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Abstract

All along their lives, individuals take roles in their interactions with each other.

This behaviour is known as the role-taking characteristic of human beings. We

refer to these roles as social roles that are the primary components of societies.

Identifying social roles in a society helps to better analyze the social phenomena.

Consequently, it can be beneficial in the search for influentials, trustworthy peo-

ple, idea innovators, etc. With this intention, we propose the structural social role

mining (SSRM) framework to identify roles, study their changes, and analyze their

impacts on the underlying social network. More specifically, we define four fun-

damental roles called leader, outermost, mediator, and outsider. Subsequently, we

suggest methodologies to identify these roles within a social network. While ex-

ploring our proposed methodologies for identifying the aforementioned roles, we

develop two new variants of Betweenness centrality (BC): LBetweenness (LBC)

and CBetweenness (CBC). Motivated by time complexity, these two centrality mea-

sures are computed more efficiently compared to Betweenness centrality especially

in large social networks. Eventually, we identify and study changes of roles in the

Enron communication network using our proposed framework. According to our

results, individuals serving as leaders or mediators were important people in the

Enron organization. Moreover, identifying roles as well as their changes through

consecutive timeframes could be informative and thus could be used as a clue for

further investigations.



Acknowledgements

We do not always recognize, but there are wonderful people supporting us in trav-

eling each stage of our life. This thesis is done with all guidance and supports of

the amazing people around me.

First and foremost I offer my sincerest gratitude to my supervisor, Dr. Osmar

Zaı̈ane, who has supported me throughout my thesis with his patience, ideas, and

knowledge whilst allowing me the room to work in my own way. I really appreciate

his help leading me in finding my way through out the research. I attribute the level

of my Masters degree to his encouragement.

In my daily work I have been blessed with two friendly and cheerful fellow stu-

dents. Reihaneh Rabbany, who helped me not only in the first steps of my research

but also throughout my work with useful discussions, always sent me useful and

interesting links and was always there whenever I faced problems or needed help.

She is a wonderful friend and offered her help to me at any time. Mansoureh Takaf-

foli, whom I unfortunately had the chance to work with for the last month of my

research but taught me how should I deal with different challenges throughout the

research and push it to get progress.

The story of coming to UofA happened to me when one of my best friends

Neda Mirian got an offer and moved here. The next year my other best friend

Parisa Delfani came to UofA and that directed me to apply for post graduate studies

at UofA. Thanks to my dear friends, Neda and Parisa for being here and helping me

not feeling alone with their supports. Living in the cold city of Edmonton resulted

in gradually finding many warm and awesome friends. Special thanks to Moslem

Noori, my kind friend, for his supports especially in the last hard weeks of writing

my thesis with reading my thesis and his thoughtful comments. People that I am



so lucky to have the chance to be friend with are Saeed Mohajeri, that I would

like to thank him for his great company not only as supportive friend, but also

when thinking on a problem related to my research or trying manage time when

I was in rush, Mohsen Taghaddosi for all his supports and our great discussions,

and Farzaneh Mirzazadeh for being a really good friend. Good friends are gifts of

life that make life sweater and happier and I am so lucky to have a bunch of them

around.

Last but not the least, I could have never kept moving forward without supports

of my beloved parents, Noushin Sharif and Aziz Abnar. I would like to thank them

millions of times for their efforts and helps in every stage of my life. Also my dear

sister, Samira, and awesome brother, Ali, who always positively encourage me in

my life and specially in my work. I owe whatever I have and gain to my wonderful

family.

There are many many other people in Edmonton, Tehran, and many other cities

in this world who should be named here. I appreciate how my friends always sup-

port me and I am so pleased to know and be friend with these amazing people.



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Thesis Organizations . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background and Related Work 9
2.1 Social Network Analysis . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Social Networks Properties . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Metrics and Measures . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 General Metrics for All Networks . . . . . . . . . . . . . . 13
2.3.2 Centrality Measures . . . . . . . . . . . . . . . . . . . . . 14

2.4 Dynamic Social Network Analysis . . . . . . . . . . . . . . . . . . 17
2.5 Community Mining in Social Networks . . . . . . . . . . . . . . . 22
2.6 Social Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7 Roles in Online Social Networks . . . . . . . . . . . . . . . . . . . 25

2.7.1 Roles Theory . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7.3 Roles in Social Network Analysis . . . . . . . . . . . . . . 31

3 Structural Social Role Mining Framework 40
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 The Concept of Social Role . . . . . . . . . . . . . . . . . 43
3.3.2 Roles Defined within Our Framework . . . . . . . . . . . . 46

3.4 Structural Social Role Identification . . . . . . . . . . . . . . . . . 50
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Case Study: The Enron Email Dataset 56
4.1 What is Enron? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Network Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 Experimental Setups . . . . . . . . . . . . . . . . . . . . . 58
4.3.2 Choosing a centrality measure for identifying roles . . . . . 58
4.3.3 Identifying roles . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.4 Roles Changes . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.5 Role Transitions and Community Events . . . . . . . . . . 71

4.4 Evaluation and Discussion . . . . . . . . . . . . . . . . . . . . . . 77



5 CBetweenness and LBetweenness Centrality measures 80
5.1 Karate Club Network . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2 Enron Communication Network . . . . . . . . . . . . . . . . . . . 81
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Conclusion and Discussion 84

Bibliography 88

A 94
A.1 Enron Timeline in 2001 . . . . . . . . . . . . . . . . . . . . . . . . 94

B 98
B.1 Degree Centrality Distributions . . . . . . . . . . . . . . . . . . . . 98
B.2 Closeness Centrality Distributions . . . . . . . . . . . . . . . . . . 109
B.3 Mediator Score Distributions . . . . . . . . . . . . . . . . . . . . . 120



List of Tables

4.1 Role-community event mappings for community C10T0 . . . . . . 75
4.2 Role-community event mappings for community C7T0 . . . . . . . 76
4.3 Role-community event mappings for community C9T0 . . . . . . . 76
4.4 Leading roles found in Enron communication network and their po-

sition in the company. . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5 Mediator roles found in Enron communication network and their

position in the company. . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Top-20 Karate Club member lists . . . . . . . . . . . . . . . . . . . 81
5.2 Top-20 Enron employee lists . . . . . . . . . . . . . . . . . . . . . 82
5.3 BC, CBC, and LBC Correlations for Karate Club and Enron . . . 83
5.4 Running time of BC, CBC, and LBC . . . . . . . . . . . . . . . . 83



List of Figures

2.1 Comparison between centrality scores . . . . . . . . . . . . . . . . 16
2.2 Directed graph for defining the role of the position p from [10]. . . . 29
2.3 The process of blockmodeling from [24]. . . . . . . . . . . . . . . 32
2.4 Community-Degree chart from [62]. . . . . . . . . . . . . . . . . . 39

3.1 Communities in a network regarding different criteria . . . . . . . . 44
3.2 A network splits as a result of an important member’s leave . . . . . 47
3.3 Intuitive picture of communities and nodes’ positioning . . . . . . . 49
3.4 Comparison: LBC vs. CBC . . . . . . . . . . . . . . . . . . . . . 53

4.1 Enron Logo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Plot of Communities’ Degree Distribution for January 2001 . . . . . 59
4.3 Plot of Communities’ Closeness Distribution for January 2001 . . . 60
4.4 CBC weakness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5 CBC vs. NCBC . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6 Distribution of NCB and NCB ×DScount scores for January 2001 64
4.7 Enron Communities (August 2001) . . . . . . . . . . . . . . . . . . 65
4.8 Enron leader roles (August 2001) . . . . . . . . . . . . . . . . . . . 66
4.9 Enron outermost roles (August 2001) . . . . . . . . . . . . . . . . . 67
4.10 Enron mediatos (October 2001) . . . . . . . . . . . . . . . . . . . . 70
4.11 Enron leader roles’ change through the year 2001 . . . . . . . . . . 72
4.12 Enron mediator roles’ change through the year 2001 . . . . . . . . . 73
4.13 Enron roles’ changes in the year 2001 . . . . . . . . . . . . . . . . 74

5.1 Karate Club Network . . . . . . . . . . . . . . . . . . . . . . . . . 81

B.1 Plot of Communities’ Degree Distribution for January 2001. . . . . 98
B.2 Plot of Communities’ Degree Distribution for February 2001. . . . . 99
B.3 Plot of Communities’ Degree Distribution for March 2001. . . . . . 100
B.4 Plot of Communities’ Degree Distribution for April 2001. . . . . . . 101
B.5 Plot of Communities’ Degree Distribution for May 2001. . . . . . . 102
B.6 Plot of Communities’ Degree Distribution for June 2001. . . . . . . 103
B.7 Plot of Communities’ Degree Distribution for July 2001. . . . . . . 103
B.8 Plot of Communities’ Degree Distribution for August 2001. . . . . . 104
B.9 Plot of Communities’ Degree Distribution for September 2001. . . . 105
B.10 Plot of Communities’ Degree Distribution for October 2001. . . . . 106
B.11 Plot of Communities’ Degree Distribution for November 2001. . . . 107
B.12 Plot of Communities’ Degree Distribution for December 2001. . . . 108
B.13 Plot of Communities’ Closeness Distribution for January 2001. . . . 109
B.14 Plot of Communities’ Closeness Distribution for February 2001. . . 110
B.15 Plot of Communities’ Closeness Distribution for March 2001. . . . 111
B.16 Plot of Communities’ Closeness Distribution for April 2001. . . . . 112
B.17 Plot of Communities’ Closeness Distribution for May 2001. . . . . 113



B.18 Plot of Communities’ Closeness Distribution for June 2001. . . . . 114
B.19 Plot of Communities’ Closeness Distribution for July 2001. . . . . . 114
B.20 Plot of Communities’ Closeness Distribution for August 2001. . . . 115
B.21 Plot of Communities’ Closeness Distribution for September 2001. . 116
B.22 Plot of Communities’ Closeness Distribution for October 2001. . . . 117
B.23 Plot of Communities’ Closeness Distribution for November 2001. . 118
B.24 Plot of Communities’ Closeness Distribution for December 2001. . 119
B.25 Plot of Mediator Score Distribution for January 2001. . . . . . . . . 120
B.26 Plot of Mediator Score Distribution for February 2001. . . . . . . . 121
B.27 Plot of Mediator Score Distribution for March 2001. . . . . . . . . 122
B.28 Plot of Mediator Score Distribution for April 2001. . . . . . . . . . 123
B.29 Plot of Mediator Score Distribution for May 2001. . . . . . . . . . 124
B.30 Plot of Mediator Score Distribution for June 2001. . . . . . . . . . 125
B.31 Plot of Mediator Score Distribution for July 2001. . . . . . . . . . . 126
B.32 Plot of Mediator Score Distribution for August 2001. . . . . . . . . 127
B.33 Plot of Mediator Score Distribution for September 2001. . . . . . . 128
B.34 Plot of Mediator Score Distribution for October 2001. . . . . . . . . 129
B.35 Plot of Mediator Score Distribution for November 2001. . . . . . . 130
B.36 Plot of Mediator Score Distribution for December 2001. . . . . . . 131



Chapter 1

Introduction

When you don’t have many friends and you don’t have a social
life you’re kind of left looking at things, not doing things. There’s
a weird freedom in not having people treat you like you’re part
of society or where you have to fulfill social relationships.

Tim Burton

Human beings have lived in forms of societies and communities throughout

their existence to overcome difficulties and barriers by working collaboratively. In

the early days, these societies were in the form of families and small tribes. Later

on, societies evolved to more complex forms during different stages of civilizations

and concepts such as villages, cities and countries appeared to describe new forms

of human societies.

Regardless of the complexity of societies, they essentially consist of members

and relations between these members. These relations determine the structure of

each society and how members of a society collaboratively work with each other to

achieve a common goal or gain mutual benefits. As a result, studying the patterns

of these relations and the structure of a society can lead us to understand how a so-

ciety may succeed or evolve as the time passes on. Traditionally, sociologists have

focused on studying the structures of human societies. They have investigated in-

teractions among individuals and how these structures affect phenomena happening

in the society as well as the behaviour of individuals. However, with the advent of

new technologies and internet, social network analysis has become a fundamental

interdisciplinary science.
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The exploding number of people who are involved in online social networks

has brought many aspects of human life into the cyber world. Nowadays, everyone

has at least heard of one of social networking websites or even has gone further

and actively uses them. The original purpose of the first social networking websites

was to help people to stay connected with their friends. However, as the popularity

of these websites skyrocketed, many applications started to launch on social net-

working platforms. As a result, the online social networking contains a vast amount

of information not only about the friendship and relation between people, but also

other aspects of their lives including habits, dreams, achievements, etc. This has

even made social networking websites a better representative of the relations be-

tween people in the real world. Thus, more information about our society than any

other time is now in forms of 0s and 1s which makes computer scientists involved

in the study of societies beside socialists and psychologists.

1.1 Motivation

There exist many challenging questions when it comes to studying human be-

haviours. Researchers are engaged in problems like finding groups of friendship

or clusters of closer individuals, identifying idea innovators, detecting powerful in-

dividuals who affect others’ beliefs and behaviours.

Individuals are playing a significant role in the phenomena happening in soci-

ety, as they are basic components of social networks. Historically, it was an elder in

a tribe who had the power to affect faith of his people. Nowadays we have political

leaders, influential friends, trustworthy colleagues, and innovators in our society

who have tremendous impact on others’ lives and the whole society. That is why

many researchers have focused on understanding characteristics of individuals in

terms of how they are connected to each other and how structurally they are po-

sitioned in the network as well as their behaviours and actions. For instance, in a

friendship network between high school students, how a student can encourage her

classmates to buy a special brand of stationery, what are her actions, and how is

she connected to the rest of the students are important factors in making a student
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influential among his classmates.

To formally define the influence of network members the concept of role has

been introduced in sociology. The concept role refers to a special position, which

is associated with a set of behaviours, expectations, and responsibilities. People

can have roles in their communities and societies. Thus they are having special

behaviours and others expect certain actions from them. Having roles empower

people in affecting their societies. From an analyst’s point of view, role is a concept

that helps us better understand individuals’ behaviours and their interactions in the

society.

Thanks to online social networking tools, research on human networks differs

from traditional ones. With the large amount of data available nowadays, we need

new techniques to explore human relations. From a social network analysis per-

spective, various metrics are defined for structural and non-structural (behavioural)

characteristics of individuals which enable us to find roles in this huge amount of

data. Using these metrics, we come up with the idea of “Social Roles” to get a

more high-level insight on individuals’ characteristics. Roles can be defined based

on values of one or more metrics to map data-driven and graph-theoretic concepts

from social networks to real-life ones.

Based on metrics defined to measure characteristics of networks and individuals

in social networks, we introduce “Social Role Mining”, a framework to unify these

metrics into the high-level concept of role. Roles can give more insightful meanings

to the raw metrics, if defined well on social networks. Defining and identifying

roles can also help researchers to better analyze events taking place in a network.

Moreover, roles can be used to simplify complex networks. Thus, they may even

lead to more efficient algorithms for large social network graphs.

1.2 Challenges

To study roles and their effects in a social network, we face several substantial

challenges listed as follows:

• Role definition: there is still no consensus on the definition of role [10] in
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sociology that we can directly borrow in our work. For example, the role

teacher in a classroom, or the role influential among students of that class-

room are two different roles people take in society. A prominent question in

this thesis is: what do we mean by the word “role” [13] and how do we trans-

fer definitions from social science to computer science. Having a reasonable

definition for the concept of role, we should answer the following questions:

(i) how do we define different types of roles in a social network, (ii) what

kinds of roles are of our interest to define, (iii) what kinds of properties from

the network do we take into account to define roles.

• Roles and temporal changes: the other important issue is time. Since time is

an intrinsic property of social networks, how roles should be defined to reflect

the effects of time. In other words, how roles may change if the effect of time

is ignored in their definition.

• Benefits of roles: finally, having a set of meaningful roles defined on a social

network, how can they be used to simplify or model the underlying social

network. On the other hand, how algorithms can use these roles to perform

more efficiently on large social networks.

1.3 Thesis Statement

In this thesis we focus on the following statements:

St 1. The concept of role from social science [10] can be defined as an analysis

means in network science.

St 2. The concept of role can unify various methodologies focusing on studying

individuals’ positions and importance in a network.

St 3. Measures and metrics defined in network science can be used to identify more

insightful concepts in a network.

St 4. There are ways to more efficiently measure characteristics of nodes in large

social networks by deeper analysis on the network.
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1.4 Contributions

In this thesis, we contribute to social network analysis by proposing a framework

for studying individuals’ behaviours and their relations. The proposed framework is

built using the concept of role from social science. We define the concept of “role”

in terms of social network terminology. Moreover, the framework unifies various

kinds of metrics like centrality measures, and analysis such as influence, spread of

innovation, trust, leadership, etc.

Our proposed framework in this thesis is called “Structural Social Role Mining”

(SSRM). This framework defines a set of fundamental roles and proposes method-

ologies to identify those roles. Moreover, it is a context-independent framework

that can be applied to any kind of social network as long as it is modeled as a ho-

mogeneous graph, where there is only one kind of nodes and one kind of edges (can

be either directed or undirected, weighted or unweighted).

The term structural refers to the fact that only structural properties of the net-

work, modeled as a graph, are considered in our analysis. This nomination is based

on the perspective of categorizing the information in a network into structural and

non-structural (behavioural) forms. Structural information relates to the structure

of the network and the former refers to any other information which is associated

with the graph representing the network and its elements.

The proposed framework is built upon two assumptions about the social net-

works. These two assumptions are basically the characteristics of human societies.

The first assumption is that social networks are composed of multiple sets of highly

connected nodes (communities). The second one, is the role-taking behaviour of

individuals within a social network. Under these assumptions, we define the set of

four fundamental structural roles: (i) leader, (ii) outermost, (iii) mediator, and (iv)

outsider. These roles are defined based on structural properties of a network as well

as the information about communities in a social network graph.

Subsequently, we provide methods to identify the aforementioned roles. Hav-

ing the roles identified in a network, we study changes of roles in consecutive time-

frames. With this in mind, we define role events capturing changes that happen in
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roles of individuals through time. Moreover, we study the relation between these

events and other structural events in a social network. These studies give us in-

sight about the evolution of the network. We could also observe how impactful

are individuals and their roles in relation to the changes that happen throughout the

network.

Through defining the SSRM framework, we present efficient ways for comput-

ing metrics on large social graphs. We define two new varients of Betweenness

centrality called LBetweenness (LBC) and CBetweenness (CBC). Due to consider-

ation of only a subset of shortest paths in a network, these two centrality measures

are computed more efficiently compared to Betweenness centrality (BC).

1.5 Limitations

Sociological phenomena usually cannot easily be modeled by the means of mathe-

matics and therefore hard to study. In this work we study roles with the means of

social network analysis. We have proposed the SSRM framework based on socio-

logical facts. Thus, the work has its origin in sociology.

An important concept considered in this work, is the notion of communities in

social networks. Similar to societies that are compounded of groups, social net-

works are also build up of communities. Working with data, most of the time com-

munities are not given. Thus, we have to trust the results of community mining

which is itself an open area of research in social network analysis. On the other

hand, there is no ground truth for roles. Hence, the other limitation of this work

is how to validate roles that are found by the SSRM framework. The validations

are done based on other kinds of analysis and information we get out of the data.

In fact, it is very hard to come up with ground truths for roles of individuals in a

network. However, different attributes associated to nodes of a network can be used

as means of validating the results.

With all these limitations, this work tries to reasonably study and model roles in

the context of social networks analysis.
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1.6 Thesis Organizations

The rest of this thesis is organized in five chapters. A brief overview of these chap-

ters are as follows:

Chapter 2 presents the background work done in social network analysis and

specifically in role analysis and role mining. In Chapter 2, we review works on

social network analysis in general, their properties, characteristics and models. We

see how social network graphs are different from other graphs. Then, we go further

into metrics defined and used to measure various characteristics of social networks.

We also present works on temporal social networks, community detection, and re-

lated research on social media. Later, we take a deeper look at what has been done

in role analysis and role mining, the sociological point of view of roles along with

works in data analysis and computer science.

Chapter 3 starts with the proposed framework for structural social role mining

that defines roles and presents the intuitions behind the definitions. Since social

networks are intrinsically dynamic, the framework suggests a set of fundamental

roles in a single snapshot. The fundamental roles are: leader, outermost, mediator,

and outsider. Outsiders are those with very weak connections to the rest of the

network. Outermosts are the least important in the structure of a community and

leaders are prominent individuals within each community. Finally, mediators are

nodes that connect communities within a network. Having these fundamental roles

identified, their changes in consecutive timeframes are studied as they might be

significant in influencing the whole structure of the network or a part of it. Thus,

studying the changes of roles through time leads to the identification of dynamic

(temporal) roles.

To evaluate our proposed framework in Chapter 3, we present a case study on the

Enron communication network Chapter 4. In studying the Enron communication

network, we apply the SSRM framework on the dataset to identify the set of defined

roles. Furthermore, since the dataset has timeframes, we are able to see the changes

that happen in roles. Afterwards, we analyze the impact of changes in these roles

7



on the network.

Chapter 5 presents our investigations on the two variant of Betweenness Cen-

trality (BC) called LBetweenness (LBC) and CBetweennes (CBC) that are defined

in Chapter 3. In this chapter we compare the results of BC, LBC, and CBC on the

karate club and Enron networks.

In Chapter 6, we conclude the work by reviewing our findings and discussing

the results. We also present the applications of role mining and in particular our

proposed framework along with possible future works.
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Chapter 2

Background and Related Work

I read somewhere that everybody on this planet is separated by
only six other people. Six degrees of separation between us and
everyone else on this planet. The President of the United States,
a gondolier in Venice, just fill in the names. I find it extremely
comforting that we’re so close. I also find it like Chinese water
torture, that we’re so close because you have to find the right six
people to make the right connection. I am bound, you are bound,
to everyone on this planet by a trail of six people.

Six Degrees of Separation by John Guare

2.1 Social Network Analysis

Networks of humans are complicated and an important subject to study. People are

connected to their friends, colleagues, acquaintances, or connected by other myriad

kinds of relationships. They form social groups, organizations and other structures

in which they interact with each other, affecting the whole society and causing many

events to happen. Thus, exploring the human beings networks and structures they

build is a fundamental step in analyzing behaviours of the society as a whole and

groups of people at different levels of granularity and even individuals themselves.

Pool and Kochen in [18] have listed a number of questions and research directions

in humans’ networks.

A network in which entities are individuals and connections between entities

represent individuals’ relations is called a social network. Hence, a social network

is made up of individuals (or organizations) and pairwise relations between them
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as discussed. The study of social networks has been started since the early 1900s.

Since social network analysis is about phenomena taking place in human society,

groups, and organizations, it was originally a topic of study in sociology and psy-

chology. In the 1930s, researchers in sociology started thinking about representing

the shape of social structures. In this regard, in ‘formal sociology’ of Simmel, they

use “points”, “lines” and “connections” in order to analyze and describe social pat-

terns. Impressed by the work in formal sociology, some psychologists have noticed

the significance of the structure of a group in actions and behaviours of its mem-

bers. Moreno in 1934, invented the terms ‘sociogram’ and ‘sociometry’ as a way

of visually representing social networks with points and lines [61]. This is how the

science of network gradually formed in its early days.

More precisely, social network analysis is an interdisciplinary field with its roots

in sociology, psychology, statistics and graph theory. When it comes to applications

of social network analysis, it encompasses broader range of topics including eco-

nomics, politics, health sciences, marketing, etc. Moreover, from a general perspec-

tive, social networks are integrated within “Network Science”. Network science is

itself an interdisciplinary area of study focusing on complex networks such as com-

puter networks, biological networks, neural networks, telecommunication networks

and social networks. To put it in other words, the field of network sciences is funda-

mentally built up on social structure from sociology, graph theory from mathemat-

ics, data mining and information visualization from computer science and statistical

mechanics from physics [78].

Social networks are represented by graphs where individuals of the network are

represented by nodes, and similarly their connections are shown by edges. There-

fore, various metrics are defined based on properties of nodes and edges in a graph.

In this thesis, we use the words social network, social graph, complex network,

network, and graph interchangeably as each social network has its corresponding

graph.
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2.2 Social Networks Properties

Talking to a stranger while you are waiting in a line or traveling on a plane, you may

notice that you both know a specific person by first name. This scenario or a similar

one, has happened to many people at least once. We may use the expression “What

a small world!” in such a situation. Hence, there is a sense in society that the world

is so small and people are connected through a small chain of their acquaintances.

Pool and Kochen in 1960s, tried to mathematically study this phenomena. In their

mathematical model, they studied the probability of two random people knowing

each other and also the probability of them to be linked through their acquaintances.

They had some obstacles in their studies to find reasonable answers to some of their

questions. Altogether, some years later they published their model along with their

unsolved questions in [18].

About the same time as Pool and Kochen, Stanley Milgram, an American social

psychologist, designed experiments to study the average distance between Ameri-

can people [49, 73]. Later on, his experiments lead to the theory of six degree of

separation. In one of the experiments they selected 296 random individuals from

Nebraska and Boston as senders and a target. The senders were asked to forward

a letter to the target if they know him in person or to an acquaintance they know

by first name who they think might be closer to the target person. Although many

letters did not reach the destination, among those who reached, the average number

of intermediate individuals was between 5 and 6 approving the fact that there is a

small distance between people in the society. This phenomena is called small-world

characteristic.

More sophisticated analysis of the small-worldliness of our society was done by

theoretic researchers by the means of graph theory. From a mathematical perspec-

tive, graphs could be ordered or random. But a vast majority of real world networks

correspond with graphs that lie between these two extremes of being completely

random and completely ordered. Watts in [75] investigates the small-world phe-

nomenon as a general feature for sparse, decentralized networks which are neither

completely random, nor completely ordered graphs. The world “small” in networks
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means that every node is just a few hops away from any other node in the network.

According to [75], the four characteristics that make small-world a surprising and

remarkably important property of these network are as follows:

• Size of the network (number of nodes in the corresponding graph) should be

numerically large. If size of the network is small, then the small distance

between entities is an obvious fact, not an interesting one.

• The network should be sparse which means every node is directly connected

to only a very small number of nodes. Consider entities have connections to

almost all other entities in a network, then the small distance between them

is again a straightforward conclusion.

• The network should be decentralized. It means that there should be no central

node to which most of the other nodes are connected. This property concludes

that the maximum degree of nodes in the corresponding graph is much less

than the number of nodes. This condition is even stronger than the previous

one which makes small-world more unbelievable.

• Finally, the network should be highly clustered. It means neighbours of a

node are also most probably connected to each other.

Within the study of small-world on social networks and more generally complex

networks, some other properties of these networks have been observed:

• Power-law degree distribution or preferential attachment or scale-free prop-

erty is theoretically representing the well-known behaviour that “rich gets

richer”. From the perspective of graph theory, in a network represented by a

graph, vertices who have more connections are likely to get even more new

connection in future. [7]

• Sparsity in a graph, refers to the relative number of edges to the number

of vertices. Graphs associated with social networks are sparse. Thus, each

vertex is connected to a small ratio of vertices in the graph.
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• High clustering coefficient is another property of social networks. As an

example in a friendship network high clustering coefficient indicates the fact

that friends of a person are most probably friends with each other as well.

2.3 Metrics and Measures

In this part we summarize measures and metrics which are used in social network

analysis:

2.3.1 General Metrics for All Networks

Considering a network as a connected graph or the giant connected component of a

graph the following properties are defined:

• Density: the number of edges in the network to the number of possible edges.

Mathematically, it is defined as 2E
N(N−1) where E and N denote the number of

edges and nodes respectively.

• Size: most of the times size of a network refers to the number of nodes N ,

but less likely the number of edges E which takes a value between (N − 1)

and N(N−1)
2

.

• Average degree: degree of a node in a network is the number of its connec-

tions. Thus, average degree is be computed by 2E
N

.

• Average path length: refers to the average shortest path length, the minimum

number of edges two nodes are away from each other, between all pairs of

the nodes in a network. Hence, it shows how close on average two random

nodes are to eachother.

• Diameter: is the maximum shortest path between all pairs of nodes in a net-

work. Diameter of a network is a measure that shows the upper bound of how

far nodes are in that network.

• Clustering coefficient: shows how well neighbours of a node are connected

to each other. Clustering coefficient for a node i is computed as 2ei
ki(ki−1) ,
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where ki is number of neighbours of node i and ei is the number of edges

between them. If the neighbours of a node are making a clique, the clustering

coefficient of that node would be 1, and if they are not connected at all it is 0.

The clustering coefficient of a network is the average over all nodes.

2.3.2 Centrality Measures

In complex networks such as social networks, we are interested in ranking nodes

and finding important nodes. To this end, centrality measures have been introduced

to help us calculate how much a node is central (centre of importance) according to

some criteria. Here, we present the most well-known centrality measure as follows:

• Degree centrality: ranks nodes based on their degree. It is calculated by

the normalization number of edges at each node Cd(vi) =
∑n

j=1 e(vi,vj)

N−1 [27],

where e(u, v) is 1 if there is an edge between u and v.

• Closeness centrality: shows how much a node is close to other nodes in the

network. It counts the average number of hops a node is away from the rest

of the graph. Thus if the average distances of a specific node with the rest

of the graph is small, the closeness centrality of that node is high and vice

versa. Hence, closeness centrality has an inverse relation with distances in

the network and is calculated by Cc(vi)
−1 =

∑n
j=1 d(vi,vj)

N−1 [27], where d(u, v)

is the distance between u and v.

• Betweenness centrality: shows the importance of a node in controlling the

communication between other pairs of nodes in a network. In order to mea-

sure this characteristic, betweenness centrality is the count of the number of

shortest paths a node lies on and is calculated by CB(vk) =
2
∑n

i

∑n
j<i bij(vk)

N2−3N+2
,

where bij(vk) is the probability of vk to be on the shortest path between vi

and vj [27].

• Eigenvector centrality: is based on the idea that a node is more central if

it is connected to central nodes. Therefore, in addition to neighbours of a

node, their centrality value is taken into account. Formulating this concept
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forms a well-known eigenvalue, eigenvector equation [58]. The concept of

eigenvector centrality was first introduced in [11].

Figure 2.1 shows how these centrality measures differ in ranking nodes in a net-

work. More centrality measures are defined in the literature such as Katz centrality

[33], Alpha centrality [12], etc., in addition to the aforementioned ones. We do not

introduce other centrality measure as they are beyond the scope of this dissertation.

Centrality measures are all node-centric as they are defined for individuals in a

network. Freeman in [27] has extended the previously defined centrality measures

for the whole graph. According to [27], centrality of a graph is a measure to show

the tendency of a node to become more central. Graph-centric centralities are de-

fined as follows:

CX(vi) : one of the node centralities defined above.

CX(v
∗) : largest value of the CX(vi) for any point in the network.

max
∑N

i=1[CX(v
∗) − CX(vi)] : the maximum possible sum of differences in node

centrality for the entire network consisting of N nodes. Then CX calculates cen-

trality value for the whole graph as below:

CX =

∑n
i=1[CX(p

∗)− CX(vi)]

max
∑N

i=1[CX(p∗)− CX(vi)]

Centrality measures in general, are used to rank nodes in a network. In addition

to centrality measures, there exists other ranking algorithms for ranking nodes based

on a score computed for each node. Among these ranking algorithms, two well-

known ones are as follows:

• HITS [16]: Hyperlink-induced Topic Search which is also known as hubs

and authorities is a link analysis based rating algorithm for Webpages. They

introduce two kinds of pages in [16]: hubs and authorities. Hubs are pages

containing many links to other pages and authorities are pages having a good

content. Of course a good hub is the one that contains more links and a good

authority is the one that is linked from many hubs. HITS algorithm assigns
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(a) (b)

(c) (d)

Figure 2.1: Central nodes based on different centrality measures in the network
formed by members of a karate club. Colors are changing from dark red to dark
blue. The more red the color of a node, the more central it is. Similarly, size of a
node is also an indicator of its centrality score. The larger the node, the higher is
its centrality score. (a) Degree centrality, (b) Closeness centrality, (c) Betweenness
centrality, (d) Eigenvector centrality.
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hub and authority scores to each page. These two scores are iteratively up-

dated a fixed number of steps or until convergence.

• Pagerank [54]: The most famous algorithm based on eigenvector centrality is

Pagerank. Consider the scenario that a user starts clicking randomly on links

in Webpages. The interesting question is how likely it will end up in a partic-

ular Webpage. Pagerank shows the probability distribution of the likelihood

of ending up in each Webpage in the above scenario. Pagerank is the first

algorithm which is used to rank Webpages for Web search by Google.

These ranking algorithms were originally developed for Web graphs, but they

are also used as measures to rank nodes in social network graphs.

2.4 Dynamic Social Network Analysis

According to some believes, time is the fourth dimension of this world [28]. In

truth, It is an inseparable characteristic of all systems and phenomena happening in

this world. Considering time in modeling and formalizing systems results in a much

more complicated problems. Nevertheless, some concepts, assumptions, and rea-

sonings may completely change or be violated when this fourth dimension comes

into account. Notably, social networks are no exception considering the effects of

time. Social networks are intrinsically temporal since they are made up of humans.

Considering the fact that people change their relationships, affiliations, hometown,

job, etc. through their lives, the formed societies also changes accordingly. Alto-

gether, the dynamicity of social networks is accepted worldwide, however, models,

metrics, algorithms, and analysis are mainly focused on a static snapshot of a net-

work [60].

Models considering the effect of time in a network use the term temporal.

Kostakos presents the idea of temporal graphs as means for modeling networks

in [42]. In this work by Kostakos, graph definition, construction methods and a

number of metrics are introduced to be used for exploring temporal behaviours of a

network. Kostakos constructs the temporal graph as follows:
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1. For each entity, create a node in each timeframe if that entity is interact-

ing with others during that timeframe. This way, there may exist multiple

nodes representing the same entity but in different timeframes. For instance,

if entity A is interacting within timeframes ti1 , ti2 , · · · , tik , the set of nodes

{Ati1
, Ati2

, · · · , Atik
} represent nodes associated with the entity A in those

timeframes.

2. Add a weighted directed link between all consecutive time versions of an

entity as (Atix
, Atix+1

) and set the weight to be tix+1 − tix .

3. For each interaction add an unweighted (directed) link between entities that

interact with each other in each timeframe.

Without loss of generality, the third rule presented in [42] could be generalized as

follows:

• Based on properties of the underlying network, add a (un)weighted (un)directed

link between pairs of interacting entities in each time frame.

In the model presented by Kostakos, the only links between timeframes are the

links between time versions of an entity. In other worlds, latency on interactions

between distinct entities is not considered. Adding this functionality to the model

makes it more powerful and complicated at the same time. With this structure for

the graph, Kostakos [42] defines temporal metrics that help getting more insight

about the network:

• Temporal proximity p(X, Y, ta, tb): measures the time it takes to go from

X to Y when starting in X at ta and reaching Y at tb. ta and tb can either

be a value or null. Based on values for ta and tb, temporal proximity can be

computed in 4 ways:

– p(X, Y, ta, tb): the temporal shortest path between X at ta and Y at tb.

– p(X, Y, ta, null): the temporal shortest path consideringX at ta and any

version of Y .
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– p(X, Y, null, tb): the temporal shortest path considering X at any time

and Y at tb.

– p(X, Y, null, null): the temporal shortest path considering any version

of X and any version of Y .

weight of a temporal path is calculated by summing over all temporal weights

on links.

• Average temporal proximity: measures on average the time it takes to go

from X to Y and is defined as

P (X, Y ) =
∑
i∈T

p(X, Y, ti, null)/N, p(X, Y, ti, null) 6= null

Based on P , two other average temporal proximity measures Pin and Pout are

also defined as

Pin(X) =
∑
i 6=X

P (i,X)/N, P (i,X) 6= null

Pout(X) =
∑
i 6=X

p(X, i)/N, P (X, i) 6= null

Pin(X) shows how fast, in terms of time, X is reached by the rest of the

network, and similarly Pout(X) measures how fast X can reach the rest of

the network.

• Geodesic proximity g(X, Y, ta, tb): measures the edge distance between X

at time ta and Y at time tb as the number of hops between them. Similar to

temporal proximity, geodesic proximity can also be computed in 4 different

ways according to the values of ta and tb.

• Average geodesic proximity: measures the average number of hops X is

away from Y and is computed as

G(X, Y ) =
∑

g(X, Y, ti, null)/N, g(X, Y, ti, null) 6= null

Similar to the average temporal proximity, Gin and Gout are defined as the

average number of hops X is reached by the rest of the graph and the average
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number of hops does X reach the rest of the graph respectively:

Gin(X) =
∑
i 6=X

G(i,X)/N, G(i,X) 6= null

Gout(X) =
∑
i 6=X

G(X, i)/N, G(X, i) 6= null

• Temporal availability: is a measure that shows the probability of existence

of a path between two nodes at any given time and is defined as:

V (X, Y ) = |{g(X, Y, ti, null) 6= null}|/N

Similar to above metrics, two other availability metrics Vin and Vout are de-

fined as:

Vin(X) =
∑
i 6=X

V (i,X)/N V (i,X) 6= null

Vout(X) =
∑
i 6=X

V (X, i)/N V (X, i) 6= null

Casteigts et al. in [14] integrate the existing models for studying the dynamicity

of networks into a unified framework called TVG (time varying graphs). Given a

set of entities as vertices(V), a set of relations between these entities as edges(E),

and a set of labels(L) for edges, time varying graph, TVG, G = (V,E, L, T , ρ, ζ, ψ)

is defined. Where T ⊆ T is the lifetime of the network, ρ : E × T → {0, 1},

is the presence function indicating which edge is present at each time step. The

next parameter, ζ : E × T → T, is latency function that shows the time it takes

to cross a given edge strating at a given time. And finally ψ : V × T → {0, 1} is

the presence function for nodes. The TVG framework just described can be used to

describe networks from transportation, communication, social, and more generally

complex networks.

Santoro et al. in [60], classify social network indicators into temporal and atem-

poral. Temporal indicators are defined through time on consecutive timeframes,

whereas atemporal indicators are static characteristics defined in a single timeframe.

They further study the evolution of these indicators based on TVG formalism de-

fined in [14].
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In a dynamic network, where time is considered, the definition of paths between

entities become tricky. A Path, is a fundamental concept in social network analysis

as many metrics, measures, and algorithms are based on that. When it comes to

time-varying graphs a journey is a fundamental concept that is an extension of the

notion of path [60]. Xuan et al. in [81], define the concept of journey and develop

distance measures based on journeys instead of paths. Hop-count or length of a

journey denotes the number of nodes on the temporal-path. Arrival date indicates

the time we reach to the end node of the path which is sum of the scheduled time to

start the last edge and the time it takes to traverse it. Finally, journey time defines the

time between starting of the temporal-path and the arrival. Based on the concepts

of hop-count, arrival date, and journey time three important types of journeys are

defined in [60] as follows:

• The distance in a graph between two nodes u and v is defined as the minimum

hop-counts taken over all journeys between u and v. This journey is called

shortest.

• The earliest arrival date in a graph between two nodes u and v is defined as

the time of the first journey arriving at v from u. This journey is called the

foremost.

• The delay in a graph between two nodes u and v is defined as the minimum

journey time, taken over all journeys in the graph between u and v. This

journey is called fastest.

Based on these three definition of distance in temporal graphs, multiple versions

of diameter, centrality measures and other metrics, that are based on paths between

nodes, could be defined for temporal graphs. Kossinets et al. in [41] show that nodes

that are topologically central are not necessarily central when time in considered.

Thus, there is a need to redefine centrality measures for temporal networks. In this

regard, temporal betweenness and closeness metrics are recently introduced in [71].

In our proposed framework, roles are defined in a single timeframe of the net-

work. Thus, the set of roles defined in the structural social role mining are basically
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static. However, using temporal centrality measures introduced in this section re-

sults in identification of dynamic (temporal) roles.

2.5 Community Mining in Social Networks

Social networks are sparse graphs compound of dense subgraphs. These dense sub-

graphs are called communities. The most consensual definition reached on com-

munities defines a community as a group of nodes in a graph which are highly

connected to each other and have less edges to the rest of the network. Some reach-

ers believe that community detection is a version of graph partitioning, hence they

are looking for cuts to identify communities. While some other researchers believe

that overlapping should be considered in community mining, thus it is not similar

to cutting graph into parts. There are many works on community extraction and

identification which can be categorizes in different ways. Here, we only present

prominent algorithms from the literature.

Community mining algorithms are based on links between nodes that indicate

the connectivity of two entities. SCAN (Structural Clustering Algorithm for Net-

works) [80] is a method for detecting communities according to how nodes are

sharing their neighbours in addition to only considering direct connections. Thus,

if two nodes are connected and are also sharing a reasonable number of their neigh-

bours, they belong to the same community.

Palla et al. in [55] define community as a subgraph that consists of a set of com-

plete subgraphs sharing many of their nodes. More formally, a k-clique community

is a union of all k-cliques that can be reached by eachother through a series of adja-

cent k-cliques. By the notion of adjacency they mean sharing k − 1 nodes between

two k-cliques. This method is among the first community mining algorithms which

allows overlapping between communities.

Having the intuition that random walks are most probable to get trapped in

highly connected parts of a dense graph, Pon et al. propose a community mining

algorithm [56] using random walk to compute nodes’ similarities. The node simi-

larity measure is used to partition nodes in different communities in the graph.
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Rabbany et al. in Topleader [57] propose a new algorithm for community min-

ing based on the intuition that in each community there exists a set of leaders and

other members of that community are followers of the leaders. In their proposed

algorithm, they set k initial leaders and find their followers to form the initial com-

munities. Afterwards, they update leaders in each community, and consecutively

update followers and so forth until convergence.

Newman in [50] develops the fast modularity algorithm for detecting communi-

ties in a network. The invariant, modularity is defined as Q =
∑

i (eii − a2i ) where

eii is the fraction of edges in community i and a2i is the fraction of edges having one

end in community i when the other end which is out of the community is randomly

connected to the other end of similar edges. In fast modularity algorithm, each node

is assumed to be a community initially and communities are joined in an order that

maximizes the increase on the modularity (Q) value.

Dynamic Community Mining in Social Networks

Considering temporal characteristics of social networks, detecting communities

becomes a more challenging problem. Due to the fact that, in different snapshots the

structure communities may change in terms of entities and their connections. The

question arising here is how to identify two equivalent communities from different

snapshots. Tantipathananandh et al. in [72] propose frameworks and algorithms

to study dynamicity of communities through time. They reduce the problem of

community matching to a graph coloring problem in their paper.

Takaffoli et al. in [70, 69] propose the MODEC framework to study the evo-

lution of communities in different timeframes of the network. In this regard, they

define a series of events important in a community’s life cyle: form, survive, split,

merge, and dissolve. These events respectively refer to the appearance of a commu-

nity, a community continuing its life, a community’s decomposition into multiple

communities, multiple communities becoming one larger one, and a community

disappearing in a timeframe. They also propose a matching algorithm to find com-

munity matches in different timeframes. Furthermore, they define the concept of
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meta-community that refers to all instances of a community from different time-

frames.

2.6 Social Media

Social networking websites, media sharing application and blogs have been grow-

ing in their usage and popularity among individuals and businesses. The capability

of creating and sharing content and the speed the contents can propagate on these

applications, are keys to make them powerful. Many of us may think of friend-

ship networks when we hear the word social network, however, they are more than

that. People are using these platforms to create content, share news, talk about their

ideas, advertise for products, discuss political, economical, and social issues. Face-

book1 and Twitter2 are two well-known examples of these webpages. With all these

capabilities and usages, social networking platforms act as a real media and in some

aspects they are even more powerful than other forms of media.

There are many works on applications of social networks such as viral market-

ing [22, 44], revenue maximization [31, 3], influence [36, 15, 2, 4] and many other

topics. The extensive number of research in these areas, shows how impactful they

are. Kwak et al. in [43] investigate characteristics of tweets and posts from Twitter

and compare contents of the posts to news headlines. According to their findings,

many breaking news appear in Twitter ahead of CNN. This phenomena is caused

by the live broadcasting nature of the tweets. In another work by Sakaki et al. [59],

the authors develop a system based on tweets that detects earthquakes in Japan

and sends notification to a set of registered users. The developed system, which

is based on Twitter posts is reported to send notifications faster than broadcasts by

JMA (Japan Meteorological Agency).

On the other hand social networking platforms provide users with tools to make

their voices be heard. According to a BBC article [76], “These days, one witty

tweet, one clever blog post, one devastating video, forwarded to hundreds of friends

at the click of a mouse, can snowball and kill a product or damage a company’s

1http://www.facebook.com
2http://www.twitter.com
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share price”. In this regard, Kietzmann et al. in [38] emphasize on the importance

of social media for businesses. They provide a framework based on 7 functional

building blocks (identity, conversations, sharing, presence, relationships, reputa-

tion, and groups) to help businesses understand social media. In another work by

Kaplan et al. [32], the importance of social media is being highlighted. According

to the authors in [32], although social media is not well understood, it is the agenda

for many businesses. Thus, decision makers and consultants try to find ways to

make profitable use of these applications. They discuss challenges and opportuni-

ties businesses have regarding the fast evolution of social media. Moreover, they

provide a set of recommendations for companies to build their social media strate-

gies.

In approval of the importance of social media, we refer to [5] by Asur and Hu-

berman. In this work, they show how social media can be used to predict future. In

their experiments, they use information from Twitter to predict box-office revenues

for movies. They developed a linear regression model for their predictions and show

that accuracy of their results outperform those of Hollywood Stock Exchange.

Our proposed role mining framework, provides tools to analyze and understand

social media. The extensive information available from the social media might

seem confusing for businesses to use and build their strategies upon. However,

identifying roles could help in getting less but more valuable information out of

that.

2.7 Roles in Online Social Networks

2.7.1 Roles Theory

Role is a fundamental concept in social sciences. Many frameworks for studying

various social issues use the concept of role. Although it is an important concept,

there is no consensus on the definition of it. Thus, what the concept “role” means

is still a question. Biddle integrated sporadic works to define the concept of role by

his work in [10] and defined the field of role theory.

Role theory studies the concept of role and integrates various models and the-
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ories about role. According to the role theory, the concept of role is explained by

assuming people as members of social positions that have expectations of them-

selves and others’ behaviours.

In [10], various theories regarding the concept of the role are integrated which

we briefly presented in this section. None of these theories are complete and ideal

and each one is focuses on some aspects and misses some other points.

• Functional role theory focuses on characteristic behaviors of people that have

a social position in a stable social system. “Roles” are the shared normal

expectations that explain these behaviours. Functional role theory does not

consider that many roles are not associated with identified social positions

and social systems are far from stability.

• Structural role theory focuses on social structure as stable organizations of

sets of people (called social positions or statuses). These people share the

same patterned behaviours (roles) that are directed towards other sets of peo-

ple in the structure. The focus of structural role theory is more on the social

environment and less on individuals. Moreover, the arguments in structural

role theory are more likely to be presented in mathematical models compared

to all other theories on role.

• Organizational role theory focuses on social systems that are preplanned,

task-oriented, and hierarchical. Roles in such organizations are assumed to

be associated with identified social positions and to be generated by norma-

tive expectations. However, these norms may vary among individuals and

may reflect both the official demands of organizations and the pressures of

informal groups.

• Cognitive role theory focuses on relationships between role expectations and

behaviours. This theory is more concerned about social conditions that give

rise to expectations, techniques for measuring expectations, and the impact

of expectations on social behaviours. According to [10] cognitive role the-

ory ignores dynamic characteristics of human interaction. As well, cognitive
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role theorists often underestimate role phenomena associated with social po-

sitions or with temporal and structural phenomena by focusing too much on

individuals.

A Mathematical Model for Structural Role Theory

One big criticism to role theory is the lack of mathematical modeling for the con-

cepts within the theories. Oeser and Harary have built a mathematical framework

[53, 51, 52] which sees a role as a structural concept, for modeling the structural

role systems. In this part, we introduce their model in detail.

Elements of a role structure:

• Task: Every group or community is formed to achieve a set of goals. Thus,

a set of jobs are defined to fulfill those goals in each community. This set of

jobs as a whole is divided in elements called tasks or task elements which are

defined in time and place among members of the group.

• Position: It is a title in social structure which can be occupied by individuals

meeting necessary requirements. These requirements come from a set of rules

that define the abilities required for the task associated with each specific title.

So titles determine tasks of people. Position is defined in terms of:

– sociological characteristics: such as education,

– psychological characteristics: such as skills, intelligence, leadership

abilities,

– relationships to other people or positions,

– ability to perform certain tasks.

Hence through the definition of a position, we would be able to identify spe-

cial types of individuals, their duties toward others in different positions and

their part in the task system of communities. In brief, task and people are real

elements, whereas position is a concept defining sets of relationships between

tasks and people.
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• Person: A “person” (a set of attributes) is a human being who is related to task

elements through a set of relationships called positions. Thus, a “person” who

is assigned to a certain position has no attributes other than those defined in

the specification of tasks of that position. This definition of the concept of

person in the task system is based on the rule that everyone is replaceable in

the system.

The concept of role indicates a position that includes persons, positions and tasks.

Therefore, the necessary elements to define a structural role system are persons,

positions and tasks. To complete the model, the set of relationships between the

elements are:

• Rules that define the selection of persons for positions.

• Rules that define the relationships between positions.

• Rules that allocate tasks to positions.

Obviously, there might also exit informal relationships, however, in role theory the

focus is on formal relations and informal ones and their impacts are not considered.

Structural role system is mathematically defined as below:

• H-graph: Original nominal scale that shows the set of people.

• P-graph: It is an organizational chart of the institution defining the hierarchi-

cal relations on the set P of positions. In this graph, nodes are positions and

directed edges between nodes indicate the power relationships (starting from

the boss to secretary).

• T-graph: Is the graph that shows the work layout. Nodes represent tasks and

directed edges indicate relationships between tasks. Hence, this graph shows

the order in which tasks are to be done.

• H-P graph: This graph consists of H nodes from H-graph and P nodes from

P-graph as well as the links between them that show who is assigned to each

position.
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• P-T graph: This is the task allocation graph showing which position is re-

sponsible to do which task(s).

Definition of the formal role of position P

Figure 2.2: Directed graph for defining the role of the position p from [10].

The directed graph for defining a role is called D which is shown in 2.2 and

describes definition of the formal role of the position p. Assume the relationships

from the point of view of position p in Figure 2.2. The components of a role are

defined as follows:

• Person h who is assigned to position p.

• Position p that has immediate sub-positions p′ and p′′

• Tasks t and t′ that are assigned to position p.

In the structural role system the important characteristic is that tasks are not

directly assigned to individuals, there are assigned to positions and positions to

individuals. In the structural role graph D, the job of a person h is defined as all

task elements that are reachable from h in that graph.
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Within a social network we are not usually provided with the information about

positions, tasks, and person. We only have individuals, their connections, and some-

times extra attributes that can give us some information about these three compo-

nents of a role. Thus, we have to come up with ideas for defining role in network

science using the definitions from sociology.

2.7.2 Definitions

In this section, we present some of the proposed definitions of the concept “role” in

the literature.

• “A node role is a subjective characterization of the part it plays in a network

structure.” [62]

• “Individuals’ behavior in groups is constrained by several factors, including

the skills, privileges and responsibilities they enjoy. We call these factors a

social role.”[30]

• “Peoples behavior in social situations is not random and completely unpre-

dictable, nor is it uniformly identical in each situation. Rather, people act

differently toward different people, and depending on the circumstances at

hand; this much is readily apparent. The reason is that, besides having per-

sonalities, by being part of a social group, people occupy positions in the

social structures of groups that allow them to do and say certain things, as

well as constrain them from saying and doing other things. This mixture of

allowances and constraints, combined with the choices the individual makes

given this mixture, constitutes a social role.” [30]

• “A behavioral repertoire characteristic of a person or a position.” [9] which

describes both formal and informal roles. Formal roles are the ones where

the behavioral characteristic of the indivdual is the result of the role, whereas

in informal roles, the role is recognized because of a set of behavior an indi-

vidual has. [30]
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• “Rights and duties attached to a given status.” [29] This definition is impor-

tant as it shows that roles are coupled with reponsibilities. [30]

The most prominent part in the definition of role, which should not be forgotten,

is that roles are defined through interactions between individuals. Roles are a set

of behaviours and statuses along with a set of responsibilities that are meaningful

merely through interactions between individuals. For instance, a graduate student is

performing the student role in an interaction with his supervisor. However, the same

student plays a teacher or instructor role when he, as a teaching assistant, interacts

with undergraduate student. For this example, we can see that roles are relative to

the context and relationships between individuals.

2.7.3 Roles in Social Network Analysis

Forestier et al. in [24] have done a thorough survey in 2012 on ‘roles’ in social net-

works. According to their survey, roles are categorized as non-explicit and explicit

ones. Non-explicit roles are identified in an unsupervised framework, which re-

quires little information about the roles beforehand. Thus, clustering algorithms can

be used to identify them by using structural or contextual information as features in

a network. Whereas, explicit roles are defined as specific measures beforehand and

are identified by calculating those measures for each node in the network.

Non-Explicit vs. Explicit Roles

Blockmodeling is an example of methods for identifying non-explicit roles. It is an

algebraic framework to cluster nodes in a network mainly based on the structure of

the network. Bockmodeling has various application in social networks including

identifying roles. Doreian et al. in their book [23] overview the usage of block-

modeling in social networks. A blockmodel is the adjacency matrix of a network

that shows the relations between nodes. An example of a blockmodeling process

is shown in Figure 2.3 [24]. The matrix in Figure 2.3(b) represents the relations

between 8 nodes in the network in Figure 2.3(a). The adjacency matrix is trans-

formed to a matrix shown in Figure 2.3(c) by a set of permutations on columns and
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(a) (b)

(c) (d)

(e)

Figure 2.3: The process of blockmodeling from [24].

rows. Permutations can be done in both supervised or unsupervised fashion. Fig-

ure 2.3(c) shows four blocks formed in the permuted matrix. Three zeroblocks and

a non-zeroblock containing some 1s. According to the used equivalence notation,

the matrix in Figure 2.3(c) can lead to the block model represented in Figure 2.3(d)

representing two positions shown in Figure 2.3(e).

For the explicit roles, which are the predefined roles, the identification process

is through satisfaction of predefined criteria by some nodes in the network. Two

well-known explicit roles are experts and influentials.

definition: An expert is a person who is knowledgable about a topic and is

skillful in that specific topic, which makes him trustworthy in the network.

To see the importance of identifying the role “expert”, assume that we are look-

ing for an answer to a question in a technical forum. Identifying experts there helps

to find trustworthy answers. Zhang et al. in [83], work on a java technical forum

to identify individuals having the expert role. They construct the network by con-
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sidering directed links from a user who has asked a question and those who have

answered that question. They propose three algorithms based on z-score, pagerank

and HITS using indegree and outdegree of nodes to identify experts. They have

also compared results on simulated networks and found out that the structure of the

network has a significant impact on the results of ranking experts.

In addition, expertise is relative to the area or topic. An individual who has a

great level of expertise in politics might not necessarily have a high level of exper-

tise on programming. Balog and De Rijke [6] consider expertiseness on a specific

topic by defining a topical profile for each user. The topical profile of each user

presents the probability of the user being expert in several particular topics. Each

person is considered relevant to a topic if he is mentioned or has a relevant docu-

ment in that topic.

In [21], the focus is on extracting experts on a specific topic in the network of

emails. The expertiseness is computed pairwise for individuals. Thus, it is relative

between two individuals who have responded to each others’ emails. The authors

have used various measurements and they show that PageRank outperforms other

algorithms for identifying experts.

Identifying Influentials or Influencers has also attracted great attention from re-

searches as it has many significant applications in viral marketing, spread of infor-

mation and innovation, etc.

definition: An influencer is a person who has the capability or power to

influence the decisions, thoughts, actions, behaviors, etc., of other people inside a

social network.

“The Influentials

Who are they? The most influential Americans – the ones who

tell their neighbors what to buy, which politicians to support, and

where to vacation – are not necessarily the people you’d expect.

They’re not America’s most affluent 10 percent or best-educated

10 percent. They’re not the early adopters always the first to

try everything from Franco-Polynesian fusion cooking to digital

cameras. They are, however, the 10 percent of Americans most
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engaged in their local communities · · · and they wield a huge

amount of influence within those communities. They’re the cam-

paigners for open-space initiatives. They’re church vestrymen and

friends of the local public library. They’re the Influentials · · · and

whether or not they are familiar to you, they’re very well known

to the researchers. For decades, these researchers have been on a

quest for marketing’s holy grail: that elusive but supremely pow-

erful channel known as word of mouth. What they’ve learned is

that even more important than the word – what is said – is the

mouth – who says it. ” [34]

In [39], Kim and Han have interpreted influentials in three directions: The ones

with characteristics more like a Sales Person, which is more reasonable in the con-

text of selling and buying a product. The ones with characteristics more like Opin-

ion Leaders, which makes more sense in the context of political elections, adapting

an idea, etc. Finally, the ones with characteristics more like a Connector, who are

important ones in bringing people together and probably building new communi-

ties. Kim and Han in their work [39] have considered influential people who are

more like sales persons. They have developed a two-step methodology for identi-

fying influentials by means of the structural properties of the network. In the first

step, they identify potential influentials based on degree centralities. In the next

step, the set of potential influencers are analyzed by their activity history to identify

influential people.

Kempe et al. have studied the problem of identifying a set of influentials in

a network that lead to the maximum diffusion of innovation in the network [37].

Their work is based on the observation that individuals’ decisions to adopt an idea

or buy a product are directly affected by their friends and acquaintances. They study

the propagation of influence in the decreasing cascade model in a network. In this

model, influence is propagated in a cascading process defined by a probabilistic

rule. Thus, they begin with a set of initial active nodes and study the size of the

target set. In their work, they have proved an approximation factor of 1 − 1/e − ε

for their results compared to optimal solution if an initial set of size k is selected in
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the natural greedy algorithm.

Diffusion of innovation is another direction in which detecting influential nodes

is important. The theory of diffusion of innovation has been formed in anthropol-

ogy, sociology and epidemiology. This theory explains how opinions and products

may spread in a community. Valente and Davis in [74] show that the diffusion pro-

cess increases when initiated by opinion leaders. Opinion leaders are those who

are acting as role models in a community. There are some studies showing the im-

portance of opinion leaders in different issues such as decreasing the rate of unsafe

sexual practices [35] and decreasing the rate of cesarean births [45]. Moreover, in

[74], Valente and Davis show that maximizing the effectiveness of opinion lead-

ers lead to a faster rate of diffusion. In their work, opinion leaders are identified

based on direct ties. People nominate leaders and those who get nominated more

are chosen as opinion leaders.

In another work by Agarwal et al. in [2], influential individuals are identified in

the context of blog posts. They propose a novel method for identifying influential

bloggers in Blogosphere based on identifying influential blog posts. An iIndex is

calculated for each blogger based on his influential blog posts. Moreover, they

introduce four metrics representing the influence of a blog post.

• Recognition: It is how much an influential blog post is referred by other

posts. Thus, the indegree of a post (ι) shows the number of times it has been

referenced by other posts.

• Activity Generation: The capability of a blog post in attracting others’ at-

tention is a measure of how influential it is. Number of comments (γ) on a

blog post shows how much it is successful in attracting others’ attention to

some extent.

• Novelty: Novel ideas attract more attention than repetitive ones. Therefore,

novelty is another characteristic of an influential post. The number of refer-

ences in a post, which is the outdegree or outlinks of that post (θ) is negatively

correlated with novelty. To be more elaborate, the more references a post has

to other posts shows that it is using contents and ideas from those posts. Thus,
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the number of references in a post is an indicator that the post is not novel.

• Eloquence: An influential post is well-written as the language is the funda-

mental tool of presenting a concept to others. In blogs environment, it is not

reasonable to write long posts, as audiece will not read long posts so often.

However, when a post is long, it is a good evidence of its quality. If the au-

thor is not confident with the quality of the content, he would not risk loosing

audiences by writing that content in a lengthy post. Thus, the length of a post

(λ) which positively relates to the number of comments, is a heuristic to show

the influence of it.

In [2], each blog post gets an Influence Score (I) which is calculated with respect

to the four properties defined above (θ, λ, γ and ι). This score is used to define in-

fluential bloggers. An Influential blogger is explained to be an individual with at

least one influential post. Therefore, an iIndex is introduced for each blogger B as

follows: iIndex(B) = max(I(pi)) where pi is the ith post of blogger B. In addi-

tion, the authors have also studied the changes of iIndex of bloggers through time

and based on their findings, they categorize influential bloggers into four classes:

• Long-term influentials Who are an influential for a very long time and can

be considered as authorities in the community.

• Average-term influentials Who stay as an influential for a shorter period of

time (4-5 months based on their data in [2].

• Transient-term influentials Who are influentials for a very short time period

(1 or 2 months).

• Burgeoning influentials Who are becoming an influential recently.

According to this classification in [2], long-term influentials are more affective and

more trustworthy for targeting.

Agarwal and Liu in [1] define influential as an individual who is prominent in

diffusion of influence. Hence, influentials are different from initiators of an idea

or creators of a content. They are more important because of their position in the
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network. Simply, influentials not only have to come up with novel ideas, but also

they should have strategic position in the network to diffuse the idea.

Roles in Online Discussion Forums

Golder and Donath in [30] have presented a framework that uses social roles to

analyze and explain the behaviours of individuals in an online discussion forum.

They have defined a set of social roles for an online newsgroup community, based

on frequency of participation, communicative competence and common ground:

• The Celebrity

Celebrities are those who post frequently in the forums and thus are well-

known by others such that they could be even the topic that others talk about.

Their posts are competence and reliable and in some words, they are the ones

who define the community by all their means. They spend much time and

effort in their community to make it active and define and protect boundaries.

Celebrities are a small percentage of the members of a community, however,

they post majority of the posts. The reason why someone should spend this

much time and energy in a community can be to get positive self-image or to

become famous and could act as a leader to have impact on others.

• The Newbie

Newbies are those who have just joined a community and have less commu-

nicative competence and common ground with the group. Thus, they might

have a few or no posts until they get involved more.

• The Lurker

Lurkers are the invisible audiences of a discussion forum. They read posts

without posting anything in a long time. There might be different reasons

for lurkers to not participate such as having fear, not being confident enough,

or just not feeling to post anything. On the other hand, lurkers can be of

various kinds with different aims as invisible audiences. Since lurkers are

often invisible audiences in the community, we face a lack of information to

study them.
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• The Flamer, The Troll, and The Ranter

These three roles all have negative behavior in a forum.

– Flamer: They have aggressive and hateful language. They do not truly

belong to a community and do not follow conversation and goals of the

community. They constantly look for victims to engage in a flaming

behavior.

– Troll: These individuals pretend to be good members but indeed try to

waste communities’ conversations and time by their posts. Trolls do not

have any specific goal to behave so except for having their joy.

– Ranter: They post as frequent as celebrities and believe in what they

say. They have a troll-like behavior to encourage people in their conver-

sations, but they start lengthy, single-minded pointless arguments.

Community-based Roles

In [62], a set of structural roles are defined considering communities in the net-

work: ambassadors, big fish, loners, and bridges. Two parameters are used to iden-

tify these roles in a network: degree of nodes, and communities a node belongs

to. Figure 2.4 shows the definition of these roles in a plot. As shown in the fig-

ure, ambassadors are the ones with high degree and also high community metric.

This shows that ambassadors are popular nodes who connect various communities

together. Big fish is important only within a community. Then, the ones with high

community score, but low degree, are bridges who are more important in connect-

ing communities rather than inside a community. Finally, the ones with low degree

and also low community metric are loners. In the experiments in [62], it has been

shown that in small-world networks, most of the nodes are in the line between lon-

ers and ambassadors.
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Figure 2.4: Community-Degree chart from [62].
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Chapter 3

Structural Social Role Mining
Framework

In the desert of life the wise person travels by caravan, while the
fool prefers to travel alone.

A middle eastern proverb

3.1 Motivation

Human beings have relied tremendously on their social abilities to overcome diffi-

culties during their long history. In the ancient time, challenges were finding food

and water, overcoming threats of wild animals and other tribes’ attacks to plunder

one’s resources, escaping from bad weather, and finding a safe place to reside. Since

it was almost impossible to overcome such threats alone, humans formed tribes to

live in, hunt, and migrate as groups. This helped them to go through battles of life

together and significantly increased their chance to survive.

Although nowadays, we have a safe place to live, we are guaranteed to find

enough food in stores, we have technologies to bring water to our houses through

central pipelines, and air-conditioning systems help us survive scorching summer

days as well as freezing winter nights, more or less we have the same kinds of bat-

tles in new shapes. Living in a complicated sociality, cooperation through forming

groups and communities is still an important means that not only helps us overcome

struggles, but also accelerates the pace of developments.
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Groups (societies) are prominent elements of social lives and humans are fun-

damental elements of groups. The life cycle of a group starts with formation and

continues with growth, becoming powerful, weakening, shrinking, and dying as

time passes on. Since humans are fundamental components of groups, they play

significant roles in groups’ life cycles. Obviously, each individual has different

characteristics, thus plays different role(s) in the society. For instance, if all stu-

dents are very shy and introvert in a classroom, friendship groups form very slowly

between the students. On the other hand, in the same classroom, if a new extro-

vert student with a good level of communication skills joins, in a couple of days

other students might start building stronger relationships with each other. This is

an example showing that influential individuals are fundamental elements of the

sociological systems.

In this chapter, we propose a framework to study various roles that individuals

may take in a society and how their roles’ change through time. The focus of our

proposed framework is on structural properties of individuals within their society.

More precisely, connections, neighbourhood, and other structural features from the

network are used to investigate an individual’s role(s). Since the impact of indi-

viduals’ roles on their surrounding environment is the fundamental reason for the

concept of role to be defined, we use this framework to study the effects of roles on

phenomena happening in a network. In the example of the classroom, identifying

the social student helps in understanding why small clusters of students join each

other to build a larger cluster of friends. In the following, we discuss our framework

in more detail.

3.2 Introduction

With the advent of online social networking applications, many aspects of social

life, relations, communications, and cooperations have been reflected in the virtual

world of 0s and 1s. For instance, various kinds of digital datasets are now accessible

from cooperation networks on Wikipedia, friendship networks on Facebook, aca-

demic networks on Academia, organizational relationships from email networks,
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news cycles and individuals’ reactions and discussions toward them on Twitter, and

even more dimensions of human beings’ sociality from blogs, technical forums,

and customer review forums. The affiliated networks with these datasets can be

modeled as graphs in different ways according to the aspect of study. If the con-

centration is to study the network among people, the dataset can be interpreted as a

graph where nodes and edges respectively represent individuals and their relation-

ships. Edges can be directed or undirected, weighted or unweighted depending on

the modeling process.

At the first glance, finding influential people in the aforementioned networks

may look irrelevant, since the networks are different in many ways. Nevertheless,

when modeled as a graph, they share with each other structural properties of a

graph. In this work, we focus on the structural properties of social networks’ graphs

to study role of different members. To this end, we define roles generic to all of

these networks based on the structural features of their associated graph. Since the

concentration of this study is on social networks, we refer to these roles as “social

roles”. After defining social roles, we seek for methods to extract them. For this

purpose, we suggest a framework called “structural social role mining” where the

social roles of the network members are extracted using the structural properties of

the network graph.

Our proposed structural social role mining framework is built upon the assump-

tion of having communities as the building blocks of a social network. In the real

world, each society is composed of multiple communities and groups. Therefore,

people are not just simple entities in social systems, but members of communities

and interact with other individuals. In this regard, links between members of a com-

munity are not of equal value with inter-community connections. Communities are

either explicitly determined in the dataset, or extracted with a community mining

algorithm [25].

In reality, each individual may belong to several communities based on various

criteria. For instance, we all are members of multiple groups such as family, uni-

versity, residents of a country, friendship groups, sport teams, etc. Each criterion

partitions the network into different combinations of communities. Thus, multiple
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criteria lead to several community partitioning in the same network. For example,

Figure 3.1 shows a small lunchtime network of a group of graduate students at the

University of Alberta. This network, is then partitioned according to 4 different cri-

teria: gender, hometown, major and degree of their current studies. As seen, each

criterion results in a different partitioning of the network. In this work, we assume

having only one partitioning criterion in the studied social networks. Moreover, for

simplicity, we assume each node can only be associated with at most one commu-

nity. Hence, we assume that there is no overlap between communities. However,

our framework can be simply extended to the case where communities overlap.

3.3 Definitions

In this section, we review the concept of role in sociology and then bridge between

the role concept in sociology and network science. Further, we formally define the

social roles that we consider in this study and give the intuition behind considering

such social roles.

3.3.1 The Concept of Social Role

Although role is a fundamental sociological concept, there is still no consensus on

its definition [10]. Despite the need for a formalized definition, role is seen as a

combination of a position or multiple positions, an individual who fills the posi-

tion(s), as well as the responsibilities and behaviours of that individual. Role is

meaningful only when the set of behaviours and responsibilities happen through

communications. In other words, the domain of role is the set of interacting in-

dividuals and a role is revealed and developed via interactions among individuals.

Similar to the kinetic energy K which is defined only for the moving objects, role

is also defined only for interacting individuals. Thus, when there is no interaction

or communication among people, role could not even be defined.

Consider two scenarios A and B in a classroom. In Scenario A, homework

should be done individually and students are not allowed to collaborate on the

homework solution. On the other hand, students have to build teams and work
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(a) (b)

(c) (d)

Figure 3.1: A group of lunchtime friends are shown in this figure where each person
is represented by a node and edges between nodes indicate the “close friendship”
relationships. Size and label of nodes represent their relative degree centrality score.
Different communities of this network regarding various criteria are shown in this
figure. (a) male and female communities, (b) hometown communities (Tehran, Isfa-
han, Mashhad, Tabriz, Hamedan, Ardebil, and Jahrom all cities of Iran), (c) major-
based communities (CS,ECE,Civil,Chemical), and (d) degree-based communities
(PhD,Masters).

on the homework together with their teammates in Scenario B. In the first scenario,

there is no interaction among students and thus we cannot define or observe any

role for them. However, in the second scenario, the students’ reactions toward each

other could be observed as their roles: some of them might participate more in the
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discussions, while some others might prefer to talk less; some might not let others

express their thoughts and want to push their own thoughts to be submitted; and

some might have the ability to manage discussions and make other members of the

team participate equally in the project. These students might have similar abili-

ties and characteristics when doing their homework alone, but they show different

behaviours when it comes to interacting with each other.

Having various definitions for the concept of role in sociology, here, we accom-

modate this concept into the network science by defining it in terms of the network

terminology. A social network is modeled by a graph G(V,E) where V is the set

of vertices/nodes of the graph and E is the set of graph’s edges. Here, the entities

are associated with the nodes and the connections/interactions between the entities

are represented with the edges. In addition, entities and connections between them

can have multiple attributes depending on the network context. For instance, in

the friendship network of classmates, students are vertices and their friendship re-

lationships are the connections between them. Each student has several attributes

like gender, age, hometown, etc. Connections between any two students also can

have attributes like the beginning their friendship, the friendship strength, and the

common interests in this relationship.

We categorize the information of a social network into structural and non-

structural properties. Structural properties are related to the construction of the

graph such as an entities’ connections (edges), neighbourhood structure, and the

entity’s position in that structure. While, non-structural properties are other infor-

mation not reflected in the construction of the graph like entities and connections’

attributes and meta information of the graph. Considering all these properties, we

define role in a network as follows:

Definition 1 Role of an entity in a network is how it behaves toward others and its

impact on others’ attributes and structures. In a static network, role of an entity is

determined by its structural and non-structural properties.

In temporal networks, structural and non-structural properties may change. Thus,

we further can define temporal-structural and temporal-non-structural properties
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to reflect the changes that happen in static features of the network. These temporal

properties can also be used in identifying roles in that network. Since roles are im-

portant in the way they affect their environment, using temporal information from

the network, which reflects the impact of entities, is useful in identifying roles. To

this end, in identifying roles in a temporal network, temporal properties of entities

can also be used together with other properties pointed out in Definition 1 to reflect

the evolution and changes in the network through time.

3.3.2 Roles Defined within Our Framework

Human networks are intrinsically composed of multiple communities. In a social

network with multiple communities, nodes’ properties vary depending on whether

the existence of communities is considered or neglected. From a social network

analysis point of view, a node might be central in the whole network but not central

in its community. Thus, we focus on studying the human based networks consider-

ing the existence of communities as their fundamental feature.

In social networks, communities can be either explicit or implicit. Explicit com-

munities are built independently from their members and are based on a set of rules.

In this case, people mostly join communities after the formation of the communi-

ties. Employees of a company or students participating in a course are examples of

two explicit communities. Whereas the formation of implicit communities heavily

depends on their members and connections. Thus, there is no external rule in build-

ing an implicit community. Implicit communities are built gradually as people come

together. For example, friendship groups are implicit communities where there is

no rule for individuals actions. In both cases of explicit and implicit communities,

there should exist special individuals who manage and control the community. In

the example of a classroom, it is the teacher or instructor who does such. For a

company, managers are in charge and in the case of a friendship group, it is the

person with more communication skills who brings together others and manages

(implicitly) the relations to strengthen links between others leading to formation of

a friendship group. These prominent individuals are even more highlighted when

the size of a community is large. A group of 15 friends may not be able to hang out
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(a) (b)

Figure 3.2: A group of 8 friends and their “close friendship” relationships are shown
in this figure where size of nodes indicates their relative degree centrality score. The
network in (a) shows the relations before Alex leaves the group, and (b) shows how
the structure of the network destructs after Alex’ leave.

if one is not responsible (either implicitly or explicitly) to plan for their gatherings.

They may even decompose into smaller groups if the responsible person leaves or

decides to become less active and no one else plays his/her role. Figure 3.2 is

a real case happened to a friendship network where edges represent close friend-

ships. Figure 3.2(b) is what happened to the community when Alex was not happy

in this group anymore and started being inactive in the group. This split shows how

important Alex was in keeping the group members together.

Following the above, we define roles for individuals in a social network con-

sidering their affiliations and positions in communities along with their interactions

with other individuals. From the perspective of communities, in a network, individ-

uals are of various types:

• with no affiliation to any community.

• connecting multiple communities.

• important members of a community.

• ordinary members of a community that form the majority
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• non-important members of a community that do not noticeably affect the

community

As a demonstration, Figure 3.3 shows several communities within a network as

well as the position of individuals in each community and their importance in com-

munities interactions. Based on these observations, here we define and consider

four general fundamental roles, namely leader, outermost, mediator, and outsider

as described in the following.

Definition 2 Leaders are the outstanding individuals in terms of centrality or im-

portance in each community. Leaders are commanders, directors, managers, rulers,

controllers, pioneers, principals, presidents, authorities, administrators, or chairs

of communities.

Depending on how the community is constructed, the leader role might be stated

explicitly or implicitly. For instance, in the example of the classroom, the instruc-

tor(s) and his/her assistant(s) are the explicit leading roles. In the friendship network

among students of the same classroom, the student who is better known and more

popular among all students implicitly has the leading role.

Definition 3 Outermost are the small set of least significant individuals in each

community whose influence and effect on the community are below the influence

of the majority of the community members. Lexically, an outermost means further

from the interior or center. Other words to express this class of individuals are

peripheral, fringe, furthermost, remote, and borderline.

In the example of the classroom, outermosts are those who are the least active

students in the course. In the example of the friendship network, outermosts are

those who barely communicate and hang out with others and have a few number of

friends.

Definition 4 Mediators are individuals who play an important role in connect-

ing communities to each other in a network. They act as bridges between distinct

communities. Mediators are negotiators, intermediaries, arbitrators, moderators,
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Figure 3.3: This figure shows the intuitive picture of how communities within net-
work, and members within communities are placed. In this figure, 3 communities
A, B, and C are shown. There are different kinds of nodes shown in this figure:
some nodes are connecting communities to each other (orange nodes), some are
with no connections or very week connections to communities (pink nodes), and
other nodes are members of communities. Within each community, nodes are more
central and more important as they are closer to the center. The more they are closer
to the borders of communities, the more week and inactive they are.

or hubs in a network. They might either be a member of a community (inclusive

mediator) or not (exclusive mediator).

Despite their affiliation to a specific community, mediators have many connec-

tions to multiple communities. Hence, they are controlling the communications
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among various communities.

Some examples of mediators are diplomats in the relation between countries,

publicity director of a company, a mixed French-Chinese student at a university

could also be a mediator between the French students’ association and the Chinese

students’ association. In all these examples, mediators are all inclusive (they be-

long to one of the communities), while there are occasions where mediators do not

belong to any of the communities (they are exclusive). Back to the example of the

classroom, when students build project teams to do their final project, the instruc-

tor(s) or teaching assistant(s) are mediators between project teams while they do

not belong to a project team themselves.

Definition 5 Outsiders are the individuals who are not affiliated with any of the

communities in a network. They either have almost equal connections to different

communities or have very few weak links to communities.

Those outsiders who have very few connections are like outliers and the ones

having many links to various communities at the same time are mediators (exclusive

mediators). In addition to the examples of exclusive mediators, some examples of

outliers are new migrants to a country, or new students registered in a course.

3.4 Structural Social Role Identification

Having a network with its communities explicitly known or extracted by a com-

munity mining algorithm, we propose methodologies for identifying the defined

structural roles in the previous section.

Outsider

Having communities of a network, the most straightforward role to identify is the

outsider. As each individual is either a member of a community or not, having the

communities of a network known, individuals who do not belong to any community

are outsiders.
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Leader

Leaders in each community are the outstanding central members. To find the cen-

trality of a node in its associated community, we choose an appropriate measure, for

example one of the centrality measures described in Chapter 2. Then, we calculate

this measure for all nodes inside a community giving us the centrality measure score

for each node. Using the centrality measure scores, we are able to find the centrality

measure probability distribution function (pdf) for each community. Analyzing the

behaviour of the probability distribution function, we could identify leaders. For

instance, in our experiments described in Chapter 4, nodes falling in the upper tail

of the distribution function are identified as the community leaders. More details

on our experiments can be found in Chapter 4.

Outermost

Similar to the leader, for identifying outermosts, we calculate how central are the

individuals based on a measure, for example one of the centrality measures de-

scribed in Chapter 2. Then, we compute a score for nodes of a community and

use the pdf of the scores to identify outermosts. In our experiments described in

Chapter 4, outermosts are identified as nodes falling in the lower tail of the pdf.

Note that there is an important challenge for identifying outermosts using centrality

measures. The intuition behind all centrality measures is to identify higher values,

not lower ones. It means, high centrality scores for nodes infer their importance,

however, low centrality scores does not necessarily mean that they are not impor-

tant. Thus, in general, centrality measures are efficient for identifying more central

nodes, but not necessarily least central ones.

Mediator

Mediators are individuals who connect multiple communities and control commu-

nications between them. In comparison to mediators which are connectors between

communities, nodes with high betweenness centrality are connectors between all

nodes of the network. Using this similarity, we define two centrality measures based

on betweenness centrality for extracting mediators in a network. These two vari-
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ants of betweenness centrality are called LBetweenness (LBC) and CBetweenness

(CBC).

Prior to define LBetweenness, we need to define LPath as follows:

* LPath: LPath is the set of all shortest path between leaders of two distinct

communities. More formally, LPaths is defined as

LPath = {l|startNode(l) ∈ leaderSet(ci)∧endNode(l) ∈ leaderSet(cj)∧ci 6= cj}

(3.1)

where ci and cj are two arbitrary communities in the network.

* LBetweenness: LBetweenness centrality for node v, denoted by LBC(v), is

the number of distinct LPaths that include v. If for each path p ∈ LPath, we define

Il(p, v) to be 1 if v resides on p and 0 otherwise, then

LB(v) =
∑

p∈LPath

Il(p, v). (3.2)

* CBetweenness: for each node v, its CBetweenness, called CBC(v), counts

the number of shortest paths between any two nodes of distinct communities that

pass through node v. For each pci,cj ∈ AllShortestPaths where two ends of p

belong to communities ci and cj 6= ci respectively, we define Ic(pci,cj , v) to be 1 if v

resides on pci,cj and 0 otherwise. Thus:

CBC(v) =
1

2

∑
ci

∑
cj 6=ci

Ic(pci,cj , v) for undirected networks, (3.3)

CBC(v) =
∑
ci

∑
cj 6=ci

Ic(pci,cj , v) for directed networks. (3.4)

Figure 3.4 presents how LBC and CBC are different. In this figure a synthetic

network composed of two communities is shown. Nodes l1 and l2 are respectively

leaders of communities 1 and 2. As shown in Figure 3.4, leaders of two commu-

nities are connected to node A, while all other nodes in these two communities

are connected to nodeB. Computing the LBC score, node A will get higher rank,

however according to the CBC score, node B is more important.
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Figure 3.4: This figure presents a synthetic network consisting of two commu-
nities. As shown in the figure leaders of two communities (l1 and l2) are con-
nected to the node A, while other nodes are all connected to node B. Com-
puting LBC and CBC for all nodes of the graph, the results are as follows:
LBC(A) = 1, LBC(B, v1, v2, v3, u1, u2, u3) = 0, CBC(A) = 7, CBC(B) = 12,
CBC(v1, v2, v3, u1, u2, u3) = 6, and CBC(l1, l2) = 3.

In order to identify mediators, beside the two newly defined versions of be-

tweenness centrality, it is also important that how many different communities are

connected to each other through a node. For instance, assume a network consisting

of 10 communities. Within this network, two nodes v1 and v2 have equal CBC

value but different in how they are connected to communities. Node v1 has con-

nected three of the communities to each other, whereas node v2 has connected all

communities. Thus, in examining that how nodes are important in connecting com-

munities, CBC values alone is not sufficient. To this end, we incorporate the num-

ber of connected communities through a node in our role mining framework. Hence,

we define another ranking score called diversity score. Diversity score counts the

variants of communities a node is connected to.

* Diversity Score: This score shows how many different communities are con-

nected through a specific node v. Depending on the definition, we calculate the

diversity score in two different ways:

• Diversity score of node v, DScount(v) , is defined as the number of communi-

ties connected to each other through node v. For each node v, we first define

Id(ci, v) to be 1 if ∃ cj, a, b, p : a ∈ ci∧b ∈ cj(6= ci)∧p ∈ SPath(a, b)∧v ∈ p

and 0 otherwise. Here, ci and cj represent two communities and SPath(a, b)
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is the set of shortest paths between nodes a and b. Using Id(ci, v), DS(v) is

then defined as follows:

DScount(v) =
1

2

∑
ci

Id(ci, v) for undirected networks, (3.5)

DScount(v) =
∑
ci

Id(ci, v) for directed networks. (3.6)

• Diversity score can also be defined to count pairs of communities having

at least one shortest path between their members passing through node v.

This variant of diversity score is denoted by DSpair(v). Prior to definition of

DSpair, we define Id(ci, cj, v) such that it is 1 if ∃ a, b, p : a ∈ ci ∧ b ∈ cj(6=

ci) ∧ p ∈ SPath(a, b) ∧ v ∈ p . Now,

DSpair(v) =
1

2

∑
ci

∑
cj 6=ci

Id(ci, cj, v) for undirected networks, (3.7)

DSpair(v) =
∑
ci

∑
cj 6=ci

Id(ci, cj, v) for directed networks. (3.8)

In both DScount and DSpair, we can consider paths instead of shortest paths

between nodes. Thus, a connection between two communities means having at

least one path between their members.

Using a combination of the above metrics, the mediacy of nodes can be com-

puted as a function of f(LB,CB,DScount, DScount). We rank nodes by their me-

diacy score. Then, Algorithm 1 is used to find highly ranked nodes connecting the

maximum number of communities to each other.

3.5 Summary

In this chapter, we proposed the SSRM framework to study roles of individuals

in a social network. The framework is built upon the assumption of existence of

non-overlapping communities forming the network. Using the structure of commu-

nities, we defined four fundamental roles namely leader, outermost, mediator, and

outsider. Furthermore, we propose methodologies to identify these roles. Based

on the definitions, outsiders are straightforwardly identified using the information
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Algorithm 1 MedExtractor: Find Mediators from SortedList based on their Medi-
acy Score

1: procedure ExtractMediators(Graph G, OrderedList L)
2: .G is the graph associated with a network
3: .L is descending OrderedList containing nodes of the network sorted based on their

mediacy score.
4: mediatorSet = {} . set of selected nodes as mediators
5: connectedComs = {} . set of communities connected to eachother by nodes in

mediatorSet
6: while connectedComs.size < G.CommunityCount do
7: n← L.top()
8: for all Community c ∈ n.incedentCommunities() do
9: if c /∈ connectedComs then

10: Add n to mediatorSet
11: Add c to connectedComs
12: end if
13: end for
14: L.remove(n)
15: end while
16: end procedure

about community memberships. The remaining three roles are identified using ap-

propriate measures are necessary for ranking nodes in the communities (to identify

leaders and outermosts) and the whole network (to identify mediator). We chose a

measure for computing scores for nodes in each community. Based on that mea-

sure, leaders and outermosts are identified considering the distributions of nodes’

score computed by the chosen measure. In the identification of mediators, we chose

a network-wide measure to compute score of nodes. Similarly mediators are iden-

tified considering the distribution of the scores or the Algorithm 1.

55



Chapter 4

Case Study: The Enron Email
Dataset

Those that much covet are with gain so fond,
For what they have not, that which they possess
They scatter and unloose it from their bond,
And so, by hoping more, they have but less;
Or, gaining more, the profit of excess
Is but to surfeit, and such griefs sustain,
That they prove bankrupt in this poor-rich gain.

William Shakespeare, The Rape of Lucrece

4.1 What is Enron?

Figure 4.1: Enron Logo

Enron was an American energy com-

pany formed in 1985 when InterNorth

bought Houston Natural Gas (HNG)

and merged these two companies to-

gether. Kenneth Lay, the former HNG

CEO, became Enron CEO after Samuel

Segnar, the ex-InterNorth and first CEO

of Enron, departed 6 months after the

merge of the two companies [77].

Enron constructed the first nation-

wide gas pipeline in the United States.
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Beside their gas-related business, the company expanded its focus to many other

products including petrochemicals, plastics, power, pulp and paper, steel, weather

risk management, oil and liquid natural gas transportation, broadband, principal

investments, risk management for commodities, shipping and freight, streaming

media, and also water and wastewater [77]. Enron was one of the world’s largest

gas companies with more than 22000 employees in over 40 countries [26, 48].The

Fortune 500 magazine ranked Enron as “America’s most innovative company” for

6 consecutive years. In 2000, they claimed about $101 billion revenue during

that year and the company’s stock price reached to a maximum of $99 US. These

tremendous successes were made through misleading accounts to hide debts and

losses of the company. In October 2001, they announced $638 million losses in the

third quarter and $1.2 billion reduction in shareholders equity. Consequently, the

company filed for bankruptcy on the December 2nd, 2001.

4.2 Network Characteristics

The Enron corpus of emails from about 150 employees was made public by the U.S.

Federal Regulatory Commission (FERC) during the legal investigation of Enron in

May 2002. The corpus includes about 250,000 emails from 1998 to 2002 [65]. It is

the only real email dataset available for research and has been used in the fields of

data mining, social network analysis, text mining, natural language processing, and

organizational studies [79, 66, 47, 20, 40, 8].

In this work, we use the Enron communication network built upon the email

exchanges in each month of the year 2001 with a total of 285 nodes and 23559

edges [68, 69]. More specifically, the network is made up of 12 timeframes each

representing a month from January 2001 to December 2001. In each timeframe, a

node represents an Enron employee who has exchanged emails in that month, and

an edge between two individuals is an indicator of at least one email communication

between them in any direction in that timeframe. Thus, the resulting network is an

undirected, unweighted communication network.
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4.3 Experiments

4.3.1 Experimental Setups

The structural social role mining framework is built upon the assumption of exis-

tence of communities. Due to this assumption, we need to find communities prior

to applying our structural social role mining framework. For this purpose, we use

Local Community Mining Algorithm [17] to find communities. Having the commu-

nities extracted, we can apply the structural social role mining framework in order

to identify roles.

Subsequently, we study temporal changes of roles in the Enron communication

network. Since the Enron communication network is made up of multiple time-

frames, we are able to study temporal events in this network. To this end, we use

the community events introduced and identified by Takaffoli et al. in [67, 68] on

the same dataset as an example of temporal events. Furthermore, we observe the

mutual effects of changes of the roles we define and the community events defined

by Takaffoli et al. on the Enron communication dataset.

The code written for identifying roles is in Java using Jung library1. In addi-

tion, Gephi2 and Python’s matplotlib library3 are used for visualizing networks and

drawing plots.

4.3.2 Choosing a centrality measure for identifying roles
Centrality Measure: Leader and outermost

Degree and closeness centralities are good candidates for ranking individuals in a

community in order to identify leaders and outermosts. Figure B.1 to Figure B.12

in Appendix B, show degree distributions of nodes in communities in each time-

frame for the year 2001. Distributions are plotted for communities with more than

30 nodes in each timeframe. In addition, normal distributions with the same mean

and variance values are plotted for each community in the same figure. As shown

in Figure 4.2, degree distributions are more like power-law distribution than normal

1http://jung.sourceforge.net/
2https://gephi.org/
3http://matplotlib.org/
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Figure 4.2: Plot of Communities’ Degree Distribution for January 2001

distribution as they have mostly one tail (the upper tail). The shape of degree distri-

butions interprets the fact that the majority of the population in each community has

low degrees. Although, the long upper tail of degree distributions can be used to

identify leaders, outermosts cannot be simply identified using degree distributions

of communities due to the large number of low degree nodes.

To find a measure that can be used to identify both leader and outermost roles,

we consider closeness centrality rather than degree centrality. In spite of the power-

law behaviour of degree centrality distributions, closeness centrality distribution of

individuals within a community follows a normal-like distribution as shown in Fig-

ure 4.3. Since closeness distribution has two tails in each community of our dataset,

it can be effectively used to identify both leaders and outermosts. Distributions of

degree and closeness centrality for all timeframes from January 2001 to December

2001 are provided in Appendix B.

Centrality Measure: Mediator

We use measures defined in Chapter 3 to compute the degree of mediacy of a node.

Since the number of leaders and the number of shortest paths between them are

small in our dataset, we observe that LBC is not an appropriate indicator for me-

diators. Hence, we use CBC to identify mediators in our experiments. Although

CBC is more expensive in terms of time complexity, it identifies mediators that

could not be identified by LBC in our dataset. LBC only considers shortest paths

59



0.0 0.2 0.4 0.6 0.8 1.0
Closeness Centrality (Jan 2001)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

N
u
m
b
e
r 
o
f 
n
o
d
e
s 
( 
to
ta
l 
=
 1
0
2
 ) µ= 0.43, σ= 0.16

0.0 0.2 0.4 0.6 0.8 1.0
Closeness Centrality (Jan 2001)

0

1

2

3

4

5

6

N
u
m
b
e
r 
o
f 
n
o
d
e
s 
( 
to
ta
l 
=
 9
9
 ) µ= 0.52, σ= 0.19

Figure 4.3: Plot of Communities’ Closeness Distribution for January 2001

between community leaders, whereas CBC takes into account all shortest paths be-

tween community members. As a result, mediators found by CBC more strongly

connect members of two communities, while mediators found by LBC connect

community leader to eachother. Thus, LBC can be a better and more efficient

choice for identifying mediators in situations where members of communities other

than the leaders do not have many connections to individuals outside their commu-

nity. In addition to time complexity, CBC has another challenge to overcome. That

is, the probability of finding more prominent mediators between larger communi-

ties is higher in comparison to the smaller communities. This situation happens

because there are more members in larger communities that leads to more shortest

paths between them.

Figure 4.4 shows a network consisting of four communities, two larger commu-

nities and two smaller ones. The larger communities 1 and 2 connect through node

R and the communities 3 and 4 connect through node S. Connections between

nodes are not shown in Figure 4.4 and edges in the figure represent shortest paths

between nodes passing through nodes R and S. In addition, edges in the network

are coloured in red or blue. When a node (such as node A) in community 1 is

connected to another node (such as node G) in community 2 through node R and

edges of the same colour, it means that there exists a shortest path between those

two nodes (nodes A and G). Thus, paths and colours in Figure 4.4 are interpreted

as shortest path passing through node R (S) between nodes of different communi-
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Figure 4.4: In this figure, node R, connecting two large communities 1 and 2 is
compared to node S connecting two smaller communities 3 and 4. Connections be-
tween nodes are not shown and edges of the graph represent shortest paths between
their members passing through nodes R and S.

ties. For instance, there are shortest paths between pairs of nodes (G,A), (G,B),

(G,C), (H,A), (H,B), (H,C), (I, A), (I, B), (I, C), (E,D), (F,D) passing

through node R. Same scenario happens for communities 3 and 4. Altogether,

node S lies on 8 shortest path between communities 3 and 4, whereas node R lies

on 11 shortest paths between communities 1 and 2. As a result, in the CBC ranking

node R comes first, while node S is more strongly connecting communities 3 and 4

to each other. More precisely, node S lies on 8 shortest paths from 15 (5× 3) pos-

sible shortest paths between communities 3 and 4, while node R lies on 11 shortest

paths from 228 (12× 19) possible shortest paths between communities 1 and 2. To

compensate for this effect, we use normalized CBC as follows:

NCBC(v) =
1

2

∑
ci

∑
cj 6=ci

Ic(pci,cj , v)

min(size(cj), size(cj))
for undirected networks,

(4.1)

NCBC(v) =
∑
ci

∑
cj 6=ci

Ic(pci,cj , v)

min(size(cj), size(cj))
for directed networks.

(4.2)

Figure 4.5 compares how nodes’ ranking may differ using NCBC. As shown
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in Figure 4.5, two nodes connecting the small community (in the lower left part of

the network) to the rest of the graph will get higher ranks using the NCBC.

While two mediators may have equal scores, they can be substantially different

in terms of number of distinct communities they connect to each other. Assume

a network consisting of 10 communities of the same size and two mediators M1

and M2, M1 lies on 100 shortest paths connecting two communities to each other.

Equally, M2 lies on 100 shortest paths but connecting all 10 communities to each

other. Although M1 and M2 are similar in the number of shortest paths between

distinct communities passing through them, node M2 connects communities more

globally than M1. Thus, these two nodes cannot be evaluated equally.

Figure 4.6 presents distributions of NCB and NCB × DScount for January

2001. Complete distribution plots for all timeframes are presented in Figure B.25

to Figure B.36 in Appendix B. As depicted in the figures, considering diversity

score does not change the trend of the diagram, and most importantly the shape of

its tail in the Enron communication network. However, a noticeable change happens

in the middle part of the histogram4. To this end, we define mediator score as the

multiplication of the node’s NCBC and diversity score as follows:

MS(v) = NCB(v)×DScount(v). (4.3)

4.3.3 Identifying roles

After choosing a metric to rank nodes, i.e. closeness centrality for outermost and

leader and mediator score for mediators, we develop the following methods to ex-

tract roles from the ranked lists.

Identification: Leaders and Outermosts

The closeness distribution used for identifying leaders and outermosts in the En-

ron communication network is close to the normal distribution. Since in a normal

distribution almost 95% of the population lies in the interval [µ − 2σ, µ + 2σ],we

respectively use µ+ 2σ as the upper and µ− 2σ as the lower thresholds to identify

4Note that depending on the dataset, the effect of diversity score can be more significant.
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(a) Nodes of the Enron communication network where size of the nodes represents their
CBC before normalization.

(b) Nodes of the Enron communication network where size of the nodes represents their
CBC after normalization.

Figure 4.5: Relative CBC scores for a set of network nodes are shown in this fig-
ure. Size and colour of nodes indicate their rank in the (normalized) CBC scoring
list. More specifically, larger size and darker colour mean higher rank in the list.
(a) shows graphical ranking of the nodes by their CBC scores, while (b) depicts
the ranking by NCBC scores. As shown in the figure, the ranking of nodes that
connect the small community in the lower left part of the network improves when
NCBC is used (i.e. they become larger in size and darker in color).
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Figure 4.6: Distribution of NCB and NCB ×DScount scores for January 2001

leaders and outermosts. Figure 4.7 shows communities of the Enron communica-

tion network in one timeframe (August 2001) and visually presents how central a

node is within its community by its size. As mentioned, centrality of nodes are com-

puted based on the closeness centrality measure. Using the nodes’ centrality scores,

we form the closeness distribution and find the leaders and outermosts according to

aforementioned thresholds.

Leaders identified in August 2001 are: Kimberly Watson, Rhonda L. Denton,

Jannette Elbertson, Becky Spencer, Billy Lemmons, Kenneth Lay, Susan J. Mara,

Jeff Dasovich, Richard Shapiro, and Ginger Dernehl. Being a leader in the network

shown in Figure 4.8 translates into having a high average of short email distance to

other individuals in the community. Among these names, Kenneth Lay was founder,

CEO, chairman, and chief executive officer of Enron. Kimberly Watson was one of

the directors and an influential person in the company based on the information we

found about her in two meeting minutes. “Kim Watson made a motion to approve

the expense of a special grant of Enron stock options as detailed by Robert Jones
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C22T7
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C9T0
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C7T0

C25T7
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C25T7

C22T7

C20T2

C10T0

C7T0

C17T2

C9T0

Figure 4.7: The communities within the Enron communication network in August
2001. Colours represent communities except for black that represents the outliers.
Moreover, size of the nodes indicates how central (based on closeness centrality) a
node is within its community. The bigger the size of the node, the more central it is
in the community.
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Figure 4.8: Leaders of communities are shown as red nodes in the Enron commu-
nication network during the month of August 2001. Similar to Figure 4.7, size of
the nodes shows their centrality in their communities.

to Gary Hugo, Debbie Weir and Stephanie Olszenski. The motion carried by board

vote.” from ENRON FEDERAL CREDIT UNION MINUTES OF A REGULAR

MEETING in 21st of August 2000 [63]. In another meeting minute, it is mentioned

that Ms. Kimberly Watson made a motion to approve a Treasurer’s Report pre-

sented by Ms. Kennedy which was carried by Board vote in 17th of July 2000 [64].

Information about Becky Spencer and Ginger Dernehl has not been found, but other

identified leaders are important people as well.

Figure 4.9 depicts the outermosts in August 2001. As shown in this figure, size

of the nodes having the outermost role is very small referring to their low centrality

score within their communities. In the Enron communication dataset, outermosts

are less frequent than leaders according to the closeness centrality distributions in

Figure B.13 to Figure B.24. If there is no node in a community with smaller cen-

trality score than µ− 2σ, we would not identify any outermost for that community.

In Figure 4.9, only two of the communities have outermost roles. This may also

happen for leading role when there is no node with a centrality score greater than

µ+ 2σ.

66



Figure 4.9: Enron communication network with identified outermost roles within
communities. Red nodes are indicator of outermost roles. As it is shown in this
figure, only two communities have outermost role. The notion of the role outermost
by definition refers to the individuals whose importance is reasonably below the
importance of the majority of nodes in that community. Thus, when the majority
of nodes have low scores according to their importance, no node will be identified
as an outermost which is the case for most of the communities in this network.
From top to bottom, outermosts are Ava Garcia (probably an assistant according to
the body of some emails), Leslie Reeves a module manager, and Shirley Crenshaw
(probably an assistant).
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Identification: Mediators

Figure 4.10(a) shows communities of the Enron communication network in October

2001. The colour of nodes indicates their community, while the size of nodes shows

their relative mediator score. Having the ranked list of nodes by their mediator

score, we need a method to extract mediators. In this experiment, we use two

methods to this end. In the first method, we use the MedExtractor (Algorithm 1) to

identify mediators. Mediators found by this algorithm are high ranked individuals

according to their mediator score that all together connect the communities in the

network. These nodes are shown in red in Figure 4.10(b).

In the second method, we use the distribution of the mediator score to identify

mediators. As shown in Section 4.3.2, the mediator score distributions are close to

a power-law distribution. A power-law distribution is followed by the Pareto prin-

ciple or the 80-20 rule. The 80-20 rule states that 20% of the causes result in 80%

of the effects. Which means that the tail of the distribution posses a large portion

of the values. In the case of Enron communication network, it means that 20% of

the individuals in the network mediate 80% of the communications between com-

munities. Based on this fact, we use the tail of the mediator score distribution to

identify mediators. However, tail of the mediator score distributions for the Enron

communication network is very sparse. The reason for sparse tails could be origi-

nated from the small population of the network. To overcome this problem in our

dataset, we use the point where the tail of the distribution starts getting sparse (the

first or second gap in the histogram) as the lower threshold to identify mediators.

Figure 4.10(c) depicts the set of mediators chosen considering the sparseness and

gaps in the distribution. The nodes that are identified as mediators by this method,

are not only connecting communities, but also most of the shortest paths between

communities pass through them.

MedExtractor (Algorithm 1) determines the minimum number of mediators that

connect all communities to each other, while using the distributions, we find nodes

controlling most of the connections between communities. Thus, on the condition

that it is important to minimize the size of mediators that at the same time connect

the maximum number of communities, MedExtractor (Algorithm 1) gives better
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results. However, if the goal is to target all nodes that are controlling most of the

shortest paths between communities, using the 80-20 rule on the distribution meets

our goal. As shown in Figure 4.10(b) and 4.10(c), nodes that are selected by the

MedExtractor (Algorithm 1) are a subset of nodes identified by the 80-20 rule.

Thus, depending on what we expect from mediators, one of the aforementioned

methods can be used.

4.3.4 Roles Changes

In this section, we present the results on how nodes change their role through time.

Since two important roles in our proposed framework are leaders and mediators,

the focus in this section is on nodes that have been leader or mediator at least once

in different timeframes.

We present change of roles by a table where rows and columns are respectively

nodes and timeframes. The intersection of rows and columns build cells. Each cell

has information about the role of the associated node in the respective timeframe.

For better visualization, cells are coloured to represent nodes’ relative strength in

having a special role.

Figure 4.11 is the associated table with the leading role. This figure indicates

how leader nodes change their leadership through time. We track nodes’ roles after

the first time they become leaders. Thus, whether they are present in the network

or not before their first leading role is not depicted in Figure 4.11. Information

presented in Figure 4.11 indicates that some nodes serve as leaders in most of the

timeframes. Some other nodes are present in the network during few timeframes

and they act as leaders in those timeframes. On the other hand, some nodes are

constantly leaders in early timeframes while some others are constantly leaders in

later timeframes. Intuitively, being a constant leader over more timeframes could

mean that a node is more important and affective in its community.

Similar to the time tracking figure for the leading role, Figure 4.12 presents how

mediators change their role through time. Unlike the leading role where several

nodes attain their leadership over several timeframes, we observe more fluctuations

over the mediating role over time. According to Figure 4.12, mediators identified
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(a) Communities within October 2001 timeframe. Size of the nodes depicts their relative
mediator score

(b) Mediators (red nodes) found by MedEx-
tractor (Algorithm 1)

(c) Mediators (red nodes) found using the me-
diator score distribution

Figure 4.10: (a) Relative mediator scores, community membership, mediator sets.
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for the months July, August, and September express higher mediator scores. This

means that more conversations have happened between different communities of

Enron employees in these three months. Since we start tracking nodes after the

first time they become a mediator, Figure 4.12 does not contain information about

timeframes prior to acquiring the mediating role.

Overall, Figure 4.13 depicts how nodes change their roles through time. Note

that this figure presents the information merely relevant to the nodes that have

served as leader or mediator in at least one timeframe. Based on the information

presented in this figure, there are examples that a node simultaneously act as medi-

ator and leader. This figure gives us knowledge regarding the role transition of each

node. For example, Jeff Dasovich was a mediator in January 2001, then transforms

into simultaneous leader and mediator. Later on, he becomes an outlier and then

regains his leading and mediacy. One more example is Kimberly Watson who is an

outermost in January, later on becomes an outlier and in 3 timeframes becomes a

leader.

Tracking such temporal changes results in interesting information that helps

in analyzing phenomena happening in the network. For instance, Steve J. Kean

who served as Kenneth Lay’s chief of staff in Enron’s office of the chairman is

an outsider in August 2001 and becomes a leader in September 2001 after Lay

becomes the CEO again. Based on the role transitions, we can define a set of

dynamic roles such as an outlier turning into a mediator or an outermost turning

into a leader. We do not come up with different names for multiple combinations

of role transitions. However, we use these transitions (dynamic roles) to analyze

events happening for communities in the next section.

4.3.5 Role Transitions and Community Events

As seen in the previous section, the role of a node may change through time. Simul-

taneously, structures of communities may also change through time. For example,

a new community may form, a former community may split or dissolve, or mul-

tiple former communities may merge into a larger one. We name role changes as

role events and community changes as community events. Community events are
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tana.jones@enron.com 1 1 1 1 1 0 0 0 0.84 1 0 0 7 FALSE

jeff.dasovich@enron.com -1 0.91 0 1 0.91 0.86 1 1 0.94 0 0 0 7 FALSE

james.steffes@enron.com 0.82 1 0.89 0.73 1 0.79 0 0 -1 -1 0 -1 6 FALSE

richard.shapiro@enron.com -1 -1 -1 -1 -1 -1 0.82 1 1 1 0.86 0.87 6 TRUE

d..steffes@enron.com -1 -1 -1 -1 -1 -1 -1 0.98 0.94 0.96 1 0.85 5 TRUE

marie.heard@enron.com -1 -1 -1 -1 -1 -1 1 0 1 0.94 1 0.68 5 FALSE

ginger.dernehl@enron.com 1 0 0.86 0 0.86 0 0 1 0 0 0 0.87 5 FALSE

kathryn.sheppard@enron.com 1 0 0 0 0 0 0 0 1 1 1 1 5 FALSE

becky.spencer@enron.com -1 -1 -1 0.98 0 1 1 0.96 0 0 0 0 4 FALSE

louise.kitchen@enron.com -1 -1 -1 -1 -1 -1 -1 -1 0.98 0.73 1 1 4 TRUE

susan.mara@enron.com -1 -1 -1 -1 -1 0.9 0.8 0.91 0.94 0 0 0 4 FALSE

mary.hain@enron.com 0.84 0.92 1 0 0 -1 -1 -1 -1 -1 -1 -1 3 FALSE

janel.guerrero@enron.com -1 -1 -1 0.73 0 0 0 0 0 1 0 1 3 FALSE

john.lavorato@enron.com -1 -1 -1 1 1 0 0 0 0 0 0.91 0 3 FALSE

alan.comnes@enron.com -1 -1 -1 -1 -1 1 0 0 0.93 0 0 0 2 FALSE

billy.lemmons@enron.com -1 -1 -1 -1 -1 1 0 0.64 0 0 0 0 2 FALSE

simone.rose@enron.com -1 -1 0.93 0.87 0 0 -1 -1 -1 -1 -1 -1 2 FALSE

steven.kean@enron.com 0.84 0 0 0 0 0 0.83 0 -1 -1 -1 -1 2 FALSE

lynn.blair@enron.com -1 -1 -1 -1 -1 1 0 0 0 0 0 1 2 FALSE

mark.taylor@enron.com 0.94 0.82 0 0 0 0 0 -1 -1 -1 -1 -1 2 FALSE

e..haedicke@enron.com -1 -1 -1 -1 -1 -1 1 1 0 0 0 0 2 FALSE

kate.symes@enron.com -1 -1 -1 1 0 0 0 0 0 0 0 0 1 FALSE

audrey.robertson@enron.com -1 -1 -1 -1 -1 -1 -1 -1 1 0 0 0 1 FALSE

l..denton@enron.com -1 -1 -1 -1 -1 -1 -1 1 0 0 0 0 1 FALSE

lavorato@enron.com -1 -1 -1 -1 0.81 0 -1 -1 -1 -1 -1 -1 1 FALSE

holly.keiser@enron.com -1 -1 -1 -1 -1 -1 -1 -1 -1 0.94 0 0 1 FALSE

joseph.alamo@enron.com -1 -1 -1 0.68 0 0 0 0 0 0 0 0 1 FALSE

lara.leibman@enron.com -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0.84 0 1 FALSE

sally.beck@enron.com -1 -1 -1 -1 -1 -1 -1 -1 -1 1 0 0 1 FALSE

j..kean@enron.com -1 -1 -1 -1 -1 -1 -1 -1 0.98 0 0 0 1 FALSE

deb.korkmas@enron.com -1 -1 -1 -1 -1 -1 0.94 0 0 0 0 0 1 FALSE

stephanie.panus@enron.com -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 TRUE

l..nicolay@enron.com -1 -1 -1 -1 -1 -1 -1 -1 0.94 0 0 0 1 FALSE

kimberly.watson@enron.com -1 -1 -1 -1 -1 -1 -1 1 0 0 0 0 1 FALSE

paul.kaufman@enron.com -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0.86 0 1 FALSE

joannie.williamson@enron.com -1 -1 -1 -1 -1 -1 -1 -1 -1 0.68 0 0 1 FALSE

mark.frevert@enron.com -1 -1 1 0 0 0 0 0 0 0 0 0 1 FALSE

kenneth.lay@enron.com -1 -1 -1 -1 -1 -1 -1 1 0 0 0 0 1 FALSE

christi.nicolay@enron.com -1 -1 -1 -1 0.95 0 0 0 -1 0 0 -1 1 FALSE

tamara.black@enron.com -1 1 0 0 0 0 -1 -1 -1 -1 -1 -1 1 FALSE

harry.kingerski@enron.com -1 0.89 0 0 0 0 0 0 0 0 0 0 1 FALSE

outlook.team@enron.com -1 -1 -1 -1 0.74 0 0 0 -1 -1 -1 -1 1 FALSE

janette.elbertson@enron.com -1 -1 -1 -1 -1 1 0 0 0 0 0 0 1 FALSE

jan.moore@enron.com -1 -1 1 0 0 0 0 0 0 0 0 0 1 FALSE

sarah.novosel@enron.com -1 -1 -1 -1 -1 -1 -1 -1 -1 1 0 0 1 FALSE

number of leaders in each timeframe 7 7 7 9 8 8 8 11 12 11 8 9

Figure 4.11: This figure shows how leader nodes change their leadership through
time. For each node in each timeframe, there is either a 0, a number greater than
0, or a grey cell. 0 means that the node is present in that timeframe but not as a
leader, the number means the node is leader and shows its closeness score within its
community. Finally, a grey cell means that the node is not present in the network in
that timeframe. The first column from right is TRUE if a node is always leader when
it is present in the network and the second column from right counts the number of
timeframes where a node is leader.
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jeff.dasovich@enron.com 1953 1519 0 7510 0 5403 13630 0 0 2200 0 0 6

cheryl.johnson@enron.com -1 -1 4327 0 0 0 7361 0 1559 0 0 0 3

rhonda.denton@enron.com 2037 2260 14108 0 0 0 -1 -1 -1 -1 -1 -1 3

l..denton@enron.com -1 -1 -1 -1 -1 -1 10885 0 2526 0 3174 0 3

alan.comnes@enron.com -1 -1 -1 -1 -1 -1 -1 -1 3480 0 0 1926 2

tim.belden@enron.com -1 -1 -1 -1 -1 -1 -1 -1 -1 3557 0 1882 2

janet.butler@enron.com -1 -1 -1 -1 8602 5899 0 0 0 0 0 0 2

shelley.corman@enron.com -1 -1 -1 -1 -1 5184 0 0 0 0 1798 0 2

susan.scott@enron.com -1 -1 -1 6076 0 0 0 0 0 -1 -1 -1 1

kam.keiser@enron.com -1 -1 -1 -1 -1 -1 -1 11031 0 0 0 0 1

l..nicolay@enron.com -1 -1 -1 -1 -1 -1 -1 -1 2677 0 0 0 1

kenneth.lay@enron.com -1 -1 -1 -1 -1 -1 -1 24608 0 0 0 0 1

d..steffes@enron.com -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1237 0 1

veronica.espinoza@enron.com -1 -1 -1 -1 -1 -1 -1 -1 2368 0 0 0 1

janel.guerrero@enron.com -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2119 1

deshonda.hamilton@enron.com -1 -1 12208 0 0 -1 -1 -1 -1 -1 -1 -1 1

outlook.team@enron.com -1 -1 -1 4082 0 0 0 0 -1 -1 -1 -1 1

scott.neal@enron.com -1 -1 -1 -1 -1 -1 -1 -1 3955 0 0 0 1

k..allen@enron.com -1 -1 -1 -1 -1 -1 9099 0 0 0 0 0 1

stephanie.miller@enron.com -1 -1 -1 -1 -1 -1 5919 0 0 0 0 0 1

bob.ambrocik@enron.com -1 -1 -1 -1 -1 -1 -1 -1 -1 1273 -1 -1 1

kimberly.bates@enron.com -1 -1 -1 -1 -1 -1 -1 4752 0 0 0 0 1

Number of mediators in each timeframe 2 2 3 3 1 3 5 3 6 3 3 3

Figure 4.12: This figure shows how mediator role in each node changes through
time. For each node in each timeframe, there is either a 0, a number greater than
0, or a grey cell. 0 means that the node is present in that timeframe but not as
a mediator, the number means the node is mediator and shows its mediator score
within the network, and finally a grey cell means that the node is not present in the
network in that timeframe.

defined and studied in [67, 69, 68]. In this section, we are interested in finding

the possible interaction or mutual relation between the role events and community

events in the Enron communication dataset.

Table 4.1 presents important role-community event mappings for community

C10T0. This community is present from January 2001 to December 2001. An

interesting mapping between role events and community events is shown in the last

raw of Table 4.1. Shelley Corman, VP of regulatory affairs who is one of the leaders

of C10T0 in timeframe 9, is not leader anymore in timeframe 10. This change in the

role of Shelley Corman is concurrent with dissolution of C10T0 in the beginning of

timeframe 11. We are not claiming that the change of the role of Shelley Corman

leaded to dissolution of C10T0 and it might be a coincidence, but it is an interesting

clue for further investigations.

Table 4.2 shows significant role-community event mappings for community

C7T0. C7T0 is present over all studied timeframes, i.e. from January 2001 to

the end of December 2001. The examples of how a community event affects role
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jeff.dasovich@enron.com 9 19 10 19 19 19 19 10 0 9 0 0 9 7 7

tana.jones@enron.com 10 10 10 10 10 0 0 0 0 10 0 0 6 6 0 0 no role

james.steffes@enron.com 10 10 10 10 10 10 0 0 -1 -1 0 -1 6 6 0 2 outlier

d..steffes@enron.com -1 -1 -1 -1 -1 -1 0 10 10 10 10 10 5 4 0 9 mediator

marie.heard@enron.com 0 0 0 0 0 0 10 0 10 0 10 10 4 3 0 11 med+out

ginger.dernehl@enron.com 10 2 2 0 10 0 0 10 0 0 0 10 4 3 0 10 leader

becky.spencer@enron.com 0 0 0 10 0 10 10 10 0 0 0 0 4 4 0 5 outermost

alan.comnes@enron.com 0 0 10 0 0 10 0 0 9 0 10 0 4 3 1 19 lead+med

louise.kitchen@enron.com 0 0 0 0 0 0 0 0 10 10 10 19 4 3 1 absent node

shelley.corman@enron.com 0 9 0 0 0 11 0 0 0 10 9 2 4 1 2

mary.hain@enron.com 10 10 19 0 2 -1 -1 -1 -1 -1 -1 -1 3 3 1

janel.guerrero@enron.com 0 0 0 10 0 0 0 0 0 10 0 10 3 2 0

l..denton@enron.com -1 -1 -1 -1 -1 -1 11 10 19 2 2 0 3 2 1

susan.mara@enron.com 0 0 0 0 0 10 10 10 0 2 0 0 3 3 0

e..haedicke@enron.com -1 -1 -1 -1 -1 0 10 10 0 0 0 0 2 2 0

rhonda.denton@enron.com 0 11 11 2 0 2 -1 -1 -1 -1 -1 -1 2 0 0

billy.lemmons@enron.com -1 -1 0 2 0 10 0 10 0 0 0 0 2 2 0

simone.rose@enron.com 0 0 10 10 0 0 -1 -1 -1 -1 -1 -1 2 2 0

mark.taylor@enron.com 10 10 0 0 0 0 2 -1 -1 -1 -1 -1 2 2 0

janet.butler@enron.com 0 2 0 2 9 9 0 0 0 0 0 2 2 0 2

janette.elbertson@enron.com 0 0 0 2 2 10 0 10 0 0 0 0 2 2 0

steven.kean@enron.com 10 0 0 0 0 0 10 0 -1 -1 -1 -1 2 2 0

john.lavorato@enron.com 0 0 2 10 10 0 0 0 0 0 0 0 2 2 0

sally.beck@enron.com 0 0 0 0 0 0 0 0 0 10 0 0 1 1 0

stephanie.panus@enron.com 0 0 0 0 0 0 0 0 0 0 0 10 1 0 0

audrey.robertson@enron.com 0 0 0 0 0 0 0 0 10 0 0 2 1 1 0

j..kean@enron.com -1 -1 -1 -1 -1 -1 0 2 10 2 2 0 1 1 0

deb.korkmas@enron.com 0 0 0 0 0 0 10 0 0 0 0 0 1 1 0

l..nicolay@enron.com -1 -1 -1 -1 -1 -1 -1 0 19 0 0 0 1 1 1

sarah.novosel@enron.com 0 0 0 0 0 2 0 0 0 10 0 0 1 1 0

joseph.alamo@enron.com 0 0 0 10 0 0 0 0 0 0 0 0 1 1 0

joannie.williamson@enron.com 0 0 -1 0 0 0 0 0 0 10 0 0 1 1 0

paul.kaufman@enron.com 0 0 0 0 0 0 0 0 0 0 10 0 1 1 0

kate.symes@enron.com 0 2 0 10 2 0 0 0 0 0 0 2 1 1 0

kenneth.lay@enron.com 0 0 2 0 0 0 0 19 0 0 0 0 1 1 1

christi.nicolay@enron.com 0 0 0 2 10 0 0 0 -1 2 0 -1 1 1 0

tamara.black@enron.com 0 10 0 2 0 2 -1 -1 -1 -1 -1 -1 1 1 0

stephanie.miller@enron.com 0 0 2 0 2 0 9 0 0 2 0 2 1 0 1

kimberly.bates@enron.com -1 -1 -1 0 0 0 -1 9 0 0 0 5 1 0 1

kam.keiser@enron.com 0 0 0 0 0 0 0 9 0 0 0 0 1 0 1

lynn.blair@enron.com 0 0 0 0 0 10 0 0 0 0 0 2 1 1 0

susan.scott@enron.com 0 0 0 9 0 0 0 0 2 -1 -1 -1 1 0 1

harry.kingerski@enron.com 0 10 0 0 0 0 0 0 0 0 0 0 1 1 0

jan.moore@enron.com 0 0 10 0 0 0 0 0 0 0 0 2 1 1 0

lara.leibman@enron.com 0 0 0 0 0 0 0 0 0 0 10 2 1 1 0

kimberly.watson@enron.com 5 0 0 2 0 0 0 10 0 0 0 2 1 1 0

stanley.horton@enron.com -1 2 0 0 9 0 0 0 0 0 0 0 1 0 1

mark.frevert@enron.com 0 0 19 0 0 0 0 0 0 0 0 0 1 1 1

lavorato@enron.com 0 0 0 0 10 0 -1 -1 -1 -1 -1 -1 1 1 0

deshonda.hamilton@enron.com 0 -1 11 0 0 -1 -1 -1 -1 -1 -1 -1 1 0 0

k..allen@enron.com -1 -1 -1 -1 2 0 9 0 0 0 0 0 1 0 1

cheryl.johnson@enron.com 0 0 0 0 0 0 9 2 0 0 0 0 1 0 1

Figure 4.13: In this figure, transitions between different roles in consecutive time-
frames are shown. A number is assigned to each role and for nodes having multiple
roles, the value of its roles are added. As shown “No role” is represented by 0, out-
lier by 2, outermost by 5, mediator by 9, and finally leader by 10. These numbers
are chosen in a way that the roles of a node is uniquely identified through summa-
tion of its roles’ assigned numbers. For example, the value 11 for a node infers
that it is both mediator and outlier. Different combinations of roles are shown by
different colours for the sake of better visualization. Black cells indicate the node
is not present in the network in that timeframe and grey cells mean that their asso-
ciated nodes are present in the network, but do not take a role. In addition, the first,
second, and third columns from right respectively count the number of timeframes
a node is a mediator, a leader, and the total number of times being either a leader or
a mediator.
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t source(t− 1) result(t) event email rolet−2 rolet−1 rolet comt−2 comt−1 comt

3 C10T0 C10T0 survive jan.moore@enron.com - leader - C10T0 C10T0 C10T0
8 C10T0 C10T0 survive kimberly.watson@enron.com - leader - C10T0 C10T0 C10T0
9 C10T0 C10T0 survive audrey.robertson@enron.com - leader - C10T0 C10T0 C10T0
11 C10T0 dissolve shelley.corman@enron.com leader mediator outsider C10T0 C10T0 -

Table 4.1: Important role-community event mappings for community C10T0 which
is present from timeframe 0 (January 2001) to timeframe 11 (December 2001).
Null means that the individual is not present in the network at that timeframe, “-
” in role columns means that the individual has no role at that timeframe, and in
community columns means the individual is not associated with any community at
that timeframe.

of a node have happened for Tamara Black who has no role in C7T0, but becomes

a leader in C17T1 after C7T0’s split into C17T1. There is also Mark Taylor, an

employee of Enron, who lost his leading role after the split of C7T0 in timeframe 2.

There is a node related to Mark Haedicke, a managing director at Enron, who is not

present in the network at timeframe 4, joins community C7T0 at timeframe 5 and at

timeframe 6 when a merge happens in C7T0 becomes a leader. Another interesting

example is Janette Elbertson, who is an outsider at timeframe 4, joins C7T0 as a

leader at timeframe 5, where both a split and a merge happens in C7T0 and stays

in the same community without having any role at timeframe 6. Nodes associated

with Mark Haedicke and Deb Korkmas become leaders of C7T0 at timeframe 6

which follows by a merge in C7T0 at timeframe 7.

Similar to the above tables, Table 4.3 shows a small portion of role-community

event mappings for community C9T0. Interesting changes in roles and communities

can be found in this table as well. There are also two interesting dissolve events for

communities C17T1 and C20T2. C17T1 is formed at timeframe 1 and dissolves at

the beginning of timeframe 3. There is an employee called Tamara Black who is the

leader of C17T1 at timeframe 1 and loses her leading role at timeframe 2 followed

by C17T1’s dissolution at the end of timeframe 2 (beginning of timeframe 3). For

C20T2, the life cycle begins at timeframe 2 and the death happens at the beginning

of timeframe 9. Rhonda L. Denton, a lawyer, is a leader of C20T2 at timeframe 7

that becomes a mediator together with leader of C20T2 at timeframe 8, and finally

becomes an outlier when C20T2 dissolves at the end of timeframe 8.
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t source(t− 1) result(t) event email rolet−2 rolet−1 rolet comt−2 comt−1 comt

1 C7T0 C17T1 split tamara.black@enron.com null - leader null C7T0 C17T1
2 C7T0 C7T0 split mark.taylor@enron.com leader leader - C7T0 C7T0 C7T0
3 C7T0 C7T0 survive tana.jones@enron.com leader leader leader C7T0 C7T0 C7T0
4 C7T0 C7T0 split becky.spencer@enron.com - leader - C7T0 C7T0 C7T0
5 C7T0 C7T0 survive janette.elbertson@enron.com outsider outsider leader -1 -1 C7T0
6 C7T0 C7T0 merge e..haedicke@enron.com null - leader null C7T0 C7T0
6 C7T0 C7T0 merge becky.spencer@enron.com - leader leader C7T0 C7T0 C7T0
6 C7T0 C7T0 merge janette.elbertson@enron.com outsider leader - - C7T0 C7T0
6 C7T0 C11T6 split marie.heard@enron.com - - leader C7T0 C7T0 C11T6
6 C7T0 C11T6 split cheryl.johnson@enron.com - - mediator C7T0 C7T0 C11T6
6 C7T0 C7T0 split becky.spencer@enron.com - leader leader C7T0 C7T0 C7T0
6 C7T0 C7T0 split janette.elbertson@enron.com outsider leader - - C7T0 C7T0
6 C7T0 C7T0 survive janette.elbertson@enron.com outsider leader - - C7T0 C7T0
7 C7T0 C7T0 merge e..haedicke@enron.com - leader leader C7T0 C7T0 C7T0
7 C7T0 C7T0 merge deb.korkmas@enron.com - leader - C7T0 C7T0 C7T0

Table 4.2: Important role-community event mappings for community C7T0 which
is formed at timeframe 0 (January 2001) and never dissolved until the end of time-
frame 11 (December 2001). Null means the individual is not present in the network
at that timeframe, “-” in role columns means the individual has no role at that time-
frame, and in community columns means the individual is not associated with any
community at that timeframe.

t source(t− 1) result(t) event email rolet−2 rolet−1 rolet comt−2 comt−1 comt

2 C9T0 C17T2 split simone.rose@enron.com - - leader C7T0 C9T0 C17T2
2 C9T0 C17T2 split mark.frevert@enron.com - - mediator/leader C9T0 C9T0 C17T2
2 C9T0 C9T0 split/merge jeff.dasovich@enron.com mediator mediator/leader leader C9T0 C9T0 C9T0
2 C9T0 C9T0 split/merge shelley.corman@enron.com - mediator - C9T0 C9T0 C9T0
2 C9T0 C9T0 split/merge harry.kingerski@enron.com - leader - C9T0 C9T0 C9T0
3 C9T0 C9T0 merge mary.hain@enron.com leader mediator/leader - C9T0 C9T0 C9T0
3 C9T0 C9T0 merge alan.comnes@enron.com - leader - C9T0 C9T0 C9T0
5 C9T0 C9T0 split/merge ginger.dernehl@enron.com - leader - C9T0 C9T0 C9T0
5 C9T0 C9T0 split/merge janet.butler@enron.com outsider mediator mediator - C9T0 C9T0
5 C9T0 C9T0 split/merge christi.nicolay@enron.com outsider leader - - C9T0 C9T0
6 C9T0 C9T0 merge alan.comnes@enron.com - leader - C9T0 C9T0 C9T0
7 C9T0 C9T0 split/merge stephanie.miller@enron.com - mediator - C9T0 C9T0 C9T0
7 C9T0 C9T0 split/merge steven.kean@enron.com - leader - C9T0 C9T0 C9T0
7 C9T0 C9T0 split/merge richard.shapiro@enron.com - leader leader C9T0 C9T0 C9T0
7 C9T0 C17T2 split billy.lemmons@enron.com leader - leader C17T2 C9T0 C17T2
7 C9T0 C17T2 split k..allen@enron.com - mediator - C17T2 C9T0 C17T2
8 C9T0 C9T0 merge jeff.dasovich@enron.com mediator/leader leader - C9T0 C9T0 C9T0
8 C9T0 C9T0 merge ginger.dernehl@enron.com - leader - C9T0 C9T0 C9T0
8 C9T0 C9T0 merge l..nicolay@enron.com null - mediator/leader null C9T0 C9T0
9 C9T0 C7T9 split/merge jeff.dasovich@enron.com leader - mediator C9T0 C9T0 C7T9
9 C9T0 C7T9 split/merge l..nicolay@enron.com - mediator/leader - C9T0 C9T0 C7T9
9 C9T0 C7T9 split/merge sarah.novosel@enron.com - - leader C9T0 C9T0 C7T9
9 C9T0 C7T9 split/merge alan.comnes@enron.com - mediator - C9T0 C9T0 C7T9
9 C9T0 C7T9 split/merge d..steffes@enron.com leader leader leader C9T0 C9T0 C7T9
9 C9T0 C7T9 split/merge richard.shapiro@enron.com leader leader leader C9T0 C9T0 C7T9
9 C9T0 C9T0 split sally.beck@enron.com - - leader C17T2 C9T0 C9T0
9 C9T0 C9T0 split joannie.williamson@enron.com - - leader C17T2 C9T0 C9T0
9 C9T0 C9T0 split louise.kitchen@enron.com - leader leader C17T2 C9T0 C9T0

Table 4.3: Important role-community event mappings for community C9T0 which
is formed at timeframe 0 (January 2001) and never dissolves until the end of time-
frame 11 (December 2001). Null means the individual is not present in the network
at that timeframe, “-” in role columns means the individual has no role at that time-
frame, and in community columns means the individual is not associated with any
community at that timeframe.
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4.4 Evaluation and Discussion

In this chapter, we presented our results on applying the structural social role mining

framework on the Enron communication dataset. We investigated various metrics

to plug into our proposed framework in order to identify the fundamental roles de-

fined as: leader, outermost, and mediator. The results are presented and visualized

through descriptive figures. To gain a better understanding of the relation between

the identified leaders/mediators (as the prominent roles in the proposed framework)

and people involved in the Enron story, Tables 4.4 and 4.5 are presenting their po-

sition within the company.

Furthermore, a joint study of the information about the events presented in the

timeline of the Enron (Appendix A) and our role mining results could lead to better

insights of the events. For instance, in August 2001, Kenneth Lay becomes an

important mediator (high mediator score) in the network. Based on the information

in the timeline of the Enron events, August is the time when Jeffery Skilling resigns

from his position as the CEO and Kenneth Lay becomes the new CEO. Another

interesting scenario happens with tracking the changes of Rhonda L. Denton, who is

a lawyer according to our findings. She starts being a leader from July, when Jeffery

Skilling asked Kenneth Lay to take the position of the CEO after him. Serving as

a leader until September, when Rhonda Denton has both important roles, being a

leader and a mediator at the same time. Moreover, Skilling sells $15.5 million of

stock in September right before Kenneth Lay’s report of $618 million loss to the

employees in October. The sequence of these events along with the changes of the

role of Rhonda Denton especially in September, indicates how they were trying to

take an action to reduce their losses before October and especially in September.

There are many investigations on the Enron email network but few of them con-

centrate on finding important people within this network. Diesner and Carley in

[19] compare the changes of the network in 2001 and 2000. Although they build

the network in a different way and consider edges to have direction, there are inter-

esting overlaps between our results. Diesner and Carley identify important nodes

based on the value of various centrality scores and list the top-5 key-players ac-
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cording to each measure. As shown in Figures 4.11 and 4.12 the following are the

eleven leaders and the three mediators found by our proposed framework for Oc-

tober 2001: Tana Jones, Richard Shappiro, James Steffes, Marie Heard, Kathryn

Sheppard, Louise Kitchen, Sarah Novosel, Joannie Williams, Sally Beck, Holly

Keiser, Janel Guerrero, Jeff Dasovich, Tim Belden, and Bib Ambrocik. Comparing

to Diesner and Carley’s results, there are 3 out of 5 overlaps in the results of each of

the categories (closeness, betweenness, eigenvector, and in degree centrality mea-

sures) and our identified leaders and mediators. It is worth mentioning that there

are 9 people who are identified as leaders/mediators in October 2001 according to

our results but not found in the work of Diesner and Carley.

In another work by Shetty and Adibi in [66] influential nodes in the Enron net-

work are identified by considering direct neighbours, neighbours at distance two,

highest number of sent emails, and betweenness centrality score. In spite of the dif-

ferences in building the network graph in our work and theirs, comparisons reveal

the following overlaps: Louise Kitchen, Scott Neal, Jeff Dasovich, Kenneth Lay,

and Tana Jones as important nodes in both works.

Matching the identified leaders/mediators with their organizational position,

comparing these roles with important nodes identified by other works, and using

the identified roles along with other information such as temporal role changes and

time line events, all together validate and emphasize on the benefits of using our

proposed framework in analyzing the underlying network.
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email position
tana.jones@enron.com Senior Legal Specialist

jeff.dasovich@enron.com Executive/Director for State Government Affairs
james.steffes@enron.com Vice President

richard.shapiro@enron.com VP regulatory affairs (Enron’stop lobbyist)
d..steffes@enron.com James Steffes

marie.heard@enron.com Lawyer
louise.kitchen@enron.com President of Enron Online

susan.mara@enron.com California director of Regulatory Affairs
mary.hain@enron.com In house Lawyer

janel.guerrero@enron.com An employee in government affairs department
john.lavorato@enron.com CEO, Enron America
alan.comnes@enron.com Director Government and Regulatory Affairs

billy.lemmons@enron.com Vice President
steven.kean@enron.com VP and Chief of staff
lynn.blair@enron.com Manager

e..haedicke@enron.com Managing director, Legal
kate.symes@enron.com Trader

audrey.robertson@enron.com Transwestern Pipeline Company

Table 4.4: Leading roles found in Enron communication network and their position
in the company.

email position
jeff.dasovich@enron.com Executive/Director for State Government Affairs

cheryl.johnson@enron.com Minority Counsel
rhonda.denton@enron.com Lawyer

l..denton@enron.com Lawyer
tim.belden@enron.com Head of Enron’s West Coast Trading Desk in Portland Oregon

shelley.corman@enron.com VP, regulatory affairs
susan.scott@enron.com Assistant trader
kam.keiser@enron.com Employee
l..nicolay@enron.com Senior Director Regulatory Affairs

kenneth.lay@enron.com CEO, Chairman
d..steffes@enron.com Vice President

veronica.espinoza@enron.com Staff of credit risk management
janel.guerrero@enron.com An employee in government affairs department
outlook.team@enron.com mailing list

scott.neal@enron.com VP, Trader
k..allen@enron.com Managing director

bob.ambrocik@enron.co Manager - Enterprise Storage and Backup Team

Table 4.5: Mediator roles found in Enron communication network and their position
in the company.
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Chapter 5

CBetweenness and LBetweenness
Centrality measures

Betweenness centrality (BC) is a well known centrality measure which was first

defined in [27] in 1979 and has been used as a powerful means in many network

analysis since then. Modifying Betweenness centrality with the aim of taking

into account the structure of communities in a network, led us to the definition

of LBetweenness (LBC) and CBetweenness (CBC) centralities in Chapter 3.

According to our definitions, only inter-community shortest paths are considered in

calculating CBC and LBC.

In this section we present the results of our experiments on comparing BC,

LBC, and CBC on the Karate Club network [82] and the Enron communication

network described in Chapter 4.

5.1 Karate Club Network

Karate club is the network of friendships between the 34 members of a karate club

at a US university. It is a small but informative social network recorded by Zachary

from a karate club in a university over the period of three years shown in Figure 5.1.

Node 1 and 34 respectively represent the instructor and president of the club. During

the three year observation of Zachary a conflict happens between the instructor and

the president. As a result, the network splits into supporters of the instructor and

supporters of the president.

Table 5.1 presents the top-20 sorted list of nodes in the karate club network
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Figure 5.1: Friendship network between 34 karate club members at a university in
US.

BC 1 34 33 3 32 9 2 14 20 7 6 28 24 31 4 26 30 25 29 10
CBC 1 3 34 33 14 32 2 28 9 31 7 20 6 4 24 10 30 25 27 22
LBC 3 9 14

Table 5.1: Top-20 nodes based on three different criteria: BC, CBC, and LBC
scores in the karate club network. Nodes that are shared between BC, CBC, and
LBC are colored for better comparison. Interestingly there are only three nodes
in the top-20 list for LBC. This happens since there are few leader nodes in this
dataset and only the nodes 3,9, and 14 reside on the shortest paths between leaders.

according to their BC, CBC, and LBC scores. The results of the Spearman corre-

lation coefficient between the rankings of all nodes based on these three measures

are shown in Table 5.3. There are only three nodes reported for the LBC metric

since there are fewer nodes residing on the shortest path between the leaders of

communities and in this case there are only three. According to the results, there

is a strong correlation between the ordering of nodes based on their BC and CBC

in the karate club network. Moreover, these three centrality measures, share a great

portion of the nodes in their top-20 lists.

5.2 Enron Communication Network

Table 5.2 presents the top-20 lists for BC, CBC, and LBC for the October 2001

timeframe of the Enron communication network. According to the Table 5.3, there

is a high correlation between BC and CBC rankings in the Enron network. How-
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BC CBC LBC
sally.beck@enron.com l..denton@enron.com jeff.dasovich@enron.com
jeff.dasovich@enron.com jeff.dasovich@enron.com tim.belden@enron.com
l..denton@enron.com tim.belden@enron.com l..denton@enron.com
l..nicolay@enron.com alan.comnes@enron.com s..bradford@enron.com
d..steffes@enron.com l..nicolay@enron.com mike.grigsby@enron.com
louise.kitchen@enron.com bob.ambrocik@enron.com john.lavorato@enron.com
bob.ambrocik@enron.com louise.kitchen@enron.com b..sanders@enron.com
richard.shapiro@enron.com nancy.bagot@enron.com l..nicolay@enron.com
j..kean@enron.com d..steffes@enron.com danny.mccarty@enron.com
tim.belden@enron.com shelley.corman@enron.com stanley.horton@enron.com
fraisy.george@enron.com b..sanders@enron.com alan.comnes@enron.com
joannie.williamson@enron.com susan.lindberg@enron.com fran.chang@enron.com
s..bradford@enron.com sally.beck@enron.com drew.fossum@enron.com
nancy.bagot@enron.com bill.williams@enron.com brian.redmond@enron.com
b..sanders@enron.com john.lavorato@enron.com janette.elbertson@enron.com
veronica.espinoza@enron.com john.buchanan@enron.com edward.sacks@enron.com
janel.guerrero@enron.com janet.butler@enron.com robert.badeer@enron.com
e..haedicke@enron.com sarah.novosel@enron.com jeff.richter@enron.com
shelley.corman@enron.com j..kean@enron.com louise.kitchen@enron.com
alan.comnes@enron.com drew.fossum@enron.com dave.perrino@enron.com

Table 5.2: Top-20 nodes based on three different criteria: BC, CBC, and LBC
scores in the Enron communication network. Nodes that are in more than shared
betweene BC and CBC and LBC are colored for better comparison.

ever, the portion of nodes that are being shared among the top-20 lists is less com-

pared to the karate club network. The reason for this phenomena could be caused by

the fact that the karate club network consists of only 2 communities, however in the

Enron network it is composed of 5 communities. Thus, the effect of communities

is more in the Enron communication network and has affected the results.

In consideration of time, Table 5.4 reports the time spent on computing BC1,

CBC, and LBC on the both karate and Enron (Oct. 2001) networks. According to

these results, computing LBC takes less time compared to BC and CBC on both

networks. Moreover, CBC performs more efficient on the Enron network which is

the result of the existence of communities.
1Jung implementation is used for computing betweenness centrality. Therefore, it is more opti-

mized than the research code for CBC and LBC that we have implemented.
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BC,CBC BC,LBC CBC,LBC
Karate Club 0.94 0.58 0.62
Enron 0.90 0.63 0.72

Table 5.3: Spearman correlation coefficient between Betweenness Centrality (BC),
CBetweenness Centrality (CBC), and LBetweenness Centrality (LBC) for the
networks of Karate club and Enron’s communication network.

tBC tCBC tLBC tBC/tCBC

karate club (34 nodes) 64ms 118ms 57ms 0.54
Enron Oct. 2001 (228 nodes) 1012ms 762ms 152ms 1.33

Table 5.4: Running time for computing BC, CBC, and LBC on the karate and
Enron networks.

5.3 Discussion

In this section we showed how CBC and LBC will result in different ranking

lists of nodes compared to BC since these two metrics consider a new parameter

that is the community affiliation. Thus, when communities are important factors

in determining the centrality of nodes, CBC and LBC are better candidates than

BC. Comparing the results within each of the karate and Enron networks as well as

comparing the results of these two networks with each other better highlights how

the structure of communities can be effective in identifying influential (important)

nodes within a network.

From the time complexity point of view, computing CBC and LBC are less

expensive than BC. The fact that only inter-community paths are considered is

the key to lessen the computational time. However, the extent to which the time

complexity is reduced highly depends on the structure of communities and the ratio

of paths that reside within communities.
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Chapter 6

Conclusion and Discussion

In this thesis we proposed The SSRM framework to study different patterns that

nodes may build through their interactions in a social network. To this end, we

first defined the concept of role in network science based on definitions from social

science. Using definition of the role, we introduced our framework. The proposed

framework is built based on the assumption that social networks are composed of

a set of communities (set of highly connected nodes). Considering the existence

of communities, we defined 4 fundamental roles (leader, outermost, mediator, and

outsider) in a network. Moreover, we defined new metrics (L-Betweenness (LBC),

C-Betweenness (CBC), and DiversityScore (DS)) and proposed general strategies

for identifying the aforementioned roles. Finally, we applied the framework to the

Enron communication network and observed how the defined roles relate to events

happening the network.

The structural social role mining framework presented in this dissertation is in-

spired by two intrinsic characteristics of humans social life. The first characteristic

is the concept of groups as the fundamental components of each society. According

to sociology, all societies are composed of multiple groups of people. To put it in

other words, people in a society are associated with groups.

The next characteristic of human beings social life, is the role taking behaviour

of people in their interactions with friends, family, colleagues, etc. Thus, we de-

fined the concept of social role as the role people take in their society using various

definitions of role from social science. Within network science terminology, we

defined social role of an entity as its structural and non-structural properties in the
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network considering interactions with the rest of the network.

Based on these two prominent assumptions, we proposed the structural social

role mining framework. In this framework, we defined 4 fundamental roles named

leader, outermost, mediator, and outsider. These roles are either inter-community

or intra-community roles. Leader and outermost are intra-community roles as they

are defined within a community, while mediator and outsider are defined within the

whole network as inter-community roles. More precisely, we defined leaders as the

most central/important nodes and outermosts as the least central nodes within each

community. Furthermore, we defined outsiders as the nodes that are not affiliated

with any community in the network. Finally, mediators are defined as the nodes

that play an important role in connecting distinct communities to each other.

In order to identify the set of aforementioned roles, we need a methodology to

extract them from the complicated structure of social networks. Identifying out-

siders are quite straight forward based on the assumption that social networks are

composed of communities. Thus, having communities in a network, nodes that are

not a member of any of those communities are identified as outliers. To identify

leaders and outermosts within a community, our proposed methodology suggests to

choose an appropriate metric (such as centrality measures) and compute a score for

each node based on that measure. Then, rank nodes by their computed scores and

extract leaders and outermosts by analyzing the sorted list of nodes to find the most

and the least significant ones. For identifying mediators, we defined new measures

called L-Betweenness (LBC), C-Betweenness (CBC) and DiversityScore (DS).

The idea behind the definition of LBC and CBC, is to overcome the time com-

plexity of Betweenness centrality in large social networks. Intuitively, it is not

necessary to compute shortest paths between all pairs of nodes in the graph to find

how much a node is intervening between others. Therefore, the idea is to consider

shortest paths only among a subset of nodes (or important nodes) rather than the

whole network. This strategy yields to a small subset of nodes. Hence, LBC and

CBC respectively are computed by considering shortest paths between pairs of

community leaders and pairs of nodes from distinct communities. Therefore, these

two metrics are computed more efficiently in very large graphs. Using these newly
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defined measures, we calculate a score for all nodes of the network. Then, sort

nodes based on their score and identify mediators by either analyzing the sorted list

of nodes or using MedExtractor (Algorithm 1).

The aforementioned roles are defined focusing only on the structural properties

of the nodes. Thus, they are called structural social roles. However, non-structural

characteristic of nodes can be added to the structural ones in order to enrich the role

definition. It should be noted that non-structural characteristic are domain depen-

dent and can only be determined knowing information about the dataset.

Moreover, the roles introduced in our framework are basically defined in a sin-

gle snapshot of the network when the ranking measures are considering only one

timeframe. On the other hand, if temporal centrality measures or any other tem-

poral metric is used, the framework can identify dynamic (temporal) roles. Either

way, tracking how these roles change through time provides us with information

about the temporal characteristics of nodes and the network. Hence, dynamic roles

can also be defined by the temporal patterns of changes in the roles defined in our

proposed framework.

To evaluate our proposed framework, we applied it on the Enron communica-

tion network. We identified outsiders, outermosts, mediators, and leaders. Among

these roles, leaders and mediators are the important ones to study. Thus, we tried to

find information about the people associated with nodes having the role of a leader

or a mediator. According to what we found, they are important people in the En-

ron organizational hierarchy. Moreover, we observed how nodes change their role

through time. Based on role changes we analyzed community changes and other

events happening in the Enron’s timeline.

Using the structural social role mining framework, we can study the concepts of

influence, trust, idea innovators, and other roles that are being studied sporadically,

all using a unified framework. The important fact about this framework is how to

build the graph (network), connections, and nodes in a way that best represents

the objective of the problem. The other important step in using this framework is

the appropriate choice of metrics for calculating nodes’ scores and sorting them

accordingly to identify leaders, outermosts, and mediators.
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Within the proposed framework, we studied how change of roles could describe

other events in the network. However, this framework lacks methodologies to study

dynamic roles. To this end, introducing well-defined dynamic roles based on the

four fundamental roles (leader, outermost, mediator, outsider) and proposing meth-

ods to identify them is a possible work to extend this framework. Furthermore,

developing a way to define and identify roles that are investigated in other works

using the structural social role mining is a significant step in order to generalize the

use of this framework. This way, the structural social role mining framework can

be used to unify the study of roles in social networks.
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Appendix A

A.1 Enron Timeline in 2001

The timeline of events at Enron Corp. in the year 2001 that is of the interest to this

work is quoted from [46] as follows:

• End of 2000 Enron uses aggressive accounting to declare $53 million in earn-

ings for Broadband on a collapsing deal that hadn’t earned a penny in profit.

• Jan. 2001 Belden’s West Coast power desk has its most profitable month

ever – $254 million in gross profits.

Jan. 22, 2001 Quarterly Analyst Conference Call – Jeffery Skilling presents

a positive report of the company.

Jan. 25, 2001 Analyst Conference in Houston, Texas. Skilling bullish on the

company. Analysts are all convinced. Ken Rice increases his estimates for

value of Broadband.

• Feb., 2001 Tom White resigns from EES (Enron Energy Services, the re-

tail division he headed since 1998) and becomes Secretary of the Army. He

cashes out with $14 million and begins to build a huge home in Naples,

Florida. The purchase price for the property is $6.5 million.

Feb., 2001 Over the year 2000 (while he presided over EBS, Enron Broad-

band Services), Ken Rice cashes in $53 million in shares and options.

Feb., 2001 Lay retires as CEO and is replaced by Skilling.

Feb. 5-14, 2001 Senior Andersen partners meet to discuss whether to retain

Enron as a client. They call use of mark-to-market accounting “intelligent
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gambling.”

Feb. 14, 2001 Writer Bethany McLean interviews Skilling.

Feb. 15, 2001 Mark Palmer, head of publicity for Enron, and Fastow go to

Fortune to answer questions. Fastow to Bethany McLean: “I don’t care what

you say about the company. Just don’t make me look bad.”

Feb. 19, 2001 Fortune article, by Bethany McLean: “Is Enron Overpriced?”

Feb. 21, 2001 Employee Meeting. Skilling says: “Yes, it is a black box. But

it is a black box that’s growing the wholesale business by about 50 percent

in volume and profitability. That’s a good black box.” Skilling announces

Enron’s goal: “The World’s Leading Company.”

• March, 2001 Enron transfers large portions of EES business into wholesale

to hide EES losses.

March, 2001 Arthur Andersen takes auditor Carl Bass off the Enron account.

March 23, 2001 Enron schedules unusual analyst conference call to boost

stock. It works.

• April 17, 2001 Quarterly Conference Call.

• May 17, 2001 Secret meeting at Peninsula Hotel in LA.

• June 2001 FERC finally institutes price caps across the western states. The

California energy crisis ends.

• July 12, 2001 Quarterly Conference Call. Skilling still presenting the state

of the company as awesome and great.

July 13, 2001 Jeffery Skilling announces desire to resign to Kenneth Lay.

Kenneth Lay asks Skilling to take the weekend and think it over. There are

two different views of what happened that day. According to Lay, he tried to

talk Skilling out of resigning. Skilling says Lay didn’t seem to care and that

he offered to stay on for six months. Board member says he recommended

the transition period to Lay. Lay claims Skilling wanted an immediate out.

July 24-25, 2001 Skilling meets with analysts and investors in NY. “We will

hit those numbers. We will beat those numbers.”
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• August 3, 2001 Skilling makes a bullish speech on EES. That afternoon, he

lays off 300 employees.

August 11, 2001 Skilling talks to Mark Palmer about preparing press release

for resignation.

August 13, 2001 Board Meeting. Rick Buy outlines disaster scenario if

Enron’s stock starts to fall. All SPEs crash. Skilling dismisses this. That

evening, in board only session, Skilling, in tears, resigns.

August 14, 2001 Skilling’s Resignation Announcement. In evening, analyst

and investor conference call. Skilling: “The company is in great shape” Lay:

“Company is in the strongest shape that it’s ever been in.” Lay is named CEO.

August 15, 2001 Jim Chanos thinks the stock is going through the floor and

bets aggressively on that. Notes that Skilling’s departure coincided with re-

lease of second quarter 10-Q. Enron’s cash flow was a negative $1.3 billion

for the first six months.

Sherron Watkins, an Enron vice president, writes to Lay expressing concerns

about Enron’s accounting practices.

August 22, 2001 Ms Watkins meets with Lay and gives him a letter in which

she says that Enron might be an “elaborate hoax.”

• September 2001 Skilling sells $15.5 million of stock, bringing stock sales

since May 2000 to over $70 million.

Sept. 26, 2001 Employee Meeting. Lay tells employees: Enron stock is an

“incredible bargain.” “Third quarter is looking great.”

• Oct. 16, 2001 Enron reports a $618 million third-quarter loss and declares a

$1.01 billion non-recurring charge against its balance sheet, partly related to

“structured finance” operations run by chief financial officer Andrew Fastow.

In the analyst conference call that day, Lay also announces a $1.2 billion cut

in shareholder equity.

Oct. 17, 2001 Wall Street Journal article, written by John Emshwiller and

Rebecca Smith, appears. The article reveals, for the first time, the details of

Fastow’s partnerships and shows the precarious nature of Enron’s business.
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The SEC begins an informal probe of Enron.

Oct. 22, 2001 Enron acknowledges Securities and Exchange Commission

inquiry into a possible conflict of interest related to the company’s dealings

with the partnerships.

Oct. 23, 2001 Lay professes support for Fastow, saying he has the “highest

regard” for his character during conference call with analysts, and employee

meeting: “Andy has operated in the most ethical and appropriate manner pos-

sible.”

Oct. 23, 2001 In a massive shredding operation, Arthur Andersen destroys

one ton of Enron documents.

Oct. 24, 2001 Enron ousts Fastow.

Oct. 26-29, 2001 In vain Lay calls top government officials to solicit help

for Enron, including Alan Greenspan, Paul O’Neill, and Donald Evans, re-

spectively the chairman of the Fed, the Treasury secretary, and the commerce

secretary.

Oct. 31, 2001 Enron announces the SEC inquiry has been upgraded to a

formal investigation.

• Nov. 8, 2001 Enron files documents with SEC revising its financial state-

ments for past five years to account for $586 million in losses. The com-

pany starts negotiations to sell itself to Dynegy, a smaller rival, to head off

bankruptcy.

Nov. 9, 2001 Dynegy agrees to buy Enron for about $9 billion in stock and

cash.

Nov. 19, 2001 Enron restates its third quarter earnings and discloses it is try-

ing to restructure a $690 million obligation that could come due Nov. 27.

Nov. 28, 2001 Enron shares plunge below $1.

Nov. 29, 2001 Dynegy withdraws from the deal.

• Dec. 2, 2001 Enron files for Chapter 11 bankruptcy protection, at the time

the largest bankruptcy in US history.
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Appendix B

B.1 Degree Centrality Distributions

According to the assumption that societies are composed of communities, we ex-

tract communities of the Enron communication network in each timeframe. In this

section, we show the degree distributions for communities in each timeframe. To

ignore very sparse distributions, we only considered communities with more than

25 nodes. Depending on the size of the communities in each, there are timeframes

with 2, 3 or 4 communities of sizes larger than 25.
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Figure B.1: Plot of Communities’ Degree Distribution for January 2001.
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Figure B.2: Plot of Communities’ Degree Distribution for February 2001.
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Figure B.3: Plot of Communities’ Degree Distribution for March 2001.
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Figure B.4: Plot of Communities’ Degree Distribution for April 2001.
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Figure B.5: Plot of Communities’ Degree Distribution for May 2001.
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Figure B.6: Plot of Communities’ Degree Distribution for June 2001.
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Figure B.7: Plot of Communities’ Degree Distribution for July 2001.
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Figure B.8: Plot of Communities’ Degree Distribution for August 2001.
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Figure B.9: Plot of Communities’ Degree Distribution for September 2001.
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Figure B.10: Plot of Communities’ Degree Distribution for October 2001.
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Figure B.11: Plot of Communities’ Degree Distribution for November 2001.
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Figure B.12: Plot of Communities’ Degree Distribution for December 2001.
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B.2 Closeness Centrality Distributions
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Figure B.13: Plot of Communities’ Closeness Distribution for January 2001.
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Figure B.14: Plot of Communities’ Closeness Distribution for February 2001.
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Figure B.15: Plot of Communities’ Closeness Distribution for March 2001.

111



0.0 0.2 0.4 0.6 0.8 1.0
Closeness Centrality (Apr 2001)

0

1

2

3

4

5

6

7

N
u
m

b
e
r 
o
f 
n
o
d
e
s 

( 
to

ta
l 
=

 5
9
 ) µ= 0.26, σ= 0.21

0.0 0.2 0.4 0.6 0.8 1.0
Closeness Centrality (Apr 2001)

0

1

2

3

4

5

N
u
m

b
e
r 
o
f 
n
o
d
e
s 

( 
to

ta
l 
=

 4
2
 ) µ= 0.43, σ= 0.19

0.0 0.2 0.4 0.6 0.8 1.0
Closeness Centrality (Apr 2001)

0

1

2

3

4

5

N
u
m

b
e
r 
o
f 
n
o
d
e
s 

( 
to

ta
l 
=

 6
3
 ) µ= 0.52, σ= 0.18

Figure B.16: Plot of Communities’ Closeness Distribution for April 2001.
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Figure B.17: Plot of Communities’ Closeness Distribution for May 2001.
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Figure B.18: Plot of Communities’ Closeness Distribution for June 2001.
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Figure B.19: Plot of Communities’ Closeness Distribution for July 2001.
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Figure B.20: Plot of Communities’ Closeness Distribution for August 2001.
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Figure B.21: Plot of Communities’ Closeness Distribution for September 2001.
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Figure B.22: Plot of Communities’ Closeness Distribution for October 2001.
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Figure B.23: Plot of Communities’ Closeness Distribution for November 2001.
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Figure B.24: Plot of Communities’ Closeness Distribution for December 2001.
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B.3 Mediator Score Distributions
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Figure B.25: Plot of Mediator Score Distribution for January 2001.
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Figure B.26: Plot of Mediator Score Distribution for February 2001.
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Figure B.27: Plot of Mediator Score Distribution for March 2001.
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Figure B.28: Plot of Mediator Score Distribution for April 2001.
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Figure B.29: Plot of Mediator Score Distribution for May 2001.
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Figure B.30: Plot of Mediator Score Distribution for June 2001.
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Figure B.31: Plot of Mediator Score Distribution for July 2001.
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Figure B.32: Plot of Mediator Score Distribution for August 2001.
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Figure B.33: Plot of Mediator Score Distribution for September 2001.
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Figure B.34: Plot of Mediator Score Distribution for October 2001.
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Figure B.35: Plot of Mediator Score Distribution for November 2001.
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Figure B.36: Plot of Mediator Score Distribution for December 2001.
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