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Abstract

| studied arthropod diversity inhabiting Populus coarse woody material
from aspen-mixedwocd forests in north-central Alberta. More than 39,000
arthropods, primarily from the Acari, Collembola, Coleoptera, and Diptera,
were collected between 1993 and 1995. Detailed analyses were rectricted to
the 257 saproxylic beetle species collected from rearings from wood and
window-traps placed on snags. Beetle species richness and trophic structure
was similar between collection methods; however, beetle abundance and the
specific fauna collected ditfered between methods.

Spatial and temporal scale greatly influenced the distribution of
saproxylic beetles across the landscape. Species richness and abundance
was similar between regions, although there was a turnover in the particuiar
fauna collected. Although standardized beetle abundance was higher in
mature stands, faunal richness was higher in old-growth stands. Ailso, there
was higher fungivore abundance in mature stands, and higher predator
abundance in old stands, suggesting a change in the fauna during stand
succession. Species diversity was similar in wood differing in decay, but a
significant amount of niche partitioning occurred because there was a shift in
species composition from minimally decayed to advanced decayed wood.
Logs had slightly higher species diversity than snags, but snags tended to
have a higher proportion of wood borers. Temporal variation also influenced
catches of saproxylic beetles, suggesting that several years of collecting is
required to adequately assess and monitor the fauna from dead wood.

Forest harvesting initially increased the diversity and abundance of
saproxylic beetle assemblages. The beetle fauna collected from harvested
old stands was more similar to old forest stands than to harvested mature
stands, suggesting that faunal composition is not much affected for at least
two years post-harvest. Implications of these findings for forest management
are discussed.

Arthropods did not initially increase the rate ot decomposition of new
dead wood, but a unique fauna was associated with this resource. Three
beetle species were abundant, and two more specialized, on new dead
wood. Snags had a higher proportion of wood borers, and stumps and logs
a higher proportion of predators, suggesting dispersal capabilities influence
the fauna in dead wood.
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1. Background and Introduction
1.1 What is biodiversity?

The term 'biodiversity' was coined by Walter Rosen in 1986 for the
National Forum on Bicdiversity, and was defined as "the totality of
hereditary variation in life forms, across all levels of biological
organization, from genes to chromosomes within individual species, to the
array of species themselves, to entire ecological communities”
(paraphrased from Wilson, 1994 pg. 359; Wheeler, 1990), and has since
been adopted by both the scientific community and the public. The
concept of ‘biological diversity’ had been recognized for some time, with
researchers in many disciplines defining and quantifying diversity
differently. For example, geneticists focused on the hereditary aspects of
biodiversity, genetic diversity, as the allelic or genotypic diversity within a
population (Burton et al., 1992; Harris and Silva-Lopez, 1992); while
others focused on how genetics and environment interact resulting in
phenotypic diversity, referring to genotypic diversity and the morphological
combinations resulting from the environmental context at which the
genome occurs (Harris and Silva-Lopez, 1992). Ecologists extended
these definitions further to describe diversity at different spatial scales, for
instance alpha diversity refers to the number of species within a given
community, site type, or ecosystem; beta diversity is the measure of the
change of species spatially across larger areas, such as ecosystems; and
gamma diversity, or landscape diversity, refers to species composition on
similar site types across different regions (Boyle, 1992). The fundamental
concept underlying these ecological definitions of biodiversity is that
diversity is a function of the number of species and their abundance. This
thesis focuses on these two constituents of the biodiversity concept in the
context of development of species inventories for communities within the
boreal mixedwood forest, and exploration of natural and man-made
processes that determine community structure.

1.2 Current knowledge: a species inventory

Many estimates of the number of extant species have been ventured
over the last two decades (Erwin, 1983; Wilson, 1988; 1992). Wilson
(1985) admits that "...we do not know the true number of species on Earth,
not even to the nearest order of magnitude”; but has estimated that the total



number of species lies between 5-30 million (Wilson, 1988). Erwin (1983)
estimated, based on his collections of insects from the canopies of trees in
tropical rain forests, that there are over 30 million species of insects alone.
If Erwin's estimate of 30 million insect species is correct, of which only
750,000 have been described (Wilson, 1988), that means approximately
97.5% of all insect species are undescribed. Most undescribed species
are microorganisms (viruses, bacteria, and protozoans), the invertebrates,
and lower plants (including the fungi). Furthermore, we really know very
little about the biology of the vast majority of the species that have been
described. At the current level of resources devoted to taxonomy and
systematics, it will require hundreds of years to even fully describe the
global biota, let alone explore the biology of each species. Sadly, if
current trends continue, most of this biodiversity will be lost before it has
been described.

1.2.1 The biodiversity crisis

Loss of biodiversity has become a global concern (Wilson, 1988,
1992, 1994; Wheeler, 1990; Burton et al., 1992). Species are the basic
building blocks of food webs, communities and ecosystems. Species are
important to the ecosystem in many ways. A few important examples
include: as integral components of nutrient cycles (Krebs, 1978), as
measures of environmental quality and detoxification of polluted systems
(Bishop and Cook, 1981), and key players in decomposition processes
(Crossley, 1976; Holldobler and Wilson, 1990). In addition, species have
their own intrinsic value. The many taxa that comprise the biological
communities within ecosystems are the 'nuts and bolts' responsible for its
function, health and resilience following disturbance. Excessive loss of
species will alter properties of ecosystems and compromise their ability to
rebound following disturbance. Given our poor knowledge of the
ecological roles of most species, extreme caution is recommended to
prevent thoughtless loss of potentially important components of
ecosystems.

From a human perspective, species are important as long term food
resources and as sources of pharmaceuticals. Approximately 90% of food
consumed by humans comes from 15 main plant species and eight animal
species (Pimental et al., 1992), even though several thousand other plant



species are consumed by humans, and hundreds of other animal specie:s
are available as food reserves. Many species are crucial to medicine,
mainly by their use in developing new and superior pharmaceutical agents
(Wilson, 1992). Over 40% of pharmaceuticals in use in the United States
are derived from other species, of which 25% are extracted from plants,
13% percent from microorganisms and 3% from animals (Wilson, 1992).
Hundreds of prescript~n drugs have been formulated from newly
discovered tropical plants and by the advice given by aboriginals who
have used their healing powers for thousands of years (Wilson, 1992).

The reduction in species number is chiefly due to escalation of
human numbers, movement of humans into previously unsettled areas,
and industrialization that has destroyed previously pristine habitats
(Wilson, 1992; Pimental et al, 1982). As the human population grows,
increased stress is placed on the environment because each new person
competes with the earth’s biota for space and resources (Pimental, 1992);
thus, driving species loss and extinction. Humans are constantly exploring
new areas which results in the exploitation of previously unused
resources, habitat destruction, pollution and the introduction of species into
non-native areas, sometimes resulting in competitive exclusion of native
species. The key to preserving biodiversity requires (from Wilson, 1988,
1992; Pimental et al., 1992):

1) development of measurement and monitoring tools for assessing

the role organisms play in the environment.

2) development and encouragement of ecologically sound

management practices in resource-based industries to protect

habitat and promote sustainable development.

3) encouragement of family planning ir an attempt to control

human population growth.

4) education of society to value biological diversity and to express

their concerns to scientists, farmers, foresters, industrialists, policy

makers and concerned people.
1.3 Biodiversity research in the boreal forest of Alberta

The northern boreal forest in Canada extends from the Maritimes in
the east, south through Quebec and Ontario, and north-west through the
prairies up into northern Yukon. This region contains a mosaic of different



forest types, from the vast northern subarctic coniferous forests including
such species as white spruce (Picea glauca (Moench) Voss), black spruce
(P. mariana (Mill.) B.S.P.), tamarack (Larix /laricina (Du Roi) K. Koch) and
balsam fir (Abies balsamea (Linn.) Mill.)., to the more southern aspen
grove, or more commonly aspen-mixedwood or boreal mixedwood
ecotone (Figure 1-1), with such characteristic species as trembling aspen
(Populus tremuloides Michx.), balsam poplar (P. balsamifera L.) and
paper birch (Betula spp.) (Scudder, 1979). Hunting, trapping and fishing
by many aboriginal groups have been the traditional land uses of this area
(Stelfox, 1995).

The province of Alberta, in the last several decades, has seen a
dramatic increase in use of aspen and poplar as economically valued tree
species. Much of Alberta's aspen-mixedwood forests have been allocated
for harvest of aspen, poplar and white spruce for pulp, paper, and oriented
strand board (Figure 1-2) (Stelfox, 1995). In 1971, harvesting of aspen
and poplar represented only 2% of the annual cut, but over the last 23
years has dramatically increased to 73% in 1994 (Peterson and Peterson,
1992; Alberta Land and Forest Service, 1994). The forest industry in
Alberta generates approximately $456 million in wages, $846 million from
export and lumber, and employs over 29,000 people (Anonymous, 1993).
Because this forest type in Aiberta, and subsequently Canada, has never
been previously exploited, there are no projections on the effects of large
scale aspen-based forestry on ecosystem health.

Proposed development of the aspen-mixedwood forest in Alberta
has evoked concern over the effects of large scale disturbance upon the
flora and fauna of this region. A multi-disciplinary study was set up in 1992
to research the structure and biodiversity of habitats found in aspen-
mixedwood forests. The study included work on climate, coarse woody
material dynamics, understory floral species composition and dynamics,
and bird and mammal composition within these forests (Stelfox, 1995).
Arthropods, including the epigaeic and phytophagous insect communities
were also studied (Spence and Langor, 1994; Spence et al, 1997). One
community that was targeted as potentially sensitive to disturbance was
the arthropods that decompose coarse woody material.

1.4 Coarse woody material and biodiversity



1.4.1 Definitions and roles of coarse woody material

Coarse woody material (CWM) is the term given to the various forms
of clearly discernible rotting wood found in forested and stream
ecosystems (Harmon et al., 1986). Coarse woody material includes snags,
which are standing dead trees, stumps, which are the basal portion oi
snags (or snags less than about 2 m tall), and logs, which are fallen snags,
as well as the large branches and coarse root systems of trees (Harmon et
al., 1986). Factors that create CWM include: 1) wind, which uproots or
snaps trees and breaks branches, or kills single trees or clusters of trees;
2) fire, which directly girdles stems, scorches crowns, and burns root
systems; 3) insect pests, which girdle stems, repeatedly defoliate trees
which causes stress and predisposes the tree to attack by other insects or
disease, and introduces pathogens; 4) diseases, which interrupt water
and nutrient movement through the tree, or cause premature decay; and 5)
suppression and competition; mortaiity due to slow growth by competition
by other trees (Harmon et al., 1986).

Many ecological roles are served by CWM in the forest ecosystem,
and understanding of these roles is crucial to forest management. First,
CWM affects geomorphology, through effects on topography and land
forms, and on transnort and storage of soil and sediment (Harmon et al.,
1986). Root throw of uprooted trees results in substantial soil mixing and
heterogeneity, whereas logs and stumps with their associated root systems
can control downslope movement of water and litter, and can act to hold
soil together preventing soil erosion.

A second major role of CWM is its influence on terrestrial nutrient
cycles and carbon budgets. Snags and logs account for up to 45% of all
above ground organic matter storage; and are responsible for up to 21% of
above ground nitrogen, phosphorus and calcium storage (Harmon et al.,
1986). Foliage is recognized as the primary organic matter input in aspen-
mixedwood systems, but tree death is responsible for 24-39% of total
organic matter returned to forest floors (Peterson and Peterson, 1992).
Wood is qualitatively different from other organic inputs to the soil, and thus
plays important ecological roles independent of its function in organic
matter build up and nutrient cycling. Once wood has died, insects, fungi,



and bacteria act to break the wood down and return the nutrients to the
soil.

Third, CWM provides habitat for other organisms (Harmon et al.,
1986). Many autotrophic taxa are associated with CWM and include:
green algae, diatoms, blue-green algae, fungi, lichens, liverworts, mosses,
clubmosses, horsetails, ferns, gymnosperms and angiosperms. There are
many ways in which plants can use CWM: some plants simply spread their
roots along the surface of the wood, and are thus considered epiphytes;
others have roots that easily invade rotting wood and can extract large
amounts of water and nutrients; others root on the fine mat of litter that can
accumulate on the top of logs and stumps; and some shade-tolerant
species, such as white spruce, are dependent on CWM for regeneration.
Plants growing on CWM add organic matter as they die, or trap fine litter
that would most likely be lost from the wood surface (Harmon e al., 1986).

Coarse woody material is well documented as habitat for small and
large vertebrate species (Cunningham et al., 1980; Brady, 1983; Winternitz
and Cahn, 1983; Reynolds et al., 1985; Ralph et al., 1991). Rotten trees
provide holes and cavities for many nesting birds to build nests and raise
young. These same cavities are also available as nesting sites for bat
species (Stelfox, 1995). Many amphibians, reptiles and smalli mammals
nest in moist logs, or simply use them as hunting grounds to find their prey
(Stelfox, 1995).

In addition to the other plant and vertebrate species, many
invertebrate species are also associated with coarse woody material.
These invertebrate species are responsible for wood decomposition, either
directly, in the case of wood feedars, or indirectly, as vectors of pathogenic
fungi (Reichle, 1977). Interactions between the multitude of bacteria, fungi
and arthropods profoundly affect the initiation and rate of wood decay
(Reichle, 1977).

1.4.2 Saproxylic invertebrates and the loss of biodiversity

A saproxylic invertebrate is one that is dependent during some part
of its lifecycle upon: 1) wood, phloem or bark of moribund or dead trees
(standing or fallen) for shelter or food; 2) wood-inhabiting fungi for food:; or
3) the presence of other saproxylics in mutualistic, symbiotic, predatory or
parasitic relationships (Speight, 1989). Saproxylic species are profoundly



affected by habitat fragmentation due to forest harvesting, agriculture,
oil/gas exploration and other human activities (Helidvaara and Véaisanen,
1984, Speight, 1989; Mikkola, 1991; Warren and Key, 1991). In Europe,
centuries of forest harvesting and subsequent replanting of native and
non-native conifer tree species have been implicated in an 80% drop in
faunal diversity, especially among the saproxylic community (Speight,
1989).

Previous studies of saproxylic communities have focused on those
associated with conifer species (Graham, 1925; Savely, 1939; Wallace,
1953), presumably due to their economic value. Aspen and poplar are
increasingly important economic tree species in Alberta. The high
percentage of biomass composed of non-marketable wood in mature
aspen-mixedwood forests (Peterson and Peterson, 1992) suggests that we
shou!d know more about the saproxylic biota in order to evaluate the
importance of CWM in mixedwood forests. Arthropods are an appropriate
model for study because: “' they are taxonomically and ecologically
diverse, and include species that are endemic to localized areas and
microhabitats, 2) most have large population sizes, 3) they are easy to
sample using simple and inexper:»ive methods, and 4) they can be stored
indefinitely and inexpensively for future study (Kremen et al, 1993).
Arthropods are also sensitive to environmental variation, and are thus
potentially good ‘indicator' species for assessing the effects of habitat
perturbations (Kremen et al., 1993).

Saproxylic arthropods are essential elements of forest ecosystems.
Their roles in nutrient cycling and decomposition may influence long-term
forest productivity and sustainability. Thus it is aiso important to determine
how forestry activity affects the diversity of saproxylic species in forest
communities.

1.5 Overall objectives of thesis

The general objectives of this study are :

1) To describe the saproxylic arthropod community found in CWM
originating from Populus tremuloides Michx. and P. balsamifera L. in the
boreal mixedwood forests in central and northern Alberta, and to review
and critique the various methods of collecting this fauna.



2) To describe variation in the Coleoptera fauna associated with CWM at
several spatial scales: between regions (Lac la Biche and Eureka River),
between different age classes of forest stands, between varying decay
levels of the wood, and between logs and snags, and to describe how
beetle dynamics changes temporally.

3) To describe the immediate effects of clear cut harvest on i.1e saproxylic
beetle community.

4) To describe the early colonization of newly-created CWM by insects
and their role in initiating and regulating decomposition of new dead wood.

Chapter Two focuses on the arthropod fauna as col'ected using two
methods: rearings of insects from removal of snags and logs from forests,
and sampling on snags within forests with modified window-traps. |
examine the biases of different collecting methods, and provide a detailed
study of the Coleoptera assemblage within rotting wood. Also, | present a
brief discussion of the biology of the Coleoptera groups collected, their
possible roles within the forest, and new provincial records.

I examine variation in the Coleoptera fauna across different spatial
scales and temporal scale in Chapter Three. | use several different
diversity measures with rearing and window-trap data to answer the
questions: what is the influence of region, age structure and decay class
on the beetle fauna found in snags?

Chapter Four focuses on the immediate effects of clearcutting on the
saproxylic beetle fauna. | compare beetle abundance and diversity from
forest stands and two-year-old clear cuts at Lac la Biche in 1995. This data
is the first to directly measure the effects of clear cut harvest on saproxylic
faunas.

In Chapter Five, | discuss an experiment which measured the
colonization of newly created CWM by arthropods, and the impact they
have on initial decomposition of wood. | compared wood hardness (i.e. a
measure of wood decay) between unscreened wood, which was exposed
to insect attack, and screened wood, which was covered with insect mesh
to prevent infestation of the wood by insects. | also propose a mechanism
for insect colonization and decomposition of Populus wood.

| summarize and discuss my results with respect to determinants of
structure and spatial distribution of the saproxylic community in Chapter



Six. 1 will present recommendations to aid forest managers in developing
harvest plans that are sensitive to emerging concerns about biodiversity.
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Figure 1-2. Forest management agreements in Alberta
as of January, 1995.
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2. Collection and Inventory of Arthropods from Populus
Coarse Woody Material, with Emphasis on the Coleoptera

2.1 Synopsis

Arthropods associated with Populus coarse woody material (CWM),
were sampled from aspen mixedwood stands in north-central Alberta
using rearings from wood bolts and modified window-traps attached to
snags. More than 39,000 arthropod specimens were collected over three
years, comprised mainly of Coleoptera, Diptera, Hymenoptera and Acari.
Detailed analyses comparing the number of species, standardized
abundance, and trophic structure from each collecting method were
restricted to the 257 saproxylic species of Coleoptera. Abundance of
beetle species, from both rearings and window-traps, approximated
lognormal distributions. Rarefaction estimates of species richness from
rearings and window-traps indicate little difference in the expected number
of species collected by each method. However, the abundance of
particular beetle families differed significantly between methods.
Fungivorous and predatory beetles were more abundant in CWM than
wood borers, scavengers, or taxa with undetermined habits, with beetle
trophic structure similar between collection methods. A combination of
collecting methods is recommended for arthropod inventories from CWM.
2.2 Background and objectives

A large and diverse arthropod fauna uses snags, stumps, logs, and
other forms of coarse woody material (CWM) for food, shelter, foraging or
reproduction. Many of these species are saproxylic and thereby depend,
during some part of the lifecycle, upon dead wood, wood inhabiting fungi,
or the presence of other sapro:ylics (Speight, 1989).  Saproxylic
organisms are important components of forest ecosystems, and play vital
roles in decomposition and nutrient cycling. In North America saproxylic
arthropods have been little studied, only from economically important tree
species such as larch, pine and oak (Blackman and Stage, 1918; Savely,
1939; Howden and Vogt, 1951). However, saproxylic arthropods are much
better known in Europe (Palm, 1951, 1959; Wallace, 1953; Fager, 1968;
Speight, 1989; Vaisdnen et al., 1993; Siitonen, 1994; Siitonen and
Martikainen, 1994), where centuries of forest harvest and subsequent
reforestation with native and non-native conifers has been implicated in a
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significant drop in diversity of saproxylic insects (Helivaara and Viisanen,
1984, Speight, 1989; Siitonen and Martikainen, 1994). In Canada, there
have been a few studies of guild structure of saproxylic insect
assemblages (e.g. Pielou and Verma, 1968), but most work has focused
on the taxonomy and biology of a few pest taxa (e.g. Barter, 1965; Bright,
1976, 1987). Little is known about the response of saproxylic faunas to
forest management.

Harvesting is quickly replacing wildfire as the major disturbance in
boreal mixedwood forests in central and western Canada as aspen has
become an economically valued timber species. For example, harvest of
aspen in Alberta has been steadily increasing, from 2.4% of total volume
cut in 1980-81 to 73% in 1994, and is still growing (Peterson and Peterson,
1993, Alberta Land and Forest Services, 1994). Expansive development
of these forests gives rise to concerns about sustainability and long term
maintenance of ecosystem integrity. In particular, much attention has
focused on implications for biodiversity (Stelfox, 1995: Spence et al., 1996,
1997) as an indicator of healthy forest systems.

To predict the effects of disturbance on a community, we must first
assess community composition and structure, and determine how this
varies spatially and temporally before disturbance. However, the physical
aharacteristics of CWM (size, weight, and cur: Sility due to decay) make it
difficult to sample arthropods quantitatively. In addition, several
microhabitats such as non-vascular plants and fungal fruiting bodies, offer
a diversity of places for insects to feed and oviposit, often making sampling
difficuit. Early published accounts of faunistic studies of dead wood used
several simple methods for determining the insect fauna, including 1)
inspection of insect emergence holes and damage (Graham, 1925), 2)
observations of insects moving to and from dead wood (Howden and Vogt,
1951), 3) hand collecting (Blackman, 1924: Savely, 1939, Wallace, 1953;
Fager, 1968), and 4) a combination of hand collecting and rearings
(Blackman and Stage, 1918; Savely, 1939, Wallace, 1953; Fager, 1968).
Recently however, there has been a concerted effort to evaluate and
design better methods to quantitatively sample this fauna, such as various
flight intercept traps (Kaila, 1993; Kaila et al, 1994: Jonsell and
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Nordlander, 1995) and hand collecting methodologies (Vaisénen et al.,
1993; Siitonen, 1994; Siitonen and Martikainen, 1994).

In this chapter | compare the utility of rearings and window-traps for
collection of arthropods from Populus CWM, and present an inventory of
arthropods cn'lected from northern Alberta using these methods. The
relative abundance of each arthropod group was compared between
methods. The Coleoptera were used for more detailed comparisons of
methods with respect to number of species, mean standardized
abundance, species-abundance relationships, and trophic structure,
because 1) this order is relatively well known in Canada with regard to
taxonomy and distribution (e.g., Bousquet, 1991), 2) is taxonomically and
trophically diverse, and represents a large proportion of the groups found
in dead wood (Speight, 1989), 3) is easy to preserve and store for later
identification, and 4) allows comparisons to other studies of CWM which
focused on beetles.

2.3 Materials and methods
2.3.1 Study sites.

Arthropods associated with Populus CWM were sampled from
boreal mixedwood stands near Touchwood Lake, east of Lac la Biche (54°
51'N, 111° 27' W), and near Eureka River (56° 35' N, 118° 37' W) north of
Fairview, Alberta. The four forested stands at each location were primarily
dominated (>80% of canopy and understory trees) by trembling aspen
(Populus tremuloides Michaux), but also included balsam poplar (Populus
balsamifera L.), white spruce (Picea glauca [Moench] Voss), and birch
(Betula spp.). These stands ranged in age from 40 to >100 years since
last disturbance by wildfire. In each stand, the standing snags and fallen
logs sampled ranged in size from 9-48 cm diameter at breast height (DBH)
and represented the various degrees of stem decay found in these stands.
2.3.2 Collection methods and identification

Snags and logs of Populus tremuloides and P. balsamifera are
often difficult to distinguish, especially those of large diameter and
advanced decay. Therefore, insect data was not partitioned by tree
species.

Arthropod rearings. In late April and early May of 1993 and
1994, bolts 1.2 m in length were cut from the base, center and top of each
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Populus snag and log sampled. Three snags and three logs, representing
various degrees of stem decay, were sampled in each of two stands in
each region. Bolts were sealed in plastic bags and transported to the
Northern Forestry Center in Edmonton. The ends of each bolt were sealed
with paraffin to slow moisture loss, and the three bolts from each snag or
log were placed together in a rearing cage and held at ambient
temperature and light.

Each rearing cage (Figure 2-1) consisted of three wooden walls and
a front door, each 1.5 m in width and 1.5 m in height. The floor consisted of
strong welded wire mesh. The roof originally was a square pyramid
constructed of thin polyethylerie plastic, with a funnel and bottle hanging
from the apex, to collect insects that flew upward; however, few insects
were so collected in the first year, and the pyramid was replaced in 1994
with sheets of plywood to form a flat roof. Under the floor an inverted
square pyramid, constructed of thin polyethylene plastic, with a jar at its
apex, collected most specimens. The collecting jars contained ethylene
glycol as a killing agent and preservative.

Wood samples remained in rearing cages for one year and then
were subsequently replaced with fresh samples. Arthropods emerging
from CWM samples were collected weekly (biweekly in September) and
sorted in the lab. To sort microarthropods, each sample was poured
through fine filter paper lining a Buchner funnel, which was sealed to the
top of a side port Erlenmeyer flask. A vacuum line connected to the side
port of the flask enabled each sample to be filtered under pressure.
Microarthropods remaining on the filter paper were subsequently
preserved in 95% ethanol.

After termination of rearing, the volume of each bolt was estimated
by measuring its diameter at the center of its length and calculating the
volume of a cylinder 1.2 m in length. The volumes of the three wood bolts
in each cage were then summed to give a total for each snag and log
sampled.

Window-traps. Window-traps, modified from Kaila (1993), were
used to sample insects flying to and from snags (Figure 2-2). Traps
consisted of a sheet of clear plastic, 1.5 mm x 20 cm x 30 cm, fastened
perpendicularly to the trunk with two pieces of wire. A pack-cloth funnel
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was fastened to the lower edge of each window with wire. The lower end of
the funnel consisted of a circular piece of plastic cut from 'sump pump'
hose, attached to the funnel internally with silicon, and externally with two
pieces of wire, to form a 'lip". A whirl-pak™ bag was then fastened over the
lip using a hose clamp. The bag was partially filled with ethylene glycol as
a kiling agent and preservative. Each bag was then shielded with a
welded wire tube to prevent damage by small mammals.

Two window-traps, one with the top of the window at breast height
(ca. 1.3 m) and the second with the top of the window at ca. 2.0 m were
placed on each snag. Both traps on each snag were oriented in the same
cardinal direction, as determined randomly by dice roll. Nine snags,
representing the various degrees of stem decay, were sampled in four
forested stands at each region in 1994 and 1995. The same snags were
subsequently sampled in both 1994 and 1995, if possible. If snags fell
down, a new snag was picked that was similar in size and position in the
stand to the fallen snag. Insects were collected biweekly 18 May-7
October, 1994 and 2 May-28 August, 1995.

Beetles collected by each method were identified 1o species or
species group. The other arhropods were identified to the lowest
taxonomic level possible based on available literature and local taxonomic
expertise. All arthropods cnllected are stored in a large synoptic collection
at the University of Alberta.

2.3.3 Data analyses

The proportion of each arthropod group collected by each trapping
method is presented to facilitate visual comparisons of the catch across
trapping methods, and with data from other studies of arthropods from
CWM.

Detailed analyses were restricted to saproxylic beetles (Speight,
1989). To account for differences in sampling effort (time and wood
volume), saproxylic beetle abundance was standardized to 1000 trapping
days and 0.1 m3 of wood for rearing data, and to 1000 trapping days for
window-trap data.

Beetle species-abundance relationships were constructed using
Whittaker plots of total abundance (y axis) and rank order of species (x
axis) (Krebs, 1989). Whittaker plots are a visualization technique useful to
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determine whether the frequency distribution of species conforms to a
logseries (linear relationship between species abundance and its rank), or
a lognormal distribution (reverse S shaped curve). The data were fit to the
appropriate model, and the fit tested using a Chi-Square test.

The number of species represented by each beetle family collected
was compared among trapping methods using Chi-Square. Beetle
families where the expected number of species was less than one were
not included in analysis (Everitt, 1977). Mean standardized abundance of
each beetle family was compared among methods using a paired t-test.
To correct for uneven catches when comparing species richness, | used
rarefaction, a method of estimating the number of species expected in a
random subsample drawn from the larger sample (Hurlbert, 1971). The
resulting value can be interpreted as a ‘diversity index’ because the
method takes into account both species richness and abundance. In
addition, cluster analysis of Bray-Curtis percent similarity calculations, with
group averaging as the weighting procedure (software by Ludwig and
Reynolds, 1988) was used to compare assemblages between sampling
methods.

To compare beetle trophic structure between collesting methods,
each species was assigned one of the following four trophic roles
according to information from the literature and advice from expert
coleopterists: 1) predators, feeding mainly on other living arthropods; 2)
fungivores, feeding mainly on fungi; 3) wood borers, any xylophagous,
phloeophagous or wood boring beetle; and 4) scavengers, any detritivore,
saprophore, or has several feeding habits. If the feeding habits of a
species was uncertain, it was placed in the ‘unknown’ category. The
distribution of the number of species representing each trophic role was
compared between methods using Chi-Square. The mean standardized
abundance of each trophic role was compared between methods using a
paired t-test.

2.4 Resuits

A total of 39,094 arthropods, representing 5 classes, 13 orders, at
least 113 families, and over 2000 species were collected from CWM in
boreal-mixedwood forests over the three years of this study (Tables 2-1
and 2-2). Of these, at least 1500 species are estimated to be saproxylic.
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The Acari were the most abundant group collected from rearings (Figure 2-
3A), but not surprisingly was one of the least abundant groups in window-
traps (Figure 2-3B). Other flightless groups (excluding Araneae) also had
a greatly reduced abundance in window-traps as compared to rearings.
Taxa colonizing CWM by flight, such as Diptera, Coleoptera, and
Hymenoptera were relatively abundant in rearings, but dominated
numerically in window-traps. These orders were generally characterized
by large yearly fluctuations in relative abundance (Figure 2-3).

A total of 10,833 beetles were collected representing at least 372
species (Table 2-2). Fifty species of beetles, 90% of which were
saproxylic, (Table 2-2) are new provincial records (Bousquet, 1991). Of
the 257 saproxylic beetle species collected, 161 species, representing
1741 individuals, were collected in rearings; while 204 species,
representing 7829 individuals, were collected in window-traps. A total of
108 species were collected by both methods.

Inspection of Whittaker plots was inconclusive as to which model
better fit the observed saproxylic beetle species-abundance data (Figure
2-4), therefore the data were compared statistically to both logseries and
lognormal models. Data from rearings were significantly different from
expected values of a logseries distribution (x2=539.12, df=155, P<0.001)
but were adequately modeled by the lognormal distribution (x°<8.24,
df=10, P=0.61). The fauna collected by window-traps aiso fit a lognormal
distribution better than a logseries (logseries: x?=2021.73, df=194,
P<0.001; lognormal: x?=11.31, df=11, P=0.66).

The distribution of the number of species in each family did not
depend on collecting method (x®=14.15, df=33, P=0.9983) (Table 2-3), but
the mean standardized abundance of each family collected differed
significantly among methods (t=2.97, df=50; P=0.0045) (Table 2-3). A
comparison of saproxylic beetle species richness among trapping
methods, using pooled data collected between 1993-95, showed that
rearings tended to have higher species richness compared to window-
traps (Figure 2-5A). However, rarefaction estimates of species richness
from 1994, the only year in which both methods were used, were similar
between methods (Figure 2-5B).
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In general, fungivorous and predatory beeties dominated rearing
and window-trap catches (Figure 2-6). The distribution of the number of
species of each trophic role was similar between methods (x2=1.12, df=4,
P=0.8897), as was the mean standardized abundance (t=2.20, di=4,
P=0.0923) (Table 2-4).

2.5 Discussion
2.5.1 Arthropod inventory

The arthropod fauna associated with Populus coarse woody
material is large and diverse. Although not all taxa were identified to
species level, | estimate that over 1500 species of saproxylic arthropods
were collected over the course of this study (Tables 2-1 and 2-2). A large
proportion of this fauna is comprised of taxa that are species-rich but
poorly known, such as the Acari, Collembola, Diptera and Hymencptera
(Figure 2-3). Danks (1979), in his review of the Canadian insect fauna,
has estimated that approximately 50% of insects and 70% of arachnids
remain to be described in Canada. Application of these percentages {o tive
faunal lists generated by this study suggests that approximately 600-80:. of
the collected saproxylic species are undescribed. Given the importance of
these faunas to forestry and agriculture, due to their influence on soil
structure, decomposition processes and nutrient cycling, much more work
is required to census and describe these groups.

There have been several inventories of arthropods associated with
CWM. Savely (1939) listed 100 insect species and another 24
invertebrate species collected from short leaf and loblolly pine. He also
listed 156 invertebrates including 122 insect species collected from oak
logs. The Coleoptera, Diptera and Hymenoptera were the dominant
groups in both lists. A total of 184 species of arthropods were collected
from pine snags in Maryland (Howden and Vogt, 1951) and over 120
insect species recorded from pine stumps in England (Wallace, 1953), with
the Coleoptera dominating the fauna. The invertebrate fauna colonizing
natural and ‘artificial’ oak logs in England included 182 arthropod species,
primarily comprised of the Acari, Collembola and Diptera (Fager, 1968).

Similar to previous studies of other trees, the fauna associated with
Populus CWM was numerically dominated by Acari, Coleoptera, Diptera
and Hymenoptera (Figure 2-3). These taxa typically dominate faunas
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associated with habitats that include large amounts of decaying organic
matter, such as found in CWM, litter and soils (Pielou and Verma, 1968:
Wagner et al., 1977; Harmon et al., 1986; Speight, 1989; Chandler, 1991;
Véisanen et al., 1993; Battigelli et al., 1994; Kiila et al., 1994; Siitonen and
Martikainen 1994; Spence and Langor, 1994; Jonsell and Nordlander,
1995). It is generally accepted that the early ancestors of many insect
groups (Entognatha, Apterygota), and especially beetles, lived under bark,
and that their feeding habits and body forms, to some extent, have co-
evolved (Evans, 1975; Daly et al., 1978; Crowson, 1981; Ponomarenko,
1995). Many of these taxa are saprophages, fungivores and
entomophages, and thus occupy trophic roles which are well suited to life
under bark.

2.5.2 Beetle diversity in coarse woody material

Coleopterans were among the most abundant taxa collected from
Populus CWM. A total of 372 species were collected during this study, of
which 257 are thought to be saproxylic (Table 2-3). In addition,
approximately 40 of the ‘non-saproxylic' beetle species collected are
thought to overwinter in Populus CWM, and, hence depend on CWM to
some extent. Coleoptera families with the highest species richness
include the Staphylinidae (approximately 80 species), Carabidae (27
species), Leiodidae (12 species) and the Elateridae and Lathridiidae
(approximately 10 species each)(Table 2-2).

The beetle fauna from Populus CWM in Alberta is more diverse
than that known from CWM of other tree species. In a study of dead birch
and birch decaying fungi in Finland, Kaila (1993) reported 234 beetle
species, with species richness highest in the Staphylinidae, Leiodidae,
and the Ciidae (=Cisidae). In another study, Kaila et al. (1994) compared
the saproxylic fauna from dead birch and birch fungi between Finland and
Russian-Karelia. They reported 158 species, among which, highest
species richness, was recorded from the Elateridae, Leiodidae, Ciidae,
Melandryidae and Cerambycidae. The beetle fauna from Scots pine and
Norway spruce CWM from primeval and managed forests in central
Finland included 107 species (Vaisanen et al., 1993) but, unfortunately no
information was presented about species richness of the families
represented. Caution, however, must be exercised in comparisons among
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these studies because faunal differences cannot be clearly attributed to
tree species. Comparisons are also confounded by geography, spatial
scale, and management history of these forests.

The saproxylic beetle fauna from Alberta, however, is less rich than
that recorded from Sweden. Palm (1959) recorded 342 saproxylic beetle
species from Populus tremula L. in middle and southern Sweden. Of
these, 12 were restricted to P. tremula, and 17 species overwintered. The
distribution of species among families is significantly different between
Sweden and Alberta (x?=82.36, df=39, P<0.01) (Table 2-5), as is trophic
structure (x°=28.42, df=4, P<0.01) (Table 2-6). Predators and fungivores
dominated CWM faunas in Sweden and Alberta, however, predators were
dominant in Alberta whereas fungivores dominated the Swedish fauna
(Table 2-6). Although both studies sampled roughly the same latitudes
(54° to 59° N) and amount of area, Paim (1959) sampled 16 sites
compared to two sites in Alberta. Thus, more extensive sampling in
Sweden may partially explain the larger fauna collected because there is a
positive relationship between sampling intensity and number of taxa
collected (e.g., May, 1975; Krebs, 1989). Also, Sweden’'s fauna is
taxonomically better known than Alberta’s. Thus, the number of Alberta
species may be underrepresented. For example, Aleocharirae collected
in Alberta were not all identified to species, whereas 49 species were
recorded from Sweden. If these are eliminated, the faunas are more
similar in richness with 252 recorded from Alberta and 293 from Sweden.
Differences in evolutionary history, glaciation patterns, climate, znd forest
management between Alberta and Sweden also influences faunal
composition.

Palm (1951) also recorded 231 saproxylic beetle species from P.
tremula sampled in northern Sweden. This is not as spacies-rich as the
more southern fauna (Paim, 1959), and demonstrates the pattern of
decreasing species richness with increasing latitude (Fischer, 1960;
MacArthur, 1975). However, 34 species were unique to northern Sweden
and suggests that additional sampling from a broader geographic range
#4) undoubtedly add species to the Alberta list.

A lognormal species distribution model best explains saproxylic
beetle distribution from Populus CWM (Figure 2-4). However, much

25



controversy exists in the literature pertaining to the value of species
distribution models. One explanation of the lognormal distributions fit to
biotic communities is simply that it is an artifact of the statistical properties
of large numbers, and thus may not have special ecological significance
(Preston, 1948; May, 1975; Magurran, 1988). On the other hand, Sugihara
(1980) and Pielou (1975) suggest that a lognormal distribution resuits
where resources and niches are randomly and sequentially split by
various taxa. In general, the lognormal distribution is usually associated
with diverse and variable communities with many resources and
interactions among species (Magurran, 1988). Thus, the beetle fauna
collected from Populus CWM may be a reflection of underlying habitat
diversity.

A typical snag or log often contains a mosaic of microhabitats. For
instance, more than 250 species of fungi are associated with aspen decay
in North America (Lindsey and Gilbertson, 1978). This provides a broad
resource base for fungivorous insects, which dominated the beetle fauna
from Populus CWM (Figure 2-6). Families such as the Leiodidae,
Micropeplidae, Staphylinidae, Cerylonidae, Corylophidae and others have
species adapted to feed on fungal hyphae, mycelia, spores, and both
external and subcortical slime molds (Campbell, 1968: Wheeler and
Blackwell, 1984; Peck, 1990). The Ciidae have adapted to feed on conks
that form on the trunk (Lawrence, 1971). Fungivores may also partition
resources by specializing on particular species of fungi (Jonsell and
Nordlander, 1995). It is not known how many of these fungivorous species
are specific to Populus, but the vast majority are probably generalists and
may be associated with fungi in other species of CWM, in soil, and
mushrooms (see Palm, 1951,1959).

The beetle community associated with Populus CWM is also
composed of a large number of predators and scavengers. The relative
abundance of scavengers (Figure 2-6) may be an under representation
because many predaceous beetles are also opportunists. Nevertheless,
the vast majority of predators collected seem to be generalists, belonging
to the Carabidae, Staphylinidae, Cucujidae and other ground dwelling and
bark inhabiting taxa (Martel et al., 1991; Niemela et al., 1993). The few
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specialist predators include taxa from the Rhizophagidae, Histeridae, and
Salpingidae.

Phloeophagous, xylophagous, and ambrosia beetles (herein
designated as wood borers) are relatively host specific and prefer
weakened or recently dead wood. For instance, Trypodendron retusum
(LeConte) has a symbiotic relationship with ambrosia fungi which are
actively cultivated and 'farmed’ in their galleries, and is primarily collected
from newly dead aspen (Abrahamson, 1967; Wood, 1982; Brewer et al.,
1988). However, many other scolytids, buprestids, and cerambycids
known to utilize Populus in Alberta, were not collected during this study. It
may be that decay of most CWM sampled was too advanced for these
species. Also, some wood boring species, such as Saperda, are known to
prefer forest edges (lves and Wong, 1988), which were not sampled in this
study.

Coarse woody material not only provides a direct or indirect food
source for insects, but also shelter and overwintering sites. For example,
many species of herbivorous beetles in the families Curculionidae and
Chrysomelidae, predaceous coccinellids and water beetles in the families
Dytiscidae, Hydraenidae and Hydrophilidae were also reared from CWM,
and are believed to overwinter in such habitats (Table 2-2) (Belicek, 1976;
Smetana, 1988). Thus these species may contribute to the complexity of
CWM assemblages through possible interactions with saproxylic species
(e.g., as prey, occupying overwintering sites available to other species,
etc.).

2.5.3 Comparison of collection methods

All sampling methods have some degree of bias (e.g. Younan and
Hain, 1982; Danks et al., 1987; Morrill et al., 1990; Biological Survey of
Canada, 1994; Siitonen, 1994; Spence and Niemel, 1994) and this is
true of both methods used in this study. Rearings and window-traps tend
to work at two different scales of resoluton. Thus, sampling natural
variability in CWM faunas depends on method. Rearings give a good
estimate of the variation in faunal structure between wood bolts. However,
cutting bolts and placing them in cages likely resulted in changes in the
environment, largely through an increase in temperature and decreased
moisture, which may have adversely affected species requiring cooler and
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moister conditions typical of the forest. On the other hand, window-traps
give estimates of the saproxylic fauna at the stand level. The trap is not
intrusive, so the environment is not changed. Window-traps, though, tend
to reduce variability across individual snags because they collect species
not associated with the particular snag sampled, so that species lists must
be carefully screened (Table 2-2).

These methods also have taxon bias. Rearings were efficient at
collecting microarthropods such as collembolans, mites, pseudoscorpions,
and other groups such as the Psocoptera that are not very vagile (Figure 2-
3A). Unfortunately, cutting, handling and transporting samples for rearing
probably resulted in loss of vagile species found beneath bark, including
many predators such as carabids and staphylinids. Thus, the relative
abundance of predators (Table 2-4 and Figure 2-6) collected from rearings
likely under-estimates the true number of predators in wood. Window-
traps, however, are biased towards species that disperse by flight (Figure
2-3) and seem more reliable in collecting transient groups such as
predatory beetles, adult wood borers, and many fungivorous species
(Table 2-4).

The biological information provided by each method is also quite
different. Data from rearings provides good information on the emergence
times of species from CWM and inventory of species utilizing CWM as
shelter or for overwintering. Window-traps, like pitfall traps (Spence and
Niemeld, 1994), measure arthropod activity and thus resulting data are
well suited for measuring seasonal patterns of activity. However, because
they can only be attached to snags, logs and other components of CWM
are excluded from sampling.

There are also practical considerations. Cutting and rearing of
wood bolts is laborious, and only a small number of samples can be
reared because of space limitations. Therefore replicaticn is limited.
However, window-traps are small, relatively easy to construct, and provide
a large number of replicate samples. Some strictly saproxylic species
such as Laemophloeus biguttatus (Say) and Dendrophagus cygnaei
Mannerheim were only collected by window-traps (Table 2-2), suggesting
that large numbers of window-traps may also provide a ‘witder sweep’ of
the fauna.
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Direct comparison of the beetle catches from both trapping methods
showed that species distributions tended to be similar among methods
(Table 2-3; Figure 2-5), but window-traps collected a significantly higher
number of beetles (Table 2-3). Faunal trophic structure, however, was
similar between rearings and window-traps (Table 2-4 and Figure 2-6). In
addition, 54 species were collected only in rearings, and 96 species were
collected only with window-traps (Table 2-2). These data suggest a
combination of trapping methods is required to adequately sample the
heterogeneity of habitats associated with dead wood, and to sample
communities at different spatial scales.

2.5.4 Values and problems of species inventories

Faunal inventories have important applications in community
ecology and forest management. Species lists (Tables 2-1 and 2-2), in
addition to outlining arthropod faunal structure, provides a baseline for
comparison of future studies of the impacts of forest development. The
collecting method+ proposed offer a relatively simple and cost efficient way
to biomonitor insect groups for use in environmental impact assessment,
and can be adapted to census insect populations and communities
providing community ecologists an opportunity to study forest insect
community structure in other forest types.

One problem associated with conducting faunal inventories is the
paucity of taxonomic information about Nearctic taxa. This was especially
evident with respect to beetles associated with CWM. A large number of
taxa could not be identified to specific level, and for others identifications
are tentative. The CWM arthropod community is an important ecological
grot.v sensitive to forest disturbance (Speight, 1989). However, in order to
aczquately inventory, monitor, and study ecological requirements of this
community, it is necessary to confidently identify the fauna. As taxonomic
and systematic support decreases, conservation work will focus on known
taxa, while work on unknown and possibly imperiled species receives no
support or attention. As availability of taxonomic expertise and investment
in systematic biology continues to decline in North America, reliable
species level determinations will become more difficult to obtain, making
conservation work increasingly difficult (Wilson, 1992).  Significant
investment is required in arthropod systematics to understand global
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biodiversity, to ensure preservation of natural processes, and to guide
development of environmental policy and practice.
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Table 2-3. Summary of the number of beetle species and their abundance, by tamily, from collections made by rearings from
Populus coarse woody material and window-traps attached to snags, in boreal mixedwood forest stands
in north-central Alberta. Insect rearings were conducted during the snow-free months of 1983 and 1994.
Window-trap sampling was conducted from May to October 1994, and May through August, 1995.
See text for details of each analysis. (t denotes families not included in Chi-square analysis because of expected
values less than 1).

Number of species Standardized abundance
Window- Both Window- Both
Family { Rearings _traps _methods Rearings _ traps methods
tAderidae 1 0 0 2.20 0.00 0.00
Angbiidae 3 [ 3 246.53 2833.84 2006.17
Anthicidae 4 1 1 56.71 12.99 17.28
12 nthribidae 1 1 1 36.32 9.01 45.33
tBostrichidae 0 1 0 0.00 9.80 0.00
Buprestidae 2 2 2 12.48 124.06 136.55
tCantharidae [¢] 2 0 0.00 201.90 0.00
Carabidae 15 17 7 259.08 5759.56 4486.95
tCephaloidae 0 1 0 0.00 155.09 0.00
Cerambycidae 3 4 2 19.15 726.23 729.36
tCerylonidae 1 1 1 255.25 843.06 1098.30
Ciidae 4 5 2 429.04 207.27 401.69
tClambidae 0 1 0 0.00 74.01 0.00
Coccinellidae 1 2 1 22.93 146.80 49.02
Corylophidae 2 2 2 744.04 912,21 1656.24
Cryptophagidae 7 9 7 667.09 2092.27 1497.48
Cucujidae 1 4 1 102.35 470.81 553.75
Curculionidae 5 2 2 235.44 1233.81 1268.55
Dermestidae 2 3 2 66.14 182.03 24168
Elateridae 4 7 3 84.46 863.27 666.21
tEndomychidae 0 1 0 0.00 9.80 0.00
Erotylidae 1 2 1 6.59 2172.22 2155.58
tEucinetidae 1 1 1 10.05 98.83 108.88
Eucnemidae 1 3 1 20.22 188.65 95.81
Histeridae 3 4 3 17.30 237.21 247.80
Hydrophilidae 2 2 2 52.78 55.64 108.42
Lampyridae 1 2 1 281 48.76 35.28
Lathridiidae 12 15 11 1392.56| 15963.44] 10477.8%
Leiodidae 3 1 3 94.93 1704.62 1623.34
tLucanidae 0 1 0 0.00 9.01 0.00
tLycidae 0 1 0 0.00 6.71 0.00
tLyctidae 0 1 0 0.00 644.84 0.00
tLymexylidae 1 1 1 220 185.49 187.69
Melandryidae 5 6 4 138.88 1911.10 2008.31
tMicropeplidae 0 1 0 0.00 13.42 0.00
Mycetophagidae 1 2 1 34.59 194.34 185.24
Nitidulidae 5 5 4 232.30 3053.72 3248.99
Pselaphidae 2 3 2 14.49 138.99 137.75
Ptilidae 2 2 2 172.63 314.82 487.45
Pyrochroidae 2 2 2 76.52 196.33 272.84
tRhipiphoridae 1 1 1 39.48 9.80 48.28
Rhizophagidae 3 3 2 742,32 7767.30 8497.03
Salpingidae 1 2 1 7.08 47.97 16.10
1Scaphidiidae 1 0 0 51.66 0.00 0.00
Scolytidae 2 2 2 1115.37 1890.79 3006.15
Scraptiidae 1 2 1 64.08 281.37 325.32
1Scydmaenidae 1 1 1 448 6.49 10.97
tSphindidae 0 1 0 0.00 45.69 0.00
Staphyiinidae 48 47 19 3118.9 6611.39 8154.29
Tenebrionidae 3 5 3 48.53 589.26 129.48
Trogossitidae 2 3 2 33.67 253.29 255.74
Grand Total 161 204 108 10740.6 61509.284 56676.071
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Table 2-6. Summary of the number of beetle species collected, by family,
from Popuius coarse woody material sampled from boreal
mixedwood forests in north-central Alberta, and 16 sites in
middle and southern Sweden (Paim, 1959).

(T denotes families not included in analysis due to expected

values less than 1; aexcludes the Aleocharinae).

Number of species
Family Alberta Sweden
Aderidae
Anobiidae
tAnthribidae
tAspidophoridae
1Bostrychidae
Buprestidae
tCantharidae
Carabidae
Cerambycidae
Ciidae
Cleridae
“occinellidae
Colydiidae
Corylophidae
Cryptophagidae
Cucujidae
Curculionidae
Dermestidae
Elateridae
Endomychidae
Erotylidae
Eucenemidae
Histeridae
Lathridiidae
Leiodidae
Lucanidae
tLycidae
tLlyctidae
tLymexylidae
Melandryidae
Melyridae (=Dasytetidae)
Mordellidae
Mycetophagidae
Nitidulidae
Pselaphidae
Piliidae
Ptinidae
Pyrochroidae
tRhipiphoridae
Rhizophagidae
Salpingidae
Scaphidiidae
tScarabaeidae
Scolytidae
1Scraptiidae
Scydmaenidae
1Silphidae
1+Sphinididae
®Staphylinidae
Tenebrionidae
Trogossitidae
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Table 2-6. A comparison of trophic structure of beetle species collected (excluding
Aleocharinae and Ptiliidae) from Populus coarse woody material
sampled from boreal-mixedwood stands in north-central Alberta;
and 16 sites in middle and southern Sweden (from Palm, 1959).

Number of species
Trophic Role Alberta Sweden

Unknown 14 0

Fungivore 74 101
Predator 111 83
Scavenger 31 40
Wood borer 24 43

Total 254 267
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Figure 2-1. Cage design for rearing of arthropods from

coarse woody material.
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arthropods associated with coarse woody material.
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3. Spatial and Temporal Variation in the Coleoptera
Assemblage Associated with Populus Coarse
Woody Material

3.1 Synopsis

The Coleoptera fauna inhabiting Populus coarse woody material
was studied at two sites in northern Alberta over the snow-free months of
1993 through 1995. Beetles were sampled using a combination of insect
rearings from bolts cut from snags and logs, and modified window-traps
placed on the boles of snags in the forest. In total, 257 beetle species
were collected with the composition of assemblayes varying significantly
between regions, stand age classes, decay classes and years. Species
richness and abundance was similar between Lac la Biche and Eureka
River, but the fauna was only 42-64% similar with respect to species
composition. In general, faunal richness at se'eral taxonomic levels
tended to be higher in old forest stands tr.an in mature stands of
harvestable age. Stand age also influenced trcphic composition, with a
significantly higher proportion of predators in old stands and higher
fungivore abundance in mature stands. A total of 54 species were unique
to old stands and another 44 to mature stands, with the similarity in the
fauna across stand ages ranging between 46-68% similar. Although
species diversity was similar in wood differing in decay, 29, 32 and 32
species were unique to wood of minimal, moderate, and advanced decay,
respectiveiv. In addition, standardized abundance of beetles was similar
between snags and logs, however, 46 species were unique to snags and
47 were unique to logs. Detrended correspondence analysis of rearing
and window-trap data indicated that factors associated with decay class,
region and stand age influenced species distribution across the
landscape. Implications of these firdings for forest inanagement are also
discussed.
3.2 Background and objectives

Approximately 25% of the Canadian boreal forest is a mixture of
deciduous and coniferous tree species known collectively as the boreal
mixedwood (Peterson and Peterson, 1992; Stelfox, 1995). Trembling
aspen (Populus tremuloides Michx.), balsam poplar (P. balsamifera L.),
and white spruce (Picea glauca [Moench] Voss) are the dominant tree
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species, but white birch (Betula papyrifera Marsh.), black spruce (Picea
mariana (Miller) B.S.P.), tamarack (Larix laricina (Du Roi) K. Koch) and
balsam fir (Abies balsamea [L.) Miller) are also common (Stelfox, 1995;
Peterson and Peterson, 1992; Scudder, 1979). Site conditions such as
soil type, elevation, topography and precipitation influence the distribution
and abundance of dominant tree species (Oliver, 1992; Stelfox, 1995).

In addition to regulation by site factors, natural forest dynamics in
this region have been dominatea by periodic wild fires. Fires that leave
small islands of unburned forest contribute to the complexity of forest
structure, allowing for a diversity of organisms specialized to colonize
regions after burns and for mixtures of tree species on similar sites (As,
1993). Forest fires, self-thinning in immature stands, blow down of trees,
and the impacts of insect pests and diseases, also create a large volume of
dead and dying trees (Harmon et al., 1986). This coarse woody material
(CWM) consists mainly of snags (standing dead and dying trees), logs
(fallen dead trees), stumps, and any root systems that remain, and
provides a habitat for a rich community of organisms dominated
numerically by arthropods (Danks, 1979).

Arthropod communities associated with CWM are diverse, not only
in species, but also with respect to the roles that they play in forest
ecosystems (Graham, 1925; Savely, 1939; Howden and Vogt, 1951;
Wallace, 1953; Fager, 1968, Speight, 1989). Saproxylic invertebrates are
species dependent, during some part of their lifecycle, upon the dead or
dying wood of moribund or dead trees, or upon wood-inhabiting fungi, or
upon the presence of other saproxylics (Speight, 1989). However, other
arthropod groups also use dead wood indirectly as shelter or
overwintering sites and may not depend directly on dead wood to survive
(see Chapter 2). Saproxylic organisms are responsible for the mechanical
breakdown of woody material directly, by tunneling and feeding in snags
and logs, and through the vectoring of symbiotic fungal species that humify
the wood (Speight, 1989).

Saproxylic species are sensitive to man-made disturbance
associated with habitat loss such as forest harvesting, and reforestation
with native and non-native coniferous tree species on sites previously
occupied by deciduous or mixed forest types (HeliGvaara and Viisanen,
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1984; Speight, 1989; Mikkola, 1991; Warren and Key, 1991; Wilson, 1992).
Many saproxylic species are endangered or extinct in parts of northern
Europe where intensive forest management has been ongoing for
centuries (Helidvaara and Vaisanen, 1984; Vaisanen et al., 1993; Haila et
al., 1994; Kaila et al., 1994; Siitonen and Martikainen, 1994).

The first concerted harvest of the aspen-mixedwood in Alberta has
begun, with harvesting to follow a 50-70 year rotation, depending on site
(Stelfox, 1995). Over time, this management scheme will truncate forest
age structure resulting in a reduction of old-growth, here defined as stands
older than rotation age. Such changes may affect overall ecosystem
integrity, at least partially through loss of species coritributing to
decomposition, whose populations are concentrated in old-growth forests.

In 1993, | began a study of the Coleoptera associated with Populus
CWM in aspen-mixedwood forests in north-central Alberta. The objectives
of this study were to assess spatial variation in the saproxviic bectle
community with respect to geographic region, stand age, degree of decay
of CWM, and type of CWM (i.e. snags or logs). An assessment of temporai
variation in community structure was also possible since the study took
place over three years. In addition, ordination analysis was used to
investigate the factors underlying distribution of saproxylic beetle
assemblages across the landscs...:. These data can be used to gain a
more general understanding of huv. iorestry practices affect the fauna of
CWM.

3.3 Materials and methods
3.3.1 Study sites

Coleoptera communities from Populus CWM were sampled at two
study sites; one near Touchwood Lake east of Lac la Biche (54° 51' N,
111° 27" W), and the second north of Fairview, near Eureka River (56° 35'
N, 118° 37" W), Alberta. Both sites are dominated (>80% of canopy and
understory trees) by trembling aspen, and include a mixture of balsam
poplar, white spruce and birch in lesser amounts (see Chapter 2). Two
stand ages were sampled at each site, mature stands (40-80 years) and
old stands (>100 years). Old stands were characterized by relatively large
trees (29-42 cm diameter at breast height, DBH), a canopy that was 20-27
m above the ground containing many gaps, and CWM that ranged from 30-
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48 cm DBH. Mature forest stands were characterized by smaller trees (15-
20 cm DBH), a closed canopy approximately 18-20 m above the ground,
and CWM ranging from 8.5-20 ¢cm DBH. In addition, three wood decay
stages were used to separate the wood into ‘minimally' decayed (decay
class 1), 'moderately' decayed (decay class 2), and advanced decayed
(decay class 3) wood (see Table 3-1 for decay class criteria). Because
CWM of Populus tremuloides and P. balsamifera are often difficult to
identify, especially snags and logs of large diameter and in states of
advanced decay, the data could not be reliably partitioned by tree species.
3.3.2 Data collection

Two methods were used to sample beetles from CWM, rearing of
insects from wood samples in cages and passive trapping using modified
window-traps attached to the boles of snags (Kéila, 1993; see Chapter 2
for details of apparatus and methods). Insect rearings are highly specific,
collecting only arthropods within the wood at time of collection, but are time
and resource limited. In contrast, window-traps are more wide-sweeping
but less selective, and depend mainly on flight activity. Window-trap
sampling is also easier to replicate, thus their use provides larger sample
sizes.

Wood samples for rearing were cut from snags anc logs in late April
and early May of 1993, and again from the same stands ‘n April and May
1994. One Populus snag and one log were sampled from eact. of the
three decay classes in one old and one mature stand at Lac ia Biche and
at Eureka River. Bolts 1.2 m in length, from the base, center, and top of
each snag or log were returned to the lab sealed in plastic bags and the
three bolts from each snag or log were placed in the same rearing cage
(see Chapter 2). All rearings were conducted outdoors at ambient
temperature and light. The wood samples were held in rearing cages for
one year. All emerging arthropods were collected weekly from 16 April-30
August, then biweekly from 30 August-30 September, and preserved in
95% ethanol.

On completion of rearing, the volume of each wood bolt was
estimated by measuring its diameter at the midpoint of its length and
calculating the volume of a cylinder 1.2 m in length. The volume of the
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three wood bolts from each snag or log were then summed to give an
average volume for each snag or log.

Eighteen windov:-traps were deployed in each of two old and two
mature stands at each region. Two window-traps, one with the top of the
window at breast height (ca. 1.3 m) and the second with the top of the
window at ca. 2.0 m, were placed on three snags representing each of the
three decay classes in each stand. The orientation (i.e. cardinal direction)
of both traps on each snag were the same, but was determined randomly
by dice roll. Where possible the same snags were sampled in both 1994
and 1995. If snags blew down, another of similar diameter and decay
class was chosen as close as possible to the previously sampled snag.
Insects were collected biweekly from 18 May-7 October, 1994; and 2 May-
28 August, 1995.

3.3.3 Data analyses

Only saproxylic beetles associated with Populus CWM were
included in analysis, and include all species from Table 3-2. A saproxylic
species is hereby defined as one which directly uses CWM and/or its
associated biota during some part of its life cycle for reproduction and/or
food. This includes predators, scavengers, fungivores, xylophages and
phloeophages.

Because volume of CWM reared and the number of days rearing
was not the same for all samples, data from rearings were standardized to
0.1 m3 of wood and 1000 trap-days. Catches from window-traps were
standardized to 1000 trap-days to account for differences in sampling
effort.

The mean number of taxa collected and their mean standardized
abundance from rearing and window-trap samples were analyzed using
an analysis of variance (ANOVA, proc GLM) in SAS (Steel and Torrie,
1980). Rearing data was analyzed using a 5-way ANOVA in a split-plot
design, with the main effects of region, stand age, decay class, sample
type (i.e. snag or log), and year of collection. Window-trap data was
analyzed using a 4-way ANOVA in a split plot design, with the main effects
of region, stand age, decay class, and year. Parametric analysis was also
used to compare trophic structure of beetle assemblages from CWM.
Beetle taxa were assigned to one of four trophic roles, predator, fungivore,
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wood borer, and scavenger, based on the known habits of the
predominant life stage found in dead wood. All  xylophagous,
phloeouhagous and ambrosia beetles were included in the wood borer
category. Taxa for which trophic role was not known or uncertain were
classified as unknown. Mean standardized abundance and proportional
abundancc represented by each trophic role was compared and tested
using GLi* .1 SAS, similar to the models stated above. Full ANOVA tables
are presented in Appendices 1-6.

In adv.on to comparing mean number of taxa, species diversity
was measured thirze ways to minimize the effect of bias of a single method
(Grassle et al, 13743; Krebs, 1989). First, to correct for sampling errors and
for uneven catches, ! calculated an unbiased estimate of species richness
using rarefaction (Sanders, 1968; Hurlbert, 1971). Rarefaction predicts the
number of species in a subsample taken from the original sample based
on probabilities calculated from observed species abundance. Thus,
rarefaction is a measure of diversity that can be compared across samples
standardized for total capture. A second diversity measure originating from
information theory, the Shannon-Wiener index (H'), is based on the
assumptions that individuals are randomly sampled from an infinitely large
population, and that all species are represented in the sample (Pielou,
1975; Magurran, 1988). The benefits of this method are the ease of
computation and its wide use in the literature, which facilitates
comparisons with other communities (Magurran, 1988). Thirdly, the
Berger-Parker index (d') is a dominance measure, simply the inverse of the
abundance of the most dominant species in a sample divided by the total
abundance in the sample (Magurran, 1988). In general, the higher the d'
the lower the ratio of the most abundant species to the total, and the more
even the distribution. A FORTRAN program, similar to that of Krebs (1989)
but modified to run on the VAX system at the Northern Forestry Center
(Canadian Forest Service) was used to calculate rarefactions. The
program StatEcol (Ludwig and Reynolds, 1988) was used to calculate the
Shannon-Wiener index, and the Berger-Parker index was calculated
directly from spreadsheets using the Excel software package.

| used cluster analysis of Bray-Curtis percent similarity measures
with group averaging as the weighting procedure in the program StatEcol
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(Ludwig and Reynolds, 1988), to compare relationships of beetle
assemblages among different samples and sites.

To better understand factors influencing each species abundance
pattern, the standardized abundance of taxa in each sample matrix was
subjected to ordination using detrended correspondence analysis (DCA)
(Hill, 1973; Hill and Gauch, 1980; Gauch, 1982; ter Braak, 1987) using the
computer program CANOCO (ter Braak, 1987). Detrended
correspondence analysis is an indirect gradient technique which
constructs axes that maximize the variation in abundance of each species
across samples, and in doing so helps to identify factors that most
influence the observed species distributi. is. Although several ordination
methods were tested, such as principal components analysis and
correspondence analysis (ter Braak, 1987), DCA was the ordination
method that maximized the spread (variation) in the data points, over axes
based on more than a few species. Rare species (species with
frequencies less than the frequency of the commonest species divided by
five) were downweighted to a score of one, to reduce their influence on the
ordination. Only g-matrix (ordination based on the sample unit matrix),
providing sample unit ordinations for each trapping method are presented.

Data collec »d using window-traps were analyzed separately from
those collected k- rearings. Initially, DCA was conducted only on the
saproxylic taxa li-ed in Table 3-2. However, a broader definition of the
community may &' ‘0 include those taxa which facultatively use CWM for
overwintering or si->lter. For example, many non-saproxylic beetles were
reared from Popui. * CWM, including herbivorous and aquatic taxa
(Chapter 2). Thus, all 203 taxa collected by rearings (Table 2-2) were also
subjected to DCA. No DCA was run for window-trap data using a broader
definition of the community associated with CWM because of the difficulty
in defining criteria for inclusion of additional species.

3.4 Results

A total of 10,833 beetles were collected by rearings and window-
traps between 1993 and 1995, representing over 370 beetle taxa (see
Table 2-2 in Chapter 2 for a complete list). However, saproxylic beetles
were subjected to further analysis. The distribution and abundance of the
257 saproxylic species is summarized in Table 3-2. Of these, 53 species
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and two families were collected only by rearings, 96 species and 10
families were ccllected only by window-traps, and the remaining 108
species and 39 families were coliected by both methods.

3.4.1 Regional comparisons

There was no difference in the mean number of taxa collected
between regions, with either sampling method (Table 3-3). There was,
however, one significant region x decay class interaction for the number of
families collected by window-traps (df=2, F=4.93, P=0.0402). More
families were collected from decay class 1 snags near Lac la Biche than
Eureka River (Figure 3-1A), suggesting that the diversity of families
available to colonize new dead wood drops further north.

Rarefaction estimates of species richness from insect rearings
shows that Lac la Biche’s fauna is more diverse than Eureka River's, for
both years (Figure 3-2). Rarefaction estimates for window-traps, however,
show the opposite trend for both years (Figure 3-3). The Shannon-Wiener
index shows the same regional diversity patterns as the rarefaction
estimates; however, the Berger-Parker index indicates that saproxylic
beetle diversity is generally higher at Eureka Riv-.. (Table 3-4).

Overall standardized abundance was also similar between regions
(Table 3-3). However, there was a significant region x stand age effect for
beetles collected by rearings (df=1, F=15.79, P=0.0032), with greatest
standardized abundance in mature stands near Lac la Biche and lowest
abundance in old stands near Lac la Biche (Figure 3-4A), suggesting that
beetle abundance also differ between regions.

Mean standardized abundance of fungivores collected with window-
traps was significantly higher (df=1, F=8.90, P=0.0406) at Lac la Biche than
Eureka River (Table 3-5). In addition, there were significant region x age
effects for the abundance of fungivores (df=1, F=8.14, P=0.0190),
predators (df=1, F=9.03, P=0.0148), and scavengers (df=1, F=9.01,
0.0149), collected in rearings (Figure 3-5A-C). These data suggest that the
pattern of fungivore, predator, and scavenger abundance between regions
also differs greatly with stand age, with the number of predatory beetles
increasing further north.

The proportion of beetles representing each known trophic role is
similar among regions for both rearings and window-trap data (Table 3-5),
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except that the proportion of scavengers collected with window-traps was
significantly higher at Eureka River than Lac la Biche (df=1, F=7.01,
P=0.0571). The largest proportion of the beetle fauna from CWM at both
sites was composed of fungivores, followed by predators (Table 3-5).

Bray-Curtis estimates of saproxylic beetle similarity between regions
for 1993, 1994, and both years combined was 54%, 42% and 57%,
respectively, based on rearing data; and for 1994, 1995 and both years
combined was 58%, 62% and 64% based on window-trap data. Low
faunal similarities between regions suggests that faunal composition is
somewhat different between the two regions. A total of 142 beetle species
were shared between both regions, 47 species were unique to Eureka
River, and 68 species were collected exclusively at Lac la Biche (Table 3-
2).

3.4.2 Age class comparisons

In general, taxon richness is higher in old forest stands. According
to rearing data, old forest stands had significantly higher number of
species (df=1, F=10.40, P=0.0104), genera (df=1, F=1 0.17, P=0.0110) and
families (df=1, F=12.47, P=0.0064) than mature stands (Table 3-3).
However, data from window-traps showed no significant differences in the
number of taxa among age classes (Table 3-3). In addition, there were
several significant interactions of age x decay class for the mean number
of species (df=2, F=4.76, P=0.0434), genera (df=2, F=5.38, P=0.0330), and
families (df=2, F=7.81, P=0.0131) for window-trap collections (Figure 3-1B-
D), suggesting that the diversity of taxa adapted to exploit increasingly
decayed wood is concentrated in old stands.

Rarefaction estimates show little difference in species richness
between old and mature stands for rearings (Figure 3-6) and window-traps
(Figure 3-7); however, the Shannon-Wiener and Berger-Parker indices
showed that diversity was generally higher for old than for mature stands
(Table 3-4).

Mean standardized abundance of saproxylic beetles was
significantly higher in mature than in old stands (df=1, F=16.26, P=0.0030)
for rearings (Table 3-3). In addition, there were significant interactions of
age x decay class (df=2, F=5.20, P=0.0316) and age x year (df=2, F=5.38,
P=0.0323) for beetle abundance collected by rearings. Mature stands
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exhibited higher abundance than old stands for decay classes 2 and 3
(Figure 3-4B) and in 1993 (Figure 3-4C). Window-trap data showed no
significant effects of age class on standardized abundance (Table 3-3).

In both stand age classes fungivores and predators were the
dominant trophic groups (Table 3-5), but age class effects on trophic
structure were evident. Mature stands had a higher mean standardized
abundance of fungivores (df=1, F=11.35, P=0.0083), and scavengers
(df=1, F=8.65, P=0.0165) than old stands, according to rearing data (Table
3-5). There was also a significant age x decay class interaction (df=2,
F=5.84, P=0.0236) and age x year interaction (df=2, F=5.60, P=0.0294) for
the mean standardized abundance for scaveéngers reared from CWM.
Scavenger abundance was higher in mature stands than old stands for
decay classes 2 and 3 (Figure 3-5D) and for 1993 (Figure 3-5E). There
were no significant differences in trophic role abundance according to
window-traps (Table 3-5).

The proportion of predators was significantly higher in old stands
than in mature stands, based on both rearing (df=1, F=8.82, P=0.0157) and
window-trap data (df=1, F=14.06, P=0.0200) (Table 3-5). Window-trap

samples also indiczted - * the proportion of fungivores decreased with
increasing stand age . . 7=13.21, P=0.0221). There were also
significant interactions .« = 4 age with decay class (df=2, F=7.52,
P=0.0145) and year - “=12.76, P=0.0233) for wood borers collected

with window-traps. Wood borer abundance in decay classes 2 and 3 is
higher in old stands than mature stands, and the proportion of wood borers
greatly increased in old stands in 1995 (Figure 3-8).

According to Bray-Curtis similarity measures, the saproxylic fauna of
mature and old stands are approximately 46%, 49% and 50% similar for
1993, 1994 and both years, respectively for rearings; and for 1994, 1995
and both years combined 68%, 63%, and 67% similar, respectively, for
window-traps. A total of 159 species were collected in old and mature
stands; 54 were unique to old stands, and 44 unique to mature stands
(Table 3-2).

3.4.3 Decay class comparisons

In general, species richness tended to be lower in wood with lowest

levels of decay. There were no significant differences across decay
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classes for mean number of species, genera, and families (Table 3-3).
However, rarefaction estimates of species richness from rearings and
window-traps indicated that decay class 1 has the lowest species richness
(Figures 3-9 and 3-1C). The Shannon-Wiener and Berger-Parker indices
of rearing and window-trap data also suggested that species diversity is
lowest in decay class 1 (Table 3-4).

There were no differences in mean standardized abundance among
decay classes (Table 3-3). However, standardized abundance from
rearings indicated a significant interaction of decay class with sample type
(df=2, F=4.51, P=0.0439), with lower abundance occurring in decay class 1
logs than in similarly decayed snags (Figure 3-4D). These data suggest
that the fauna is adapted to find recently dead material while it is still
standing.

Scavengers collected with window-traps had a significantly higher
mean standardized abundance (df=2, F=5.19, P=0.0358) in decay class 3
wood (Table 3-5).

In rearings, there was a significantly lower proportion of wood
borers in decay class 2 wood than in the other decay classes (df=2,
F=6.02, P=0.0219) (Table 3-5). In window-trap catches, a significantly
greater proportion of predators was associated with decay class 1 wood
than with the other dacay classes (df=2, F=5.09, P=0.0375) (Table 3-5).

The saproxylic beetle fauna from decay classes 2 and 3 consistently
cluster together as more similar, according to Bray-Curtis similarity indices
from rearings and window-traps (Figure 3-11). Also, the fauna from
different decay classes clusters together at a higher percent similarity
based or window-trap data than for ~earing data (Fiyure 3-11). A total of
164 species were shared across all decay classes, but 29, 32, and 32
species were unique to decay classes 1, 2 and 3 respectively, again
suggesting that the fauna changes across decay classes.

3.4.4 Snag and iog comparisons

There were no significant differences in the mean number of taxa
between snags and lcgs (Table 3-3). However, rarefaction (Figure 3-12)
and the Shannon-Wiener and Berger-Parker indices (Table 3-4) suggest
that the fauna from logs is more diverse than snags. There was no
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difference between snags and logs with respect t0 standardized
abundance (Table 3-3).

Trophic structure between snags and logs was similar, except that a
significantly higher proportion of wood borers (df=1, F=24.13, P=0.0008)
were collected from snags than from logs (Table 3-5). Most of this
difference is attributable to Trypodendron retusum.

Snags and logs cluster together at 60%, 44% and 59% for 1993,
1994 and both years, respectively, using Bray-Curtis estimates of faunal
similarity. A total of 46 beetle species were collected exclusively from
snags, 47 species were unique to logs, and 68 were shared between the
two sample types.

3.4.5 Temporal variation in the fauna

There were significantly more species (df=1, F=48.83, P=0.0001),
genera (df=1, F=56.92, P=0.0001), and families (df=1, F=9.63, P=0.0061)
reared in 1993 than 1994 (Table 3-3); however, window-trap data showed
no significarit temporal variation in taxon richness (Table 3-3).

Rarefaction estimates of species richness from rearing data was
only slightly higher for 1994 than for 1993 (Figure 3-13A), but was much
higher in 1994 than in 1995 based on window-trap data (Figure 3-13B). In
general, Shannon-Wiener and Berger-Parker indices showed no clear
temporal patterns (Table 3-4).

The standardized abundance of reared beetles was significantly
higher in 1993 than 1994 (df=1, F=42.03, P=0.0001), whereas, there were
no temporal differences in abundance for window-trap data (Table 3-3).

Mean standardized abundance was significantly higher for
fungivores (df=1, F=27.00, P=0.0001), predators (df=1, F=7.83, P=0.0119),
wood borers (df=1, F=4.20, 0.0554), and scavengers (df=1, F=22.95,
P=0.0001) collected by rearings in 1993 than in 1994 (Table 3-5). Wood
borers collected by window-traps had a higher mean standardized
abundance in 1995 than in 1994 (df=1, F=15.40, P=0.0172) (Table 3-5).

Significantly higher proportions of predators (df=1, F=7.48,
P=0.0136), and scavengers (df=1, F=16.14, P=0.0008) were reared in
1993 than in 1994 (Table 3-5). However, the proportion of predators was
higher in 1994 than 1995 (df=1, F=23.32, P=0.0085), and the proportion of
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wood borers higher in 1995 than 1994 (df=1, F=13.00, P=0.0266)
according to window-trap data (Table 3-5).

Yearly temporal similarity was 21% and 73% for rearing and
window-trap data, respectively, based on Bray-Curtis percent similarity
measures. A total of 146 species were collected in all three years, but 42,
51 and 18 species were exclusively collected in 1993, 1994, and 1995,
respectively.

3.4.6 Community ordinations

Sample unit DCA of beetle groups collected by insect rearings is
presented in Figure 3-14 and the diagnostic data are summarized in Table
3-6. The distribution of saproxylic beetle species seems primarily
determined by decay ciass (A1=0.842) for axis 1 and by geographic region
for axis 2 (A=0.439, Figure 3-14A). A third axis, interpreted to be stand age
(r=0.359), is also relatively important in determining beetle distribution
(Table 3-6). However, these three axes explained only 27% of the total
variation in beetle distribution, suggesting that unstudied factors primarily
determine beetle abundance.

Inclusion of all reared species in the ordination resulted in a
reduction in the eigenvalues and in the gradient length [=a measure of
spread of the data points) associated with all axes, but the cumulative
percent variation explained by these axes remained similar (Table 3-6,
Figure 3-14B). The interpretation of the axes also changes. The first axis
still relates to decay class, but the second axis now relates to stand age,
and the third axis relates to sample type (i.e. snag or log) (Table 3-6).
Thus, inclusion cf all reared species in the ordination reduces the spread
of the data points and the predictive power of the ordination. This result
gives some confidence that the DCA restricted to saproxylic species does
capture some of the relevant factors determining the distribution and
abundance of these species.

In the DCA of beetle groups collected by window-traps (Figure 3-15)
distribution of saproxylic beetle species seems determined primarily by
region (1=0.364) for axis 1. | was unable to determine factors contributing
ic the second axis. In general, the eigenvalues, gradient lengths, and the
cumulative percent variation explained by this ordination were low
compared to those from rearing data (Table 3-6). These data suggest that
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rearing data give a better estimation of the factors influencing the
distribution of saproxylic species.
3.5 Discussion

The saproxylic beetle assemblage associated with Populus CWM
in mixedwood forests in Alberta is large, diverse, and dynamic. More than
250 species were collected over the three years of this study. This is a
conservative estimate of species richness because one subfamily
(Aleocharinae) and 21 other beetle genera were not separated to species
(Table 3-2). Furthermore, several other species, mainly from the families
Cerambycidae, Buprestidae, and Scolytidae, have been collected from
Populus tremuloides and P. balsamifera in Alberta (lves and Wong, 1988;
D. Langor, pers. comm.), but were not collected during this study. With
increased sampling effort, more species will certainly be added to this list.
3.5.1 Spatial and temporal variation
3.5.1.1 Regional variation in the CWM fauna

An overview of studies suggests that regional variation in faunal
composition of CWM is not unusual. Siitonen and Martikainen (1994)
attributed differences between beetle assemblages of Populus tremula L.
CWM between Finland and Russian Karelia to different management
history of forests. In pa‘ticular, they argued that changes in the
abundance, continuity and type ¢ = i <<~2n, as a result of intensive
forest harvesting in Finland, has .= Yicea ‘au:-al diversity in Finnish forests.
Kaila et al. (1994) showed that abundance of fungivorous beetle species
varied substantially beiween regions of Finland and Russian Karelia, and
among different polypores thai they inhabit. In addition, studies of
deciduous and mixed forest in Sweden (Palm, 1951, 1959: Berg et al.,
1994; As, 1993) suggest that species diversity was similar among sites, but
species composition of the sites were different.

Specific beetle assemblages associated with Populus CWM differed
between the two regions compared in this study. Althnugt there is no
regional effect on taxon richness or standardized abundarice (Table 3-3)
and only small regional differences in diversity (Table 3-4, Figures 3-2 and
3-3), there were considerable differences in species composition between
regions. Only 58% of the species collected were shared between regions;
17% were unique to Eureka River and 25% unique to Lac la Biche.

74



In this study, all stands sampled were of pyrogenic origin and have
not been subjected to intensive forest management, therefore
management history is likely not an explanation for the differences seen in
the fauna. These findings may simply reflect collecting artifacts, and that
increased sampling effort would show less uniqueness between regions.
However, faunal differences may also reflect regional variation in site
characteristics such as the proximity to mountains, temperature,
precipitation, spow cover, soil composition, and presence of particular
microhabitats (e.g. fungi). For instance, Eureka River is considerably
further north and west than Lac la Biche and may have more faunal
elements in common with montane and subarctic regions. In fact, four
species, including Xestobium marginicolle (LeC.), Rhyncholus knowitoni
(Thatcher), Mycetoporus brunneus Marsh., and Philonthus crestonensis
Hatch, show a north-western distribution (Bousquet, 1991), and were
collected entirely at Eureka River. Nine species from Lac la Biche,
including  Dyschirius interior Fall, Bellamira scalaris (Say), Athous
productus (Randall), Pyractomena borealis (Rardall), Mycetophagus
pluripunctatus LeConte, Pelecotoma flavipes Melsh., Elonium diffusum
(Fauvel), and Mycetochara fraterna (Say), have primarily central and
eastern Canadian distribuiions (Bousquet, 1991). These findings suggest
that in Alberta there is a transition or mixing of the fauna between the
lowland regions of central Canada and more upland sites closer to the
Rocky Mountains.
3.5.1.2 Age class variation and old-growth dependency.

Concerns about the influence of forest age class on biodiversity has
centered on the role of old-growth stands in harboring unique biota highly
dependent on such stands (Wilson, 1992; Niemela et al., 1993a,b). From a
conservation viewpoint, it seems reasonable to define stands on harvested
landscapes as old if their age exceeds that of the projected harvesting, or
rotation age (e.g., Spence et al., 1896, 1997). In the mixedwood forests of
Alberta, projected rotation agec range from 50 70 years depending on
localized site factors (Stelfox, 1995). Thus, the stands described as ‘old’ in
this study qualify as old-growth. I present harvesting plans continue,
however, there will be a truncation of forest age structure across the
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landscape. There will be abundant habitat for mature forest species, but
habitat availability for old-growth species will be severely limited.

Stand age has an important influence on species richness,
abundance and composition of saproxylic beetles from CWM. The mean
number of taxa collected from rearings (Table 3-3) and the Shannon-
Wiener and Berger-Parker diversity indices (Table 3-4) suggest that taxon
diversity is higher in old stands. However, there was little difference in
species diversity among stand ages as determined by rarefaction (Figures
3-6 and 3-7). Overall, 19% of the fauna were restricted to old stands, 16%
were exclusive to mature stands, and the remaining 64% were shared
between age classes.

Spence et al. (1997) introduced an index of old-growth dependency
(OGD). The OGD index for a species is simply the proportion of landscape
standardized abundance found in old-growth stands (i.e., mean
standardized abundance in old stands/mean standardized abundance in
old and mature stands). Only beetles with abundance greater thar: 0.2% of
the total catch were used, 1o reduce the effects of rare species. The
criterion for an old-growth specialis: 2 any species that had an OGD
index of 80% «:r greater (Spenc:. - ., 1997). This value is rather
arbitrary, and any increasing index .-:iue denotes increasing dependency
on old-growth.

A large number of saproxylic beetles from Populus were shown to
be dependent upon CWM in old-growth forests. From insect rearings, 18
species showed an OGD index greater than 50%, of v hich eight were
fungivores, four were predators, two were scavengers, three were wood
borers, and one species of unknown trophic status (Figure 3-16). Using
the 80% criterion proposed by Spence et al. (1997), only two species
collected by rearings, one species of Carpelimus and Rhizophagus
remotus LeC., would qualify as cld-growth dependent. Little information is
avaiiable about Carpelimus other than it is a scavenger (M. Thayer, pers.
comm.), however, R. remotus is a specialist predator on bark beetles,
namely Trypodendron retusum (LeC.). Itis interesting that 7. retusum does
not show a similar degree of old-growth dependency.

A total of 42 species from window-traps had an OGD indax greater
than 50%, of which 15 were fungivores, 14 were predators, seven were

76



wood borers, three were scavengers, and three were of unknown trophic
role (Figure 3-17). Nine species, represented by four predators, two wood
borers, two scavengers and one fungivore met the 80% oid-growth
dependency criterioii.

The dependence of beetles on old-growth stands has been
demonstrated for many forest communities. Speight (1989) identified
many saproxylic beetle species as sensitive to loss of old-growth
deciduous and coniferous habitats. Vaisinen et al. (1993) listed 29 beetle
species that were collected only in 250 year old Scots pine-Norway spruce
forests in Finland. Studies in Alberta dealing with the litter fauna have also
shown that there is some dependence on old-growth stands, with eight
species of rove beetle and one ground beetle species qualifying as old-
growth dependent (Spence et al., 1996, 1997). Physical features
associated with stand age such as: tree and snag density (Siitonen, 1994:
Stelfox, 1995), canopy gaps (Rebertus et al, 1993; Schowalter, 1994;
Lundquist, 1995), tree size (Siitonen and Martikainen, 1994; Chandler,
1991; Vaisénen et al., 1993), and changes in other fungi, plant and animal
composition during forest succession (Auclair and Goff, 1971; Jonsell and
Nordlander, 1995; Stelfox, 1995) have been suggested as factors
influencing species composition in old stands.

This study also demonstrated that beetle trophic composition of
CWM also changes during stand succession. Chandler (1991) suggests
that fungivore abundance should increase in old stands because fungal
abundance and CWM volume are positively correlated (Harmon et al.,
1986). In fact, it has been shown that the abundance of many fungivorous
beetle species, especially those that feed on fungi and slime molds found
under bark, increase in old-growth stands (Chandler, 1991; Chandler and
Peck, 1992). The lower abundance of fungivores in old stands than in
mature stands found in this study (Table 3-5) is thus counter intuitive.
Chandler and Peck (1992) suggested that some fungivorous beetles (e.g.
Leiodidae) can disperse far distainces and recolonize disturbed habitats
quickly. If this is the case, more fungivorous beetles may be collected by
window-traps in mature stands simply because beetles are dispersing in
an atteinpt to find suitable host fungi. in old stands there may be less
dispersal because host fungal material is plentiful.
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The higher proportion of predators collected from CWM in old
stands compared to mature stands (Table 3-5), however, is not surprising.
Chandler (1987) showed that predatory pselaphid beetles reach maximum
species richness and abundance in 100-120 year old forest stands, and
attributed this finding to the large volume of leaf litter and CWM found in
old stands. In addition, it has been shown for many different community
types that predators and top predators enter food webs much later in
succession (for a review see Huffaker, 1958; Kitching and Beaver, 1990;
and Schoenly et al., 1991).
3.5.1.3 Decay class variation in the CWM fauna

The results from this study suggest that the amount of time elapsed
since tree death influences beetle assemblages. Although species
richness and abundance was similar across decay classes (Table 3-3,
Figures 2-9 and 3-10), the specific fauna associated with each decay class
differed. Approximately 11%, 12% and 11% of the beetle fauna was
unique to decay classes 1, 2 and 3, respectively, and the remaining 66%
were shared among decay classes. Therefore, variation in decay class
contributes to biological diversity in mixedwood forests.

There have been many studies of the succession of arthropods into
CWM (Blackman and Stage, 1918; Blackman, 1924; Savely, 1939;
Derkson, 1941; Howden and Vogt, 1951; Wallace, 1953; Fager, 1968). In
general, colonization of dead wood can be broken into three phases. The
first phase is often dominated by xylophagous beetles, niten from the
families Scolytidae and Curculionidae, their associated pvedators, and
some fungivores. In phase two, scolytid abundance begins to drop,
secondary sapwood- and phloem-feeding species such as buprestids and
cerambycids arrive, and there tends to be an increase in fungivorous and
predatory species. Phase three is dominated primarily by fungivores and
scavengers, which feed on fungi permeating the wood.

The fauna colonizing Populus CWM also follows this general
pattern (Table 3-2). The first species into new CWM include the wood
borers T. retusum, Procryphalus mucronatus (LeC.), and Hylecoetus
lugubris Say; their predaters, R. remotus, various species of Philonthus,
and Carphacis nepigonensis (Bern.); and fungivores such as Epuraea and
Allandrus popuii Pierce. However, most secondary sapwood feeders
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showed little dependence on specific decay stages. Many fungivores such
as lathridiids, cryptophagids, and Dolichocis manitoba Dury and
scavengers like Trogoderma sinistrum Fall were collected in heavily
decayed wood. However, some wood boring taxa such as Rhyncholus,
and Tricorynus densus (Fall), and associated predators, Teretrius
montanus Horn and Stenus spp. are present in later decay stages.

The high abundance and proporiion of wood borers associated with
decay class 1 (Table 3-5) was expected since this wood is presumably still
giving off volatiles, such as phenolics and ethanols, which are attractive to
wood borers (Chapman, 1963; Schowalter, 1985). Many wood boring
species such as scolytids, cerambycids and buprestids require freshly
killed trees due to the higher nutrient value of the wood, or the abilitv to
cultivate fungi in the wood (Abrat:amson, 1967; Brewer et al., 1989).
However, the relatively high abundznce of wood borers associated with
decay class 3 was unexpected (Taui2 3-5). It may be that the fungi
associated with decay class 3 wood give off volatiles that are also
attractive to many wood boring species (Witcosky et al., 1987). These
beetles may have to 'taste' the wood to judge whether it is suitable to
breed in, and in doing so, may be collected irregardless of whether they
will actually breed there.

Sample unit ordinations for rearing data confirmed that decay class
is a major influence on the distribution of beetles (Figure 3-14).  Decay
influences the physical and biotic characteristics of individual snags and
logs through changes in wood moisture and temperature (Hammond,
unpublished data; Setéld and Marshall, 1994; Setéla et al., 1995), nutrient
levels within the wood (Haack and Slansky, 1987; Schowalter et al., 1992),
and the particular species of fungi present at each stage in the
decomposition proecess. Many fungivorous groups such as the Leiodidae,
Staphylinidae and Ciidae have special host fungus requirements and are
attracted to highly decayed wood (Lawrence, 1973; Wheeler and
Blackwell, 1984). Predatory groups are usually generalists and found
across all decay types (e.g., Calasoma frigidum Kirby, Platynus decentis
(Say), and Cezlathus ingratus Dejean) but such genera as Rhizophagus
and Rhinosimus feed primarily on scolytid larvae and are often collected
from decay class 1 wood.
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3.5.1.4 Snags vs. logs

The position of CWM (standing vs. fallen) also influences faunal
composition. Although saproxylic beetle abundance was similar between
snags and logs, rarefaction estimates of species richness were slightly
higher for logs than for snags (Table 3-3; Figure 3-12). Approximate'y 29%
of the fauna was unique to either snags or logs, with the remaining 42% in
both sample types. These data are similar to a related study of the beetle
fauna of dead pines and spruces in Finland, wnich showed that a la- =
number of beetles were selective for logs rather than snags (Viisinen et
al., 1993).

A higher abundance and proportion of wood borers, primarily the
scolytid 7. retusum , attacking snags than logs (Table 3-5; Figure 3-4D), is
likely related to the way in which wood borers select trees. For instance,
many bark beetles are initially attracted to large, dark vertical silhouettes
(Amman and Cole, 1983; Raffa and Berryman, 1980), as well as to
volatiles emanating from suitable host material given off from new dead
wood.

Species dispersal abilities may also influence the type of CWM
colonized. Beetles such as Philonthus spp., Rhizophagus bruneus Horn,
Zilora hispida LeC. and the families Scolytidae, Cerambycidae and
Buprestidae, which were collected primarily from snags, may disperse
mainly by flight (Table 3-2). Logs, which have a large proportion of their
surface area in contact with the ground, may be more readily colonized by
species that disperse by walking, such as carabids.
3.5.1.5 Temporal variation in the CWM fauna

Species diversity and standardized abundance fluctuated annually,
depending on collection method. The rearings showed substantial
differences in both diversity and abundance across 1993 and 1994, at
every spatial scale and across many of the trophic levels (Tables 3-3 and
3-5) whereas, window-traps showed some differences in diversity, but little
difference in abundance and trophic structure, with only the proportion of
predators changing across years (Tables 3-3 and 3-5). Species
composition alsc differed between years with 15% of the fauna unique to
1993, 19% unique to 1994 and 17% unique to 1995. The remaining 60%
of the fauna was collected in more than one year.
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Several factors influence the distribution and abundance of
arthropods temporally. Subcortical temperatures at night and on cloudy
days tend to approach air temperature, but direct sunlight greatly increases
the temperature under bark, sometimes to lethal limits (Graham, 1925;
Savely, 1939). Moderate increases in subcortical temperatures, however,
have been shown to speed up development time in beetles, and increase
arthropod activity under bark (Savely, 1939; Fager, 1968). Although direct
sunlight can increase the temperature of CWM in the winter, sometimes
enough to stimulate microarthropod activity (Graham, 1925; Savely, 1939),
CWM does not provide enough insulation to stave off freezing. Therefore,
arthropods with two year lifecycles have to be heat- and cold-hardy,
whereas those strictly using CWM to overwinter must be adapted to
freezing.

Precipitation may influence the relative humidity under bark, which
has been shown to affect the CWM fauna. Often the relative humidity
under bark fluctuates between 50-100%, and this is influenced by the
amount of wood decay (Savely, 1939). Many soft-bodied insects, such as
beetle larvae, collembola and mites, live under bark to prevent desiccation
(Graham, 1925, Savely, 1939; Wallace, 1953 Fager, 1968).

Third, insect populations frequently fluctuate in local abundance.
For example, several pest species show population cycles that range
anywhere from, 6-16 years for forest tent caterpillar (Malacosoma disstria
Hubner), 50 years for spruce beetle (Dendroctonus rufipennis (Kirby) and
10 years for the Douglas-fir tussock moth (Huffaker et al., 1984; Parry,
1995). The Rothamsted insect survey, which has been monitoring various
insect populations since the mid-1800's, has clearly shown that species
abundance shows cyclical patterns, and hence diversity in any given year
can change dramatically (Taylor, 1986). All these data suggest that to get
a good representation of species diversity from a community requires
replication of study designs across several years to account for
environmental differences across years and changes in individual species
abundance.

3.5.2 Ordination analyses

The goals of ordination analyses were to: 1) detect patterns

underlying the distribution of saproxylic species by maximizing the
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variation in the fauna across sample units, 2) see how these patterns might
be affectzd by collection method, and 3) determine what influence
facultative saproxylic species have on the interpretation of these axes.
Decay class had the most influence on the distribution of beetles collected
in rearings, followed by factors associated with region and stand age
(Figure 3-14; see above discussion). However, no clear distribution
patterns were detected for beetles collected with window-traps (Figure 3-
15). Window-traps collect specimens that are not associated with the
particular snag sampled, and thus do not adequately reflect faunal
variation. This homogenization of samples thus results in poor ordinations.
Rearings better sample natural faunal variation among wood bolts
resulting in stronger ordinations. Therefore, interpretations of faunal
distribution change significantly depending on collection method (Siitonen,
1994; see Chapter 2).

Interpretation of rearing orc.nations also changes depending on
which beetle species were included 1 the analysis. A broader definition of
comrnunity, that included beetie species overwintering or using CWM as
shelter, tendec to create ‘noise’ in the ordination and obscured the
patterns seen when analysis specifically targeted the saproxylic fauna
(Figure 3-14B). Many facultative saproxylic species, primarily
chrysomelids and some curculionids (Table 2-2), were collected ir; snags
and logs equally at both regions, but tended to show stand age differences
in distribution and abundance. Including these species tends to give an
overview of the entire fauna, but obscures the interpretation of the factors
influencing saproxylic species.

3.5.3 Implications for insect conservation and forest
management

Boreal mixedwood forests in Alberta have undergone little
development. Small pockets of white spruce have been harvested, but
large scale aspen forestry is relatively new in Alberta. Current thinking on
management of boreal forests suggests that forest harvesting should follow
a model that approximates, as closely as possible, the effects of natural
disturbances such as forest fires (Hansen et al., 1991; Probst and Crow,
1991; Hunter, 1993; Haila et al., 1994; Stelfox, 1995). This model
assumes that animal and plant communities in the boreal forest have been
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adapted to frequent, large scale disturbance, and that emulation of these
patterns across the landscape will best conserve viabie populations of
organisms.

Certain communities, such as the saproxylic fauna, have been
shown to be very sensitive to forest management (Speight, 1989; Wilson,
1992; Vaisanen et al., 1993). Many of these communities are poorly
known and critical to proper ecosystem function. Baseline studies such as
this are crucial to understanding community structure and its natural
variation in space and time. Based on this understanding, consideration of
the following points should help conserve saproxylic insect communities in
mixedwood forests:

1). The beetle community in Populus CWM is not homogeneous
throughout the boreal mixedwood. Although community trophic structure is
similar between regions, species composition differed considerably.
Complex interactions between spatial scales for taxon richness,
standardized abundance, and trophic structure, argues for conservation
measures that incorporate all spatial scales. A mixture of large and small
reserves, suitably connected and which account for as much variation in
habitat structure as possible may be the best method for conserving
saproxylic faunas.

2). Truncation of forest age structure, by forest development, may have
serious consequences for the fauna dependent on CWM in old-growth
stands. Some species associated with CWM show a strong dependence
on old-growth stands. In addition, trophic level structure appears to be
significantly different between mature and old-growth stands. Experiments
have shown that declining diversity in ecosystems alters performance,
especially in such processes as community respiration, decomposition,
nutrient retention, productivity and vegetation structure (Naeem et al,
1994). Interactions between individuals in different trophic levels are also
altered in disturbed habitats (Niemelad et al., 1988; Kitching and Beaver,
1990). In managed forests, maintaining a mosaic of different aged stands
across the landscape, similar to a landscape shaped by natural fire
dynamics, may act to preserve some of these specialist species. In
addition, specific old-growth reserve areas should also be set aside
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ensuring habitat for old-growth specialists. Increasing the connectivity
between forest fragments of different age may also help species that have
poor dispersal abilities move between fragments (As, 1993).

3). Many beetle species are strongly associated with different types of
CWM, with respect to stage of decay and standing or fallen woody
material. This further suggests that factors associated with decay class
may be important in the distribution of beetles across the landscape.
Therefore it is important to maintain forest structure both at the stand level
and regional level. Snag and log densities and volumes in aspen-
mixedwood stands vary considerably across the landscape (Stelfox,
1995). Maintaining snag and log densities of all decay classes in
harvested stands can be achieved by leaving existing snags and logs in
cut blocks to act as refugia and sources of new colonization in the
developing stand, and by leaving individual and clumps of trees in cut
blocks that will later form CWM in later stand succession.

4). Itis not enough to choose common species as indicators of community
recovery because of seasonal changes in species abundance. In addition,
rare species may occupy important roles in the ecosystem, but these

require more s~  ffort to assess.

Fis jals concerning saproxylic and other insects
assoc* ‘d focus on several issues. First, moie research
iS re d systematics of these groups (Danks, 1979).
Wor wout invertebrate biodiversity in threatened
habi gly difficult because the expertise to make
reliak. . wientification is disappearing (Wilson, 1992).
Secon. . ¢ the baseline information exists for the fauna associated

with Populus CWM in Canada, research can focus on how abiotic and
biotic factors influence the distribution of these species. Third, research
should focus on what effect the coniferous component of the mixedwood
has on saproxylic faunas. How much crossover is there in saproxylic
faunas from spruce CWM to aspein CWM, and what effect does this have
on spatial varition. Fourth, future research should focus on the effects of
habitat fragmentation on this fauna, and to determine whether unharvested
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forest fragments act as reservoirs for old-growth specialists. Studies of the
long-term impacts of forest harvesting are required to understand how this
fauna reacts to habitat loss. Finally, comparisons of the fauna between
harvested and burned areas may shed light on whether the natural
disturbance model is appropriate for management sensitive to
conservation of biodiversity.
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Table 3-4. Shannon-Wiener (H') and Berger-Parker (1/d') diversity indices based on saproxylic Coleoptera

collected using rearings of Populus snags and logs, and window-traps on snags, of three wood
decay classes in old and mature boreal-mixedwood forests near Lac la Biche and Eureka River
Alberta, 1993-95. Index calculations are based on pooled samples from each sample unit.

See text for explanation of indices.

Insect rearings

Window- traps

Shannon-Wiener  Berger-Parker | Shannon-Wiener Berger-Parker
Year Sample Unit H' (1/d") H (1/d’)
1993 Eureka River 321 6.71 - -
Lac la Biche 3.28 448
Old stands 3.37 5.46
Mature stands 3.22 4.31
Decay class 1 247 247
Decay class 2 345 4.46
Decay class 3 3.40 4.13
Snags 3.10 4.06
Logs 3.47 5.98
1994 Eureka River 3.23 492 3.62 515
Lac la Biche 3.65 12.82 3.34 4.73
Old stands 345 6.02 3.65 6.99
Mature stands 3.58 11.23 3.36 4.83
Decay class 1 2.80 3.24 3.28 4.46
Decay class 2 346 7.35 353 5.61
Decay class 3 3.24 7.35 3.64 781
Snags 3.40 8.84 - -
Logs 3.48 6.28 -
1985 Eureka River - - 3.60 8.00
Lac la Biche - - 342 7.29
Old stands - - 357 8.33
Mature stands - - 3.41 5.49
Decay class 1 - - 3.39 6.80
Decay class 2 - - 3.44 5.40
Decay class 3 - - 3.56 6.62
Years Combined Eureka River 3.36 6.57 3.72 6.32
Lac la Biche 3.70 5.78 3.46 5.98
Old stands 3.61 6.80 3.69 7.57
Mature stands 349 5.10 347 5.68
Decay class 1 2.68 2.84 342 5.29
Decay class 2 3.62 543 3.61 7.04
Decay class 3 3.69 5.52 KN4 7.24
Snags 3.38 4.90 - -
Logs 3.68 6.94 -
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Figure 3-1. Summary of significant interactions of the mean number
of taxa of saproxylic beetles collected with window-
trap s attached to Populus snags;

A. regionx decay dass interaction for family richness
B. age x decay dass interaction for species richness
C. age x decay dass interaction forgenera

D. age x decay dass interaction family richness.
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Figure 3-2. Rarefaction (meantstandard deviation) estimates of saproxylic
beetle species richness from Populus CWM at Eureka River
(ER) and Lac la Biche (LLB) based on rearing data;
A. 1993, subsample of 550 individuals;
B. 1994, subsample of 150 individuals;
C. 1993 and 1994 combined, subsample of 550 individuals.
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Figure 3-3. Rarefaction (meantstandard deviation) estimate of sap roxylic
beetie spedes richness in Populus CWM at Eureka River
(ER) and Lac la Biche (LLB) based on window-traps;
A. 1994, subsample of 1600 individuals:
B. 1995, subsample of 1100 individuals;
C. 1994 and 1995, subsample of 3100 individuals.
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Figure 3-4. Summary of significant interactions of the mean
standardized ab undance of saproxylic beetles

reared from bolts of Populus coarse woody material;
A. region x age interaction
B. age x decay dass interaction

C. age x year interaction
D. decay dass x type interaction.
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Populus coarse woody material;

. region x age interaction for fungivores;
region x age interaction for predators;
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E. age x year interaction for scavengers.
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Figure 3-11. A cluster analysis of saproxylic beetle assemblages in
coarse woody material of three decay classes, based

on the Bray-Curtis index of percent similarity; A. data
from rearings; B. data from window-traps.
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Figure 3-13. Rarefaction (meart standard deviation) estimates of saproxylic
beetle spedes richness from Populus CW M across sampling
years;

A. datacollected by rearings, subsample of 350 individuals;
B. datacollected by window-traps, subsample of 3100
individuals.
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Figure 3-14. Detrended comespondence analysis of beetles collected by
arthropod rearings from woody material in mature and old
stands near Eureka River and Lacla Biche, Alberta;

A. includes only the saproxylic beetle community ;
B. indudes all beetles oollected by rearings.
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Figure 3-15. Detrended comespondence analysis of saproxylic beetles
oollected by window-trap s from woody material in mature
and old stands near Eureka River and Lac la Biche, Alberta,
1994-95.
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Figure 3-16. Old-growth dependence in beetles collected from insect
rearings of wood cut from Populus snags and logs. See
text for explanation of % collected in old stands, only
species with old-growth dependency >50% shown in
figure.
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Figure 3-17. Old-growth dependence in beetles collected by
window-traps attached to snags in forests, 1994-
1995. See text for explanation of % collected in old
stands; only species with old-growth dependency
index >50% shown in figure.
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4. Immediate Effects of Fu:e:t Harvesting on the Saproxylic
Beetle Assemblage Associated with Populus Snags

4.1 Synopsis

The effects of forest harvesting on beetle assemblages associated
with Populus coarse woody material were studied in north-central Alberta.
Saproxylic beetles from old, mature, and two-year-old harvested stands
that were either old or mature before harvest, were sampled using
modified window-traps attached to the boles of snags representing three
decay categories. A total of 6747 beetles including at least 164 species
were collected during the study. in general, old stands tended to have
higher species diversity, regardless of whether they were forested or
recently harvested. Harvested stands had higher species diversity and
abundance compared to their forest counterparts. In addition, harvested
old stands were more similar in faunal structure to old forest stands than to
mature cutblocks, suggesting that faunal composition is not much affected
for at least two years post-harvest. Management that leaves the
appropriate range of habitats across the landscape, with sufficient
connectivity between stands, should conserve saproxylic beetle
assemblages.

4.2 Background and objectives

Much of western Canada is covered by a vast, relatively
undeveloped wilderness of boreal-mixedwood forest. These forests are
dominated by trembling aspen (Populus tremuloides Michaux) and white
spruce (Picea glauca [Moench] Voss). Mixedwood forests in the prairie
provinces make up approximately 20-40% of Canada's aspen resource
(Peterson and Peterson, 1992). Within Alberta, mixedwood forests cover
approximately 43% of the land area (Drew, 1988), making them the
province’s largest ecoregion.

About 29% of above ground biomass in Alberta's aspen-mixedwood
forests is submerchantable timber and coarse woody material (Peterson
and Peterson, 1992). Coarse woody material (CWM) consists of dead and
dying trees (snags), logs, stumps, and associated root systems, and is one
of the most important habitats for invertebrates in the forest ecosystem
(Harmon et al., 1986; Speight, 1989; Vaisanen et al., 1993; Siitonen and
Martikainen, 1994). Saproxylic species, those which depend on dead
wood, wood fungi, or the presence of other saproxylics, during some part
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of the life cycle (Speight, 1989), are profoundly affected by forest
harvesting, agriculture, oil/gas exploration and other human activities
(Helibvaara and Véisénen, 1984; Speight, 1989; Mikkola, 1991; Punttila et
al., 1991; Warren and Key, 1991; Wilson, 1992). In Europe, an 80% drop
in faunal diversity, mainly from the saproxylic community, has been
attributed to centuries of forest harvesting and subsequent replanting of
non-native conifer tree species (Speight, 1989).

Until recently, periodic wildfires and smali scale harvesting of the
pockets of white spruce were the major disturbances in Alberta's
mixedwood forests. However, over the last two decades, harvest of aspen
and poplar has become increasingly important economically, with total
harvest increasing from 2% in 1971 to over 73% in 1994, and still growing
(Peterson and Peterson, 1992; Alberta Land and Forest Service, 1994).
This rapid increase in aspen utilization over a very short time has given
rise to concerns over the effects of harvesting on biodiversity. Because
aspen-mixedwood stands have not been previously exploited on a large
scale, there is little empirical basis for anticipating the impacts and
sustainability of this development (Navratil and Chapman, 1991).

Wilson (1992) argues convincingly that biological diversity is
responsible for ecosystem integrity and resilience. Thus, sustainability of
forest development demands an understanding of how forestry activities
affect the distribution, abundance and diversity of the biota which comprise
forest communities. Although piant and vertebrate components of
mixedwood forests are relatively well known (Stelfox, 1995), there have
been few studies of invertebrates in aspen forests (Spence et al., 1996,
1997), and how these assemblages respond to logging. In order to
effectively conserve biodiversity in these forests, we must understand its
structure, composition, and how it is affected by forest activities. This
knowledge can then contribute to more ecologically sensitive practices that
preserve biodiversity (Brussard, 1991; Probst and Crow, 1991).

The objective of this study was to assess how saproxylic beetle
assemblages associated with Populus CWM respond to forest harvesting.
This was achieved by examining faunal structure in old and mature forest
stands of pyrogenic origin, and comparing them to two-year-old cutblocks
that were either old or mature at harvest. Species richness, diversity,
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abundance and trophic structure are compared between forest and
harvested stands. In addition, ordination analysis was used to investigate
patterns underlying the distribution of saproxylic beetles from these stands.
4.3 Methods and materials

4.3.1 Study site

Arthropod communities from Populus CWM were sampled near
Touchwood Lake, approximately 40 km east of Lac la Biche, Alberta (54°
51" N, 111° 27" W). This study site includes forest stands ranging in age
from recently harvested to more than 100 years old. These stands are
dominated (>75% canopy cover) by trembling aspen but also include a
mixture of balsam poplar (P. balsamifera L.), white spruce (Picea glauca
[Moench] Voss), black spruce (Picea mariana B.S.P.), paper birch (Betula
papyrifera Marsh.) and various willows (Salix spp.) in lesser amounts.

Two forest stands of each of two age classes were sampled. Old
forest stands were characterized by having existed >100 years since last
disturbance by fire, a canopy that was 20-27 m above the ground, and
large diameter CWM ranging from 30-48 cm diameter at breast height
(DBH). Mature forest stands had been undisturbed by wildfire for 50-65
years and had reached rotation age (i.e. harvesting age). The canopy
formed a dense cover approximately 17-19 m above the ground, and CWM
was smaller than in old stands, varying in size from 8.5-20 cm DBH.

| also sampled harvested stands, which were included in a
patchwork layout of 30 ha cut blocks and 30 ha residual forest fragments
(Stelfox, 1995). All stands were logged between December 1993 and
March 1994. The two sampled 'old stand' cut blocks were 125 years of
age when harvested, and contained CWM that ranged in size from 14-63
cm DBH after harvesting. The two 'mature stand' cutblocks were 51 years
of age at harvest, and contained snags ranging in size from 7-22 cm DBH
after harvest. All harvested stands retained a large volume of CWM on the
ground, as well as individual and clumps of live trees throughout the
cutblocks. Harvested stands were not scarified, but were left to regenerate
naturally, mainly by suckers. All stands were within an area of
homogeneous forest landscape of about 75 km?.

Three wood decay stages were used to separate snags into
'minimally’ decayed (decay class 1), 'moderately’ decayed (decay class 2)
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and ‘advanced' decayed (decay class 3; see Chapter 3 for decay class
criteria). Because Populus tremuloides and P. balsamifera CWM are often
difficult to identify, especially as snags of large diameter and in states of
advanced decay, beetle data is not partitioned by tree species.

4.3.2 Study design and data collection

Window-traps modified from Kaila (1993), were used to sample
insects flying to and from snags (see Chapter 2). Two window-traps, one
with the top of the window at breast height (ca. 1.3 m) and the second with
the top of the window at ca. 2.0 m were placed on each snag. The
direction of both traps on each snag were the same, but randomized over
the study. Three snags in each of the three decay classes were sampled
in each stand, except for one ‘old’ cutblock where only decay classes 1
and 3 were sampled because decay class 2 snags were absent.
Therefore, eighteen window-traps were set out in each of the four forest
stands and three of the harvested stands, with the remaining ‘old’ cutblock
having only 15 window-traps. Insects were collected biweekly from 02
May-28 August, 1995.

4.3.3 Data analyses

Only saproxylic beetles associated with Populus CWM were
included in analysis, as listed in Table 4-1. Saproxylic beetles are herein
defined as species which use dead wood and its associated biota for food
or reproduction.  This includes predators, scavengers, fungivores,
xylophages and phloeophages. Because sampling effort was not identica!
across stands, catches from window-traps were standardized to 1000 trap-
days.

Mean number of taxa collected over a season and their mean
standardized abundance were analyzed using a 3-way analysis of
variance (ANOVA, proc GLM) in SAS (Steel and Torrie, 1980). The main
effects in the ANOVA were stand age, stand type (i.e., forest or harvest),
and snag decay class. Parametric analysis was also used to compare
trophic structure of beetle assemblages from CWM. Beetle taxa were
assigned to one of four trophic roles, predator, fungivore, wood borer, and
scavenger based on the known habits of the predominant life stage found
in dead wood. All xylophagous and phloeophagous taxa were included in
the wood borer category. Taxa for which trophic role was not known or
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uncertain were classified as unknown. Mean standardized apburicance
and proportion of overall standardized abundance represented by each
trophic role was compared and tested using GLM in SAS, similar to the
model described above. Full ANOVA tables are presented in Appendices
7-9.

In addition to comparing the mean number of taxa, species diversity
was measured three ways to minimize bias when using a single method
(Grassle et al, 1979; Krebs, 1989). First, to correct for sampling errors and
for uneven catches, | calculated an unbiased estimate of species richness
using rarefaction (Sanders, 1968; Hurlbert, 1971). Rarefaction predicts the
number of species in a subsample taken from the original sample based
on probabilities calculated from observed species abundance. Thus,
rarefaction is a measure of diversity that can be compared across samples
standardized for total capture. The Shannon-Wiener index (H'), is based
on the assumptions that individuals are randomly sampled from an
infinitely large population, and that all species are represented in the
sample (Pielou, 1975; Magurran, 1988). This method is easy to calculate
and its wide use in the literature facilitates comparisons with other
communities (Magurran, 1988). Thirdly, the Berger-Parker index (d') is a
dominance measure, simply the inverse of the abundance of the most
dominant species in a sample divided by the total abundance in the
sample (Magurran, 1988). In general, the higher the d' the lower the ratio
of the most abundant species to the total and the more even the
distribution.

A FORTRAN program, similar to that of Krebs (1988) but modified to
run on the VAX system at the Northern Forestry Center (Canadian Forest
Service) was used to calculate rarefactions, the program StatEcol (Ludwig
and Reynolds, 1988) was used to calculate the Shannon-Wiener index,
and the Berger-Parker index was calculated directly from Excel
spreadsheets. | used cluster analysis of Bray-Curtis percent similarity
measures with group averaging as the weighting procedure in the program
StatEcol (Ludwig and Reynolds, 1988), to compare relationships of beetie
assemblages among different samples and sites.

To better understand factors influencing the abundance pattern of
each species, the standardized abundance of taxa in each sample matrix
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was subjected to ordination using detrended correspondence analysis
(DCA) (Hill, 1973; Hill and Gauch, 1980; Gauch, 1982; ter Braak, 1987)
using the computer program CANOCO (ter Braak, 1987). Detrended
correspondence analysis is an indirect gradient technique which
constructs axes that maximize the variation of each species abundance
across samples, and in doing so helps to identify factors that most
influence the observed species distributions. Although | tested several
ordination methods, such as principal components analysis and
correspondence analysis (ter Braak, 1987), DCA was the ordination
method that maximized the spread (variation) in the data points, while at
the same time not creating axes based only on a few species. Rare
species (species with frequencies less than the frequency of the
commonest species divided by five) were downweighted to a score of one,
to reduce their influence on the ordination. Only g-matrix (ordination
based on the sample unit matrix), providing sample unit ordinations, are
presented.

4.4 Results

4.4.1 Effects of stand age

A total of 6747 saproxylic beetles, representing at least 164 species,
were collected from the four forested and four harvested stands near Lac la
Biche in 1995 (Table 4-1). Of these 6, 3, 25 and 22 species were unique to
old forests, mature forests, ‘old’ cutblocks and ‘mature’ cutblocks,
respectively, 24 of these species were considered rare (Table 4-2). A total
of 100 taxa were collected in forest stands, and of these 18 were collected
only in mature stands and 28 collected only in old stands; whereas, of the
153 taxa collected in cutblocks, 29 were collected only in ‘mature’
cutblocks, and 41 were collected only in 'old’ cutblocks (Table 4-1).

Six taxa, Siagonum punctatum LeC., Endecatomus rugosus
(Rand.), Upis ceramboides (L.), Cortinicara gibbosa (Herbst), Dolichocis
manitoba Dury and Platydema americanum Cast. and Brul., were collected
only from both old forest and ‘old’ cutblocks (Table 4-1). However, only 2
species, Cercyon pygmaeus (lll.) and one species of Enicmus, were
collected only from mature forests and ‘mature’ cutblocks (Table 4-1).

There was no effect of stand age on the mean number of species,
genera, families or standardized abundance (Table 4-3). However, both
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Shannon-Wiener and Berger-Parker diversity indices (Table 4-4) and
rarefaction estimates of species richness (Figure 4-1) were slightly higher
for old forest stands than for mature forest stands. Although all four
harvested stands were cut in the same year, and thus technically the same
age (two years) at time of sampling, stands which were ‘old’ when
harvested still exhibited higher diversity and species richness than stands
mature at harvest (Table 4-3 and Figure 4-1).

Cluster analysis showed that saproxylic beetle assemblages in old
forests were more similar to ‘old’ cutblocks than to mature forests (Figure 4-
2A).

Trophic structure of beetle assemblages was significantly influenced
by stand age. The mean standardized abundance of fungivores was
significantly higher in mature forests (df=1, F=7.43, P=0.0527) and mature
cutblocks than in old forests and old cutblocks; whereas, the mean
standardized abundance of wood borers was significantly higher in old
stands and old cutblocks (df=1, F=12.32, P=0.0247) compared to mature
stands and mature cutblocks (Table 4-5). These data are also reflected in
proportional abundance of trophic roles. The proportion of fungivores was
significantly higher in mature forests and mature cutblocks (df=1, F=36.81,
P=0.0037) than old stands and old cutblocks; whereas old stands and old
cutblocks had a significantly higher proportion of predators (df=1, F=11.05,
P=0.0293) and wood borers (df=1, F=28.87, P=0.0058) than their mature
counterparts (Table 4-5).

4.4.2 Ettects of harvesting
Cutblocks had a significantly higher number of species (df=1,
=33.15, P=0.0045), genera (df=1, F=33.71, P=0.0044), families (df=1,
F=28.81, P=0.0058), and standardized abundance (df=1, F=22.88,
P=0.0088) than forest stands (Table 4-3). Similarly, the Shannon-Wiener
and Berger-Parker indices (Table 4-4), as well as the rarefaction estimates
of species richness (Figure 4-1) were higher for cutblocks than for forest
stands. A total of 11 taxa were present in forest stands but not present two
years post-harvest (Table 4-1); whereas, a total of 64 taxa, including two
species of Anthribidae, and nine species of wood borers in the families
Buprestidae, Cerambycidae, Curculionidae and Scolytidae, were present
in harvested stands but absent from forests (Table 4-1).
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Harvested stands had a significantly higher mean standardized
abundance of fungivores (df=1, F=46.49, P=0.0024), wood borers (df=1,
F=26 28, P=0.0069), and scavengers (df=1, F=29.71, P=0.0055) than did
forest stands (Table 4-5). However, trophic structure was relatively
unaffected by harvesting, except for the proportion of scavengers, which
were significantly more abundant (df=1, F=13.93, P=0.0202) in harvested
stands (Table 4-5).

4.4.3 Effects of decay class

Although there were no differences in taxon diversity among decay
classes (Tables 4-3 and 4-4; Figure 4-3), mean standardized abundance
was significantly higher (df=2, F=7.93, P=0.0159) in decay class 1 than the
other two decay classes (Table 4-3). !n addition, 19, 13 and 9 taxa were
unique to decay class 1, 2, and 3 snags in forests, and none of these
species were similarly unique to the respective decay classes in harvested
stands (Table 4-1).

In general, all decay classes from forests (old and mature) tended to
cluster together as more similar than decay classes from harvested stands
(Figure 4-2B).

Mean standardized abundance for fungivores was significantly
higher (df=2, F=5.95, P=0.0309) in decay class 1 wood than from the other
decay classes (Tabie 4-5). Trophic structure, on the other hand, was
relative similar between decay classes except for the proportion of
scav :ngerc which were relatively more abundant (df=2, F=9.85,
P=0.¢ 9"} in decay class 3 snags (Table 4-5).

4.4.4 Ordination analysis

Sample unit DCA of saproxylic beetle groups collected with
window-traps is presented in Figure 4-4. The first DCA axis separates
sample units based on stand type, with forested stands closer to the left of
the plot and harvested stands toward the right (A=0.315). The second DCA
axis separates the sample units based on stand age with mature stands
towards the bottom of the second axis and older stands towards the top of
the second axis (A=0.179). However, only 17.4% of the variation is
explained by these two axes, and combined with the low eigenvalues,
suggests that many abiotic and biotic factors influence the distribution of
saproxylic beetles across the landscape.
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4.5 Discussion
4.5.1 Influence of harvesting on saproxylic beetle
assemblages

Clearly, the composition of saproxylic beetle assemblage. changes
somewhat foliowing forest harvest. Although trophic structure was
unaffected by harvesting (Table 4-5), species richness, diversity and
abundance were higher in harvested stands (Tables 4-3, and 4-4; Figures
4-1 and 4-3). This is a common pattern observed for other forest
arthropods in other forest types in North America (Viug and Berden, 1973;
Seastedt and Crossley, 1981; Lenski, 1982; Bird and Chatarpaul, 1986;
Jennings et al., 1986; Niemela et al., 1993a; Setild and Marshall, 1994;
Greenberg and Thomas, 1995) and Europe (Arnoldi and Matveev, 1973;
Szyszko, 1983; Helle and Muona, 1985; Bistrdom and Halme, 1988:
Niemeld et al., 1988; Duelli et al., 1990; Stokland, 1991; Puntila et al.,
1991; Halme and Niemela, 1993; Niemela et al., 1993b). A similar pattern
is observed among understory plants (Corns and La Roi, 1976; Oliver,
1981, Outcalt and White, 1981). It has been postulated that the increase in
species richness of carabid beetles in recently harvested stands is due to
the influx of open habitat specialists (Niemeld et al., 1993a, 1993b).
Among the 17 species of carabids collected during this study, 9 are
considered open habitat specialists, including Pterostichus adstrictus
Esch., Trichocellus cognatus (Gyll.), Bembidion spp., and Amara spp., and
these were collected predominantly in harvested stands (Table 4-1).

The predominance for higher species diversity in harvested stands
may also be associated with changes in the physical characteristics of
stands following harvesting, as suggested by ordination (Figure 4-4).
Often abiotic factors such as temperature and air movement increase in
stands after harvest (Matlack, 1993; Chen et al., 1995; Murcia, 1995).
Increased air and ground temperatures may be attractive to 'pyrophilous’
species such as Agonum spp., Dicerca spp., and Pterostichus spp. (Evans,
1971; Richardson and Holliday, 1982; ~uikidzy 1991, 1992), which can
detect increased temperatures from ccnsivieszble distances.  Also,
increased air movement through open cutbiocks may ‘carry’ pioneer
species into these areas. The action of wind has been shown to we quite
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important for the re-establishment of species on islands and mountains
following disturbance (Wilson, 1292).

Many beetle species may be more common in harvested stands
because of the large amount of CWM remaining on site after harvest.
Volatiles emanating from weakened and recently dead wood are attractive
to many bark- and wood boring species (Chapman, 1963; Schowalter et
al., 1992). Of the 19 phloeophagous and xylophagous species collected,
11 were collected exclusively in harvested stands. Also, Rhizophagus
dimidiatus Mann. and R. remotus LeC., specialist predators on bark
beetles, were collected primarily in harvested stands (Table 4-1).
Undoubtedly, the fungi colonizing Populus wood also give off volatiles
attractive to fungivorous insects, as is known for other species of wood
(Witcosky et al., 1987; Hedlund et al., 1995; Jonsell and Nordiander,
1995). Therefore, the large volume of decaying CWM left on site after
harvest may explain why about half of the 60 species of fungivores were
collected mainly in cutblocks (Table 4-1).

It should not be concluded that the many woodborer, fungivorous
and predatory taxa collected exclusively in harvested stands do not also
occur in forests. Most of these species are likely rare and localized in
forests, so substantial effort may be required to detect them. In fact, all but
two species, Tropideres dorsalis (Thunberg) and Glischrochilus vittatus
(Say), have been collected in aspen-mixedwood stands near Lac la Biche
or Eureka River, Alberta (see Chapter 3). Harvested stands may thus
serve as ‘islands’ which serve to attract and concentrate open habitat
specialists for some period of time following harvest. The suitability of the
wood as resources for wood borers will decline with time as the wood
deteriorates. These species will then likely move into adjacent forest or
recently harvested stands. But, as this wood continues to decay it may
become more attractive to species specializing on heavily decayed wood
(see Chapter 3}). Only longer term chronosequence studies will elucidate
these relationships.

4.5.2 Effec!s of stand age and decay class

It is interesting that differences in beetle assemblages between
mature and old stands seem to remain, to some degree, for at least two
years after harvest. Diversity (Table 4-4) and rarefaction estimates of
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species richness were higher for old forest stands and cutblocks than their
mature counterparts (Figure 4-1). Cluster analysis revealed that ‘old’
cutblocks were more similar to old forest stands than to ‘mature’ cutblocks
(Figure 4-2A). It may be that saproxylic insect assemblages survive
harvesting and remain relatively intact two years post-harvesting; only 11
of the 100 species found in forest stands were absent from harvested
stands (Table 4-1).

Higher species richness in older forest stands and cutblocks may
reflect the size of CWM in these stands. Snags were considerably larger in
diameter in ‘old’ forests and cutblocks (30-63 cm DBH) than in ‘mature’
forests and cutblocks (8.5-22 cm DBH). Vaisanen et al. (1993) showed
that the presence of saproxylic beetles in dead pine depended on trunk
diameter, bark area, and stand age. In addition, there is a positive
correlation between CWM size and wood moisture content (Brackebusch,
1975; Harmon et al., 1986). Therefore smaller diameter snags may lose
certain micro-habitats (e.g. fungi) available to saproxylic beetles much
more quickly than large snags.

Emigration of beetles from adjacent residual forested blocks may
also aid in maintaining the original assemblage in cut blocks. Only long
term monitoring can determine how long assemblage structure remains
intact. If the fauna contains many species that prefer older forests,
assemblage integrity can be expected to degenerate as these species
disappear. For instance, it has been shown that several species of carabid
beetles that have an affinity for old-growth lodgepole pine forests may
survive for at least two years in newly harvested stands, but disappear by
nine years post harvest (Niemela et al., 1993a). However, As (1993)
suggests that in areas of intensive forestry that have patches of CWM that
have not become isolated islands, wood inhabiting species do not become
split up into separate populations, and concludes that CWM in harvested
areas facilitates movement between fragments preventing populations
from becoming isolated. Therefore, current harvesting practices which
include leaving most standing and fallen CWM as well as small clumps of
living trees will serve as a source of new snags may help the survival of
saproxylic arthropod assemblages.
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Trophic structure of beetle assemblages differed greatly between
mature and old stands (Table 4-5). The proportionately higher abundance
of fungivores and lower abundance of predators in mature stands
compared to old is similar to that reported in Chapter 3. This study also
showed that wood borer abundance was proportionately higher in old
stands. This may be a numerical response to the greater volume and size
of CWM in old-growth forests.

The distribution of beeties among decay classes was not affected
much by harvesting. The higher standardized abundance of beetles in
decay class 1 (Tables 4-3 and 4-5) reflects the large volume of new CWM
in harvested stands. Interestingly, saproxylic beetles collected from decay
class 1 snags in old forest stands were more similar to decay class 1 snags
in 'old" harvested stands than to other decay classes in old forects;
however, all mature forest decay classes clustered together (Figure 4-2B).
Wallace (1953) also showed that bark beetles and related groups were the
first to colonize new dead wood, and that this pattern was more clearly
defined in harvested stands than in forests. This finding helps support the
argument that CWM in harvested stands may concentrate certain species
following harvesting.

4.5.3 Implications for beetle conservation

it has been suggested that the best means for preserving regional
biodiversity is conservation of maximum habitat diversity (Niemela et al,,
1988; Speight, 1989; Mikkola, 1991; Harris and Silva-Lopez, 1992). In
order to develop land management strategies that are ecologically
sensitive, it is necessary to understand how forest invertebrate species
vary across the landscape, and how they respond to large scale
disturbance.

The data from this study suggests that conservation of the saproxylic
insect fauna in the boreal mixedwood can be achieved through a 3-part
strategy including the following:

1). Adjust harvesting plans to include a mixture of age classes and forest
types in some kind of landscape mosaic, and to increase conngzctivity
between forest fragments. Although the mean number of taxa and their
standardized abundance did not significantly differ between old and
mature stands (Table 4-3), species diversity and trophic structure changed
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considerably with stand age (Tables 4-4 and 4-5; Figure 4-1). Harvesting,
however, tended to increase species diversity and abundance (Table 4-3,
Figure 4-1). In addition, many species were restricted to either forested or
harvested stands or to one stand age (Tables 4-1 and 4-2). These data
are similar to work on the saproxylic beetle fauna of Scots pine and
Norway spruce in Europe, where diversity and abundanne increased in
managed forests, but the proportion of rare species was higher in primeval
(=250 years) forests (Vaisanen et al., 1993). It has been suggested that
poor dispersal abilities of forest specialists ard climatic "aciors between
forest and harvested stands irfluenced the distribution of the fauna
(Véisénen et al., 1993). Tr- :fore, maximizing stand heterogeneity and
connectivity should allow ec ate movement of forest specialists
between fragments.

2). During harvest, leave existing snags and logs in cutblocks. The
similarity of the beetle fauna between old forest and ‘old’ harvested stands
suggests that saproxylic faunas can survive forest harvesting tor at least
two years (Figure 4-2A). These harvested stands contained large volumes
of CWM after harvesting, similar to what is found after wildfire. Siitonen
and Martikainen (1994) have also suggested that the continuity of large,
dead aspen across the landscape has a beneficial effect on saproxylic
faunas. Therefore, CWM left in harvested stands may act as a sink for
saproxylic species that are then able to recolonize the regenerating forast.
3). Leaving patches of individual and clumps of live trees in cutblocks, that
become snags in the regenerating forest, may also help conserve
saproxylic assemblages. It is unknown how long saproxylic insect
assemblages remain intact after harvesting. If suitable host material
becomes available during stand succession, maybe these assemblages
can remain several years after harvesting. Only long term
chronosequence studies can answer these questions.

The current paradigm in forest management is the ‘natural
disturbance model’, which suggests that patterns of forest harvest should
mimic the effects of wildfire on the landscape (Hansen et al., 1991; Probst
and Crow, 1991; Hunter, 1993). Whether the succession of saproxylic
invertebrates in burned and harvested stands is similar is unknown at
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present. Current research in chrcnosequences of harvested and burned
aspen-mixedwood forests may elucidate these relationships.
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Table 4-4. Shannon-Wiener (H') and Berger-Park: - (1/d") diversity indices based on saproxylic
Coleoptera collected with window-traps attached to Populus snags of three decay classes
in old and mature boreal mixedwood stand and recently harvested stands near Lac !a Biche
Alberta, 1995. Index calculations are based on pooled samples from each sample unit. See
text for explanation of indices.

Shannon-Wiener Berger-Parker

Sample Unit H' (1/d")
Old forest stands 3.45 8.19
Mature forest stands 2.96 4.85
Old stand harvested 3.65 9.00
Mature stand harvested 3.35 5.21
Decay class 1-old forest stands 2.99 5.05
Decay class 2-old forest stands 3.36 7.93
Decay class 3-old forest stands 3.37 6.45
Decay class 1-mature forest stands 3.09 5.85
Decay class 2-mature forest stands 2.52 3.62
Decay class 3-mature forest stands 2.66 4.14
Decay class 1-old stand harvested 3.28 7.19
Decay class 2-old stand harvested 3.34 7.57
Decay class 3-old stand harvested 3.83 13.69
Decay class t-mature stand harvested 3.67 5.61
Decay class 2-mature stand harvested 3.25 4.97
Decay class 3-mature stand harvested 3.14 5.00
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Figure 4-2. Bray-Curtis percent similarity of the saproxylic beetie fauna
sampled by window-traps on snags, near Lac la Biche,

1995, between; A. forested and harvested stands, B.
decay classes in forest and harvested stands.
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Figure 4-3. Rarefaction (meant1 standard dev.) estimates of
saproxylic beetles species richness from forest
and harvested stands near Lac la Biche in 1995,
A|. degay class 1, B. decay class 2, C. decay
class 3.
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5. The Early Colonization of Populus Coarse Woody Material
by Arthropods and Their Influence on Decay Rate

5.1 Swacpsis

The colonization of newly created coarse woody material (CWM) by
arthropods and their effect on wood decay rate was studied at two sites in
the aspen-mixedwood forest in Alberta. New dead woody material was
created in 1993 by cutting 'healthy' trees into three sections, a stump
section, a snag section, and a log section. Insects were then reared from
wood samples from each section in 1994 and 1995 to determine the
temporal sequence and mode of wood colonization. This fauna is rather
dynamic as shown by the large change in faunal composition across two
years. The dominant arthropod groups reared from new CWM include the
Acari, Collembola, Psocoptera, Diptera and Coleoptera. There were three
very abundant beetles in new CWM, Trypodendron retusum (LeConte), an
ambrosia beetle, its major predator Rhizophagus remotus LeConte, and
Molamba biguttata (LeConte), a fungivore. Two other beetles,
Endomychus biguttata Say, and Megatoma cylindrica Kirby, appear to
specialize on new dead wood. The number of species, genera, families
and abundance, as well as wood borer activity, appeared higher in 1994
than in 1995. Old forest stands tended to have higher taxon richness
compared to mature stands. In addition, wood borers tended to form a
higher proportion of the fauna from ‘snags’; whereas, predators tended to
form a higher proportion of the fauna from logs and stumps, suggesting
that host-finding and dispersal capabilities may be very important for this
fauna. Significant changes in wood hardness (ie. a measure of wood
decay) could not be detected in the first two years after a tree dies. These
data suggest that the arthropod fauna attracted to new dead wood have a
minor role in speeding up decay initially, but likely affect wood
decomposition in the long term.
5.2 Background and objectives

A large percentage of biomass in boreal aspen-mixedwood forests
is made up of sub-merchantable timber and coarse woody material
(CWM). In fact, it has been estimated that healthy aspen forest stands
contain between 10-20 Mg ha-1 (Harmon et al., 1986), or up to 29% of
above and below ground biomass, as snags, logs, stumps, and other forms
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of dead woody material (Peterson and Peterson, 1992). Dead and dying
woody material has many important structural roles in forest ecosystems,
including habitat for autotrophs and heterotrophs, and regulation of
geomorphic processes such as soil erosicn and the downslope movement
of water and litter (Harmon et al, 1986). Dead wosd is also important in
nutrient dynamics as it contributes significant amounts of ritrogen, carbon,
phosphorus, potassium, calcium, magnesium and other nutrients to forest
soils (Ausmus, 1977; Swift, 1977; Hendrickson, 1888; Hendrickson et al.,
1989). Woody material decomposes rather slowly and is low in nutrient
quality compared to needles and foliage, but is a significant long-term
source of nutrients (Larsen et al., 1978; Vogt et al., 1986; Alban and Pastor,
1993; Kauffman et al., 1993). Nitrogen, a nutrient shown to be limiting in
forest ecosystems, is often abundant in CWM (Harmon et al., 1986;
Hendrickson, 1988; Hendrickson et al., 1989).

Regulation of CWM decomposition is influenced by the invertebrate
fauna associated with this resource (Ausmus, 1977; Swift, 1977).
Generally, wood boring beetles are the first to colonize weakened or newly
dead trees, and are attracted to them by volatiles such as ethanols and
terpenes given off by the tree (Roling and Kearby, 1975; Millar et al., 1986;
Witcosky et al., 1987; Ytsma, 1989; Schroeder, 1992). Also, symbiotic
relationships between some beetle species and fungi have also
developed which increase the ability of these organisms to colonize and
utilize woody material. The best known examples include bark and
ambrosia beetles and their associated ambrosia and stain fungi (e.g.
Chapman, 1966; Abrahamson et al., 1967; French and Roeper, 1972;
Wood, 1982; Brewer et al., 1988). Some beetles gain nutrients directly
from fungi (e.g. ambrosia beetles and ambrosia fungi), but many other
beetle species are simply vectors of decay fungi. The close association
between insects and decay fungi thus has an important influence on the
rate of decay in wood (Gardiner, 1957; Wallis et al., 1971; Zhong and
Schowalter, 1989; Lowell et al., 1992).

Recent work on the arthropod fauna associated with Populus CWM
has shown that the fauna is large, diverse, and sensitive to spatial scale
(see Chapters 2 and 3). Given the important roles that this fauna plays in
forest ecosystems, and its sensitivity to forest harvesting (see Chapters 3
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and 4; Helibvaara and Vaisanen, 1984; Vaisédnen et al., 1994; Siitonen
and Martikainen, 1994), a better understanding of the structure and
function of this fauna in mixedwood ecosystems can contribute to evolving
forest management strategies, which aim to minimize harvesting impacts
on ecosystem integrity.

The objectives of this chapter were to investigate the early
colonization of CWM by arthropods, and to assess the influence of these
organisms on the initiation and rate of wood decay. | tested the hypothesis
that wood colonized by arthropods decomposes at a faster rate than wood
without arthropods. The Coleoptera were the focus of the inventory portion
of this work because: it is one of the dominant insect orders in CWM (see
Chapters 2 and 4, Speight, 1989); the taxonomy of many beetle families is
relatively well known; tne distribution of beetles in Canada is well known,
and has been recently documented in a checklist of species published by
Bousquet (1991); this order is diverse with respect to species and trophic
role; Coleoptera are easy to collect, preserve and store for later
identification; and it facilitates comparisons with most previous studies of
the CWM fauna, which focused on beetles (e.g. Fager, 1968; Speight,
1989; Vaisénen et al., 1993; Kaila et al., 1994; Jonsell and Nordlander,

1995).
5.3 Methods
5.3.1 Stand descriptions &= «:x: rimental design

New CWM was createa ', and early June of 1993 to investigate
the colonization uf new dead wood by insects and fungi, and to determine
their effects on wood decay rate. The experiment was set up in two
regions in northern Alberta, in the Lac la Biche area, near Touchwood
Lake (54° 51'N, 111° 27' W), and in the Fairview area, near Eureka River
(56° 35' N, 118° 37' W). These study sites are aspen dominated stands
(<20% conifer canopy and understory trees), but also include a mixture of
balsam poplar, white spruce (Picea glauca [Moench] Voss) and birch
(Betula spp.). Stand structure was described in detail in Chapters 2 and 3.

increment core samples, extracted at breast height from the
heartwood of standing live trees, were used to determine the amount of
fungal infection. Trees with minimal infection (i.e. with less than 20%
fungal stain of the core sample) were then chosen for this experiment. In
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each replicate four aspen or poplar trees, representative of the dominant
size class of each stand, were cut to create new CWM. Each tree was cut
so as to leave a 120 cm-high stump in the ground, to sample insects
entering the wood through the root system or by walking. An additional
two 120 cm-long sections were cut from the base of each felled tree. One
was left on the ground to serve as a log, to sample insects colonizing the
wood by walking; and the second was suspended with rope and chain
from a beam lashed between two trees and served as a ‘snag’, to sample
insects colonizing the wood by flight. The lower end of snag sections were
1.0-2.0 m above the ground. The remainder of each felled tree was left in
place and was not used in the experiment. Exposed areas of all cut
sections were sealed with paraffin to slow moisture loss from the wood. All
three sections of one of the four trees was covered with insect screen to
prevent infestation by insects; the stump could only be screened to exclude
flying insects. The experiment was replicated in three old (>100 years)
and three mature (40-80 years) stands near Lac la Biche and two old and
two mature stands near Eureka River. All sites were visited every 2-3
weeks from May to September and damage to insect screening repaired.

In early spring of 1994 a 60 cm wood bolt was cut from each snag,
log and stump section from each stand and transported back to the lab.
The newiy cut exposed face of each wood sectiori remaining in the field
was then re-sealed with paraffin, and screen replaced on previously
screened sections. Sections were labeled and placed in plastic bags to
prevent insects escaping, and then transported to Edmonton. In
Edmonton, the ends of each wood section v'ere sealed wiiii paraffin to
slow moisture loss, and each section placed in a sealed cardboard box.
Each box had a 3 cm diameter hole cut in the bottom and a clear plastic
container (4 cm diameter) was glued to the box by means of a lid with a 3
cm hole cutinto it. The container thus functioned as a pitfall trap. Insects
which emerged from the wood were attracted to the light shining through
the plastic container and would be collected. Boxes were checked weekly
from mid May to mid October, 1994. The wood sections remaining in the
field were similarly collected and reared in 1995.

The amount of *vood decay of each wood bolt was measured using
an h-gun, an experimental prototype developed by researchers at the
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Northern Forestry Center (Natural Resources Canada). The h-gun (Figure
5-1) tests the hardness ot wood by measuring the amount of force needed
to inject a 6 cm needle into the wood. An increasing hardness measure is
inversely related to the amount of decay. Three hardness measurements
were made on each snag, log and stump section, one from the center of
each end, and one through the bark on the side of each section.

5.3.2 Data analyses

Only saproxylic beetle species were included in the analyses, and
are listed in Table 5-1. Because wood volume and the number of rearing
days was not the same for all samples, catches from rearings were
standardized to 0.1 m3 of wood and 150 rearing days.

Mean number of taxa and mean standardized abundance were
calculated using pooled data from all three unscreened logs, snags or
stumps from each replicate. Pooled estimates were analyzed using a 5-
way analysis of variance (ANOVA; GLM), in a split plot design, in SAS.
The main effects in this analysis were region, stand age, treatment (ie.,
screened or unscreened wood section), wood section (i.e., log, snag, or
stump), and year of rearing. Trophic composition from wood sections was
also studied using a similar design. Beetle taxa were assigned one of four
trophic roles, predator, fungivore, wood borer, and scavenger, based on
the biology of the predominant life stage found in dead wood. If the trophic
role of a species was uncertain, it was assigned to an ‘unknown’ category.
The standardized proportion of each trophic role was calculated from data
pooled across all three unscreened log, snag and stump sections from
each repiicate. The catches from the pooled experimental sections and
each control section, were also analyzed using ANOVA (GLM) in SAS.

The three wood hardness measurements for each wood section
were averaged, and mean wood hardness values were then tested using
ANOVA (GLM) in SAS. Full ANOVA tables for each of the three analyses
stated above are presented in Appendices 10-12.

5.4 Results

A total of 6948 arthropods were reared from CWM sections, of which
2381 were col'ected in 1994 and 4567 collected in 1995. In 1994,
Coleoptera (beetles) and Diptera (flies) were the two dominant groups
reared from one-year-old wood sections, making up approximately 36%
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and 38% of the total catch, respectively (Figure 5-2A). In 1995, the
dominant group reared from two-year-old wood sections was the Diptera,
making up 50% of the total catch (Figure 5-2A). Acari (mites) increased
from 5% of the catch in 1994 to 27% of the catch in 1995 (Figure 5-2A).
Beetle abundance dropped markedly to only 7% of the total catch in the
second year, and Psocoptera (bark lice) abundance dropped from 12% in
1594 to 3% in 1995. Four orders, the Hemiptera (true bugs), Homoptera
(hoppers, aphids, etc.), Thysanoptera (thrips), and the Trichoptera
(caddisflies) showed overall abundance of less than one percent (Figure
5-2B).

Beetle species and their standardized abundance collected by
wood section and year is shown in Tabie 5-1. A total of 900 beetles,
comprising 35 species were collected from wood in 1994, with abundance
dropping to 293 individuals from 43 species collected in 1995. The most
abundant Coleoptera taxa were an ambrosia beetle, Trypodendron
retusum (LeConte), a minute fungus beetie, Molamba biguttata (LeConte),
and a predaceous beetle thought to feed on scolytid larvae, Rhizophagus
remotus LeConte, which together comprised approximately 70% of the
total catch. Interestingly, all of the T. retusurin specimens were collected in
the first year. Also, four beetle species were collected from recently killed
wood that were not collected in other decay classes (see Chapters 3 and
4), two ground beetle species Agonum obsoletum (Say) and Psydrus
piceus LeConte, a fungus beetle Endomychus biguttata Say, and a
dermestid Megatoma cylindrica (Kirby) (Table 5-1).

There were many significant differences between the mean number
of beetle species, genera, famiies and abundance, according to
parametric analysis. Although there were no effects of region or wood
section in taxon richness and abundance (Table 5-2), taxon richness was
significantly higher in old stands than mature stands for the mean number
of species (df=1, F=9.71, P=0.0207), genera (df=1, F=8.08, P=0.0294), and
families (df=1, F=9.69, P=0.0208) (Table 5-2). Unscreened wood sections
had a significantly highc: mean number of species (df=1, F=37.93,
P=0.0001), genera {df=1, F=41.12, P=0.0001), families (df=1, F=46.60,
P=0.0001), and standardized abundance (df=1, F=17.29, P=0.0002) than
wood sections screened with insect mesh (Table 5-2). Als9, collections
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made in 1994 had a significantly higher number of families (df=1, F=8.42,
P=0.0273) and standardized abundance (df=1, F=15.52, P=0.0076) than
collections in 1995 (Table 5-2). There were also significant interactions of
year with: stand age for the number of genera (df=1, F=7.96, P=0.0303),
families (df=1, F=6.31, P=0.0457), and standardized abundance (df=1,
F=5.37, P=0.0597), with more taxa and individuals collected in 1994
(Table 5-3); treatment, with a significantly higher abundance collected from
unscreened logs in 1994 (df=1, F=9.96, P=0.0031) (Table 5-3); and
section, with a significantly higher number of species (df=2, F=4.55,
P=0.0168), genera (df=2, F=5.11, P=0.0107), families (df=2, F=4.31,
P=0.0204) and abundance (df=2, F=5.78, P=0.0063) from snags in 1994
(Table 5-3).

There were no significant main effects of proportional abundance for
fungivores, scavengers and unknowns (Table 5-4). Predators were
proportionally more abundant in old stands than in mature stands (df=1,
F=6.39, P=0.0448), and in logs and stumps than in snags (df=2, F=9.82,
P=0.0005) (Table 5-4); however, the significant section x ag2 interaction
indicates that the differences among sections is greater in old stands than
in mature stands (df=2, F=4.06, P=0.0268) (Table 5-5). Wood borers were
proportionately more abundant in unscre<t: ~ :ootions (di=1, F=9.79,
P=0.0037), in snags than in stumps and s (=, 7 =5.41, P=0.0094),
and in 1994 than in 1995 (df=1, F=18.00, P=0.CJ54) ({able 5-4); however,
the significant year x region interaction indicates that the temporal
differences were much greater in Lac la Biche than in Eureka River (df=1,
F=9.01, P=0.6240) (Table 5-5).

Wood collected from Eureka River had significantly (df=1, F=42.52,
P=0.0004) higher (16.2+0.8) mean hardness values than wood from Lac la
Biche (8.5+0.7). No other significant differences in wood hardness were
apparent.

5.5 Discussion
5.5.1 Early colonization of C'VM

The dominant arthropod groups coilected frcm newiy created
Populus CWM were similar to what was found fromi Populus in other
decay classes (Chapter 2), in that Acari, Collembola, Psocoptera,
Coleoptera and Diptera form the largest groups reared (Figure 5-2). The
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Hymenoptera, of which the vast majority were ants and parasitoids, formed
a large percentage of the groups from dead wood of all decay classes, but
is under-represented in new CWM; whereas, the Psocoptera, which
formed a small percentage of the taxa collected from all decay classes, is
rather abundant in new CWM (Chapter 2, Figure 5-2). This may be directly
related to the biology and habitat preferences of these two groups. Ants,
such as Camponotus and Formica , are usually associated with ‘soft’ wood
typical of later decay stages, and often gain access to the wood through
holes and cracks i the bark (Ilves and Wong, 1588). Psocids, on the other
hand, are known to be primarily phytophagous, feeding on algae, lichens,
foliage and molds on and beneath the bark surface, with some groups
known to oviposit on tree branches and trunks (Imms, 1957; Borror et al.,
1976). New CWM sections in this study had, for the most part, the bark still
intact, and the wood still sound (see discussion below) and was therefore
not suitable for ant colonization, but may have provided necessary food
sources and oviposition sites for psocids.

The arthropod data also suggest that the fauna begins tc develop in
year two, after wood boring beetle abundance drops (Table 5-1; Figure 5-
2). These data suggest that wood boring beetles may ‘pre-condition’ the
wood for colonization by other arthropods. Beetle galleries may allow
direct access to fungi and phloem resources, and increase the surface
area available for colonization by other arthropods (Zhong and
Schowalter, 1989). Groups such as Collembola, Acari, and Diptera, many
of which are fungivorous, greatly increased in abundance in year two
(Figure 5-2). Work by Howden and Vogt (1951) and Fager (1968) also
showed that the abundance and diversity of arthropods entering CWM
increased during, or just after, initial colonization by wood boring beetles.
Unfortunately, much of the work focusing on wood decay has looked
exclusively at the effects of wood boring pests and their symbiotic fungi
(e.g., Waliis et al., 1971, Edmonds and Eglitis, 1983; Zhong and
Schowalter, 1989; Lowell et al., 1992. Schowalter et al., 1992) and very
ittle is known about the complex interactions of wood boring beetles and
other arthropod taxa.

Although the proportion of Coleoptera collected from new CWM was
similar to other decay classes (see Chapter 2), the beetle fauna was less
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diverse. Beetle rearings from decay class 1 wood, which is the most
similar to CWM in this study, yielded an average of 12, 11 and 8 species,
genera, and families, respectively, per rearing (see Chapter 3); whereas,
only 2.5, 24 and 2.2 species, genera and families, respectively, were
collected in rearings from new CWM. These differences are probably due
to differences in wood volume reared and the surface area available for
colonization; in a sense, the smaller the wood chunk the harder it is to find.
In addition, smaller wood sections may also entirely lack certain
microhabitats typical of larger wood sections (see Chapter 2), and hence,
the fauna associated with these habitats is absent.

Weakened and newly dead wood has a unique fauna which is rare
or absent in more decayed material. Many wood- and bark-boring beetles
s ag cerambycids, buprestids, and scolytids have a requirement for

.~ ~ost material in order to complete development (Wood, 1982; Brewer
e ..., 1989), and are therefore among the first insects to attack fresh CWM
(Satelsson et al., 1994}. These insects are usually good dispersers, and
have excellent host-finding capabilities mediat=<: hy long-range attraction
to ndors, such as ethano! and terpenes, er:.:~-.i:vQ from weakened and
newly dead trees (Chapman, 1963, 1966; V.« sky et al., 1987). In this
study, the cambium feeding buprestid, Agrilus /iragus (Bart. and Brn), and
the ambrosia beetle, Trypodendron retusum, were abundant in 1-year-old
CWM, and greatly decreased in abundance in 2-year-old wood (Table 5-
1). In fact, the overall significant decrease in beetle abundance (7 zble 5-2)
and wood borer abundance (Table 5-4) from 1994 to 1995 was due largely
to the decrease in abundance of 7. retusum. It may be that ambrosia fungi
cultured in the galleries of this beetle, and eaten by its larvae, cannot
compete with other fungi which eventually invades the wood (Boddy,
1992). Thus, this species is rarely found in more advanced decay classes.
or when it is fourid, may .imply be & coilecting artifact.

Predaceous insects which specialize on bark- and wood-boring
beetles also contributed to the faunal uniqueness of early colonizers. For
example, the abundance of Rhizophagus remotus and A. brunneus Horn,
specialist predators of T. retusum and other scolytids (Bousquet, 1990),
reilects the presence and absence of its host.
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Several fungivorous groups, including the Leiodidae, Cerylonidae,
Cryptophagidae, and especially the Corylophidae, also seem to specialize
in fresh CWM. The endomychic, E. biguttata, was coliected only in recently
dead wood (Table 5-1). This may indicate a preference for fungi present in
Popuius trees as they die or immediately after death. For example, fungi
from the genera Hypoxylon, Peniophora, Phellinus and Armillaria are
common in living and freshly killed Populus (Hiratsuka and Loman, 1984;
Hiratsuka, 1987; Peterson and Peterson, 1992). Specialized fungivores
may be attracted to odors emanating from these fungi (Hedlund et al.,
1995; Jonsell and Nordlander, 1995), and gain access to the mycelial
masses through holes made by T. retusum. These species may disappear
from older CWM because of the absence of the appropriate food source or
due to competition with other fungivorous species (Boddy, 1992). In fact,
temporal changes in the arthropod fauna inhabiting CWM may be tightly
linked to changes in fungal community structure over time (Crowson, 1984;
Newton, 1984; Wheeler and Blackwell, 1984).

Stani age also influences faunal structure in new CWM. The
number of species, genera, and families collected from wood in old-growth
stands was higher than corresponding samples from mature stands (Table
5-2). This pattern may indicate that the fauna in old stands is more diverse
than in mature stands. However, previous and concurrent studies in the
same forest stands have shown that arthropod diversity in old and mature
stands are often similar, but that there is high turnover in species
composition (see Chapters 3 and 4; Spence et al., 1996, 1997). Tree stem
density is much higher in mature forest stands than old stands and CWM
volume is higher in old stands (Stelfox, 1995), which may make it easier for
beetles to find suitable CWM ‘islands’ in old stands. Overall, abundance
did not vary with stand age, but predators comprised a higher proportion of
the fauna in old stands than in mature stands (Table 5-4). This is similar to
the trends seen in Chapters 3 and 4, and may reflect a turnover in
saproxylic community structure across stand ages.

The type of wood section, snags, logs or stumps, did not affect
beetle taxon richness or abundance (Table 5-2), but did have a large effect
on faunal trophic composition. Wood boring beetles represented a
significantly higher proportion of the fauna in snags than in lcgs and
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stumps (Tables 5-4 and 5-5). This reflects host selection behaviour of
wood- and bark-boring beetles, many of which are attracted to dark,
vertical silhouettes (Amman and Coie, 1983; Raffa and Berryman, 1980).
Of the five taxa collected exclusively from sriags, three were wood borers
(Table 5-1), suggesting that wood borers colonize wood mainly by flight.
Predators formed a significantly higher proportion of the fauna in logs and
stumps, than in snags (Table 5-4). Many of these species, especially
carabids and staphylinid beetles, readily disperse by walking rather than
flying (see Chapter 3). These trends are similar to a related study of the
beetle CWM fauna of dead pines and spruces in Finland, which showed
that a large number of beetles were selective for logs rather than snags
(Vaisénen et al., 1993).

5.5.2 influence of arthropods on decay processes

Wood hardness readings indicated that screened and unscreened
wood sections were similar in amount of decay, suggesting that in boreal
ecosystems Populus decay is a long process. The half time for aspen log
mineralization has been measured between 10 years (Gosz, 1980) and 14
years (Miller, 1983); and it takes anywhere between 43-60 years for poplar
logs in forests to lose 95% of its mass, whereas in aquatic systems it may
take greater than 250 years (Gosz, 1980; Miller, 1983). It has also been
suggested that insects only begin to invade new wood when between 60-
90% of dry weight has been lost (Swift, 1977). This doesn't seem to be the
case in Populus because two-year-old wood sections seemed as haavy
as when they were cut, although the weights were not measured. YVood
sections sampled from old stands seemed to be slightly softer than mature
stands, although not significantly. This may be due to large diameter trees
containing significantly more heart rot than is found in smaller diameter
trees found in mature stands. Evidence suggests that significant decay
does not occur between year 1 and year 2, and that insects do not speed
the decay process initially. It may be over the long term that one sees the
influence of arthropods on wood decay.

Many studies have looked at the effects of insects and fungi on the
long term rate of decay in wood and how they regulate nutrient flow back to
the forest floor (Fager, 1968; Ausmus, 1977; Reichle,1977; Swift, 1977;
Deyrop, 1981; Harmon et al, 1986; Vogt et al, 1986; Alban and Pastor,
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1993; Kauffman et al, 1993). In general, wood decomposition has three
stages: fungi attacks the wood through the pith, invertebrates channel into
the wood introducing other fungi and bacteria, and then secondary
colonizers attack the wood (Ausmus, 1977). In Alberta, Populus
decomposition may follow a sequence such as: 1) fungi, including heart
rots and stains, enter weakened trees and recently killed trees through the
root system, resulting in an initial loss of nutrients from the wood.
Sioughing of some bark may or may not occur, at least in Populus; and 2)
various wood borers such as T. retusum, P. mucronatus, A. liragus and
Trachysida mutabilis (Newman) colonize the wood, acting as primary
channelers and vectors of fungi. Indirect introduction of fungi and bacteria
also occurs during wood boring and insect feeding, resulting in
competition between different ascomycete aiid basidiomycete fungi and
nitrogen fixing and cellulytic bacteria. Other :nvertebrate species begin
feeding under the bark, gaining entry through w--od borer holes and cracks
in the bark. There is also evidence to suggest ‘"'at some beetle species,
such as T. retusum, P. piceus, E. biguttata, and M. cylindrica are found
primarily in the most recently killed trees. Because this study focused on
the beginning of the decomposition process, secondary colonizers of dead
wood were not seen (see Chapters 3 and 4).

Wood decomposition represents a long-term stabilizing force within
boreal mixedwood forests. Mattson and Addy (1975) suggest that insects
serve as regulators of energy flow and biochemical synthesis in the
ecosystem. Clearly, invertebrates, and their associated wood fungi have
very important roles in this ecosystem by facilitating breakdown of dead
organic matter and return of nutrients to the soil. In other forested
ecosystems the availability of wood substrates, and the alternating pattern
of nutrient source and sink, both seasonally and over decades, greatly
influence forest nutrient cycling mechanisms (Ausmus, 1977; Swift, 1977).
For example, soil organic matter in and beneath logs greatly influence root
distribution and uptake, and spruce development is often dependent on
the availability of woody material with perched water tables (Ausmus,
1977). This study provides a good introduction to invertebrates involved in
Populus wood breakdown, but much more information is required about
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the complex interaction between taxa and the roles these organisms play
in nutrient cycling in boreal mixedwood forests.

177



Table 5-1. The standardized abundance of Coleoptera collected from new coarse woody material trom two ages of boreal
mixedwood forest near Lac la Biche and Eureka River, Alberta in 1994 and 1995.
Abundance has been standardized 1o 150 rearing days and 0.1 m3 of wood.
(" 1-5 individuals; ** 6-20 individuals; *** 21-100 individuals; **** >100 individuals)

LOG STUMP SNAG
Family Speciles 1994 1995 | 1994 1995 | 1994 995
Bostrichidae Endecatomus rugosus (Randall) M
Buprestidae Agrilus liragus Bart.8Brwn.  ** i
Carabidae Agonum obsoletum Say *
Platynus decentis (Say) * *
Psydrus piceus LeConte *
Trichocellus cognatus (Gyllenhal) *
Cerambycidae Trachysida mutabilis (Newman) *
Cerylonidae Cerylon castaneum_Say e *
Corylophidae Molamba biguttata (LeConte) **** * e i il -
Orthoperus _scutellaris LeConte * *
Cryptophagidae Atomaria (Anchicera) ephippiata Zimmerman . bl
Atomaria (Anchicera) spp. . * b * i
Antherophagus ochraceus Melsheimer .
Atomaria (Atornaria) spp. * .
Cryptophagus acutangulus Gyllenhal  ** . .
Cryptophagus tuberculosis Maklin . ¢
Henaoticus_spp. i * * *
Cucujidae Cucujus clavipes Fab. . .- i i
Laemophloeus biguttatus (Say)  *
Dermestidae Dermestes lardaiws L. . M
Megatoma cylindrica Kirby *
Trogodsrma sinistrum Fall _ *
Endomychidae Endomychus biguttata Say bl
Histeridae Piatysoma lecontei Marseul *
Lampyridae Pyractomena borealis (Randall) :
Lathridiidae Corticaria sp A - hid .-
Corticaria sp D " .
con‘cana sp E .o 1] *e (1] - "o
Enicmus sp A .
Lathridius sp A *
.. Melanopthalma pumilla_({LeConte) : .
Leiodidae Agathidium spp b
Lymexylidae Hylecoetus lugubris Say .
Melandryidae Enchodes sericea (Haldeman) *
Micropeplidae Micropeplus laticollis Maklin *
Nitidulidae Epuraea spp. . hid * *
Glischrochilus moratus Brown * i
Pselaphidae Batrisodes spp. . .
Euplectus duryi Casey - . e
Ptiliidae Acrotrichus _spp. * b *
Pyrochroidae Dendroides testaceus LeConte *
Rhizophagidae Rhizophagus bruneus Horn  *** oo . . .
Rhizophagus remotus LeConte **** e weee il weve *
&olytidae Procryphalus mucronatus (LeConte) e
Trypodendron retusum (LeConte) _*=** it e
Stanhylinidae Aleocharinae - il i b bl b
Atrechus macrocephaius (Nordm.) .
Carphacis nepigonensis {Bernhauer) .
Nudobius cephalus (Say) * .- hid
Phlosonomus ispponicus (Zetterstedt) * hid .
Pseudopsis sagitta Herman  * el
Quedius plagiatus Mannerheim hid ° .
Quedius. velox Smetana * ¢
Sepedophilus littoreus (L.) . .
Sepedophilus testaceus (Fab.) il
Troncssitidae Thymalus marginicollis Chevrolat *
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Figure 5-1. The h-gun, used for taking quantitative wood hardness
measurements from snag, log, and stump wood sections.
Wood hardness measurements are inversely proportional
to amount of decay.
A. h-gun in resting position;
B. h-gun in fired position.
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Figure 5-2. The relative proportion of athrop od orders collected by rearings
from new coarse woody material:
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6. Summary and Recommendations

6.1 Summary

This thesis has stemmed from concerns that large scale forest
development has detrimental effects upon ecosystem productivity and
structure, resulting from a loss of habitat and consequent loss of
biodiversity. By focusing on one forest community, the arthropods that act
to breakdown coarse woody material (CWM) and mobilize nutrients for
export to the soil, | have been able to show that large scale hatiiat
disturbance, associated with forestry development, may in fact =
detrimental to this community.

The first step in understanding ecosystem function is catalcging the
diversity of organisms found. There is a large and dynamic arinropo:’
community associated with Populus dead wood (Chapter 2). Over 39,Cii
arthropod specimsr - e collected over the three years of this study. The
Coleoptera, whic' up between 25-35% of this fauna, were the main
focus of analysis cmmunity structure, temporal and spatial variation,
and the impacts of forest harvesting. It soon became evident that little
information, both taxonomic and ecological, existed for many of the beetle
species collected. A large number of the 372 beetle taxa collected were
new provincial records, newly described, or were unidentifiable.

Arthropods associated with CWM can be classified into two broad
categories: saproxylic species, which are directly dependent on wood,
wood fungi and other plants, and other saproxylics for food; and species
which use dead wood as shelter, overwintering sites and foraging and
would probably not be seriously harmed by the loss of dead wood.
Fungivores and predators were the trophic roles which dominated beetle
assemblages from CWM.

Two collecting methods were used to census the arthropods from
dead wood, rearing of specimens from CWM and flight intercept traps
attached to snags. Both methods worked well, but e?zh method had its
own bias, and these have to be considered when choosing a sampling
method. Rearings allowed me to sample only those insects in the wood at
time of collection, whereas, window-traps measure flight activity of insects
to and from snags. There are also practical factors to consider such as
cost, labour involved in building rearing cages and window-traps,

191



sampling effort and data return, replicability, and reliability. To census an
entire community, a combination of trapping methods is recommended.

The beetle community differed considerably across spatial scales
(Chapter 3). Few differences were noted in relative species richness and
abundance within a particular spatial scale, instead it seemed a large
number of beetle species were restricted to specific regions, forest stand
age clacses, decay classes and sample types (logs or snags). A large
number of beetle species also showed preferences for wood in a particular
stand age or decay class, as shown by the old-growth dependency index
and the large number of species collected only from a particular decay
class. Analysis of beetle trophic roles showed that community structure is
rather conservative, despite the fact that there is high species turnover
across regions. There also was a succession in beetles filling certain
trophic roles across stand age, with mature stands being dominated by
fungivores, and old-growth stands dominated by predators. Detrended
Sorrespondence analysis suggested that biotic and abiotic factors
associated with decay class, followed by region, and stand age were the
prime determinants in the distribution of wood-inhabiting beetles across
the landscape.

Temporal variation is also an important consideration when
sampling a community. Faunal similarity for rearings between 1993 ang
1994 was only 21%, whereas, the fauna from window-traps was 73%
between 1994 and 1995. A total of 42, 51 and 17 species were unique to
each of 1993, 1994 and 1995 respectively. Parametric data analysis of the
number of taxa (i.e. species, genera, families) and standardized
abundance also showed significant differences across years (see Chapter
3). The fact that new species continued to be trapped in the third year of
sampling suggests that there are likely more species which belong to this
community that have yet to be sampled. This highlights the need to
monitor insect communities over several years to inventory species or to
assess the impacts of ecosystem disturbance.

A study of the effects of harvesting on the saproxylic fauna was
initiated in 2-year-old cutblocks near Lac la Biche (Chapter 4). Species
richness and abundance increased in harvested stands, but a number of
species that were found in forested stands were absent from harvested
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areas. Age of stand before harvesting affected very little community
structure after harvesting, except that old forest stands and old stands that
were harvested seened more similar with respect to the beetle fauna than
their 2ssociated mature stands, suggesting that saproxylic faunas survive
at least two years post-harvest. There also seemed to be little faunal
difference between decay classes, except for wood in decay class 1 which
had a significantly higher abundance of beetles, presumably due to all the
fresh woody material after harvest. Harvesting had little initial effect on
trophic role composition. Detrended correspondence analysis suggested
biotic and abiotic factors associated with harvested and forested stands
primarily influenced the distribution of beetles, followed by factors
associated with stand age.

The role that arthropods play in initiating and regulating wood
decomposition was studied experimentally in Chapter 5. Healthy trees
were cut and either exposed to insect attack, or were covered with insect
screen to prevent insect colonization. A large number of arthropods and
beetles were collected from this wood, mainly from the Coleoptera,
Diptera, Psocoptera and Acari. Wood borer colonization may predispose
the wood for colonization by arthropods because the proportion of soil
arthropods greatly increased in the second year of exposure. Focusing on
the Coleoptera, | found four beetle species that seemed restricted to
recently dead wood. Wood section (i.e. snag, stump, and log) had quite an
effect on the beetles colonizing the wood, with predators preferring logs
and stumps, fungivores preferring snags and stumps, and wood boring
beetles equally expressed in each wood section. Time of exposure of the
wood (one or two years) also affected the fauna present, with wood borers
showing a clear preference for one year old dead wood, and scavengers
showing a preference for two year old dead wood. Trypodendron retusum
(LeConte), an ambrosia beetle was identified as the primary channeler
species regulating initial decomposition. The treatment and control wood
did not significantly differ with respect to amount of decay, suggesting that
insects, at least in the first two years of wood death, do not significantly
increase the rate of decomposition. It was hypothesized that over the long
term, 40-80 years, that colonization by arthropods would have a significant
effect on decomposition. The amount of decay also did not significantly
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differ across the two years, confirming that wood decomposition in boreal
ecosystems is a long process.
6.2 General discussion and recommendations

As the human race continues to increase in numbers, a higher
demand will be placed on the Earth's natural resources. Biological
diversity was considered at an all-time high just prior to the industrial
revolution, where biological resources were freely available for
exploitation to support industrial development (McNeely, 1989). It has only
been recently, in the last half of the 20th century, when it has been realized
that biological resources have limits and that we are exceeding those
limits. Expected population increases to 8 billion people are estimated for
the year 2025 (Wilson, 1992). Demands for raw materials, such as wood,
metals, fuels, land, and food are increasing, requiring exploitation of
previously uninhabited areas resulting in subsequent losses in species
diversity. It has been recognized for some time that the taxa that comprise
ecosystems are the building blocks responsible for the health and
resilience of an ecosystem to disturbance. Subsequent losses in species
numbers is then directly related to the deterioration of critical functions
within ecosystems (Naeem et al., 1994). Solving these problems requires
research that increases communication between conservationists and land
managers to discuss the issues, choices, and consequences involved in
particular management decisions. Information required before making
these decisions requires a thorough understanding of the biological
diversity of a given area, the temporal and spatial scales that these taxa
are sensitive to, and the effects of habitat disturbance on the fauna present
(Noss, 1983; McNeely, 1989; Boyie, 1991; Hammond, 1992).

As forest harvesting continues in the boreal forests of Canada.
there will be continued concern over the sustainability of this resource.
Forest management currently focuses on the ‘natural disturbance’ model
which suggests that harvesting should emulate the pattern of forest fires
across the landscape (Hansen et al,, 1991; Probst and Crow, 1991;
Hunter, 1993). It has been argued that the biota found in these forest types
are adapted to periodic natural disturbances that create shifting mosaics of
forest across the landscape. Fires also create stands that are different in
F..ysical structure than harvested stands, and these differences in biotic
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and abiotic factors may greatly influence the arthropod fauna present
(Barnes et al., 1989; Haila et al., 1994). Woody materia! of all decay
stages are often abundant after a forest fire clears an area because not all
wood on the site is consumed, leaving what has been termed an
“ecological foot print” of the previous stand (Stelfox, 1995). Whereas in
forestry operations all merchantable tree biomass is removed from
cutblocks, and unmerchantable wood is removed, piled and/or burned
because it is considered as a safety hazard or interferes with re-planting
(Stelfox, 1995).

Conservation of arthropod assembiages from CWM, a fauna that
has been shown to be sensitive to forest harvest (Helibvaara and
Viaisdnen, 1984; Speight, 1989; Vaisdnen et al., 1993; Siitonen and
Martikainen, 1994), should consider several factors. First, the beetle
community associated with Populus CWM is not homogeneous
geographically. It was shown in Chapters 2 and 3 that the beetle
community developed differently across wide geographical regions. The
fauna collected from Eureka River had many more species associated with
northern and montane sites, whereas, the Lac la Biche fauna had more
species in common with lowland forest sites. These data support findings
from other arthropod community studies in these forests (Langor et al.,
1993; Spence and Langor, 1994; Spence et al., 1996, 1997). These data
suggest that reserve areas, accounting for as much variation in forest
structure, should be set up across the landscape.

Truncation of forest stand age structure may have serious
consequences for the fauna dependent on CWM in old-growth stands. A
paradigm that has developed over the years is that management should
focus on increasing species diversity in managed forests. In contrast
recent research from Finland suggests that the focus of conservation efforts
should be on species limited to certain habitat types rather than managing
for increased diversity (Vaisanen et al., 1993). The data presented in this
thesis has shown that there are saproxylic beetles that seem restricted to
both old and mature stand ages. Therefore maintaining a mosaic of stand
age structures across the landscape, similar to a landscape created by
natural fire dynamics, may act to preserve specialist species. In addition,
connectivity between forest fragments should be increased to allow
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species with poor dispersal abilities to move freely between forest
fragments (Chapters 3 and 5; As, 1993; Berg et al., 1994).

The decay stage of the wood and whether the wood was standing or
fallen had an influence on beetle species present. In Chapter 3 | was able
to show that factors such as the fungal community, temperature, and
moisture regimes associated with different decay classes influenced the
distribution of beetles across the landscape. Newly created dead wood, as
well as snags, logs and stumps, harboured a unique beetle fauna
(Chapters 3 and 5). The ephemeral nature of some decay classes, and the
finding that snag and log densities change considerably across the
landscape (Stelfox, 1995), suggest that existing snags and logs should be
left in cut blocks in an attempt to maintain stand structure. This wood could
act as refugia for species presently in the stand, and act as sources of new
colonization in the developing stand. Leaving individual and clumps of
live trees in cutblocks, that will become CWM later in stand succession,
may also help preserve specialist species.

Finally, adequate assessment of the fauna from CWM requires
several years of effort. In Chapters 2 and 3 | was able to show that the
beetle fauna collected changed considerably across years. Insect
populations often show some form of periodicity (Taylor, 1986). Also,
abiotic factors such as weather and natural disturbances can alter
population sizes in any given year (Bonan and Shugart. 1989). Therefore,
temporal variatic:: must be considered when sampling insect communities.
6.3 Recommendations for future research

This thesis is a starting point for further study of arthropods
associated with coarse woody material and their associated decay fungi
and bacteria. The focus of this research has been on the Coleoptera, but
many arthropod groups have been collected from wond. Diptera,
Hymenoptera, Psocoptera and soil organisms such as Collembula and the
Acari were collected in significant numbers and warrant i{urther research.
Although an attempt was made at identifying the interactions between
beetles and fungi, much more work is required to understand their
interactions in the breakdown of woody material. Further research should
also focus on the succession of arthropods from stands of pyrogenic origin
to follow how the community develops through burned stands to ‘old'
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stands. Finally, the effects of man-made disturbance such as forest
harvesting and oil and gas exploration should be studied and compared to
natural processes to evaluate and preserve this important fauna.
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Appendix 12. Analysis of variance testing mean wood hardness measurements from Populus 1og,
stump and snag wood sections, from two ages of boreal mixedwood forest stands
near Lac al Biche and Eureka River, Alberta, 1994 and 1995. Three measurements
were made on each wood section, and the mean value from each section tested.
See text for explanation of wood measurement.

(*stand within region by age interaction; ®section by trees within the treatment by
stand within region by age interaction; “year by stand within the region by
age interaction; %total error; tdenotes significance at 95%.)

Source df MS F P
Region (R) 1 2636.30 49.52  0.0004 t
Age (A) 1 27580 5.18  0.0631
R‘A 1 183.80 3.45 0.1125
Error® 6 53.23

Treatment (T) 1 3570 1.74 0.1926
TR 1 26.10 1.27  0.2650
TA 1 570 0.28  0.6000
T'R°A 1 2490 1.21 0.2749
Section (S) 2 660 032 0.7262
S'R 2 4260 210  0.1353
S'A 2 270 0.13  0.8782
S'R*A 2 3650 1.77 0.1788
S'T 2 280 0.14 0.8714
S'T'R 2 3490 170  0.1922
S'T*A 2 260 0.12  0.8834
Error® 60 20.58

Year (Y) 1 0.17 0.01 0.9389
Y'R 1 1842 066  0.4485
Y'A 1 3823 1.36  0.2871
Y'R'A 1 468 0.17  0.6970
Error® 6 28.03

Y*'S 2 639 027 0.7672
Y*S*R 2 1189 049  0.6121
Y'S*A 2 449 0.19  0.8300
Y'T*'S 2 1120 047 0.6288
Error® 60 24.04
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