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Diterpene resin acids (DRAs) are major components of pine (Pinus spp.) oleoresin. They play critical roles in conifer defense
against insects and pathogens and as a renewable resource for industrial bioproducts. The core structures of DRAs are formed in
secondary (i.e. specialized) metabolism via cycloisomerization of geranylgeranyl diphosphate (GGPP) by diterpene synthases
(diTPSs). Previously described gymnosperm diTPSs of DRA biosynthesis are bifunctional enzymes that catalyze the initial
bicyclization of GGPP followed by rearrangement of a (+)-copalyl diphosphate intermediate at two discrete class II and class
I active sites. In contrast, similar diterpenes of gibberellin primary (i.e. general) metabolism are produced by the consecutive
activity of two monofunctional class II and class I diTPSs. Using high-throughput transcriptome sequencing, we discovered 11
diTPS from jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta). Three of these were orthologous to known conifer
bifunctional levopimaradiene/abietadiene synthases. Surprisingly, two sets of orthologous PbdiTPSs and PcdiTPSs were
monofunctional class I enzymes that lacked functional class II active sites and converted (+)-copalyl diphosphate, but not
GGPP, into isopimaradiene and pimaradiene as major products. Diterpene profiles and transcriptome sequences of lodgepole
pine and jack pine are consistent with roles for these diTPSs in DRA biosynthesis. The monofunctional class I diTPSs of DRA
biosynthesis form a new clade within the gymnosperm-specific TPS-d3 subfamily that evolved from bifunctional diTPS rather
than monofunctional enzymes (TPS-c and TPS-e) of gibberellin metabolism. Homology modeling suggested alterations in the

class I active site that may have contributed to their functional specialization relative to other conifer diTPSs.

Conifer trees, including lodgepole pine (Pinus con-
torta) and jack pine (Pinus banksiana), produce complex
mixtures of mono-, sesqui-, and diterpenoid special-
ized (i.e. secondary) metabolites, most prominently in
the form of oleoresin, that can act as a physical and
chemical defense against insect and pathogen attack
(Phillips and Croteau, 1999; Keeling and Bohlmann,
2006a, 2006b; Zulak and Bohlmann, 2010; Boone
et al., 2011). These oleoresin terpenoids also serve as
a large-volume, renewable resource for industrial
bioproducts, including solvents, flavors, fragrances,
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coatings, and resins (Langenheim, 2003; Bohlmann
and Keeling, 2008; Bohlmann, 2011; Zerbe et al.,
2012a). Oleoresin terpenoids are biosynthesized by a
large family of catalytically diverse terpene synthases
(TPSs) that contribute to a wide array of different
compounds that can be produced by a single tree
(Martin et al., 2004; Zulak et al., 2009; Keeling et al.,
2011a). The many mono-, sesqui-, and diterpene syn-
thases (diTPSs) of conifer specialized metabolism form
the gymnosperm-specific TPS-d subfamily (Bohlmann
et al., 1998a; Martin et al.,, 2004; Chen et al., 2011;
Keeling et al., 2011a). The functional diversity of these
conifer diTPSs appears to have evolved through events
of repeated gene duplication and further sub- and
neofunctionalization, leading to an expansion of the
TPS-d multigene family (Martin et al.,, 2004; Keeling
et al., 2008; Chen et al., 2011) that is the central player
behind the chemical complexity of conifer specialized
diterpenes. In addition, conifer diTPSs of general (i.e.
primary) GA metabolism belong to the TPS-c and
TPS-e/f subfamilies, which also include orthologous
genes of angiosperms (Keeling et al., 2010; Chen et al,,
2011).

In gymnosperms and angiosperms, diterpene me-
tabolites are formed through the multistep cyclo-
isomerization of geranylgeranyl diphosphate (GGPP)
catalyzed by diTPSs (Fig. 1). Despite their functional
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Figure 1. diTPS-catalyzed biosynthesis of general and specialized diterpenes in conifers. GA biosynthesis invariably derives
from ent-CPP and ent-kaurene as intermediates. In contrast, the formation of DRAs proceeds via (+)-CPP and the rearrangement
of various distinct carbocations to afford the mixture of known diterpenes in the oleoresin of coniferous trees (photo). Previously
described or proposed diTPS catalytic functions involved in these individual pathways are highlighted. CPS, Copalyl diphos-

phate synthase; KS, kaurene synthase.

diversity, known diTPSs are structurally conserved
with variations in three common «-helical domains, «,
B, and vy, and associated active site motifs (Koksal
etal., 2011a, 2011b; Zhou et al., 2012). diTPSs involved
in general metabolism of GA biosynthesis in angio-
sperms and gymnosperms, as well as those involved in
the biosynthesis of the large class of labdane-related
specialized diterpenes in angiosperms, are monofunc-
tional class II and class I enzymes (Keeling et al., 2010;
Peters, 2010). The class II diTPSs contain a DxDD
signature motif in the yB-domain relevant for cata-
lyzing the protonation-initiated cyclization of GGPP to
a bicyclic diphosphate intermediate (Harris et al., 2005;
Prisic and Peters, 2007; Xu et al., 2007a; Gao et al.,
2009; Toyomasu et al., 2009; Falara et al., 2010; Keeling

Plant Physiol. Vol. 161, 2013

et al., 2010; Caniard et al., 2012; Sallaud et al., 2012).
Class I diTPSs, which harbor DDxxD and NSE/DTE
functional motifs in the a-domain, then catalyze the
ionization of the diphosphate ester and subsequent
rearrangement reactions (Xu et al.,, 2007a; Gao et al.,
2009; Keeling et al., 2010; Caniard et al., 2012; Sallaud
et al., 2012). In contrast, the archetypical diTPSs of
nonvascular plants, such as Physcomitrella patens or
Jungermannia subulata (Hayashi et al., 2006; Kawaide
et al., 2011), the specialized diTPSs of the lycophyte
Selaginella moellendorffii (Mafu et al., 2011; Sugai et al.,
2011), and the gymnosperm diTPSs involved in diter-
pene resin acid (DRA) metabolism (Vogel et al., 1996;
Peters et al., 2000; Schepmann et al., 2001; Martin et al.,
2004; Ro and Bohlmann, 2006; Keeling et al., 2011a,
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2011b; Zerbe et al., 2012a), are bifunctional class I/1I
enzymes that contain both functional active sites.

The formation of diterpenes in conifer DRA bio-
synthesis proceeds via the initial bicyclization of GGPP
into (+)-copalyl diphosphate [(+)-CPP] at the class 1I
active site of bifunctional diTPSs. The (+)-CPP inter-
mediate then translocates to the class I active site and
undergoes secondary cyclization and further rear-
rangements via intermediate carbocations (Peters et al.,
2001). Well-characterized class I/II diTPSs of conifers
include the isopimaradiene synthase-type (ISO) and
levopimaradiene/abietadiene synthase-type (LAS)
enzymes, which differ in the reactions catalyzed in the
respective class I active sites (Martin et al.,, 2004;
Keeling et al., 2008). ISO enzymes catalyze the direct
deprotonation of the secondary sandaracopimarenyl
cation to form isopimaradiene and minor quantities of
sandaracopimaradiene (Fig. 1). The LAS-catalyzed re-
action involves additional rearrangement reactions
and water capture at C,;, resulting in 13-hydroxy-8
(14)-abietene as the initial product, which in vitro
(and perhaps in vivo) readily dehydrates to afford
abietadiene, levopimaradiene, palustradiene, and
neoabietadiene (Keeling et al., 2011b). These different
catalytic specificities of known gymnosperm diTPSs
are predominantly determined by the conformation
and amino acid composition of the class I active site.
Targeted mutagenesis studies have shown that as little
as a single residue substitution is sufficient to alter the
product profile of these enzymes (Peters and Croteau,
2002a, 2002b; Wilderman and Peters, 2007; Keeling
et al., 2008; Leonard et al., 2010; Zerbe et al., 2012b). To
complete the biosynthesis of DRAs, stepwise oxida-
tions at the C,; position of the products of LAS and
ISO are catalyzed by cytochrome P450 enzymes of the
CYP720B family, yielding the corresponding diterpene
alcohols, aldehydes, and resin acids (Ro et al., 2005;
Hamberger et al., 2011).

Notably, the recently identified class I/1I cis-abienol
synthase from balsam fir (Abies balsamea; Zerbe et al.,
2012a) as well as the class I taxadiene synthases from
species of yew (Taxus spp.; Wildung and Croteau,
1996; Koksal et al., 2011a) employ distinct reaction
mechanisms. cis-Abienol synthase catalyzes the for-
mation of bicyclic diterpene alcohol cis-abienol via a
labda-13-en-8-ol diphosphate intermediate, whereas
taxadiene synthases facilitate the direct conversion of
GGPP into the macrocyclic diterpene taxadiene.

Lodgepole pine is the main host species of the cur-
rent large-scale outbreak of the mountain pine beetle
(MPB; Dendroctonus ponderosae) and its associated
pathogenic fungi, including the ascomycete Grosman-
nia clavigera (DiGuistini et al., 2011, Bohlmann, 2012;
Keeling et al., 2012). In recent years, the MPB epidemic
infested more than 15 million hectares of pine forest in
western North America (Safranyik et al., 2010). A host
range expansion of MPB into jack pine was recently
documented as the epidemic expanded geographi-
cally eastwards across the Rocky Mountains barrier
(Cullingham et al., 2011). While the diterpene profile of
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lodgepole pine saplings has been previously deter-
mined to contain the DRAs levopimaric acid, palu-
stric acid, isopimaric acid, neoabietic acid, abietic
acid, dehydroabietic acid, sandaracopimaric acid, and
pimaric acid (Lewinsohn et al., 1993), little is known
about the diterpenoid profile of jack pine. The effect of
the jack pine and lodgepole pine oleoresin diterpe-
noids on MPB and its associated fungi is not known.
However, in lodgepole pine, high levels of abietic acid
and dehydroabietic acid were detected in the sapwood
and heartwood following MPB attack, with pimaric
acid, sandaracopimaric acid, isopimaric acid, and
levopimaric acid/palustric acid also detected at low
levels (Shrimpton, 1973). In a different bark beetle
system, the DRAs abietic acid and isopimaric acid
strongly inhibited spore germination, and abietic acid
also strongly inhibited mycelial growth of Ophisotoma
ips, a fungal symbiont of the bark beetle Ips pini
(Kopper et al., 2005).

Despite the economic and ecological importance of
pines and the importance of oleoresin diterpenes in
pine defense and as bioproducts, no diTPSs have been
identified in jack pine and lodgepole pine. In other
species of pine, to the best of our knowledge, only a
single bifunctional diTPS (PtLAS), which produces
abietadiene, neoabietadiene, levopimaradiene, and
palustradiene, has been characterized from loblolly
pine (Pinus taeda; Ro and Bohlmann, 2006). Here, we
report the identification of 11, and the functional
characterization of seven, diTPSs from jack pine and
lodgepole pine, including the discovery of four mono-
functional diTPSs of DRA biosynthesis. The recombinant
monofunctional diTPSs produced either pimaradiene or
a combination of isopimaradiene and sandaracopimar-
adiene in vitro. Additionally, we characterized the bi-
functional jack pine and lodgepole pine LAS-type diTPSs
and demonstrate that these LAS enzymes produce a
tertiary alcohol as the primary diterpene product. Assays
in which the monofunctional pimaradiene and iso-
pimaradiene synthases were coupled with the bi-
functional jack pine and lodgepole pine LAS enzymes
demonstrated that the class I active sites of mono-
functional proteins can use the (+)-CPP intermediate
produced by the class II active site of the bifunctional
enzymes. Analysis of high-throughput sequence data
indicated distinct expression levels of mono- and bi-
functional diTPSs in the trees, and metabolite profiling
was consistent with an in vivo role for these proteins in
DRA biosynthesis.

RESULTS

Transcriptome Mining and Cloning of Jack Pine
and Lodgepole Pine diTPSs

To facilitate the discovery of diTPSs in lodgepole
pine and jack pine, we used transcriptome sequence
resources developed by a combination of Sanger, 454,
and Illumina sequencing of complementary DNA
(cDNA) libraries made from sapling stem tissues

Plant Physiol. Vol. 161, 2013

Downloaded from www.plantphysiol.org on October 19, 2015 - Published by www.plant.org
Copyright © 2013 American Society of Plant Biologists. All rights reserved.


http://www.plantphysiol.org/
http://www.plant.org

(National Center for Biotechnology Information [NCBI]
Short Read Archive accession number SRP009894). De
novo transcriptome assemblies resulted in the identifi-
cation of approximately 30,000 unigenes for each of the
two pine species (D.E. Hall, M. Yuen, and ]. Bohlmann,
unpublished data). A TBLASTN search of these tran-
scriptome assemblies against an in-house annotated
database of 102 conifer TPSs (e.g. Keeling et al., 2011a)
identified two full-length (FL) candidate diTPS se-
quences from each of jack pine (PbLAS1 and PbmISO1)
and lodgepole pine (PcLAS1 and PcLAS2) as well as
four partial diTPS-like sequences from jack pine and
eight partial diTPS candidate genes from lodgepole
pine. Based on the partial sequences, 5" RACE was used
to obtain two additional FL candidate diTPS sequences
from jack pine (PbmPIM1 and PbmdiTPS1). Homology-
based cloning led to the cloning of five additional FL
diTPS candidates from lodgepole pine (PcmlISO1,
PcmPIM1, PcmdiTPS1, PcmdiTPS2, and PemdiTPS3),
for a total of four FL jack pine diTPS and seven
FL lodgepole pine diTPS candidates (Supplemental
Table S1). An overall length of 850 to 880 amino
acids, along with a conserved yBa-tridomain archi-
tecture and presence of the characteristic KR(E/D)x,W
motif downstream of the putative plastidial transit
peptide, suggested that these 11 candidate genes
encode for diTPSs, as opposed to hemi-, mono-, or
sesqui-TPSs.

Sequence Analysis Suggests the Presence of Bifunctional
Class I/Il and Monofunctional Class I diTPSs in Jack Pine
and Lodgepole Pine

Three of the FL diTPS-like sequences (PbLASI,
PcLLAS1, and PcLLAS2) showed 98% to 99% amino acid
sequence identity to each other and to a previously char-
acterized loblolly pine LAS (PtLAS; Ro and Bohlmann,
2006). Notably, PcLAS1 had a 21-bp insertion, which was
not present in either PcLAS2 or PtLAS]. These sequences
contained the class I and class II active site functional
motifs (Fig. 2; Supplemental Fig. S1), suggesting that
they were bifunctional class I/II diTPSs, resembling
the known conifer diTPSs of DRA biosynthesis.

Unexpectedly, the eight remaining FL putative diTPS
sequences contained only the class I signature motifs
(NSE/DTE, DDxxD), but lacked either the conserved
middle Asp residue (PcmISO1 and PbmISO1) or the first
and last Asp residues (PcmdiTPS and PbmdiTPS) of the
DxDD motif, which were previously shown to be critical
for class II catalysis (Peters and Croteau, 2002b; Fig. 2;
Supplemental Fig. S1). These eight sequences showed
66% to 73% amino acid identity to jack pine PbLASI,
lodgepole pine PcLAS1 and PcLAS2, and functionally
characterized Norway spruce (Picea abies) PalSO and
PaLAS of DRA specialized metabolism (Martin et al.,
2004). Although representing putative monofunctional
diTPSs, the eight sequences only showed 33% to 34%
protein sequence identity to the monofunctional white
spruce (Picea glauca) class II ent-copalyl diphosphate

Plant Physiol. Vol. 161, 2013
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class |
DxDD DDxxD NSE/DTE catalytic residues
Palso DIDD DDLYD NDTKTYEAE L-H-S -1
PaLAS DIDD DDLYD NDTKTYEAE W=Y = A =V
PbLAST DIDD DDLYD NDTKTYQAE W=-Y - A =V
PcLAS1 DIDD DDLYD NDTKTYQAE W=Y = A =V
PcLAS2 DIDD DDLYD NDTKTYQAE W-Y - A =V
Pbmisol DIGV DDLYD NDTKTYQAE W= F - A =1L
Pcmisol DIGV DDLYD NDTKTYQAE W= F - A =1L
PbmPIM1 Y IDV DGFYD NDTKTYQVE W-F - A - L
PcmPIM1 YIDV DGFYD NDTKTYQVE W= F - A =1L
PbmdiTPS1 VIDV DDLYD NDTKTYQAE W-Y - S =1L
PcmdiTPS1 LIDI DDLYD NDTKTYQAE W- Y - S - L
PemdiTPS2 VIDV DDLYD NDTKTYQAE W-Y - S =L
PemdiTPS3 VIDV DDLYD NDTKTYQAE W=-Y - S =1L

Figure 2. Protein sequence alignment of class Il and class | diTPS
signature motifs and select catalytic residues of conifer diTPSs. Protein
sequence alignment of class Il diTPS (DxDD) and class | diTPS
(DDxxD, NSE/DTE) signature motifs, highlighting the loss of conserved
Asp residues in the DxDD motif of all monofunctional diTPS candi-
dates from jack pine and lodgepole pine. Variations of select catalytic
residues that determine product specificity in P. abies LAS and 1SO
(Keeling et al., 2008) are also illustrated. Amino acids that differ from
the corresponding residues present in P. abies LAS and ISO are shaded
in gray. A complete alignment of the respective FL sequences is
depicted in Supplemental Figure S1. PbmdiTPS1, P. banksiana mono-
functional diTPS1; PcmdiTPS1, P. contorta monofunctional diTPST;
PcmdiTPS2, P. contorta monofunctional diTPS2; PcmdiTPS3, P. con-
torta monofunctional diTPS3; PbmPIMT1, P. banksiana monofunctional
pimaradiene synthasel; PcmPIM1, P. contorta monofunctional pimar-
adiene synthase1; PomISO1, P. banksiana monofunctional isopimaradiene
synthase1; PcmlISOT1, P. contorta monofunctional isopimaradiene syn-
thasel; PcLAS2, P. contorta levopimaradiene/abietadiene synthase2;
PcLAS1, P. contorta levopimaradiene/abietadiene synthasel; PbLAS2,
P. banksiana levopimaradiene/abietadiene synthase1.

synthase (PgECPS) and class I ent-kaurene synthase
(PgEKS) of GA metabolism (Keeling et al., 2010), sug-
gesting roles in specialized as opposed to general me-
tabolism. With 99% amino acid sequence identity to each
other, PemISO1 and PbmISO1, and likewise PcmPIM1
and PbmPIM1, presumably represent two pairs of
orthologous genes from jack pine and lodgepole pine.
The remaining class I diTPS candidates (PcmdiTPS1,
PcmdiTPS2, PemdiTPS3, and PbmdiTPS1), though
highly similar among each other (97% to 98% protein
sequence identity), showed a lower identity of 71% to
75% to the other pine diTPS candidates (Supplemental
Table S1).

Characterization of Bifunctional PcLAS1, PcLAS2,
and PbLAS1

In vitro enzyme assays using affinity-purified re-
combinant PcLAS1, PcLAS2, and PbLAS1 and C,,
C,5, or C,, prenyl diphosphate substrates were per-
formed to substantiate functional annotations. Using
liquid chromatography-mass spectrometry (LC-MS),
the major diterpene products of PcLAS1, PcLAS2, and
PbLAS1 in assays with GGPP (C,)) were identified as
epimers of the diterpene tertiary alcohol 13-hydroxy-8
(14)-abietene, by comparison with retention times and
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mass spectra of the products of P. abies PaLAS (Keeling
et al., 2011b). Gas chromatography-mass spectrometry
(GC-MS) analysis, which causes dehydration of 13-
hydroxy-8(14)-abietene (Keeling et al., 2011b), identi-
fied the diterpene olefins abietadiene, levopimaradiene,
and neoabietadiene as the three major products in direct
comparison to the authentic compounds (Supplemental
Table S2), consistent with the three principal products
of the previously characterized PtLAS, which had been
analyzed exclusively by GC-MS (Ro and Bohlmann,
2006). Assays of PcLAS1, PcLAS2, and PbLAS1 with
farnesyl diphosphate (FPP; C;5) did not yield any prod-
ucts. PcLAS1 produced trace amounts of the acyclic
monoterpenes myrcene, linalool, and geraniol with
geranyl diphosphate (GPP; C,;) or neryl diphosphate
(C,p); and PbLAS] produced trace amounts of myrcene
with GPP. Enzyme assays with the remaining eight jack
pine and lodgepole pine diTPS candidates did not yield
any products when incubated with GPP, FPP, or GGPP,
except that both PcnISO1 and PbmISO1 produced trace
amounts of myrcene, ocimene, linalool, and geraniol
with GPP as substrate. These results established
PcLAS1, PcLAS2, and PbLLAS1 as bifunctional class I/11
diTPSs, which converted GGPP into the diterpene ter-
tiary alcohol 13-hydroxy-8(14)-abietene as the primary
product. Conversely, the remaining eight candidate
diTPSs were found to be nonfunctional in the con-
version of GGPP, consistent with the lack of a cata-
lytic DxDD muotif in the class II active site.

Coupled Enzyme Assays Identify Monofunctional Conifer
diTPSs Involved in Specialized Metabolism

The lack of an intact DxDD motif in the class II ac-
tive site of PcmPIM1, PbmPIM1, PcmISO1, PcmISO1,

PbmdiTPS1, PcmdiTPS1, PcmdiTPS2, and PemdiTPS3
suggested that these proteins may require copalyl di-
phosphate (CPP), but not GGPP, as a substrate. As
CPP is not commercially available, we employed
coupled assays with different CPP synthases to test if
any of these eight enzymes were active as monofunc-
tional class I diTPS. Specifically, we used the maize
(Zea mays) AN2 protein (Harris et al., 2005) to produce
ent-CPP and a protein variant of PaLAS (PaLAS:
D611A; Zerbe et al., 2012a) to produce (+)-CPP with
GGPP as substrate. Following quantitative conversion
of GGPP to CPP with these enzymes, conversion of
CPP was then tested by addition of the candidate class
I pine diTPS proteins.

When PcmPIM1 and PbmPIM1 were incubated with
PaLAS:D611A and GGPP [i.e. providing (+)-CPP as a
substrate], we identified diterpene product profiles
of 99% and 95% pimaradiene, respectively (Fig. 3,
Supplemental Fig. S2; Supplemental Table S2), estab-
lishing PcmPIM1 and PbmPIM1 as monofunctional,
class I pimaradiene synthases (PIM) and adding a new
function to the portfolio of conifer diTPSs. Coupled
assays of PcmISO1 with PaLAS:D611A yielded a
mixture of at least 90% isopimaradiene and up to 10%
sandaracopimaradiene. Similarly, when PbmISO1 was
coupled with PaLAS:D611A, 88% isopimaradiene and
12% sandaracopimaradiene were produced (Fig. 4;
Supplemental Fig. S3; Supplemental Table S2). Further
LC-MS analysis verified that the reaction products of
PcmPIM1 and PemISO1 were diterpene olefins, as
opposed to a C,5 alcohol.

Coupled assays with PcmdiTPS1, PemdiTPS2,
PcmdiTPS3, and PbmdiTPS1 did not produce any ob-
vious diterpene compounds using GC-MS and LC-MS
analyses. Coupled assays with ZmAN2 did not result
in significant product formation for any of the eight

Figure 3. Diterpene product profiles of PbomPIM1. 1A E PaLAS:D611A
GC-MS analysis of reaction products of PaLAS:
D611A (A) and PaLAS:D611A combined with
PbmPIM1 (B) in comparison to a pimaradiene
standard (C). D and E, Mass spectra of reaction
products marked with an asterisk in B and C. E,
Internal standard 1-eicosene. m/z, Mass-to- ——t
h tio. ]
charge ratio ;L:) 1B PalLAS:D611A
© +PbmPIM1
°
c E
=1
o
° w
2 2
® l K 175 204 229
& 5
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=)
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candidate pine diTPSs. Taken together, the combinato-
rial approach of coupled enzyme assays identified two
pairs of orthologous monofunctional class I diTPSs, with
PcmPIM1 and PbmPIM1 representing new PIM-type
diTPSs and PcmISO1 and PbmISO1 representing new
monofunctional ISO-type diTPSs. The class I activity
of these enzymes appeared to be specific for (+)-CPP
and directly produced diterpene olefins as opposed
to unstable diterpene alcohols.

Bifunctional Class I/II PcLAS1 and PbLAS1 Can Supply
(+)-CPP for the Monofunctional Class I PcmPIM1,
PbmPIM1, PcmISO1, and PbmISO1

Previous studies demonstrated that (+)-CPP is re-
leased from the class II active site of the bifunctional
Abies grandis abietadiene synthase (AgAS), prior to
catalysis of the class I reaction (Peters et al., 2001). To
determine in vitro if (+)-CPP released from an intact
bifunctional class I/1I diTPS can act as a substrate for
the monofunctional pine diTPSs, coupled assays with
PbLAS and either PbmPIM1 or PbmISO1 and GGPP
as a substrate were conducted and compared with
the activity of the LAS enzyme alone. Combining
PbLAS1 and PbmISO1 led to the accumulation of ad-
ditional product peaks of sandaracopimaradiene and
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Figure 4. Diterpene product profiles of PbmISO1.
GC-MS analysis of reaction products of PaLAS:
D611A (A) and PaLAS:D611A combined with
PbmISO1 (B) compared with retention times
of authentic isopimaradiene (C) and sandar-
acopimaradiene (D) standards. E and F, Mass
spectra of reaction products marked with an
asterisk in B and C. E, Internal standard 1-
eicosene. m/z, Mass-to-charge ratio.

243

isopimaradiene (peaks 2 and 3 in Fig. 5B) in addition
to abietadiene, levopimaradiene, palustradiene, and
neoabietadiene, which were produced by PbLAS1
alone (Fig. 5A). Isopimaradiene accounted for 8% of
the total product profile in these assays (Supplemental
Table S2). Coupled assays of PbLAS1 and PbmPIM1
resulted in the accumulation of 1.6% pimaradiene as a
new product peak (peak 1 in Fig. 5C; Supplemental
Table S2).

Similarly, incubation of PcLAS1 with either PcmISO1
or PcmPIMI led to the production of sandaracopimar-
adiene and isopimaradiene or pimaradiene, respectively,
in addition to diterpene olefins produced by PcLAS1
(Supplemental Fig. S4; Supplemental Table S2). The
pimaradiene and isopimaradiene peaks accounted for
3.7% and 10.5% of the total diterpene olefins produced
in these assays (Supplemental Table S2).

DRA Profiling of Jack Pine and Lodgepole Pine
Tissue Samples Confirms the Presence of
Pimaradiene-, Sandaracopimaradiene-, and
Isopimaradiene-Derived DRAs

To test if the in vitro products of the newly discov-
ered monofunctional class I diTPSs are relevant for the
in vivo diterpene metabolite profiles of jack pine and
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Figure 5. Diterpene product profiles of coupled assays with mono-
functional PbmISOT or PbmPIM1 and bifunctional PbLAS1. GC-MS
analysis of reaction products from coupled enzyme assays of mono-
functional PbmISO1 and PbmPIM1 with bifunctional PbLAST1, indi-
cating the conversion of (+)-CPP, released from the LAS class Il active
site, to the different pimaradienes through the class | activity of
PbmPIM1 and PbmISO1. Product profiles, with GGPP as substrate, of
PbLAST (A), PbLAST combined with PbmISO1 (B), and PbLAST com-
bined with PbomPIM1 (C). D, Authentic standards: 1, pimaradiene; 2,
sandaracopimaradiene; 3, isopimaradiene; 4, palustradiene; 5, levopi-
maradiene; 6, abietadiene; 7, dehydroabietadiene; 8, neoabietadiene. E,
Internal standard 1-eicosene.

lodgepole pine, we produced diterpenoid metabolite
profiles of extracts from jack pine and lodgepole pine
saplings. Extracts were prepared from six tissue types
of each species, including apical buds, leader stem
tissues, young needles, interwhorl stem tissue, mature
needles, and roots (Fig. 6). GC-MS analysis of organic
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solvent extracts identified the DRAs as the most
abundant diterpenoids across all tested tissue types in
both jack pine and lodgepole pine. Lesser amounts of
the corresponding aldehydes, alcohols, and olefins
were also present (Supplemental Figs. S5 and S6),
which is consistent with recent diterpenoid profiling of
Sitka spruce in which DRAs accounted for more than
90% of the total diterpenoids in stem tissues (Hamberger
et al., 2011). Detailed analysis of the total DRA content
in the jack pine and lodgepole pine tissues revealed
that the abundance of these metabolites was highest in
apical buds, leader stem, and interwhorl stem tissues
for both species (Fig. 6, A and H). The total amount of
DRAs was similar across both species for each tissue
type, with the exception of apical buds, where lodge-
pole pine had higher levels of DRAs.

Pimaric acid, sandaracopimaric acid, and isopimaric
acid, which correspond to the diterpene olefins produced
by PcmPIM1, PbmPIM1, PcmlISO1, and PbmlISO1, were
present in all (sandaracopimaric acid and isopimaric
acid) or several (pimaric acid) of the analyzed tissues of
jack pine and lodgepole pine. Pimaric acid and san-
daracopimaric acid were detected as the least abundant
DRAs, while higher levels of isopimaric acid were
detected in most tissue types (Fig. 6). In extracts from
lodgepole pine, levopimaric acid was the most abun-
dant DRA in the leader stem, and a mix of similar levels
of levopimaric acid, palustric acid, isopimaric acid,
abietic acid, dehydroabietic acid, and neoabietic acid
was detected in extracts from interwhorl stem tissue. In
extracts from jack pine leader stem and the upper
interwhorl stem tissues, levopimaric acid, abietic acid,
and neoabietic acid were the most abundant DRAs. In
both young and mature needles, levopimaric acid and
neoabietic acid were the most abundant DRAs in ex-
tracts from lodgepole pine and jack pine. In roots,
similar DRA profiles were observed from both pine
species; however, the macrocyclic diterpenoid thun-
bergol was also detected in four of the five biological
replicates from lodgepole pine.

The results from metabolite profiling of DRAs
confirm that the products of PcmPIM1, PbmPIM1,
PcmISO1, and PbmISO1 are relevant for the oleoresin
composition of jack pine and lodgepole pine, although
the corresponding DRAs are of relatively low abun-
dance.

Mapping of the 454 and Illumina Sequence Data Identifies
PcLAS1/2 and PbLAS1 as the Most Highly
Expressed Genes

Mapping of the FL diTPS sequences against the
jack pine and lodgepole pine 454 and Illumina tran-
scriptome data obtained from sapling stem tissues
confirmed the presence of the monofunctional class II
and the bifunctional class I/II diTPSs in both data sets,
with the exception of PemdiTPS3, which was present
only in the larger Illumina dataset with higher cover-
age (Table I). Due to the high identity (>99%) of
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Figure 6. DRA contents in 3-year-old jack
pine and lodgepole pine saplings. Total DRA
content (A and H), apical buds (AB; B and I),
leader stem (LS; C and J), young needles (YN;
D and K), top interwhorl stem (IS; E and L), top
interwhorl mature needles (ON; F and M), and
roots (RO; G and N). ses are based on five
biological replicates with at least two techni-
cal replicates per sample. DW, Dry weight.
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PcLAS1 and PcLAS2 on the nucleotide level, it was not
possible to map these genes independently; however,
targeted analysis of the 21-bp segment that is present
in PcLAS1, but not PcLAS2, suggested that PcLAS1
represents 86% of the Illumina reads and 79% of the
454 reads that are attributed to transcripts of these two
bifunctional diTPSs.

Based on the number of reads present for each diTPS
in the Illumina data set, we calculated the transcript
abundance of the individual diTPSs relative to the

Plant Physiol. Vol. 161, 2013

abundance of PcLAS1/2 for lodgepole pine and rela-
tive to PbLASI for jack pine (Table I). In jack pine,
transcript abundance of PbmISO1 was 5.5-fold lower
than that of PbLAS1, whereas transcript abundance of
PbmPIM1 and PbmdiTPS1 was 77- and 122-fold lower,
respectively. In lodgepole pine, transcript abundance
of PemPIM1 and PemdiTPS2 was 36- and 59-fold
lower than that of PcLAS1/2, respectively, and tran-
scripts of PemISO1, PemdiTPS1, and PemdiTPS3 were
at least 100 times less abundant than PcLAS1/2 (Table
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Table I. Abundance of candidate diTPSs in the jack pine and lodgepole pine transcriptome data

No. of Reads
Gene Name and Species - Relative Expression®
454 Illumina

Lodgepole pine
PcLAST, PcLAS2 614 16,560 100.00
PcmlISO1 1 111 0.67
PcmPIM1 17 456 2.80
PcmdiTPS1 7 132 0.80
PcmdiTPS2 12 279 1.70
PcmdiTPS3 0 51 0.31

Jack pine
PbLAS1 516 69,608 100.00
PbmISO1 131 12,611 18.10
PbmPIM1 2 570 0.82
PbmdiTPS1 12 928 1.30

“Relative gene expression was calculated based on the number of reads in the lllumina data set when
PcLAST and PcLAS2 and PbLAST are set at 100% for lodgepole pine and jack pine, respectively.

I). For logistic reasons, transcriptome sequencing was
done with 2-year-old saplings, while DRA analysis
was done with 3-year-old saplings. The relatively low
transcript abundance of the monofunctional diTPSs
PcmPIM1, PbmPIM1, PcmlISO1, and PbmISO1, relative
to the bifunctional PcLAS1/2 and PbLASI, is in
agreement with the relative abundance of the corre-
sponding DRAs described above.

Evolution of Monofunctional Class I diTPSs of
Specialized Metabolism

Based on their monofunctional activity and role in
DRA biosynthesis, the newly discovered class I diTPSs
of jack pine and lodgepole pine introduce a new
functionality to the catalytic landscape of specialized
conifer diTPSs. To gain a deeper understanding of
their evolution, we performed a phylogenetic analysis,
including mono- and bifunctional diTPSs of DRA bio-
synthesis, monofunctional class I and class II diTPSs of
GA biosynthesis, and select conifer monofunctional
class I mono-, sesqui-, and diTPSs. It was previously
shown that bifunctional class I/II diTPSs of conifer
DRA biosynthesis belong to a gymnosperm-specific
TPS-d3 subfamily, while the monofunctional gymno-
sperm diTPSs of GA biosynthesis cluster together with
angiosperm diTPSs of GA biosynthesis in the TPS-c
and TPS-e/f subfamilies (Keeling et al.,, 2010; Chen
et al, 2011). A maximum likelihood-based phyloge-
netic analysis places the jack pine and lodgepole pine
mono- and bifunctional diTPSs in the gymnosperm-
specific TPS-d3 clade, containing primarily diTPSs
and few yBa-domain sesqui-TPSs, clearly distant from
GA biosynthetic ECPS and EKS (Fig. 7). The bifunc-
tional class I/II PbLAS1, PcLAS1, and PcLAS2 are
closely related to previously characterized bifunctional
LAS and ISO enzymes from grand fir (Vogel et al.,
1996), Norway spruce (Martin et al., 2004), loblolly
pine (Ro and Bohlmann, 2006), Sitka spruce (Keeling
et al., 2011a), and balsam fir (Zerbe et al., 2012a). The
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eight monofunctional diTPSs (PcmPIM1, PbmPIM1,
PemlISO1, PemISO1, PbmdiTPS1, PendiTPS1, PediTPS2,
and PemdiTPS3) form a distinct branch within the TPS-
d3 family adjacent to the bifunctional class I/1I diTPSs
of DRA biosynthesis, but situated distantly from other
monofunctional gymnosperm TPS, such as Taxus spp.
taxadiene synthase (Wildung and Croteau, 1996),
yBa-domain gymnosperm sesqui-TPS (Bohlmann et al.,
1998b, Martin et al., 2004; Huber et al., 2005, McAndrew
etal., 2011), and other Ba-domain conifer mono-TPSs.
Furthermore, the orthologous pairs of PcmPIM1/
PbmPIM1 and PcmISO1 /PcmISO1, for which we showed
biochemical functions, are separated from the four
remaining diTPS candidates (PbmdiTPS1, PemdiTPS1,
PemdiTPS2, and PemdiTPS3) for which no activity was
observed.

These results show that monofunctional gymno-
sperm diTPSs evolved independently on at least three
separate occasions, one being the evolution of mono-
functional diTPSs of GA biosynthesis in gymnosperms
and angiosperms, the second being the evolution of
a monofunctional taxadiene synthase, and the third
being the emergence of monofunctional diTPSs of pine
DRA biosynthesis described here. The latter type of
monofunctional class I diTPS appears to have evolved
by loss of functionality of the class II active site that
remained intact in the similar class I/1I LAS and ISO
enzymes.

DISCUSSION

Monofunctional diTPSs Are New Modules in the
Biosynthesis of Multiproduct DRAs

Conifers produce a diverse and dynamic mixture
of large volumes of terpenoids, which contribute to
the plasticity of a broad defense shield against many
generalist herbivores and protect against specialist in-
sect pests and pathogens (Keeling and Bohlmann,
2006a; Zulak and Bohlmann, 2010). DRAs are a major
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Figure 7. Phylogenetic tree of FL diTPS from jack pine and lodgepole pine with previously characterized members of the
gymnosperm-specific TPS-d family. P. patens ent-kaurene/kaurenol synthase (PpCPS/KS; accession no. BAF61135) was used to
root the tree. Branches indicated with dots represent bootstrap support more than 80% (100 repetitions). Alterations in the
substrate specificity from GGPP (C,) to FPP (C,;) and GPP (C,,) are indicated. Abbreviations and NCBI accession numbers are
as follows: PcmISO1 (JQ240314), PbmISO1 (JQ240313), PcmPIM1 (JQ240315), PbmPIM1 ()Q240316), PcmdiTPS1
(1Q240318), PbmdiTPS1 ()Q240317), PcmdiTPS2 (JQ240319), PcmdiTPS3 (JQ240320), PtLAS (Q50EK2), PcLAS2 (JQ240311),
PcLAS1 (JQ240310), PbLAS1T (JQ240312), PsiLAS (ADZ45517), PaLAS (Q675L4), PsilSO (ADZ45512), PalSO (Q675L5), AbLAS
(IN254805), AgAS (Q38710), AbISO (JN254806), AbCAS (JN254808), GbLS (Q947C4), TcTXS (ABC25488), TbTXS (Q41594),
AgBIS (081086), PaBIS (AAS47689), PmBIS (Q4QSN4), PmFAR (ADX42737), PsiEKS (ADB55710), PgEKS (ADB55708), WECPS
(ADB55709), PgECPS (ADB55707), AgHUM (064405), AgSEL (AAC05727), AgLIM (AAB70907), AgTOL (AAF61454), AgPHE
(QIM7D1), AgMYR (AAB71084), PaLON (AAS47695), PgPIN1 (ADZ45507), PgLIN (ADZ45500), PsiCAR1 (ADZ45511),

PsyCARY (ABV44452), and PsyGDO (ABV44453).

component of the chemical and physical defense of
conifers (Phillips and Croteau, 1999) and have been
implicated, for example, in pine defense to the bark
beetle associated fungus O. ips (Kopper et al., 2005)
and in Sitka spruce resistance to the white pine weevil
(Robert et al., 2010). The committed reactions in DRA
biosynthesis are catalyzed by diTPSs (Keeling and
Bohlmann, 2006a, 2006b) and cytochrome P450 en-
zymes (Ro et al., 2005; Hamberger et al., 2011). Previ-
ously, it has been shown that conifer diTPSs involved
in specialized metabolism of DRAs are bifunctional
class I/Il enzymes that catalyze the conversion of
GGPP, through the stable intermediate (+)-CPP, to
produce diterpene olefins or alcohols (Vogel et al.,
1996; Peters et al., 2000; Schepmann et al., 2001; Martin

Plant Physiol. Vol. 161, 2013

et al., 2004; Ro and Bohlmann, 2006; Keeling et al.,
2011b; Zerbe et al., 2012a). Conversely, the general GA
metabolism in gymnosperms and angiosperms, and
likewise the specialized metabolism of labdane-related
diterpenoids in angiosperms, involve separate con-
secutively acting monofunctional class I and class II
enzymes (Richman et al., 1999; Xu et al., 2004; Harris
et al., 2005; Prisic and Peters, 2007; Xu et al., 2007a;
Gao et al., 2009; Toyomasu et al., 2009; Keeling et al.,
2010; Falara et al., 2010; Caniard et al., 2012).

To investigate DRA biosynthesis in jack pine and
lodgepole pine, we generated deep transcriptome
sequence inventories and de novo assemblies from
which we identified, cloned, and characterized 11 FL
diTPSs. Functional characterization of the three jack
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pine and lodgepole pine LAS enzymes (PbLASI,
PcLAS1, and PcLAS2), which produce the unstable
diterpene tertiary alcohol 13-hydroxy-8(14)-abietene, sug-
gested that water capture by a carbocation at the class I
active site is a conserved and common reaction mecha-
nism of LAS enzymes across several conifer species. This
mechanism was recently proposed when 13-hydroxy-
8(14)-abietene, which dehydrates to form abietadiene,
palustradiene, levopimaradiene, and neoabietadiene,
was first discovered as the primary product of the LAS
from Norway spruce and balsam fir (Keeling et al.,
2011b; Zerbe et al., 2012a).

Unexpectedly, absence of the class II active site motif
DxDD suggested that eight of the 11 candidate se-
quences were not typical bifunctional conifer diTPSs.
Functional characterization identified the orthologous
pair of PbmPIM1 and PcmPIM1 as single-product
pimaradiene synthases, while the orthologous pair
of PbmISO1 and PcmISO1 are isopimaradiene syn-
thases, which also produced small amounts of san-
daracopimaradiene. Monofunctional class I diTPSs of
specialized DRA metabolism have not been previously
reported. The discovery of the orthologous genes in
two closely related pine species makes it unlikely that
these monofunctional diTPSs represent cloning or se-
quencing artifacts. The only other known example of a
monofunctional class I diTPS of specialized metabo-
lism in a gymnosperm is taxadiene synthase (Wildung
and Croteau, 1996), which converts GGPP directly into
the macrocyclic taxadiene backbone without a bicyclic
diphosphate intermediate. The monofunctional pimar-
adiene synthases described here are, to the best of our
knowledge, the first reported gymnosperm enzymes that
produce predominantly pimaradiene and extend the
scope of known conifer diTPS functions involved in DRA
formation beyond the previously known ISO and LAS
enzymes (Fig. 8).

Considering the modularity of plant specialized (i.e.
secondary) metabolism, our discovery of monofunc-
tional class I diTPSs of DRA biosynthesis highlights
that in-depth mining and functional analysis of plant
transcriptomes can reveal new elements of biosyn-
thetic pathways, even when all essential enzymes of
the pathway were thought to be known. Matrix-type
pathway systems of specialized metabolism may allow
for more than one route to arrive at particular metab-
olites. The DRA biosynthesis of conifers is emerging as
a model for such a dynamic metabolic network that is
built from multiple diTPSs and cytochrome P450s of
variable functions and activities to produce a diverse
array of similar diterpene compounds (Keeling et al.,
2008, 2010; Hamberger et al., 2011).

A Role for the Lodgepole Pine and Jack Pine
Monofunctional diTPSs in DRA Biosynthesis

The diterpenoid profiles in the different tissues of
jack pine and lodgepole pine confirmed that the bi-
functional diTPSs, which produced the abietane-type
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diterpene olefins (abietadiene, neoabietadiene, palu-
stradiene, and levopimaradiene), and the mono-
functional diTPSs that formed pimarane-type olefins
(isopimaradiene, pimaradiene, and sandaracopimar-
adiene) supplied seven of the eight predominant
diterpene structures detected, with only the formation
of the dehydroabietane backbone not accounted for.
Biosynthesis of dehydroabietadiene has not yet been
resolved in any plant species. Our analysis found that,
in all tissues tested, abietane-type DRAs were more
abundant than pimarane-type DRAs. These profiles
are consistent with the metabolite profiles of Sitka
spruce stem tissue where DRAs accounted for 92% of
the total diterpenes, the majority of which were of the
abietane type (Hamberger et al., 2011) and with pre-
vious DRA analysis of stem sections from 1-year-old
lodgepole pine saplings where the abietane-type
DRAs, as well as isopimaric acid, were the most
abundant diterpenoids (Lewinsohn et al., 1993). We
conclude that the newly identified monofunctional
PIM (PbmPIM1 and PcmPIM1) and ISO enzymes
(PbmISO1 and PcmISO1) can account for the three
pimarane-type DRAs of lodgepole pine, which accu-
mulate in relatively low amounts in the tissues tested.
The low abundance of the pimarane-type DRAs may
be attributed to the low level of transcript abundance
of the monofunctional diTPSs and to their requirement
for a (+)-CPP substrate released by a separate, pre-
sumably bifunctional, diTPS.

Mapping of transcriptome sequence data to the
functionally characterized diTPSs allowed us to assess
the relative transcript abundance of these genes in
lodgepole pine and jack pine leader and interwhorl
stem tissue. PcLAS1, PcLAS2, and PbLAS1 were the
most highly abundant transcripts, consistent with the
high levels of abietane-type DRAs. In jack pine,
PbmISO1 and PbmPIM1 transcripts were detected at
5- and 122-fold lower levels than PbLAS1, consistent with
the lower levels of pimarane-type DRAs, as well as
with the greater abundance of isopimaric acid than
pimaric acid in the leader and interwhorl stem tissues.
In lodgepole pine, PcLAS1/2 transcripts were at 149-
and 36-fold higher levels than PcmISO1 and PcmPIM]1,
respectively. The lower expression of PcmPIMI1 is
consistent with the lower quantities of pimaric acid in
these tissues; however, isopimaric acid is more abun-
dant than pimaric acid in all tissue extracts of lodge-
pole pine, which suggests that other TPS may be
involved in the production of isopimaric acid. Bifunc-
tional ISO enzymes have been previously identified
from Norway spruce (Martin et al., 2004), Sitka spruce
(Keeling et al., 2011a), and balsam fir (Zerbe et al.,
2012a); thus, it is possible that an orthologous bifunc-
tional ISO exists in pine, which may account for the
discrepancy between the transcript abundance and
metabolite levels in these tissues. However, despite the
deep transcriptome sequences, no obvious ISO candi-
date was found in lodgepole pine or jack pine.

The monofunctional class I diTPSs identified in this
study were active with (+)-CPP, but not with ent-CPP
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Figure 8. Schematic of diterpene biosynthesis in gymnosperms, including conifers and Taxus spp. A portfolio of diTPS with
distinct modular architecture drives the formation of the wide array of naturally occurring diterpene metabolites in gymno-
sperms. As in angiosperm general and specialized diterpene metabolism, two monofunctional class Il and class | diTPSs
function in GA biosynthesis in conifer general metabolism. In contrast, bifunctional class I/Il diTPSs are responsible for the
formation of specialized abietane- and pimarane-related compounds of conifer oleoresin. Monofunctional diTPSs of gymno-
sperm specialized metabolism are the class | taxadiene synthases in species of yew and the newly discovered monofunctional
ISO and PIM enzymes of jack pine and lodgepole pine. The latter enzymes can utilize the (+)-CPP pool of bifunctional LAS and
ISO diTPS to form pimaradiene, sandaracopimaradiene, and isopimaradiene, which are present as the corresponding DRAs in
lodgepole and jack pine. LPP, Labda-13-en-8-ol diphosphate; CPS, CPP synthase; KS, kaurene synthase.
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or GGPP, as substrate. While ent-CPP is produced in
conifers by monofunctional class II diTPSs dedicated
to GA biosynthesis (Keeling et al., 2010), a mono-
functional class II diTPS that produces (+)-CPP has not
yet been described for a gymnosperm and has so far
only been reported from the angiosperm Salvia mil-
tiorrhiza (Gao et al., 2009). The transcriptome resources
available for pine and other conifers (e.g. Sitka spruce
and white spruce; Ralph et al.,, 2008; Rigault et al.,
2011) also did not reveal any significant candidates for
(+)-CPP-producing class II diTPSs. However, it has
been previously demonstrated that the (+)-CPP formed
by the bifunctional class I/II AgAS can freely diffuse
from the class II active site (Peters et al., 2001). In
agreement with these earlier findings, we showed that
the bifunctional class I/1I diTPSs PcLAS1 and PbLAS1
could supply (+)-CPP for the monofunctional class I
diTPSs in vitro, which confirms that (+)-CPP can dif-
fuse from the class II active site of the pine LAS pro-
teins. Assuming that bifunctional and monofunctional
diTPSs are present in the same cells and subcellular
compartments, presumably in the epithelial cells of
resin ducts (Abbott et al., 2010; Zulak et al., 2010), the
more abundant bifunctional LAS may be a source of
(+)-CPP for monofunctional diTPSs to yield the low
quantities of pimarane-type DRAs as detected in the
lodgepole pine and jack pine metabolite profiles (Fig. 8).

Monofunctional diTPSs of DRA Biosynthesis Originated
from Bifunctional diTPSs

The bifunctional ent-kaurene/kaurenol synthases
of the nonvascular plants P. patens and ]. subulata
are thought to represent ancestral plant diTPSs
(Hayashi et al., 2006; Kawaide et al., 2011). Lineage-
specific gene duplications followed by sub- and neo-
functionalization of such archetypical class I/II diTPSs
are likely events along the path that led to the families
of diTPSs of general and specialized metabolism found
in species of conifers (gymnosperms) and angiosperms
(Chen et al.,, 2011). A phylogeny of the jack pine and
lodgepole pine diTPSs with previously characterized
conifer TPS of the TPS-c, TPS-e/f, and TPS-d subfam-
ilies (Martin et al., 2004; Chen et al., 2011) illustrates
these events leading to a variety of functionally diverse
diTPS of specialized metabolism (Fig. 7). The topology
of the phylogenetic tree suggests that the monofunc-
tional class I diTPSs of specialized metabolism in
lodgepole pine and jack pine have evolved relatively
recently through gene duplication of a bifunctional
diTPS followed by loss of the class II activity and ad-
ditional functional diversification. While the bifunc-
tional LAS enzymes of lodgepole pine and jack pine
have orthologs in other conifers within and outside of
the pine genus, e.g. in loblolly pine, spruce, and true
firs, monofunctional class I diTPSs of specialized me-
tabolism have not been found in other conifers. It is
possible that they represent a lineage-specific clade
of the TPS-d3 group that originated in a common
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ancestor of the closely related species of lodgepole pine
and jack pine, perhaps after the separation from lob-
lolly pine and after the separation of the pine, spruce,
and fir genera.

Alternatively, a direct origin of monofunctional class
I diTPSs of specialized metabolism from monofunc-
tional class I EKS could be considered, since muta-
genesis studies with angiosperm and conifer enzymes
demonstrated that functional evolution of EKS to a
pimarane-type diTPS requires exchange of only one
amino acid in the class I active site (Xu et al., 2007b;
Zerbe et al., 2012b). However, the evolutionary dis-
tance of the pine monofunctional diTPSs to members
of the GA biosynthetic TPS-c and TPS-e families
inferred by the phylogenetic tree (Fig. 7) along with the
low sequence similarity between both enzyme groups
do not support this hypothesis.

Overall, the phylogeny indicates that events of mono-
functionalization (i.e. a form of subfunctionalization from
a duplicated bifunctional ancestor) have occurred multi-
ple times independently in the evolution of gymnosperm
diTPSs, leading to class II and class I enzymes of general
GA metabolism, the Taxus spp. taxadiene synthases, and
the newly described monofunctional pine diTPS (Fig. 8).
Beyond the diTPSs, monofunctionalization ultimately
also led to the large family of bidomain conifer mono-
and sesqui-TPSs of the TPS-d1 and TPS-d2 groups.

Unique features in the active-site composition of the
monofunctional diTPSs of lodgepole pine and jack
pine underpin the proposed relatively recent origin
from a class I/II diTPS ancestor. Homology modeling
of all eight PcmPIM1 and PbmPIM1, mISO1, and
mdiTPS based on the crystal structure of Taxus brevi-
folia taxadiene synthase (Koksal et al., 2011a; Protein
Data Bank IDs 3P5P and 3P5R) illustrated that the
monofunctional pine diTPSs exhibited the conserved
yBa-domain folding pattern (Supplemental Fig. S7).
Within the functional a-domain (downstream of the
conserved RRWW segment; Supplemental Fig. S1) of
PcmPIM1 and PbmPIM1 and PemdiTPS and PbmdiTPS,
27 and 28 residues, respectively, were found to be unique
compared with characterized bifunctional LAS and ISO
enzymes and the monofunctional PcmISO1 and PbmISO1
enzymes. Among these, Ala-718 and Ser-721 of PcPIM1
and PbmPIM1 are located adjacent to the hinge seg-
ment between helix G1 and G2, the composition of
which is critical for the product specificity of LAS
and ISO (Peters et al., 2003; Wildermann and Peters,
2007; Keeling et al., 2008) and may have contributed
to the neofunctionalization toward PIM functionality
(Supplemental Fig. S7). Notably, key residues in the
class I active site that determine the product speci-
ficity of ISO- and LAS-type diTPSs (Keeling et al.,
2008) are not conserved in the monofunctional ISO
from pine, whereas these amino acids are strictly
conserved in the pine bifunctional LAS enzymes,
consistent with the product profiles of these enzymes.
Similar differences in these catalytic residues have
also been shown for the balsam fir ISO (Zerbe et al.,
2012a) and suggest that formation of the tertiary
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abietenyl” carbocation en route to abietane-type di-
terpenes, rather than the direct deprotonation to
isopimaradiene depends on the strict conservation in
these positions. In the four PemdiTPSs and PbmdiTPSs,
for which no obvious function was found, it was no-
ticeable that the side chains of Phe-592, located up-
stream of the DDxxD motif, and likewise Phe-814 and
His-817 on helix ] protrude into the active site cavity
and may cause a steric hindrance, possibly impeding
catalytic activity (Supplemental Fig. S7). It can be
speculated that these enzymes may have evolved from
functional diTPSs into a trough of no function, from
where they may evolve toward new diTPS activities or
simply represent dead-end mutations of functional
diTPSs.

MATERIALS AND METHODS
Plant Materials

One-year-old jack pine (Pinus banksiana clone ID PSB 410 1 + 0) and
lodgepole pine (Pinus contorta clone ID PLI 144) saplings were obtained from
the University of Alberta and from the British Columbia Ministry of Forests,
Lands, and Natural Resource Operations, respectively. These trees were
maintained for 2 or 3 years outdoors at the University of British Columbia as
described previously for other conifers used in our research (Hall et al., 2011).
For RNA extractions, four 2-year-old saplings of each species were moved into
the greenhouse and were maintained at 24°C and 16 h light per day for 2
weeks prior to induction of defense gene expression. For induction, the stem of
each tree was wounded with a razor blade and the aerial portion of the tree
was sprayed with 50 mL of 0.1% methyl jasmonate. One-quarter of the stem
(combined bark and xylem) of each tree was harvested 2, 6, 24, and 48 h
following treatment, and the four time points from each individual were
pooled prior to RNA extraction. For metabolite profiling, five 3-year-old
saplings of each species were moved into the greenhouse for 2 weeks prior
to harvest. Six tissue types were harvested from each tree and were flash
frozen and stored at —80°C until processing with the exception that combined
bark and xylem tissue was cut into 1-cm sections prior to freezing.

Transcriptome Mining, RNA and cDNA Work, and RACE

Details of the transcriptome resources developed by Sanger, 454, and
Ilumina sequencing will be described elsewhere. In brief, total RNA was
extracted from the bark tissue of a single jack pine and a single lodgepole pine
individual and was subjected to cDNA library construction and Sanger se-
quencing. Also, total RNA was extracted from the combined bark and xylem
tissues of a second lodgepole pine individual and a second jack pine indi-
vidual and was submitted to the McGill University and Génome Québec In-
novation Centre for cDNA library construction, Roche-GS-FLX Titanium 454
sequencing, and Illumina sequencing. Raw sequences obtained from each
platform were trimmed and filtered prior to the production of four unique
assemblies containing (1) Sanger sequences only (assembled with CAP3), (2)
454 sequences only (assembled with Newbler), (3) 454 and Sanger sequences
combined (assembled with Newbler), and (4) Illumina sequences only (as-
sembled with Trinity).

A TBLASTN search with 102 previously characterized conifer TPSs (Keeling
and Bohlmann, 2006a; Keeling et al., 2011a) as query sequences was used to
identify diTPS-like sequences in the lodgepole pine and jack pine tran-
scriptomic resources. Individual candidate sequences identified in the auto-
mated TBLASTN search of the transcriptome assembly were reassembled
using Phrap (De la Bastide and McCombie, 2007) and manually validated to
obtain a finalized set of diTPS candidates. This sequence information was used
to design target-specific primers (Supplemental Table S3) for 5 RACE or for
cloning of FL cDNA. For the cloning of FL diTPS, RNA was extracted from a
single jack pine sapling and a single lodgepole pine sapling and converted to
cDNA for RACE or FL cDNA cloning as described previously (Hall et al.,
2011). Amounts of 50 ng of jack pine RNA and 90 ng of lodgepole pine RNA
were converted to cDNA using the Superscript III first-strand synthesis system
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(Invitrogen), and the cDNA was used as a template with gene specific primers
(Supplemental Table S3) to amplify FL. cDNA clones. For RACE, 1 ug of total
RNA was processed using the SMARTer RACE cDNA amplification kit
(Clontech), and this cDNA was used as a template with gene specific primers
(Supplemental Table S3) and the universal primer mix as per the manufac-
turer’s protocol. Modifications of FL. cDNAs were made with truncations
upstream of the KRx8W motif to produce pseudomature proteins for protein
expression without plastid transit peptides (Martin et al., 2004).

Protein Expression and diTPS Enzyme Assays

N-terminally truncated cDNAs of each candidate diTPS were cloned into
pET28b(+) in frame with an N-terminal 6xHis tag using the In-Fusion PCR
cloning system (Clontech) with primers listed in Supplemental Table S3. Re-
combinant proteins were expressed in Escherichia coli, Ni affinity purified, and
characterized using single vial assays as described previously (O’Maille et al.,
2004; Keeling et al., 2008; Hall et al., 2011). Each enzyme (35 uL) was initially
assayed separately with 20 um GPP (Echelon), 70 um E,E-FPP (Echelon), and
40 um GGPP (Sigma-Aldrich) in the appropriate buffers (Keeling et al., 2011b),
and the products were analyzed by GC-MS. diTPS candidates, which did not
yield products with GPP, FPP, or GGPP, were then targeted for coupled
assays with either (1) the maize (Zea mays) ent-CPP synthase, which produces
ent-CPP (ZmAN2; Harris et al., 2005), or (2) a protein variant of Picea abies LAS
(PaLAS:D611A; Zerbe et al., 2012a) in which the class I active site has been
inactivated, resulting in the production of (+)-CPP. Coupled assays were
performed as described previously (Keeling et al., 2010; Zerbe et al., 2012b)
except that each assay contained 40 um GGPP and equal amounts (50 ug) of
each recombinant protein. Assays containing ZmAN2 and PaLAS:D611A were
preincubated for 2 h at 30°C to allow the accumulation of CPP, at which time
50 ug of the candidate diTPS protein was added, overlaid with pentane
containing 1.6 uMm eicosene (Sigma-Aldrich) as an internal standard, and in-
cubated for a further 1 h at 30°C. Production of CPP was confirmed by in-
cubation of ZmAN2 or PaLAS:D611A with GGPP for 2 h at 30°C, at which
point 10 units of calf alkaline phosphatase (Invitrogen) was added to the
aqueous layer and incubated overnight at 37°C. Coupled assays in which
PcLASI or PbLAS]1 were used to supply (+)-CPP were immediately overlaid
with pentane containing eicosene and incubated for 1 h total at 30°C. All pro-
teins were characterized based on at least three independent duplicate assays.

Diterpene Extraction

Samples from six tissue types, (1) apical buds, (2) combined bark and xylem
from the leader, (3) young needles from the leader, (4) combined bark and
xylem from the first interwhorl, (5) needles from the first interwhorl, and (6)
roots of jack pine and lodgepole pine saplings, were extracted in 1.5 mL of tert-
butyl methyl ether (Sigma-Aldrich) containing 417 um 12,14-dichlorodehy-
droabietic acid (Orchid Cellmark) as described previously (Robert et al., 2010).
A volume of 200 uL of ether extract was transferred to a fresh vial and
derivatized with 2.0 um trimethylsilyldiazomethane in diethyl ether (Sigma-
Aldrich) as described previously (Robert et al., 2010). Extractions were re-
peated with five biological replicates and three technical replicates per tissue

type.

GC-MS and LC-MS Analysis of diTPS Assay Products and
Metabolite Extractions

All GC-MS was completed on an Agilent 6890A Series GC system with an
Agilent 7683 autosampler, coupled to an Agilent 5975 Inert XL mass spec-
trometric detector at 70 eV (Agilent Technologies). For enzyme assays, 0.2 to
1 uL of the pentane overlay was injected and compounds were separated on a
DB-WAX capillary column (diameter = 250 um, length = 30 m, and film
thickness = 0.25 um) with a helium flow of 1 mL/min and an initial tem-
perature of 40°C for 5 min, increasing by 10°C per min to a final temperature
of 240°C for 10 min. Two microliters of the dephosphorylated reaction prod-
ucts were separated on an SGE SolGel Wax column (diameter = 250 um,
length = 30 m, and film thickness = 0.25 um) with an initial helium gas flow of
1.2 mL/min and an initial temperature of 40°C held for 2 min, increasing by
25°C per min to a final hold temperature of 250°C for 5 min. Diterpene content
in extracts from jack pine and lodgepole pine tissues were separated on an AT-
1000 column (diameter = 250 um, length = 30 m, and film thickness = 0.25 um)
with a helium flow of 1 mL/min and an initial temperature of 150°C
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increasing by 1.5°C per min to 220°C, then by 20°C per min to a final hold of
240°C for 20 min. LC-MS was completed using methods described previously
(Keeling et al., 2011b). Response factors were used for quantification and were
calculated based on comparison with a known concentration of 12,14-
dichlorodehydroabietic acid (metabolite extractions) or eicosene (recombinant
enzyme assays).

Mapping of Illumina and 454 Sequences to Candidate
diTPS Genes

Adapter-trimmed Illumina reads were mapped back to the FL diTPS se-
quences using BWA version 0.5.9-r16. Reads were allowed one mismatch at
the alignment step and mapped as paired with maximum insert size of 350 bp.
Single-end 454 Titanium sequences were mapped using BWA-SW with a
stringent mismatch penalty score of 9.

Phylogenetic Analysis

Protein sequence alignments were generated using Dialign 2.2.1 (Morgenstern,
2004) and further manual inspection. Phylogenetic analyses were performed on
the basis of a maximum likelihood-based approach using the PhyML-aBayes
version 3.0.1 beta (Anisimova et al., 2011) with four rate substitution categories,
LG substitution model, BION] starting tree, and 100 bootstrap repetitions. Phy-
logenetic trees were visualized using the Interactive Tree of Life v2 (iTOL) Web
server (Letunic and Bork, 2011).

Computational Structure Analysis

Homology models of PemPIM1, PbmPIM1, PemISO1, PemISO1, PbmdiTPS1,
PcmdiTPS1, PemdiTPS2, and PemdiTPS3 were built on the crystal structure of
taxadiene synthase from Taxus brevifolia (Protein Data Bank IDs 3P5R and 3P5P)
using the same approach as reported previously (Keeling et al., 2011a). All
models were of high quality with more than 91% of residues assigned to most
favored regions in Ramachandran plot statistics, and pairwise structural com-
parisons showed a high similarity with the taxadiene synthase structure with
root mean square deviations of less than 1 A.

Sequence data from this article can be found in the NCBI GenBank database
under accession numbers SRP009894 for the transcriptome resources of lodge-
pole pine and jack pine and under the accession numbers JQ240310 to JQ240320
for the FL cDNAs PcLAS] (JQ240310), PcLAS2 (JQ240311), PbLAS1 (JQ240312),
PbmISO1 (JQ240313), PcmISO1 (JQ240314), PcmPIM1 (JQ240315), PbmPIM1
(JQ240316), PbmdiTPS1 (JQ240317), PemdiTPS1 (JQ240318), PemdiTPS2 (JQ240319),
and PemdiTPS3 (JQ240320).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Complete amino acid alignment of the FL diTPS
from jack pine and lodgepole pine with select previously characterized
conifer diTPS.

Supplemental Figure S2. Diterpene product profiles of PcmPIM1.
Supplemental Figure S3. Diterpene product profiles of PcmISO1.

Supplemental Figure S4. Diterpene product profiles of coupled assays
with monofunctional PcmISO1 or PemPIM1 and bifunctional PcLASI.

Supplemental Figure S5. Representative GC-MS traces of the diterpene
olefin, alcohol, aldehyde, and resin acid content of extracts from six
tissue types of jack pine.

Supplemental Figure S6. Representative GC-MS traces of the diterpene
olefin, alcohol, aldehyde, and resin acid content of extracts from six
tissue types of lodgepole pine.

Supplemental Figure S7. Homology modeling of pine monofunctional
diterpene synthases.

Supplemental Table S1. Amino acid sequence identity matrix of Pinus
banksiana (Pb) and Pinus contorta (Pc) diterpene synthase candidate genes
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with previously characterized diTPS from Pinus taeda (PtLAS), Picea abies
(PaLAS and PalSO), and Picea glauca ECPS and EKS.

Supplemental Table S2. Relative amount of individual diterpenes pro-
duced by the recombinant diTPS characterized in this study.

Supplemental Table S3. Gene-specific primers used for 5 RACE or to
amplify FL genes from lodgepole pine and jack pine cDNA.

Note Added in Proof

In addition to the previous report of a monofunctional (+)-CPP synthase
from Salvia miltiorhizza (Gao et al., 2009), while our paper was under review,
Wu et al. (Wu Y, Zhou K, Toyomasu T, Sugawara C, Oku M, Abe S, Usui
M, Chandler PM, Peters RJ [2012] Functional characterization of wheat
copalyl diphosphate synthases sheds light on the early evolution of labdane-
related diterpenoid metabolism in the cereals. Phytochemistry 84: 40-46)
published an article on wheat (Triticum aestivum) diTPS showing a (+)-CPP
synthase functionality.
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AgTPS-AS EVASAIQCYM KDHPKISEEE ALQHVYSVME NALEELNREF VNNK---IPD |IYKRLVFETA RIMQLFYMQG DGLTLSHDME 854
PgTPS-CPS == ===~ C-- -DSPSGTEED --DRLKRRAE EGMGHLVRAV YRHQYSPVPS GVKRLCLVVG KS---FYYA- ---AHCNNEE 747
PgTPS-eKS KL-NSVTLYM EENSGTTMED AIVYLRKTID ESRQLLLKEY L--RPSIVPR ECKQLHWNMM RILQLFYLKN DGFT--SPTE 743

PbTPS-mdiTPS1 | KERVKKVLF EPVA® 853
PcTPS-mdiTPS1 I KERVKKVLF EPVA* 853
PcTPS-mdiTPS2 I KERVKKVLF EPVA® 853
PcTPS-mdiTPS3 | KKRVQKVLF EPVA* 853
FoTPS-mPIM1 I KEHVKKILF EPVA® 869
PcTPS-mPIM1 | KQHVKKILF EPVA* 889
PbTPS-mISO1 IKQHVKKILF EPVP* B77
PcTPS-mISO1 I KQHVKKILF EPVP*® 877
PcTPS-LASZ IKEHVKNCLF QPVA® 851
PcTPS-LAST IKEHVKNCLF QPVA* 858
PbTPS-LAS1T IKEHVKNCLF QPVA* 858
PITPS-LAS IKEHVKNCLF QPVA - 850
PaTPS-1SO I KEHVKNCLF QPVA*® B68
PaTPS-LAS IKEHVKNCLF QPVA*® 860
AgTPS-AS |IKEHVKNCLF QPVA* B69
PgTPS-CPS VGNHVETVLF QPVY* 762
PgTPS-eKS MLGYVNAVIV DPIL* 758

Figure S1. Complete amino acid alignment of the FL diTPS from jack pine and lodgepole pine with select
previously characterized conifer diTPS. Amino acid residues that differ in more than 50% of the proteins are
coloured in grey. Select conserved motifs are highlighted. Abbreviations: PbmdiTPS1, Pinus banksiana
monofunctional diTPS1; PcmdiTPS1, Pinus contorta monofunctional diTPS1; PcmdiTPS2, P. contorta
monofunctional diTPS2; PcmdiTPS3, P. contorta monofunctional diTPS3; PbmPIM1, P. banksiana monofunctional
pimaradiene synthase 1; PcmPIM1, P. contorta monofunctional pimaradiene synthase 1; PbmISO1, P. banksiana
monofunctional isopimaradiene synthase 1; PcmlISO1, P. contorta monofunctional isopimaradiene synthase 1;
PcLAS2, P. contorta levopimaradiene/abietadiene synthase 2; PcLAS1, P. contorta levopimaradiene/abietadiene
synthase 1; PbLAS2, P. banksiana levopimaradiene/abietadiene synthase 1; PtLAS, P. taeda
levopimaradiene/abietadiene synthase; PalSO, Picea abies isopimaradiene synthase; PalLAS, P. abies
levopimaradiene/abietadiene synthase; AgAS, Abies grandis levopimaradiene/abietadiene synthase; PgCPS, Picea
glauca copalyl diphosphate synthase; PgeKS, P. glauca ent-kaurene synthase.
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Figure S2. Diterpene product profiles of PcmPIM1. GC-MS analysis of reaction products of [A] PaLAS:D611A,
[B] PaLAS:D611A combined with PcmPIM1, in comparison to a [C] pimaradiene standard. [D-E] mass spectra of
reaction products marked with an asterisk in [B] and [C]. E internal standard 1-eicosene.
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Figure S3. Diterpene product profiles of PcmISO1. GC-MS analysis of reaction products of [A] PaLAS:D611A
and [B] PaLAS:D611A combined with PcmISO1 as compared to retention times of authentic [C] isopimaradiene and
[D] sandaracopimaradiene standards. [E-F] mass spectra of reaction products marked with an asterisk in [B] and [C]. E
internal standard 1-eicosene.



Figure S4

Figure S4. Diterpene product profiles of coupled assays with monofunctional PcmISO1 or PcmPIM1 and
bifunctional PcLAS1. GC-MS analysis of reaction products from coupled enzyme assays of monofunctional
PcmPIM1 and PcmISO1 with bifunctional PCLAS1, indicating the conversion of (+)-CPP, released from the LAS
class Il active site, to the different pimaradienes through the class | activity of PcmPIM1 and PcmISO1. Product
profiles, with GGPP as substrate, of [A] PCLASL, [B] PcLAS1 combined with PcmISO1 and [C] PcLAS1 combined
with PcmPIML1. [D] Authentic standards: 1 pimaradiene, 2 sandaracopimaradiene, 3 isopimaradiene, 4 palustradiene, 5
levopimaradiene, 6 abietadiene, 7 dehydroabietadiene, 8 neoabietadiene, E internal standard 1-eicosene.
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Figure S5
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Figure S5. Representative GC-MS traces of the diterpene olefin, alcohol, aldehyde and resin acid content of oleoresin
extracts from six tissue types of jack pine. 1 pimaradiene, 2 sandaracopimaradiene, 3 isopimaradiene, 4 palustradiene, 5
levopimaradiene, 6 abietadiene, 7 dehydroabietadiene, 8 neoabietadiene, 9 pimaradienal, 10 pimaric acid, 11
sandaracopimaradienal, 12 sandaracopimaric acid, 13 palustradienal, 14 isopimaradienal, 15 levopimaric acid, 16 palustric
acid, 17 isopimaric acid, 18 abietadienal, 19 dehydroabietanal, 20 abietic acid, 21 dehydroabietic acid, 22 neoabietadienal, 23
pimaradienol, 24 neoabietic acid, 25 sandaracopimaradienol, 26 palustradienol, 27 isopimaradienol, 28 abietadienol, 29
dehydroabietadienol, 30 neoabietadienol; * compound with m/z consistent with eicosanoic acid methyl ester, ** compound
with m/z consistent with thunbergol, *** compound with m/z consistent with 3,5-dimethoxy stilbene
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Figure S6. Representative GC-MS traces of the diterpene olefin, alcohol, aldehyde and resin acid content of oleoresin
extracts from six tissue types of lodgepole pine. 1 pimaradiene, 2 sandaracopimaradiene, 3 isopimaradiene, 4 palustradiene,

5 levopimaradiene, 6 abietadiene, 7 dehydroabietadiene, 8 neoabietadiene, 9 pimaradienal,

10 pimaric acid, 11

sandaracopimaradienal, 12 sandaracopimaric acid, 13 palustradienal, 14 isopimaradienal, 15 levopimaric acid, 16 palustric
acid, 17 isopimaric acid, 18 abietadienal, 19 dehydroabietanal, 20 abietic acid, 21 dehydroabietic acid, 22 neoabietadienal, 23
pimaradienol, 24 neoabietic acid, 25 sandaracopimaradienol, 26 palustradienol, 27 isopimaradienol, 28 abietadienol, 29
dehydroabietadienol, 30 neoabietadienol; * compound with m/z consistent with eicosanoic acid methyl ester, ** compound
with m/z consistent with thunbergol, *** compound with m/z consistent with 3,5-dimethoxy stilbene



Figure S7

Figure S7. Homology modeling of pine monofunctional diterpene synthases. The structural models of PbmPIM1,
PbmISO1 and PbmdiTPS1 with the template Taxus brevifolia taxadiene synthase (Koksal et al., 2010; PDB-ID 3P5R,
chain A) are shown as representatives for all of the modeled monofunctional diTPS from lodgepole pine and jack pine.
[A] Superimposed homology models of PbmPIM1 (blue), PbomISO1 (yellow) and PbmdiTPS1 (green), possess the
characteristic a-helical tri-domain structure. Each model is comprised of the N-terminal By-domain, which harbors the
class | active site and C-terminal o-domain that contains the class | active site. [B] Class | active site cavity of
PbmPIM1 (blue) and PcmPIM1 (grey), illustrating Ala718 and Ser721 as putative catalytic residues that impact
product specificity. [C] Class | active site cavity of PbomdiTPS1 (green) and PcmdiTPS1 (grey), highlighting Phe592,
Phe814 and His817 as possible residues that contribute to the enzyme’s loss of function. The class | signature motifs
DDxxD and NSE/DTE are depicted in red.



Table S1. Amino acid sequence identity matrix of Pinus banksiana (Pb) and Pinus contorta (Pc) diterpene synthase candidate genes with previously
characterized diTPS from Pinus taeda (PtLAS), Picea abies (PaLAS, PalSO), and Picea glauca ECPS and EKS. Abbreviations: LAS,
levopimaradiene/abictadiene synthase; ISO, isopimaradiene synthase; PIM, pimaradiene synthase; ECPS, ent-copalyl diphosphate synthase; EKS, ent-kaurene
synthase.

- -
: : : : P t § E § § § 2+ & & & %
E £ £ £ S S 8 & < [ a a
Q Q Q Q
PbmdiTPS1 100 98 98 98 71 71 74 74 67 66 67 67 69 68 33 35
PcmdiTPS1 100 97 97 71 72 75 74 67 66 67 67 69 68 33 35
PcmdiTPS2 100 98 72 72 75 74 67 67 67 67 70 60 33 35
PcmdiTPS3 100 71 71 74 74 67 67 67 67 70 68 33 35
PbmPIM1 100 99 80 79 66 66 66 66 70 69 32 34
PcmPIM1 100 80 80 66 66 66 66 69 69 32 34
PbmISO1 100 99 71 71 71 71 73 73 33 34
PcmlISO1 100 71 70 70 70 73 73 33 34
PcLAS2 100 99 99 99 86 89 33 35
PcLAS1 100 99 98 85 89 33 34
PbLAS1 100 99 86 89 34 34
PtLAS 100 86 89 34 34
PalSO 100 91 34 34
PalLAS 100 34 34
PgECPS 100 34

PgEKS 100




Table S2. Relative amount of individual diterpenes produced by the recombinant diTPS characterized in this study. Major
reaction products are highlighted in bold. Products representing greater than 1% of the total are reported. Values are given as the

average of at least 5 replicates.

(]
c (]
2 o @ S o
2 ® g 2 8 @ = 5
(] @ ;E — O ) ) ke
. . S £ © T e 5 2 8
Protein #1 Protein #2 e a o S ol @ Q ]
© 8 £ 9 £ o 3 s
£ ® ‘s 2 a s = ]
s & 9 g S © = 2
o 2 [} < c
c -— ()]
© ©
(7]
Pinus banksiana
PaD611A PbmISO1 12.2+0.027 87.8+0.027
PaD611A PbmPIM1 95.1+1.1 1.66 £ 0.023 1.73+£0.62
PbLAS1 * 2.12+0.0077 6.58+0.049 81.1+0.084 8.75+0.037
PbLAS1 PbmISO1 1.26 + 0.087 7.98 £0.73 2.08 £0.022 5.87 £0.053 74.1£0.83 7.71+£0.037
PbLAS1 PbmPIM1 1.64 + 0.0088 2.09 £ 0.040 6.47 £0.39 79.9£0.74 8.53+0.32
Pinus contorta
PaD611A PcmiISO1 10.5+0.37 89.5+0.37
PaD611A PcmPIM1 99.2+0.15
PcLAS2 2.16 £ 0.066 9.73 +0.69 72.2+2.2 3.37+2.0 12.2 £ 0.66
PcLAS1* 2.06 £ 0.025 5.78 £+ 0.33 82.5+0.64 7.95+0.32
PcLAS1 PcmiSO1 1.55+0.50 10.5+4.2 1.92 £ 0.064 5.08 +0.12 72.8+4.4 7.01+£0.24
PcLAS1 PcmPIM1 3.69+14 1.97 +0.034 5.35+0.038 80.0+1.4 7.5 +0.096

* LC/MS analysis of reaction products revealed two epimers of 13-hydroxy-8(14)-abietene as major products, consistent with the previously

reported activity of Picea abies LAS (Keeling et al., 2011).



Table S3. Gene specific primers used for [A] S’RACE or [B] to amplify full-length genes from lodgepole pine and jack pine
¢DNA. For In Fusion cloning into pET28b(+), the start codon ATG was removed, the sequence (5° AAATGGGTCGGGATCCG 3’)
was added to the 5° end of all forward primers and the sequence (5’CCGCAAGCTTGTCGAC 3’) was added at the 5’ end of all reverse
primers. For truncated constructs, the putative signal peptide was removed prior to the KxgW motif as per Williams et al., 1998.

[A] Primers used in 5’RACE

5’RACE primers (5°-3’)
ACGAGACGCCCTGTCAAGCCCATGA
CCTCCAGCCTTGGCATACTTCTATGCC
CGAGAGTTGGCAGTGCTGATGATATGGC
GGTCGTCTAAAATGACCAGACAGAC

Species Gene
Jack pine PbLAS1
(Pinus banksiana)

PbmPIM1
PbmdiTPS1

[B] Primers used to amplify full-length and truncated candidate diterpene synthases from jack and lodgepole pine

Species Gene Forward primer (5’-3’) Reverse primer (5’-3’)
Full length Lodgepole pine  PcLAS1/2 ATGGCCTTGCCTTCCTCTTCATTGTC CTAAGCAACCGGCTGGAAG
(Pinus contorta) PcmPIM1 ATGGCCATGCCTTTGTGTTCATTGACATCC CTACGCAACTGGTTCGAACAGGATCTTTTITG
PcmliSO1 ATGGCCATGCCTTCGTACTCTTCTTTG CTAAGGGACTGGTTCGAATAGGAT
PcmdiTPS1/2/3 ATGGCCATGCCCTCCTCTTTAC CTAGGCAACCGGTTCGAAG
Jack pine (Pinus PbLAS1 ATGGCCTTGCCTTCCTCTTCATTGTC CTAAGCAACCGGCTGGAAG
banksiana) PbmPIM1 ATGGCCATGCCTTTGTGTTCATTGACATCC CTACGCAACTGGTTCGAACAGGATCTTTTTG
PbmiSO1 ATGGCCATGCCTTCGTACTCTTCTTTG CTAAGGGACTGGTTCGAATAGGAT
PbmdiTPS1 ATGGCCATGCCCTCCTCTTTAC CTAGGCAACCGGTTCGAAG
Truncated Lodgepole pine PcLAS1/2 AAACGAGAATTTCCTCCAGG CTAAGCAACCGGCTGGAAG
(Pinus contorta) PcmPIM1 AAACGAGAAGAAATCCCCC CTACGCAACTGGTTCGAACAGGATCTTTTITG
PcmliSO1 AAACGAGACTTCCCTCCA CTAAGGGACTGGTTCGAA
PcmdiTPS1/2/3 AAACGAGAATTCCCTGAGG CTAGGCAACCGGTTCGAAG
Jack pine (Pinus PbLAS1 AAACGAGAATTTCCTCCAGG CTAAGCAACCGGCTGGAAG
banksiana) PbmPIM1 AAACGAGAAGAAATCCCCC CTACGCAACTGGTTCGAACAGGATCTTTTTG
PbmISO1 AAACGAGACTTCCCTCCA CTAAGGGACTGGTTCGAA
PbmdiTPS1 AAACGAGAATTCCCTGAGG CTAGGCAACCGGTTCGAAG



