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Abstract

A model of elastic solids reinforced with fibers resistant to extension and bending is formulated in finite-plane elasto-

statics. The linear theory of the proposed model is also derived through which a complete analytical solution is obtained.

The presented model can serve as an alternative two-dimensional Cosserat theory of non-linear elasticity.
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1. Introduction

The mechanics of fiber-reinforced materials is a well-established subject [1–5] that has significantly advanced
our knowledge on and practices in the development of composite materials. One way of addressing this problem
is to examine the local behavior of an individual microstructure-matrix system including the interfacial region
[3, 5, 6]. Such investigations are essential to extracting the mechanical properties of those materials, yet rather
inefficient at predicting the general behavior of the composite materials under prescribed forces and/or displace-
ments. Instead, one can model and formulate macroscopic behavior of the composite body in such a way that the
overall contributions of microscopic responses induced by its microstructure are integrated into the models of
deformations with sufficient accuracy. Within this prescription, much theoretical work has been developed based
on the simple concept of an anisotropic material where the material response function depends on the classical
deformation gradient with the augmented constraints of bulk incompressibility and fiber inextensibility. The
resulting prediction models are often so constrained that they are not able to capture the general behavior of
composites, especially those arising in fibers [7, 8]. The accommodation of fibers’ mechanical responses was
absent from the literature until Spencer and Soldatos [9] included bending resistance of a fiber into the model of
deformations based on the non-linear strain-gradient theory [10–12]. A general theory for an elastic solid with
fibers resistant to flexure, stretch and twist is presented in [13] with the special restrictions that the gradient of
fiber stretch does not contribute to bending and twisting effects. In the present work, we develop a continuum
model in which the fibers accommodate elastic resistance to flexure and stretch. The fibers are treated as contin-
uously distributed spatial rods of the Kirchhoff type where the kinematics are based on their position field and
a director field. The variational computation along the length of a fiber accounts for flexure while the position
field provides the fiber’s stretch. We seek a complete model describing the finite plane deformation of fiber
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composites which offers fiber resistance to extension and flexure loading. Hence, we assume that the field of the
fibers’ directions is a plane field, with no components in the out-of-plane direction, and where the corresponding
deformation and all material properties are independent of the out-of-plane coordinate. The presented model
can serve as an alternative two-dimensional Cosserat theory of non-linear elasticity [10, 14–16].

The basic kinematics and constitutive framework are presented in Section 2. Via the computation of varia-
tional derivatives and the virtual-work statement, in Section 3 the corresponding equilibrium equation is derived
in which the bulk incompressibility condition is augmented in a weak sense. There we also consider an example
in the case of neo-Hookean materials. With the Euler equation satisfied, in Section 4 a rigorous analysis is con-
ducted regarding the necessary boundary conditions. To this end, we examine a special case where a composite
is reinforced by a single unidirectional fiber family. A set of numerical solutions is obtained via a finite element
analysis. The results are also compared with the experimental data demonstrating that the proposed model suc-
cessfully predicts the deformed configuration of a crystalline nanocellulose (CNC) fiber composite subjected to
three-point bending. A linear theory of the present model is discussed in Section 5. This includes the derivation
of the linearized Euler equation, corresponding boundary conditions and the constraint of material incompress-
ibility. In Section 6, a complete analytical solution of the linearized system is obtained for the case when the
fiber composite is subjected to uniform bending moment at its edge.

Throughout the manuscript, we use standard notation such as AT, A−1, A∗ and tr(A). These are the trans-
pose, the inverse, the cofactor and the trace of a tensor A, respectively. The tensor product of vectors is indicated
by interposing the symbol ⊗, and the Euclidean inner product of tensors A, B is defined by A · B = tr(ABT);

the associated norm is |A| =
√

A · A. The symbol |·| is also used to denote the usual Euclidean norm of vec-
tors. Latin and Greek indices take values in {1, 2} and, when repeated, are summed over their ranges. Lastly, the
notation FA stands for the tensor-valued derivatives of a scalar-valued function F(A).

2. Kinematics and constitutive framework

The present model is a special case of the work of [13] in which the author developed a model incorporating
fibers resistant to twist in addition to flexure and stretch. More precisely, the suggested model is intended for the
analysis of plane finite deformations of elastic solids reinforced with fibers resistant to extension and flexure. We
propose that the mechanical response of the fiber material is governed by the following strain energy function:

W (F, G) = Ŵ (F) + W (G), W (G) ≡
1

2
C (F) |g|2 , (1)

where F is the gradient of the deformation function (χ (X)) and G is the second gradient of the deformation (i.e.
G = ∇F). Equation (1) is consistent with the model proposed by Spencer and Soldatos [9] where, in the case
of a single family of fibers, the dependence of the strain energy on G occurs through g. The orientation of a
particular fiber is given by

λ = |d| and λτ = d; λ ≡
ds

dS
and τ ≡

dr(s)

ds
, (2)

where
d = FD, (3)

in which D is the unit tangent to the fiber trajectory in the reference configuration. Equation (3) can be derived
by taking the derivative of r(s) = χ (X(s)) upon making the identifications D = X′(s) and d = r′(s). Here primes
refer to derivatives with respect to arc length along a fiber in the reference configuration (i.e. (∗)′ = d(∗)/dS).
The expression for geodesic curvature of an arc (r (s)) is then obtained from equation (3) as

g ≡ r′′ = (FD)′ = F′D + FD′ = F′D =
dF

dX

(
dX

ds
⊗ D

)
= G(D ⊗ D), (4)

for initially straight fibers (i.e. D′ = 0). Also, equations (2) and (3) furnish

λ2 = FD · FD = FTFD · D = CD · D = C · D ⊗ D. (5)

The compatibility condition of F can be seen as

GiAB = FiA,B = FiB,A = GiBA. (6)
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Let us suppose that C(F) = C and

Ŵ (F) = W (I , ε) , where I = trC =λ2
1 + λ2

2and ε =
1

2

(
λ2 − 1

)
=

1

2
(C · D ⊗ D−1) . (7)

We then have

W (I , ε, g) = W (I , ε) +
1

2
C |g|2 = W (F, G). (8)

To compute response functions ∂W/∂FiA and ∂W/∂GiAB for use in the Euler equation and natural boundary
conditions, we use the chain rule

∂W

∂FiA

·
FiA +

∂W

∂GiAB

·
GiAB =

·
W , (9)

where the superposed dot refers to derivatives with respect to a parameter at a certain fixed value (e.g. ε = 0)
that labels a one-parameter family of deformations. Accordingly, in view of equation (8), we have that

·
W =

·
W (I , ε, g) = WI

·
I + Wε

·
ε + Wg · ·

g, (10)

in which we have used the fact that W depends on the deformation through I , ε and g; ultimately F and G. To
derive the required expressions, we use (7) and derive

·
I = [tr(C)

·
] = (I · C

·
) = I·

·
C = 2F·

·
F (11)

and (λ2
·
) = (FD · FD

·
). Then

·
ε =

·
λλ = FD ·

·
FD =tr(FD ⊗

·
FD) = tr((FD ⊗ D)

·
F

T

) = FD ⊗ D·
·
F. (12)

Thus we obtain
·

W = 2WIF·
·
F + Wε

·
λλ + Cg · ·

g

= 2WIF·
·
F + WεFD ⊗ D·

·
F + Cg · ·

g. (13)

But from (1)
·

W (G) = WG ·
·

G≡ (
1

2
C(F) |g|2

·
) = Cg · ·

g. (14)

Also, invoking (4), the above yields

WG ·
·

G = Cg · ·
g =

·
G · (Cg ⊗ D ⊗ D), (15)

where
·
g=

·
G(D ⊗ D),

·
D = 0 for initially straight fibers. Thus we derive that

∂W

∂GiAB

= CgiDADB. (16)

In order to accommodate bulk incompressibility, we introduce an augmented energy potential as

U(I , ε, g, p) = W (I , ε, g) − p(J − 1). (17)

Then
·

U =
·

W − ·
p(J − 1) − p

·
J =

·
W − p

·
J , ∵

·
p(J − 1) = 0 for J = 1. (18)

Further, since
·
J = ∂J

∂F
·

·
F = J

(
F−1

)T ·
·
F = F∗ ·

·
F, combining (13) and (18) furnishes

·
U = 2WIF·

·
F + WεFD ⊗ D·

·
F − pF∗ ·

·
F + Cg · ·

g. (19)

Consequently, from (14), the above can be written as

·
U = (2WIF + WεFD ⊗ D − pF∗) ·

·
F + WG ·

·
G, (20)

in which we have imposed fibers resistant to extension, flexure and the requisite bulk incompressibility.
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3. Equilibrium

The derivation of the Euler equation and boundary conditions in second-gradient elasticity is well studied
[10–12, 17]. We reproduce it here for the sake of clarity and completeness of the proposed model, in par-
ticular the connections between the applied loads and the deformations. The weak form of the equations of
equilibrium is given by the virtual-work statement

·
E = P, (21)

where P is the virtual work of the applied loads and the superposed dot refers to the variational derivative;

E =
∫

�

U (F, G) dA (22)

is the strain energy. We note here that conservative loads are characterized by the existence of a potential L

such that P =
·
L, and in the present case the problem of determining equilibrium deformations is reduced to the

problem of minimizing the potential energy E − L.
We have

·
E =

∫

�

·
U (F, G) dA, (23)

where
·

U is given by (20). Writing

WG ·
·

G =
∂W

∂GiAB

·
GiAB =

∂W

∂GiAB

·
FiA,B =

∂W

∂GiAB

ui,AB; ui ≡ ·
ri = ·

χ i, and

∂W

∂GiAB

ui,AB =
(

∂W

∂GiAB

ui,A

)

,B

−
(

∂W

∂GiAB

)

,B

ui,A, (24)

we obtain ∫

�

WG ·
·

G dA =
∫

�

(
∂W

∂GiAB

ui,A

)

,B

dA −
∫

�

(
∂W

∂GiAB

)

,B

ui,A dA. (25)

By virtue of the Green–Stokes theorem, (25) can be rewritten as

∫
WG ·

·
G dA =

∫

∂�

∂W

∂GiAB

ui,ANB dS −
∫

�

(
∂W

∂GiAB

)

,B

ui,A dA, (26)

where N is the rightward unit normal to ∂�. In addition, from (15)

∫
WG ·

·
G dA =

∫
∂W

∂GiAB

ui,ANB dS −
∫

Cgi,BDADB

·
FiA dA

= −
∫

�

C∇g(D ⊗ D)
·

·F dA +
∫

∂�

W T
G[

·
F]T · N dS. (27)

By combining (20), (23), and (27), we write

·
E =

∫

�

P
·

·F dA +
∫

∂�

W T
G[

·
F]T · N dS, (28)

where
P =2WIF + WεF(D ⊗ D) − pF∗ − C∇g(D ⊗ D), (29)

and hence the Euler equation
Div(P) = 0, (30)

which holds in �.
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3.1. Example: Neo-Hookean-type materials

In the case of incompressible neo-Hookean-type materials with augmented extensibility, the energy density
function can be expressed as

W = µI +
1

2
Eε2. (31)

Thus (5), (7) and (29) yield

P =2µF +
1

2
E(FD · FD−1)F(D ⊗ D) − pF∗ − C∇g(D ⊗ D), (32)

and the corresponding Euler equation is obtained as

PiA,A = 2µFiA,A +
1

2
E(FiB,AFjCFjD + FiBFjC,AFjD + FiBFjCFjD,A)DADBDCDD

−
1

2
EFiB,ADADB − p,AF∗

iA − Cgi,ABDADB = 0. (33)

If a fiber-reinforced material consists of a single family of fibers (i.e. D = E1, D1 = 1, D2 = 0) and is subjected
to plane deformations, (33) further reduces to

PiA,A = 2µFiA,A +
1

2
E(Fi1,1Fj1Fj1 + Fi1Fj1,1Fj1 + Fi1Fj1Fj1,1)

−
1

2
EFi1,1 − p,AF∗

iA − Cgi,11 = 0 for i, A = 1, 2, (34)

and

gi = Fi1,1, FiA =
∂χi

∂XA

and F∗
iA = εijεABFjB, (35)

where εij is the two-dimensional permutation; ε12 = −ε21 = 1, ε11 = −ε22 = 0. Therefore, equation (35)
together with the incompressibility condition (det F =1) furnishes a coupled partial differential equation (PDE)
system solving for χ1, χ2 and p (see appendix for details), that is,

2µ(χ1,11 + χ1,22) − p,1χ2,2 + p,2χ2,1 − Cχ1,1111 −
1

2
Eχ1,11

+
1

2
E(3χ1,11χ1,1χ1,1 + χ1,11χ2,1χ2,1 + 2χ2,11χ1,1χ2,1) = 0,

2µ(χ2,11 + χ2,22) − p,2χ1,1 + p,1χ1,2 − Cχ2,1111 −
1

2
Eχ2,11

+
1

2
E(3χ2,11χ2,1χ2,1 + χ2,11χ1,1χ1,1 + 2χ1,11χ2,1χ1,1) = 0,

χ1,1χ2,2 − χ1,2χ2,1 = 1. (36)

The numerical solution of the above PDE can be obtained via commercial packages (e.g. Matlab, COMSOL,
etc.). For demonstration purposes, a set of numerical solutions is obtained for a rectangular composite reinforced
with a single family of fibers (unidirectional) subjected to uniform bending and/or extension (see Figures 1–5).

We note here that data are obtained under the normalized setting (e.g. C
µ

= 150, E
µ

= 100, M
µ

= 5[L]3,

etc.). A comparison with experimental results is also presented when a CNC fiber composite (C = 150 GPa,
µ = 1 GPa) is subjected to three-point bending at −10 mm, 0 mm, and 10 mm. In the test, the out-of-plane
direction (x3) is aligned with the loading cylinder (see Figure 6). This is a special case of the proposed model,
when c � d and C/µ = 150 with vanishing E. The results successfully predict the normal deflections and
the corresponding deformation profiles of the CNC composite strip with configuration factor γ = 0.526[L]2

between the applied load and input stress in each simulation (i.e. σinput × γ = Loadapplied; see Figures 7 and 8).
In particular, Figure 7 illustrates a direct comparison with the bending experiment at maximum deflection 2.55
mm. Despite inevitable uncertainties (e.g. image processing and curve fitting, etc.), the resulting deformation
profiles from both the experiment and the theoretical simulation demonstrate close correspondence throughout
the domain of interest.
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Figure 1. Schematic of problem.

Figure 2. Deformed configurations with respect to C/µ when M/µ = 10, E/µ = 100.

Figure 3. Deformed contour (
√

χ2
1

+ χ2
2

) when C/µ = 150, E/µ = 100 and M/µ = 10.

4. Boundary conditions

From (28), we have

·
E =

∫

�

PiA

·
FiA dA +

∫

∂�

∂W

∂GiAB

·
FiANB dS.

Decomposing the above as in (24) furnishes

·
E =

∫

∂�

[PiAuiNA +
(

∂W

∂GiAB

ui,A

)
NB] dS −

∫

�

PiA,Aui dA. (37)
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Figure 4. Deformed configurations with respect to E/µ when C/µ = 150, P11/µ = 50.

Figure 5. Deformation contour (

√
χ2

1 + χ2
2 ) when C/µ = 150, E/µ = 100 and P11/µ = 50.

Figure 6. Deformation profile (image processing) at 2.55 mm: CNC fiber composite.

With the Euler equation (PiA,A = 0) satisfied on �, we have

·
E =

∫

∂�

PiAuiNA dS +
∫

∂�

(
∂W

∂GiAB

ui,A

)
NB dS. (38)

Now, we make use of the normal–tangent decomposition of ∇u as

∇u =∇u(T ⊗ T)+∇u(N ⊗ N) = u′⊗T + u,N⊗N (39)
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Figure 7. Comparison: Theoretical prediction vs experimental result at 2.55 mm.

Figure 8. Deformation profiles with respect to σγ : Theoretical prediction and three-point bending experiment.

where T = X
′
(s) = k × N is the unit tangent to ∂w, and u

′ = du(X (s))/ds and u,N are the tangential and

normal derivatives of u on ∂w (i.e. u
′
i = ui,ATA, ui,N = ui,ANA). Then, equation (38) can be rewritten as

·
E =

∫

∂�

PiAuiNA dS +
∫

∂�

∂W

∂GiAB

(
u

′
iTANB + ui,N NANB

)
dS. (40)

Since

∂W

∂GiAB

TANBu
′
i =

(
∂W

∂GiAB

TANBui

)′

−
(

∂W

∂GiAB

TANB

)′

ui,

we arrive at

·
E =

∫

∂�

[PiANA −
(

∂W

∂GiAB

TANB

)′

]ui dS +
∫

∂�

∂W

∂GiAB

ui,N NANB dS +
∫

∂�

(
∂W

∂GiAB

TANBui

)′

dS. (41)

With the results in (16), the above becomes

·
E =

∫

∂�

{
PiANA − (CgiDATADBNB)

′
}

ui dS +
∫

∂�

CgiDANADBNBui,N dS −
∑

‖CgiDATADBNBui‖ , (42)
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where the double bar symbol refers to the jump across the discontinuities on the boundary ∂� (i.e. ‖∗‖ =
(∗)+ − (∗)−) and the sum refers to the collection of all discontinuities.

It follows from (21) that admissible powers are of the form

P =
∫

∂wt

tiui dS +
∫

∂w

miui,N dS +
∑

fiui. (43)

By comparing (42) and (43), we obtain

t = PN−
d

ds
[Cg(D · T)(D · N)] ,

m = Cg(D · N)2,

f = Cg(D · T)(D · N), (44)

which are expressions for the edge tractions, the edge moments and the corner forces, respectively. For example,
if the fibers’ directions are either normal or tangential to the boundary (i.e. (D · T)(D · N) = 0), (44) further
reduces to

ti = PiANA,

mi = CgiDANADBNB,

fi = 0, (45)

where

PiA = 2µFiA +
1

2
E(FjCFjDDCDD − 1)(FiBDBDA) − pF∗

iA − Cgi,BDBDA,

gi = FiA,BDADB. (46)

5. Linear theory

We consider superposed “small” deformations as

χ = χo + ε
·
χ ; |ε| � 1, (47)

where (∗)o denotes configuration of ∗ evaluated at ε = 0 and (
·∗) = ∂(∗)/∂ε. (Not to be confused with the

notation adopted for the variational computation.) In particular, we denote
·
χ = u. Then, the deformation

gradient tensor can be written as

F = Fo + ε∇u, where
·
F = ∇u. (48)

We assume that the body is initially undeformed and stress-free at ε = 0 (i.e. Fo = I and Po = 0). Then,
equation (48) becomes

F = I + ε∇u, (49)

and we successively obtain
F−1 = I − ε∇u+o(ε), (50)

J = det F =1 + ε div u+o(ε). (51)

Further, in view of equation (47), equation (30) can be rewritten as

Div(P) = Div(Po) + εDiv(
·
P) + o(ε) = 0. (52)

Dividing the above by ε and letting ε → 0, we obtain

Div(
·
P) = 0 (53)
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which serves as the linearized Euler equation. Now, from equation (29), we evaluate the variation of P with
respect to ε as

·
P = 2(WII

·
I + WIε

·
ε)Fo + 2(WI )o

·
F − ·

pF∗
o − po

·
F∗

+[(Wεε

·
ε + WεI

·
I)Fo+(Wε)o

·
F − C∇ ·

g](D ⊗ D). (54)

In view of (31), the above further reduces to

·
P=2µ

·
F − ·

pF∗
o − po

·
F∗ + [E

·
εFo+Eεo

·
F − C∇ ·

g](D ⊗ D). (55)

Evaluating limits at ε = 0 yields

·
P=2µ

·
F − ·

pI − po

·
F∗ + [E

·
εI − C∇ ·

g](D ⊗ D), (56)

where po = 2µ to recover the initial stress-free state at ε = 0. Thus, equations (12), (53) and (56) furnish

·
p,iei = 2µḞiA,Aei + EḞjA,BDADBDiDjei − CḞiA,BCDDADBDCDDei. (57)

We note that, in the superposed incremental deformations, there is no clear distinction between the current and
deformed configurations (i.e. eα= Eα). For a single family of fibers (i.e. D = E1, D1 = 1, D2 = 0), (57)
reduces to ·

p,iei = 2µui,AAei + Eu1,11e1 − Cui,1111ei. (58)

In addition, the corresponding incompressibility condition reduces to

(J − 1)· = F∗
o ·

·
F = div u = 0, (59)

which, together with equation (58), serves as a compatible linear model of equation (36) for small deformations.

Finally, the boundary conditions in equation (44) can be linearized similarly to the above (e.g. t = to +ε
·
t+o(e),

etc.):

·
t =

·
PN−

d

ds

[
C

·
g(D · T)(D · N)

]
,

·
m = C

·
g(D · N)2,

·
f = C

·
g(D · T)(D · N). (60)

In particular, if the fiber’s directions are either normal or tangential to the boundary (i.e. (D · T)(D · N) = 0),
equation (60) further reduces to

·
ti =

·
PiANA,

·
mi = C

·
giDANADBNB,

·
f i = 0, (61)

and
·
PiA = 2µḞiA − ·

pδiA − poF∗
iA + EḞjBDADBDiDj − C

·
gi,BDADB, (62)

where
·
gi = ḞiA,BDADB and (F∗

iA)o = δiA. Lastly, since J∂F∗
jB/∂FiA = F∗

jBF∗
iA − F∗

iBF∗
jA at Fo= I we obtain

(∂F∗
jB/∂FiA)o = δjBδiA − δiBδjA and (F∗

F[
·
F])jB = (δjBδiA − δiBδjA)ui,A. (63)

Thus
·

F∗
iA = (Divu)δiA − uA,i = −uA,i, (64)

where Divu = div u = 0 from the linearized incompressibility condition.
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6. Solution to the linearized equation

We introduce scalar field φ as

u = k × ∇φ, k(unit normal); ui = ελiφ,λ, (65)

so that equation (59) can be automatically satisfied (i.e. φ,12−φ,21 = 0). From (65), the linearized Euler equation
(equation (58)) can be rewritten as

·
p,i = 2µελiφ,λAA − Eφ,211δi1 − Cελiφ,λ1111. (66)

By utilizing the compatibility condition for
·

p,i (i.e.
·

p,ij = ·
p,ji), we obtain the following partial differential

equation:

1[1φ −
α

2
φ,1111] +

α

2
φ,1122 = 0, where β =

E

µ
, α =

C

µ
> 0 (material constants). (67)

We note here that the solution of the above equation can not be accommodated by conventional methods such
as the separation of variables method, Fourier transform and polynomial solutions. In view of the solution of the
modified Helmholtz equation, we assume that φ takes the form of φ = X (x) sin(my) and obtain

φ(x, y) =
∞∑

m=1

[{AmexT + Bme−xT + eamx(Cmcosbmx + Dm sinbm x) +

e−amx(Emcosbmx + Fm sin bm x)} × (sin my)], (68)

where

am =

√√√√√
√(√

3
2

(
P
Q

+ Q
))2

+
(
−Q

2
+ P

2Q
− B

3A

)2

+
(
−Q

2
+ P

2Q
− B

3A

)

2
,

bm =

√√√√√
√(√

3
2

(
P
Q

+ Q
))2

+
(
−Q

2
+ P

2Q
− B

3A

)2

−
(
−Q

2
+ P

2Q
− B

3A

)

2
,

m =
πn

2d
, A =

α

2
, B =

(
1 +

α

2
m2
)

, D = −m2(2 +
β

2
),

Q =



((

D

3A
−

B2

9A2

)3

+
(

B3

27A3
+

m4

2A
−

B.D

6A2

)2
) 1

2

−
B3

27A3
−

m4

2A
+

BD

6A2




1
3

and P = D
3A

− B2

9A2 , T =
(

Q − P
Q

− B
3A

) 1
2

. The unknown constant real numbers Am, Bm, Cm, Dm, Em and Fm

can be completely determined by imposing the admissible boundary conditions given in equations (61) to (64).
The corresponding stress and displacement fields can be also determined through equations (62), (65) and (66)
(e.g. u1 = −φ,2, u2 = φ,1, etc.). For example, in the case of symmetric bending (see Figure 1), we have

·
m = ·

m1e1 + ·
m2e2,

·
m1 = 5 u

30∑

n=1

20

πn
(−1)

n−1
2 cos(

πn

2d
)ye1,

·
m2 = 0, (69)

and
D = D1E1 + D2E2, D1 = 1, D2 = 0. (70)
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Figure 9. Deformation profiles with respect to C/µ when M/µ = 5 and E/µ = 50.

Figure 10. Deformation profiles with respect to M/µ when C/µ = 150 and E/µ = 50.

Figure 11. Deformed configuration of the fiber composite when C/µ = 150, E/µ = 100 and M/µ = 5.

Thus

·
m1 = Cu1,11 = −φ,211 =

30∑

n=1

20

πn
(−1)(n−1)/2 cos

(πn

2d

)
y

·
m2 = Cu2,11 = φ,111 = 0, (71)

and similarly for the symmetry (about the y-axis) and continuity conditions. Here, the applied moment is
approximated using Fourier series (see equation (69)) indicating fast convergence (within 30 iterations) and
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Figure 12. Solutions of the bending problem with C/µ = 150 and E/µ = 100. Nonlinear solution: dashed line; linear solution: solid

line.

the corresponding results are summarized in Figures 9 to 12. Despite the inherent complexities of the presented
PDE, the solution demonstrates reasonable deformation profiles for the domain of interest with sufficient sensi-
tivities to the parameters C, µ, E and M (see Figures 9 and 10). In addition, the analytical (linear) solution shows
good agreement with the non-linear solution (finite element method) for the small deformation regime, while
larger values of M induce a significant discrepancy between the linear and non-linear solutions (see Figure 12).

Acknowledgements

Author Chun IL Kim would like to thank Dr David Steigmann for stimulating his interest in this subject and for his continual support

and encouragement during and following a postdoctoral fellowship at the University of California, Berkeley, CA. The author would also

like to thank Dr Cagri Ayranchi and Ms Erina Garance for the experimental data.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This

work was supported by the Natural Sciences and Engineering Research Council of Canada (grant #RGPIN 04742) and the University

of Alberta, Canada, through a start-up grant.

References

[1] Adkins, JE. Finite plane deformation of thin elastic sheet reinforced with inextensible cords. Phil Trans R Soc Ser A 1956; 249:

125–150.

[2] Ericksen, JL, and Rivlin, RS. Large elastic deformations of homogeneous anisotropic materials. J Rat Mech Anal 1954; 3:

281–301.

[3] Spencer, AJM. Deformations of fibre-reinforced materials. Oxford: Oxford University Press, 1972.

[4] Pipkin, AC. Stress analysis for fiber-reinforced materials. Adv Appl Mech 1979; 19: 1–51.

[5] Mulhern, JF, Rogers, TG and Spencer, AJM. A continuum model for fibre-reinforced plastic materials. Proc R Soc Lond A 1967;

301: 473–492.

[6] Dow, NF (1963) Study of stresses near a discontinuity in a filament-reinforced composite material. Gen Elect Co Report number

R63-SD-61.

[7] Mulhern, JF, Rogers, TG and Spencer, AJM. A continuum theory of a plastic-elastic fibre-reinforced material. Int J Eng Sci 1969;

7: 129–152.

[8] Pipkin, AC, and Rogers, TG. Plane deformations of incompressible fiber-reinforced materials. ASME J Appl Mech 1971; 38(8):

634–640.

[9] Spencer, AJM and Soldatos, KP. Finite deformations of fibre-reinforced elastic solids with fibre bending stiffness. Int J Non-Lin

Mech 2007; 42: 355–368.

[10] Toupin, RA. Theories of elasticity with couple stress. Arch Rat Mech Anal 1964; 17: 85–112.

[11] Mindlin, RD, and Tiersten, HF. Effects of couple-stresses in linear elasticity. Arch Rat Mech Anal 1962; 11: 415–448.

[12] Koiter, WT. Couple-stresses in the theory of elasticity. P K Ned Akad Wetensc B 1964; 67: 17–44.

[13] Steigmann, DJ. Theory of elastic solids reinforced with fibers resistant to extension, flexure and twist. Int J Non-Lin Mech 2012;

47: 743–742.



14 Mathematics and Mechanics of Solids 00(0)

[14] Truesdell, C, and Noll, W. The non-linear field theories of mechanics. In: Flugge, S (ed.) Handbuch der Physik, vol. III/3. Berlin:

Springer, 1965.

[15] Reissner, E. A further note on finite-strain force and moment stress elasticity. Z Angew Math Phys 1987; 38: 665–673.

[16] Pietraszkiewicz, W, and Eremeyev, VA. On natural strain measures of the non-linear micropolar continuum. Int J Solid Struct

2009; 46: 774–787.

[17] Germain, P. The method of virtual power in continuum mechanics, part 2: Microstructure. SIAM J Appl Math 1973; 25: 556–575.

Appendix 1: Finite element analysis of the fourth-order coupled PDE

It is not trivial to demonstrate numerical analysis procedures for coupled PDE systems, especially for those with
high-order terms. For pre-processing, equation (36) can be expressed as

µ
(
R + χ1,22

)
− Aχ2,2 + Bχ2,1 − CR,11 −

1

2
EQ +

1

2
E(3Qχ1,1χ1,1 + Qχ2,1χ2,1 + 2Rχ1,1χ2,1) = 0,

µ
(
Q + χ2,22

)
+ Aχ1,2 − Bχ1,1 − CQ,11 −

1

2
ER +

1

2
E(3Rχ2,1χ2,1 + Rχ1,1χ1,1 + 2Qχ2,1χ1,1) = 0,

Cχ2,2 − Dχ1,2 − 1 = 0,

Q − χ1,11 = 0,

R − χ2,11 = 0,

C − χ1,1 = 0,

D − χ2,1 = 0,

A − µ(χ1,11 + χ1,22) − CR,11 = 0,

B − µ(χ2,11 + χ2,22) − CQ,11 = 0,

(72)

where Q = χ1,11, R = χ2,11, C = χ1,1, and D = χ2,1. The non-linear terms in the above can be replaced by

−Aχ2,2 + Bχ2,1 =⇒ −A0χ2,2 + B0χ2,1

Aχ1,2 − Bχ1,1 =⇒ A0χ1,2 − B0χ1,1

Cχ2,2 − Dχ2,1 =⇒ C0χ2,2 − D0χ2,1, (73)

where the values of A, B and C continue to be refreshed based on their previous estimations (Ao, Bo and Co) as
iteration progresses. Therefore, the weak form of (72) is obtained by

0 =
∫

�

(µw1R − µw1,2χ1,2 − w1A0χ2,2 + w1B0χ2,1 + Cw1,1R,1 −
1

2
Ew1Q

+
1

2
Ew1(3QC2

0 + QD2
0 + 2RC0D0)) d� +

∫

∂0

(µw1χ1,2)N d0 −
∫

∂0

(Cw1R,1)N d0,

0 =
∫

�

(µw2Q − µw2,2χ2,2 + +w2A0χ1,2 − w2B0χ1,1 + Cw2,1Q,1 −
1

2
Ew2R

+
1

2
w2E(3RD2

0 + RC2
0 + 2QD0C0)) d� +

∫

∂0

(µw2χ2,2)N d0 −
∫

∂0

(Cw2Q,1)N d0,

0 =
∫

�

C0w3χ2,2 − D0w3χ1,2 − w3) d�,

0 =
∫

�

(w4Q + w4,1χ1,1) d� −
∫

∂0

(w4χ1,1)N d0,
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0 =
∫

�

(w5R + w5,1χ2,1) d� −
∫

∂0

(w5χ2,1)N d0,

0 =
∫

�

(w6C − w6χ1,1) d�,

0 =
∫

�

(w7D − w7χ2,1) d�,

0 =
∫

�

(w8A + µw8,1χ1,1 − µw8,2χ1,2 + Cw8,1R,1) d� −
∫

∂0

(µw8χ1,1)N d0

+
∫

∂0

(µw8χ1,2)N d0 −
∫

∂0

(Cw8R,1)n d0,

0 =
∫

�

(w9B + µw9,1χ2,1 − µw9,2χ2,2 + Cw9,1Q,1) d� −
∫

∂0

(µw9χ2,1)N d0

+
∫

∂0

(µw9χ2,2)N d0 −
∫

∂0

(Cw9Q,1)N d0, (74)

where the unknowns χ1, χ2, Q1, R1, A and B can be written in the form of a Lagrangian polynomial such
that (∗) =

∑n
j=1[(∗)j9j(x, y)]. Further, �, ∂0 and N are the domain of interest, the associated boundary, and

the rightward unit normal to the boundary ∂0 in the sense of the Green–Stokes theorem, respectively. The
corresponding test function w is given by

w =
∑

wi9i(x, y), (75)

where wi is the weight of the test function and 9i(x, y) are the shape functions; 91 = (x−c)(y−d)

cd
, 92 =

x(y−d)

−cd
, 93 = xy

cd
and 94 = y(x−c)

−cd
. Here c and d are dimensions of the domain as illustrated in Figure 1. Using

Lagrangian polynomial representation, the first equation of (74) can be rearranged as

0 =
∑

{
∫

�

(µ9i9j + C9i,19j,1) d�}Rj −
∑

{
∫

�

(µ9i,29j,2) d�}χ1j

−
∑

{
∫

�

(9iA09j,2 + 9iB09j,1) d�}χ2j +
∑

{
∫

�

−(
1

2
E9i +

1

2
E9i(3C2

0 + D2
0) d�}Qj

+
∑

{
∫

�

1

2
E9i(2C0D0)) d�}Rj +

∫

∂0

(µ9iχ1,2)N d0 −
∫

∂0

(C9iR,1)N d0, (76)

and similarly for the rest of the equations. Consequently, we obtain the following systems of equations:



[
K11

] [
K12

] [
K13

] [
K14

] [
K15

] [
K16

] [
K17

] [
K18

]
[
K21

] [
K22

] [
K23

] [
K24

] [
K25

] [
K26

] [
K27

] [
K28

]
[
K31

] [
K32

] [
K33

] [
K34

] [
K35

] [
K36

] [
K37

] [
K38

]
[
K41

] [
K42

] [
K43

] [
K44

] [
K45

] [
K46

] [
K47

] [
K48

]
[
K51

] [
K52

] [
K53

] [
K54

] [
K55

] [
K56

] [
K57

] [
K58

]
[
K61

] [
K62

] [
K63

] [
K64

] [
K65

] [
K66

] [
K67

] [
K68

]
[
K71

] [
K72

] [
K73

] [
K74

] [
K75

] [
K76

] [
K77

] [
K78

]
[
K81

] [
K82

] [
K83

] [
K84

] [
K85

] [
K86

] [
K87

] [
K88

]
[
K91

] [
K92

] [
K93

] [
K94

] [
K95

] [
K96

] [
K97

] [
K98

]







χ1

χ2

Q
R
A
B
C
D




=




{F1}
{F2}
{F3}
{F4}
{F5}
{F6}
{F7}
{F8}
{F9}




, (77)

where the expressions of
[
K ij
]

and Fi can be obtained via the standard finite element analysis procedures, for
example

[
K11

]
=
∫

�

(µ9i,29j,2) d�,

and

{F1} = −
∫

∂0

(µ9iχ1,2)N d0 +
∫

∂0

(C9iR,1)N d0.




