31][21]. Frequently occurring themes in the

game, such as pull a lever - open a door, are captured using generative design pat-

terns that can be adapted for various game scenarios, with no programming knowl-

edge required. They have proposed [51] four types of patterns: encounter patterns

- for generating scripts attached to inanimate objects, behaviour patterns - for gen-

erating scripts attached to creatures, dialogue patterns - for generating conversation

scripts, and plot patterns - for generating scripts that control story plots. They devel-

oped a visual programming tool, ScriptEase [70], that automatically translates the

3

generative design patterns into code that a game engine understands, as illustrated

in Figure 1.1. This is the only effort aimed at applying design pattern technology to

the most difficult content creation problem in the computer games industry - script

creation. Design patterns have previously been used in describing the rules and

structure of game-play [3] or game engines [43], but not to generate content.

Figure 1.1: ScriptEase generates NWScript code automatically from patterns.
The generated NWScript code is compiled into bytecodes that are interpreted by
BioWare Corp.’s Aurora Engine.

ScriptEase [70] is a scripting tool that facilitates the game story authoring pro-

cess using a high-level menu-driven programming model. ScriptEase solves the

non-programmer problem by enabling the author to easily create scenes at the

level of patterns [31][50] that generate complex interactive stories for computer

role-playing games automatically. ScriptEase enables non-programmers to create

complex scripts by selecting patterns and adapting them for specific game situ-

ations, without writing code. Then, ScriptEase generates reliable scripting code

from patterns automatically. Generative design patterns are also used to organize

the large number of generated scripts. An important software engineering advan-

tage of ScriptEase is that the automatically generated code is self-documenting. The

patterns themselves are used as documentation. Story authors that need to exam-

ine behaviour patterns in more detail use this documentation to adapt and test their

patterns. ScriptEase also generates comments as part of the code, always reflecting

4

the existing state of the code. Thus, testing and debugging are considerably easier

for programmers who need to tweak the code. Moreover, using patterns decreases

programming errors and increases code generation productivity and reliability, also

enabling rapid prototyping and code reuse. ScriptEase enables authors to manage

their work by creating folders to organize their patterns during game development.

The pattern import/export mechanism available in ScriptEase is a high-level mech-

anism that supports code reuse.

This novel way of programming at a higher level makes scripting more produc-

tive, eliminating many common types of errors. Using design patterns instead of

writing code manually helps non-programmer story authors create more complex

and entertaining stories quickly. ScriptEase supports a rich set of encounter patterns

(described in Appendix A) as first-class objects. These encounter patterns re-occur

in most CRPG stories and facilitate complex interactions between the PC and inan-

imate objects in the game, such as doors, props, and triggers. ScriptEase can also

be used to create more specialized encounter patterns that occur frequently in the

development of a particular story. The main contribution of the research described

in this dissertation is the extension of the ScriptEase system to include behaviour

patterns for NPCs as first-class objects.

1.1 Interactive Character Behaviours

Since many computer games use custom scripts to control the behaviours of NPCs,

a story author must write fragments of computer code for the hundreds or thousands

of NPCs in the game world. Using AI to create NPCs that exhibit near-realistic be-

haviours is essential, since richer background NPCs produce a more entertaining

game. However, this requirement must be put in context: the storyline takes prece-

dence. NPCs that are not critical to the plot are often added at the end of the game

development cycle, only if development resources are available. Therefore, many

NPCs that could potentially enrich a game adventure display repetitive behaviours

due to the authors’ concentrated efforts on developing NPCs directly involved in

the storyline.

5

The challenge is to create entertaining and non-repetitive behaviours for the

NPCs without investing substantial programming effort to write custom non-trivial

scripts for each NPC. Most of the current computer games have simplistic be-

haviours for NPCs in which it is rare for NPCs to interact with each other. The

most novel and challenging behaviours are collaborative (interacting NPCs) and

they are seldom seen in computer role-playing games.

A tool that facilitates game story writing, one of the most critical components

of game creation, should meet the following requirements that constitute one of the

goals of this research, in the context of supporting behaviour authoring for NPCs:

1. it should be usable by non-programmers,

2. it should support a rich set of non-repetitive interactions,

3. it should support rapid prototyping, and

4. it should eliminate most common types of errors.

1.2 Behaviours in ScriptEase

This research adds a new type of generative design pattern to ScriptEase, called a

behaviour pattern. An author begins by using BioWare Corp.’s Aurora Toolset to

create the physical layout of a story, without attaching any scripts to objects. The

author then selects appropriate behaviour patterns that generate scripting code for

the NPCs in the story. For example, in a tavern scene, behaviour patterns for pa-

trons, servers, and the owner would be used to generate all the scripting code to

animate the tavern. ScriptEase is intended for a broad audience, from program-

mers to story authors without programming experience. ScriptEase was shown to

be usable in practice by non-programmers, being integrated into a Grade 10 En-

glish curriculum [11][12]. Story authors can use commonly occurring patterns to

generate scripting code without any programming knowledge.

In particular, this research has added facilities to ScriptEase that support the

automatic generation of scripting code for background (proactive or reactive) be-

haviours, as well as latent (stimulated/triggered) behaviours of the numerous NPCs

6

that populate the CRPG world. ScriptEase generates scripting code automatically

from behaviour patterns, responding to the challenge of creating entertaining and

non-predictable behaviours for NPCs without the effort of writing custom complex

scripts for each NPC. This research addresses only high-level behaviours, since the

NWN game engine solves low-level problems. For example, if the original loca-

tion of an NPC in the game is occupied by another creature when an NPC tries to

return to it, the game engine moves the NPC as close as possible to that location.

Subsequent return behaviours may allow the NPC to return to its original location.

The extra level of indirection between author and programmer, which increases

the chances of creating a product that does not match the author’s intentions, has

been eliminated for NPC scripts. Such miscues are analogous to situations that

occur between customers/requirements analysts and authors/programmers during

the development of more general software systems. ScriptEase behaviour patterns

have solved this critical problem for NPCs. The use of patterns to generate scripts

will have a large impact on the methodology of game development. This technique

will provide the story authors with the power to fulfill their vision without sacri-

ficing valuable programming time writing detailed scripts. The saved time can be

used by authors to create more compelling stories and richer NPC behaviours that

produce a more realistic game experience. Time saved by programmers can be

used for pattern writing and pattern testing. This research has doubled the impact

of ScriptEase patterns by extending all the benefits accrued for encounter patterns

(PC-object interactions) to behaviour patterns (NPC actions, PC-NPC interactions,

and NPC-NPC interactions).

1.3 Research Contributions

This research has extended the generative pattern approach of ScriptEase to support

the behaviours of NPCs. Interactions among NPCs require concurrency control

to ensure that neither deadlock nor indefinite postponement can occur and to en-

sure that interactions are realistic. We constructed an NPC interaction concurrency

model and built generative patterns for it.

7

An NPC who is guarding an item stored in a chest is used to illustrate our

behaviour model. The guard NPC performs realistic actions such as patrolling

around the guarded chest, resting on a bench near the guarded chest, checking on

the charge, and conversing with other guards. If the guarded item is stolen, the

guard no longer guards an empty chest. Instead, it flees the area to avoid facing the

guard’s captain. At the end of the shift, the guard travels to a tavern, talks to other

patrons, and orders drinks. Richer NPC behaviours, such as the guard, are now be-

ing demanded in modern CRPGs, even for NPCs with bit parts. However, to create

this kind of behaviour in thousands of background NPCs, manual scripting must be

eliminated. Reusable behaviours that can be adapted to a wide range of NPCs must

be created quickly and reliably. Authors with no programming background should

be able to create and modify sophisticated NPC behaviours.

In this dissertation, we describe our novel approach to NPC behaviours. The

research contributions of this dissertation are the following:

1. It is the first time patterns have been used to generate NPC behaviour scripts

for computer games. Our behaviour model and patterns can be used to gen-

erate code for the Neverwinter Nights computer role-playing game.

2. Independent behaviours for individual NPCs and collaborative behaviours for

interacting NPCs are supported. Behaviours can be interrupted and resumed

based on priorities.

3. A fully implemented motivation model has been developed to select proactive

behaviours.

4. A collaborative protocol mechanism allows story authors to easily create

and reuse collaborative behaviours. This novel protocol simplifies the way

in which NPCs interact and allows them to more easily collaborate with a

broader range of NPC types.

5. Latent behaviours triggered by game events, other NPCs, or PCs are sup-

ported, including the ability to return to partially-completed behaviours after

the latent behaviour is completed.

8

6. A performance mechanism allows an NPC to assume different roles at differ-

ent story phases activated by cues (e.g., game events or timers).

7. A novel reinforcement learning algorithm, ALeRT, that drives the selection

of NPC behaviours expands the capability of our flexible behaviour model.

We also address the following research question: can story authors generate

complex and adaptive behaviours quickly and reliably without programming?

1.4 Organization

This dissertation is organized as follows. Chapter 2 presents the requirements of

NPC behaviours in games and reviews the current state of NPC behaviours in the

literature. Chapter 3 describes our behaviour model and implementation. Chapter

4 describes our learning model for NPC behaviours and the implementation of the

ALeRT algorithm. Chapter 5 describes the experiments and the evaluation tech-

niques conducted to validate our approach. Finally, Chapter 6 summarizes our con-

tributions and presents ideas for future work. Appendix A provides an overview of

the ScriptEase tool, Appendix B presents our behaviour pattern catalogue, and Ap-

pendix C describes our changes to an existing game module in which we integrated

our RL algorithm.

9

Chapter 2

Related Work

NPC behaviours are central to an engaging interactive story, but the issues raised

by their implementations hinder the proliferation of complex NPC behaviours in

commercial games. During the dawn of CRPGs, game designers such as Richard

Garriott, the creator of the Ultima series, had a revolutionary vision for what inter-

active stories could become. Richard Garriott drew his inspiration from the “Lord

of the Rings” epic.

“The characters had to be believable, or at least exhibit some rudimen-

tary sense of motivation. Plots and stories could be simple - most epics

were - but they had to sweep up the player with a sense of urgency. [...]

the more the non-player characters built into the world - not simply by

dying or giving up cash, but with complex consequences recognizable

from real life - the more compelling the world would be.” [42]

Although we focus on behaviours for NPCs in CRPGs, the applications for

intelligent NPCs (called intelligent agents in other domains) extend far beyond the

realm of CRPGs. Intelligent agents are used in sports games, educational games,

training, and hand-held appliances, where complex behaviours may be crucial for

success.

2.1 The State of NPC Behaviours

Behaviours for NPCs in computer role-playing games (CRPGs) have been tradition-

ally implemented using scripting languages, state machines, and rule-based systems

10

[68]. Although scripting languages are supposed to be “higher-level” than program-

ming the game engine directly, in practice they are similar in scope and abstraction

level to C or C++. The increasing complexity of behaviours, especially for collab-

orative NPCs, makes manual scripting impractical [47]. A more serious problem is

that the story authors are often not programmers [30][64] and their reliance on pro-

grammers for scripting can delay development and introduce errors. This situation

results in predictable, repetitive behaviours, where code must be written for each

NPC. However, a combination of generative behaviour patterns and reinforcement

learning (RL) may overcome most of these problems. The same behaviour pattern

can be used to produce scripts for many NPCs, it can be maintained easily, and

its parameters can be tuned automatically using reinforcement learning. We will

discuss RL techniques in more detail in Chapter 4.

Consider the state-of-the-art for behaviours in recent CRPGs. The Elder Scrolls

3: Morrowind [55] has a huge immersive world. However, NPCs either wander

around areas on predefined paths or stand still, performing a simple animation,

never interacting with each other, and ignoring the simulated day. The success of

the sequel game, The Elder Scrolls 4: Oblivion [82], is due mostly to the “radiant

AI” system that provides more interesting NPC behaviours. An NPC schedules

behaviours based on the time of day or on current goals, can initiate or respond to

conversations with other NPCs, and remembers previous conversations. The NPCs

are provided with a set of initial goals, but they fulfill these goals based on their

personalities and the world surrounding them, instead of following a pre-scripted

set of actions. However, there is still much room for improvement. There are many

situations in the game where NPCs do not react if the PC casts spells, steals from

them [73], or even attacks nearby NPCs.

In the Fable series [29], the NPCs wake at dawn, walk to work, run errands, go

home at night, and make random comments about the disposition and appearance

of the PC. Through repeated interaction, a player may influence an NPC’s attitude

towards the PC. However, the behaviours and comments are repetitive and NPCs

never interact with each other.

In NWN [58], a very popular CRPG from BioWare Corp., the NPCs use scripts

11

to perform repetitive proactive behaviours that do not involve other NPCs, as well as

a few simple behaviours in response to the PC’s actions (PC-interactive behaviours).

For example, the default behaviour of a house guard NPC is walking a fixed path

between predefined waypoints. In addition, many of the NPCs included in this

game are not scripted, therefore they are not able to interact with any objects in the

game. They stand still and only respond to a conversation initiated by the PC, if

the author provides them with a conversation file. For example, in the official NWN

campaign’s Prelude module, 49 out of 61 NPCs are scripted and in the Chapter One

Finale module, only 19 out of 47 NPCs are scripted. In addition to having repeti-

tious behaviours, an NPC is not always able to resume its interrupted behaviours if

a game event causes the NPC to be moved from its current location. For example,

in the Prelude module, a trainee thief faces a target (combat dummy) and performs

a “pickpocket” skill. If the PC clicks on the thief NPC to initiate a conversation, the

NPC turns to face the PC. When the conversation completes, the NPC often fails to

return to the target. This occurs if the PC jostled the NPC during the conversation.

Unfortunately, the thief NPC tries to perform the skill regardless of the facing and

distance from the target. As a result, the trainee tries to “pickpocket” an empty

space instead of the combat dummy.

The mechanism for implementing PC-interactive behaviours in NWN is ineffec-

tive for several reasons. First, the OnPerception event triggers a behaviour when the

NPC notices a creature (NPC or PC). The disadvantage of using this mechanism is

that the OnPerception event is fired every time the PC enters the NPC’s perception

range and it is not fired again as long as the PC remains in the perception range of

the NPC. Moreover, if the creature that is perceived by the NPC (e.g., the PC or an-

other NPC) is already in the perceived range when the game starts, then the event is

not fired at all. This situation can occur if the game is saved and then later reloaded

and played. Second, a behaviour can be triggered when a creature enters or exits

an area or a trigger (i.e., an object that is represented by a polygon on the floor in

the Aurora Toolset, being invisible to the player). For example, one of the NPCs in

the Prelude is located in a trigger’s centre that is represented by a waypoint object

(invisible to the player) in the Aurora Toolset. When the PC enters the trigger, the

12

NPC walks to the PC and starts a conversation. As a mechanism to ensure that the

NPC eventually returns to the original location, a script is written for the OnExit

event on the trigger. When the NPC exits the trigger, the script is executed and, as a

consequence, the NPC returns to the waypoint that marks the centre of the trigger.

This solution has two disadvantages. First, it involves two more game objects in

addition to the NPC (a trigger and a waypoint). Second, if the PC leaves the trigger,

the NPC can exit the trigger and return to the original location, instead of engaging

in a conversation with the PC. If the PC walks through the trigger area and exits on

the other side while avoiding the NPC, the conversation that may be essential for

the plot may never occur.

The NPCs in NWN do not truly collaborate with each other, although collabo-

ration is simulated through several techniques. For example, although the NPCs in

the original NWN Prelude do not perform collaborative behaviours per se, the story

authors attempted to simulate collaborative behaviours in many scenes. First, six

NPCs grouped in pairs mimic a conversation by facing each other and performing

independent speaking gestures. Second, two spellcasters cast spells successively on

a combat dummy and the appearance of alternation is achieved by applying a delay

to one of the NPCs. Third, one NPC spawns a skeleton and another NPC destroys

the spawned skeleton. In this case, to handle the lack of true collaboration, one

NPC spawns skeletons at fixed time intervals and the other destroys any perceived

skeletons. In Chapter 5, we describe the NWN behaviour problems in more detail,

together with our solutions.

In The Sims series [27], players control the NPCs (Sims) by choosing their be-

haviours. Sims choose their own behaviours using a motivational system if they

are not told what to do. Their behaviours are impressive, but they hinge on a game

model that is integral to this game and not easily transferable to other game gen-

res, including CRPGs. Will Wright, the designer of The Sims, found inspiration

for the Sims’ behaviours from Christopher Alexander’s work on the influence of

environmental and architectural design on people’s behaviour.

“Essentially the game designer wanted to build a digital dollhouse that

would have an influence on the people who lived in it. The team strug-

13

gled to come up with a way to model human behaviour in a way that

would be realistic enough to be fun without veering too deeply into the

quicksand of artificial intelligence. A sandwich would broadcast what

were essentially advertisements for the ability to make people happy

by eating. Individual Sims would have different happiness preferences,

so they wouldn’t respond to the objects’ advertisement zones.” [42]

Recently, Will Wright designed Spore [71], a game with more depth than The

Sims. In Spore, the player controls the development of a species through five phases:

Cell, Creature, Tribal, Civilization, and Space. The NPC AI is player-centric, with

the NPC performing specific roles depending on the player’s experience. For ex-

ample, the NPCs are passive, letting the players initiate interaction and the NPC

AI is asymmetric in that the NPCs do not follow the same game rules as the player

(e.g., unlike the PC, the NPCs do not grow and they have different goals). How-

ever, the AI in Spore has not met the expectations of many players. On the official

Spore forum, one player demanded more developed NPC AI that would “breathe

more life into Spore”. Another player claimed that the game lacked “any signs of

AI at all, in any stage” [72]. The game stages employed various AI techniques,

highly customized and driven by aspects of game design, but with no general tool

that could be used by story authors. For example, the Cell stage used flocking AI

for movement, the Creature stage used behaviour trees to create behaviours that re-

spond to stimuli, are interruptible and resumable, and can be scheduled, the Tribal

stage used group behaviours, including a join and a lead behaviour for the group,

the Civilization stage used strategic AI (e.g, for buildings) implemented in C++,

and the Space stage used new techniques for ecology simulation and nine empire

personality types. The game still lacks NPCs that change over time and that are

reactive not only to the PC, but to other NPCs as well [34].

The Quake games [65] employ FSMs (finite state machines) [38][39], one of

the most used technology for bot AI. Most games contain an implementation of

an FSM, since FSMs are efficient, simple to program, and expressive. However,

FSMs do not allow reusability in different contexts, which results in repeated code,

complexity, and potential for errors.

14

As a step further from FSMs, hierarchical finite state machines (HFSM) [36],

used in the Destroy All Humans! 2 [22] game, group a set of states (super-states)

that share transitions. A game designer can create transitions to super-states instead

of to individual states and can create a hierarchy of super-states. As in the case of

FSMs, a game designer cannot reuse states for different situations, since transitions

are hardcoded in these states.

Behaviour trees (BT) [40], more general than HFSMs, arrange behaviours hier-

archically (directed acyclic graph) and were used in Halo 2 [8]. This popular game

is a first-person shooter (FPS) with about fifty behaviours arranged in four layers

and it includes support for “joint behaviours” [40][85]. Halo 2’s general AI model

is described, but no model for joint behaviours is provided. However, in general, be-

haviour trees are hard to create, because of the large number of states or behaviours

and they do not provide support for creating interruptible-resumable behaviours per

se. Collaborative behaviours are also hard to express using behaviour trees. In

Halo 3 [8], BTs were augmented using a blackboard to share knowledge stored in

game props, although the behaviour tree architecture provides no direct support for

collaboration [24][23]. A story author still has to understand the behaviour tree,

write custom code for behaviours, and debug and adapt behaviours, which may be

difficult.

AI planning techniques have been successful in controlling NPC opponents in

commercial FPS games, such as Monolith’s F.E.A.R. [61] and Unreal Tournament

[13][87]. For a large number of NPCs and complex behaviours, planning is still

computationally expensive. Recent research [41] introduced an approach to offline

hierarchical task network (HTN) [67] planning that generates behaviour scripts au-

tomatically for the Oblivion game [82]. However, the system is designed to be used

by game developers and expert story authors. The author needs to design an HTN

encoding the game world, create AI packages that implement atomic behaviours

(such as eat or sleep for the HTN actions), and specify planning problems together

with their initial world states.

Façade [46] has an excellent collaborative behaviour model for NPCs, but there

are only two NPCs, therefore it is not clear if it will scale to hundreds or thousands

15

of NPCs. The NPCs use collections of behaviours called beats that can be inter-

rupted by the PC and that create reactive and believable characters. The authors of

Façade comment on the amount of manual work required from a story author when

using their framework. There is a need for a mechanism to provide behaviours of

this quality to many more NPCs with minimal work for the story author.

Other related research includes planning, PaTNets, sensor-control-action loops

[2][63], and automata controlled by a universal stack-based control system [10] for

both low-level and high-level animation control, but not in the domain of commercial-

scale computer games. Crowd control research involves low-level behaviours such

as flocking and collisions [56] and has been extended to a higher-level behavioural

engine [9]. Group behaviours provide a formal way to reason about joint plans,

intentions, and beliefs [33]. Constructing believable character behaviours is chal-

lenging, therefore developers have focused on particular attributes of conveying

NPC realism. Some of these systems do not modify their behaviours according to

the NPC’s experience. Our system integrates a behaviour learning system into a

more general behaviour architecture that selects appropriate behaviours according

to the character’s experience.

Our approach is dictated by the practical requirements of commercial computer

games. ScriptEase behaviour patterns are much easier for non-programmers to use

than manual scripts, even if a modular behaviour script library, such as that provided

by the Memetic AI [53] toolkit, is available. The Memetic AI toolkit API is written

in NWScript and, although it provides a priority-based system for NPCs in which

behaviours (“memes”) may be interrupted and resumed, it is still difficult to use by

non-programmers. Lilac Soul’s NWN Script Generator [45] is written in the Delphi

programming language and it provides a wizard-like interface that allows an author

to navigate through a series of questions before a script is automatically generated.

The author must be familiar with basic concepts of the NWScript language in order

to adapt scripts and relate scripts to events. Lilac Soul does not have any persistent

abstract representation of the task that the script is intended to perform. Therefore,

if the author decides to abandon this script authoring process before the script is

generated, the author’s work cannot be partially saved. Epic’s UnrealKismet [84]

16

for the Unreal engine is a visual scripting system that supports hierarchies of scripts

that can be organized into units. The onus is on the author to create scripts rather

than adapt existing scripts. The author can connect graphically simple events and

actions created in advance by programmers. However, for a real commercial game

with increasing requirements, the behaviour charts can become unmanageable in

a visual scripting system. The TES (The Elder Scroll) Construction Set used by

Oblivion [82] has the same problems as the Aurora Toolset used by NWN. The

authors must become familiar with their respective scripting languages, TES Script

and NWScript, before using them.

A visual scripting tool that, like ScriptEase, addresses story authors who are not

programmers has been used in the development of an NBA (National Basketball

Association) game [69]. The tool has an underlying data-driven AI system similar

to abstract state machines. In this model, a situation comprises game conditions

under which the situation fires, roles that also include conditions under which the

roles fire, as well as specifications for the occurrence of the situation if the roles fire,

and behaviour assignments (singular or chains) for each role. Similar to ScriptEase,

in this model the NPCs can have various roles that are activated by specific condi-

tions, trigger their underlying behaviours, and can be interrupted based on priori-

ties. In addition, a role can be assigned to several NPCs at once. Analogous to a

starred action in NWScript, behaviour assignment can start immediately or it can

be queued for later execution. However, this tool is not publicly available, therefore

a more in-depth comparison could not be performed and it is not clear how tied it

is to the NBA game design. The author mentions that parts of the system, such as

the perception system (e.g., game state variables like the distance to the ball) and

the low level animation helpers are still “code-based” rather than data-driven. The

author also mentions that the learning curve required by the Situation editor is one

week for programmers and longer for non-programmers. In contrast, the ScriptEase

generative pattern abstraction is easy to understand and to use, enabling Grade 10

high-school students with no programming experience to create interactive stories

in four and a half hours following a two-day training period on the use of the NWN

game, the Aurora Toolset, and ScriptEase [11][12]. Our pattern model shields story

17

authors from manual scripting and the synchronization issues posed by collabora-

tive behaviours, allowing them to concentrate on story construction. Authors can

easily group, manage, and reuse hundreds of behaviour patterns.

2.2 Requirements for NPC Behaviours

Researchers have identified computational and functional requirements [74] for in-

teractive NPC behaviours. We have adapted these requirements to evaluate our

work and we defined additional requirements (marked with an asterisk). Our be-

haviour system should also satisfy the computational and functional requirements of

commercial computer games. The main challenges introduced by NPC behaviours

in CRPGs are the following:

• Adaptability An NPC should be able to adjust its behaviours according to an

unpredictable environment, even when the details of the interactions are not

completely specified.

• Clarity/Consistency/Intentionality The player should infer an NPC’s be-

haviour by observing the NPC’s actions. General NPC behaviours should

be easy to predict based on some reasonable criteria, even if specific actions

are unpredictable. For example, in The Sims [27], the game designers were

looking for behaviours “that seemed plausible at any given time”, but not

predictable [42]. At the same time, a story author should be able to infer the

purpose of an NPC behaviour before assigning it to an NPC.

• Effectiveness An NPC’s behaviours must always seem correct, especially

when learning is employed that may cause an NPC to learn inferior be-

haviours.

• Robustness An NPC’s behaviours should always work properly, especially

in unpredictable, random game environments.

• Variety Behaviours for background characters are pivotal in the development

of an interactive story, not only because NPCs with complex behaviours en-

rich a story, but because their versatility engages the player. Repetitious NPC

18

behaviours lead to monotonous game-play in which the player quickly loses

interest.

• Autonomy* An NPC should be able to act independently of other creatures

in the game (NPCs or the PC).

• Alertness* An NPC should be alert whenever it is solicited by the PC or an

NPC. The system that implements NPC behaviours should be computation-

ally fast, since the speed of the system is reflected in the NPC’s response

time.

• Interactivity* An NPC should be able to initiate and respond to appropriate

interactions with NPCs or with the PC.

• Reusability* An NPC’s behaviours should be modular and easy to under-

stand and reuse.

• Scalability* We define scalability as the ability of a system to work with-

out noticeable degradation in performance when the number of NPCs and the

number and complexity of their behaviours increases. The complexity of a

behaviour is high if it includes complicated conditions, it involves many game

object interactions, or it varies over time. We distinguish three types of scala-

bility. First, the behaviours of NPCs should be displayed without degradation

when a large number of NPCs is used in a module (across all areas) or in an

area of a module. We call this measure scalability of NPC instances. Second,

the efficiency of the system should not be adversely affected if either of the

following two values increases: the number of behaviours for each NPC (an

NPC can display many kinds of behaviours) or the number of types of be-

haviours across NPCs (many NPCs can display many kinds of behaviours).

We call this measure scalability of behaviours. Third, a behaviour system

must be manageable and easy to use by authors even if a large number of

behaviours is needed at a time. We call this measure scalability of use.

These requirements will be used in Chapter 5 to evaluate ScriptEase behaviour

patterns.

19

2.3 Chapter Summary

In this chapter, we presented the current state of NPC behaviours as described in the

literature and as exhibited by current computer games. We also discussed the prob-

lems associated with implementing behaviours in different domains. We outlined

some problems with the background and PC-interactive behaviours implemented

in the NWN game. Although we highlighted the issues present in NWN, these is-

sues are representative of problems that occur across all role-playing games and

other genres of games as well. In fact, NWN is an award-winning CRPG that has

fewer problems than most games of this genre. In addition, we outlined the com-

putational and functional requirements for interactive NPC behaviours. In Chapter

5, we evaluate our work by revisiting these requirements in the context of our be-

haviour system.

20

Chapter 3

NPC Behaviours

In this chapter, we present an easy-to-use behaviour model for NPCs that requires

no manual script writing. This AI behaviour architecture supports responsive col-

laborative interruptible and resumable behaviours using behaviour queues. The ar-

chitecture wraps sets of actions into tasks, tasks into behaviours, behaviours into

roles, and roles into performances, providing a simple efficient mechanism for en-

capsulating behaviours into components that can change dynamically, based on

environmental criteria. We describe an implementation of this model that gener-

ates scripting code for a commercial game, BioWare Corp.’s Neverwinter Nights

(NWN). Two implementations of behaviour patterns were constructed. The first one

implemented behaviour patterns using ScriptEase encounter patterns. This imple-

mentation was used to prototype the model. A second implementation introduced

primitives to represent behaviour patterns natively in ScriptEase, so that the be-

haviour architecture can be utilized with no coding skills.

The research contributions described in this chapter are the following:

1. A new behaviour model that generates behaviours automatically, without

manual script writing, for BioWare Corp.’s NWN game.

2. Proactive, reactive, and latent NPC behaviours. Proactive and latent be-

haviours can be independent (for individual NPCs) or collaborative (for in-

teracting NPCs). Reactive behaviours can only be collaborative.

3. A motivation model that selects proactive behaviours based on motivational

21

attribute values as an alternative to selecting behaviours based on static prob-

abilities.

4. A collaborative protocol mechanism based on a common topic allows story

authors to easily create and reuse collaborative behaviours, without having to

know the collaborator until the game is played.

5. Interruptible and resumable behaviours through tasks and queues with dif-

ferent priorities: a latent queue, two collaborative queues, and a proactive

independent queue.

6. A performance mechanism that activates different roles of an NPC based on

cues.

3.1 Behaviour Model

We developed a mechanism that generates engaging NPC behaviours without ex-

plicitly writing code. More specifically, we created a behaviour model that selects a

behaviour (i.e., a set of basic actions) performed by an NPC based on its motivations

and perception of the dynamic game world. We describe each of the major compo-

nents of the model and we use our guard example to illustrate how these components

work together to provide behaviours that are expressive enough to meet the current

needs of CRPGs and intuitive enough for story authors to understand quickly. Each

term in our ontology is highlighted in italics the first time it appears and, if it is not

immediately defined, it is highlighted again when it is defined. We also highlight in

bold the NPC behaviour components.

We distinguish NPC behaviours on two axes, independent vs. collaborative,

and proactive vs. reactive vs. latent. However, reactive behaviours must be collab-

orative, as shown in Figure 3.1.

An independent behaviour is a behaviour that the NPC performs alone (without

the PC or another NPC). A collaborative behaviour is a behaviour that the NPC

performs jointly with another NPC (not PC). For example, a guard NPC can walk

randomly near the guarded object (Patrol independent behaviour) or initiate a con-

22

Figure 3.1: The types of NPC behaviours: independent or collaborative, as well as
proactive, reactive, or latent.

versation about a topic (e.g., “weather”) with another guard (Converse-Talk col-

laborative behaviour). In a Converse-Talk behaviour, the initiator NPC speaks and

then it listens, while the responder NPC listens and then it speaks. A collaborative

behaviour must include concurrency control to ensure that the actions of the two

NPCs are synchronized. For example, the second NPC should not start Speaking

until the first NPC finishes Speaking.

A proactive behaviour is a behaviour that the NPC spontaneously initiates on

a random basis or based on motivations (proactive - independent or collaborative).

A reactive behaviour is one that the NPC performs in response to a collaborative

behaviour initiated by another NPC (reactive - collaborative). For example, a guard

NPC can select from a set of proactive independent behaviours: Patrol near the

guarded object, Rest on a nearby seat, or Check that the guarded object is safe.

The guard can also initiate a talk with a friendly nearby NPC using a Converse-

Talk proactive collaborative behaviour. At any time, the NPC chooses from a set

of possible proactive behaviours. When an NPC finishes a proactive behaviour, it

23

selects another proactive behaviour. A proactive behaviour is selected either on

a random basis using static probabilities or based on motivations that can change

dynamically due to game events that affect the NPC. This continues indefinitely or

until the NPC is interrupted by an external event, such as an interaction with the

player character. To collaborate on a specific topic (discussed in detail in Section

3.5), both the initiator and the responder must not be busy and the responder must

have a reactive behaviour (e.g., Converse-Listen) on that topic. For example, when

the guard NPC tries to initiate a proactive Converse-Talk about a topic, there must

be an available NPC with a reactive behaviour (e.g., Converse-Listen) on the same

topic. The guard can also respond with a reactive behaviour Converse-Listen on a

topic to any creature who has any proactive collaborative behaviour on that topic.

We discuss the mechanism for selecting among multiple possible proactive and

reactive pairings through registering behaviours with topics in Section 3.5.

A game event may interrupt the NPC while it is performing the current proactive

or reactive behaviour (proactive independent, proactive collaborative, or reactive).

A latent behaviour is an NPC’s reaction to an external game event triggered by

the player character, another NPC, or a general game event. For example, the PC

or another NPC walks within a close range to an NPC or the game time reaches

a specific hour. This type of behaviour is not considered proactive or reactive,

since it is triggered by events external to the NPC and not initiated directly by

another NPC who is attempting a collaboration. Unlike a proactive behaviour, a

latent behaviour is not performed in a loop. A latent behaviour is triggered only

when an event occurs and certain conditions are satisfied. An event that triggers a

latent behaviour can be constructed from any game event such as a timer, a creature

coming within some range, or a container being opened. In this case, the NPC

responds by performing a latent behaviour. After the latent behaviour is completed,

the NPC resumes the interrupted behaviour at the point of interruption, not merely

restarting that behaviour.

For example, if a PC or an unfriendly NPC moves close to the guarded ob-

ject, the guard will interrupt the current proactive behaviour (Patrol, Rest, Check,

Converse-Talk, or Converse-Listen) and it will perform a Warn latent behaviour.

24

The guard warns the intruder and then it returns to the previous behaviour at the

appropriate stage. If the guard were in the middle of a conversation with a friendly

NPC, then the conversation would be resumed at the appropriate stage. A latent be-

haviour may also be independent (Warn) or collaborative. For example, when the

PC approaches the guard NPC, the PC may trigger a latent collaborative behaviour

(Converse-Talk with topic “clue” that reveals an important story clue to the PC) on

the guard. As a result, the guard starts a conversation with another NPC to reveal

the clue to the PC. A reactive behaviour may be reused, being triggered in response

to a proactive or a latent collaborative behaviour of an initiator NPC.

A behaviour cue controls the selection of each proactive behaviour, it responds

to requests for reactive collaboration, or it triggers a latent behaviour. For exam-

ple, each proactive behaviour has a spin-based cue. A spin-based cue is a cue that

probabilistically selects a behaviour based on either static probabilities or motiva-

tional attributes that dynamically bias these probabilities. We call the mechanism

for selecting a behaviour a behaviour dispatcher and we call a spinner the process

by which the behaviour dispatcher probabilistically selects a proactive (not reactive

or latent) behaviour from its available proactive behaviours.

A single NPC may exhibit a different role at different times in the story. For

example, an NPC may have a Guard role at one time of the day, a Patron role later

in the day, and a Sleep role at the end of the day.

We define an NPC performance as a group of roles for that NPC. For example,

we group all of a guard’s roles into the Guard performance shown in Figure 3.2,

where a P denotes a performance and an R denotes a role. A role contains all

of the basic behaviours (proactive, reactive, and latent) that can be performed in

a particular context. For example, the Guard role includes the behaviours Patrol,

Rest, Check, Converse-Talk, Converse-Listen, Warn, and Exclaim. At any time,

the NPC uses only a single active role to select proactive behaviours (triggered by

spin-based cues) or to respond to cues that trigger reactive or latent behaviours. For

example, when the Patron role is active, the NPC is in a tavern and selects from

proactive behaviours that include Order-drink and Converse-Talk on the topic

“drink”. During the Patron role, the NPC would never Warn or Exclaim. A role

25

may be active during the same time interval each day (or some other temporal unit)

or it may become active only when specific events occur in the story, as illustrated

in Figure 3.2. The active role of an NPC is changed by a role cue, denoted by the

> symbol in Figure 3.2. Each role cue is a latent cue. For example, our guard NPC

uses a Guard role during a specific time interval each day (a timer cue) and has a

Patron role for an interval each evening (another timer cue). The guard uses a third

role, Sleep, which contains a single proactive behaviour with the same name that is

used at night.

Figure 3.2: The multiple roles of a guard NPC.

A timer-based role cue activates the NPC’s Guard role at a specific time each

day, changing the NPC’s active role from Sleep to Guard in the morning.

Another role cue activates the NPC’s Patron role, changing the active role from

Guard to Patron at the end of the day. After midnight, the NPC’s Sleep role is acti-

vated by a timer role cue and, therefore, the NPC goes home to sleep. For each role,

the guard needs a behaviour to travel from the current location to the target location.

We use a latent Start cue to trigger this travel. A Start behaviour cue becomes active

whenever a role activates or reactivates, as explained in Section 3.4. An Approach

behaviour causes the NPC to travel to a target location. We include an Approach

26

behaviour in the role’s Start cue, so that every time the role is activated, the NPC

moves to the appropriate location. As a consequence, when a guard NPC finishes its

shift, its Patron role is activated by a timer role cue that activates the Patron’s Start

behaviour cue. This cue causes the NPC to immediately perform the Approach be-

haviour, i.e., to walk to the tavern. If the guarded item is stolen (Discover theft

latent behaviour cue), the next time the guard checks the guarded item and finds

it missing, a cue changes the guard’s role to Flee. A Discover theft cue is based

on the Placeable use - (missing item) encounter. A placeable is a generic game

object, such as a chest or a statue, with which the PC can interact. The missing item

refers to the game object that the NPC was guarding and that was removed from

the placeable. As a result, the guard leaves the area to avoid retribution from the

guard’s captain. Encounter patterns are described in Appendix A. The same effect

could be obtained by replacing the Flee role with a Flee behaviour added in the

Guard role. However, having a Flee role is a more general approach, as the NPC

may flee for different reasons (i.e., activated by different cues), not only when the

NPC performs the Guard role. Most importantly in our scenario, having a Flee role

instead a Flee behaviour in the Guard role ensures that when the conditions of the

cue that activates the Flee role are satisfied, the NPC does not return to the Guard

role. If the Guard role included a Flee behaviour triggered by the same Discover

theft cue, then the NPC would return to the Guard role after the completion of the

Flee behaviour. Lastly, when the NPC starts a role, the NPC performs that role until

another of its roles becomes active. Thus, if the Flee role has a few behaviours that

the NPC could choose to flee (rather than having one Flee behaviour in the Guard

role), the NPC will execute them, maximizing the NPC’s chances to reach its flee

destination. If the guard notices the item being stolen (Notice theft latent role cue

based on the Placeable remove - (specific item) encounter), the guard changes its

role to Fighter. In general, a role or a behaviour can be activated by multiple cues.

For example, the Fighter role can also be activated by a Combat-Start latent role

cue, as illustrated in Figure 3.5. This cue is activated when a character perceives

or is attacked by a hostile creature. Each NPC has a specific class (e.g., fighter,

sorcerer, cleric, etc.). If the class of the NPC is not fighter, then the story author

27

only needs to switch the Fighter role with the Class role (e.g., Sorcerer, Cleric,

etc.), using the same Combat-Start latent role cue to start the combat.

In order to support rich NPC behaviours, we need to provide independent and

collaborative behaviours, as well as proactive, reactive, and latent behaviours.

3.2 Behaviour Patterns

Many computer games use custom scripts to control the behaviours of NPCs. For

example, to script a guard behaviour for an NPC in the NWN game, an author

has to write NWScript code that implements the desired behaviour. Even if the

same behaviour is used for another guard NPC, the script may have to be modified

to refer to that NPC, since every object in the game has a different identifier. In

addition, the script may refer to other objects in the game and their references have

to be changed manually to refer to different objects. The difficulties of manual

scripting have been documented previously [49]. Figure 3.3 illustrates a fragment

from the OnHeartbeat script of a guard in the original NWN campaign story. This

script executes approximately every six seconds during the game and, among other

actions, it causes the NPC to walk a set of waypoints. Despite the complexity of the

script code, this guard is quite simplistic: it does not choose from a set of proactive

behaviours either based on static probabilities or motivations. For example, this

guard does not get tired and need to rest.

A guard is a very common NPC in CRPGs. We captured this and other com-

mon NPC behaviours into ScriptEase behaviour patterns. A behaviour pattern is

a category of reusable generative design patterns [31][50]. We have extended the

generative pattern approach of ScriptEase to support NPC behaviours. NPC inter-

actions require concurrency control to ensure that neither deadlock nor indefinite

postponement can occur and that interactions are realistic. We constructed an NPC

interaction concurrency model and built generative patterns for it. For example, we

created a behaviour pattern, Guard, that can be applied to any NPC in the game

that acts like a guard, i.e. patrols a set of patrol points, guards an item, rests on

a bench, converses with friendly NPCs, and challenges intruders. In Appendix B,

28

Figure 3.3: NWScript code for an NWN guard.

we briefly describe the Guard role as part of the catalogue of behaviour patterns

that we developed at the initial stages of this research. We realized our model using

ScriptEase behaviour patterns. We illustrate how each of the major components

of the model (performance, role, proactive behaviour, reactive behaviour, latent

behaviour, independent behaviour, collaborative behaviour, task, motivation, and

cue) can be represented and manipulated using new ScriptEase constructs. Each

behaviour pattern contains easy-to-assemble reusable components.

Behaviour patterns encapsulate proactive, reactive, and latent behaviours for

NPCs. In addition, these patterns generate complex and non-repetitive NPC scripts,

since they allow the NPC to select from a wide range of behaviours. Our pat-

terns generate scripting code automatically, facilitating the process of authoring an

interactive story by non-programmers. Behaviours hide the level of complexity

necessary to create a realistic interactive story and can be reused by several NPCs.

We constructed a library of behaviour patterns responsible for common interactions

among the NPCs and between the NPC and the environment in CRPG settings.

29

3.3 Use of Behaviour Patterns

A story author begins by using BioWare Corp.’s Aurora Toolset to create the phys-

ical layout of a story, without attaching any scripts to objects. An interactive story

requires a story author to use the Aurora Toolset to construct an area, populate it

with objects, including NPCs, and save it in a module. The author then opens the

module in ScriptEase and selects patterns from the available pattern library. To

attribute behaviours to NPCs, the author selects appropriate performance patterns

and attaches them to the NPCs that were created using the Aurora Toolset. After

adapting these patterns to the context of the story, the author saves and compiles the

module in ScriptEase, which is then used to generate the scripting code automati-

cally for the NPCs in the story. Appendix A contains an excerpt from a paper [15]

that illustrates in detail how an author can create and use encounter patterns. We

have implemented behaviour patterns similarly.

For example, to create a guard NPC, the story author uses the Aurora Toolset to

construct an area and populate it with a guard, a guarded item, a guarded chest and

a seat, and then saves the area in a module. The author then opens the module in

ScriptEase to perform three kinds of actions.

1. Create an instance of the Guard pattern by selecting the Guard performance

from a menu, as shown in Figure 3.4. An instance can be attached to any

NPC in the game that should assume the guard role.

2. Bind the options of the pattern instance to game objects previously con-

structed with the Aurora Toolset. Figure 3.4 shows how to set options for

the guard NPC at the performance level. This pattern instance is attached to

an NPC (Shara) using a ScriptEase pick dialog. In addition to picking the

Actor option at the performance level (highlighted), the author must also

pick the options necessary for each of the performance’s roles and cues. For

example, the Guard role requires a Guarded option, which is the item that

is being guarded, a Container option, which is the container that holds the

guarded item, and a Seat option, which is the prop that the guard can sit

on to rest. Figure 3.5 shows how to set the Guarded option to the Cloak of

30

Compassion at the role level (highlighted).

3. Compile (Save and Compile ScriptEase menu command) the module to gen-

erate the scripting code (NWScript) for all of these behaviours. The game

story can be played in NWN.

Figure 3.4: Using a performance in ScriptEase: setting the Actor option of a
ScriptEase Guard performance.

The simplicity of the process hides the fact that a large amount of scripting

code is generated to model complex interactive behaviours. This Guard pattern

generates 1,065 non-comment lines of NWScript code, which is a large amount of

31

Figure 3.5: Using behaviour patterns in ScriptEase: setting the Guarded option of
a ScriptEase role in the Guard performance.

32

game code for the amount of work required by an author to use it. Although there

has also been work done in creating this pattern, that work is amortized over the

many instances of the Guard pattern that occur in many stories (game adventures).

In addition to the Guard role of the Guard performance, the Flee, Patron and

Sleep roles have been attached to Shara, as illustrated in Figure 3.5.

In this example, the author only sets the options of the roles in the Guard per-

formance, but in general more adaptations may be required. The author needs to

understand the structure of a behaviour pattern to perform more extensive adapta-

tions or to create new behaviour patterns.

3.4 The Structure of Behaviour Patterns

A behaviour pattern is composed of several levels that can be revealed successively.

The top level is called a performance and, as shown in Figure 3.6, each performance

contains multiple roles. An author does not have to open a role, except to adapt it.

The Guard performance has been opened to reveal some of the components. The

Guard performance (P) has a default latent role cue (→), Start, that becomes active

when the performance starts, i.e., when the NPC spawns in the game. In the case of

our guard NPC, there is no role activated by this cue, since the specific behaviours

to perform immediately after being spawned are dependent on the time of day. In

this case, the timer cues will fire immediately and select the appropriate role for the

guard. Figure 3.6 shows that the Guard performance includes a Guard role (R) ac-

tivated by a Timer role cue, Go to work, when it is time for the guard to go to work

in the morning. This role has been opened to reveal a motivation (M), Guard Moti-

vation, three proactive independent behaviours, Patrol, Rest, and Check triggered

by Independent Proactive Cues (i.e., spin-based cues), one proactive collaborative

behaviour, Converse-Talk triggered by a Collaborative Proactive Cue (i.e., a spin-

based cue), one reactive behaviour, Converse-Listen triggered by a Reactive Cue,

and two latent independent behaviours, Warn and Exclaim triggered by Indepen-

dent Latent Cues. Recall that roles have a default Start latent behaviour cue that

becomes active when the role activates or reactivates. A user-defined event with a

33

specific number corresponding to the Start behaviour cue is fired every time a role

changes. This allows the story author to specify a particular behaviour that hap-

pens once, every time a role becomes active. As mentioned previously, a Patron

role could have an Approach behaviour triggered by the Start latent behaviour cue.

Therefore, every time the NPC switches to the Patron role, the NPC starts walking

to the tavern.

Figure 3.6: The structure of the Guard performance in ScriptEase.

Each proactive, reactive, and latent behaviour is represented by a ScriptEase ab-

34

stract behaviour. When an abstract behaviour is instantiated, a story author selects

the particular kind of cue that will trigger it. The abstract behaviour is instantiated

into a basic behaviour of one of three kinds, corresponding to the type of cue se-

lected: proactive, reactive, or latent. Each basic behaviour consists of a cue (→),

an update clause (U) that updates the NPC’s motivations, and a set of tasks (T).

Each task is composed of a set of actions (A). The update clause (U) is discussed

in Section 3.4.3 in connection with motivations. For example, Figure 3.6 shows the

Rest proactive behaviour. A proactive cue (i.e., spin-based cue) always triggers a

behaviour on the basis of motivations (described later). The Rest behaviour con-

tains an update clause (U) and two tasks, Walk near the guard’s seat and Sit. The

Sit task contains three actions: face the seat, walk to the seat, and sit.

3.4.1 Cues

A cue is an event that triggers a behaviour or activates a role. We distinguish the

following types of cues in our model:

• spin cue: it triggers a proactive behaviour. It is based on a user-defined event

that spins continuously and it has two flavours: proactive independent cue and

proactive collaborative cue. The author may select either of these spin cues

to trigger a proactive behaviour (independent or collaborative, respectively).

However, the author does not need to adapt these cues, except for specifying

their selection probabilities.

• reactive cue: it triggers a reactive behaviour. It is based on a user-defined

event that loops continuously checking for whether another NPC is trying to

initiate a collaborative behaviour for which this NPC has a reactive behaviour

on the same topic. The author does not need to adapt this cue.

• latent cue: it activates a role or it triggers a latent behaviour. It is based on an

event specified by the author. The author must specify an event that activates

the latent cue. The event can be a standard game event (e.g., Creature spawn,

Discover theft, etc.) or a custom or user-defined event (e.g., Range cue).

35

We have constructed specific latent cues for our model:

• Start cue: it activates a role or it triggers a behaviour. It is based on a user-

defined event. The author does not need to adapt this cue. In a performance,

a Start cue becomes active when the NPC is spawned in the game. If the

author provides a role at the top level of the performance or a role that is

specifically activated by the Start cue, then the NPC activates this role. In

a role, the Start cue becomes active as soon as the role becomes active. If

the author triggers a behaviour using the Start cue, then that behaviour is the

first behaviour to be executed as soon as the role becomes active. This cue is

useful for behaviours that the author intends to be executed once, every time

the role becomes active, such as walking to a destination.

• RL cue: it activates a role or it triggers a behaviour. It is based on a series of

standard game events. The author does not need to adapt this cue. This cue is

specifically created to include RL into the behaviour model. An experienced

author can create variations of the RL cue for other RL learning algorithms

by adapting the existing RL cue.

• Start-RL cue: it triggers a behaviour. It is based on a user-defined event. The

author does not need to adapt this cue. The Start-RL behaviour cue simulates

a learning step and it selects a single behaviour for each learning step as soon

as a role that uses learning is activated. The Start-RL behaviour cue is a

refinement of the normal Start behaviour cue and it adds support for RL data

structure updates.

Cues are more than just events. Similar to actions, tasks, behaviours, and roles,

cues provide a powerful mechanism of reuse. They define scope and may encom-

pass options, definitions, conditions, and even actions. For example, a Range cue

has a user-defined event with a specific number that detects new range events.

The cue has a number of options: a Target object option, a Range float op-

tion that specifies the distance threshold between the NPC and the Target, and

a Continuous option that specifies whether the cue should fire only once or re-

peatedly while the NPC is within the Target’s Range. The Range cue has two

36

definitions, a Distance definition that computes the distance between the NPC and

the Target object and an In Range binary definition that compares the Distance

value to the Range value. In addition, the cue has a condition that tests whether the

binary definition is true. If the cue conditions are met, the cue is activated. This cue

can be reused after it is constructed and it can be further adapted by changing its

options, adding definitions, or adding conditions. The cue may also have actions, if

actions are frequently used with that cue. For example, an action can be added to

the Range cue to trigger a behaviour or even to activate a different cue. We provide

examples of such cues in Section 4.5.2 of Chapter 4.

Cues are used for two purposes. First, each role is activated under proper cir-

cumstances by a latent role cue. For example, a Guard role has a latent role cue

that is activated every morning when the NPC goes to work. Each different role

is activated by its own latent role cue. For example, the guard NPC may have a

second role, Patron, whose role cue activates it when the guard’s shift ends. When

the Patron role is active, the guard ignores all the basic behaviours of the Guard

role and uses the basic behaviours of the Patron role, such as Approach the bar

and Order-drink.

Second, a behaviour cue is also used to select a basic behaviour within an active

role. All spin-based cues in a single role act together to select a single proactive

behaviour. For example, all the spin-based cues (independent and collaborative) in

the Guard role act together to select from the Patrol, Rest, Check, and Converse-

Talk proactive behaviours. A reactive cue triggers the Converse-Listen reactive

behaviour. A latent range behaviour cue triggers the NPC’s Warn latent behaviour.

When the Guard role of an NPC is active and when an intruder walks within a

certain distance of the guarded chest, the range behaviour cue triggers the Warn

latent behaviour. A latent (event-based) behaviour cue triggers the guard’s Exclaim

latent behaviour. This event-based cue is activated when the guarded chest is opened

by an intruder.

It is possible that the same event can trigger two cues, one of which triggers a

behaviour in a role A and the other activates a transition out of role A and into role

B. In this case, if the conditions of the role cue are satisfied, role B is activated and

37

the new behaviour selected in role A is ignored.

Some cues (→) are based on encounter patterns (E) and some are new, allow-

ing the author to create custom cues for various game scenarios. For example,

the Warn latent behaviour is triggered by a new Near range cue and the Exclaim

latent behaviour is triggered by a Chest opened cue, which is inspired by the Place-

able open encounter pattern. Each proactive behaviour, Patrol, Check, Rest, and

Converse-Talk is triggered by the collective proactive cues, while the reactive be-

haviour Converse-Listen is triggered by a reactive cue initiated by the collaborator.

The behaviour cues that trigger the Warn and Exclaim latent behaviours interrupt

the proactive behaviours of the Guard role, while the role cues that activate the

Patron and Flee roles change the active role of an NPC.

There are two reasons to base role cues and behaviour cues on encounter pat-

terns. First, many cues occur when an NPC interacts with an object. Encounter

patterns were created for this reason and there is a large existing library of en-

counter patterns that can be reused as cues. For example, there is a Placeable open

encounter pattern that triggers when a placeable is opened by any character. We

would like a cue that triggers when a placeable is opened by anyone other than the

guard, so that the guard can notice the theft. Therefore, we can build a cue from the

encounter by simply adding a condition that ensures that the opener is not the guard.

We use this new latent behaviour cue to trigger the latent Exclaim behaviour.

Second, there are two kinds of cues that did not exist as encounter patterns, but

both were easy to express as encounter patterns. We constructed a custom cue event

for a timer that fires at a specific time each day and a second custom cue event that

checks for a creature to be Near (within a certain range of) an object. The timer-

based cue is used to switch the guard’s role from Guard to Patron at the end of

the shift each day. The range cue is used to trigger the latent Warn behaviour when

an intruder approaches (within a specific distance) the chest containing the guarded

item. In our experience, the cue-based timing mechanism, general purpose cues

(based on game state), and our motivational scheme for specifying NPC behaviours

should be sufficient to meet all the needs of NPC behaviours in CRPGs. For exam-

ple, they allow us to express the semantics provided by the character AI in Oblivion

38

[82]. Unlike Oblivion, our generative pattern technique enables the story author

to use a catalogue of predefined behaviour patterns from which behaviour scripts

are generated automatically, without manual scripting. In our model, an inattentive

Oblivion merchant [73] can easily become receptive to the PC or other NPCs, and

consequently behave in a more realistic manner, by adding appropriate cues in its

behaviour pattern. For example, in this case, we can activate a behaviour or a role in

our catalogue using a Notice theft cue or a Discover theft cue, so that the merchant

can react when an item is stolen or when the theft is discovered, respectively.

Our library of cues covers a wide range of game situations, including specific

time of day, distance between objects, and perception range. The same cue can be

used as a role cue or as a behaviour cue. For example, the range cue was used as

a behaviour cue in the Guard role to activate the Warn behaviour. The range cue

can also be used as a role cue to activate a different role when a creature is near the

NPC. For example, when the PC approaches an NPC, the range cue switches the

NPC’s role to a Rumour role, so that the PC can overhear an important plot clue.

Since the events created for these types of cues are quite general, we can use

them in encounters as well. Encounter patterns can be constructed based on the cue

events for situations where certain common actions are executed, such as spawning

a monster when the time/distance changes.

3.4.2 Performances and Roles

A performance subsumes all the behaviours of an NPC and it is set when the NPC

is spawned in the game. If an NPC has more than one performance, the behaviour

system will merge all the roles of these performances. In this case, ScriptEase

uses a performance that contains the union of all roles in all performances. If a

performance has several active roles, one of these roles is selected randomly. If a

role selects more than one appropriate behaviour, one of these behaviours is selected

randomly.

The role cues in a performance employ an inheritance mechanism. Any role

located at the top level of a performance (i.e., outside all role cues) is inherited

by all the cues. This mechanism provides the NPC with more variety in selecting

39

Figure 3.7: The cues that activate the components of a performance.

roles and consequently generates richer behaviours. For example, a role that con-

tains behaviours that can execute under any circumstances can be included at the

top level of a performance and can thus ensure that the NPC performs behaviours at

any time, under any cue. Figure 3.7 shows the Rumour performance in which the

Poser role is located at the top of the performance (the arc between the performance

and the role is not labeled) and thus inherited by the Start role cue and the Range

role cue. This can also be seen in the ScriptEase performance shown in Figure

3.8. As mentioned previously, each performance has a default Start role cue that is

implemented as a Creature spawn encounter-based cue. Therefore, whenever the

creature is spawned, its Start role cue is activated and one of the roles in the Start

role cue is selected randomly and it becomes active. In Figure 3.8, the NPC ran-

domly selects between two roles, the Wanderer role and the inherited Poser role.

The Start role cue is very important for an author who designs frequent scenarios in

which the NPC is required to perform a role when the creature spawns in the game.

When the Range role cue in Figure 3.8 fires, the NPC randomly selects between the

Rumour role and the inherited Poser role.

40

Inside a role, behaviours are selected based on the selection values and the pri-

orities of their behaviour cues. A proactive behaviour cue selects randomly among

the proactive behaviours that it has available. For example, the rumour NPC can

perform a few Converse-Talk proactive behaviours on different topics (e.g., “The

Mayor” and “The Kidnapping”).

Figure 3.8: The components of a simple Rumour performance in ScriptEase.

The Start role cue of the Rumour performance selects randomly between the

Wanderer role and the Poser role, if the PC is not within the range distance of

the rumour NPC when the game starts. Therefore, the Rumour role is not active.

Then, as soon as the PC walks near the rumour NPC, the Range role cue activates

the Rumour role.

The set of behaviours in the Rumour role consists of two Converse-Talk be-

haviours on different topics (e.g., “The Mayor” and “The Kidnapping”), as shown

in Figure 3.7 and Figure 3.8.

41

The rumour NPC selects roles either using static probabilities provided by the

author or uses motivations, as described in the next section.

3.4.3 Motivations

Static probabilities are enough to model many NPC proactive behaviours. How-

ever, we developed a more expressive motivational model in which a behaviour

supports motivational selection of proactive behaviours. For example, a simple

guard may have static probabilities for choosing among Patrol, Rest, Check, and

Converse-Talk. In this case, a simple spin-based behaviour cue is used to se-

lect proactive behaviours based on static probabilities. A more sophisticated guard

could choose among these behaviours based on motivations, such as Duty, Tired-

ness, and Threat, that reflect the predilection of the NPC to select any proactive

behaviour, such as patrol, rest, check, or initiate a conversation. The motivational

construct (M) and the update clause (U) are used to support our motivational model.

The active role of an NPC uses a motivation (M) to select the next proactive

behaviour. The simplest (default) motivation is named No Motivation. If the de-

fault No Motivation is used in a role, then each proactive behaviour will have a

fixed static probability of being chosen whenever the behaviour “spins” to select a

new proactive behaviour. In this case, each proactive behaviour in the active role

has an option called Selection that represents the relative probability of select-

ing this proactive behaviour. However, before assigning actual probabilities for the

spin, each proactive behaviour is checked to see if its conditions are satisfied (or if

it is possible for that spin). For example, a condition could be added to the Check

behaviour that requires the guard to be within a certain distance of the guarded

container for this behaviour to be selected. If a condition is not satisfied at the

time of a spin, the Check behaviour is not included when the relative probabilities

are normalized. For example, if the current Selection values of Patrol, Rest,

Check, and Converse-Talk are 20, 1, 4, and 4, but the Check behaviour is not cur-

rently possible, then the probability vector for selecting these behaviours for this

spin would be (20
25

= 0.8, 1
25

= 0.04, 0, 4
25

= 0.16). When a pattern designer created

the Guard pattern, default values were set for these proactive behaviours. When an

42

author creates a pattern instance that includes a No Motivation, the default static se-

lection values appear. If an author desires to change these probabilities, the Guard

pattern instance can be adapted by opening the pattern to reveal the behaviours and

modifying the Selection option values for these behaviours. Note that the se-

lection values are automatically normalized within the behaviour to compute the

probabilities after all conditions are checked.

With static probabilities, the selection values for Patrol, Rest, Check, and

Converse-Talk are always 20, 1, 4, and 4. After the execution of a proactive be-

haviour, these values are not updated. Past execution of behaviours based on static

probabilities does not have an effect on future behaviour selections. The proba-

bility vector of a behaviour, pi, where i ∈ [1, n] and n is the number of possible

proactive behaviours in the current role, represents the vector of selection values

for the possible proactive behaviours of a role. The proactive spinner computes a

random number larger than zero and smaller than the sum of all possible proactive

behaviours,
n
∑

i=1

pi, divided by the number of possible proactive behaviours, n for

normalization. Normalization is necessary, since we did not want to force the au-

thors to select either a set of probabilities that added to 1 or a set of numbers that

added to 100%. If the random number generated is within the




i
∑

j=1

pj/n,
i+1
∑

j=1

pj/n





interval, then the i-th proactive behaviour is selected for execution.

Simple static probabilities are sufficient to provide non-deterministic behaviours

for many background NPCs. However, for the NPCs whose behaviours are most

closely aligned with the story, the PC may have to predict the NPCs’ behaviours

based on some reasonable rational criteria. For example, if the PC intends to use

stealth to remove the guarded item from the chest, the PC may want to wait until the

guard is tired and would have a greater probability of resting. Our model includes

motivations that can be used for those NPCs that should select their proactive be-

haviours based on dynamic criteria. Our behaviours support NPC motivations that

reflect the NPC’s personality and that change dynamically during the game. These

motivations influence the way the NPC selects the next proactive behaviour, since

each proactive behaviour executes with a probability that is based on the NPC’s

current motivations. A motivational model allows the NPC to select a proactive be-

43

haviour based on the values of attributes in the motivation. At any time, the attribute

values are stored in the motivation vector and updated as the game progresses.

We can modify the Guard behaviour to select proactive behaviours based on

motivations rather than on static probabilities. We replaced the default motivation

(No Motivation) in the Guard behaviour by a Guard Motivation that contains

three attributes: Duty for Patrol, Tiredness for Rest, Threat for Check, and a

combination of Duty and Tiredness for Converse-Talk. The attribute Duty refers

to the sense of duty that the NPC feels at any time and it can change during the

guard’s shift. The attribute Tiredness refers to the fatigue caused by the guard’s

work (patrol and check). The attribute Threat refers to the sense of threat that the

NPC feels when it did not patrol or check the chest, or when an intruder is nearby.

When the guard’s sense of duty is elevated or when the guard is tired, the guard will

try to converse with another NPC. However, when the guard feels threatened, no

conversation will be initiated.

Figure 3.9: The proactive vector used to determine the probability of selecting a
proactive behaviour.

The selection value for a proactive behaviour is a constant plus the dot product

44

of the motivation vector and the proactive vector. The motivation vector consists

of the current values of the motivation attributes. The proactive vector contains one

weight, wi, for each motivation attribute that reflects how important this attribute is

in selecting the proactive behaviour. For example, the Rest constant and proactive

vector for the guard are shown in Figure 3.9. The constant, cr = 0, is added to

the dot product of the Rest proactive vector of motivational weights, wRest = (0, 1,

0), with the current motivation vector, m = (Duty, Tiredness, Threat), to obtain

the current selection value for the Rest proactive behaviour. The selection value,

S(Rest), is computed using Equation (1).

(1) S(Rest) = cRest + wRestm.

The default weights and constant in the proactive vector are set by the pattern

designer, as illustrated in Figure 3.9 for the Rest proactive behaviour. The author

can change these values if desired. If the current motivation vector is (20, 30, 15),

representing the values 20 for Duty, 30 for Tiredness, and 15 for Threat, then the

selection value for the Rest proactive behaviour would be: 0 + (0, 1, 0) · (20, 30,

15) = 30. In this case, the selection value for Rest is just the current value of the

Tiredness attribute, indicating that the more tired the NPC feels, the more the NPC

rests. The simplest motivation is one in which a proactive behaviour depends on a

single attribute. The Converse-Talk behaviour is an example of a behaviour with a

more complex proactive vector. Our guard will converse with another guard when

the sense of duty or tiredness is high, but not when the threat is high. Therefore, the

proactive vector is (1, 1, 0). If the constant and motivation vector for the Converse-

Talk proactive behaviour were 0 and (20, 30, 15), then the current selection value

for this proactive behaviour would be 0 + (1, 1, 0) · (20, 30, 15) = 50. The selection

value is converted to a probability by first normalizing the selection values for all

proactive behaviours, as in the static case.

Once selected for execution, a proactive behaviour updates the NPC’s motiva-

tions, because the behaviour potentially changed the state of the NPC. For example,

after a Patrol, the Duty decreases because the guard has recently patrolled. A guard

who patrols for an extended period of time becomes more and more tired with each

patrol. The motivational system reflects this by increasing the Tiredness attribute.

45

The value of the Threat attribute slightly increases as well, since the NPC has not

checked the chest while patrolling. Since the Threat attribute is used to select the

Check behaviour, a high value for Threat translates in a better chance of choosing

a Check behaviour over Patrol or Rest and potentially discovering the theft when

the intruder is near, but not visible to the guard NPC.

Figure 3.10: The update of the Rest proactive vector: the values of the Duty and
Threat motivational attributes increase, while the value of the Tiredness attribute
decreases.

An NPC starts with a set of initial values for the motivational vector, repre-

senting the NPC predilections at the beginning of the game. In time, these values

change. Figure 3.10 shows the Update clause (U) for the Rest proactive behaviour.

An author can edit the Update clause during pattern adaptation if desired. After the

Rest behaviour, the Tiredness is reduced, while the Duty and Threat are increased,

since the guard has not been on patrol for a while and has not checked the chest.

A guard who rests is more likely to react slower if an intruder appears. Therefore,

the value for the Threat attribute increases, as illustrated in Figure 3.10 and by the

size of the increasing bar that represents the Th vector in the resting panel (center

image) of Figure 3.11.

Our model ensures that the values of the motivation vector range between 0 and

100. If the guard executes the Check behaviour, the value of the Threat attribute

46

Figure 3.11: The guard NPC is motivated by Duty (D), Tiredness (Ti), and Threat
(Th) as it patrols (left), rests (center), and checks (right). The bars show the changes
of the motivational attributes.

could be reduced to zero. Other events in the game can also update the motivation

vector. The latent and reactive behaviours are not selected based on static proba-

bilities or motivations. However, they can still affect the NPC’s motivations, if that

NPC uses a motivational model. For example, whenever the NPC warns an intruder,

the Warn latent behaviour may increase the NPC’s Threat attribute.

Behaviour patterns support proactive, reactive, and latent, as well as indepen-

dent and collaborative behaviours for NPCs. The ScriptEase behaviour patterns

generate complex non-repetitive NPC behaviours, since they allow the NPC to se-

lect from a set of proactive behaviours dynamically, based on the NPC’s current

motivations and the world state. Therefore, there is significant variation in choos-

ing a behaviour to perform at any time. We developed a mechanism in which we

can select behaviours based on learning. We discuss this mechanism in detail in

Chapter 4.

3.4.4 Basic Behaviours

A basic behaviour can be used in one of five modes inside a behaviour, depending

on the behaviour cue that activates it:

1. a proactive independent behaviour can be initiated by the NPC independently

of other NPCs or the PC,

2. a proactive collaborative behaviour is initiated by an NPC and requires an-

47

other NPC,

3. a reactive behaviour is executed when the NPC responds to a collaborative

behaviour initiated by another NPC,

4. a latent independent behaviour is performed in response to an external game

event, and

5. a latent collaborative behaviour is also performed in response to an external

game event, but it requires a collaborator.

A basic behaviour can contain conditions that must be satisfied before it can be

selected. Each basic behaviour includes one or more tasks (T) that are performed

in order, when the conditions of the basic behaviour are satisfied. For example,

as illustrated in Figure 3.6, Patrol is used as a proactive independent behaviour.

Converse-Talk is used as a proactive collaborative behaviour and Converse-Listen

is used as a reactive behaviour, since they involve two NPCs who take turns speak-

ing. Warn is used as a latent independent behaviour triggered when an intruder (PC

or NPC) approaches the guarded item.

The same basic behaviour can be used in different modes by activating it with

a different behaviour cue. For example, the proactive collaborative Converse-Talk

behaviour can be used as a latent behaviour (latent collaborative behaviour) if the

author’s intent is to trigger a conversation between two NPCs when the PC ap-

proaches one of the NPCs (using a range cue). This ensures that the overheard

conversation between these two NPCs provides a clue to the nearby PC. This has

the same functionality as the Rumour role, but in this case, the Converse-Talk

behaviour is inserted into the NPC’s regular Guard role.

3.4.5 Proactive Behaviours

A proactive behaviour can be selected by an NPC as an independent behaviour or

as a collaborative behaviour. For example, a proactive independent behaviour may

cause a guard to Patrol, which invokes a Patrol task. A different proactive indepen-

dent behaviour may cause a guard to Rest, which in turn invokes two tasks: Walk

48

Figure 3.12: The Rest proactive independent behaviour of the Guard role.

49

and Sit, as illustrated in Figure 3.12. A behaviour triggered by an Independent

Proactive Cue is both independent and proactive. The Walk task is an Approach

task (used in an Approach behaviour) in which the NPC walks to a target. The

possible movement option in an Approach task are walking or running.

A proactive collaborative behaviour causes the guard to Converse-Talk, i.e.,

initiate a conversation with another NPC, which invokes two tasks, Speak and Lis-

ten. The Listen task is a Pose task that uses a “Listen” animation. A behaviour

triggered by a Collaborative Proactive Cue is both collaborative and proactive.

Figure 3.13: The Guard role reveals three proactive independent behaviours.

The guard NPC has a Guard role that consists of three proactive independent

behaviours: Patrol near the guarded container (e.g., a chest) in a non-deterministic

manner, Rest on a seat (e.g., a bench), and Check the container for the guarded

item (e.g., an amulet). Fig 3.13 shows the Guard behaviour with three proactive

independent behaviours, Patrol, Rest, and Check composed of their respective sets

of tasks, Patrol, Walk/Sit, and Walk/Use. Latent behaviours can be independent

as well. For example, both of the guard’s latent behaviours, Warn and Exclaim,

50

are independent behaviours. The Exclaim behaviour consists of a Speak task. We

discuss latent behaviours in detail in Section 3.4.7.

Figure 3.14: Setting the selection probability for the Patrol proactive independent
behaviour of the Guard role.

The NPC repeatedly selects one of the four proactive behaviours, of which three

are independent, and executes it. The simplest guard uses a static probability (de-

fault No Motivation) to select a specific proactive behaviour, as illustrated in Figure

3.13. In this case, the relative probabilities of the Rest, Check, and Converse-Talk

(the latter is a proactive collaborative behaviour, therefore it is not shown in Figure

3.13) behaviours are 1, and the relative probability of the Patrol behaviour is 10,

as illustrated by the Selection tab of the Patrol behaviour in Figure 3.14. This

means that the guard will patrol about ten times more often than it will rest, check,

or converse. The Patrol behaviour is opened to show its task, Patrol, as illustrated

in Figure 3.15.

3.4.6 Reactive Behaviours

A reactive behaviour is triggered by a proactive counterpart in a collaborative be-

haviour. For example, a guard can initiate a conversation Converse-Talk on a topic

with a fellow guard, but it can also respond to this conversation by providing a reac-

tive collaborative behaviour, such as Converse-Listen, on the same topic. The tasks

invoked by the Converse-Listen reactive behaviour are Listen and Speak. When

51

Figure 3.15: The Patrol task of the Patrol proactive independent behaviour.

performing a concerted collaborative behaviour such as a conversation in which the

initiator performs a Converse-Talk proactive collaborative behaviour and the re-

sponder performs a Converse-Listen reactive behaviour, the initiator talks while

the responder listens and vice versa. A behaviour triggered by a Reactive Cue is

a reactive behaviour. A reactive behaviour can be triggered by either a proactive

collaborative or a latent collaborative behaviour that was previously triggered by a

cue on the collaborating NPC.

3.4.7 Latent Behaviours

An Independent Latent Cue or a Collaborative Latent Cue can trigger a latent be-

haviour. Although a proactive behaviour happens probabilistically or based on mo-

tivations, a latent behaviour executes every time a cue triggers it, after which the

NPC resumes any interrupted behaviour.

For example, a Guard role has a Warn latent independent behaviour that is

triggered by a range cue when the PC or another NPC walks close to the guarded

chest. If the distance between the intruder (an NPC or a PC) and the guarded con-

tainer is less than some threshold, the range cue triggers the Warn behaviour. The

Guard role also has an Exclaim latent independent behaviour that uses a Placeable

open cue (triggered when an intruder opens the guarded chest). The guard responds

to this cue by uttering a remark (selecting a random one-liner from a conversation

52

file) when the chest opens, even if the intruder is not seen.

When a guard is approached by the guard’s captain, the guard could start a

Converse-Talk latent collaborative behaviour with the captain on the topic “re-

port”, with the purpose of reporting the daily activities to the captain. The captain

could respond with a reactive behaviour Converse-Listen on the “report” topic.

Note that the same Converse-Talk basic behaviour is reused for both the proactive

collaborative behaviour Converse-Talk with topic “weather” and the latent collab-

orative behaviour Converse-Talk with topic “report”, the only difference being the

topic employed by each basic behaviour. Recall that when the PC walks near the

guard rather than the guarded chest, the guard may perform a Converse-Talk be-

haviour in which it approaches a nearby NPC and starts a conversation with it to

provide the PC with a hint.

Latent behaviours have priority over proactive (independent or collaborative)

and reactive behaviours. Their priority status allows them to interrupt a current

behaviour and allows the interrupted behaviour to resume its execution after the

latent behaviour is completed. For example, when a range cue activates a Warn la-

tent behaviour, the guard stops the current behaviour and starts executing the Warn

behaviour. When this behaviour is completed, the guard resumes the interrupted

behaviour by restarting the task that was interrupted.

Each latent behaviour has a priority. When a behaviour cue activates a new la-

tent behaviour with a higher priority than a currently executing latent behaviour,

the new behaviour cancels the current latent behaviour. If the priority of the new la-

tent behaviour is lower or equal than the currently executing latent behaviour, then

the new latent behaviour is ignored. For example, when a Warn latent behaviour

is executing, if an event-based cue triggers an Exclaim latent behaviour, the Ex-

claim behaviour interrupts the Warn behaviour since its priority is higher. Latent

behaviours can be independent or collaborative. Due to priority levels, a latent in-

dependent behaviour could cancel a latent collaborative behaviour. For example,

when the PC walks close to a patron, it can cause a collaborative Overhear-Talk

behaviour in which the patron approaches a random (or the nearest) patron and

starts a conversation. If a PC walks very close to a pair of NPCs engaged in a latent

53

conversation (low priority, e.g., Overhear-Talk), the NPCs stop their conversation

and greet the PC (high priority). When this latent independent behaviour com-

pletes, the NPCs pick one of their possible proactive behaviours. If the conditions

for the initial latent collaborative behaviour (Overhear-Talk) are satisfied again,

the NPCs interrupt their active behaviour (if any), and start a latent conversation.

In this particular case, the NPCs may perform this conversation immediately after

they greet the PC, since the player is likely to be close to one of the patrons after

the latent independent behaviour completes, giving the player the illusion that the

patrons resumed their dialogue.

There is no structural difference between proactive, reactive, and latent be-

haviours in ScriptEase. They are each represented as basic behaviours and the same

library of ScriptEase basic behaviours can be reused in any of the three capacities.

3.4.8 Tasks

A task (T) consists of basic low-level components, such as a series of actions, defi-

nitions and conditions. A task is designed to express a basic rational behaviour and

to maximize reuse. For example, a Give task consists of a Boolean definition (has

item) that is true if the NPC has the item that is given away, a condition (if positive)

that tests if the definition is true, and three actions: move to the target (the recip-

ient), face the target, and give the item to the target. A simple task, Sit, consists

of three actions: sitting on a prop (the seat), performing a speech animation, and

uttering a text.

When a behaviour is executed, the actions of the tasks are added to the NPC’s

action queue. For the NWN engine, all objects (except for modules, areas, and

items) have a data structure called an action queue that is composed of all the pend-

ing actions attributed to the object. An object executes actions from its own action

queue in order, each action executing only after the previous action is completed.

Each action that will be performed by that object is added at the end of the ac-

tion queue and it is executed in a first in, first out (FIFO) fashion. For example,

NWScript provides a few movement functions, such as ActionMoveToObject

or ActionMoveToLocation. In contrast with most NWScript functions, the

54

movement functions take more time to complete. For this reason, the movement

functions are represented as actions, not commands, i.e., they are added to the ac-

tion queue. When an NPC moves across a large room, the NPC cannot control the

processor for this entire time at the expense of all other game objects. Therefore,

the technique used by the NWN game engine to circumvent this problem is to add

the movement function on the action queue and to leave it on the action queue if the

destination has not been reached.

ScriptEase provides advanced authors with an Atom Builder - the interface be-

tween the implementation language (NWScript) and the ScriptEase pattern building

blocks - that the pattern designers and programmers can use to create actions that

ultimately compose patterns. The Atom Builder is included in the ScriptEase Pat-

tern Designer tool that pattern designers can use to create new patterns from a set

of basic pattern components, using the same menu-driven techniques for adapting

existing patterns.

Tasks ensure synchronization within a collaborative behaviour, as well as atom-

icity within basic behaviours. One advantage of using tasks over actions is a con-

currency issue: tasks ensure synchronization within a collaborative basic behaviour.

For example, a tavern server starts executing an Offer-fetch collaborative behaviour

together with a patron. The server offers (e.g., Speak) the patron a drink. If the pa-

tron accepts the offer (e.g., Speak), the server walks to the bar (e.g., Approach

the bar), picks up the drink (e.g., Pose), walks back to the patron (Approach the

patron), and gives the drink to the patron (e.g., Give). Suppose that the server had

basic behaviours composed of actions instead of tasks. When the execution of the

basic behaviour starts, these actions are all added to the NPC’s action queue and

executed regardless of the collaborator’s actions. Therefore, the server may walk to

the bar to fetch a drink before the patron accepts the offer. The use of tasks solves

this problem, since we developed a mechanism (Section 3.5) that allows each task

to be executed only when certain criteria are met. In this example, after offering to

fetch a drink for the patron, the server proceeds to the Approach task only after the

patron accepts the offer (by performing a Speak task).

Another advantage lies in the execution of a basic behaviour. If a behaviour is

55

interrupted to perform another behaviour, the NPC starts executing the interrupted

task when the interrupting behaviour is finished. For example, if the guard’s Rest

behaviour that consists of the Walk and Sit tasks is interrupted during the execution

of the Sit task to warn an intruder, then only the Sit task is restarted after the Warn

behaviour is completed. Suppose the Rest proactive behaviour is implemented as

a set of actions (a contiguous block of actions instead of two tasks). In this case,

when an interruption occurs, the whole proactive behaviour is restarted (not only

the interrupted component, such as Sit in this scenario), even if at the interrup-

tion time the behaviour were almost completed. An alternative would be to abort

the proactive behaviour. Decomposing basic behaviours into rational components

(tasks) supports more realistic restart points than restarting or aborting the entire

basic behaviour. For example, an Attend to object task includes three actions:

walking to the object, facing the object, and performing an animation. In this ex-

ample, if a latent behaviour (e.g., Warn, which moves the NPC near an intruder)

interrupts the execution of the Attend to object task before the last action (per-

form an animation) is completed, the whole Attend to object task will be restarted

when the interrupted behaviour is resumed. If the NPC continued the execution of

the task from the interrupted action (perform an animation), then if the NPC were

moved from the target object as a result of the Warn latent behaviour, the NPC

would perform an animation near a different object and without facing the object.

The three actions composing the task ensure that, if the task is interrupted at any

time, the NPC performs a rational behaviour composed of valid actions at all times.

As a consequence, the NPC approaches and faces the right object before it performs

the animation.

3.5 Collaborative Behaviours

Collaborative behaviours are hard to express and implement due to their complex-

ity. We developed a simple collaborative system that authors can use to specify

abstract behaviours that can constitute initiating and responding components in a

collaborative behaviour.

56

NPCs collaborate on a particular topic that is represented by a string. An NPC

that collaborates on a topic is automatically registered for that topic, meaning that

the NPC can collaborate with other NPCs that are interested in the same topic. To

collaborate on a particular topic, one NPC must be the initiating actor (initiator) and

the other NPC must be the reacting partner (reactor). In Figure 3.16, the initiator has

a Converse-Talk proactive collaborative behaviour and the reactor has a Converse-

Listen reactive behaviour on the same topic.

Figure 3.16: Each pair of tasks in a protocol completes successfully before a new
pair of tasks can be executed.

For example, a collaborative behaviour between a guard and a friendly nearby

NPC can be established if the guard has a proactive behaviour (e.g., Converse-

Talk) on a topic (e.g., “weather”) and the collaborator (friendly NPC) has a reac-

tive behaviour (e.g., Converse-Listen) on the same topic. Once the collaboration

begins, both NPCs start executing pairs of tasks that comprise their respective be-

haviours simultaneously. For example, in this case, Approach is the common first

task of both the Converse-Talk and the Converse-Listen behaviours. These tasks

are performed concurrently. Once both tasks are completed, the collaboration en-

57

ters the next phase. The second task of the Converse-Talk behaviour is Speak,

while the second task of the Converse-Listen behaviour is Listen, which means

that the first collaborator talks while the second collaborator listens. If an author

uses a collaborative behaviour, scripting code that synchronizes these activities is

generated automatically. For example, if the first collaborator completes the Speak

task before the second collaborator completes the Listen task, the first NPC will

wait (barrier, as shown in Figure 3.16) for the second NPC to finish before both

NPCs proceed to the next task pair.

For maximum flexibility, as long as an NPC has a proactive or latent collabora-

tive behaviour on a topic, any other NPC that has a reactive behaviour on the same

topic can engage in a collaborative behaviour with that NPC. The author can attach

the initiator side of a topic and the reactor side of a topic to NPCs independently.

For example, the initiator (i.e., Converse-Talk) of a conversation can be attached

to the guard NPC and the reactor (i.e., Converse-Listen) can be attached to any

guard-friendly NPC. In this case, the guard can approach any of the guard-friendly

NPCs and start a conversation. Similarly, the initiator of an Order-fetch behaviour

in a tavern can be attached to patron NPCs and the reactor can be attached to tav-

ern servers and the owner. Note that the same NPC can be both an initiator and a

reactor on the same topic. For example, a guard can proactively initiate a conver-

sation with a fellow guard and reactively respond to other guards. The NPCs will

be able to collaborate with each other at run-time without knowing their collabo-

rators at compile-time. Any basic behaviour can be used to initiate a collaborative

behaviour or to react to a collaborative behaviour. For any two basic behaviours to

work together, one as an initiator and the other as a reactor, the initiator is used as a

proactive or a latent behaviour, the reactor is used as a reactive behaviour, and the

same topic name is used in both behaviour cues.

The initiator does not have to know the reactor until run-time when an NPC that

is registered as a reacting partner for this topic is selected from all registered NPCs.

If an NPC’s behaviours include a proactive collaborative behaviour, then at spin

time, the collaborative model looks for any NPC that includes a reactive behaviour

on the same topic. Similarly, if an NPC’s latent behaviours include a latent collab-

58

Figure 3.17: The proactive-reactive pairs Converse-Talk and Pose, as well as
Converse-Talk and Converse-Listen collaborative behaviours may have different
lengths. At run-time, Listen tasks are added to the shorter chain (Pose) until the
chains are identical in length.

59

orative behaviour and the latent behaviour is triggered, a reactor NPC on the same

topic is also sought. The potential reactor NPCs are filtered to include only those

who satisfy two requirements. First, the reactor must make eye-contact with the

initiator. Second, any conditions included in the initiator’s collaborative behaviour

must be satisfied. In this case, the proactive behaviour is considered possible for that

spin. The eye-contact mechanism checks that the reactive collaborator is not cur-

rently involved in another collaborative or latent behaviour. However, eye-contact

can be made if the potential reactor is involved in an independent behaviour. In that

case, the independent behaviour is interrupted and it resumes after the collaborative

behaviour is completed.

Since any basic behaviour can be used to construct either side of a collabora-

tion, collaborative behaviours can have different lengths. Therefore, an initiator’s

behaviour and a reactor’s behaviour on the same topic may contain a different num-

ber of tasks. In this case, if one of the collaborators has fewer tasks, then a Pose task

with a default “Listen” animation (i.e., the Listen task) is added at run-time to the

shorter chain until the length of the initiator chain is identical with the length of the

reactor chain, as illustrated in Figure 3.17. This procedure has to take place at run-

time, when the eye-contact for a collaborator is made, since the same chain can in-

teract with other chains of variable lengths that are attached to other NPCs. An NPC

can interact with another NPC on the same topic regardless of its actual behaviour.

For example, if the initiator has two proactive behaviours Converse-Beseech (if the

collaborator is within a certain distance of the NPC, then the NPC walks near the

collaborator, it speaks, and then it listens) and Converse-Talk (the NPC approaches

the collaborator, it speaks, and then it listens) on the “weather” topic and the reactor

has two reactive behaviours on the same “weather” topic, then these two NPCs can

collaborate on that topic, regardless of which particular proactive/reactive behaviour

they choose. Figure 3.18 shows that the initiator can start a Converse-Beseech be-

haviour to which the reactor can respond with either a Converse-Listen (the NPC is

approaching the collaborator, it listens, and then it speaks) or a Converse-Beseech

behaviour on the same “weather” topic. Note that, although the Converse-Beseech

and Converse-Listen behaviours constitute a more reasonable conversation match

60

than Converse-Beseech and Converse-Beseech, story authors often create such

behaviour-mirroring situations to add more dramatism to certain scenes. In addi-

tion, for more flexibility, the initiator can become the reactor if the cues are in-

terchanged. For example, if the Converse-Beseech and Converse-Talk behaviours

are triggered by a reactive cue and the Converse-Listen and Converse-Beseech are

triggered by a proactive cue, the initiator picks one of the latter behaviours and the

reactor responds with one of the former behaviours, as long as they share the same

topic.

As part of choosing the collaborator, the dispatcher finds the nearest or a ran-

dom creature that satisfies the requirements of the collaboration. The prospective

collaborator has to be available to respond to the collaborative behaviour, it has to

include a response to that behaviour, and it has to satisfy any conditions imposed

by the particular scenario of the collaboration. For example, in a tavern scene, a

tavern server will offer a drink to a patron only under the following circumstances:

the patron has a reactive behaviour whose topic is “offer”, the patron is near the

tavern server, and the patron is not already involved in a collaborative or a latent

behaviour.

We defined a semantics for the collaborative behaviour interruption that allows

an NPC involved in a collaborative behaviour to execute independent behaviours

while waiting for the collaborator to complete a latent behaviour. More generally,

our semantics applies to the situation in which an NPC waits for the collaborator

to complete a lengthy behaviour as part of their collaborative behaviour, even if

their collaboration is not interrupted by a latent behaviour. For example, a tavern

patron may decide to perform independent behaviours while a tavern server fetches

a drink for this patron. This model ensures no starvation, since an NPC always

executes behaviours, as discussed in Section 3.7.

The collaborators execute their actions simultaneously. An NPC can perform an

independent behaviour, if one is available, or a latent behaviour while waiting for

a collaborator. If one of the NPCs finishes its side of the current collaborative pair

of tasks first, it waits a short amount of time (short-duration) for the collaborator to

finish. If that collaborator takes too much time (medium-duration) to complete its

61

Figure 3.18: The lengths of reactive behaviours cannot be computed at compile-
time due to multiple roles on each side of a collaboration and due to multiple col-
laborators.

62

part of the current pair of tasks, the NPC chooses one of its currently interrupted be-

haviours or it spins for a new proactive behaviour, if no interrupted behaviours exist.

If the collaborator is still not finished (long-duration), the waiting NPC cancels the

collaboration, since the collaborator may be blocked. This ensures no deadlock or

indefinite postponement for NPCs. The concurrency control mechanism embedded

into our behaviour patterns is described in detail in Section 3.7. Both NPCs re-spin,

therefore they have a chance to execute the same collaboration together again.

3.6 Behaviour Dispatch and Implementation

The main obstacle in achieving better character AI, especially in commercial com-

puter games, is the computational cost of implementing complex behaviours. The

key to our behaviour model is dispatching the appropriate behaviour at any time and

remembering what behaviour to return to when a behaviour is interrupted. Figure

3.19 illustrates behaviour dispatch in our model. When an NPC is created in the

game, an OnSpawn event is generated on the NPC. ScriptEase generates code for

the OnSpawn event that fires a custom user-defined event that we call a behaviour

event on the NPC. Specifically, each user-defined event has a numerical parame-

ter that can be checked in the script attached to the OnUserDefined event. In our

case, we reserve a specific number, such as 31415, to represent our behaviour event.

Computational shortcuts are needed to minimize the overhead of having behaviour

scripts on NPCs. Only the NPCs that have behaviour patterns attached are regis-

tered with the behaviour event.

We must ensure that behaviour events are continuously generated to allow the

NPC to quickly change behaviours in response to the game environment. NWScript

supports a statement called DelayCommand that executes the contents of the script

first, then waits a certain time and executes the specific delayed command. Our

behaviour script uses a delayed command to generate a new behaviour event on

the same creature, so that behaviours occur continuously. Figure 3.20 illustrates

the predefined NWN game engine events defined for all creatures: OnBlocked,

OnCombatRoundEnd, OnConversation, OnDamaged, OnDeath, OnDisturbed, On-

63

Figure 3.19: Behaviour dispatch of the proactive, reactive, and latent behaviours. If
no queued task is available, the dispatcher enqueues a new behaviour.

64

Heartbeat, OnPerception, OnPhysicalAttacked, OnRested, OnSpawn, OnSpellCas-

tAt, and OnUserDefined. The two events of interest for our model are OnSpawn,

triggered when the NPC is created in the game and OnUserDefined, triggered when

any custom event is fired on the NPC. In our case, the OnUserDefined event cor-

responds to one custom event, the behaviour event fired by the OnSpawn script. A

creature’s event loop in NWN is illustrated in Figure 3.21. For example, the On-

Heartbeat event is triggered every six seconds on the NPC and the OnDeath event

is triggered when the NPC dies.

Figure 3.20: The NWScript events attached by ScriptEase to an NPC with be-
haviour patterns, shown as they appear in the Aurora Toolset.

In addition to firing the initial behaviour event on the NPC, the OnSpawn script

sets a role variable (“current role name”) to be “spawn”. It also sets the NPC’s initial

motivation attribute values specified by the pattern designer. Finally, it records the

NPC’s original location and facing that are used when the NPC moves to its original

position during a Return behaviour. All the actions included in the OnSpawn script

are executed when the creature is first created in the game. If the game is saved and

65

reloaded, the OnSpawn event is not fired again, therefore a behaviour event is not

generated unnecessarily.

Figure 3.21: NWN event loop for NPCs.

The script that is triggered by the behaviour event (called behaviour dispatcher)

contains a call to a role selector that chooses the appropriate NPC role based on

a role variable stored in the NPC. Each role has a role cue that activates that role.

When a creature is spawned in the game, it is guaranteed to have a role since the

creature’s role variable is set to “spawn”. When a role is created, the default role

cue is a spawn cue that simply checks to see if the role variable is set to “spawn”.

If more than one role has a spawn cue for the same NPC, then the last role is

activated, since it overrides the previous roles. When a cue changes the active role,

it simply sets the role variable to the new role name. The next time the role selector

is invoked, the new role is selected. This ensures that, whenever a role is active,

66

only basic behaviours within the role are selected. For example, if a guard NPC

is performing a Patron role and an intruder approaches the guarded container, the

guard will not respond with a Warn latent behaviour, since this latent behaviour is

part of the Guard role that is no longer active.

Once a role is selected, it invokes a task selector that may select a proactive be-

haviour based on the role’s motivation. However, the task selector does not always

select a new proactive behaviour. At any time, an NPC can perform one of the fol-

lowing types of basic behaviours: a latent (independent or collaborative) behaviour,

a proactive (independent or collaborative) behaviour, or a reactive behaviour. A

proactive (independent or collaborative) behaviour is triggered by a spin-based be-

haviour cue (a probability-based or a motivation-based cue). A reactive behaviour

is activated by a reactive cue that is triggered by a spin-based cue or a latent cue

on the collaborator. A latent behaviour is triggered by a latent-based (non-proactive

and non-reactive) behaviour cue. The selected basic behaviour triggers a set of tasks

composed of the lower level actions that implement the behaviour, as illustrated in

Figure 3.22.

Each unfinished behaviour is stored on a queue as shown in Figure 3.19. Unfin-

ished behaviours of all types are possible. If an NPC is performing a collaborative

behaviour and, while waiting for the collaborator to finish the current task, it de-

cides to perform a proactive (independent or collaborative) behaviour, then an un-

finished collaborative behaviour exists. Suppose that the NPC decided to perform a

proactive independent behaviour. As a result, the independent queue has unfinished

tasks. A latent cue may then interrupt this behaviour, so that a latent behaviour can

be performed. At this point, there is an unfinished latent behaviour on the latent

queue, so three queues contain tasks. If the latent behaviour currently enqueued is a

collaborative behaviour and the collaborator takes a long time to perform its current

task, the NPC will return to its interrupted task. This is a natural form of behaviour

mixing that mimics human behaviour. However, if all enqueued behaviours are

blocked for some reason, the NPC will decide to enqueue yet another behaviour.

Since the only available queue is one of the two collaborative queues, the NPC may

enqueue such a behaviour. There can be at most one independent (proactive), two

67

Figure 3.22: The behaviour selector for a guard NPC in our behaviour model.

68

collaborative (proactive or reactive), and one latent behaviour on each queue at any

time. A second latent cue may trigger a latent behaviour with a higher priority than

the first latent behaviour, in which case the second latent behaviour replaces the

current latent behaviour.

For example, a server NPC in a tavern can offer to fetch a drink for a patron

from the bar (Offer-fetch proactive collaborative behaviour). If the patron accepts

the offer (Receive reactive behaviour), the tavern server walks to the bar to fetch the

drink and the patron waits (in our system, for a short-duration, or less than twenty

seconds) for the server to return with the drink. While the patron is waiting (in

our system, for a medium-duration, or between twenty seconds and less than forty

seconds), it can start executing one of the possible behaviours. For example, the

dispatcher executes a proactive independent behaviour, such as walking to a ran-

dom patron (Approach). If the patron is interrupted during the walk by a latent

behaviour, such as the PC approaching the patron, then the patron executes one

of the appropriate latent behaviours, e.g., a Converse-Talk latent collaborative be-

haviour with a nearby patron, to reveal a clue for the PC during this conversation.

If the PC walks even closer to the patron, then the patron clears the previous la-

tent behaviour and it executes an Exclaim latent independent behaviour to greet

the PC, only if the priority of the Exclaim behaviour is higher than the priority of

the Converse-Talk latent behaviour. Otherwise, the patron ignores the Exclaim

behaviour and completes the Converse-Talk behaviour. After the latent behaviour

is completed, the patron resumes its proactive independent behaviour if the server

has not returned with the drink yet. If an NPC waits for the collaborator to finish a

task for a long time (in our system, for a long-duration, i.e., forty seconds or more),

it cancels the collaboration by clearing both NPCs’ respective collaborative queues

to prevent deadlock, as described later in this chapter. If the collaborator (tavern

server) does return within forty seconds, the patron executes the next task of the

reactive Offer-fetch behaviour (e.g., Receive that simulates receiving the drink).

Our behaviour multi-queue architecture supports four queues, one for latent (in-

dependent or collaborative) behaviours, two for collaborative (proactive or reactive)

behaviours, and one for proactive independent behaviours, as illustrated in Figure

69

3.19. Each queue holds one basic behaviour’s set of tasks that have not yet been

completed. Two collaborative queues provide increased flexibility and realism for

behaviours.

When it is called, the behaviour dispatcher tries to execute a task from one of

the queues in the following priority order: latent, collaborative, and independent.

If all the queues are empty or blocked waiting, the behaviour dispatcher selects an

appropriate behaviour, adds its tasks in the appropriate empty queue, and restarts

(i.e., it calls the behaviour event). For example, the tavern server’s behaviour dis-

patcher may select an Offer-fetch basic behaviour based on motivations. Since this

is a proactive collaborative behaviour and the tavern server’s collaborative queues

are empty, the dispatcher adds the tasks that compose this basic behaviour (e.g.,

Approach, Speak, Listen, Fetch, Exchange, Listen, Speak) into the server’s col-

laborative queue and restarts, as illustrated in Figure 3.23. The Offer-fetch and Re-

ceive collaborative behaviours of the server-patron scenario are illustrated in Figure

3.23 where the server and patron have just finished their Approach tasks and are

about to Speak/Listen. A detail of the dispatch mechanism for one of these types

of queues is illustrated in Figure 3.24.

If one of the queues is not empty and a new behaviour of that type is generated,

the dispatcher waits until the current basic behaviour is executed (i.e., until that

queue is empty again) before it can enqueue another behaviour of that type. This

happens unless the new behaviour has a higher priority (e.g., a latent behaviour)

than the existing behaviour, in which case the queue is cleared and the new be-

haviour is enqueued. At the next spin, the dispatcher will start executing this be-

haviour.

In general, the behaviour dispatcher tries to select and perform a task from one

of the queues in this priority order: latent, collaborative, independent. After the task

has been successfully completed, it is dequeued from its queue and the behaviour

dispatch is restarted by creating a new behaviour event, as illustrated in Figure 3.19.

Dequeuing tasks after their successful execution, rather than before their comple-

tion, ensures that the behaviours are flexible and robust. If an interruption occurs,

the interrupted task is eventually re-executed since it remains at the front of its

70

Figure 3.23: A tavern server and a patron performing a collaborative behaviour: the
server initiates a proactive Offer-fetch behaviour and the patron responds with a
reactive Receive behaviour.

Figure 3.24: Behaviour dispatch detail for an NPC with two roles, Guard and
Patron.

71

queue. This ensures that if the NPC is interrupted in the middle of a behaviour,

it will resume the execution of that behaviour by re-executing the interrupted task.

When trying to execute a task from the collaborative queue, the dispatcher first

checks if the collaborator has signalled that the next task can be started. If not, the

dispatcher waits for a short time and checks again. If it still has not been signalled,

it proceeds to the next queue. Only if no task can be selected does the spinner select

a new proactive behaviour. In addition, when a task from the collaborative queue is

finished and it is dequeued, the dispatcher also signals the collaborator that it can

proceed to the next task of the collaborative behaviour. When a role cue changes

roles, it sets the current role variable on the NPC. The existing queues may still

contain tasks from basic behaviours in the previous role, but new tasks are only

added from basic behaviours in the new role.

Our system includes a memory of where the NPC was located when an inter-

ruption occurred, so that the NPC can return to that position before it proceeds. For

example, consider a basic behaviour that is composed of two tasks, Approach a tar-

get object and Pose facing that object. Suppose that the Pose task were interrupted

after facing the object, but before performing the animation. If the interruption

caused the NPC to move away from the target object, then when the interrupted

task is restarted, the NPC performs the animation near the wrong object. Since our

system remembers the location of the NPC at the time of the interruption, the NPC

walks near that location and then starts executing the Pose task. This can be accom-

plished by adding a hidden Walk task on the head of the interrupted queue. This

feature has been designed, but not yet implemented.

More generally, we consider a proactive independent behaviour to have priority

zero, a proactive collaborative behaviour to have priority one, a latent behaviour (in-

dependent or collaborative) to have priority two or larger, and a reactive behaviour

to have the priority of the behaviour of the initiating collaborator. The behaviour

dispatcher selects behaviours in the descending order of priorities. If a new latent

behaviour meets the selection criteria and its priority is higher than the priority of

the enqueued latent behaviour, then the latent queue is cleared and the new latent

behaviour is enqueued; otherwise, the new latent behaviour is ignored. A latent

72

behaviour does not clear itself from the latent queue. For example, if a Warn

behaviour is enqueued on the latent queue and the cue conditions are met again,

the new Warn latent behaviour is ignored until the current behaviour is completed.

Since proactive behaviours of the same type (independent or collaborative) have the

same priority, they do not preempt each other. The dispatcher spins for a new proac-

tive behaviour only if the latent queue and both collaborative queues are empty or

blocked waiting for a collaborator, and the proactive independent queue is empty.

In summary, at any time, the behaviour dispatcher executes a pending task from

one of the queues. If no task is available, the dispatcher selects a new basic be-

haviour, enqueues the component tasks in an appropriate queue, and restarts, as

illustrated in Figure 3.25.

1. if (latent queue not empty)
2. execute T, task on the top of the queue;
3. if (T completed) dequeue T;
4. return;
5. if (first collaborative queue not empty)
6. execute T, task on the top of the queue;
7. if (T completed) dequeue T;
8. return;
9. if (second collaborative queue not empty)
10. execute T, task on the top of the queue;
11. if (T completed) dequeue T;
12. return;
13. if (proactive independent queue not empty)
14. execute T, task on the top of the queue;
15. if (T completed) dequeue T;
16. return;
17. if (can enqueue selected Bb)
18. enqueue Bb’s tasks on the respective queue;
19. return;
20. select Bb proactive;
21. return;

Figure 3.25: Behaviour dispatch algorithm.

73

3.6.1 Latent Queue

Latent behaviours may have different priorities, depending on the author’s story

concept. For example, to create a more responsive guard, the Exclaim latent be-

haviour should preempt the Warn latent behaviour. Thus, when an intruder opens

the chest, the Exclaim behaviour should interrupt any proactive behaviours and

cancel the Warn latent behaviour enqueued in the latent queue. If the new latent be-

haviour (Exclaim) had the same priority as the enqueued latent behaviour (Warn),

this scenario would fail. The intruder would execute the latent behaviour in its

latent queue (Warn) to completion and would ignore the other latent behaviour

(Exclaim).

On the other hand, if we always allow a new latent behaviour to clear the latent

queue, a sequence Exclaim followed by Warn will only warn the intruder, since

a Warn latent behaviour will clear a previous Exclaim latent behaviour before the

exclamation is completed. To solve this problem, we attribute priorities to latent

behaviours. The pattern designer assigns a lower priority to the Warn behaviour

than to the Exclaim behaviour to obtain the desired semantics.

If a new latent behaviour has an equal or lower priority than the latent behaviour

on the latent queue, then the new latent behaviour is ignored. After the completion

of the enqueued latent behaviour, if a new latent behaviour is triggered, it is en-

queued in the latent queue regardless of priority. If a new latent behaviour has

a higher priority than the behaviour in the latent queue, then if the enqueued be-

haviour is independent, the latent queue is cleared. If the enqueued behaviour is

collaborative, the latent queues of both this NPC and the collaborator are cleared.

Then, the new latent behaviour is added to the latent queue. The latent behaviours

for a single NPC are totally ordered.

We support one latent queue that can hold a latent independent or a latent col-

laborative behaviour, due to the highly responsive nature of latent behaviours. One

queue suffices for independent, as well as collaborative latent behaviours, since la-

tent behaviours should happen immediately. If many latent queues were supported,

conditions that were verified when the latent behaviour was enqueued may not be

satisfied when the latent behaviour is finally executed. For example, assume multi-

74

ple latent queues existed. Assume a high priority latent behaviour, Take, removes

an item from a chest and a lower priority latent behaviour, Give, places the same

item into an NPC’s inventory. If the conditions for both Take (the item is available)

and Give (the giver has the item) are satisfied, these behaviours are triggered and

the behaviour dispatcher enqueues them on two separate latent queues. The be-

haviour dispatcher starts executing the Take behaviour, based on priorities. Then,

when the dispatcher starts executing the Give behaviour, since the conditions (e.g.,

the giver has the item) are not checked again, the behaviour dispatcher still executes

all the tasks that compose the Give behaviour, although the giver does not possess

the item. Therefore, an NPC should execute at most one latent behaviour at any

time, immediately after the behaviour cue conditions are met. This approach can be

used to simulate a situation where the author wants a condition to be continuously

tested for a behaviour to continue. In our case, instead of continuously checking

the satisfiability of a condition, we can add a second latent cue that checks the non-

satisfiability of the condition and triggers a latent behaviour with a higher priority

that cancels the current latent behaviour. Alternately, we could push the conditions

from the behaviour level to the task level (in our model, tasks can have definitions,

conditions, and actions) and execute tasks from the latent queue until a task with

unsatisfied conditions is met. In this case, we could dequeue all the remaining tasks

of the latent queue.

We do not need more than one latent queue, since if a latent behaviour is already

on the queue, it can never be interrupted by another latent behaviour: it can only be

cleared or allowed to execute to completion. We enqueue reactive behaviours that

are triggered by a latent behaviour on the latent queue, but an alternative model that

enqueues these behaviours on one of the collaborative queues can be considered as

well.

3.6.2 Collaborative Queue

When the behaviour dispatcher tries to select a task (T) from the collaborative

queue, the behaviour dispatcher first checks if the NPC’s collaborator has signaled

that the next task can be started. Recall that an NPC cannot perform the next task in

75

the collaborative behaviour chain until the collaborator signals that it has finished

its side of the current task pair.

When a task from the collaborative queue is finished, the behaviour dispatcher

must signal the collaborator that it can proceed to the next task in its collaborative

behaviour. When a collaborator has received signals (from itself and its collabo-

rator), it can dequeue the top element from its collaborative queue. After an NPC

executes a task to completion, if the collaborator has not completed its correspond-

ing task, i.e., no signal has been received, the NPC first waits for twenty seconds

(short-duration). Then, if the collaborator still has not signaled (medium-duration),

it blocks the queue and it re-dispatches. This process happens until the collaborator

sends a signal to proceed to the next task pair that unblocks the queue. If the collab-

orative and proactive independent queues are empty, the behaviour dispatcher spins

for a new proactive behaviour and adds its tasks to the respective queue. If no signal

is sent by the collaborator after a certain time (in our system, for more than forty

seconds, or a long-duration timeout), the collaboration is aborted and these collabo-

rative queues for both NPCs are cleared. This is necessary because the collaborator

may be unable to return to the collaboration. For example, the collaboration may be

destroyed by the PC or one of the collaborators’ path may be obstructed by a game

object.

When a collaborative behaviour is considered in the spin process, the following

actions are performed in a loop by the behaviour dispatcher until a collaborator is

found:

• Pick a random NPC in the area.

• Check if the selected NPC can collaborate (i.e., it includes a reactive be-

haviour on the same topic).

• Check if the behaviour conditions for the collaboration are met.

• Attempt to establish eye-contact with the collaborator (who is not performing

a latent or a proactive collaborative behaviour).

76

Within a selected role, the dispatcher performs the first appropriate step for the

initiator NPC from the following list:

• If there is a pending latent task in the latent queue, execute it.

• If the first available collaborative queue is not empty and the signal to proceed

is set, then execute the first task in this queue. After the task is successfully

executed, set the signal on the collaborator and yourself. Then each collab-

orator dequeues its task. If this is the last pair of tasks for this collaborative

behaviour, set both collaborators’ eye-contacts to available.

• If the proactive independent queue is not empty, execute the first task in this

queue.

• Spin to select a new basic behaviour and enqueue it in its respective queue,

depending on the nature of the basic behaviour. If the selected behaviour is a

collaborative behaviour, set both collaborators’ eye-contacts to busy.

An NPC can perform at most two collaborative behaviours at the same time,

with at most two NPCs.

3.6.3 Independent Queue

The proactive independent queue has the lowest priority, hence it can be interrupted

by both latent and collaborative behaviours. However, when a collaborative be-

haviour executes and the collaborator takes more time to complete its current task,

an NPC may start executing independent behaviours, if they are available, or it can

enqueue new independent behaviours and execute them at a later time.

3.6.4 Behaviour Dispatch Summary

On each NPC, the registering behaviour event triggers a behaviour dispatcher that

selects a single basic behaviour as a result of a probabilistic or motivational choice

among all the proactive behaviours that the NPC could initiate. For example, the be-

haviour dispatcher “spins” to select a collaborative proactive behaviour (e.g., Offer-

fetch) from a server NPC’s potential proactive behaviours and then it generates a

77

new behaviour event. In response to the new behaviour event, the dispatcher adds

this behaviour’s component tasks to the appropriate queue (one of the collabora-

tive queues in this example) and then it generates another behaviour event. For this

event, the dispatcher starts executing the task on the top of the appropriate queue

and it generates another behaviour event. Each task removes itself from the queue

if it is successfully completed. Eventually, all the tasks on the collaborative queue

will be completed, if the collaboration is not cancelled. This process continues until

the NPC role is changed and then it restarts for the new role.

Proactive Behaviour Dispatch

Suppose that the dispatcher spins and selects a proactive independent behaviour.

Usually, the behaviour dispatcher does not spin for a new proactive behaviour un-

til the current behaviour (proactive, reactive, or latent) is executed to completion.

There is an exception to this situation if the NPC is blocked. An NPC is blocked

if at least one of its queues is not empty and there is no change in any queue for

a long time (e.g., ≥ 40 seconds) or if a collaborative queue is not empty and has

not changed for a medium time (e.g., ≥ 20 seconds and < 40 seconds). The first

case usually occurs when a behaviour is being executed and the NPC cannot finish

a task. For example, during an Approach behaviour, the PC blocks the NPC’s path

for a long time. The second case usually occurs when an NPC’s collaborator takes

too long to complete its current task of the collaboration. For example, if a server

who is fetching supplies for an owner does not return quickly, the owner is blocked.

A blocked behaviour causes the dispatcher to spin for a new proactive behaviour

(independent or collaborative, depending on the NPC’s motivations). For example,

the initiator (owner) sends the responder (server) to the storeroom to fetch supplies.

While waiting, the owner may start a proactive independent behaviour (Exclaim to

greet the nearest patron) or a proactive collaborative behaviour (Offer-drink to the

nearest patron), based on motivations. Note that since we support two collaborative

queues, we can have two collaborative behaviours in progress at the same time if

one of them is blocked.

In summary, when an NPC is created in the game, the behaviour dispatcher

78

spins for a proactive behaviour for that NPC. If the proactive behaviour selected is

an independent behaviour and the proactive independent queue is empty, the dis-

patcher enqueues this behaviour on the proactive independent queue. If the proac-

tive behaviour selected is a collaborative behaviour, the dispatcher enqueues this

behaviour on the first available collaborative queue, if the conditions of the eye-

contact with the collaborator are met. If one of the tasks of the collaborative be-

haviour takes too much time to complete, the dispatcher first selects tasks from one

of the collaborative or proactive independent queues. If these queues are empty, the

dispatcher spins for another proactive behaviour. If this is another proactive col-

laborative behaviour, the dispatcher enqueues it on the second collaborative queue.

If this is a proactive independent behaviour, then the new proactive behaviour is

enqueued on the proactive independent queue.

When executing collaborative behaviours, the dispatcher always selects tasks,

in order, from the available collaborative queues. A queue is available if it is not

empty and not blocked. If there are no more tasks on the first collaborative queue

(cq1) before the second collaborative queue (cq2) becomes empty, then the dis-

patcher continues selecting tasks from cq2 until cq2 is blocked (e.g., the NPC is

waiting for the collaborator). Only then will the dispatcher fill cq1 and start ex-

ecuting from cq1. Once cq2 is available, the control switches to cq2 until it is

completed. The dispatcher selects tasks from the first collaborative queue if it is

available. Then, the dispatcher selects tasks from the second collaborative queue, if

it is available. Finally, the dispatcher selects tasks from the proactive independent

queue, if the queue is available. While cq2 is blocked, if cq1 also becomes blocked,

the dispatcher selects tasks from the proactive independent queue. If this queue is

empty, the dispatcher spins for a proactive behaviour, but it ignores a collaborative

behaviour, since both collaborative queues are not empty. Once a proactive inde-

pendent behaviour is selected, it is added to the proactive independent queue. The

dispatcher selects tasks from this queue until one of the collaborative behaviours

can continue.

When the dispatcher is looking for non-empty queues, it may encounter tasks

that have been inserted for latent or reactive behaviours.

79

Latent Behaviour Dispatch

A latent behaviour may be added to the latent queue when a behaviour cue triggers

it. If the latent queue is empty, the new latent basic behaviour is added by the

dispatcher on the NPC’s latent queue. If the latent queue is not empty, the new

latent behaviour should be executed if its priority is higher. In this case, the latent

queue is cleared and the new latent basic behaviour fills in the latent queue. The

semantics of the latent (independent or collaborative) behaviour execution is the

following:

• If the latent queue is empty, then the dispatcher enqueues the latent queue

with the first latent behaviour whose cue is activated.

• If the latent queue contains a latent behaviour with a lower priority than the

new latent behaviour, then the dispatcher clears the latent queue and enqueues

the new latent behaviour. In this case, if the latent queue contains a latent

collaborative behaviour, the reactor’s latent queue is cleared as well.

• If the latent queue contains a behaviour with priority equal or higher than the

new latent behaviour, then the dispatcher ignores the new latent behaviour.

• If the latent queue contains a reactive behaviour that was triggered by a

collaborator’s latent collaborative behaviour, then the dispatcher always en-

queues the new latent behaviour. There is a lack of total ordering among the

priority schemes of different NPCs and this policy ensures that the NPCs are

more responsive to their own latent behaviours.

For example, when the PC approaches a patron, the patron walks to the nearest

NPC and starts a conversation (latent collaborative behaviour Overhear-Talk). If

the PC walks very close to this NPC, the patron may respond with a higher priority

latent behaviour, Exclaim. As a result, the patron cancels its latent collaborative be-

haviour by clearing its own latent queue, as well as the collaborator’s latent queue,

and it enqueues the new latent independent behaviour, Exclaim. After the patron

greets the PC (latent independent behaviour Exclaim), if the cue conditions for the

80

Overhear-Talk latent collaborative behaviour are satisfied, then the patron walks

again to the closest NPC and starts a conversation. In the guard NPC example,

while the guard is resting, if an intruder (PC or NPC) is noticed near the guarded

chest, the guard interrupts its rest, warns the intruder, and then resumes its rest, as

illustrated in Figure 3.26.

Figure 3.26: The Warn latent behaviour interrupts the Rest proactive independent
behaviour of a guard NPC when an intruder is near the guarded chest.

Reactive Behaviour Dispatch

A reactive behaviour is added to one of the collaborative queues of an NPC by the

initiator of the collaboration, if eye-contact is made. For example, if a tavern server

81

initiates an Offer-fetch collaborative behaviour and the patron is available for col-

laboration, then the tavern server adds a proactive collaborative basic behaviour’s

tasks to its first empty collaborative queue and, at the same time, it adds a reactive

basic behaviour’s tasks to the responder’s first empty collaborative queue. The tav-

Figure 3.27: The Converse-Listen reactive behaviour interrupts the Patrol proac-
tive independent behaviour, since a proactive independent behaviour has a lower
priority than a reactive behaviour.

ern server’s proactive collaborative behaviour Offer-fetch interrupts a patron’s Ap-

proach (the patron walks to the tavern’s bar) proactive independent behaviour that

is resumed after the collaboration finishes. Figure 3.27 illustrates a different sce-

nario in which a guard-friendly NPC initiates a Converse-Talk proactive collabora-

tive behaviour with a guard NPC that performs a Patrol proactive independent be-

haviour. The proactive Converse-Talk behaviour of the guard-friendly NPC causes

the guard NPC to perform a reactive Converse-Listen behaviour. As a result, the

guard’s proactive independent behaviour Patrol is interrupted by the guard’s reac-

82

tive behaviour Converse-Listen that has a higher priority (1) than the proactive in-

dependent behaviour (0). After completing its reactive Converse-Listen behaviour,

the guard resumes its interrupted proactive Patrol behaviour. A reactive behaviour

triggered by a collaborator’s latent collaborative behaviour is added to the latent

queue, but another model in which it is added on one of the collaborative queues is

also possible.

Behaviour Dispatch Example: “Bob-Sally”

The following more complex “Bob-Sally” example includes many different kinds

of behaviours. This example illustrates the interactivity, alertness, and variety of

the behaviour model.

Figure 3.28: After Bob and Mary finish their latent collaborative behaviour, Bob
and the server resume their proactive collaborative behaviour. Then, Bob and Sally
resume their interrupted proactive collaborative behaviour.

Suppose that when a server NPC is created in a tavern, its behaviour dispatcher

83

spins for a proactive behaviour and chooses the Offer-fetch proactive collaborative

behaviour with a random patron, Bob, as illustrated by the circled steps 1 and 2

of Figure 3.28. While the server walks to the bar to fetch a drink, Bob performs

a simple animation and then waits. If Bob’s wait exceeds twenty seconds, Bob

spins for another proactive behaviour to execute while waiting for the server to

return. If the selected proactive behaviour is collaborative (e.g., Converse-Talk

with the nearest patron), then Bob walks to the nearest patron, Sally, and starts a

conversation (circled steps 3 and 4). While the server is returning, a PC walks close

to the server. A range cue triggers a latent independent behaviour (e.g., Exclaim)

on the server who faces and greets the PC (circled step 5). While Bob is talking

to Sally (waiting for the server to return), a latent collaborative Overhear-Talk

behaviour is triggered by a range cue between Bob and the PC, as illustrated in

Figure 3.29. As a consequence, Bob walks to the currently nearest patron, Mary,

and starts a conversation with her that reveals information to the PC (circled steps 6

and 7). When the server returns to Bob, since Bob is performing a latent behaviour,

the server must wait. The server spins for a proactive behaviour (Approach, i.e.,

it approaches a random patron) while waiting for Bob to finish his current task

(circled step 8). The queues for this scenario at this particular point are illustrated

in Figure 3.28, where the empty boxes show tasks that are completed (red cross) or

in progress (no red cross) and the filled boxes show tasks that have not started yet.

When Bob finishes his latent behaviour, Bob and the server finish their collaboration

(the server finally gives the drink to Bob) and Bob resumes his interrupted proactive

collaborative behaviour (conversing with Sally).

If a latent collaborative behaviour is blocked, the dispatcher chooses the first

behaviour available to execute in the meantime. For example, if the conversation

between Bob and Mary is blocked, Bob tries to resume its collaborative behaviour

with the server. However, if the server has not yet returned, Bob will resume his

collaboration with Sally. If there is a behaviour with the same collaborator as the

latent collaborative behaviour, then this behaviour is set as unavailable, since there

is no reason to resume a behaviour with a blocked collaborator.

The semantics of our model can be easily adapted at the implementation level

84

Figure 3.29: The Overhear-Talk latent collaborative behaviour interrupts the
Converse-Talk proactive collaborative behaviour when the PC walks near the
NPCs, since a latent behaviour has a higher priority than a proactive behaviour.

85

for different designs, providing additional flexibility. In some situations, it would

be enough to allow an NPC to initiate at most one collaborative behaviour at any

time. More specifically, an NPC may use only the first collaborative queue to store

proactive collaborative behaviours, the second collaborative queue being reserved

for reactive behaviours. For example, while waiting for a server to bring supplies

from the storeroom in a collaborative behaviour Ask-fetch, the owner cannot ini-

tiate any new proactive collaborative behaviours. However, the owner can respond

to a proactive collaborative behaviour initiated by another NPC. For instance, the

owner can respond to a patron who orders a drink. Note that it may be possible

for the server to initiate a collaborative behaviour with the owner who sent it to

the storeroom, if the server is not currently executing a proactive collaborative be-

haviour. This situation is useful if the server decides to converse with the owner on

a different topic, which provides a more realistic interaction.

3.7 Concurrency Control Model

Concurrency models have been studied extensively for general-purpose comput-

ing. Our behaviour system must satisfy the same requirements that exist for general

parallel computing systems. The issues of synchronization, deadlock, and indef-

inite postponement must be addressed to ensure correct and robust execution of

behaviours for NPCs. Each of these requirements poses a challenge in the CRPG

behaviour domain. We provide a solution to each of these problems.

Our model allows NPC behaviours to be interrupted and resumed. It also sup-

ports NPC-PC interactions in addition to NPC-NPC collaborations. Our concur-

rency control mechanism is invisible to the story author and it is only partially

visible to the designer of behaviour patterns. We present a description of the dif-

ficulties we experienced in building a concurrency model for interacting NPCs, as

well as our solutions.

86

3.7.1 Synchronization

Synchronization among NPCs is essential so that an NPC completes all of the ac-

tions of a behaviour before the next behaviour is fired. For example, in an Offer-

fetch proactive collaborative behaviour, the tavern server should not fetch a drink

(server’s task) for a patron before the patron has decided whether to order a drink

or not (patron’s task). In addition, synchronization among the behaviours of a sin-

gle NPC is crucial. For example, a tavern server should manage the simultaneous

execution of its own collaborative behaviours (proactive or reactive) seamlessly.

Synchronization of a Single NPC’s Behaviours

The queue structure ensures synchronization for a single NPC (proactive basic be-

haviours). The control model based on queues with different priorities ensures syn-

chronization among an NPC’s basic behaviours by preventing an NPC from starting

a behaviour of the same type before the previous behaviour is done, except for two

particular cases. First, if the server is executing a collaborative behaviour, such

as Offer-fetch, it cannot select a new collaborative behaviour, such as Converse-

Talk, until the current collaborative behaviour is completed. However, if the initia-

tor (e.g., the server NPC) of a collaborative behaviour (Offer-fetch) takes too much

time to finish the current task, the reactor (e.g., the patron NPC) may spin for a

new proactive behaviour (collaborative or independent) to execute in the meantime.

As soon as the initiator finishes the lengthy task of the collaborative behaviour, the

reactor interrupts the new collaborative behaviour (Converse-Talk) and both NPCs

continue their original collaborative behaviour (Offer-fetch) until this behaviour

completes or one of the NPCs takes too much time to finish a task. In this case, the

collaborator selects tasks from the collaborative or proactive independent queues

or, if these queues are empty or blocked, it spins for a proactive behaviour. Without

synchronization, the tavern server will receive tasks from both behaviours (Offer-

fetch and Converse-Talk) in an interleaved manner that may violate synchroniza-

tion. Note that this process is symmetrical for both collaborators: the initiator can

also spin for a proactive behaviour if the reactor takes more time to complete a task

of their common collaborative behaviour.

87

Second, a latent behaviour (independent or collaborative) can clear any other

latent behaviour with a lower priority from the latent queue and can interrupt any

proactive behaviour. When a latent behaviour is interrupted, it is cancelled rather

than interrupted and resumed. For example, a tavern server can perform latent

behaviours at any time during the execution of a proactive or reactive behaviour,

resuming the interrupted behaviours after a latent behaviour is completed. An in-

terrupted collaborative behaviour can interrupt another independent or collaborative

behaviour when the interrupted behaviour is resumed.

Synchronization Among NPCs

The queue mechanism cannot prevent synchronization problems among NPCs dur-

ing collaborative behaviours. Each object in the game executes actions from its

personal action queue in order. However, without proper synchronization among

action queues, the actions of several NPCs may interleave in an unexpected man-

ner. For example, while performing an Ask-fetch collaborative behaviour with a

patron, a tavern server should not fetch a drink before the patron orders it.

We need another mechanism to solve this problem. To ensure synchroniza-

tion for multiple NPCs (proactive and reactive behaviours) during collaborative be-

haviours, we introduce two mechanisms. The first mechanism is an eye-contact

protocol ensuring that both NPCs agree to participate in a collaborative behaviour

before the behaviour is started. The eye-contact mechanism works as follows. If

NPC1 identifies NPC2 as a potential collaborator, then NPC1 tries to make eye-

contact with NPC2. If NPC2 is involved in a latent or collaborative behaviour,

NPC2 denies eye-contact. If NPC2 is not involved in a latent or collaborative be-

haviour, NPC2 accepts the eye-contact and sends a signal to NPC1 to start the

appropriate behaviour. It is possible for an NPC to have eye-contact with more

than one NPC at the same time. This can happen only when the collaborator in a

collaborative behaviour takes too much time to complete a task. In this case, the

waiting NPC may make eye-contact with a second NPC to start a second collabora-

tive behaviour. We implement the eye-contact mechanism using state variables of

the NPCs, so that their values are updated instantly. Note that when a game is saved

88

and then loaded, all the values stored on the NPC as state variables, as well as the

values stored on the module as global variables, are preserved.

The second mechanism is a barrier between collaborative pairs. A collaborator

cannot pass the barrier until both collaborators reach it. Together with the eye-

contact mechanism, the barrier mechanism ensures that the tasks on the queues of

different NPCs are synchronized, as illustrated in Figure 3.30 for the Converse-

Talk and Converse-Listen behaviours.

The synchronization model used by our behaviour patterns is scalable to more

complex NPC interactions.

Figure 3.30: The barrier and eye-contact mechanisms that ensure behaviour syn-
chronization.

3.7.2 Deadlock

Deadlock is a problem that occurs when two or more entities in a group need a

resource to advance, but they will never acquire that resource since it is held by an-

other entity in that group and will not be released. Entities may be granted access to

resources such that a group of two or more competing entities is unable to proceed,

89

because each entity holds resources and is also waiting for the release of resources

currently held by others in that group [14]. In our behaviour system, deadlock must

be avoided so that neither NPC in a collaborative behaviour waits forever for the

other NPC to perform a task as part of their collaborative protocol.

A state of deadlock arises when all of the following four conditions are satisfied

[14]:

1. Mutual exclusion: the NPCs claim exclusive control of the resources they

require.

2. Hold and Wait: the NPCs hold resources already allocated to them while

waiting for additional resources.

3. No preemption: resources cannot be forcibly removed from the NPCs hold-

ing them until the resources are used to completion (scripts are successfully

executed to completion).

4. Circular wait: a circular chain of NPCs exists, such that each NPC holds one

or more resources that are requested by the next NPC in the chain.

For example, consider a tavern server who offers to fetch a drink for a patron.

If the patron accepts the offer, then the server walks to the bar to fetch a drink. The

game engine executes one script at a time. When one of the NPCs starts executing

a script, no other task is executed until the completion of the current script (mutual

exclusion). The patron waits for the server to return with the drink. If the server’s

entire walk to the bar were represented by a single script and if this script did not

execute to completion (e.g., the server’s path is blocked by a game object), then

the patron would wait forever for the server to finish (hold and wait). If the tavern

server’s script must execute to completion (no preemption), the tavern server will

be blocked forever. The patron is also blocked since it must wait for the server to

serve the drink before its collaborative behaviour ends (circular wait).

However, this is not how actions work in NWN, otherwise deadlock would fre-

quently occur. In NWN, to allow events in the game to interleave, the engine does

not complete the walk action during the execution of the script. A walk action is

90

placed on the action queue (described in Section 3.4.8) and the script ends. This al-

lows other NPCs and objects to perform actions. This means that the patron’s script

could execute as soon as the server starts walking (finishes the tavern server script).

While the NWN game engine solves deadlock using action queues, our behaviour

system introduces problems due to our synchronization model and has to provide

appropriate solutions. To ensure synchronization, the behaviour dispatcher does not

allow the patron to proceed to the next task. This lock mechanism could potentially

cause a deadlock. In our system, when a task is executing, it has a lock that prevents

other tasks for that NPC from executing (mutual exclusion). This lock is returned to

the behaviour dispatcher when a task is completed so that it can be given to the next

task. If a tavern server fails to complete its Approach task (walking to the tavern’s

bar), then the patron will wait forever for the tavern server to finish (hold and wait).

The tavern server holds the lock that cannot be relinquished until the task finishes

(no preemption). Again, the patron must wait for the tavern server to deliver the

drink before their collaborative behaviour ends (circular wait).

We could prevent deadlock caused by our synchronization mechanism if one

or more of the above conditions were violated. Our system detects deadlock, i.e.,

determines at run-time if deadlock has occurred and identifies the entities and re-

sources involved. Our behaviour system recovers from deadlock by clearing the de-

tected deadlock so that the entities can complete execution and free their resources.

To detect and recover from deadlock, we use timeout mechanisms. An NPC waits

for the collaborator to finish a task. Meanwhile, a medium-duration timeout can

allow the NPC to perform behaviours (hold and wait). This prevents the deadlock

but causes the other collaborator to starve. However, if the collaborator takes too

much time (long-duration timeout) to finish the current task, the NPC cancels the

collaboration for both collaborators (hold and wait exception for the canceller and

no preemption for the collaborator). Cancelling the tasks for both collaborators

ensures that neither collaborator is performing a behaviour that requires a miss-

ing synchronization. This eliminates the deadlock and frees the tavern server from

starvation.

91

3.7.3 Indefinite Postponement

Indefinite postponement (or starvation) is a problem related to deadlock. In this sit-

uation, an entity never receives the resources that it needs. In our behaviour system,

indefinite postponement can occur when an NPC must wait forever to perform a

behaviour. There are three potential ways for indefinite postponement to be caused

in our behaviour system.

The first cause for indefinite postponement can occur in a deadlock situation,

in which both NPCs suffer indefinite postponement. The timeout mechanisms dis-

cussed in the previous section prevent indefinite postponement from occurring in

such situations.

The second potential cause for indefinite postponement can arise when a collab-

orating NPC has its action queue cleared. In this case, the collaborator will suffer in-

definite postponement. There are several situations in which an NPC’s action queue

can be cleared. First, the player may start a conversation with the NPC by clicking

on that NPC. This scenario triggers an OnConversation event that in turn determines

the execution of a script, if available. If the NPC has an OnConversation script that

contains a BeginConversation command, then a ClearAllActions com-

mand is executed instantly and it clears the NPC’s action queue, clearing the call

to the spinner implicitly, hence the NPC’s behaviours. If there is no OnConversa-

tion script attached to the NPC or if the OnConversation script does not contain a

ClearAllActions command, then our behaviour model is not affected. Sec-

ond, this problem arises when another game object (not necessarily a creature) has

a script attached that assigns a ClearAllActions command to an NPC with

behaviours. The NPC’s action queue is cleared and its behaviours cancelled. We

need a mechanism to protect the NPC from indefinite postponement since the NPC

will never finish the current task and, consequently, it will not signal the behaviour

dispatcher to start a new task.

The third situation in which indefinite postponement can occur is when an

NPC’s path is blocked by an obstacle. For example, while a tavern server is ap-

proaching a patron or the bar, if an obstacle obstructs the server’s path, then the

walk action is blocked, which leads to failure to complete the entire behaviour.

92

Our solution to indefinite postponement mirrors our solution to deadlock: we

use a timeout mechanism. The behaviour event (fired continuously using a de-

layed command) increments a counter by one for every NPC. The dispatcher checks

whether the counter has reached a specific threshold value (forty seconds in our

system). If the counter reaches the threshold value, the NPC’s behaviour event is

restarted. The counter is set to zero every time the NPC performs a behaviour, so

as long as the NPC is performing behaviours, no restart will occur. This timeout

mechanism ensures that the NPC is not blocked and that the behaviour dispatcher

always starts an NPC behaviour. If no behaviour execution is recorded within this

time interval, then a behaviour event is triggered on the NPC.

3.8 Chapter Summary

In this chapter, we introduced our behaviour model, we presented behaviour pat-

terns, their structure, use, and implementation. We illustrated how each of the major

components of the model (performance, cue, role, motivation, behaviour, and task)

can be represented and manipulated using new ScriptEase constructs. With these

components, an author can generate proactive, reactive, and latent NPC behaviours

that can be independent or collaborative. Learning can be seamlessly added to this

model through behaviour cues to replace the motivational or probabilistic selec-

tion of behaviours within a role. Behaviour patterns generate complex and non-

repetitive NPC scripts automatically for interactive story authors who are not pro-

grammers. Patterns are reusable and they hide the level of complexity necessary to

create a realistic interactive story. We concluded with an outline of the problems

and solutions posed by our concurrency control model for interacting NPCs.

93

Chapter 4

Reinforcement Learning in
ScriptEase

In this chapter, we introduce ALeRT (Action-dependent Learning Rates with Trends),

an algorithm that makes two modifications to the learning rate and one change to the

exploration rate of traditional reinforcement learning algorithms. Our learning rates

are action-dependent and increase or decrease based on trends in reward sequences.

Our exploration rate decreases when the agent learns successfully and increases

otherwise. These improvements result in faster learning. We implemented this al-

gorithm in NWScript with the goal of improving the behaviours of game agents

so that they react more intelligently to game events. Our primary goal is to pro-

vide an agent with the ability to (1) discover favourable strategies in a multi-agent

computer role-playing game situation and (2) adapt to sudden changes in the envi-

ronment. Our secondary goal is to investigate whether story authors can generate

adaptive behaviours quickly and reliably without programming. The aim of this

chapter is to investigate the viability of reinforcement learning in creating adaptive

NPC behaviours in a commercial CRPG.

4.1 Introduction

An enticing game story relies on non-player characters (NPCs or agents) acting in

a believable manner and adapting to ever-increasing demands of players. Since the

best interactive stories have many agents with different purposes, creating an engag-

ing complex story is challenging. Most games have NPCs with manually scripted

94

actions that lead to repetitive and predictable behaviours. We extend the behaviour

model of Chapter 3 to support reinforcement learning without the need for manual

scripting. In Chapter 3, the model selects an NPC behaviour based on motivations

and perceptions. The model’s implementation generates scripting code for Never-

winter Nights (NWN) from a set of behaviour patterns built using ScriptEase [70].

The generated code is attached to NPCs to define their behaviours. Although the

model described in Chapter 3 supports motivations to select behaviours, a more

versatile mechanism is needed to generate adaptive behaviours.

An author describes a behaviour motivation in ScriptEase by enumerating mo-

tivational attributes and providing them with initial values. Behaviours are selected

probabilistically, based on a linear combination of the attribute values. After a

behaviour is selected to be performed, the NPC’s motivational attributes are up-

dated to express the consequences of the behaviour. For example, the motivation

of a guard relies on the Duty, Tiredness, and Threat motivational attributes that

control the selection of the patrol, rest, and check behaviours. When patrol is se-

lected, the value of the Duty motivational attribute is decreased and the values of the

Tiredness and Threat motivational attributes are increased. An agent that selects

behaviours based only on motivations is not able to quickly discover a successful

strategy in a rapidly changing environment. Motivations provide limited memory

of past actions and lack information about the order or outcomes of actions.

We use reinforcement learning (RL), an unsupervised learning technique, to

augment ScriptEase behaviour motivations. An agent learns how to adapt to un-

expected changes in the environment through experience, by mapping percepts ac-

quired from the environment to actions in order to maximize a numerical reward

signal [79]. Without learning, a fighter or a wizard NPC would choose possible be-

haviours from their Fighter or Wizard roles randomly or based on the character’s

motivations. With the help of a learning system, the NPC can learn to choose the

actions that result in the best outcome (i.e., actions that maximize reward) for its

particular class. This way, the NPC learns what is the best course of action in each

situation through interaction with the environment, regardless of the situation. The

agent constantly changes its behaviours through experience to improve its ability

95

to achieve a goal or accumulate long-term reward. Our approach provides NPCs

with the ability to learn to adapt online fast, reliably, and effectively [74]. NPCs

are immune to mistakes resulting from poor AI implementation, since the AI is

pre-tested in the behaviour catalogue and no custom AI is constructed by the au-

thor. The learning algorithm allows NPCs to respond creatively to new situations

by selecting new behaviours in response to previously unconsidered situations [73].

Our extension of the behaviour model to include learning provides agents with

a mechanism to adapt to unforeseen changes in the environment by learning. The

learning task is complicated by the fact that the agent’s optimal strategy at any time

depends on the strategies of the other agents, which creates “a situation of learning

a moving target” [6]. More specifically, the learning task is challenging for the

following reasons:

1. the game environment changes while the agent is learning (other agents may

also change the environment),

2. the other story agents and the player character may also learn,

3. the other agents may not use or seek optimal strategies,

4. the agent must learn in real-time, making decisions quickly, especially to

recover from adverse situations, since the system targets a real-time CRPG,

5. the agent must learn and act efficiently, since in most games there are hun-

dreds or thousands of agents. RL techniques are not used in commercial

games due to fears that agents can learn unexpected (or wrong) behaviours

and because of experience with algorithms that converge too slowly to be

useful [66].

The paucity of RL research in commercial CRPGs makes RL in this domain an

interesting area of research. In addition, it is not always possible to define an opti-

mal behaviour for a particular agent in a game situation. For example, a guard NPC

may not have an optimal patrol behaviour. Moreover, for realism, NPCs should

operate under the constraint of partial observability. For example, an NPC should

96

only perceive and be perceived by nearby creatures. The actions of an agent (NPC

or PC) should not be immediately apparent to agents in a different area.

We introduce a variation of a single-agent online RL algorithm, Sarsa(λ) [79], as

an additional layer to behaviour patterns with the goal of learning NPC behaviours.

To evaluate our approach, we constructed experiments to evaluate learning rates

and adaptability to new situations in a changing game world. Although our goal is

to learn general behaviours (such as the guard described previously), combat offers

an objective environment for preliminary testing, since it is easy to construct an ob-

jective evaluation mechanism. Spronck [77] has provided a pre-built arena combat

module for NWN that is publicly available and he has created learning agents that

can be used to evaluate the quality of new learning agents. We evaluate our learning

algorithm using this module.

Our experiments show that traditional RL techniques with static or decaying

RL parameters do not perform well in this dynamic environment. We identified

three key problems using traditional RL techniques in the computer games domain.

First, a fixed exploration rate is not suitable for dynamic environments. Second,

with action-independent learning rates, the actions that are rarely selected early

may be discounted and not “re-discovered” when the environment changes to be

more favourable for those actions. Third, fixed learning rates, or learning rates that

decay monotonically, learn too slowly when the environment changes. These key

problems motivated our changes to traditional RL techniques that resulted in the

ALeRT algorithm.

We modify traditional RL techniques in three ways. First, we adjust the explo-

ration rate based on the learning success of the agent. Second, we support action-

dependent learning rates. Third, we identify “safe” opportunities to learn fast. In

our approach, the agent learns about the effect of actions at different rates as the

agent is exposed to situations in which these actions occur. This situation mirrors

nature, where organisms learn the utility of actions when stimuli/experiences pro-

duce these actions as opposed to learning the utility of all actions at a global rate

that is either fixed, decaying at a fixed rate, or established by the most frequently

performed actions.

97

This chapter makes the following contributions:

1. It introduces a mechanism for decreasing the exploration rate when the agent

learns successfully and increasing it otherwise.

2. It introduces action-dependent learning rates in RL.

3. It provides a mechanism for increasing the learning rate (i.e., the step-size) in

RL when prompted by significant changes in the environment.

4. It evaluates an implementation of an RL algorithm with these enhancements

through a series of experiments in the demanding environment of commercial

computer games (NWN) where it outperforms Spronck’s dynamic rule-based

approach [76] (Spronck’s learning method 1) for adaptation speed.

5. It smoothly integrates this RL algorithm into the ScriptEase behaviour code

generation.

4.2 Related Work

Several efforts that attempt to improve the behaviours of NPCs have appeared in

the literature. Many games use AI techniques, such as decision trees, neural nets,

genetic algorithms, and probabilistic methods (e.g., Creatures and Black & White)

only when they are needed and in combination with deterministic techniques [4].

Although successful in these particular games, evolutionary methods are not popu-

lar in commercial games, since it is slow to search the space of policies when there

are multiple combinations of game states. Moreover, evolutionary methods have

not been suitable for handling rarely visited states [37].

RL techniques applied in commercial games are quite rare, since in general

it is not trivial to construct a feature vector and the agents adapt too slowly for

online game environments [75]. However, in massively multiplayer online role-

playing games (MMORPGs), a motivated reinforcement learning (MRL) algorithm

generates NPCs that can evolve and adapt in a dynamic environment [54]. The

98

algorithm (tabular approach) is based on Q-Learning [79] and it uses a context-

free grammar instead of a feature vector to represent the environment in which

states and actions are dynamically added when certain conditions are met. The

agent has only been evaluated against a static opponent. Other researchers [86]

have applied RL to learn winning policies in a domination game within a team

FPS game that uses the Unreal Tournament [84] game engine. Their Q-Learning

based algorithm eliminates discount rates and is evaluated against both a static and

a dynamic opponent.

The Sarsa algorithm with a linear action-value function approximator was ap-

plied to learn the actions of fighter NPCs in a fighting simulation game [32]. The

Sarsa(λ) algorithm (tabular approach) was successfully applied to FPS bots to learn

the tasks of combat and navigation while collecting items [52]. In the navigation

experiment, the eligibility trace (discussed later in this chapter) needed to be small,

since the best solutions did not require significant planning, while in the combat

experiment the eligibility trace needed to be large to facilitate more planning. How-

ever, the experiments were performed against a static state machine controlled bot.

Dynamic scripting [76] is a learning technique that combines rule-based script-

ing with RL. To the best of our knowledge, this is the only RL technique applied to

NWN, apart from our work. The strategy is updated by extracting rules (e.g., attack)

from a rule-base according to their weights and the value function is updated when

the effect of an entire sequence of actions can be measured, not after each action.

Rules with a positive contribution are rewarded by increasing their weights, while

rules with a negative contribution are punished by decreasing their weights. States

are encoded in the conditions of the rules in the rule-base. Each type of NPC has

a set of rules particular to that type. For example, for a fighter NPC, the size of

a script is set to five rules selected from a rule-base of 21 rules. If no rule can be

activated, a call to the default game AI is added. However, the rules in the rule-

base have to be ordered [83], the agent cannot discover other rules that were not

included in the rule-base [74], and, as in the previous cases, the agent has only been

evaluated against a static opponent.

Traditionally, estimator variance which leads to learning difficulties is addressed

99

by tuning the learning parameters, which is a time-consuming process. To ad-

dress the trade-off between learning rate and estimator variance, researchers [62]

proposed a method (the ccBeta algorithm based on Q-Learning) for varying the

step-size parameter (called β in their work) by an online statistical analysis of the

estimate error. Our approach differs in that we introduce action-dependent step-

sizes, we modify each step-size parameter, alpha, by a fixed amount, and we do

not always increase or decrease alpha. Instead, we identify cases in which a trend

is not significant and, in these cases, we do not modify the value of alpha. We use

the Delta-Bar-Delta approach [78] to detect a trend. In contrast with the Delta-Bar-

Delta approach, we introduce action-dependent step-sizes and we detect significant

trends using a standard deviation factor (f).

4.3 Algorithm

We introduce a step-size updating mechanism that speeds up learning, a variable

action-dependent learning rate, and a mechanism that adjusts the exploration rate in

RL. We demonstrate this idea using the Sarsa(λ) algorithm.

4.3.1 Sarsa(λ)

Popular RL algorithms include TD, Q-Learning, and Sarsa [79]. The Sarsa algo-

rithm was used for multi-agent systems in computer games [7][57][86]. In Sarsa(λ),

the agent (a combination of perception, reasoning, and action) learns a strategy that

indicates what action it should take for every state by defining an immediate reward

function, r, the mapping of a state-action pair to a numerical value obtained after

performing the action. The value function, Q(s, a), defines the value of action a in

state s as the total reward an agent will accumulate in the future starting from that

state-action. This value function, Q(s, a), must be learned so that a strategy that

picks the best action can be found.

At each step, the agent maintains an estimate of Q. At the beginning of the

learning process, the estimate of Q(s, a) is arbitrarily initialized. At the start of

each episode step, the agent determines the state s and selects some action a to be

100

taken using a selection policy. For example, an ε− greedy policy selects the action

with the largest estimated Q(s, a) with probability 1 - ε and it selects randomly from

all actions with probability ε.

At a step of an episode in state s, the selected action a is performed and the

consequences of the action are observed: the immediate reward, r, and the next state

s′. The algorithm selects the next action, a′, and updates the estimate of Q(s, a) for

all s and a using the Sarsa(λ) algorithm shown in Figure 4.1. The figure shows

the linear gradient-descent Sarsa(λ) algorithm with binary features and ε− greedy

policy.

The error δ can be used to evaluate the action selected in the current state. If

δ is positive, it indicates that the action value for this state-action pair should be

strengthened for the future, otherwise it should be weakened. Note that δ is reduced

by taking a step (α) toward the target. The step-size parameter, α, reflects the

learning rate, therefore, a larger α value has a bigger effect on the state-action value.

The algorithm is called Sarsa because the update is based on: s, a, r, s′, a′. Each

episode ends when a terminal state is reached and Q(s, a) is zero on the terminal

step, because the value of the reward from the final state to the end must be zero.

To speed up the estimation of Q, Sarsa(λ) uses eligibility traces. Each update

depends on the current error combined with traces of past events. Eligibility traces

provide a mechanism that assigns positive or negative rewards to past eligible states

and actions when future rewards are assigned. When an estimate error occurs, only

the eligible states and actions are assigned credit or blame for this error. For each

state, Sarsa(λ) maintains a memory variable called an eligibility trace. The eligi-

bility trace for state-action pair (s, a) at any step is a real number denoted e(s, a).

When an episode starts, e(s, a) is set to zero for all s and a. At each step, the eligi-

bility trace for the state-action pair that actually occurs is incremented by 1
n

, where

n represents the number of active features for that state. The eligibility traces for all

states decay by γλ, where γ is the discount rate and λ is the trace decay parameter.

The value of the discount rate, γ, is one for episodes that are guaranteed to end in

a finite number of steps [79], which is true in our combat scenario. For example,

assume that γ = 1, λ = 0.5, and the melee action is taken in state s at some step.

101

~e accumulating traces
s state, a action
i feature
r immediate reward
δ error in the estimate
~θ feature vector
γ discount rate
Qa state-action values
α step-size parameter
λ trace decay parameter

Initialize ~θ arbitrarily
Repeat (for each episode):

~e = ~0
s, a← initial state and action of episode
Fa ← set of features present in s, a
Repeat (for each step of episode):

For all i ∈ Fa:
e(i)← e(i) + 1 (accumulating traces)
Take action a, observe reward r and
next state s

δ ← r −
∑

i∈Fa

θ(i)

With probability 1 - ε:
∀a ∈ A(s):

Fa ← set of features present
in s, a

Qa ←
∑

i∈Fa

θ(i)

a← argmaxaQa

or with probability ε:
a← a random action ∈ A(s)
Fa ← set of features present
in s, a

Qa ←
∑

i∈Fa

θ(i)

δ ← δ + γQa

~θ ← ~θ + αδ~e
~e← γλ~e

until s is terminal

Figure 4.1: The Sarsa(λ) linear gradient-descent algorithm.

102

Assume that the state has three active binary features, then e(s, melee) = 1
3

and

the eligibility traces for the rest of the actions in state s are zero. In the next step,

if (s, melee) does not occur again, the eligibility trace decays to e(s, melee) = 1
6

(since λ = 0.5) and in the next step it further decays to e(s, melee) = 1
12

.

As shown in Section 4.7, the Sarsa(λ) RL algorithm used by a fighter does

not converge to the optimal fighter strategy. For example, we experimented with

α = 0.01
ln|GS|

and variations of α = 1
n

, where GS constitutes the number of features

in the game state space and n represents the number of episodes. We also experi-

mented with α = α0

1+ steps

100

, where steps is the number of steps in which a behaviour

was taken and α0 is a constant (e.g., 0.1 and 0.3). We experimented with static or

decaying (e.g., ε = ε
(−ln2)∗

ε−ε0
εhalflife

0 and ε = ε0e
(−ln2)episode

halflife) ε values, where ε0 and

halflife are constants (e.g., 0.1 and 25, respectively) and episode is the current

episode number. While reducing the value of the learning rate ensures convergence

in stationary environments [44], the slow adaptation to changing environments is

impractical for our purpose. Moreover, the agent that learns using Sarsa(λ) adapts

slower to changes in the environment than the agent that learns using Spronck’s

dynamic scripting (Spronck’s learning method 1). Therefore, we designed the en-

hancements to Sarsa(λ) to create the ALeRT algorithm.

4.3.2 ALeRT

As we mentioned earlier in this chapter, we identified three problems with tradi-

tional RL techniques in the CRPG domain. First, a fixed exploration rate is not

suitable for dynamic environments. Second, with a global learning rate, the actions

that are rarely selected may be poorly represented, especially when the environment

changes. Third, traditional learning rates learn too slowly when the environment

changes.

Therefore, the ALeRT algorithm, illustrated in Figure 4.2, modifies traditional

RL techniques in three ways. First, it adjusts the exploration rate based on the

learning success of the agent. Second, it supports action-dependent learning rates.

Third, it identifies opportunities to learn fast.

103

Initialize ~θ arbitrarily
** Initialize α(a)← αmax for all a
Repeat (for each episode):

~e = ~0
s, a← initial state and action of episode
Fa ← set of features present in s, a
Repeat (for each step of episode):

For all i ∈ Fa:
**e(i)← e(i) + 1

‖Fa‖
(normalized accumulating

traces)
Take action a, observe reward r and
next state s

δ(a)← r −
∑

i∈Fa

θ(i)

With probability 1 - ε:
∀a ∈ A(s):

Fa ← set of features present
in s, a

Qa ←
∑

i∈Fa

θ(i)

a← argmaxaQa

or with probability ε:
a← a random action ∈ A(s)
Fa ← set of features present
in s, a

Qa ←
∑

i∈Fa

θ(i)

δ(a)← δ(a) + γQa

**~θ ← ~θ + α(a)δ(a)~e
~e← γλ~e
**∆α← αmax−αmin

αsteps

**if δ(a)δ(a) > 0 ∧
∣

∣

∣δ(a)− µ
δ(a)

∣

∣

∣ > fσ
δ(a)

**α(a)← α(a) + ∆α

**else if δ(a)δ(a) ≤ 0
**α(a)← α(a)−∆α

end of step
until s is terminal
**∆ε = εmax−εmin

εsteps

**if
∑

step

rstep = 1

**ε← ε−∆ε
**else

**ε← ε + ∆ε
end of episode

Figure 4.2: The ALeRT algorithm.
104

Dynamic Exploration Rate

We use the WoLF principle of “learn quickly while losing, slowly while winning”

[5] in our first change to traditional RL techniques to ensure that we explore quickly

when we start losing. Recall that the exploration parameter (ε) in our ε − greedy

strategy is the probability of exploring (selecting randomly from the non-optimal

actions). Traditionally [78], ε ranges from 0.01 to 0.1, corresponding to exploration

between 1% and 10%. We vary our exploration parameter (ε) in fixed steps (εsteps =

15) between a minimum (εmin = 0.005) and maximum (εmax = 0.02) value. We se-

lected εsteps = 15, since we wanted to be able to move from minimum to maximum

exploration rate in a small number of combat episodes. We selected a maximum

exploration rate of 2%, since more exploration results in too many lost combat

episodes due to an excess number of random actions. Initially, ε = εmax, since we

would like to explore substantially at the beginning. In general, the value of ε in-

creases after a loss, when we need to explore more to find a winning strategy. The

value of ε decreases after a win, when we do not need to explore as much. How-

ever, a minimum value for ε is necessary, since occasional exploration is required to

discover the optimal strategy in dynamic environments. Figure 4.3 illustrates the ε

values immediately after a phase change from the Melee to the Ranged equipment

configurations (explained later). A phase represents 500 consecutive episodes in

which the NPC uses a specific equipment configuration (e.g., Melee). We selected

500 episodes to allow all of the algorithms to converge to the best strategy they

could find. When a change in the environment occurs, we need to explore to find

a new winning strategy. At the beginning of the second phase, as the agent started

losing using the previous best strategy (e.g., speed-melee), the ε value increased. As

a result, the NPC explored the ranged action twice (episodes 515 and 517) before

it finally started exploiting the ranged action (episode 523). At this point, the NPC

discovered the new best strategy (e.g., speed-ranged) and started winning consis-

tently. Consequently, the ε values started decreasing to the minimum ε value, εmin.

105

Figure 4.3: Exploration/exploitation (epsilon) values when the phase changes from
a Melee to a Ranged equipment configuration. The x-axis shows episodes starting
with episode 500 and the y-axis shows epsilon values between εmin = 0.005 and
εmax = 0.015.

Action-dependent Learning Rates

Traditionally, the step-size parameter, α, has either been set to a fixed value to

learn in a dynamic context or decayed at a rate that guarantees convergence in an

application that tries to learn an optimal static strategy. As stated previously, one

of the two main issues with using RL in computer games is the slow learning rate

in a dynamic environment [66]. In a game environment, the learning algorithm

should not converge to an optimal static strategy because the changing environment

can deem this static strategy obsolete (i.e., not optimal any longer). Moreover, a

global learning rate does not perform well against a dynamic opponent. We would

like learning rates for rare actions (heal or speed) to be different than learning rates

for frequent actions (melee or ranged). When the same learning rate is used for

all four actions, with some equipment configurations, the NPC does not learn to

avoid taking the heal potion even by the end of the first phase (500 episodes). In

addition, the NPC forgets to use a speed potion after the transition to the second

phase, even though taking the speed potion is still optimal. Varying the exploration

rate, ε, does not solve these problems. Action-dependent learning rates for taking

the heal potion and the speed potion were essential to solve these two problems.

106

Therefore, the second change we make to traditional RL techniques is to intro-

duce a separate step-size α(a) for each action a. This allows the learning algorithm

to accommodate situations in which a new best action for a particular state replaces

an old best action for that state, while a different action for a different state remains

unaffected. For example, at the beginning of a phase change when an agent in NWN

acquires a better ranged weapon, the agent will learn quickly to take a ranged ac-

tion in the second step of the combat instead of taking a melee action, because the

α(ranged) value is high. However, the agent will still correctly take a speed potion

in the first step of a combat episode, since the α(speed) parameter is unaffected by

the change to the α(ranged) values. We expect α(a) to converge to a small value

when the agent has settled on a best strategy and the environment does not change.

Otherwise, α(a) will be elevated, so that the agent learns fast. An elevated α value

often indicates a rare action (e.g., heal or speed) whose infrequent use has not yet

decayed its step-size from the high value at the start of training. The agent’s mem-

ory has faded with regards to the effect of this action. When this rare action is used,

its high α value serves to recall that little is known about this action and the current

utility is judged on its immediate merit. This situation is reminiscent of the start of

training when no bias has been introduced for any action.

Trend Detection

Although the introduction of action-dependent learning rates solved the heal and

speed problem, it did not solve another issue: what to do after a string of losses.

We encountered several situations, for both a static and a changing environment, in

which our agent could not determine if the environment had changed or not. The

problem was that we could not distinguish whether a sequence of losses was due

to an environment change, a change in the opponent’s strategy, or bad luck due to

stochasticity. We needed a mechanism to differentiate among an unlucky sequence

of losses (even during a winning strategy), changes in the environment (e.g., new

equipment configuration), ambiguous scenarios where no clear best strategy can be

identified, or combinations of these situations. We tried to reset the learning rate

when we detected a series of losses, but this approach was not successful. Our

107

solution was to rapidly decrease/increase the learning rate only under certain condi-

tions. This solution is more flexible than identifying a fixed window of consecutive

losses, since a sequence of losses followed by a single win and another sequence of

losses would not be detected by the window approach.

Therefore, the third change we make to traditional RL algorithms is to speed up

the learning rate when there is a recognizable trend in the environment and slow it

down when the environment is stable. This supports fast learning when necessary,

but reduces variance due to non-determinism in stable situations. Since α is the

learning rate, the problem reduces to one of determining a good time to increase or

decrease α. When the environment changes enough to perturb the best strategy, the

estimator of Q for the new best action in a given state will change its value. The RL

algorithm will adapt by generating a sequence of positive δ values, as the estimator

of Q continually underestimates the reward for the new best action until the estimate

of Q has been modified enough to identify the new best action. Conversely, when

the environment is stable and the policy has already determined the best action,

then there is no new best action, so the sequence of δ values will have random

signs, indicating that no trend exists.

When a trend for a specific action is detected, α increases to revise the estimate

of Q faster. When there is no trend, α decreases to reduce the variance in a stable

environment. We recognize the trend using a technique based on Delta-Bar-Delta

[78]. We compute delta-bar, the average value of δ over a window of previous

steps that used that action and then compute the product of the current δ with delta-

bar. We combine action-dependent alphas with trend-based alphas in that there is a

separate delta-bar for each action. When the product of δ with delta-bar is negative,

the opposite TD-error signs indicate an oscillation of the TD-error values around a

mean value, so α is decreased to lower variance. When the product is positive (as

illustrated in Figure 4.4), there is a positive correlation between the current δ and

the δ trend, so α is increased to learn the new strategy faster. The x-axis of Figure

4.4 shows 22 consecutive episodes in which the speed potion was taken, starting

with episode 408. The y-axis shows the parameter values for δ and delta-bar-delta.

However, we modified this approach using significant trends to ensure that variance

108

Figure 4.4: A trend is detected for the speed action starting with episode 408 of a
Melee configuration. The upper trace represents the δ values for the speed action,
while the lower trace represents the delta-bar-delta (dbd) values for speed immedi-
ately after the NPC drank a speed potion.

remains low and to accommodate unfair situations for our agent, where the best

strategy may not be able to attain a tie. Figure 4.5 shows the variables we compute

to determine whether the trend detected in Figure 4.4 is significant.

We detect a significant trend for an action when delta-bar (the average of the

individual δ values for the action over a fixed window of δ values) differs from the

average delta-bar, µδ, computed from the beginning of the game for that action by

more than a factor (f) times the standard deviation of delta-bar, σδ , also computed

from the beginning of the game, as illustrated in Figure 4.6.

Although delta-bar is computed over a fixed window of the latest δ values for

a particular action a, the average and the standard deviation of delta-bar are com-

puted over the entire set of episodes. Initially, α = αmax, since the agent needs to

use a high step-size when the best strategy is unknown.

If there is a significant trend (δδ > 0 ∧
∣

∣

∣δ − µδ

∣

∣

∣ > fσδ), we increase α to

learn faster, as illustrated in Figure 4.7. We change α in fixed size steps (αsteps

= 20) between αmin and αmax, although step sizes proportional to delta-bar are

109

Figure 4.5: We compute the delta-bar and the average delta-bar, µδ , for the speed
action to determine whether the trend for the speed action is significant.

Figure 4.6: We identify a significant trend for the speed action: the current variation
of delta-bar from the average delta-bar, µδ , exceeds the standard deviation (f = 1)
of delta-bar, σδ , for the speed action, while delta-bar-delta is positive.

110

reasonable. The value 20 was selected empirically and we found that a slightly

slower (20) change rate for the learning rate was more effective than the faster (15)

change rate for the exploration rate.

Figure 4.7: When a significant trend for the speed action is detected, the value of
the alpha parameter for the speed action is increased, so that the NPC learns faster.

If we identify a trend that is not significant (δδ > 0 ∧
∣

∣

∣δ − µδ

∣

∣

∣ ≤ fσδ), we do

not change α.

In the stable case in which no trend is detected (δδ ≤ 0), α decreases to reduce

variance so that the estimate of Q does not change significantly, as illustrated in

Figure 4.8 for a melee action. However, α is inferior bounded by αmin, because the

agent needs to respond to future changes in the environment that may alter the best

strategy.

For example, if a new powerful ranged weapon has been obtained, then the best

new action in a combat situation may be a ranged attack instead of a melee attack.

However, the damage done or taken each round (i.e., a game unit of time that lasts

six seconds) varies due to non-determinism, therefore the values of the δ for the new

best action (e.g., ranged) may vary as well. Figure 4.9 shows the α parameter values

(y-axis) for the ranged and the melee actions starting with episode 501, i.e., after

111

Figure 4.8: No trend is detected for the melee action at episode 38 of a Melee
configuration, therefore the value of the alpha parameter for the melee action is
decreased.

a phase change from Melee to Ranged. The x-axis shows the steps in which these

actions were taken. In the α(ranged) trace, only the steps where the range action was

taken are shown, since other actions do not affect the value of α(ranged). Similarly

for the α(melee) trace. This is the reason why there is a different number of steps in

each episode of each trace. An episode is not included in a trace if the appropriate

action was not taken during that episode. For example, in episode 501, the ranged

action was taken 14 times and the next time the ranged action was selected was

in episode 515 where it was selected only once. The figure indicates how the α

values for the ranged action change from episode 501 to episode 535 by which the

NPC has learned the new winning strategy. It also shows the α values for the melee

action from episode 501 to episode 509. The episode numbers in which the actions

are selected are marked on the α traces for the two actions. The delta-bar-delta

trends for the two actions are illustrated in Figure 4.9 as well. Notice that since the

x-axis represents consecutive steps in which an action is taken and melee is taken

more frequently than ranged (at least near episode 500), the episodes proceed more

slowly for melee.

112

After the phase change from Melee to Ranged (episode 501), the ranged action

is not selected until episode 515, since speed-melee was the winning strategy at the

end of the first phase. In this example, the ranged action was rarely selected in the

first phase. The last exploited ranged action occurred in episode 44, while the last

explored ranged action occurred in episode 278. Therefore, α(ranged) remained

high (0.18). When the ranged action is selected in the second phase (through explo-

ration in episodes 515 and 517), the resulting delta-bar-delta values are negative, in-

dicating that the new values are not part of a trend. Therefore, the α(ranged) values

decrease. When the NPC discovers that the new action yields good results (through

exploitation in episode 523), a trend for the ranged action emerges (episodes 523 to

526, steps 17 to 25 in Figure 4.9). As a result, the α values for the ranged action

increase, reaching the maximum α value, αmax = 0.2. In episodes 527 and 528,

steps 30 to 35, a trend for the ranged action is detected, but it is not significant.

Therefore, the α values for ranged remain unchanged. By episode 535, the α values

for ranged steadily decrease (no trend is detected) to the minimum α value, αmin

= 0.01. A small α(ranged) value shows that the NPC learned to properly use the

ranged action, in this case to replace the melee action with the ranged action. The

overall delta-bar-delta values for ranged are positive at the beginning, as the NPC

progressively learns about the consequences of the ranged action, and they have

random signs as the NPC finally discovers that ranged is the best new action.

Before the phase change, the winning strategy was speed-melee, so α(melee)

starts low (0.05). The new δ values for melee indicate no trend (as they did at

the end of the first phase), therefore in episode 501 the α(melee) values decrease.

A trend is detected in episode 502, steps 12 to 16, but it is not a significant trend,

therefore the α(melee) values remain the same. A significant trend for melee occurs

in episodes 502 and 503, steps 18 to 21, as well as in episode 505, steps 35 and 36,

therefore the α(melee) values increase. However, this is due to non-determinism,

as the NPCs have not changed their strategies yet. This situation is reflected in the

random signs of the delta-bar-delta values for melee. After episode 515 when the

ranged action starts to be selected, the melee action is rarely selected, but since

α(melee) already reached αmin, the α(melee) values remain low until the end of the

113

Figure 4.9: Phase change from a Melee to a Ranged configuration: after the NPC
learns to favour the ranged action, the values of the alpha parameters for both the
melee and the ranged actions decrease.

114

second phase. As the previous best action (e.g., melee) is replaced with the new

best action (e.g., ranged), the α(melee) values decrease to αmin. In this case, the

NPC learned that the melee action is not a winning action anymore.

The ALeRT algorithm is shown in Figure 4.2, in which we mark with two as-

terisks (**) our changes to the Sarsa(λ) algorithm. We are using the generalization

approach in our algorithm, rather than the other common type of policy representa-

tion, the tabular approach. We use a function estimator to generalize the mapping of

a state to an action, whereas the tabular approach uses a lookup table to store values

of an action in a particular state. For simplicity, Q(s, a) denotes the estimator of Q.

4.4 Implementing ALeRT in NWN

We define each NPC to be an agent in the environment (NWN game), controlled

by the computer, whereas the PC (player character) is controlled by the player.

The NPCs respond to a set of game events, such as OnCombatRoundEnd (CRE),

OnDeath, OnPerception, etc. If an event is triggered and the NPC has a script

for that event, then that script is executed. NWN combat is a zero-sum game (one

agent’s losses are the opponent’s wins). We define an episode as a fight between two

NPCs that starts when the NPCs are spawned and perceive each other as enemies

(having maximum hit points) and ends as soon as one of the agents dies (has zero

or less hit points). We do not consider draws, since there is always one NPC who

dies first. We define a step as a combat round during which the NPC must decide

what action to select and then execute the action. A combat round is defined in the

game by the CRE event that fires every six seconds in the game.

We define a policy as a set of rules that tells the agent what action to take for

every state of the game. It is a mapping from perceived states of the environment to

actions taken when in those states. We use an ε−greedy policy to select an action to

perform in each state according to the current Qa values. We estimate our Qa value

using a feature vector ~θ that has one feature for each state-action pair. The value

of a state represents the total long-term amount of reward that the agent is expected

to acquire in that episode, starting from that state. The value of a state takes into

115

account the potential following states and their associated rewards. Therefore, the

agent favours actions that result in states of maximum value not maximum reward,

since these actions produce the greatest amount of reward in the long run. For

example, the speed action may always yield a low immediate reward if the opponent

chooses a melee or a ranged action, but it can still have a high value because it is

regularly followed by other states, such as melee, that yield high rewards.

The state space S illustrated in Figure 4.10 consists of five Boolean features:

1. HSL: the agent’s HP are lower than half of its initial HP and the agent has a

potion of heal available,

2. EA: the agent has an enhancement potion available,

3. EO: the agent has an enhancement potion active, since approximately six

rounds after drinking the enhancement potion, this potion ceases to be active,

4. DM: the distance between the NPCs is in the melee interval (the NPCs are

close to each other), and

5. CONSTANT: a constant with value 1 that expresses the importance of an ac-

tion in comparison with the rest of the actions, especially when none of the

other features is active.

The action space A consists of four actions: melee, ranged, heal, and speed.

Therefore, there are 20 features in the ~θ feature vector, one for each state-action

pair. For example, if features 1, 3 and 5 are active and a melee action is taken,

three components of ~e will be updated in this step: 1-melee, 3-melee, and 5-melee.

These updates will influence the same components of ~θ and will affect the estimator

of Qmelee in future steps. The action space is illustrated in Figure 4.11.

When the agent is in a particular game state, the action to take is chosen based

on the estimated values of Qa using an ε−greedy policy. When we exploit (choose

the action with the maximum estimated Qa for the current state) and there is a tie

for the maximum value, we randomly select among these actions. We explore us-

ing a uniformly random approach (irrespective of the estimated Qa values). Using

116

Figure 4.10: Four of the states in the state space for the Fighter role: HSL (the NPC
is injured), EA (the NPC has the speed enhancement potion in hand), EO (the NPC
has just drunk the speed enhancement potion), and DM (the NPCs are within melee
distance). The constant state is not represented in this figure.

Figure 4.11: The action space for the Fighter role.

117

exploration, we can select actions that lead to states that we may never select other-

wise.

We define the score of a single episode as 1 if the agent wins the episode and

-1 if it loses. The agent’s goal is to win a fight consisting of many consecutive

episodes, i.e., to maximize the total reward in the long run. One way to measure

the agent’s success is to assess the difference in hit points (HP) lost from one step

to another between the opponent and the agent. We define the immediate reward, r,

at the end of each step of each episode in formula 4.1:

r = 2 ∗

(

HPs′

HPs′ + HPo′
−

HPs

HPs + HPo

)

, (4.1)

where the subscript s represents the agent (self), the subscript o represents the op-

ponent, a prime (′) denotes a value after the action and a non-prime represents a

value before the action. As a validation of this formula, the sum of all the immedi-

ate rewards during an episode amounts to 1 when our agent wins and -1 when our

agent loses. Moreover, the sum of all the rewards throughout the game amounts to

the difference in episode wins and losses during the game.

A standard action [60] is a type of action that may be executed during a combat

round, such as a melee or a ranged attack, casting a spell, or using a magic item. A

combat round is the interval between two consecutive OnCombatRoundEnd events

that occur every six seconds in the game. An agent can execute a standard action and

a move action during a combat round, however, it cannot execute another standard

action in place of the move action.

We consider an episode to be the interval between the perception of an enemy,

which triggers the game’s OnPerception event, and the death of one of the NPCs,

which triggers the game’s OnDeath event. The definition of an episode may be ex-

tended from individuals to teams. More specifically, for individual combats (teams

of one NPC), the death of either of the two NPCs marks a terminal state for our

NPC. For teams, the death of all the members of either team marks a terminal state

for our algorithm. In the combat framework that we used for our experiments [77],

when either team dies, the remaining NPCs from the other team are destroyed in

preparation for the next episode. Any necessary updates of the data structures are

118

performed before the team is destroyed.

Some actions, such as drinking a speed or a heal potion, do not require the

entire combat round duration to execute. If our NPC is attacked immediately after

drinking a heal or a speed potion, then a script is executed, so that the NPC has the

opportunity and time to select an action to execute for the next combat round before

this combat round ends. We call this action an early action. However, the NPC

cannot legally execute this early action, since two actions must not be performed

during the same combat round.

Both the original NWN AI and Spronck’s AI enqueue actions immediately when

any one of the following four events occurs: attack (OnPhysicalAttacked), damage

(OnDamaged), cast a spell (OnSpellCastAt), or disturb (OnDisturbed). We have

already given an example using the OnPhysicalAttacked event. The other three

events provide similar opportunities to select an early action.

We discovered the necessity of early actions by observing an unfair number of

actions performed by the opponent NPC during early experiments. In our initial

implementation, we cleared all actions of our NPC’s action queue at the end of

every CRE and we did not enqueue the next action as soon as a previous action

was complete. Instead, we always waited until after the next CRE. As a result,

in cases in which an early action should have been selected, we found that the

opponent performed more action strikes than our NPC. Effectively, we ignored the

opportunity to select an early action when one of the four early action triggering

events occurred. Since neither the default NWN strategy nor Spronck’s strategy

ignore early events, we modified our code to support early actions to ensure a fair

number of actions for each NPC.

For example, assume that the first step of an episode starts with the selection and

then the execution of a speed or heal action. If the NPC is attacked, then an early

action is triggered and the feature vector and action probabilities are updated, and a

new action is selected (but not executed). We cannot update the immediate reward

and the data structures, since the number of hit points of each NPC may change

before the CRE occurs and these changes must be reflected in the immediate reward.

However, when a CRE is reached, the feature vector and action probabilities are

119

updated. If there is no early action selected, a new action is selected. In either

case, we also compute the immediate reward for the previous action and update the

data structures. The reason we do not wait until the CRE to select our new action

is because this can result in fewer actions for our NPC. As indicated earlier, the

full effect of an action (e.g., current hit points of each NPC after the execution of

an action) can only be known after a CRE. There is also an issue caused by the

lack of synchronization between the NPCs’ CREs. An attack of opportunity is a

single extra melee attack that is performed when an enemy performs actions such

as drinking a potion, casting a spell, or using a ranged weapon. The effect of an

attack of opportunity by the enemy NPC is recorded during the enemy’s action,

which may occur during, before, or after our NPC’s combat round. Therefore, we

only apply the update of the main data structures used in the ALeRT algorithm after

a CRE is reached.

4.5 Using RL in ScriptEase

We developed a mechanism that enables story authors to automatically gain the

benefits of a learning system by using an enhanced behaviour model. We can dis-

tinguish three categories of story designers that use ScriptEase. The first category,

authors, encompasses designers who use ScriptEase patterns with only small adap-

tations (e.g., setting options) and who only use the ScriptEase Story Designer tool.

The second category, pattern designers, consists of designers who create their own

patterns using the ScriptEase Pattern Designer tool. The third category, program-

mers, consists of designers who create new atoms that will be used for patterns,

using the ScriptEase Pattern Designer tool.

Our goal is to show that ScriptEase is flexible and it can be easily modified

to support learning for a real game environment to facilitate NPC adaptation to

new situations. Moreover, this learning system can be used by game story authors

without programming.

120

4.5.1 Using an RL Performance

An author uses our learning system by instantiating a performance (e.g., RL-Combat

performance illustrated in Figure 4.12). The author sets the only option of this per-

formance, Actor, to a specific NPC. Then, the author sets the options of all roles

that are not activated by explicit role cues, sets the role cue options, expands all the

role cues, and sets the role options. An RL performance contains two roles: RL-

Listener-Name and RL-Name, where Name can be substituted by the name of the

particular learning role (e.g., Combat) as shown in Figure 4.12.

For example, to use an NPC with combat learning, the author may instantiate the

RL-Combat performance illustrated in Figure 4.12. For brevity, we do not show

the definition atoms included in the RL role cue in this figure. This performance

contains both the RL-Combat role and the RL-Listener-Combat role. The author

has added the Guard role to this performance. Alternately, the author can start

with a Guard performance and add the RL-Combat and the RL-Listener-Combat

roles. The RL-Combat role is activated by the RL cue, i.e., by the presence or

actions of an enemy.

Figure 4.12: An RL performance in ScriptEase that contains the RL-Combat and
RL-Listener-Combat roles.

The author does not have to modify the RL components (e.g., RL parameters)

to use a behaviour. We set default values for behaviour patterns from the moment

the patterns are created. Our behaviour system provides added value for the author

who takes advantage not only of the power of behaviour patterns, but also of the

convenience of a transparent learning system.

121

4.5.2 RL Cue Components

The components of the RL role cue can be inspected to understand how RL is rep-

resented in ScriptEase. However, an author does not need to see these components

in order to use an RL performance. A pattern designer must assemble these com-

ponents to create a new RL pattern.

The RL-Listener-Name role contains a behaviour cue for each event that trig-

gers a single learning step. These behaviour cues contain an action atom, Activate

RL cue, that triggers the start step and each continuation step of the learning pro-

cess by activating an RL role cue. The RL role cue activates the RL-Name role.

The RL-Name role contains the default Start-RL behaviour cue that selects a single

behaviour for each learning step as soon as the role becomes active. The Start-RL

behaviour cue is a refinement of the normal Start behaviour cue that adds support

for RL data structure updates. Therefore, all the RL basic behaviours are triggered

by the Start-RL behaviour cue of the RL-Name role. The Activate RL cue ac-

tion activates the RL role cue and, at the same time, it fires the user-defined event

that corresponds to the Start-RL behaviour cue of the activated role. Once the RL-

Combat role is activated, it remains active until it is changed to a different role.

Therefore, we need to ensure that the basic behaviours are triggered by the Start-

RL behaviour cue to prevent them from being performed continuously while the

role is active, without complying with the combat round boundaries.

Since the RL-Listener-Name role is not activated by a role cue, it is inherited

by all roles in the performance, including the RL-Name role. Therefore, while the

RL-Name role is active, it can respond to all the behaviour cues included in the

RL-Listener-Name role, in addition to its own behaviour cues. The end of the

learning process is triggered by behaviour cues in the RL-Name role. Thus, when

the learning ends, the NPC’s role may be set to the role used before learning started.

The role RL-Name (e.g., RL-Combat shown in Figure 4.13) contains at least two

behaviour cues, one to select the appropriate behaviour in an RL step (Start-RL be-

haviour cue) and at least one to end a learning episode (either Creature death or No

enemy perception behaviour cues). A behaviour cue that ends a learning episode

can also optionally restore the role. The end of a learning episode is triggered by

122

Figure 4.13: The Activate RL cue action starts a generic RL step, the Activate RL
early cue action starts an early RL combat step, and the End episode action ends a
generic RL episode.

123

specific events defined by the author depending on the particular learning situation.

For example, in a combat situation, the end of an episode may be marked by either

the Creature death (implemented using an OnDeath event) or the No enemy per-

ception cue (implemented using as an OnHeartbeat event that polls for enemies in

the area), as illustrated in Figure 4.13. As in the previous figure, we do not show

the definition atoms included in the RL role cue for brevity. The behaviour cues that

trigger the end of an episode contain two ScriptEase actions, End episode and Ac-

tivate previous role. The End episode action updates the data structures involved

in the learning process. The author may specify a scenario that happens in the last

step of each episode using the behaviour cues that end an episode. The Activate

previous role action changes an NPC’s current role to the NPC’s previous role and

re-spins. For example, when an NPC who performs a Guard role perceives an

enemy, the Enemy perception role cue changes the NPC’s role from Guard to RL-

Combat. More specifically, the Enemy perception role cue activates the RL role

cue that activates the RL-Combat role. The Start-RL behaviour cue is activated

immediately when the role is activated. As a consequence, the NPC selects one of

the basic behaviours triggered by the Start-RL behaviour cue. When the fight ends,

one of the two behaviour cues, Creature death or No enemy perception, changes the

NPC’s role from RL-Combat to the NPC’s previous role, Guard. The author may

delete the optional Activate previous role action that restores an NPC’s role to the

NPC’s previous role, if this does not reflect the author’s intent.

If an author modifies the structure of an existing behaviour pattern, then the

author must modify the state space if necessary. Note that the author does not need

to provide the action space, since ScriptEase automatically generates the action

space from the behaviour structure. Each action corresponds to a basic behaviour

included in a role. For example, if an author adds a new behaviour to a role, the

action space is automatically updated, but the state space may need to be modified.

Figure 4.14 shows the components of the RL role cue for the combat RL example

from Figure 4.13.

124

Figure 4.14: The components of the RL role cue. The default parameter values were
determined empirically by the pattern designer.

125

Reward Function

The reward function is represented in ScriptEase using a definition atom. This defi-

nition, named SE RL REWARD, is included at the RL role cue level as illustrated in

Figure 4.14. The RL system recognizes this particularly named definition as being

the RL reward. If the author needs to modify the reward function, a new definition

with this name can be added to replace the default reward.

RL Parameters

The RL parameters are represented in ScriptEase using definitions. These defini-

tions are included at the RL role cue level as illustrated in Figure 4.14. An author

may adjust an RL parameter value (e.g., set the SE RL LAMBDA parameter to 0.5)

or it can replace an RL definition (e.g., SE RL EPSILON), but it cannot change the

name of the definition.

State Space

The state features are represented in ScriptEase using binary definitions, as illus-

trated in Figure 4.14. Definitions for each of the binary features are included at the

RL role cue level. A pattern designer who desires to change the state space may

modify, add, or delete the binary definitions. The labels of the binary definitions

that constitute the state space are marked with the SE RL prefix. For example, if

a new binary state, DSO (defensive spell on), is added to the state space, the author

may add as many auxiliary definitions necessary for the computation of the new

state, followed by a binary definition with the label SE RL DSO for the new state.

Action Space

The actions comprising the action space are automatically generated from the be-

haviours contained in a role. No definitions are required to express the action

space. For example, for the Guard role, the action space consists of four actions,

melee, ranged, heal, and speed that correspond to the four basic behaviours Melee,

Ranged, Heal, and Speed.

126

Auxiliary Definitions

These definitions are used to compute the state space features. They retrieve aux-

iliary objects and values needed to create the binary definitions for the state space.

The auxiliary definitions are added at the RL role cue level, after the definitions

necessary for the RL parameters, i.e., after the definition of the δ window size il-

lustrated in Figure 4.14. For example, an auxiliary definition, Opponent, is used to

compute the distance between our agent and its closest enemy. The computed state,

DM (distance melee), is represented as a ScriptEase binary definition.

4.5.3 Creating and Adding RL Behaviours

Suppose that a pattern designer needs to add a fifth behaviour to a Fighter role,

which causes the NPC to move a certain distance away from the enemy. This be-

haviour provides the fighter NPC with the ability to evade the enemy, drink an

available potion of speed or heal if necessary, and then resume the combat. To ac-

complish this, the pattern designer needs to select the Move away behaviour from

the library of available behaviours. If this behaviour is not available in the library,

the pattern designer can easily create it by adapting the Approach task of the Ap-

proach behaviour, in which the Move action atom (a call to the NWScript function

ActionMoveToObject) is replaced with the new Move away action atom (a

call to the NWScript function ActionMoveAwayFromObject).

When the Fighter role is compiled in ScriptEase, the new Move away be-

haviour is automatically added to the action space as the move away action. No

change is necessary to the state space. However, if the pattern designer needs to

create an NPC that learns to retreat only when it has very low hit points, the con-

cept of “very low hit points” must be added to the state space. For example, the

pattern designer may define a new state that indicates when the NPC’s hit points

reach 10% of their initial value. The pattern designer simply selects an already

available binary ScriptEase definition to express this binary game state. In general,

the pattern designer adds binary ScriptEase definitions for each of the state features.

Sometimes auxiliary definitions are needed to create the state definitions. For ex-

127

ample, the opponent is set whenever an event activates the RL role cue (e.g., the

attacker in the OnPhysicalAttacked event). The auxiliary definition, Opponent, in

Figure 4.14 retrieves this opponent. The opponent is needed to compute the binary

DM (distance melee) state definition that is added to the RL role cue. In a similar

manner, binary definitions for HSL, EO, EA are added, as illustrated in Figure 4.14.

The Constant feature is implicit to the RL role cue, thus it is not added by the pattern

designer.

Figure 4.15: NWScript code for the update of the reward function.

4.5.4 Creating and Adding RL Roles

Many times, a pattern designer would like to create new roles based on existing

roles or apply the RL framework to non-combat learning situations.

Other Combat RL Roles

For example, a pattern designer may want to create a different combat role (e.g., a

Sorcerer role). The sorcerer NPC performs five behaviours: casts a spell, drinks

128

a speed potion, drinks a heal potion, fights with a melee weapon, and fights with a

ranged weapon. Behaviour patterns for these behaviours exist in ScriptEase.

The pattern designer needs to first create a new role in ScriptEase and add any

necessary options. The Actor option is available by default when the role is cre-

ated. Then, the pattern designer instantiates each of these behaviour patterns in

the Sorcerer role. Since the game state space is not defined, the pattern designer

needs to add binary ScriptEase definitions representing the state features. Since the

Fighter and the Sorcerer roles are combat roles, they may share the same game

state space. For this reason, the easiest way to create a Sorcerer role is to adapt

the Fighter role by replacing its behaviours with sorcerer-specific behaviours. In

this case, no RL changes are necessary, because the action space is generated au-

tomatically by ScriptEase. However, the pattern designer may decide to further

edit this role by adding a few new states to the existing state space. For example,

the designer may add a binary state indicating whether the sorcerer is currently af-

fected by a defensive spell. In addition, if a new reward function is desired for the

new role, the programmer can create a new definition atom in ScriptEase, using

NWScript code. The current fighter combat reward function is illustrated in Figure

4.15.

Generic RL Roles

We can apply our RL algorithm, ALeRT, to non-combat situations. For example,

a guard NPC can decide when to rest, check, or patrol using learning. We plan to

develop a more generic collection of RL role cues. A guard RL role cue will help

create a more effective guard NPC. A challenge posed by non-combat situations is

the need to define the episode boundaries, i.e., we need to generalize the concept

of a round-end. We are considering time-based episodes, such as an hour or a time

interval between several OnHeartbeat events (approximately six seconds each).

4.6 Integrating RL in ScriptEase

When a creature with a performance spawns in the game, the OnSpawn script at-

tached to that NPC initializes the creature in preparation for the behaviours it will

129

Figure 4.16: The events that activate the RL role cue for combat.

perform (i.e., it resets the latent priority and it starts the behaviour event). The

behaviour event is a user-defined event fired on the NPC that causes the OnUserDe-

fined script to execute. As a result, the performance (e.g., Wanderer) starts by ac-

tivating the default Start role cue. Any roles included in a performance whose role

cues are triggered become activated and one of these roles is selected randomly. If

the selected role has any basic behaviours that can be selected (i.e., their conditions

do not prevent them from selection), then the NPC executes one of these behaviours

in concordance with their priority scheme.

The latent role cue, RL, triggers the beginning of the combat RL (e.g., if the

NPC detects a hostile creature on an OnHeartbeat event). For example, in the case

of a guard NPC, if the guarded item is stolen from a chest, the thief is set to be

hostile to the guard NPC. This activates the RL role cue. As a second example,

the Wanderer performance illustrated in Figure 4.17 contains a Fighter role ac-

tivated by an RL role cue and a Wanderer role activated by the Start role cue.

When the NPC perceives an enemy, the Fighter role becomes active and it selects

130

Figure 4.17: The cues used in combat RL for a fighter NPC.

among one of its four behaviours (melee, ranged, speed, and heal) using our learn-

ing algorithm. The fight stops after the first combat round if no other role cue or

action reactivates it. As long as there is an opponent in sight, the fight goes on (the

OnCombatRoundEnd event fires to continue the fight). In addition to picking an

action only when a combat round occurs, there is one exception in which we trigger

an RL role cue before a combat round is complete. We need to select an action

right away when our NPC is attacked during a round in which it performs non-

attack actions (e.g., heal or speed). These non-attack action are performed faster

than attack actions. The default NWN scripts call the DetermineCombatRound

function when the NPC is not engaged in combat but has to start combat when it

is attacked by an enemy, by firing one of the following events: OnPysicalAttacked,

OnDamaged, OnDisturbed, and OnSpellCastAt. To ensure a fair number of actions

for both NPCs, we also activate the RL role cue and fire an event that activates the

Start-RL behaviour cue when these four events occur, by performing the Activate

RL early cue action atom. For a general RL situation, only the Activate RL cue

131

action atom is necessary to activate the RL role cue. The role activated by the RL

role cue triggers its Start-RL behaviour cue that selects a basic behaviour based on

learning. The Start-RL behaviour cue has an early variable that is set to true when

the Activate RL early cue action atom is performed and it is set to false when the

Activate RL cue action atom is performed. If the value of the early variable is true,

the Start-RL behaviour cue selects and enqueues a behaviour to perform in the next

step (it does not perform that behaviour in the current step). If the early variable is

false, the Start-RL behaviour cue selects, enqueues, and performs a behaviour.

Finally, the fight stops when our learning NPC dies or when the last hostile NPC

dies. When our NPC dies, the OnDeath event is triggered on our NPC, activating the

Creature death cue and causing an update of the learning data structures. However,

the combat may also end when our NPC ceases to perceive an enemy, i.e., when the

OnHeartbeat - No enemy perceived event is fired, activating the No enemy perceived

cue. In this case, the latent queue empties, since the role is no longer active. The

behaviour cues that determine the end of an episode (e.g., end of combat in a combat

RL scenario) include an action atom that sets the role to the previous role (i.e., the

role used before the combat started), as illustrated in Figure 4.17. For example, if

all the enemies leave the area, the End of episode action atom causes our NPC to

return to its interrupted behaviours or to its previous role.

In general, to create a new RL performance, a user needs to provide behaviour

cues that start, continue, and end an episode. An RL performance must contain

an RL-Listener-Name role that consists of several behaviour cues. One such cue

(e.g., Enemy perception) activates the RL role cue that starts the learning process.

Another behaviour cue (e.g., OnCombatRoundEnd) activates every learning step.

The role itself, RL-Name, should provide at least a behaviour cue that ends a learn-

ing episode (e.g., Creature death), so that the role can be restored to a previous role

when the learning ends. The extra behaviour cues included for the combat example

are specific to combat and are not necessary in a general learning process. In ad-

dition, the user needs to insert a Start-RL behaviour cue into the role to trigger the

basic behaviours that will be learned.

132

4.6.1 The RL Auxiliary File

The parameters needed for the ALeRT algorithm outlined in Figure 4.2 are the

following: ε the exploration vs. exploitation ratio, which is the ratio between using

a random policy to using a predefined policy (a greedy policy, in the case of our

implementation of Sarsa), α the learning rate, λ the trace decay, and γ the discount

rate. The estimator of the value function for action a, Qa, is initialized with zero

and it is represented by the sum of the θ values corresponding to action a for the

active states.

In addition to the traditional RL parameter values: ε, α, λ, γ, ALeRT adds new

parameter values: εmin, εmax, εsteps, αmin, αmax, αsteps, δwindow, and f , the standard

deviation factor used by the trend mechanism. Note that the ε and α parameters val-

ues are automatically computed from the values of the εmin, εmax, εsteps, and αmin,

αmax, αsteps respectively, using formulas represented by ScriptEase definitions.

An author does not have to change or view parameter values. A pattern designer

who wishes to tune the traditional RL parameters can assign new values to the def-

initions found at the RL role cue level. For example, if a pattern designer wishes to

modify the value of the lambda parameter, the designer expands the RL role cue and

changes the default value that defines the lambda parameter to a desired value in the

corresponding definition, as illustrated in Figure 4.14. If a pattern designer wishes

to change the values of the epsilon or alpha parameters, regardless of the default

formula provided by our algorithm, the designer needs to add definition atoms for

the SE RL EPSILON and SE RL ALPHA variables respectively to define the new

formulas. A programmer may directly modify our RL implementation, for instance

to tune the traditional RL parameter values or to change the learning algorithm. In

this case, the programmer’s modifications will be localized to the i se rl aux-

iliary file that contains the RL code. The i se rl auxiliary file is automatically

inserted in any module compiled in ScriptEase. In general, the changes necessary

to use our learning algorithm for other situations (combat or non-combat scenarios)

are localized to the RL auxiliary file.

133

4.6.2 Changes to Spronck’s Arena Module

There were several small changes that we made to the combat framework to accom-

modate our experiments. The most significant changes were the order of spawning

of the NPCs, support for dynamically changing the equipment configuration be-

tween phases, and destruction delay of our NPC after the opponent NPC died until

after our NPC reaches a CRE.

We alternate the creation of the NPCs for every episode, so that no NPC has an

unfair advantage by being spawned first and attacking first, possibly with an extra

attack of opportunity. In all experiments, we consider an even number of episodes

and in each episode we spawn the NPCs alternately.

For a switch in configuration, we created a copy of each fighter NPC with a

different blueprint resref and a different inventory configuration (equipment). To

integrate this change into Spronck’s code, we created a sign and a lever for each of

the new fighters to ensure that learning is used by Spronck’s NPC after the switch

in configuration as well. We modified four files in Spronck’s module v.3 to address

fairness (the order of NPC spawning) and the switch in configuration (spawning

NPCs from a different blueprint resref after episode 500). Changes in the modified

files are marked using a bold font and are presented in Appendix C. We have created

an additional file, i se rl modific, for the implementation of these changes.

This file allows for potentially other additions to the system that involve the smooth

integration of our algorithm with other learning systems.

The end of an episode occurs when either of the NPCs dies. If our NPC dies and

the opponent has not died yet, our data structures are updated when the OnDeath

event occurs. No combat framework change was necessary in this case. If the other

NPC dies and our NPC has not died yet, Spronck’s combat framework destroys

our NPC a few seconds later on the OnHeartbeat event of a third NPC (Igor, the

referee). If no CRE for our NPC has occurred before our NPC’s destruction, the data

structures will not be updated. Therefore, we marked our NPC as non-destroyable

until after the occurrence of our NPC’s CRE event. We did not have to change

Spronck’s framework code to accommodate this change. Instead, setting a non-

destroyable flag on our NPC simply changes the effect of the framework code.

134

4.7 Experiments and Evaluation

We used Spronck’s NWN combat module (illustrated in Figure 4.18) to run exper-

iments between two competing agents. Each agent was scripted with one strategy

from a set of seven strategies.

Figure 4.18: Two fighters in Spronck’s arena performing a ranged (left) and a melee
(right) action, respectively.

• NWN is the default NWN agent, a rule-based probabilistic strategy that suf-

fers from several flaws. For example, if an agent starts with a sword, it only

selects between melee and heal, never from ranged or speed.

• RL0, RL3, and RL5 are traditional Sarsa(λ) dynamic learning agents with α

= 0.1, ε = 0.01, γ = 1, and with λ = 0, λ = 0.3, and λ = 0.5 respectively.

• ALeRT is the agent that uses our new strategy with action-dependent learning

rates that vary based on trends, with the parameters initially set to α = αmax

= 0.2, ε = εmax = 0.02, λ = 0 (fixed), γ = 1, and with αmin = 0.01, αmax =

0.2, αsteps = 20, εmin = 0.005, εmax = 0.02, εsteps = 15, δwindow = 10, and f =

1, where f is the number of standard deviations that delta-bar must be away

from the average delta-bar to identify a significant trend. These values were

determined empirically.

• M1 is Spronck’s dynamic scripting agent (Spronck’s learning method 1), a

rule-based strategy inspired by RL, called dynamic scripting.

135

• OPT is a hand coded optimal strategy that we created based on the available

equipment. For example, for the Melee equipment configuration detailed in

Table 4.1, the OPT agent drinks a speed potion and then performs melee

actions until the end of the episode. We refer to this sequence of actions as

S-M*. The optimal action sequence for the Ranged configuration is S-R*

(speed followed by repeated ranged actions).

Each experiment consisted of 50 trials and each trial consisted of either one or

two phases of 500 episodes. At the start of each phase, the agent was equipped

with a specific configuration of equipment. We created the phases by changing

each agent’s equipment configuration at the phase boundary. In the first phase, we

evaluated how quickly and how well an agent was able to learn a winning strategy

without prior knowledge. In the second phase, we evaluated how quickly and how

well an agent could adapt to sudden changes in the environment and discover a

new strategy. In essence, the agent must overcome a bias towards one strategy to

learn the new strategy. Each equipment configuration (Melee, Ranged, Heal) has

an optimal action sequence. For example, the melee weapon in the Melee config-

uration does much more damage than the ranged weapon, therefore, the optimal

strategy uses the melee weapon rather than ranged. The optimal strategy for the

Melee configuration is speed followed by repeated melee actions until the episode

finishes. Similarly, the Heal configuration has a potion that heals a greater amount

of HP than the healing potions in the other three configurations, because it com-

pletely restores the agent’s hit points. Therefore, the optimal strategy for the Heal

configuration is speed, repeated melee actions until the agent’s hit points are less

than half of the initial value, heal, and repeated melee actions until the end of the

episode. The optimal action sequence for each configuration is shown in Table 4.1.

Since we could not disable the graphics without affecting the rules of combat

and since the duration of a combat round is six seconds, each experiment ran for at

least ten hours. In all experiments, the two competing agents had exactly the same

equipment configuration and game statistics. However, the agents had different

scripts that controlled their behaviours. In the experiments illustrated in Figure

4.19 and Figure 4.20, we ran only a single phase (500 episodes).

136

Config. Melee Ranged Healing Enhancement Optimal
Weapon Weapon Potion Potion Strategy

Melee GS +1 HC +1, B Cure Serious Speed S-M*
Ranged LS LB +7, A +5 Cure Light Speed S-R*

Heal LS +3 HC +1, B Heal Speed S-M*-H-M*

Table 4.1: Agent equipment configurations and optimal strategies.
Legend: GS: Great Sword; HC, B: Heavy Crossbow and bolts; LS: Longsword; LB, A:
Longbow and arrows; S-M*: speed followed by repeated melee actions; S-R*: speed fol-
lowed by repeated ranged actions; S-M*-H-M*: speed followed by repeated melee actions,
heal, and more melee actions.

Figure 4.19: RL0 and RL3 vs. NWN and OPT.

137

Each data point in a graph represents an agent’s winning percentage against

the opponent after each group of fifty consecutive episodes averaged over all trials.

The x-axis indicates the episode group and the y-axis indicates the agent’s average

winning percentage during that episode group. For example, the data point at x=200

represents the average winning percentage of the group of episodes between episode

151 and episode 200 over all trials for that experiment.

4.7.1 Motivation - ALeRT, M1, and RL vs. Static Opponents

In this set of experiments, we compare the combat results of the ALeRT, M1, and

RL (i.e., Sarsa(λ) with different λ values) agents respectively against two static

agents: NWN, the default NWN strategy and OPT, the optimal strategy for each

configuration.

RL vs. NWN and OPT

Our first set of experiments compares RL vs. NWN and OPT. Originally, we thought

that traditional RL could be used for agents in NWN. In fact, RL0 defeated NWN

by a range of 70% to 93%, as shown in Figure 4.19 for both Melee and Ranged

configurations. RL agents with other RL parameter values also defeated NWN (not

shown in Figure 4.19). NWN performs poorly since if an agent starts with a sword

equipped, it only selects from melee and heal, never from ranged or speed actions.

However, although we experimented with many different RL parameter values, RL

could not converge to the optimal strategy against OPT. For example, Figure 4.19

shows that RL0 and RL3 could attain only 34% and 38% wins respectively against

OPT with the Melee configuration after 500 episodes, and 41% and 40% wins re-

spectively for Ranged. Experiments with various other parameter values did not

yield better results. For example, RL5 performed better than RL0 and RL3 for

Melee, but performed worse for Ranged. It was clear that we had to change the

Sarsa(λ) algorithm in a more fundamental manner. Therefore, we developed the

action-dependent learning rates in the ALeRT algorithm to overcome this limita-

tion.

The results in Figure 4.19 show that RL defeated NWN and Figure 4.20 shows

138

Figure 4.20: ALeRT and M1 vs. NWN and OPT.

that ALeRT defeated NWN. After 500 episodes, ALeRT won 70% for Melee and

78% for Ranged (Figure 4.20), while RL0 won 92% and 90%, respectively (Figure

4.19). ALeRT could achieve a closer winning rate to RL against the default NWN

by tuning the parameters, since ALeRT is a generalization of RL. However, ALeRT

converged to the optimal strategies for Melee and Ranged configurations against

OPT, while RL did not converge. The action-dependent learning rates in ALeRT

are responsible for this convergence. Even though RL performs somewhat better

than ALeRT against the default NWN strategy, ALeRT’s behaviour is more suit-

able for a computer game, where it is not necessary (and usually not desirable) for a

learning agent to crush either a PC or another NPC agent by a large margin. In fact,

ALeRT can be further throttled to reduce its winning percentage in several ways.

The simplest solution is to increase ε, so that more random actions are selected.

The second solution is to change the reward function so that winning is not always

rewarded. Essentially, ALeRT should always learn the action with the highest re-

ward, even if it does not always choose to perform that action. Thus, ALeRT will

not always defeat its opponent, but if the opponent changes, ALeRT will be able to

adapt to the new conditions and still be a worthy adversary. However, it is impor-

tant for a learning agent to be able to approach the skill level of any agent, even an

139

optimal one. If the learning agent is the opponent of a PC that has a near optimal

strategy, the learning agent should provide a challenge. If the learning agent is a

companion of the PC and their opponents are using excellent strategies, the player

will be disappointed if the companion agent causes the PC’s team to fail.

ALeRT and M1 vs. NWN and OPT

Although RL cannot compete with OPT, M1 competes well against OPT, just as

ALeRT does. A natural question arises: why use ALeRT instead of M1? The

experiments in the next subsections are designed to address this question.

Figure 4.21: ALeRT vs. NWN and OPT.

Our second set of experiments, illustrated in Figure 4.20, compares combat be-

tween ALeRT and a static agent to combat between M1 and the same static agent for

the Melee and Ranged configurations. For clarity, the two figures, Figure 4.21 and

Figure 4.22, each show a subset of the traces illustrated in Figure 4.20 for ALeRT

and M1 respectively. In fact, we used two static agents, NWN and OPT. We hand-

coded OPT to use the optimal S-M* and S-R* strategies, as shown in Table 4.1.

The upper four traces of Figure 4.20 show the results against NWN. M1 had

a higher final winning rate (94% - 47 wins out of 50) than ALeRT (70%) against

NWN for the Melee configuration and for the Ranged configuration (90% vs. 78%).

140

Figure 4.22: M1 vs. NWN and OPT.

These winning rates are more than 20% higher than ALeRT’s winning rates. How-

ever, as stated before, an NPC should challenge, not defeat the PC, so both ALeRT

and M1 could be throttled to have lower winning rates.

The lower four traces of Figure 4.20 show the results against OPT. ALeRT con-

verged to OPT in both configurations, but M1 did not converge to OPT for Ranged

by the end of the experiment. M1 converged more slowly than ALeRT for Melee,

since the latter won 48% after the first 100 episodes and exceeded 46% after that.

M1 won only 30% at episode 100 and did not reach 46% until episode 450 for

Melee. For Ranged, ALeRT converged quickly, winning 44% after episode 150 and

46% by episode 450, while M1 achieved its highest win rate (40%) after episode

450. Although a higher winning rate is not necessarily better in computer games, a

winning rate (at least 50%) is necessary to ensure a competitive game experience.

The Melee configuration was taken directly from Spronck’s module [77], but

the Ranged configuration was created for our experiments to test adaptability. It

is possible that M1 was tuned for the Melee configuration and re-tuning may allow

M1 to converge to the OPT-Ranged strategy. Recall that the RL agents outperformed

NWN, but they did not converge to OPT (Figure 4.19).

141

4.7.2 Dynamic Opponents - ALeRT and RL vs. M1

In this set of experiments, we studied RL and ALeRT versus a dynamic opponent,

M1. As shown in Figure 4.23, the RL agent cannot defeat the M1 agent, while the

ALeRT agent ties the M1 agent.

In Figure 4.23, a score of 50% represents a tie. Each data point represents

the average score over 300 trials (100 for each of the three configurations: Melee,

Ranged, and Heal). The RL score is consistently less than 50% (42% at episode

500), while the ALeRT score is close to 50%. To be useful, a learning algorithm

must be able to at least tie (i.e., a winning rate of 50%) every other strategy. If the

opponent’s strategy is optimal, then a tie is the best a learning agent can do. Since

RL0 can only attain a sustained winning rate of 42% against M1, it is an inadequate

learning algorithm.

Figure 4.23: RL0 and ALeRT vs. M1 - Phase 1 (500 episodes).

It was clear that RL (lower trace) was inferior to M1, therefore, at this point in

the research project we designed the enhancements to create the ALeRT algorithm

(upper trace).

An analysis showed that RL’s poor performance was caused by a long string of

losses after the learning rate had decayed to a small value, so rapid adjustment was

142

impossible. Therefore, we first added a fixed window size to represent consecutive

lost episodes. If the number of losses exceeded a threshold (e.g., 15), we restarted

our learning algorithm with initial parameter values and Q-values reset to zero. This

approach did not prove successful because of the lack of flexibility imposed by the

fixed window size. Therefore, we developed the trend approach. As can be seen in

Figure 4.23, this approach was successful, since it attained a winning rate of 50%

against an optimal M1 strategy.

4.7.3 Adaptability in a Dynamic Environment

In this set of experiments, we measured how fast a learning agent could recover after

a change in equipment configuration to test the adaptability of agents in combat.

After 500 consecutive episodes (first phase), we changed the equipment config-

uration of the two agents and observed 500 more episodes (second phase). Each

agent was required to overcome the bias developed over the first phase and learn

a different strategy for the second phase. NWN is not adaptive, therefore, we

compared ALeRT and RL0 to M1. We used the following combined configu-

rations: Melee-Heal, Melee-Ranged, Ranged-Melee, Ranged-Heal, Heal-Melee,

Heal-Ranged. For example, Melee-Heal represents a two-phase combat (a thou-

sand episodes), in which the agents used the Melee configurations in the first phase

(first 500 episodes) and the Heal configuration in the second phase (last 500 episodes).

The learning algorithms were not re-initialized between phases so each agent was

biased towards the strategy developed in the first phase. In the first phase, we evalu-

ated how quickly an agent was able to learn a winning strategy without prior knowl-

edge. In the second phase, we evaluated how quickly an agent could discover a new

winning strategy after an equipment change.

We ran 50 trials for each of the Melee-Ranged, Melee-Heal, Ranged-Melee,

Ranged-Heal, Heal-Melee, and Heal-Ranged configurations. The cumulative re-

sults over 300 trials are shown in Figure 4.24.

ALeRT adapts faster than M1 to changes in environment (equipment configura-

tion) that affect a strategy’s success. ALeRT increased its average win rate to 56%,

50 episodes after the phase change. By episode 1000, ALeRT defeated M1 at an

143

Figure 4.24: RL0 and ALeRT vs. M1.

average rate of 80%. The features of ALeRT that contribute to this rapid learning

are the trend-based step-sizes and the win-based exploration rate modifications to

Sarsa(λ). In fact, RL0 defeated M1 at a slightly higher rate (84%) than ALeRT after

the phase change, but RL0 won only 42% against M1 in the first phase [17]. As

stated in the previous section, RL0 won only 34% and 41% against optimal strate-

gies with Melee and Ranged configurations respectively, which is not an acceptable

strategy. Figure 4.24 shows that RL0 did not find the optimal strategy in the first

phase against a dynamic opponent. Therefore, we do not include RL0 traces for

added clarity of the next detailed graphs.

Rather than showing six separate detailed graphs, we combined the common

first phase configurations so that the experiments can be shown in three graphs:

Melee-Ranged&Heal, Ranged-Melee&Heal, and Heal-Melee&Ranged. The data

points from two separate experiments were combined into one trace in the first

phase of each graph. Therefore, each data point represents the average winning

percentage over 100 trials. Each second phase data point represents the average

winning percentage over 50 trials.

Figure 4.25 shows the Melee-Ranged and Melee-Heal results. ALeRT per-

formed almost as well as M1 in the first phase with a 3% deficit at episode 450,

144

Figure 4.25: ALeRT vs. M1 - Melee-Ranged&Heal.

recovering to a 49.3% win rate at episode 500. M1 performed very well in the

initial Melee configuration, perhaps due to manual tuning. Nevertheless, ALeRT’s

winning rate was very close to 50% throughout the first phase and it dominated M1

during the second phase.

In the Ranged-Melee and Ranged-Heal configurations (Figure 4.26), the agents

tied in the first phase, while ALeRT clearly outperformed M1 in the second phase.

One of the reasons for the poor performance of M1 is that when it cannot decide

what action to choose, it selects an attack with the currently equipped weapon.

In the first phase of the Heal-Melee and Heal-Ranged configurations (Figure

4.27), ALeRT and M1 tied again, but ALeRT outperformed M1 during the second

phase. In each configuration, the major advantage of ALeRT over M1 is that ALeRT

adapts faster to a change in environment (equipment configuration), even though it

does not always find the optimal strategy.

145

Figure 4.26: ALeRT vs. M1 - Ranged-Melee&Heal.

Figure 4.27: ALeRT vs. M1 - Heal-Melee&Ranged.

146

4.8 Observations

ALeRT is based on Sarsa(λ) and the only domain knowledge it requires is a value

function, a set of actions, and a small number of binary states. Unmodified Sarsa(λ)

(e.g., RL0 or RL1) does not perform well against either an optimal strategy (OPT

in Figure 4.19) or against the dynamic reordering rule-based system, M1, in the

first phase (Figure 4.23). ALeRT overcomes this limitation, using three fundamen-

tal modifications to traditional RL techniques. ALeRT uses (1) action-dependent

step-size variation, (2) larger step-size increases during trends, and (3) adjustable

exploration rates based on episode outcomes. While conducting our experiments,

we made several observations that explain why ALeRT adapts better to change than

M1.

ALeRT achieves a good score even when the opponent is not performing opti-

mally and it does not attempt to mimic the opponent. Although ALeRT may not

find the optimal solution, it finds a strategy that defeats the opponent at least 50%

of the time. In the games domain, this is an advantage, since the agent should not

crush the PC.1

ALeRT works effectively in a variety of situations: short episodes (Melee con-

figuration), long episodes (Ranged configuration), and time-critical action selection

situations, such as drinking a speed potion at the start of an episode and a heal

potion when the agent’s HP are low.

The ALeRT game state is simple (five binary features, including a constant),

so each observation is amortized over a small number of relevant states to sup-

port fast learning. Although the designer must specify a game state, the “obvious”

properties such as health, distance, and potion availability are familiar to designers.

Conversely, M1 relies on a set of 21 rules. The discovery and specification of these

rules could be challenging.

Although ALeRT may select any valid action during an episode, M1 chooses

only one type of attack action (ranged or melee) per episode (it never performs

two different attack actions in one episode) in conjunction with the speed or heal
1In our AIIDE 2008 paper [18], a reviewer of this idea commented: “Both of these are to my

view correct (and often under-appreciated when academic AI is applied to games).”

147

actions. This restriction proved important in the Melee-Heal experiments, where

although M1 discovered heal in the second phase, it sometimes selected only ranged

attacks and could not switch to melee attacks during the same episode. In some

trials, this allowed ALeRT to win even though it did not discover heal in the second

phase (i.e., Heal configuration) during that particular trial. Moreover, when M1

cannot decide what action to choose, it selects an attack with the currently equipped

weapon (calling the default NWN, if there is no action available). This is a problem

if the currently equipped weapon is not the optimal one. Conversely, ALeRT always

selects an action based on the value function. If there is a tie, it randomly selects

one of the actions with equal value. Therefore, there is no bias to the currently

equipped weapon.

ALeRT uses an ε−greedy action selection policy which increases ε to generate

more exploration when the agent is losing and decreases ε when the agent is win-

ning. We experimented with several other ε − greedy strategies, including fixed

and decaying ε strategies, but they did not adapt as quickly when the configuration

changed. We also tried softmax, but it generated estimated values of Q with large

variations. The result was that the agent could not recover as fast once it selected

a detrimental action. M1 uses softmax from the Boltzmann (Gibbs) distribution.

Most importantly, ALeRT’s action-dependent step-sizes provide a mechanism to

recover from contiguous blocks of losses. ALeRT’s trend-based step-size modifi-

cation is natural, flexible and robust. In addition to identifying winning trends and

converging fast on a new strategy, ALeRT smoothly changes strategies during a

losing trend. M1 appears to use a window of ten losses to force a radical change in

strategy. This approach is rigid, especially when the problem domain changes and

the agent should alter its strategy rapidly.

4.9 Chapter Summary

This chapter presents an enhancement to our behaviour system. We showed how our

behaviour model presented in Chapter 3 can be extended to support an additional

layer that allows an NPC to select behaviours and to adapt to new situations while

148

interacting with the environment, based on learning instead of motivations, and

without the need for manual scripting on the behalf of the story author. To assess

our approach, we devised experiments to evaluate learning rates and adaptability to

new situations in a changing game world. Our experimental results show that we

outperform both static and dynamic opponents and we tie an optimal opponent.

We introduced a new algorithm, ALeRT, which makes three fundamental mod-

ifications to traditional RL techniques. Our algorithm uses action-dependent step-

sizes based on the idea that if an agent has not had ample opportunities to try an

action, the agent should use a step-size for that action that is different than the

step-sizes for the actions that have been used frequently. Each action-dependent

step-size should vary throughout the game (following trends), since the agent may

encounter situations in which it has to learn a new strategy. Moreover, at the end

of an episode, the exploration rate is increased or decreased according to a loss or

a win. We implemented our changes that resulted in the ALeRT algorithm using

the Sarsa(λ) algorithm. However, our technique is generally applicable to RL algo-

rithms, since it does not rely on any particular assumption. The ALeRT algorithm

automatically adjusts the step-size parameters for the actions selected in response to

detecting changes in the estimator values. As a result, estimator variance and adap-

tation times are reduced. This approach is an alternative to traditional techniques of

minimizing estimator variability, such as manually tuning the values of individual

RL parameters.

We showed that variable action-dependent step-sizes are successful in learn-

ing combat actions in a commercial computer game, NWN. ALeRT achieved the

same performance as M1’s dynamic ordering rule-based algorithm when learning

started from an initial unlearned strategy. Our empirical evaluation also showed that

ALeRT adapts better than M1 when the environment suddenly changes. ALeRT

substantially outperformed M1 when learning started from a learned strategy that

did not match the current equipment configuration. The ALeRT agent adjusts its

behaviour dynamically during the game. Our decision to use combat to evaluate

ALeRT was informed by the fact that combat scores provide an objective evalua-

tion criterion. However, RL can be applied to learning any action set, based on a

149

feature vector and a value function, so we intend to deploy ALeRT for a variety of

NWN behaviours. ALeRT will be used to improve the quality of individual episodic

NPCs and of NPCs that are continuously present in the story.

One of the advantages of using RL in our behaviour patterns is that it enables the

author to create NPCs with different behaviours using the same learning algorithm

simply by changing parameters. Before a story is released, the author may pre-

train NPCs using the general environment for that story. For example, if the PC

is intended to start the story at a particular power level, the author uses this power

level to train the NPCs. During the game, when an NPC learns a strategy or adapts a

strategy, all other NPCs of the same type (e.g., game class, game faction) inherit this

strategy and can continue to learn. Each of these vicarious learners jump-starts its

learning process using the ~θ vector generated by the experienced NPC. Ultimately,

these improved adaptive behaviours can enhance the appeal of interactive stories,

maintaining an elevated player interest.

150

Chapter 5

Evaluation of the Behaviour Pattern
Model

We conducted several experiments to validate our behaviour model. Our goals are

to evaluate the usability (Section 5.1) of behaviour patterns by non-programmers

through a set of user studies and to assess the efficacy (Section 5.2) of ScriptEase

behaviour patterns through a set of case studies using our basic set of behaviours.

5.1 Evaluation from a Usability Perspective

The usability studies we conducted were aimed at investigating whether the be-

haviour patterns we created were simple enough to be used by non-programmers.

We accomplished this by studying high-school students’ use of behaviour patterns.

This user study mirrored previous user studies that determined whether high-school

students could use ScriptEase encounter patterns to write interactive short stories

[11][12][80].

We constructed a pattern catalogue for NPC behaviours containing 27 behaviour

patterns commonly used in CRPGs, as described in Appendix B. These behaviour

patterns benefit from our previous experience with identifying new encounter pat-

terns to extend the ScriptEase catalogue of encounter patterns [49]. Part of this dis-

sertation research was to develop a way to evaluate encounter patterns. Researchers

have developed metrics for the effectiveness of pattern catalogues [16]. We could

apply these metrics to assess the usage, coverage, utility, and precision of our be-

haviour pattern catalogue, but we have not done so yet.

151

In Chapter 2 (Section 2.2), we defined two types of scalability measures for

NPC instances: scalability with respect to the module (across all module areas) and

scalability with respect to a single area. The first user study, involving a class of

high-school students, tested behaviours in a single area (a medieval castle setting),

whereas the second user study, involving one high-school student, tested behaviours

across multiple areas. We also addressed the scalability of behaviours and the scal-

ability of use in these studies.

Figure 5.1: Behaviour and encounter patterns used by all 25 high-school students
participating in the study. Individual behaviour patterns are grouped into one cate-
gory.

In the first study, a class of 25 high-school students with no programming ex-

perience used ScriptEase behaviour patterns to write an interactive story as part of

their Grade 10 English curriculum. This version of ScriptEase contained our library

of 27 behaviour patterns, as well as 60 encounter patterns that model interactions

between the PC and the objects in the world. We analyzed the behaviour instances

152

used by the students in their game modules. In the 4.5 hours spent authoring their

interactive stories, 9 out of 25 students used behaviour patterns. We did not restrict

the type of patterns the students could use and the rest of the students only used

encounter patterns. In total, the students used 111 pattern instances, of which 98

were encounter pattern instances and 13 were behaviour pattern instances. The total

number of pattern templates was 23, of which 17 were encounter pattern templates

and 6 were behaviour pattern templates, as illustrated in Figure 5.1.

Behaviour pattern instances constituted a third (31.6%) of the total number of

pattern instances used by the students who included behaviours in their interactive

stories, as illustrated in Figure 5.2.

Figure 5.2: Behaviour and encounter patterns used by nine high-school students in
their interactive stories.

The most popular encounter patterns (instantiated by all 25 students) were Place-

able heartbeat - detect secret door and Conversation when/what, each instanti-

ated eighteen times, as shown in Figure 5.3.

153

Figure 5.3: Pattern instances (encounter and behaviour) used by all students. Be-
haviour patterns are grouped into one category.

The most popular behaviour pattern was the Loiterer behaviour (the NPC is

walking randomly around a fixed point) instantiated four times. Although only

nine students used behaviour patterns, these students also selected 13 (using 31 in-

stances of these pattern templates) out of the total 17 encounter pattern templates.

Therefore, the students took advantage of pattern reuse and adapted the patterns in

different contexts, as shown in Figure 5.3. Moreover, the remaining four encounter

patterns that the students who used behaviours did not instantiate were the follow-

ing: Acquire item, Container use, Enter module (generic patterns), and Place-

able use - jump near object (specialization of the Placeable use pattern, which

was already used by students who instantiated behaviours). This indicates that the

students understood the difference between the types of patterns in the encounter

catalogue and, when they had a choice of similar patterns, they selected the most

appropriate (specialized) patterns available to suit their stories.

The students who used behaviours employed 13 instances of 6 different be-

haviour patterns: Bystander (a Poser with a Return proactive behaviour), Chal-

lenger, Follower, Loiterer, Manipulator, and Wanderer. Besides setting the 13

154

NPC required options for these instances, 67 other options were set and 15 options

were left at default values set by the pattern designer. Students found behaviour

patterns easy to use, but were restricted by the time they were allotted to complete

the many elements of the story, such as placing objects in the module using the

Aurora Toolset or scripting the interactions with game objects using encounter pat-

terns. This user study indicates that behaviour patterns are no more difficult to use

than encounter patterns. In addition, the modules that included NPC behaviours ran

without any performance degradation. However, to assess all the scalability mea-

sures defined in Section 2.2, it is necessary to increase the number of NPCs with

behaviours beyond the number found in the student modules.

In the second study, to overcome the time restriction inherent in a classroom, we

conducted a more extensive study involving one high-school summer student who

did not know how to program. She created an interactive story using 40 pattern in-

stances (scalability of use) of 21 behaviour patterns (scalability of behaviours) from

the same catalogue of 27 behaviour patterns. She also used the ScriptEase Pattern

Designer tool to create four new behaviour patterns and she adapted the existing be-

haviours by changing selection values, adding tasks to basic behaviours, and even

adding actions to tasks. In total, she created 202 NPCs with ScriptEase generated

behaviours in nine areas of her custom Neverwinter Nights (NWN) game module.

She applied many single pattern instances to multiple NPCs who had the same tag

and she organized the behaviour pattern instances in ScriptEase by creating folders

for each area. The scene ran flawlessly with no perceptible delays. This exercise

shows that our behaviour system is easy to use. Since the behaviours of many NPCs

with the same tag can be instantiated at once, the behaviours can be tested quickly.

The total number of actors in the entire module (202 NPCs) indicates that our be-

haviour system can be used without degradation for over 200 NPCs (scalability of

NPC instances).

155

5.2 Behaviour Pattern Efficacy

We developed a set of case studies to assess the efficacy of our ScriptEase behaviour

patterns. First, we focused on the correctness of the generated behaviours. Second,

we assessed the expressiveness of the behaviour patterns and the capability of our

behaviour system to support new behaviour patterns. Third, we analyzed the poten-

tial for reusability of our existing behaviour patterns.

5.2.1 Correctness - Case Study

We verified that the generated behaviours for three types of NPCs in a tavern area,

a common scene in CRPGs, were correctly selected by the NPCs. We used three

behaviour patterns that generated all of the scripting code for the tavern scene to

illustrate how easy it is to create complex and accurate NPC interactions using be-

haviour patterns. The background includes patrons, servers and a tavern owner per-

forming their behaviours but, most importantly, interacting with each other. Figure

5.4 shows some of the NPCs in our custom tavern scene module: a tavern owner,

two tavern servers, and a patron. The owner asks one of the tavern servers to fetch

supplies, the other tavern server approaches the bar to fetch drinks for patrons, and

the patron returns from the bar looking for another patron available for a conversa-

tion. A set of movies illustrates the proactive, reactive, and latent behaviours that

we generated for the tavern NPCs using three behaviour patterns: Patron, Server,

and Owner [81].

Although the Patron, Server, and Owner patterns were designed for a tavern

scene, they are general enough to be reused for other types of NPC interactions and

to generate scripts for other scenes. In addition, the patrons constitute an example

of a crowd - a group of NPCs with the same behaviour, but each selecting different

behaviours based on local context.

Table 5.1 lists all the behaviours used in the tavern. The first column of the table

shows the type of NPC behaviour. This case study was based on ambient (proactive

and reactive, not latent) behaviours. Some behaviours are used independently by

a single NPC. For example, Poser is an independent behaviours. Behaviours that

156

Figure 5.4: An owner, two tavern servers, and a patron exhibiting ScriptEase-
generated behaviours in a tavern scene.

involve more than one NPC are collaborative (joint) behaviours. For example, an

Offer-fetch behaviour involves two NPCs, one who makes the offer and one who

accepts or rejects it. The second column of the table shows the proactive behaviours

initiated by the tavern NPCs. The reactive behaviours were included in the sequence

of tasks for a proactive behaviour. The letters in parentheses indicate which kind

of NPC can initiate the proactive behaviour. For a collaborative behaviour, the kind

of collaborator is given as part of the behaviour name, e.g., the Approach random

P behaviour can be initiated by a server or patron (S, P) and the collaborator is a

random patron (P). The third column of Table 5.1 shows the tasks for each proactive

basic behaviour. For example, the Ask-fetch proactive behaviour generates a set of

tasks where the initiator Speaks (choosing an appropriate one-liner randomly from

a conversation file), the collaborator Fetches (goes to the supply room while speak-

ing), the initiator Receives the fetched item, and the collaborator Speaks. Each task

consists of several actions. For example, a Speak task consists of facing a partner,

pausing, performing a speech animation and uttering the text. The Converse proac-

157

Tavern Behaviours
Behaviour Type Proactive Behaviour Tasks

Independent

Pose (S, P, O) Pose
Return (P, O) Return

Approach-bar (S, P) Approach
Greet nearest P (P) Speak

Fetch (O) Fetch

Collaborative

Approach random P (S, P) Approach
Converse with nearest P (P) Speak, Listen, Listen, Speak
Ask-fetch nearest S (P, O) Speak, Fetch, Receive, Speak

Ask-give O (P) Speak, Give, Receive, Speak
Offer-give to nearest P (O) Speak, Decide, Ask-give (accept)

Speak, Decide, Speak (reject)
Offer-fetch to nearest P (S) Speak, Decide, Ask-fetch (accept)

Speak, Decide, Speak (reject)

Table 5.1: Tavern behaviours for three types of NPCs: a tavern server (S), a tavern
patron (P), and a tavern owner (O).

tive behaviour starts a set of tasks with one or more Speak tasks alternating between

two NPCs. The Offer-give (owner offers a drink) and Offer-fetch (server offers to

fetch a drink) proactive behaviours each have two different sets of tasks (shown in

Table 5.1) depending on whether the collaborator decides to accept or reject the

offer.

The behaviour patterns are easy to use. For example, a high-school student cre-

ated and tested an NWN tavern scene in less than half an hour, whereas it may take

several days to write the code manually. The simplicity of the process hides the fact

that a large amount of scripting code is generated to model complex collaborative

interactive behaviours. In fact, 889 lines of NWScript code were generated for the

server, while 1087 and 886 lines were generated for the patron and owner respec-

tively. The process of using or adapting a behaviour pattern is simple, since the

author only selects options and navigates through menus. ScriptEase automatically

generates a large amount of scripting code to implement complex interactive be-

haviours. For a tavern scene, the story author opens the tavern module in ScriptEase

and instantiates each of the three behaviours: Patron, Server, and Owner by se-

lecting the patterns from a menu and then binding each instance to an appropriate

NPC and the options of each pattern instance to game objects and/or values. When

the Save and Compile menu command is selected, ScriptEase generates 3,107 lines

158

of NWScript code (for the entire tavern scene) that could be edited in the Aurora

Toolset, if desired.

The generated code is efficient, producing behaviours that are crisp and respon-

sive, with no perceptible effect on response time for PC movement and actions. The

NPCs interact with each other flawlessly with natural movements at more than 30

frames per second. A scene with eighteen patrons, two servers, and an owner was

left to play for hours without any deadlock, degradation in performance, repetition

or indefinite postponement of behaviours for any actor. The NPCs displayed all

their behaviours and selected one of their appropriate behaviours in every situation.

5.2.2 Expressiveness - Case Study

At the beginning of this research, we evaluated the expressiveness of the ScriptEase

encounter patterns. We identified the implicit patterns that exist in the different

modules of the original BioWare Corp. produced NWN story for placeable objects

[49], with the goal of using the patterns to generate replacement code for the hand-

written scripts. During this process, we determined which of the CRPG patterns

that we constructed before the case study could be reused and which new patterns

were necessary. From this experiment, we concluded that there is significant pat-

tern reuse among successive modules and, consequently, a reduced number of new

patterns are required as the pattern base grows. NWN was released with a single

adventure that consisted of seven modules: Prelude, Chapter One, Chapter One

Finale, Chapter Two, Luskan and Host Tower, Chapter Three, and Chapter Four.

Table 5.2 summarizes the information extracted from the analysis of these modules

with regards to placeable objects: the number of calls made to scripts by place-

able objects, the number of unique scripts that were referred to by placeable script

calls, and the total number of non-comment lines of hand-written code that were

contained in the placeable scripts for each module. Finally, the number of pattern

instances that were used to replace all of these script calls and the number of pat-

terns that were used in each module are included in the table. However, the total for

this column is not the sum of the column entries since many of the patterns were

reused across modules. The total (24) is the number of unique patterns used across

159

all modules. The total for the script templates column is the sum of the column

entries, since none of the hand-written scripts was reused across modules. Note

that multiple script templates were often replaced by a single pattern with multi-

ple situations. As the number of ScriptEase patterns grows, fewer new ones need

Chapter Script Script Lines of Pattern Pattern
Calls Templates Code Instances Templates

One* 153 47 391 108 15
Two 112 40 279 104 14

Luskan 54 28 454 51 10
Three 127 50 669 118 15
Four 51 17 132 50 7
Total 497 182 1925 431 24

Table 5.2: ScriptEase encounter pattern statistics. Chapter One* consists of the
Prelude, Chapter One Finale, and Chapter One modules.

to be created to construct new modules. Figure 5.5 shows the number of patterns

required to generate the scripts for placeables in successive modules. The first bar

shows that Chapter One* reused 6 existing patterns and required 9 new ones. The

second bar shows that Chapter Two reused 9 existing patterns, reused 4 patterns

created for Chapter One* and required one new pattern. In general, the percentage

of new patterns required for each successive chapter tended to decrease as the case

study progressed (60%, 7%, 10%, 20%, 0%) with the exception of Chapter Three,

which was the largest module. Of the three new patterns created for Chapter Three,

only one was reused in Chapter Four.

To determine the range of CRPG behaviours that can be accommodated by

patterns, we conducted a similar case study for the Prelude of the NWN official

campaign, directed at both independent and collaborative behaviours [19]. This

study did not include latent or motivational behaviours. The original code used

ad-hoc scripts to simulate collaborative behaviours. We removed all of the manu-

ally scripted NPC behaviours and replaced them with behaviours generated from

encounter patterns. During this process, we identified six new behaviour patterns:

Poser, Bystander, Exclaimer, Duet, Striker, and Expert. These patterns were

sufficient to generate all of the NPC behaviour scripts.

160

Figure 5.5: Encounter pattern reuse by module in the NWN campaign.

161

The behaviour patterns in this study were implemented [20] on top of encounter

patterns to provide preliminary results without having to implement behaviour pat-

terns directly. The five simple patterns and one meta-pattern we identified were

sufficient to generate all of the NPC behaviour scripts in the Prelude for 48 NPCs.

In the original Prelude, 39 of these 48 NPCs had scripts attached to them. We re-

placed 265 lines of manually-written scripting code in 25 files called 73 times for

all the 39 NPCs of the original scripted Prelude. For the other unscripted 6 NPCs in

the original Prelude, we attached a Poser pattern (the NPC performs a simple ani-

mation and optionally utters a random text) to each of them. This pattern provides

default initial values for the specific animation and the duration of the animation.

For example, we attributed a Poser pattern to a silent injured man NPC whose be-

haviour was an animation to beg for help and to a door guard who was not scripted

in the original Prelude. We improved both their behaviours by allowing them to also

randomly utter a sentence from a conversation file. In addition, we discovered that

the proactive independent behaviours in the original Prelude are not always able

to recover if the NPC is jostled during the game. For example, a trainee thief who

faces a target (combat dummy) and performs a “pickpocket” skill will not be able to

return to the combat dummy if the PC clicks on the NPC to initiate a conversation.

Instead, the thief picks the pocket of an empty space instead of the combat dummy

after the conversation with the PC ends. To solve this problem, we re-generated

the behaviour of this NPC from our proactive independent Expert behaviour. Our

behaviour includes an Expert proactive behaviour that consists of a single Expert

task. The first two actions in this task are the following:

1. walk to the combat dummy, and

2. face the combat dummy, so that the NPC “pickpockets” the appropriate target

(the combat dummy).

The Expert pattern generates a robust behaviour, since the Expert task provides

a self-sufficient rational behaviour block, as discussed in Section 3.4.8. The Expert

behaviour has an additional Return proactive behaviour which causes the NPC to

return to the original location from time to time.

162

A Duet is a meta-pattern, a more complex behaviour pattern that expresses col-

laboration between two NPCs. This pattern allows story authors and pattern design-

ers to create a series of collaborative patterns by combining independent patterns.

We identified three types of potentially collaborative behaviours in the original Pre-

lude and we abstracted them using the Duet pattern. First, six NPCs grouped in

pairs mimic a conversation by facing each other and performing independent speak-

ing gestures. We replaced the manual scripting code that controls these six NPCs

by code automatically generated from instances of the Duet-Converser-Converser

behaviour pattern. This pattern constitutes a true collaborative behaviour involving

two converse behaviours that alternate for the two NPCs so that the conversation

between them seems natural. An NPC waits for the collaborator’s reply before it

provides a response or initiates a new collaboration. Figure 5.6 shows the generated

Duet-Converser-Converser NPCs.

Figure 5.6: Generated behaviours in the Prelude: Duet-Converser-Converser.

Second, a pair of spellcaster NPCs constitutes another example of simulated

collaboration in the original Prelude. Two NPCs successively cast spells on a com-

163

bat dummy. This is accomplished by applying a delay to one of the NPCs, so

that their actions appear to alternate. We also replaced the manual scripting code

that controls these NPCs by code automatically generated from an instance of the

Duet-Spellcaster-Spellcaster collaborative behaviour pattern. The behaviours of

the two spellcasters alternate so that the collaboration seems natural: the first NPC

casts a spell while the second NPC waits and, only when the first NPC finishes the

behaviour, they reverse their roles. In addition to casting spells successively, our

NPCs are also engaging in a conversation.

Third, a pair of NPCs is performing another type of training: one NPC spawns

a skeleton and the other destroys the spawned skeleton. Figure 5.7 shows the re-

placement scene as generated from a Duet-Spawner-Destroyer behaviour pattern.

In the original code, a different ad-hoc technique was used to compensate for not

having true collaboration support: one NPC spawns skeletons and the other de-

stroys any perceived skeletons without employing any delay mechanism. This does

not constitute true collaboration and the various techniques used to compensate for

a lack of support for true collaboration make the scripts hard to understand and

maintain. Figure 5.8 shows the manually written NWScript code for the spawner

and destroyer NPCs.

When the spawner NPC (Ansel) perceives the PC, it executes the script code at-

tached to the OnPerception event, firing a user-defined event on itself. This causes

the code attached to the OnUserDefined event to be executed. As a result, Ansel

spawns a skeleton with tag “M1Q0BSUM SK” at a waypoint “WP Skeleton” and

casts a fake spell at this waypoint. Then, Ansel fires the same user-defined event

with a 30 seconds delay so that a new skeleton is spawned. The destroyer NPC

(Tabitha) casts a spell that destroys any creature perceived with the racial type un-

dead that is different from a skeleton with tag “M0Q0 SKELETON” already located

in the room. The intent of the story author is to simulate a collaborative spellcaster

training of these two NPCs. However, if the destroyer NPC takes more time to

destroy the spawned skeleton, then the spawner can create another skeleton, since

the spawner generates skeletons every 30 seconds, regardless of the destroyer’s ac-

tions. Their collaboration is achieved not by communication between the NPCs,

164

Figure 5.7: Generated behaviours in the Prelude: Duet-Spawner-Destroyer.

165

NWScript code for Ansel (the spawner):
OnPerception:
void main()
{

if(GetIsPC(GetLastPerceived()) &&
GetLastPerceptionSeen())

{
SignalEvent(OBJECT SELF,

EventUserDefined(0));
}

}
OnUserDefined:
void main()
{

if(IsInConversation(OBJECT SELF) == FALSE &&
GetIsDead(OBJECT SELF) == FALSE)

{
location lLoc = GetLocation(

GetNearestObjectByTag("WP Skeleton"));
ActionCastFakeSpellAtLocation(

SPELL ANIMATE DEAD,lLoc);
CreateObject(OBJECT TYPE CREATURE,

"M1Q0BSUM SK",lLoc);
}
DelayCommand(30.0,SignalEvent(OBJECT SELF,

EventUserDefined(0)));
}

NWScript code for Tabitha (the destroyer):
OnPerception:
void main()
{

object oPerceived = GetLastPerceived();
if(GetRacialType(oPerceived) ==

RACIAL TYPE UNDEAD &&
GetLastPerceptionSeen() &&
GetTag(oPerceived) != "M0Q0 SKELETON" &&
IsInConversation(OBJECT SELF) == FALSE)

{
ActionCastSpellAtObject(

SPELLABILITY TURN UNDEAD,
oPerceived,METAMAGIC ANY,TRUE);

}
}

Figure 5.8: Manually written NWScript code for the spawner and destroyer NPCs.
166

but through the common object of their training: the skeleton. This does not reflect

a true NPC collaboration.

Figure 5.9: An instance of the Duet-Spawner-Destroyer pattern in the NWN Pre-
lude.

The Duet-Spawner-Destroyer pattern generates true collaborative scripts that

ensure synchronization between the NPCs. The second NPC’s destroy behaviour

does not start until the completion of the first NPC’s spawn behaviour. The complex

hand-written code shown in Figure 5.8 can be contrasted with Figure 5.9 that shows

how a Duet-Spawner-Destroyer pattern can be used to generate code by simply

instantiating the pattern and selecting three options: the actor (Ansel), the part-

ner (Tabitha) and the target creature to be spawned-destroyed (Spawned Skeleton).

Figure 5.10 shows the Spawner and Destroyer performances together with their

corresponding roles using ScriptEase behaviour patterns. The Spawner role con-

tains a proactive collaborative Spawn behaviour on the topic “spawner-destroyer”

and the Destroyer role contains a reactive Destroy behaviour on the same topic.

167

Figure 5.10: The Spawner and Destroyer pattern instances in the NWN Prelude.

Figure 5.11 shows the number of instances of each kind of behaviour pattern

that were used in each of the five areas in the Prelude chapter. Note that the 32 be-

haviour pattern instances in Figure 5.11 are applied to 48 NPCs. For example, each

instance of the Duet meta-pattern involves two NPCs. Moreover, only one Poser

pattern instance generates the proactive behaviours of nine goblin NPCs that share

a common tag. This study shows how behaviours can be inserted into BioWare

Corp.’s NWN game, improving the overall game experience. Behaviour patterns are

used with ScriptEase to easily and quickly re-generate all of the background be-

haviours of NPCs in the NWN Prelude and improve them. This shows how patterns

hide the level of complexity necessary to create a realistic interactive story and how

patterns can be reused for several NPCs.

To validate the expressiveness of our behaviour patterns as first-class objects in

ScriptEase, we replaced all the manual scripts for the NPCs of the Prelude module

with the code generated automatically from our behaviour patterns in less than an

hour. To increase expressiveness, we have also added simple default roles, such as

Poser (the NPC performs an animation and speaks text from a conversation file)

and Bystander (the NPC poses and returns to the NPC’s original location), to six

168

Figure 5.11: Using ScriptEase encounter patterns to generate behaviour scripts in
the NWN Prelude.

169

previously unscripted NPCs in the Prelude. We built this case study using our prior

experience with re-generating the original NPC behaviours in the Prelude using

encounter patterns that simulated behaviours. Since then, we created new motiva-

tional behaviours using behaviour patterns. For example, we created a Challenger

behaviour pattern, in which the NPC walks to the PC (or another NPC) and starts

a conversation, to solve a problem that affected an NPC’s behaviour discussed in

Chapter 2. Recall that, in the original Prelude, an NPC located in the centre of a

trigger approached the PC and started a conversation when the PC entered that trig-

ger. The Challenger behaviour does not use any other game objects except for the

NPC and the conversation file. Since the Challenger includes a Return proactive

behaviour, the NPC returns to the original location without using a trigger or a way-

point as did the original NPC behaviour. Our system records the original location

of any NPC with behaviours and the Return proactive behaviour uses this infor-

mation to restore an NPC’s facing and location. In addition, our system does not

use an OnPerception event to trigger behaviours, avoiding the drawbacks associ-

ated with this event discussed in Chapter 2. We re-generated behaviour scripts from

behaviour patterns for all the NPCs in the NWN Prelude. This study shows that

the new behaviour pattern approach is efficient, robust, and easy to use. The study

also validates our ScriptEase behaviour patterns for a real commercial computer

role-playing game using real adventure modules.

The Guard behaviour pattern described in Chapter 3 generates proactive, re-

active, and latent behaviour scripts, resulting in a more engaging guard NPC that

is perceptive to the actions of both the PC and other NPCs. A set of movies il-

lustrates this guard’s proactive, reactive, and latent behaviours generated for the

guard’s different roles [35]. The Guard pattern generates 1065 non-comment lines

of NWScript code, which is a significant amount of scripting code for the amount

of work required by an author to use this pattern. The additional work performed

in creating this pattern is amortized over the many instances of the Guard pattern

that occur in this and other game stories.

Further evidence of the generality of behaviour patterns will require a case study

that replaces behaviours in other game genres as well. For example, a soccer or

170

hockey goaltender could be provided with entertaining behaviours to exhibit when

the ball (puck) is in the other end of play, such as standing on one leg, stretching,

leaning against a goal post, or trying to quiet the crowd with a gesture. One of

the criticisms for EA FIFA 04 was directed to the goalie’s behaviour [25] and was

addressed in EA FIFA 06 [26]. However, a study that involves other game genres is

beyond the scope of this research.

5.2.3 Inheritance of Behaviour Patterns - Case Study

We have designed our behaviours with a few considerations in mind. Every role

that we have in our library of behaviours descends from a generic behaviour. For

example, a Guard is a Poser.

We conducted a preliminary case study that included the introduction of the con-

cept of a meta-pattern, an analysis and graphical representation of pattern usage, an

analysis of the number of lines of code, and a description of the inheritance model

employed to foster code reuse. We based this study on the set of behaviours imple-

mented using encounter patterns rather than the latest set of behaviour patterns that

are implemented natively in ScriptEase.

The behaviour patterns form an inheritance hierarchy as shown in Figure 5.12.

This hierarchy makes it easier for an author to understand the intents of the be-

haviour patterns and to utilize them in stories. For example, a Poser is an NPC who

plays an animation and occasionally utters a random text. The Poser pattern is the

simplest behaviour, consisting of one proactive behaviour, Pose. A Bystander is a

Poser who can also return to the original scene location. This may be necessary if

the Bystander collides with a game object, the PC, or another NPC, and it moves

too far from the intended location. The Bystander pattern inherits the proactive

Pose behaviour and adds one other proactive behaviour, Return. An Exclaimer is

a Bystander who can also face a nearby creature and speak. The Exclaimer pat-

tern adds a third proactive behaviour, Exclaim. Each of these proactive behaviours

consists of a single task (Pose, Return, and Exclaim respectively). An Expert

is a Bystander who can perform a skill on a nearby object. A Striker is a By-

stander who can strike a nearby object. In the NWN Prelude, an Expert thief tries

171

to pick the pocket of a nearby practice dummy and a Striker attacks a nearby com-

bat dummy. The Expert and Striker patterns inherit the two proactive behaviours

from Bystander, but add alternate third simple proactive behaviours, Perform and

Strike respectively.

Figure 5.12: The inheritance hierarchy of ScriptEase behaviours using encounter
patterns.

The Duet meta-patterns, the precursors of collaborative behaviours in the cur-

rent ScriptEase behaviour pattern catalogue, contain behaviours for two NPCs.

The initiator NPC of the Duet-Converser-Converser pattern inherits two proac-

172

tive behaviours from the Bystander pattern and adds a third proactive behaviour,

Converse-Converse, in which the initiator NPC engages a nearby responder NPC

in a conversation. The spawner of the Duet-Spawner-Destroyer pattern and the

initiator of the Duet-Spellcaster-Spellcaster pattern each inherits the three proac-

tive behaviours from the initiator of the Duet-Converser-Converser pattern and

adds a fourth proactive behaviour, Spawn-Destroy or Spellcast-Spellcast, respec-

tively. This means that the spawner in a spawn-destroy duet sometimes engages in

a conversation with the destroyer and sometimes alternates creating and destroying

an object. Similarly, the destroyer in the Duet-Spawner-Destroyer pattern and the

responder in the Duet-Spellcaster-Spellcaster pattern inherit the responder tasks

from the responder of the Duet-Converser-Converser patterns, so that in addition

to the respective destroy/spellcast responses they can also engage in a conversation.

In addition to simplifying the understanding and utility of behaviour patterns,

inheritance also supports code reuse. Figure 5.12 also shows the amount of auto-

matically generated NWScript code for each behaviour pattern where the code from

the parent behaviour pattern is reused. The code is divided into five components:

inherited code (I), code used for the model (M), code used for the selector (S - the

more proactive choices, the greater amount of selector code needed), code used for

the proactive behaviour (P) that calls the appropriate task chain and code used for

each task chain (T). In the case of the Duet patterns, the task chain code is divided

into the code used by the initiator and the code used by the responder.

Inheritance is a mechanism for reusing behaviours. An alternative mechanism is

a hierarchy of behaviours where new behaviours can be constructed by combining a

sequence of other behaviours. There is no technical challenge in implementing hi-

erarchical behaviours in our model, since a behaviour could be redefined to contain

a sequence of tasks and behaviours, achieving a hierarchy of behaviours. However,

we think this property of the model might have a negative impact on usability, since

the model would become much more complex.

173

5.3 Evaluation Measures

We designed our behaviour system to satisfy the computational and functional re-

quirements of commercial computer games [74]. Our behaviour model implemen-

tation is robust, flexible, extendable, and scalable to hundreds of NPCs active at a

time.

• Adaptability Since ScriptEase generates scripts from behaviour pattern in-

stances, an NPC cannot react to the game environment (e.g., the PC’s actions,

time of day, other NPCs) if a role or behaviour cue is not provided by the

story author or by the pattern designer and it cannot acquire new behaviours

dynamically. However, we provide a learning mechanism as another layer

to our behaviour patterns. We described this mechanism in Chapter 4. This

layer enables NPCs to select behaviours based on their previous experiences

rather than on static probabilities or motivations. When their environment

changes, the NPCs can adapt their choices to reflect the new conditions.

• Clarity/Consistency/Intentionality In our system, behaviours are easy to

understand by observing the NPCs during game-play. For example, a guard

NPC should be able to walk to the nearest creature (NPC/PC) in the room

and start a conversation. This behaviour is easy to observe and to under-

stand. We often encounter situations where the player may have to predict

NPC behaviours based on some reasonable criteria. For example, if the PC

intends to steal the guarded item, then the PC should wait until the guard

rests to minimize the chances of being noticed. The design of our patterns,

including the motivational and the learning components, supports the gener-

ation of unpredictable, but rational and consistent behaviours. If the general

behaviour of the NPC is specified at design time, then the NPC is able to be-

have accordingly. At any time, the NPC chooses appropriate behaviours for

the current role. For example, an NPC who has just finished the Guard role

and performs the Patron role will not check the chest or attack an intruder.

In general, the patron will not perform any of the behaviours of the Guard

role when it is no longer in that role. Since an NPC displays a role activated

174

by a specific role cue (e.g., time of day) and because in each role the NPC

acts according to that role, the NPC selects an appropriate behaviour at any

time, but not always what the player expects. For example, even if it patrols

for a while, the guard will not sit if the PC is close. ScriptEase provides a

GUI in which behaviours are specified at a high level of abstraction. This

facilitates pattern adaptation, experimentation, testing, and understanding. In

addition, ScriptEase patterns can be easily understood by both story authors

and pattern designers. Moreover, the generated scripts can be easily under-

stood by programmers. The fully-commented code generated by ScriptEase

from behaviour patterns can be found in a behaviour script that corresponds

to the behaviour event. Therefore, a programmer can find the code from all

the behaviours attached to this NPC together in one script. The script can be

consulted and modified by a programmer if needed.

• Effectiveness In our system, since the behaviour pattern catalogue includes

all the logic behind the behaviour, we generate correct and effective be-

haviours. During behaviour adaptation, the underlying synchronization mech-

anism is preserved, therefore the model cannot be altered. When an NPC

uses learning to select behaviours, we include pre-training knowledge into

the module for the specific NPC class to reduce the effects of learning the

wrong behaviour during game-play.

• Robustness Our system ensures that an NPC quickly recovers if it is blocked

due to game randomness. The reasons for blocking are discussed in Chapter

3. Our timeout mechanisms ensure that if the NPC does not respond in a spe-

cific number of seconds, then the behaviour dispatcher clears all outstanding

actions and resends a behaviour event on the NPC. Our system also ensures

no starvation: actors always execute a task, whether it originates from a latent

(independent or collaborative), a proactive collaborative, a reactive (collab-

orative), or a proactive (independent) queue. Moreover, the learning system

allows the NPC to avoid exploits that may occur in the NPC’s behaviour.

For example, in a combat situation, the opponents (including the PC) have to

175

always adjust their action selection to compete with our NPC.

• Variety Our system provides variety, first in selecting roles and second in

choosing motivational or learning-based proactive behaviours. Each NPC

varies its behaviour through the selection of roles. Furthermore, for each

role, the NPC selects appropriate behaviours. We add unpredictability into

our system by selecting the next behaviour out of all the possible behaviours

randomly, based on static probabilities, motivations, or learning, to mimic the

NPC decision-making. Events that happen in the game may alter the NPC’s

predilection to certain behaviours. Moreover, roles have a very important pur-

pose, as they allow NPCs to adjust their behaviours and appear as though they

are taking the appropriate course of action in every situation. For example, if a

guard NPC patrols more before it rests, we understand that the guard becomes

increasingly tired. However, the NPC may choose to check the guarded items

a few times before it rests. An NPC’s behaviours are also versatile, as the

actor selects from a set of latent behaviours given a certain event in the game

that interrupts the current behaviour. The “Bob-Sally” example in Chapter 3

illustrates the variety that can be achieved with our model. Our implementa-

tion uses the NWN game engine, which provides low-level parallelism, such

as an NPC performing a walk and a speak action simultaneously. An author

can insert the walk and the speak actions in a task of a behaviour and the

game engine ensures basic time-sharing between the actions. The NPC starts

walking and, since this action takes a long time to complete, the speak action

overlaps its execution. Our AI architecture supports this directly, since the

speak behaviour could be added on a different queue and could be performed

simultaneously with behaviours stored on existing queues.

• Autonomy* The behaviour dispatcher for each NPC always selects an ap-

propriate proactive (independent or collaborative) or reactive (collaborative)

behaviour for that NPC autonomously. For example, a guard NPC patrols all

day, checks the guarded item, and rests when it is tired, without instructions

from an external source. Even in the case of a latent behaviour, the author de-

176

termines the appropriate response for each different NPC, so that they appear

autonomous. The NPC adjusts its motivations to better adapt to the environ-

ment or it uses our learning algorithm to decide what action to select.

• Alertness* We support interruptible and resumable behaviours that create a

more responsive NPC to the PC or to other NPCs, as illustrated in the “Bob-

Sally” example of Chapter 3 shown in Figure 3.28, where a series of interrup-

tions occurs. Our behaviour system generates behaviour events continuously:

the behaviour script uses a delay command to generate a new behaviour event

on the same NPC. The system selects latent behaviours first (according to the

priority of the queues), as soon as their behaviour cues are triggered. This is

possible because, after each task is complete, the control is given to the be-

haviour dispatcher that selects tasks to perform from the four available queues

in descending priority order. Since only one latent queue is implemented,

cascading latent behaviours are avoided. Consequently, latent behaviours are

either cancelled (if they have lower priority) or executed immediately. The

tasks contain the minimum number of actions necessary to ensure a coherent

mini-behaviour and, at the same time, rapid execution. The behaviour dis-

patcher updates the consequences (motivations or learning data structures) of

behaviours in a timely fashion, once per basic behaviour.

• Interactivity* In our system, an NPC can initiate a collaborative behaviour

with another NPC and it can interact with the PC. An NPC is also able to

respond to the actions of another NPC or the PC, as long as necessary role

and behaviour cues are provided. For example, another NPC can start a dia-

logue with the guard. We provide proactive, reactive, and latent behaviours

that can be independent or collaborative. In our system, latent behaviours

always interrupt proactive or reactive behaviours and they cancel latent be-

haviours with lower priority. Therefore, the NPCs are not self-absorbed [48].

For example, a different NPC or a PC can interrupt the guard’s routine by

stealing the guarded item. The guard has to be able to respond promptly to

this situation by attacking the intruder or by executing a different appropriate

177

behaviour designed by the story author. Once again, the high level of poten-

tial interactivity is reflected by the “Bob-Sally” example of Chapter 3, where

multiple individuals are involved in multiple interactions.

• Reusability* We developed a library of behaviour patterns that can be gen-

eralized to cover a variety of NPC behaviours. Reusability is a crucial part of

behaviour design. The behaviour components included in a role are reusable

from one NPC to another and even within the behaviours of the same NPC.

For example, in a house scene, the Patron pattern designed for a tavern scene

is sufficiently general to be used for the inhabitants, the Server pattern for a

butler, and the Owner pattern for a cook. The butler interacts with the inhabi-

tants, fetching for them by going to the kitchen. The inhabitants talk amongst

themselves and the cook occasionally fetches supplies. Our approach handles

group (crowd) behaviours in a natural way. The patrons constitute a crowd

example - a group of NPCs with the same behaviour, but each selecting dif-

ferent behaviours based on local context. The same behaviour instance can

be attached to a group of NPCs displaying the same general behaviour (e.g.,

all the patrons in a tavern scene) if the NPCs have identical tags. Each NPC

in the group will select individual behaviours at different times based on local

context. The ScriptEase behaviour pattern library provides sufficient reusable

components to create other proactive, reactive, or latent behaviour patterns.

For a single NPC, the potential Approach a random patron and Approach-

bar tasks could be replaced by a single Approach task with a target option.

The same basic behaviour can be instantiated in several ways. For example,

the author may instantiate a Converse-Listen reactive behaviour twice: once

with the “weather” topic and once with the “drink” topic. In addition, the

same Converse-Listen reactive behaviour could be triggered by a proactive

or latent behaviour on a collaborator. With ScriptEase, it is easy to create new

reusable behaviours as well.

• Scalability* The total number of NPCs across a module used by a high-

school student indicates that our behaviour system can be used without degra-

178

dation for over 200 NPCs. This study also shows that our behaviour system

can be quickly and easily used with over 40 instances of 21 behaviour pat-

terns. Therefore, our system scales well with an increased number of be-

haviour pattern templates and behaviour pattern instances from both the au-

thor’s usability and the performance efficiency perspective. Note that it is

possible for one instance to generate behaviour scripts for multiple NPCs. In

a single area, a scene with three behaviour instances for eighteen patrons,

two servers, and an owner ran for hours without degradation. Our system

also scales well when the NPCs display different roles: a module with three

guard NPCs, each with four roles instantiated at a time and with each role dis-

playing seven basic behaviours, was played and it ran without performance

degradation.

5.4 Chapter Summary

In this chapter, we presented the experiments we conducted to validate our be-

haviour model. The evaluation of our learning mechanism was presented in Chapter

4. From a usability perspective, we wanted to determine whether behaviour patterns

were simple enough to be used by non-programmers. We conducted two exper-

iments in which high-school students created interactive stories using encounter

and behaviour patterns. From an efficacy perspective, we developed a set of three

case studies focused on the correctness of the generated behaviours, the expressive-

ness of the behaviour patterns, including the capability of our behaviour system to

support new behaviour patterns, and the potential for reusability of our existing be-

haviour patterns. In addition, we discussed how our model meets the computational

and functional requirements of commercial computer games that we introduced in

Chapter 2.

179

Chapter 6

Conclusions and Future Work

In the past, ScriptEase used encounter patterns to represent interactions between the

PC and inanimate game objects [49]. In this dissertation, we described a model for

representing NPC behaviours using generative patterns. This model provides a so-

lution to the difficult problem of interacting NPCs. We designed and implemented

behaviour patterns in ScriptEase to realize our behaviour model. We validated our

approach using a real commercial application, BioWare Corp.’s Neverwinter Nights

game. The first implementation of behaviour patterns used encounter patterns as

primitives. A native ScriptEase implementation followed. We are building a com-

mon library of rich behaviour patterns for use and reuse across CRPGs. We showed

how patterns hide the level of complexity necessary to create a realistic interactive

story and how the same patterns can be reused for several NPCs.

Our behaviour patterns provide the following important innovations:

1. They support proactive and reactive, as well as independent behaviours for

individual NPCs and collaborative behaviours for interacting NPCs. These

behaviours can be interrupted and resumed depending on their behaviour cue

priorities.

2. In addition to proactive behaviours, they support reactive behaviours trig-

gered as a response to collaborative behaviours, as well as latent behaviours

triggered by NPCs or by the PC. The behaviour patterns include the ability

to return to partially-completed interrupted behaviours after the interrupting

behaviour is completed.

180

3. They support performances, a powerful mechanism that allows the NPC to

change behaviour models (roles) activated by role cues (such as game events

or timers) during the story.

4. They include a novel collaboration protocol based on topics that simplifies

the way in which NPCs can collaborate and that allows them to more easily

interact with a broader range of NPC types, without having to know the spe-

cific collaborator until the game is played. This protocol is easy to use by

story authors and it can be employed to reuse basic behaviours for both sides

(initiator and responder) of a collaboration.

5. They facilitate a system for generating complex NPC behaviours that is ac-

cessible to non-programmers and that requires no manual coding.

6. They contain a concurrency mechanism that solves the inherent synchroniza-

tion problems of collaborative and interruptible behaviours.

7. They provide a motivation model for selecting proactive behaviours.

8. They support a novel online learning algorithm for behaviour selection.

In the future, the model can be extended to support more than two NPC collab-

orations at the same time. In this case, an additional queue is needed for each new

collaboration. We added learning capabilities to the NPCs for combat support that

generate even more believable behaviours and interactions. To achieve this goal,

we built a learning model on top of our motivational model to take full advantage

of the behaviour patterns we already constructed.

Our collaborative protocol mechanism can be extended to include a family of

topics that would result in broader NPC collaborations and more behaviour variety.

If the NPC behaviours in The Elder Scrolls 4: Oblivion [82] were analyzed, in addi-

tion to new behaviour patterns emerging, opportunities for model expansion may be

discovered. There are approximately 1,000 NPCs in Oblivion, excluding the NPCs

that are spawned randomly during the game. A case study directed at Oblivion

NPC behaviours could test our behaviour pattern library in a different CRPG. One

181

of the cities in Oblivion can be chosen and all the interesting behaviours that occur

in selected areas of the city can be reproduced using our behaviour patterns.

As described in Chapter 5, it would be easy to add hierarchical behaviours to

our model. However, it is an open question as to whether this would complicate the

user interface. A study could be performed to determine the utility of hierarchical

behaviours.

Each of these goals involves escalating challenges, but we have constructed our

behaviour model with these challenges in mind. We initially designed our model

to support proactive independent behaviours selected with a static probability func-

tion to eliminate repetitive behaviours that may decrease the interest of the player.

Then, we extended our model to include proactive collaborative and reactive be-

haviour patterns. In the next step, we added motivations to proactive behaviour

selection by designing a motivation construct that, when used, replaced the static

probability selection model (the default behaviour selector). We designed a collab-

orative protocol by exploiting the existing basic behaviours and connecting them

at run-time based on topics to maximize the NPCs’ interaction potential. At the

same time, we preserved the eye-contact protocol, together with the framework

of the previous collaborative behaviour model. Then, we allowed behaviours to

be interrupted and we enhanced our model to accommodate latent behaviours. In

addition to triggering latent behaviours based on behaviour cues, we support the

selection of latent behaviours either probabilistically (when two or more latent be-

haviours could be triggered by the same behaviour cue) or based on motivation for

more dynamic and challenging opponents and allies. We constructed a synchro-

nization model that is scalable to the more complex interactions that can take place

among NPCs and between NPCs and the PC. For example, the tavern scene ex-

ample can be generalized to cover the behaviours of NPCs in other settings. The

same patterns, but with different parameters, can be used to generate behaviours for

NPCs in a mansion, where tavern patrons are replaced by inhabitants, the tavern

server is replaced by a butler, and the tavern owner is replaced by a cook. Finally,

the progression from probabilistic to motivation-based behaviour selection was ex-

tended to learning-based behaviours. We incorporated ALeRT, a modification of

182

the Sarsa(λ) online reinforcement learning algorithm, to ensure that behaviours are

selected more naturally, depending on the NPCs’ previous experiences and interac-

tions with their environment.

This research could be extended to consider a team of cooperating agents, in-

stead of individual agents. For example, a team composed of a fighter and a sor-

cerer could challenge another team composed of a fighter and a sorcerer. Spronck’s

pre-built arena module will support experiments on such cooperating agents and

ScriptEase supports cooperative behaviours, so generating the scripts is possible.

In this case, the state space would be enlarged, since the attributes of the player’s

team members and multiple opponents would have to be represented. In the team

case, it may also be necessary to construct models of the other agents, since one

NPC’s best action may depend on the actions of its team members and opponents.

It would also be helpful to dynamically discover the game state necessary for

efficient learning, instead of requiring the pattern designer to specify it. After sev-

eral scenarios are executed, game state options could be suggested to the pattern

designer, based on game state changes during the actions being considered. The

pattern designer should be able to easily modify RL parameter values. Moreover,

the pattern designer should be able to adjust a game’s difficulty level using a thresh-

old that represents the maximum amount that an agent is allowed to exploit another

agent (usually the PC). ALeRT could be modified so that the agent’s value func-

tion does not exceed this threshold. This could be accomplished by increasing

exploration or by not picking the best action during exploitation. We could also

experiment with different policies throughout the game, depending on the changes

in the environment [5].

We have experimented with a variable lambda parameter that automatically ad-

justs its value to the number of steps in an episode. The value of lambda changes dy-

namically whenever an NPC undergoes an equipment configuration change. More

experiments are necessary to assess the utility of this approach. We expect the agent

to learn faster in some situation if lambda is a function of the number of steps in an

episode (e.g., directly proportional). For example, on average, in the Melee phase

of a Melee-Ranged experiment there are 3.5 steps per episode and in the Ranged

183

phase there are 5.5 steps per episode. Lambda is responsible for propagating fu-

ture rewards quickly to earlier actions. Therefore, lambda needs a higher value to

propagate knowledge back to the start action in a longer episode.

Finally, evaluation mechanisms must be developed for measuring success in

non-combat behaviours. This is a hard problem, but without metrics, it is difficult to

assess whether learning is sufficiently effective. In general, metrics can be inferred

from the requirements presented in Chapter 2 to evaluate NPC behaviours. A simple

reward function can be computed from an NPC’s motivations. For example, for a

guard NPC, we could introduce a reward function that is the sum of the motivational

attributes, Duty, Tiredness, and Threat. In fact, in this case the reward should be

the negative of the sum, since the guard wants to minimize all these attributes.

Although we demonstrated our approach using a CRPG, our model based on the

generality of the design pattern abstraction could have a broader application domain

that includes other kinds of computer games, synthetic performance, autonomous

agents in virtual worlds, and animation of interactive objects.

184

Bibliography

[1] Aurora Toolset, BioWare Corp. 2009. http://nwn.bioware.com/builders.

[2] N. Badler, B. Webber, W. Becket, C. Geib, M. Moore, C. Pelachaud, B. Reich,
and M. Stone. Planning and parallel transition networks: Animation’s new
frontiers. In Proceedings of the Computer Graphics and Applications: Pacific
Graphics ’95, pages 101–117, 1995.

[3] S. Björk and J. Holopainen. Patterns in Game Design. Charles River Media
Hingham, Mass., 2004.

[4] D. M. Bourg and G. Seemann. AI for Game Developers. O’Reilly Media, Inc.,
2004.

[5] M. Bowling and M. Veloso. Rational and convergent learning in stochastic
games. In Proceedings of the 7th International Joint Conference on Artificial
Intelligence, pages 1021–1026, 2001.

[6] M. Bowling and M. Veloso. Multiagent learning using a variable learning rate.
Artificial Intelligence, 136(2):215–250, 2002.

[7] J. Bradley and G. Hayes. Group utility functions: Learning equilibria between
groups of agents in computer games by modifying the reinforcement signal.
In Congress on Evolutionary Computation, 2005.

[8] Bungie Studios. 2009. http://www.bungie.net.

[9] A. Caicedo and D. Thalmann. Virtual humanoids: Let them be autonomous
without losing control. In Proceedings of the 4th Conference on Computer
Graphics and Artificial Intelligence, pages 101–117, 2000.

[10] T. K. Capin, I. S. Pandzic, H. Noser, N. M. Thalmann, and D. Thalmann.
Virtual human representation and communication in VLNET. IEEE Computer
Graphics and Applications, 17(2):42–53, 1997.

[11] M. Carbonaro, M. Cutumisu, H. Duff, S. Gillis, C. Onuczko, J. Siegel, J. Scha-
effer, A. Schumacher, D. Szafron, and K. Waugh. Interactive Story Authoring:
A Viable Form of Creative Expression for the Classroom. Computers and Ed-
ucation, 51(2):687–707, 2008.

[12] M. Carbonaro, M. Cutumisu, M. McNaughton, C. Onuczko, T. Roy, J. Scha-
effer, D. Szafron, S. Gillis, and S. Kratchmer. Interactive story writing in the
classroom: Using computer games. In Proceedings of the International Dig-
ital Games Research Conference (DiGRA 2005), pages 323–338, Vancouver,
Canada, June 2005.

185

[13] M. Cavazza, F. Charles, and S. J. Mead. Interacting with virtual characters
in interactive storytelling. In Proceedings of the ACM Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS 2002), pages 318–325,
Bologna, Italy, 2002.

[14] E. G. Coffman, M. J. Elphick, and A. Shoshani. System deadlocks. ACM
Computing Surveys (CSUR), 3(2):67–78, June 1971.

[15] M. Cutumisu, C. Onuczko, M. McNaughton, T. Roy, J. Schaeffer, A. Schu-
macher, J. Siegel, D. Szafron, K. Waugh, M. Carbonaro, H. Duff, and S. Gillis.
ScriptEase: A generative/adaptive programming paradigm for game scripting.
Science of Computer Programming, 67(1):32–55, June 2007.

[16] M. Cutumisu, C. Onuczko, D. Szafron, J. Schaeffer, M. McNaughton, T. Roy,
J. Siegel, and M. Carbonaro. Evaluating pattern catalogs - the computer games
experience. In Proceedings of the 28th International Conference on Software
Engineering (ICSE 2006), pages 132–141, Shanghai, China, May 2006.

[17] M. Cutumisu and D. Szafron. A demonstration of agent learning with action-
dependent learning rates in computer role-playing games. In Proceedings of
the 4th Artificial Intelligence and Interactive Digital Entertainment Confer-
ence (AIIDE 2008), pages 218–219, Stanford, USA, October 22-24 2008.

[18] M. Cutumisu, D. Szafron, M. Bowling, and R. S. Sutton. Agent learning using
action-dependent learning rates in computer role-playing games. In Proceed-
ings of the 4th Artificial Intelligence and Interactive Digital Entertainment
Conference (AIIDE 2008), pages 22–29, Stanford, USA, October 22-24 2008.

[19] M. Cutumisu, D. Szafron, J. Schaeffer, M. McNaughton, T. Roy, C. Onuczko,
and M. Carbonaro. Generating ambient behaviors in computer role-playing
games. In Proceedings of the 1st Intelligent Technologies for Interactive
Entertainment (INTETAIN 2005), LNAI 3814, Springer-Verlag, pages 34–43,
Madonna di Campiglio, Italy, November 30 - December 2 2005.

[20] M. Cutumisu, D. Szafron, J. Schaeffer, M. McNaughton, T. Roy, C. Onuczko,
and M. Carbonaro. Generating ambient behaviors in computer role-playing
games. IEEE Journal of Intelligent Systems (IEEE IS), 21(5):19–27, 2006.

[21] K. Czarnecki and U. Eisenecker. Generative Programming Methods, Tools,
and Applications. Chapter 11: Intentional Programming. Addison-Wesley,
Reading, MA, 2000.

[22] Destroy All Humans! 2. Pandemic Studios. 2009. http://www.destroyallhum
ansgame.com.

[23] M. Dyckhoff. Decision Making and Knowledge Representation in Halo
3. In Machine Learning and Games (MALAGA) Workshop, NIPS ’07,
Whistler BC, 2007. http://www.bungie.net/images/Inside/publications/pre
sentations/publicationsdes/engineering/nips07.pdf.

[24] M. Dyckhoff. Evolving Halo’s Behavior Tree AI. Invited talk. In Game Devel-
opers Conference, 2007. http://www.bungie.net/images/Inside/publications/
presentations/publicationsdes/engineering/gdc07.pdf.

[25] EA FIFA Soccer 2004. 2009. http://www.fifa04.com.

186

[26] EA FIFA Soccer 2006 GameSpot Review. 2009. http://www.gamespot.com/
xbox360.

[27] Electronic Arts (EA). 2009. http://www.ea.com.

[28] Epic Games. 2009. http://www.epicgames.com.

[29] Fable, Lionhead Studios. 2009. http://www.fablegame.com.

[30] T. Fullerton, C. Swain, and S. Hoffman. Game Design Workshop: Designing,
Prototyping, and Playtesting Games. CMPBooks, San Francisco, 2004.

[31] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

[32] T. Graepel, R. Herbrich, and J. Gold. Learning to fight. In Proceedings of the
International Conference on Computer Games: Artificial Intelligence, Design
and Education, 2004.

[33] B. Grosz and S. Kraus. Collaborative plans for complex group actions. Artifi-
cial Intelligence, 86:269–358, 1996.

[34] E. Grundstrom, Electronic Arts/Maxis. The AI of Spore. Invited talk. In
Proceedings of the 4th Artificial Intelligence and Interactive Digital Enter-
tainment Conference (AIIDE), Stanford, USA, October 22-24 2008.

[35] Guard Behaviour Movies. 2009. http://www.cs.ualberta.ca/˜script/movies /ai-
ide07.

[36] D. Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231–274, 1987.

[37] S. W. Hasinoff. Reinforcement learning for problems with hidden state. Tech-
nical report, University of Toronto, Department of Computer Science, 2002.

[38] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata The-
ory, Languages and Computation (2nd Edition). Addison-Wesley, Reading,
MA, 2000.

[39] R. Houlette and D. Fu. The Ultimate Guide to FSMs in Games. AI Game
Programming Wisdom 2, Charles River Media, 2003.

[40] D. Isla. Handling complexity in the Halo 2 AI. In Proceedings of the Game
Developers Conference (GDC 2005), 2003.

[41] J. P. Kelly, A. Botea, and S. Koenig. Offline planning with hierarchical task
networks in video games. In 4th Artificial Intelligence and Interactive Dig-
ital Entertainment Conference (AIIDE 2008), pages 60–65, Stanford, USA,
October 22-24 2008.

[42] B. King and J. Borland. Dungeons and Dreamers: The Rise of Computer
Game Culture from Geek to Chic. McGraw-Hill/Osborne, 2003.

[43] B. Kreimeier. The case for game design patterns. 2002. http://www. gamasu-
tra.com/features/20020313/kreimeier 03.htm.

[44] H. Kushner and D. Clark. Stochastic Approximation Methods for Constrained
and Unconstrained Systems. New York: Springer-Verlag, 1978.

187

[45] Lilac Soul’s NWN Script Generator. 2009. http://nwvault.ign.com/view.
php?view=other.detail&id=625.

[46] M. Mateas and A. Stern. Façade: An experiment in building a fully-realized
interactive drama. In Proceedings of the Game Developers Conference (GDC
2003), Game Design Track, March 2003.

[47] M. Mateas and A. Stern. Beyond state machines: Managing complex, inter-
mixing behavior hierarchies. In Proceedings of the Game Developers Confer-
ence (GDC 2004), Programming Track, March 2004.

[48] M. Mateas and A. Stern. Procedural authorship: A case-study of the interac-
tive drama Façade. In Digital Arts and Culture (DAC), Copenhagen, Novem-
ber 2005.

[49] M. McNaughton, M. Cutumisu, D. Szafron, J. Schaeffer, J. Redford, and
D. Parker. ScriptEase: Generative design patterns for computer role-playing
games. In Proceedings of the 19th IEEE Conference on Automated Software
Engineering (ASE 2004), pages 88–99, Linz, Austria, September 2004.

[50] M. McNaughton, J. Redford, J. Schaeffer, and D. Szafron. Pattern-based AI
scripting using ScriptEase. In Proceedings of the 16th Canadian Conference
on Artificial Intelligence (AI 2003), pages 35–49, Halifax, Canada, June 2003.

[51] M. McNaughton, J. Schaeffer, D. Szafron, D. Parker, and J. Redford. Code
generation for AI scripting in computer role-playing games. In Challenges in
Game AI Workshop at AAAI-04, pages 129–133, San Jose, USA, July 2004.

[52] M. McPartland and M. Gallagher. Learning to be a bot: Reinforcement learn-
ing in shooter games. In 4th Artificial Intelligence and Interactive Digital
Entertainment Conference (AIIDE 2008), pages 78–83, Stanford, USA, Octo-
ber 22-24 2008.

[53] Memetic Artificial Intelligence Toolkit. 2009. http://www.memeticai.org.

[54] K. Merrick and M-L. Maher. Motivated reinforcement learning for non-player
characters in persistent computer game worlds. In ACM SIGCHI International
Conference on Advances in Computer Entertainment Technology, Los Ange-
les, USA, 2006.

[55] Morrowind, Bethesda Softworks. 2009. http://www.morrowind.com.

[56] S. R. Musse, C. Babski, T. K. Capin, and D. Thalmann. Crowd modelling in
collaborative virtual environments. In Proceedings of the ACM Symposium on
VRST, pages 115–123, 1998.

[57] S. Nason and J. E. Laird. Soar-RL: Integrating reinforcement learning with
Soar. Cognitive Systems Research, 6(1):51–59, 2005.

[58] Neverwinter Nights. 2009. http://nwn.bioware.com.

[59] Neverwinter Nights Vault. 2009. http://nwvault.ign.com.

[60] Neverwinter Nights Wiki. 2009. http://nwn.wikia.com/wiki/main page.

[61] J. Orkin. Three states and a plan: The A.I. of F.E.A.R. In Proceedings of
GDC-06, 2006.

188

[62] M. D. Pendrith and M. R. K. Ryan. Estimator variance in reinforcement learn-
ing: Theoretical problems and practical solutions. In On-line Search: Col-
lected Papers from the 1997 Workshop. AAAI Technical Report WS- 97-10.
AAAI Press., pages 81–88, 1997.

[63] K. Perlin and A. Goldberg. Improv: A system for scripting interactive actors
in virtual worlds. SIGGRAPH, 29(3):205–216, 1996.

[64] F. Poiker. Creating scripting languages for non-programmers. AI Game Pro-
gramming Wisdom, Charles River Media, pages 520–529, 2002.

[65] Quake, id Software. 2009. http://www.idsoftware.com/games/quake.

[66] S. Rabin. Promising game AI techniques. AI Game Programming Wisdom 2,
Charles River Media, 2003.

[67] E. Sacerdoti. The Nonlinear Nature of Plans. In Proceedings of the Inter-
national Joint Conferences on Artificial Intelligence (IJCAI), pages 206–214,
1975.

[68] D. Sanchez-Crespo Dalmau. Core Techniques and Algorithms in Game Pro-
gramming. Indianapolis, Indiana: New Riders, 2003.

[69] B. Schwab. Implementation walkthrough of a homegrown “abstract state ma-
chine” style system in a commercial sports game. In Proceedings of the 4th
Artificial Intelligence and Interactive Digital Entertainment Conference (AI-
IDE), pages 145–148, Stanford, USA, October 22-24 2008.

[70] ScriptEase. 2009. http://www.cs.ualberta.ca/˜script/scriptease.html.

[71] Spore. 2009. http://www.spore.com.

[72] Spore. The Sporum - The Official Spore Forum. 2009. http://forum.spore.
com/jforum/posts/list/1928.page.

[73] P. Spronck. Adaptive entertainment. Invited address. In Proceed-
ings of the 2nd Artificial Intelligence and Interactive Digital Entertain-
ment Conference (AIIDE), Marina del Rey, USA, June 20-23 2006.
http://www.aiide.org/aiide2006/speakers/spronck.ppt.

[74] P. Spronck, M. Ponsen, I. Sprinkhuizen-Kuyper, and E. Postma. Adaptive
game AI with dynamic scripting. Machine Learning, 63(3):217–248, 2006.

[75] P. Spronck, I. Sprinkhuizen-Kuyper, and E. Postma. Online adaptation of
computer game opponent AI. In Proceedings of the 15th Belgium-Netherlands
Conference on Artificial Intelligence, pages 291–298, 2003.

[76] P. Spronck, I. Sprinkhuizen-Kuyper, and E. Postma. Online adaptation of
game opponent AI with dynamic scripting. International Journal of Intelligent
Games and Simulation, 3(1):45–53, 2004.

[77] Spronck’s Arena Module. 2009. http://www.cs.unimaas.nl/p.spronck/GameAI/
OnlineAdaptation3.zip.

[78] R. S. Sutton. Adapting bias by gradient descent: An incremental version of
Delta-Bar-Delta. In Proceedings of the 10th National Conference on Artificial
Intelligence, pages 171–176, 1992.

189

[79] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. Cam-
bridge, Mass.: MIT Press, 1998.

[80] D. Szafron, M. Carbonaro, M. Cutumisu, S. Gillis, M. McNaughton,
C. Onuczko, T. Roy, and J. Schaeffer. Writing interactive stories in the
classroom. Interactive Multimedia Electronic Journal of Computer-Enhanced
Learning (IMEJ), 7(1), 2005.

[81] Tavern Behaviour Movies. 2009. http://www.cs.ualberta.ca/˜script/movies/
aaai07.

[82] The Elder Scrolls IV: Oblivion, Bethesda Softworks. 2009. http://www. elder-
scrolls.com.

[83] T. Timuri, P. Spronck, and J. van den Herik. Automatic rule ordering for
dynamic scripting. In Proceedings of the 3rd Artificial Intelligence and In-
teractive Digital Entertainment (AIIDE) Conference, pages 49–54, Stanford,
USA, June 6-8 2007.

[84] UnrealKismet, Unreal Technology. 2009. http://www.unrealtechnology. com.

[85] R. Valdes. In the mind of the enemy: The artificial intelligence of Halo 2.
2004. http://stuffo.howstuffworks.com/halo2-ai.htm.

[86] M. Vasta, S. Lee-Urban, and H. Muñoz-Avila. RETALIATE: Learning win-
ning policies in first-person shooter games. In Proceedings of the 17th Innova-
tive Applications of Artificial Intelligence Conference (IAAI-07), Vancouver,
Canada, July 2007.

[87] R. M. Young. An overview of the Mimesis architecture: Integrating intelli-
gent narrative control into an existing game environment. In Proceedings of
the AAAI Spring Symposium on Artificial Intelligence and Interactive Enter-
tainment, pages 78–81, USA, 2001.

190

Appendix A

An Introduction to ScriptEase

This appendix is an excerpt from one of our previous articles [15] placed here for

the convenience of the reader.

“ScriptEase patterns are applied to NPCs and other game objects. BioWare

Corp.’s Aurora Toolset is used to define and populate scenes. The Aurora Toolset

is a drag-and-drop CAD tool for creating game worlds. It provides a rich palette

of interior and exterior map tiles, objects, creatures, etc. for creating the environ-

ments in which the game story will unfold. The tool is intuitive and easy to use.

ScriptEase makes the scripting of game objects as easy as the Aurora Toolset makes

the creation and placement of game objects. Fig. A.1 shows an author placing a

container (named Dresser) into a room; it will be used in the example of this section

and it comes from one of the stories written by a student author in the case study of

Section 5.

A story is written by instantiating patterns and adapting the generated descrip-

tions. In the example story, the author wants the PC to open the Dresser shown in

Fig. A.1. When the PC opens it and removes an item from it, the author wants a

creature named Avadel to be spawned. The author created Avadel using the Aurora

Toolset (not shown). A similar scenario occurs frequently in role-playing fantasy

games (and stories). However, it involves some other container rather than the

Dresser and some other creature rather than Avadel, since these objects are specific

to this story. Because this scenario occurs so often, ScriptEase has a pattern for it:

Container disturb - spawn creature. To use the pattern in a particular game story,

the author must adapt the pattern by specifying three options (parameters): the con-

191

Figure A.1: Creating and placing a container using the Aurora Toolset.

tainer that the pattern applies to, the creature that gets spawned when an item is

removed from the container, and the visual effect (if any) that occurs during the

spawning. Fig. A.2 shows the generated description of this pattern and one of the

options being set by the author.

The author has opened a story file (MyShortStory) created using the Aurora

Toolset and has created an instance of an encounter pattern (identified by the styl-

ized E), Container disturb - spawn creature. The author has selected the pattern and

four tabs have appeared. If the Description tab was selected (it is not), the author

would see a summary of the intent of the pattern. The other three tabs are option

tabs (The Container, Creature Blueprint and Spawn Effect). The author has adapted

this pattern to the story by selecting the Creature Blueprint option using a dialog

box to select a particular creature named Avadel. The author has previously adapted

the pattern by setting The Container option to the Dresser and the Spawn Effect to

be a Pulse, Holy visual effect, using similar dialogs.

Every encounter pattern contains one or more situations (stylized S). This en-

counter pattern is shown in Fig. A.2 and it has been opened to reveal its three

situations. One applies when an item is added to the container, one applies when

192

Figure A.2: A generative pattern, its description and a dialog being used to set an
option.

an item is removed and one applies when an item is stolen. In Fig. A.2, the Re-

move situation is expanded to show its components. Every situation contains one

Event (stylized V) that describes the circumstances under which the situation ap-

plies. The Remove situation applies when an item is removed from The Container

(Dresser). Every situation contains one or more actions (stylized A) that will be

performed when the situation applies. The Remove situation contains two actions,

one to spawn a creature and the other to show a visual effect. A situation can also

contain two other kinds of components, definitions and conditions, which will be

discussed in Section 4. Note the use of colors in the text to clearly indicate the

parts of the natural language description that are part of the pattern (black), options

(blue), conditions (red), and definitions (green).

As the author adapts the pattern by setting options, the description is updated to

reflect the choices. The description in Fig. A.2 has been adapted for the author’s

story as the pattern options were set. If the author selects Generate Code from the

menu, the NWScript code for the pattern would be automatically generated and in-

serted into the story file at the appropriate place. Fig. A.3 shows a portion of the 58

193

lines of BioWare Corp.’s NWScript code that was generated for this adapted pattern

description. A game author would never need to see the automatically generated

commented code. However, a programmer on the team may choose to view the

generated scripts and to optionally edit the scripts manually.

Figure A.3: A portion of the code generated for the pattern in Fig. A.2.

In this story, the author wants the actions to occur only when an item is removed

from the Dresser. Although adding and stealing from a container are other possi-

bilities supported by the (general) pattern, the author does not want to use them.

Therefore, in addition to setting the pattern options, the author can further adapt

the pattern description by highlighting the Add and Steal situations, one at a time,

and selecting the Delete option from a pop-up menu, before generating the scripting

code.

Pattern descriptions can be adapted (customized) by setting options, adding,

deleting or replacing pattern components. We have already seen that deleting situa-

tions is easy to do. Adding an action to a situation is also simple in ScriptEase. For

example, the author could add an action to the existing pattern so that the caption

Run for you life! is displayed above the spawned creature’s head. The author clicks

194

to highlight the Remove situation, selects add an action from a pop-up menu and

navigates a set of hierarchical menus to find the desired action. Fig. A.4 shows

the results of the author’s efforts. Note that the Add and Steal situations have been

deleted. The resulting pattern description would generate 38 lines of NWScript

code (not shown). After generating the scripting code, the author can “test-drive”

the story by opening it in Neverwinter Nights (NWN). This allows the author to

incrementally change the story and immediately test the new story to verify its cor-

rectness.

Figure A.4: Adapting a pattern by adding an action.

The Container disturb - spawn creature example shows how easy it is for an

author (non-programmer) to use ScriptEase to create an interactive game story. The

ScriptEase three-step approach (instantiate, adapt, generate) provides many benefits

for simplifying the creation of interactive stories:

1. All authoring is done using familiar story-element patterns.

2. The author does not need to know anything about programming or scripting

languages.

3. The author sees a natural language description of the story.

4. The author adapts the story using a simple menu-driven interface.

5. Many common programming errors are eliminated. The patterns have been

tested and debugged by the pattern designer, before the author uses them, not

195

by the author during story writing.

6. Enabling an author to directly generate an interactive story eliminates the

programmer as an intermediary and as a potential source of errors.

7. Since there can be thousands of objects that are scripted in a story, each re-

quires a unique label at the script level. ScriptEase manages these transpar-

ently using natural language pronouns to refer to objects in context. Hiding

these unique labels from the author reduces complexity and allows the author

to work at a higher level of abstraction. By reducing the effort required to

add scripts, the author has more time to add additional interactive (scripted)

NPCs and objects, thereby increasing the richness of the story.

8. Adapted patterns are used to generate scripting code. This code does not have

to be viewed by the author. However, it is available for further adaptation by

programmers.”

196

Appendix B

Behaviour Pattern Catalogue
Description

This appendix briefly describes the behaviour patterns comprising the behaviour

pattern catalogue that we created for the user study of Section 5.1. We have since

modified the catalogue by taking advantage of the cue mechanism to combine sim-

ilar behaviours that are triggered by different cues. In all our tasks, an NPC speaks

using two actions: uttering a random text from a dialogue file with different one-

liners that represent variations on a topic and performing a “Talk” animation. Each

non-object option (e.g., text, number, etc.) has a default setting. The user may de-

cide to change these values to adapt the pattern, but this is not necessary to use the

patterns.

B.1 Approacher

• Description: The NPC turns to face a target, it speaks, it moves (walks or

runs) to the target, and it turns to face the target again.

• Options:

– Target: the object that the NPC approaches.

– Text: the text spoken by the NPC while approaching.

197

B.2 Attacker

• Description: The NPC turns to face a target, it speaks, and it attacks the

target.

• Options:

– Target: the object that the NPC attacks.

– Text: the text spoken by the NPC while attacking.

B.3 Beckoner

• Description: The NPC turns to face a target while speaking, if the distance

between the NPC and the target is within a range specified by the user.

• Options:

– Target: the object that the NPC beckons.

– Text: the text spoken by the NPC while beckoning.

– Range: a threshold value for the distance between the NPC and the

target.

B.4 Beseecher

• Description: The NPC turns to face a target, it moves to the target, it turns

to face the target again, and it speaks, if the distance between the original

location of the NPC at the beginning of the game and the current location of

the target is within a range specified by the user.

• Options:

– Target: the object that the NPC beseeches.

– Text: the text spoken by the NPC while beseeching.

– Range: a threshold value for the distance between the NPC and the

target.

198

B.5 Challenger

• Description: The NPC turns to face a target, it moves to the target, it turns to

face the target again, and it initiates a dialogue with the target, if the distance

between the original location of the NPC at the beginning of the game and

the current location of the target is within a range specified by the user.

• Options:

– Target: the creature that the NPC challenges.

– Dialogue: the dialogue file initiated by the NPC with the target.

– Range: a threshold value for the distance between the NPC and the

target.

B.6 Checker

• Description: The NPC turns to face a target, it speaks, it moves to the target,

it turns to face the target again, it opens the target, it performs an animation

to look inside the target for an item, and it closes the target.

• Options:

– Target: the placeable that the NPC checks.

– Item: the item for which the NPC checks the target.

– Text: the text spoken by the NPC while preparing to check if the item is

in the target.

– Gone Text: the text spoken by the NPC when discovering that the item

is missing from the target placeable.

B.7 Destroyer

• Description: The NPC turns to face a target, it speaks, it casts a spell on the

target, and it destroys the target.

199

• Options:

– Target: the object that the NPC destroys.

– Text: the text spoken by the NPC while destroying.

– Spell: the spell cast by the NPC while destroying.

B.8 Dispossessor

• Description: The NPC takes an item from a target (creature or placeable)

while speaking. The NPC turns to face a target placeable, it speaks, it moves

to the target, it turns to face the target again, it performs an animation that

mimics the action of taking an item from the target, and it finally takes the

item from the target.

• Options:

– Target: the placeable that the NPC dispossesses.

– Text: the text spoken by the NPC while taking the item from the target.

– Item: the item that the NPC takes from the target.

B.9 Exclaimer

• Description: The NPC turns to face a target and it speaks (performing a

“Talk” animation).

• Options:

– Target: the object to which the NPC speaks.

– Text: the text spoken by the NPC.

B.10 Exclaimer with Animation

• Description: The NPC turns to face a target and it speaks performing a ran-

dom talk animation.

200

• Options:

– Target: the object to which the NPC speaks.

– Text: the text spoken by the NPC.

B.11 Expert

• Description: The NPC turns to face a target, it speaks, it moves to the target,

it turns to face the target again, and it performs a skill.

• Options:

– Target: the object in front of which the NPC performs the skill.

– Text: the text spoken by the NPC while performing the skill.

– Skill: the skill that the NPC performs.

B.12 Follower

• Description: The NPC speaks and it follows a target (using a follow NWScript

action) within a distance specified by the user.

• Options:

– Target: the object that the NPC follows.

– Text: the text spoken by the NPC while following.

– Range: the follow distance of the NPC from the target.

B.13 Guard

• Description: The NPC guards an item located in a placeable. The NPC

patrols, it checks the target for an item, it rests on a seat, it initiates conver-

sations with fellow guards, it reacts to conversations initiated by other NPCs,

it watches for intruders that move within a watch range from the target, it

warns any intruder that moves within a warn range from the target, and it

attacks intruders that move within an attack range from the target.

201

• Options:

– Target: the placeable that the NPC guards.

– Item: the item that the NPC guards.

– Seat: the placeable that the NPC uses to sit.

– Watch Range: the threshold of the watch distance between an intruder

and the target.

– Warn Range: the threshold of the warn distance between an intruder and

the target.

– Attack Range: the threshold of the attack distance between an intruder

and the target.

B.14 Interactor

• Description: The NPC speaks, it turns to face a target, it moves to the tar-

get, it turns to face the target again, and it interacts (performs an interact

NWScript action) with the target. If the NPC can interact with the target, an

appropriate action will be executed. For example, if the target is a container

(a placeable with an inventory), the interaction will open the container if the

container is closed and it will close it otherwise.

• Options:

– Target: the object with which the NPC interacts.

– Text: the text spoken by the NPC before interacting.

B.15 Loiterer

• Description: The NPC speaks and it moves around its original location in a

random direction and for a random distance within a range specified by the

user.

• Options:

202

– Text: the text spoken by the NPC while moving.

– Range: the maximum distance of movement from the NPC’s original

location.

– Movement: binary option that specifies whether the NPC walks or runs.

The default value is set to walk.

B.16 Manipulator

• Description: The NPC turns to face a target, it moves to the target, it turns to

face the target again, and it performs an animation while speaking.

• Options:

– Target: the object in front of which the NPC performs an animation.

– Text: the text spoken by the NPC while performing the animation.

– Pose: the animation that the NPC performs.

– Duration: the length of the animation performed by the NPC.

B.17 Patroller

• Description: The NPC patrols randomly around a set of patrol posts with the

same tag as a target while speaking.

• Options:

– Target: the object that provides the tag of the patrol posts to which the

NPC moves.

– Text: the text spoken by the NPC while patrolling.

B.18 Poser

• Description: The NPC performs an animation while speaking.

• Options:

203

– Pose: the animation that the NPC performs.

– Text: the text spoken by the NPC while performing the animation.

– Duration: the length of the animation performed by the NPC.

B.19 Rester

• Description: The NPC turns to face a target, it speaks, it moves near the

target, and it sits on the target.

• Options:

– Target: the placeable on which the NPC sits.

– Text: the text spoken by the NPC while sitting.

B.20 Returner

• Description: The NPC speaks, it turns to face its original location where

it was spawned at the beginning of the game, and it moves to its original

location.

• Options:

– Text: the text spoken by the NPC while returning.

B.21 Spawner

• Description: The NPC speaks, it casts a spell at the location of a target, it

displays a visual effect at the location of the target, and it spawns a target

creature.

• Options:

– Target: the creature that the NPC spawns.

– Text: the text spoken by the NPC while spawning the target creature.

– Spell: the spell cast by the NPC while spawning the target creature.

204

– Effect: the visual effect displayed while spawning the target creature.

B.22 Spellcaster

• Description: The NPC turns to face a target, it speaks, it casts a spell on the

target, and it displays a visual effect on the target.

• Options:

– Target: the object on which the NPC casts a spell.

– Text: the text spoken by the NPC while casting a spell.

– Spell: the spell cast by the NPC.

– Effect: the visual effect displayed while casting a spell.

B.23 Striker

• Description: The NPC turns to face a target, it speaks, it moves near the

target, and it strikes the target repeatedly.

• Options:

– Target: the object that the NPC strikes.

– Text: the text spoken by the NPC while striking.

B.24 User

• Description: The NPC turns to face a target, it speaks, it moves near the

target, it turns to face the target again, it performs an animation to simulate

the use of the target, it actually uses the target, it performs an animation, it

waits, and it uses the target again. If the placeable has an inventory, the use

NWScript action opens or closes the placeable, depending on the current state

of the placeable.

• Options:

205

– Target: the placeable that the NPC uses.

– Text: the text spoken by the NPC while using the target.

B.25 Vanisher

• Description: The NPC turns to face a target, it speaks, and it destructs itself

when the distance between the NPC and the target is within a range specified

by the user.

• Options:

– Target: the object that causes the NPC to vanish.

– Text: the text spoken by the NPC while vanishing.

– Range: a threshold value for the distance between the NPC and the

target.

B.26 Wanderer

• Description: The NPC speaks and it moves in a random direction and for a

random distance within a range specified by the user from its current position.

• Options:

– Text: the text spoken by the NPC while wandering.

– Range: the maximum distance of movement of the NPC from its current

position.

– Movement: binary option that specifies whether the NPC walks or runs.

The default value is set to walk.

B.27 Withdrawer

• Description: The NPC removes an item from a target container (a placeable

with an inventory) while speaking. The NPC turns to face a target, it speaks,

206

it moves near the target, it turns to face the target again, it performs an anima-

tion that simulates the use of the target, it performs an animation that opens

the target, it performs an animation that simulates the action of taking the

item, it actually takes the item, and it performs an animation that closes the

target. This pattern is similar to the Dispossessor pattern. In addition, the

NPC performs two more animations that mimic the opening and the closing

of the target container.

• Options:

– Target: the placeable from which the NPC takes an item.

– Text: the text spoken by the NPC while taking the item from the place-

able.

– Item: the item that the NPC takes from the placeable.

207

Appendix C

Changes to the Arena Module

We modified four NWScript files in Spronck’s arena module v.3 [77] to use the

ALeRT algorithm in this framework: ud igor 01, os learn 01, in learn generic,

and ou learnlever 02. In these files, along with our changes (marked with a bold

font) that are function calls to our auxiliary file, i se rl modific, we display

existing framework code to provide context for these changes.

We alternated the creation of the NPCs to eliminate unfair advantages caused

by the order of spawning in the game and, subsequently, by the order of attack.

In addition, at the end of a phase, the fighters are replaced by new fighters with a

different equipment configuration than their previous counterparts, as illustrated in

Figure C.1.

#include "i se rl modific"
//ActionDoCommand(createOpponent(sWhite,

GetLocation(oWPWhite)));
//ActionDoCommand(createOpponent(sBlack,

GetLocation(oWPBlack)));
SCEZ RL AlternateNPCCreation(OBJECT SELF, sWhite,

sBlack, oWPWhite, oWPBlack, nRound);
updateLampposts();

Figure C.1: ud igor 01 script

We created a new signpost for the new fighter NPC, as illustrated in Figure C.2,

to store the rule information for Spronck’s NPC on the previous NPC’s signpost

after the phase change. This ensures that learning continues after the phase change,

as illustrated in Figure C.3.

We created a new lever switch for the new fighter NPC, as shown in Figure

208

#include "i se rl modific"
//object oStorage = GetObjectByTag("SIGN " +

GetResRef(OBJECT SELF));
object oStorage = SCEZ RL GetStorage(OBJECT SELF);
if (!GetIsObjectValid(oStorage)) return;

Figure C.2: os learn 01 script

#include "i se rl modific"
//object oStorage = GetObjectByTag("SIGN " +

GetResRef(OBJECT SELF));
object oStorage = SCEZ RL GetStorage(OBJECT SELF);
if (GetIsObjectValid(oStorage))

return DetermineCombatRoundLearning(oStorage, iCombat);

Figure C.3: in learn generic script

C.4, to ensure that Spronck’s NPC uses learning. In Spronck’s system, an NPC is

learning only if there is a learning lever provided for that NPC and if the lever is

switched on.

#include "i se rl modific"
oSwitch = GetObjectByTag(S + "013");
switchLever(oSwitch, iOn);
oSwitch = GetObjectByTag(S + SE RL NEW COMBATANT ID);
switchLever(oSwitch, iOn);
updateLampposts();

Figure C.4: ou learnlever 02 script

Figure C.5 illustrates the constants that we defined in the i se rl modific

file in order to implement our changes to Spronck’s code for supporting the integra-

tion of our ALeRT algorithm and experiments.

Figures C.6 and C.7 show the learning scripts used by Nera, our agent controlled

by the ALeRT algorithm and by Blanche, the opponent controlled by Spronck’s

scripts.

209

const int SE RL EPISODES = 500;
const string SE RL NEW COMBATANT ID = "014"; //New Fighter

Figure C.5: The constants defined in the i se rl modific file.

Figure C.6: Nera’s Scripts: ALeRT learning algorithm.

210

Figure C.7: Blanche’s Scripts: Spronck’s rule-based learning algorithm.

211

