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Abstract

Three different approaches are used to study the laminas flow transitions, insta
bilities. and corbined free and forced convective heat transfer problems for fully
developed flows in rotating, curved channels with circular and rectangular cross

sections.

In particular, a three-parameter regular perturbation method and a finite volume
numerical method are developed to solve the governing equations for the flow and
heat transfer in channeis with simultancous curvature, rotation and heating /cooling,
The perturbation method is for the circular tubes, and the numerical method for the
rectangular channels. In these two parts of the work. we constrain ourselves to the
steady, hydrodvnamically and thermally fully developed flow under the condition of
uniform wall heat flux with peripherally uniform wall temperature. We also contine
ourselves to examine ti,c symmetric flows with respect to the horizontal center plane
of the channel by imposing a symmetric condition en the plane in onr numerical
scheme. The results cover the nature of the flow transition and its effect on the flow
resiscance and combined free and forced convective heat transfer for hoil heating

and cooling cases under positive or negative rotations.

Using air as the fluid. the flows in channcls with curvature and/or rotation are
visualized in terms of end-view at the exit of the test sections throveh injecting
smoke into the flows. In this part of the work, we also confine ourselves to the
fully developed flows. and focus our attention on the phenomena due 1o the stabi-

lizing/destabilizing influence of the curvature and/or rotation. Several test sections



are used. and the resul's shown here are some typical ones for the four test sections.
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v kinematic viscosity

w angular velocity vector

Q angular velocity

) non-dimensional stream functior

ik expansion coeflicient for ¢

oL parameter free expansion coefficients for ¢
I defined by Eq.(6.8)

p density of fluid

Po density at Ty

Pu density of fluid based on wall temperature
o curvature ratio

0 nolar coordinate

] defined by Eq.(6.7)

£1.89.83 o, Rcq, Rag

¥ coordinate

£ vorticity



Chapter 1

Introduction

1.1 The Origins of Centrifugal and Coriolis Forces

Fluid flow and heat transfer in rotating curved channels arise in varions practical
processes. Examples are: cooling systems for conductors of electric generators and
generator motors for pumped-storage stations (Ito & Motai 1974, Miyazaki 1971 &
1973, Morris 1981), particle scparation (Lennartz et al. 1987, Papanu i al. 1986,
Hoover ef al. 1984, Stober & Flachshart 1969, Hochrainer 1971 and Kotrappa &
Light 1972), heat exchangers (Qiu et ol. 1988 and 1990) and physiclogical ficld
(Ito & Motai 1974, Berman 1985 and Pedley 1980). Studies on the hydrodynamics
and transport phenomena in the rotating curved channels are, therefore, not only

of considerable theoretical interest, but also of great practical importance.

The goal of hydrodynamics is to describe and predict the motion of a body of
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fluid under applied forces. The so-called Newton's second law of motion relates the
resultant force acting on the body to the change in momentum experienced by the
body. However for the second law to be valid it is necessary to ensure that the
motion concerned is referred to an inertial frame of reference, a reference system
permitting uniform motion of the body to be specified when there is no resultant
force acting. This requires a reference frame either at rest in space or moving with
uniform velocity. and can be understood by noting that the motion of the body is

reference frame dependent but the applied forces are not.

If the motion of a fluid particle moving inside a stationary channel is required.
a convenient reference frame is one fixed to the channel itself. Since the channcl
is stationary. the second law of motion can be employed to r 'ate the force to the
motion of the particle. If the channel is rotating and/or acceleratively translating.

however. a reference frame fixed to the channel is no longer inertial any more.

In practical engineering, it is the relative motion between bodies that determines
the performances such as friction resistance and heat transfer characteristics. Thus
it is often more convenient to choose a non-inertial frame moving with the channel
although an inertial frainme of reference car always be defined in principle. For these
cases. correction terms must be applied to the usual mathematical description of the
Newton's second law of motion to sustain its validity. In other words, the relation
is required between accelerations relative to an inertial system and a non-inertial

svstem for a given motion.
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A kinetic analvsis of the motion establishes such a relation as (Morris 1981)

821' 51‘ f).u
a:=W-{-?(wxa)-&wx(wxr)+5{—xr+au. (l])
1 | 2 3
4

Here a; is the acceleration with respect to the inertial frame of reference, w the
angular velocity vector of the non-inertial frame of reference, t the time, and ag is
acceleration of the origin of the non-inertial frame of reference with respect to the
inertial frame of reference. Since r is position vector in the non-inertial system, the

first term is acceleration with respect to the non-inertial frame of reference.

Expression (1.1) shows that three correction terms involving w are required to
determine a;. Also required is a fourth term ag if the origin of the noun-inertial
frame is not fixed. The second and the third terms are known as the Coriolis
acceleration and the centripetal acceleration, respectively. They appear whenever
motion is referred to a reference frame which is itself rotating. If the reference is
rotating with non-uniform angular velocity, an additional term (the fourth term in
(1.1)) is then required to account for the angular acceleration of the frame. The
detailed expressions of these correction terms are listed in Table 1.1 for three typical
rotating configurations. Two of them with straight channels have been derived
by Morris (1981), but with some errors, resulting in some incorrect conclusions.
For each configuration, two typical rotating reference frames are used. They are

convenient to be used for the circular and rectangular channels, respectively.

These additional terms of acceleration, with their force implications, will sig-

nificantly affect the flow behaviour in a rotating channel. In particular, they may
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generate vortices in the flow under certain conditions. Since the main objective of
the present study is to investigate the effects of the centrifugal and Coriolis forces

on the flow and heat transfer, we derive ticse conditions in the next section.

1.2 The Conditions for the Centrifugal and Coriolis Forces

to Generate Vortices

Vorticity is a measure of the angular velocity of a fluid particle at a point in the

flow. Mathematically, it is defined as

(=Y XV (1.2)

with ¢ and v as the vorticity and velocity, respectively. The equation governing the
generation, convection and diffusion of the vorticity is called the vorticity equation

which can be obtained by taking the curl of the momentum equation.

To highlight the salient features, assume that the flow is laminar, the reference
frame is Cartesian and rotates with uniform angular velocity, and no body forces
act on the fluid. In many situations of practical importance (e.g. examples in Table
1.1), the centripetal and the translational acceleration of the origin can be combined

to form a conservative field which is described through a scalar function ¢ such that
Vo =wx(wxr)+ap (1.3)

under which circumstances, the momentum equations for a motion of the fluid re-
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ferred to a translating and rotating reference frame are (Morris 1981)

1—)X-+2wxv:—v(£+¢)+uv2v (1.4)
Dt p

for an isothermal flow and

Dy +2wx V= ——]—vp’—i-ﬂ(T— To) Vo + vyie + fiv(divv) (1.5)
Dt Po 3

for a non-isothermal flow. Here T; and po are the reference temperature and the
density at 7' = 75, 3 the thermal expansion coeflicient, and p' is the deviation of
the pressure field from the hydrostatic pressure field. In deriving Eq.(1.5), the usual
Boussinesq approximation has been used which states that the density variation
need be included only in the effective body force term. This is important since to a
first approximation, the temperature-density variation need not be included in the

Coriolis term.

By taking the curl of Eqs.(1.4) and (1.5) and enforcing the continuity equation,
we obtain the vorticity equations, measured relative to the translating and rotating

reference frame, as

b _

oy = (Vv + v 7+ 2w - V)V (1.6)

for an i1sothermal flow and
D¢ . ;
B = VIvHry (+2(w-VIV+V x BT -To)vé (1.7)

for a non-isothermal flow.

These show the following important results as discussed by Morris (1981). The

centrifugal and translational acceleration terms vanish from the vorticity equation
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for the isothermal flows. These terms are clearly purely hydrostatic for this case.
analogous to the earth’s gravitional field. A term having its origin in the Coriolis
accelcration does, however, appear in the vorticity equation {Eq.(1.6)). This implies
an additional generation term tending to produce vorticity or relative rotation of

the flow provided the term (w - ¥)v is non-zero.

For the non-isothermal flows, the Coriolis force generates vorticity as that in
the isothermal flows provided (w - 7)v is non-zero and temperature-induced den-
sity variations do not directly affect this term to a first order approximation. The
conservative effective body force, describing through the scalar function ¢, can cre-
ate vorticity through an interaction between the temperature and density. There-
fore, the non-isothermal flows will be simultancously influenced by the Coriolis and
centrifugal-type buoyancy forces. We will examine these effects for several flow ge-
ometries by three different approaches in the present work. Before the detailed
descriptions of the present work, it appears appropriate to briefly summarize the

available approaches to study these eflects.

1.3 General Outline of the Available Approaches

In this section a general outline of the approaches, theoretical, numerical and
experimental, employed in the past to study the effects of the centrifugal and/or
Coriolis forces on the fluid flows and heat transfer will be described. A detailed

account for each particular work will be presented in the section dealing with the
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relevant problems.

The presence of the centrifugal and Coriolis forces results in a complex mech-
anism of flow and heat transfer in a rotating channel. This makes the theoretical
analysis difficult. The rotation of the system also presents a complex system design

for the experimental measureraents.

In the theoretical field. work has been centred mainly on employing parameter
perturbation methods and boundary layer integral-type methods to solve the equa-
tions governing the flow and heat transfer in stationary curved channels, streamwise

and radially rotating straight channels.

The parameter perturbation method used in the past usually employs a power
sequence of one parameter as the expansion functions. The theoretical basis about
the convergence remains to be established in the future. As well, the solution with
finite terms is usually believed to be valid only for a limited range of the perturbation
parameters with the small values. If applied beyond the range of applicability, it
fails to converge and gives erroneous results. Recently, the method of extended
perturbation series was developed with an attempt to remove this limitation by

combining analysis and numerical computation.

The method consists of three steps: First, the set of perturbation equations 1s
programmed for solution on a computer such that a large number of terms can be
obtained. Second, the coefficients of the series are utilized to identify the location

and nature of singularities limiting the range of applicability of the series. With this
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knowledge. the final step is to recast the perturbation solution series using one or
a combination of devices such as the Euler transformation, Shanks cransformation,
Padé approximates, extraction of singularities, and series reversion. The improved
series generally has better accuracy and a wide range of applicability than the orig-
inal series. However, this techniques has not been extended to analyze the multiple

series.

The boundary layer integral-type method may be regarded as one kind of motion
decompc¢ ition bhased on flow domains. It recognizes the different nature of flow in
different flow regions and considers the whele flow domain to be consisted of two
regions. In a core region, the flow is nearly inviscid and only pressure, centrifugal
and Coriolis forces are considered to be dominant. The viscous forces are considered
to be important in a thin region close to the walls which is called a boundary
layer. Momentum and heat balances are usually made in the boundary layer in
their integral forms. Careful attention is required to obtain the proper matching
conditions between the two regions. This method is generally valid only for the

cases with very high rotation speed.

In the past, the applications of these two theoretical methods started by solving
the equations for laminar flow without heat transfer and were gradually developed
to include the effects of heat transfer and turbulence. From these works. certain
formulae have been proposed to estimate the effects of rotation on the flow and heat

transfer.
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The theoretical methods are valid for the limiting cases of low and high rotation
speeds.  Numerical computation is, however, more appropriate for calculation of
modcrate retation rate. The numerical approaches can be further classified as series
truncation methods, finite difference methods, finite-volume methods, finite element
methods and spectral methods (one kind of coordinate perturbation methods) etc.
(Nandakumar & Masliyah 1986). Most o. the numerical works on the topic, to our

knowledge, have been confined to laminar and fully-developed flows.

On the experimental side, works have been done mostly for the case of straight
channels radially rotating without heat transfer. This is because of the similari-
ty between this situation and the flow in an impeller of a centrifugal compressor.
Therefore, most of the experimental data are concerned with the dependence of the
flow resistance to the relevant flow parameters. Very few experimental data exist for
the heat transfer when the channel is rotated. These experimental data are all for
particular cases, limited in number in each case, and not possible to be compared
between them beyvond an estimate of one order of magnitude. Furthermore, they
are not suflicient to check thoroughly the general validity or accuracy of a proposed

prediction procedure.

The flow and heat transfer in the rotating systems can be investigated experi-
mentally cither through the direct measurements or through some kinds of analogy
theories. The later includes the mass transfer - heat transfer analogy, stratified flow

- rotating flow analogy and electromagnetic flow - rotating flow analogy. The exper-
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iments by the direct measurements and mass transfer - heat transfer analogy must
be carried out in a rotating system, which presents difficult problems in designing
and running the experimental apparatus. The stratified flow - rotating flow analogy
and electromagnetic flow - rotating flow analogy allow one to observe the effects of
the centrifugal and the Coriolis forces on the flows and heat transfer in a stationary
analogous system, and to examine the flows and heat transfer under the isolated

centritugal force or Coriolis force. They are worthy to be developed in the future.

1.4 Present Work and Organization of the Thesis

In the present work. three different approaches, namely, three-parameter pertur-
bation, finite-volume numerical simulation and experimental visualization of flows,
are developed to study the laminar flow transitions, instabilities, and combined free
and forced convective hcat transfer in rotating curved channels with circular and
rectangular cross sections. The three parts are relatively independent and empha-

size different aspects of the flow and heat transfer in rotating curved channels.

Perturbation analysis is to obtain an approximate analytical solution of veloe-
ity and temperature fields in a curved circular tube rotating spanwisely with an
constant angular velocity and to extend the previous analyses to the range whee
centrifugal, Coriolis and buoyancy forces just neutralize each other. The anavti
cal solution allows one to analyze the structure of the solution and bring out the

physical parameters, resulting a better understanding of the physical nature. The
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finite-volume numerical analysis is to reveal the laminar flow transitions of the sec-
ondary flow and the main flow in a curved rectangular channel rotating spanwisely
with an constant angular velocity for a wide range of the characteristic parameters.
and to investigate the effects of the flow transitions on temperature distribution,
flow resistance and heat transfer characteristics. In these two parts of the work,
three factors, namely, curvature, rotation and heating/cooling. are all included in

the analysis.

The motivation of the flow visualization comes from the desire to investigate
the stabilizing/destabilizing effects of the curvature and rotation on the channels
flows. In particular, this experiment presents the visual results of the stabiliz-
ing/destabilizing flows in channels with curvature and/or rotation which are believed

to be useful for the modeling of the flows.
The thesis consists of seven chapters of which the present one is the Introduction.

In Chapter 1, we present the origins of the centrifugal and Coriolis forces and the
conditions for the centrifugal and Coriolis forces to generate vortices in flows relative
to a non-inertial frame of reference. It also briefly summarizes the present work
and the available ap: *oaches (analytical, numerical and experimental) for studying
the effects of the centrifugal and Coriolis forces on the flows and heat transfer in

rotating/curved channels.

In Chapter 2, we show the existence of a unique, uniformly convergent poly-

nomial for any continuous function of one or more variables which can be used to
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approximate the function. Assuming that the stream function of sccondary flow.
the pressure driven main flow and the temperature are continuous on the curva-
ture ratio, *he rotational Reynolds number and the rotational Rayleigh number, a
systematic three-parameter, regular perturbation method is developed to study the
laminar flow transitions and combined free and forced convective heat transfer in a

rotating curved circular tube.

The specific problem considered is the curved tube rotating at a uniform angular
velocity about the axis through the centre of the curvature. A full second-order
perturbation solution is obtained for the full nonlinear coupled governing equations
under the conditions that the flow and temperature fields are fully developed, and the
wall heat flux is uniform with peripherally uniform wall temperature. The solution
covers both heating and cooling cases, with the rotation of the tube either in the
same direction or opposite to the main flow imposed by an axial pressure gradient.
By excluding the effect of any one or two of the three factors (curvature, rotation
and heating/cooling), the solution reduces to cach of the six special problems such

as the classical Dean problem and mixed convection problem.

In Chapter 3, we analyze the flow and heat transfer characteristics based on the
perturbation solution presented in Chapter 2. The results cover both the nature
of flow transitions and the effects of these transitions on temperature distribution,
friction factor and Nusselt number. When the rotation is in the same direction as

the main flow imposed by a pressure gradient and the fluid is heated, the flow and
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heat transfer remain similar tc those observed in stationary curved tubes. radially
rotating straight tubes or mixed convection in stationary straight tubes. There are,
however, quantitative changes due to the combined effects of the centrifugal, Coriolis
and buoyancy forces. A more complex behaviour is possible when the rotation is
opposite to the flow due to the pressure gradient or when the fluid is cooled. In
particular, b. inward Coriolis force and/or buoyancy force may cause the direction
of the secondary flow to reverse. The flow reversal occurs by passing through a four-
cell vortex tlow region where overall, the centrifugal, Coriolis and buoyancy force

just neutralize each other.

In Chapter 4, we study the flow and heat transfer in the rectangular channels
with simultancous effects of curvature, rotation and heating/cooling. The govern-
ing equations are solved numerically by using a finite-volume method. The results
contain both the nature of the flow transition and effect of flow transition on the dis-
tributions of the friction factor and Nusselt number in a square channel. A one-pair
vortex flow, with an ageostrophic and virtually inviscid core, is uncovered between
a viscous force dominated one-pair vortex flow and two-pair voi: 2x flow with the p-

cnce of the Dean-, Coriolis- or buoyancy-vortices. Different two kinds of one-pair
vortex flow exist after the disappearance of the Coriolis-vortices upon increasing
the Coriolis force sufficiently. When the fluid is cooled, the inward buoyancy forces
cause the buoyancy- vortices (due to the buoyancy force instability) to appear in the

low pressure side (rather than the usual high pressure side of the channel), and the
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direction of the sccondary flow reverses by overcoming the outward centrifugal and
Coriolis forces in the plane of the cross section. The flow reversal occurs by passing,
through a multi-pair vortex flow region where overall, the effect of the buovancy
force just neuiralizes those of the centrifugal and Coriolis forces. A two-pair vortex
flow may result from two different mechanisms. One is associated with a break:
up of the Ekman-type vortices owing te the centrifugal, Coriolis or buovancy foree
instabilities. Another, with a smaller size of the resulting sccond pair of vortices,
is characterized by a merging-together of the vortices. The disappearance of the
Coriolis- or buoyancy-vortices is observed upon increasing the Coriolis or buovaney
forces. No such phenomena are observed for the Dean- vortices. Furthermore, the
reappearance of the buovancy-vortices, upon increasing the buoyancy force further,

is also fo 'nd in this study.

In Chapter 5. the finite-volume scheme developed in Chapter 4 is used to study
the laminar flow transitions and combined free and forced convective heat transfer
in a rotating curved channel for the case of negative rotation at rel-tively high Dean
number. The results cover both the nature of the flow transition and the effects
on temperature distribution, friction resistance and heat transfer between fluid and
wall. Several phenomena shown in Chapter 4 are confirmed. As well, several new
phenomena are revealed. When the rotation is in the negative direction, the inward
Coriolis forces cause the Coriolis vortices (due to the Coriolis force instability) to

appear near the inner wall of the channel, and the direction of the sccondary flow
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to reverse by overcoming the outward centrifugal and/or buoyancy forces. When
the Coriolis vortices appear near the inner wall, the inner side of the channel be-
comes the high pressure side. The flow reversal (due to negative Coriolis forces)
occurs by passing through a multi-pair vortex flow region where overall, the Corio-
lis, centrifugal and buoyancy forces just neutralize each other. The merging-vortices
found in Chapter 4 appear to exist only when the buoyancy forces are taken into

consideration.

In Chapter 6. experiments on visualization of stabilizing/dcstabilizing flows in
chaunels with curvature and/or rotation are described. Several test sections have
been used, and the results shown here are some typical ones for four test sections.
Although the main objective is to draw some general features about the stabiliz-
ing/destabilizing flows from the visualization experiments, a generalized Rayleigh
criter’zn is formulated about the primary instability of flows in rotating curved
channels to help the understanding of some experimental results. We have observed
sceveral stabilizing/destabilizing related phenomena in the channel flows with cur-
vature and/or rotation: (1) For large values of | Ro |, both primary and secondary
instabilities exhibit a symmetry about the directions of rotation. As well, the flows
at large | Ro | are found to be controlled by the secondary instabilities rather than
the primary instability. In particular, the secondary instabilities lead the flow at
large | Ro | to be unsteady and turbulent like the bursting flow in the turbulen-

t boundary lavers. This produces the low Reynolds number turbulent flows. (2)
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When the curved channels rotate with slow negative speed, two potentially unstable
regions, alternated by two stable regions, exist in the cross-plane, resulting a compli-
cated vortex flow. (3) The Dean/Coriolis vortices can also exist on the unstable side
in the relaminarization process of the flow from turbulent to laminar. In particular,
their formation in the flows with high Reynolds number annihilates the turbulence,
and leads to a high Reynolds number laminar flow. (4) Secondary instabilities of
the Dean/Coriolis vortices lead the vortices to oscillate in various forms even in the
streamwise fully developed flow regions. We have observed several oscillating modes
including one with mostly radial motion, one with mostly spanwise motion, one with
significant simultaneous radial and spanwise motion, and one with rocking motiun.
In addition, the oscillating modes are also present with motion so complicated that
they are difficult to describe from the flow visualization results. (5) It is possible to
completely destroy the Dean vortices by rotation and to give rise to vortices on the

convex wall due to the Coriolis force.

In Chapter 7, we summarize the main results of the present study and the con-

clusions obtained thereof, and present the suggestions for future work.
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(a) Toroidal rectangular frame of reference

Figure 1.3. Spanwise rotating curved channels
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Chapter 2

Flow Transitions and Combined
Free and Forced Convective Heat

Transfer in a Rotating Curved
Circular Tube—I: Perturbation

Solution

A three-parameter, regular perturbation method is developed to study laminar
flow transitions and combined free and forced convective heat transfer in a rotating
curved circular tube. The specific problem considered here is the curved tube rotat-
ing at a uniform angular velocity about the axis through the centre of the curvature.
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Chapter 2. Perturbation Solutions

A full second-order perturbation solution is obtained for the full nonlinear coupled
governing equations under the conditions that the flow and temperature fields are
fully developed, and the wall heat flux is uniform with peripherally uniform wall
temperature. The solution covers both heating an * cooling cases, with the rotation
of the tube either in the same direction or opposite to the main flow imposed by
an axial pressure gradient. By excluding the effect of any one or two of the three
factors (rotation. curvature and heating/cooling), the solution reduces to cach of
the six special problems such as the classical Dean problem and mixed convection

problem.

2.1 Introduction

Fluid flow and heat transfer in rotating curved channels are not only of theo-
retical interest, but also of practical importance in many engineering applications
(Morris 1981, Papanu el al. 1986 and Qiu et al. 1388 & 1990). The transport and
flow phenomena in the rotating curved channels have, therefore, challenged engineer-
s and scientists for a long time. A remarkable characteristic of the flow and heat
transfer in a rotating system is the presence of the centrifugal and Coriolis forces,
Under certain conditions, those forces may induce a secondary flow in a plane per-
pendicular to the direction of main flow. This could significantly affect the resistance
to the fluid flow and convective heat transfer. According to its inducing condition

(§1.2), the secondary flow could only be created by the Coriolis force for a constant
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property fluid, while the centrifugal force is purely hydrostatic, analogous to the
carth’s gravitational ficld. When a temperature-induced variation of fluid density 1s
permitted, both Coriolis and centrifugal-type buoyancy force could contribute to the
generation of the secondary flow. On the other hand, secondary flow also arises due
to centrifugal force when a channel is curved {Dean 1928). Therefore, centrifugal,
Coriolis and centrifugal-type buoyancy forces all contribute to the generation of the
sccondary flow if the channel is both curved and rotating. The nonlinear irteraction
of these body forces could result in a complicated structure of the flow. We examine
this structure and its effects on flow resistance and convective heat transfer in the
present study by a three-parameter perturbation method assuming the channel to

be of a circular cross section.

The sccondary flow under consideration is really a nonlinear combination of the
buoyancy force-driven secondary flow in the mixed-convection problem, the centrifu-
gal force-driven secondary flow in the Dean problem and the Coriolis force-driven
secondary flow in radially rotating straight channels (hereafter referred to as Cori-
olis problem). The similarity among these three probiems has been recognized by
a number of investigators. The dynamical parameters for these three problems
are, respectively. ReRa, square of the Dean number De? (De = Re\/o) and Dgq
(= ReRegq). Here Re is the Reynolds number, Ra is the Rayleigh number, o is
the curvature ratio of the channel and Regq (= 494a?/v) is the rotational Reynold-

s number. In all three problems, a typical structure of fully-developed secondary
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flow consists of one-pair of counter-rotating vortices in « plane perpendicular to the
axis of the channel at sufficiently small values of the dynamical parameter. The
interaction of the secondary flow with the pressure-driven main flow shifts the lo-
cation of the maximum axial velocity away from the centre of the chanuel and in
the direction of the secondary velocities in the middle of the channel (Nandakumar
& Weinitschke 1991). Upon increasing the value of the dynamical parameters suf-
ficiently (depending on the value of the Prandtl number Pr, curvature ratio o or
the rotational Reynolds number Req for these three problems), the one-pair vortex
flow structure becomes unstable and gives way to another form of two-dimensional
flow with a two-pair or roll-cell vortex structure (depending on the geometry of the

channel ) in the cross-plane.

Winters (1987) found such two-pair vortex flows in the Dean problein to be unsta-
ble to asymmetric perturbations. Similar results are found in the mixed-conveetion
problem (Nandakumar & Weinitschke 1991) and the Coriolis problem (Nandaku-
mar el al. 1991). The stability of these vortices with respect to two-dimensional,
spanwise-periodic perturbations (i.e. Eckbaus stability) is examined by Guo and
Finlay (1991) for parallel plate channel with curvature and/or rotation. They found
that the Eckhaus stability boundary is a small closed loop. Within the boundary,
the vortices are stable to spanwise perturbations. QOutside the boundary, Fckhaus
instability causes the vortex pairs to split apart or merge together. Upon increasing

the dynainical parameter even more, all two-dimensional flows become unstable, and
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there is evidence for the evolution of streamwise periodic three-dimensional flows in
all of the three problems (Nandakumar et al. 1991, Nandakumar & Weinitschke
1991 and Ravi Sankar et al. 1988). The references concerning these three problems
may be found in Cheng & Hwarig (1969), Hwang & Cheng (1970), Nandakumar
(1985) and Nandakumar & Weinitschke (1991) for the mixed-convection problem:
Berger (1991), Berger et al. (1983), Cheng et al. (1976), Dennis & Ng (1982), Ito
(1987), Nandakumar & Masliyvah (1986), Winters (1987) and Hwang & Chao (1991)
for the Dean problem; Kheshgi & Scriven (1985), Morris (1981), Nandakumar ef al.
(1991), Speziale (1982), Speziale & Thangam (1983), Hwang & Jen (1990). Hwang
& Soong (1992). Jen et al. (1992), Hwang & Kuo (1993), Hwang & Jen (1987),
Hwang & € . "989), Hwang & Kuo (1992), Soong et al. (1991) and Soong &

Hwang (1990, . the Coriolis problem.

In spite of the practical importance and academic interest, the flow and heat
transfer in rotating curved channel have not yet sufficiently been examined in details.
Most of the previous analytical/numerical investigations have been focused on the
two simplified limiting cases (i.c. with weak rotations or with strong rotations). By
employing Pohlhausen’s method, Hocking (1967) and Ludwieg (1951) examined the
fully developed laminar boundary layers in rotating curved channel with rectangular
and square cross section, respectively. Their results are valid for the large rotational
Reynolds number based on the angular velocity of the channel, as compared with the

usual Reynolds number based on the mean axial velocity of the fluid. This problem is
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not as difficult as the case of the moderate rotation since the flow in the interior of the
channel is approximately geostrophic. Considering the channel to be curved tube of
circular cross section, the fully developed laminar flow was investigated theoretically
by Ito & Motai (1974). They solved the equations of motion by a perturbation
method for a small curvature and a low range of angular rotating velocity of the tube.
Heat transfer and the effect of centrifugal-type buoyancy force were not considered by
these authors. Mivazaki (1971 and 1973) analyzed the fully developed laminar fow
and heat transfer in curved rotating circular/rectangular channels by finite-difference
method. The effects of the directions of rotation or heat flu. were not considered
in Mivazaki’s works. Because of the convergence difficulties of the iterative solution
method used, no solutions in the range where three forces ( centrifugal. Coriolis and
centrifugal-type buoyancy forces) are of comparable magnitude could he obtained.
As for experimental works, it appears that only Piesche (1982) and Piesche & Felsch
(1980) have made experimental measurement of the pressure loss in rotating curved
square/rectangular channels. By ejecting smoke into the flow, the secondary flow
in rotating curved square/rectangular chaunels bhas beew visualized by Cheng of
al. (1993) and Cheng & Wang (1993a and 1993L:. Ve photographic results of
secondary flow patterns show that the secondary flow in rotating curved channels
is very complex. Depending on the range of governing parameters and geometry of
channels, the secondary flow may appear as one-pair, two-pair, roll-cell or a large

number of small vortex flow patterns.
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Since the existing solutions to the problem are only for the asymptotic limits
of slow and rapid rotation, the secondary flow revealed by the works mentioned
above consists of only one-pair counter-rotating vortices. When the three forces are
of comparable magnitude, a complicated structure of the secondary flow might be

expected since then the nonlinear effects could be quite strong.

In the present work. the laminar flow transitions and combined free and forced
convective heat transfer are investigated theoretically for a curved circular tube
rotating at a uniform angular velocity about the axis through the centre of the
curvature. A three-parameter perturbation method is developed to solve the full
nonlinear governing equations under the conditions that the flow and temperature
ficlds are fully developed, and the wall heat flux is uniform with peripherally uniform
wall temperature. The solutions are valid for both heating and cooling cases, and
also both cases in which the rotation of the tube is in the same direction or opposite
to the main flow imposed by a pressure gradient along the axis of the tube. Attention
is focused on transitions of the secondary flow and the main flow, and the effects of
these transitions on temperature distribution. friction resistance and heat transfer in
terms of friction factor and Nusselt number. The work is divided into two parts. The
first part provides a theoretical basis for the perturbation method with the power
sequence as the expansion functions, and obtains a full second order perturbation
solution for the velocity and temperature ficlds. The second part presents the flow

and heat transfer characteristics obtained by the perturbation solution.
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The motivation of the present study comes from the desire of obtaining an ap-
proximate analytical solution and extending the previous analysis to the range where
centrifugal, Coriolis and buoyancy forces just neutralize cach other. From the an-
alytical snlution, the structure of the solution may be analyzed. Consequently, the
physical nature of the problem may be understood more clearly. However, a per-
turbation solution with finite terms is usually valid only in the range with small
values of the characteristic parameters. This limit may be extended by two tech-
niques developed recently. One is the extended perturbation series technique (Aziz
& Na 1984, Aziz 1988 and Van Dyke 1975), in which considerable routine labour of
calculating higher approximations is delegated to a computer. After dozens or even
hundreds of terms are found, the structure of the solution may be analyzed and the
solution may be improved to extend its utility. The other is the matching technique
which uses the asymptotic solutions for large or small values of the characteristic
parameters to construct a general solution, valid over the whole range of the values

of the characteristic parameters.

2.2 Formulation of the problem

The geometrical configuration of the physical model for a rotating curved circular
tube and its coordinate system are given in F1g.2.1. Under the action of the pressure
gradient, a viscous fluid is allowed to flow through the curved tube of circular cross

section of radius a with negligible pitch effect, which is rotated aboui the axis
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through the centre of the curvature o'z’ with a constant angular velocity §2. The
tube is being unitormly heated or cooled at the wall with a heat flux ¢,. The

propertics of the fluid, with the exception f density, are taken to be constant.

Consider a toroidal coordinate system (R, »,8) fixed to the rotating curved tube
as shown in Fig.2.1. The direction of the main flow in the tube is chosen in the
direction of increasing 0, while the angular velocity of the tube is taken as 2 > ¢
for increasing 0 and Q < 0 for decreasing 0. respectively. The velocity compo-
nents i the increasing directions of R, ¢, and 6 are denoted by I/, V, W respectively.
The buovaney term is expressed in terms of the coefficient of thermal expansion
as is commonly done in free-convection analyses (Boussinesq approximation). The
temperature difference used to express density variations in the buoyancy term 1s
tw — (. =wall temperature; ¢ =temperature of the fluid). In the case of hydrody-
namically and thermally fully developed laminar flow, the continuity, Navier-Stokes
and energy cquations governing the flow and heat transfer are:

Equation of Continuity

at U Using 10V Veosy
=+ =+ = —— =
JOR R R.+ Rsinp R0dp R.+ Rsinp

IEquation of Momentum

U VAU VP Wlsing 19P" .
vl L T ,— 1)02(R. + Rsing)si
Rt Roe TR BoaRsing = poR TPt O (R + Rsing)sing

. 1 0 cosy 19UV oV V

M sines 4 1 mm e

* s+ ol ROy + R. + Rsiny
OV + Vv N rv Wiosp 1 9P
OR " Rd; R R.+Rsing  pR Iy
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Equation of energy
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The boundary conditions at the wall are:

U=V =W=0;t=1L, (2.6)

In the equations above, v and a are the kinematic viscosity and thernial dif-
fusivity of the fluid, respectively. P’ is a pscudo pressure which absorbs any force
residual implied by the choice of reference temperature for the evaluation of fluid
density (P’ = p — p.02(R. + Rsing)?/2 with p as the fluid pressure)

The equation of continuity (Eq.{2.1)) may be satisfied by a secondary flow stream

function f as

U=-— ! a_f_ V= ____1___ﬂ
" R(R. + Rsinp) 0y T R+ Rsinp Ot

(2.7)
Substituting Eq.(2.7) into Egs.(2.2) and (2.3), and eliminating P’ from Eqs.(2.2)
and (2.3), we obtain

") B S P
R(R. + Rsiny) d(R, ) (R. + Rsinp)? Y
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oW ) oT .
= 2[R, + Rsing) + W]%,)—, + BO(R. + Rsing) 5 +vD' [ (28)
Here T = t, — t. Since {,V, W are independent of # for hydrodynamically

developed flow. it follows from Eq.(2.4) that the form of P’ is restricted to fi(R. )0+
f2(K, ), and then from Egs.(2.2) and (2.3), f1(R,¢) must be a constant. Therefore.

we can write

1 0P ‘
- = =Cy (-

R. 90

o
o

Where ¢, is a positive consiant, the direction of flow being always chosen as the

direction of increasing 0.

Substitution of Eqgs.(2.7) and (2.9) into Eq.(2.4) yields

Lo W af
K O(R, ) + 20+ R.+ Rsimp)a)’
Ry oW W

= _/)— + v[(R. + Rsing) 72 W + ] (2.10)

8X  R.+ Rsiny

Because of fully developed temperature ficld, the axial temperature gradients must

be constant, 1.c.,

1 ot

—1—2:(7)5 = C2 (211)

Here ¢, is a constant axial gradient of temperature in §-direction. ¢; > 0 means
that the fluid is cooled, and ¢; < 0 indicates that the fluid is heated. Furthermore,
combining the assumption of fully developed flow and uniform axial heating or
cooling and the assumption of high thermal conductivity of the tube wall material

to smooth out circumferential variations in wall temperature gives

ot aT ot or ot Oty

3R~ 3R B, 0y 26 90 (2.
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Inserting Eqs.(2.7), (2.11) and (2.12) into Eq.(2.5) vields

1 of.T) N WRe, (0T + 1 ar ..
: =a e s 2.1
R(R. ¥ Reina) a(Roo) T Rt Rsing - OV Y i me oy 21
In Egs.(2.8) (2.10) and (2.13),
X = Rsing Y = Rcosy
J 0 4 cosp 0 d 0 sing 0
— = &Ny — = = COSQO = - —_
X TORT R 9y Y YOR T TR 0.
The differential operators are
1 d J? 1 0 oo
D=t L. —— g —
v R.+ Rsinp 0X V' = oR + ROR * R? 9p?
Making use of the non-dimensional variables defined by
_f _ Wa _ R T .
©= vR, w= v "= a = Prega (214)
Eqs.(2.8), (2.10) and (2.13) reduce, respectively, to
2 4
plo=—Lt oD 2 0o,
r(1 4+ orsing) d(r,y) (1 + orsing)? dy
. ) )’
— 20w + Eéq(l + arsz’ncp)]%;; - Raq(1 + arsim,;)";—)j (2.15)
P = 1 . _1_(?(¢, w) 3 0_23)- Req f)_(f) 4]
1 4+ orsing r J(r,p) dz 2 Jy
ow 0
———(— 2.16
+ (14 orsingp)? " dy +a) (2.16)
] Prd(¢,n) oy
Ip = —_— -0 2.17
v 14+ orsing r 9(r,p) tw a(')r] ( )
where
X Y
I=— y=—
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g .0 4 cosp 0 J cos a2 sing 9
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We seck the solution of Eqgs.(2.15)-(2.17) subject to the condition of no-slip at
the wall and the uniform wall heat flux with peripherally uniform wall temperature.

namely,

do ¢
—_— = —— = = = = 2.
o = 9o w=np=0 at r=1 (2.18)

Further in theregion 0 K r < land -7 < e <7

g—f, -3% w, and 7 must be finite (2.19)

The solution of Eqs.(2.15)-(2.17) under the boundary conditions (2.18) and (2.19)
are governed by five dimensionless parameters: o, Pr, Req, Rag and c. The curva-
ture ratio o, a geometry parametcr, represents the degree of curvature. Prandil
number Pr, a thermophysical property parameter, represents the ratio of momen-
tum diffusion rate to that of thermal diffusion. The rotational Reynolds number

Reg emerges from the Coriolis term of the momentum equations. It indicates the
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ratio of the Coriolis force to the viscous force. Reg > 0 represents the case of
positive rotation. Req < 0 is for the case of negative rotation. The rotational
Rayleigh number Ragq has its origin in the centrifugal buoyancy terms. It is similar
to the Rayleigh number encountered in the study ef gravitational buoyancy due to
the earth’s gravitational field but with the gravitational acceleration replaced by
the centrifugal acceleration measured at the centre line of the tube considered. It
denotes the ratio of centrifugal-type buovancy force to the vise Las force. Rag > 0
represents the cooling case, while Raeq < 0 is for the casce of heating. ¢ is defined in
an identical mathematical form to the usual Reynolds number e, but using pseudo
pressure instead of the usual fluid pressure. It represents the ratio of inertial force

to viscous force.

2.3 Perturbation solution

Although an exact solution of Eqs.(2.15)-(2.17) would bhe extremely difficult to
find, if indeed possible, an approximate solution may readily be obtained using a
parameter perturbitivn r.ethod with power sequence as the expansion functions.
A theoretical basis for vins method is given in Appendix A, which shows that any
fijon of m variables z,,z2,--,Zm, which is continuous for ¢! < z, < ¢* (i =
1,2,--+-,m) may e approximated uniformly by a unique polynomial. The reason to

choose the powe: sequence as the expansion functions is because of the uniqueness of

the expansion and its uniform convergence rather than just convergence in the mean.
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In the literature, the perturbatior: solution is usu-lly considered to be valid only for
small values of perturbation parameters. However, we can always, in principle, find
a proper mathematical transformation to make the perturbation paramc .v small
enongh so that the solution is valid. The theoretical basis given in the Appcudix
also shows that we can achieve any accuracy required by a suitavle choice «. the
number of terms in the perturbation series for the entire region of the parameters.
And the high order terms can be obtained easily through a computer (Aziz 1988,
Aziz & Na 1981 and Vau Dyke 1975). The main drawback of the perturbation
method with the power sequence as the expansion functions is that it can not be
used to obtain a discontinuous solution in parameters which usually exists in the
nonlinear problems. This leads to a disagreement between the perturbation solution
and the numerical solution for Dean problem and mixed convection problem (Van
Dyke 1978 & 1990) by noting that the numerical solution is a discontinuous one due
to the bifurcation of the flow at intermediate and large values of the corresponding

dynamical parameters.

Applying to the present problem, the method involves the expansion of the
stream function. non-dimensional main velocity and temperature fields ¢,w,n in
ascending powers of the suitable small parameters. o, Req and Ragq are selected
as the parameters in this work. This implies the assumption of continuity of ¢, w
and 5 on 0. Reg and Rag. Then each of the coefficients of the expansion series for

6. w and 7 may be obtained from the solutions of the associated nonhomogeneous
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harmonic and biharmonic differential equations. In calculating cach additional term
of the series, the terms on the right hand sides of the harmonic aud biliarmonic
differential equations. are in terms of the functions determined from the solution of
the preceding harmonic and biharmonic differential equations. Therefore successive
solutions of the th:ee main differential equations will produce as many terms as
desired for the three series depending upon the accuracy required. In this work, the

solution is carried up to and including the second-order terms.

Let
\
Lo oC o o0 S ey
0O = =0 3=0 Zk:o d)'ch"lE'Z“B
B oo ks j J ok 90
w= Zi:o Zj:o Zk:o WijkE1 €€ (2.20)
_ > o o0 RO I A
n=23 Zj:o D koo MikEYERES J

where €1, £9 and €3 denote respectively o, Reg and Rag, and the coeflicients depend

on the coordinates of the points of the fluid (r, p).

On substitution of Eq.(2.20) into Eqs.(2.15)-(2.17), sets of equations for the
zeroth, first. and sccond order coeflicients may be obtained by equating the coefli-
cients of equal powers of 5'{5%6’5. Since there can be no flow in the (r,¢)-plane when
0 = Req = Raq = 0, it follows that dgee = 0. The resulting equations for the
coefficients up to and including second order are as follows:

Zeroth-order

72 wego = —4c (2.21)

V2 Nooo = Wooo (2.22)
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First-order
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(2.36)
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Similarly, we may obtain equations corresponding to the third and higher ap-
proximations. Solving Egs.(2.21)-(2.49) in order gives:

Stream function of secondary flow

2
, ¢
@100 = ﬁr“ - 7‘2)2(4 -~ T’2)CO-S’~,5’ (2.50)
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Prcisin2e
537600 x 1152

c?sin2yp
+ —_—_‘+
5600 x 11522

So11 = S(—2687° + 650" — 52570 4 175% — 3500 4 314
(—3957r% + 8000r" — 36755 — 840r% + 19000 — 18:"%)  (2.60)

Main velocity

wooo = ¢(1 — %) (2.61)
c3 2 2 4 6 . 3( . X
wigo = =71 = )19 = 21r% + 97" — r®)sing — —r(1 — r¥)siny (2.62)
11520 1
Woyp = cr r(1 =73 (3 =32 + +Y)sing (2.63)
7 4608 R =
c? ;
Woop = mr(r2 = 1)(19 = 517% + 197" — %)sing (2.64)
w00 = f200 + G200c052p (2.65)
Where
c® , ‘
faoo = — =5 (1 = r?)*(4119 — 480472 + 2410r* — 500r° + 35r%)

2800 x 11522
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3

¢ R 2 4 6 —_ 8
— 1= 148 +43r° = 1327° 4+ 68° — Tr
530100 (M8 )
— (1 =3 - 1r?)
5
g0 = ————————-——88200 » ]15?21' (1 —r®)(145690 24020671

+174649r" — 705477 + 1912378 — 2801710 + 1607'?)
C3

2 2\ 1R _ 2 4 6
+27(i48(]r (1 —7r*)(463 — 6137r° + 296r° — 40r")

wo2o0 = fo20 + 0200082y (2.66)

where

(.15

T 360 x 7682

C
foxo = (1= r?)*(37 = 32r 4 10r") — (1 ~r?)?

(_3

712600 x 7682

Go20 = #2(1 — 72)(923 — 1457r% 4 958r* — 302r° + 48%)
c

13439"2(] —r2)(5 = 3r?)

+

—_—
[ (]
D
-1

~—

woo2 = foor + Joo20082

with

(‘3

B00%0 < 1 15‘)2(—1(:352.5 + 8232072 — 1704367 + 1897287° — 1225987°

Sooz =

+4603271° — 9268r'2 + 768 — 21r'°)

]’7'(‘3 2 4 —-A=r 6 8
o T 3623752 + 8835120 — 80797575 4 352800~
G0z = GRG0 x 11528 o028+ r

—76440r"° + 1131072 — 8827 4 20r'°)
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C3

—~aax .2 4 [ond ‘(} R R _3
+ 1700 1503 1323 — 6090r" — 17640r" + 30366

—17850r"" + 4194r'? — 3157 4 100')

(.2

— 8844772 4+ 1888047 — 121233r% + 17012°
7596100 % 11522« OoHTTT 4 188304 r b

+21560r'° — 5712r'? + 3360 — 127!

wio = fio + gr10cos2y (2.68)

with
4
fno = —m(] - T‘)')4(97()7 - 995212 + 4‘1007"‘ - ‘13()!‘“)
c? i
— 35~ r3)(59 — 8172 4 39, — r¥)
" ‘

c?

g0 = —mé-r?(l —r2)(6017 — 97357 + 6775r" — 21657 + 540" - AT 1Y)

(,‘2

92160

r2(1 = r2)(101 — 89r% + 2121)

..1'_
wyor = f101 + Jro1¢os2p (2.69)

Here

(.4

W(BIQ?)] - 162120r2 + 344400r* — 397880:°¢ + 271 716"
(4 { ¥4

f:OI =
—1112167'° 4 259007'% — 28807 + 105'%)

4o ©
6100 x 1152

Prct

705600 x 11522

(771 — 51012 — 950r* 4 10007° — 325¢° + 147')

(1402377 — 3432247 4 316575 — 141120:"

gi01 =

+32340r"° — 5292r'% 4 5407 — 207'¢)
4

c g
1r? — 3941847" + 433398r° — 263124,
+470_100 - 11522(14680 r? —394184r% + . ,
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49751000 — 2251272 4 2499r'* — 8877°)
2

—_— 253r2 — 64471 + 5617° — 1807 + 10r1°
350> 1158 0T ' )

worr = fo11 + Gor1€082¢ (2.70)

Meve

3

8100 : 46082 (25337 — 12474072 4 253890r* — 2753807°
¢ x

f()ll =

+1706257% — 59472r'° 4 10220r'% — 480r')

C
t 327 % 1608
Prc®

9011 = 55100 x 11522

(13 — 407 + 42r* — 167% + %)
(1763r2 — 4288r* + 3900r°

~1680r® + 3507'° — 48717 4 3r1Y)

(,3

-S—W(76157'2 — 20264r* + 218107°
b ; IZ

+

—12600r® + 4130r'° — 720712 + 29r™)

.
——— (=277 + 357 — 157 + 1®
60 = 1152 +dor +r)

Temperature

¢ -
Tooo = —E(3—47‘2+7‘4) (2.71)

Predsing

570 = 7155 (108 + 240r° — 220r° 410507 — 24r° + 20T
=0 X 1102

Thoo =
Ssing 1467 + 28513 — 200r° + 7577 — 157° + r11) (2.72)

F oo (= 1467 + 285¢° — 200r° + T5r |
cSINg

3% (19r — 27r° + 8r°)
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17
Prc?sing - o
Moo = mé(—?ﬁ‘ + 60r® — 50r° 4 2007 — 3r")
ctsing 3 . ,
— — AT . D Y2 T ',_5) . -:
960x115‘2( A7r + 90s 60r” + 20v 37 (2.73)
Noo1 = _.M(g%r — 60073 + 520r° — 295;7 4 42" — opthy
17 3810+ 1152 v T -
Asing 3 . . 0 1 _
— o > 7 W .. o *) "'_
19200 x 1152 0047 = 73577+ 500r" — 175" + 307 = +7) (271)
200 = haoo + Ma200C082y (2.75)
Where
Pricd

N 90,2 2QQ R 2000 L 192190, K
hogo = 309100 = “522(9120: — 519120r° 4+ 1188810+ — 1536360r" 4 12120452

—655152r1 4 225540r'% — 48060 + 56701'" — 280,1%)

Prc®

stm — 20433672 + 6181081 — TI2483r° 4+ 4984561
o o] L

—223776r1° + 6627677 — 125287 + 1323+ — H6r'™)

CS

AT — 116773672 + 150822000 14597100,"
+2800><1]3-10X11522(4‘““‘ 1167736.7° + 15082200, 14597100,

+9823275r% — 4516722010 4 13847407 — 2673007 4 28350, — 12250'%)
Prcd S 2 " 4 6 _ oo 10 e
+5'“0' < 115 11.,‘,‘5(—164!-{-517807' —105300r" 4 998007° — 489757 + 11592177 - 102067 77)
3
+19‘?00Cx 7552905 - 2068r% — 1080r" + 1800r° — 825r" - 180r © — 12r)

+3er(—6— 281 + 517" - 17+°)
Pric®

= —2132r% — 46201 + 275100 — 11 74%,"
™M200 = T00800 X 11522 ¢ r i !

+31395r% — 1317672 + 31507 — 4007 + 217')
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Pré®

—_— 2r? — 4 1119078 — 176246.1r®
+l750>< “523(80601 r? —2292480r* + 2711190r° — 176 r

+680400r"° — 167760r"° 4 At — r° 4+ 8ir
8040070 — 16776072 + 2759574 — 264071¢ 4 &7r'8

5

—_—c . 4 6 '
+3675 ~ 11523(23900ar 582760r" + 578844r° — 33188

12259810 — 3074472 + 5481r™ — 5647 + 24r'®)

Pre3
b (—12189r7 + 312207 — 32340r° + 17458r® — 4585r'° + 436r'?)
67200 x 1152
('3
175 x 11522

+ (—24031r% + 523607 — 42945r° + 18396r° — 4095 + 318r?)

+—S (14972 - 220r" + T1r°)

1536
Noz20 = ho20 + Mo20c082p (2.76)

Here

Pr2c? 2 4 6 8 10 12 14
o = Tros e (363283507 459851 ~6805r4725r° ~1953r 0+ 453r' —457'")
T (9071-9870r24 1932014 ~20000r°+12075: — 4326r1°+910r12—90r1)

131100 x 11522 - 2
3

¢

SETI0 T I (3029 —7252r2 488207 — 7840r% +4655r° — 176470436 1, 12 —4071)

+

c

o aan2 e as
68 x 1152(25 48r% + 3671 — 167° + 3r%)

Prcd . s . ]
oy = ———ome (3T — 2 6 290,10 _ 12 14
Mo = Toes 1]522(3¢r 1680r* + 4830r° — 56007° + 3220r"" — 912r°“ 4+ 105r°%)
Pred
o4E.2 _ 4 (06 _ TRAA8 10 _ 12
+ 131100 “522(5_151' 140007* 4 14700r° — 7644r° 4 18557 1567 °)
3
+ c (76677 — 18467% + 1785r° — 966r° + 315r'C — 60r'2 + 6r'4)

134100 x 11522

C

S — | 2 25 4_1 6 8
+960><115'2( 3r® 4+ 257 5r° + 3r°)
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Noo2 = 1100-2 + T'I)Q()g(‘OSQ\,.? {

e
-]
-1

where

Pr2C3 - -a 2 -~ 4 -y 3 . 3
hooz = WOW(IZQCNS — 6678007 + 1457190r* — 1762320, + 1300005:°

—60404471% 4+ 173124712 — 27756+ + 20791 — 56,'%)

PrC3 Lrd 2 v 4 Yo b f .8
+6—7;2m(194494 —9601207° + 193422677 — 210058%»" + 135111 3r

—53978471° 4+ 136080712 — 200167 + 1323r'¢ — 258r'%)

63

(32277522 — 780806257 + 972405007 — 89478900+" + 56029050,
6125 x 11524

—231710227° + 604170072 — 893700r" + 56700,'¢ — 1225:1%)

Pricd ) . 6 e
Miogs = S (8138101 — 26402320 + 35861561 — 2774560,

+13087907'° — 375984r'2 4 61397r!* — 44967'° 4 119r'%)

Pred ,
[ "' 1 2 — R ! 4 RAT 6 _ :9 271 : 2 )
+960 9500 % 11523(3339 181r° — 89303680r" + 866684701 39870132y

+67032007'° + 6249607'% — 2230207 '* 4+ 100807'¢ — 759'%)

63

+ 134400 x 11523

(—32212r% 4 58600r" — 18270r° — 28224+°

+30366r'° — 12240r'% 4+ 20977 — 1207'° + 3r'¥)

C2

( 2 o 4 0 6 4932 8
+1568000 > 11523(7959511‘ 17689407" 4+ 14160307 4849321

+11760r1° 4 36960r'2 — 71407 + 320716 — 9r'8)

Mo = hi1o + Mir0cos2y (2.78)
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where

Prict 1163 — 177240 4 3901801 — 4774001
S Bt T . r — r
131400 x 115220 " ‘

’lno =

+357420r% — 16900871° + 49280r'% — 7920r™ + 525r'°)

Prct

S6R00 11r,)2(20795 — 10169672 + 2065567 — 226912r°
s V4

+

+118330r8 — 60480r'° + 15596r!2 — 23367 .- 147r1)

I

+ 910800 x 11522

(112955 — 274316r° + 343980r* — 319450:°

+2026157® — 85260710 + 22736r'% — 34407 + 2107'°)

4 Pre?
19200 x 1152
2

(—1027 + 65107% — 12450r* + 106007° — 4275r® + 612r'°)

+38v100 x 1152

(5107 — 8380r% 4+ 3900r* — 1 wr + 25r° + 48r'7)

Préct
My = 4

—_—ee - 2 — 4 vam~=_ 6
67900 % ”522( 5087 4340r° +16275r

—21392r® + 140707'° — 4920r'? 4 8750 — 60r*°)

Pret ) 4
1995 < 11503 - 13072 6
1935 x11523(364057r 10103107" 4 1143072r

—68830867° + 23226070 — 4674672 + 619571 — 44271°)

(‘4

D) 2_19 "4 910478
+1225 . ]1523(5..0857' 126357r" + 1210477

—69342r® + 24255710 — 54187'2 + T77r' — 47r'6)

+ Pre?
7680 x 1152

C2

+]9'.20 x 1152

(—30r% 4 40r* — 45r° + 56r° — 21r1°)

(—136r% 4+ 277r! — 1957° + 62r® — 8r'°)

Mo = hio1 + mio1c052¢ (2.79)
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Here

Prict

4200 x 115.33(—501881 + 2633400 — 58892101 + 7369320,°

h101 =

—5700870r"  2831976r'° — 89460072 + 1674007'* — 160651 + 560r'%)

Prct

8100 % 11535 (304597 + 1503936r" — 3695820r" 4 3467180

+

—2331882r% + 991872710 — 272916712 4 460807 — 3969+'% + 112,'%)

c4

_91731219 + 6038739012 — T6601T00r" < TI321000°
+ 171000 = 11503 (21731219 + 60387390r" — 766017007 4 72321000,

—46999575r% + 2054354471% — 58388101 '2 + 999000r'* — 850502 + 2150,'%)

+ __Pret (20201 —1299007*+2547007* —2270007°4+100275% - 192061 4 1020, ')
800 x 11522° 7~ - - o - o -
22
+ - (—7623 + 7728r% + 2880r" — 46007° + 1975r% - 372110 4 1201%)

307200 x 1152
Prict

2 27 4 24 31,0
m(—gommr +3239712r" — 51848167

o1 =

+4770192r° — 26724607'° + 913248r'2 — 1811671 + 1793611 — 6510'%)

N Prct
294000 x 11523

(—28769699r% + 794732001 — $9945730,"

+547807687% -- 190512007 1° + 4049640r'2 — 584325r!1 + 17880+ — 53471%)

C4

—_— o ! 2 4 . ) o !( .(;
+49000 % “523( 598003r° + 1468010r 1478190

1+866796r° — 329280r1° 4 835807r'% — 14070+ 4+ 1190r' — 33+'%)

P (5614107 4 146580r" — 1445850 + 66262r" — 12880+ 4 764r'?)
1075200 x 1152 i}

2

C

9200 < 11292 5: z_ 7 4 ( 6__,'68 ::710_18..1'1~
2800 x 11502 122047 — 33740r" + 19845 — 537677 + 7357 %)

No1y = }lon + m()”(.'OS‘ZL,Q (280)
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where

Pricd

o1 = —88211 + 449400r% — 9647407 + 11393207
hoit = o T00 < 11503 ¢ + r rear '

—8110207® + 3564567'° — 9296072 + 122407 — 525r'°)

Prc

7900800 = 1150203931 + 95961612 — 5156761 + 5483527

+

—3115307% + 129696r'° — 30156r'2 4+ 37767 — 1477%)

C3

—~994695 + 709143612 — 873180r* + 789880r°
+9~10800><46082( 94695 + 70 7 87 rt 4T r

—4819157® 4+ 191100r'° — 4625672 4 5840r"" — 210r'°)

C

+3600 = 4608
Pricd

6 % 11207 x 1152°

(=503 + 97572 — 750r* + 350r® — 751 + 3r'°)

(—130520r% + 461132r* — 7119217°

Mo =

+6131247° — 30723070 + 86856r'2 — 12257 4 516r'°)

L Pre (—540835r2 + 1419138r¢ — 1458072r°
—_— (= 5r . —
1402 x 11523 r

+736806r° — 1675807'° + 9954712 4 567r'* 4 2271°)

C3

—_—i 2 4 _ : 6
+ o7 Traas (693817 + 1599151 — 159570r

+91602r® — 33075r° -+ 7434r'2 — 945r'% 4 29r'°)

¢ 2 _ 4 6 _ 94,8 4 10
+160 x483(86r 168r.+105r 24r° +1°7)

It is apparent that wgge and 7nogo give the velocity and temperature distributions
in a statiomary straight tube. The results (2.50), (2.55), (2.62) and (2.65) are the

corresponding solutions for a stationary curved tube calculated by Topakoglu (1967).
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And the so’vtions (2.51), (2.56), (2.63) and (2.66) arc in agreement with Barua

(1954).

Similarly, w. vay obtain higher order solutions. However, the amount of labour
required is consic~rable. And it is hard to tell exactly that under what conditions
the higher order soiutiuns are needed until we get enough terms to unveil the analytic
structure of the solution. Usually a perturbation solution is carried to the second
approximation. Now, the routine labour of calculating higher approximations may
be delegated to a computer. Then, dozens or even hundreds of terms may typically
be found. These may suffice to permit the structure of the solution to he analyzed
for a single power series, and the solution may be improved to extend its utility
(Aziz 1988, Aziz & Na 1984 and Van Dyke 1975). Unfortunately, there is no such
approach available for analyzing the multiple series in this problem. Besides, even
for single power series, one must obtain the first few terms of the solution by hand

in order to use computer to get higher order solutions.

It should be noted that the solutions of ¢,w and 7 reduce to the corresponding
ones of the six special cases by setting any one or two of o, Req and Rag to be
zero. They are Dean problem, Coriolis problem, mixed convection problem, Dean
problem with the effect of rotation, Dean problem with the effect of heating/cooling

and Coriolis problem with the effect of heating/cooling.
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2.4 Concluding Remarks

For any continuous function of one or more variables, there exists a unique,
uniformly convergent polynomial which can be used to approximate the function.
Assuming that the stream function ¢, the -ain velocity w and the temperature
71 are continuous on the curvature ratio o, the rotational Reynolds number Regq
and the rotational Rayleigh number Raq, a systematic method is developed to
determine an approximate analytical solution for velocity and temperature fields
in a rotating curved tube under the conditions that the flow and temperature fields
are fully developed, and the wall heat flux is uniform with peripherally uniform wall

temperature.

Each of the functions ¢, w and . is expanded in a triple power series in terms
of o, Req and Raq. The cocfficiet : in these expansion series may be obtained
from the solutions of the associated n.nhomogeneous harmonic and biharmonic
differential equations. In calculating each additional term of the series, the terms
on the right hand sides of the harmonic and biharmonic differential equations, are
in terms of the functions determined from the solution of the preceding harmonic
and biharmonic differential equations. Therefore the successive solutions of the three
main differential equations will produce as many terms as desired for the three series
depending upon the accuracy required. In this work, the solution is carried up to and
including the second-order terms. And the analytical expressions for the velocity

and temperature distributions are applicable for both heating and cooling cases,
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and also for both cases in which the rotation of the tube is in the same direction or

opposite to the main flow imposed by the pressure gradient.

By setting any one or two of o, Req and Rag to be zero, the solution reduces
to the corresponding six special cases, i.e., Dean problem. Coriolis problem, mixed
convection problem, Dean problem with effect of rotation, Dean problem with effect

of heating/cooling and Coriolis problem with eflect of heating/cooling.
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Chapter 3

Flow Transitions and Combined
Free and Forced Convective Heat
Transfer in a Rotating Curved

Circular Tube-II: Flow and Heat

Transfer Characteristics

The simultancous effects of curvature, rotation and heating/cooling of the tube
complicate the flow and heat transfer characteristics beyond those observed in the
tubes with only curvature, rctation or heating/cooling. The phenomena encoun-

tered are investigated for steady, hydrodynamically and thermally fully developed

64
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laminar flow in circular tubes based on the perturbation solution for the velocity
and temperature distributions ohtaiiied in Chapter 2. The results contain both the
nature of flow transitions and the efiect of these transitions on temperature distribu-
tion, friction factor and Nusselt number. When the rotation is in the same direction
as the main flow imposed by a pressure gradient and the fluid is heated, the flow and
heat transfer remain similar to those observed in stationary curved tubes, radially
rotating straight tubes or mixed convection in stationary straight tubea. There are,
however, quantitative changes due to the combined effects of centrifugal. Coriolis
and buoyancy forces. A more complex behaviour is possible when the rotation is
opposite to the flow due to the pressure gradient or when the fluid is cooled. In
particular, the inward Coriolis force and/or buoyancy force may cause the direction
of the secondary flow to reverse. The flow reversal occurs by passing through a four-
cell vortex flow region where overall, the centrifugal, Coriolis and buoyancy feree

just neutralize each other.

3.1 Introduction

In Chapter 2 (also sec Wang & Cheng 1994), we obtained a full second-order
perturbation solution for velocity and temperature distributions in a rotating curverd
circular tube under the conditions that the laminar flow and temperature fields
are fully developed, and the wall heat flux is uniform with peripherally uniform

wall temperature. The geometrical configuration of the phy:ical model is shown in
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Fig.3.1 for convenience. The analytical expressions of the velocity and temperature
obtained are applicable for both heating and cooling cases, with the rotation in the
same or opposite direction to the main flow imposed by a pressure gradient. The
work presented here is to explore the flow and heat transfer characteristics based on

the solution obtained in Chapter 2.

In addition to the viscous and inert;al forces, the fluid in the rotating curved tube
is subjected to centrifugal force (due to 1. - curvature of the tube), Coriolis force (due
to the rotation and curvature) and the centrifugal-tvpe buoyancy force (resulting
from temperature-induced density variation of the fluid in the rotating field). While
the centrifugal and huoyancy forces act in the plane of cross section. the Coriolis
forces have components both in the plane of the cross section and along the normai
to the plane. That due to the curvature is —W(Using 4+ Veosp)/(R. + Rsiny) (0-
component, £q.(2.4)). Those due to rotation is perpendicular to bo*h the axis of
rotation and the direction of the relative velocity of the fluid, i.e --2Q(Using +
Vecosg) (0-component, Eq.(2.4)), 2QW siny (r-component, Eq.(2.2)), and 2Q1¥ cose
(@-component, Eq.(2.3)). The two #-components of the Coriolis force may act in the
direction or direction opposite to the main flow depending on the signs of (Using +
Veosp)/(R: + Rsing) and Q(*/sinp + Veosp). Conseguently, cthey may accelerate
o1 decelerate the main flow. Furthermore, these two components either enhance or
cancel each other depending on the rotation direction of the tube. If the rotation

is positive, they enhance each other in the flow domain with R. + Rsing > 0, and
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cancel each other in the flow domain with R. + Rsiny < 0 (This hardly happens
for the case of loose coils). Otherwise, they cancel each other in the domain with

R. 4+ Rsinp > 0, and enhance each other in the domain with R. + Ksing < 0

In the planc of the cross section, the cenirifugal force always acts outwards
irrespective of the directions of rotation and heat flux. However, the Conolis force
may act either radially outwards or radially inwards depending on the rotation
direction. If the rotation is positive, it will act radially outwards. When the rotation
i1s negative, however, it will act radially inwards. Similarly, the centrifugal-type
buoyancy force may act radially outwards or radially inwards depending on the
direction of the heat flux. If the fluid is heated, it will be radially outwards. If the
fluid is cooled, it will act radially inwards. From this analysis about force directions,
it is clear that centrifugal. Coriolis and buoyancy forces enhance cach other for some
cases, and cancel each other for other cases. This may result in a richer structure
of flow transitions and rather complex characteristics of heat transfer than those of

the tube with only rotation, curvature or heating/cooling.

The contents of the present chapter are: Flow transitions in secondary flow and
main flow are examined in §3.2 and §3.3, respectively. §3.14 and §3.5 deal with the
effects of flow transitions on temperature distributions, and friction resistance and
heat transfer, re spectively. The structure of solutions for velocity and temperature

fields is analyzed in §3.6.
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3.2 Flow Transitions in Secondary Flow

3.2.1 First-order approximation

To the first order of approximation, the secondary flow pattern is determined by
&

&) = 7—:r(] — )24 — ¢ 4 Lo(r? — 10) + Ly|cosy

?3’,_ _ 00, —0
or 0y
which give
T(1 = Ly)r' = (24 4+ 5L, = 53L)r + (4 + Ly —10L,) =0 (3.1)
sing = (3.2)

It is clear that at the extreme points, both the radial and tangential components
of the “elodiiyv in the cross section vanish by the definition of stream function and
the extreine conditions. The streamlines of motion through these points are clearly
circles (parallel to the axis of the tube) with the centers located at the axis of the
rotation of the tube. The motion of the fluid may be, then, regarded as helical mo-
tions about th se circular streamlines. In other words, the locaticns of the extreme
points of ¢ represent the centers of the screw motion of the fluid. The extreme

values, on the other hand. have two implications. Their absolute values reflect the



Chapter 3. Fiow and Hezt T-wnsfer Characteristics GY

strength of the secondary fiow, and their sign denotes the direction of the serew mo
tion, name.y, positive {or counter- clockwise circulation and negative for clockwise

circulation.

The locations of the extreme points are determined by the solutions of the E-
gs.(3.1) and (3.2). Equation (3.2) has two solutions in the flow domain 0 < v < 2m,
namely, ¢ = 0 and ¢ = 7. Thus, all extreme points are located along the vertical

centerline.

The radial distance of the extreme points is determined by the solutions of the
Eq.(3.1) wlich depend on the tw~ dimensionless parameters, namely, L, and L.
Their puysical implications will be analyzed later in this Chapter (ratios of the
Coriolis force and buoyancy force over the centrifugal force). In the flow domain
0 < r <1, Eq.(3.1) has only one solution (r,,,) which gives a minium value of ¢,
with a negative sign for some L, and L,. For some other L, and /., Fq.(3.1) has
only one solution (ry,) which yields a maximum value of ¢, with a positive sign.
And for still other L, and L,, Eq.(3.1) has two solutions (ry,, and 74,.) which result
a minimum value of ¢, with a negative sign and a maximum value of ¢, with a

positive sign, respectively. The structure of the solution is summarized in Table 3.1.

This shows that in the laminar flow region, the secondary flow cxperiences two
transitions which occur at L; = 10L, — 4 and L, = 9L, — 3, respectively. Con-

sequently, the secondary flow appears as three different patterns, namely. two-cell
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Table 3.1:Distribution of the solution with L, and L,

L, <1

Region L, <10L,—4 10L,—4<Ly<9L,—-3 L;2>29L,-3

Solution Tim Tim & Tom Tam

L

[ iV
—

H(.‘gi()!l L\ S S)LQ -3 ()Lg -3 S L] S 10L2 —4 L] ~ 10L2 —4

Solution Tim Tim & Tom Tom

of counter-rotating and counterclockwisely circulating vortices; two-cell of counter-
rotating and clockwisely circulating vortices; and two-pair (four-cell) of counter-

rotating vortices which are oppositely directed to each other.

The first column of Fig.3.2 illustrates the secondary flow patterns for several
representative values of Ly with L, = —1.0. The symmetry abcut the horizontal
centerline allows us to show the upper half of the cross section only. In the figure,
the stream function is normalized by its maximum absolute value. The cross in
the figure denotes the position at which the stream function reaches its maximum
absolute value. And two numbers for each case are the value of the L; and the
extreme value of the stream funciion which yields the maximum absolute value. A
vortex with a positive (negative) value of the stream function indicates a counter-

clockwise (clockwise) circulation.
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When L, > 9L, —3 (L, > 10L, — 1) for L, < 1 (L, > 1), the secondary
flow appears as two-cell. counter-rotating vortices as shown in Fig.3.2(a)(h). When
Ly is in the region 0L, — ' < L, < 9L, — 3 (9L, — 3 < Ly < 104, — 1) for
Ly €1(L; 2 1). the secondary low appears as two-pair (four-cell), counter-rotating
vortices with one pair in clockwise circulation and the other in counterclockwise
circulation (Fig.3.2(c)(d)(e)). When Ly < 10L; — 4 (Ly < 9L, = 3) for 1, < 1
(L, > 1). however. the secondary flow becomes two-cell counter-rotating vortices

again, but with the direction of clockwise circulation as shown in Fig.3.2(f)(g).

Three points are to be noted regarding the four-cell vortex structure as shown in

Fig.3.2(c)(d)(e). First, this four-cell vortex structure is qualitatively different from

the {our-cell vortex fami’ in Dean, Coriolis or mixed conveetion prob-
lems. Second, its st~ This is indicated by the maximum absolute
value of the st ol force mechamism i §3.1 suggeses that
the centrifugal. s, overall, just neutralize each other in
this region. And t, at the lscation of the clockwise circulating vortices.

They occur near the tube wall if L, < 1, as shown in Fig.3.2(c)(d)(e). I 1, > 1,
however, they will appear in the central potion of the cross section of the tube as

shown n Fig.3.3.

The variations of r;,, and ry, with different L, and L, are shown in 1ig.3.4.
Two interesting features arc evident about the locations of the centers of the screw

motion. One is that
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rim — /1[0 as Ly — -
and
Tom — \/1/5 as L, — oo

Another is that rq,, and ry, satisfy

Fim > \/1/5. Tam < \/1/5 for Ly <1 (Fig.3.4(a)(h))

and

Pim < V1B, o 2 /1[5 for Ly > 1 (Fig.3.4(c))

3.2.2 Second-order approximation

The second column in Fig.3.2 illustrates the secondary fow patterns for several
representative values of Ly with o = 0.02, ¢ = 60, Pr = 0.7 and L, = —1 based
on full second- order approximation. The corresponding first-order secondary flow

patteras are shown in the first column of the figure.

A striking feature cf the second order secondary flow is that the symmetry abot
the vertical centerline exhibited in the first order secondary flow breaks down with
the circulation center of vortices shifting away from the vertical centerline. And
the corresponding vortices are distorted in some way.. In particular, the circulation
center for all clockwise circulation vortices moves inward and downward. while that
for all counter-clockwise circulation vortices moves outward and upward. As well,
this trend is more noticeable in the region with four-cell patterns. Another interest

ing feature about the second order sccondary flow is that the region with four-celi
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sccondary flow is wider than that of the corresponding first order secondary flow.
It is worthy to note that the secondary flow in this region is quite weaker than that
in the region far from this region by comparing their extrcme values of the stream

function.

Three factors contribute to the generation of the secondary flow in this problem:
curvature, rotation and heating/cooling. The secondary flow patterns discussed in
Fig.3.2 result from the combined effect of all these three factors. The analytical
solutions obtained in Chapter 2, however, allow us to visualize the secondary flow
produced due to one or any two of these three factors simply by setting some terms
in the series to be zero. In other words, the solutions can be used to analyze the
secondary flows for several special cases. They are secondary flows in curved tubes
(classical Dean problem), radially rotating tubes (Coriolis problem), stationary s-
traight tubes with heating/cooling (mixed convection problem), rotating curved
subes, curved tubes with heating/cooling and radially rotating straight tubes with
heating/cooling. Figures 3.5 and 3.6 are two sets of such secondary flows, which

exhibit several interesting features to be noted below.

All the first order terms in the series result in a symmetric (about vertical center-
line) one pair counter-rotating secondary flow with the centres of circulation located
on the vertical centerline. Keepi 2 in mind that the first order approximation is valid
for sufficiently small values of the dynamical parameters, the structure of the fully

developed secondary flow in Dean problem, Coriolis problem and mixed-convection
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problem, then. consists of one pair (two cell) counter-rotating vortices with one vor
tex flow located in the upper half xnd the other in the lower half of the cross section
at sull:. iently siall values of the dynamical parameters. As well they are syinmetrie
about the vertical centerline. This is in agreement with the previous works for the

corresponding problems.

All the second order terms in the series of the stream function cause “he secondary
flow to exhibit a four-cell pattern with the center of the circulation located away
from the vertical centerline. It is interesting to note that like secondary flow due
to the first order terms, the sccondary flow due to the second order term itself is
still symmetric about the vertical centerline. The symmetry is, however, lost in the
secondary flow resulting from all the first order and second erder terms in the series.
This breakdown of the symmetry comes from the asymmetric effect. of second order
terms on the first order terms about the vertical centerline, i.(r.: the sccondary flow

of the second order terms enhances that of the first order terms in one side of the

vertical centerline. but neutralizes it in the other side of the centerline.

Secondary flow with the simultaneous effect of more than one of curvature, ro-
tation and heating/cooling may be qualitatively similar to or completely different

from that with only one factor depending on the region of the governing parameters.
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3.3 Ftow Transitions in Main Filow

Figure 3.7 shows several typical isovels and profiles of ii.ain flow based on the sec-
ond order approximation. The corresponding secondary flows are shown in Fig.3.2.
Once again, the symmetry of flow about the horizontal centerline allows us to show
the upper half of the cross section only. A cross in the figure denotes the position at
which the main flow reach its maximum value. The value of L; and the maximum

value of the main velocity w are given in the figure for each case.

Some features of the main flow can be expected and understood through the
force balance in the governing equation. It is the secondary flow that causes the
deviation of the main flow away from the parabolic proiile in Poiseuille fiow. The
sccondary flow affects the main flow through three terms (Eq.(2.4)). They are
the convection term. and two Coriolis terms due to the curvature and rotation,
respectively. The two Coriolis terms may be in the same direction or opposite to
the main flow depending on the sign of Usine + Vcos and Q. The absence of these
three terms leads to the Poiscuille solution with an axisymmetric and parabolic
profile (Fig.3.7(a)). The relative importance of the five terms in Eq.(2.4) depends
on the magnitudes of the governing parameters, and shows different flow patterns
for different regions. The driving term is the axial pressure gradient which is always
important. The viscous term is always important near the wall, but may not be
significant in the core region for certain ranges of the parameters. If the rotation

speed is high enough, the Coriolis terms could be of the same order of magnitude as
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that of the pressure gradient term. The main flow would. then, exhibit a geostrophic
pattern in the center of the cross section surrounded by a thin boundary laye:
according to tke theory of rotating fluid (Greenspan 1963). This is one limiting casc

examined by Hocking (1967) and Ludwieg (1951).

As discussed in §3.2, seccondary flow is very weak in the region where centrifugal,
Coriolis and buovancy forces just neutralize each other. Consequently, it is foo
weak to modify the main flow effectively such that the profiles of the main flow are
essentially axisymmetric and parabolic with the maximum value occurring along the
horizontal centerline at or very close to the center of the cross section (Fig.3.7(¢)). in
this region. the inertial force in Eq.(2.4) is very weak as compared with the viscous
force. The driving force for the main flow (i.c., pressure term) is mainly balanced
by the viscous force i whole flow domain. Other forces (inertial, Coriolis forees)

are very weak.

When the valn »f /. is away from the region where the centrifugal. Coriolis
and buoyancy forces 1. - utralize each other, the secondary flow become  stronger
(Fig.3.2). The profilc 3 ie main flow becomes, then, distorted with the peak
moving away from the ¢~nter of the cross section toward the outer wall for the
case of increasing value of L, (Fig.3.7(b)) or the inner wall for the case of decreasing
value of L, (Fig.3.7(d)) along the horizontal centerline. In either of the two cases, the
location of the maximum main velocity is away from the center of the tube and in the

direction of the secondary velocities in the middle of the tube. Accompanied with the
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shift of the peak of the main flow, the isovels are more sparsely spaced in the region
near the inner wall (outer wall) than near the outer wall (inner wall) in Fig.3.7(b)
(Fig.3.7(d)). Consequently, pronounced peripheral variations are expected in the
local friction factors. The flow in the tube core is not geostrophic, it is agcostrophic,
i.c., pressure gradients are balanced by both Coriolis force and convertive inertial

force.

A striking feature which can be inferred from Fig.3.7(a)-(d) is that the region of
return flow along the walls appears to be far too thick to be described by boundary
layer approximations. Consequently, the integral type method developed by Mori

el al. (1967, 1968 & 1971) may not be valid for these regions of flow.

3.4 Temperature Distribution

Figure 3.8 demonstrates the way in which the secondary flow affects the temper-
ature profiles based on the second order solution of temperature. In the figure, tae
non-dimensional temperature 7 has been normalized by its corresponding extreme
value 7., and the extreme point is illustrated by a cross. Two numbe«rs for each case

are, respectively, the value of the L, and the extreme valne of 7.

It is the secondary flow that causes the deviation of the temperature from the
parabalic profile in the stationary straight tubes. The effect of the secondary flow
m

enters the energy equation through one term, i.e., the convection term

The absence of this term leads to the parabolic profile which has an axisymmetric
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and parabolic profile (Fig.3.8(a)). In the region with the four- cell secondary tlow.
the secondary flow is too weak to modify the temperature distributions eflectively.
Consequently, the temperature profile in this region exhibits essentially axisymimet-
.ic and parabolic with exireme value appearing along the horizontal centerline at or

very close to the center of the cross section (Fig.3.8(c)).

When L; moves away from this region in both directions, the stronger sccondary
flow causes the temperature profile to be distorted with the extreme point shifting
from the center of the cross section to the outer wall for the case of increasing [y
(Fig.3.8(b)) or to the inner wall fc;r the case of decreasing L, (Fig.3.8(d)) along
the horizontal centerline. The shift of the extreme point results in a more tightly
spaced isotherms in the region near the outer wall (Fig.3.8(b)) or near the inner wall
(Fig.3.8(d)). This will c.ause pronounced peripheral variations in the local Nusselt
number. The reason for this is that there exists a larger gradient of the main flow

in these regions (Fig.3.7(b,d)).

T o interesting results can be inferred from the temperature profiles shown in
Fig.3.8(a)-(d). One is that the theory of thermal boundary layer is not valid for
the temperature fields in these regions of parameters because the layer along the
walls is too thick to be described by the theory. Another is that the temperature
distributions are qualitatively similar to the corresponding ones of the main flow in
these regior - . f parameters. This implies that the Coriolis terms in the momentum

equation for main flow are not strong enough to dominate by noting that only the
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difference between the momentum equation for main flow and energy equation for

temperature is the existence of the Coriolis terms in the momentum equation.

3.5 Meazan Friction Factor and Nusselt Number

3.5.1 The friction factor

Substituting the expression for w based on the second-order solution into the

definition of flow rate @

27 ra 27 p1
Q= / / WRdRdp = / / avwrdrdey
o Jo o Jo

we obtain

Q=0 (3.3)
2
where
1541¢1 11¢2 1 c? 1
— l _ o 2 _ 2
@ (550 < i150: T T80 ~ 387 ~ (G x76s T 9216 tem
5293¢? Ra?, 1112 ] 8077¢? 29
~ 350 % 11525~ 380 % 11522 T 1920 Fen * (55700 % 11507 T 340 x 11520 Fem
97c? 1

+ (330080 x 4603 T 23040 Fon e (3.4)

and the mean main velocity w,, is

_Q_ ve

1
ra? 2a

(3.5)

Wy =

Then the Reynolds number with diameter of the tube as a characteristic length is

= ¢ (3.6)




Chapter 3. Flow and Heat Transfer Characteristics 80

From Eq.(2.61) in Chapter 2, tl. flow rate of the fluid through a stationary

straight tube is

Trac

Qs: 9

Then we may define the ratio of the flow rates as

Q

o =@ (3.7)

This agrees with those obtained by Topakoglu(1967). Dean(1928), and Baru
a(1954) for the special cases they considered.

Since the mean friction factor for a rotating curved tube is defined by

f= 2a_ ar
T pwm?/2 ROO

we have
ode
=% (3.%)
and
c 1
]f_ -5 (3.9)

where f,(= 64/Re) is the mean friction factor for a stationary straight tube. It

is interesting to note that the Prandtl number does not appear explicitiy in the
expressions of Q/Q, and ,/f, although it was present in the second order solution

of the main velocity (Chapter 2).
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Figure .9 illustrates the typical trends for the friction factor variation with L,
and L, at ¢ = 0.02 and ¢ = 60. For any specified L. there exists a regicoi. of
L; where the friction factor is identical : very close to that in stationary str-ght
tube. And this region has already been discussed in §3.2 where centrifugzal, C.:.¢ i
and buoyancy forces just neutralize ~ - other. This contributes to a very wvrak
secondary flow in this region. As ps away from this region at a specified
value of Lo, the friction factor increases. A pparently the increased resistance to the
flow comes from the stronger secondary flow. Furthermore, the increase in friction
factor becomes more significant as | Ly | increases. At a specified value of L, we
note an important fact from Fig.3.9 that the flow impedimert at higher values of L,
is relatively greater if the value of Ly is at the left of the region mentioned above,

but is relatively smaller if the value of L; is at the right of the region.

3.5.2 The Nusselt Number

From the energy balance
pcpc27ra2wm = 2nah(ty, —tm)

and the definition of the mean Nusselt number

we obtain

Nu= — (3.10)



Chapter 3. Flow and Heat Transfer Characteristics 82

where 7, is an integrated mean temperature across the tube (sonmietimes referred

to as an unweighed mean) and defined as (Morris 1981)

1 2 1
Nm = —/ / nrdrdy
TJo Jo

Substituting the second-order solution of 5 into the expression above, we have

c ,, 1171Pr%c® 4169 Prcd 117168 17Pre?
T = =15 T 55000 % 11522 T 5 % 50100 x 1152 T 32900 x 1152 o0 = (152
N 481c3 _ 29c )+ Rea®( 17Pricd + 293 Prc? 4 1764 ‘
6720 x 1152 1536 2293760 x 1152 ~ 107520 x 11522 2293760 ~ 1152
+ c ) + Rag?( 72143Pr%cd N 57383 Prc® +_7‘2M3(~‘" @)
80 x 1152 44800 x 11523 ° 112000 x 11523 ° 44800 = 11523
+oReal 2129 Pr? ¢t + 2707 Prct + 2129¢1 N Pret + 19¢2
50400 x 11522 201600 x 11522 50400 x 11522 960 x 1152 320 x 1152
— o Rag( 27571 Prict N 7291 Prc? + 27571c? B Prc? 4 253¢2 )
1400 x 11523  1344C0N0 x 11522 * 1400 x 11523 2752512 * 21501 x 1152
_ Req Rag( 11143Pr2c3 + _~3551PTC3 + 11143¢3 N T7e )
1400 x 11323 ~ 1400 x 11523 ° 1400 x 11523 ~ 3840 > 4608

The following implications of Eqs.(3.10) and (3.11) are worthy of note. In the
limiting case with no curvature, rotation and heating/cooling, the present problem
becomes identical to the asymptotic solution for constant property forced convection
in a stationary straight tube and was reported by Goldstein (1957). For this limiting
case Nu; = 6 and clearly Eq.(3.10) approaches to this value asymptotically as
o — 0,Req — 0 and Rag — 0. Dividing Eq.(3.10) by Nu, for a stationary straight

tube, we have

Mu o iteQ (3.12)
Nu, G m
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Tvpical var,ations of the Nusselt number given by Eq.(3.12) are presented in
I'ig.3.10 for a range of L, at o = 0.02, ¢ = 60, and Pr = 0.7. Although it is likely
that the solution is being extended beyond its range of validity at the higher values
of the L. the physical trends are quite evident. As expected the heat transfer is
enhanced significantly due to the presence of the secondary flow, and the similarity
between the main flow and temperature distribution leads to a similarity in the
results for friction factor and Nusselt number. Like the friction factor. the Nusselt
number is also identical or very close to that for constant property forced convection
in stationary straight tube in the region with the four-cell secondary flow. An
increase in | Ly | from this region causes the secondary flow to become stronger.
Conscquently. the Nusselt number increases substantially at higher value of the
| Ly |. The higher value of L, results a relatively greater enhancement of heat
transfer for the case in which the value of L; is at the left of the region with the
lowest value of the Nusselt number, but a relatively smaller enhancement when the

value of L, is at the right of the region.

For future comparison with experimental data, Fig.3.11 shows variations of the
Nusselt number based on bulk temperature with L; for a range of L, at o = (.02,
¢ = 60, and Pr = 0.7. The bulk temperature is obtained through a numerical double
integration by Simpson’s 1/3 rule. In the figure, Nu, is the Nusselt number (based
on the bulk tempecrature) for constant property forced convection in a stationary

straight tube. which is 48/11 in value.
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At the present stage. the structure of the solutions has not been explored com
pletely. On the other hand. it appears that no experimental results of friction factors
or Nusselt numbers for rotating curved tube with heating or cooling effect are avail-
able. Thus the range of validity for Egs.(3.9) and (3.12) remains to be checked in

future.

3.6 The structure of solutions

In practical problems. the Reynolds number Re is usually given while the pseudo
Revnolds number, which is defined by the pressure gradient along curved tube axis,
is often unknown. An expression for the pseudo Reynolds number ¢ in tesins of
Re,o, Req and Rag may be obtained by inverting (3.6) and ignoring the higher-

order terms as

c= Rl (3.13)
with

1541Re*  11Re? 1 Rc? 1 5903 Re Ra?

=1 L foog? 4 2203 Mteq fy,

+(3150 < 11522 T 17280 48)‘7 +(28 7687 9216) o e 1152

111 Re2 1 8077 Re? 929 |
Re? 1 _ Re It
Hogg w7597 + Toag )7 Fefen — (ggmoo <150z + 210, 11527 e [
97 Re? 1
- ReaR 3.14
(130080 x 4608 T 23010 ) Feattau (3.14)

Introducing the following non-dimensional parameters,

De = Rex/o Dq = ReReq Dr = ReRag (3.15)
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the expression of I' becomes

[ e o’ ; 1511(Dc?)? D 5293 Dr? N R} N 11oDc?
B 48 3150 x 11522 28 x 7682 © 350 x 11523 9216 17280

o Da 290 Dr 111De2Dq 8077De? Dr
T1920 T 210 < 1152 T 280 x 11522 _ 50400 x 11522
97Dq Dr Req Dr
"~ 430080 x 4608 23040 Re

(3.16)

The second-order solution. (2.20) along with (2.50)-(2.80) in Chapter 2. may be
expressed as
o = Doy, + Doy + Drzo(])g, De*olg, + I)Qoozo + Driogo,

‘7[)(20380 + UDQQno +oDrlelg, + DC)Dﬂono + De?Dr réion

+ DaDro®, + PrD2Drodl, + PrDaDroll, + PrDrol, (3.17)

0
w = Re[wll + owldy + De?uls, + Dau®S, + Dru®, + o?wld, + Dc*wdl,

210 2 2,30 2,30 M .20 Vs e 20
+ R wdd, + Diwdd, + Dr Wogo + oDée? Wioo + 0 Dawiy + 0 Druiy,

+I>(2D911'110 + 1)621)7‘10]01 + DQDrwo11 + PrDezDrw101

+ PrDr*udl, + PrDoDrull] + ReaDruwl®, + Driw®, (3.18)

n= R‘”[’looo + ‘771100 + Dezﬂ?go + Dﬂ’lmo + D"’Ioox + 02'7;80 + De“nggo

+R“?}’l:~gu + Rf?t“ 020 T Dn f—’taozo + br? 71002 + oDe? '7200 + UDmhlo T UD"’hm
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-i*l’rl)(2 /?30 + I’rl)n 77010 + l’rl)rrlgﬂ,, + Dr”)m]'f}o + D¢ 21.)7'71',“;(, + 1.)”/‘)7'1](::“"
+PrDAS + PrDygd, 4+ PrDrigdl, + o PrDe®n200™ + o PrDgn110%!
+JPrDr7}”0 + PrDe* Doyt + Prl)rzl)rr),m + PrDgDryo11™
+Pre¢ 1)(47)200 + PriD} a2, + Pr? Dr?5002* + 1’1'213('21);21,i'f(,

+ Pr? 1)(2Dr7]‘:,20 + Pr? Dnl)rr/m,j + Regl)rnm, + Dr2y?o (3.19)

Tow:
irr which

Re = Rel De = Del” Dg = Dol 1Dy = Drl’ (3.20)

and the parameter-free expansion coeflicients é{;’}c u'f;’,‘, and 7/,",1 are introduced by

factoring out the parameters ¢ and Pr from ¢,y.wry and 15y, i.c.
d)iyk = it 1ns in ¢,k including i—th power of cand j—th power of Prdivided by ¢ Pr?

Similar rem..-: |s also true for uuk and 7/uk

Since ¢!7.. wi% and nim. depend on r and @ only and are independent of the i w
region. the relative size of each term in these series depends on the magnitudes of
the parameters; however, the shape of each term is always the same. Note that [
is fixed once De and o are specified; then the solutions for velocity and temperature
may be regarded as the infinite series (higher-order approximation: would produce
additional types of terms) in powers of o, DC2,RCQ,DQ,I)T and Dr. In view o1
expressions (3.15) and (3.16) for T (In fact I" 2 1 for small values of the parameters),

the series may alse be considered as in powers of o, De?, Heq, D, Pr and Dr. The
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first pair of parameters, o and Dc?, characterizes the flow and heat transfer in
stationary helically coiled tubes (the Dean problem). The second pair, Req and
Dq, determines the characteri<t cs of the flow and heat transfer in radially rotating
straight tubes (the Coriolis problem). The third pair, Pr and Dr, characterizes the
flow and heat transfer due to the inertial and buoyancy forces (the mixed convection
problem). o, the curvature ratio of the curved tube, is important for the problems
in the helical tube with tightly wound coils. Dean number, De, characterizes the
flow and heat transfer in the coiled tu™es with loosely wound coils. Req. whose
effect for problems in radially rotating straight tube is analogous to that of o for
the stationary curved tube, is the ratio of the Coriolis force to the viscous force. It
is important for problems in the radially rotating tube if Dgq is small. Dq, whose
effect for the problems in radially rotating straight tube is analogous to that of the
square of the Dean number for the stationary curved tube, represents the ratio of
the product of the inertial and Coriolis forces to the square of the viscous forces.
It determines the flow and heat transfer in radially rotating straight tube if Req is
small (i.c. slowly rotating). Dr represents the ratio of the product of the inertial
and buoyancy forces to the square of the viscous forces. Dr and Prandtl number

Pr are two characteristic parameters for mixed convection problem.

If each of these parameters is significant, the solution becomes a sixfold series
expansion in o, De, Req, Dq, Pr and Dr. It appears that no successful technique

is available for analyzing and improving such a multiple series. However, for some
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special cases, the series may be reduced to a single series. For examiple, the solution
series for the fully developed steady laminar flow through a radially rotating straight
tube becomes a single series if the tube is rotating slowly and the density of fluid
is taken to be constant. Mansour(1985) expanded this single series up to 31 terms
in powers of Dg. Recasting the resulting series for the friction ratio, he predicted
that it will grow asymptotically as the 1/8 power of Dq. Van Dyke(1978) extended
Dean’s four-term series for the loosely coiled tube to 24 terms in power of De. The
series, re-casted by Van Dyke, is considered to be valid for arbitrarily large Dean
number. Similar work has been done by Van Dyke (1990) for Morton's series for fully
developed laminar flow through a uniformly heated horizontal tube. He extended
the series by computer to 31 terms in powers of a parameter ¢ which is similar to
Dr of this work. He found that the Nusselt number grow asymptotically as the 2/15

power of the parameter c.

As discussed in §3.2.1, two dimensionless parameters L, and L, characterize the

secondary flow in rotating curved tube. From their definition (sce Eq.(2.51)),

3RCQ 3[)9
L] = = =~
20¢ 2D¢?

Raq Dr

L,= 2o _ 27
27 160c  16D¢2

Thus, L, represents the ratio of the characteristic parameter Daq for rotating straight

tube to the characteristic parameter De? for the stationary curved tube. Similarly,

L, represents the ratio of the characteristic parameter Dr for mixed heat transfer
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‘able 3.2:Physical implications of D¢, Dq, Dr, Ly and L,

Parameter | Force Ratio

1“)62(1)62) (inertial force) X (centrifugal force)

(viscous force)?

f)ﬂ(l)ﬂ) (inertial force) x (Coriolis force)

(viscous force)?

f)r(l)r) (inertial force) x (buoyancy force)

(viscous force)?

Coriolis force
1,

centrifug:l force

L buoyancy force
Y] _

centrifugal force

problem to the characteristic parameter De? for the stationary curved tube.

In terms of the force ratios, the physical implications of De?, Dq, Dr, L, and

L, are summarized in Table 3.2.

3.7 Concluding Remarks

The characteristics of flow and heat transfer are studied based on the perturba-
tion solutions for the velocity and temperature fields in a rotating curved circular
‘uoe obtained in Chapter 2. The solutions of velocity and temperature are found
to be infinite scries in powers of three pairs of parameters. The first pair, o and
De? (or De?), characterizes the flow and heat transfer in helically coiled tubes. The
sccond pair, Req and Dgq (or bn), determines the characteristics of flow and heat

transfer in radially rotating straight tubes. And the third pair, Pr and Dr (or ﬁr),
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characterizes the flow and heat transfer caused by inertial and buoyvancy forces.

The centrifugal, Coriolis and buoyancy forces all contribute to the generation of
the secondary flow in a rotatinrg curved tube. The resultant secondary flow may be
grouped under three broad patterns depending on the values of two dimensionless
parameters L; and L,. The first parameter represents the ratio of the characteristic
dimensionless parameter Dq for radially rotating straight tube to the characteristic
dimensionless parameter De? for a stationary curved tube. The last one, on the other
hand, is the ratio of the characteristic dimensionless parameter Dr for mixed con-
vection to the characteristic dimensionless parameter De? for the stationary curved

tube.

Based on the first order approximation, the secondary flow appears as a two-cell
pattern with the direction of the circulation sar: as that found in the stationary
curved tube in the range with L; > 9L; —3 (for the casc of Ly < 1)or L, > 10L, -4
(for the case of Ly > 1). This is because the centrifugal and positive Coriolis forces
are dominant. When L, falls in the range with L, < 10L; — 4 (for L, < 1) or
L, < 9L5-3 (for L, > 1), the negative Coriolis force predominates and the secondary
flow is also of a two-cell pattern, but the direction of the circulation is opposite to
that found in the stationary curved tube. In the range where the three effects just
neutralize each other, i.e. in the range with 10L; ~4 < L, < 9L, =3 for L <1
or 9L, —3 < L, < 10L; — 4 for Ly > 1, two-pair (four-cell) secondary circulations

which are oppositely directed to each other occur in the cross section of the tube. If
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L, < 1, the second pair of secondary circulation appears along the wall ~f the tube.
On the other hand, it would appear in the central portion of the cross section of the

tube if Ly > 1.

The second order solution of secondary flow distorts the vortices of the first
order solution, and moves the circulation centres of the vortices away from the
vertical centerline. This destroys the symmetry of the secondary flow about the
vertical centerline for the first order solution. And the region with four-cell pattern

is extended by the second order solutinn.

T)e presence of the secondary flow causes the deviation of the main velocity and
temperature profiles away from the parabolic profile in Poiseuille flow. In particular,
the locations of the maximum main velocity and the extreme temperature are moved
away from the center of the tube in the direction of the secondary velocities in the
middle of the tube. As a result, one observes the pronounced peripheral variations
of friction factor and Nusselt number, and the increase of the mean friction factor
and Nusselt number significantly. However, in the region where the secondary flow
appears as a four-cell pattern, the secondary flow is too weak to modify the main
velocity and temperature profiles effectively, such that they are essentially axisym-
metric and parabolic with extreme value appearing along the horizontal centerline
at or very closc to the center of the cross section. As well in this region, the friction
factor and Nusselt number are identical or very close to those for constant property

forced convection in a stationary straight tube.
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The profiles of the main velocity and temperature show that the boundary layer
theory is not valid for the analysis of the flow and heat transfer in a rotating curved

tube for a range of parameters considered in this work.
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Figure 3.1. Geometrical configuration and toroidal coordinate
system
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(25.0, 2. 762) (250, ) 871)

(-14.0, -0.0458)

(375, -1.710) (315, 1760)

Figure 3.2. Secondary flow patterns at 0 = 0.02,c = 60, Pr = 0.7
and L, = —1.0. First column: first-order; Second column: sec-

ond order

94



Chapter 3. Flow and Heat Transfer Characteristics

8

>

(10.62, —0.00843)

Figure 3.3. Secondary flow patterns at o = 0.01, ¢ = 50, Pr = 0.7
and L, = 1.5. First column: first-order; Second column: second
order

(10.62, —0.00746)
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Figure 3.5. Secondary flow with one, two or three factors of
curvature, rotation and heating/cooling at ¢ = 0.01, ¢ = 50,
Pr =0.7, L, = 15.0 and L, = 1.5 ((a), (b), (c)-first-order terms
due to single effect of curvature, rotation or heating/cooling;
(d), (e), (f)- second-order terms due to single effect of curva-
ture, rotation or heating/cooling; (g), (h), (1)~ first-order terms
+ second-order terms due to single effect of curvature, rotation
or heating/cooling; (j), (k), (I)-second-order terms due to com-
bined effect of curvature & rotation, curvature & heating/cooling
or rotation & heatinz/cooling; (m), (n), (o)-first-order terms +
second-order terms dux in combined effect of curvature & rota-
tion, curvature & heating/csoling or rotation & heating/cooling:
(p). (q), (r)-first-order terms, second-order terms or first-order
terms + second-order terms due to combined effect of all three
factors)
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Figure 3.6. Secondary flow with one, two or three factors of
curvature, rotation and heating/cooling at ¢ = 0.01, ¢ = 100,
Pr =0.7, L, = 1.1 and L; = 0.5 ((a), (b), (c)-first-order terms
due to single effect of curvature, rotation or heating/cooling;
(d), (e), (f)- second-order terms due to single effect of curva-
ture, rotation or heating/cooling; (g), (h), (i)~ first-order terms
+ second-order terms due to single effect of curvature, rotation
or heating/cooling; (j), (k), (1)-second-order terms due to com-
bined effect of curvature & rotation, curvature & heating/cooling
or rotation & heating/cooling; (m), (n), (o)-first-order terms +
second-order terms due to combined effect of curvature & rota-
tion, curvature & heating/cooling or rotation & heating/cooling;
(p), (q), (r)-first-order terms, second-order terms or first-order
terms + second-order terms due to combined effect of all three
factors)
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Figure 3.9. The influence of secondary flow on flow resistance
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Figure 3.10. The influence of secondary flow on heat transfer
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Figure 3.11. Variations of Nusselt number based on bulk temperature
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Chapter 4

Flow Transitions and Combined
Free and Forced Convective Heat
Transfer in Rotating Curved
Channels: The Case of Positive

Rotation

The simultaneous effects of curvature, rotation ard heating/cooling in channel
flow complicate the flow and heat transfer characteristics beyond those observed
in the channels with simple curvature or rotation. The phenomena encountered
are examined for steady, hydrodynamically and thermally fully developed flow in

106
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reciangular channels. The governing equations are solved numerically by using a
finite-volume method. The results show both the nature of the flow transition and
the effect of this transition on the distributions of the friction factor and Nusselt
number in a square channel. A one-pair vortex flow, with an ageostrophic and vir-
tually inviscid core, is uncovered between a viscous force dominated one-pair vortex
flow and two-pair vortex flow with the presence of the Dean-, Coriolis- or buoyancy-
vortices. Another two kinds of one-pair vortex flow exist after the disappcarance
of the Coriolis-vortices upon increasing the Coriolis force sufficiently. When the
fluid is cooled, the inward buovancy forces cause the buoyancy- vortices (due to the
buoyancy force instability) to appear in the low pressure side (rather than the usual
high pressure side of the channel). and the direction of the secondary flow revers-
cs by overcoming the outward centrifugal and Coriolis forces in the plane of the
cross section. The flow reversal occurs by passing through a multi-pair vortex flow
region where overall, the effect of the buoyancy force just neutralizes those of the
centrifugal and Coriolis forces. Two-pair vortex flow may 1esult from two different
mechanisms. One is associated with a break-up of the Ekman-type vortices owing
to the centrifugal, Coriolis or buoyancy force instabilities. Ancther, with a smaller
size of the resulting second pair of vortices, is characterized by a merging-together
of the vortices. The disappearance of the Coriolis- or buoyancy-vortices is observed
upon increasing the Coriolis or buoyancy forces. No such phenomena are observed

for the Dean- vortices. Furthermore, the reappearance of the buoyancy-vortices,



Chapter 4. Numerical Solutions: Positive Rotation 108

upon increasing the buoyancy force further, is also found in this study.

4.1 Introduction

Fluid flow and heat transfer in rotating curved channels are encountered in cool-
ing systems for conductors of electric generators and generator motors for pumped-
storage stations (Ito & Motai 1974: Mivazaki 1971 and 1973). They are also em-
ploved in applications such as separation processes (Lennartz ef al. 1987; Papanu
et .1 1986; Hoover el al. 1981; Stober & Flachsbart 1969; Hochrainer 1971 and
Kotrappa & Light 1972). heat exche: gers (Qiu et al. 1988 and 1990), and physio-
logical field (Ito & Motai 1974; Berman 1985). The transport and flow phenomena
in the rotating curved channels have, therefore, challenged engineers and scientists
for some time. A remarkable characteristic of the flow and heat transfer in a ro-
tating system is the presence of the centrifugal and Coriolis forces. Under certain
conditions, these forces may induce a secondary flow in a plane perpendicular to the
direction of the main flow. This could significantly affect the resistance to the fluid

flow and convective heat transfer.

According to its inducing condition (Chapter 1), the secondary flow could he
created by the Coriolis force for a constant property fluid, while the centrife 1
force is purely hydrostatic, analogous to the earth’s gravitational field. W :en
temperature-induced variation of fluid density occurs, both Coriolis and centrifugal-

type buoyancy force could contribute to the generation of the secondary flow. On
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the other hand, secondary flow also arises due to centrifugal force (Dean 1928) when
a channel is curved. Therefore, centrifugal, Coriolis and centrifugal-type buoyancy
forces all contribute to the generation of the secondary flow if the channel is both
curved and rotating. The nonlinear interaction of these body forces with the other
forces in the flow field may result in a complicated structure of the secondary flow.
We attempt to examine this structure and its effects on pressuve-driven main flow

and temperature ficld in a rectangular channel by using a finite-volume method.

The secondary flow under consideration is essentially a nonlinear combination
of the bucyancy force-driven secondary flow in the mixed-convection problem, the
centrifugal force-driven secondary flow in the Dean problem and the Coriolis force-
driven secondary flow in radially rotating straight channels (hereinafter referred to as
Coriolis problem). The similarity among these three problems has beca recognized
by a number of investigators. The dvnamical parameters for these three problems are
Dr (= RcRa), square of the Dean number De? (De = Re\/o) and Dq (= ReReq),
respectively, (Chapters 2 and 3, also see Wang & Cheng 1993a,b). Here Re is the
Reynolds number, Ra the Rayleigh number, ¢ the curvature ratio of the channel
and Req (= 4Qa?/v) the rotational Reynolds number. Depending on the value
of the dynamical parameter, fully-developed secondary flow exhibits three different

structures for all three problems in the laminar flow region.

At a relatively small value of the dynamical parameter, it consists of one-pair

of counter-rotating vortices in a plane perpendicular to the axis of the channel.
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Upon increasing the value of the dynamical parameters sufliciently (depending on
the value of the Prandtl number Pr, curvature ratio o or the rotational Revnolds
number Rep, respectively, for these three problems), the centrifugal, Coriolis or
buoyancy force instability may lead this one-pair vortex flow structure to another
form of two-dimensional flow with a two-pair or roll-cell vortex structure (depending
on the geometry of the channel ) in the cross-plane. Such two-pair vortex flows are
found to be unstable to asymmetric perturbations in the Dean problem (Winters
1987), in the Coriolis problem (Nandakumar, Raszillier and Durst 1991), and in the

mixed-convection problem (Nandakumar & Weinitschke 1991).

Upon increasing the dvnamical parameter further, all two-dimensional flows be-
come unstable, and there are evidences for the evolution of streamwise periodic three-
dimensional flows in all of the three problems (Sankar, Nandakumar & Masliyan
1988; Nandakumar & Weinitschke 1991 and Nandakumar, Raszillier & Durst 1991).
The references concerning these ihree problems may be found in Cheng & Hwang
(1969), Hwang & Cheng (1970), Nandakumar, Masliyah & Law (1985), and Nan-
dakumar & Weinitschke (1991) for the mixed-convection problem; Cheng, Lin &
Ou (1976), Pedley (1980), Dennis & Ng (1982), Berger, Talbot & Yao (1983), Nan-
dakumar & Masliyah (1986), Ito (1987), Winters (1987), Berger (1991) and lwang
& Chao (1991) for the Dean problem; Morris (1981), Speziale (1982), Speziale &
Thangam (1983), Kheshgi & Scriven (1985), Nandakumar, Raszillier & Durst (1991),

Hwang & Jen (1990), Hwang & Soong (1992), Jen et al. (1992), Hwang & Kuo
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(1993), Hwang & Jen (1987), Hwang & Soong (1989), Hwang & Kuo (1992), Soong

et al. (1991) and Soong & Hwang (1990) for the Coriolis problem.

In spite of the practical importance and theoretical interest, the flow and heat
transfer in rotating curved channel have not yet been examined in sufficient details.
Most ef the previous analytical/numerical investigations have focused on the two
limiting «.:<s with weak rotations or strong rotations. By employing Pohlhausen’s
method, Hocking (1967) and Ludwieg (1951) examined the fully developed laminar
boundary layers in rotating curved channel with rectangular and square cross sec-
tion, respuctively. Their results are valid for large rotational Reynolds number based
on the angular velocity of the channel, as compared with the usual Reynolds number
based on the mean axial velocity of the fluid. This problem is not considered to be
as difficult as the case with moderate rotation since the flow in the interior of the

channel is approximately geostrophic.

Considering the channel to be curved tube of circular cross section, the fully
developed laminar flow was investigated theoretically by Ito & Motai (1974). They
solved the equations of motion by a perturbation method for a small curvature and

low range of angular rotating velocity of the tube. Heat transfer and the effect
of centrifugal-type buoyancy force were not considered by these authors. Miyazaki
(1971,1973) analyzed the fully developed laminar flow and heat transfer in curved
rotating circular/rectangular channels by finite-difference method. The effects of

the directions of rotation or heat flux were not investigated in Miyazaki's works.
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Because of the convergence difficulties of the iterative solution method used. no
sclutions in the range where three forces ( centrifugal force due to curvature, Coriolis
and centrifugal-type buoyancy forces) are of comparable order of magnitude could
be obtained. Besides, the examination of the governing equations employed by

Miyazaki show that some errors existed in the viscous terms.

Since the solution to the present problem so far is only for the asymptotic cases
of slow and rapid rotation. the secondary flow revealed by the works mentioned
above consists of one-pair of counter-rotating vortices. When the three forces are of
comparable order of magnitude, a complicated structure of the secondary flow might
be expected since then the nonlinear effects could be quite strong. In this work, we
present a comprehensive numerical study on the laminar flow and combined free
and "rrced convective heat transfer in a rotating curved rectangular channel at low
to relatively rapid rotation rates where both the convective and diffusive terms play

an important role and. consequently, the full nonlincar equations must be solved.

Attention is focused on the flow transitiors of secondary i:.w and main flow in
the fully developed region and the effects of the flow transitions on temperature
distribution, friction factors and Nusselt numbers for a wide range of characteristic
parameters. The emphasis is also placed on the primary instabilitics (centrifiigal,
Coriolis and buoyancy force instabilities) arising in the rotating curved rectangn-
lar channels, and not their secondary instabilities or the transition to turbulence,

although the vortices studied ultimately have an important influence on the tran-
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sition. The motivation for the present study arose from the following observations:
(1) There exists no detailed study of the flow and heat transfer in rotating curved
rectangular channels and (2) the transitions in flow structure due to the action of
centrifugal, Coriolis and buoyancy forces have not been fully studied. In partic-
ular, the disappearance and reappearance of Dean-vortices. Coriolis-vortices and

buoyancy-vortices have in general received less attention in the past.

4.2 Formulation of the problem

The geometrical configuration of the physical model for a rotating curved rect-
angular channel and its coordinate system are illustrated in Fig.d.1. A viscous
fluid is allowed to flow through a channel of rectangular cross section with width
x h uht=a x b under the action of the pressure gradient along the channel axis.

The channel is uniformly curved around the axis o'z’

At same time, the channel
is rotating about that axis with a constant angular velocity 2. The rotation can
be positive or negative as shown in Fig.4.1 in terms of angular velocity vector. If
positive, the rotation dircction is in the direction of the relative velocity of the fluid
inside the channel. When the rotation is negative, however, the rotation direction
is in the direction opposite to the relative velocity of the fluid. In addition to the
curvature and rotation, the channel is being uniformly heated or cooled at the wall

with a uniform peripheral temperature. The properties of the fluid, with the excep-

tion of density, are taken to be constant. To facilitate the discussion, each side of
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the .Lannel wall is termed the inner, outer. upper and lower walls as shown in the
figure. Furthermore, we introduced the horizontal centreline, which is a part of the
X-axis cut out by the inner and outer walls, and the vertical centreline which is a

part of the line X = a/2 between the upper and lower walls.

Cuasider a non-inertial toriodail coordinate system (O, .\, ¥, 0) fixed to the curved
channel rotating with a constant angular velocity £ about o'z’ axis as shown in
Fig.4.1. The direction of the relative velocity of the fluid in the channel is chosen
in the direction of increasing 0, while the angular velocity of the channel is taken
as 0 > 0 for increasing 0 (positive rotation) and Q < 0 for decreasing 0 (negative
rotation) respectively. In order to facilitate the numerical programming. the origin
of the coordinate system is located at the centre of the inner wall instead of centre

of the cross section.

The flow is assumed to be laminar and steady. The axial velocity is so slow that
there is no energy dissipation due to friction, and no other internal heat generation
sources exist in the fluid. Comparing with the centrifugal force, the gravitation-
al force is negligible. The buoyancy term is expressed in terms of the coeflicient
of volume expansion as is commonly done in free convection analysis (Boussinesq
approximation). By invoking the usual Boussinesq approximation that the densi-
ty variation need be included only in the effective body force term, the effect of
variable fluid density need not be included in the Coriolis terms (Chapter 1). The

temperature difference used to express density variations in the buoyancy term is
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(1 = T,). Here, T, is the wall temperature. If the velocity components in the
directions of X, Y, and 0 are U, V, W respectively, the continuity, Navier-Stokes and
energy equations governing the laminar flow and heat transfer with the aforemen-
tional assumptions are:

Continuity equation
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Energy equatior
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The terms W2/(b—a/2 + X), (1 + (X — a/2)/6)bQ23(T,. — T') and 201", on
the left-hand side of Eq.(4.2), are the centrifugal force due to the curvature of the
channel, the centrifugal-type bucyancy force due to the variation of fluid density
in a centrifugal field, and the Coriolis force due to the rotation of the channel,
respectively. They drive the flow in the X-direction. The terms ~UW/(b—a /24 X)
and —2QU . on the left hand of Eq.(1.4), are the Coriolis forces acting in the main
flow due to the curvature and rotation of the channel, respectively. They would

significantly affect the main flow 1in some region of the parameters.

For both hydrodynamically and thermally fully developed region, the velocity
and temperature are independent of the axial coordinate 0. It follows from equa-
tion (4.4) that the form of P is restricted to 0f,(X,Y) + f2(X,Y), and then from

equation (4.2) and (4.3) that f;(X,Y) must be a constant. Therefore, we can write

Where ¢; is a positive constant, the direction of flow heing always chosen to the
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direction of increasing 0.

In the thermally fully developed region of a long channel with a uniform wall
heat flux or a constant axial temperature gradient, the fluid temperature changes
lincarly in the axial direction for both cases of pure forced convection and combined

free and forced convection (Shah & London 1978, Hong et al. 1974). Then, the fluid

temperature 7" may be expressed as
T=cRO0+ F(X,Y)

Where ¢, is the axial gradient of temperature and F is a function of the cross stream
coordinates X and Y alone. This is also valid at the channel wall which means that
the wall temperature will change uniformly in the direction of flow. If the wall
material is with sufficiently high thermal conductivity to ignore any circumferential
temperature variation, the difference in the wall temperature T, and local value of
temperature T'in the flow wi'l also be functionally related to cross stream coordinates

alone.

By using the characteristics of velocity and temperature mentioned above for
hydrodynamically and thermally fully developed region, the governing equations
(1.1)-(4.5) in terms of the dimensionless variables, are reduced to,

Continuity equation

0 1 d 1
(7)-;((] +o(r—-(1+ ;)/4))1[) + 6—-, (Q+o(z- (14 ;)/4))1’) =0 (4.6)

Momentum equations
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The dimensionless variables and parameters are as follows:
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with

b c
h = 2:: S W= L9 AT = Prdyes
a
Rq = diQ Rag = PRHBAT
v vi

It is customary to use the mean velocity W,,, and the difference between the wall
temperature and the bulk mean temperature (T, —T3), for the non-dimensionlization
of the axial velocity and temperature, respectively, because they are usually spec-
ificd as design parameters. However, the employment of these quantities results
unavoidably in the appearance of the two unknown dimensional pararmeters in the
governing equations which comprise the unknowns 17, and 7, respectively. Conse-
quently, the iterative procedure should be applied, assuming some initial estimated
values to them. It requires an additional computation time. In order to avoid this
additional increase in computation time, 13} and AT are used here as a representa-
tive axial velocity and a representative temperature difference, respectively. They
involve the axial pressure gradient ¢, and the axial temperature gradient ¢, which
are usually given as design parameters so that it does not induce a difficulty in using
the computation results for design. The velocity W is proportional to the pressure
drop in the axial direction and the mean axial velocity W, = W, /8 for the flow in
a stationary straight circular tube. The temperature difference AT is, on the other
hand, proportional to the fluid temperature difference between the channel inlet and

outlet.
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Different scaling quantities used in the non-dimensionlization may generate d-
ifferent parameter groups for the rotation, curvature and heat/cooling effects. In
Chapters 2 and 3, we show that L, and L; represent the ratios of the dynami-
cal parameters Dq(in the Coriolis problem) and Dr(in the mixed-convection prob-
lem) to that (De?) in the Dean problem, respectively. They are two parameters
to determine the flow transitions in the channel with curvature, rotation and heat-
ing/cooling. They are introduced in the governing equations (1.6)-(-1.10) explicitly

since we mainly concern this transition of the flow in this work.

In this work. we attempt to examine the transition of symmetric secondary flow
with respect to the horizontal centreline only. In order to effectively arrange the
grid points, the symmetry/antisymmetry of flow and temperature fields about the
X axis is used so that it suffices to consider the upper half region alone for the
analysis. In fact, it is readily found that u,w and ¢ are even functions of y, while
v is odd functions of y. Then the boundary conditions may be written, in terms of

dimensionless variables. as

1
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Equations (4.6)-(4.10) under the boundary conditions (4.11)-(4.13) constitute
the mathematical model of the problem under consideration. Note that only sym-
metrical solutions, with respect to the horizontal centreline, will be obtained with

the present boundary conditions (4.11)-(4.13) set for half of the channel.

After the velocity and temperature fields are obtained, the computations of the
local friction factor and Nusselt number are of practical interest. Following the
usual definitions, the expression for the product of the friction factor and Reynolds
number fRe and Nusselt number Nu can be written based on the local axial velocity

gradient or the temperature gradient at the wall as

2 Ow
SRe = =—(ZJuat (4.14)
w,, on
1,01
Nu = —(7=)ua 1.15
u tb((')n) 1 (110)

Where w, and f, are mean axial velocity and bulk mean temperature, respec-
tively.

The mean friction factor and Nusselt number can be obtained either by periph-
erally averaging the local values or by making the overall force and energy balance
along the axis of the channel. The calculated values by these two method were found
to be in good agreement . The result presented in this work is the average of the

values obtained by these two methods.
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4.3 Numerical Method of Solution

The governing equations (4.6)-(4.10) given in the previous section are a set of
convection-diffusion equations with velocity-pressure coupling. In order to obtain
solution for this kind of equations by finite-volume method, two factors are consid-
ered to be extremely essential: (1) using correct difference scheme for convection
term and (2) decoupling vhe velocity and pressure properly. After discretization in
the domain, the governing differential equations become a set of algebraic equations,
the so-called discretization equations. The methods of solving these discretization
equations are also vital to the success. Therefore, the difference scheme, treatment
of the velocity-pressure coupling and the method of solving the discretization equa-
tions may be regarded as the three major factors for the success of a finite-volume
method. As well they are also the major criteria for distinguishing one scheme from

the other.

In the last twenty years, numerous papers were published dealing with the three
aspects of the finite-volume method mentioned above. Based on the review and
comparison among various methods in terms of their transport and conservative
properties, convective numerical stability, economy and exactitude, we chose the
power-law scheme to discretize the convection term; employ the SIMPLE scheme to
deal with the problem of velocity-pressure coupling; and use an alternating direction
line-by-line iterative method (ADI) with block correction technique to solve the

discretization equations. The description of the numerical implementation can he
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found, for example, in Patankar (1980).

The initial calculation for Dean problem was performed by setting angular ve-
locity = 0 to verify the code. In Fig.4.2, the mean friction factor and Nusselt
number for curved square channel obtained by the present analysis are shown to-
gether with the available theoretical, numerical and experimental results. In the
figure, the friction factor and Nusselt number are shown as a function of the Dean
number on the basis of those for a stationary straight square channel. The results

of the present analysis are in good agreement with the published results.

In the present computations, four pairs of grid sizes were used to check the
grid dependence. They are 35 x 17, 43 x 21, 51 x 25 and 59 x 29. The results
obtained by using these four grid sizes are shown in Table 4.1 for six cases with L; =
-30,-5,1,5,8 and 30 respectively with 4 = 1, Dk = 100,00 = 0.01, Pr = 0.7 and
L, = —5. These six cases are chosen because they cover all typical secondary flow
patterns obtained in the present work. Four representative properties, namely, the
Dean number and the absolute maximum values of secondary flow stream function
(| ¥ |mar), maximum axial velocity (wmaz) and maximum temperature ({;0z), as

well as the CPU time, are listed in Table 4.1 for comparison.

The computations were carried out on the AMDAHL computer. The initial
guesses of the fields for v, w, ¢, and p were all set to zero. The gereral trend of
these results as the grid size is decreased tends to indicate that the solutions for the

case of (51 x 23) grids are accurate to within 1% tolerance. We also checked the
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Table 4.1: Variations of De, | ¥ |mary Wmars tmary, and CPU time in
seconds with different grids
[ =1 Dk=100 0=001 Pr=07 Ly=-5 ]

Ly Grnds De Vmar Wmar Lmar CPU (scr)

-30 35x17T 46.93 12.86 0.0177 16.79
43%x21 47.94 12.88 0.0182 17.22 86.5
51x25 48.66 12.88 0.0184 17.51 181.4
59%x29 49.04 12.88 0.0185 17.66 465.7

-5 3517 63.33 13.47 0.0252 23.35
43x21 64.02 13.38 0.0273 26.75 125.7
51x25 68.22 13.51 0.0286 28.61 492.7
59%x29 68.50 13.47 0.0286 28.85 1300.8

1 35x17 72.30 11.13 0.0299 29.85
43x21 72.75 11.07 0.0301 30.19 170.5
51x25 73.01 11.03 0.0302 30.38 3704
59x29 73.17 11.04 0.0302 30.49 750.9

) 35x17 90.11 10.57 0.0405 49.37
43x21 90.45 10.64 0.0407 49.79 106.5
51x25 90.63 10.63 0.0107 49.95 214.0
59x29 90.74 10.65 0.0108 50.03 366.0

8 35x17 101.29 9.32 0.0444 66.76
43x21 101.45 9.43 0.0:165 66.71 162.0
51x25 101.54 9.51 0.0464 66.83 282.5
59x29 101.60 9.54 0.0464 66.81 1540.1

30 35x17 51.83 10.37 0.0194 21.24
43x21 52.81 10.33 0.0198 21.80 79.6
51x25 53.50 10.29 0.0201 22.13 180.0
59x29 53.97 10.26 0.0202 22.28 4217.1
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detailed variations of the flow and temperature fields for different grid sizes. and
found that 51 x 25 is indeed a reasonably accurate choice for the grid size for square
channels. It is worth noting that the CPU time increases rapidly as the grid spacing
decreases. In order to have a balance between the cost of the computer time and the
accuracy of the solution, we carried out. all the computations with a 51 x 25 meshes

for square channels.

Typically, the computations were made for given values of the aspect ratio 4,
curvature ratio o, Dean number Dk, Prandtl number Pr and the parameters L,
and Lp. The calculations were performed iteratively using the alternating direction
line-solution (ADI) with block correction technique, and the solution was assumed
to be cont  «ou1 1 a numerical sense if the maximum relative error in each of the
primitive variables (i.e. velocity components, temperature and the pressure) is less

thar 5 x 107° between successive iterations.

4.4 Results and Discussion

In addition to the viscous and inertial forces, the fluid in the rotating curved
channel is subject to centrifugal foice (due to the curvature of the channel), Coriolis
force (due to the rotation and curvature) and the centrifugal-type buoyancy force
(resulted from temperature-induced density variation of the fluid in the rotating
field). While the centrifugal and buoyancy forces act on the plane of cross section,

the Coriolis forces have both X and # components for the configuration as shown in
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Fig.4.1. That due to the curvature is =UW/(b — a/2 + X) (0- component). Those
duc to rotation is perpendicular to both the axis of rotation and the direction of the
relative velocity of the fluid, i.e. —2QU (8-component) and 2Q1" (X-component).
Two f-components of the Coriolis force may act in the direction or direction opposite
to the main flow depending on the signs of U/ and QU. Conscquently, they may
accelerate or decelerate the main flow. Furthermore, th::se two components either
enhance or cancel each other depending on the rotation direction of the channel. If

the rotation is positive. thev enhance each other. Qtherwise, they cancel cach other.

In the plane of the cross section. the centrifugal force ...wavs acts outwards in
the positive X'- direction. However. the Coriolis force may act in either positive or
negative X-direction depending on the rotation direction. If the rotation is positive,
it will act along the positive X- direction. When the rotation is negative, however, it
will act in the negative X-direction. Similariy, the centrifugal-type buoyvancy force
may act ... the positive or negative X-direction depending on the direction of the
heat flux. If the fluid is heated, it will be along the positive X-direction. If fluid
is cooled, it will act in the negative X-diie:clion. Frem this simple analysis about,
force directions, it is clear that centrifugal, Coricliz 214 buoyancy forces enhance
each other for some cases, and cancel each other for somc other cases. This could
make the flow and heat transfer more complex than those of channel simple rotation

or curvature.

The flow and heat transfer under consideration are characterized by ~ inen-
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sionless parameters: 4.0, Pr. Dk, L, and L,. These parameter are coupled with
and affect each other, so that the effects of the parameters on the flow and heat
transfer are very complex. Extensive computations are required for a large number
of cases to cover the entire effect, which requires an extremely long computation
time. Fortunately. the introduction of Ly and L, , analogous to the normalization
of the problems, enables one to obtain some insight of the problem from not so large
number of cases. This results from the fact that they are the dvnamical parameters
for the Coriolis problem and mixed convection problem based on the dynamical pa-
rameter for Dean problem. Even so. however, it is still a lengthy process to describe
the typical results covering the whole range of the parameters. The results shown in
this chapter will be confined to the case of the positive rotation with v = 1. Pr = 0.7

and ¢ = 0.02.

Some features of the main flow and temperature distributions can be expected
and understood through the force balance and energy balance in the governing equa-
tions. It is the secondary flow that makes the axial velocity and temperature profiles
different from the parabolic profile in Poiscuille flow. The effect of the secondary
flow enters the governing equation for the main flow (Eq.(4.4) or (4.9)) through
three terms: the convection term, and two Coriolis terms due to the curvature and
rotation, respectively. Two Coriolis terms may be in the same direction or opposite
to the main flow depending on the sign of UV although they are always in the same

direction for the case of positive rotation. The absence of these three terms leads to
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the Poiseuille solution which has an axisymmetric and parabolic profile. The relative
importance among the five terms in Eq.(4.4) or (4.9) depends on the magnitudes of
governing parameters, aind shows different flow patterns for different regions. The
driving term is the axial pressure gradient which is always important. The viscous
term is always important near the wall, but may not be significant in the core region
for certain ranges of the parameters. The scales in this work are convenient for the

present calculation. but not suitable for detail analysis of the force mechanisins,

If Dk.L, and L, are small enough, then secondary flow would he too weak to
modify the main flow and temperature distributions effectively. Such axial velocity
and temperature profiles are essentially axisymmetric and parabolic with the max-
imum value occurring along the horizontal centreline at or very close to the center
of the cross section. One case with this kind of flow and temperature distribution is
shown in Fig.4.3. This is one limiting case examined by previous studies (Miyazaki
1973; Tto & Motai 1971). In this flow region, the inertial foree in Eq.(1.1) or (1.9) is
very weak as compared with the viscous force. The driving force for main flow (i.c.
pressure term) is mainly balanced by the viscous force in whole flow domain. Other
forces (inertial, Coriolis forces) are very weak. The stability analysis, performed by
Yanase et al. (1988) and Winters (1987), showed that this one-pair vortex flow to

be stable to an arbitrary perturbation in the Dean problem.

The eflect of the secondary flow enters the energy equation through one term only,

i.e., convection term. When the secondary flow is sufficiently weak such that the
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Coriolis terms in the momentum equation in the 6-direction are too weak to modify
the main flow effectively, the main flow and temperature distributions should be
qualitatively similar. However, they migat have qualitatively different distributions

if the sccondary flow is strong enough.

4.4.1 Flow transitions and temperature distributions

The case without the effect of buoyancy force (L, = 0)

Figure 4.4. illustrates the secondary flow patterns, axial velocity isopleths and
profiles, and isotherms and temperature profiles for several representative values
of L, at Dk = 100,¢ = 0.02 and L, = 0. The variations of several representative
properties, namely, the Reynolds number, the Dean number, the maximum absolute
value of the sccondary flow stream function, the maximum values of main velocity
and temperature, and the mean friction factor ratio and Nusselt number ratio, are
listed in Table 4.2. Because of the symmetry about the horizontal centreline, they are
shown in the upper half of the cross section only. In the figure, the stream function,
axial velocity and temperature are normalized by their corresponding maximum
absolute values. A cross is used to denote the position at which they reach the
maximum values. A vortex with a positive (negative) value of the stream function

indicates a counter-clockwise (clockwise) circulation

With zere value of L. centrifugal-type buoyancy force disappears. Heat transfer
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Table 4.2:

130

The variations of several representative properties with [,
at v = 1, Dk = 100,60 = 0.02.Pr = 0.7 and Ly = 0 ((fR), =

14.23. Nug = 3.608)

Ly | Re | De | | ¥ |maz | Wmar | tmas fﬁ'f‘/(fl\’()olNu/:\'u“
0 |512|77 | 5641 |0.0196 | 39.89 | 1.314 1486
1 492 {70 |6.865 |0.0440 | 31.88 | 1.4 1.686
2 146466 |7.572 |0.0406 | 28.00 | 1.533 1.812
2.5 453 | 64 | 7.778 | 0.0394 | 26.65 | 1.572 1.860
3 142360 |7.256 |0.0353 | 22.10 | 1.681 2.012
7.5 1366 | 52 | 8.697 |0.0284 | 16.92 | 1.948 2.336
10 {363 |51 |9.239 |0.0293 | 19.16 | 1.970 2.197
30 | 27138 |7.342 |0.0193 | 16.53 | 2.680 2.105
70 | 195 |28 |3.606 |0.0132 | 15.06 | 3.873 1.719
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is purc.v forced convection. In the plane of cross section, both centrifugal (due to
curvature) and Coriolis forces (due to the rotation) act rzdially outwards (4-.X) for
the case of positive rotation. If L, is also set to zero, the Coriolis force then disap-
pears and the problem reduces to the 1Jean problem which has been well examined
by many investigators. The sccondary flow consists of one-pair of counter-rotating
vortices as shown in Fig.4.4(a)-(i) for the case of low Dean number. The fluid in
the core region is driven in the positive X-direction by the centrifugal force. The
outward flow in the core region forces the fluid near the upper and lower walls to flow
in the negative X-direction and one-pair of counter-rotating vortices is generated.
These are so called Ekman-vortices. The strong inward flow near the upper and
lower wall is observed and this induces the Ekman layer (Smirnov 1978, Jen el al.
1992)(Fig.4.4(a)-(ii)). A uniform outward secondary flow in the core region has two
cffects on main flow. One is pushing the axial velocity peak outward, thereby increas-
ing the local shear stress and heat transfer near the outer wall. Another is inducing

an upstream Coriolis force, which flattens the axial velocity profile (Fig.4.4(a)-(ii)).

As L, increases from zero, the secondary flow becomes stronger since the outward
Coriolis force enhances the centrifugal force. However, it consists of the same type
oue-pair of counter-rotating vortices as shown in Fig.4.4(b)(c)-(i). There exists a
weak secondary flow region in triangular form (Fig.4.4(b)-(i)) or stagnation area
(Fig.4.4(c)-(i)) necar the central part of the outer wall. This foreshadows the onset

of an Coriolis instability to be described later.
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Shown in Fig.4.4(a)-(c)-(ii) are the axial velocity isopleths and profiles corre-
sponding to the sccondary flow patterns in Fig.4.4(a)(b)(c)-(i). It is observed that
the isovels are more sparely spaced in the region near t!-- inner wall than near the
outer wall. Consequently, pronounced peripheral variations are expected in the local
friction factors. The densely distributed isovels near the center part . the outer wall
results in a high pre-cure region since centrifugal force and Coriolis force are propor-
tional to 1" and 12, respectively. The flow in the channel core is not geostrophic; it
is ageosirophic, i.e. pressurc gradients are balanced by both Coriolis force and con-
vective inertial force. Two axial velocity peaks are observed with one on the upper
half of the cross section and the other on the lower half. The regions of maximum
velocity are moved toward the upper and lower walls while they are shifted toward
the outer wall by the curvature and rotation in the positive direction. There is an
indication of peaking of the axial velocity near the boundary layer regions at the
upper and lower walls. The peaking results because the boundary layer is being fed
by high velocity fluid from the outer wall; the core, however, is being fed by lower
velocity fluid from the inner wall. A depression in the axial viiocity profile near the
outer wall shown in Fig.4.4(b)(c)-(ii) foreshadows the onsect of the instability to be

described later.

A striking feature of this ageostrophic one-pair vortex structure can be seen
from the profiles of the axial velocity along the vertical centreline and the horizontal

centreline by curves 0-2 in Fig.4.5. The axial velocity w changes linearly across the
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core and a little from lower wall to upper wall. Then the vorticity is nearly constant.
Slow-moving fluid from the inner wall is accelerated across the core axially at a
constant rate until the outer wall is approached. Coriolis and convective inertial
forces dominate the ageostrophic core. Axial velocity falls to zero in viscous layers
on the inner and outer walls. The constant-vorticity, inviscid core flow structure
suggests a possible analysis by asymptotic method. It appears that no such attempt

was made so far in the literature.

Qualitatively similar results are observed for the temperature distribution (Fig.4.4(a)
(b)(c)-(iii)). The pronounced peripheral variations in the local Nusselt number will
result from the more sparely spaced isotherms in the region near the inner wall than
ncar the outer wall. The reason for this is that the larger axial velocity gradients ex-
ist in the region near the outer wall. Two symmetric (with respect to the horizontal
centreline) high temperature regions are observed. The physical mechanism can be
explained by recalling the secondary flow patterns in Fig.4.4(a)(b)(c)-(i). The larger
inward sccondary flow near the upper and lower walls brings the relatively cold (i.e.
non-dimensional temperature close to zero) fluid to the inner wall; the colder fluid
near the inner wall returns to the core region of the channel, flows outward and
isolates the warmer fluid in the upper and lower sides of the channel. And the fairly
uniform outward sccondary flow in the core region leads to a flattened isotherm

distribution in that region.

When the rotation becomes more rapid, the ageostrophic one-pair vortex breaks
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down into a configuration of two pair of counter-rotating vortices that is asvmmetric
with respect to the vertical centreline of the channel (Fig.t.4(d)(e)(f)-(1)). The
additional pair of counter-rotating vortices located in the center of the onter wall
are called Coriolis-vortices. They result from the Coriolis instability and are similar
to the Dean-vortices due to the centrifugal ivnstability. A strong inward secondary
flow exists between these two vortices and a strong outward sccondary flow appears
between the original larger vortices (Fkman-type-vortices) ana the smaller vortices

(Coriolis-vortices).

The onset of the Coriolis-vortices is consistent with the instability explanation
given by Cheng et al. (1976) for the Dean problem. In the region near the central
outer wall, the pressure gradient across the channel in X-direction is positive but
the centrifugal force and Coriolis force decreases from a maximum value to zero at
the outer wall. The instability due to the imbalance between the pressure gradi-
ent inwards and the Coriolis & centrifugal forces outwards results in an unstable
region. If the rotation speed becomes large enough, viscous effects can no longer
hold the one-pair "«iiox structure in place, thus additional vortices may appear.
The resulting secor:fary tiow is similar to those obtained by Cheng el. al.(1976) for
Dean problem and Speziale (1982) for the Coriolis problem. However, the instabili-
ty here is caused by both Coriolis and centrifugal forces rather than by centrifugal
force (Coriolis ‘orce) alone as in Dean problem (Coriolis problem). Since no such

an instability can exist in the absence of the Coriolis force (Fig.4.4(a)-(i)), we may
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still call this instability as the Coriolis instability, and the resulting additional pair

of vortices as the Coriolis-vortices.

Figure 4.4(d)(e)(f)-(i1) demonstrate the way in which the Coriolis-vc .ices affect
the isovels and profile of the axial velocity. Significantly distorted isovels are ob-
served in the region with the Coriolis- vortices. Corresponding to the strong ...ward
sccondary flow, the isovels in that region are moved inwards by the Coriolis-vortices.
Two symmetric high velocity cores are found. The position of maximum axial ve-
locity, at which the centrifugal and Coriolis forces are maximum, is located on the
boundary line between the Ekman and Coriolis-vortices. It is clear that the cen-
trifugal and Coriolis forces due to the main flow become the driving forces for the
secondary flow. Comparing with those in Fig.4.4(a)(b)(c)-(ii), the isovels in the
region near the upper and lower wall are more tightly spaced. The large velocity
gradients are also found between each of the two high velocity cores and the outer

wall. Thus the higher local friction factors are expected there.

The axial velocity distributions along the vertical and horizontal centrelines are
shown by curves 4-5 in Fig.4.5(a)(b). Again, the axial velocity is substantially
distorted, with its maximum velocity shifting toward the low-pressure side of the
channel (Fig.1.5(b)). The axial velocity profile along the vertical centreline is sym-
metric and flat with peaks located near the boundary of the boundary layers at the
upper and lower walls. The most striking feature is that the axial velocity has in-

flection points on both the vertical and horizontal centrelines. Similar features were
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found in Dean problem (Cheng et al. 1976) and Coriolis problem (Speziale 1982).

From inviscid reasoning, such profiles may be unstable in accordance with Raxleigh's
inflection point criterion. Assuming the channel with infinite span. the hincar stabil-
ities of Dean-vortices (Dean problem) and Coriolis-vortices (Coriolis problem) were
examined by Finlay, Keller & Ferziger 1988 and Finlay 1990. Two different wavy
travelling vortex flows, namely undulating vortex flow and twisting vortex flow, are
developed due to the instability of the Dean-vortices and Coriolis- vortices sub
jected to the streamwise wavy perturbations. These two kinds of vortex flows are
confirmed experimentally by Ligrani et al. (1992), Ligrani & Niver (1988) for the
Dean problem with large aspect ratio and by Cheng & Wang (1993a.b) and Cheng

et al. (1992) for Dean or Coriolis problem with smaller aspect ratio.

The stability of Dean-vortices and Coriolis-vortices subjected to two dimensional,
spanwise-periodic perturbations (i.c. Eckhaus stability) was examined numerically
by Guo and Finlay (1991) for infinite-span cross section. They found that Ick-
haus stability boundary is a small closed loop. Within the boundary, Dean-vortices
or Coriolis-vortices are stable to spanwise perturbations. Outside the boundary,
Eckhaus instability causes the vortex pairs to split apart or merge together. Exper-
imental observations of splitting and merging of vortex pairs were made by Ligrani
& Niver (1988), Alfredsson & Persson (1989), Matsson & Alfredsson (1990), Cheng
& Wang (1993a.b) and Cheng et al. (1992). However, this type of hydrodynamic

stability analysis has not been extended to the geometries with finite cross sections.
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It is also noted that such an analysis has not been made for buoyancy-vortices which

will be discussed later.

Figures 4.4(d)(e)(f)-(iii) illustrate isotherms and temperature profile aflected by
the Ceriolis-vortices. The isotherms are drastically distorted inward near the centre
of the outer wall where the Coriolis-vortices occur. Two symmnietric high temperature
cores (with respect to the horizonal centreline) appear in the cross section of the
channel. The isotherms in the regions near the upper and lo ver walls are more tightly
spaced than those shown in Fig.4.4(a)(b)(c)-(iii). Larger temperature gradients are
also found between each of the two high temperature cores and the outer wall. Thus

a higher heat transfer rate is expected in these regions.

If the Coriolis force is now increased to that with L, = 10 while maintain-
ing the same vaiues for the other parameters, the Coriolis vortex pair presented
in Fig.4.4{d)(e){f)-(1) disappears and the secondary flow restabilizes to a slightly
asymmetric one-pair vortex configuration as shown in Fig.4.4(g)-(i). F rthermore,
the inflection points in the axial velocity profiles along the vertical and horizontal
centrelines als  isappear (curve 6 in Fig4.5). The axial velocity profile assumes
a Taylor- roudman configuration in ' he core region with a maximum located on
the i izontal centreline (Fig.4.4(g)-(it;.. The tightly spaced isovels along the outer
wa' upper and lower walls signal the high local friction factors in these regions. The
sirarity between the axial velocity : 1d temperature profiles still holds although

the d.tference between them becor ~ larger than the previous cases.
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After the Coriolis-vortices disappear, there still exists a transition in the main
flow upon i -ing the Coriolis force further. If the value of L; is high enough,
as shown in Fig.4.4(h)(i)- (ii), the Coriolis forces tend to dimple the axial velocity
profile in the region near the center and create a dumbbell-like profile with iwo
maxima. One is within ike Ykman layer along the upper wall. The other is within
the Ekman layer along er wall. The shifting of the locations of maxima
results in even more closely spaced isovels near the upper and lower walls. The
fluids flow geostrophically in the channel core and the Stewartson lavers (vertical
double layers). However, the secondary flow and temperature profile (Fig.4..1(h)(i)-
(1)(iii)) remain qualitatively similar as those shown in Fig.4.4(g)-(1){iii). It appears
that this is the first numerical calculation to illustrate two kinds of flow structure

after the Coriolis-vortices disappear.

It is worthy to note that near uniformity of the axial velocity in the core region of
the rotating curved channels is of great importance in acrosol centrifuges. 1t allows
aerosol centrifuges to function as true pa-ticle spectrometers (iloover & Stober 1981

Hoover et al. 1984).

The heating case with L, > 0

If the fiuid is heated, both cen-iifugal and centrifugal-type buoyancy forces act
radially outwards in the plane of the cross section. The Coriolis force also acts

radially outwards in the :-se of positive rotation. The flow transitions in both
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secondary flow and main flow are qualitatively similar to those for the case of L, = 0.
However, the corresponding transitions will occur at lower values of L; than those
for L, = 0. The difference results from the enhancement efect of buoyancy force on
Coriolis force and centrifugal forces, and it depends on the relative importance of

the buoyancy force, i.e. the value of L,.

Figure 4.6 shows the secondary flow patterns, axial velocity isopleths and profiles.
and isotherms and temperature profiles for several typical values of L; at Dk =
100,0 = 0.02 and L, = 5. The variations of the Reyonids number, Dean number,
maximum absolute value of secondary flow stream function, the maximum values of
main velocity and temperature and mean friction factor ratio and Nusselt number
ratio, are listed in Table 4.3. The axial velocity profiles, along the vertical and
horizontal centrelines, are illustrated in Fig.4.7. Some features such as reflection

points, described previously, may be seen more clearly.

The cooling case with Ly < 0

If the fluid is cooled, the inward buoyancy force counteracts the centrifugal and
Coriolis forces in the plane of the cross section. The flow situation is more com-
plicated. The flows in various regions of the parameter can be different in nature.
Figure 4.8 shows the secondary flow patterns, axial velocity isopleths and profiles,
and isotherms and temperature profiles for several representative values of L, at

Dk = 100.0 = 0.02 and L, = —5. The variations of the Reyonlds number, Dean
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Table 4.3: The variations of several representative properties with [
at 9y =1, Dk = 1000 = 0.02,Pr = 4.7 and L, =5 ((fRe)o =

14.23. Nup = 3.608)

Ly | Re | De | | ¢ |mar | Wmar | tmar | SRe/(fRe)o | Nu/Nug
0.1 1379 |54 |10.022 | 0.0312 | 16.75 | 1.875 2.389
1 372 153 [10.321 | 0.0301 | 16.15 | 1.912 2,438
4 351 | 50 | 10.938 | 0.0275 | 11.58 | 2.027 2.566
) 363 | 51 | 11.619 | 0.0291 ] 16.88 | 1.962 2.394
10 [ 331 {47 | 11.46 0.0251 | 15.33 | 2.163 2472
70 | 181 |26 |3.749 0.0131 | 13.45 | 4.184 1798

number, maximum absolute value of secondary flow stream function, the maximum

values of main velocity and temperature and mean friction factor ratio and Nusselt

number ratio. are listed in Table 4.4.

Shown in Fig.4.8(a)(b)-(i) are two stream function contours of the secondary

flow with an additional pair of vortices shown in the center part near the inner wall.

This additional pair of vortices results from the buoyancy force instability which is

similar to the centrifugal instability in the Dean problem or the Coriolis instability

in the Coriolis problem. They are called buoyancy- vortices in this work.

The presence of the buoyancy-vortices gives rise to a highly disturbed main flow

field (Fig.4.8(a)(b)-(ii)) and temperature field (Fig.4.8(a)(b)-(iii}), with strong in-
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Table 4.4:

141

The variations of several representative properties with L,

at v = 1. Dk =100.0 = 0.02,Pr = 0.7 and L, = =5 ((fRe)o =
14.23. Vuo = 3.608)
Ly R | Dot v nar | Wmar | lmar ch/(ch)o.\'u/.\'zzo;
I 401 |57 [9.003 |0.0311 | 15.86 | 1.781 2,255
;1 105 | 5% | &764 | 0.0319 [ 1947 | 1.753 2,211 *
1: 143 163 9.853 | 0.0396 | 23.57 | 1.615 2027 |
3 1457 165 19519 | 0.0114 | 25.21 | 1.565 1910 |
5 | 488169 | 8722 |0.0160 | 29.89 | 1.466 1.770 ;
|
S 1545 177 | 6.705 | 0.0543 | 41.20 | 1.311 1479 |
10 | 606 |86 |4.416 | C.0621 | 51.80 | 1.179 1.253
115 | 652 | 92 | 2.716 | 0.0688 | 67.66 | 1.096 1.102
12 | 484 163 |3.635 | 0.0461 | 38.25 | 1.475 1.4141
13.5 [ 415 | 59 | 5.053 | 0.0367 | 27.20 | 1.722 1.724
15 | 406 | 57 | 5.463 |0.0373 | 29.37 | 1.762 1.69)
70 213130 [3.430 |0.0148 | 17.14 | 3.542 1.632



Chapter 4. Numerical Solutions: Positive Rotation (I

flectional profiles developing in both X' — and Y —directions (Fig. 1.8 al(h)- (it} and
curves 1-2 in Fig.4.9). This may result a secondary 1astahility as discussed previ
ously. The most striking feature of the buovancy-vortices shown in Fig.L.8(a)(b)-(i)
is that they appear in the low pressure side (inner wall) rather than the usual high
pressure side (outer wall). This is indicated by the isopiestic contours in Fig.-1.10.
The secondary flow. axial velocity and temperature distributions (Fig. 1.8(a)(b)) are

qualitatively similar to those shown in Fig.d.4(e)(f and Fig.1.6(a)(b)(c) by inter

changing the inner wall with the outer wall.

Upon increasing the values of L while maintaining the same values for the other
parameters. the bucancy vortex pair shown in Fig.4.3(a)(b)-(1) disappears. and the
secondary flow reduces to one pair counter-rotating cenfiguration (Fig.L.X(¢)(d)-(1))
with circulating direction opposite to that shown i Fig.f.4(a)(b)(c). In fact. the
buovancy-vortices shown in Fig.1.8(a)(b)-(1) results from the break-up of this one
pair vortex flow due te buovancy-force instability. By interchanging the inner and
cuter walls. the secondary flow, axial velocity and temperature distributions may
be regarded to be qualitatively similar to those shown in Fig.1.4(a)(b)(¢). The flow
in the channel core is ageostrophic. i.e. pressure gradients are balanced by hoth
convective inertial force and Coriolis force. The reverse direction of the secondary

flow indicates that the secondary flow is still dominated by the buoyaney foree.

If the Coriolis force is now increased further such that the resulting foree of the

centrifugal and Coriolis forces is of same order of magnitude as the buovancy force,
o [>) - .
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the corner vortices occur and grow with circulating direction opposite to that of
vortices in the core region. Figures 4.8(e)(f)(g)(h)-(i) illustrate the process of this
formaior and deveiopment of the corner vortices. The flow in the channel core
is neither ageostrophic nor geostrophic. The viscosity effect is not confined in a
thin layer along the walls, and exists in the whole cross section of the channel. No
counter-part exists in the cases with L, > 0. However, similar results are also found
for case of circular cross section using the perturbation method ( Chapier3, also sce

Wang & Cheng 1991a.b).

Au important feature of the axial velocity in this flow region is the appearance of
strong inflectional profiles (Fig.4.8(e)(f)(g)(h)-(ii) and curves 5-8 in Fig.4.9). Tbis
suggest a possible secondary instability problem. No such analysis appears to have

been made in the past.

When the rotation becomes more 1 apid, two corner vortices shown in Fig.4.8(h)-
(1) merge together and push the vortices in the center of the cross section to the outer
wall. At same time, two vortices near the center in Fig.4.8(h)-(i) merge together
and form one-pair of counter- rotating vortices near the center part of the outer
wall. They arc called merging-vortices in this work. Although the secondary flows
in Fig.4.8(i)(j}-(1) look quite similar to those in Fig.4.4(e)(f) or Fig.4.6(a)(b)(c).
they are different in terms of the mechanism responsible for the appearance of the

additional pair of vortices.

A breck-up of Ekman-vortices is associated with the Coriolis-vortices due to the
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Coriolis instability whereas the merging together of the vortices appearing in the
region where centrifugal, Coriolis and buoyancy forces just ncutralize cach other,
characterizes the formatic:- mrocess of the merging-vortices. Here *just neutralizing
each other means that one of the three forces (termed as A-force, and it represents
the buoyancy force for the cases shown in Fig.4.8) cancel the other two forces (re
ferring the resulting force of these two forces as B-force), and A-force and B-ferce
have the same order of magnitude. The difference in the mechanism results in &
smaller size of the merging-vortices than that of the Coriolis-vortices. Furthermore,
the axial velocity and temperature distributions are also qualitatively different (see

Fig.4.4(c)(1)-(i1)(ii1). Fig.4.6(a)(b)(c)-(ii)(iii) and Fig.A.8()(j)-(ii)(iii)).

Upon increasing the values of L; further, the merging-vortices disappear and
the secondary flow becomes a slightly asymmetric one-pair vortex configuration
(Fig.4.8(k)-(i)). The axial velocity profile assumes a 'Taylor-Proudman coufiguration
(Fig.4.8(k)-(ii)) with a maximum located on the horizontal centreline. Similar profile

is also observed for the temperature (Fig.4.8(k)-(ii)).

Upon increasing the value of L; further, the secondary flow remains qualitatively
unchanged (Fig.4.8(1)-(i}). However, the dominant Corioh. force causes the main
flow to have a bar-convex dumbbell-like profile with three high velocity regions
(Fig.4.8(1)-(ii)). A geostrophic flow is observed in the channel core and Stewart.-
son layers. The temperature profile (Fig.4.8(1)-(iii)), however, remains qualitatively

similar to that shown in Fig.4.8(k)-(ii).
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4.4.2 The disappearance and reappearance of Dean-, Coriolis-

and buoyancy-vortices

The potential sources of instability for flow in rotating curved cl* nnels are cen-
trifugal force, Coriolis force and buoyancy force. The instability from such body
forces is in the form of streamwise-oriented vortices, i.e. Dean-vortices, Coriolis-
vortices and buoyancy-vortices. The onset of these vortices re.e:ves ruuch attention
in recent years for the Dean, Coriolis and mixed convection probleras, respectively.
Their disappearance and recappearance, however, have in general suffered compara-

tive neglect. Very little information can be found in the published literature.

Dean-vortices, Coriolis-vortices and buoyancy-vortices perform differently in terms
of their characteristics of the disappearance and reappearance although they share
some similarities as observed by many investigators. Coriolis-vortices (Fig.4.4(e)(f)-
(i) or Fig.4.6(a)(b)(c)-(i)) disappear upon increasing the Coriolis forcc. The sec-
ondary flow restabilizes to a one-pair vortex flow (¥ig.4.4(g)-(i) or Fir 4.66(d)-(1)),
as discussed in the last section. If the Coriolis force is increased further, this
one-pair vortex structure changes to another one-pair vortex flow (Fig.4.4(h)-(i)

or Fig.4.6(c)(f)). However, no reappearance of the Coriolis-vortices is observed.

Figure 4.11 shows the disappearance and reappearance of the Dean-vortices
(Fig.4.11(i)) and buoyancy- vortices (Fig.4.11(ii)). For the stationary curved chan-

nel, one-pair vortex flow (Fig.4.11(a)-(i)) becomes unstable with respect to the cen-
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trifugal instability upon increasing the centrifugal force sufliciently. The Dean-
vortices are being set up in the region near the center of the outer wall (Iig. 1. 11{b)-
(i)). Upon increasing the centrifugal force further up to that with Re = 5583, no

disappearance or reappearance is observed in the present calculation (Fig.1.11(c)
(i)).

Figure 4.11(ii) shows the manner in which the buoyancy force affects the disap-
pearance and reappearance of the buoyvancy-vortices. Upon increasing the buoyancy-
force, the buovancy instability induces the buoyancy-vortices in the ceuter part near
the inner wall or outer wall (Fig.4.11(e)-(ii) or Fig.4.11(i)-(ii)) depending on whether
the fluid is cooled or heated. The secondary flow changes from the original one-pair
vortex flow (Fig.4.11(f)(g)(h)-(ii)) to two-pair vortex flow (Fig.4.11(e)(i)-(ii)) (Note
that the circulation direction of the vortex in (f) is opposite to those in (g)(h)).
Upor increasing the buoyancy force further, the buoyancy-vortices disappear. The
secondary flow restabilizes to one-pair vortex configuration (Fig.4.11{c)(d)(j)-(ii)).
When the buoyancy force is increased further, however, they reappear and remain

in a large portion of the parameter space (Fig.4.11(a)(h)(k)(1)-(ii)).

Some contradiction exists in the published literature about whether the Dean-
vortices change size and shape with Dean number in fully developed flow region.
Experiments by Bara et al (1992) show that the size is ahout the same at all Dean
numbers when the flows a1« fully developed. Such changes, however, are hserved by

Cheng et al (1979), Sugiyama ct al (1983) and Ligiani & Niver (1988). In addition,
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the flow visualizations show that such changes also occur for the Coriolis-vortices in

rotating channels (Cheng & Wang 1993a,b,c; Cheng et al 1992).

The present numerical calculations show that the Dean-vortices, Coriolis-vortices
and buoyancy- vortices change size and shape as tlie parameter changes even in the
fully developed flow region. This may be seen by comiparing Fig.4.11(k:){c)-(i) for the
Dean-vortices, Fig.4.4(c)(d)-(i) for the Coriolis-vortices and Fig.4.:1{a)(b)()(1)(k;(1)-

(11) for the buoyancy-vortices.

4.4.3 Distributions of friction factor and Nusselt number

For e¢ngineering applications, the most important results are friction factor and
Nusselt number. Since the main flow and temperatuie nelds determine the {riction
factor and Nusselt number, the flow transitions discussed in the last section will

strongly aflect the distributions of the friction factor and Nusselt number.

The distributions of the friction factor fRe and Nussclt number Nu along the
upper half of the inner wall, upper wall and the upper half of the outer wall, are
illustrated in Fig.4.12(a),(b) and (c). respectively. They are shown on the basis
of the values for a stationary straight channel ((fRe)o and Nug) to facilitate the
understanding of the variations. The distributions are plotted for twelve values of
L, starting from 1 (curve 1) to 70 (curve 12} at Dk = 100,0 = 0.02 and L, = 5.
The corresponding flow patterns are illustrated in Fig.4.8. Also shown in the figure

are friction factor and Nusselt number for curved channel without rotation, i.e.
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Ly = L, = 0. denoted by the curve 0.

The Dean-vortices. Coriolis-vortices and buoyancy-vortices are of importance in
the fundamental research of roll-cell instabilitics. They also change the flow re-
sistance and heat transfer characteristics significantly. Curves 1 and 2 show the
friction factor and Nusselt number ratios with the buoyancy-vortices in secondary
flow (Fig.4.8(a)(b)-(i})). The similaritv between main flow and temperature dis-
tributions (Fig.4.8(a)(b)-(ii)(iii)) results in a similarity between friction factor and
Nusselt number distributions. The asymmetry of the buoyancy-vortices, with re-
spect to the vertical centreline, leads to different distributions of friction factor and

Nusselt number at the inner wall from those at the outer wall.

The large velocity (temperature) gradient between high velocity (temperature)
core and the inner wall (Fig.4.8(a)(h)-(ii)(iii)) results a peak of the local friction
factor (Nusselt number) in that region along the inner wall. A low friction factor
(Nusselt number) region is observed in the center of the inner wall. This is induced
by the outerwash isovels (isotherms) in that region. The quite uniform axial velocity
(temperature) along the outer wall leads to a nearly constant local {riction factor
(Nusselt number) over a wide region of the outer wall. The friction factor (Nusselt,
number) along the upper wall reaches a peak ncar the inner wall because a large
velocity (temperature) gradient exists between high velocity (temperature) core and

the upper wall as shown in Fig.4.8(a)(b)-(i1)iii).

Curves 3-5 illustrate the friction factor and Nusselt number ratios corresponding
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to one-pair vortex flow in Fig.4.8(c)(d)(c). The distributions along the outer wall
is qualitatively similai to those with the buoyancy-vortices (curves 1 and 2) but
with lower values in general. The similarity also holds for those along the upper
wall with peaks shifted toward the outer wall. The distributions of {riction factor
(Nussclt, number) along the inner wall, however, experience a dramatic change in
response to the disappearance of the buoyancy-vortices. The peak regions in curves
1 and 2 are flattened by increasing the values in the region near the center of the

inner wall and decreasing those in the other region (curves 3 — 5).

Curves 6 — 8 show the friction factor and Nusselt number distributions in the
flow region where the centrifugal, Coriolis and buoyancy forces just neutralize each
other (Fig.4.8(f)(g)(1t)). The friction factor (Nusselt number), along the inner wall,
decreases monotonously from the center to the upper wall, with a decrease in value
from curve 6 to 8. The corner vortex in the upper outer corner increases local
friction factor (Nusselt number) along the upper wall in the portion ncar the outer
wall, resulting a local peak in that region (Fig.4.12(b)). And a decrease in peak
values is observed in curves 6 — 8 (Fig.4.12(b)). Near the boundary between the
upper-outer vortex and that located at the center part of the outer wall, the current
impinges on the outer wall so that the local friction factor (Nusselt number), along
the outer wall, is increased in that region. This results a peak near the vortex

boundary (curves 6 — 8 in Fig.4.12(c)).

Once merging-vortices appear near the center part of the outer wall, the isovels
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(isotheriri:') along the inner wall become more sparsely spaced (Fig.+.8(1){))- (1) (11)).
Consequenily, a dramatic drop in the friction factor (Nusselt number) occurs in
curves 9 and 10 (Fig.4.12(a)). The more tightly spaced isovels (isotherms) along
the upper wa.l. Lowever, results a high local friction factor (Nusselt number) along
the upper wal: s shown by curves 9 and 10 in Fig.4.12(b). The most significant
effect of the merging-vortices on the friction factor and Nusselt number occurs along,
the outer wall as shown by curves 9 and 10 in Fig.1.12(c). The striking feature is
that peaks for both friction factor and Nusselt number are located at the boundary
between Ekman-type-vortices and merging-vortices. This results from a current

impinging on the outer wall in that region (sec Fig.4.8(i1)(3)-(1)).

After the merging-vortices disappear upon increasing value of Ly, friction factor
and Nusselt number along the inner and upper walls are qualitatively similar to those
with the presence of the merging-vortices. And they are quantitatively increased
compared with those with the presence of the merging-vortices. This may be seen
by comparing curves 11 and 12 with curves 9 and 10 in Fig.4.12(a) and (b). The
distributions of the friction factor and Nusselt number along the outer wall, however,
experience a qualitative change due to the disappearance of the merging-vortices as
shown by curves 11 and 12 in Fig.4.12(c). It is observed that the peak regions in
curves 9 and 10 are flattened through increasing local friction factor and Nusselt

number in the center part of the outer wall.

Figure 4.13 shows the result for the mean friction factor and Nusselt number
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represented by the solid and dotted lines, respectively. They are plotted in the form
of fRe/(fRe)y and Nu/Nug against L, at Dk = 100,0 = 0.02 and L, = —5. The
characteristic flow regimes for the secondary flow, main flow and temperature are
also shown for reference. It is noted that the flow transitions significantly affect the
mean friction factor and Nusselt number. 1 = appearance of the buoyancy-vortices
substantially increases the friction factor and Nusselt number. And the increase in

Nu is more appreciable.

When the flow is in the region where centrifugal, “oriolis and buoyancy forces
just neutralize each other, both friction factor and Nusselt number approach those
values for forced convection in stationary straight channel. This is because the sec-
ondary flow becomes weaker due t  the impaired interaction among the forces. The
friction factor and Nusselt numbc. however, increase significantly once again once
the flow moves to the region with . -erging-vortices. An interesting feature about
the friction factor and Nusselt number in this flow region is that their ratios, with
respect to those for the stationary straight channel, are nearly identical. After the
disappcarance of the merging- vortices, the friction factor ratio increases propor-
tionally with L, as shown in Fig.4.13. The Nusselt number ratio, however, increases
at first, but then decreases with L slightly. The different profiles of the axial veloc-
ity and temperature contribute to the different variations of the friction factor and

Nusselt number in this Coriolis force dominated flow region.

It is well to compare the friction factor ratio and Nusselt number ratio shown in
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Fig.4.13 from a point of view of practical engineering. The Nusselt number ratio is
higher than that of the friction factor for the flows shown in Fig.4.8(a)-(h). They
are nearly identical if the flow is in the region with the merging-vortices. When the
flow is in the region as shown in Fig.4.8(k)(1), however, the Nusselt numbher ratio is

much lower than the friction factor ratio.

4.5 Concluding Remarks

Flow transitions and combined free and forced laminar convective heat transfer
were studied numerically for fully developed flow in the rectangular channels with
both curvature and rotation, using finite- volume method. Curvature and rotation,
in conjunction with heating or cooling, introduce the centrifugal {orce, Coriolis force
and buoyancy force in the momentum equations, which describe the relalive motion
of fluids with respect to the channel. Such body forces cause similar instabilities
(centrifugal instability, Coriolis instability and buoyancy instability) in fort:s of
streamwise oriented vortices. In addition, these forces may cither enhance or impede
each other in the cross-plane depending on the directions of the rotation and heat
flux. This produces a rich transition structure for both secondary flow and pressure-
driven main flow. The present investigation is confined to examine this structure in
the hydrodynamically and thermally fully developed laminar flow region. The work
is also limited to the symmetric flow with respect to the horizontal centreline of the

cross section by imposing a symmetric condition on that line. The results presented



Chapter 4. Numerical Solutions: Positive Rotation 153

in this paper are for the case of square cross section of the channel with positive

rotation only.

Despite the assumptions made in the present investigation, the calculations cov-
cr a rather wide range of the parameters. In particular, the Reynolds number
rcached up to about six thousand. The rotation rates approached previously stud-
ied asymptotic limits of weak rotation and strong rotation where viscous force or
Coriolis force dominates. Several flow patterns, hitherto unknown, are revealed in
the present study. A one-pair vortex flow with an ageostrophic. virtually inviscid
corc occurs between a viscous force dominated one-pair vortex flow and two- pair
vortex flow with the presence of the Dean-vortices, Coriolis-vortices or buoyancy-
vortices. Another two kinds of one-pair vortex flow exist after the disappearance
of the Coriolis-vortices upon increasing the Coriolis forces further. The axial ve-
locity profile for the first one assumes a Taylor-Proudman configuration in the core
region with one maximum located on the horizontal centreline. That for the sec-
ond onc is dumbbell-like with two maxima or bar-convex dumbbell-like with three
high velocity regions. The flow in the core region is also geostrophic for the second
kind of one-pair vortex flow. When the fluid is cooled, there exists a parametric
region where, overall, the effect of the inward buoyancy force just neutralizes those
of the outward centrifugal and Coriolis forces. In this region, new vortices appear

and grow around the corners, squeezing the circulation due to the centrifugal and

Coriolis forces to the central portion of the cross section of the channel. The flow
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thu: exhibits a two-pair. three-pair or four-pair structure. Here, the two-pair vortex
structure is qualitatively different from the two-pair vortex families enconntered in

the Dean problem or Coriolis problem.

The remaining domain of the two-pair vortex families may still be divided into
two different regions. The distinction is based on the mechanisms responsible for
the appearance of an additional pair of vortices. A break-up of the Ekman-vortices
(duc to the centrifugal, Coriolis or buoyancy force instabilities) is associaied with
one case, whereas in the other case the merging together represents the formation
process of the vortices appearing in the region where the centrifugal, Coriolis and
buoyancy forces ji -t ne- . " s~ each other. The additional pair of vortices formed in
the second mechan:sr~ i~ «:* -+ inerging-vortices in this paper. They appear in the
region near the cent. - .. outer wail (high pressure side ) in the case with positive
rotation. The circulation direction is the same as that of the Dean-vortices. The
size, however, is smaller than that of the Dean-vortices. This flow pattern appears

to be new.

The vortices formed in the first mechanism include the Dean-vortices, Coriolis-
vortices and buoyancy-vortices. Their shape and size change with the dynamica)
parameters even in the fully developed flow region. In addition, the Dean-vortices,
Coriolis- vortices and buoyancy-vortices behave differently in some aspects although

they share some similarities as noted hy many investigators. The disappearance

of the Coriolis-vortices or buoyancy-vortices is observed with increasing Coriolis or
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buovancy force. No such phenomenon is observed for the Dean-vortices. Further-
more, the reappearance of the buoyvancy- vortices, upon increasing the huoyanc,
force further. is also found in this study. Another important difference is the lo-
cations of the vortices. Although the Dean- vortices and Coriolis-vorti es always
appear in the high pressure side (outer wall) in the case of the positive rotation. the
buovancy-vortices mayv appear in the high pressure side (outer wall) or low pressure
side (inner wall) depending on whether the fluid is heated or cooled. If the fluid is
heated. they show up near the center of the outer wall with the same direction of
circulation as those of the Dean- vortices and Coriolis-vortices. When the fluid 1s
cooled, however, the inward buovancy forces cause them to appear near the center of
the inner wall with an opposite direction of circulation. The vnost striking feature is
that the fluid near the inner wall stili remains low pressure even with the existence
of the buoyancy-vortices. It appears to be the first time that the vertices due to

body force instabilities are observed in the low pressure side of the channel.

When the fluid is cooled. the inward birovancy forces cause the direction of the
secondary flow to reverse by overcoming the outward centrifugal and Coriolis forces
in the plane of the cross section. The flow reversal occurs by passing through a
malti-pair vortex flow region where overall, the effect of the buovancy force iust

neutralizes those oi the centrifugal and Corioliz forces.

The friction factors and Nusseli numbers are significantly affected by the flow

transitions.  In particulaz. the Dean-vortices, Coriolis-vortices. buovancy-vortices
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and merging-vortices substantially chauge the distributions of the local friction fac

tor and Nusselt number with a remarkable increase in their mean values.

The new vortex flows. revealed in the present study. suggest possible further
rescarch concerning their instability since usually, an inflectional profile of the main
flow is associated with them. Such a study is considered to be very complex because
of the full three-dimensional form of the resulting disturbance equations. and s

bevend the scope of the present study.
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(9.519;0.0414;25.21) (8.722;0.0460;29.89) (6.705;0.0543;41.20)
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(ii1) Isotherms and temperature profiles

() L, =10 Re=606 (h) L,=11.5 Re=652 (i) L;=12 Re=184
(4.416;0.0624:54.80) (2.716,0.0688;67.66) (3.635;0.0461;38.25)
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(1ii) 1otherms and temperature profiles

(j.) L,=135Re=415 (k) L,=15 Re=406 () L, =70 Re=213
(5.055;0.0367;27.20) (5.463;0.0373;29.37) (3.430;0.0148;17.14)

Figure 4.8. Flow transitions and temperature distributions at
Dk = 100,0 = 0.02 and L, = —5. (Three values for each case

are maxima of stream function, axial velocity and temperature)
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Figure 4.12. Distributions of friction factor and Nusselt number
at Dk = 100,0 = 0.02 and L, = —5 (Curves 1 — 12 correspond
tol, =1.1.5.2,3,5,8,10,11.5,12,13.5,15 aixd 70. Curve 0 is for
the case of L, = L, = 0.) (a) along the inner wall; (b) along the
upper wall; (c) along the outer wall
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Nusselt Number
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(a) along the inner wall

Figure 4.12. Distributions of friction factor and Nusselt number

at Dk = 100,¢ = 0.92 and L, = —5 (Curves 1 — 12 correspond
toL, =1,1.5,2,3,5,8,10,11.5,12,13.5,15 and 70. Curve 0 is for

the case of L; = L; = 0.) (a) along the inner wall; (b) along the

upper wall; (c) along the outer wal’
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(b) along the upper wall

Figure 4.12 Distributions of friction factor and Nusselt number
at Dk = 100,0 = 0.62 and L, = —5 (Curves 1 — 12 correspond
to Ly =1,1.5,2.3,5,8,10,11.5,12,13.5,15 and 70. Curve 0 is for
the case of Ly = Ly = 0.) (a) along the inner wall; (b) along the
upper wall; (c) along the outer wall
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Figure 1.12. D:istributions of friction factor and Nusselt number
at Dk 100,0 = 0.02 and L, = =5 (Curves 1 — 12 correspond
tol,=1,1.5,2,3,5,8,10,11.5,12,13.5,15 and 70. Curve 0 is for
the case of L, = L, = 0.) (a) along the inner wall; (b) along the
upper wall; (c) along the outer wall
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Figure 4.12. Distributions of friction factor and Nusselt number
at Dk = 100,60 = 0.02 and Ly = -5 (Curves 1 — 12 correspond
to L, =1.1.5,2,3,5,8,10,11.5,12,13.5,15 and 70. Curve 0 is for
the case of L, = L, = 0.) (a) along the inner wall; (b) along the
upper wall: (¢) along the outer wall
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Figure 4.12. Distributions of friction factor and Nusselt nun:"er
at Dk = 100,0 = 0.02 and L; = —5 (Curves 1 — 12 correspond
toL, =1,1.5,2,3,5,8.10,11.5,12,13.5,15 and 70. Curve 0is for
the case of L; = Ly = 0.) (a) along the inner wall; (b) along the
upper wall: (c) along the outer wall
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Chapter 5

Flow Transitions and Combined
Free and Fo -ed Convective Heat
Transfer in Rotating Curved
Channels: The Case of Negative

Rotation

The finite-volume scheme developed in Chapter 4 is used to study the laminar
flow transitions and combined free and forced convective heat transfer in a rotating
curved channel for the casc of negative rotation at relatively high Dean numbers.

The results cover both the nature of flow transitions and their effects on temperature

195
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distribution, friction resistance and heat transfer between fluid and wall. Several
phenomena shown in the Chapter 4 are confirmed. As well. several new phenomena
are revealed. When the rotation is in the negative direction, the inward Coriolis
forces cause the Coriolis vortices (due to the Coriolis force instability) to appear
near the inner wall of the ch~nnel, and the direction of the secondary flow to reverse
by overcoming the outward centrifugal and/or buoyancy forces. When the Coriolis
vortices appear near the inner wall, the inner side of the channel becomes the high
pressure side. The flow reversal (due to negative Coriolis forces) occurs after passing
through a multi-pair vortex flow region where overall, the Coriolis, centrifugal and
buoyancy forces just neutralize each other. The merging-vortices found in Chapter

1 appear to exist only when the buoyancy forces are taken int consideration.

5.1 Introduction

In Chapter 4, we have discussed the flow transitions for both secondary flow
and pressure-driven main flow in a rotating curved channel. Also examined are the
effects of the flow transitions on temperature field, flow resistance and heat transfer
inside the channel. . ¢, we constrain ourselves to the case of positive rotation at
relatively lower Dean number. Such discussions are extended to the case of regative

rotation at relatively high Dean number in this chapter.

The negative rotation of the channel introduces the Coriolis force which may

cancel the effect of the curvature in both the cross-plane and the main flow direction.
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This is different from the case of positive rotation where the Coriolis force due to the
rotation of the channel intensifies the effect of the curvature in both the cross-plane

and the main flow direction.

At a relatively high Dean number, the secondary flow may consist of two-pair of
counter-rotating vortices even when the channel is just curved (Dean’s instability).
This differs from the case of low Dean number where it consists of only one-pair of

counter-rotating vortices.

Because of the diflerences, we may expect some different features about the flow
transitions when the rotation is negative and the Dean number is relatively high.
In §5.2, the flow transitions are examined for both sccondary flow and main flow.
Also shown in this section are the temperature distributions. The discussions are
divided into three parts: (1) the case without effect of buoyancy force (§5.2.1),
(2) the heating case (§5.2.2) and (3) the cooling case (§5.2.3). The effects of the
flow transition on the friction resistance and heat transfer inside the channel are
investigated in §5.3 in terms of local and mean friction factors and Nusselt numbers
defined in Chapter 4. The presentation of the results is grouped into the local
friction factors and Nusselt numbers along the upper half of the inner wall (§5.3.1),
along the upper wall (§5.3.2), along the upper half of the outer wall (§5.3.3) and
the mean friction factor and Nusselt number (§5.3.4). The concluding remarks are

given in §5.4.
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5.2 Flow Transitions and Temperature Distributions

5.2.1 The case without effect of buoyancy force (L; = 0)

The secondary flow patterns, main velocity isopleths and profiles, and isotherms
and temperature profiles are shown in rig.5.1 for several representative values cf L,
at ¥ = 1, Dk = 500, = 0.02,Pr = 0.7 and L, = 0. The variations of several
representative properties, namely, the Keynolds num'.r. the Dean numh-r, the
maximum absolute value of the secondary flow stream function, the maximum values
of main velocity and temperature, and the mean friction factor ra . -nd Nusselt

number ratio, are listed in Table 5.1.

Without the effect of the buoyancy force (L; = 0), the convective heat transfer
inside the channel is purely forced convection. In the cross-plane, the Coriolis force
(due to the rotation) neutralizes the effect of the centrifugal force due to the cur-
vature of the channel. For the case with vanishing value of L,, the Coriolis force
disappears and the problem becomes the classical Dean problem which has been
well examined by many investigators in recent years. The secondary flow consists of
two-pair of counter-rotating vortices as shown in Fig.5.1(a)-(i) for the case of high
Dcan number. Here the ‘high’ means that the Dean number is beyond its critical
value for the appearance of the Dean vortices, which is about 118 for an aspect
ratio of unity found by Cheng et al. (1976) and Cheng et al. (1979) while Joseph

et al. (1975) observe that the critical value is about 100. The larger vortices are
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Table 5.1:

194

The variations of several representative properties with [,
at v =1, Dk = 500,06 = 0.02,Pr = 0.7 and L, = 0 ((fRe)o =
14.23, Nuo = 3.608)

Ly | Re | De | | ¥ mar | Wmar | tmar | JRe/(SRo | Nu/Nug
0 1801 | 255 | 11.8.) | 0.0297 | 76.23 | 1.972 2.531
-0.1 | 1806 | 263 | 11.158 | 0.0307 | 81.50 { 1.900 2,435
-0.3 | 2030 | 287 | 9.574 0.0336 | 97.73 | 1.750 2,175
-0.4 | 2145 | 303 | 8.401 0.0356 | 110.37 | 1.638 2.001
-0.5 | 2329 | 329 | 10.038 | 0.0400 | 135.10 | 1.530 1.818
-0.6 | 2456 | 347 | 9.994 0.0420 | 151.60 | 1.452 1.688
-0.65 | 2541 | 359 | 9.744 0.0441 | 169.37 | 1.404 1.575
-0.7 12612 | 369 | 8.845 0.0166 | 188.76 | 1.367 1.479
-0.75 | 2143 | 303 | 8.261 0.0394 | 122.64 | 1.668 1.989
-1.0 | 1840 | 260 | 11.423 { 0.0325 | 85.59 | 1.913 2.449
-3.0 | 1341 [ 190 | 16.816 | 0.0214 | 42.92 | 2.678 3.468
-3.5 | 1298 | 184 | 17.278 | 0.0205 | 40.38 | 2.771 3.562




Chapter 5. Numerical Solutions: Negative Rotation 200

called Ekman-type-vortices which are always present for any no-zero value of Dean
number. The smaller vortices are called Dean-vortices which appear only when the
Dean number is above the critical value. A strong inward secondary flow exists be-
tween two Dean-vortices while a strong outerward secondary flow appears between

the Ekman-type-vortices and the Dean-vortices.

Figure 5.1(a)-(ii) demonstrates the way in which the Dean-vortices affect the
isovels and profile of the main velocity. Significantly distorted isovels are found
in the region with the Dean - vortices. In particular, corresponding to the strong
inward secondary flow, the isovels are moved inwards by the Dean-vortices in the
region between the Dean-vortices. Two high velocity cores are formed which are
symmetric about the horizontal centerline. The isovels are more tightly spaced in
the region near the outer wall than those near the inner wall. The densely distributed
isovels are also found near the upper and lower walls. Consequently, a pronounced

peripheral variation is expected for the local friction factor.

The main velocity distributions along the vertical and horizontal centerlines are
shown by curve 0 in Fig.5.2 (a) and (b). A striking feature is that the main velocity
has inflection points on both vertical and horizontal centerlines. Such profiles may

be unstable in accordance with the Rayleigh’s inflection point criterion.

For the channel with infinite span, Finally et al. (1988) and Finlay (1990) ex-
amined the stabilities of the Dean-vortices (the Dean problem) and the Coriolis-

vortices (the Coriolis problem) with respect to the streamwise wavy perturbations.
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They found that the instability leads to the development of undulating vortex flow
and iwisting vortex flow. These two different wavy travelling vortex flows hav e been
confirmed experimentally by Ligrani et al. (1992) and Ligrani & Niver (1988) for
the Dean problem. As well, the Eckhaus stability of the Dean- vortices and Coriolis-
vortices was examined numerically by Guo & Finlay (1991) for infinite- span cross
section. They found that the Eckhaus instability causes the vortex pairs to split
apart or merge together. Experimental observations of the splitting and merging
of vortex pairs were made by Ligrani & Niver (1988), Alfredsson & Persson (1989),
Matsson & Alfredsson (1990), Ligrani ¢! al. (1992). It appears that these types
of hydrodynamic stability analyses have not bee: extended to the geometries with

finite cross sections.

Figure 5.1(a)-(iii) illustrates the isotherms and temperature profile affected by
the Dean-vortices. The isotherms are drastically distorted inward near the center of
the outer wall where the Dean- vortices occur. Two high temperature cores appear
in the cross-plane which are symmetric with respect to the horizontal centerline.
The isotherms near the outer wall are more tightly spaced than those near the inner
wall. The densely distributed isotherms are also four:d near the upper and low walls.

This will result in a higher heat transfer rate in these regions.

As the channel rotates in the negative direction, the corner vortices appear first
at the upper- inner corner (Fig. 5.1(b)-(i)), then at the upper-outer corner (Fig.

5.1(c)-(i)). The circulation direction of these corner vortices is clockwise which is
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opposite to that of the Ekman-type-vortices. The formation and development of the
corner vortices squeeze the Ekman-type-vortices (Fig. 5.1(b)-(d)-(i)), reduce the
maximum absolute value of ithe secondary stream function (Table 5.1}, and increase

the maximum values of main velocity and temperature (Table 5.1).

Shown in Fig. 5.1(b)-(d)-(ii) are the main velocity and temperature distribu-
tions corresponding to the secondary flow patterns in Fig.5.1(b)-(d)-(i). They are
qualitatively similar to those in Fig.5.1(a)-(ii)(iii). However, the formation and de-
velopment of the corner vortices have two effects on the main flow and temperature
distributions. One effect is moving the main velocity and temperature peaks up-
ward to the boundary between the Ekman-type and Dean-vortices. Another effect
is reducing the values of the main velocity and temperature in the region with the

corner vortices.

The profiles of the main velocity along the vertical centerline and the horizontal
centerline for this structure with the coexistence of the Ekman-type-vortices, the
Dean-vortices and the corner vortices are illustrated by curves 1-3 in Fig.5.2. They
are quite similar to the curve 0. In particular, they have inflection points on both
the vertical and horizontal centerlines. This may suggest possible further instability

analysis in the future.

When the negative rotation becomes more rapid, the growth of the corner vor-
tices pushes the Ekman-type-vortices further towards the center part of the outer

wall. Essentially, the Dean-vortices presented in Fig.5.1(a)-(d)-(i) disappear and
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the secondary flow restabilizes to a structure with the Ekman-type-vortices and the
corner vortices (Fig.5.1(e)-(1)). The inflection points in the main ve scity profiles
along the vertical and horizontal centerlines also disappear (curve 4 in Fig.5.2). In
addition, the maximum absolute value of the stream function and the maximum
values of the main velocity and the temperature are all seen to increase. Further-
more, the main velocity and temperature profiles experience a dramatic change. In
particular, the isovels (Fig.5.1(¢e)-(ii)) and the isotherms (Fig.5.1(¢)-(iii)) become
more densely spaced near the inner wall while they become more sparsely spaced
near the outer wali as compared with the previous case (Fig.5.1(d)-(ii)(i1i)). This
will result a change in the distributions of the local friction factor ratio and Nusselt
number ratio. The flow in the channel core is neither ageostrophic nor geostrophic.
The viscous shear is not confined in a thin layer along the walls and exists in the
whole cross section of the channel. The boundary layer theory is, apparently, not

valid for the analysis in this flow region.

Increasing the rotation speed further in the negative direction, the corner vortices
with a clockwise direction of circulation grow, merge together and push the original
Ekman-type- vortices towards the horizontal centerline. The maximum absolute
value of the stream function decreases while the maximum values of the main velocity
and temperature increase (Table 5.1). Figures 5.1(f)-(h)-(i) illustrates this process.
In this region, the main velocity and temperature profiles (Fig.5.1()-(h)-(ii)(iii),

curves 5-7 in Fig.5.2) remain similar to thosc as shown in Fig.5.1(c)-(i1)(iii) and
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curve 4 in Fig.5.2.

Further growth of the corner vortices finally causes the original Ekman-type-
vortices to disappear and the secondary flow becomes one-pair vortex configuration
with a clockwise direction of the circulation, as shown in Fig.5.1(i)(j)-(i). This
confirms that the flow reversal can also result from the inward Coriolis force. And
the reverse direction of the secondary flow indicates the domination of the Coriolis
force. The isovels and the isotherms are observed to be more sparsely spaced near the
outer wall than near the inner wall (Fig.5.1(i)(j)-(ii)(iii)). The densely distributed
isovels near the center part of the inner wall result in a high pressure region since
the centrifugal force and Coriolis force are proportional to w? and w, respectively.
The flow in the channel core appears ageostrophic. Two main velocity peaks and
temperature peaks are seen near the inner wall rather than the outer wall with one on
the upper half of the cross section and the other on the lower half . The regions with
higher velocity and temperature are moved toward the upper and lower walls while
they are shifted toward the inner wall by the rotation in the negative direction. A
depression in the main velocity profile near the inner wall shown in Fig.5.1(i)(j)-(ii)

foreshadows the onset of the Coriolis instability to be described later.

A striking feature of this ageostrophic one-pair vortex structure can be seen from
the profiles of the main velocity along the vertical centerline and the horizontal
centerline by curves 8 and 9 in Fig.5.2. The main velocity w changes linearly across

the core and a little from the lower wall to the upper wall. The vorticity is, then,
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nearly constant. Slow-moving fluid from the outer wall is accelerated across the
core mainly at a constant rate until the inner wall is approached. The Coriolis and
convective inertial forces dominate the ageostrophic core. Main velocity falls to zero
in viscous layers on the outer and inner walls. This constant-vorticity, inviscid core
flow structure suggests a possible analysis by the asymptotic method. It appears

.iat no such attempt was made so far.

When the negative rotation becomes more rapid, the ageostrophic one-pair vor-
tex brcaks down into a configuration of two-pair of counter-rotating vortices that is
asymmetric with respect to the vertical centerline (Fig.5.1(k)(1)-(1)). The addition-
al pair of counter-rotating vortices near the center of the inner wall are called the
Coriolis-vortices. They result from the Coriolis instability as discussed in Chapter
4. The secondary flow, main velocity and temperature distributions (Fig.5.1(k)(l)-
(i)(ii){iii)) are qualitatively similar to those shown in Fig.5.1(a)- (i)(ii)(iii) by in-
terchanging the inner wall and the outer wall. Therefore, we neglect the general

description about features of flow and temperature ficlds.

Two salient features, however, are still worthy to note. First an inflectional
profile of the main flow is associated with this kind of vortex flow (curves 10 and
11 in Fig.5.2). Second the inner wall, where the Coriolis vortices are located, is the
high pressure side. This is indicated by the isopiestic contour in Fig.5.3. Beca e
of this, the Coriolis vortices and the buoyancy vortices behave differently althougls

they all can appear near the center of the inner wall.
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Two impertant points are in order to be noted. First, upon increasing the ro-
tating speed further, we can not obtain the convergent solution in order to observe
the disappearance of the Coriolis vortices at higher Dean number. This is true for
both positive and negative rotations. For the case of negative rotation at low Dean
number, however, we can easily obtain the convergent solution to show the disap-
pearance of the Coriolis vortices. The situation is quite similar to the case of positive
rotation at low Dcan number as discussed in Chapter 4. The divergence may come
from two possible sources: the numerical instability and physical instability. By nu-
merical instability we mean the instability due to the improper numerical scheme.
By physical instability we mean the instability caused by the physical problem itself,
which means that there exists no steady, two-dimensional solution in this region of
the parameter space. At this stage, it is not clear which factor causes the divergence.
However, we reasonably suspect that it may be the physical instability based on two
facts: (1) we fail to obtain the convergent solution by trying smaller grid sizes and
initial guesses for the velocity, temperature and pressure fields for several cases; (2)
we can easily find the Coriolis vortices at a higher Dean number. For example, we
only need 176 seconds of CPU time to obtain the convergent solution for the case
shown in Fig.5.1(1) thi -igh 235 iterations. This suggest:; possible further analysis
using unsteady three- dimensional model and bifurcation/instability analysis in this

region of the parameter space.

Second. it appears that no merging vortices exist under the condition of vanishing
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buoyancy force. We have carried out many calculations for negative rotation with
L, = 0 ranging {rom low to high Dean numbers. The results shown in Fig.h.1
are typical. The inward Coriolis force causes the secondary flow to reverse and
the secondary flow consisting of one-pair of counter-rotating vortices after passing
through a multi-pair vortex flow region where overall, the effect of the Coriolis force
just neutralizes that of the centrifugal force. Then the Coriolis vortices appear near

the center part of the inner wall. No merging vortices are observed.

5.2.2 The heating case with L, > 0

If the fluid is heated, both centrifugal and centrifugal-type buoyancy forces act
radially outwards. The Coriolis force, however, acts radially inwards for the case
of negative rotation. This is different from the case of positive rotation discussed
in Chapter 4. Because of this different effect, we can intuitively expect a complex
structure of flow transition and secondary flow reversals as the rotation speed is
gradually increased in the negative direction. Figure 5.4 shows the secondary flow
patterns, main velocity isopleths and profiles, and isotherms and temperature pro-
files for several representative values of L; with v = 1, Dk = 500,0 = 0.02, ’r = 0.7
and L, = 1. The variations of the Reyonlds number, Dean number, maximum abso-
lute value of secondary flow stream function, the maximum values of main velocity

and temperature and mean friction factor ratio and Nusselt number ratio, are listed

in Table 5.2.
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Table 5.2:

%]
[ 8]

The variations of several representative properties with L;
at v = 1, Dk = 500,60 = 0.02, Pr = 0.7 and L, = 1 ((fRc)o =
14.23. Nug = 3.608)

Lo | | De |19 bmas | wmar | tmar | FReJ(FREYo | Nu/Nug
-0.5 1599 | 226 | 15.338 0.0255 | 56.45 2.218 2.975
1.0 1717 1 243 | 14.151 0.0276 | 64.60 | 2.066 2,714
1.5 365 | 264 | 12.200 1§ 0.0300 | 77.38 1.904 2.395
-1.65 1 1931 | 273 | 11.298 | 0.0309 | 82.98 1.841 1.286
1.85 3 2111 | 299 | 13.694 0.0356 | 106.83 | 1.686 2.016
2.0 | 2147|304 | 14.550 | 0.0359 | 110.73 | 1.660 1.996
-2.1 2183 1309 | 14.740 {0.0367 | 115.49 | 1.634 1.910
-2.95 12264 1 320 | 14.175 0.0384 | 127.44 | 1.576 1.821
2.3 12291 321§ 13.861 0.0391 | 132.00 | 1.556 1.780
2.5 1638 | 232 112.035 |0.02906 | 73.14 | 2.186 2.601
-3.0 1472 1 208 | 13.770 | 0.0245 | 54.92 | 2.435 3.046
1.0 1334 { 189 | 15.556 0.0213 | 44.04 3.375 3.382
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Shown in Fig.5.4(a)-(i) is one secondary flow with an additional pair of vortices
occurring in the center part near the outer wall. A comparison with Fig.5.1(¢)-
(1) indicates that they result from the buoyancy force instability. and are called

buoyancy-vortices.

The presence of the buoyancy-vortices leads to a highiy disturbed main flow ficld
(Fig.5.4(a)-(11)) and temperature field (Fig.5.4(1)-(iii)). with strong inflectional pro-
files developing for both vertical and horizontal centerlines (curve 1in Fig.5.5). This
can result in a secondary instability as mentioned previously. The secondary flow,
main velocity and temperature distributions (Fig.5.4(a)-(1)(i1)(ii1)) are qualitatively

similar to those shown in Fig.5.1(a)-(i)(i1)(iii).

If the rotation speed is increased in the negative direction such that the Coriolis
force is of the same order of magnitude as the resulting force of the centrifugal and
buovancy forces. the corner vortices occur and grow with circulating direction op-
posite to that of the Ekman-type-vortices (Fig.5.4(h)-(d)-(i)). The formation and
development of the corner vortices squeeze the Eliman- type-vortices, reduce the
maximum absolute value of the stream function, increase the maxin:.m values of
the main velocity and temperature (Table 5.2), and have two effects on the main
flow and temperature distributions. One effect is to move the main velocity peak
and temperature peak upward towards the boundary between the Ekman-type and
buoyancy vortices (Fig.5.4(b)-(d)- (11)(3i1}). Another effect is to reduce the value of

the main velocity and tem:perature in the region with the corner vortices (Fig.5.4(h)-
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(d)-(ii)(iii)). The main velocity and temperature profiles. however. are qualitatively
similar to those shown in Fig.5.4(a)-(ii)(iii) in general. with strong inflectional pro-
files of main velocity along the vertical and horizontal centerlines (curves 2-4 in

Fig.h.5H).

Upon increasing the rotation speed. the further growth of the corner vortices
leads to the disappearance of the buoyancy vortices (Fig.5.4(¢)-(i)) and the increase
on the maximum absolute value of the stream function (Table 5.2). This changes
the distributions of the main flow and temperature dramatically (Fig.5.4(e)-(i1)(iii)).
In particular. the isovels and isotherms become more sparsely spaced near the outer
wall. The flow in the channel core is neither ageostrophic nor geostrophic. The
viscous shear is not confined in a thin laver along the walls and exists in the whole
cross section of the channel. A major difference from that shown in Fig.5.1(e)-(i)
is the ap,:carance of the vortices near the center of the inner wall. Such vortices
are alwavs observed in some regions of the parameter space if the fluid is heated or

cooled. For convenience. we call them the center vortices.

When the rotation speed is increased further, the corner and center vortices
grow. As well, two corner vortices merge together and push the original Ekman-
type-vortices towards the inner wall to merge with the center vortices. Figure 5.4(f)-
(i)-(i) illustrates this merging and pushing process. In this process, the maximum
values of the main velocity and temperature are seen to increase (Table 5.2). The

inflection points on the profiles of the main velocity along the vertical and horizontal
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centerline: disappear gradually. (curves 6-9 in Fig.5.5).

Finally. this merging process leads the secondary flow to a two-pair vortex con-
figuration as shown in Fig.5.4(j)-(1)-(i). The one-pair vortices near the center of
the inner wall, which is the high pressure side as shown in Fig.5.6, result froni the
merging of the Ekman-type-vortices with the center vortices. We call them merging
vortices. The profiles of the main velocity and temperature change dramatically
froia those in Fig.5.4(i)-(i1)(ii1) with a significantly decrease of their maximmm val-
ues, and are qualitatively similar to those in Fig.5.1(k)(1)-(ii}(ii1) for the case of
the high Dean number (Fig.5.4(j)-(1)-(ii)(iit)). Furthermore. the strong inflection-
al profiles develop along both vertical and horizontal centerlines (curves 10-12 in
Fig.5.5).

Similarly. we have failed to observe the disappearznce of the merging vortices

upon increasing the rotation speed further possibly because of the physical instability

in the region.

5.2.3 The cooling case with L, <

For the cooling case. hoth Coriolis force and centrifugal-type buoyancy foree act
inward in the cross-planc. if the rotation is in the negative direction. The secondary
flow reversal can take place either by the Coriolis or buoyancy forces depending
on the value of | L, |. Shown in Fig.5.7 are the secondary flow patterns, main

velocity and temperature profiles at v = 1,Dk = 500.0 = 0.02, Pr = 0.7 and
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Table 5.3: The variations of several representative properties with L,
at v =1, Dk = 500,0 = 0.02,Pr = 0.7 and L; = -1 ((fRe)o =
14.23, Nug = 3.608)

L, Re | De || ¥ lmar | Wmar | tmaz | fRe/(fRe)o | Nu/Nug
0 1792 | 253 | 13.722 | 0.0311 | 75.91 | 1.993 2.613
-0.02 | 1785 | 252 | 13.773 [ 0.0310 | 75.32 | 2.001 2.625
-C.5 | 1540 |{ 218 | 15.001 | 0.0247 | 53.25 | 2.320 3.112
-0 | 1463 | 207 | 16.174 | 0.0235 | 48.65 | 2.443 3.277
-3.0 1‘;276 180 | 18.612 | 0.0200 | 38.10 | 2.818 3.690
L, = —1. The corresponding profiles of the main velocity along the vertical and

horizontal centerlines are shown in Fig.5.8. Table 5.3 lists the Reynolds number,
Dean number. the maximum absolute value of the stream function, the maximum
values of the niain velocity and temperature, and mean friction factor ratio and

Nusselt number ratio for each case.

A comparison of Figs.5.7 and 5.8 with Figs. 5.1 and 5.2 shows that the flow
transitions in the secondary flow, the main flow and the temperature distribution
in Fig.5.7 resemble those shown in Fig.5.1(i)-(I). The sccondary flow has already
been reversed even in the case of Ly = 0 (Fig.5.7(a)-(1)). The flow regions with
the presence of the multi-pair vortices and merging vortices are in the region of the
parameter space with L; > 0. The inward Coriolis forces cause the Coriolis vortices

to appear ncar the center of the inner wall which is the high pressure side as shown
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in Fig.5.9.

Once again, we have failed to obsecrve the disappearance of the Coriolis vortices

possibly because of the physical instability.

5.3 Distributions of Friction Factor and Nusselt Number

As is well understood, variations in profiles of main flow and temperature change
the peripheral distributions of the friction factor and Nusselt number along the wall,
which are important in practical applications. The flow transition discussed in the
last section will, then, significantly affect the distributions of the friction factor and

Nusselt number.

Shown in Fig.5.10 are fRe and Nu along the upper hall of the inner wal-
1 (Fig.5.10(a)), the upper wall (Fig.5.10(b)) and the upper half of the outer wall
(Fig.5.10(c)) for twelve representative values of L; at Dk = 500,00 = 0.02, ’r = (.7
and L, = 1. They are shown on the basis of those for a stationary straight chan-
nel, namely, (fRe)o (=14.23) and Nug (=3.608). The corresponding flow patterns
and temperature profiles are illustrated in Fig.5.4. Also shown in the figure are
friction factor and Nusselt number for the curved channel without rotation, i.c.

L]

Ly = Ly = 0, denoted by the curve 0.

A reexamination of Fig.5.4 shows that the flow and temperature profiles may be,

qualitatively, divided into three groups. The sccondary flows for the first group show
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the presence of the buoyancy vortices, as shown in Fig.5.4(a)-(d). The distributions
of fRe and Nu for this group are shown by curves 1-4 in Fig.5.10. Curves 5-9 in
Fig.5.10 show the profiles of fRe and Nu for group two. The secondary flows for
this group consist of multi- pair of counter-rotating vortices characterizing by the
presence of the corner and center vortices as shown in Fig.5.4(e)-(i). The last group,
which includes Fig.5.4(j)-(1), is characterized by the merging vortices in secoridary
flow. The curves 10-12 are drawn in Fig.5.10 to show the distributions of fRe and

Nu f{or this group.

An interesting feature can be inferred by comparing the distributions of fRe
with those of Nu in Fig.5.10. They are qualitatively similar in general. This results
from the similarity between the main flow profile and temperature profile in the flow

region (Iig.5.1.).

5.3.1 Distributions along the upper half of the inner wall

For the flow in Group one, the main flow and temperature distribution are quite
uniform over a wide range of the inner wall. This leads to a relatively constant local
friction factor and Nusselt number (curves 1-4 in Fig.5.10(a)). The formation and
development of the corner vortices in the upper-inner corner destroy this uniformity
more or less. and cause the isovels and isotherms to be more densely distributed
along the inner wall (Fig.5.4(a)-(d)). This res:-Its in a more notable variation of the

friction factor and Nusselt number along the inner wall with an increase in value
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from the curve 1 to curve 4. In this flow region, the friction factor ratio is higher
than the Nusselt number ratio. However, both ratios are relatively low because of

the sparsely distributed isovels ana isotherms.

When the flow is in Group two, the formation and growth of the corner and the
center vortices have three major effects on the distributions of the friction factor and
Nusselt number along the inner wall. First an increasc in the ratios of the frictions
factor and ihe Nusselt number is observed through the more denscly distributed
isovels and isotherms (curves 5-9 in Fig.5.10(a)). Second the appearance of the two
local peaks in the friction factor (Nusselt number) is noted through impinging on
and retreating from the inner wall. Third the decrease in the ratios of the friction
factor and Nusselt number near the center of the inner wall occurs through the
retreating effect of the center vortices in that region. A comparison shows that the

friction factor ratio is lower than the Nussclt number ratio.

The formation of the merging vortices changes the distributions of isovels and
isotherms along the inner wall significantly. Consequently, a dramatic change is
observed in the distributions of the friction factor and the Nusselt number (curves
10-12 in Fig.5.10(a)). The high values of the friction factor and Nusselt number
result from the very densely distributed isovels and isotherms along the inner wall.
The large velocity (temperature) gradient between the high velocity (temperature)
core and the inner wall (Fig.5.4((j)-(1)-(ii)(iii)) results in a peak of the local friction

factor (Nusselt number) in that region. Another peak is seen around the boundary
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of the layer along the upper wall. As well, a relatively low friction factor (Nusselt
number) region is observed in the center of the inner wall. It is induced by the
outwash isovels (isotherms) due to the retreating effect of the merging vortices in

that region.

5.3.2 Distributions along the upper wall

For the flow in Group one, the isovels and isotherms along the upper wall grad-
ually become densely distributed from the inner wall to the outer wall except a very
short region from the outer wall (Fig.5.4(a)-(d)). Consequently, the friction factor
and the Nusselt number increase in general from the inner wall to the outc wall
along the upper wall. The large velocity (temperature) gradient between the high
velocity (temperature) core and the upper wall results a peak of the local friction
factor (Nusselt number) in that region. The formation and development of the cor-
ner vortices in the upper-inner corner increase the values of the friction factor and
Nusselt number in the corresponding region, and decrease those in the other region.
In response to this, another peak is formed near the inner wall side. In this flow

region, the Nusselt number ratio is higher than the friction factor ratio.

When the flow is in Group two, the disappearance of the buoyancy vortices leads
to a sparscly spaced isovels and isotherms along the upper wall. Consequently, a
decrease in the friction factor and Nusselt number is observed. With the growth

of the corner vortices, this decrcase continues from curve 5 to curve 9. The peak,
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-1

resulting from the large velocity (temperature) gradient between the high veloeity
(temperature) core and the upper wall, still exists, but is shifted inwards in response
to the inward shift in the location of the high velocity (temperature) core. A further
growth of the upper-inner corner vortices increases the values of friction factor and
Nusselt number in that region, and decrease those in the other region. The difference
in the peak values between the two peaks decreases from curve 5 to curve 9. In this
flow region. the Nusselt number ratio is still higher than the friction factor ratio.

But, the difference becomes less notable than that in Group one.

When the flow moves to Group three, the appearance of the merging vortices
dramatically changes the distributions of the main flow and temperature (Fi.5.4(j)-
(D)-(i1)(111)). The densely spaced isovels and isotherms along the upper wall lead to a
high value of the friction factor and the Nusselt number (curves 10-12 in Fig.5.10(h)).
The large velocity (temperature) gradient between the high velocity (temperature)
core and the upper wall results a peak of the local {riction factor (Nusselt number) in
that region. As well, the values of the friction factor and the Nusselt number increase
with the peak shifting inward from curve 10 to curve 11. In this flow region, the

Nusselt number rativ is much higher than the friction factor ratio.

5.3.3 Distributions along the upper half of the outer wall

For the flow in Group one, the buoyancy vortices affcct the distributions of the

friction factor and the Nusselt number along the outer wall significantly. The densely



Chapter 5. Numerical Solutions: Negative Rotation 218
I g

distributed isovels and isotherms along the outer wall result in a relative high values
of the friction factor and the Nusselt number. A peak in the local friction factor
(Nusselt number) appears in the region where a large velocity (temperature) gradient
occurs between the high velocity (temperature) core and the outer wall (Fig.5.4(a)-
(d)-(ii)(iii)). A relatively low friction factor (Nusselt number) is observed near the
center of the outer wall. This results from the inwarsh isovels {isotherms) due to
the retreating effect of the buovancy vortices in that region. The appearance and
development of the corner vortices reduce the strength of the buoyancy vortices.
causing a decrease in the friction factor and Nusselt number from curve 1 to curve
4. In this flow region, the Nusselt number ratio is much higher than the friction

factor ratio.

When the flow moves to Group two, the inwarsh isovels and isotherms disappear
near the center of the outer wall because of the disappearance of the buoyancy
vortices. The friction factor and the Nusselt number, therefore, increase significantly
in that region (curves 5-9 in Fig.5.10(c)). But their values decrease in the other
regions due to the decrease in the strength of the secondary flow. The growth of
the corner vortices shifts the main velocity (temperature) peak inward, causing a
decrease in the friction factor and the Nusselt number from curve 6 to curve 9. In
this region, the Nusselt number ratio is still higher than the friction factor ratio

although the difference is less notable than that in Group one.

The appcarance of the merging vortices near the inner wall results in the quite
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uniform and sparsely spaced isovels and isotherms along the outer wall (Fig.5.4(j)-
(1)-(i1)(iii)). This induces a low and nearly constant local friction factor {Nusselt
number) over a wide region of the outer wall as shown by curves 10-12 in Fig.5.10(c¢).
Only in this region, the friction factor ratio is slightly ! "zher than the Nusselt number

ratio.

5.3.4 Mean friction factor and Nusselt number

The mean friction factor and Nusselt number are shown in Fig.5.11 by the so'id
and dashed lines. respectively. Theyv are presented in the form of fRe/(fH¢)g and
Nu/Nug against Ly at Dk = 500,60 = 0.02, Pr = 0.7 and L, = 1. It is observed that
they are affected significantly by the flow transition. The formation and development
of the corner vortices and center vortices reduce both the friction factor and Nusselt
number with a more significant decrease for the Nusselt number. The friction factor
and Nusselt number, however, increase considerably once the flow transitions to the
region with merging vortices occur. As well, the increase in Nu is more remarkable.
An interesting feature about the friction factor and vhe Nusselt number is that the
Nusselt number ratio is higher than the friction factor ratio, and the difference
becomes more appreciable as the flow moves away from the region with secondary

flow of multi-pair of counter-rotating vortices.



5.4 Concluding Remarks

The problem studied in Chapter 4 has been extended to the case of negative
rotation at relatively high Dean numbers. Several phenomena, hitherto unknown,
have been revealed in the present study. A one-pair vortex flow with an ageostrophic
and virtually inviscid core exists between a multiple-vortex flow and two-pair vortex
flow with the presence of the Coriolis vortices near the side of the inner wall. Its
circulating direction is opposite to that of one-pair ageostrophic vortex flow found in
Chapter 4. When the channel rotates in the negative direction, the inward Coriolis
force can cause the secondary flow to reverse its direction, and the Coriolis vortices
to appear near the center of the inner wall with an counterclockwise direction of the
circulation. The flow reversal is found to occur after passing through a multi-pair
vortex flow regime wherce overall, the centrifugal. Coriolis and buoyancy forces just
neutralize cach other in the cross-plane. This multi-pair vortex flow differs from
that found in Chapter 4 mainly in its coexistence of the Dean-vortices, buoyancy-
vortices or Coriolis-vortices. When the Coriolis vortices appear near the inner side,
the inner wall becomes the high pressure side. This is different fzom the case of the
buoyancy-vortices appearing near the inner wall. As well, the merging vortices are

found to appear only when the buoyancy force is present.

Upon increasing the Corielis force, we fail to observe the disappeararce of the

Coriolis vortices for both positive and negative cases at higher Dean number. This is

believed to be caused by the possible physical instability of the problem, and merits
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further investigation by using an unsteady, three-dimensic o analysis.

The flow transition changes the distributions of the main flow and temperature.
They affect both the local and mecan values for friction resistance and convective

heat transfer between the fluid and the wall significantly.
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(iii) Isotherms and temperature profiles

(i} Ly = ~1.0, Re = 1840 (k) Ly = ~3.0, Re = 1341 (1) Ly = —3.5, Re = 1295
(11.423;0.0325;85.59) (16.816,0.0214,42.92) (17.278:0.0205:40.35)

Figure 5.1. Flow transitions and temperature distributions at
4 =1,Dk = 500,06 = 0.02. Pr = 0.7 and L, = 0. (Three values
for each case are the maxima of the stream function. main veloc-
ity and temperature)
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Figure 5.2. Main velocity distributions at ¥ = 1, Dt = 500,0 =
0.02, Pr = 0.7 and L, = 0: (a) along the vertical centreline of
the channel; (b) along the horizontal centreline of the channel
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7 =1,Dk =500,0 = 0.02, Pr = 0.7 and L, = 1. (Three values
for each case are the maxima of the stream function, main veloc-
ity and temperature)
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Figure 5.5. Main velocity distributions at v = 1, Dk = 500,0 =
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the channel; (b) along the horizontal centreline of the channel
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Figure 5.5. Main velocity dis:~ibutions at 4y = 1, Dk = 500,0 =
0.02, Pr = 0.7 and L; = 1: i ) along the vertical centreline of
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(i1i) Isotherms and temperature profiles
{a) Ly =0, He = 1792 (b) L, = —0.02, Re = 1785
(13.723;0.0311;75.91) (13.773;0.0310,75.32)

(c) Ly = —0.5, Re = 1540
(15.001;0.0247;53.25)
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(iii) Isotherms and temperature profiles
(d) Ll = -10, RC = ]4‘;1 (c) Ll = —3,0, lic = l276
(16.174,0.0235;48.65) (18.612,0.0200;38.10)

Figure 5.7. Flow transitions and temperature distributions at
v =1,Dk =500,0c = 0.02, Pr = 0.7 and L, = —1. (Three val-
ues for each case are the maxima of the stream function, main
velocity and temperature)
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Figure 5.8. Main velocity distributions at v = 1, Dk = 500,0 =
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Chapter 6

Visualization of
Stabilizing /Destabilizing Flows in
Channels with Curvature and/or

Rotation

Experiments on visualization of stabilizing/destabilizing flows in channels with
curvature and/or rotation are described. Several test sections have been used, and
the results shown here are some typical ones for four test sections. Although the
main objective is to draw some general features about the stabilizing/destabilizing
flows from the visnalization experiments, a generalized Rayleigh criterion is for-

mulated about the primary instability of flows in rotating curved channels to help

250
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understanding of some experimental results.

6.1 Introduction

The curvature and rotation of a channel can stabilize the channel flow in some
flow domain, and destabilize the flow in the other domain. This was first recognized
by Reynolds in 1881. The knowledge of this stabilizing/destabilizing phenomenon
is essential in order to have the ability to predict and control the performance for
technical applications of the flow in blade passages of radial flow pump, compressor

impellers, centrifuges and cooling channels of rotating machinery ete.

The mechanism for this stabilizing/destabilizing phenomenon can be intuitively
understood. For flows ¢ e surfaces, the centrifugal force is mainly bal-
anced by a normal pre.s. oo i, The fluid particles moving outward across
mean streamlines into regions of higher mean velocity should on average retain some
memory of their previous (lower) mean velocity history. Their individual centrifugal
forces will, thus, be less than the new mean normal pressure gradient, resulting in
a net restoring force. Therefore, convex boundary layers should act a stabilizing
influence on the flow. On concave surfaces, the opposite destabilizing effect should

OCCur.

The spanwise rotation of a straight channel introduces Coriolis forces into the
flow which play a similar role as that of the centrifugal forces in curved channels.

Here, the flows near the antirotating wall are destabilized while the flows near the
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corotating wall are stabilized. By the antirotating (corotating) wall. we mcans the
side on which the imposed rotation and the basic flow vorticity have the opposite
(the same) sense. They are also called pressure (leading) and suction (trailing) walls.

respectively.

The combined effects of both curvaturc and rotation occur in a curved channel
nvith spanwise system rotation. Depending on the direction of rotation. the sta-
bilizing/destabilizing effects due to the curvature and rotaticn will either enhance
or counteract cach other. The stabilizing/destabilizing flows in a curved rotating

channel is, then. endowed with some more complex features.

If the centrifugal force and/or Coriolis force are strong enougii. we can expect an
early transition of flow from laminar to turbulent state in the destabilizing region.
As well, we can also expect flow relaminarization from turbulence to laminar state

in the stabilizing region.

Insights of the stabilizing/destabilizing flows can be examined theoretically through
hydrodynamic stability and bifurcation theory and experimentally through the quan-
titative measurements of flow fields. Four major experimental difficulties discussed
by Swinney & Gollub (19851 limit the extensive application of quantitative detailed
measure.nents of the flow field at present. The study of this phenomenon was, then.
performed mainly through the stability and bifurcation analyses in the past. In
order to model the flows properly, the knowledge of the appearance of the stabiliz-

ing/destabilizing flows is essential. Fiow visualization is an approach which can be
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used to visualize the whole flow field.

In this part of work, a smoke visualization apparatus is designed to visualize the
stabilizing/destabilizing flows in the channels with curvature, rotation or both. The
cross section of the channel can be circular or rectangular with various aspect ratios.
Although the apparatus designed may be used to visualize flows iu the developing

region. only fully developed flows will be considered in this work.

We have observed several stabilizing/destabilizing related phenomena in the
channel flows with curvature. rotation or both. (1) The curvature and /for rota
tion can decrease the tendency of flows to undergo transition to a turbulent state,
resulting an high-Revnolds number laminar flow, 1.e., the curvature and/or rotation
can suppress turbulent transition. (2) The curvature and/or rotation can increase
turbulence production in the locally destabilized region, resulting in low-Reynolds
number turbulence. (3) It is possible to completely cancel the Dean vortices by ro-
tation and to give rise to vortices on the convex wall due to the Coriolis force. (1) At
high rotation speeds. both primary and secondary instabilities show symmetry with
respect to the direction of rotation. (5) The flows at high rotation speeds appear to
be controlled by the secondary instabilities rather than the primary instability. (6)
When the curved channels rotate with slow negative speed, two potentially unstable
regions are separated by two stable regions in the cross-plane, resulting a complicat.
ed vortex flow. (7) The Dean/Coriolis vortices can also appear on the unstable side

in the relaminarizing flows. (viii) The secondary instabilitics lead the Dean/Coriolis
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vortices oscillating in various forms.

Here we will deal specifically with experimental observations on these phenom-
ena. No analvtic studies of stability are made. However. a generalized Rayleigh
criterion formulated in §6.2 should help to understand some experimental result-
s. With the same purpose, a subsection is also inclided in §6.2 to reproduce the
mechanism model for formation and break-up of the low-speed streaks in turbulent
boundary lavers, originally proposed by Kline et al. (1967). The present status
regarding the stabilizing/destabilizing flows in channels with curvature, rotation or
both are briefly discussed in §6.3. A discussion of the experimental apparatus aud
technique is given in §6.4, and the discussion of typical results in §6.5. In §6.6. we

summarize the important results from the present study.

The objectives of this study are to give some new information on the stabiliz-
ing/destabilizing flows and flow changes with the Reynolds number and rotation
number, as observed from flow visualizations and photographs. No experimental
measurement is attempted in this study. It is interesting to note that relation be-
tween smoke pattern and secondary flow is somewhat uncertain (Finlay et al. 1993)
at present. However, since little information from experiments is currently available.

some qualitative information is believed to be useful.
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6.2 Generalized Rayleigh’'s Theory and Mechanics of Streak
Formation and Breakup in Turbulent Boundary Lay-

ers

6.2.1 Generalized Rayleigh's theory

In order to better understand the stable/unstable regions, we use a displaced
particle argument (Tritton & Davis 1985) to derive a stability criterion including
both centrifugal and Coriolis force effects. This can be regarded as the generalization

of the Rayleigh’s theory to include both curvature and rotation effects.

To simplify the aualysis, consider an undisturbed "+ ¢ “ing curved chan-
nel with an infinite span. as shown in Fig.6.1. If a fluid pa:ticle moving with stream
wise velocity 17 at a distance r from the center of curvature o, be displaced by a
radial disturbing force, the variation in moment of the momentum of the particle,
taken around the axis perpendicular to W through o, can be wiitien as (applying

the principle of moment of momentum)
) ot
Wr+dr)-Wr= —2!1/ vrd! (6.1)
0

where v is the displacement speed, and At the time required for the particle to move
from r to r + dr. This gives the streamwise velocity W of the particle at the new

position,

Wdr

r

W=Ww-

— 2Qdr (6.2)
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to the first order of ur.

With a streamwise velocity W, the particle at the new position is subjected to

a centrifugal force Fy and a Coriolis force F, along the radial direction as

Fi=~+—r F, = 2lei’ (6.3)

In the undisturbed flow, the centrifugal force and Coriolis foice acting on a

W

=~dr at r + dr. is balanced by a pressure

particle with a streamwise velocity W+
gradient in the radial direction, i.e.

op (W + Lhdr)? dWw
S ledr= A 405 (W 4 ——d 6.4
or Ir+dr=p r+dr +2p0(W + dr ") (6:4)

This pressure gradient will also act on the displaced particle (Tritton & Davis 1985).
Hence, the restoring force per unit volume acting on the displaced particle is (E-

gs.(6.3) and (6.4))

(W + Lhdr)? dw pli2 .
=g 42 ! - —2p0 .
F=p T i dr + 2pQ(W + T dr) T 98! (6.5)
Substituting 12q.{6.2} into Eq.(6.5) gives
F = pO(r)dr + o(dr?) (6.6)
where
20 dW W 60l div
O(r)=—(——+—)+ +20(-— +2Q) 6.7)
r o dr T T dr

Nondimensionalizing O(r), 2, W and r by (W,,/a)*, W /a. W,, ard a, with W, as

the mean streamwise velocity across the channel (V7 = i—fr“ W(r)dr), we have
t

8] ow dw ol

=g = Ao PG T o

+ 2Ro) (6.8)
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)i

or
20w dw ow 60w Ro dwe
= — 2Ro{ — + 2R
T+ oz =1/9)'dr T TTowo1/D) T T30 =172 2ol T+ 2He)
ist Tcrm 271dfrrm drd  term
(6.9)
where
r—R W Od ‘. i
T=— w = W Ro = W o= x (6.10)

Ro, the inverse of a Rossby number, represents the ratio of the Coriolis foree to the

inertia force.

IT may be called the generalized Ravl: iah stability criterion which includes both
centrifugal and Zoriolis force effect: . intermediate term on the right side of
Eq.(6.9) is the coupling term betweei the curvature and rotation, while the first
term and last term are centrifugal instanility-related and Coriolis instability-related
effects, respectively. The flow is stable in the flow domain with Il > 0, and unstable

in the domain with IT < 0.

It is interesting to note that Eq.(6.8) is identical te that obtained by a lincar

stability theory (Malterson, 1923a).

For the flow in a curved channel with rotation around the axis of curvature,
the sase flow is unaffected by the rotation (Chandrasekhar 1961). Chandrasekhar
(1961) obtained solution for the basc flow. For the small gap (0 << 1), it. can he
written as

w(z) =6x(l — ) (6.11)
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We analyze the stable/unstable regions through Eq.(6.8) or (6.9) for two special
cases, namely, small gap with low rotation rate and small gap with high rotation

rate next.

the case of small gap with lew rotation rate

For the small gap (¢ << 1) and low rotation rate (Ro ~ o(o)), the generalized

Rayleigh’s criterion I reduces to

Il =2(cw+ Ro)% (6.12)

'The condition 1I(x) = 0, which can be obtained either by ow + Ro = 0 or by % =0,

gives the boundary hetween the stable region and unstable region. By % =0, we
have

I =

VRo (6.13)

o —

which is the midplane of the channel.

By ocw + Ro = 0, we have

zor = 1(1 + /T + 2Ro/(30))

(6.14)
703 = 3(1 — /1 + 2Ro/(30))
for all values of Ko satisfving
—].555250 (6.15)
o

The sign of 11 in diflerent region is listed in Table 6.1. Thus, the stable/unstable
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Table 6.1:Sign of Il for the case of small gap and low rotation rate

Rofo Region with Positive IT | Region with Negative 11 T
Rojo < -1.5 0<axr<1/2 1/2<r< |
—15< Rofo <0 |aos<T<1/2 0< < g
l T <1 <1 1/2<r<am )
‘Ro/o?_O D<r<1/2 2<r <

regions can be determined. as shown in Fig.6.2.

It is interesting that, in the region —1.5 < Ro/a < 0, there exist two potentially
unstable regions separated by two stable regions. We could expect that the compe
tition of the destabilizing mechanisms in the two regions will leads to a complicated

flow.

Although we show all the regions of o in Table 6.1 and IMig.6.2, the results are

valid only for lower | Ro |. The analysis for the high rotation rate is shown below,

the case of small gap with high rotation rate

For the small gap (0 < 1) and high rotation rate (Ro ~ o(1)), the generalized

Rayleigh's criterion I can be approximated as

I(z) = QRO(%%I' + 2Ro) (6.16)
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Table 6.2:Sign of Il for the case of small gap and high rotation rate

Ko Region with Positive Il | Region with Negative II
Ro < =3 0<r<l

3 < He<0|xg<z<<l O<zr<ag

0< Ro<3 O0<r<r, rp<r<li

Ro <3 0<r <l

which vanishes at a radial position rg satisfving

T oRo =0 (6.17)
dr
This gives
1 R
:ro=§(l+-§(—)) V| Ro|<3 (6.18)

The sign of 11 in different regions is summarized in Table 6.2. The stable/unstable

regions are shown in Fig.6.3.

This shows that the unstable regions reduces as | Ro | increases, and the high

rotation with | Ro |»> 3 always stabilizes the flow in the whole cross section.

Although Table 6.2 and Fig.6.3 show the results for the whole range of Ro, we
should use the results shown in Table 6.1 and Fig.6.2 for the case with low rotation
rate. We show all here because this case is identical to the case only with spanwise

rotation of straight channels.
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6.2.2 Mechanics of Streak Formation and Breakup in Tur-

bulent Boundary Layers

In a study on the structure of turbulent boundary layers along a flat plate, Khine
et al. (1967) found that the low-speed sireak formation and breakup play a central
role in turbulent boundary layer processes. lii particular, the break up of the wall-
layver streak was found to make a substantial contribution to the turbulence energy
production. As well, the dominance of the streaks is not confined to the region of

their origin or breakup. They affect most of the flow directly or indirectly.

This vursting phenomenon was also found in the middle stages of natural laminar-
turbulent transition (Elder 1960, Klebanoff ef al. 1962), and has been confirmed by
many independent experiments. Here. we briefly deseribe the bursting phenomenon
and mechanisms for the formation and break-up of the low-speed streaks as proposed
by Kline et al. (1967), Lighthill (1963) and Klebanofl et al. (1962). We are interested
in this phenomenon because we have observed a quite similar phenomenon in the

flows with high rotation rates.

In a series of visual studies on the structure of the flat plat plate turbulent
boundary iayer, Kline ¢t al. (1957) observed the formation, gradual Lft-up, then
sudden oscillation, bursting and ejection ef the low-speed «treaks in fully developed
turbulent boundary layers, as sketcned in Fig.6.4. The flow pattern appears Lo

consist of an array of steaks, which are interspaced with arcas of fluids with high
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strearnwise velocity, The streaks appear as long stretched filaments in the streamwise
direction which move downstream more slowly than the surrounding fluid. The
primary orientation of the vortex elements is streamwise’, but each streak stands
at a slight angle to the wall so that its distance from the wall increases as it moves
downstream. Within the sublayer, the streaks waver and oscillate much like a flag,
and intermittently leap outwards from the wall, sometimes passing rapidly clear
to the outer edge of the boundary layer, but more frequently following trajectories
within the wall layer. As they enter the outer region of the flow, the streaks ejected
from the wall region become tangled, suddenly oscillating and bursting, and making

the apparent streamwise and spanwise scales of motion more ncarly equal.

A physical explanation for the formation of the low-speed streaks was essentially
proposed by Lighthill 1963 (Kline et al. 1967). The effect of flow towards and
away from a wall could act to convect and change the spanwise vorticity component
as sketched in Fig.6.5. In particular. the outflows (inflows) compress (stretch) the
vortex lines in the corresponding regions. This results in a spanwise variation in
w near t'+ wali becsuse the spanwise component of vorticity is mainly due to ‘Z—‘;’.
More precis:iv. the local w in the sublayer is increased where the flow is towards the

wall, and is reduced in regions of outfiow. Therefore, a variation in w can develop

spanw,sly duc 1o the inherent three-dimensionality of the coexisting turbulence.

"The use of the » ord streamuwise here refers only to the observed primary orientation of the
streak, and shaukd not be constructed as necessarily implying a connection to a Gortler, Dean or

Coriolis type voriices,
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The gathering of low-speed iluid near the wall, due to the streamwise vorticity so
generat~d, forms the streaks which could be observed when the tracer such as smoke
and dye are put into the fluid. As well, the same secondary vorticity accounts for
the lifting of the low-speed wall-layer streaks (observed experimentally) prior to the

breakup process (Fig.6.6).

A picture of the mechanism for the lew-speed wall-layer streak breakup is shown
in Fig.6.6 (Kline ef al. 1967). This sketch was drawn acrording 1o the experimen
tal measurements and physical explanations by Klebanc'™ et al. (1962), Kovasuay
et al. (1962) and Stuart (1965). The vortex stretching ¢t the outer edge of the
boundary laver leads to the interm'itent formation of the intense local shear lavers
(vorticity concentrations) there. These local shear layers become locally unstable
intermittently, break down in violent oscillaticr., and eject inte the outer flow along

the streak trajectory (Kline et al. 1967).

6.3 Brief Review of Previous Works

6.3.1 Dean flow

By imposing a small gap approximation, velocity profile w(r) is near-parabolic
as expressed by Eq.(6.11). On substitution of Eq.(6.11), with Ro = 0, into Fq.(6.8),

one concludes that the flow is stable in the region

1 1 1 1 )
I<r<-=-—-—4% — + = (6.19)
2 0o a4
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and unstable in the region

1 1 1 1
- — 4+ -<a<l 6.20)
2 a+ 0'2+4< ( ‘

This means that the flow may be inviscidly stable (unstable) from the inner wall

(outer wall) to slightly outside the centreline.

relaminarization by curvature

The stabilizing eflfect of the curvature on the flow can be visualized through
the relaminarization from thc turbulence to laminar. Indeed, as long ago as 1881,
Reynolds had listed ‘curvature with the velocity greatest on the outside’ as one of
the factors ‘conductive to direct or steady (=laminar) motion’, and had noted how
a small curvature may have a large cffect. However, this stabilizing effect has not
been well understood even today, mainly because of the lack of precise definition of

relaminarization and the effective methods of measurements.

To simplifv the study and eliminate the interaction between the stabilizing
and destabilizing effects, the previous investigations are mainiy concerned with the
boundary layer flow on convex surfaces. One measure of the curvature is the pa-
rameter k6 with £=! and § as the radius of curvature (considered positive when
convex) and the boundary layer thickness, respectively. The streamwise curvature
introduces additional terms, consisting of a source of strength —-Q—(g;—ﬂ and the body

forces (—kwr, kw?) along the streamwise and normal directions respectively. into the
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governing equations of the flow (Sc & Mellor, 1972). Here the w, v are the velocity

components along the curved surface (x-direction) and the normal to it {v-direction).

Because of the centrifugal component kw?, a normal pressure gradient (the pres
sure being lower toward the convex wall) is induced in the convex boundary laver.
This gradient then acts as a stabilizing force for the flow. For example, a slow lump
of turbulence thrown outward from a convex wall is subjected to a lower centrifugal
force than the faster ambient fluid. and so is driven back by the normal pressure
gradient that balances the mean flow. Similarly, a faster lump moving toward the
convex wall will be thrown out. Consequently, there is a tenacncy to the suppression

of turbulence.

Another way to sce thr ature is to examine the Revnolds stress
transport equations for avers. This was performed by Rotta 1967
and So & Mellor * = cirvature introduces some absorption

terms for the Rey:

Bradshaw (1969) .oapalogy theory between streamlbine curvature
and buoyancy in turbulent shear flow, and calculated the curved turbulent flows
using this analogy theory. In particular, he defines a Richardson number for curva-
ture. which serves as a measure of the ratio of the absorption term to the production
term. As well, this Richardson number was found to be very small near the convex

wall.

As in buoyant flows. however, even a relatively small value of Richardson nuimber
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can cause significant changes in the turbulent structure. This is confirmed by the
experiments by Thomann (1968) and Bradshaw (1973). Thus, even when the mag-
nitude of the terms explicitly involving curvature in the stress transport equations
is very small, the effects of curvature are not negligible, and clearly affes t the other

terms as weil.

Ramapriam & Shivaprasad (1978) madc *he detailed measurement s on the strue-
ture of turbulent boundary lavers along mildly convex curved surfaces. They found
that the curvature affects not only the amplitudes of the fluctuating motion but also
the turbulence structure. In particular, the stabilizing influence of curvature was
found to destroy the organization of the motion in the large-scale structures in the
boundary layver. And the effects also affect the high wave number and the bursting

process {Rao el al. 1971, Badri Narayanan et al. 1977, and Brown & Thomas 1977).

On summary, the centrifugal forces have been found to destroy the organization
of the motion and suppress the Reynolds shear stress in the turbulent boundary
layers along the convex curved walls. This results in an absorption of the turbulence
energy and leads to a relaminarization from the turbulent to laminar flow. Such
a study of stabilizing effect, however, needs to be extended to the case of curved
channel flows. And the visualization of stabilizing flows is desirable to evalnate the
existing theoretical considerations with the goal of providing a sound phiysical model

as a basis for theory.
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destabilization of flows by curvature

Both theoretical and experimental investigations on the destabilizing effect of
curvature on the curved channel flows have been carried further than those on the
stabilizing effect. The quantitative details of the flow fields are therefore more

extensive in the literature concerning the destabilizing effect of curvature.

Using analytic means for small gap channels with infinite span, Dean (1928) first
demonstrated that curved channel flow is unstable to small amplitude disturbances
for values of Rey/o greater than a critical value. This parameter is now referred to
as the Dean number De. I[n terms of Dean number versus spanwise wavenumber
at a particular curvature ratio, the neutral stability curve separates unstable flow
at higher Dean numbers {rom curved channel Poiseulle flow (CCPF) at lower Dean
numbers. The focus of points along the neutral stability curve defines the critical
Dean number De. and critical shanwise wavenumber a.. With CCPF, the velocity
in the channel is purely streamwise with a profile similar to the parabola of plane
channel flow. The main difference is evident in the maximum velocity, which is

shifted shightly toward the outer wall. Dean (1928) found that

De. = 35.94
(6.21)
a. = 3.96
Confirmation of Dean’s resu. > wa. i 1ded by the independent theoretical anal-

vses of Yih & Sangster (1957), Reid (1958) and Hammer & Lin (1958) using different
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mecihods and by the experiments of Brewster et «l. (1959) who find that

De. =365+ 1.1

a.=491+0.8

The reaults are in good agreement with the predicted values by Dean (1925).

It is of interest to compare the Reynolds number for the onset of instability given
by Dean with the Reyvnolds number at which Tollmien-Schlichting waves nay set
in for strictly straight plane channel flows. It is known that in the latter case, the
onset of instability occurs when Re. = 7070 (Lin 1955 and Gibson & Cook 1971).

Clearly, the criterion given by Dean must cease to be valid when

c<26x107°

which is very small. Therefore, we typically expect to observe streamwise oriented
vortices instead of TS-waves in curved channel flow when the Reynolds number is

increased from zero.

Kelleher et al. (1980) and Ligrani & Niver (1988) made flow visualization ex-
periments in the curved channels with a high spanwise aspect ratio. They observed
mushroom shaped smocke patterns, which are believed to be indicative of Dean vor-
tices. As shown by the hot-wire measurements (Kelleher et al. 1980), the vortices

give rise to large variations of the streamwise velocity in the spanwise direction.

The secondary instability of Dean-vortices was first examined numerically by

Finlay ef. al. (1988) for a curved channel with infinite span. Two different wavy
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travelling vort. x flows, namely, undulating vortex flow and twisting vortex flow, are
developed on :op of the primary instability due to the instability of the Dean-vortices
subjected to the streamwise wavy disturbances. These two kinds of vortex flows were
confirmed experimentally by Ligrani ef. al. (1692) and Ligrani & Niver (1988). The
linear stability analysis of the one-dimensional streamwise profiles in the spanwise
and radial directions (Le Cuntl & Bottaro 1993) shows that the spanwise inflectional
profile is associated with the secondary twisting motion while the undulating motion

is related to the normal profiles.

The secondary instability of Dean-vortices with respect to two dimensional spanwise-
periodic perturbations (i.c. Eckhaus stability) was investigated numerically by Guo
& Finlay (1991) for infinite-span cross section. Because of this instability, the merg-
ing and splitting of vortex pairs appear. Er perimental confirmation of splitting and
merging of vortex pairs was made by Ligrani & Niver (1988), Alfredsson & Persson
(1989) and Matsson & alfredsson (1999). The further developments on the Eckhaus
instability problem have been made by Matsson & Alfrasson (1992) and Bottaro

(1993).

The three-dimensional spatially developing vortices were studied by Guo & Fin-
lay (1994). They found that the spanwise wave number selection depends on the
cnergy level of the vortices. Different spanwise wave lengths could appear simul-
taneously without interaction when the energy level is low. However, merging and

splitting of vortices occur if the vortices have reached a certain non-linear level.
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The measurements on the streamwise development of the Dean instability (Matts.
son & Alfredsson 1992) show that the merging and splitting of vortex pairs are not
time depcndent as the case for Ligrani & Niver (1988). Numerical simulations by
Bottaro (1993), however, show that the Eckhaus instability is time-dependent in the

temporal model, and steady in the spatial model.

6.3.2 Straight channel flow with spanwise rotation

Substituting Eq.(6.11) with o = 0 for straight channel flows into Eq.(6.8) leads
to a result about the stable/unstable regions which is identical to those discussed in

$6.2.1.2. (see Table 6.2 and Fig.6.3).

relaminarizatio:: by rotation

The rotativs of the channel introduces two additional forces, namely, the cen-

]

trifugal and Coric: - ! *: s, in the rotating frame of reference. For the fluids with
constant properties, ! ntrifugal force can be combined with the static pressure
and does not then expii~itiy enter into the equations of motion. The Coriolis force,
on the 2 her hand, will have to be considered explicitly. An important effect of the
Coriolis force is to generate a normal pressure gradient proportional to the angular
velocity of rotation. As in the curved channel, this pressure gradient has a stabiliz-

ing effect in the corotating side of the channel where the imposed rotation and the

basic flow vorticity have the same sense, but a destabilizing effect in the antirotating
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side where the imposed rotation is opposite to the basic flow vorticity.

A direct resuit of the stabilizing effect is the relaminarization of flows in the
corotating side. Unfortunately, this relaminarization-related phenomenon has not

been studied extensively. Consequently, the literature on this is quite limited.

From an analogy with curved and stratified flows, Bradshaw (1969) introduces
an criterion for relaminarization, namely, the Richardson nurnber, for rotating flows.
which is the ratio of the additional absorption term due to the Coriolis force over

the conventional production terms for Reynolds stress.

Based on the flow visualization studies in the wall region. Johnston et al. (1972)
found that. with increasing Revnolds number, the relaminarization occurs at an
increasingly higher vaiue of rotation, and that no unique value of rotation num-
ber describes the boundaries between the different flow regimes (fully turbulent,

relaminarization-transitional and laminar states).

Halleen & Johnston (1967), Lezius & Johnston (1971) and Johnston et al. (1972)
made flow visualization studies in an two-dimensional channel rotating about a s-
panwise axis. They observed the relaminarization on the corotating side. For small
rotation rates, the flow remains essentially turbulent although it is slightly modified,
but for rotation rates higher than a certain value, the following changes occur pro-
gressively on the corotating side: (i) intermittent appearance of streaky wall-layer,
(ii) basic laminar flow interspaced with turbuient spot-like characteristics, and (i-

ii) purely laminar laver close to the wall. Furthermore, it is found that tur. nt
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bursting ceases, turbulence intensities decrease, the velocity profile departs from the

standard log-law form, and tl.e skin- friction decreases considerably.

destabilization of flows by rotation

Hart (1971) first proved experimentally and theoretically by a lincar stability
analysis the existence of roll-cell instability in rotating channel flows. His experi
ments were conducted with water to allow for dye injection visualization in a rectan-
gular channel with an aspect ratio 7. The linear stability analysis is for the rotating
plane Poiseuille flow. i.e., the limiting case of a rectangular channel with an infinite
aspect ratio. Hart also demonstrated that the general stability problem for rotating
Poiseuille flow is exactly analogous to that of a temperature- stratified fluid with

the appropriate stratificat, .

A more detailed theoretical analysis was performed by Lezius & Johston (1976)
about the roll- cell instabilities in rotating channel flow. They found that the critical
disturbance occurs at a Reynolds number Re = 88.53 and a rotation number Ko =

.5 in plane Poiseuille flow. For higher Reynolds number, however, they found that
unstable conditions can exist for 0 < Ro < 3. As well, their theoretical results are

in good agreement with the experiments (Johnston et al. 1972).

The roll-cell instabilities in rotating laminar channel flows are also observed
numerically for the channels with aspect ratio of 1, 2 and § by Speziale (1982),

Speziale & Thangam (1983), Speziale (1986), and Hwang & Jen (1990).
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Two different, streamwise travelling vortex flows, namely, WVF1 and WVF2, can
develop due to the secondary instability of the roll-ce!l instability with respect to the
streamwise wavy disturbances. This was first found by Finlay (1990) in a numerical
study of secondary instabilities for a rotating channel flow with an infinite span by
a three-dimensional spectral method. For low rotation rates, WVF1 is similar to
the twisting vortices in curved channel flow. However at higher rotation rates, the
similarity disappears. WVF2 is very similar to the undulating vortex rnotion in

curved channel flows (Finlay ef al. 1988).

The Eckhaus instability was found to cause the roll-cell vortices to split and
merge by Guo & Finlay (1991). This was confirmed experimentally by Alfredsson

& Persson (1989) and Matsson & Alfredsson (1990).

Direct numerical simulations with random disturbances was carried out by Yang
& Kim (1991) for rotating plane Poiseuille flow. Initially, the wave number was
found to agree with the linear theory. However, the spa;nwise wave number is found
to decrease during the non-linear stage. This is believed to be due to the merging

of vortex pairs in an Eckhaus mechanism of wave number selection.

6.3.3 Curved channel flow with spanwise rotation

The combined effects of curvature and rotation result in the stabilizing/destabilizing
flows with some new features in a rotating curved channel, especially when the Cori-

olis force counteracts the centrifugal force. The criterion to determine the inviscid
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stability is the generalized Rayleigh’ criterion derived in §6.2.1. Also shown in §6.2.1
are stable/unstable regions for the two cases at small gap approximation: low rota-

tion rate and high rotation rate.

It appears. that the literature on the stabilizing/destabilizing flows in a rotating
curved channel is rather limited. Matsson & Alfredsson (1990) mad - linear sta-
bility analysis for a channel with infinite span and small curvature r tio. and flow
visualizations for a channel with spanwise aspect ratio of 28 and a curvature ratio
of 0.025. From the linear stability theory, they show that there is a region where
centrifugal and Coriolis effects nearly completely cancel cach other. This increas-
es the critical Reynolds number for the onset of instahility significantly. The flow
visualization experiments show that a complete cancellation of Dean veotices can
be obtained for low Reynolds number at a rotation rate agreement with prediction-
s by linear stability theory. Furthermore, the rotation is found w he capable to
completely cancel the secondary instability occurring at high Reynolds number in
curved channel flows. As well, there are evidence that the principle of exchange of

stabilities is not valid in a certain parametric region.

In this region, the critical Reynolds number was found by Matsson (1993b) to
be determined by an instability in the form of travelling, slightly inclined, strecam-
wise vortices. However, for ar axisymmetric oscillatory motion, the experimental

observation of the time depr.ndent motion is still lacking.

The Eckhaus instability analysis by Guo & Finlay (1991) also includes the rotat-
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ing curved channel flows. They show that the splitting and merging of vortex pairs
can also occur in the rotating c: rved channel flows due to the sccondary instability

with respect to the two-dimensional, spa: .ise-periodic disturbances.

6.4 Experimental Apparat—- and Technique

. schematic diagram of the ex;.  .cmal apparatus iz shown in Fig.6.7. It
consists of a test section, a rotating table with the rotating seal, an air supply

system and a smoke generator.

The rotating table is driven by an electric motor w'th adjustable speed drive and
the range of the rotating speed is n = 0 ~ 500 rpm for this work. The rotational
speed is measured by using an optical slot switch running on a disc with equally
spaced 60 holes near its perimeter. The signal from the switch is fed to a Hewlett
Packard 1P 5314A Universal counter. With 60 holes in the disc, the frequency in

H z equals the rotational speed in rpm.

A second disc with a single hole provides the signal for firing the General Radio
1540 Strobolume by way of a delay generator/single flash flip-flop which allows visual
~bservation using a slit light source with one flash per rotation and also permits a

single, properly timed flash for photographing the whole flow field.

The building compressed air is used as the fluid. The air flow rate is measured

by a Meriam flow element with a calibrated differential pressure transducer. The
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smoke generated by burning Chinesc incense sticks is injected through a dispersing
tube before the test section as shown in Fig.6.7. Tho very tiny smoke particle,
subjected to neglected gravitational and rotational buoyancy forces relative to the
drag forces, marks tluid particle trajectories. The smoke patterns are photographed
instantly at the exit of the test section revealing the flow pattern. This provides an
end-view of the secondary flow pattern for an observer looking upstream into the
channel cross-section. A Nikon FM2 single lens reflex camera and Kodak T-Max

black and white film P3200 are used.

The various test sections may be installed on the turning table. The test sections
used are summerized in Table 6.3. A square cross section represents a special case

of rectangular channel.

Four typical test sections, denoted by Ts-A, Ts-B, Ts-C and Ts-D, arc shown in
Fig.6.8. Ts-A consists of an entrance spiral square channel with axial length 0.85m
and a curved square channel (270° bend with axial length of 1.2m) with constant
radius of curvature R, = 25.4cm. The top view and the exit cross-section are shown
in Fig.6.8(a). The curved square channel has cross-section 5.08 x 5.08crm?®. The
air flows through a rotating straight tube (inside diameter=4cm) along the axis of
rotation, and then enters the spiral square channel before entering the test section.

The test section was madc from acrylic sheets.

Ts-B, also made from acrylic sheets, consists of an entrance spiral rectangular

channel with axial length 1.25m and - <. =4 rectangular channel (270 bend) with
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constant radius of curvature R, = 25.4cm. The top view and the exit cross section for
T's-B are shown in Fig.6.8(b). The air flows through a rotating straight tube (inside
diameter=4cm) along the axis of rotation and then enters the spiral rectangular

channel before flowing into the curved channel.

Ts-C consists of a plenum box (15.24crm cube), a smooth contraction from 15¢m
dia. to 3.81cm dia. ove: the length of 12em, and a plexiglass test tube (dia.
d = 3.3lem. length | = 82em). The top view of T's-C" is shown in Fig.6.8(¢).
The plenum box and contraction section were designed to obtain an approximately
uniform entrance velociiy to the test section. The air flows through a rotating verti-
cal straight tube (inside diameter=4cm) along the axis of rotations and then enters

the plenum box and contraction section before entering the straight tube.

Ts-D. Fig.6.8(d). is basically similar to Ts-C. The differences are plexiglass test
channel and the contraction section from the plenum box to the test channel. The
plexiglass test channel for Ts-D is a squarc channel with cross section=2.51 x2.54cm?
and length=>52 cm. The contraction is a smooth section from a cross-section (15.2:4

15.24¢m?) 1o a cross-section (2.54 x 2.54cm?) over a length of 12¢m.

6.5 Results uiud Discussion

This discussicii will focus only on the phenomena relating the stabilizing/destabilizing
influence caused by the centrifugal and/or Coriolis forces. As mentioned in §6.2, both

influences occur simultaneously. Although the generalized Raylicgh’s criterion may
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offer a possibility of determining the boundary between the stable and unstable re-
gions for an invicisd fluid in the sense of the primnary instability, the precise division
between stable and unstable regions is not possible from the flow visualization for a
real fluid. Furthermore, the secondary instabilities may introduce further difhiculty

for determining the boundary.

The end-view photographs are to be shown for Ts-A. Ts-B. Ts-C'and Ts-D with
spanwise direction vertical and radial direction horizontal. For the cases of Ts-A
and Ts-B, the convex (inner) wall is on the left and the concave (outer) wall is
on the right. For the cases of Ts-C and Ts-D. the corotating side (low pressure)
is on the left and the antirotating side (high pressure) is on the right. Different
test condition for a given test section is characterized by two parameters. namely.
Reynolds number Re and rotation number Ro. The channel width is used as the
characteristic length in Re and Ro for the cases of Ts-A, Ts-b and Ts-D while the
diameter of the tube is emploved as the characteristic length for the case of Ts-C.
For a given set of Re and Ro, several photographs, with each taken at different

instant. are usually given to show the time variation of the flow.

Two typical cases are shown in Fig.6.9 for Ts-C and Ts-A respectively to show
the overall effects of stabilization (Fig.6.9(a)) and destabilization (Fig.6.9(b)). As
shown in these photographs, the stabilizing effect can cause flow relaminarization
from turbulence to laminar (Fig.6.9(a)). The destabilizing effect can lead to an early

transition from laminar to turbulence (Fig.6.9(b)).
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The results of Fig.6.9 show only the end result of two of the phenomena under
investigation. Our discussion here is first to present some detailed, typical visual
results that bear on these phenomena, and how they are affected by both Reynolds
number and rotation number. Next, we shall examine some visual evidence con
cerning the several interesting structures of the stabilizing /destabilizing flows due

to the centrifugal and/or Coriolis forces.

In §6.5.1. we observe the effect of rotation number on the visual results of flow
for T's- B at low Reynolds number (Re = 110). This Revnolds number represents
a Dean number of 35 which is below the critical Dean number De, for the onset of
Dean vortices in a stationary curved rectangular channel with an aspect ratio of 10
(D¢, = 41. see Cheng et al. 1977). 1ne discussion in §6.5.1 is extended to the case
of intermediate Revnolds number of 452 in §6.5.2. This Reynolds number gives a

Dean number .+ . {3 which is higher than Dec..

In §6.5.1 and §6.5.2. we arc mainly concerned with the destabilizing relate..
phenomena. We shift our attention to the stabilizing phenomena in §6.5.3 through
examining the effect of rotation number on the visual results of flow for T's-C at

higher Reynolds number ( Re = 3000).

In §6.5.4, we show the visual evidences of Dean/Coriolis vortices oscillating in
various modes and flows in the region with two potentially unstable layers. The
more complete results are shown in Cheng ef al. 1992, Cheng & Wang 1993a,

1993b, 1993c, 1994a. 1994b, 1994c and Wang & Cheng (1995).
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6.5.1 Visual results for T's-B at R =110

For fully developed laminar flow in a stationary curved rectangular channel (n =
0) with an aspect ratic of 10, the critical Dean number for the onset of Dean vortices
(streamwise vortex rolls) is known to be 41 with the gap size a as the characteristic
length (Cheng et al. 1977). With an entrance spiral ch~nnel length of 1.25m and
a subsequent curved rectangular channel (length=1.2m) with constant radius of
curvature, the flow at the exit of the channel is believed to be fully developed

(1/d = 96.5)

The end-view of flow in the cross section is illustrated in Fig.6.10. With vanishiug
rotational speed (n = 0), The stabilizing/destabilizing effect on flow is caused by
the centrifugal force alone. The analysis based on the Rayleigh’s criterion in §6.2
and §6.3 shows that the base flow is stabilized near the inner wall by the centrifugal
force, and is destabilized near the outer wall. The flow near the inner wall appears,
therefore, steady and laminar. This can be seen by comparing the two photos taken
at different instants. The flow near the outer wall, however, appears unsteady and
wavy duc to the destabilizing effect of the centrifugal force. Some smaller vortices
in the destabilizing region are also observed. The effect of the upper and lower side
walls causes the end vortices to appear near the upper and lower side walls. The
size of the end vortices is of the order of the gap size a. For this low Reynolds
number, the centrifugal force is not strong enough to form Dean vortices, and the

unsteadiness of the flow in the destabilizing region is also rather weak.
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The value of Ro for the case of n = —21 falls in the region where two potentially
unstable regions separated by two stable regions exist. The competition of the two
destabilizing mechanisms (centrifugal instability and Coriclis instability) leads to a
more complicated flow as shown in Fig.6.10. In particular, the secondary flow in the
cross section appears as four elongated vortices, and the oscillating feature can be

inferred by a comparison between the photos taken at different instants.

Two resources possibly conttibute to this oscillating feature, i.c. the secondary
instability of the primary instability or invalidation of the principle of exchange of
instabilities in this region. The flow visualization experiments arc not appropriate
to determine the exact cause. However, the linear stability analysis by Matsson
& Alfredsson (1990) shows that the principle of exchange of stabilitics is not valid
in a parameter region with low negative rotation where the two unstable regions,
separated by two stable regions, appear (§6.2). As well, they found an oscillating
mode in this region. Hence, it may be reasonable to suggest that the invalidation of

the principle of exchange of stabilities is responsible for the oscillatory phenomenon.

When the rotation becomes more rapid to n = —44 (Ro = —1.659) in the neg-
ative direction, the flow becomes fairly steady in the whole cross section. This
indicates that the Coriolis instability can completely cancel the centrifugal insta-
bility. However, the flow near the inner wall becomes unsteady again when the
rotation speed reaches at —65rpm (Ro = —2.45), and an additional pair of vortices

appears near the inner wall. The additional pair of vortices becomes more notable
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at n = —86 (Ro = —3.242).

Upon increasing the rotation speed further in the negative direction, the vortices
become distorted, onc observes a gradual breakdown and a vigour busting from the
inner wall. The flow near the inner wall appears highly unsteady, and is somewhat
similar to the bursting flow in the turbulent boundary layer (Kline et al. 1967)
described in §6.2. This process can be seen from Fig.6.10 for n < —153. This
bursting phenomenon, resulting smaller scales of motion, becomes stronger as the

rotation speed increases in the negative direction.

The bursting phenomenon is believed to be due to the secondary instability and
has two intercsting features: (i) It appear only along the inner wall; and (ii) As
the rotation speed increases in the negative direction, the region where the bursting

occurs becomes smaller toward the inner wall.

According to the gencralized Rayleigh’s criterion, the flow is stable wiih respect
to the primary instability in the whole cross section for the high | Ro | (see §6.2).
The highly unstable, turbulent-like flow near the inner wall implies that for the
casc with rapid negative rotation, the instability is determined by the secondary
instability rather than the primary instability. As well, at high negative rotation
the secondary instability leads to a low Reynolds number turbulence (say, Re = 110)

near the inner wall.

According to the generalized Rayleigh’s criterion, the base flow is stable near

the inner wall, unstable near the outer wall when the rotation is positive. As the
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rotation becomes more rapid, the stable region extends towards the outer wall (§6.2).

Finally, the flow becomes the stable in the whole cross section at high Ro.

At low positive Ro (Ro = 0.377,n = 10), the flow is fairly stcady and laminar
near the inner wall, and weakly wavy near the outer wall. Upon increasing the
rotation speed to n = 26 (Ro = 0.98). the large scale vortices begin to appear along
the outer wall. At n = 44 (Ro = 1.659), many different scales of vortex motions

become distinctive. and the flow becomes more unsteady.

Upon increasing the rotation speed further, the bursting phenomena occur along
the outer wall, resulting a smaller scale, turbulent-like flow near the outer wall.
This shows tha* the instability is also determined by the secondary instability at
high positive rotation speed. Once again, the secondary instability results in a low
Revnolds number turbulence near the outer wall at %' sher positive rotation speed.
The symmetry between the directions of rotation is, then, valid not only for the

primary stability (§6.2) but also for the secondary stability.

6.5.2 Visual results for Ts-B at Re = 452

The end-view of the flow is shown in Fig.6.11 for several rotation numbers Ro
at Re = 452. This Reynolds number correspords to a Dean number 143 which
is higher than the critical Dean number De. (=41) for the onset of Dean vortices
in a stationary channel with an aspect ratio of 10. The pairs of counter-rotating

Dean vortices at n = 0 is indicated by mushroom-shaped smoke patterns near the
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outer wall. The differences in shape and spacing at different spanwise po<' ions may
be due to different amplitudes and locations of the small upstream disturbances
which trigger initial vortex development. Some mushroom-shaped smoke patterns
have a rocking type of motion while the others oscillate radially or spanwisely. The
merging/splitting of vortex pairs is also evident. This is believed to be due to a

different type of secondary instability of the Dean vortices.

At n = —10 (Ro = —0.0914), therc :xist two potentially unstable regions alter-
nating by two stable regions. Once again, the competition of the two destabilizing
mechanisms results in a more complicated How in the whole cross section as shown
in Fig.6.11. At n = —44, the mushroom- shaped smoke patterns along the outer
wall (Dean vortices) at n = 0 are coripletely cancelled by the negative rotations,
and the Coriolis force instability gives rise to Coriolis vortices on the inner (convex)
wall as indicated by the mushroom-shaped smoke patterns. The different types of
vortex motions are observed, and are believed to be due to different types of the

secondary instabilities of the Coriolis vortices.

Upon increasing the rotation speed to n = —107 and —188, the Coriolis vortices
on the convex wall become smaller, fairly steady and symmetric. Further increase
in the rotation speed, however, leads the Coriolis vortices to be broken. The flow
near the inner wall becomes highly unsteady and small scale motion, and is similar
to the bursting flow in the turbulent boundary layers. This confirms one previous

result that the instability is determined by the secondary instability rather than the
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primary instability at high negative rotation rates.

The positive rotation enhances the secondary instabilities of the Dean vortices.
This leads to a twisting Dean vortex flow at n = 38 (Ro = 0.347) with a stiong
rocking type of motion. With further increase of the rotational speed, the size of the
Dean vortices on the outer wall becomes smaller (n = 81). The different kinds of

vortex flows are observed to coexist due to various possible secondary instabilities.

When the rotation speed increases to n = 125, the secondary instabilities cause
the vortex to be broken, and the flow becomes highly unsteady. Continuity of
this process results in a flow near the outer wall very like the bursting flow in the
turbulent boundary layver at high positive rotation rates. This complex process is

visualized in Fig.6.11 through a series of photos for different rotational speeds.

6.5.3 Visual results for Ts-C at Re = 3000

When Re = 3000. the flow is fully turbulent in a stationary straight tube. OQur
failure to visualize the flow field for zero or small Ro indicates that the flow is or very
near the fully turbulent since the smoke injection method is not valid to visualize
turbulent flow. It is widely accepted today that the bursting phenomena discussed
in §6.2 are the source of the largest part of the newly produced Reynolds shear stress
and turbulence energy. The basic bursting structure of the wall-layer flow is then
believed not to be changed by the rotation for low rotation number Ko. However,

the relaminarization will occur if the rotation number is high enough.
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Shown in Fig.6.12 is the end-view of flow for Ts-C at Re = 3000. At n = 59,
the large scale vortex flow appears in the whole cross section. The pair of vortices
near the high pressure side is the Coriolis vortices. The secondary instability causes
these vortices to oscillate and twist. The flow appears to be laminar in the whole
cross section. This implies that the formation of large scale vortex flow annihilates
turbulence, and the relaminarization process, whose detailed features can not be
visualized clearly through smoke injection method, takes place at lower rotation

rates.

Upon increasing the rotation speed to n = 118, the secondary instabilities of
the Coriolis vortices make the flow near the high pressure side difficult to discern.
Further increasing of rotation speed leads the flow near the high pressure side to be

like the Taylor-Proudman flow.

6.5.4 The Dean/Coriolis vortices and flows in the region

with two unstable layers

Two important stabilization/destabilization related features are the appearance
of the Dean/Coriolis vortices and two unstable regions alternating by two stable
regions in a curved channel spanwisely rotating with a slow negative rotation rate.
They are of special interest because they may cause significant alternations to flow
structure and wall heat transfer distribution. In addition, they have an important

effect on transition from laminar to turbulent flow and relaminarization from turbu-
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lent to laminar flow. Further discussions are made here about these two phenomena.

The Dean/Coriolis vortices

The Dean/Coriolis vortices may be present as a result of centrifugal/Coriolis
instabilities imposed on the flow by curvature/rotation. Experimentally, these vor-
ticos are identified by the mushroom-shaped smoke patterns. Such patterns form
because of spanwise variations of streamwise velocity due to the different inwash
and outwash regions associated with pairs of counter-rotating vortices. The stems
of individual mushroom shapes mark the region of flow away from the wall surface

between the vortices which make up one pair.

Possible various kinds of secondary instabilities of the Dean/Coriolis vortices
may produce the Dean/Coriolis vortices with various different features in different
parameter regions. The properties of disturbances triggering initial vortex develop-
ment (such as their steadiness, uniformness along the spanwise direction etc.) may
also lead to various different Dean/Coriolis vortices. Consequently, we may observe
different mushroom-shaped smoke patterns due to single or combined effect of two
causes. In a fully developed region at larger downstream locations, which the present
work is mainly concerned with, the Dean/Coriolis vortices become fully developed
and should be less sensitive to the initial disturbances because once initiated, vortex
behaviour and development are strongly controiled by the centrifugal/Coriolis in-

stabilities from the curvature/rotation of the channel. The different Dean/Coriolis
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vortices observed in our experiments are, therefore, believed to be caused by their

secondary instabilities.

The Dean/Coriolis vortices observed can be divided into two groups: symmetric
and nonsymmetric vortices with respect to radial-streamwise planes. The symmetric
Dean/Coriolis vortices appear usually at dynamic parameters close to their critical
values for the onset of the Dean/Coriolis vortices. Such vortices are identified by
mushroom stems which form the radial symmetry lines. The mushroom-shaped
smoke patterns are mirror images on each side of the line. In other word, the two
vortices in each pair are similai  The nonsymmetric Dean/Coriolis vortices are often
observed at higher dynamic parameters. When viewed in radial-spanwise planes,
such vortices are distorted generally by spanwise and/or radial uns:eadiness in the

flow such that no symmetric line is observed.

symmetric Dean/Coriolis vortices Examples of smoke patterns from symmet-
ric Coriolis vortex flow are illustrated in Fig.6.13. They are obtained for Ts-D at
Re = 1000, Ro = 0.066; Re = 1000, Re = 0.111 and Re = 1500, Ro = 0.107. The
patterns are especially interesting because they show only small unsteadiness. No
significant time variations on shape and size can be observed. The narrow mush-
room stems indicate narrow innerwash regions from the high pressure wall. And
the large mushroom petals imply large, spread-out sidewash and outwash region-
s. A comparison of the smoke patterns at Re = 1000, Ro = 0.066 with those for

Re = 1000, Ro = 0.111 and Re = 1500, Ro = 0.107 shows that the location of the
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symmetric Coriolis vortices can be at the center or off the center of the high pressure

wall for a square cross section.

The mushroom-shaped smoke patterns at Re = 452, Ro = —1.718 in Fig. 6.11
are also for symmetric Coriolis vortex flow. An additional sct is presented in Fig.6.1.1.
They are ohtained for Ts-B at Re = 193.6 Ro = —1.18. The fairly uniform size and
shape at diflerent spanwise positions indicate that the flow is fully developed since
otherwise the difference will result from the sensitivity of developing vortices to

nitial disturbances.

A comparison of the smoke patterns in Fig.6.13 with those in Fig.6.11 (at Ho =
—1.72) and Fig.6.14 shows that the shape of the symmetric Coriolis vortices changes
with the operating parameters. This is consistent with the simulations (Finlay
1990) which indicate that vortex shape changes occur with spanwise wavenumber,

Reynolds number and rotation number.

radiall, oscillating Dean/Coriolis vortex flow Two examples of radially os-
cillating Coriolis vortices are presented in Fig.6.15. They occur at Re = 600, Ro =
—1.37 for Ts-A and at Re = 193.6, Ro = —0.663 for T's-B respectively. At this stage
of flow, very little spanwise oscillation is present and mushroom patterns seem to
move almost exclusively in the radial direction. When these oscillations appear by
themselves, they are mostly symmetric Coriolis vortices, and the radial unsteadiness

decreases in magnitude as overall average vortex height increases.
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The vortex heights at different span locations in Fig.6.15.(b) show relatively
small variations in height and spacing. This indicates that the Coriolis vortices are
fully developed along the streamwise dirc~tion and the oscillation is caused by the

secondary instability of the Coriolis vortices.

spanwisely oscillating Dean/Coriolis vortex flow The mushroom-shaped smoke
patterns at Re = 500, Ro = 0 for Ts-4 and at Re = 581, Ro = —1.12 for Ts-B are
shown in Fig.6.16. The time variations in shape show that very little radially os-
cillation is present and mushryom patterns seem to move almost exclusively in the
spanwisc direction. When these oscillations occur by themselves, they are mostly
symmetric. The uniform height and spacing in spanwise direction provide evidence
of fully developed vortices. As well, the oscillation is believed to be caused by the

secondary instability.

simultaneous spanwise and radial oscillating Dean/Coriolis vortex flow
The Mushroom-shaped smoke patterns, oscillating simultaneously in the spanwise
and radial directions arc observed without a twisting motion. Two examples are
shown in Fig.6.16 for Ts-A at Re = 550, Ro = 0 and Ts-D at Re = 1000, Ro = 0.194.
The vortices in this vortex flow are also nearly symmetric, and generally have larger-
scale oscillations and greater unsteadiness than the smoke patterns identified with

radial, span or twisting modes.
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twisting Dean/Coriolis vortex flow Finlay ef al. (1988) and Finlay (1990)
simulated curved and rotating channel flows using three-dimensional incompressible
time-dependent Navier-Stokes equations. They found evidence that the Dean and
Coriolis vortices develop two different types of travelling waves in the streamwise di-
rection. Undulating Dean/Coriolis vortex flow contains long streamwise wavelengt hs
and very small growth rates which make them difficult to observe experimentally.
Twisting Dean/Coriolis vortex flow contains much shorter streamwise wavelengt his
than undulating Dean/Coriolis vortex flow. This makes them to be observed more

readily.

Streamwise fully developed ravelling waves result in same events at one time
but different streamwise locatior. as at one streamwise location but different times.
With twisting, the vortex centers oscillate only a little in the spanwise direction.
Most motion occurs in the radial direction as the vortices in one pair oscillate in

shape and strength.

The smoke patterns for twisting Dean/Coriolis vortices are mushiroom-shaped
with a rocking type of motion. Examples of smoke patterns from twisting Dean/Coriolis
vortices are presented in Fig.6.18. They were obtained at Re = 1000, Ro = 0.309
for Ts-D, at Re = 600, Ro = 0 for Ts-A and at Re = 581, Ro = 0 for T's-B. It is
observed that the twisting Dean/Coriolis vortices are nonsymmetric. The Reynold-

s number for the two cases with twisting Dean vortices (Ro = 0} are large than

1.96 Re. with Re. as the critical Reynolds number for onset of the Dear vortices.



Chapter 6. Flow Visualization 293
These are consistent with the n  nerical simulations by Finlay et al. (1988).

For T's-B, we found that the rocking motion is rarely observed alone. rather it is
usually ohserved in conjunction with at least one other mode of oscillation. In many

cases, rocking vortex pairs are adjacent to pairs with a different type of motion.

small vortex pairs Using linear stability theory and spectral methods. Guo &
Finlay (1991) examined the Eckhaus stability of the Dean/Coriolis vortices. Their
results have also been confirmed by nonlinear flow simulations. They found that
the Eckhaus stability boundary is a small closed loop. Outside the boundary, the
Fckhaus instability causes the vortex pair to split apart by the formation of a new
vortex pair or merge together, and no vortex flow is stable to spanwise disturbances
when Re¢ > 1.7Rec.. When Re is not too high (Re < 4Re.). the wavenumber of
vortices are sclected by the Eckhaus instability. Similar phenomena have also been
reported by Finlay et al. (1988), Finlay (1990) and Bland & Finlay (1991) in their

numerical simulations of channel flows with curvature or rotation.

The vortex splitting/merging and readjustment of the spanwise wavenumber are
clearly evidenced in - radial-span cross section by the presence of small vortex
pairs at some instants. Examples are shown in Fig.6.11 for Ts-B at Re = 452, Ro =
0.—0.0914, —0.384 and —0.978. Additional examples are shown in Fig.6.19 for Ts-B
at Re = 193.6. Ro = 0.150; Re = 323.3, Ro = —0.819; Re = 581. Ro = —0.696 and

1.12.
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complex oscillating models In some cases. usualiy with high dynamical pa-
rameters, the oscillation of the Dean/Coriolis vortices appear to be so chaotic that
mushroom-shaped patterns are barely recognizable or can not be identified clearly.
Photographs of such patterns are shown in Fig.6.20 for Ts-B at Re = 193.6, Ro =

and Re = 581, Ro = 0.534.

flow patterns in rotating curved channels with slow negative

rotation

For flows in a curved channel rotating spanwisely with a low negative rotation
speed. there are two potentially unstable regions alternating with two stable layers
(§6.2). The competition of the two destabilizing mechanisms causes the flow to
become very complicated. We have already scen two examples of such flows in
Fig.6.10 (Ro = —0.792) and in Fig.6.11 (Ro = —0.0914) for Ts-B with aspect ratio
of 10. Such flows for Ts-A are presented in Fig.6.21 for four pairs of e and Ho.
It is worthy to note that the flows in Fig.6.21 arc qualitatively similar to those
predicted numerically in the region where overall, the Coriolis forces just neutralize
the centrifugal forces. However, a further detailed stability analysis is required in

this region to fully understand the features of such flows.



Chapter 6. Flow Visualization 295

6.6 Concluding Remarks

An experimental apparatus was designed and constructed especially to visualize
the fully developed stabilizing/destabilizing flows in channels with curvature, span-
wise rotation or both in terms of end-view of flow at the exit of the test sections.
Several different test sections were used, and the results shown here are some typical
ones for four test sections. Although the main objective is to obtain some general
features about the stabilizing/destabilizing flows from the visualization experiments,
a generalized Rayleigh criterion has been formulated about the primary instability

of flows in rotating curved channels to understand some experimen - esults.

The stability of flows in rotating curved channels is, on average, characterised
by threc parameters, namely, curvature ratio o, Reynolds number Re and rotation
number Ro. For large values of | Ro |, both primary and secondary instabilities
exhibit a reasonable symmetry between the directions of rotation. As well, the flows
at large | Ro | werc found to be coutrolled by the secondary instabilities rather
than the primary instability. In particular, the secondary instabilities lead the flow
at large | Ro | to be unsteady and turbulent somewhat like the bursting flow in
the turbulent boundary lavers. This appear to produce the low Reynolds number

turbulent flows.

For flows in rotating curved channels with slow negative rotation, there exist
two potentially unstable regions alternating by two stable regions. The competi-

tion of the two instability mechanisms leads to a complicated flow. The detailed
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nature of such flows remains to be explored in future through stability analysis and

experimental measurements.

The Dean/Coriolis vortices can also exist on the unstable side in the relaminar-
ization process of the flow from turbulent to laminar. In particular, their formation
in the flows with high Reynolds number annihilates the turbulence, and leads to a

high Reynolds number laminar flow.

Pairs of counter-rotating Dean/Coriolis vortices are observed as the mushroom-
shaped smoke patterns. The narrow mushroom stems indicates the narrow outwash
flow regions while large mushroom petals imply the large, spread-out sidewash and
inwarsh regions. The fairly steady, symmetric Dean/Coriolis vortices have been
observed in some parameter regions. They can appear in the center or ofl the center
of the high pressure wall for a square cross section. As well, their size and shape

chaage with the operating parameters.

Secondary instabilities of the Dean/Coriolis vortices lead them to oscillate in
various forms even in the streamwise fully developed flow regions. We have observed
several oscillating modes including (1) one with mostly radial motion, (2) onc with
mostly spanwise motion, (3) one with significant simultancous radial and spanwise
motion, and (4) one with rocking motion. In addition, the oscillating modes are also
present with motion so complicated that they are difficult to describe from the flow
visualization results. The experimental results are to be confirmed theoreticaily and

numerically in the future.
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In radial-spanwise planes, the twisting Dean/Coriolis vortices are evidenced by
nonsymmetric mushroom-shaped smoke patterns with rocking motion. The region
where the twisting Dean/Coriolis vortices are observed appears to be in agreement
with that predicted by Finlay et al. (1988) and Finlay (1990). This kind of vortex
flow differs from that with simultaneous radial and spanwise motion mainly in three
aspects: (i) the twisting vortices are nonsymmetric but the simultaneous radial and
spanwise oscillating vortices are symmetric, (ii) with twisting, the spanwise locations
of vortex centers oscillating only a little. With simultaneous radial and spanwise os-
cillating, the spanwise locations of vortex centers can oscillate significantly, and (iil)
the simultaneous radial and spanwise oscillating Dean/Coriolis vortices usually have
larger-scale oscillation and greater unsteadiness than the twisting Dean/Coriolis vor-

tices.

Vortex pairs sometimes seem to appear and disappear as indicated by small
vortex pairs observed temporarily in radial-spanwise planes for some experimental
conditions. This is believed to be caused by the Eckhaus instability discussed by

Guo & Finlay (1991).
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Figure 6.1. Sketch relating to displaced particle discussion
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Figure 6.5. The mechanics of streak formation (Kline et. al.
1967)
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Figure 6.6. The mechanics of streak breakup (Kline et. al. 1967)
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Ro = 0.142 Ro = 0.367

(a) Re = 4500 (Ts-C)

Ro=10 Ro =0.274 Ro = 9.77

(b) Re = 600 (Ts-A)

Figure 6.9. Variations of flows with Ro
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Figure 6.10. Variations of flows with Ro and time at Re = 110

for Ts-B
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(b) Re = 1000, Ro = 0.111
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Figure 6.13. Symmetric Coriolis Vortices for Ts-D
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Figure 6.14. Symmetric Coriolis Vortices at Re = 193.6,Ro =
—1.18 for Ts-B)

on
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s

(b) Re =193.6, Ro = —0.663 ( Ts-B)

Figure 6.15. Radial oscillating Coriolis vortices
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(a) Spanwise oscillating Dean vortices
at Re = 503, Ro =0 for Ts-A

(b) Spanwise oscillating Coriolis vortices
at Re = 581, Ro = —1.12 for Ts-B

Figure 6.16. Spanwise oscillating Dean/Coriolis vortices
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Dean vortices at Re = 550, Ro = 0 for Ts-A
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Figure 6.17. Simultaneous spanwise «nd radial oscillating Dean/ Coriolis

v .ilces
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(b) Twisting Deaortices at Re = 600, Ro = 0 for Ts-A

(c) Twistil{g Dean vortices at Re = 581, Ro = 0 for Ts-B

Figure 6.18. Twisting DI:an/Coriolis vortices
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Figure 6.21. Flows in the region with two unstable layers for Ts-A
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Chapter 7

Conclusions and

Recommendations

Three different approaches are used to study the laminar flow transitions, in-
stabilities, and combined free and forced convective heat transfer problems for fully
developed flows in rotating, curved channels with circular and rectangular cross

sections.

In particular, a three-parameter regular perturbation method and a finite-volume
numerical method are developed to solve the governing cquations for the flow and
heat transfer in channels with simultaneous curvature, rotation and heating/cooling.
The perturbation method is for the circular tubes, and the numerical method for the
rectangular channels. In these two parts of the work, we constrain ourselves to the

steady, hydrodynamically and thermally fully developed flow under the condition of

344
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uniform wall heat flux with peripherally uniform wall temperature. We also confine
ourselves to examine the symmetric flows with respect to the horizontal center plane
of the channel by imposing a symmetric condition on the plane in our numerical
scheme. The results cover the nature of the flow transition and its effect on the flow
resistance and combined free and forced convective heat transfer for both heating

and cooling cases under positive or negative rotations.

Using air as the fluid, the flows in channels with curvature and/or rotation are
visualized in terms of end-view at the exit of the test sections through injecting
smoke into the flows. In this part of the work, we also confine ourselves to the
fully developed flows, and focus our attention on the phenomena due to the stabi-
lizing/destabilizing influence of the uarvature and/or rotation. Several test sections

are used, and the results shown her ire some typical ones for the four test sections.

7.1 Perturbation Solutions

A unique, uniformly convergent polynomial is found to be associated with any
continuous function of one or more variables. It can be used as the approximation of
the function, and can be obtained from the governing partial differential equations

of the function.

Assuming that the stream function ¢ of the secondary flow, the main velocity
w and the temperature 7 are continuous on the curvature ratio o, the rotational

Reynolds number Req and the rotational Rayleigh number Rag, a three-parameter
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regular perturbation method is developed to obtain an approximate analytical so-

lution for velocity and temperature fields in a rotating curved circular tube

In the method, each of the functions ¢, w and 7 is expanded in a triple power
series in terms of o, Req and Rag. The coeflicients in these expansion series are
governed by a set of nonhomogeneous harmonic and biharmeonic differential equa-
tions. The successive solutions of the these equations will produce as many terms
as desired for the three series depending upon the accuracy required. In this work,

the solution is carried up to and including the second-order terms.

All the first order terms for the series of secondary flow result in a secondary
flow of two-cell counter-rotating vortices with the centers of circulation located on
the vertical centerline while all the second order terms cause the secondary flow
to exhihit a four-cell pattern with the centers of circulation located away from the
vertical centerline. As well, the secondary flows resulting from either the first order
terms or the second order terms alone are all symmetric with respect to both hori-
zontal and vertical centerlines. The asymmetric effect of the second order terms on
the first order terms about the vertical centerline, however, destroys the symmetry
with respect to the vertical centerline in the secondary flow from all the first order

and second order terms in the series.

The solutions of velocity and temperature are found to be infinite series in powers
of the three pairs of parameters with each characterizing the flow and heat transfer in

the Dean problem, the Coriolis problem and mixed convection problem, respectively.
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The resultant secondary flow due to the simultaneous effect of the curvature,
rotation and heating/cooling may be grouped under three broad patterns depending
on the values of the two dimensionless parameters L, and L;. The former represents
the ratio of the Coriolis force to the centrifugal force, and the latter donates the ratio

of the buoyancy force to the centrifugal force.

The inward Coriolis force and/or buoyancy force can arise in the cross plane
when the rotation is negative and/or when the fluid is cooled. They may cause
the direction of the secondary flow to reverse by overcoming the outward centrifugal
forces. The flow reversal occurs (after passing through a four-cell vortex fiow region)
cither along the wall or from the center part of the cross plane depending on the

value of Lo, i.e. the ratio of buoyancy force over the centrifugal force.

The secondary flow changes the main velocity and temperature profiles and caus-
es the locations of the maximum main velocity and the extreme temperature to move
away from the center of the tube in the direction of the secondary velocities in the
middle of the tube. This causes a pronounced peripheral variation of friction factor
and Nusselt number, and increases the mean friction factor and Nusselt number
significantly. However, in the region where the secondary flow appears as a four-cell
pattern, the secondary flow is too weak to modify the main velocity and tempera-
ture profiles effectively, such that they are essentially axisymmetric and parabolic
with extreme value appearing along the horizontal centerline at or very close to the

center of the cross section. As well in this region, the friction factor and Nusselt
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number are identical or very close to those for constant property forced convection

problem in a stationary straight tube.

The profiles of the main velocity and temperature show that the boundary layer
theory is not valid for the analysis of the flow and heat transfer in a rotating curved

tube for a range of parameters considered in this work.

By setting any one or two of o, Req and Ragq to be zero, the solution reduces
to the corresponding six special cases, i.e., Dean problem, Coriolis problem, mixed
convection problem, Dean problem with the effect of rotation, Dean problem with
the effect of heating/cooling and Coriolis problem with the effect of heating/cooling.
As well depending on the region of the governing parameters, the secondary flow
with the simultanecw. ¢ are than one of the curvature, rotation and heat-
ing/cooling may be ¢ u='" .:iv'. similar to or completely different from that with

only one factor.

One area of future study is to extend the solution to include the higher order
terms by a computer, to identify the location and nature of singularities, and to
recast the perturbation solution series. Another is to expand the analysis to contain

the effects of unsteadiness and flow development.

A final area of future study is to perform the analysis of the sccond law of the
thermodynamics for the present problem. In particular, the properties of entropy at
points of flow transitions are of special interest because they may he used to classify

and determine the different bifurcation points and instabilities.
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7.2 Numerical Solutions

Numerical scheme developed in this work is capable to examine the laminar flow
transitions and heat transfer ranging from a weak rotation limit where the viscous
force dominates to a strong rotation limit where the Coriolis force dominates. Several

flow patterns, hitherto unknown, are revealed in the present study.

Curvature and rotation, in conjunction with heating/cooling introduce the cen-
trifugal, Coriolis and buoyancy forces in the momentum equations. Such body forces
cause similar instabilities (Centrifugal instability, Coriolis instability and buoyan-
cy instability) in the forms of streamwise oriented vortices (Dean-vortices, Coriolis-
vortices and buoyancy-vortices), resulting a two-pair vortex flow in a square channel.
Although the Dean-vortices always appear along the outer wall, the Coriolis-vortices
and buoyancy-vortices can occur either along the outer wall or along ihe iner wall
depending on the directions of rotatior and heat flux respectively. The Coriolis-
vortices always appear in the high pressure side , along the outer wall when the
rotation is positive, but along the inner wall when the rotation is negative. The
buoyancy-vortices may apuear either in the high pressure side or in the low pressure
side depending on the direction and the rate of heat flux. They occur along the outer

wall when the fluid is beated, but along the inner wall when the fluid is cooled.

The shape and size of the Dean-vortices, the Coriolis-vortices and the buoyancy-
vortices are found to change with the dynamical parameters even in the fully devel-

oped flow region. Upon increasing Coriolis or buoyancy force, the disappearance of
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the Coriolis-vortices or the buoyancy-vortices is observed. No such phenomenon is
seen for the Dean-vortices. Furthermore. the reappearance of the buoyancy-vortices,

upon increasing the buoyancy force further, is also found in this study.

For a non-isothermal flow, there is another mechanism responsible for the appear-
ance of an additional pair of vortices, i.e. the merging of the vortices in the region
where the centrifugal, Coriolis and buoyancy forces just neutralize cach other. The

-~
additional pair of vortices formed in this mechanism is called merging-vortices in

this work. They may appear in the region near the center of the outer wall or inner

wall depending on the direction of rotation.

Between a viscous force dominated one-pair vortex flow and two- pair vortex flow
with the presence of the Dean-vortices, Coriolis-vortices or buoyancy-vortices, there
exist a one-pair vortex flow with an ageostrophic, virtually inviscid core. Another
two kinds of one-pair vortex flow exist after the disappearance of the Coriolis-vortices
upon increasing the Coriolis forces further. The axial velocity profile for the first
one assumes a Taylor-Proudman configuration in the core region with one maximuim
located on the horizonta. centreline. That for the second one is dumbbell-like with
two maxima or bar-convex dumbbell-like with three high velocity regions. The flow

in the core region is also geostrophic for the second kind of one-pair vortex flow.

When the rotation is negative and/or when the fluid is cooled, the inward Coriolis
force and/or buoyancy force can completely cancel the Dean-vortices and to give risc

to vortices on the inner wall. These inward forces can also cause the direction of



Chapter 7. Conclusions and Recommendations 351

the secondary flow to reverse by overcoming the outerward forces in the plane of
the cross section. The flow reversal occurs by passing through a multi-pair vortex
flow region where overall, the centrifugal, the Coriolis and the buoyancy forces just

neutralize each other.

The profiles of the main velocity and the temperature are quite similar when the
rotation speed is not so high. The similarity will, however, be broken at the rapid

rotation rate.

The flow resistance and heat transfer are significantly affected by the flow tran-
sitions. Iu particular, the Decan-vortices, Coriolis-vortices, buoyancy-vortices and
merging-vortices substantially change the distributions of the local friction factor

and Nusselt number with a remarkable increase in their mean values.

The new vortex flows, revealed in the present study, suggest possible further
.cscar -h concerning their instability since usually, an inflectional profile of the main
flow is associated with them. The analysis needs also further extension by removing
the limitations of symmetry (with respect to the horizontal centerline), steadiness
and fully development. Another area for further study is the properties of entropy

associated with the flow transitions.
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7.3 Visualization of Flows

The visualizations of stabilizing/destabilizing flows in channels with curvature
and/or rotation reveal five stabilizing/destabilizing related phenomena: (1) For large
values of | Ro |, both primary and secondary instabilities exhibit a symmetry about
the directions of rotation. As well, the flows at large | Ro | are found to be controlled
by the secondary instabilities rather than the primary instability. In particular, the
secondary instabilities lead the flow at large | Ro | to be unsteady and turbulent
very like the bursting flow in the turbulent boundary layers. This produces the
low Reynolds number turbulent flows. (2) When the curved channels rotate with
slow nczative speed, two potentially unstable reg’: Mt “mg by two stable
regions. exist in the cross-plane, resulting in a complizated variex flow. (3) The
Dean/Coriolis vortices can also exist on the unstable side in the relaminarization
process of the flow frcm turbulent to laminar. In particular, their formation in the
flows with high Reynolds number annihilates the turbulence, and leads to a high
Reynolds number laminar flow. (4) Secondary instabilities of the Dean/Coriolis
vortices lead the vortices to oscillate in various forms even ivi thie streamwise fully
developed tlow regions. We have observed scveral oscillating nimdes including one
with mostly radial motion one with mostly spanwise motion, onc with significant
simultaneous radial and spanwise moticn, and one with rocking motion. In addition,
the oscillating modes are also present with the motion so complicated that they are

difficult to describe from the flow visualization results. (5) It is possible to completely
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destroy the Dean vortices by rotation and to give rise to vortices on the convex wall

due to the Corialis force.

Further work concerning the experimental measurements and stability analyses
are required to confirm the results obtained in the present studv. The experiments
based on the stratified flow - rotating flow analogy and electromagnetic flow - ro-
tating flow analogy may be of special interest because they allow one to investigate
the flow and heat transfer under the effect of the centrifugal and Coriolis forces in a
stationary analogous system, and to measure the quantities of flow and heat transfer
under the isolated centrifugal force or Coriolis force. However, the experiments may

be rather difficult to perform.



Appendix A

Two Fundamental Theorems for

the Perturbatic:: ‘vIethod

Theorem 1 Any continuous function f(z) in z in the interval d < r <

¢* may be approximated uniformly by polynomials in this interval (Weierstrass's

Approximation Theorem!.

Proof Since we can always find a proper mathematical transfermation to map
the interval ¢ < xr < ¢ into an interval in 0 < z < 1, we assume that the interval

¢! < < ¢t liesin the interior of the interval 0 < = < 1 without loss of the generality.

1K.T.W. Weierstrass, iiber die analytische Darstellbarkeit soyenannter Willkiirlicher Funktionen
reeller Argumente, Sitzungsber. F. Akad. Wiss. Berlin, 1885, pp.633-639, 789-805; Werke, vol.3,

pp.1-37, Berlin, 1903.
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Then there exist two numbers ' and B* such that
0<f <<t <pt<i

We may assume that the continuity of the function f(z), which is continuous in the
interval ¢! < z < ¢* by the hypothesis, has been extended to the entire interval
g <z <ph
Consider the integral
1
L= [ (1 -yrdy

0

wiih n as the positive integers. This converges to zero with increasing n.

Note that

0< < (n+1)1-a*)"

where a is a fixed number in the interval 0 < o < 1. Then

-

i
lim i° =
Jim =0

which implies that for a sufficiently large n the integral from 0 to o constitute the

dominant part of the whole integral from 0 to 1.

By making the substitution

v=y+7r
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we have
Bh ) Bh-r
f) = (v-=x)"dv = ,/ fy+x)1 =y )dy=A+ B+
gt Bl—x
where
A= ; Sly+2)(1-y*)dy

b= /,a fly+2)(1 - y*)"dy

Bh-z (
C = / fly + )1 - yH)dy
and a is a positive number in the interval 0 < a < 1.

Let M be the maximum of | f(z) | for ' <« < g%, then

| Al< M/ (1 —y?)*dy = M1,

1
1
| C |< 1\'1/ (1—y*)"dy = M1,

Now rewriting B as

b = f(r)/_ (1—y*)dy +/_a [fly + ) = f(2))(1 - y*)"dy

o

A

=2f(z){(l, - 1,)+ D
where
D= [ Uftv+2) = 1)1 -5y
Note that the function f(r) iz continuous in the interval gl < = < A%, then for

arbitrary small § > 0, we can find an a = a(6) in the interval 0 < a < 1, depending

only on &, such that, for | y |< o and d<zr<ch

| fly+2) - f(z)|< 6
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And we have

o 1
ipisé [ a ~yrdy <6 [ (1-ytrdy =200,

1

Then

ﬁ"
| | Sl —(v-2)"dvi=| A+ B+ CI|<|A|+|B[+]|C]|
ﬁl

< OMI, +261,+2| fle) | (I = I,) < 2Mi, +261,+ 2| f(z) | I

Consider the polynomials P,{z)in z

fﬁ. Tyl = (y— 2)*dy

1
P.(z) = -
1,01 = y2)mdy
then
I,
| Po(z) — f(z) |< MI_ +6
Since
. I
27, =0

the term | Po(z) — f(z2) | may be made arbitrarily small for any z € [!,ct] by
a suitable choice of n. This means that f(z) is indeed approximated by F,(z)

uniformly in the interval ¢ < r < ct.

In exactly the same way we may show that a func ion f of m variables 1y, 13, -+, T,
which is continuous for ¢k < z, < ¢} (k =1,2,---,m), may be approximated uni-

formly by the polvnomia,ls

f yl,"'sym)[l - (yl _11)2]n,__ [1 - (ym. —T'm)2]ndyl

[, (1 = y?)ndy]™
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%)
-t
s

where B} and 8} satisfy
O<fBi<ch<ch<pl<l
Theorem 2 The representation of a function f(x) by a power series is unique in

an interval which contains the point z =- 0.

Proof Suppose that two power series

o0

k

’ = E flkJ‘
k=0

Pr=7  fur
k=0

both converge uniformly to the same function f(z) in an interval which contains the

point z = 0 in its interior. The power series Y 4o gx®* with coefficients

9k = f1k — Jax

then converges to the function

for any z in the interval. The power series, formed by taking n — th derivative of

the series Y v, gk7*, are

oo

Zk(k_l)...(k_n-}-l)gkrk“" (n=1,2,--+)

k=n

which converge uniformly to gt™(z), i.c., zero throughout the interval. Then we

have

0= igkxk
k=0
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0=Zk(k—1)-~~(k—n+1)gk:1:"’" (n=1,2--)
k=n

for any z in the interval. For z = 0, in particular, the series must be zero. This

gives

i
[
—_
o
t
o
—
~—

gk

so that

Jik = Jak (k=0,1,-- -

i.c., P, and P, are identical as stated by the theorem.



