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A bstract

The focus of this research is the balance-scale task of naive or intuitive 

physics first introduced by Piaget. Developmental psychologists have been interested 

in this task because of age-related trends in performance, a U-shaped trend on a 

particular class of problems, and information salience effects. The balance-scale task 

has also become a benchmark task for connectionist researchers interested in 

modeling cognitive development. The standard approach to modeling has involved 

manipulating various parameters and outlining particular assumptions in order to get 

network models to display behavior that matches the psychological data. A novel 

approach to studying the balance-scale task is presented. Neural networks were 

trained to make balance scale predictions and then the converged networks were 

interpreted using a number of techniques. This approach was taken to gain insight into 

the nature of how humans solve the task by first examining how neural networks 

solve the task and by examining the characteristics of the task. Predictions were 

derived from the analysis of the neural networks and the problem space analysis. In 

particular, predictions focused on the idea that performance measures (accuracy and 

RT) should vary as a function of where a problem is located in the problem space.

This prediction was tested with a group of undergraduates who were aware of the 

importance of both the weight and the distance dimension for making predictions, but 

who were not familiar with the mathematically correct rule. Intra-individual 

variability was found in RT and accuracy measures. This contrasts with typical 

descriptions of balance scale performance as consistent with a single strategy per 

developmental stage. Implications for future research are discussed.
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CHAPTER 1 

INTRODUCTION

The balance-scale task of intuitive physics has been of interest to developmental 

psychologists since its introduction by Piaget (e.g., Inhelder & Piaget, 1958). The task 

involves making a prediction about the state of a two-armed balance (i.e., tip or 

balance) based on a configuration of weights at particular distances from the fulcrum. 

The task is appealing because of age-related trends in performance, a U-shaped trend 

on a particular class o f problems, and information salience effects. As the intersection 

between research on cognition, development, and connectionism grows, the balance- 

scale task has emerged as a benchmark problem for researchers attempting to model 

cognitive development (Shultz, Mareschal, & Schmidt, 1994; Shultz, Schmidt, 

Buckingham, & Mareschal, 1995).

The balance-scale task, like many tasks that have been used to study cognitive 

development, has two key characteristics (Siegler, 1996). First, the task as 

administered is not particularly familiar to children. Children have experienced the 

concept of balance but typically have not encountered this type of prediction task. The 

rationale is that by using novel problems, we can leam about participants’ naive 

conceptions and the strategies they employ when faced with unfamiliar problems. 

Second, it is among a class of tasks that involves the integration of information from 

two dimensions. Other examples include conservation of number, conservation of 

liquid, the slopes task, and the projection of shadows task (Siegler, 1976; Wilkening 

& Anderson, 1982).
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The central thesis of this dissertation is that the balance-scale task is subject to 

the same inter- and intra-individual variability that is characteristic of the more 

familiar, everyday tasks studied by cognitive developmentalists such as math (e.g., 

Bisanz & LeFevre, 1990; Siegler & Crowley, 1991), reading (e.g., Perfetti, 1992), 

spelling (e.g., Vamhagen, 1995; Vamhagen, McCallum, & Burstow), time telling 

(Siegler & McGilly), and scientific reasoning (e.g., Kuhn, Garcia-Mila, Zohar, & 

Andersen, 1995; Schauble, 1990, 1996; Schauble & Glaser, 1990). The 

developmental course for these tasks has been described with the “overlapping 

waves” depiction of development (e.g., Siegler, 1995, 1996). At any one time, an 

individual has a variety of available strategies. Rather than sudden shifts from one 

qualitatively different way of thinking to another, change occurs through competition 

among strategies.

The balance-scale task, in contrast, has been characterized according to an older 

view of development: each stage of development corresponds to a single problem

solving strategy. Siegler (1996) has appealed to the unfamiliarity of the balance-scale 

task as a reason for why it is that a single, consistent strategy is observed for 

individuals at different stages of development. As will be shown from the review of 

literature in Chapter 2, however, many factors have been shown to affect the 

evaluation of individuals as using a single consistent strategy. In fact, it was the 

numerous criticisms of the rule-assessment method that prompted the research in this 

dissertation. Because rule assessments for an individual could vary with a number of 

different factors (e.g., task demands, the particular items used in the testing set), the
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method has been subject to criticism. Despite the growing number of criticisms, 

modeling researchers using either production system or connectionist architectures 

have attempted to produce models that provide a good fit to the human data collected 

with the rule-assessment method. Moreover, modelers have used the rule-assessment 

method to evaluate the performance of their models.

In summary, the main argument advanced in Chapter 2 is that the numerous 

criticisms of the rule-assessment method have made the human data open to 

alternative interpretations. As such, computer models designed to capture the 

regularities in this data are also open to interpretation. Therefore, a new approach is 

advocated—an approach based on interpreting neural networks. This approach was 

taken to gain insight into the nature of how humans solve the task by first examining 

how neural networks solve the task and by examining the characteristics of the task.

In Chapter 3, the results of the network interpretation approach will be 

presented. Neural networks were trained to make balance-scale predictions and then 

the converged networks were subjected to four main interpretive techniques. A key 

finding was that the network was integrating the weight and distance dimensions and 

solving the task by approximating an additive function (although the mathematically 

correct method requires multiplication). An analysis of the problem space revealed 

that the majority of balance-scale problems could, in fact, be solved using an additive 

heuristic. This finding motivated an analysis of the characteristics of previously 

published test sets and an additional simulation in which neural networks were trained 

without the problems that cannot be solved using an additive heuristic.
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In Chapter 4, predictions were derived from the analysis of the neural networks 

and the problem space analysis. In particular, predictions focused on the idea that 

performance measures (accuracy and RT) should vary as a function of where a 

problem is located in the problem space. The neural networks in Chapter 3 responded 

differentially to problems depending on location in the problem space. This prediction 

was tested with a group o f undergraduates who were aware of the importance of both 

the weight and the distance dimension for making predictions, but who were not 

familiar with the mathematically correct rule (i.e., the torque rule, which involves a 

comparison of the product on the left side [weight x distance] with the product on the 

right side). Torque difference was used as one rough index of location in the problem 

space (i.e., the absolute value of the difference in torque on the left and right sides). 

Torque difference was a good predictor of both accuracy and reaction time measures. 

Differences in accuracy and reaction time were found on the subset of items that can 

only be solved via the torque rule.

As mentioned, the criticisms of rule-assessment motivated a novel approach to 

studying the balance-scale task with respect to both neural networks and human 

performance. During the course of this research, it became clear that the criticisms of 

rule assessment should not be focused on it being an inadequate method of evaluation, 

but rather they should be focused on the goals of the rule-assessment approach. In 

Chapter 5 ,1 argue that the goal of rule-assessment has been to determine the one 

consistent or modal strategy for individuals at different stages of development. Siegler 

(1996) has appealed to the moderate experience hypothesis, citing the unfamiliarity of
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the task as the main reason why variability is not seen. That is, he has provided an 

explanation for why variability in strategy is not observed on the balance-scale task, 

when in reality, the cumulative evidence points to variability in strategy based on 

characteristics of the particular instance (e.g., the torque difference). This claim must 

be qualified, however, as the present results bear only on individuals who are aware 

that the two dimensions of the task must be integrated. The claim in general is 

supported by previous research in the literature in which variability in assessment was 

found with children of different ages.

Chapter 5 ends with a discussion of implications of the present research, 

suggestions for extensions to analogous developmental studies, and speculations 

about how current conceptions of development will influence future modeling studies.
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CHAPTER 2 

LITERATURE REVIEW

The balance-scale task has been studied by developmental psychologists and by 

modeling researchers using classical and connectionist architectures. In the first 

section, I review psychological studies using the balance-scale task, including a 

description of Siegler’s (1976) rule-assessment approach. Rule assessment figures 

prominently in both the psychological and modeling literatures. A critical analysis is 

provided based on problems encountered in the psychological literature. In the second 

section I review the modeling literature. Both connectionist and symbolic models of 

the balance-scale task are discussed. In the third section, I argue that although existing 

models have been successful at capturing the major regularities found in the human 

data, these data are based on an assessment method that has been the subject of 

numerous criticisms. Therefore, a new approach to evaluating human and model 

performance on the balance-scale task is warranted. Despite the numerous problems 

with rule assessment, it has been the primary method of evaluating the performance of 

human participants and models, making models based on fitting such data suspect. I 

suggest an alternative approach — one that is based on interpreting the way a neural 

network solves balance-scale problems. With this approach it is possible to gain new 

insights into the problem representation, develop predictions that can then be tested 

with human participants, and provide alternative methods that can be used to re

evaluate human and model performance.
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Psychological Studies Using the Balance-Scale Task

The balance scale is considered a task of naive or intuitive physics (e.g., 

diSessa, 1993; Wilkening & Anderson, 1982). Alternatively, the balance scale has 

also been described as a task of “proportional reasoning” (e.g., Chletsos, DeLisi, 

Turner, & McGillicuddy-DeLisi, 1989; Kliman, 1987; Normandeau, Larivee, Roulin, 

& Longeot, 1989). Piaget introduced the balance-scale task as a method for assessing 

stages of cognitive development (e.g., Inhelder & Piaget, 1958; Piaget & Inhelder, 

1969). Piaget used a scale with either a sliding basket on each side of the fulcrum or 

28 holes for hanging weights on each arm. Using the clinical method, Piaget allowed 

children of various ages to manipulate and explore the apparatus. Based on verbal 

protocols, Piaget suggested that children go through different levels of performance. 

By the formal operational period, children over the age of 11 or 12 were able to 

reason using proportions, and thereby discover the correct formula for solving 

balance-scale problems.

Siegler’s Model and Rule-Assessment Approach 

Siegler (1976) modified the balance apparatus so that there were four 

equidistant pegs on each side of the fulcrum. For some problems, weights were placed 

on only one peg on each side of the fulcrum (i.e., uni-peg problems). For others, a 

number of weights could be placed on two pegs on a single side of the fulcrum (e.g., 

three weights on the third peg on the left arm and two pegs on the first peg plus three 

weights on the second peg on the right arm). More recent versions of the task 

typically do not include multi-peg problems (e.g., Chletsos et al., 1989; Jansen & van
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der Maas, 1997). Blocks are placed under the arms to prevent the scale from tipping. 

The participant’s task is to predict if the scale will balance, tip to the left, or tip to the 

right if the blocks are removed. Typically, participants do not receive feedback to 

ascertain whether a prediction was correct or not (e.g., Aoki, 1991; Chletsos et al., 

1989; McFadden, Dufresne, & Kobasigawa, 1987; Siegler, 1976). The correct 

response to any balance-scale problem can be determined by calculating torque (i.e., 

mass x distance) for each arm and comparing the values.1

Siegler (1976, 1978, 1981) developed a rule-assessment methodology to study 

developmental sequences for various Piagetian tasks using the balance scale as his 

reference task. The Piagetian or clinical method relied on children’s errors and verbal 

reports. Siegler’s method relied instead upon patterns of correct and incorrect 

responses. This non-verbal approach, in addition to being less informal and 

subjective, was intended as a means to reveal competence that might have been 

missed with Piaget’s original approach.

Siegler (1976) hypothesized that children go through a series of stages that are 

governed by the use of different rules. These binary-decision rules are used to assess 

the importance of the weight and distance information for each problem (see Figures 

1 and 2). The proposed succession of rules is as follows. Younger children consider 

weight alone when deciding whether the scale will balance or not (Rule 1; see Figure

1 Torque is also defined as work, where work = force x distance. Force = mass x acceleration, 
where the acceleration term is defined by gravity. For purposes o f this discussion, torque is simplified 
to mass x distance, or the number of weights x the number of pegs. For multi-peg problems, the 
torques for each peg are added together to determine the torque for each arm.
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1, Panel A). At the next level, children focus on weight, but will consider distance 

information in cases where the weights are equal (Rule 2; see Figure 1, Panel B).

Next, children realize the importance of both weight and distance, but there is some 

confusion when one side has the greater weight and the other side has the greater 

distance (Rule 3; see Figure 2). Rule 3 performance is usually described as guessing 

or “muddling through” (Siegler, 1976). Lastly, the child or adult can multiply the 

distance by the weight and compare the products to determine whether the scale will 

balance or not (Rule 4; see Figure 2). These rules are meant to represent both the 

underlying knowledge structures and the strategies or processes used in making a 

prediction (Siegler, 1978).

Siegler (1976) described several different problem types that are defined by the 

combination of weight and distance from the fulcrum (also referred to as the 

dominant and subordinate dimensions, respectively). Balance problems have equal 

weights at equal distances. Distance is held constant in weight problems, so that the 

side with the most weight goes down. In contrast, the weight is held constant in 

distance problems, so that the side with the farther distance goes down. Conflict 

problems have a different number of weights and distances on each side o f the 

fulcrum. Three types of conflict problem were defined: conflict-weight (the side with 

more weight at a shorter distance goes down), conflict-distance (the side with the 

greater distance but with fewer weights goes down), and conflict-balance (despite the 

conflict, the scale balances). Given all combinations of weights and distances, there 

exists one additional configuration not explicitly discussed by Siegler. These are
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problems in which one arm of the balance has both a greater number of weights at a 

farther distance from the fulcrum. This configuration will be referred to as the both- 

greater problem type.

The assessment of rule use is determined by testing the participant on a set of 

balance-scale problems. Typically, the test set consists of four of each of the six 

problem types outlined above.2 The task is to judge which arm will tip or if the scale 

will balance. If a participant is using one of the four rules outlined by Siegler, then a 

characteristic pattern of performance on the different problem types should emerge. 

Table 1 includes the accuracy predictions for each of the hypothesized rules. In order 

to classify an individual as using one of these rules, Siegler (1976) outlined a set of 

criteria. Overall, 20 out of 24 answers had to fit the profile for a particular rule. 

Moreover, particular types of errors were required for some rules (e.g., a child using 

Rule 1 should not only get distance problems incorrect, but get them incorrect by 

predicting that they will balance).

For each of the problem types outlined above, a particular developmental trend 

was predicted (see Table 1). Performance was not expected to change for balance, 

weight, or both-greater problems (i.e., all children should show a high level of 

accuracy). For distance problems, however, a “dramatic improvement with age” was 

predicted, as accuracy is expected to jump from none correct to all correct. A

2 There are variations on the size of the test set. For example, Siegler (1976) used 30 
problems (4 of each of the 3 simple problems and 6 of each o f the 3 conflict problems). Siegler (1981) 
used 24 problems (4 of each o f the 6 problem types). Other researchers have used tests of 24 items 
(e.g., Aoki, 1991), 25 items (van Maanen et al., 1989), 36 items (e.g.. Chlestos et a]., 1989), and even 
76 items (Ferretti et al., 1985, Experiment 2).
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U-shaped trend was predicted for conflict-weight problems. Younger children should 

get them correct if they focus only on the weight dimension. Once children take note 

of distance information, performance should drop to chance level as they try to 

reconcile the two dimensions. When the relationship between weight and distance is 

understood, performance improves to near perfect levels. Conflict-distance and 

conflict-balance problems are expected to show the same pattern. Initially, 

performance is always incorrect; it then “improves” to chance level as participants 

attempt to incorporate both dimensions. Again, perfect performance follows an 

understanding of the relationship between weight and distance.

Evaluation o f Siegler’s Model 

Based on cross-sectional studies, Siegler (1976) found a fairly close match 

between the predictions as outlined in Table 1, and the performance of 120 

participants aged 5 to 17. The majority of participants (89%) could be unambiguously 

classified. There was a clear trend in the ages of the children and the complexity of 

rule use. Most of the 5- and 6-year-olds were classified at Rule 1. The performance of 

9- and 10-year-olds was consistent with either Rule 2 or Rule 3, and Rule 3 

classifications were most common for 13- to 17-year-olds. Rule 4 performance was 

infrequent (7%).

In a subsequent study, the performance of 96% of participants aged 5 to 20 was 

consistent with one of the four rules (Siegler 1981). Similar age-related trends 

occurred. It was found that 3-year-olds and half of the 4-year-olds did not use any 

rule. The other half of the 4-year-olds and almost all of the 5-year-olds used Rule 1.
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Older children (8- and 12-year-olds) received Rule 2 and Rule 3 classifications. At the 

college level, most participants could be classified at Rule 3 with only a minority 

classified at Rule 4.

Other researchers have evaluated the rule-assessment approach with the balance- 

scale task using the standardized procedures outlined by Siegler (Aoki, 1991;

Chletsos et al., 1989; Ferretti, Butterfield, Cahn, & Kerkman, 1985; Ferretti & 

Butterfield, 1986; Jansen & van der Maas, 1997; Larivee, Normandeau, Roulin, & 

Longeot, 1987; McFadden et al., 1987; Normandeau et al., 1989; van Maanen, Been,

& Sijtsma, 1989; Wilkening & Anderson, 1982). With respect to the classification of 

participants there have been mixed results in replicating Siegler’s findings. For 

example, Aoki (1991) could classify only 38% of participants (Grades 4, 6, and 

college students) as using one of the four rules. Across three studies and different 

conditions (e.g., individual interviews versus a paper-and-pencil version), Chletsos et 

al. (1989) found that 70-85% of participants could be unambiguously classified (aged 

8-15 and college students). McFadden et al. (1987) tested 5- and 7-year-olds in two 

studies and found that 80-90% could be classified as Rule 1 or 2. Normandeau et al. 

(1989) classified 97% of adolescents (Grades 8-11). Ferretti et al. (1985; Experiment 

1) tested children in Grades 1-6 and could classify 83% as using Rules 1, 2, or 3.3 

With respect to age-related trends, the general pattern found by Siegler was replicated

3 Using a procedure in which an “ideal response pattern” was compared with the observed 
pattern for each subject, Ferretti et al. (198S) computed a co2 statistic. All 99 children initially classified 
with Siegler’s criteria could be classified with the to2 statistic. An additional 16 children were 
classified with the to2 statistic (Rules 1-3), leaving only 5 children (4%) unclassified.
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by other researchers (e.g., Chletsos et al., 1989; Klahr & Siegler, 1978; Ferretti et al., 

1985).

Critique o f the Rule-Assessment Approach: Psychological Studies 

Siegler’s (1976) original article describing the rule-assessment method is a 

seminal paper in the area of cognitive development. As such, rule assessment has 

been subject to both praise and criticism (e.g., Chletsos et al., 1989; Ferretti et al., 

1985; Ferretti & Butterfield, 1986; Flavell, 1985; Jansen & van der Maas, 1997; 

Kliman, 1987; Larivee et al., 1987; Normandeau et al., 1989; van Maanen et al.,

1989; Wilkening & Anderson, 1982). In this section, I will outline the strengths of the 

rule-assessment method, and then discuss its drawbacks.

The rule-assessment approach was a significant departure from the Piagetian 

clinical method, and represents an attempt to integrate Piagetian ideas and tasks 

within an information-processing framework. Unlike the clinical method, there are 

standardized procedures for administration of the task, and specific procedures for 

evaluation of performance on the balance scale and other tasks (e.g., Siegler, 1981). 

One advantage of this standardization is that it has allowed paper-and-pencil versions 

of the balance-scale task, which makes it far more cost effective than individual 

interviews (e.g., Chletsos et al., 1989; Ferretti & Butterfield, 1986).

Contributing to the landmark status of this paper is the elegant manner in which 

the hypothesized rules or strategies could be verified by a very specific pattern of 

responses, including chance or above chance performance on certain problem types as 

well as particular types of errors on other problems types. Moreover, the response
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profile is based on nonverbal responses (McFadden et al., 1987) reducing the 

influence of a child’s verbal competence or performance. The fact that there are three 

response alternatives (versus two) makes it easier to infer that the response profile 

was due to systematic factors instead of chance responding (Larivee et al.,1987). 

Lastly, there is a good fit between the hypothesized patterns of performance and the 

data from a number of studies (e.g., Chletsos et al., 1989; Ferretti et al., 1985; 

McFadden et al., 1987; Klahr & Siegler, 1978; Siegler, 1976, 1981; van Maanen et 

al., 1989).

Despite the advantages just discussed, the rule-assessment approach has also 

been subject to a number of criticisms. Cognitive developmentalists are interested in 

both knowledge structures and processing rules (Klahr, 1992; Klahr & McWhinney, 

1998). Consequently, a primary goal of this method was to assess the knowledge 

structures that underlie performance at different stages of development (Chletsos et 

al., 1989; McFadden et al., 1987; Klahr & Siegler, 1978; Siegler, 1978; Wilkening & 

Anderson, 1982). Most criticisms, therefore, relate specifically to either the 

underestimation of children’s knowledge about balance concepts or to the incorrect 

classification of participants. These criticisms fall into several related categories, 

including (a) task demands (e.g., multiple-choice format), (b) the possible existence 

of alternative rules or strategies, (c) properties of the test set that influence rule 

assessment, and (d) the “arbitrariness” of the criteria used to classify participants.

Task Demands

The forced-choice format of the balance-scale task has been criticized by some
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as limiting the responses that can be made, and therefore the argument has been made 

that rule diagnosis may underestimate a child’s knowledge level (e.g., McFadden et 

al., 1987; Normandeau et al., 1989; Wilkening & Anderson, 1982). Some researchers 

have used a variant of Siegler’s original task called a “construction task,” (McFadden 

et al., 1987) or an “adjustment task” (Wilkening & Anderson, 1982) to demonstrate 

that children may be diagnosed according to a different rule than when compared to 

assessment with multiple-choice predictions. Children are shown a balance scale with 

some configuration of weights and pegs on one arm. The child is then given a 

particular number of weights and instructed to place them at some point on the other 

arm such that the scale will either balance or tip to a particular side.

For example, McFadden et al. (1987) tested 5- and 7-year-olds on the 

construction task and Siegler’s prediction task. Almost 70% of the 7-year-olds who 

were originally classified as Rule 1 used the distance dimension preferentially in the 

construction task. Although the construction task was designed to increase salience of 

the distance dimension, these results can be used to demonstrate that under different 

conditions and task demands, different behavior (and underlying knowledge 

differences) may emerge.

Other Rules

Another common criticism of Siegler’s model is that it does allow for the 

possibility that participants may use other rules or strategies. Rather than 

underestimating knowledge level, the possibility of other rules may result in the 

incorrect classification of participants. The fact that Siegler’s procedure usually
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results in some unclassified participants has been taken as evidence that the model 

does not include all possible problem-solving strategies (Normandeau et al., 1989). 

For example, Chletsos et al. (1989) used three alternate forms of a paper-and-pencil 

version of the task and found 15-30% o f subjects could not be classified. 

Furthermore, the “no rule” classifications were consistent over time. This result can 

be taken as evidence that some subjects use other rules in a consistent manner, but 

that these rules may not be diagnosable using Siegler’s method.

The lack of clarity regarding the decision rule involved in “muddling through” 

(i.e., Rule 3) is also regarded as support for the idea of other rules (e.g., Ferretti et al., 

1985; Wilkening & Anderson, 1982). It has been suggested that the high percentage 

of Rule 3 classifications may mask or conceal the use of other rules for the 

coordination of weight and distance information (Normandeau et al., 1989; Schmidt 

& Ling, 1996). The existence of other rules is not necessarily a violation of the rule- 

assessment method. Other rules cannot be detected, however, using the original 

scoring criteria or test sets (Jansen & van der Maas, 1997). Several researchers have 

found evidence for rules or strategies other than the four postulated by Siegler (1976, 

1981). These include (a) an additive rule (e.g., Wilkening & Anderson, 1982), (b) a 

“perceptual muddle through” rule (e.g., Klahr & Siegler, 1978), (c) a qualitative 

proportionality rule (e.g., Normandeau et al., 1989), and (d) a buggy rule (e.g., van 

Maanen et al., 1989). These are discussed in more detail below.

Additive rule. Wilkening and Anderson (1982) were the first to suggest the 

existence of other rules that could be used to integrate weight and distance
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information. In Siegler’s model, only Rule 4 involves a true integration of both types 

of information (i.e., “true” in the sense of consistent with the torque algorithm). 

Wilkening and Anderson suggested that children may be able to integrate weight and 

distance information by using either unweighted-addition rules (i.e., compare l w  +  l d  

with /?w + r d ) or weighted-addition rules (e.g., compare 2 l w  +  ld  with 2 r w  + r d ).

Wilkening and Anderson found that a small percentage (13.8%) o f subjects (6-, 

9-, 12-year-olds and adults) originally classified as Rule 2 or Rule 3 users could be 

classified as using an additive rule based on the adjustment task and a test set 

designed to discriminate between integration and non-integration rules. Ferretti et al. 

(1985) found that some participants used an addition strategy (3%). Normandeau et 

al. (1989) classified participants according to Siegler’s criteria and a modified system 

(to test for three other rules and Siegler’s rules). Using the original criteria, 60.6% of 

the participants were classified as using Rule 3. With the modified criteria, 28.3% 

were classified as muddling through and 26% were classified as using an adding rule. 

Using latent class analysis, Jansen and van der Maas (1997) also found evidence for 

an additive rule.

"Perceptual muddle through” (Rule 3A). Klahr and Siegler (1978) first 

suggested a variant on Rule 3. Here, participants focus on the larger weight or the 

larger distance and make a perceptual judgment about which side of the balance will 

tip. A small percentage of the participants (2.4%) were classified as Rule 3A users by 

Normandeau et al. (1989).
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Qualitative proportionality (QP) rule. Participants who use the QP rule take 

both weight and distance information into consideration. QP users respond as though 

a heavy weight at a shorter distance should compensate for a lighter weight at a longer 

distance. For conflict problems, therefore, QP users predict that the scale will balance. 

Using a modified set of scoring criteria, Normandeau et al. (1989) found that 3.9% of 

participants used a QP strategy.

Buggy rule. A “buggy strategy” was proposed by van Maanen et al. (1989): “If 

side X has more weights and the weights on side X have the smaller distance to the 

tilting point then shift the weights on side X away from the tilting point until the 

distances on both sides are equal and remove for every shift on side X one weight on 

side X” (p. 272). In essence, the conflict problem is reduced to a simple balance or 

weight problem and is easier to solve with Rule 1 (Jansen & van der Maas, 1997). 

Evidence for this buggy rule was found in a sample of Grade 7 and 8 students by 

fitting a linear logistic test model (van Maanen et al., 1989). Jansen and van der Maas 

(1997) re-analyzed van Maanen et al.’s data using latent class analyses and also found 

evidence for the buggy rule.

Properties o f  the Test Set

It has been demonstrated that characteristics of the test problems affect 

participants’ behavior and subsequent diagnosis. There are actually two issues here. 

The first issue has to do with inter- and intra-individual variability in rule use.

Siegler’s model has been criticized because of the implicit assumption that a 

participant uses one and only one rule to solve all balance problems (Larivee et al.,
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1987; Normandeau et al., 1989). The second issue has to do with the sources of 

variability, especially with respect to the properties of the test items used. While it 

may be the case that different strategies are selected based on the problem types 

defined by Siegler (1976), a more serious concern involves the particular instances 

within a problem type.

Ferretti et al. (1985) noticed discrepancies between two studies based on 

differences in the testing sets (e.g., uni-peg versus mixed uni- and multi-peg 

problems, three different sets o f  conflict problems). Ferretti et al. speculated that task 

characteristics may influence strategy choice. To examine this possibility, Ferretti and 

Butterfield (1986) manipulated the size of the difference in products (or torque) on 

each side of the fulcrum. To illustrate, consider the two examples of simple distance 

problems in Figure 3. In Panel A, the torque difference is equal to one. In Panel B, 

the torque difference is 12 (i.e., the absolute value of [4 x 1 - 4 x 4]). Ferretti and 

Butterfield used four levels of torque difference: 1,3, 12, and 24-30 for simple 

problems and 1, 3, 5, and 18-24 for conflict problems.4 A test set of 72 items was 

used: 16 instances of each of weight, distance, conflict-weight, and conflict-distance 

(with four items from each of the four levels of torque difference), and four of each of 

balance and conflict-balance problem types. Fewer balance and conflict-balance 

problems were used because the torque difference is always zero. A rule classification 

could be determined for each o f  the four levels of torque difference.

4 No explanation was provided for the difference in Levels 3 and 4 for simple versus conflict 
problems. This issue will be discussed in more detail in Chapter 3.
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Ferretti and Butterfield found that, in general, as torque difference (TD) 

increased, so did the percentage of children with a higher rule classification. That is, 

as TD increased, the number of children classified as “no rule” or Rule 1 decreased 

and the number of Rule 4 classifications increased. At the highest level of TD, 22% of 

Grades 1 and 2, 32% of Grades 3 and 4, and 61% of Grades 5 and 6 were classified as 

Rule 4 users. These numbers are equivalent to or far greater than the percentage o f 

college students classified at Rule 4 in other studies (e.g., Aoki, 1991; Siegler, 1981).

Ferretti and Butterfield also examined the interaction between TD levels and 

problems types. Accuracy (i.e., number of correct predictions) increased for all four 

problem types (weight, distance, conflict-weight, conflict-distance) as a function of 

TD level. The largest differences occurred on the distance and conflict-distance 

problems. Smaller differences, as a function of TD level, occurred for the weight and 

conflict-weight problems, but this result was likely due to ceiling effects.

These findings have important implications for the assessment of rule use. 

Depending on the test items used, children may be classified at either a higher level (if 

large TD instances are used) or a lower level (if low TD instances are used). Ferretti 

and Butterfield suggest that “the accuracy of children’s rule-assessment classifications 

may be questioned because these classifications are assumed to be invariant over 

theoretically equivalent problem sets” (1986, p. 1420, emphasis added).

Arbitrariness o f  the Assessment Criteria

One of the more problematic issues is that the criteria that Siegler (1976) 

selected for determining a classification were “arbitrarily chosen as evidence that a
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child was using a particular rule” (p. 493, emphasis added). Typically, 20 out of 24 

responses must fit the profile for a particular rule. In addition, 3 out o f 4 responses for 

a particular problem type must also match the profile (Siegler, 1981). Siegler claimed 

that using these criteria, the probability of assigning a rule to a “random responder 

was less that 5 x 10'9” (p. 494).

These criteria, however, can vary depending on the size and the composition of 

the test set (see Footnote 2). For example, in order to determine if a particular number 

of correct (or incorrect) responses is due to systematic or chance factors, the number 

of problems must be taken into consideration. For example, consider the difference 

between using four instances of a problem type (e.g., Siegler, 1981) versus six 

instances (e.g., Siegler, 1976, conflict problems). Given the response alternatives, 

there is a 1/3 chance of getting an item correct. Using the binomial formula, the 

probability of answering any number of questions between none and all correct can be 

determined (Chletsos et al., 1989; see Appendix A for binomial formula and sample 

calculation). When four test items are used, the probabilities of getting items correct 

are as follows: none--. 197, one~.395, two—.296, three—.098, and four—.012). Using 

the standard cut-off value of .05, the only case that is significantly different from 

chance is 4 out o f 4 correct. In fact, the value for none correct (which is predicted for 

some problem types for Rules 1 and 2) does not differ significantly from chance. The 

probabilities associated with using six test items are as follows: none—.087; one—

.263; two—.329; three—.219; four—.082; five—.016; and six--.001. In this case a 

correct response on 1,2, or 3 items is more unambiguously interpreted as resulting
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from chance factors alone (e.g, chance responding is predicted for conflict problems 

in assessing Rule 3), whereas 0, 5, and 6 items can be interpreted as due to systematic 

responding.

Other researchers have criticized the rule-assessment methodology because it 

“lacks a test of goodness of fit” (Wilkening & Anderson, 1982, p. 224). Jansen and 

van der Maas (1997) addressed the rarely discussed issue o f statistical information 

regarding the fit of the predicted rule models to the empirical data. They noted the 

difficulty in the use of different items, and different numbers of items, by different 

researchers: “Applying the standards in an unambiguous way to these different data 

sets is hardly possible and makes it unreliable to compare the results of different 

experiments on the balance scale task” (p. 328). Jansen and van der Maas suggested 

that the use of latent class analysis is a potential solution to “the lack of psychometric 

models of rule governed behavior” (p. 327). Their analyses revealed the feasibility of 

the rules postulated by Siegler and the other rules discussed above (i.e., additive and 

buggy rules).

Summary o f Psychological Studies

Siegler’s rule-assessment methodology represented a departure from the 

Piagetian clinical method. The use of different problem-solving rules is determined by 

a characteristic pattern of performance across a number of different problem types. 

Despite the advantages of this approach, it has been criticized by a number of 

researchers. Problems surrounding the possible incorrect classification of participants 

and their knowledge of balance concepts were discussed. There has been a growing
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interest in modeling cognitive development (e.g., Elman et al., 1996), and as such, the 

balance-scale task has emerged as a benchmark problem. In the next section, 

connectionist and symbolic models of the balance-scale task will be described.

Modeling Studies of the Balance-Scale Task 

Balance-scale performance has been modeled using both connectionist and 

symbolic approaches (e.g., McClelland, 1989; Schmidt & Ling, 1996). Although the 

focus of the present research will be on connectionist modeling, I will begin with a 

brief description of early models of the balance scale that used symbolic or production 

system architectures. In the second section, I will describe connectionist models of the 

balance scale. In each case the goal was to use a computer model to capture reliable 

psychological phenomena: (a) stage-like performance, (b) U-shaped performance on 

conflict-weight problems (i.e., weight and distance are in conflict, but the side with 

the greater weight tips), and (c) the torque difference effect (TDE) reported by Ferretti 

and Butterfield (1986). Despite the problems with the rule-assessment method, it has 

been the primary method of testing the performance of computer models. In the third 

section, I will address an additional criticism of rule-assessment that has come about 

as a result of using this method for evaluating network models.

Symbolic Models

The earliest attempts to model the balance-scale task used production system 

simulations (e.g., Klahr & Siegler, 1978; Sage & Langley, 1983). Production systems 

are composed of rules (i.e., productions) that take the form of condition-action pairs 

(i.e., similar to if-then statements). These productions specify the action that should be
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carried out if some condition is met. Key properties of production systems include a 

production memory (i.e., where the productions are stored) and a working memory 

(i.e., a representation of the current situation). Learning occurs through a process of 

self-modification, in which productions are created and/or changed based on previous 

experience (Siegler, 1998).

Klahr and Siegler (1978) used a separate set of production rules for each of the 

four stages of development (see Figure 4). As there was no transition between these 

different rule models, the model is silent with respect to issues of stage-like 

development, transition mechanism, and the U-shaped trend on conflict-weight 

problems. Klahr and Siegler postulated that the addition and/or modification of 

particular productions could account for the transition between stages, but this 

hypothesis was not implemented in these production systems. The set of models 

appeared before Ferretti and Butterfield (1986) reported the torque difference effect, 

so it is not possible to evaluate the model with respect to it. In order to display the 

TDE, however, the system would need to contain an explicit production to take note 

of the magnitude of the differences. The TDE has been found in children who do not 

explicitly know the torque rule, so it is difficult to imagine how this issue could be 

resolved within a production system framework (but see the discussion of Schmidt & 

Ling, 1996, below).

Sage and Langley (1983) also developed a production system model of the 

balance-scale task. This revised model was similar to Klahr and Siegler’s, but Sage 

and Langley suggested a possible mechanism to account for the transition between
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stages. They posited that the rules might be learned through a process of 

discrimination. The model was given two rules that provided initial behavior, and 

rules for storing information about failures and successes. New rules were acquired, 

and then weakened or strengthened based on the success of the predictions. Over the 

course of training, the overall percentage of correct predictions increased (i.e., there 

was no evaluation of the different problem types). Although the model never mastered 

conflict problems or developed a representation of torque (i.e., it did not achieve Rule 

4 behavior), it learned a set of rules to make correct predictions despite the 

incomplete representation of the problem, just as children do.

Newell (1990) used the Soar architecture to model the balance scale. Similar to 

the Sage and Langley model, the Soar model did not exhibit performance consistent 

with Rule 4. The model learned from only a few instances and there was no rigorous 

comparison of the output with the human data. No attempt was made to test for the 

torque difference effect.

The most successful symbolic or rule-based model thus far has been Schmidt 

and Ling’s (1996) model of the balance scale using Quinlan’s (1993) C4.5 machine 

learning algorithm. The C4.5 algorithm is a general purpose classification system that 

generates simple decision trees that classify data that vary along a number of 

dimensions. For each balance problem, seven attributes were presented: (a) whether 

the problem was a simple balance problem (yes/no format), (b) the side with the 

greater weight (left, right, neither), (c) the side with the greater distance (left, right, 

neither), (d) left weight, (e) left distance, (f) right weight, and (g) right distance (all
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weight and distance values expressed as integers ranging from 1 to 5). The initial 

simulation displayed an orderly stage progression of all four rules when tested with 

Siegler’s rule-assessment technique. It also displayed a U-shaped trend on conflict- 

weight problems. The TDE was evident only during Rule 3 performance.

A modified version of the model was run, but attributes (b) and (c) were 

changed to continuous values between -4 and 4 representing the right side minus the 

left side for both weight and distance, respectively. Information about weight and 

distance was no longer presented in an “all-or-none” manner. Rather, the attribute was 

presented as a graded representation. Under these conditions, the model displayed the 

TDE at all stages, and the other reliable psychological regularities. Schmidt and Ling 

concluded that their model was successful, as the selection of problem representation 

and learning algorithm resulted in a good match to the human data.

Connectionist Models 

A brief introduction to connectionist terminology is provided in Appendix B. 

There are two main types of connectionist networks that have been used to model 

balance-scale performance. First, McClelland (1989) used the relatively common, 

multilayer perceptron. This simulation, and replications of it, will be discussed in the 

first section. Second, Shultz and his colleagues (e.g., Shultz & Schmidt, 1991; Shultz 

et al., 1994, 1995) used a cascade-correlation architecture. This generative 

architecture and its results will be discussed in the second section.

The McClelland (1989) Simulation

McClelland (1989) reported the first connectionist model of balance-scale

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27

phenomena. The architecture is illustrated in Figure 5. Although Siegler (1976) used a 

scale with four pegs on each side of the fulcrum with a maximum of six weights on 

any peg, McClelland used the representation of a scale with five pegs and a maximum 

of five weights on any peg.5 Twenty input units were used: the first 10 input units 

represented the left and right weight values and the remaining 10 represented left and 

right distance values. Inputs were segregated such that the weight and distance inputs 

were connected to different hidden units. That is, the first 10 units (representing 

weight) were connected to the first two hidden units, and the second set of 10 input 

units (representing distance) were connected to the third and fourth hidden units. The 

information was integrated only at the level of the two output units (see Figure 5). A 

higher activation of the left or right output unit was used to indicate the side that 

would tip, and neutral activation of both units indicated balance.

The segregation of weight and distance information at the hidden unit level is 

what McClelland (1989) referred to as the architecture assumption. McClelland’s 

model also included an environment assumption. McClelland assumed that the 

average child has more experience with balance scenarios in which distance is not 

important. Instead of training the network on the entire set of 625 possible five-peg, 

five-weight problems, two corpuses were developed in which there was either 5 or 10 

times the equal distance problems (i.e., simple-balance and weight problems). For

5 Siegler (1976) and other researchers used problems in which weights could be spread across 
more than one peg (i.e., multi-peg problems). McClelland (1989) and other modeling researchers (e.g., 
Shultz & Schmidt, 1991) do not distribute weights across more than one peg (i.e., they only use uni
peg problems).
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each training epoch, 100 patterns were randomly selected. The network was trained 

using a standard back-propagation learning algorithm. After each epoch, the network 

was tested on a 24-item test set. Note that during the test phase, no new learning (i.e., 

weight updating) occurred. The network’s performance was classified using Siegler’s 

(1976) rule-assessment method.

Without these two assumptions, McClelland’s network learned the problems too 

quickly, often skipping Rules 1 and 2 (Schmidt & Shultz, 1992). Even with these 

limiting assumptions, there was a lot of shifting between the use o f Rule 3 and Rule 4. 

In fact, Rule 4 was never reliably established. Although this first attempt did manage 

to demonstrate some stage-like behavior and was a fairly close fit to Siegler’s 

predictions, McClelland did not explicitly test for the torque difference effect. In a 

replication of the McClelland model, however, Schmidt and Shultz (1991) explicitly 

tested and found evidence for the TDE (see also McClelland, 1994). Both the original 

model and the replication failed to exhibit a strong U-shaped trend on conflict-weight 

problems. Schmidt and Ling (1996) also reported a replication of McClelland’s model 

using a four-peg, four-weight version and a six-peg, six-weight versions of the 

problem. Both versions resulted in the model producing Rule 3 and 4 behavior only.6 

Cascade-Correlation

Shultz and his colleagues (Shultz & Schmidt, 1991; Shultz et al., 1994; Shultz et

6 Interestingly, Schmidt and Ling used these versions because McClelland used a five-peg, 
five-weight version “despite the fact that Siegler’s . . .  data was based on a four-peg, four-weight 
version of the problem” (p. 221). As discussed, Siegler used a four- peg, six-weight version o f the 
problem. This version was not used in the replication of McClelland's model or for the C4.S model.
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al., 1995) modeled balance-scale phenomenon using the cascade-correlation 

architecture and learning algorithm (Fahlman & Lebiere, 1990). There are important 

differences between the cascade-correlation architecture and the multilayer perceptron 

used by McClelland. Cascade-correlation is described as a generative algorithm 

(Mareschal & Shultz, 1996) or one that “constructs its own network topology as it 

learns” (Shultz et al., 1994, p. 57). There are no pre-established hidden units in this 

architecture. The input and output units are fixed, but the hidden units are created and 

installed by the learning algorithm. To begin with, the architecture is a simple pattern 

associator,1 with only input and output units (see Figure 6, Panel A). Each input and 

output unit is connected with a modifiable weight. In this case, there are four input 

units, representing left weight, left distance, right weight, and right distance. The 

inputs are integer values between one and five representing the weight and distance 

values. Shultz and Schmidt also used a maximum of five weights on any one of five 

pegs. There were two output units. Left and right activation were indicated by a 

positive value on the tip side and a negative value on the non-tip side. Balance was 

represented as neutral values on both units.

Initially, the network was trained without hidden units on a sample of 100 

balance problems with a 0.9 bias for selecting equal distance problems. The 

recruitment of hidden units was completed one at a time. When the reduction of error 

asymptotes, the network trains and evaluates a pool of hidden units. While the hidden

7 A pattern associator makes an arbitrary mapping between inputs and outputs (Bechtel & 
Abrahamsen, 1991).
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units are being trained, the rest of the network is effectively disabled. When the 

output of one unit correlates with the residual error signal o f the last training epoch, 

this candidate unit is then connected to  the active network. The weights for the 

connections between the input and new hidden unit are frozen and do not change with 

subsequent training (the connections from the hidden unit to the output units do 

change with learning). The rest of the network is reactivated and the training 

continues, again until there is no further reduction of error. If error does not reduce 

with further training, another hidden unit is installed (see Figure 6, Panel B).

Like the McClelland model, the cascade-correlation model described here 

needed a bias in favor of training problems with equal distance. Without this training 

bias, the network immediately went to Rule 3. An additional assumption about the 

learning environment was used. To simulate the child’s gradually changing 

environment, Shultz and Schmidt used “expansion training,” where one new pattern 

was added to the training set every epoch. McClelland’s architecture assumption (i.e., 

the segregation of weight and distance information), however, was not implemented 

in this model.

Sixteen “computer subjects” were used in the Shultz and Schmidt experiment 

(i.e., the simulation was run 16 separate times with different initial weight states).

After each training epoch, the network: was tested on 24 randomly selected test 

patterns. Rule diagnosis was similar to  that used by Siegler (1976) for human 

subjects. There were four of each of the six problem types. Each of the four instances 

of the non-balance problem type represented one of four levels of torque difference
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(i.e., 1, 2-5, 6-9, 10-20). With respect to the order of rules, 11 computer subjects 

progressed through all four stages in the appropriate order. Two subjects progressed 

through the first three rules. One subject used only Rules 1 and 2, one skipped Rule 3, 

and another skipped to Rule 4 and then regressed to Rule 3. In terms o f hidden unit 

recruitment, nine of the computer subjects recruited one hidden unit, six recruited two 

hidden units, and one recruited three hidden units. In half of the cases, hidden unit 

recruitment was associated with a quick progression from one rule to the next.

In a second experiment, training and testing occurred in exactly the same way as 

described above. However, errors were recorded for test problems at the four levels of 

torque difference. An ANOVA conducted on the error signals for the middle and last 

epochs indicated a main effect o f torque difference level, such that the larger the 

torque difference, the smaller the error. Not only did the model go through the stages 

in the appropriate sequence, it showed use of Rule 4 for most of the computer 

subjects. There were also instances of stage skipping, developmental regressions, and 

not achieving Rule 4. These same patterns are found with human subjects (e.g., 

Chletsos et al., 1989; Siegler, 1981).

Shultz et al. (1995) reported a second cascade-correlation model o f the balance 

scale. Rather than biasing the training environment toward weight information, the 

internal state of the network was prestructured so that preferential treatment would be 

given to the weight information.8 The entire set of 625 possible problems was

8 This was done by pretraining the network with equal-distance problems. This approach is 
easier to implement than, for example, supplying connection weights by hand (Shultz e t al., 1995).
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presented during training. The network displayed the regularities found in human 

performance, including the use of all four of Siegler’s rules in the correct order, some 

stage skipping and regressions, U-shaped development on conflict-weight problems, 

and the TDE.

Critique o f  Rule-Assessment: Modeling Studies 

Siegler’s (1976) rule-assessment approach has been used to assess the 

performance of the connectionist models described in the previous section. An 

additional critique of the rule-assessment method has come to light as a result of these 

studies. That is, a set of responses can be classified as either Rule 2 or 3, depending 

on the scoring priority used. Shultz et al. used four scoring variations and found 

variability in rule assessment. Likewise, two different patterns of stage progressions 

resulted in Schmidt and Ling’s (1996) simulations depending on the order in which 

the assessment methods were applied. Some regressions occurred when one 

assessment order was used, but not with the other order. Shultz et al. (1994) noted 

that this diagnostic ambiguity has not been acknowledged by psychological 

researchers.

Summary o f Modeling Studies

Overall, the connectionist simulations o f balance-scale performance have been 

more successful than the older symbolic models with respect to providing a good fit 

to the data reported by Siegler (1976). The connectionist models and the C4.5 

symbolic model of Schmidt and Ling (1996) have been successful at capturing the 

major regularities of the human data, including stage-like or qualitative shifts in
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performance.9 These stages were exhibited by systems that change in a gradual, 

continuous manner. The U-shaped trend present in the human data, and the torque 

difference effect were also captured in many of the models discussed. In the next 

section, I will use the literature reviewed in the first two sections and the various 

critiques of the rule-assessment method to support my argument that an alternative 

approach to studying the balance-scale task is needed.

Data Fitting versus Network Interpretation 

To date, modeling approaches have been done in the service of fitting the 

psychological data. For each of the models I have discussed, one of the goals of the 

researcher was to use an approach analogous to the rule-assessment method to 

produce network data that conforms to the pattern of results reported by Siegler 

(1976) and Ferretti and Butterfield (1986). For example, Schmidt and Shultz (1992) 

replicated the McClelland (1989) model and examined a variety of parameters to 

determine which variables and interactions produced the most “psychologically 

realistic” results. They kept the learning rate, momentum, and range of random start 

connections constant, but manipulated bias size (i.e., the number of extra equal- 

distance problems in the corpus), subset size (percentage of the corpus sampled for 

training), weight updating (batch versus continuous), and network architecture 

(segregated versus nonsegregated). The specific results are not at issue, but overall,

9 Note that a key difference between the C4.S mode! and connectionist models is that the C4.S 
model does not include any variability in runs—the same solution is generated every time the model is 
implemented (Schmidt & Ling, 1996). Each run of a connectionist network begins from a random 
starting state.
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any manipulation that slowed convergence resulted in the most psychologically 

realistic data. What is at issue is that parameters were manipulated in order to fit one 

particular data set, that is, the one reported by Siegler (1976).10

This inclination toward fitting data can be amply illustrated. For example, 

consider Sage and Langley’s (1983) evaluation of their model: “The stages through 

which the system progresses are very similar to those observed in children, so the 

model provides an explanation of the observed developmental trends” (p. 94). More 

recently, Schmidt and Ling (1996) commented that, “Regardless of the learning 

algorithm that one adopts (connectionist or symbolic), the choice of attributes to use 

is crucial i f  the model’s output is to match the human data (p. 211, emphasis added). 

What is Wrong With Data Fitting?

Clearly, one goal of modelers has been to fit the psychological data. It would be 

an overstatement, however, to assert that this was the only goal of these researchers. 

Other goals included determining the conditions under which the observed pattern of 

performance could or could not be obtained. An example of this is the environment 

assumption. For instance, several modelers needed to bias the training environment in 

order to observe the progression of rules found in the developmental literature.

Another goal was to use computer models to derive novel predictions. For example, 

Schmidt and Ling (1996) suggested, contrary to several previous models, that “the 

C4.3 model predicts that the weight and distance dimensions are equally and

10 I point specifically to Siegler’s data, but I also mean to include replications of Siegler as the 
type of data which modelers have been trying to fit.
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symmetrically presented in the natural world” (p. 226). Another prediction from 

Schmidt and Ling’s model concerns the primacy of simple balance problems. Having 

said that, I want to reiterate that a key goal was to produce the greatest proportion of 

classifiable networks using the rule-assessment method.

As demonstrated, numerous criticisms have been leveled against rule 

assessment. These include (a) arbitrary criteria for scoring, (b) assessment varying 

with the torque difference of the items used, (c) assessment varying with the priority 

given to the various rules, (d) assessment varying with task demands, (e) scoring 

criteria that are not diagnostic with respect to other postulated rules, and (f) lack of 

clarity regarding the “muddle through” stage. These problem, cumulatively, make the 

interpretation of data from psychological studies either questionable or ambiguous.

Despite these criticisms, a central goal of modeling researchers has been to 

develop models that fit Siegler’s 4-Rule Model. Given the problems encountered in 

the psychological literature, modeling approaches designed to capture these results 

will do little to help us understand performance on this task. Elman et al. (1996) 

nicely summarized this viewpoint:

“ . . .  let us be very clear about the important distinction between 

implementation and theory building. It is of course relatively easy to 

implement developmental outcomes in connectionist models. Some of the 

models we have discussed are obviously still at a very early stage of 

development and go little beyond the implementation of behavioral 

outcomes.” (p. 170)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36

Essentially, a model is only as good as the data it was designed to fit. In the case

of the balance-scale task, modelers have been trying to emulate a pattern of human

performance that has been collected with a method that has shown to be problematic.

Moreover, given the dearth of alternative assessment methods, this same method has
%

then been applied to evaluate the network models.

Preview o f  the Present Neural Network Research

Rather than implementing behavioral outcomes, I advocate a novel approach to 

studying the balance-scale task. The starting point for the research in this dissertation 

is the assertion that network models thus far have been modeling human data that is 

open to interpretation because the methods used to collect it have been shown to be 

problematic. It follows then that the interpretation and evaluation of previous models 

may also be open to debate.

Currently, new methods have been developed for interpreting network models 

(e.g., Berkeley, Dawson, Medler, Schopflocher, & Hornsby, 1995; Dawson, 1998; 

Dawson, Medler, & Berkeley, 1997; Elman, 1990; Hanson & Burr, 1990;

McCaughan, Medler, & Dawson, 1999). I will present the results of a connectionist 

simulation in which the goal was to use these approaches to interpret the network in 

order to find out how the network solves balance-scale problems. As part of taking an 

interpretive approach, an analysis of the problem-space was conducted. To preview, 

this approach has resulted in a new interpretation of the task, new criticisms of the 

rule-assessment approach, and novel predictions that can be tested with human 

participants.
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CHAPTER 3

EXPLORING NEURAL NETWORKS AND THE PROBLEM SPACE

In Chapter 2 ,1 reviewed the literature on the psychological and modeling 

approaches to the balance-scale task. Siegler’s (1976) decision-tree model makes 

specific predications about patterns of performance that were borne out in the human 

data. Likewise, connectionist models provided a good fit to the data by capturing 

major regularities. The primary method of evaluating both human participants and 

computer models has been Siegler’s rule-assessment approach. The rule-assessment 

approach was subjected to critical analysis.

Previous connectionist models (e.g., McClelland, 1989; Shultz & Schmidt,

1991) included particular assumptions about, for example, the training environment 

or the structure of the network. These assumptions, along with the manipulation of 

other parameters, were done in the service of fitting the psychological data. The 

psychological data, however, are open to alternative interpretations as they were 

collected using a method that has been shown to be problematic. Six main criticisms 

were outlined in Chapter 2. Models that have been designed to emulate these data, 

therefore, are also subject to alternative interpretations.

Currently, no alternative exists as a method of assessing the performance of 

either human participants or network models on the balance-scale task. In the first two 

chapters, I previewed a different way to approach network modeling -  one that 

focuses on interpreting artificial neural networks. It is the interpretive approach that is 

the focus of the present chapter. Here, neural networks are trained on the same task as
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used with human participants. Instead of manipulating parameters and assumptions to 

obtain the best possible fit to the rule-assessment data, the fully-trained network is 

examined in detail to extract the way the network solved the information-processing 

problem. The main question driving the research becomes: “Can we gain any insight 

into the task or how individuals solve it by exploring the way a neural network 

accomplishes the task?”

In the first section, I present the results of a neural network trained to perform 

balance-scale problems. One network was analyzed in detail to explore questions 

about how the network solved the task. Through the course o f this analysis, many 

interesting properties of the problem space were discovered. In the second section, I 

will provide an analysis of the problem space and also of published test sets. As a 

result of these analyses another experiment with neural networks was conducted. The 

simulation involved removing a particular type of problem from the training set and 

then training it first with the same topology as in Experiment 1 and then again with 

one less hidden unit. The network with fewer hidden units was subjected to 

interpretive techniques. These results will be discussed in the third section and a 

chapter summary follows. In combination, the problem space analysis and the 

interpretation of the networks led to several questions and hypotheses about human 

performance. These hypotheses and an experimental evaluation follows in Chapter 4.

Experiment 1: Interpreting the Balance Scale Network 

In this simulation, neural networks were trained to predict correctly balance- 

scale problems. Various techniques were then used to determine if the internal
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structure of the network could be interpreted with respect to questions about how it 

was solving the balance-scale task. Four main interpretive approaches were 

undertaken. These will be described in more detail below.

Simulation Methodology

Training Set

The network was presented with all 625 possible five-peg, five-weight 

problems. Balance-scale problems were represented on 20 input units. The first five 

units represented left weight and were thermometer coded (i.e., a unit was turned on 

for each of the weights represented; see Figure 7). The second set of five units 

represented left distance and were unary coded (i.e., the unit corresponding to the 

position of the weights had a value of 1, the others were set to 0). The same pattern 

was repeated for the remaining 10 units representing right weight and right distance. 

Processing Units

The network had 20 input units (see Figure 7). The network was fully connected 

in that every input unit was connected to every hidden unit (i.e., the input was not 

segregated as in McClelland, 1989; cf. Figure 5). The network required four hidden 

units. In pilot tests, this was the minimum number required to obtain reliable 

convergence. All hidden unit processors were value units (Dawson & Schopflocher,

1992). Value units use a Gaussian activation function (minimum of 0, maximum of 1, 

standard deviation of 1). Value units were selected because the primary goal of this 

research was network interpretation. Based on previous research, value units have 

been shown to be particularly interpretable (e.g., Berkeley et al., 1995; Dawson &

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



40

Medler, 1996, Dawson, Medler, & Berkeley, 1997; Leighton, 1999; Leighton & 

Dawson, 1999; McCaughan, Medler, & Dawson, 1999; Medler, 1998; Medler, 

McCaughan, Dawson, & Willson, 1999).

Two output units were used. Activation of either the left or right output unit 

represented the corresponding side of the balance scale that would tip. Balance 

problems were represented by zero values on both units. The output units were also 

value units.

Training the Network

The network was trained using the generalized delta rule designed for use with 

the value unit architecture (Dawson & Schopflocher, 1992). The learning rate was set 

at 0.005, and no momentum term was used. Connection weights were randomly set in 

the range of ± 0.1 and the biases of all value units (i.e., the mean for the Gaussian for 

each unit) were initialized to zero. In pilot tests, these parameter settings resulted in 

reliable convergence. The criterion for a “hit” was set at 0.01 (i.e., the activation had 

to be greater than or equal 0.90 when the desired output was I, and less than or equal 

to 0.10 when the desired output was 0). Pattern order presentation was randomized 

every epoch. Network connections and biases were updated after each pattern 

presentation. The network converged after 4120 epochs of training (i.e., the number 

of epochs required before a hit was recorded for every pattern).1

1 With the parameter values outlined above, the network was run 20 times. The average 
sweeps to convergence was 4092.1 (sd = 120.9). Following the analysis of Network 4120, other 
networks were evaluated to verify that the results were replicable.
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Analysis o f  the Network

A variety of methods were used to analyze the balance-scale network, including 

(a) an analysis of the connection weights, (b) a banding analysis of the hidden unit 

activities, (c) the identification of possible functions, and (d) a cluster analysis of the 

hidden unit activities. One network was subjected to all analyses.

Approach 1: Analyzing the Connection Weights

Other researchers have examined the connection-weights between processing 

units as one method of exploring the structure of neural networks (e.g., Hinton & 

Sejnowski, 1986). For example, Hinton diagrams have been used to illustrate the 

strength and the direction (i.e., positive or negative) of connection-weights.2 Each 

connection-weight is plotted as a box. The size of the box represents the magnitude of 

the connection-weight (zero, small, medium, large) and the color of the box 

represents the direction (black for negative values, white for positive values).

There were 80 connections in total between the 20 input units and the four 

hidden units. Instead of using Hinton diagrams, the strength and direction of the 

connection-weights have been plotted in a standard Cartesian coordinate system (see 

Figures 8 and 9). The value of the connection-weight is plotted on the ordinate and 

individual cases are plotted on the abscissa.

First, consider the connection-weights between the input units representing 

weight information and the hidden units. Figure 8 (solid bars) shows the 20

2 The connections between units will always be referred to as “connection-weights” or 
“connections” in order to distinguish them from the weight value (i.e., mass) represented in balance- 
scale problems.
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connection-weights between Input Units 0 though 4 (the five units representing left 

weight) and the four hidden units. From left to right, the first five solid bars represent 

the connections to hidden unit 0 (HO), the next five to hidden unit 1 (HI), and so on. 

Figure 8 (striped bars) shows the 20 connection-weights between Input Units 10 

though 14 (the five units representing right weight) and the four hidden units.

Recall that weight was thermometer coded (i.e., a unit is turned “on” for every 

weight value), therefore, the first input unit for each group o f five will always be on 

(i.e., because there is always at least one weight on each side of the fulcrum). Thus, 

the connection-weight values for the first case in each of the four groups are similar 

(i.e., all are near zero: 0.2, -0.003,0.2, and 0.07 for connections from left-weight units 

going to the four hidden units (solid bars), and 0.2,0.1,0.1, and 0.2 for connections 

from right-weight units to the four hidden units (striped bars).

One noticeable feature of these connection plots is the symmetry along the 

horizontal axis. Imagine that for a particular pattern, the left and right weight values 

are the same (temporarily ignore the distance dimension). As can be seen by 

comparing the solid and striped bars, the connection-weights to a particular hidden 

unit cancel each other out, as corresponding values are either positive or negative. If 

there were two weights on each side of the fulcrum, for example, the value of the 

connection-weights to HO for left and right are -.32 and +.32, respectively. Similarly, 

the left and right connection-weight values to HI, H2, and H3 are +/-1.45, +/-.31, and 

+/-2.8, respectively. Therefore, when the left and right weights are equal, the signals 

to the hidden units sum to zero.
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Now imagine a difference in weights on each side of the fulcrum (e.g., l w  = 4, 

RW = 2). In this case the connection-weights for the first two input units cancel each 

other out as described above, but for the two additional inputs on the left, a positive 

signal would be transmitted to H2 and H3, and a negative signal to HO and HI (note 

that the opposite pattern would occur if the difference was in favor of the right side).

In summary, when there is no difference between the left weight and the right weight, 

the connection-weights modify the signal from the input units such that all four 

hidden units receive neutral information. When there is a difference in the values for 

left weight and right weight, the connection-weights transform the signals so that 

different hidden units receive incoming signals that are either positive or negative 

(and that differ in the magnitude of the signal).

Figure 9 shows the connection-weights between the input units representing left 

and right distance. The 20 connection-weights between Input Units 5 though 9 (the 

five input units representing left distance) and the four hidden units are represented by 

the solid bars. The 20 connection-weights between Input Units 15 though 19 (the five 

units representing right distance) and the four hidden units are represented by the 

striped bars. Again, there is a symmetry along the horizontal axis. If the distance 

values on the left and the right are the same, the corresponding connection-weights 

cancel each other out (one being positive, the other being negative). For example, 

consider the case where the left and right distance is 1. The connection-weight values 

for left and right distance are +.53 and -.40 to HO, +2.0 and -2.0 to H I, -.37 and +.44 

to H2, and -3.8 and +3.8 to H3. Therefore, when distance is the same on the left and
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right sides of the fulcrum, the four hidden units would receive signals that sum 

together to equal zero (or near zero, in the case of the small differences for 

connection-weights to HO and HI). Note that we do not have to consider the other 

units in the group of five that represent either left or right distance. Recall that 

distance is unary coded, so that the other input units are set to zero. The hidden units 

will not receive information from those units, as any connection-weight multiplied by 

zero is zero.

Now consider a difference in distance on each side of the fulcrum (e.g., LD = 1, 

rd = 5). As above, the connection-weight values for left distance are +.53 to HO, +2.0 

to HI, +.44 to H2, and -3.8 to H3. The connection-weights for right distance are +.34 

to HO, +1.4 to HI, -.26 to H2, and -2.6 to H3. Unlike the case when distances are 

equal, the hidden units receive positive or negative signals from the input units 

representing distance information. In this case, information from the input units 

representing distance are passed through connection-weights that either amplify or 

attenuate the signal. HO receives two moderately positive signals (.53 plus .35). HI 

receives two strongly positive signals (2.0 plus 1.4), H2 receives a signal near zero 

(+.44 plus -.26), and H3 receives a strongly negative signal (-3.8 plus -2.6). To 

summarize, when there is a difference between the left and right distance values, the 

hidden units receive either positive or negative signals, but when the distances are 

equal, very little information is added to the incoming signal received by any 

particular hidden unit.
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The eight connection-weights between the four hidden units and the two output 

units are plotted in Figure 10. For any given hidden unit, the connection-weights 

between it and the two hidden units are large to one output unit and small (relatively 

speaking) to the other output unit. More specifically, the connection-weights from HO 

and HI are large going into Output Unit 0, and small going into Output Unit 1. The 

connection-weights from H2 and H3 are large going into Output Unit 1, and small 

going into Output Unit 0.

Recall that when there was a difference between left and right weight (with 

more weight on the left side), positive signals were transmitted to H2 and H3, and 

negative signals were sent to HO and HI. If we temporarily ignore the processing that 

the hidden units do we see that the connection-weights would take the positive values 

at H2 and H3 and send strong signals to the right output unit and weaker signals to the 

left output unit.3 The negative signals to HO and HI would be scaled to send stronger 

signals to the left output unit and weaker signals to the right input unit. Clearly, there 

is a general pattern such that the connection-weights between the hidden units and the 

output units continue to transmit information about whether there is a difference 

between the left and the right sides. The story is incomplete, however, because we 

know that in addition to summing incoming information, processing units (whether 

hidden or output) also compute a level of activity (i.e., the activation function 

described in Appendix B).

3 “Strong” and “weak” are used here in a relative way only for purposes of a general 
description. Looking closely at Figure 10, some of the connection-weights are actually near zero.
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In summary, when the network converges on a solution to every problem in the 

training set, the connection-weights are configured such that they modify any input 

pattern so as to discriminate the differences between left and right, for both weight 

and distance. That is, there is evidence that the network has the ability to integrate the 

weight and the distance information on each side of the fulcrum. This analysis o f the 

connection-weights provides some insight into how the network has learned to 

classify patterns as left, right, or balance. To get a more complete picture, however, 

the activity of the hidden units must also be analyzed.

Approach 2: Banding Analysis

A second way of exploring the structure of a neural network is to analyze the 

hidden unit activities. Previous researchers (e.g., Berkeley et al., 1995; Dawson & 

Medler, 1996, Dawson et al., 1999, Leighton, 1999; McCaughan et al., 1999) have 

found marked banding of hidden unit activities when they are graphed on a jittered  

density plot. An example of a jittered density plot and the banding of hidden units is 

illustrated in Figure 11. The jittered density plot is 1-dimensional scatterplot: hidden 

unit activity is plotted on the abscissa and the data points are plotted randomly on the 

ordinate so that they do not overlap.

Banding facilitates an interpretation of the network’s algorithm, that is, how the 

network performed the input-output mapping. Typically, banding is taken as 

evidence for feature detection. That is, each band is associated with input patterns that 

have some feature in common, and this particular feature assists in the classification 

of that pattern as a particular output. For example, Berkeley et al. (1995) trained a
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value unit network on Bechtel and Abrahamsen’s (1991) logic problem. Nine out of 

the 10 hidden units showed banding. Particular types of problem would fall into the 

same bands. For example, modus ponens problems clustered together, as did modus 

tollens problems. By analyzing the network in this way it was possible to determine 

which features the network used to solve the problems. Next, I will describe the 

procedure for conducting a banding analysis.

Recording hidden unit activities. The activities of the hidden units were 

recorded after the network had converged on a solution to every problem in the 

pattern set. The recording of hidden units is called wiretapping, as the procedure is 

analogous to single-cell recording in the brain (Dawson, 1998). Once the network has 

converged (i.e., has correctly learned to solve the problem it has been presented it 

with), each pattern in the training set is presented to the network one more time. For 

every pattern, the hidden units compute a particular level of activity. The internal 

level of activity for each hidden unit is then recorded for every pattern in the training 

set. In the case of the balance-scale task, for each of the 625 patterns, the activations 

of the four hidden units were recorded (resulting in a 625 x 4 data matrix).

As can be seen in Figure 12, banding was not evident. There were regularities, 

however, in the “smearing” of hidden unit activities. For example, for hidden unit 0 

(HO), all the right patterns had low activation, left patterns had high activation, and 

balance patterns were in between. The reverse pattern was found on hidden unit 2 

(H2). For HI and H3, there was a mixture of left, right, and balance problems across 

the range of hidden unit activity values. Some of the “loose” bands on HI and H3
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contain the same types of problem (e.g., all left patterns), but these alternate across the 

range of values.

Although the analysis of the hidden units did not reveal “feature detectors,” the 

regularities in the hidden unit activities may reflect an integration of information. In 

fact, the lack of feature detectors supports the same general notion that was found in 

the analysis of the connection-weights: that the network is performing some type of 

integration of weight and distance information. Neural networks are also able to 

classify patterns without detecting discrete features (Dawson, 1998). One way that 

neural networks classify patterns is to detect the features that allow a classification. A 

second way involves the calculation (or approximation) of some function. For 

example, Medler and Dawson (1994) trained a neural network to simulate reaching 

for an object. The problem involved a crab-like robot that has two “eyes” that rotated 

and an arm that reached for an object placed in front of it. The input to  the network 

was the angle of rotation of the eyes required to fixate on the object. The model was 

trained to output two values: the angle of the shoulder joint and the angle of the elbow 

joint. These values were continuous and represent the bends in the arm required to 

make contact with the object. The network must approximate two functions: the angle 

of both the elbow and the shoulder joint is a function of the angle of rotation of the 

left and right eyes. Next, the idea that the network was calculating a function was 

explored.

Approach 3: Identification of Possible Functions

The regularities in the jittered density plots (see Figures 12) and the regularities
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in the plots of the connection-weights (see Figures 8, 9, and 10) together are 

suggestive of the hypothesis that the network was classifying problems as left, right, 

or balance via function approximation. The approximation of a function seems 

plausible given that a mathematical equation can be used to determine the outcome 

for balance-scale problems. Given the hypothesis o f function approximation, the next 

step was to identify the function.

Given that the network solved all problems correctly it seemed necessary to 

assume that all four dimensions were integrated in some manner. A few functions 

were likely candidates, including the torque algorithm and the unweighted additive 

( [ /? w +  /?z>] - [l \v + l d ]) and weighted additive (e.g., \2 r w  + r d ] - [ 2 lw +  l d \)  

integration rules suggested by Wilkening and Anderson (1982). The hidden unit 

activities were plotted as a function of the torque equation (see Figure 13) and as a 

function of an unweighted additive equation (see Figure 14).4

These two figures are very similar. The discontinuities in the lines in Figure 13 

are a result of the gaps in the values of the torque equation on the abscissa. In the case 

of both the multiplicative and additive equations, the network responded in a 

particular way to problems depending upon the size of the difference between the left 

and right sides. When there were large differences in the amount of “information”

(i.e., torque difference or additive difference), a single hidden unit responded (i.e., HO 

and H2 for left and right problems, respectively). When the difference was small, a set

4 The weighted equations were also plotted, but the general pattern was the same as illustrated 
in Figures 13 and 14. Only the unweighted additive equation will be considered further.
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of hidden units was required to make the correct prediction. The cross-over point for 

HO (the left detector) and H2 (the right detector) occurs at zero in Figures 13 and 14. 

The highest activations for HI and H3 are at the zero point on both figures (i.e., 

balance).

This situation can be thought of as analogous to the overlapping receptive fields 

in the visual system. This analogy is illustrated in Figure 15. In panel A, with non

overlapping receptive fields, an object is detected by a large receptive field, but 

information about the precise location cannot be detected. With overlapping receptive 

fields the activation of three sensors provides the additional information required to 

locate an object more precisely in space. Similarly, fine discriminations in the 

network were required when the difference between the two sides was very small. The 

“overlapping” activity of the hidden units signals that the difference is small—but 

provides enough information to make the appropriate response. This is called coarse 

coding (Hinton, McClelland, & Rumelhart, 1986).

In order to determine if the network might, in fact, be approximating a 

multiplicative or an additive function, the net input for each hidden unit was 

computed for each of the 625 balance problems. The procedure was as follows. For 

each hidden unit, there are 20 weighted connections between it and the 20 input units. 

From the topology of the converged network it is possible to determine the value of 

these connection weights (see also Figures 8 and 9). Using matrix algebra, one can 

determine the net input to a hidden unit for every possible input pattern by summing 

together the products obtained by multiplying the input patterns times the connection
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weights. More precisely, this is the net input function that involves the summation of 

incoming information (see Appendix B).

For each of the four hidden units the net input for each pattern was plotted as a 

function of the torque equation (Figure 16) and as a function of the additive equation 

(i.e., [r w  +  r d ] - [l w  +  LD]\ see Figure 17). The associated correlation coefficients are 

shown in each panel. For three of the hidden units there was a very high correlation 

between the torque equation and the net input, and an almost perfect correlation 

between the additive equation and the net input. For hidden units 2 and 3 there was 

one outlier. This pattern is the simple balance problem with five weights on the fifth 

peg on each side of the fulcrum. When this outlier is removed, the correlation 

between net input for hidden unit 2 changes to -.92 in the case of the multiplicative 

equation, and -.97 in the case of the additive equation (i.e., the absolute value is the 

same for all four hidden units for both equations).

The evidence for an additive or a multiplicative function is not clearly distinct 

(cf. Figures 13 and 16 with Figures 14 and 17). It is unlikely, however, that the neural 

network was actually performing multiplication. Multiplication is not a primitive 

operation of the processing units. Recall that an individual processing unit (i.e., either 

a hidden or an output unit) has a net input function, and that the most common type 

(and the type used in this network) is one that simply sums the information from all 

incoming units. This point is illustrated in Figure 18. Although an outgoing signal is 

multiplied by a connection weight, the individual processing unit sums together the 

information about weight and distance. The processing unit cannot, therefore, directly
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multiply the weight and distance information. It is more likely that the network has 

learned the mapping between input patterns and output responses by approximating 

the multiplicative rule.5

Thus, the evidence so far points to the idea that the network has learned how to 

integrate the weight and distance information, and that it might be solving problems 

via function approximation. Next, I present the results of the cluster analysis approach 

to network interpretation.

Approach 4: Cluster Analysis o f  Hidden Unit Activities

The hidden unit activities were subjected to a k-means cluster analysis. The k- 

means algorithm is an iterative procedure that involves three main steps: (a) the data 

set is partitioned into k different clusters; (b) the centroids of each cluster are 

calculated; and (c) each data point is assigned to the cluster that has the nearest 

centroid. The process is repeated until no data point is moved to a different cluster.

The heuristic for selecting k, the number of user-defined clusters was as follows.

Given a converged network (i.e., one that has correctly learned the task), we know 

that there has been a correct mapping of training patterns, hidden unit activities, and 

output responses. The heuristic stopping rule takes advantage of this mapping. That 

is, we take the smallest number of clusters such that each contains unique output 

responses. In the case of the balance-scale task, all members of a cluster would have 

to be patterns with the same output prediction — either all left, all right, or all balance 

(see Dawson, Willson, McCaughan, & Medler, 1999, for more details).

5 This issue will be discussed in more detail in the analysis of the problem space, below.
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Using this stopping heuristic, the smallest number of clusters that met the 

criterion was seven. The division of the 625 patterns into clusters can be found in the 

first two columns of Table 2. Three clusters contained left problems, three contained 

right problems, and one cluster contained all balance problems.

Given there are seven types of balance problems (see Table 1) and the seven 

cluster solution, an obvious question was whether there was a mapping between 

cluster membership and the problem types described by Siegler (1976). Recall that 

these problem types are essential for differentiating the use of the different rules in 

Siegler’s model. Other researchers have used cluster analysis as a tool for analyzing 

the structure of a converged network (e.g., Dawson et al., 1999; Elman, 1990; Hanson 

& Burr, 1990; McCleod et al., 1998). Often, there is a mapping between the 

characteristics of the problem and the clusters. For example, the mushroom problem  is 

superficially similar to the balance-scale task. In this benchmark machine-learning 

task a decision must be made about whether a mushroom is edible based on its 

features (e.g., color, odor). Using binary decision trees over 8000 different 

mushrooms can be classified as either edible or poisonous. A neural network can be 

trained to do this task and based on the cluster analysis, groups of features that predict 

edibleness cluster together (Dawson et al., 1999). So for example, all patterns with an 

anise odor fall into the same cluster (i.e., all mushrooms with an anise odor are 

poisonous).

In the present case, however, there was no clear mapping of the seven problem 

types to the seven clusters. This point is illustrated by comparing Figures 19, 20 and
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21. The pattern space for the training set cannot be shown properly in four 

dimensions, so these figures illustrate the pattern space in two dimensions. The 

dimensions were collapsed by plotting left torque (i.e., l w x l d ) by right torque (i.e., 

RW x rd). The entire problem space (or torque difference space) is shown in Figure 

19.6 The 625 problems are shown with a slight random jitter to show problems that 

overlap in the space. The carving of the torque-difference space by standard problem 

types (Figure 20) reveals complete overlap for weight and distance problems (Panels 

B and C) and complete overlap for conflict-weight and conflict-distance problems 

(Panels D and E). That is, they cover the exact same points in the problem space. 

Moreover, these four problem types overlap with each other and with the both-greater 

problems. In Figure 21, the pattern space is carved by the cluster analysis into non

overlapping sections (i.e., there is no overlap in the torque difference space).

Although Siegler (1976) has suggested that the balance-scale task (like the 

mushroom task) could be solved via binary decision trees (see Figures 1 and 2), 

balance problems do not have many discrete (or nominal) characteristics. In fact, 

when we consider the features of balance problems, there is only one discrete 

characteristic: problem type. The other features that differentiate the problems have to 

do with continuous characteristics,7 such as the weight and distance dimensions, or 

the difference in weights, distances, sums, or torque for each arm. The results of the

6 A torque difference space seemed the appropriate way to consider the task in two 
dimensions, as the mathematicaliy-correct predictions map onto regions of the space. In Figure 19, all 
balance predictions fall on the diagonal, and all left and right predictions fall to the left and right of the
diagonal.

7 “Continuous” is used loosely here as numeric and ordinal -  to contrast with discrete.
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cluster analysis can be used to support the idea that the network did not solve balance- 

scale problems via pattern classification based on the type of problem, but rather, 

based on where the problems were in the problem space.

Consider the mean hidden unit activities for each of the clusters presented in 

Table 2 (also see Figure 22). Given that the cluster analysis is based on differences in 

these values, it is not surprising that hidden unit values differ across cluster. What is 

noteworthy, however, is that there is a pattern of hidden unit activity that 

characterizes each cluster. For example, hidden unit 0 (HO) is associated with left 

patterns. Cluster 1 includes the patterns with large torque differences (TD) and strong 

activation of HO. Cluster 7 includes patterns with a medium level TD and a medium- 

level activation of HO. The same pattern holds for right patterns, with H2 having 

strong and moderate levels of activation for patterns in clusters 2 and 5, respectively.

A  slightly different pattern emerged for patterns with low TD. For left and right 

patterns with low TD, there were rather high activations for HI and H3 respectively, 

along with low levels of activation distributed across the other two hidden units. 

Similarly, balance problems (i.e., TD = 0) were associated with distributed hidden 

unit activities. In general then, the network was sensitive to differences in torque. 

Recall that the torque difference effect was found by Ferretti and Butterfield (1986) in 

human subjects, and found independently by Shultz and Schmidt (1991) using 

cascade-correlation networks.

Let us return to the plots of the connection-weights (see Figures 8 and 9). Notice 

the large differences in connection-weight values for input units connected to HI and
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H3 (cases 1-5 and 11-15). Contrast this with the connection-weight values for HO and 

H2 (cases 6-10 and 16-20). This same pattern is evident for left weight (Figure 8, 

solid bars), right weight (Figure 8, striped bars), left distance (Figure 9, solid bars), 

and right distance (Figure 9, striped bars). There are extreme differences in 

connection-weights connecting to the hidden units that are associated with balance 

and small torque-difference problems (i.e., HI and H3). These extreme values are not 

seen in the connection-weights to the hidden units that are associated with large 

torque-difference problems. The large differences in connection weights ensure that 

when there is a small difference between the left and right values (for either weight or 

distance), this information will be propagated through the remaining layers of the 

network.

Discussion o f  the Network Analysis

The results of the approaches used in analyzing the neural network converge on 

two important ideas. First, problems were solved by the network based on continuous 

properties of the problem, not discrete or nominal characteristics. That is, the 

classification was done via function approximation and this function was most likely 

an additive equation that included all four dimensions of the task (i.e., lw , l d , r w , r d ). 

Problems clustered together based on numerical aspects of the problem (see Figure 

22), and not the traditionally defined problem types.

The second idea concerns the importance of the problem space. The integration 

was tied to the location of problems in the torque difference space. When the 

difference between the left and the right side was large, a single hidden unit was
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sufficient to signal the correct response. When the difference was small or zero, the 

overlapping activity of several hidden units was necessary. Small and large 

differences in the left and right torque can be visualized by reference to the problem 

space (see Figure 19). Next, the problem space for balance-scale problems was 

examined.

Analyzing the Problem Space

Recall that when hidden unit activity was plotted as a function of the additive 

and the multiplicative equations, the general pattern was the same (see Figures 13 and 

14). Likewise, the correlations between net input and both equations was very high 

(approximately ±.97 and ±.92 for additive and multiplicative, respectively; see 

Figures 16 and 17). Although I asserted that it was unlikely that the neural network 

had discovered how to multiply, the similarities between the additive and the 

multiplicative equations begged for further investigation.

For each of the 625 patterns, solutions were calculated using both the torque 

rule and the additive rule. Figure 23 shows the scatterplot o f the two solutions. The 

correlation between the torque rule and the additive rule was 0.95. Using an additive 

heuristic, 573 out of the 625 problems (91.7%) can be solved correctly (i.e., the same 

solution as would be generated by the torque algorithm). This finding provides insight 

into how it was possible for the network to approximate the torque algorithm when 

multiplication is not a primitive operation. This finding also has implications for the 

psychological literature. There has been debate about the nature of the integration that
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occurs when an individual is aware of the importance of both dimensions (and yet 

does not know the torque rule). This simple fact about the nature o f the problem itself 

suggests the need for a reinterpretation of the human literature. Following a 

discussion of the 8% of problems in which the solutions using the torque and additive 

rules do not match, the composition of test sets used in the balance-scale literature 

will be analyzed.

The Match versus No-Match Distinction

What are the characteristics of the balance-scale problems for which there is no 

match between the solutions generated by the torque and additive rules? The 52 

problems that do not result in a correct solution when the additive rule is applied are 

all conflict problems (4 CB, 24 CW, and 24 CD), and all have torque differences 

between ±4 (see Table 3; a list of all no-match problems appears in Appendix C).

Some researchers have used the no-match problems as a means of 

differentiating between individuals who used an additive or a multiplicative strategy 

(e.g., Ferretti et al., 1985). The frequency of occurrence of these items, however, has 

not generally been acknowledged. There are six different types of no-match problems 

(see Table 3). Of the 24 conflict-balance problems, only four are no-match (torque 

predicts balance but additive predicts tip). A further distinction can be made. For two 

of the CB problems, the additive rule predicts that the scale will tip to the side with 

the greater weight (conflict-balance sum-weight, or CBSW), and for the other two it 

predicts that the scale will tip to the side with the greater distance (conflict-balance
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sum-distance, or CBSD).8 The CBSW and CBSD problem types each constitute 0.3% 

of the entire problem space.

There are 48 conflict-weight and conflict-distance problems that can be 

classified as no-match. For 40 of the problems the torque rule predicts the scale will 

tip but the additive rule predicts balance. Twenty are conflict-weight sum-balance 

(CWSB), and 20 are conflict-distance sum-balance (CDSB). These 40 problems 

represent 6% o f the problem space. For the remaining eight problems, torque predicts 

the scale will tip to one side, but the additive rule predicts the scale will tip to the 

opposite side. In the case of conflict problems this implies the side with the greater 

quantity on the opposite arm. Four of the problems are conflict-weight sum-distance 

(CWSD), and four are conflict-distance sum-weight (CDSW). Each type represents 

0.6% of the problem space.

The implications of the additional classification of problem types can be 

demonstrated by referring to Table 4. The predictions for three common strategies are 

shown for each type of conflict problem, separated into match and no-match 

problems. Shown are the mathematically-correct torque rule, the additive rule, and a 

“weight only” rule. Recall that participants using Siegler’s Rule 1 and Rule 2 consider 

only the weight dimension when confronted with conflict problems.9 Sielger’s Rule 3 

is not listed. The predictions for Rule 3, according to Siegler’s description, would

8 These labels were suggested by Ferretti et al. (1985).

9 There is a .67 correlation between the solution generated by the mathematically correct rule 
and the solution generated using weight information alone. That is, 413 out of 625 (66%) problems 
can be solved correctly using a weight-only rule.
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involve random responses for any type of conflict problem.

Notice that the first four types of no-match problems make predictions that are 

the same for two out the three strategies listed. For example, for CBSW problems, 

both the additive and the weight-only rules predict that a participant will choose the 

side with the greater weight. Therefore, it would not be possible to use this type of 

problem to discriminate between users of these two strategies. The same holds for the 

CDSW, CWSD, and CWSB problems. Only the CBSD and the CDSB problems can 

be used to discriminate among the three different strategies. Similarly, the conflict 

problems in which there is a match between the solutions generated by the torque and 

the additive rules cannot be used to discriminate between users of different strategies. 

Again, two of the three strategies predict that a participant using that rule would make 

the same response.10

Given the extended classification of balance-scale problems, I examined the test 

sets used by previous researchers in order to determine whether the no-match 

problems were included and if so, which types of no-match problems were included. 

Characteristics o f  Published Test Sets

Given the preceding analysis of the problem space a closer examination of the 

types of instances that have been used in the test sets used in the psychological and 

modeling research is warranted. Very few authors have published the items used in 

their test sets, but I will show that of those available there is a confounding of the

10 The analysis and predictions outlined in Table 4 do not take the torque difference effect 
into account. This issue will be addressed further in Chapter 4.
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match and no-match types and o f torque difference. I analyzed the test sets used by (a) 

McClelland (1989; reported in Schmidt & Shultz, 1991), (b) Jansen and van der Maas 

(1997); and (c) Schmidt & Shultz (1991).

McClelland (1989) and Schmidt and Shultz (1991). The test set used by 

McClelland (1989) was adapted from Siegler’s (1981) set of test items. Siegler’s 

exact test set could not be used, as McClelland used a maximum of five pegs and five 

weights and Siegler used a maximum of four pegs and six weights. This test set was 

used to evaluate a replication of McClelland’s model and appears in Schmidt and 

Shultz (1991). This test set was also used to assess the performance of the models 

reported in Schmidt and Ling (1996) and Shultz et al. (1995)." Table 5 shows the 

absolute torque difference (TD) of the non-balance items in the test set.12

In this test set there is an obvious confounding of problem type and TD. 

Consider, for example, the weight problems. As discussed previously, Ferretti and 

Butterfield (1986) discovered that the larger the torque difference, the more likely it is 

that an individual will be diagnosed as using a more sophisticated rule. Three of the 

weight problems had a TD o f 8, and one had a TD of 4. Likewise, there was a range 

of TD values for distance problems (including one problem with a TD of 10). Given 

these large values and the existence of the torque difference effect, the simple 

problem types used in this test set may inadvertently bias the testing situation such

11 Shultz et al. (1995) reported the results of a cascade-correlation model (see Chapter 2). In 
Shultz’s earlier cascade-correlation model (Shultz & Schmidt, 1991), 24 randomly selected items were 
used every epoch so it is not possible to assess the characteristics of their test sets.

12 Excluding both-greater problems. None of the research to date has included this problem 
type in test sets. It has, however, been used in the training sets in modeling research.
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that a participant (or a neural network) will get these problems correct. If an 

individual or a network is to be classifiable, it is important that the simple weight and 

distance problems are solved earliest.

Consider the conflict problems in Table 5. There were two no-match problems 

(one CDSB and one CWSB, both TD = 2). Both were problems in which the torque 

rule predicts tip to one side but the additive rule predicts the scale will balance. One 

of the four conflict-balance problems was also a no-match problem. In this case 

torque predicts balance but the additive rule (and the weight-only rule) predicts that it 

will tip to the side with the greater weight (i.e., CBSW).

In summary, the simple weight and distance problems had large torque 

differences, and the conflict problems had small torque differences. Moreover, 25% 

of the conflict problems were no-match problems. McClelland (1989) and Shultz and 

Schmidt (1991) were not specifically looking for evidence of other strategy use (e.g., 

additive versus multiplicative rules). Rather, they were looking for evidence of the 

stage-like progression found in the human data (e.g., Siegler, 1976). The composition 

of the test set may have inadvertently biased the results such that analogous stages 

were found in the model. Given that the test set was based on one used by Siegler 

(McClelland, 1989), this same bias may have affected the results of the original 

psychological studies. In this case though, the test set may have biased the human 

results such that they matched the predictions of Siegler’s decision tree model.

Jansen and van der Maas (1997). Jansen and van der Maas used a test set of 

25 items to evaluate human participants and a replication of McClelland’s (1989)
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model.13 The number of non-balance items used appear in Table 6. Five of each 

problem type were used, excluding simple-balance problems. Similar to the previous 

test set the values of TD were larger for the simple problems than they were for 

conflict problems. Again, the simple problems were made easier by the fact that 

instances with much larger values of TD were selected.

For conflict-distance (CD) problems, four were no-match problems (three were 

TD = 1, one was TD = 2) and one was a match problem (TD = 2). The four no-match 

problems were all CDSB. As discussed previously, CDSB is one of the types of no

match problem that can discriminate users of three different strategies (see Table 4).

In the set o f five conflict-weight (CW) problems, two were match problems 

(TD’s of 1 and 2), and three were no-match problems (two with TD = 1, one with TD 

= 2). All no-match problems were CWSB (i.e., torque predicts tip to the side with 

greater weight, but additive predicts balance). The five conflict-balance problems that 

were used were all match problems (i.e., the same solution would be arrived at using 

either the torque rule or the additive rule).

Schmidt and Shultz (1991). Following Ferretti and Butterfield (1986), Schmidt 

and Shultz (1991) developed four separate sets of test items in order to do rule 

diagnosis such that problem type and torque difference were not confounded. Ferretti 

and Butterfield defined four levels of torque difference and used items from a set with 

a maximum of six weights and six pegs (see Appendix D for the number of items at

13 The test set was originally used by van Maanen et al. (1989), but is published in Jansen and 
van der Maas (1997).
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each level of torque difference for non-balance problems). Schmidt and Shultz 

adapted this set for use with the five-peg five-weight scenario (see Appendix E).

As mentioned, levels of torque difference (TD) were not confounded as they 

were in the McClelland and Jansen and van der Maas test sets. For some sets, 

however, there is a confound with the match/no-match distinction (see Table 7). At 

the first level (all problems have TD =1), one of the four CD and two o f the CW 

problems were no-match problems. In this case, they were all problems in which 

torque predicts the scale will tip in one direction but the additive rule predicts the 

scale will tip in the opposite direction (i.e., one CDSW and two CWSD).

The second level of TD included problems with an absolute TD of 3. In this test 

set, all four CW problems were match problems (i.e., they can be solved correctly 

using a torque rule, an additive rule, or a weight-only rule). In the case o f the CD 

problems, two were match and two were no-match problems. The two no-match 

problems were CDSB (see Table 7).

The same balance and conflict-balance problems were used in each set (i.e., for 

all four levels of TD). In the case of the conflict-balance problems, three were match 

and one was no-match. The no-match problem is one in which torque predicts balance 

but the additive rule and the weight-only rule predicts it will tip to the side with the 

greater weight (i.e., CBSW). For this type of item, it is not possible to determine if an 

individual is using an integrative rule or not.

Torque-difference Level 3 (TD = 12 for simple problems, TD = 5 for conflict 

problems) and Level 4 (TD = 15-20 for simple problems, TD = 10-15 for conflict
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problems) were not analyzed with respect to the match/no-match distinction because 

all problems with torque differences of greater than 4 are match problems. As noted in 

Chapter 2, it is not entirely clear why there was such a large difference in TD for 

simple and conflict problems that were defined as the same level of TD. Neither 

Ferretti and Butterfield (1986) nor Schmidt and Shultz (1991) provided a rationale for 

this decision. As can be seen in Appendices D and E, however, it was possible to 

select comparable values of TD for both simple and conflict problems (and for both 

the 6 x 6  and the 5 x 5 problem sets). To make matters worse, by using the same or 

comparable levels of TD as Ferretti and Butterfield, Schmidt and Shultz selected 

problems in which the TD at the third level for simple problems was greater than the 

TD values at the fourth level for conflict problems (see Appendix E).

Although Ferretti et al. (1985) used no-match problems and noted the distinction 

between the different types, it is not clear if they did or did not use these types of 

problems when they controlled for torque difference (Ferretti & Butterfield 1986).

The test set was not published in either paper. In Figure 1 of Ferretti and Butterfield, 

however, one of the four illustrations of conflict-weight problems includes a CWSB 

problem. Therefore, it is not possible to determine if the no-match problems were 

used, and if so, if they were counterbalanced within levels of torque difference (for 

the first and second levels), or for conflict-balance problems used at all four levels of 

torque difference.

Experiment 2: The “Match Only’* Network

Given the analysis of the problem space, and the discovery that a small
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percentage of problems (8.3%) could not be solved with a general adding strategy, a 

network was trained on a set of problems that did not include the no-match problems. 

That is, the network was presented with the 573 problems in which the same solution 

results from using either the additive or the multiplicative rule. It was predicted that if 

this small part of the problem space was removed, a neural network would either (a) 

solve the problem more quickly (as indexed by sweeps to convergence), or (b) solve 

the problem with fewer hidden units.

Simulation Methodology

The same network topology (see Figure 7) and parameter values were used as in 

Experiment 1 (i.e., 20 input units, 4 hidden units, 2 output units). All 573 match 

problems were presented to the network. A second network with only 3 hidden units 

was also run. All other details were the same.

Results

Over 20 runs, the network with four hidden units converged in 103.9 sweeps 

(sd = 39.6; range 79 - 208). Recall that for the network presented with all 625 

problems, the mean number of sweeps was 4092.1. When the topology was simplified 

by removing one of the hidden units, the network converged reliably. Over 20 runs, 

the average sweeps to convergence was 1938.2 (sd = 1361.4; range = 92 - 3033). One 

of the networks with three hidden units was analyzed in more detail. This network 

converged in 2929 sweeps.

Banding Analysis

Figures 24 and 25 show the jittered density plots of hidden unit activity for the
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three hidden units in Network 2929. As can be seen in Figure 24, the same pattern 

was found for HO and H2. Although there were distinct bands, all bands with left 

patterns had low activation. All balance problems fell into one distinct band 

following the left patterns. Bands containing right patterns followed the balance 

problems and had the largest activations.

Figure 25 shows the jittered density plot for HI. Although on gross inspection 

three bands are evident, a closer inspection revealed that the first two bands each 

contained two discrete “microbands.” The overall pattern deviated from that seen for 

HO and H2. The two microbands near zero contained a mixture o f left and right 

problems. The next tnicroband contained all balance problems, followed by a 

microband with all left patterns. The band with the largest activation contained only 

left patterns.

As mentioned in the analysis of Network 4120 (Experiment 1), there are few 

discrete features that differentiate balance-scale problems. So what were the 

“features” of the patterns that fell into the bands? The traditionally defined problem 

types were not associated with bands (with the exception of bands that contained 

balance problems). The feature that was shared by band members was the solution to 

the additive equation. This relationship is illustrated in Table 8 for HI. Values of the 

additive equation (rows) are crossed with the bands for HI (columns). In some cases, 

all patterns with a unique solution to the additive equation fall into a single band (i.e., 

-2, -1,0). Larger absolute values of the additive equation fall into band A l.

This general pattern held for HO and HI (tables are not shown). These hidden
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units had more bands, and so there were more cases of unique solutions falling into 

distinct bands. For example, HO had 15 bands and there are 17 unique solutions to the 

additive equation (range -8 to +8) for the five-peg, five-weight version of the task. 

There was only one band that contained patterns with different solutions (i.e., 

micoroband Al contained patterns in which the additive equation resulted in solutions 

of 6, 7, or 8).

Cluster Analysis

Given the relationship between band membership for single hidden units and the 

additive equation, a k-means cluster analysis was performed on all three hidden units. 

The general procedure was outlined in Experiment 1. The minimum number of 

clusters that could be extracted was six. Again, the four dimensions of the problem 

must be collapsed in order to view them in two dimensions. The problem space in this 

case can be thought of as an “additive difference space.” The clusters are plotted in 

this additive difference space in Figure 26. As was seen with the torque difference 

space (see Figure 21), balance problems fall on the diagonal (cluster 6). Left and right 

patterns fall to each side.

Discussion o f the Network Analysis 

As in Experiment 1, there was a carving of the problem space based not on 

discrete features but on values of the additive function. The network in the present 

experiment required only three hidden units when 8% of the problems were removed 

from the training set. From the analysis of the problem space, it was known a priori 

that the 573 problems could be solved using an additive equation. The match-only
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network provides empirical support for the ease with which this large proportion of 

the problem space can be solved.

The purpose of Experiment 2 was to use neural networks to further explore a 

particular characteristic of the problem space -  the distinction between problems that 

can be solved using either an additive heuristic or the torque algorithm (i.e., match 

problems) and those that can only be solved correctly using the torque rule. 

Experiment 2 demonstrated that the minimum architecture required for all 625 

problems could solve the problem in approximately one-fortieths the sweeps when the 

no-match problems were removed from the training set. One hidden unit could be 

removed and the network converged reliably. These results converge on the idea that 

there is something particularly “difficult” about the no-match problems and that there 

are potential implications for human performance.

Chapter Summary 

In the first experiment, a neural network was trained to perform correctly all 

balance-scale problems. One network was subjected to in-depth analysis. A cluster 

analysis on the hidden unit activities demonstrated that the network was not using 

discrete features of the problems to make predictions. Rather, problems clustered 

together based on where they fell in the problem space. This finding and the fact that 

balance-scale problems can be solved via a mathematical equation led to a 

consideration of a function approximation solution. An additive rule seemed a likely 

candidate for the function being approximated. This assertion is based on the idea that 

multiplication is not a primitive operation of the neural network, and further
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supported by the problem space analysis that revealed that 91% o f problems could be 

solved correctly using an additive heuristic.

The analysis of the problem space motivated an examination of the test sets that 

have been published. This analysis revealed the confounding of problem type with 

torque difference and the match/no-match problems. Moreover, previous test sets 

were confounded in such a way as to potentially bias the results in favor of fitting the 

predictions of Siegler’s model. A second simulation was run without the no-match 

problems, demonstrating that this small part of the problem space made the problem 

more difficult for the neural networks and potentially for human participants as well. 

The analysis of the published test sets revealed that these no-match problems typically 

are present.

In previous work on the balance-scale task (e.g., McClelland, 1989; Shultz & 

Schmidt, 1991; Siegler, 1976) the problem types defined by Siegler are essential for 

determining the rule used to solve balance problems and in the case of human 

participants, for characterizing knowledge level. The results of the network 

interpretation and problem space analysis can be used to demonstrate that a complete 

picture of performance on this task will not come from examining a small sample of 

the six, traditionally-defined problem types. Next, the implications of these analyses 

will be drawn out with respect to a new approach to evaluating performance on the 

balance-scale task with human participants.

Preview o f the Psychological Research

In Chapter 4 ,1 will present the results of a study in which human participants
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were presented with the entire set of balance-scale problems (as was done with the 

neural network in the present chapter). This is a departure from the usual procedure 

with the balance-scale task. As reviewed in Chapter 2, participants typically have 

been presented with smaller test sets (usually around 24-36 items). Participants’ rule 

use and knowledge level is then assessed based on this sample of items from the 

problem space. The goal in Chapter 4 is to “map out” the entire problem space for 

human performance as well.
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CHAPTER 4 

TESTING THE IMPLICATIONS OF THE 

NETWORK AND PROBLEM SPACE ANALYSES

Previous research on the balance-scale task has used Siegler’s (1976) method of 

rule assessment to evaluate the performance of both human participants and computer 

models. In Chapter 3 a different approach was used with neural networks. A neural 

network was trained to predict balance-scale problems using the entire population of 

problems and the converged network was analyzed using a number of interpretive 

approaches. Similarly, the present research with human participants represents a 

departure from the standard assessment method. In the first section, the rationale for 

this departure will be reviewed. In the second section, I will outline predictions for 

human performance that were derived from previous analyses of neural networks and 

the problem space. In the third section the details and results of the study with human 

participants will be described. In the fourth section, the human data will be re

analyzed according to Siegler’s criteria to replicate the finding that rule assessment 

varies with the problems and instances selected.

Rationale for Testing Participants on the Entire Problem Space 

There currently are no alternative methods for assessing performance on the 

balance-scale task. To test the implications of the network interpretation and problem 

space analysis, an approach analogous to that taken in Chapter 3 was adopted. That is, 

human participants were tested on the entire set of 625 balance scale problems from 

the five-peg, five-weight version of the task.
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Testing participants on all possible balance-scale problems eliminates the 

potential confounding of traditionally defined problem-types, torque difference, and 

match/no-match problems that results when a small sample of problems is selected 

(see Tables 5, 6, and 7). Arbitrary decisions about which levels of torque difference to 

sample are avoided. As shown in Appendices D and E, previous researchers used 

arbitrary levels of torque difference, and different values of torque difference for 

simple versus conflict problems. Rather than sampling from the problem space, 

performance for the problem space can be “mapped” with respect to both reaction 

time and accuracy measures. This approach also allows for comparisons with the 

neural network results.

Empirical Questions and Predictions for Human Performance 

A number of predictions for human performance can be derived from the 

previous analyses of neural network models and of the problem space. The neural 

network described in Experiment 1 was interpreted as integrating both the weight and 

distance dimensions by approximating an additive function. The appropriate 

comparison, therefore, is with participants who consider both dimensions of the task. 

The predictions for the psychological data, therefore, concern participants who are at 

the level described as Rule 3 by Siegler (1976). That is, the focus is on individuals 

who do not know the torque rule but realize the importance of both weight and 

distance for making balance predictions. Based on previous research, it seemed 

reasonable to use undergraduate students as adults typically do not know the torque 

rule unless they have been formally taught it (e.g., Aoki, 1991; Chletsos et al., 1989;
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Siegler, 1976, 1981). A group of adults is appropriate given the departure of testing 

participants on 625 trials. Additionally, systematic studies of adult competencies are 

rare (Shultz et al., 1995).

Torque Difference

The first prediction is that participants’ reaction time and accuracy measures 

should vary as a function of location in the problem space as indexed by torque 

difference. This prediction is based on previous research demonstrating a torque 

difference effect in human participants (Ferretti & Butterfield, 1986) and neural 

networks (e.g., Shultz & Schmidt, 1991) including converging evidence from the 

present network simulations (see Experiments 1 and 2). That is, more sophisticated 

rule assessments were associated with larger absolute differences in torque (weight x 

distance) for each arm (see Chapter 2).

Interestingly, the torque difference effect (TDE) has not been replicated in the 

human literature. Ferretti and Butterfield (1986) were the first to report the TDE. 

Psychological researchers since then have not attempted to replicate the TDE and 

there has there been no explicit effort to control for levels of torque difference (e.g., 

Chletsos et al., 1989; Larivge et al., 1987; Normandeau et al., 1989; Siegler & Chen, 

1998).1 Only modeling researchers have made an effort to test their models for the 

TDE (e.g., Schmidt & Ling, 1996; Schmidt & Shultz, 1991; Shultz & Schmidt, 1991, 

Shultz et al., 1995).

1 In fact, some researchers do not even cite the Ferretti and Butterfield work (e.g., Aoki, 1991; 
Jansen & van der Maas, 1997; McFadden et al., 1987; van Maanen et al., 1989).
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More specifically, differences in accuracy are predicted within instances of the 

conflict problems. According to Siegler’s model, when an individual knows that both 

dimensions are important but does not know the torque rule, all conflict problems 

(and all instances of conflict problems) should be treated identically. If torque 

difference does have an effect it should be especially evident on the conflict problems. 

Note that a TDE is predicted for simple problems. Conflict problems are singled out 

because they cannot be solved without some type of strategy, guessing, or arithmetic 

computation, whereas simple problems (balance, weight, distance, and both-greater) 

can be solved via counting and/or decision trees. If location in the problem space is 

important then the additional information provided by a large TD should compensate 

for the “muddling” or “confusion” resulting from the conflict in distance and weight 

cues. For example, Figure 27 illustrates two conflict-distance problems. In Panel A, 

the torque difference is equal to 1 and in Panel B it is equal to 10. If TD has an effect, 

it should be easier to say “tip right” to the scale in Panel B because the left weights 

are on the right-most peg on that arm and the right weights are on the farthest peg on 

the right side of the scale.

It is an empirical question, however, at what particular level of TD an instance 

of a simple or conflict problem becomes “easier” to solve. Although there is a 

restricted range of TD for no-match problems (and small numbers of instances in 

some cases) accuracy will be determined for each level of TD. This issue has gone 

unaddressed because as mentioned, little research has been done on the TDE and 

because Ferretti and Butterfield used dissimilar levels of TD for simple and conflict
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problems (see Appendix D). By testing subjects on the entire range of problems, it 

may be possible to determine the threshold of “easy” and “hard” with respect to 

torque difference effect (i.e., if such a threshold exists). In Chapter 3 ,1 noted that the 

analysis and predictions outlined in Table 4 were done without taking the torque 

difference effect into account. For example, for CD-match problems if a participant 

was consistently using either a torque or an additive strategy, most responses would 

be correct. If a participant was answering in a random way then these items would be 

correct about a third of the time. If a participant used a predominantly weight-only 

strategy, performance should be incorrect but in the direction of the greater weight. If 

there is a TDE, then instances with larger TD should be correct more often than 

expected by chance alone or by the predictions of a strategy.

Most human studies of the balance-scale task do not include reaction time 

measures. Based on Siegler’s decision tree model, if a single strategy (e.g., muddle 

through) is applied consistently then there should be no difference in RT for different 

instances of a problem type. Differences are predicted for each problem type overall. 

For example, balance, weight and distance problems require two decisions each, but 

both-greater and conflict problems require three decisions each (see Figure 2). 

Presumably, problems requiring two decisions prior to a prediction should take less 

time than predictions requiring three decisions. If problem instances are treated 

differently based on characteristics like TD, then this would be reflected in a 

difference in RT as a function of torque difference.
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The Match/No-Match Distinction

The second prediction is that with respect to conflict problems, participants 

should be less accurate on no-match problems than on a comparable set o f match 

problems (i.e., all with TD ^ 4). As just mentioned, it is an empirical question if there 

are differences in accuracy within this restricted range of TD. The general pattern of 

performance predicted for each strategy and for each type of no-match problem in 

Table 4 does not take TD into account. This prediction is derived from the problem 

space analysis that showed this subset of problems is unique in that these problems 

cannot be solved using either an additive or a multiplicative strategy. That is, they can 

only be solved using the torque rule. The results of Experiment 2 were taken as 

evidence that this subset of problems is different and warrants further investigation 

with human participants. When these problems (8.3%) were removed from the 

training set, the network converged reliably in fewer sweeps (approximately 100 

versus 4000). The network also converged reliably when one hidden unit was 

removed.

With respect to reaction time (RT), if the same strategy is applied consistently to 

all conflict problems then no difference in RT should be observed. If these different 

instances of conflict problem are approached differently then this would be reflected 

in a difference in RT.

Intra-Individual Variability versus Consistent Strategy

The previous predictions (and the empirical questions in particular) intersect 

with recent theorizing about, and approaches to, cognitive development. Siegler
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(1996) discussed universalist approaches in which the goal was to identify the 

strategy used by participants on a particular task and comparative approaches in 

which the goal was to identify contrasting strategies used by different groups of 

participants (e.g., younger versus older, expert versus novice). These approaches are 

contrasted with the cognitive variability approach. Rather than viewing variability as 

a source of error or irritation, it is viewed as a  pervasive part of both high- and low- 

level cognition.2

Variability was seen in the neural network simulations (Chapter 3). The network 

responded differentially (i.e., varying levels o f hidden unit activities) to problems 

depending on their location in the problem space. If one strategy is applied across the 

problem set by human participants (i.e., as predicted by Siegler’s model), certain 

patterns would be evident. For example, regardless of torque difference, accuracy for 

conflict problems would be either (a) at chance levels for the “muddling through” 

strategy, (b) correct with some level of predicted error for the additive or torque 

strategies, or (c) incorrect consistent with the side with greater weight for the weight- 

only strategy. If, however, participants adjust their strategy depending on particular 

instances within the problem space, then support should be found for the previous 

predictions concerning variability in performance with torque difference and instances 

of conflict and no-match problem types.

Another way of demonstrating variability in performance is to use Siegler’s

2 How Siegler resolves his current theoretical stance with his previous work on the balance- 
scale task in which he suggests that only one rule is used per stage will be discussed in more detail in 
Chapter 5.
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rule-assessment method and criteria to show that by manipulating the sample of test 

items used, performance can be differentially classified as one of Siegler’s four rules. 

That is, the same participant can be classified as using a more or less sophisticated 

strategy, depending on the sample of test items selected. As discussed in Chapter 2, 

one of the criticisms of the rule-assessment method was that an individual’s 

classification varied with the items used.

In summary, the main predictions for human performance concern differences in 

reaction time and accuracy as a function of torque difference and the match/no-match 

distinction. Differences on these measures can be taken to indicate that participants 

used variable strategies, whereas similarity in these measures can be taken to indicate 

the use of a consistent strategy.

Experiment 3: Testing Human Participants on the Entire Problem Space

Method

Design

There are 625 unique combinations of balance-scale problem that can be created 

with the five-peg, five-weight version of the task. These problems can be classified as 

one of seven problem types: balance (n = 25), weight (n — 100), distance (n = 100), 

conflict-weight (n  = 88), conflict-distance (n = 88), conflict-balance (n = 24), or both- 

greater (n = 200). Conflict problems can be divided into two main types: match and 

no-match. There are six types of no-match problem (see Table 3). Moreover, the 

problems can be classified according to the cluster they fall into. The same pattern 

was found for several networks such that the same problems fell into clusters of the
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same size. Approximate numbers are: cluster 1 (n = 117), cluster 2 ( n -  50), cluster 3 

(n = 125), cluster 4 (n = 49), cluster 5 (n = 131), cluster 6 (n = 32), and cluster 7 (n = 

121).3 See Appendix F for the cross-tabulation of problem type and cluster. Given the 

uneven number of instances per cell when crossing cluster and problem type, Five 

blocks of 125 randomly selected problems were presented to participants.

Procedure

Participants were tested on five blocks of 125 trials. Problems were randomly 

assigned to each block, and order of presentation within each block was random. Each 

balance-scale problem was presented on a computer monitor and looked similar to the 

line drawings used in paper-and-pencil versions of the task (e.g., Chletsos et al., 1989; 

Ferretti et al., 1985; Siegler, 1981). A demonstration program was used to show the 

participant the “line drawings” of the balance scale. The demonstration ended with 

four randomly selected problems so that participants were comfortable with the 

location and configuration of the buttons used to make a response. Participants were 

instructed to press the button as soon as they had decided on a prediction. Reaction 

time was measured using the real-time clock of the computer (see Appendix G for the 

relevant code).

Each trial was initiated by the participant. The participant pressed one of three 

keys that corresponded spatially to the drawing of the balance task. Participants used 

the numeric keypad on the right-hand side of the standard keyboard. Specifically, the 

“ 1” key represented “left side down,” the “2” key represented “balance,” and the “3”

3 Cluster numbers are arbitrary; these are the cluster numbers from Network 4120.
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key represented “right side down.” A block of trials took approximately 10 to 12 

minutes to complete. After completing the task, participants were asked to answer 

three questions about the task (see Appendix H).

Participants

Eight subjects were paid an honorarium to participate in the study. Participants 

were screened for familiarity with the task. All participants were right handed.

Results

The results will be presented in three sections. First, results pertaining to 

predictions about the torque difference effect will be presented (holding problem type 

constant). In the second section, I will outline the results of comparisons between 

match and no-match problems (holding TD constant). In the third sections, the 

interaction of torque difference and the various classifications of problem type will be 

explored.

The Torque Difference Effect: Accuracy

Results bearing on the torque difference effect will be presented collapsed 

across all problem types. When predicting accuracy from torque difference using 

linear regression, a TDE was evident, R2 = 0.62 (F = 40.3, df=  1, 23, MSe = 1620.9, 

p < .001). Figure 28 shows that there is a strong relationship between accuracy and 

torque difference but it does not appear to be strictly linear.

The nonlinear regression module in SYSTAT was used to fit a nonlinear 

function to the data, predicting percent correct from absolute torque difference. 

Because the data appeared as if it could be characterized by an exponential function,
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and because percent correct only ranged from approximately 65 to 100, the following 

equation was provided to SYSTAT:

(4.1) percent correct = 100 - PI * EXP(-1 *P 2 *  ABS(TD))

In this equation, PI  and P2 are two constants whose values can be manipulated to 

improve the fit between the equation and the data. SYSTAT’s nonlinear regression 

module used the Gauss-Newton method to search the space defined by these two 

parameters to find their optimal values. The optimal values for PI and P2 were those 

that provided the best fit between the function and the data, where “best fit” was 

operationalized as the values that provided the smallest sum of squared differences 

between the two. After twenty-one iterations of searching, SYSTAT determined that 

PI should be equal to 37.660, and P2 should be equal to 0.251. In other words, the 

nonlinear equation relating TD to accuracy was:

(4.2) percent correct = 100 - 37.660 * EXP(-1 * 0.251 * ABS(TD)).

The raw R2 for this equation was 1.00. The corrected R2 was 0.98, as was the 

observed versus predicted R2.

Other equations (e.g., a logarithmic function) could be fit to the accuracy data. 

No strong claims are being made about the precise nature of the equation or of the 

parameter values in the equation. The non-linear equation is used to demonstrate that 

one variable (i.e., torque difference) can account for almost all of the variance in the 

accuracy data for all problems.4

4 Recall that there is 0.95 correlation between the torque and the additive equations (see 
Figure 23). Using the same procedure, the additive equation (i.e., I[aw + jm] - [LW  + £/>]l) accounts for 
as much variance in accuracy as the torque equation (corrected R2 = 0.99).
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In summary, the torque difference effect has been replicated for the entire 

problem space for the accuracy data. Moreover, the TDE can be described with 

respect to a single function.

Reaction Time A nd The Problem Space

In the previous section, an extremely strong relationship was indicated between 

one (rough) measure of position in the problem space—torque difference, and one 

measure of human performance—accuracy. In this section I consider whether position 

in the problem space can be related to another measure of human performance, 

namely, reaction time. Reaction time is plotted as a function of absolute torque 

difference in Figure 29. Again, a trend is evident such that reaction time decreases as 

torque difference increases. Although this trend is clearly more linear than the one 

that was observed for accuracy data (see Figure 28), linear regression indicated that 

TD alone did not account for much of the variance in reaction time (R2 = .09; F  = 

494.2, A/Se = 797.1, p  < .001).

This poor fit o f the linear regression data, however, does not by itself indicate 

that a relationship between response latencies and the problem space does not exist. 

While absolute torque difference is related to the position of a problem in the full 

problem space (see Figure 19), it is a fairly rough estimate of the location of a 

problem. Perhaps the relationship between response times and the problem space 

requires a more accurate measure of a problem’s position in the space.

When reaction time was plotted in the same coordinates as the two-dimensional 

problem space (i.e., as a function of right torque [/?w x RD] and left torque [LW x ld \).
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an interesting interactive relationship does appear to emerge. For example, Figures 

30 and 31 plot the reaction times in this space for two of the subjects.5 In general, the 

slowest reaction times are along diagonal of these plots, indicating that RT is a 

function of the interaction between right torque and left torque.

To test the existence of this interactive relationship statistically, linear 

regression was used to predict participants’ RT. Two of the independent variables 

used to make this prediction were right torque and left torque. Because the preceding 

figures indicate that these two variables interact, the interaction between these two 

variables (i.e., right torque x left torque) was also used as a predictor. Finally, 

because there were considerable inter-subject differences in RT,6 and because the data 

was obtained from a repeated measures design, subject identity was used as a 

predictor, as were the interactions between subject and right torque, left torque, and 

right torque x left torque. This regression equation was highly significant (F = 974.8, 

d f = 7, 4992, p < .001), and accounted for 58% of the variance in reaction time. In 

other words, a regression equation that used position in the problem space as 

predictors, and which took into account between-subject variability in response 

latency, provided an excellent prediction of response times.

In summary, there is a relationship between the problem space and human 

performance. There were two main measures of performance. The first measure,

s Note that when a composite of all subjects is plotted (5000 data points) the regions 
associated with different reaction times are not distinguishable.

6 Mean reaction times for participants ranged from 0.730 to 2.185 seconds (F = 78.51, d f = 7, 
4992; MSe -  125.5, p < .001).
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accuracy (i.e., percent correct), was less variable measure between-subjects and it was 

possible to account for that variability with a single non-linear equation. Reaction 

time was more variable between-subjects. A substantial amount of the variability in 

RT could be predicted by using the location in the problem space and individual 

between-subject differences.

Match versus No-Match Problems

In Chapter 3, the analysis of the problem space revealed that only a small 

number of problems could not be solved using a general additive strategy. This 

unique characteristic led to further exploration with neural nets. The simulations in 

Experiment 2 demonstrated that the removal of these items from the training set 

resulted in faster convergence. Therefore, it was predicted that accuracy should be 

better for match than for no-match problems.

To test this prediction with the data for human participants, match problems 

with a torque difference of four or less were selected because the range of TD for no

match problems is 0-4. There are 80 conflict problems with TD s 4 that can be 

compared with the 52 no-match problems. Within the conflict-balance (CB) category, 

there are only four no-match versus 20 match problems, therefore, the analyses were 

done with and without CB problems.

Accuracy. The accuracy data for each type of match and no-match problem are 

shown for each participant in Table 9 (the mean for each problem type appears in the 

last row; match problems are shown in columns 4 and 9). A dependent sample t-test 

was performed on percent correct for match and no-match (collapsed across
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subtypes). Overall, participants were more accurate on match problems (66.9%) than 

on no-match problems (34.4%) and this difference was significant (t = 4.66, d f — 7, p  

= .002). When CB problems were removed, accuracy for match versus no-match 

problems (75.2% and 35.7%, respectively) was also significantly different (r = 5.87, 

d f =1, p  = .001).

Reaction time. Reaction times were predicted to be greater for no-match 

problems if participants use different strategies depending on problem characteristics. 

If a single strategy is applied consistently, however, no difference in reaction time 

should be observed. Participants were faster to respond to the match than the no

match problems. The mean RTs for match and no-match problems were 2.38 (sd = 

1.77) and 2.62 (sd = 1.84) seconds, respectively. Median RT for match and no-match 

were 1.84 and 2.18, respectively. A paired-sample t-test on median reaction times 

indicated a significant difference (r = -2.27, d f -  7 , p <  .05).

When CB problems were removed, the mean RTs for match and no-match were 

2.21 (sd = 1.60) and 2.65 (sd = 1.85), respectively. Median RT for match and mo- 

match were 1.74 and 2.20, respectively. The difference in median RT was significant 

(t = -2.89, df= l , p <  .03).

The results of the comparison between match and no-match problems for human 

participants indicated that these problems were treated differently as indicated by 

differences in both response latency and accuracy. The prediction derived from the 

analysis of the neural network in Experiment 2 and the analysis of the problems space 

was bourne out in the human data.
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The Interaction o f  Torque Difference and Problem Types

Although a TDE was evident for all problems (for both accuracy and reaction 

time), it is necessary to determine if the TDE holds for both the traditionally defined 

problems (i.e., as outlined by Siegler, 1976) and the distinction between conflict 

problems that can be classified as match versus no-match. Does TD have the same 

effect on all problem types? To address this question, accuracy for different problem 

types was plotted as a function of torque difference.

Simple problems. Percent correct for the simple problem types (i.e., simple 

balance, weight, distance, and both-greater) is plotted as a function of absolute torque 

difference in Figure 32. Overall, accuracy was high at all levels o f torque difference, 

with simple balance problems having the lowest mean (93%). The mean percent 

correct for non-balance problems as a function of TD are shown in Table 10.7 

Although accuracy was quite high overall. Figure 33 illustrates that torque difference 

did have an effect on reaction times. A regression analysis analogous to that described 

for all problems was conducted. Left torque, right torque, subject identity, and all 

interactions were entered into a regression equation to predict RT. These factors all 

contributed significantly and accounted for 64% of the variance in RT.

Conflict problems. Accuracy (i.e., percent correct) for all conflict problems is 

shown as a function of torque difference in Figure 34. Again, a non-linear relationship 

is evident. Using the procedures described for the analysis of all problems, the

7 Most of these are likely to be “true” errors as opposed to systematic ones. All participants 
reported making mistakes by hitting a key either too quickly or inconsistent with the prediction they 
wanted to make.
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equation of the line was determined in 14 iterations:

(4.3) percent correct = 100 - 61.930 * EXP(-1 * 0.199 * ABS(TD)).

The corrected R2 was 0.96 (the raw R2 was 0.998). Again, torque difference accounts 

for almost all o f the variability in accuracy for conflict problems.

The same linear regression procedure was used to analyze the reaction time data 

(see Figure 33). Left torque, right torque, subject identity, and all interactions were 

significant in predicting RT and accounted for 63% of the variance in reaction time.

Match versus no-match conflict problems. The effect of torque difference was 

evident when the overall means for all conflict problems were plotted (see Figure 34). 

Recall that conflict problems with a torque difference between 0 and 4 include both 

match and no-match problems. In Figure 36, accuracy (percent correct) is plotted as a 

function of TD for both match and no-match problems. When compared to Figure 34, 

it is clear that some of the TDE for conflict problems can be accounted for by the no

match problems. When a line is fit to the match problem only, torque difference 

accounts for 79% of the variability in percent correct.

There is some variability within the different types of no-match types, as shown 

in Table 11. The last four columns of Table 11 include the percent correct for match 

and no-match, separated into conflict-weight and conflict-distance problems. In 

general, accuracy was higher for CW problems than it was for CD problems. This 

pattern is consistent with differentially relying on the weight cue when uncertain.

Reaction times for match and no-match problems are shown as a function of TD 

in Figures 37 and 38, respectively, for both correct and incorrect responses. An
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interesting pattern emerges for match problems in that quicker decisions were more 

likely to be correct, especially at the lower levels of TD (see Figure 37). When 

participants took extra time to make a response, the prediction was more likely to be 

incorrect. A deviation from this pattern occurred for conflict-balance problems (TD =

0). Here, a fast response was more likely to be incorrect. The additional time to 

respond to these problems resulted in higher accuracy. Recall that there is nothing to 

distinguish any of the conflict problems, they are labeled for their outcomes alone. 

This same deviation is shown in Figure 38 for no-match problems. For CB problems, 

longer RTs were associated with correct responses. Unlike match problems though, 

differences in RT for correct and incorrect responses were not evident for non-balance 

problems.

Discussion

The previous analyses can be used to support the idea that location in the 

problem space is an important factor for predicting the amount of time to make a 

prediction and the accuracy of that prediction. With respect to the task as a whole, 

either torque or additive difference (used as an index of location in the problem space) 

accounts for almost all the variability in accuracy (see Equation 4.2 and Footnote 4). 

When the problem space was analyzed by different types of problems, the torque 

difference effect (TDE) was evident in either reaction time or accuracy measures. For 

example, accuracy was high for simple problem types (93% and higher), but the TDE 

was reflected in participants’ reaction times.

As predicted, the accuracy for no-match problems was lower than for a
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comparable set of match problems. Differences in reaction time were also found for 

match versus no-match problems. This finding is suggestive of the idea that although 

these two types of problem are similar superficially, they were approached differently 

by participants. That is, given two problems with a conflict in the weight and distance 

cues with a same or similar level of torque/additive difference, why should one take 

longer to make a prediction than the other? Perhaps when comparing the two sides of 

a no-match problem, there is a conflicting reaction such that a perceptual judgment is 

different from an arithmetic judgment (i.e., comparing the differences in left and right 

weight and left and right distance). This hypothesis is potentially useful in that 

reaction time differences were seen such that quicker predictions were more likely to 

be correct (with the exception of conflict balance problems). The reaction time for no

match problems was significantly slower than for match problems, so the slower 

reaction for no-match was also associated with reduced accuracy.

In the next section, I will examine the results in terms of Siegler’s rule 

assessment method by showing accuracy data for the traditional problem types and 

how subjects would be classified if Siegler’s method were used.

Reanalysis Using Siegler’s Rule Assessment Method 

Although Siegler’s rule assessment method has been subject to critical analysis, 

participants’ performance will be assessed using Siegler’s scoring criteria. The main 

rationale was to provide further evidence that this assessment technique results in 

different classifications depending on the instances selected for the test set. As 

mentioned, a criticism of rule assessment is that classification of performance varies
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with TD levels (see Chapter 2), but no replication of this variability has been reported 

since Ferretti and Butterfield (1986). The criticism that assessment can vary with the 

priority given to the scoring of the various rules has not been addressed in the human 

literature (Shultz et al., 1994). Both of these issues will be addressed.

Results and Discussion 

The accuracy data for each subject by the traditional problem types is shown in 

Table 12. The general pattern fits with that predicted for Siegler’s Rule 3 (cf. Table

1). Accuracy was very high for balance, weight, and distance problems (columns 3-5). 

Accuracy was lower for conflict problems (columns 6-8). For most participants 

though, accuracy on the conflict problems was above chance level but still not high 

enough to be consistent with the pattern predicted for Rule 4 (i.e., perfect 

performance for all problem types; see Table 1). These participants were not aware of 

the torque rule (see Appendix H). Participant 3 indicated a familiarity with the 

concept of torque but could not define it. It is unclear from the explanation whether 

she did know the torque rule, as her strategy was illustrated with respect to a simple 

distance example. Participant 8 indicated a familiarity with torque, but described a 

non-technical connotation (i.e., “to fine tune something”).

Classification fo r  Different Test Sets

Rule classifications were done according to the criteria outlined by Siegler 

(1981). Participants’ accuracy data for the specific problems from previously 

published test sets were singled out for this assessment. Rule diagnosis was 

automated using the same program Schmidt and his colleagues used for assessing the
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performance of computer models (e.g., Schmidt & Ling, 1996; Schmidt & Shultz, 

1991, 1992; Shultz & Schmidt, 1991).8

Table 13 shows the rule classifications for each subject for a number of different 

test sets. Five of the test sets were discussed in Chapter 3, including McClelland’s test 

set (adapted from Siegler) and the four test sets used by Shultz and Schmidt (1991) to 

test connectionist models for the effects of torque difference. Ironically, if comparing 

performance across these four test sets was the only method of evaluation, a clear 

effect of TD would not have been found for human participants (see Table 13, 

columns 3 through 6). To be consistent with the torque difference effect, higher rule 

classifications should be associated with higher levels of torque difference. The 

performance of three participants was classified as the same rule for all four levels of 

TD (i.e., participants 1,4, and 7), three were classified at one stage higher at either the 

third or four level of TD (i.e., participants 2, 3, and 8), and two had variable 

classifications (i.e., participants 5 and 6).

One additional test included only match problems for the conflict items (Table 

13, column 7), and another test included no-match problems for the conflict items 

(column 8). The results are consistent with the previous analyses that demonstrated 

that participants were more accurate on match problems. Six of the participants 

received a lower rule classification on the set with no-match items when compared to 

the set with match problems. One participants received a higher rule classification, 

and one received the same classification.

8 Thanks to William Schmidt for supplying his rule diagnosis code.
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The last set included problems with large torque differences (Table 13, column 

9). All but one participant was classified at the Rule 4 level for this test set.

Participant 7 did not get any conflict-balance problems correct and therefore could not 

be classified as Rule 4. As mentioned, the written protocols suggest that this group of 

participants was unfamiliar with the torque rule and yet the response profile can be 

manipulated to be consistent with Rule 4 by selecting particular instances.

It would be possible to create a large number of sets using either a random 

selection or selecting systematically within various sets of constraints (e.g., torque 

difference levels, match versus no-match). The eight test sets in Table 13, however, 

are sufficient to demonstrate that a consistent strategy was not used for all problems. 

Classification fo r  Different Scoring Priorities

Shultz and his colleagues (e.g., Shultz & Schmidt, 1991; Shultz et al., 1994) 

were the first to observe that a pattern of performance can be consistent with both 

Rule 2 and Rule 3. Because of this, Shultz and Schmidt (1991) gave priority to Rule 2 

when the criteria for both rules were satisfied because fewer errors are predicted for 

conflict-weight problems (see Table 1). That is. Rule 2 was given priority because 

systematic, correct performance is predicted for CW problems (versus the chance 

level performance predicted for Rule 3). Shultz et al. (1994) noted that the issue of 

assessment order has not been acknowledged or studied in the psychological literature 

thus far.

Three different assessment orders are shown in Table 14. One could determine, 

for example, if performance is consistent with Rule 4, then Rule 3, then Rule 2, and
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then Rule 1 (other orders tested were 1, 2, 3 ,4  and 4, 2, 3, 1). These three orders were 

used for three different test sets to evaluate the human data. In columns 2-4 are the 

results for the test set used by McClelland (1989). Two participants received different 

rule classifications depending on the scoring priority (i.e., participants 1 and 7). When 

the scoring priorities were applied to the test set that included only no-match conflict 

problems (columns 5-7), three participants received variable classifications (i.e., 

participants 1, 2, and 6). Six participants received variable classifications when the 

test set with only match conflict problems was used (columns 8-10). Clearly, scoring 

priority does affect rule classification when evaluating adult participants. When 

examining the two assessment orders that could be selected on a priori grounds (i.e., 

4,3,2,1 and 4,2,3,1), there were only three participants (2, 6, and 7) who received 

different classifications depending on the assessment order.

Chapter Summary 

The experiments in the present chapter were motivated by the analysis and 

interpretation of artificial neural networks presented in Chapter 3. Specifically, the 

cluster analysis performed on the hidden units of a converged network resulted in an 

interesting carving of the problem space. Moreover, there was evidence that the 

network might be approximating an additive function. The analysis of the problem 

space revealed that the majority of problems could be solved using an additive 

heuristic, and that only a small part of the problem space required the use of the 

torque algorithm for a correct predictions (i.e., no-match problems). The experiments 

were also motivated by the review of the literature in Chapter 2 in which many
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criticisms of Siegler’s rule-assessment method were brought to light.

One of the criticisms was that rule classification varied with the torque 

difference of the instances used in the test set (Ferretti & Butterfield, 1986). The 

torque difference effect, thus far, has not been replicated with human participants. The 

present results support the existence of the TDE, but interestingly, if Siegler’s rule- 

assessment method was the only measure of performance the results would not clearly 

support the existence of a TDE. Shultz and Schmidt’s (1991) test sets for four levels 

of TD did not provide unequivocal evidence for a torque difference effect.

An issue that has gone unaddressed in the psychological literature is the 

discovery made by Shultz and his colleagues concerning the variability in assessment 

that resulted when using different scoring priorities to evaluate neural networks (see 

also Schmidt & Ling, 1996). Variable classifications occurred when different scoring 

priorities were used to evaluate participants’ performance and these variable 

classifications were different for each of the three different test sets used. Many Rule 

4 classifications resulted even though none of the participants reported an explicit 

knowledge of the torque rule.

The overall results converge on the idea that “strategy” varies with location in 

the problem space. There was no evidence in either the primary analyses or the rule- 

assessment analyses to support the idea that any participant used one strategy 

consistently for all problems and all instances. This issue of variability of 

performance, and Siegler’s (1996) recent views on the this issue will be explored in 

Chapter 5.
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CHAPTERS 

GENERAL DISCUSSION

In the first section of this chapter, I will summarize the main findings from the 

empirical studies in Chapters 3 and 4. In the second section I will discuss the 

implications of the present work for the rule-assessment method. The third section 

includes implications of this type of approach (i.e., analyzing neural networks and the 

problem space) for future developmental studies. In the fourth section I will discuss 

the implications that new conceptions of development (i.e., variability in strategies 

versus stage-like progressions of single strategies) have for future studies of modeling 

cognitive development.

Summary o f Research

Neural networks were trained to predict balance-scale problems and one of the 

converged networks was analyzed in detail. Several approaches were used to interpret 

the structure of the converged network, beginning with an analysis o f the connection 

weights. This analysis provided the initial insight that the network was able to 

discriminate the difference between left and right weight and between left and right 

distance based on the configuration of connection weights between the input units and 

the hidden units and between the hidden units and the output units. The organization 

of the connection weights was taken as evidence that the network was able to 

integrate the weight and distance information.

The hidden unit activities were then analyzed in a number o f ways. There were 

regularities in the hidden units based on continuous aspects of the problem. This led
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to the hypothesis that the network might be approximating a function rather than 

classifying patterns. Evidence for function approximation was found in the almost 

perfect correlation between the net input to the hidden units and the torque rule (i.e., 

the mathematically correct solution). An even higher coefficient resulted when net 

input was correlated with an additive equation (i.e., ([/?w + rd] - [LW +  ld])}

A cluster analysis of hidden unit activities led to a consideration of the problem 

space and how it was “carved” by the neural network. By considering the task in the 

context of a problem space, it was revealed that the overwhelming majority of 

problems (91.7%) could be solved correctly by adding the information on each side of 

the fulcrum and making a decision based on the larger sum. This insight into the 

problem space provided support for why the network was likely approximating an 

additive function. Additional support came from the fact that multiplication is not a 

primitive operation of the processing units in the neural network.

The uniqueness of the problems in which an incorrect prediction results from an 

additive strategy (i.e., the no-match problems) was established by a network trained 

without these items in the training set. That is, 8.3% of the problems were removed 

from the training set-resulting in a total of 573 training problems versus 625. When 

the same topology was used, over 20 runs the networks converged with approximately 

100 sweeps of training versus approximately 4000 when the 52 no-match items were 

included. The network trained on the 573 match problems converged reliably when 

one hidden unit was removed. An analysis of this network revealed distinctive bands

' Note that [RW + RD] - [lw + LD] is algebraically equivalent to [RW - Lw] + [RD - LD].
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and microbands of hidden unit activity. These bands correlated with the solution to 

the additive equation.

An analysis of published test sets showed that other researchers have 

confounded problems classified as match and no-match with various levels of torque 

difference. Torque difference and the traditionally defined problem types were often 

confounded. When torque difference was controlled for, different levels of TD were 

selected for simple versus conflict problems. The interpretation of previous results 

and the validity of cross-study comparisons is called into question based on these 

findings.

Based on the analyses of the neural networks, the problem space, and previously 

published test sets, a number of predictions for human performance were derived. The 

key predictions were that performance should vary as a function o f location in the 

problem space (using torque difference as a rough index)2 and that performance 

should differ for the match versus no-match problems. An approach analogous to the 

network simulations was used when testing human participants. The entire set of 625 

problems was used in order to “map out” performance in the problem space.

A torque difference effect (TDE) was evident for performance on the whole 

task. Torque difference (i.e., I left torque - right torque I) was the best predictor of the 

accuracy data. Using non-linear regression, TD accounted for almost all of the 

variance in percent correct. With respect to reaction time, a TDE was evident when

2 Additive difference could also have been used given the 0.95 correlation between additive 
difference and torque difference.
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using a different index of location in the problem space (i.e., left torque, right torque, 

and their interaction) and when taking inter-subject variability (plus interactions) into 

account. Torque difference effects occurred for both conflict problems and simple 

problems. For simple problems, accuracy was high for all levels of TD but the torque 

difference effect was observed in the reaction time data.

When performance was reevaluated using the rule-assessment approach and the 

items used in previously published test sets, the torque difference effect was not 

found. This finding may explain why replications of the TDE have not been reported 

since Ferretti and Butterfield (1986) first indicated that variable classifications result 

depending on the TD of the items used. Moreover, sampling various instances from 

the problem space within other constraints (e.g., all conflict problems were either 

match or no-match, high levels of torque difference) and evaluating performance 

resulted in variable classifications when the rule-assessment method was used. 

Variable classifications were also found when different scoring priorities (i.e., 

assessment orders) were applied to three different test sets. This issue has not been 

addressed previously in the psychological literature (Shultz et al., 1994).

Implications for Rule Assessment 

The present research converges on the idea that there is intra-individual 

variability in performance depending on where a problem is located in the problem 

space. This idea has implications for Siegler’s (1976, 1981) account of the balance- 

scale task and for his rule-assessment method. Recall that in Siegler’s earlier work, he 

suggested that “the basic assumption underlying the rule-assessment approach is that
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cognitive development can be characterized in large part as the acquisition of 

increasingly powerful rules for solving problems” (Siegler, 1981, p. 3).

More recently, Siegler (1996) admitted that a “nagging question” arose with 

respect to “how broadly such rule sequences applied” (p. 58). He identified two 

distinguishing characteristics of the balance-scale task and other developmental tasks 

(e.g., the projection of shadows task, conservation of liquid, the slopes task) in which 

sequences of rules have been observed. First, they are unfamiliar tasks that children 

and adults typically do not encounter outside a laboratory setting. Second, they have 

two or more discrete features or dimensions, one of which is usually more salient for 

children and dominates their judgments.

Siegler (1996) argued that these two characteristics could be responsible for the 

“especially frequent use of a single, consistent strategy” (p. 59; emphasis added).

As mentioned in Chapter 4, Siegler (1996) is now a proponent of the cognitive 

variability approach to cognitive development. This approach contrasts with 

approaches designed to identify the strategy used by participants on a particular task 

(i.e., the universalist approach) or to identify the strategy used by different groups of 

participants (e.g., younger versus older) on a particular task (i.e., the comparative 

approach). In the cognitive variability approach, the basic assumption is that “at any 

one time, children have a variety of ways of thinking about most topics” (Siegler,

1998, p. 92).

Siegler (1996) reconciles his current theoretical stance with previous work via 

the moderate experience hypothesis. That is, Siegler has suggested that multiple
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strategies are most likely to be available when an individual has a moderate amount of 

experience with a particular task. Figure 39 illustrates this hypothesis as an inverted 

U-shaped curve. On the abscissa is prior experience, shown as a continuum of low, 

moderate, and high. On the ordinate is the number of strategies available, also shown 

as a continuum. When an individual first encounters a problem solving situation, they 

have few strategies at their disposal. Similarly, once an individual has gained some 

level of expertise, they know and use a small number of efficient strategies. It is when 

an individual has moderate experience with a problem solving situation that a variety 

of strategies are likely to be observed.

So the inconsistency in Siegler’s balance-scale work and his more recent views 

on the importance of variability in strategy use is resolved by appealing to peculiar 

characteristics of the balance-scale task. That is, a single consistent rule can be 

applied in the case of the balance-scale task because it is unfamiliar and has a 

dominant and a subordinate dimension. The cumulative evidence based on the review 

of the literature in Chapter 2 and the present research, however, is suggestive of 

variability in strategies on the balance-scale task and raises the question of whether 

any reconciliation is really necessary. Consider the list of criticisms of rule assessment 

summarized in Chapter 2: (a) assessment varying with task demands, (b) assessment 

varying with the torque difference o f the items used, (c) assessment varying with the 

priority given to the various rules, (d) assessment varying with scoring criteria, (e) 

scoring criteria that are not diagnostic with respect to other postulated rules, and (f) 

lack of clarity regarding the “muddle through” stage. The first four criticisms have to
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do with variability in assessment, because the goal of the rule-assessment method has 

been to assign one rule per individual and per stage of development.

The criticisms listed above were described as having to do with either the 

underestimation of children’s knowledge about balance concepts or to the incorrect 

classification of participants. Criticisms revolved around the fact that the method was 

either too conservative and/or too restrictive with respect to falsely classifying an 

individual’s one “true” strategy or knowledge level. Given the variability in 

performance measures in the present study (i.e., accuracy and reaction time), it is 

unlikely that a single category label (e.g., “Rule 3,” “Additive rule,” “Qualitative 

proportionality”) would adequately describe any particular participant’s performance 

or strategy, especially as one that was applied consistently, across all instance of 

balance-scale problem.

In summary, there is no need to appeal to task characteristics or the moderate 

experience hypothesis to achieve consistency in older and newer ways of evaluating 

performance. Clearly, the goal of rule-assessment has been consistent with the 

universalist approach—to find one invariable or modal strategy for each individual or 

stage of development. The issue is not with characteristics of the balance-scale task 

(or isomorphs) but the objectives of the approach. Until recently, variability in rule- 

assessments was seen as problematic. Where reconciliation is necessary is with the 

goals of rule-assessment and new conceptions of development.
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Implications o f  the Network Interpretation Approach 

fo r  Future Studies o f Development

The balance-scale task has been of interest to developmental psychologists 

because of age-related trends in performance. Clearly, a  required next step is to test 

some of the implications of this research with participants from different age groups. 

The current research has been focused on understanding the task itself as a precursor 

to understanding performance on the task. The empirical predictions derived from 

studying the task with neural networks and from analyzing the problem space were 

tested on undergraduate students. This group of participants was at level at which 

their judgments were not dominated by a single dimension of the task.

One of the issues debated in the literature has been whether connectionist 

models should capture Rule 4 behavior or not, as it has been asserted that few 

individuals reach this level of performance without explicit instruction. A prediction 

derived from the cascade-correlation models described in Shultz et al. (1995) was that 

Rule 4 behavior may not require an explicit knowledge of the torque rule. Shultz et al. 

asserted that this level of competence could be achieved by “adequate exposure to the 

problem domain.” Given the present results, it would appear that performance 

consistent with Rule 4 does not require prior exposure. Given the nature of the task, it 

is possible to observe such behavior depending on the instances selected for the test 

set. Moreover, given the analysis of the problem domain, there are few instances in 

the problem space that can be used to discriminate between individuals using the 

torque rule or an additive rule (i.e., based on non-verbal patterns of performance).
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With respect to deriving predictions for younger participants, the neural network 

models described in Chapter 3 were integrating weight and distance, and thus may not 

be an appropriate source of hypotheses. Network simulations trained to perform 

consistent with Rule 1 and Rule 2 descriptions may provide predictions for human 

performance. That is, neural networks can be trained to perform the task in a different 

way (incorrect, but consistent with the performance of children). These networks can 

then be interpreted, and the problem space explored.

The results of pilot studies of this nature are suggestive of the idea that younger 

participants may be able to perform the task via discrete pattern recognition. If this is 

the case, predictions for performance might include an effect analogous to either the 

torque difference effect or the “problem size effect” in mental arithmetic (e.g., 

LeFevre, Sadesky, & Bisanz, 1996). That is, accuracy and reaction time should vary 

as a function of the size of the difference between left weight and right weight. 

Performance may also vary with respect to the number of weights and pegs, given 

differences in performance because of subitizing versus counting (Folk, Egeth, & 

Kwak, 1988; Trick & Pylyshyn, 1993, 1994).

Implications o f New Conceptions o f  Development for Modeling Studies

Given the balance-scale task has been re-cast in the light of recent trends that 

consider the importance of intra-individual variability rather than qualitative, stage

like changes in behavior (e.g., Siegler, 1996), what are the implications for modeling 

cognitive development? That is, how are new conceptualizations of development 

going to affect how modeling of cognitive development proceeds? In the previous
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section, I discussed ways in which research could be directed from exploring neural 

networks to deriving and evaluating predictions with children or adults. But consider 

research focused in the other direction, that is, using patterns of human performance 

(and developmental patterns in particular) and modeling them with connectionist or 

symbolic models. This line of research typifies previous modeling research on the 

balance-scale task. One reason that connectionist models of the balance-scale task 

were considered significant was because they demonstrated that stage-like or 

qualitative shifts in performance could result from small, continuous, quantitative 

changes (Bates & Elman, 1992; McCleod et al., 1998; Shultz, 1991).

Now that performance on the balance-scale task may be interpreted as subject to 

the same variability in strategy use as other, more “everyday” tasks (Siegler, 1996) it 

remains to be seen how connectionist or symbolic models will need to be modified in 

order to simulate this type of behavior pattern. Computer models that are consistent 

with current theorizing about importance on the concept of cognitive variability as 

opposed to stage-wise depictions o f development are currently being developed. For 

example, Siegler and Shipley’s (1995) Adaptive Strategy Choice Model (ASCM) 

model was developed to account for the selection of strategies on simple arithmetic 

problems. Klahr and MacWhinney (1998), however, refer to ASCM as an ad hoc 

model. That is, it is described as a type of computer model that “employs an ad hoc 

computational architecture in which to formulate and run the model” (p. 634) but does 

not include the systematic assumptions or theoretical commitments of connectionist 

or production system approaches (Klahr & MacWhinney, 1998). With respect to the
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connectionist and production system frameworks, new sets of assumptions, and 

perhaps a  new generation of models, will be required to capture the variability in 

strategy observed on various tasks (e.g., arithmetic, scientific reasoning) in which 

observed behavior is consistent with the “overlapping waves” depiction of 

development.

Final Remarks

There has been a growing interest in modeling cognitive development (e.g.,

Bates & Elman, 1990; Elman, 1993; Elman et al., 1996; Klahr & MacWhinney, 1998; 

Mareschal & Shultz, 1996; McClelland, 1995; Plunkett et al., 1997; Plunkett & Sinha, 

1992; Shultz et al., 1995). Recent characterizations of developmental process have 

important implications for modeling developmental processes-implications that open 

up a new set of challenges for researchers interested in modeling cognitive 

development and evaluating the performance of those models. The enterprise may 

benefit from an approach similar to that adopted here: one that shifts among the 

analysis of neural networks, analysis of the task, and analysis of human performance.

It is through a reciprocal approach that future researchers may face these new 

challenges.
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Table 1

Predicted Success (Percentage o f Correct Responses) on Different Balance-Scale 

Problems fo r  Individuals Using Siegler’s (1976) Four Rules

Problem Type Level of Performance

Rule 1 Rule 2 Rule 3 Rule 4

Balance 100 100 100 100

Weight 100 100 100 100

Distance 0 a 100 100 100

Conflict-W eight 100 100 33 c 100

Conflict-Distance 0 b 0 b 33 c 100

Conflict-Balance 0 b 0 b 33 c 100

Both-Greater d 100 100 100 100

a Incorrectly predict that the scale will balance.b Incorrectly predict that the side with 

the greater weight will go down.c Chance responding is predicted.d Problem type not 

discussed by Siegler (1976, 1981). One side has the greater weight and the greater 

distance.
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Table 2

Characteristics o f  the Clusters for Network 4120

Cluster a n

Mean Hidden Unit Activitv Mean Torque 
DifferencebHO HI H2 H3

1 (left) 117 .84 (.12) 0 0 0 -11.47(5.07)

7 (left) 121 .38 (.11) .08 (.13) .03 (.02) 0 -5.97 (4.06)

6 (left) 50 .16 (.03) .80 (.16) .08 (.03) .02 (.03) -2.20(1.40)

3 (balance) 49 .09 (.01) .84 (.04) .14 (.01) .54 (.03) 0

2 (right) 127 0 0 .87 (.11) 0 10.88 (5.22)

5 (right) 129 .02 (.01) .02 (.03) .43 (.12) .03 (.06) 5.66(4.17)

4 (right) 32 .06 (.01) .31 (.09) .21 (.02) .71 (.14) 1.94(1.22)

Total 625 .26 (.32) .17 (.30) .30 (.33) .09 (.21) 0 (8.95)

Note. Standard deviations are shown in brackets. When a mean of zero is shown without 

brackets, the standard deviation is also zero.

a Clusters have been reordered by output state of the network (shown in brackets). 

b Torque difference = (right weight x right distance) - (left weight x left distance).
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Table 3

Characteristics o f the 52 Problems Not Solvable by an Additive Heuristic

Problem Type Torque predicts: Additive predicts: Frequency

Conflict Balance balance tip (> weight) 2 *

Conflict Balance balance tip (> distance) 2 b

Conflict Weight tip balance 2 0 c

Conflict Weight tip tip opposite side 4 d

Conflict Distance tip balance 2 0 e

Conflict Distance tip tip opposite side 4 r

Note. All absolute torque difference values for conflict-weight and conflict-distance 

problems range between 1 -4 .

a Conflict balance sum weight (CBSW). b Conflict balance sum distance (CBSD). 

c Conflict weight sum balance (CWSB). d Conflict weight sum distance (CWSD). 

e Conflict distance sum balance (CDSB).f Conflict distance sum weight (CDSW). 

These labels were suggested by Ferretti et al. (1985).
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Table 4

Predictions Made by Three Different Strategies for Six Types o f  No-Match Problems 

and Three Types o f Match Problems

No-Match Type
Strateev Tvne

FrequencyaTorque Additive Weight Only

CBSW BAL >WT >WT 2
CDSW >DIS >WT >WT 4

CWSB >WT BAL >WT 20
CWSD >WT >DIS >WT 4

CBSD BAL >DIS >WT 2
CDSB >DIS BAL >WT 20

Match Type
CB BAL BAL >WT 20
CD >DIS >DIS >WT 64
CW >WT >WT >WT 64

Note. CBSD = conflict-balance sum-distance, CBSW = conflict-balance sum-weight 

CDSB = conflict-distance sum-balance, CDSW = conflict-distance sum-weight 

CWSB = conflict-weight sum-balance, CWSD = conflict-weight sum-distance.

B AL = scale balances, >DIS = tips to side with greater distance, >WT = tips to side 

with greater weight.

a Out of 625, for a five-peg, five-weight version of the task.
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Table 5

Number of Problems in the Test Set Used by McClelland (1989) and Schmidt and

Shultz (1991) by Torque Difference (TD) and Problem Type

Torque

Difference CD

Problem Tvpe 

CW DIS WT Total

1 1 0 0 0 1

2 1 a 1 a 1 0 3

3 0 I 0 0 1

4 2 1 1 1 5

5 0 1 0 0 1

6 0 0 1 0 1

7 0 0 0 0 0

8 0 0 0 3 3

9 0 0 0 0 0

10 0 0 1 0 1

Total 4 4 4 4 16

Note. Absolute value of torque difference = l(/?w x rd) - (LW x ld) I.

CD = conflict-distance, CW = conflict-weight, DIS = distance, WT = weight. 

a No-match problem.
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Table 6

Number of Problems in the Test Set Used by Jansen and van der Maas (1997) by

Torque Difference (TD) and Problem Type

Torque

Difference CD 11

Problem Tvoe 

C W b DIS WT Total

1 2 3 1 0 6

2 3 2 1 3 9

3 0 0 1 1 2

4 0 0 1 0 1

5 0 0 0 0 0

6 0 0 1 0 1

7 0 0 0 0 0

8 0 0 0 1 1

Total 5 5 5 5 20

Note. Absolute value of torque difference = \(RW +  rd) - (lw  +  ld)I.

CD = conflict-distance, CW = conflict-weight, DIS = distance, WT = weight. 

a Four of the five were no-match problems. b Three were no-match problems.
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Table 7

Number of Problems in the Test Set Used by Schmidt and Shultz (1991) for Two

Levels o f Torque Difference (TD) by Problem Type

Torque Problem Tvne
Difference CD Match CD No-Match CW Match CW No-Match

Level 1 3 1 2 2

Level 2 2 2 4 0

Note. Level 1 problems were TD = 1; level 2 problems were TD = 3.
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Table 8

Band Membership for HI as a Function o f the Additive Equation fo r  Network 2929

Additive 

Differencea

Hidden Unit 1 Band b

TotalAl A2 Bl B2 C

-8 1 0 0 0 0 1

-7 4 0 0 0 0 4

-6 10 0 0 0 0 10

-5 20 0 0 0 0 20

-4 35 0 0 0 0 35

o 0 52 0 0 0 52

-2 0 0 0 68 0 68

-1 0 0 0 0 74 74

0 0 0 45 0 0 45

1 0 74 0 0 0 74

2 68 0 0 0 0 68

3 52 0 0 0 0 52

4 35 0 0 0 0 35

5 20 0 0 0 0 20

6 10 0 0 0 0 10

7 4 0 0 0 0 4

8 1 0 0 0 0 1
Note. There are a total of 573 patterns (match problems only). 

a Additive difference = (RW  + r d )  -  (LW  + LD).

b Bands A l, A2, B l, and B2 refer to the microbands in hidden unit 1 (see Figure 25).
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Accuracy Data (Percent Correct) for Each Participant for Conflict Problems with

Torque Difference s 4  (Match and No-Match Problems)

Participant Problem Type

CBSD* CBSWb
CB

Match' CDSBd CDSW® CWSBf CWSD* Matchh

1 100 50 50 65 25 80 50 78.3

2 0 0 55 30 25 40 25 80.0

3 0 0 10 20 0 60 75 81.7

4 0 0 80 15 0 25 25 90.0

5 0 0 20 0 0 45 25 68.3

6 0 50 70 15 25 45 50 46.7

7 0 0 0 55 25 45 25 81.7

8 0 100 50 60 50 0 0 75.0

Mean 12.5 25.0 41.9 32.5 18.8 42.5 34.4 75.2

Note. The frequency of no-match problems (out of 625) is as follows: CBSD (n = 2), 

CBSW 0n = 2), CDSB (n = 20), CDSW (n = 4), CWSB (n = 20), CWSD (n = 4). 

a Conflict balance sum distance (CBSD). b Conflict balance sum weight (CBSW). 

c Match conflict-balance problems (n = 20).

d Conflict distance sum balance (CDSB).e Conflict distance sum weight (CDSW). 

f Conflict weight sum balance (CWSB). * Conflict weight sum distance (CWSD). 

h Match problems with torque difference s 4  (n = 60).
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Table 10

Accuracy as a Function o f Torque Difference fo r Simple Problem Types

Torque
Difference

Total
Correct

Both-
Greater Weight Distance

1 98.4 100 96.9

2 97.8 99.1 96.4

3 96.2 93.8 95.8 96.9

4 95.8 90.6 96.1 96.9

5 96.6 96.3 98.4 95.3

6 95.3 89.6 98.8 98.8

7 95.8 95.8

8 97.1 96.4 100 95.3

9 99.4 99.1 100 100

10 99.5 100 100 97.9

11 99.2 99.2

12 98.3 100 97.9 95.8

13 99.2 99.2

14 98.4 98.4

15 100 100 100 100

16 100 100 100 100

17 97.9 97.9

18 100 100

19 100 100

20 100 100 100

21 -24 100 100
Note. Percentage correct for simple balance problems was 93%. Empty cells indicate 
that a problem type does not have instances at that level of TD.
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Table 11

Accuracy for Conflict Problems as a Function o f  Torque Difference Level

Torque
Difference

Total
Correct

CW
Match

CW
No-Match

CD
Match

CD
No-Match

1 54.4 85 33.8 68.8 30

2 54.3 75 42.2 65.6 34.4

3 63.1 81.3 50 79.2 25

4 65.5 87.5 56.3 60.4 25

5 81.9

6 79.9

7 89.8

8 90.6

10 89.1

11 95.3

15 93.8
Note. The total percent correct for conflict-balance problems was 38.0%. Percent 

correct for match and no-match was 41.8% and 18.7%, respectively. The range of 

torque difference for no-match problems is 0-4.
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Table 12

Accuracy Data (Percent Correct) fo r  Each Participant as a Function o f Problem Type

Problem Type

Participant
Both

Greater Balance Weight Distance
Conflict-
Weight

Conflict-
Distance

Conflict-
Balance

1 100 88 100 100 86.4 78 54.2

2 96.5 96 99 95 79.5 64.8 45.8

3 98 92 100 98 89.8 61.4 8.3

4 99 100 97 100 77.3 65.9 66.7

5 97.5 92 97 93 73.9 42 16.7

6 93.5 100 97 95 71.6 30.7 62.5

7 100 80 98 97 69.3 80.7 0

8 98.5 96 99 99 50 83 50

total 97.9 93 98.4 97.3 74.7 63.4 38
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Table 13

Rule Diagnosis fo r  Each Participant fo r  Eight Different Test Sets

Test Set

Ss1 McC b
S& S 

level 1c
S&S 

level 2 d
S& S 

level 3 *
S&S 

level 4 f
all 

match *
no

match h
high
TD '

1 4 4 4 4 4 2 4 4

2 3 3 3 4 4 4 3 4

3 2 3 3 4 4 4 2 4

4 3 4 4 4 4 4 3 4

5 0 0 2 3 2 2 2 4

6 2 2 3 2 4 4 3 4

7 3 3 3 3 3 3 0 3

8 3 3 3 3 4 4 3 4

Note. Rule diagnosis was performed as outlined by Siegler (1976). A diagnosis of 0  
indicates “unclassifiable.” 
a Participant’s identification number.
b McClelland’s (1989) test set published in Shultz and Schmidt (1991). 
c Shultz & Schmidt (1991) torque difference level 1 (TD = 1). 
d Shultz & Schmidt (1991) torque difference level 2 (TD = 3). 
e Shultz & Schmidt (1991) torque difference level 3 (TD = 12 for simple problems;
TD = 5 for conflict problems).
f Shultz & Schmidt (1991) torque difference level 4 (TD = 15-20 for simple problems; 
TD = 10-15 for conflict problems).
6 A sample o f problems with all conflict problems classified as match problems. 
h A sample of problems with all conflict problems classified as no-match problems.
1 A sample o f problems with high torque difference for non-balance problems.
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Table 14

Rule Diagnosis fo r  Each Participant fo r Three Test Sets and Three Different 

Assessment Orders

Test Set

McClelland a No Match b All Match C

Ssd 4321 e 1234f 4231* 4321 e 1234f 4231* 4321 e 1234f 4231*

1 4 3 4 4 3 4 2 2 2

2 3 3 3 3 2 2 4 3 4

3 2 2 2 2 2 2 4 2 4

4 3 3 3 3 3 3 4 3 4

5 0 0 0 2 2 2 2 2 2

6 2 2 2 3 2 2 4 3 4

7 3 2 2 0 0 0 3 2 2

8 3 3 3 3 3 3 4 3 4

Note. Rule diagnosis was performed as outlined by Siegler (1976). A diagnosis of 0 

indicates “unclassifiable.”

a Test set used by McClelland (1989) and Shultz and Schmidt (1991). 

b A sample of problems with all conflict problems classified as no-match problems. 

c A sample of problems with all conflict problems classified as match problems. 

d Participant’s identification number. 

c Scoring priority: Rules 4, 3, 2, 1. 

f Scoring priority: Rules 1, 2,3 ,4 .

8 Scoring priority: Rules 4, 2,3,1.
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(A) (B)
Model of Rule 1: Model of Role 2:

Yes No Yes No

Yes No

Balance

Balance

Weight
same?

Distance
same?

Weight
same?

Greater
Weight
Down

Greater
Weight
Down

Greater
Distance

Down

Figure 1. Siegler’s (1976) decision tree model (Rules 1 and 2).
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Yes No

Yes YesNo No

Yes No

Yes No

Balance

Balance Greater
Weight
Down

Greater
Distance

Down

Weight same?

Greater 
Product Down

Distance same?Distance same?

Rale 3:
Muddle Through

Greater Weight 
and Greater 

Distance Down

Greater Weight 
same side as 

Greater Distance?

Rule 4:
Cross-Products same?

Figure 2. Siegler’s (1976) decision tree model (Rules 3 and 4). The difference 
between Rule 3 and Rule 4 is illustrated in the branch o f the decision tree that occurs 
after ascertaining that the weights and the distances are in conflict.
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Figure 3. Two simple distance problems used by Ferretti and Butterfield (1986) to 
illustrate torque difference levels. The torque difference is 1 in Panel A (Level 1) and 
12 in Panel B (Level 3).
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Rule 1
PI: ((Same W) -> (Say “balance”))
P2: ((Side X more W) -> (Say “X down”)

Rule 2
PI: ((Same W) -» (Say “balance”))
P2: ((Side X more W) -*• (Say “X down”)
P3: ((Same W) (Side X more D) -* (Say “X down”))

Rule 3
PI: ((Same W) -*• (Say “balance”))
P2: ((Side X more W) -»• (Say “X down”)
P3: ((Same W) (Side X more D) -* (Say “X down”))
P4: ((Side X more W) (Side X less D) -* muddle through) 
P5: ((Side X more W) (Side X more D) -+ (Say “X down”))

Rule 4
PI: ((Same W) -» (Say “balance”))
P2: ((Side X more W) -* (Say “X down”)
P3: ((Same W) (Side X more D) -* (Say “X down”))
P4: ((Side X more W) (Side X less D) -» (get Torques))
P5: ((Side X more W) (Side X more D) -  (Say “X down”)) 
P6: ((Same Torque) -► (Say “balance”))
P7: ((Side X more Torque) -*• (Say “X down”))

Figure 4. The production system code used by Klahr and Siegler (1978). D = 
distance, W = weight, P = production. One the left side of the is the condition, on
the right is the action.
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Output Units

Hidden
Units

^  ^  ^  ^  ^ ^  ^  ^  ^  ^

Input
Units

O t O O O  L o o o t o
0 0 * 0 0  *  0 0 * 0 0

w (Weight) d  (Distance)

11 11

Figure 5. McClelland’s (1989) architecture and the balance-scale problem represented 
on the input units.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



126

Left Right
(A)

Left
Weight

Left
Distance

Right
Weight

Output Units

Input Units

Right
Distance

(B)
Output Units

Hidden
Units

Input Units
Left

Weight
Left

Distance
Right

Weight
Right

Distance

■° m u  m u

Figure 6. The cascade-correlation architecture used by Shultz and Schmidt (1991). 
Panel A shows the initial network without any hidden units. Panel B shows the 
network after the recruitment o f two hidden units. The values on the input and output 
units represent the balance-scale problem illustrated in Panel C. Adapted from Shultz 
et al. (1994).
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(A)

Output
Units

Hidden
Units

O O i• o o
Left Weight

m m o c

Right Weight

)0#0C
Right DistanceLeft Distance

Input
Units

(B)

m u  i n n

Figure 7. The network architecture used in Experiment 1. Weights are thermometer 
coded and distances are unary coded. The network is shown with four weights on the 
fourth peg on the left side and two weights on the third peg on the right side. The 
network is fully-connected, although not all connections are not shown.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



128

Connections from:
= Right Weight
■ Left Weight 

0 5 10 15 20 25
Index of Case

Figure 8. Plot of the connection weights in Network 4120 between the four hidden 
units and the input units representing left weight (solid bars) and right weight (striped 
bars) and the four hidden units. The first five bars in each panel are the connections to 
HO, the second five to HI, the third set of five to H2, and the last five to H3. HI and 
H3 are associated with patterns with the smallest torque differences, HO acts as the 
left detector and H2 acts as the right detector. See text for further explanation.
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□ Right Distance 
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Figure 9. Plot of the connection weights in Network 4120 between the four hidden 
units and the input units representing left distance (solid bars) and right distance 
(striped bars) and the four.hidden units. The first five bars in each panel are the 
connections to HO, the second five to HI, the third set of five to H2, and the last five 
to H3. HI and H3 are associated with patterns with the smallest torque differences. 
See text for further explanation.
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Figure 10. Plot of the connection weights between the four hidden units and the two 
output units. For any given hidden unit, the connection-weight to one output unit is a 
large value relative to the value of the connection-weight to the other output unit. See 
text for further explanation.
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,! i . i , i ) mm
0.0 0.2 0.4 0.6 0.8 1.0

Hidden Unit Activity (HO)

111 , I , Bl , , I
0.0 0.2 0.4 0.6 0.8 1.0

Hidden Unit Activity (H1)

Figure 11. An example of banding in the hidden unit activities of a converged neural 
network for purposes of illustration. Typically, each band contains input patterns that 
have common features that allow the network to learn the input-output mapping.
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Right patterns 

Balance patterns 
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Figure 12. Jittered density plots for the four hidden units in Network 4120. Hidden 
unit activity is shown on the abscissa. There is a random spread on the ordinate. The 
approximate regions for regularity in the activities for left, right, and balance 
problems are shown for two hidden units (HO and H2). Each dot represents one of the 
625 balance-scale problems.
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Figure 13. The activity of the four hidden units (H) as a function of the torque 
algorithm. LD = left distance, LW = left weight, RD = right distance, RW = right 
weight.
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Figure 14. The activity of the four hidden units (H) as a function of the additive 
equation. LD = left distance, LW = left weight, RD = right distance, RW = right
weight.
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Figure 15. Illustration of the analogy with overlapping receptive fields in the visual 
system. See text for further explanation.
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Figure 16. Net input (i.e., the sum of the input units x connection weights from the 
converged network) as a function of the torque algorithm for the four hidden units in 
Network 4120. Each dot represents one of the 625 possible balance-scale problems. 
See text for further explanation.
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Figure 17. Net input (i.e., the sum of the input units x connection weights from the 
c o n v e rg ed  network) as a function o f the additive equation [(RW +  RD) - (LW +  LD)] for 
the fo u r hidden units in Network 4120.
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Weight Input Units (W) Distance Input Units (£>)

Figure 18. A  simplified illustration to demonstrate that multiplication is not a 
primitive operation of a processing unit (a hidden unit is shown). A single connection 
is shown between the vector of input units representing weight information (CWi) and 
the vector of information representing distance information (CW/). This processing 
unit cannot multiply the weight information by the distance information; it can only 
sum the information from both sources: Net Input -  £(CWj)(W) + £(CW j)(D).
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Figure 19. Two-dimensional representation of the entire problem space (625 
prob lem s). The four dimensions have been collapsed into two: L eft (i.e., LW x LD), 
R igh t (i.e., r w  x r d ), resulting in a “torque difference space.” The problems are 
sh o w n  with slight random jitter to show overlapping problems.
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Figure 20. The problem space carved by problem type. Panels A through F are the 
problem types defined by Siegler (1976). CB = Conflict-Balance, CD = Conflict- 
Distance, CW = Conflict-Weight, BG = Both-Greater.
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Figure 21. The problem space carved by the cluster analysis of hidden unit activities. 
Left patterns fall in clusters 1, 6, and 7 (Panels A-C), right patterns fall in clusters 2, 
4, and 5 (Panels D-F), and balance problems fall in cluster 3 (Panel G).
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Figure 22. Mean torque difference (absolute value) and mean additive difference 
(absolute value) for the seven clusters. Torque difference = I RW x  RD - LW x  LD I. 
Additive difference = I (RW +  r d ) - (LW +  LD) I. Standard error bars are shown. 
Numbers refer to the cluster number, B = balance, L = left, R = right.
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Figure 23. Scatterplot of the relation between the additive equation and the torque 
equation. LD = left distance, LW = left weight, RD = right distance, RW = right
weight.
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Figure 24. Jittered density plots of hidden unit activity for HO and H2 for Network 
2929 (match problems only). Distinct banding occurs with left, balance, and right 
patterns falling in distinct regions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



145

Mixed left 
& right patterns

/
Balance patterns 

Left patterns

J L ± J L
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0 .7  0.8 0.9 1.0 

H1

Figure 25. Jittered density plot of hidden unit activity for HI for Network 2929.
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Figure 26. Location of cluster membership for Network 2929 plotted in an “additive 
difference” space.
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(A) i i

Figure 27. Two conflict-distance problems. The torque difference is 1 in Panel A and 
10 in Panel B.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



148

100

o
£ 90
o
O
c
§

80
4)
Q.

70

60
0 20 3 010

Absolute Torque Difference

Figure 28. Percent correct plotted as a function of absolute torque difference for all 
balance-scale problems. The equation of the line is:

percent correct = 100 - 37.660 * EXP(-1 * 0.251 * ABS(TD).
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Figure 29. Reaction time as a function of absolute torque difference for all balance- 
scale problems.
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Figure 30. Reaction time for Participant 5 plotted in a 2-D mosaic scatterplot as 
function of left torque (i.e., LW x  LD) and right torque (i.e., RW x  RD). In general, 
darker shades are associated with faster reaction times.
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Figure 31. Reaction time for Participant 8 plotted in a 2-D mosaic scatterplot as 
function of left torque (i.e., LW x  LD) and right torque (i.e., r w  x RD). Darker shades 
are associated with faster reaction times.
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Figure 32. Percent correct as a function of absolute torque difference for all simple 
problems (i.e., balance, weight, distance, and both-greater).
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Figure 33. Reaction time as a function of absolute torque difference for all simple 
problems (i.e., balance, weight, distance, and both-greater).
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Figure 34. Percent correct as a function of absolute torque difference for all conflict 
problems. The equation of the line is:

percent correct = 100 - 61.930 * EXP(-1 * 0.199 * ABS(TD).
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Figure 35. Reaction time as a function of absolute torque difference for all conflict 
problems.
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Figure 36. Percent correct as a function of absolute torque difference for no-match 
and match problems.
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Figure 37. Reaction time as a function of absolute torque difference for match 
problems that were correct and incorrect.
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Figure 38. Reaction time as a function of absolute torque difference for no-match 
problems that were correct and incorrect.
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Figure 39. Illustration of Siegler’s moderate experience hypothesis. Variability in 
strategies is predicted for moderate amounts of experience. Adapted from Siegler
(1996).
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Appendix A 

The Binomial Formula and Sample Calculation

The binomial formula used for determining the probability of observing X

successes in n number of trials is given by,

P(X) n! pxq"'x
X!(n - X)!

where n is the number of trials, X  is the number of successes in n trials, p  is the

probability of success in a single trial, and q is equal to 1 -p  (Ott, Larson, &

Mendenhall, 1987).

For example, when 4 instances of a problem type are used, the probability of

getting 3 correct can be calculated (n = 4, X  = 3). Given that there are three response

alternatives, the probability of success on a single trial is 1 in 3 ip — 1/3, q = 2/3).

When we substitute these values into the formula, we get:

P(3 successes) = 4! 1/332/34’3
3!(4 - 3)!

P(3 successes) = 24 (0.037)(0.667)
6

P(3 successes) = 0.098

Therefore, the probability of getting 3 items correct out of 4 by chance alone is 0.098 

in the long run.
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Appendix B 

A Primer of Connectionist Terminology

Several characteristics of connectionist models will be described in order to 

facilitate the presentation of previous models and the current simulation results. 

Structurally, artificial neural networks (ANN) contain processing units (i.e., input 

units, hidden units, and output units) and modifiable connection weights between the 

processing units (see Figure Al). Important processes are net input functions, 

activation functions, output functions, and learning rules. Different types of 

architectures can be constructed from these different structural and processing 

components.

Processing Units

The neuron is the structural and functional unit of the nervous system (Pinel, 

1993). The processing units in a connectionist network are analogous to neurons. 

Processing units are usually described as one of three types:

Input units. The problem or pattern representation is presented to the network 

via input units. Typically, the problem or pattern is represented in a distributed 

manner. For example, balance-scale problems have four pieces of information: left 

weight, left distance, right weight, and right distance (each with a maximum value of 

5). This information could be represented as four inputs (i.e., integer values from 1-5) 

or as 20 inputs (i.e., 5 input units for each bit of information).

Hidden units. Processing units that do not receive input, or do not represent 

output, are called hidden units. This is an intermediate layer (or layers) of processing
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Figure B 1. An example o f a simple connectionist network (or multilayer perception).

units that the modeler does not have access to. The role of hidden units is to detect 

features in the input patterns that allow the network to make a correct response on the 

output units.

Output units. The output unit represents the answer or solution to the problem. 

Typically, outputs are also distributed representations. In the case of the balance-scale 

task, for example, there are three possible solutions (tip left, tip right, or balance).

Modifiable connections. Between each layer of processing units are 

modifiable, weighted connections. These connections function as the means of 

communication between processing units. The nature (e.g., excitatory or inhibitory) 

and strength of the connection is determined by its weight. Note that for some types 

of network architecture (i.e., the multilayer perceptron), connections do not exist 

between processing units within a particular layer (see Figure Bl).
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Processing Functions

Net input functions. Hidden units and output units must process the collective 

activations received from all connections. The signal that enters any given unit i from 

another unit j  is the signal sent from unit j  multiplied by the value of the connection 

weight, Wjj. Given that there are several connections to any unit /, the processing unit 

must have some way of computing the total signal it receives. A very common input 

function is one that simply sums the weighted signals from all the units connected to 

it, or:

Net input, = L(outputy)(w,y)

Activation functions. The activation function calculates the internal level of 

activity in the processing unit. There are many different activation functions (see 

Figure B2). The step function is illustrated in Panel A. Here, if the net input is less 

than a particular threshold, the activation of the unit is 0; if the net input is greater 

than this threshold, the activation is 1. The logistic function is illustrated in Panel B 

(also called a sigmoidal activation function). A negative input results in an activation 

between 0 and 0.5, an net input of 0 results in an activation of 0.5, and positive values 

result in an activation of greater than 0.5. Net input values o f 0 result in the maximum 

activation value of 1 when the Gaussian activation function is used (see Panel C).

Output functions. Once a unit has processed the information from all 

connecting units, it must propagate a signal to the next layer in the case of hidden 

units (i.e., to another layer of hidden units, or to the output units), or produce an 

output response in the case of output units. In most cases, the output function is
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simply the identity function—the signal sent out by a unit is the unit’s level of activity 

as determined by the activation function.

B
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l

o o-ve +ve
Net Input Net Input

Figure B2. Three common activation functions: (A) the step function, (B) the logistic function, and (C) 
the Gaussian function. Adapted from Dawson (1998).

Learning algorithms. There are many different learning rules that can be used 

to train an artificial neural network. Common learning algorithms are (a) the Hebb 

rule; (b) the delta rule, (c) the generalized delta rule and (d) the Quickprop rule.

A general description of how learning occurs is as follows. Input patterns are 

presented to the network, and the activity is propogated in a forward manner to the 

hidden and output units. The network then compares the actual response to the 

desired response (i.e., the error). This error term is propogated backwards through the 

network, such that the connection weights are changed in order to reduce the error. 

Training occurs in this way until some criterion of error reduction has occurred.
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Appendix C 

Characteristics of the No-Match Problems

LW LD RW RD Tip Problem Type
Torque 

Difference *
Additive 

Differenceb Cluster

1 4 2 2 B CBSD 0 -1 3

2 2 1 4 B CBSD 0 1 3

4 1 2 2 B CBSW 0 -1 3

2 2 4 I B CBSW 0 1 3

3 3 5 1 L CDSB ■A 0 7

2 4 5 1 L CDSB -3 0 7

4 2 5 1 L CDSB -3 0 7

2 3 4 1 L CDSB -2 0 7

3 2 4 1 L CDSB -2 0 7

3 4 5 2 L CDSB -2 0 6

4 3 5 2 L CDSB -2 0 6

2 2 3 1 L CDSB 0 6

3 3 4 2 L CDSB 0 6

4 4 5 3 L CDSB 0 6

2 3 5 1 L CDSW -1 1 6

3 2 5 1 L CDSW -1 1 6

3 3 1 5 L CWSB -4 0 7

2 4 1 5 L CWSB -3 0 7

4 2 1 5 L CWSB -3 0 7

2 3 1 4 L CWSB -2 0 7

3 2 1 4 L CWSB -2 0 7

3 4 2 5 L CWSB -2 0 6

4 3 2 5 L CWSB -2 0 6

2 2 1 3 L CWSB -1 0 6

3 3 2 4 L CWSB -1 0 6
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4 4 3 5 L CWSB 0 6

2 3 1 5 L CWSD -I 1 6

3 2 1 5 L CWSD -1 1 6

3 1 2 2 R CDSB 1 0 5

4 2 3 3 R CDSB 1 0 4

5 3 4 4 R CDSB 1 0 4

4 1 2 3 R CDSB 2 0 5

4 1 3 2 R CDSB 2 0 5

5 2 3 4 R CDSB 2 0 4

5 2 4 3 R CDSB 2 0 4

5 I 2 4 R CDSB 3 0 5

5 1 4 2 R CDSB 3 0 5

5 I 3 3 R CDSB 4 0 5

5 I 2 3 R CDSW 1 -1 4

5 1 3 2 R CDSW 1 -1 4

1 3 2 2 R CWSB 1 0 5

2 4 3 3 R CWSB 1 0 4

3 5 4 4 R CWSB 1 0 4

1 4 2 3 R CWSB 2 0 5

1 4 3 2 R CWSB 2 0 5

2 5 3 4 R CWSB 2 0 4

2 5 4 3 R CWSB 2 0 4

1 5 2 4 R CWSB 3 0 5

1 5 4 2 R CWSB 3 0 5

1 5 3 3 R CWSB 4 0 5

1 5 2 3 R CWSD 1 -1 4

1 5 3 2 R CWSD 1 -1 4
Note. B = balance, L = left tip, R = right tip, LD = left distance, LW = left weight,
RD = right distance, RW = right weight, CB = conflict balance, CD = conflict distance, 
CW = conflict weight
s Torque difference = LW x LD - RW x RD. b Additive difference = (LW +  LD) - (RW + RD).
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Appendix D

Number of Problems at Each Level of Torque Difference for a Six-Peg, Six- 

Weight Problem Set for Non-Balance Problem Types a

Torque 

Difference b CD

Problem Tvoe 

CW DIS WT Torque Difference Level

1 24 24 iQ JO 1 (simple & conflict)
2 32 32 18 18
3 22 22 J6 J6 2 (simple & conflict)
4 20 20 22 22
5 JO JO 12 12 3 (conflict)
6 20 20 24 24
7 12 12 0 0
8 10 10 12 12
9 8 8 6 6

10 8 8 10 10
11 4 4 0 0
12 6 6 18 J8 3 (simple)
13 4 4 0 0
14 8 8 0 0
15 2 2 8 8
16 0 0 4 4
18 4 4 6 6 4 (conflict)
19 4 4 0 0 4 (conflict)
20 0 0 6 6
24 2 2 4 4 4 (simple & conflict)
25 0 0 2 2 4 (simple)
30 0 0 2 2 4 (simple)

Note. Problems underlined were sampled for test sets used by Ferretti and Butterfield 
(1986). CD = conflict-distance, CW = conflict-weight, DIS = distance, WT = weight. 
Some values of TD are not shown as there are no problems in those categories (i.e., 
17, 21-23, 26-29). For simple problems (WT and DIS), the four levels of torque 
difference (TD) were 1,3, 12, and 24-30. For conflict problems, the four levels of TD 
were 1, 3, 5, and 18-24. It is unclear why at levels 3 and 4 there is such a large 
disparity in TD for simple and conflict problems, given that problems of comparable 
TD exist.
a Excluding both-greater problems. b Absolute value o f (RW x  RD - LW x LD).
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Appendix E
Number o f Problems at Each Level of Torque Difference for a Five-Peg, Five- 

Weight Problem Set for Non-Balance Problem Types a

Torque 
Difference b CD

Problem Tvpe 
CW DIS WT Torque Difference Level

1 20 20 8 £ 1 (simple & conflict)
2 16 16 14 14
3 10 JO J2 J2 2 (simple & conflict)
4 8 8 16 16
5 JO JO 8 8 3 (conflict)
6 4 4 10 10
7 8 8 0 0
8 2 2 8 8
9 0 0 4 4

10 4 4 6 6 4 (conflict)
11 4 4 0 0 4 (conflict)
12 0 0 6 6 3 (simple)
13 0 0 0 0
14 0 0 0 0
15 2 2 4 4 4 (simple & conflict)
16 0 0 2 2 4 (simple)
17 0 0 0 0
18 0 0 0 0
19 0 0 0 0
20 0 0 2 2 4 (simple)

Note. Problems underlined were sampled for test sets in Schmidt and Shultz (1991). 
For simple problems (WT and DIS), the four levels of torque difference (TD) were 1, 
3, 12, and 15-20. For conflict problems, the four levels of TD were 1, 3, 5, and 10-15. 
Notice that the TD at level 3 for simple problems is larger than the TD for some 
conflict problems at level 4. CD = conflict-distance, CW = conflict-weight, DIS = 
distance, WT = weight.
a Excluding both-greater problems. b Absolute value of (RW x  RD - LW x  LD).
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Appendix F

Cross-tabulation of Cluster Membership (Network 4120) and Problem Type

Cluster BAL WT DIS BG

CW

Match

CW

NM

CD

Match

CD

NM

CB

Match

CB

NM

6

(50)

— 10 10 — 8 5*

2 b

8 5 c 

2 d

— —

7

(121)

— 25 25 25 18 5* 18 5 c — —

1

(117)

— 15 15 75 6 — 6 — — —

3

(49)

25 — — — — — — — 20 4 e

4

(32)

— 5 5 — 5 4*

2 b

5 4 c

2 d

— —

5

(129)

— 28 27 24 19 6* 19 6 c — —

2

(127)

— 17 18 76 8 — 8 — — —

Note. Clusters 1,6, 7 contain left problems, clusters 2 ,4 , 5 contain right problems. 

Number of instances are shown in brackets. BAL = balance, WT = weight,

DIS = distance, CB = conflict-balance, CD = conflict-distance, CW = conflict-weight, 

NM = no-match.

a Conflict weight sum balance (CWSB).b Conflict weight sum distance (CWSD). 

c Conflict distance sum balance (CDSB).d Conflict distance sum weight (CDSW). 

e Conflict balance sum weight (CBSW), Conflict balance sum distance (CBSD).
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Appendix G 
C++ Code to Measure Reaction Time

void query(void) // Collecting Responses and Reaction Times
{

clock_t start, end; // initialize a timer or clock here
printf("\nGiven this configuration of weights and pegs, will this balance scale"); 
printf("\n\t(a) Tip to the LEFT? ...if so press the 1 key"); 
printf("\n\t(b) Balance? ...if so press the 2 key"); 
printf("\n\t(c) Tip to the RIGHT? ...if so press the 3 key\n"); 
printf("\nPlease make your selection >"); 
start = clockO; II start a timer or clock here
for (;;) // will only accept one of 3 keystrokes
{ // waits until one is pressed

temp=getche();
if (tem p=’ril tem p=2’ II tem p=3’)
{break;}

}

end = clockO; 
float rt;
rt = ((end - start) / CLK_TCK ) ; //macro in <time.h>; expresses in sec. to 3 dec. places 
fprintf(output,”%d %c %F", BLOCK, temp, rt); //adding to the output file

// Initiate a new trial (end query)
sleep(l);
clrscr();
printf("\n\n\n\n\tTo start the next trial, hit the SPACEBAR"); 
wait = 0; 
while(wait != ’ ^
{

while (kbhit())
{

wait = getcheO;
}

}

} //end of query function
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Appendix H

Written Protocols from Participants in Experiment 3

After completing the task, participants were asked to write responses to three 

questions: (a) Are you familiar with the concept “torque”?, (b) Can you define it?, and 

(c) When doing the task, did you have any particular strategy that you can describe?

Participant 1: No; No; “I remembered being on a teeter-totter with my younger 

brother and I had to sit closer to the middle so I tried to adjust for how far out the 

weights were.”

Participant 2: No; No; “Blocks toward the outer pegs were “heavier” than that 

same amount of weight closer to the middle. More weight on one side meant that 

balance should fall toward that side, unless more weight was closer to the middle, and 

weight on the other side (less weight) was toward the outside (balance, or fall towards 

side with weights closer to the outside).”

Participant 3: Yes; No; “Balanced distance from center compared to mass” 

(diagram o f simple distance problem; [under side with greater distance] “pulls down 

more as has [more] torque.”

Participant 4: No; No; “Nothing special, just common sense.”

Participant 5: No; No; “I looked at the side that had more blocks and then what 

peg it was on and then at the other side to see what peg the other blocks were on and 

whatever side had the peg closer to the end I thought was the side it tipped to.” 

Participant 6: No; No; “Visualizing how the balance would react, using a 

counterbalance further in than out. (e.g., lw=5, ld=l, rw = 1, rd=5) as balancing, then 

trying to consistently use the same principle.”

Participant 7: No; No; ‘Trying to equalize distance and weight, although I had 

no formal rule that I could use quickly enough.”

Participant 8: Yes; “to fine tune something”; “I tried to imagine what would be 

equivalent e.g., if one weight on outer stake equivalent to 2 weights on the next stake 

in on the other side.”
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