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Abstract

For years, panoramic image stitching has been an interesting problem for re-

searchers. Several advances have been made in stitching images that are ac-

quired outside of water, but the problem has been poorly explored for under-

water images. Image stitching for underwater images can be used in numerous

scientific applications in the fields of marine geology, archaeology, and biology

that involve tasks such as the prospection of ancient shipwrecks, the detection

of temporal changes, and environmental damage assessment. It can also be

used to create virtual reality tours of zones of special interest such as under-

water nature reserves.

Underwater images suffer from poor visibility conditions because of medium

scattering, light distortion, and inhomogeneous illumination. This causes

many image stitching techniques to fail when they are applied to underwa-

ter images. In this work, we develop a novel method for stitching underwater

images. We adopt dehazing to not only improve the aesthetic quality of the

images but also to enable feature detectors to accurately detect and match

feature points. We also adopt guided image filtering to improve the speed

of the dehazing algorithm. A novel idea proposed in this method is to use

colour transfer to transform images into the same colour space in order to re-

duce lighting inhomogeneities and exposure artifacts. We further process our

stitched results by applying a graph-cut strategy that operates in the image

gradient domain over the overlapping regions to improve blurring and ghosting

effects caused by local misalignments. Finally, we apply a transition smooth-

ing method to produce more plausible results and to reduce the noticeability

of the joining regions to an even higher degree.
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Chapter 1

Introduction

1.1 Motivation

“The panorama is an unbroken view of the whole region surrounding an ob-

server” [13]. It is an alternative way of visually presenting information of a

scene. Panoramic images assist users in viewing and navigating real world

landscapes. Image stitching can be used to create panoramic mosaics which

are often viewed interactively for applications such as virtual tourism, or to

provide backdrops in films and video games for images acquired outside of wa-

ter. As for underwater images, image stitching can be used to create undersea

panoramic views which can be used to create virtual reality tours of zones of

special interest, like shipwrecks or underwater nature reserves. In addition to

that, it can also come in handy for researchers in marine geology and biology

to study underwater habitat.

Underwater images suffer from poor visibility because of the medium scat-

tering and light distortion. Most traditional computer vision methods cannot

be applied directly in underwater images due to the challenging environmental

conditions and the different light attenuation [55].

Attenuation caused by light that is reflected from a surface and is deflected

and scattered by particles as well as substantial reduction of the light energy

because of absorption by the medium make analyzing underwater images diffi-
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cult. The random attenuation of the light scattered back from the water along

the viewing direction considerably degrades the scene contrast. This causes

underwater images to appear hazy.

Moreover, there is rarely any significant light beyond 200 meters (656 feet)

under the ocean [32]. The ocean is divided into three zones based on depth and

light level. The upper 200 meters (656 feet) of the ocean is called the euphotic,

or “sunlight” zone. This zone contains the vast majority of commercial fisheries

and is home to many protected marine mammals and sea turtles. Only a small

amount of light penetrates beyond this depth. Below 200 meters, artificial

illumination required to capture undersea images causes the illumination to

be spatially inhomogeneous. Hence, these images are difficult to process.

Due to the aforementioned reasons stitching underwater images can be a

more challenging task compared to the that of land images. Indeed, many

existing image stitching techniques fail when they are applied to underwater

images. On the other hand, the problem of underwater image stitching is

poorly explored by researchers and is the motivation of this research.

1.2 Contributions

The main contributions of this thesis are listed below:

• Develop a novel method for stitching underwater images which suffer

from poor visibility conditions as well as inhomogeneous illumination

and feature misalignment.

• Adopt dehazing to not only improve the aesthetic quality of the final

result but also to enable feature detectors to accurately detect and match

feature points for underwater images, which is what they are normally

incapable of.
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• Apply colour normalization to reduce lighting inhomogeneities and ex-

posure artifacts.

• Apply a graph-cut method to improve image blurring and ghosting caused

by local misalignments.

• Adopt guided image filtering to improve the speed of the dehazing algo-

rithm.

1.3 Outline of Thesis

The remainder of the thesis is organized as follows. Chapter 2 provides back-

ground and reviews the literature on image stitching and dehazing. In chapter

3 we describe the design of an image stitcher that is capable of stitching un-

derwater images. Chapter 4 includes experiments and the evaluation of our

method. In chapter 5 we present conclusions and ideas for future work.
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Chapter 2

Background and Related Work

2.1 Image Stitching

Image stitching or image mosaicing is the process of combining multiple pho-

tographic images with overlapping fields of view to produce a panorama or

high-resolution image. Exact overlaps between images and identical exposures

in order to produce seamless results are required by most common approaches

to image stitching [59].

2.1.1 Components of Image Stitching

The stitching algorithm consists of two main components: image registration,

and blending. Image pairs are compared to find the translations that can be

used for the alignments of images during image registration. After image regis-

tration, images are blended to form a single image [1]. These main components

are briefly discussed below.

Registration

Image registration is the process of aligning the images which are captured

from different viewpoints and is the core of any mosaicing procedure. It serves

the purpose of creating geometric correspondence between images [1].
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Blending

Blending is applied across the stitch to make the seams less apparent. There

are many different methods for blending among which alpha feathering is the

most commonly used. It takes the weighted average of two images [12]. The

weighting function is usually a ramp. At the stitching line the weight is half

and half while away from the stitching line one image is given more weight than

the other. It works well in the case where image pixels are well-aligned and the

only difference between two images is overall intensity shift. However, if the

images are not well aligned, the disagreements will show in the blended image

[1]. Another popular method is the Gaussian pyramid. This method merges

the images at different frequencies and filters them accordingly. The lower the

frequency band, the more it blurs the boundary. The Gaussian pyramid blurs

the boundary while preserving the pixels away from the boundary. It does not

work well, however, if the two images are at significantly different intensity

levels [1].

2.1.2 Image Stitching Approaches

The main approaches for image stitching are the direct and feature-based tech-

niques [1]. The direct techniques directly minimize pixel to pixel dissimilarities,

while feature-based techniques work by extracting a sparse set of features and

then matching them to each other.

Direct Techniques

The direct techniques work by comparing all the pixel intensities of the im-

ages with each other. They minimize the sum of absolute differences between

overlapping pixels or use other available cost function. Due to the comparison

of each pixel window to others, these methods are computationally expensive.

Furthermore, they are not invariant to image scale and rotation [1]. There
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are many techniques proposed for image stitching based on direct methods

such as the Fourier Analysis Technique [5] or the unifying framework for fine

optimization of cost functions proposed by Baker and Matthew [3].

Direct methods have the advantage of making optimal use of the informa-

tion available in image alignment.

Feature-Based Techniques

The comparison of all features in one image against all features in the other

using one of the local descriptors may seem to be the simplest way to find all

corresponding feature points in an image pair. However, being quadratic in

the expected number of features makes it impractical for many applications

[1]. For image stitching based on feature-based techniques, the main steps

required are image feature extraction, registration, and blending.

The first step is to establish correspondences between points, lines, edges,

corners, or other geometric entities. A robust detector must be invariant to

image noise, scale, translation, and rotation transformations. Many feature

detectors have been proposed over the years such as Harris [23], SIFT [41],

SURF [4], FAST [53], PCA-SIFT [30], and ORB [31].

The well-known SIFT (Scale Invariant Feature Transform) is very robust

but the high computation time makes it unsuitable for some real-time ap-

plications. The Harris corner detector uses a normalized cross-correlation of

intensity values to match them. However, it is not invariant to scale changes

and cross-correlation. SURF (Speeded Up Robust Features) [4] improves the

computation time of SIFT using an integral image to compute local gradi-

ent faster on an image. Recently, binary feature descriptors have received a

lot of attention. ORB [31] is one of the binary feature descriptors. It is a

combination of the FAST (Features from Accelerated Segment Test) keypoint

detection and the BRIEF (Binary Robust Independent Elementary Feature)
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keypoint descriptors algorithm which is modified to handle oriented keypoints.

ORB is scale and rotation invariant and robust to noise and affine transfor-

mations. It is extremely fast while sacrificing little on performance accuracy.

Feature-based methods have the advantage of being more robust against

scene movement that has occurred in the image. They are potentially faster

and are capable of recognizing panoramas by automatically discovering the

adjacency relationships among an unordered set of images [1]. These features

are best suited for fully automated stitching of panoramas. Feature-based

methods rely on accurate detection of image features. Correspondences be-

tween features lead to computation of the camera motion which can be tested

for alignment. In the absence of distinctive features, this kind of approach is

likely to fail.

Early feature-based methods seemed to get confused in regions that were

either too textured or insufficiently textured. The features would often be

distributed unevenly over the images thereby failing to align image pairs [59].

Furthermore, establishing correspondences relied on simple cross-correlation

between patches surrounding the feature points which did not work well when

the images were rotated or had foreshortening due to homographies [59]. To-

day however, feature detection and matching schemes are remarkably robust

and can even be used for known object recognition from widely separated

views. Features not only respond to regions of high “cornerness”, but also to

“blob-like” regions, as well as to uniform areas. Furthermore, because they

operate in scale-space and use a dominant orientation (or orientation invariant

descriptors), they can find matches in images that differ in scale, orientation,

and even foreshortening [59].
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2.1.3 Image Stitching Model Based on Feature-Based
Techniques

A complete image stitching model based on feature-based techniques is dis-

cussed in this section. This model consists of four stages: image acquisition,

feature detection and matching, RANSAC estimation, and image blending. In

the following subsections each stage is described in detail.

Image Acquisition

Image acquisition is the first stage of any computer vision system. It can be

defined as the action of retrieving an image from some sources. After the

image has been taken, various different methods of processing are applied on

the image so as to perform different vision tasks which are required in today’s

image making. If the image is not acquired satisfactorily then the subsequent

tasks may not perform well, even if some image enhancement technique is ap-

plied to the images. Acquired images are assumed to have enough overlapping

that the stitching can be done.

Feature Detection

Feature detection is the second step and the main stage in image stitching

process. Features are the elements in the input images to be matched. Instead

of looking at the image as a whole, some special points in the image are selected

and a local analysis is performed on those [1].

Feature detection is an important part of many computer vision algorithms.

The speed at which features are detected is important in many image process-

ing applications, such as visual SLAM (Simultaneous localization an map-

ping), image registration [7], 3D reconstruction, and video stabilization in

which corresponding image features are matched between multiple views [1].

The detected feature points or corners need to be unambiguous so that the
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correspondence between views can be computed reliably. Real-time applica-

tions need the process of feature detection, description, and matching to be

fast as well [1].

Corners are one type of feature to match in an image pair. They can

be matched to give quantitative measurement. The features of corners are

more stable over changes of viewpoint [1]. Besides, the intensity of a corner is

significantly different from pixels in its neighbourhood.

On the other hand, there are local feature descriptors that describe a po-

sition in an image in terms of its local content. They are robust to small

deformations and localization errors, and help us find the corresponding pixel

locations in images which capture the same amount of information about the

spatial intensity patterns under different conditions [1].

A local feature detector should not only be invariant to translation, ro-

tation, scale, affine transformation, and the presence of noise and of image

blur, but also robust to occlusion, clutter, and illumination changes [1]. There

should also be enough points to represent the image in a time efficient setting.

There are many feature descriptors such as SIFT [41], SURF [4], HOG

[11], GLOH [45], PCA-SIFT [30], Pyramidal HOG (PHOG), and Pyramidal

Histogram of visual Words (PHOW).

Feature Matching

After extracting features and their descriptors from the input images, the next

step is to establish some preliminary feature matches between the images. The

algorithm consists of two parts. The first part is the selection of a matching

strategy which determines which correspondences are passed on to the next

stage to be further processed. The second part consists of choosing efficient

data structures and algorithms. A full traversal search may seem to be the

more consistent search strategy but the computation time is too large. One of
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the more efficient options is a K-D tree based algorithm called the Best-Bin-

First (BFF). It identifies the nearest match with high probability in an efficient

time setting. It uses a modified search ordering for K-D tree algorithm so that

bins in the feature space are searched in the order of their closest distance

from the query location [39]. The candidate match for each keypoint is found

by identifying its nearest neighbour, which is defined as the keypoint with the

minimum Euclidean distance from the given descriptor vector. This method

can quickly and efficiently find corresponding matches for each feature point.

Homography Using RANSAC

After computing an initial set of feature correspondences, we need to find

a set that produces a high-accuracy alignment. One possible approach is

simply computing a least squares estimate, or by using a robustified version

of least squares. However, it is often better to find a good starting set of

inlier correspondences, i.e., points that are all consistent with a particular

motion estimate. The most common approaches for this task is RANdom

SAmple Consensus (RANSAC) [17]. It starts by selecting a random subset of

k correspondences, which is then used to compute a motion estimate. Then

it counts the number of inliers that are within a specific distance of their

predicted location. The random selection process is repeated for a pre-defined

number of times and the sample set with the largest number of inliers is kept

as the final solution.

Compositing

The last step is to decide how to represent the final stitched image. When the

number of stitched images is not too high, the common approach is to select

one of the images as the reference and then warp all of the other images into

the reference coordinate system. The result is called a flat panorama in which
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straight lines still remain straight (which is often a desirable attribute) [1] .

However, there are other projecting layouts which might be used for specific

application of which cylindrical panorama is another well-known method. In

order to build a cylindrical panorama, we require a sequence of images taken

by a camera placed on a leveled tripod. If the camera focal length is given,

each perspective image can be warped into cylindrical coordinates. Forward

warping and inverse warping are two types of cylindrical warping. In the

former, the source image is mapped onto a cylindrical surface, but holes may

exist in the destination image because some pixels may never get mapped

there. In the latter, each pixel in the destination image is mapped to the

source image [1].

2.1.4 Scale-Invariant Feature Transform

Scale-Invariant Feature Transform was proposed by Lowe [41]. The algorithm

is used to detect and describe the local features of the image. The features

detected by this algorithm are not only accurate and stable but also invariant

toward scale and rotation. It is widely used for a multiple of applications such

as object recognition [41], robotic mapping and navigation [56], 3D modeling

[62], image stitching [8], gesture recognition [22], match moving [66], video

tracking [66], and individual identification of wildlife [65].

Scale-Space Extrema Detection

In this section the scale-space theory is used to determine the keypoints that

are, in other words, the interesting points. In order to detect the keypoints we

first consider an image, say I(x, y), and convolve that image with a Gaussian

filter, F (x, y, kσ), at varying scales. The resulting images at different scales

are subtracted in order to get the Difference of Gaussian (DoG) as shown in

figure 2.1.
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Figure 2.1: DoG at varying octaves

DoG helps to remove the problems that arise due to keypoint localization.

It acts as an effective tunable band pass filter and extracts a range of compo-

nents which can be used as keypoints. DoG can be used as an approximation

for the Laplacian operator. The convolution of Gaussian filter is represented

in equation 2.1 and DoG is represented using equation 2.2.

L(x, y, kσ) = F (x, y, kσ)⊗ I(x, y) (2.1)

D(x, y, σ) = L(x, y, kiσ)− L(x, u, kjσ) (2.2)

L(x, y, kσ) is the convolution of the original image I(x,y) with the Gaussian

blur G(x, y, kσ) at scale kσ.
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Keypoint Localization

Keypoints are nothing but the local maxima or minima of the DoG images

across scales and are selected after taking the DoG. Each pixel from a DoG

image is compared with its 8 neighbouring pixels from the same scale, whereas

the remaining 9 pixels are at the plane lying above and 9 below it each at

a different scale. If the pixel value is the maximum or minimum among all

compared pixels, it is selected as a candidate keypoint. The 26 neighbouring

pixels for the candidate keypoint are shown in figure 2.2.

This keypoint detection step is a variation of one of the blob detection

methods developed by Lindeberg. It works by detecting scale-space extrema

of the scale normalized Laplacian [36, 37], i.e., detecting points that are local

extrema with respect to both space and scale, in the discrete case by compar-

isons with the nearest 26 neighbours in a discretized scale-space volume [61].

The difference of Gaussians operator can be seen as an approximation to the

Laplacian, with the implicit normalization in the pyramid also constituting a

discrete approximation of the scale-normalized Laplacian [38, 61].

Figure 2.2: Neighbouring pixels with which key point is compared

Interpolation of nearby data is used to accurately determine the position
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for each candidate keypoint. The initial approach was to just locate each

keypoint at the location and scale of the candidate keypoint [40]. However,

in the new approach, the interpolated location of the extremum is calculated,

which improves matching and stability[41]. The quadratic Taylor expansion of

the DoG scale-space function is used to determine the accurate position and

scale of feature points [61] is given by

D(x) = D +
∂DT

∂x
x+

1

2
xT
∂2D

∂x2
x, (2.3)

where D and its derivatives are evaluated at the candidate keypoint and x =

(x, y, σ) is the offset from this point. In order to determine the location of

the extremum, x̂, the derivative of this function must be taken and set to

zero. If the offset x̂ is larger than 0.5, it means that the extremum lies close

to another candidate keypoint, in which case, the keypoint is changed and

the interpolation is performed at that point. Otherwise, the estimate for the

location of the extremum is obtained by adding the offset to its candidate

keypoint [61].

Orientation Assignment

In this step, each keypoint is assigned one or more orientations depending

on the local image gradient directions [61]. As the keypoint descriptors can

be represented relative to this orientation, this step is essential to achieve

invariance to image rotation.

First, the Gaussian-smoothed image L(x, y, σ) having scale σ is taken to

make all the computations scale-invariant [61]. For an image sample image

L(x, y) at scale σ, the gradient magnitude, m(x, y), and orientation, θ(x, y)

are computed as follows:

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (2.4)

θ(x, y) = arctan 2(L(x, y + 1)− L(x, y − 1), L(x+ 1, y)− L(x− 1, y)) (2.5)
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The computation of magnitude and direction for the gradient are done at

every pixel in the neighbouring region around the candidate keypoint in the

Gaussian-blurred image L. An orientation histogram of 36 bins is created, with

each bin covering 10 degrees [61]. Each sample in the neighbouring window is

weighted by its gradient magnitude and a Gaussian-weighted circular window

with 1.5 tine θ to the scale of the candidate keypoint, and then added to a his-

togram bin. The peaks of the histogram correspond to dominant orientations.

After the histogram is completely filled, the orientations corresponding to the

highest peaks and local peaks that are within 80% of the highest peaks are

assigned to the keypoint. In the case of multiple orientations being assigned,

an additional keypoint is created having the same location and scale as the

original keypoint for each additional orientation [61].

Keypoint Descriptor

During the previous steps, the locations of the keypoints were found and orien-

tations and scales were assigned to them which ensured invariance to location,

scale, and rotation. The next step is to compute a descriptor vector for each

keypoint that is highly distinctive and invariant to remaining variations such

as illumination or 3D viewpoint [41].

First, a set of orientation histograms is created on 4×4 neighbourhoods

with 8 bins each. These histograms are computed from magnitude and ori-

entation values of samples in a 16×16 region around the keypoint such that

each histogram contains samples from a 4×4 subregion of the original neigh-

bourhood region. The magnitudes are then weighted by a Gaussian function

with σ to 1.5 of the width of the descriptor window [61]. The descriptor now

becomes a vector from all the values of these histograms. Since there are 4×4

histograms that each has 8 bins, the vector has 128 elements for each keypoint

[41]. The diagram showing generation of feature vectors is shown in figure 2.3.
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Figure 2.3: Generation of feature vectors

Finally, the feature vector is modified to reduce the effects of illumination

change. The vector is first normalized to unit length. A change in image

contrast in which each pixel value is multiplied by a constant will multiply

gradients by the same constant, so this contrast change is canceled by vector

normalization [41]. A brightness change in which a constant is added to each

image pixel does not affect the gradient values as they are computed from pixel

differences. Therefore, the descriptor is invariant to affine changes in illumi-

nation [41]. However, non-linear illumination changes might still occur due to

camera saturation or illumination changes that affect 3D surfaces with differ-

ing orientations by different amounts [41]. This can cause a large change in

relative magnitudes for some gradients but are less likely to affect the gradient

orientations. Therefore, the influence of large gradient magnitudes is further

reduced by thresholding the values in the unit feature vector to be no greater

than 0.2, and then normalizing to unit length. This ensures a greater emphasis

on the distribution of orientations rather than matching the magnitudes for

large gradients [41].

2.1.5 Stitching of underwater images

One of the earliest systems used to automate the task of constructing under-

water images was presented by Haywood in [25]. In their work, no feature

extraction is performed and mosaicing is done by snapping images at known
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positional coordinates. The task of warping images is easy in this case since

the registration is known beforehand. Marks et al. develop a completely

autonomous mosaicing system in [44]. Their method is column-based and

uses a four-parameter semi-rigid motion model. In the paper titled “Video

mosaicing along arbitrary vehicle paths” [18], mosaicing is performed by ap-

plying smoother-follower techniques to reduce image alignment error. In their

method, the registration between images is computed by correlating binary

images, after going through a signum of Laplacian of Gaussian filtering pro-

cess, which reduces the effect of inhomogeneous illumination. Negahdaripour

et al. [48] estimate motion from seabed images through a recursive estima-

tion of optical flow. They expand their method to function in the presence

of intensity variations and underwater medium effects in [50]. They further

introduce a direct method for motion estimation in [49], which is applied to

mosaicing in [63]. Gracias and Victor Santos [21] present a global alignment

solution for underwater mosaicing using video-based imagery. Even though

their global mosaic is constructed with a subset of images displaying signifi-

cant inter-image motion, the feature matching is performed with high overlap

(basically, the homography between two images with low overlap is calculated

as the concatenation of video-rate homographies). Other methods in underwa-

ter mosaicing have made use of image corners and gray-level pixel-correlation

to detect correspondences [20].

In order to eliminate the parallax artifacts, depth information estima-

tion–based methods have been developed. Firoozfam et al. [16] designed

an underwater panoramic imaging system for 3D scene reconstruction with

conical distributive multicamera based on depth information. It can gen-

erate good-quality panoramas in underwater observations at short distance

but, unfortunately, it cannot meet the real-time requirement due to the time-

consuming depth estimations.
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2.2 Dehazing of Underwater Images

The haze caused by light that is reflected from a surface and is deflected and

scattered by water particles, the ambient light in the medium (referred to

as airlight), the substantial reduction of the light energy due to absorption,

and the colour change due to varying degrees of light attenuation for different

wavelengths are all reasons that make the task of analyzing underwater images

challenging [10]. The random attenuation of the light is the main cause of haze

appearance while the fraction of the light scattered back from the water along

the line of sight causes underwater images to lose contrast [42]. For example,

in figure 2.4 the haze is caused by light scattering and the bluish tone is caused

by different degrees of colour attenuation for different wavelengths.

Figure 2.4: A hazy underwater image with a bluish tone. This photo is ac-
quired from [10] and is part of an underwater footage filmed by Bubble Vision
Company.

Haze is a natural phenomena which hinders the quality of underwater im-

ages. Dehazing serves to improve the aesthetic quality of images as well as to
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improve the data quality for scientific data collection and computer vision ap-

plications [9]. Various techniques have been proposed to remove the haze from

underwater images and to enhance their quality. Some of them are discussed

further.

In the paper titled “Recovery of Underwater Visibility and Structure by

Polarization Analysis” [55], the authors analyzed the physical effects of vis-

ibility degradation. They have shown that the main degradation effects are

associated with partial polarization of the light. They propose an algorithm

for recovering good visibility in images of scenes based on a couple of images

taken through a polarizer at different orientations. A distance map of the scene

is also generated as a by-product [55]. In addition, the noise sensitivity of the

recovery is also analyzed. Their proposed algorithm results in an improvement

of scene contrast and colour correction and doubles the underwater visibility

range. However, this method requires taking several pictures, which makes it

unsuitable for single-image dehazing task.

Iqbal et al. present an underwater image enhancement method using an

integrated colour model [28]. Their approach is based on slide stretching.

First, contrast stretching is used to equalize the colour contrast in the images

and second, saturation and intensity stretching of HSI is applied to increase the

true colour and solve the problem of lighting [28]. The blue colour component

in the image is controlled by the saturation and intensity in order to create the

range from pale blue to deep blue. The contrast ratio is therefore controlled

by decreasing or increasing its value [28].

In the paper titled “Low Complexity Underwater Image Enhancement

Based on Dark Channel Prior” [64], an efficient and low complexity under-

water image enhancement method based on dark channel prior is proposed.

The method employs a median filter to estimate the depth map of image.

Moreover, a colour correction method is applied to enhance the colour con-
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trast [64]. The presented approach requires less computing time, enhances

underwater images more effectively, and is suitable for implementing on the

surveillance and underwater navigation for real-time purposes.

Chiang and Chen propose an algorithm called Wavelength Compensation

and Dehazing [10] to enhance underwater images by a dehazing algorithm, to

compensate for the attenuation discrepancy along the propagation path, and

to take the influence of the possible presence of an artificial light source into

consideration. In the first step, the depth map, i.e., distances between the ob-

jects and the camera, is estimated and the foreground and background within

a scene are segmented. The light intensities of the foreground and background

are then compared to determine the possible presence of artificial illumination.

After compensating for the effect of artificial light, the haze phenomenon and

discrepancy in wavelength attenuation along the underwater line of sight are

corrected. Next, the water depth in the image scene is estimated according

to the residual energy ratios of different colour channels in the background

light. Finally, based on the amount of attenuation corresponding to each

light wavelength, colour change compensation is conducted to restore colour

balance. Their method significantly enhances visibility and displays superior

colour fidelity in the images.

In the paper titled “Underwater Image Dehazing Using Joint Trilateral

Filter” [57], a novel method for enhancing underwater images is proposed.

The proposed underwater model compensates for the attenuation discrepancy

along the propagation path. A fast joint trilateral filter is presented which

not only removes overly dark fields of underwater images by refining depth

map, but also acts as an edge preserving smoothing operator which shows

better performance near the edges [57]. It also has the advantage of fast

and non-approximate constant computational complexity which is independent

of filtering kernel size. The enhanced images are characterized by reduced
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noise level, improved quality, enhanced edges, and better exposure levels for

dark regions. However, the method does not consider the possible presence

of artificial illumination and its influence and in some cases, enhanced images

still look dark.
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Chapter 3

Proposed Method

3.1 Overview of the Proposed Method

An overview of the proposed algorithm is presented below:

Algorithm: Underwater Image Stitching

I. Dehaze input images

(i) Estimate the atmospheric light

(ii) Estimate the transmission map

(iii) Refine the transmission map using guided filtering

(iv) Recover the scene radiance

II. Normalize the colour of the input images

III. Detect keypoints

IV. Match keypoints

V. Estimate homography with matched keypoints

VI. Project onto a surface

VII. Use graph cut to find the optimal cut for stitching the images.

VIII. Use linear blending to smooth remaining seams
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3.2 Single Image Haze Removal

The model often used in computer vision to describe a hazy image is as follows

[60, 15, 46, 47]:

I(x) = J(x)t(x) + A(1− t(x)), (3.1)

in which I is the observed intensity, J is the scene radiance, A is the global

atmospheric light, and t is the medium transmission describing the portion

of the light that is not scattered and reaches the camera. The goal of haze

removal is to recover J , A, and t from I [26].

The first term, J(x)t(x), is called direct attenuation [60], and the second

term is called airlight [60]. Direct attenuation describes the scene radiance

and its decay in the medium, while airlight is caused by previously scattered

light and leads to a shift of the scene colour [26]. The transmission t can be

expressed as [26]:

t(x) = e−βd(x), (3.2)

in which β is the scattering coefficient of the atmosphere. It indicates that the

scene radiance is attenuated exponentially with the scene depth d [26].

3.2.1 Dark Channel Prior

The dark channel prior is based on He et al.’s [26] observations on haze-free

land images: in most non-sky patches, at least one colour channel has very low

intensity in some pixels. For an image J , the dark channel, Jdark is defined to

be

Jdark(x) = min
c∈{r,g,b}

( min
y∈Ω(x)

(J c(y))), (3.3)

where J c is a colour channel of J and Ω(x) is a local patch centered at x [26]. He

et al. demonstrated through several statistical experiments that the intensity

of Jdark is low and tends to be zero for non-sky regions [26]. This observation

is called dark channel prior. Using this prior with the hazy imaging model,
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we can directly estimate the thickness of the haze and recover a high quality

haze-free image. Moreover, a high quality depth map can also be obtained as

a by-product of haze removal.

3.2.2 Haze Removal Using Dark Channel Prior

Estimating the transmission

We first assume that the atmospheric light, A, is given, and later on an au-

tomatic method to estimate it is presented. It is further assumed that the

transmission in a local patch Ω(x) is constant [26]. Taking the min operation

on equation 3.1 we have [26]:

min
y∈Ω(x)

(Ic(y)) = t̃(x) min
y∈Ω(x)

(J c(y)) + (1− t̃(x))Ac. (3.4)

Taking the min operation among three colour channels, the above equation

can be rewritten as [26]:

min
c

( min
y∈Ω(x)

(
(Ic(y)

Ac
)) = t̃(x) min

c
( min
y∈Ω(x)

(
J c(y)

Ac
)) + (1− t̃(x)). (3.5)

According to the dark channel prior, the dark channel of the haze-free

radiance, J , should be zero [26].

min
c

( min
y∈Ω(x)

(
J c(y)

Ac
)) = 0. (3.6)

Putting equation 3.6 into equation 3.5, the transmission t̃ can be estimated

simply by [26]:

t̃(x) = 1−min
c

( min
y∈Ω(x)

(
(Ic(y)

Ac
)). (3.7)

Soft Matting

The estimated transmission map contains some block effects due to the as-

sumption we made earlier that the transmission in each local patch is constant.

In this step, the transmission map is refined. The haze imaging equation (3.1)
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has a similar form with the image matting equation. Therefore, a soft matting

algorithm [33] can be used to refine the transmission map [26]. Soft mattting

allows us to find the globally optimal alpha matte by solving a sparse linear

system of equations.

In order to obtain the refined transmission map, t(x), the following cost

function is minimized [26]:

E(t) = tTLt+ λ(t− t̃)T (t− t̃). (3.8)

in which L is the Matting Laplacian matrix proposed by Levin [33], and λ

is a regularization parameter. The first term is the smoothness term which

encodes the colour line model and the second term is the data term which

encodes the information of the transmission [26]. The constraint weight, λ , is

a small value (10−4 in [26]).

In order to obtain the optimal t the following sparse linear system needs

to be solved [26]:

(L+ λU)t = λt̃, (3.9)

in which U is an identity matrix of the same size as L.

The transmission map before and after the refinement can be seen in figure

3.1. Figure 4.3a is the soft matting result after using figure 4.3b as the data

term. As we can see, the refined transmission map captures the sharp edge

discontinuities and outlines the profile of the objects [26].

Recovering the scene radiance

With the refined transmission map calculated, the scene radiance can easily

be recovered according to equation 3.1.

J(x) =
I(x)− A
t(x)

+ A. (3.10)
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(a) Estimated coarse transmission map (b) Refined transmission map

Figure 3.1: The transmission map before and after refinement for a land based
image (acquired from [26]).

Estimating the Atmospheric Light

At this point, the only unknown parameter in equation 3.1 is the atmospheric

light A. The dark channel is used in order to estimate the atmospheric light.

The top 0.1% of the brightest pixels in the dark channel are chosen, and among

those, the pixel with the highest intensity in the input image I is selected as

the atmospheric light [26].

3.2.3 Transmission Refinement Using Guided Filtering

As an alternative to soft matting [26], after obtaining the coarse transmission

map, guided image filtering [27] can also be used to refine the transmission.

Guided Image Filtering

Guided filter is a type of edge preserving smoothing operator which filters the

input image under the guidance of another image [27, 51]. By denoting the

input image as p, the guidance image as I, and the filtering output as q, the

local linear model of guided filter assumes that q is a linear transform of the

guidance I in a window ωk centered at pixel k, so that mathematically we have

[51]:

qi = akIi + bk,∀i ∈ ωk, (3.11)
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in which (ak, bk) are some linear coefficients assumed to be constant in window

ωk. We use a square window of radius r. This local linear model ensures that

q has an edge only if I has an edge because ∇q = a∇I. This model has been

shown useful in image matting [33], image super-resolution [67], and haze

removal [26].

A guided filter seeks coefficients (ak, bk) that minimize the difference be-

tween the output q and the input p. For a window ωk we minimize the following

cost function [27]:

E(ak, bk) =
∑
i∈ωk

((akIi + bk − pi)2 + εa2
k), (3.12)

in which ε is a regularization parameter. The solution to 3.12 can be given by

linear regression [27, 14]:

ak =

1
|ω|

∑
i∈ωk

Iipi − µkp̄k
σ2
k + ε

(3.13)

bk = p̄k − akµk. (3.14)

Here, µk and σ2
k are the means and variance of I in ωk, |ω| is the number

of pixels in ωk and p̄k = 1
|ω|

∑
i∈ωk

pi is the means of p in ωk [27].

The final filtering output is given by [27]:

qi =
1

|ω|
∑
k:i∈ωk

(akIi + bk) = āiIi + b̄i, (3.15)

where āi = 1
|ω|

∑
k∈ωi

ak and b̄i = 1
|ω|

∑
k∈ωi

bk [27].

With this modification ∇q is no longer a scaling of ∇i, because the linear

coefficients (āi, b̄i) vary spatially [27]. However, since (āi, b̄i) are the outputs

of an average filter, their gradients should be much smaller than that of I

near strong edges [27]. In this situation we can still have ∇q ≈ ā∇I, meaning

that abrupt intensity changes in I can be mostly maintained in q [27]. As can

be seen locally, the output q captures similar details from the guidance I (by

virtue of the local linear model), while globally, the impression of the output q
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should be similar to the input p (due to the minimization of the cost function)

[51].

Transmission Refinement Using Guided Filter

In [27], one of the applications of the guided filter is to refine the coarse

transmission map obtained by dark channel prior [51]. The raw transmission

map is refined through filtering under the guidance of the hazy image [27].

For guided filter, the guidance image I, the input p, and the filtering output q

play similar roles as the input image, the trimap, and the alpha matte in the

closed-form matting framework [51, 33].

The output of a guided filter proves to be one Jacobi iteration in optimiz-

ing of the cost function in [27]. The expected value of the constraint weight λ

is 2 for a guided filter, which implies that the filtering output is loosely con-

strained by the input image p [51]. Therefore, a guided filter is applicable to

transmission refinement in [26], since, in soft matting, the refined transmission

map should also be loosely constrained by the coarse transmission map [51].

The guided filter produces visually similar results to what we obtained

using soft matting while reducing the processing time of a sample 600 × 400

colour image from over 10 seconds as reported in [26] to about 0.1 second [27].

3.2.4 Colour Contrast Enhancement

The image requires balanced colour values for the RGB components to achieve

a good visual quality. We use a simple yet efficient colour enhancement method

proposed by Iqbal et al. [29] for this purpose. In order to equalize the RGB

values, we fist calculate the average values of each colour component, namely
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Ravg, Gavg, and Bavg.

Ravg =

∑M
i=1

∑N
j=1 IR(i, j)

M ×N

Gavg =

∑M
i=1

∑N
j=1 IG(i, j)

M ×N

Bavg =

∑M
i=1

∑N
j=1 IB(i, j)

M ×N
,

(3.16)

where M and N are the dimensions of the image.

Since underwater images have high values of blue colour as compared to

that of other colours, we can use the value of the blue colour to increase the

value of the green and red colours in order to balance the colour values of the

RGB components. In order to do that, we set the blue colour channel as a

target mean and the other two colour channels are multiplied as follows to

match the target [29]:

ĨR(i, j) =
Bavg

Ravg

IR(i, j)

ĨG(i, j) =
Bavg

Gavg

IG(i, j).

(3.17)

3.3 Image Stitching

After using dehazing to improve the aesthetic quality of images as well as to

improve data quality for the task of feature detection, SIFT [41] is used to find

and match features between images.

The next step is to estimate the planar transformation between two differ-

ent views of the same flat scene which can be described by means of a planar

homography matrix [24, 43].

Assuming point p to be a point in a 2D plane P in 3D space, and x1, x2 ∈ R3

to be its projections into two different images I1 and I2. Also assuming the

coordinate transformation between the two frames to be:

X2 = RX1 + T, (3.18)
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in which X1, X2 ∈ R3 are the 3D coordinates of point p relative to camera

frames 1 and 2. The two projections of p in images I1 and I2, namely x1 , x2

satisfy the epipolar constraint [24]:

xT2Ex1 = xT2 T̂Rx1 = 0, (3.19)

where E is the essential matrix, containing information about translation T

and orientation R between two camera frames, and T̂ is the skew-symmetric

matrix codifying position T [43].

However, for points on the same plane P , their images will share an extra

constraint that makes the epipolar constraint alone no longer sufficient.

Assuming N = [n1, n2, n3]T ∈ S2 to be the unit normal vector of the plane

P with respect to the first camera frame, and d to be the distance between

the plane P and the optical center of the first camera, we have:

NTX1 = n1X + n2Y + n3Z = d

⇔ 1

d
N tX1 = 1,∀X1 ∈ P.

(3.20)

By substituting equation 3.20 into 3.18 we get:

X2 = Rx1 + T = RX1 + T
1

d
NTX1 = (R +

1

d
TNT )X1. (3.21)

So the (planar) homography matrix H is defined as follows:

H = R +
1

d
TNT ∈ R3×3. (3.22)

And it denotes a linear transformation from X1 to X2 as:

X2 = HX1. (3.23)

However, due to the inherent scale ambiguity in the term 1
d
T , H can at

most be recovered from the ratio of the translation T scaled by distance d.

From

λ1x1 = X1, λ2x2 = X2, (3.24)
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we have:

λ2x2 = Hλ1x1 ⇔ x2 ∼ Hx1. (3.25)

where ∼ indicates equality up to a scale factor.

The homography matrixH can be computed from the correspondences that

we found in the previous steps and allows the description of 2D transformations

between image pairs.

Even though the assumption that the scene is planar is rarely true in prac-

tice, the homography matrix can still be used to model the transformation

between images when the magnitude of camera translation is negligible com-

pared to the distance between the camera and the scene. The absence of

this condition causes the images to display the parallax effect, i.e the differ-

ence in the apparent position of an object when viewed in two different views.

We will deal with the parallax effect caused by local mis-registrations in the

Post-Processing section.

3.4 Colour Correction

As discussed in chapter 1, sunlight barely penetrates beyond the euphotic or

sunlight zone which extends to a depth of 200 meters (656 feet) beneath the

ocean surface. This necessitates the use of synthetic illumination for captur-

ing images beyond this depth. Synthetic lights tend to illuminate the scene

in a non-uniform fashion which cause colour and intensity discontinuities and

consequently, produce visible seams in our panorama. We use the colour trans-

fer method proposed by Reinhard at al. [52] to make the colour distribution

similar between the images.

This algorithm operates on images in lαβ colour space proposed by Ruder-

man et al. [54], which is a colour space based on data-driven human perception

and has the advantage of minimizing correlation between channels. After con-
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verting both images to lαβ colour space, the colour distribution of the source

image, Is, will be transformed to the colour distribution of the target image,

It. According to [52], matching the mean and standard deviation along each

of the three channels is sufficient to achieve the same colour distribution.

First,the mean of each of the colour channels of the source image is sub-

tracted from the data points:

l∗s = ls − l̄s

α∗s = αs − ᾱs

β∗s = βs − β̄s.

(3.26)

Next, we scale the data points comprising the corrected image by factors

determined by the respective standard deviations and add the averages com-

puted for the source image:

l∗corrected =
σlt
σls
l∗s + l̄s

α∗corrected =
σαt
σαs
α∗s + ᾱs

β∗corrected =
σβt

σβs
β∗s + β̄s.

(3.27)

Finally, we convert the result back to the RGB colour space.

3.5 Post-Processing

In order to further reduce the visible seams in the overlapped regions, the two

most widely used approaches are blending and seam cutting. In the former,

the entire overlapped region is blended, and in the latter, image cutting is

performed between the images [2]. The most common approaches for blending

include feathering [59], multi-band blending [8], and gradient domain stitching

[34]. Gao et al. [19] suggested a combination of both seam cutting and blending

in order to produce the best results.
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3.5.1 Seam Cutting

In this step, an optimal seam between two images is found that produces the

least visible seam detectable by a human observer. Moreover, there may still

be localized mis-registrations present in the mosaic due to deviations from

the idealized parallax-free camera model. Such deviations might include cam-

era translation, radial distortion, the mis-location of the optical center, and

moving objects [58]. Seam cutting also helps to improve image blurring and

ghosting caused by mis-registrations.

In order to compute an optimal seam between two images, for each pixel

in the final panorama result, its intensity should be mapped from one of the

warped source images [19]. Graph-cuts optimization is used to perform this

task. This segmentation is formulated as a binary labeling Markov Random

Field (MRF) [35] in [19]. In order to assign each pixel p a label l ∈ {0, 1},

representing which warped source image its intesnsity should be mapped from,

the following cost function needs to be minimized:

E = Ed + λEs, (3.28)

where Ed is the data term denoting the likelihood of assigning a label to each

pixel, and Es is the smoothness term representing the cost of assigning different

labels to adjacent pixels [19].

Following the formulation in [2], the data term is defined to be the gradient

of a pixel at that location:

Ed(p, lp) = −∇I lpp , (3.29)

where the binary label lp decides which gradient between the two overlapped

images to use [19]. This data term helps our seam cutting to cut along high-

gradient edges.
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The smoothness term represents discontinuities between each pair of neigh-

bouring pixels and is defined as below [19]:

Es(lp, lq) = (‖I lp(p)−I
lq
(p)‖

2+‖I lp(q)−I
lq
(q)‖

2)+β(‖∇I lp(p)−∇I
lq
(p)‖

2+‖∇I lp(q)−∇I
lq
(q)‖

2).

(3.30)

According to equation 3.30, if lp = lq, the smoothness cost will be zero,

while if lp 6= lq, the smoothness cost will be the difference between the intensity

and the gradient of the corresponding pixels in two images. Here, an intensity-

based graph cut will consider that the differences between neighbouring pixels

are large even in the case of an accurate registration, and therefore avoids

those regions where the cut should be performed. Instead, when we use the

difference between gradient vectors along the seam path, the optimal seam will

be found regardless of the differences in exposure. The gradients are also less

sensitive to other illumination issues such as non-uniform lighting caused by

artificial illumination. Despite the benefits of the gradient term, the intensity

term is kept in order to favour low photometric differences when registration is

highly accurate. Therefore, we use a weighted addition between both gradient

and intensity domain terms. Finally, graph-cuts optimization is used to assign

the label to our MRF [6].

3.5.2 Blending

While seam cutting produces an image with no overlaps, there might still

be discontinuities in intensity and colour between the images being compos-

ited. In order to reduce this, the seam is expanded by 16 pixels and an alpha

blending algorithm (also called feathering) [58] is applied to the pixels in this

expanded region. In alpha blending, each pixel in the mosaic image I is a

weighted combination of the input images I1 and I2. We weigh the pixels in

each image proportionally to their distance to the seam. This step helps to

minimize seam artifacts by smoothing the transition between the images.
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Chapter 4

Experiments and Results

In this chapter we talk about our evaluation method and show the results of

our dehazing and stitching algorithms.

We performed our real-world experiments on a dataset provided by Pacific

Biological Station, which specializes in monitoring undersea habitat. The im-

ages were acquired near Vancouver Coast, BC, at an approximate depth of

150 meters beneath the ocean surface.

We used an Intel R© CoreTM i7-2600 CPU @ 3.40GHz and 16GB of memory

for all of our experiments.

4.1 Underwater Single Image Dehazing

First we demonstrate the performance of our dehazing algorithm. We use

images that suffer from poor visibility conditions because of medium scattering

and light distortion. The results of our underwater single image dehazing

algorithm are shown in figure 4.1 in which soft matting and guided filtering

are used to refine the transmission map.

As can be seen, the results are visually similar. The average runtime of

the dehazing algorithm in our experiments for 800× 600 input images is 24.3s

using soft matting for transmission refinement and 0.15s using guided filtering

for transmission refinement. This shows the superiority of guided filtering in
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Figure 4.1: Dehazing results. The first column is the input, the second column
is the obtained result using soft matting, and the third column is the obtained
result using guided filtering.
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Figure 4.2: Colour transfer results. The colour of images in the second column
is transferred to match the colour distributions of the images in the first column
and results are shown in the third column.

terms of time complexity while producing visually similar results.

4.2 Colour Transfer Results

In this section, the results for the colour transfer algorithm are presented.

In figure 4.2, the colour of the images in the second column is transferred to

match the colour distributions of the images in the first column and results are

included in the third column. The results of our stitching algorithm with and

without the colour normalization step are included in figure 4.3 to demonstrate

its importance in achieving a seamless panorama.

37



(a) Without colour normalization (b) With colour normalization

Figure 4.3: Stitching results with and without colour normalization

4.3 Underwater Stitching Algorithm Results

In this section, the results of our stitching algorithm are presented. In figure

4.4 the results of our experiments on real-world data are provided. As can

be seen, the dehazing step enables the feature detector to detect and match

features accurately. As well, blurring and ghosting effects caused by local

misalignments and lighting inhomogeneities caused by artificial lighting are

removed thanks to the graph-cut strategy and colour normalization, eventually

leading us to seamless panorama results.

Figure 4.5 demonstrates the performance of our stitching algorithm for

images taken at different illumination settings. The tank that we used is

equipped with lights that have adjustable levels for different colour channels.

In our first experiment, both images are captured under exactly the same

lighting conditions. In our second experiment, we added the intensity of all

three colour channels to capture our second input image. And finally, in the

last experiment, we increased the intensity of the blue colour channel. As

displayed, the algorithm shows robustness for images captured under different

illumination settings.
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Figure 4.4: Photo stitching results for real world data. The first two columns
are the inputs and the third column is the output of the stitching algorithm.

39



(A) Photos taken at the same illumination settings.

(B) The second input is taken under more light intensity.

(C) The second input is taken under more blue tone.

Figure 4.5: Performance of the stitching algorithm for images taken under
different illumination settings
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Finally, in our last set of experiments we evaluate the accuracy of our

stitching algorithm. For that purpose, we use cameras with fixed positions to

take pictures of the same scene after adding different amounts of milk to the

tank and use the result without milk as the ground truth. We compute the

difference between the homography of the stitching of hazy pictures and the

ground truth and use it as the measure for the accuracy of the stitching.

E =
3∑
i=1

3∑
j=1

|HGT (i,j) −H(i,j)|, (4.1)

in which HGT and H are the homographies of the stitching of the ground truth

images and the hazy images respectively.

The results are shown in figure 4.6, and the error in the transformation

for each haze level is shown in table 4.1. It can be seen that dehazing not

only improves the quality of the images, but also improves the accuracy of the

stitching. Furthermore, the stitching results for each of the three haze levels

along with the corresponding transmission maps are included in figure 4.7.

Haze level Level 1 Level 2 Level 3

The error in the transformation without dehazing 18.4010 25.3238 28.2983

The error in the transformation using dehazing 9.2751 13.1578 20.3883

Table 4.1: Quantitative evaluation of the stitching algorithm

41



(A) Ground truth photos taken before adding milk and the stitching result
(no dehazing).

(B) Photos taken after adding milk (level 1) and the stitching result using
dehazing.

(C) Photos taken after adding milk (level 2) and the stitching result using
dehazing.

(D) Photos taken after adding milk (level 3) and the stitching result using
dehazing.

Figure 4.6: Performance of the stitching algorithm for different haze levels.
The first two columns are the inputs and the third column is the output of the
stitching algorithm using dehazing.
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(A) The stitching result and the corresponding transmission map for haze
level 1.

(B) The stitching result and the corresponding transmission map for haze
level 2.

(C) The stitching result and the corresponding transmission map for haze
level 3.

Figure 4.7: The stitching result and the corresponding transmission map for
different haze levels.
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Chapter 5

Conclusions and Future Work

This thesis has presented a novel approach for stitching images acquired un-

derwater which is able to tackle the problems that arise when using common

image stitching methods on underwater images. In the first step, dehazing is

used to improve the aesthetic quality of images as well as to improve data qual-

ity for the task of feature detection. Guided image filtering is used to speed

up the process of dehazing the images. Then SIFT is used to find and match

features between images and a single homography per image was used to per-

form alignment. In the next step, a graph cuts-based seam cutting method in

the image gradient domain is used to find the optimal cut between two images

in order to reduce visible seams in the overlapped regions. While producing an

image with no overlaps using seam cutting, we use linear blending to reduce

colour discontinuities that may still exist.

A novel idea proposed in this method is to use colour normalization to

transform images into the same colour space to make the stitching result even

more “seamless”.

5.1 Future Work

We conclude by identifying some avenues for future exploration:

• Compensate for refraction, i.e., the bending of light rays when traveling
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from one medium to another.

• Apply global statistics from both images to perform dehazing.

• Apply more than one homography per image.

• Extend the method to work on multiple images to create large-scale

photo mosaics and be able to perform mosaicing on unordered image

datasets.

• Apply depth-dependent illumination compensation.
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