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Abstract

Event-triggered control systems have emerged as an important alternative to classical digital
control systems, in which the flow of information between sensors, controller and actuators
takes place aperiodically in an event-based manner. Event-triggered control (ETC) has seen
much attention from the research community in recent years resulting in a comprehensive
theory which includes stability analysis, disturbance rejection, control design, etc. This the-
sis is concerned with important theoretical and practical aspects of event-triggered systems
that can be divided into two main categories.

The first part includes the robust analysis of ETC systems involving different types
of robustness measures. We start with designing a triggering condition (TC) for general
nonlinear event-triggered systems in a way that an Lo-type performance is guaranteed.
The results are obtained in a local framework due to reliance on the assumption that the
admissible disturbance is norm bounded by some function of the states. The results are
then extended in two aspects. First, we study the £,-stability of nonlinear event-triggered
systems and second, we relax the restriction on the class of disturbances. In addition,
the TC is proposed using a unifying framework which includes several dynamic and static
parameters to cover several existing T'Cs proposed earlier in the literature as special cases.
More importantly, the approach solves the non-trivial problem of isolating the triggering
instants in presence of arbitrary disturbances. As another extension, the more interesting
scenario of jointly designing the TC and control law is studied for nonlinear Lipschitz
systems. Our solution to this problem includes both state and output-based feedback laws
and consists of assigning the dominant eigenvalues of the stability matrices according to
desired control demands. We also consider the robust analysis of nonlinear input-affine
systems and study the input-to-state stability of ETC systems with respect to actuator
noise/error and exogenous disturbances. We consider both the design of the TC for a
pre-design controller as well as the more challenging simultaneous design of controller and
TCs. Finally, we consider the concept of dissipativity as general framework in the study of

various forms of robust performance and system properties (including passivity, ISS, and
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Ly gain performance), and study different forms of dissipativity for event-based network-
communicated physical processes. The second category of results in this thesis focuses on the
important problem of reducing the average sampling frequency for ETC systems. We study
this problem from two points of view. First, we modify a pre-designed TC to effectively
enlarge the intersampling intervals without violating the desired robust performance of the
event-triggered system. Also, we obtain a lower bound on the amount of inter-event times
extension. Moreover, for an ETC design to be successfully implemented in practice, the
uniform isolation of triggering instants has to be guaranteed. This is even more challenging
when disturbances are applied to the system. Our proposed triggering structure not only
provides a general platform for the event design but also serves to the isolation of sampling

instants in presence of arbitrary disturbances.
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Chapter 1

Introduction

This thesis explores robust design and analysis of event-triggered control (ETC) systems
subject to the exogenous disturbances. The purpose of this research is to offer solutions
to several open problems using novel techniques for event-based controller design. In this
chapter, we provide an overview of the subject along with some preliminary background,
overview of the literature, define the research objectives, and summarize the main contri-

butions.

1.1 Event-Triggered Control Systems

Modern feedback control systems are typically implemented digitally using a computer to
realize the controller. Sample and hold devices provide the interface with the (analog)
plant. In the classical approach data transmission between system components (such as
actuator, sensor and plant) takes place periodically, regardless of whether or not changes in
the measured output and/or commands require computation of a new control output. This
approach, often referred to as time-triggered control is well understood and has led to several
theories for control design of linear and nonlinear systems. See for example, [1-5]. The
periodic exchange of information, however, imposes unnecessary communication demands
that might become important and even critical in some systems such as distributed and
networked systems, where optimal usage of communication network capacity is of great
importance.

An alternative to time-driven systems is the so-called event-triggered approach, in which
a new control action takes place only when changes in the measured outputs overpass a pre-
established threshold. Event-based control systems has been an active area of research
over the last decade. The primary characteristic of event-based controllers is that they

can provide performance very similar to classical control approaches while reducing the



transmission of information between plant and controller. The importance of this property
is evidenced through several applications such as battery-operated systems with wireless
transmission between plant and controller, which often have limited energy and/or memory
supplies, or network control systems with shared wired or wireless communication channels,
[6].

In an event-based scenario, the system decides when to update the control output, based
on a so called real time triggering condition on the measured signals. This approach leads to
aperiodic communication between plant and controller that only takes place when needed.
In other words, the system components do not exchange information unless some TC is
satisfied. This condition can be defined in different forms and varies depending on the
nature of the system.

Mostly, the event-triggered mechanism (ETM) is designed to update the actuators when-
ever measurement error i.e., the difference between current and most recent value of output,
is above a pre-established threshold. The threshold can be a constant or a function of sys-
tem’s output or even a combination of them. Therefore, an event detector hardware is
required to continuously monitor the system’s output, compare it with the measurement
error, and finally release the information if it is needed. As a consequence, the actuator
receives an updated control signal at the triggering instants at which the TC is satisfied.
A zero-order hold (ZOH) device serves to maintain the controller signal constant between
events.

Two important aspects of an ETC are (i) the design should satisfy some form of closed-
loop performance, and (ii) should guarantee that the execution times have enough separation
to avoid excessive sampling. This second point is critical to any event design. Note that
reducing communication between plant and controller is, in fact, the primary motivation
behind event-based methods. However, since the execution time depends on the occurrence
of a new event, the TC has to be designed in a way to avoid excessive triggering, particularly
the existence of an accumulation point in which an infinite number of events are generated
in finite-time (also known as Zeno phenomenon). In other words, the event-based controller
has to be carefully planned to meet the hardware limitations associated with employed
sampling devices since the sampling devices cannot sample the measurements unlimitedly
fast. Therefore, a necessary practical requirement for designing and admissible TC is to

prevent the triggering instants to be arbitrarily close to each other.



1.2 Literature review

Event-based systems have been used without theoretical supports for many years. The
resurgence of interest in the subject began with the work reported in reference [7], that
considers a first order stochastic system and shows that event-based sampling offers better
performance than classical time-triggered control, in terms of closed-loop variance and sam-
pling rate. Following publication of this work, event-triggered systems became a very active
area of research and many important contributions have been reported addressing stability
( [8-13]), and performance ( [14-20]), to mention a few (see also the references therein).

Reference [8], one of the first references on stabilization of ETC systems, proposes
an ETM for PID control. Reference [9], presents a clever and rather general solution to
the stability problem of event-triggered systems. In this reference the author assumes
the existence of a pre-designed continuous-time control law that results in input-to-state
stability of a nonlinear plant, and shows that restricting the measurement error (i.e., the
difference between the system state and the last sampled value) to stay within a threshold
which is a function of state, guarantees closed-loop global asymptotic stability.

Reference [9] has inspired much work and several event-based strategies have been pro-
posed that extend this work (see [21] and the references therein). Reference [9] is restricted
to state-feedback and therefore relies on full state measurement. This restriction is relaxed
in [10,11]. Reference [10], considers periodic ETC of linear systems, in which the TC is
monitored at regular intervals instead of continuously, and can be viewed as a sampled data
version of event-triggered systems. Reference [11] considers output feedback stabilization
using the framework of passivity theory. References [12,13] offer a unifying framework for
the stability problem of nonlinear event-based in the context of hybrid systems.

All of the above mentioned works focus on stabilization. The effects of an ETM on
control performance was first addressed in [15], which shows a trade-off between system
performance and the complexity of the control law. A decentralized ETM is proposed
in [22] for distributed linear systems. This reference considers an impulsive system approach
to system stability and proposes an ETM that satisfies an L, bound. References [16—
18,23-27] focus on the Lo-gain. The Lo-gain stability analysis of ETC systems was first
investigated in [23] where a full-information He, controller is proposed for LTI systems.
[17,24] continued the work of [23] in more details. [24] proposes an Ls-gain performance-
preserving TC for a class of nonlinear affine systems. [17] considers LTI systems and derives

an explicit lower bound on the sampling periods. In this reference, the disturbance is



assumed to be norm bounded by a linear function of the state norm. This condition is
then relaxed in [18]. Reference [25] considers the Lo-gain of distributed multi agent systems
under event-triggered agreement protocols. Reference [16] proposes an ETM for distributed
network linear systems and guarantees finite gain Lo-stability in the presence of packet data
dropouts. Reference [26] considers passive systems and proposes a TC that guarantees finite
gain Lo-stability when the external disturbance is bounded and shows that their approach
preserves stability under constant network induced delays or delays with bounded jitters.
Reference [27] extends the results of [26] to systems with constant network induced delays
or time-varying delays with bounded jitters. [19] proposes a dynamic TC for the centralized
state feedback ETC of nonlinear network control systems with guaranteed L,-stability.
Reference [20] extends the work of [19] to the output feedback and decentralized case.

The TC should be designed properly to guarantee Zeno-free bahaviour for the ETC
system. In this regard, most event-triggered laws define a threshold using the norm of a
measured signal, typically, the state. Examples include [9,13,16,17,28]. Although this type
of scheme has seen countless of successful applications and has provided an important place
in the literature, it is, however, not free of limitations. Indeed, in [9], the author designed a
TC departing from a continuous-time closed-loop ISS system (with respect to measurement
error) to achieve an closed-loop stable ETC system, with Zeno-free behaviour. Similar rules
can also guarantee other desirable performance measures such as Lo input-output bounds
(e.g., see [16,17,23]). However, it was recently shown in reference [19] that in the presence
of disturbance or sensor noise, static TCs defined in terms of solely the state vector norm
cannot guarantee positive minimum inter-event time (MIET), thus becoming vulnerable
to Zeno behaviour. The same issue may be encountered when dealing with dynamic TCs
(e.g., [13,28]), or output-based TCs (e.g., [26,27]).

As mentioned above, dealing with uncertainties in the event-triggered context is non-
trivial. Indeed the ETM is designed to update the actuators whenever measurement errors
are above a pre-established threshold. In the absence of disturbances, the error originates
during the intersample as the difference between the present value of the state and its last
sampled value. In the presence of exogenous disturbance, however, the error is also driven
by the disturbance term making it difficult to design an effective TC, thus incorporating
disturbance in event design is nontrivial.

The main problem is then to design the triggering mehanism in a way that the desired
stability and/or performance for the event-triggered system is acheived. In the absence of

disturbances, the sampling (measurement) error originates during the intersample as the



difference between the present value of the state and its last sampled value. In the presence
of exogenous disturbance, however, the error is also driven by the disturbance term making
it difficult to design an effective TC. Thus, when designing an ETC law, two aspects need to
be considered: first, the resulting feedback control must satisfy some form of performance
criterion. Second, this performance must be satisfied when the control law is implemented in
event-triggered form. This second aspect is nontrivial because ETC systems are inherently
non-periodic, thus preventing the designer from using discrete-time models and forcing the
use of emulation techniques to recover continuous-time performance when the controller
is implemented in an event-triggered fashion. Indeed, the vast majority of the published
work to-date follows an emulation approach, consisting of first designing a control law in
continuous-time, ignoring implementation details, and often neglecting possible network
constraints. A TC is then designed to meet as closely as possible the performance of
the continuous-time design, possibly taking into account the effect of the communication
network. This approach has been predominant in the research community and includes the
majority of the works published up to date. Often control design is expressed in terms of
linear matrix inequalities (LMIs), for which feasibility is a non-trivial issue. We refer the
interested readers to [29-33] for full state feedback design and [22,29,30,34-41] for output
feedback design. Note that since the control law is originally designed for the network-
free problem, the desired performance will not necessarily be optimal in presence of a
network, [30]. A more recent approach consists of jointly designing the controller and TC
and has recently seen attention, e.g., see [29-31,33,39,42]. As demonstrated in these works,
joint design can overcome possible deficiencies of the emulation approach by enhancing
optimal performance.

Regardless of the particular method used in the design (i.e. emulation design or joint
design), designing the TC also require careful attention. Indeed, a critical aspect of an
ETC system is that since execution times depend on the occurrence of an event, the TC
must be constructed in such a way to avoid events becoming excessively close. In this
regard, disturbance rejection becomes a challenge, since the effect of disturbances may lead
to execution times becoming arbitrarily close resulting in an accumulation point (maybe
the only exception is the periodic event-triggered scheme, [10], in which the separation
of triggering instants holds trivially). Therefore, constructing such TC in the presence of
exogenous disturbances is non-trivial and has been the subject of much research. This
problem is relatively well understood for linear ETC systems, for which several solutions

have been proposed. See [17,18,22,23,29,30,43-46]. References [11,19,20,26,27,47-53] study



the more general nonlinear case. A major trend in these works is to ensure the separation
of execution times by enforcing a dwell-time between them, known as the time-reqularized
approach. In this method, the TC is only checked after a positive dwell-time since the
last execution time. In this sense, the dwell-time can be seen as being inspired by classical
periodic sampling (see [54]). See also [55], [56], [34] for a different approach. As pointed
out in [19,20], while offering guaranteed positive inter-event times, the time-regularized
controller may reduce to a time-triggered (periodic) control in certain situations. This
issue, however, has been avoided in the recent papers [20, 48] where a dynamic triggering

scheme is incorported with the time-regularization technique.

1.3 Research Motivation and Objectives

In this section we briefly discuss the motivation leading to the work presented and summarize
the main contribution in this thesis. In the previous section, we discussed several aspects
of ETC systems that have been well-studied in recent years. Despite major advances in the

field, however, there are some fundamental open issues that requires careful attention.

1.3.1 Robust Analysis

An important problem in the realm of ETC systems is the solution to finite Lo-gain stability
for a wider class of systems and/or a less conservative set of assumptions. Indeed, in Chapter
3 we consider a rather general class of nonlinear system model with the sole assumption
of satisfying a mild local Lipschitz continuity condition. Taking exogenous disturbances
together with measurement errors as inputs, our proposed TC is obtained based on the
assumption that the system is ISS. The ISS assumption implies working with bounded
inputs and therefore suggests the need to consider small signals in some sense. To formalize
this concept, we present our results using an extension of the classical input-output theory
of systems with modified input spaces, referred to as local (or small signal) input-output
stability introduced in [57]. It is then assumed that the disturbance term is originated
from structural uncertainties in the system model and is norm bounded by some locally
Lipschitz-continuous function of state. This assumption is rather mild and more general
than previous references. For example, in the framework of self-triggered control, [17]
considers a similar Lo problem to the one studied here, but assumes that the norm of
disturbance is bounded by a linear function of the state norm. The results are then extended
in Chapter 6, where the interest is to answer the question of whether or not the linearization

of a nonlinear plant model can be rendered locally stable when the controller is implemented



using an event-triggered approach. Note that this is different from the classical notion of
local stability achieved via linearization in continuous-time, which simply ignores the event-
triggered implementation. One can conjecture that the same principle holds, i.e. if the
linearized model is stabilized via feedback, then the true nonlinear system is locally stable,
even when the controller is implemented in event-triggered form. The results in Chapter
6, bring clarity to this conjecture using the fact that a wide range of nonlinearities satisfy
a Lipschitz condition, at least, locally. Moreover, the results of Chapter 3 is improved in
Chapter 6 from two main aspects. First, the restriction on the admissible input space is
removed, i.e., the disturbance here is not restricted to be norm bounded by some function of
state’s norm. Second, while in Chapter 3 the control and triggering laws are designed based
on nonlinear model specifications, in Chapter 6, we explore the local Lo problem based on
a linearized design. This problem is generally of more interest due to the existence of more
developed tools/theoretical supports for linear ETC systems.

As an another generalization to the results of Chapter 3, where the local Lo stability
of nonlinear ETC systems under state-dependent disturbances is studied, in Chapter 4
we generalize the problem to an £, type performance and relax the restrictions on the
set of admissible disturbances, stating the results in a global (non-local) framework. We
consider a general class of nonlinear control-affine systems and a pre-designed state feedback
controller whose continuous implementation satisfy some £,-gain performance level ;. We
provide a constructive TC design algorithm to achieve a new L,-performance level for some
g References [20,48] follows a different approach. In comparison to these references, the
results of Chapter 4 rely on a less conservative set of assumptions and a different approach
that lead to a different structure for the TC design. In fact, assumptions made in [20, 48]
require some sort of dissipativity property for ETC system, which we believe, is too strong
when applied to the problem considered in Chapter 4. Moreover, the results in this chapter
can be treated as a general framework for the construction of a dynamic TC, where several
design parameters can be selected for specific purpose. The resulting design covers several
well-known forms (namely, [9,13,19,20,28,49,58,59]) as special cases.

While the majority of the literature on ETC design has focussed on the emulation
method, consistent of finding a T'C that closely resembles performance of an analog design,
more recently some research has address the perhaps more important problem of jointly
designing both controller and TC. Current solutions proposed controller design based mostly
on the feasibility of LMIs. To improve these results, in Chapter 6 we propose a systematic

mechanism to jointly design static and/or dynamic controller gains and the TC parameters



to meet an H,, performance. The approach is different from other joint design techniques
in that our proposed method involves assigning dominant eigenvalues of the linear stability
matrices, based on the desired performance and triggering specifications. This approach
not only solves the intended H,, performance objective, but also provides valuable insight
into the design limitations. We consider the output feedback case via state feedback plus
an observer, and discuss both the full and partial state feedback case.

Following the seminal work [9], most of the mentioned works on nonlinear ETC, design
the TC assuming the system to be ISS with respect to measurement error and external
disturbances. It is well-known for linear systems that a globally asymptotically stabilizing
controller for continuous-time unperturbed (zero-disturbance) system renders the resulting
perturbed ETC system ISS. More recently, [60] shows that instead of a primitive assumption,
the ISS property with respect to disturbance can be taken as the consequence of applying
the integral-based type of TC, [58], to linear output-based event-triggered systems. The
generalization of the above results to nonlinear event-triggered systems, i.e., building the
stability analysis on the different assumption rather than the ISS condition or finding suf-
ficient conditions for nonlinear event-triggered systems to have ISS property, has not seen
much attention. This motivates the results of Chapter 5 where we provide sufficient con-
ditions for input-to-state stability of the input-affine nonlinear sampled data systems with
respect to actuator error and exogenous disturbance, based on the convex feasibility of
nonlinear matrix inequalities (NLMIs). In addition, we propose a solution, independent of
ISS assumption, to the Lo-stabilizing ETC design. As a consequence, by utilizing the affine
structure of the state space approach, the results obtained are built on different assumptions
when compared to the related works [20,48,49]. We follow both joint design and emula-
tion design approaches and express the robustness results in terms of convex feasibility of
NLMIs. We show in Chapter 5 that while in the absence of a communication network, the
theory of differential games, [61], can be effectively utilized to solve the desired Lo stability
problem by finding the so-called best strategies for control and disturbance signals, this tool
is not helpful when an event-based communication network is introduced.

A very powerful tool in the study of system performance, is the so-called dissipativity,
first introduced by Willems [62]. Generally speaking, a system is called dissipative with
respect to a specific supply rate, if the energy stored by the system at any time ¢ does not
exceed the energy externally supplied with the given supply rate. In other words, the system
is dissipative if there is no internal production of energy. Dissipativity provides a general

framework in the study of various forms of performance and system properties, including



passivity, input-to-state stability, and Lo gain. Extensions of the notion of dissipativity
include the concepts of quasi dissipativity and weak quasi dissipativity, introduced in [63,64].
These notions extend the original definition to include the possible existence of internal
generation of energy with finite power. Chapter 7 deals with the preservation of some forms
of dissipativity when a continuous-time plant is connected to a discrete-time controller via
a communication network. It is well established that, under continuous communication,
the feedback interconnection of a dissipative plant and controller results in a dissipative
closed-loop system [5]. When the communication between plant and controller is done via
periodic sampling, however, closed-loop dissipativity does not hold. It was shown in [65],
however that in this case the interconnection results in a quasi-dissipative closed-loop. The
analysis of dissipative systems under event-based communication is in fact, well understood
(see for example [11,26,27,51,52]). One issue, however, critical to any event-triggered
system, is ensuring that there is a time-separation between triggering events. The above
mentioned references prove the non-existence of Zeno behaviour by restricting disturbances
to Sobolev spaces, i.e. continuously differentiable signals with bounded derivative, and
showing that an accumulation point can only occur as time tends to infinity. Although
this approach indeed prevents the existence of Zeno behaviour in finite-time, it does not
however constraint the number of triggering events over finite intervals and therefore may
fail to serve the main purpose of a triggering system; namely, limit the transmission of
information between subsystems. This is mainly because the obtained lower bound on
intersampling times is not constant and may shrink to zero over time. In Chapter 7, we
study dissipativity properties of event-triggered feedback control systems by generalizing
the results given in [65] and show that under event-triggered sampling, different variations
of dissipativity property may hold. In particular, it is proved that the dissipativity property
in its classical sense or in its more general forms of quasi or weak dissipativity, in the spirit
of [63], may hold depending on how the triggering parameters are selected. Our solution
excludes the existence of Zeno behaviour using an approach different from that in [51, 52]
and addresses the above mentioned shortcomings associated with these references. Our
approach employs a fully event-based scenario in which the TC is monitored continuously
without the use of dwell-time, as opposed to time-regularization, thus avoiding the use
of dwell-time restrictions, [66]. Additionally, we propose a general framework to design
the parameters of the TC and show how the proper selection of these parameters leads to
different forms of dissipativity. We emphasize that our analysis and results do not require

input signals to be differentiable, thus relaxing to conditions used in references [51,52].



1.3.2 Sampling Frequency Improvement

The main objective of ETC is to reduce the communication traffic among the components
of a control system. However, the majority of the obtained results to date rely on the
Lyapunov theory and might provide conservative results in terms of transmission rates.
Therefore, reducing the associated conservatisms by modifying the existing TCs has been
at the centre of much research in recent years.

To reduce the conservatism associated with the application of the Lyapunov theory in
the analysis of ETC systems, in [67], a new TC based on a logic function of the Lyapunov
function is introduced. The result weakens the assumptions in [9] by considering an ISS
approach and assuming a lower bound on the derivative of the Lyapunov function. In
Chapter 8, we propose a different approach and re-examine the paper [9]. Assuming that
an analog controller has been designed and satisfies an ISS condition, we propose an alter-
native, less conservative, approach for the construction of the TC. The main idea consists
of using an integral-based ETM that allows the Lyapunov function to be non-decreasing
between triggering instants (thus allowing the time derivative of the Lyapunov function to
have instantaneous positive values between triggering instants). Unlike the work [67], our
proposed integral-based TC is a function of the state values and measurement error and
relies only on the ISS assumption for the original analog system to prove the results. The
existence of a lower bound for the inter-event times is also proved and an explicit value for
this bound is provided for a specific class of nonlinear systems. The proposed method is
shown to be more efficient than the existing results in terms of communication exchanged
between plant and controller.

Limiting the number of triggerings over a time interval (when necessary) may be of
higher importance than decreasing their number over an infinite time span. For exam-
ple, high data load on a communication channel over a finite time interval may result in
undesirable effects such as data packet drop out and/or transmission delay. Therefore,
instead of improving all inter-event times, we focus our study on controlling the number
of samples over a time interval in which the triggering frequency may become critical.
This is addressed in Chapter 3 where our proposed strategy improves existing results, see,
e.g., [13,19,20,28,58,67], in that the increase in inter sampling-times can be designed a-
priori, at least for a desired period of time (or a desired number of triggering iterations). By
contrast, in [13,19,20,28,58,67] the intersampling increase is not estimated quantitatively.

We also show that there is a trade-off between intersampling improvement and stability of
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the zero-input system, in the sense that enlarging intersampling periods results in practical
sense stability rather than the classical notion of stability.

One issue, however, critical to any event-triggered system, is ensuring that there is a
time-separation between triggering events. Although this issue has been extensively stud-
ied in multiple references, recent research has shown that event-triggered systems can be
critically sensitive in the presence of external disturbances [59], possibly resulting in Zeno
behaviour, unless the TC is properly constructed. A recent line of research, known as time-
reqularization, is recently proposed to address the separation of event times in presence of
exogenous disturbances, where the separation of events is guaranteed by imposing a posi-
tive dwell-time after each triggering instant, during which the TC monitoring is paused. It
is well-known that as states converge towards the origin, the time-regularization approach
converges to a time-triggered sampling and hence produce unnecessary samplings. Our
approach to design TCs in this research offers an independent solution of the event separa-
tion problem mentioned above. Indeed, in the time-regularized approach proposed in [59],
time-regularization holds by construction, by forcing a minimum dwell-time between events.
Our approach, however, is purely event-based, suggesting that the pre-designed dwell-time
assumption can be relaxed and can potentially offer better performance compared to the

time-regularized method.

1.4 Thesis Outline

The rest of this thesis is organized as follows.

Chapter 3: This chapter studies the performance preserving event design in nonlinear
ETC systems based on a local Lo-type performance criterion. Considering a finite gain local
Lo-stable disturbance driven continuous-time system, we propose a ETM so that the result-
ing sampled-data system preserves similar disturbance attenuation local Lo-gain property.
The results are applicable to nonlinear systems with exogenous disturbances bounded by
some Lipschitz-continuous function of state. Also, it is shown that an exponentially de-
caying function of time, combined with the proposed TC, extends the inter-event periods,
which compared to the existing works, analytically estimates the increase in intersampling
periods at least for an arbitrary period of time. We also propose a so-called discrete trig-
gering condition to quantitatively find the improvement in inter-event times at least for an
arbitrary number of triggering iterations.

Chapter 4: In this chapter, we focus on generalizing the results in Chapter 3 from

several aspects. First, we propose a framework to design the TC while keeping global £,

11



performance within desired limits. Also, our general framework captures several existing
TCs as a special case, and can achieve the performance objectives while reducing trans-
mission rate. Indeed, this general structure is shown to enlarge the intersampling periods
by a specified amount, for a desired period of time. Moreover, compared to Chapter 3, we
consider a dynamic approach to design triggering condition.

Chapter 5: The results in Chapters 3, 4 proved that The ISS condition is a powerful
tool in designing TCs especially when dealing with nonlinear systems. In this chapter, we
seek to propose sufficient conditions for the ISS condition to be hold when nonlinearites has
the particular input-affine structure. Moreover, we propose an Lo stabilizing event-triggered
controller which guarantees the isolation of sampling instants in presence of arbitrary dis-
turbances. While our proposed design does not rely on the ISS assumption, it covers both
emulation and joint design approaches.

Chapter 6: While the majority of ETC literature, including our results in previous
chapter, concentrates on designing TC assuming control input to emulate an analog design,
in this chapter, both state and output feedback laws are jointly synthesized with the trigger-
ing law for nonlinear Lipschitz systems. In the proposed method, the dominant eigenvalues
of the linear stability matrices are assigned according to desired performance and trigger-
ing specifications. Moreover, the results serve as a local framework for stability of general
nonlinear ETC systems. In addition, it is shown for the output-based feedback case that
under the fast sampling at the controller-to-actuator channel, the separation principle for
designing the controller and observer gains hold.

Chapter 7: This chapter studies different forms of dissipativity property for the
network-communicated physical processes. The results are then a generalization of the
ines in previous chapters as several stability and robustness properties of control systems
can be unified under the notion of dissipativity. While this concept has been recently stud-
ied for network control systems with communication constraints, the obtained results suffers
from a concrete proof of Zeno-freeness property for the sampling times. In this chapter, we
address this issue and prove the triggering instants to guarantee the well-known separation
property.

Chapter 8: In this chapter, an integral-based event-driven mechanism is proposed for
a general class of nonlinear systems. The proposed scheme is less conservative than earlier
work on the subject and achieves asymptotic stability without forcing the derivative of the
Lyapunov function to be negative between samples. additionally, the results are applied as

an event-triggered solution to the consensus problem of multi-agent systems.
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Chapter 2

Mathematical Background

This chapter provides some technical definitions and preliminaries that will be used through-

out the rest of the thesis.

Definition 2.1 A function f : R"™ — RP is said to be locally Lipschitz-continuous in an open
set B, if for each z € B there exist Ly € R™ andr € RT such that | f(xz)— f(Z)|< Ly|x—Z| for
alx,z € {y € B:|y—=z|<r}. We also say that f is Lipschitz-continuous in a set D if there
exists Ly € RT (called the Lipschitz constant of f on D) such that | f(x) — f(Z)|< Ly|z — 2|
forall x,2 € D.

Definition 2.2 A function « : [0,a) — ]RSr is satd to belong to class K if it is strictly
increasing and a(0) = 0. A class K function « belongs to class Koo if a = 00 and a(r) — oo
as r — 0o0. A continuous function n: RP — RP is of class L (n € L) if it is decreasing and
n(s) = 0 as s — oo. A function B:RF x RE — R is of class KL (B € KL) if for each
s >0, 8(-,5) € K and for each r >0, B(r,") € L. A function v : R] — Ry is of class N

(v € N), if it is continuous and nondecreasing.

Definition 2.3 A sequence {x; : i € No} is said to be uniformly isolated iff there exists

some r € R™ so that |z; — xj|> r for any i,j € No with i # j.

Definition 2.4 Every sequence T = {ty : k € No} of positive real numbers is called parti-

tion, if to = 0, ty, < tgpr1 and tp — o0 as k — oo.

Lemma 2.1 (Barbalat’s Lemma) Let f : R — R be an upper bounded function, i.e.,
|f(t)|< ¢ for some ¢ € R. Suppose f is positive semi-definite and is uniformly continuous

(satisfied if f s finite). Then f—0ast— .
The following lemma is a consequence of Schur complement.
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Lemma 2.2 For any vectors x,y and matrices A, B,C of appropriate dimensions with

(6 D)o

The Cauchy-Schwarz (C-S) inequality is referred to as the special case of the following

C <0, we have

Holder’s integral inequality

/T (et < ( /T () [Pdt) /T ly(e)ljede)s

for scalar signlas x, y when p = ¢ = 2.

2.1 Stability Criteria

Input-output stability is a key tool in this research to study the robustness performance of
the following nonlinear system ¥:

)i = f(r,u,w)
G . {z _ hiw) (2.2)

where © € R™ represents the state, u € Z C R™ the control input, w € # C R? the
exogenous disturbance, and z € RP the measured output.

The classical definitions of the input-output stability can be found in many references,
see, e.g., [68]. However, the results are not applicable to the systems with norm bounded
input space. Instead, we build our theory using the local version of input-output stability
introduced in [57].

In the next definitions we exploit the concept of relations as a traditional tool to state
the local stability criteria. Equivalently, one can define the input-output stability as a
property of the operators. We recall that given two nonempty sets A; and As, a relation

Z on A1 x As is any subset of the Cartesian product A; x As.

Definition 2.5 Let Ay X Ay be the Cartesian product of two sets Ay and As. We denote
by P;: Ay X As — A;, i = 1,2 the evaluation map at i defined as P;(x1,x2) = x5, 1 = 1,2.

Definition 2.6 We define the set Wy C L2 as follows:
Vo ={we Ly vl <Q}, (2.3)

where Q € RY. We note that #g, which is a subset of Lo N Lo, is not a linear space in
general since there exists elements x,y € #g such that x +y ¢ #4g.
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We remark that the triplet (Lo, ||-||5, ||-||o,) consisting of linear space £, and the norms ||-[|,
and ||-||, is a binormed linear space, where |-||, and |[-|| ., are the primary and secondary
norms of the space L. #( is then the subset of L consisting of functions with secondary

norm less than Q € R*.

Definition 2.7 A relation # on Lo X Ly is said to be #-stable if the evaluation map at

2 is a bounded subset of Lo whenever the evaluation map at 1 belongs to the set #q.

Definition 2.8 The system 4 defined in (2.2) is said to be locally Lo-stable if for any
w € Hg, the relation # = {(w, z) € Lo X Lo} is W-stable.

In the next definition, we provide a local version of finite gain L£o-stability !, a deviation from
the classical definition by restricting the spaces of admissible inputs and initial conditions

to the sets #( (defined in Definition 2.6) and
Zo={reR":|r|<eeR"}, (2.4)
respectively.

Definition 2.9 The system ¢ described in (2.2) is said to be finite gain locally Lo-stable
and has the local Lo-gain less than or equal to I, if it is locally Lo-stable and there exist
finite constants n € R, I' € Rt and positive semi-definite C° function pu such that for any
T,to € Ry, any w € # and any x¢g € Xy C R"
T T

/to |2(s)?ds < T'? /to lw(s)|?ds + p(zo) + 1. (2.5)
We shall denote the local L2-gain of system & by ||9||,,. We also say that & is finite gain
locally Lo-stable with zero bias if n =0 in (2.5).

The following theorem provides a sufficient condition to estimate an upper bound on the
local disturbance attenuation Lo-gain of system ¢ in the context of dissipative systems

theory introduced by [62].

Theorem 2.1 The nonlinear system & is finite gain locally Lo-stable with zero bias and
has |9, < T', provided there exist a positive definite C! function V and a control input

u € % such that for all w € #g

Hyr(V,u) = VV(z) - f(z,u,w) — D?|w*+|h(z, w)|?< 0. (2.6)

!See [68] for the classical finite gain Lo-stability definition.
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Proof. The result is readily obtained by integration of (2.6), positive definiteness of
V(x) and Definition 2.9. =

Remark 2.1 If system & is reachable from xq, condition (2.6) is necessary and sufficient

for finite gain local Ly-stability of 4 with zero bias and ||4||,, <T.

Proof. The result follows directly from ( [69], Theorem 2.1). m
Next we investigate the input-to-state stability of the the system ¥.

Definition 2.10 The C' function V : R — Rar is an 1SS Lyapunov function for system
4 defined in (2.2) if there exist class Koo functions o, o;, vi (i =1,2) such that

a1(l€]) < V() < aa([€]) (2.7)

holds for all € € R™, and

for any £ € R™, any p € R™ and any w € W such that |£]> v1(|p]) + y2(Jw]).

The next theorem suggests an equivalent condition to the above given inequality (2.8). We

will use this theorem later to develop our main theorem in Section 3.2.

Theorem 2.2 The C' function V is an ISS Lyapunov function for system 9 if and only
if (2.7) holds and there exist class Koo functions ¢ and ; (i =1,2) so that

V(&) - £(& p,w) < —a([&]) + Bu(lul) + Ba(|wl]) (2.9)

for any £ € R", any p € R™ and any w € #g.

Proof. We need to show that if there exist class Ko functions o, v; (i = 1,2) so that
VV () - f(&Ek(E+ pn),w) < —o(|¢]) holds for any £ € R", any p € R™ and any w € #g
such that [£]> v1(|u|) + y2(|w|) then one can find class Ko functions &, 8; (i = 1,2) such
that VV (&) - f(§, k(€ + p),w) < —a(|¢]) + Bi(|n]) + B2(|w]|) and vice versa. Let us start by
assuming VV/(€) - £(€ k(€ + 1), w) < —o((€]) for [¢> () + 7a(jw]). Then we can say
that VV(&) - f(§, k(& + ), w) + o (€]) < B(|ul, [w]) where

B(lul, lw]) = max{VV(&)-f(&§ k(& +1),s) + o (E)] [7[< |ul,

[s|< |wl, [€]< ya(|r]) +~2(]s)}-

Defining class Ko, functions 81 (|u|) = B(|ul, [1]) and B2 (|w|) (Jw], |w|) it is not difficult to

=p
verify that (||, |w|) < Bi(|p|) for |u|> |w| and B(|u|, [w|) < B2(Jw|) otherwise. Therefore
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we conclude that B(|u|, |w|) < Bi(|p]) + B2(|w|) that proves one part of the claim. To
prove the other side, assume that we have VV (&) - f(&, k(€ + p),w) < —a(|¢]) + B1(|u]) +

Ba(|w]). Then we can write VV(€) - F(€, k(¢ + p),w) < —a(€])/2 for 5(1€)/4 > By(|ul)
and 7(|¢[)/4 > B2(Jw|). Finally defining v; = 57 1(483;) (i = 1,2), we may conclude that
VV() - J(6, k(€ + ), w) < ~(&D)/2 for €]= 7 (Jul) + 12(w]) which completes the proof.
|

Definition 2.10 provides a characterization of the notion of ISS property, rather than its
definition, using Lyapunov-like conditions. Next theorem shows that these conditions are

necessary and sufficient for input-to-state stability.

Theorem 2.3 The closed-loop system & defined in (2.2) is ISS with respect to inputs u
and w iff there exists an ISS Lyapunov function V' satisfying (2.7), (2.8).

Proof. The proof follows from Theorem 2.2 and ( [70], Theorem 1). =

Remark 2.2 Later in Section 3.2 our study will focus on the systems with disturbances
norm bounded by some function of state , i.e., |w(t)|< vy3(|z(t)]). This assumption seems
to be implied in Definition 2.10 as condition (2.8) is valid for ya(|w(t)|) < |x(t)|—y1(le(t)]).
Thus to prevent any possible redundancy of these conditions, we will unify them later in

section 3.2.

Remark 2.3 When Q = R, the classical input-output stability can be extracted from the

above definitions and results.

2.2  Graph Theory

The following definitions and notation will mostly be used in Chapter 8. Consider a team
of n vehicles. A directed graph is a pair (V,,, E,) where V,, = {1,...,n} is a finite nonempty
node set and E, C V,, x V,, is a set of ordered pairs of nodes, called edges. Existence of
edge (i, 7) in the edge set of a directed graphs shows that vehicle j can obtain information
from vehicle i, but not necessarily vise versa. In contrast to a directed graph, the pairs of
nodes in an undirected graph are unordered, where the edge (i, ;) denotes that vehicles i
and j can obtain information from each other. We call node ¢ to be a neighbor of node j
if an edge (i,j) € E, exists. We show the set of neighbors of node ¢ by N; C {1,...,n}.
A directed graph is strongly connected if there is a directed path from every node to every
other node. An undirected graph is connected if there is an undirected path between every

pair of nodes. The adjacency matrix A, = [a;;] € R"*™ of a directed graph (V,,, E,) is
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defined such that a;; is a positive constant if (j,7) € E,, and a;; = 0 if (j,7) ¢ E,. The
adjacency matrix of an undirected graph is defined analogously except that a;; = a;; for all
i # j, because (j,i) € E,, implies (i,j) € E,,. a;; denotes the weight for the edge (j,7) € E,,.
If the weight is not relevant, then a;; is set equal to 1if (j,7) € E,,. Matrix L, = [l;;] € R™*"
defined as l; = Z?:L#i a;j, and l;; = —a;j, @ # j. U (j4,1) ¢ E,, then l;; = —a;; = 0.
Matrix L, satisfies [;; < 0, ¢ # j, and 2;21 lij = 0,1 =1,...,n. For undirected graph,
L, is symmetrical and is called the Laplacian matrix. However, for a directed graph, L,
is not necessarily symmetrical and sometimes called the nonsymmetrical Laplacian matrix
or directed Laplacian matrix. Note the L, can be equivalently defined as L, £ D — A,
where D = [d;;] € R™™" is the in-degree matrix given as d;; = 0, i # j, and d;; = Z?Zl aij,
i =1,...,n. In both the undirected and directed cases, because L,, has zero row sums,
0 is an eigenvalue of L, with the associated eigenvector 1,,, the n x 1 column vector of
ones. L, is diagonally dominant and has nonnegative diagonal entries. For an undirected
graph, let \;(L,) be the ith eigenvalue of L, with A1(L,) < Ao(Ly,) < ... < Xi(Ly), so that
A1(Ly) = 0. For an undirected graph, \a(Ly,) is the algebraic connectivity, which is positive
if and only if the directed graph is connected. The algebraic connectivity quantifies the
convergence rate of consensus algorithms. To simplify our notation, we denote L, simply

by L.
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Chapter 3

Local Input-Output Stability of
Event-Triggered Control Systems

3.1 Problem Definition

In this chapter! we study the input-to-state stability of the system ¥ defined in (2.2).
We assume that f and h are class C° and f£(0,0,0) = 0, h(0,0) = 0 so that z = 0 is
an equilibrium point of zero-input system. Moreover, we will assume the state x evolves
on an open subset of R™ containing the origin. We also assume that ¢ is driven from
initial conditions z¢ = z(tp) and the inputs v and w are applied at time ¢ = tar. We shall
assume that the measurement of state is affected by an error e. As a result, designing
the state feedback controller u = k(x), where k is of class C” and satisfy k(0) = 0, the
implemented control law will be k(x 4+ e). The corresponding closed-loop system with

perturbed measurement is therefore
(3.1)

To state our problem we shall need to define a continuous-time version of system ¢, defined
by assuming measurement error to be zero all the time. This system will be referred as
4. throughout the rest of this chapter. Now assume the existence of a positive definite
C! function V and a C° function k : R" - R™ such that Hp(V, k(x)) < 0, i.e., the state
feedback control law u = k() renders the continuous-time system ¥, finite gain locally Lo-
stable with zero bias and [|%.|,, < T. We also assume the implementation of the control
law to be performed in an event-based scheme in which an event detector decides when

to update the control signal. As a consequence, the actuator receives an updated control

!The results of this chapter have been published in the article: M. Ghodrat and H. J. Marquez, “On the
Local Input-Output Stability of Event-Triggered Control Systems”, IEEE Trans. Autom. Control, vol. 64,
no. 1, pp. 174-189, 2019.
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signal at triggering instants {¢; : ¢ € Ny}, at which a TC is satisfied. The first sampling
instant can always be assumed to coincide with initial time tg. A ZOH device serves to
maintain the controller signal constant between two successive sampling instants. Thus,
between time instants t; and ¢;41, the controller signal is k(x(¢;)) and remains unchanged.
This enables us to define the measurement error e(t) as the difference between the current

value of state at the event detector, x(t), and the last triggered value of state, z(t;), i.e.,
e(t) =x(t;) —x(t), tE€ [t tiv1) (3.2)

It follows that the measurement error is zero at each sampling instants and its value is
continuously monitored to check a TC which, as we will see later, sets an upper bound on
the norm of admissible measurement error. Once the condition holds, the system sends an
updated signal to the actuator and resets the measurement error to zero.

In [9] it is shown that in presence of an execution rule that restricts the measurement

error to satisfy
Bi(lel) < ca(lz)), (3.3)

where ¢ € (0,1), and if there exists an ISS Lyapunov function V' so that
VV(x) - fz, k(z +e),0) < —a(|z]) + Bi(le]), (3.4)

the system ¢, with zero-input is globally asymptotically stable.

In general, the aforementioned ETM (3.3) guarantees closed-loop stability. However,
it is by no means clear how it affects the input/output performance of the system. More
specifically, in this chapter, we are concerned with finite gain Lo-stability performance. The
purpose of this chapter is then to present an input-output stability analysis of ETC systems.
Departing from the TC offered in [9], we propose a condition which guarantees the finite

gain local Lo-stability of the system.

3.2 Ly-Gain Performance of Event Triggered Nonlinear Sys-
tems

In this section we present a novel TC that ensures finite gain local Lo-stability of the ETC
system ¥,. The design of such a sampling rule is based on the following assumptions.

Assumption 3.1 There exist a positive definite C* function W and some Q € Rt such
that

for all w € #g, where #g is defined in (2.3).
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Assumption 3.2 There erist a radially unbounded positive definite C' function V and

class Koo functions o, By satisfying

VV(&) - f(&R(E + p),w) < =a([€]) + Br(lpl) (3.6)

for any £ € R", any p € R™ and any w € #4.

Recalling Theorem 2.1, condition (3.5) ensures that the continuous-time system %, is finite
gain locally La-stable with zero bias and has [|%.[|,, < T'. The following lemma describes
the connection between Assumption 3.2 and the previously defined ISS concept. Indeed, we

show that this assumption can be used to deal with unmodeled parameter uncertainties.

Lemma 3.1 (a) Assumption 3.2 holds if and only if there exists a radially unbounded
positive definite C* function V satisfying VV (€)- f(&, k(€ +pu),w) < —a(|€]) for any € € R™,
any p € R™ and any w € #g such that [£|> y(|p]) for some 0,7 € Koo. (b) The later
condition is satisfied when for any w € Wq the followings hold:

(1) V is an 1SS Lyapunov function for the system 9.,

(II) there exist solutions 73, 74 € Koo to the inequality

Ya 0 (Yia —v20y3)(r) >, (3.7)

forallr € RS‘, where v;q is the identity function and vo € Ko s defined in Definition
2.10,

(III) disturbance is bounded through

[w(t)[< v3(]z(t)]) (3.8)
for allt e Rar where x denotes the state of system 9. defined in (3.1).

Proof. (a) This is an immediate consequence of Theorem 2.2. (b) We need to show that
under conditions I-III, there exists a class Ko function 7 so that VV'(§)- f(&, k(§+p), w) <
—o([€]) for [€]> ~(|u]). To this end, let us start with conditions IT and IIT that suggest
110 (JEl—a(lw]) > 1 0 (ia — 1 0 15)(€]) > [€l. Now taking 7 = 74 071 we can say
that if |£]> vy(|u|), we have |[€]|—~2(|w]) > v1(|u|) which, in view of condition I, implies that
TV(€) - F(€K(E + ), w) < —o(lg]). m

Note that condition (3.7) is similar to d-admissible perturbation provided in ( [47],
Definition 2).
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We will need the following technical lemma to prove our main result. This lemma sets
the stage for the design of the TC required to achieve disturbance attenuation bound I' for

the ETC system.

Lemma 3.2 Assumption 3.2 holds if and only if there exist a radially unbounded positive

definite C! function V and class Koo functions &, oo, o, ¥, f1 and some ¢ € (0, 1) satisfying

VV(E) - f(& k(& + p),w) < =6([€]) — oo(I€)Bo((kl) (3.9)
for any € € R™, any p € R™ and any w € W such that cib(|€]) > Bi(|u]).

Proof. (if) From (3.9) we may conclude that VV(§) - f(&,k(§ + p),w) < —a(|¢]) for
c(|€]) > Bi(Jju|). Then taking o = &, v = ¥~ 1(B1/c) and applying Lemma 3.1 part
(a), the desired result is obtained. (only if) Starting from Assumption 3.2, by adding
and subtracting oo(|€|)Bo(p) term to the right hand side of inequality (3.6), we may write
VV(E)- £, k(E+p),w) < —(1— ) (&) — oo(I€N Bo(|1l) for B (1) + oo (€D ol lul) < e ([€]).
Now defining functions ¢ (r) = a(r)/(1 + oo(r)), B1(r) = max{Bi(r), Bo(r)}, we claim that
if c(€)) > Fr(ul) we have () + oo(I€))Bo(lul) < ca(€l). This is true since ca(lé]) >

(1 + oo(l¢])) - max{B1(n), Bo()} = Bu(p) + oo(€DBo(lul). Therefore, if cyy(€]) > Bi(lul),
(3.9) holds for 6 = (1 — ¢)& and hence the proof is complete. m

Triggering Condition: Let t;, i € Ng, be the most recent sampling instant, the control

signal is updated again at t;;; defined by the following rule:

trg = inf {t € BG 21> 1 AB(le(t)]) > ew(l ()]}, (3.10)
where ¢ € (0,1) and v, (3; are defined as

wir) = 20

= T ogpy A1) = max{Bi(r). fo(r)}- (3.11)

for og(r) = LyLioz(r) and Bo(r) = r with Ly, Lj defined in Remark 3.4. Note that we
assume that the update of the control task is done at t;11, shortly after the given inequality
in (3.10) is satisfied at ¢, ; The following theorem states that if the continuous-time system
has some local Lso-gain property, it is always possible to guarantee the same disturbance

attenuation level for the ETC system by applying the above ETM.
Theorem 3.1 Let us consider Assumptions 3.1, 3.2 and the following conditions:

(i) |VW (z)|< o3(|z|) for some class Koo function o3, locally Lipschitz-continuous in RY
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(i) 71, B1, 3 are locally Lipschitz-continuous in Ry 2,
(iii) k and f are locally Lipschitz-continuous in R™ and R™ x R™ x RY, respectively 2.

Then the system 9, driven from initial conditions xo € 2y, defined in (2.4), is finite gain
locally La-stable with zero bias and has ||%e| z, < T' if the control signal is evecuted under

rule (3.10).

Proof. Let us start with Assumption 3.2 which, in view of proof of Lemma 3.2, implies the

existence of C! function V such that
VV(z) - f(z,k(z +e),w) < —(1 = c)a(|z]) — oo(|x])Bo(le]) (3.12)

for any € R", any e € R" and any w € # such that ci(|z|) > Bi(|e|). Now consider
positive definite C! function U = V + W, where W is a positive definite C! function that,
in view of Assumption 3.1, guarantees the finite gain local Lo-stability of continuous-time

system ¥4,.. We can easily write

U(x) =VV(x)- f(z,k(x+e),w)+ VW (zx) - f(z, k(z),w)
+ VW (x) - (f(z,k(z +e),w) — f(z, k(z),w)). (3.13)

Also applying condition (i) and inequality (3.17) gives VW (x)-(f(x, k(xz+e), w)— f(x, k(z),w)) <

oo(|z|)Bo(le]). As a consequence, in view of (3.5), (3.12) and (3.13) we can write
Ux) < —(1 = c)a(|a]) + T?|wf*~|h(z,w)[? (3.14)

for any € R", any e € R" and any w € #( such that cy(|z[) > Bi(|e]). Thus under
TC (3.10) we obtain Hr(U,k(z +€)) < 0, i.e., the ETC system %, has the disturbance
attenuation local Lo-gain (%[, <T. =m

It is worth remarking that Theorem 3.1 is stated in local form. Note that condition
(3.8) which restricts w to be norm bounded by some Lipschitz-continuous function of state,
plays an essential role in satisfying Assumption 3.2. This assumption is not consistent with
classical input-output stability notion that requires w to be any perturbation in L£o. Thus it
remains to define @) such that for any given initial conditions in 2y, w is guaranteed to be
in the set #4. Condition (3.8) is a key tool to define such an admissible inputs set. Indeed,
later in view of Lemma 3.3, condition (3.8) and Lipschitz-continuity of 3 with Lipschitz

constant L., defined in Remark 3.4, one can choose Q) = L,¢.

2 This condition can be relaxed in the proof of Theorem 3.1, however, is needed in the proof of Theorem
3.2.
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Remark 3.1 The assumed dependence of 3 on the state of the system in (3.8) is a gener-
alization of the assumption of state-dependent disturbance made in ( [17], Assumption 6.1).
Indeed, the Assumption 6.1 in [17] can be extracted from (3.8) by choosing v3 to be a linear
function of state, i.e., y3(|z|) = co|z|, for all x € R™ and some ¢y € RT. This generalization
has to be considered more carefully as it gives more flexibility in choosing function o in
(3.7), e.g., for ya(r) = \/r, (3.7) does not provide any solution for possible linear functions
~v3. However, it is not difficult to verify that the solution to this inequality exists assuming

3 to be locally Lipschitz-continuous in Rg .

Remark 3.2 Using the same discussion as in ( [17], Remark 6.2), it is more precise to state
condition (3.8) as |w(t,x(t))|< y3(|z(t)]) for all t € R} to emphasize the state dependence
of exogenous disturbance. To simplify our notation, we write w(t) instead of w(t,x(t))

throughout the rest of this chapter.

Remark 3.3 The TC (3.3) proposed in [9] can be extracted from the one we proposed in
(3.10). Indeed, between consecutive sampling instants, (3.10) suggests

co(|x]) = max{f1(le]), Bo(le]) } (1 + oo (lz))
> Pi(lel) + Bo(lel)oo(lz]) (3.15)

and hence we conclude that B1(le|) < ca(|z|). This consequence simply suggests that under
the conditions assumed in this chapter, in order to preserve system performance (in Lo
sense) along with asymptotic stability provided in [9], a more conservative execution rule

than the one proposed in [9] is needed.

Our next Lemma shows that the state of the ETC system %, is constrained to some compact

set. The result is fundamental in the rest of this section.

Lemma 3.3 Under the assumptions of Theorem 3.1, 2~ = {r € R" : |r|< &} for & =
o1 (o9(€)) is a positive invariant set for the trajectories of system 9. driven from any

x9 € 2.

Proof. We deduce from inequality (3.15) that & (|z|)—S1(le|) — So(le|)oo(|z]) > (1—c)a(|x|)
and hence 7 (|z|)—B1(le|) > 0. Thus we conclude from (3.6) that V' (z) < 0 and consequently
V(x(t)) < V(2(0)) for all t € R{. Since V is a radially unbounded positive definite function,
we conclude that there exists o1, 02 € Ky so that (2.7) holds and hence oy (|z(t)]) <
V(x(t)) < V(2(0)) < o2(|z(0)]). Then we can write |z(t)|< oy ' (oa(x0)) and since o € 2o

and o, L o9 are class ko functions, the desired result is obtained. m
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Remark 3.4 We now show how this analysis can be applied to find upperbounds on the
norm of &, something needed later to exclude Zeno-behaviour for the system ¥,. Lemma
3.8 suggests that x(t) remains in the compact set 2 for all t € ]Rar. Moreover, in view of
definition of e given in (3.2) we have |e(t)|< 22 for allt € R{. Thus we may conclude that
e(t) € Ze ={r e R":r/2 € X'} for all t € R. Also the control signal u = k(x + )
does not leave the compact set Z,, = {r € R" : r/k € 2"} since |u(t)|< k|x(t;)|= k& for
all t € Rg. Now consider compact sets B, C X and B. C Z.. In the view of Lipschitz-
continuity of function k, one can define the compact set B, C Zy of all points u € R™
satisfying |u|< |k(z+e)| for allx € B, and e € B.. Similarly, we can define the compact set
By C Wq containing all points w € RY satisfying |w|< ~3(|x|) for allz € HB,. Now using the
Lipschitz-continuity of function f with respect to (x7 w' w')T in compact set By x By x By,
with Ly is the Lipschitz constant of the function f on 2" x 2, x #g and applying triangle
inequality | f(z,u,w) — f(z,a,0)|< |f(x,u,w) — f(x,q,w)|+|f(z,a,w) — f(&,a,0)|, it is
not difficult to confirm the Lipschitz-continuity of function f(x,e,w) = f(z,k(z + €),w)
in any compact set By x Be x RBy with Lipschitz constant Ly(Ly + 1). It is also straight

forward to check
|&|< Ly(Ly + 1)|x|+LygLile[+Lys|wl|, (3.16)
|f(x, k(x4 e),w) — f(x,k(x), w)|< LyLylel, (3.17)

that will be used further. Also inequality (3.16) in view of condition (3.8) in Theorem 3.1
and Lipschitz-continuity of 3 in the compact set {r € Ry : r < max,cq, |z|} with Lipschitz

constant L., (defined on [0,€]), reads as
‘x’g Lf(Lk+L73+1)|x]+Lka\e\. (3.18)

In the next theorem we show that the sequence of triggering instants is a uniformly
isolated set and hence there always exists a non-zero lower bound 7 on the intersampling
times. This feature guarantees the non-existence of accumulation points and is thus critical

to the successful implementation of the proposed ETM.

Theorem 3.2 If the hypotheses of Theorem 3.1 hold, the inter sampling periods are lower
bounded by some T € RT, i.e., t; > t;_1 + 7 for all i € N.

Proof of Theorem 3.2 relies on Properties 3.1-3.2 outlined below.

Property 3.1 Function 1~ defined in (3.11) is Lipschitz-continuous in any compact set
P CR{.
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Proof. Let us define ¢, = max,cg,{r}. Also let L,, and L;-1 be the Lipschitz constants
of functions oy and 51 on compact sets {tp~(r) : r € Z,} = (0,9 (e;n)] and {5 (¢~ 1(r)) :
r € Dy} =[0,6(¢"(em))], respectively. Using the fact that & and og are class Ko, functions,
one can write
- |2 e
14+o00(r) 14 o00(7)
) (1 +00(r))Ari#(0) = 3(r)Arz(o0 )‘
- (14 00(em))?
(1 + 00(r)|Ar#(7)| = a(r)[Ari(o0)]
(1+00(em))?

for any r,7 € {s: ¢(s) € Z,}, where functional A, ; is defined as A, 7(¢) = ¢(r) — (7) for

[9(r) =

>

some function ¢. The Lipschitz-continuity of functions o and =1 imply that |A, 7(o0)|<
Lyo|r — 7| and |r — 7|< Lz—1]|A,#(¢)| which together with Lemma 3.3 reduces the above

inequality to

~ L&,1 — LG (em)
|’l)[)(?") - sz)(r” > (1 O-O(gm))

|r — 7. (3.19)

Property 3.2 The function 31(r) defined in (3.11) is of class Koo and locally Lipschitz-
continuous in ]Rar. Also if the Lipschitz constant of function (1 is Lg, on some compact set

De CR{, then Lg, = max{Lg,, 1} is the Lipschitz constant of B1 on this set.

Proof of Theorem 3.2. From Lemma 3.3, we have z(t) € 2 for all t € Rj. Now in
view of Properties 3.1, 3.2 it can be inferred that function 1 ~(; /c) is Lipschitz-continuous
in any compact set in R(T . Let us denote by L the Lipschitz constant of this function
on set 7, defined as Z. = {B;  (cp(s)) : s € [0,&]} = [0,8; (ct)(8))]. Thus we have
Y1 (B1(le])/c) < L|e| which suggests that a more conservative lower bound on inter-event
times can be achieved when instead of (3.10), the next triggering of control task occurs
when Lle|> |z|. Following the same procedure as in ( [9], Theorem III.1), we can upper

bound the dynamics of y = |e|/|z| as § < (1 + y)|Z|/|z|, which using (3.18) reads as

< Lf(1 + y) (L,c L, 1+ ka). (3.20)

Thus the inter-execution times are lower bounded by the solution 7 of y(7) = 1/L, where y
is the solution to

Y=L +y)(L+ Lry), y(0)=0 (3.21)
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with L = Ly + L, + 1. It then follows that the lower bound on inter-event times is

| L— L
0<7=— In(1+ -~k
TT L (L— Ly a7

). (3.22)

Proof of Theorem 3.2 implies that 7 is a function of Ly, Ly, L,,. Applying Lemma 3.3
and Remark 3.4, we conclude that these constants are defined on invariant sets and hence
are valid for all initial conditions.

The proof of Property 3.1 suggests that function 1/ ~! is Lipschitz-continuous in 2, with
Lipschitz constant L, -1 = (1+Uo(€m))2{L;}1 — Lyyo(em)} F, where &, = max,cq, {r} and
Lsy = LyLyLsy. To make sure L1 is positive, o3 which is the upper bound on the norm
of Lyapunov function W, has to be chosen so that LLyLs,L;-15(p,) < 1. This condition

depends on the set Z,. In design procedure, however, one can choose o3 such that
LiLpLs,Ls-165(8) < 1, (3.23)

where € is defined in Lemma 3.3. To see this, let us assume that system starts from initial
condition x(0) = xg. Then in view of Lemma 3.3, we have |z(¢)|< & and hence for any
compact set 7, C [0, ] we have e, < &. Thus since ¢ is a class K function, we will have
7(em) < (&) and hence (3.23) ensures that LyLyLg,L;-15(em) < 1.

We finish our discussions in this section by showing the global asymptotic stability

property for the ETC system %, in the absence of disturbances.

Corollary 3.1 Under the assumptions of Theorem 3.1, the zero-input ETC system 9. has
a global asymptotically stable point at 0 € R™.

Proof. From Remark 3.3 we conclude that 5i(|e|) < c¢a(|z|) between triggering instants.
Then assuming w = 0 and taking (3.6) into account, we can write VV (z)- f(z, k(z+e),0) <
—(1—=c¢)a(|z|) <0, i.e., x = 0 is an asymptotically stable point for disturbance-free system
4,.. The above argument is global since from Assumption 3.2, V is radially unbounded. =

Although the Lo-stability results are provided locally, the above result is global. Recall
that the local character of the results arises from the restrictions placed on the input space.

Thus, in the absence of disturbances, the result becomes global.

3.3 Improving Average Sampling Frequency

In this section, we are concerned with the problem of decreasing the average sampling rate

for the proposed ETM in Section 3.2. Our solution consists of modifying the TC (3.10) of
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section 3.2 by adding an exponentially time decaying term to the right hand side. We show
that following this idea, the ETC system enjoys the same £,-gain performance as in section
3.2, however, the zero-input system is stable in practical sense as opposed to asymptotically
stable.

The results of this section can then be applied to limit high triggering during transient
response. In a regulation problem, after an initial transition, the state remains near the
equilibrium, possibly continuously excited by a disturbance or noise. Focusing on practical
stability of such problems, where the state is required to enter a stability bound, it is
reasonable to assume that the triggering frequency reduces when the transient response
vanishes. Note that when the state is near the equilibrium, the control action is only required
to keep the state within the desired bound. As a result, the system can be controlled with
much less attention and hence the number of triggering instants drops significantly. Similar
behaviour is expected when tackling regulation problems with non-persistent disturbances.
In such case, while in transient both disturbance and the change in the state’s norm affect
sampling frequency, during steady state a lower triggering rate is expected due to the non-
existence of disturbance.

We now state the main problem to be solved in this section. Note that we implicitly
assume that the system experiences finite transition interval over which the sampling fre-
quency exceeds a critical level. Without loss of generality, we assume that only one such
interval exists. Generalization to several transition intervalsdiscrete is discussed later.
Problem 1: Modify the proposed TC (3.10) so that while the resulting ETC system is finite
gain locally Lo-stable with the same disturbance rejection bound I', the average sampling
frequency does not exceed f.,. at least for

(A) a desired period of time, i.e., t € [0, T].
(B) a desired number of triggerings, i.e., 1 <i < N.

3.3.1 Continuous Triggering Condition Scenario

We begin our study of Problem 1-(A) by modifying rule (3.10) as

tiy =inf {t €RY ¢ >t ABu(le(®)) = c(lz(t)]) }, (3.24)

where ¢ = (t,7)/(14 oo(r)) and & is an exponentially time-decaying perturbation of

function & defined in Assumption 3.2, i.e.,

G(t,r) = a(r) + %e*@. (3.25)
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Also k and ( are positive parameters to be designed.
Stability Analysis

The following theorem shows that the time-decaying perturbation of function & introduces
a non-zero bias term (see Definition 2.9) but does not affect the £2 bound with respect to

the input.

Theorem 3.3 Under the hypotheses of Theorem 3.1, the system ¥, is finite gain locally

Lo-stable and has ||%|;, < T if the control signal is updated under the execution rule

(3.24).

Proof. Following similar lines as in the proof of Theorem 3.1, we can upper bound U as
Ulz) < —(1 —c)a(|z]) + ke ™t + T2 |w|*~|h(z, w)* (3.26)

for any 2 € R", any e € R and any w € # such that cip(|z|) > Bi(|e|). Integrating (3.26)
from 0 to T € RT and using the positive definiteness of U we obtain fOT |h(z(t), w(t))]2dt <
2 fOT lw(t)|?ds + k(1 — e=<T) /¢ + U(xp), which by applying Definition 2.9 with n = /¢
and p = U, completes the proof. m

Remark 3.5 It can be readily inferred from the proof of Theorem 3.3 that the exponential
time decaying term in (3.24) does not affect the finite gain local Lo-stability of the ETC
system 9. as its integral from 0 to any T € R* is finite, independent of T and hence can

be considered as the bias term n in Definition 2.9.

Corollary 3.2 Under the assumptions of Theorem 3.3, trajectories of the system 4. con-

verge to 0 € R™.

Proof. It can be inferred from execution rule (3.24) that between successive triggering
instants we have 31 (le|) < B1(le]) < ca(|z|) + re™¢!. Then from (3.6), we can upper bound
V as

V(z) < —(1—c)a(|z|) + ke . (3.27)
Defining ¢ = 1 — ¢, we conclude that V() < 0 for |z|> (ke ¢!/¢). Now define compact
set A; = {z € R" : |2|< 671 (ke ¢%/€)} for i € Np. Also the set of boundary points of
A; is defined as ON; = {z € R" : |z|= 6 (ke ™7 /¢)} for i € Ng. We denote by m; the
argument of maximum value of V' (x) over the set dA;, i.e., m; = argmax, g5,V (x). Next

define compact set Q; = {z € R" : V(z) < V(m;)} for i € Ny. Clearly Q; is positive
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invariant under the dynamics of ETC system ¢, for ¢t > i. We claim that €2; is the global
attracting set of system ¥, for ¢t > i. To see this, let us define the complement of 2; in R"”
as Qf = {z e R": V(x) > V(m;)}. If z € Qf, we conclude that |z|> m; and since m; € 0A;
we deduce that |z|> &' (ke™¢?/¢). Then since ¢ > i it follows that |z|> ¢~ (ke™¢!/¢) and
consequently V(z) < 0 for all 2 € Qf which confirms our claim. For ¢ > i + 1, however,
Qir1 C Q; is the new global attracting set of the ETC system ¢,. Thus the sequence of
positive invariant attracting sets {Qi}ieNO with Qg D Q7 D --- D Q; D --- shrinks to the

origin as i — oo (since m; converges to 0) which confirms the convergence of trajectories of

system ¥, to the origin. m

Remark 3.6 Note that Corollary 3.2 proves that trajectories converge to the origin, but
does not imply that the origin is asymptotically stable for the disturbance-free system. Asymp-
totic stability does not follow from this corollary since the result falls short of proving stabil-
ity of the origin of the zero-input ETC system 4.. This situation may occur, for example,
when the trajectories of the zero-input system that start from certain neighbourhood of the
origin, diverge from origin temporarily, but finally converge to it. In such situations, the
system may still be finite gain locally Lo-stable, however, the zero-input system is not neces-
sarily stable since there exist neighbourhoods of the origin such that any trajectory starting
there, can not stay there forever. This happens for system 9, under TC (5.24) as the
proof of Corollary 3.2 suggests that in the absence of disturbances we have V(x) >0 for
lz(t)|< 67 (ke St /(1 — ¢)), i.e., trajectories starting within this bound diverge from origin

at first but finally converge as the area of positive V shrinks to zero.

The analysis, however, can be extended a bit further than the classical notion of stability.
Indeed, we now show that in the absence of disturbances, the ETC system ¢, is practically

stable in the sense of following definition cited from [71]:
Definition 3.1 Given ¢ > p € Ry, the origin of the system @ = f(z,t) is (¢ — p)-stable if

(a) for any € > p there exists §(¢) € RT such that if |zo|< d(e€), then |z(t)|< € for all
teRy,

(b) for a given r € (0,5) there exists a finite v(r) € RY such that if |zo|< r, then
lz(t)|< v(r) for all t € RY,

(c) for a given r € (0,5) and € > p there exists a finite T'(r,e) € Rt such that if |xo|< 7,
then |z(t)|< € for all t > T(r,€).
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If we set ¢ = 0o and p = 0 in the above definition, we obtain the familiar uniform global
asymptotic stability, ( [71], Remark 2.1). it is worth mentioning that the stability in the
above-mentioned p-practical sense guarantees convergence of trajectories of the system & =
f(z,t) to the set {z € R™ : |z|< p} through condition 3.1 in Definition 3.1. The converse,

however, is not generally true.

Theorem 3.4 Under the assumptions of Theorem 3.3, the zero-input ETC system ¥4, is
(0o — a7 (k/(1 - c)))-stable.

Proof. First we apply (3.27) to conclude that V(x) < —ca(|#|) + & and hence V (z) < 0 for
|z|> 61 (k/c), where & =1 — c¢. Then we just need to show conditions (a)-(c) in Definition
3.1 hold. To satisfy condition (a) we can choose d(€) such that 0 < §(e) < e. For condition
(b) one can choose v(r) = ¢~ !(x/¢) for r < 7' (k/¢) and some v(r) > r for r > 1 (k/c).
Finally, to satisfy condition (c) we consider two cases. For r < ¢~ !(x/¢) we can choose
T(r,€) to be any positive number since trajectories of the system ¢, do not leave the ball
{r € R": |z|< 571(k/¢)} and hence |z(t)|< € for all t > 0 and all € > 6~ !(x/¢). However,
for r > @7!(x/€) we need a more detailed argument. Let us choose 7" such that |z(T")|= ¢
and integrate (3.27) from 0 to 7" to obtain V(¢) -V (zg) < —¢ fOT/ a(|z(t)])dt+k fOT/ eStdt <
—cT'5(le]) + (- e=¢T"). Since V(e) — V(r) < V(e) — V(o) we can upperbound T” as the
solution to inequality 775 (|e|)+re T < V(r)—V (e)+£. One can find a more conservative
upper bound on 7" by neglecting the exponential term in left hand side, i.e., ¢T"5(|e]) <
V(r)=V(e)+r—re T <V(r) = V(e) + k and obtain T/ < (V(r) — V(e) + k) /(5 (|e])).
This is exactly what if we integrate the more conservative inequality V(z) < —éo(|z|) + &

instead. Choosing T'(r,€) > (V(r) — V(e) + k)/(¢a(|e|)) completes the proof. m
Inter-Event Lower Bound Comparison

We recall from Theorem 3.2 that the lower bound on intersampling periods of ETC system
%, under execution rule (3.10) is 7 and given in (3.22). Also by 71 we denote the lower
bound on intersampling periods of this system under execution rule (3.24). We show that

-1

one can design parameters x and ¢ in (3.24) such that for a given 7' > 0 and 7% > f_}

we have 71 > 7 + 7* at least for ¢t € [0,7]. This guarantees that the average sampling
frequency is less than f, for t € [0,T]. To this end, defining & = /(1 + 0¢(£)), we assume
the updation of the control task is decided based on the following TC

Bi(le) > cp(|z|) + ke ¢! (3.28)

31



which is more conservative than the one proposed in (3.24) and hence gives a lower bound
on 71. Let Ly-1 and Lz be the Lipschitz constants of functions ¢~ and B, respectively. A
more conservative TC than (3.28) can be obtained from Lg [e|> CLJL |z|+Re~¢. In fact,

if this condition is not satisfied, we have
Bi(lel) < L, lel< eLytilal+Fe™<" < e(|a]) + Fe ™" (3.29)
and hence (3.28) will not be satisfied too. This TC restricts measurement error e to satisfy

_ > |€e _

chll ]w\(L"xn —1) <Re ¢, (3.30)

where [ = cflengl. We remark that L > L, where L is the Lipschitz constant of

function 1 ~1(5;/c). From the proof of Theorem 3.2 it follows that |e|/|z| > 1/L shortly

before the execution instant ¢; and hence we have Lle(t;)|/|z(t; )] > 1. We can even express

the TC more conservatively, by virtue of Lemma 3.3, so that the control signal is updated
at sampling instant ¢; when the following condition is satisfied

o1 q le(t)]

gLt (L%
v (&)l

We now define L* so that y(7 + 7*) = 1/L* where y is the solution to (3.21). Thus our

—1) > re ¢4, (3.31)

aim is to design x and ¢ such that the solution |e(t;)|/|z(¢; )| to inequality (3.31) satisfy
L*|e(t;)|> |z(t;)] for all execution instants t; < T',i € R, d.e., until t = T the intersampling
intervals are lower bounded by the solution 71 of y(71) = 1/L*. This means that the lower
bound on inter-event times increases to 71 > 7 + 7* at least until instant t = 7. Finally it

suffices to choose k and ( so that

A

L1 4 o) (3.32)

K = Ce_L,lzll(L*

Then the lower bounds on intersampling periods are the solutions 7 and 7 to

) (3.33)

y(r) =2, for0<t<T
y(r) =5, fort> T

Remark 3.7 Our result in section 3.3.1 is far more general than that of ( [9], Theorem
III.1, when the delay between state measurement and actuator updating is nonzero). In [9],
it is shown that the lower bound on intersampling times, T, can be extended (due to the
time required to read state measurement, compute the control signal and update actuators)

to the solution 7' of y(7') = 1/L', where L' is the Lipschitz constant of function y~*(B1/c)
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on compact set D, defined in the proof of Theorem 3.2, where ¢ € (¢,1). Following this
approach, the lower bound on intersampling intervals is restricted (through the upper bound
limit on ') to T < Tiax, Where Tmax is the solution to y(Tmax) = 1/Lmin With Ly, as the
Lipschitz constant of function =1 (By). This limitation, however, is relazed in our proposed
method by introducing the exponentially decaying term ke~ St which allows taking L* smaller

than Ly

3.3.2 Discrete Triggering Condition Scenario

In this section we address Problem 1-(B). In section 3.3.1 we showed that an exponentially
time decaying term added to execution rule (3.10) enables us to affect average sampling
frequency arbitrarily at least for the period [0, T]. Here, we address the problem of improving
the average sampling frequency for the first N iterative triggerings of the control task using
a discrete version of the TC (3.24). Let ¢ € N denote the number of triggerings completed
up until time ¢ assuming the first triggering occurs at tg = 0. As a consequence, t; and t;_1
denote the upcoming and the most recent execution instants, respectively. We denote by

th>t;_1,1 €N, just a moment after the following so called discrete TC holds

t- =inf {teRY ¢ > tig ABille()]) > chlla(t)]) }, (3.34)

where ¢ = &(t,7)/(1+ 0o(r)) and & is a discrete decaying perturbation of & defined in
Assumption 3.2 defined as

N @
/4369

o(t,r) =a(r)+ (3.35)

ci! ’
where & and 6 are positive parameters to be designed. We refer to (3.34) as the discrete TC
as it depends on index ¢ which changes non-continuously between successive triggerings.

Now suppose that the i-th execution of the control task happens at
t; = min{ti,1 + A, t;}, (3.36)

where A € R* is an upper bound on intersampling intervals. The following theorem then
states that discrete decaying perturbation of function & given in (3.35) satisfies the same

local L2-gain bound for the ETC system.

Theorem 3.5 Under the hypotheses of Theorem 3.1, the system 9, is finite gain Lo-stable
and has ||%e||;, < T if the control signal is updated at triggering instants {t; : i € N} defined
in (3.36).

33



Proof. It can be inferred from (3.36) that ¢; < ¢, and hence we have 31 (|e(t)]) < ctb(|=(t)|)
for t € [t;_1,t;). Then following similar lines as the proof of Theorem 3.1, for t € [t;_1,t;)
we obtain U(z) < —(1 — ¢)a(|z|) + #67/i! + D?|w|>~|h(z,w)|? for any = € R", any e € R
and any w € #¢ such that cp(|z|) > Bi(|e|). Integrating this inequality from 0 to some

T> 0, we arrive at
T
U(z(T)) < U(xo) +/0 (2w () =[x (t),w(t))*)dt

t1 91 t; 01 T QN
+n{/ 'dt+~-+/ St —‘dt},
to=0 ]. tioq 7! tN_1 N

where we assume N triggering instants (including the first one at tg = 0) occur until t = T,
i.e., ty—1 = maxy,<7{t;}. Now since U(z(T')) > 0 we conclude that fOT |h(z(t), w(t)|?dt <
Ul(zo) + T2 [T Jw(t)[2dt + f max {t; —ti-1} SN 67/i! and hence

_7’_

T T
/ \h(x(t), wt)|dt < U(zo) + r2/ lw(t)|2dt + kAe, (3.37)
0 0
We then choose 1 = #ZAe? and p = U in Definition 2.9 to obtain the desired result. m

Remark 3.8 The A term in (3.36) imposes an upper bound on inter-event times. This
restriction on intersampling intervals is necessary as it confirms the finiteness of the bias

term in (3.37).

Corollary 3.3 Under the assumptions of Theorem 3.5, trajectories of the ETC system 9.
converge to 0 € R™.

Proof. Following similar lines as the proof of Corollary 3.2 we deduce that 5i(le|) <
co(|z|) + &0 /3! for t € [t;_1,t;) and hence from (3.6) it follows that

V < —éo(|z|) + /%% (3.38)
for t € [t;_1,t;). As a consequence we conclude that V(z) < 0 for |z|> &~ '(40"/(i!)) and
t € [ti_1,t;). Now define compact set A; = {z € R" : |z|< 6 1(#0°/(ci!))} for i € N. Then
the set of boundary points of A; can be defined as A; = {x € R" : |z|= "1 (k0" /(ci!))}. We
denote the argument of maximum value of V(x) over set JA; by m; = argmax, g,V (2).
We remark that the discrete function 6?/i! takes its maximum value at i = [#] and is
strictly decreasing over i > |#]. Now define compact set 2; = {z € R" : V(z) < V(m;)} for
i € N. Following similar lines as the proof of Corollary 3.2, we can show that for i > 6],

Q); is positive invariant under dynamics of the ET'C system ¥, and moreover, is the global
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attracting set of this system for ¢ > ¢;. Since t; — t;_1 < A, we conclude that i — oo as
t — o0, i.e., the triggering instants never terminate. Thus the sequence of positive invariant
attracting sets {Ai}L6J<ieN with Ajg) D Ajgj41 D -+ D A; D -+ shrinks to the origin and

hence completes the proof. m

Theorem 3.6 Under the assumptions of Theorem 3.5 and in the absence of disturbances,

the ETC system 9, is (0o — 6~ '(kg/(1 — ¢)))-stable, where iy = &0 /0],

Proof. In view of (3.38) which is valid in [t;_1,t;), we conclude that V(z) < —ca(|z|) + kg
for all t € RJ. Hence we have V(z) < 0 for |z|> 5 '(kg/c). Then we just need to
show conditions (a)-(c) in Definition 3.1 hold. To satisfy condition (a) we can choose d(¢)
such that 0 < 6(¢) < e. To satisfy condition (b) we can choose v(r) = 5 1(kg/c) for
r < 6 Y(ke/c) and v(r) > r for r > 57 1(kg/¢). For condition (c) we consider two cases.
For r < 57 1(kg/c) we can choose T(r,€) to be any positive number since the trajectories
do not leave the ball {z € R™ : |2|< 6 !(#/c)} and hence |x(t)|< € for all ¢ > 0 and all
€ > Y(kg/c). For r > 57 1(kg/C), choose T' such that |z(T")|= e. Then integrating (3.38)

from 0 to T" gives

V(e) = V(o) < E/OT/5(|x(t)’)dt+/%{ /ttl o

o 1
L . T N’
i 91 9
+ ... + / fdt + A + / 7dt}c
Ll NI
1—1 N/—1

Hence we have V() — V(20) < —T"5(|e]) + maxy<ijc e {ti — i1 }a SN & < —&T"5([e]) +
max)<;<n/{t; — ti—1}ie?, where we assume N’ triggering instants (including the first one
at to = 0) occur until ¢t = T”, i.e., tyr—1 = maxy,<p{t;}. Then we can find an upper
bound on 7" as the solution to inequality ¢1"5(|e|) < V(r) — V (€) + max;<;< N/ {t; —t;—1 } ke’
since V(e) — V(r) < V(e) — V(xp). We remark that max;<;<ny/{t; — t;—1} is a function of
e since N’ depends on 7" which is a function of e. Then one can choose T'(r,¢€) so that
T(r,e) > (V(r) — V(e) + maxj<j<n/{ti — ti—1}ie?)/(c7(|e])). m

In the rest of this section, we provide a discrete counterpart to the analysis given in
section 3.3.1. Indeed, we design # and € in (3.34) so that given some N € N and 7* € R™,
we have 79 > 747 at least for ¢t € [0, 7], where 75 denotes the lower bound on intersampling
periods of system ¥, under execution rule (3.34).

Choosing A > 7 + 7% in (3.36), it remains to consider the case where ¢; = t; and hence

t; satisfy the TC (3.34). Even a more conservative TC can be obtained if the i-th execution
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of control task is fulfilled when the following holds
_ B 4
Prlel) = ey(lz]) + R, (3.39)
where &£ = #/(1 4 09(€)). Now using the same procedures as (3.29) and (3.30) were derived,
we obtain a discrete version of TC (3.31):
t ‘
VDI (3.40)

Our goal is to design 4 and 6 such that the solution |e(t; )|/|z(¢; )| to the above inequality

céLiEl (L

satisfies L*|e(t;)|> |z(t;)| for the first N triggerings, where L* is defined such that y(7+7%) =
1/L* and y is the solution to (3.21). We now consider two cases.
Case 1: If 1 < N < Ny = max{i : 0°/i! > 0} we have min;<;<ny{0"/i!} = 0, i.e., the discrete

function 6 /i! takes its minimum value at i = 1, and hence we can choose & and  so that

céL_l L

k= 7 w_l(E —1)(1 4+ 09(g)). (3.41)

That is, for any 1 < N < Ny, the first Ny inter-event intervals are lower bounded by the
solution 79 of y(m2) = 1/L*.
Case 2: For N > Ny we have minj<;<x{6?/i!} = 6V /N! and we can pick # and 6 such that

. N

k=cEL (= — 1)1+ ao(é))g—]\;, (3.42)

PN

i.e., for the first V samplings, the inter-event times are lower bounded by the solution 7
of y(mg) = 1/L*. Therefore, the lower bounds on intersampling periods are the solutions 7

and T to .
) = 7, for 0 <i<N,
y(m) o o for 1 <N < Ny
y(r) =1, fori>Np

(3.43)
y(Tg):ﬁ, for0<:< N

y(r) = %, fori > N

}for N > Ng.

Note that while the continuous and discrete scenarios proposed in this section have
similarities, they have different structures that lead to different properties. The primary
difference between these methods is that while in continuous-time the decaying term is a
function of time and will vanish as ¢t grows, this is not the case in discrete scenario. The
decaying term in discrete approach is a function of the sampling instant and not time. Thus,
if only a few triggering instants occur, the effect of perturbation term may be considerable,
regardless of the time that has passed. This important feature of discrete scenario can be
seen from the examples provided in next section and shows that in contrast to continuous

counterpart, the decaying term may still be kept effective for a much longer time.
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3.4 Illustrative Examples

In this section we illustrate the Lso-stabilizing triggering design through several examples.
Our examples are simple enough so that the £o-gain analysis can be done analytically, thus
enabling us to provide further insight. We show in Example 3.2 that if some of the con-
ditions of Theorem 3.1 are not satisfied, it may still be possible to relax these conditions
by redefining TC. In Example 3.3, we replace the Euclidean vector norm with the infinity
norm to obtain the Lo-gain. This is important since this change facilitates the computation
of the Lyapunov function.

We continue with the following remarks, containing important points regarding the simu-

lations.

Remark 3.9 The examples are constructed according to our design principle, i.e. per-
formance is defined in Lo-sense and the design is such that preserves the Lo gain of the
continuous-time design. In this approach, we have purposely ignored transient behaviour
and pushed the design to the extreme to save communications during transient, something
that should, of course, be corrected in a more realistic design. The simulations indeed show
a deterioration of the transient response. This should be interpreted as indicative that, in

general, Lo performance does not, in any way, imply good transient behaviour.

Remark 3.10 Note that the plots for verification of Lo-gain and system’s trajectories are
provided for one single initial condition. Howewver, the discussion on number of samples
and MIETs are provided based on averaging 100 initial conditions. Thus, one should be
careful that since the Lo-gain plots depend on initial condition, no general conclusion (such
as comparing the La-gain of continuous-time and ETC systems) other than verification of

the proposed Lo-gain for different scenarios can be made from them.
Example 3.1 Consider the following first order system
=2 +trwtu, z=uz, (3.44)

where x € R, u = —k(x + ) for some k € RT is the control input, e is the measurement
error and w is the exogenous disturbance belongs to the set #q defined in (2.3). Choosing
the Lyapunov function V(x) = 2%/2 it is straight forward to show that the system is ISS
with respect to e and w. Assuming e to be zero all the time, the continuous-time system
is finite gain locally Lo-stable. To show this, we take W (xz) = AV (x) for some A\ € RT.
Now since V(z) = —ka? — 2* + 22w < —ka? + (y1 — Da* + w?/(4y1), where y1 € RT,
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we will have W (z) < —Mkx® + Mw?/(4y1) for 1 < 1. As a consequence, the minimum
upper bound on the La-gain of system (3.44) is 1/(2/y1k) (when v = 1). Finally by
choosing U = V 4+ W we have U(x) < Mw?/4 — Mkz? — ka? +w? /4 + (14 N)k|z||e|, which by
restricting e and w to satisfy |e|< clz|/(1 4+ \) and |w(t)|< v3(|z(t)]) = 2Vek|z(t)|, reads
as U(x) < Mw?/4 — Mk2? — (1 — ¢ — &)ka®. Thus we can design ¢ and € so that ¢+ ¢ < 1
and hence ensure that the ETC system is finite gain Lo-stable. Also it is not difficult to
verify that U(w) < 0 and hence |x| monotonically converges to zero. This enables us to find
Q assuming To € Lo, i.e., |2o|< €. Indeed, we can write |w(t)|< 2vek|x(t)|< 2v/ek|xo).
Hence taking Q = 2v/cke guarantees w(t) € Q.

We continue the discussion carried out above, numerically. Taking k = 1, ¢ = 1,
=05, =045 Q=134 A =05, k=15 C=1.6, k = 1.5, 0 = 1 and A = 1.1, we
arrive at the exvecution rule |e|= |z|/3. Consequently we have U(z) < |w|?/8 — |2|?/2, where
U(z) = 322/4. It then follows that the ETC system is finite gain La-stable with zero bias
and has La-gain less than or equal to 1/2. To conﬁrm the value of Lo-gain numerically, we
integrate U (x) —|w|?/8+|2|?/2 < 0 to get U(x) — -3 folw 7)|2dr + 3 folz 7)|?dr <0
which by defining I' = %, u=2U and using positive deﬁmteness of U reduces to

P2 i (3.45)
fo\w7'|d7' folw T)|2dT

and is verified in Fig. 3.1 for xo = 1.

Continuous-time system
— = Section 3.2
- — = Section 3.3.1
0 o S R Section 3.3.2
N
R L GO
—=< a 4 Jaf |w(T)|2dT
~._ 10 .
\
S ~__
S
0
QH}O /ﬁfﬁ_ﬂ:‘_,z.:\.:.:‘:<: R i i
107" I I I I
0 1 2 3 4 5

t (sec)
Figure 3.1: Verification of Lo-gain.

Also the corresponding state trajectory of the system is shown in Fig. 3.2.
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Figure 3.2: System’s trajectory (Left). Actuator signal (Right).

It is worth noticing that the Lo-gain preserving nature of our proposed method can be
inferred from Fig. 3.1 as the curves for the event-based scenarios lie under the one for
continuous-time system. Also a comparison of the number of triggering instants and the
MIFET is given in the following table, where we average the results obtained from 100 initial
conditions, uniformly distributed in [—1,1]. The results of Table 3.1 clearly suggests that the
effectiveness of the methods proposed in Section 3.3 on the sampling rate and intersampling

interval diminishes with the passing of time.

Table 3.1: Comparison of different scenarios.

Simulation Section 3.2  Section 3.3

time (sec) 3.3.1 3.3.2

10 40 11 10

Number of samples 30 120 48 38
100 400 286 318

10 0.24 0.66 1.1

Min inter-event time 30 0.24 0.46 0.27
100 0.24 0.25 0.25

The proof of Theorem 3.2 suggests that nonzero inter-event times can be guaranteed
if instead of condition (ii) in Theorem 3.1, the function 1 ~!(5;/¢) is Locally Lipschitz-
continuous in R™. Neither of the these conditions hold in the next examples, however, we

can still prove this important property for the ETC system through defining a new TC.

Example 3.2 In the next example, we consider the following second order system

T = x2,
&9 = —h(z1) + u+ w, (3.46)
zZ = XT9.
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where u s the control input, w is the exogenous disturbance and is restricted to satisfy |w|< 1
and z is the measured output. We design u = —k(xo + €) where e is the measurement error
in 9. The nonlinear function h : R — R is assumed to be in the sector [c1,ca], i.e.,
c1r? < rh(r) < cor? for any r € R. We first show that, in view of (2.9), the system
is ISS with respect to e and w. To this end, let us consider Lyapunov function V(z) =

$aTPx + 2 [ h(r)dr, where x = [x1 22" and P = [1 1;1 2]. Then by choosing k = 1

we have V(z) = —x1h(x1) — 23 + 2x9(—e + w) + x1(—e + w). Next we can rewrite the
last two terms in V as 2za(—e + w) = —L(z9 + 4e)? — L(zo — 4w)? + 123 + 4€? + 4w?
and z1(—e + w) = —3(z1 + 2€)? — Lz — 2w)? + 22?3 + € + w?. Assuming h to be in

the sector [1,2], we conclude that r> < rh(r) < 2r2. Taking this into account, we obtain
V(a) < =a(jz]) + Bilel) + Ba(|w]), where 5(r) =1%/2 and p1(r) = Ba(r) = 51°.

We also claim that when e = 0, the continuous-time system is finite gain locally Lo-
stable. To see this, consider the Lyapunov function W (x) = AV (z) for some A € RT. Then
since V() = —x1h(x1) — 23 + 200w + 3w = —23(1 — 1) — 23(1 — €2) + (e + e Huw? =

—e1(m1— 365 'w) 2 —ea(za— €5 'w)?, we conclude W(z) < M1—e2)22+ A(e] H/d+e; Hw?, iee.,

the continuous-time system has local La-gain less than or equal to \/(4e1 + €2)/(derea(l — €2)).
The minimum value of this upper bound on the Lo-gain of the system is 4.4861 and obtained
by setting €1 = 1 and ex = 0.4721.

To werify condition (3.8) we restrict w to satisfy |w(t)|< ~v3(|x(t)|), where y3(r) =
\/5/727“ for some ¢ € (0,1) is a solution to the inequality (3.7). So far we have showed that
Assumptions 3.1, 3.2 hold. Therefore it suffices to verify conditions (i)-(ii) in Theorem 3.1
hold as well. Condition (iii) is readily hold for functions f and k. Also, condition (i) holds
for a3(r) = A(||P||+2c2)r since we have

ow
|%($)|—)\

|::L’1 + 20 + Qh(l’l)

< .
vl | BRI AE TS

Condition (ii) in Theorem 3.1 is not satisfied for the given functions &, 1. However, we
will redefine functions v and B1 in (3.10) and show the results of theorem are still valid.
To this end, let us start with (2.9) which can be written as VV (x) - f(z, k(x + e),w) <
—(1—co)a(|x|)+ Bi(le]) for some co € (0,1) when |w|< y3(|x|). This is true since choosing
co > 5¢ ensures Bo(|w|) < coa(|z]). Therefore, (3.13) reduces to U(z) < —(1 — co)a(|z|) +
Bi(le]) + ao(|z])Bo(le]) + T2|w|>~|2|%. Using the definition of B in this example, we can
write Bi(|e]) + oo(l2])Bo(lel) = Bi(le]) + LyLilelos(|z]) = (VBle|+LyLyos(|2])/(2v/5))? —
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L2 Lkag (l])/20 and hence

. L2L3
Ux) < ~(1 = co)a(|al) — =5 o5 (lx]) + (V5
+ (o) + T2l P (3.47)

Therefore, we can define (r) = \/6'(7‘) + L?Lz0'32(7‘)/20 — LyLios(r)/(2V/5) and Bi(r) =
V5r. Thus if for some ¢ € (0,1 — cg) the neat triggering of control task occurs when

L¢L? L¢L
VBlel> \/ca<|x|> ko) — 2L () (3.48)
we conclude that U(z) < —(1 — co — ¢)a(|z]) + T?|w|?~|z|>. As a consequence, the ETC
system has the local Lo-gain less than or equal to 4.4861. Also one can check the local
Lipschitz-continuity of 1 ~1(B1/c) in R™ which is necessary to prove Zeno-freeness property
for the system.

To ﬁnd Q, we have to find functions o1 and ooy so that (2.7) holds. Since z3 <
2 [ h(r)dr < 22% and V(x) = (7 Px)/2+2 [ h(r)dr, one can choose 01(r) = Spin(P1)r? /2
and O’Q(T) = Yomaz(P2)r?/2, where Yoaz(A) (Tespectwely Ymin(A)) denotes maximum (re-
spectively minimum) eigenvalue of matriz A, and Py = [3 151 2], P, = [5 1;1 2]. Thus
we can take Q = Ly,& = Loy (02(€)) = ey/(Bmaz(P2))/ (2% min(P1)), where € is the

upper bound on the norm of admissible initial conditions.

For numerical simulations we
takee =1, A =103, ¢=07,¢=005, k=42=50,(=60=1, A =4 and Q = 0.62.
The verification of La-gain of the system for xo = [0.87 0.5]7 is presented in Fig. 3.3 as it
suggests (3.45) holds for T' = 4.4861.

Continuous—time system
— = Section 3.2
— = Section 3.3.1

————— Section 3.3.2

—_— C()Ilfill\l()llS*tiI!l(3 SyST,CI!l H
/ - — Section 3.2 -0.4
05} -+ == Section 3.3.1 I I
————— Section 3.3.2

4 6 10
t (sec) t (sec)

Figure 3.3: Verification of Lo-gain (Left). Actuator signal (Right).

The state trajectories of the system is also plotted in Fig. 3.4.
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Figure 3.4: System’s trajectories.
Finally, a comparison of the number of triggering instants and the MIET is given in
Table 3.2. To this end, we consider 100 initial conditions uniformly distributed in circle of
radius 1 and average the obtained results.

Table 3.2: Comparison of different scenarios.

Simulation Section 3.2  Section 3.3
time (sec) 3.3.1 332
10 47 6 3
Number of samples 30 139 89 8
100 466 415 70
10 0.09 1.21 4
Min inter-event time 30 0.09 0.1 4
100 0.09 0.09 0.49

In the next example, we apply the results of Theorem 3.1 but replacing the Euclidean

vector norm with the infinity norm.

Example 3.3 Using similar notations as in Fxample 3.2, we define the following second

order system
T1 = x9 — bxy,
iy = —az} +u+w, (3.49)
z = T3,
where |w|< 1. Defining Lyapunov function V(z) = ax}/4 + |x|?/2, where x = [x1 z2]T, we
will have V(m) = 11279 — bx? — abx} + xou + wow, which by taking u = —(x1 +e1) — (72 + €2)

can be written as

V(z) < —ba? — abat — a3 — V2|z| |e|+|x|  |w)| (3.50)
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where e1 and ey are the measurement errors in x1 and xa, Tespectively and e = [e; eg]T.

Then in view of the following inequality

2 4.
bt + abxr] + ~ x5 > {b|$|oo +ablzl, i o[> |72,

%|x|go, otherwise,
we conclude that ba? + abxt + x3/4 > &(|z| ), where function &(r) = min{br? + abr,r?/4}

is of class Koo. This enables us to write (3.50) as
V() < =0 (|2]s) + V2| le]+]2] o ] (3.51)

To show finite gain stability of continuous-time system, consider W (x) = AV (x) as the
Lyapunov function. Thus for e = 0, we have V(:c) = —bz? — abr} — 23 + 12w < —22 + 2w
which by using zw = €22)2 + w?/(2€) — é(z — w/&)? /2 for some é € RY, gives W(z) <
~A(1 —¢/2)2% + Mw?/(2¢). As a consequence, it is not difficult to show that the minimum
upper bound on the Lo-gain of continuous-time system (3.49) can be achieved by choosing
€ = 1 and is equal to 1. This value, however, may be improved by a different choice of

Lyapunov function W (x).

Defining o3(r) = \r + aXr3 for r € R{, we have %—Vf(aj)\w < o3(|z|,) since
ow azry +
o -\ 1
S @l =A< }

= Jadali + Al if lo1](1+ aaf) > o),
I R otherwise,

and hence %—Vr(x)loo < max{\|z|, Nz +aXz]>,} = Na|+aX|z|>, . Therefore, by taking

U=V +W and following the similar lines as in deriving (3.14), we can write
: Ao Ao . 2 1 V2 2
Uz) < 5% +§w +]a:\oo<—]a;\oom1n{b+ab\xloo, Z}+ 2le|+|w|+2AL Ly (1 +a!x\oo)|e]>,

where we used the fact that

o @), k(w+ ), w) — [, (), w)) <

2 %Z/(x)]oolf(x,k(x +e),w) — fz,k(z), w)|, <

2|88‘j:/($)|oo|f(x’ k(z +e),w) — f(2, k(z), w)| <
ow

2L Llel| - ()]

We note that since u = k(z) = —(x1 + 2), it can be easily inferred that Ly = /2. Now

assuming |w(t)|< y3(|z(t)| ) where v3(r) = min{br + abr3,r/4}é and taking c € (0,1 — ¢),

o)

43



we conclude that if the execution of control task occurs when

|| min{b + ablz|%, 1}

e Z C )
el V2(1 4 2\Ls(1 4 alz %))

(3.52)

the system (3.49) is finite gain local La-stable with zero bias and local Lo-gain < 1. To
find Q, let o1(x) < V(z) < o9(x), where a1(r) = 12/2 and oa(r) = (2 + a)r?/4. As
a consequence, assuming initial conditions to be norm bounded by e, we can take QQ =
L& = Ly,oy ' (02(€)) = Layse/1+a/2, which by choosing b > 1/4, reduces to Q =
(Es\/m)/él. In simulations, let a = 1, b = 10, e = 1, ¢ = 0.5, ¢ = 0.45, x = 10,
=10,¢(=1,0=5, A=1 and Q = 0.138. Therefore, the only parameter left to study the

=1

system’s response is X which appears in TC (3.52). We start our simulation with A = 1,
howewver, the effect of this parameter on our results will be discussed later. Similar to the
past examples, in the next table, we give a comparison of number of samplings and MIETs
over different scenarios. The results are, indeed, the average over 100 initial conditions
uniformly distributed in the circle of radius 1.

Table 3.3: Comparison of different scenarios.

Simulation Section 3.2  Section 3.3

time (sec) 3.3.1 332
10 420 8 10
Number of samples 30 1190 23 30
100 3882 75 100
10 0.007 0.61 1
Min inter-event time 30 0.007 0.57 1
100 0.007 0.53 1

Recalling from Definition 2.9, the system (3.49) has local Lo-gain < T if for any T we
have (3.45). The local Lao-gain of the system is then verified in Fig. 3.5 for xo = [0.87 0.5]7

and I' = 1. Also the corresponding state trajectories is presented in Fig. 3.6.

10 1

Continuous-time system i_ _____ !
— = Section 3.2 1 !
== Section 3.3.1 | !
————— Section 3.3.2 0.5 | 1
10° i i
5 1 :
~ H I
= 4 _ M@ b=
E I‘ le |w(T)|2dT 0 : | ERT P AT 0E PP
% o | Semmh e L __ioo___ !
— 16 =) I
~ ~— B
5 e T TT T T T - = !
= 4 -05p /! !
X ! 1 |
LS ? | |
—< y . H Continuous—time system
1 ! :
i e = - -1 1 — = Section 3.2
! ! — = Section 3.3.1
[} .
LR S Section 3.3.2
10' i i i i -15 i
1 2 3 4 5 0 1 2 3 4 5
t(sec) t (sec)

Figure 3.5: Verification of Lo-gain (Left). Actuator signal (Right).
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Figure 3.6: System’s trajectories.

Finally, the effect of parameter A on the above results in the first 100 seconds of response
1s 1nvestigated in Table 3.4. It suggests that A\ has negligible effect on the triggering num-
bers and MIETs using the methods of Sections 3.3.1, 3.3.2. However, choosing A\ > 1072
degrades the efficiency of the results of Section 3.2, significantly.

Table 3.4: Investigating the effect of parameter .

A
Method of

Section 1073 1072 107! 1
3.2 149 152 176 420

Number of samples 3.3.1 8 8 8 8

3.3.2 10 10 10 10
3.2 0.023 0.022 0.019 0.007
Min inter-event time 3.3.1 0.670 0.669 0.680 0.610
3.3.2 0.999 0.999 0.999 0.999

Example 3.4 The following example illustrates the necessity of using a local Lo theory.
The example shows that while under arbitrary perturbations w in Lo space, the event times
are not necessarily guaranteed to be isolated, the local notion serves to exclude Zeno phe-

nomenon. Consider the following linear example from [59]

#(t) = Az(t) + Bu(t) + w(t), u(t) = Kuz(t), (3.53)

where A, B, K are matrices of appropriate dimensions and the controller is applied in an

event-based fashion. The desired output is taken as z(t) = x(t). Assume tg = 0, xo # 0,

and the TC |e(t)|> p|z(t)| for some p € RT, it is shown in [59] that under the following
choice of disturbance

w(t)

((t — 1)A + (ti — 1)BK)1‘0 — X0, t € [ti,tprl) (3.54)
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for t € [0,1] and zero elsewhere (which is a signal in Lo space), the state and triggering
instants are analytically given by x(t) = (1—t)xg and t; = 1— (1+p) %, i € Ny, respectively.
It is then obuvious that event times has an accumulation point at t = 1. To address this
issue, [59] suggests using the input-to-state practically stable (ISpS) property instead of 1SS
condition (2.8). The proposed method, however, is not applicable to the problem studied in
this chapter since the Lo-gain performance of the ETC system can not be guaranteed.

Note that the above discussion suggests that when w is an arbitrary signal in Lo, as in
(8.54), the execution rules of the form (3.10) does not exclude the Zeno-behaviour. However,
in this chapter our solution to this problem is to restrict w to be in the admissible space
Wq and also satisfy condition (3.8) with v3(r) = ér, ¢ € RT. The price we paid is then the
local character of the results. We remark that w defined in (3.54) does not satisfy (3.8),
and hence is not a counter example of the local thoery. This is because (3.8) is violated near
t=1.

Indeed, applying the results of Theorem 3.2 one can show that limiting w as above, the
triggering instants are separated at least by

S Y Al ).
IA]l+é p(|A[+[BE|+¢) + || BK]|

T

3.5 Summary

This chapter addresses the disturbance rejection problem of nonlinear ETC systems. As-
suming the existence of a pre-designed control law with desirable local Lo performance
characteristics, we propose a TC that preserves finite gain local Lo-stability of the original
continuous-time design. Our formulation is rather general; i.e. we consider a nonlinear
plant and assume that disturbances are bounded by a Lipschitz-continuous function of the
state. We also show that, in the absence of external disturbances, the control law render
the origin asymptotically stable.

In addition to stability and disturbance rejection, we also study the intersampling be-
haviour of the proposed TC. First we show that the inter-event time period is lower bounded
by a nonzero constant and focus on enlarging this constant. We show that, regardless of the
construction of the ETM, the inter-event time period increase is actually lower bounded by
a constant. Increasing the value of this constant can be done at the expense of relaxing the

stability properties of the design.
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Chapter 4

Event-Triggered Design with
Guaranteed Minimum Inter-Event
Times and Ep Performance

4.1 Problem Statement

In this chapter! we consider the nonlinear systems of the following form:

(4.1)

{é = f(&.d) + g(©)u,
2= h(€,d),

where £ € R", u € R™, d € L}, 2 € R® represent the state, control input, exogenous
disturbance and measured output. The functions f, g and h are locally Lipschitz-continuous
and f(0,0) =0, h(0,0) = 0 so that £ = 0 is an equilibrium point of zero-input system. We
will assume the state & evolves from initial conditions {y = £(tp) on an open subset of R™
containing the origin. System (4.1) is said to be finite gain £,-stable and has an L£,-gain
< w if there exist real numbers 7,9, 7, 4 > 0, p > 1 and positive semi-definite function
such that for any T' > o, any d € £} and any {; € R"

T T
/t l2(s) Pds < / 1d(s)[Pds + B(Eo) + 1. (4.2)

0 lo
We assume plant and controller communicate apperiodically through a digital network and
in an event-based manner. The ETC problem established in this chapter relies on the
emulation of the analog design and consists of two steps:
First, we assume continuous data transmission between plant and a full information

controller u = y(§), where ~ is locally Lipschitz-continuous. The resulting continuous-time

!The results of this chapter have been submitted for publication in the article: M. Ghodrat and H. J.
Marquez, “Event-Triggered Design with Guaranteed Minimum Inter-Event Times and Lp-Performance”,
Submitted to IEEE Trans. Autom. Control, May 2018.
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plant is then given by

{S':fc(f’d)v (43)

z=h(&,d),
where f.(&,d) = f(&,d) + g(&)v(€). It is then assumed that the controller renders the
closed-loop (4.3) finite gain L£,-stable with disturbance attenuation level p.

Second, the communication between plant and controller occurs at the instants belong
to the set {t; : k € K}, where K = {0,1,2,..., K}. The sampling sequence is a monotone
increasing set, starting at ¢y and implicitly defined through a TC. The actuator signal
is held constant between events using a hold device u(t) = wu(tg), t € [tg,tx+1) where
tx41 = oo when K is finite. The proposed TC is continuously monitored and once it is
satisfied, the updated state is forwarded to the controller which computes the new control
signal and send it to the actuator instantaneously. More specifically, let ¢ be the most
recent sampling instant and TC be satisfied at some wg1 > tx. Then the new control
signal applied through the actuator at t;.; = wljﬂ and hence u(tg+1) = v(§(tk+1)). Let
e(t) := &(tg) — &(t) represent the sampling error for ¢ € [tg,tx+1). €(t) is then a right-
continuous signal with zero value at ¢;. In our analysis we neglect practical issues such as
transmission and computation delays, however, they can be readily addressed following the
approach introduced in [9]. The resulting closed-loop ETC system is then described by

{é = fu&erd), 2= h(&d), (4.4)

tht1 = w,jﬂ, w1 = inf{t e R:t > tp A D(t) = 0},

where fq(&,e,d) := f(&,d) 4+ g(§)y(§ + ¢) and ®(¢) is the TC to be designed.
Assuming the existence of an L,-stabilizing controller for (4.3), our main interest is to

design an ETM that retains this input-output property of the network-free design for the

resulting ETC system; perhaps with a worse disturbance attenuation level. The proposed

ETM shall (1) exclude the Zeno behaviour and (2) serve as a general platform for TC design
in ETC problems.

4.2 Event-Triggered Mechanism

In this section, we introduce a general structure to design ® so that ETC system (4.4) has

L,-gain < pg. Consider the following TC structure:

(1) = p(&(t), e(1)) — i kidi(t) = 0 (4.5)

where k1, ks > 0, and the dynamic variables ¢1, ¢ and function ¢ are to be designed. We

start with designing ¢, for which the following assumption is required.
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Assumption 4.1 There exist positive definite, radially unbounded functions Vs, V., positive

constants i, ¢;, & i € {1,2,3} and some p € [1,00) satisfying
(1) VVi(€) - fs(& e,d) < —cr||€]|PHcallelP+eslld]f?,
(i) VVe(&) - fe(&:d) < pP||d|[P—]|=||P,

(i) Vs(€) <alléllP, Ve(€) <eléllP, [VVe(©)l< esliélP.

Remark 4.1 Assumption 4.1(i) implies that system (4.4) is 1SS with respect to the inputs
g, d. Also Assumption 4.1(ii) implies that uw = (&) renders the continuous-time system

(4.3) finite gain Ly-stable with L,-gain < fi.
The function ¢ is assumed to have the following form

p(€,¢) = p1(8) + pa(e) + p3(§, €), (4.6)

where @1(r) = —c1o||r|[?, @2(r) = cal[r|?,

p3(r,8) = VVeu(r) - g(r)(v(r +s) —(r))

and 0 < 1, p € [1,00), Voa(r) = AVe(r) for some A € RT. We then continue with the
design of ¢1, ¢2; dynamic parameters serve to enlarge the inter-event times and guarantee

the event-separation property for ETC system (4.4). Consider the equations below for

t € [ty trs1)
i () + (") = () 473

_ o (%) g), te [tkafk),
P(t) = {Sk(t) + as(6k(1)), tE [Frtesr), (4.7b)

where § is a positive constant and 6, is a positive, bounded and piecewise differentiable
function defined over [fy,t,41) and satisfies >, fé’c“ dk(7)dr < 6y for some positive 6.
Also t;, = t;, + 7, where 7 is a positive parameter and will be designed in the sequel. Note
that function @ is defined such that 0 (resp. dx(t)) is a solution of ¢ in (4.7a) over [ty {x)
(resp. [tg,try1)). Moreover s is an arbitrary class-Ko, function and a1 € K is designed

based on the following assumption.

Assumption 4.2 «y(r) > vr where v = c¢1(1 — 0)/(¢1 + C2).
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To solve (4.7a), (4.7b) the following initial values are assumed

P1(tk) = 1, G1(tk) = i, d2(t) = sk, d2(tk) = S, (4.8)

where i, 7, Sk, S are non-negative real numbers and are designed based on the following

assumption.

Assumption 4.3 r; and 7, are chosen from sequences with convergent series, i.e., there
exist finite numbers 02,05 € RY so that > i < 02, > 7x < 03. Moreover, s and 3y

satisfy Sk > 5 and §k = 5k(£k)

Dynamic rules have been previously studied in [13,28]. The variable ¢; in (4.5) which
satisfies the differential equation (4.7a), plays the role of dynamic parameter introduced in
the above references. Here, we introduce an additional dynamic variable ¢o; while both
¢1, P2 serve to extend the inter-event times, ¢o plays the fundamental role of guaranteeing

event separation property for ETC system (4.4).

Proposition 4.1 Under TC (4.5) and Assumption 4.3, ¢1(t), p2(t) > 0 for all t > to. In
detail, po(t) > 6 fort € [ty,11), ¢o(t) = 0p(t) fort € [ty, trr1).

Proof. From (4.5), (4.7a) ¢ satisfies ¢1 + a1 (p1) + k11 > 0 for ¢ € [ty tr11). Note that
¢1(t) = 0 is a solution to gﬁl + a1(¢1) + k1 = 0. Therefore, since ¢ (1), ¢1(t) > 0 it
follows that ¢1(t) > 0 for all ¢ > to. For the second part, since § (resp. dx(t)) is a solution
of ¢ in (4.7a) for t € [tg, 1)) (resp. t € [t,txr1)) and s, > § (resp. § = Ox(fr)), it follows
that ¢o(t) > 0 (resp. ¢o(t) = dx(t)) over this interval. Finally, from the positiveness of §
and 0 (t), ¢p2(t) > 0 forall t > ¢y. m

Proposition 4.1 illustrates the previous claim that ¢1, ¢o enlarge the inter-event times.
In fact, in absence of ¢1, ¢9 triggering occurs when (€, ) = 0. However, the positiveness

of ¢1, ¢2 postpones the triggering to occur when ¢(&, ) = ki1 + kado.

Remark 4.2 While TC (4.5) was originally proposed to address the state feedback problem
with a guaranteed L,-gain level, the idea of introducing dynamic variables ¢1, ¢2 can readily
be applied to the dynamic output feedback case. More specifically, let ¢ = 0 be a pre-designed
output based TC. The ETC system then enjoys the benefits offered by ¢1, ¢o under the
modified condition ¢ — k11 — koo = 0 with similar dynamics for ¢1, ¢o as in (4.7a),
(4.70).

To finish the design, it remains to define 7. Let us start with the following lemma.
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Lemma 4.1 Under Assumptions 4.1-4.3 and if the control signal is updated under the TC
(4.5), all the trajectories of the ETC system (4.4) starting from 9B, will remain in %,

where

p = max { [€l]: V() + Ver(€) < Va(&0) + Ver(0) +
1 n

—ugldliZ, + kallallog) + 62 + 65, €, &0 € R, o]l < p}-

Proof. We shall need the following proposition whose proof can be obtained applying

integration by parts and Assumption 4.2.

Proposition 4.2 For ¢, defined in (4.7a) and (4.8), we have

i tr41 N
/ —e"Tdgy (1) < re’tr, / —e"Tdep (1) < 7pe’t®,

ti t

Now we start from Assumption 4.1(ii) to write

Ve(§) < P (ld)P—[|z]P+VVe(€)g(§) (v(€ + ) — 7(£))
Define V(&) = V(&) + Vea(§), one can apply Assumption 4.1(i), (4.5), (4.6) to get

V(6) < —e1(1 = o)l[€]P+n? + es) P+ <
—e1(L = o) [IElP+ (M + e3)|d|[P+kad2 — ar(¢1) — ¢

where the second inequality is obtained using (4.7a). Let A = A\||d||%, + k2| d2| o, we can

apply Proposition 4.1 to write
V(E) +vV(€) < A—du,

where we used V(§) < (¢1 + é2)|£]|P suggested by Assumption 4.1(iii). We then conclude

from Proposition 4.2 that
tr

V(E(ER))e™ < V(E(t))er™ + e’ + A
tr

e’dr,

tet1
e’ dr.

V(E(trrn))e s < V()™ + e + A |
12

Adding the two inequalities and apply the result to the sampling intervals until ¢ > tg,

Assumption 4.3 yields V(£(#))e"" < V(&) + (02 + 03)e”" + A fti] e’7dr. Therefore,
t
V(E(t) S V(&)e ™ + 62 + 03 + A/ e Vt=T) gr
to
< V(&) +0+63+1v7 1A

o1



which gives the desired result. m

Since ||¢2]|, is limited by max{sy, ||dx||,, : ¥ € K} and hence is bounded, Lemma 4.1
suggests that the trajectories of the ETC system (4.4) are bounded by a non-decreasing
function of [|£| and ||d||, . Next lemma employs the Lipschitz property of functions f, g,

~ to provide an upper bound on the norm of state dynamics.

Lemma 4.2 With the same conditions as in Lemma 4.1, there exist A; = Xi(||Sol] |d]| )

i € {1,2,3}, non-decreasing on their arguments, so that
€< Aall€ll+Azllell4-As]|d]l-

Sketch of the proof. One can apply the Lipschitz property of functions f, g, v to get
1€ — €||< Ai]|€ — €||4+X2lle — &||4+-A3]|d — d|| where \;’s are functions of ||d||, and p. The
result then follows by applying Lemma 4.1. =

Remark 4.3 As Lemma 4.2 suggests, since the Lipschitz properties of functions f, g and

v are only local, the Lipschitz coefficients \; are bounded provided ||&||< oo, ||d||,, < 0.

Let us define
+ . \P B;
T; 1= sup {t e Ry AY(t, A2) < ?}

for i € {1,3} where By = ¢i0 — (¢3\)?/q, B = AN(uly — pP) — ¢3, ¢ = ca + Ny /p and

22p(p - 1)]7—1 %t _ Aop
Y(t, A2) = W(e%%l) —1)P 1(6 28t 1).
7 is then described by
7 = min{, 73} (4.9)

Later in Lemma 4.3 we will see that 7 > 0 is required to guarantee the isolation of triggering
instants for ETC system (4.4). Moreover, 7 (resp. 73) is the elapsed time since the most
recent triggering instant so that sampling error grows without violating stability (resp.

desired L2 bound) of the ETC system (4.4) (see the proof of Theorem 4.1).

Remark 4.4 To design A one has to consider the restriction of having a positive 7. T >
0 necessitates 11, T3 and hence By, B3 to be positive. This gives the restriction on A
as A < Egl(claq)% and X > cs(pfy — pP)~t. The later condition implies pg > p, i.e.,
the Ly-stability of ETC system (4.4) is achieved at the expense of a larger rejection level.
Howewver, to minimize pg, we may choose c3 small enough by scaling Lyapunov function Vs
in Assumption 4.1 (refer to example section for more details). Obviously, one has to replace

¢i, 1 € {1,2,3} by the corresponding scaled values in all of the discussions.
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4.3 Main Results
4.3.1 Uniform Isolation of Triggering Instants

One of the difficulties encountered in ETC systems is undesirable Zeno behaviour which
happens when an infinite number of triggerings occur over a finite interval. This is even
more challenging when the system of interest is exposed to exogenous disturbances or sensor
noise, since in this case the sampling error is also driven by the disturbance/noise. As an
example, while Zeno behavior is excluded in [9] for disturbance free systems, the same does
not necessarily hold in presence of disturbance (see [59] for further discussion).

In the present chapter, we show that under TC (4.5), the ETC system (4.4) satisfies the

following robust event-separation property defined in [59].

Definition 4.1 Let 7, = inf{tx41 — tx : k € K} be the MIET. ETC system (4.4) has the
robust semi-global event-separation property if there exists € € RY so that for any compact

set 2 C R, inf{7,, : & € E, ||d|| ., < €} > 0.

According to Definition 4.1, an ETC system has the robust semi-global event-separtion
property if the sequence of sampling times {t; : k € K} is a uniformly isolated set provided
that £ € Z and ||d||,, <€

Lemma 4.3 Under Assumptions 4.1, 4.2, 4.3 the ETC system (4.4) with ETM (4.5)-(4.9)

has the robust semi-global event-separation property. In detail,
Tm = min{7*(1), 7},

1 s 1
where m; = (Bl)p, mg = (@)”, k= max{%, 2%26} and

L In(_fitdex . KA 22
T*(X):{M—mu (H<1+m1%>) 7 (4.10)

mix = 22

A2(24+m1x)’ my

To prove Lemma 4.3 we report here two useful inequalities.

Lemma 4.4 For any p,q > 1 with % + % =1 and anyr >0

(@) [l +ylI"< 27" +2" [y "

zz/”x Hldr < /Hx )IPrar)? /Hy ]da

Proof of Lemma 4.3. Since any conservative TC than (4.5) gives rise to the lower bound

on MIET, we aim to modify (4.5) to find such a condition. To begin, we first make the use

93



of Proposition 4.1 which implies ¢1 > 0, ¢2(t) > 0 for t € [ty, ) and hence modify (4.5) as
p= k20 in this interval. Note that we will assume ter1 < {1 since otherwise 7,,, = 7 and the
event-separation property holds trivially. From the inequality given in the sketch of proof
of Lemma 4.2 with € = &, £ = 0, d = d, one can conclude ||g(&)(y(€ + &) — v(E))||< Aa]le]|

and hence modify condition ¢ = ko6 as
callelP+A2 [V Ve @) llllell= ero|[&]P+K2d.

Next from Lemma 4.4(ii) and Assumption 4.1(iii), we find condition c||e||P= B1||&|P+k20.

Finally in view of Lemma 4.4(i) which suggests

1 —_

By» (kb
(2 e+

1
P —
e < Bl +h
the desired modification of (4.5) is given by
2|le[= mal€]] + ma. (4.11)

Define x := 2||¢||/(m1]|&]| + m2), it can be concluded that
. X 2)i¢]| X
< (1+mg)( )= (1 mig) (e dax)
* 2/ N[l + ma '2 *
where Lemma 4.2 is used to obtain the last inequality. Therefore, 7" = ¢t — t; can be

obtained as in (4.10) by solving

X = (1 +m1§) <I€—|—)\2X)

from tj to t with x(tx) = 0. Event rule (4.11) suggests that triggering occurs when y = 1 and
is given by 41 = tx + 77(1). In addition, (4.10) implies that 7%(1) is strictly nonzero since
for £y € = and ||d||,, < €, Lemma 4.2 suggests that A1, A2, A3, and hence x are bounded.
The robust semi-global event-separation property is then obtained from definition of 7,

and positiveness of 7. m

4.3.2 Comparison with the Existing Strategies

In this subsection we study several popular existing ETMs that can be extracted as special
cases of (4.5)-(4.7b). We emphasize that the design criteria in these references is not the
same so our comparison is merely based on the structure of the TC with no reference to the
relative merits or performance in each design, simply because there seems to be no fair way
or value in such comparison. Moreover, since some of these works focus on output feedback,

in our comparisons we assume the measurable output to be the full state vector.
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Our proposed ETM is dynamic due to the existence of the dynamic variable ¢;. See
[13,28] for discussions regarding the effect of this variable. To the best of our knowledge, the
parameter ¢o has not been introduced before. Thus, we provide the following observations
regarding ¢s.

(i) The inter-event expansion that originates from ¢o can be quantified for a desired
period of time, or a desired number of trigger instants (see Section 3.3).

(ii) As shown in the examples provided in Chapter 3, ¢y serves to avoid redundant
samplings when the norm of state is close to 0. This is important since as a primary pitfall,
TCs based on the norm of the state tend to increase triggering as the state approaches the
origin.

(iii) The primary functionality of ¢9 is to exclude Zeno behaviour as suggested by the
proof of Lemma 4.3.

(iv) While the approach in the present article is considered purely event-based, an
appropriate choice of parameters in the dynamics of ¢, enables the TC (4.5) to capture the
time-regularization strategies.

We conclude this subsection by extracting several TCs proposed in the literature from
(4.5).

e [49] (Chapter 3): For k; = 0 and s = &, TC (4.5) reduces to the one proposed in [49].

In the rest of our comparisons we assume @3 = 0 in (4.6).

e [59]: For k; = 0 and x(t) = s, = §, = & we obtain ¢ = J. Hence, the TC becomes

(70(655) = k25
o [28]: Take ky = 0, (4.5), (4.7a) reduce to p(&,¢) = k11, 1 + a1(d1) = —¢.

e [58]: Taking ky = 0, k1 = oo and «a;(r) = 0 for any r reduce (4.5) to ¢1 = 0, where
o1(t) = — fti ©(&(s),e(s))ds, i.e., the integral-based TC.

e [9]: Substitute k1 = k2 = 0 in (4.5) one can extract the TC ¢ = 0.

e [19,20]: Define 3 = tj, + 7, where 7, = min{7*,7}. This guarantees no triggering
of the control task occurs over [ty, ;). Then, if we set ki = oo for t € [ty, tpr1), Wiyt
in (4.4) can be written in a time-regularization fashion as wy41 = inf{t € R : ¢ >

te+7m /\ ¢1 =0} where ¢; = —¢ by setting ko = 0 and o (r) = 0 for any 7 in (4.7a).

e [48]: Set k; = ko = 0 and follow similar lines as in comparison with [19,20], we get

g1 = Inf{t € Rt >ty + 1 A 9(E(1),£(t)) = 0},
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o [13]: Let k1 =0, ¢(t) = 0 for all t € R and §; = d)g(f,;). Choose s;, > 0 we have
¢2(t) > 0 for all ¢ > tyg. Then (4.5), (4.7a) reduce to pa(e) = —p1(§) + kada, where
b + ag(¢2) = 0. In this case, ¢y plays the role of threshold variable defined in [13].
However, unlike the present work where ¢o appears in the TC as a positive term that
is added to some functions of state’s norm, in [13], the admissible measurement error

is bounded by the maximum of these two.

4.3.3 L,-Gain Performance
We start with a useful lemma which is an application of Lemma 4.2.

Lemma 4.5 Let a = \[(7, X2), b = MNo(7, A2). Then

[ le@irar <o [Clenirar <o [ jarar (4.12)

tg 173

Proof. We first define the notations below:

I(z) = / "M a(r)dr, Q(s) = ( / Fe T

ty

S xgp S
J(m):/ ez 7|z () ||Pdr, P(s):/ e™s (7th) s,
ty

tg
From definition of € and Lemma 4.2 we have

dllell _ e
S El= gl Aligl+Azllell+Asdll,

solving which for £(tx) = 0 and s > ¢ gives ||e(s)||< MZ(§) + A3Z(d). Then from Lemma

4.4(i) we conclude
le(s)[IP< 2°(MZP () + AT7(d)) < 2PQ(s)(M[ T (§) + 5T (d))

where the last inequality is obtained using Lemma 4.4(ii). It is then straight forward to
check that for ¢ > ty, fttk J(&)ds <P(t) fti |€(7)|[PdT and hence conclude
t t
le(s)|[Pds <27 [ Q(s)(MT(§) + A5 T (d))ds
173

(21

t t
<27QMP(H)(N [ IE()|IPdr + /\§/ [d(7)[[PdT).
tr tr
The proof is then complete taking ¢ = #;, since ¥(7, o) = 2P Q(i1)P(i1). =

Remark 4.5 In view of the definition of a, b and 7, one can verify that a < N1 (71, A2),
b < Mp(73, A2). Also from definition of 11, T3 we conclude ac < By, be < Bs; inequalities

that will be used later in the proof of main results.
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Next theorem states our primary result where the finite gain £,-stability of continuous-
time system (4.3) is shown to be preserved under the event-based execution of control task.

Compared to [20,48], our result relies on a less conservative set of assumptions.

Theorem 4.1 Under Assumptions 4.1, 4.2, 4.3 and ETM (4.5)-(4.9) the ETC system
(4.4) is finite gain Ly-stable with Ly-gain < pg. In addition, the origin & = 0 is globally
asymptotically stable.

Proof. For t € [ty, 1), Assumption 4.1(ii) suggests

Ve(§) < pPlld][P=[2]P+VVe(§) - g()(v(€ + ) — () (4.13)

which further reduces to

Ve(€) < pPlldlP = [lz[P+A2lV V()] [le]

by applying ||g(&)(v(€ +¢) —v(§))||< Az|le]| (that is already proven in the proof of Lemma
4.3). Thus, from Lemma 4.4(ii) and Assumption 4.1(iii), we get

)

’ Aqég P )‘g P D[ 7P P
Veace) = €117 +== [lel[P+AuP[|d][P = Al| =[P
q p

As a consequence, for V(§) = V(&) + Ve A(€) it follows from Assumption 4.1, (4.12) and
(4.13) that

V(i) — V(E(t) < —(c1 — 23 ~ ac) / ()P

ty

tAk ty
s +es+0) [ d@IPar = [ par

tk 2%

fk ty
< [ mipar - [ empar,

tg ty

where the last inequality follows from Remark 4.5. For ¢ € [ty, ¢4 1) one can apply the TC

(4.5) to calculate an upper bound on V as
V(€) < —er(1 = o) €IP+O? + e3)[d][P =N [P +kagz — b1

where —aq(¢1) term is eliminated from the right hand side since ¢ is non-negative. It then

follows that

V(€) < MaglldlP =Nz [P +-k20y, — o1
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and hence
. tet+1
V(&(tk+1)) — V(&) < /\Mg/z |d(r)|[PdT

tri1 tot1
—/\/ ]z(r)”pdr—i-kg/ Ok(T)dT + 7.

123 ty

Therefore, we may conclude

V(E(tisn)) — VIE®R) < M / T d()pdr

tret1 tot1
—/\/ ]z(r)”pdr—i-kg/ Or(T)dT + T

Lk ty

Apply this inequality to the sampling intervals until ¢ > tg, the positive definiteness of V'

can be employed to write
t t
1
[z(7)[[PdT < MZ/ ld(r)|[Pdr + < (k201 + 03 + V(&o))-
to to

This proves Ly-stability of ETC system (4.4) with £,-gain < p4. To show asymptotic
stability, let d = 0. Using a similar process as we prove of £,-stability, it can be shown then

suggests that for any for A =0, any t > g,
t
Vi(€(t) < —ai(l —o) [ [I§(T)IPdT + kb + 03 + Vi(&o)-
to

This proves the ultimate boundedness of trajectories of system (4.4). However, global
asymptotic stability is postponed to show that for any ¢ € RT there exists some § € RT
such that if [|£o]|< 6, [|£(1)||< € for all ¢ > tp and lim; o0 &(t) = 0. This is achieved by
redefining 0y (t) (resp. 7x) as AoVis(£0)dk(t) (vesp. AoVs(&o)7y) for some \g € RT. Thus by

choosing

_ Vs(e€)
o= 1
Vo (e )

for a given €, we have
t
Vs(€(t) < —cr(L =) [ [IE(n)[[PdT + Vi(e),
to

i.e., ||€(t)]|< € for all t > tg. Convergence of £ to zero is easy to show, thus the details are

left to the interested readers. m

4.3.4 Inter-Event Time Enlargement

In the sequel, we present an important feature of TC (4.5) on extending inter-event times.

For this purpose, we define

Tras = max{7" : p,x € Rar},
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which in view of the following theorem, upperbounds the new extended inter-event times.
Note that in this definition 7* is assumed to be a function of p and x, a fact suggested by

(4.10) and dependence of \;, i € {1,2,3} on p (that is defined in Lemma 4.1).

Theorem 4.2 For any T° € RY and 7° € [0,7.,4.], @ in (4.7b) can be designed in a way
that T, > 7° at least fort < T°.

Proof. To find a lower bound on inter-event times, let us restrict the TC (4.5) to ¢(&,¢e) =
koo by taking k1 = 0. Recalling the proof of Lemma 4.3 where the triggering happens
when y = 1, our goal here is to design ¢ so that the triggering occurs for some x > 1. Note

that 7%

max

> 7*(1) by definition. Due to continuity of 7* in (4.10), for any 7° € [0, 7, .| one
can find x° (obviously > 1) so that 7° = 7*(x°). It only remains to choose the TC such
that x > x° at sampling instants. With the same notation as in Lemma 4.3, let 6* := x*2§
where x* = x° 4+ [1p(x° —1). We redefine ¢ in (4.7b) as
{aQ(a*), te0,T°),

0, elsewhere.
This implies ¢o(t) = 6* for t € [0,7°). Then following similar lines as we derived (4.11),
the lower bound on the inter-event times can be calculated by assuming the TC

2|lell= mallll 4+ x mea.

From definition of x given in the proof of Lemma 4.3 it is easy to verify that

_ mall€][+xTme S Lo
ma||&|[4+me

at triggering instants and hence inter-event times are lower bounded by 7° for t < 7T°. =

Remark 4.6 Theorem 4.2 explores one of the advantages of our proposed strategy where
the inter-event times are extended to 7° fort € [0,7°]. The numerical example in section
3.4 suggests that the average sampling time is also improved in this interval. Note that while
the results are not explicitly applicable to t > T°, numerical examples in Chapter 3 verify

the efficiency of this technique for all t > ty.

4.4 Example

4.4.1 System Model

Consider the system (4.3) with £ = [¢; &]T and

red =Ly 1a) 90=(1). nea=a.
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u(t) = v(&(t)) = —&2(t)). The piecewise linear function H : R — R is given by: H(r) = 2r
for [r|< h*, H(r) = h*+r forr > h* and H(r) = —h*+r for r < —h*, some h* € R for some
non-negative h*. Note that H satisfies r> < rH(r) < 2r? for any r € R. In the following, we
study the finite gain Ls-stability this system under event-based implementation of control

law.

4.4.2 Verification of Assumption 4.1

Taking Vi (&) = ST PE+ 2vy [5V H(r)dr, P = [1 1;1 2], it is straight forward to see that

item (i) holds for ¢; = %+, ¢z = c3 = 5v1 (see Example 3.2 for an in-depth analysis). We

remark that v; is the scaling factor discussed in Remark 4.4. To show item (ii), we start

with -Vi(€) = —&H(&)— &+ (& +28)d < —(1—nm)& — (1—ng) &G+ (g + 5 )d? = (&1 —

4ny

%)2 —na(& — %)2 for some positive nj, na. Choosing V.(z) = m%(x) yields V,(z) <
|2]2—p?|d|? where p? = lan (ﬁ + 7712) The minimum value of p is 4.49 and is obtained for

n1 = 1, ng = 0.47. Note that one may find a less conservative bound from a more suitable

choice of V.. Finally, it is easy to see that item (iii) holds for ¢ = % Amae([5 151 2]),

1
1—no

Cy = mél and ¢3 = (||P]|+4), where Mgz (+) stands for the maximum eignevalue

of a desired real matrix.
4.4.3 Triggering Condition

Our design criteria is to guarantee pg < 5. For this purpose, we consider here two scenarios

for 0y in (4.7b):
1 _ —oit 2 — —[Z
5k(t) D1€ ) 5k(t) DQTL n ’ﬁ,—"

where Dy = 10, Dy = 2, o1 = 0.05, 02 = 3, 7 = 10. Also, we consider a;(r) = ag(r) = r in
(4.7a). To cover all strategies discussed in Section 4.3.2, we categorize our analysis into six
possible cases, depending on the values of the parameters kq, ks, 5;, 5,%.

case: (i) (ii) (iii) (iv) (v) (vi)

(klka) (171) (171) (170) (071) (071) (070)
O o} 52 n/a 5 52 n/a

Cases (i), (ii) are the general dynamic triggering scenarios with both ¢1, ¢ effective in
condition (4.5). The role of ¢1 (resp. ¢2) is studied in case (iii) (resp. cases (iv), (v)). Also,
case (vi) results in static TC since both ¢1, ¢2 are absent.

It is not difficult to verify A\; = 3, Ao = A3 = 1 in Lemma 4.2. Therefore, we may choose

A =4.7x1073 vy = 3.6 x 1073 (which satisfy the required bounds on A given in Remark
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4.4) and obtain 7 = 8.9 x 1073 from (4.9). Finally, we take § = 10, ry = 0, 7 = ¢1(f,),
sk = 12.5.

4.4.4 Numerical Simulation

Signal d(t) follows a zero mean Gaussian distribution with variance 1 over ¢ € [0,100) and
zero everywhere else. We also take h* = 0.3 and run the simulation for 100 initial conditions
uniformly distributed in a circle of radius 1 over 100 seconds and finally average the results.

The plots are provided for initial condition & = (sin(F), cos(5)).

2 \

Continuous-time system

Case (i)

t (sec)
Figure 4.1: Verification of Lo-gain.

++ Continuous—time system
Case (i)

Case (ii)
Case (iii)
Case (iv)
Case (v)
Case (vi)

S

Actuator signal

L L

_06 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
t (sec)

Figure 4.2: Actuator signal at the triggering instants

Table 4.1: Comparison of different scenarios.

case: G) ) @) @(v) (v) (v
N 3.24  3.25 12.9 4.34 4.72 18.7
Ton % 102 22.3 14.2 3.3 22.6 14.8 1.8

Table 4.1 illustrates the number of triggerings (N) and MIET (7,,,) for different scenarios.
Note that the valus of 7, are in msec. Comparing different cases, it is clear that both ¢

and ¢9 improve transmission rate, however, when ks is non-zero, the number of samples
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and 7, improve more significantly. This implies the effectiveness of parameter ¢o compared
to the ¢1. This example suggests that when the trajectories of open-loop ETC system are
either converging to the origin or staying bounded, since € remains bounded, an appropriate
choice of § and 6, in ¢o avoid unnecessary samplings effectively.

We remark that, suggested by Table 4.1, the value of 7, is much greater than 7; an
important feature of our design compared to time-regularization method. In fact, contrary
to our approach, time-regularization TC often result in periodic samplings (7 in the case of

our design) whenever state is near origin.

4.5 Summary

This chapter introduces a framework for TC design. Although the proposed structure is
originally stated for £, performance, the approach can be applied to different ETC system
problems. Our design introduces several design variables, used for different purposes and we
have shown that by proper selection of these variables, several existing TC proposed in the
recent literature can be extracted. Also the triggering instants are shown to be uniformly
isolated in presence of exogenous disturbance or sensor noise.

Our main contribution is the proposed ETM based on two dynamic variables ¢ and
¢2. Indeed, ¢; has a role similar to the one introduced in [28] and is intended to enlarge
inter-event times. ¢9, on the other hand, is also used to extend the inter-event times, but
has the critical roles of (i) enabling us to analytically predict the increase of inter-event

times for a desired period of time, and, more importantly, (ii) excluding Zeno behaviour.
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Chapter 5

Robust Analysis of Affine
Nonlinear Systems Under Network
Constraints

5.1 Problem Setup

In this chapter we consider the following nonlinear system

{a'c = &(2) + &u(@)u + &y (@), 5.1)
2 =g () + nu(x)u + Ny (x)w.

where z € R"™ represents the state, u € R™ the control input, w € £ the exogenous distur-
bance and z € RP the measured output. Also &, &u, &w, My T, Tw are smooth mappings. We
assume that system (5.1) starts off the initial condition zg at time ¢ty = 0, i.e., 29 = z(0).
The control signal is sampled at the triggering instants ty, ¢ € Z>o and is held constant
between samples using a zero-order hold device. For simplicity, we assuming full state in-
formation and consider a state feedback law. This assumption limits the generality of the

results but it is analytically convenience. Therefore, using the smooth state feedback law

u = «a(x), the actuator signal is
u(t) = a(z(ty)), t € [te,ter). (5.2)

In contrast to time-triggered scheme, the updating control instants are by no means specified
a priori. Instead, the system makes autonomous decisions using a triggering module through
continuous monitoring of system’s state. This triggering condition, however, has to be
designed in accordance to the desired design requirements. Also, to simplify the analysis,
we assume that the control task is executed without delay and data dropouts immediately
following the update by the triggering module. Interested readers are referred to [9], [16] to

see how to deal with these practical considerations. Indeed, as shown by these references,
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there is a tradeoff between the maximum tolerable delay/maximum allowable number of
successive data dropouts and the size of broadcast intervals (ts, tsy1).

To make use of the theory of continuous time signals, we state the sampled signal u
in terms of the actuation error, defined as the difference between the current and the last
executed control signals, i.e., e(t) := a(x(ty)) — a(xz(t)), t € [ts,ts+1). Then the actuator
signal is u(t) = a(x(t)) + £(t) and £ can be treated as an exogenous signal applied to the

system. Therefore, (5.1) reduces to

(5.3)

. { = folw, @) + &ul2)e + Eul@)w,
2 = ho(w, @) + nu(2)e + muw(z)w,

where fo(z,a) = &(z) + &u(x)a, ho(z,a) = ne(z) + nu(z)a. For the sake of brevity,
throughout the rest of this paper we adopt the notation f(z,a,w,e) = fo(z, a) + &, (z)e +
Ew(x)w and h(z,a,w,e) = ho(x, a) + ny(x)e + nw(z)w. We assume that the function o
satisfies fp(0,@(0)) = 0 and ho(0, «(0)) = 0 implying that the feedback control law u = «(x)

renders the origin = 0 of following unperturbed closed loop system
= fo(x,a), z=ho(z,a) (5.4)

stable. Critical to any event-triggered control design is the uniform isolation of triggering
instants, known as the event separation principle [59]. Therefore, for a set of triggering
instants to be admissible, its elements must be isolated according to the following definition

(see [66]):

Definition 5.1 (Uniform isolation of triggering instants) The sequence of triggering
instants {tg}gez>0 is said to be uniformly isolated if and only if there exists T,, € R<g so

that for any j,0 € Z>o, j # £ we have |t; — tj|> 7.

The minimum inter-event time is then defined as the largest possible 7, in Definition 5.1.

The desired robustness criteria is provided in the next definition, [5].

Definition 5.2 (Robust £y gain property) The system (5.1) is said to be finite gain
Lo-stable with Lo gain <y for some positive vy provided that there exist i > 0 and bias term

i > 0 such that the quadratic cost function

J(w,z) = |z

0417 = V2 wljo.q]” (5.5)

satisfes J(w, z) < p(zo) + i for any xo € R, any t € R>¢ and any w € L.
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In this paper we first aim to provide sufficient conditions for a given controller to be
ISS stabilizing w.r.t. actuation error and disturbance. Then we exploit the generalized
versions of these conditions to design an event-triggered controller for the system P defined
in (5.3) following both emulation and joint design approaches, where the resulting event-

based system is restricted to
e meet the desired robust £y gain property (5.5),
while also

e ensuring the uniform isolation of sampling instants in presence of arbitrary distur-

bances.

5.2 Sufficient condition for input-to-state stability

The majority of the literature on robust analysis of event-triggered systems takes the input-
to-state stability as a primary assumption. Checking the existence of an ISS stabilizing
controller for systems of type (5.3) is not difficult. Indeed, as shown in [72] for the input-
affine structure, global asymptotic stabilizability in absence of inputs implies global input-
to-state stabilizability. In the realm of event-triggered control, this is interpreted as if
the unperturbed model (5.4) can be stabilized in the sense of Lyapunov, then there exists
an state feedback a(z) which renders the system P in (5.3) actuation error-to-state and
disturbance-to-state stable. However, finding an ISS stabilizing a(x) is non-trivial and
challenging in general. For example, consider P with &, = 0, £, = 1 and &, = 22. It is
obvious that while P is not ISS w.r.t. € and w for any linear choice of a(x) = —cz, the ISS
property holds when nonlinearities of higher order than £, are added to the control law,
e.g., a(x) = —c1x — cax®. This simple example motivates the necessity of finding sufficient
condition(s) to filter a proposed controller to be ISS stabilizing. In other words, while the
result of [72] serves as a necessary condition for the existence of an ISS stabilizing controller
for P, sufficient condition(s) are still required to check whether a given controller is ISS

stabilizing or not. To derive results the following assumptions are required:

(A1) There exist vy, 7w € Rso such that

(i) Ru(z) =72l =y (z)nu(@) >0,

(i) Ru(x) = 721 — gl (2)nu(z) > 0.
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(A2) There exist a Lyapunov function V, class-K, functions 3 ,3 and a locally Lipschitz

function « such that!

Blz) < V(x) < B(x) (5.6)

and the following NMI hold for all x € R™ \ {0}

Vi fo(x, ) + Jlho(, 0)|?

L (@)Ve + np (2)ho(z,0) —Ry  * %
éﬁl(x)vx + 0l (x)ho(z,a) 0 <0. (5.7)
0

¢(x)

According to the next theorem, any controller @ that is obtained from (5.7) captures

the ISS property for P.

Theorem 5.1 Suppose that assumptions (A1), (A2) hold for some ¢ € Koo and nln, =
0. Then « renders the system P defined in (5.8) ISS w.r.t. actuation error and input

disturbance.

Proof. For the sake of brevity, we shall adopt the notation:
62 = B (@) GEL()Va + ] (2ol )
b = R @) (G0 Vs (@) oz, ).
Using Schur complement argument, we have that (5.7) holds if and only if
V. fol@, a)+Hlho(z, a) [P+ @&, +dzl R, +6*(z) <0 (5.8)
for all z € R™. Now from 17, = 0 it can be checked that
nauel 31420, ngmue) + € ng e < vallel”

Hence by adding the last two inequalities and using the completion of squares we conclude

that

Vfo(x,a,w,e) + ||h(.1‘, Oé,w,6)”2—"}’,3}||’IUH2+||€—(362HRu

+ [l — @ — Ry ek, < villel? =% (). (5.9)

As a result, we have V. f(z, a, w, ) < —¢%(x) +~2||e]|?>+72 ||w||? which implies V is an ISS

Lyapunov function. Thus, P is ISS w.r.t. actutor error and exogenous disturbance, [5]. =

!Condition (5.6) implies that V is positive definite and radially unbounded.
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Several observations are in order. As suggested by (5.9), the set of control laws «
obtained from Theorem 5.1 are not only input-to-state stabilizing but also guarantees Lo
gain property (5.5). Condition 1/7, = 0 and assumption (A1) are borrowed from [73]
and is intended to simplify the analysis. Relaxing these assumptions, however, requires
more involved mathematical manipulations and possibly additional conditions and hence
is left as a follow-up work. Condition 17, = 0 implies that there is no coupling between
exogenous and control inputs, however, it is not essential for our main results on the event-
triggered control design and will be relaxed in the next section. In addition, assumption
(A1) states that the control and disturbance weight matrices are norm bounded. When
17u()]| 00, ||7w(2)||co are bounded for all z € R™, where the co-norm of a matrix is defined
as the maximum absolute row sum of the matrix, assumption (A1) can always be satisfied
by choosing v, V. sufficiently large. A linear counterpart of this assumption can also be
found in [74]. We also have the following connection between the result of Theorem 5.1
and [72]. As shown in Section 5.3.1, global asymptotic stability of unperturbed system
(5.4) is guaranteed under assumptions (A1), (A2). Thus, [72] suggests the existence of
an ISS stabilizing controller and Theorem 5.1 provides sufficient conditions to characterize

such a controller.

5.2.1 Robustness with respect to sensor measurement error

As defined in (5.3), our system is expressed in terms of the actuation error. An alternative
is to employ the sensor measurement error, e(t) := x(tg) — x(t), t € [tg,to41), to design the
event-triggered rule. Using the sensor error has the advantage that no additional processing
time is required to calculate €(¢). However, doing so presents a fundamental problem:
indeed, it was shown in reference [75] that the ISS result of [72] fails to hold when the
input in the ISS condition is with sensor noise/error. Indeed, this reference shows via a
counter example, that ISS is used w.r.t. the sensor errors there is the possibility of having
a finite scape time. Additionally, to the best of our knowledge, there exist no general
sufficient condition for input-to-state stability of general nonlinear structures w.r.t. sensor
noise. Thus, the use of the input-to-state stability w.r.t. sensor error in [9] and related
works should be seen as a primitive assumption, but a more elaborate solution is clearly
imperative. It is worth remarking that when « is designed to be a globally Lipschitz function

of its arguments, then Theorem 5.1 ensures the ISS property w.r.t. sensor noise as well.
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5.3 Event-triggered design for robust stability

In this section, we study the L2 gain stability of system (5.3) under event-triggered com-
munications following two separate scenarios, namely, emulation and joint design. In the
emulation approach, we begin by designing a continuous-time controller that stabilize the
system in satisfies an Lo gain performance condition. The event condition is designed after-
wards to retain stability and with minimal deterioration of the Lo gain performance. This
is referred to as emulation approach. The emulation approach is effective and relatively
simple in the sense that breaks down the complexity of original event-based control design
into two simple stages. However, as suggested by [30], since the control law is originally
designed for the network-free problem, the performance level in presence of a network may
not necessarily be optimal. This motivates the more challenging joint design approach,

where controller and triggering conditions are designed simultaneously.

5.3.1 Joint design method

As mentioned earlier, in the joint design approach the event condition is designed together
with the control law to achieve a desired Lo gain bound. Since the controller is designed
directly based on commuincation constraint requirements, the resulting event-based sys-
tem is expected to enjoy an improved performance compared to emulation approach. To
proceed with the event-based control design, we need the following generalized versions of
assumptions (A1), (A2), in which the positive definiteness assumption on R, (x) is relaxed

whenever ¥, (z) := 1, (2)n.(z) > 0.
(A3) There exist vy, Y € Rsg such that

(i) Ru(xz) >0V Xu(x) >0,
(ii) Ry(z)>0.

(A4) There exist a Lyapunov function V, class-K., functions j3, B, a locally Lipschitz o
and some invertible ¢ with ¢(0) = 0 and locally Lipschitz inverse ¢! such that (5.6)
holds and

e when ¥, (z) > 0 the following holds for all x € R™\ {0}

Vwa()(l‘,Oé)—f— ||h0(l‘,0&)”2 *
S0 @)V +ni(w)ho(w,0) —Ry  * | <0, (5.10)
o(x) 0 I

e otherwise (5.7) holds for all z € R™\ {0}.
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We now state the main result of this section.

Theorem 5.2 (Event-triggered robustness) Suppose that assumptions (A3), (A4) hold.
The triggering rule can be designed for system P so that

e the triggering times are uniformly isolated for any bounded xy and w,
and the resulting event-based system is:

o Lo-stable with Lo gain < g for some Vg > Yo,

o asymptotically stable.
In detail, once (5.7) or (5.10) is solved for V', o, vy, Y, ¢, the triggering condition is given
by

p(e) + || fs+2(@, nynue) < @ (1), (5.11)

where
ole) = le — @, —llalls,,, when Bu(z) >0,
2lell?, otherwise,

o1, tp<t<ty+7,

) (5.12)
52(t), tr+7<t< tg_H,

O(z,t) = ¢ () + {
and 62(t) < min{dze=% (1 — ¢)p?(x(t))}, for some 61, 03,04, 7 € Rug, 0 < < 1 and

& = 27 @) (G @)V + ] (@)hoa, ).

The role of constant term 47 in (5.12) is to avoid the possible accumulation of sampling
instants as discussed in details in [59]. Indeed, in this reference this is carried out at the
price of obtaining a practical stability performance for the resulting system. Here, we follow
the approach of [66] to avoid such a weak conclusion by restricting d; to be effective only
for periods of length 7. Therefore, 7 has to be designed carefully so that Lo gain stability of
system P under triggering condition (5.11) is not violated during the interval [ty, t,+ 7). In
this sense, parameter 7 has the role of dwell-time concept in time-regularization approach
but in a generalized way since the actuator is allowed to trigger during the interval [t,, t,+7),
hence better system performance may be attained. On the other hand, ds is a time varying
parameter intended to enlarge the broadcast intervals without violating the stability goals
defined in Section 5.1. As shown in [66, 76, 77|, another role of dy is to turn practical
stability results obtained under constant triggering threshold into asymptotic stability. To
prove Theorem 5.2 we need the following boundedness result, whose proof is provided in

the sequel.
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Lemma 5.1 The trajectores x of system P are bounded by some functions of ||xo|| and

0] oo

Proof of Theorem 5.2. We first provide a methodology for designing 7. For other
parameters d1, 03, §4 any positive choices are admissible. The design of 7 consists of finding
the maximum possible 7 such that the Lo stability of P with the desired performance level
is not violated over [ty t; + 7). Under the assumption on smoothness of the mappings in
(5.1), Lemma 5.1 implies the existence of some a,b functions of ||zg||, |w|e so that the
LHS of (5.11) can be upper bounded by al|||?>+b]|e]|[|z]|. We continue by finding an upper
bound on the norm of actuation error. Since ||£(¢)||< Ag||Z(2)]], from (5.3) and smoothness of
&, u, Ew, @, we conclude that there exists I1, I, I3 € RT such that [|€]|< l1]|z||+2||e]|+13]|w]]-
It is then not difficult to show that

2 . 2 . 2
”E|[tg,t[+ﬂ|| SLl(T)HJU\[tg,tHﬂH +L2(T)Hw‘[tg,te+ﬂH

for some L1, Ly € K. Using Lemma 5.1 it holds that [1, l2, I3, L1, Lo are in general functions

of ||xo|| and |w|. Therefore, if one choose the maximum possible 7 so that
b
(a+be)La(7) + - < 22 Na+be)La(3) < vi =7

for some ¢ € R*, it is not difficult to verify that integral from ¢, to t, + 7 of LHS of (5.11)
is upper bounded by [|¢lf, 4,44 12+ (72 —12) 0] (t,¢04+4] |? and hence in view of assumption

(A4), it can be checked that

V(@ (te+#) =V (@(te)) S VElwlie 007 =12y 10001 (5.13)

Part one: Without loss of generality we will assume 7,,, < 7 since otherwise one can simply
choose 7,,, = 7. The previous discussion leads us to the fact that the inter sampling intervals
obtained from triggering condition (5.11) are lower bounded by those obtained from condi-
tion a||6||2+b||»3||||:)3H—)\(;,21 |z||?= 61. Similarly, the lower bound on the triggering instants

of this condition is in turn obtained from ||e||= o1||z|+c2 where

4ar7? — b3\ L 1
=5 ((Fe=) ) = ()

where ¢ > b? )\35,1 /4a is an arbitrary constant. Now let x := ||¢||/d, we can apply Lemma 5.1
to conclude there exists some L such that x < L/d. Since x = 1 at the triggering instants,
we obtain 7 > §/L.
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Part two: To prove Ly stability, we first need to extend (5.13) to t € [t; + 7,ts41). In this

interval, by applying Schur complement to (5.10) we obtain
V' fola, @) + [[ho(z, @) | +]|@]R, +6° () <0 (5.14)
for all x € R™, which by adding to triggering condition (5.11) gives
V! folx, @) + [[ho(z, @) |*+le — anl3, —[ldalff, +l@l %,
+ el Gy 4200, ) < —(1 = <)¢*(2) + 02(1).
Then by completion of squares it is straight forward to conclude
Vi (@, ey w,e) + [Pz, a,w, ) [P =y [lw][*+lw — @ — Ry ngmel| %, < 0. (5.15)
Therefore, we get
V(z(t) < villw®) >~z (5.16)
and consequently
V(@(tes1)) =V (@(te+7)) < vallwliey 20 17 = 12140 1
adding which to (5.13) gives
V(a(tern)) = V(@) < valwlipeI” = 12t I

Thus by applying this procedure to the triggering intervals until time ¢, it is obvious that
the system P is Lo stable with a gain of < ~,.

Part three: Using Schur complement, (5.10) reduces to (5.14) for all t € Rq. Let us denote
the LHS of (5.14) by A. Then (5.14) is translated as A < 0. Then if instead of A < 0 we
start from the trivial inequality A < A, it is easy to check that instead of (5.16) we will end
up with

V(a(t) < villw@)|*~ll=() [ +A. (5.17)

Now setting w = 0 we have V. f(z,a,0,¢e) < —||h(z, a,0,¢)||>+A. Since for all z € R™\ {0}
we have A < 0 from (5.10), V.7 f(z,,0,¢) = 0 holds if and only if z = 0. m
Sketch of proof of lemma 5.1.  While (5.15) is only valid for the interval ¢ €

[t¢ + 7,ts11), we can apply similar process to conclude that for any ¢t € RT we have

VI f (2, a,w,€) + [lh(z, 0, w, €)= ]

+Hlw — b — Ry'ninuelr,< —(1 — <)¢*(x) + 6,
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where 0 := max{|d1|,|d3|}. Therefore, assuming d1,d3 to be selected as the functions of
||, we conclude that V(z) < §(||zol|) + 73 |w|%—(1 — ¢)¢*(z). Hence V < 0 for 2 € R"
such that ¢?(x) > 17—_3(|w\go+%_§5(”:100||). The rest of the proof is straight forward and left

to the readers. m

5.3.2 Discussion on Theorem 5.2

We conclude several observations without proof.

e Conditions of Theorem 5.2: If conditions (5.7), (5.10) are satisfied as non-strict in-
equalities, then Theorem 5.2 holds if we assume the system P in (5.3) to be zero-state

detectable, i.e., for w =0, and all z € R", h(z,a,0,¢) = 0 implies x(t) — 0 as t — oo.

e Triggering condition: To simplify our presentation and avoid unnecessary complexity,
condition (5.11) is stated in static framework due to the triggering parameters all being
static. A more complex dynamic structure for the event design does not affect our main
findings. In essence, a generalization to the dynamic case is not difficult and can be

attained following the method discussed in [66].

e Computational costs: First, to check the triggering condition (5.11), V', o, 74, 7 and
¢ are obtained by solving (5.7) or (5.10) offline. Thus, the triggering condition can be
checked on-line with less computational effort. Second, the local Lipschitz-continuity of
¢! can be easily expressed in terms of linear matrix inequalities on ¢. Third, when the
functions &, (z) and 7, (x) are also affine in the state x, i.e., &, (z) = A(x)x, n.(x) = C(z)z
and state feedback controller is assumed to be of the form v = K(z)z, the resulting NMIs
(5.7), (5.10) can enjoy computational advantages. Indeed, in the numerical example we
show that for affine functions A(x)z and C(z)z, even the exact solution of NMIs (5.7),
(5.10) can be obtained after some careful manipulations. We refer the interested readers
to [78] for a detailed discussions on numerical solutions of NMIs using different algorithms

such as finite element and finite difference methods.

5.3.3 Emulation design method

The majority of the work on event-triggered systems, up to date, follows the emulation
approach which consists of first designing a controller for a continuous-time system based
on a desired criteria for stability performance and then designing a triggering condition to

recover similar performance under event-based implementations. To analyze the Lo gain
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performance of the network-free version of system (5.3):

Py - {x = fo(@, @) + Lu(@)w, (5.18)

z = ho(z, ) + ny(z)w.
One may think of applying Theorem 5.2 since faster sampling (in the limit, continuous
sampling) does not deteriorate the disturbance rejection performance level of the system.
However, it is reasonable to expect that the bound obtained from Theorem 5.2 is conser-

vative when applied for network-free analysis. Therefore, we recall the following theorem

from [78].

Theorem 5.3 (Network-free robustness) Let assumption (A3)-(ii) holds. Then the
closed loop system (5.18) is finite gain Lo-stable with Lo gain < ,, if there exists a Lyapunov
function V', control law o and positive ~y,, such that for all x € R™\ {0}

V. fo(z, @) + ||ho(z, o) |2 .
<§€£(O$)Vx + mTU(xO)ho(x, a) - Rw@;)) <0. (5.19)

Remark 5.1 Similar to the discussion carried out in Section 5.3.2, if we assume Py to
be zero-state detectable, then (5.19) can be stated as a non-strict inequality. In this case,
one may wonder whether (5.19), which implies Lo stability of P, together with zero-state
detectability implies ISS w.r.t. w. However, while this is a well-known result for linear
systems, the ISS condition for nonlinear system is a consequence of the Lo stability and

input-output-to-state stability (I0SS), which is a generalization of zero-state detectability,
[72].

Theorem 5.3 provides sufficient conditions for the Hamiltonian function
H(z,p,o,w) =p' &+ J(a,w) (5.20)

to be less than zero for all x € R™ \ {0}. An interesting aspect of the network-free model
(5.18) is that we can state the sufficient conditions for H < 0 only in terms of V. The
results here constitute a mild extention of the seminal papers [73,78-80]. Similar to above
mentioned works, our approach is framed in the context of differential games. Differential
games played a major role in the solution of the H., problem in the 1990s, starting with
the fundamental works [61,81]. In this context, the problem of designing a controller to
minimize the upper bound of the £, gain of a nonlinear system can be interpreted as a zero-
sum, two-player differential game with quadratic cost (5.5). In this game the minimizing
(respectively, maximizing) player controls the control law u (respectively, disturbance w).
Then the problem of upper bounding the Lo gain of Py reduces to finding the best strategy

for each players. The above observations are then evidenced in the following theorem.
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Theorem 5.4 Let assumption (A1)-(ii) holds. The closed loop system (5.18) is finite gain
Lo-stable with Lo gain < 7, if there exists a Lyapunov function V and positive 7y, such

that for all xz € R™ \ {0}
H(x, Vg, a*,w") <0 (5.21)

where o, w* are the best strategies defined as

(a*) B —IM™IN, M1 ezists, (5.2)
w* ) —%MTN +UTcol(0,q), otherwise, '
(e i _ (Ve + 200,
M = T 2 ’ - T T
* Mo — ’YwI é.wvfﬂ + anniﬂ

and UTSU is the singular value decomposition of M and q is an arbitrary vector in R™T4="

with 7 = rank(M).

Proof. Let the Hamiltonian function H defined in (5.20) be associated with the dif-
ferential game, where the derivatives are along the trajectories of the system (5.18). Note
that when 77, = 0, the function H coincides with the one defined in [80]. The best
play corresponds to the saddle point (o*, w*) satisfying H (z,p, o™, w) < H(z,p,a*, w*) <
H(z,p,a,w*) and obained through (H,, Hy)(a*, w*) = (0,0). Consider

-

-
B s [« e e
Ao = .6+l () 3 (8) +(3)
then we can find o, w* from 2Mcol(a*, w*) + N = 0 and thus (5.22) is obtained. Conse-
quently, (5.21) can be obtained through

H(x,p, a*,w*) = <pa §2>+||77$‘|2_H(M7 N)

where

LT -1 1 s

sN'"M— N, M t

O N) =38 o
N MTN, otherwise.
Clearly, when M is invertible, o and w* are uniquely obtained from (5.22). Also note

that the off-diagonal terms in the matrix M are the penalty terms introduced to compensate
for the coupling of o and w. When such a coupling doesn’t exist, i.e., 1, 7, = 0, the saddle

points reduce to

1
w'= = By (@) (5860 Vatiune), (5.23)
*__ —251(551‘/3:4‘7711—77:5), Yu(z) >0, (5.24)
B —EL(%SJVI—{-UJnx)—I—UTCOI(O,q), otherwise, '
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where UTSU is a singular value decomposition of ¥, and ¢ is an arbitrary vector in R™~*
with s = rank(X,). We remark that (5.23), (5.24) coincides with the results of [80] when
Yu(z) > 0. However, the discussion above is more general than [80] since it includes non-
invertible ¥, and the couplings of «, and w. Moreover, the obtained w*, a* in (5.23),
(5.24) cover those proposed in [24], which is the closest work to the result of this section.

In the sequel, we make the following assumption:

(A5) There exist 7, € R~ and an invertible function ¢ with ¢(0) = 0 and locally Lipschitz

inverse 1! such that

(i) nwny, < V51,
(i) [|3&w(@) Ve + ng(z)ho(z, a)||< ¥(x).

We denote that by restricting Py to be a LTI control system and V' to be a quadratic
Lyapunov function, assumption (A5)-(ii) readily holds for a linear choice of function .
Moreover, assumption (A5)-(i) holds when 7,, is norm bounded. Additionally, for symmet-

ric 7, this assumption automatically stems from assumption (A3)-(ii).

Theorem 5.5 Let assumptions (A8), (A5) hold and system Py has a Lo gain < 7y, ac-
cording to Theorem 5.3. Then the triggering rule can be designed for system P so that the

consequences of Theorem 5.2 hold.

Sketch of proof. We first claim that using assumptions (A3)-(ii), (A5)-(i) one can show
that given v4 > v, 6 = 73 — 2 there exists ¢ € R~q such that

61 > (V2T — nimw) (V3T — nimw)- (5.25)

To prove (5.25) it suffices to expand the right-hand side and use the fact that 7 9,1} 7. <
72t nw < 32421 where for the first and second ieqnualities we utilized assumptions (A5)-
(i) and (A3)-(ii), respectively. The rest of the proof is easy and hence is left to the readers.
Using (5.25) and also assumptions (A3)-(ii) we can write (v21 — n5nw) (V21 — ngnw) L =
I+6(yad —ngmw) ™" > I +e(v3] —nynw) and hence (vl =)™ > (V31 —niyiw) ™ + el
Note that y31 — 1l n, is invertible due to assumption (A3)-(ii) and the fact that v4 > Y.
Therefore, pre- and post-multiplying the last inequality by &1 (2)Va+n) (2)ho(z, @), in view
of Schur complement, (5.19) and assumption (A5)-(iii) we conclude that for all x € R™\ {0}

(Vfoo(ZL‘,Oé)—F”ho(:II,OZ)HQ *

2
LET (o) Vol () (2, ) —vﬁunlnw) Teri@) <0
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We can now construct the triggering rule as follows. Let ¢ be:

b(z) = {ew(:v), when ¥, (z) > 0, (5.26)

Voey(x), otherwise,

for some o € (0,1). Thus, we can choose v, arbitrarily when ¥, (z) > 0 and such that
ldal%, < (1= 0)p?(x), (5.27)

otherwise, and adopt the triggering rule (5.11) to guarantee the conditions of Theorem 5.2.
The rest of the proof is similar to that of Theorem 5.2, hence left to the interested readers.

Remark 5.2 We denote that the joint design method has the advantage of offering an
optimized solution. There is a simple interpretation of this result: in the emulation method

the event-based control design is restricted to
e conditions (5.26) and (5.27) on ¢ and aq,
e the initial design of control law « in (5.19).

These limitations, however, do not exist in the joint design method. The interested readers
are referred to [30] for further discussion of the differences of the two approaches for the

linear case.

5.4 Numerical example

In the following two example, we show that under certain affine structure for &;(z), n,(z),
the exact solution V' for NMIs (5.7), (5.10) can be obtained. It is worth mentioning that the
affine characterizations of £, (x), n,(z) enhance the application of the numerical techniques

to solve the corresponding NMIs, see [78] for more details. Consider the following model

T = e"u — e®wy + ews,
{ ! ? (5.28)
Z = €x + €wy,
for some € € (0,1). With the control law u = —z, (5.28) is a two-input single-output process

with the Lo gain €, [78], where w = col(wy,w2), &, = (—€*, ) and 1, = (¢,0).
5.4.1 Joint design

Since 7)1, = 0, we pick some 7, € Rsq, 7 > € and hence assumption (A3) holds.
Moreover, choosing V,, = P(x)z in (5.7), the exact solution to (5.7) is obtained from V' (z) =
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Jy Vadt = a? fol tP(tx)dt where P(z) < P(z) < P(x). To compute the bounds P(z) and
P(z) we choose ¢(x) = OP(x)e®z for some § € Rvg. Pre- and post-multiplying (5.7) by

diag(z,1,1,1,1) and applying the Schur complement, this inequality reduces to
Y€ Yo

Ay, Vo
which is a quadratic algebraic inequality in terms of Pe®. Solving this inequality, we obtain

272 (1—ky/1 = X)e™ < P(@) < 272 (1+kyv1 — N)e @

x
A1y2 w\2 T - Al w
k2 k4 14k (1) k2 k4 14k (1)

2
(492%20—%1—# EQ—l—%)PQeQ‘”—fyfuPex—i-eQ’yi <0
u

where A = A + Mo, A\ = 49262, Ao = 7% and k=1-— (,yiw)2 Note that we have a limitation
on choosing 0, v, 7., such that A < 1. Also the Lipschitz continuity of ¢~! follows from the

MY 2 4 o (222
lower bound on P(x) and the resulting Lipschitz coefficient is ( 52272 (kk\/%)”g) ).

5.4.2 Emulation design

To find an exact solution to inequality (5.19) for some V' (z), we use similar procedures as
above to obtain V() = 22 fol tP(tx)dt where

2e2e 7 9
< < -, .
T = P(x) < 2v;e (5.29)

Therefore, using some careful manipulations, it is not difficult to conclude that taking some

. - K= (35 (14+k)—1)2
Py so that (5.29) holds for P(x) = Pye™*, we can choose ¢(x) = 0x, 0 = EgE Yaw-

5.5 Simulation Results

Previous section examines the differences of the emulation and joint methods in designing
event condition, where different bounds on the admissible Lyapunov function and also
function ¢ are obtained. In this section, we study several aspects of our proposed event-
triggered control design through numerical simulations. The findings of this section are
independent of the particular design scheme, thereby simulations are only provided for the

joint design method. In the rest of this section, we adopt the following notations:

Minimum inter event time | Tijet

Average intersampling Tavg

Total number of triggerings | N

a) We first consider the following scenario for w:

0.05 sin(27t) Ca<i<s
0.05 cos(27t)

0, otherwise.

w(t) =
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The following plots are then obtained based on 10 seconds of simulation and initial condition

x(0) = 1. The disturbance is applied over the interval [2, 8] and the corresponding measure

output signal z is depicted in Fig. 5.1.

Time (Sec)
Figure 5.1: Measured output (solid), disturbances (dashed).

The evolution of measurement error signal and triggering threshold (Fig. 5.2) determines

the execution instants of the control task (Fig. 5.3).
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Figure 5.2: Satisfaction of triggering rule.
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Figure 5.3: Actuator signal.

Next plot (Fig. 5.4) reveals why treating disturbances is challenging and generally a non-
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trivial task in an event-based setting. Indeed, when states are close to the origin, arbitrary
disturbances may drive the measurement error to meet the event condition sooner, thereby

decrease the inter-event times.

0.12 - . .

=
—
T
x
x
x
x
x
|

0.08 - X x x x X * 00RO
0.06 - x « 1

0.04

Inter-event times (Sec)

X
0.02 [Average inters,amplilﬁ‘:r X

MIET
0F | |

0 1 2 3 4 5 6 7 8 9 10
Time (Sec)

Figure 5.4: Inter-event intervals.

The above simulations are provided neglecting the effect of do term, i.e., d2(¢t) = 0. The
role of d2(t) is studied in the following table, where it clearly improve the sampling rate and

inter-event times.

Table 5.1: Effect of decaying function ds.

Tmiet Tavg N
5y =0 1.6512 0.0151 606
Jy = e 95t 1.6747 0.3789 21

The results of Table 5.1 are obtaind based on 100 initial conditions, uniformly distributed
in the inerval [—1, 1], and then average the results. Furthermore, 7 = 0.001 seconds. Since 7
is a guaranteed periodic sampling time, the ratio of average sampling over 7 is a good index
indicating how far the event-based samplings are from the time-triggered, i.e., periodic
one. In fact, as this ratio get close to 1, the event-based system degenerates to a periodic
sampled-data system. This undesirable isssue, which contradicts the main goal of an event-
based design which is reducing the communication traffic, is the case e.g., for static time-
regularization methods, see [48] and the example therein. In our work, however, this ratio
is 15 for § = 0 and 379 for § = e~0-,

b) The next set of plots are obtained for w be a random singnal in (0,1) and based on
10 seconds of simulation and the initial condition z(0) = 1. In these plots the effect of time

decaying term J9 is included by setting 63 = 1 and d4 = —2. The resulting measured output
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is shown in (Fig. 5.5)

1 1

0.8
0.6
04
0.2
0
1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
Time (Sec)

Figure 5.5: Measure output under random disturbances.

The evolution of measurement error signal and triggering threshold (Fig. 5.6) determines

the execution instants of the control task (Fig. 5.7).
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Figure 5.6: Satisfaction of triggering rule.
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Figure 5.7: Actuator signal.
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In accordance with the result of Fig. 5.4, next plot shows that exogenous disturbance
may lead to triggering instants get arbitrary close to each other. However, the decaying
function 02 () effectively opposes this advert behaviour until it is vanished at t ~ 7, according

to Fig. 5.8.

1.5 T T
S +
D
w
S 1 L
5 Average intersampling
£ +
% MIET
+
°$ 0.5F + |
$ 4 A A A A A A
E .
+ +
+
0 - - ‘ - - ‘ R (=TT ———
0 1 2 3 4 5 6 7 8 9 10
Time (Sec)

Figure 5.8: Inter-event intervals.
Similar to the previous case, the effect of do is shown in the following table.

Table 5.2: Effect of decaying function ds.

Tmiet Tavg N
60 =0 1.6545 0.0073 844
§p = e 95 18159 0.7923 12

The results of table 5.2 are obtaind based on 100 initial conditions, uniformly distributed

in the inerval [—1,1], and then average the results. Since 7 = 0.001 seconds, the ratio of

™8 is obtained to be 7 for § = 0 and 792 for § = e %%, confirming that effectiveness of

proposed method compared to periodic sampling.

c¢) Next, we will study the trade-offs between the Lo-gain of the system and trigger-
ing parameters, namely the threshold coefficient ¢ and parameter 7. These trade-offs are
discussed in the seminal works [20, 46, 48], where it is shown that the guaranteed Lo-gain
has an inverse relationship with ¢, 7. This subject will be studied here under the following

structure for applied disturbance:

w;(t) = a;el’ sin(2mp;t).
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0.2483

I2lle, |
[wlle,

0.1284

0.2481"
0

For the left figure, we set a1 =25, g1 = —0.1,p1 =1, 1 =0,a2 =2, g2 = —0.1, po = 1,

P2 =

d) Finally, we turn our attention into the interesting scenario of efficiently attentive
triggering mechanisms, which is recently introduced in [82]. Roughly speaking, when the
transmission intervals is non-decreasing over time, the corresponding triggering condition
is said to be efficiently attentive since it produces fewer samples as states get close to the
equilibrium. This feature is studied under the proposed triggering condition in the present
paper, where for the sake of simplicity, we assume no disturbance to be applied to the event-
based system. Then, the inter-event intervals are studied for different value of d3. Suggested
by Fig. 5.9, 63 = 2.58 is a critical value to decide whether the proposed triggering condition
is efficiently attentive or not. Obviously, when d3 = 0 the inter-event times decreasewith

time, a fact that reveals another role of time decying function d2(¢), which is to turn a

0.1282
1 0 0.04

S r

¢2 = 5 and for the right one, a1 = 2, ¢ =0, p1 = 4.5, 1 =0, a2 = 2, g2 = 0, p2 = 2,
5

pre-designed triggering rule into a one with efficiently attentive property.

0.6

Inter-event times (Sec)
© N e
(O8] ESN (@,

<
)

=)
—_

I
- 63=2.55 —— 63

I
=258 —g—0,=2.61
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Time (Sec)

Figure 5.9: Comparison of different scenarios for ds.
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5.6 Summary

We have provided a sufficient condition in terms of NMI for the input-to-state stability of the
event-triggered control system with respect to actuator error and disturbance. Additionally,
we have designed an event-based state feedback controller, without directly using an ISS
assumption, which satisfies the desired Lo gain performance level, following both emulation
and joint design methods. The proposed event condition is shown to successfully rule
out the accumulation of triggering instants. Future works will study the more practical
scenarios such as output feedback case, decentralized triggering strategies [76], and will
include practical issues such as limited bandwidth [82,83]. Also of interest is the study of

existence of an explicit optimal solution under event-based communication.
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Chapter 6

Event-Triggered Controller Design

6.1 Nonlinear Lipschitz Event-Based Modeling

In this chapter' we consider a system consisting of a nonlinear Lipschitz plant connected to

a dynamic controller through a communication network. We assume the controller receives

(respectively, sends) information from sensor (respectively, to the actuator) at discrete in-

stants t; (respectively, #,) i, j € Ny through the network with tg = 0 (respectively, t) = 0).

Thus, the sensor measurements and the controller’s output are independently monitored

using ETMs (to be described later) that update and send signals through the network, as
i

required. Therefore, the event instants t?,t{; are in general asynchronous. The discrete

signals ug, ys are held constant between events using ZOH devices, i.e., for any i, j € Ng

ys(t) = y(t;)v te [té’t;+1)v (6'1)

ug(t) = ult]), te [t t). (6.2)

For the sake of simplicity we neglect the effects of transmission delays in the network as they
can be addressed following the method in [9] and neglect also measurement and transmission
noises (see [48,60]). Note that the above mentioned references focus on checking whether
a pre-designed static or dynamic controller stabilize the ETC system or not, as opposed to
the design problem studied here.

We now defined the system to be used throughout the rest of this chapter. We consider

the nonlinear plant

& = Az + ¢1(z) + Byus + Byw (6.3)

!The results of this chapter have been submitted for publication in the article: M. Ghodrat and H. J.
Marquez, “On the Event-Triggered Controller Design”, Submitted to IEEE Trans. Autom. Control, October
2018.
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where z € R™, ug € R™ w € R™ represent the plant’s state, control input and exogenous
disturbance. A, By, B, are constant matrices of appropriate dimensions. The nonlinearity

¢1 satisfies Lipschitz property
[¢i(x) = Di(Z)||< ¢, l|lz — Z| (6.4)

for i = 1 and some positive constant ¢y, and all z,& € R™. Moreover, ¢1(0) = 0, so that
x = 0 an equilibrium point of the zero-input system. We also assume the state z is driven
from initial condition z(0) = z¢ in an open subset of R™ containing the origin. The plant’s

output y € R™ is given by
y = Cyz + ¢3(x) (6.5)

where C, is a constant matrix and the nonlinearity ¢3 satisfy property (6.4). Since the state
is not available for measurement except in the special case C, = I,,,, we use an observer to
reconstruct the state and implement the output feedback law using the following observer-

state feedback formulation:
&= A% + ¢1(&) + Byus + L(ys — Cyd — ¢3(2)) (6.6)

represents the obsever, where L is the observer gain matrix to be designed so that & con-

verges to x. The control law is then
u= Kz (6.7)

for some matrix gain K € R™*"= to be designed. We will also assume the following:

A1) The pairs (A, By) and (A, C,) are respectively, controllable and observable.
( Y Y

Remark 6.1 Assumption (A1) is made for convenience but can be relaxed to stabilizable

and detectable, respectively.

Remark 6.2 In model (6.3), matriz A contains the linear part of plant’s dynamics and
the nonlinearity ¢1 represents the nonlinearities of order two or higher. Thus, in the study
of asymptotic stability the linear terms dominate and a necessary condition for local closed-
loop asymptotic stability is to design matriz K such that the eigenvalues of A + B, K are
i the left half plane.
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6.1.1 Performance Criterion

We will establish our control design using the standard L9 input-output formalism, [5,68].

Let z € R™* to be given by
z=C,x+ ¢a(x) (6.8)

where C, is a constant matrix of appropriate dimension and ¢ satisfy the Lipschitz property
(6.4) for i« = 2. Our design methodology is based on the following finite gain Lo-stability

performance index:

Tog = | @le@P-l)P)dr (6.9)
The closed-loop system model is

& = Az + ¢1(x) + Byus + Byw
b= A+ 61(2) + Butts + L(ys — Cyft — 65(2)) (6.10)
z2=Chx+ ¢pa(x), y = Cyz + ¢3(x), u= Kz.

~ ~—

We have:

Definition 6.1 ( [68]) The closed-loop system (6.10) has the disturbance attenuation index
of JgLT) provided that there exist finite constants v € RT, B € Rg (called bias term) and
positive semi-definite continuous function o such that for any T € ]Rar, any perturbation

w e Ly and any xg € R™
J<70,T> + a(zg) + 8 > 0. (6.11)

Definition 6.2 The equilibrium point © = 0 of unperturbed system (6.10), obtained by
setting w = 0, is globally exponentially stable (GES) with a convergence rate Go if there

exists r € Rt such that

H (x(t), r(z(t) — :;;(t))) H < Gre o (xo, r(zo — geo)) H (6.12)

for some 5; € RT, i € {1,2} and any xo, 39 € R" x R"=,

Our main interest is to obtain a systematic method to jointly design the gain matrices K,

L and the TCs, so that the following conditions are met:

(i) For a desired 74 € R, the disturbance attenuation index of the resulting ETC system
is given by ‘]g]doo>'

(ii) The unperturbed model (6.10) has a GES equilibrium point at = 0 with a conver-

gence rate oa.

86



6.2 State-Feedback Controller

We begin with the full information case, i.e. assuming that Cy =1I,,, in (6.5), used primarily
to present the core ideas behind our design approach, without the complications of the

observer-based case. Let the static control law be:
u= K. (6.13)

Since the state is measured, the observer is unnecessary and we can use a single ETM at the
plant’s output. Therefore, the event instants will be denoted t* := ¢!, = t; for any ¢ € Ny.

We can define the state inter-events error, denoted by e € R™*, as follows:
e(t) = x(t") —x(t), tet', '), (6.14)
and we obtain the following closed-loop system:

(6.15)

i = Aoz + ¢1(x) + ByKe + Byw,
z = Cha + ¢a(x),

with e, and w as the inputs and A, := A+ B, K.

6.2.1 Event-Triggered Mechanism

In this section, the general structure of our ETM will be proposed by generalizing the
method of the Chapter 3, where the proposed condition is intended to guarantee the local
Lo stabilty performance. Here, however, as we are interested in Lo stability in a global
sense.

We will assume without loss of generality that t° = 0. Adopting the notation & :=

col(z, e), the event times are implicitly defined as
tH = inf{t e R:t >t ANE()TXE() — At) = 0} (6.16)

for i € Ng, where ' denotes the most recent triggering instant. The matrix X' := (=P Pa;x P3)
for some symmetric Py, P, P3 € R™*" ig restricted to be designed according to the fol-

lowing assumption:
(A2) [[Pall# 0, A, (P1) € RT, Mi(P3) € Ry

Also, the function A has the following structure

A(t) = et 4+ (6 —ne~Styxr(t — ), t € [t,6+) (6.17)
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for some 71,d,( € RT and 7 := [0,7] for some 7 € R*. This suggests that A is constant
over t € [t',t' 4+ 7], i € Ny and exponentially decreasing elsewhere.

We remark that that (6.16) is a static rule with time varying threshold A, which from
a practical perspective, is constructed to ensure that the event-based implementation is
free of accumulation points, a property known as the event-separation property, introduced

in [59]:

Definition 6.3 The system (6.15) has the robust semi-global event-separation property if
there exists e € R™ so that for any compact set B C R™, inf{r,, : 9 € B,|w|, < €} >0
where T, = inf {1 —¢' i € Ng} is the MIET.

Using the terminology in [59], (6.16) is known as a mized triggering condition suggesting
that the triggerings occur whenever measurement error exceeds some mixed threshold of
state and A, and is aimed to ensure the Zeno-freeness property for the ETC system in the
presence of exogenous disturbances. In such a case, since the measurement error is also
driven by the disturbance term, if A = 0, when the state’s norm is near zero the external
disturbance may result in a sudden growth of |e||, possibly leading to redundant events
and Zeno behaviour. However, with the addition of the function A, the admissible e is
lower bounded by 6 for t — t* € 7. This ensures that the events are uniformly isolated and
hence zero behaviour is avoided (see [59] for a more detailed discussion). This observation

is summarized in the next theorem.

Theorem 6.1 Under the execution rule (6.16) and assumption (A2), the closed-loop system
(6.15) has the robust semi-global event-separation property.

Proof. We assume t'T! < ¢! + 7, otherwise 7, = 7 and hence the proof is immediate.
Therefore, (6.16) suggests that the lower bound on MIET can be obtained by assuming
the triggerings occur whenever —z " Pz + 2" Poe + eT’P;—x + e Pge = 6. Our goal is then
to find the lower bound on MIET by introducing new TCs, restricted than (6.16). We
start with the condition —av||z||?4az||e||||z||+as]le||?= § where a1 = A\, (P1), ao = 2|| P2,
ag = A\ (P3). It is not difficult to see that this condition is more restrictive than (6.16).
Next using the completion of squares we define another condition, even more restrictive

than the latter condition, as ||e||= a||x|+b, where

1 doas + a2\ 3 o 3
"= (170 ) ) b= (Gara)
203 1+at az(l+ «)

and a > a3/(4aiaz) is an arbitrary parameter. Note that the above choice of a,b is well-

defined under assumption (A2). In the rest we will show that the MIET obtained from the
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latest condition, is bounded away from zero, and hence the same property holds under TC

(6.16). To this end, let us define p = ||e||/(al|z||4+b). Thus we have

el allelf|z] allef| y _[lZ]
+ 5 < (1+
allzfl+b  (al|z[|+b) allz)|[+b/ aljz]|+b

Now in view of (6.15) we conclude

d
i 12@OI< arllz@®)ll+azlle®)]|+as|lw(®)] (6.18)
where a;, i € {1,2,3} are as defined in Proposition 6.1. Thus defining x = max{ %, %3¢
where |w| < e we can write
: a1]|z||+-az|le[|+-as]|w]
<(1+a <(1+4+ap)(k+a
solving which for ¢ > ¢ with p(#) = 0 and p(s) = 1 yields
1 Ktazp az
4 In , Kk FE42,
s(p) =t"+ {“2‘;;“ et 7 a2 (6.19)
az(14ap)”’ = -

Since p > 1 at t', i € Ny, we have 7, > ¢(1) =t > 0. m

Remark 6.3 Assumption (A2) is not essential in the proof of Theorem 6.1 and can be
substituted by ||Pz||= 0, An, (P1), \1(P3) € RT. The proof, however, is not difficult and left

to the interested readers.

Remark 6.4 The concept of dwell-time in time-regularized works [20, 48, 60] has been gen-
eralized here to the set T. Note that while in the above mentioned articles triggering is
forbidden when t —t' € T. We do not impose such restriction here and hence better perfor-

mance in terms of Lao-gain or GES convergence rate is expected.

The exponentially decaying term in (6.17) is introduced to enlarge the inter-event times
without violating the desired system performance. The amount of enlargement can be
estimated explicitly for a given period of time and is shown in the next theorem whose
proof is similar to that of Theorem 4.2 and also Section 3.3 and hence is omitted. As
an application, one can design 7, ¢, §, 7 to overcome possible delays in communication

channels.

max}; max — C(l) - ti and ¢ s
defined in (6.19), function A can be designed so that min{t'*1 —#' : i € No, t!t! < T°} > 7°.

Theorem 6.2 Given any T° € R™ and any 7° € [0, 7}t where T

It is shown in Chapters 3, 4 via simulation that compared to dynamic triggering approach
introduced in [28], the parameters 7, ¢ in (6.17) can reduce the transmission traffic more

effectively, especially when GES is addressed.
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6.2.2 Event-Based Controller Design

In this section we design an event-based H, controller following the joint design approach,
where the control gain matrix K and triggering parameters X', A are simultaneously de-
signed. Moreover, our design incorporates the desired GES convergence rate as a design
parameter. Our method is different from the emulation approach used in the majority of
literature where the controller is first designed in the abcense of communication network,
and then the triggering scheme is constructed to satisfy performance of the original design.

We start with with some preliminary results. The first one gives an upper bound on the

measurement error in terms of state x and disturbance w.

Proposition 6.1 Let a1 = || Ao||+cy,, az = | BuK||, a3 = | B, K],

b s
Ayy =2 / / ea2+0)(s=7) 47 (g

for some 0 € RT, s €[0,7) and 7 € RT. Then for anyi € Ny, 6 < o

t t
/ti e”*le(s)|*ds < At—ti/ti e”*(aillz () +a3]w(s)[*)ds.

Proof. From the definition of measurement error and since d||e(t)||/dt < ||é(t)||, we con-
clude from (6.18) that %He(t)“ﬁ ar||z(t)||+azlle(t)|+asl|w(t)|], which by applying compar-

ison lemma gives

t t
le()l< ar / 7o (r)||dr + a3 / =) ()| dr.

t? tt
Define f(a, b, c;x) := f; e(0=5)||z(s) || ds, it is easy to verify
le@®)I”< 2(a1f(t', ¢, az;2))* + 2(as f (¢, , az; w))*.

Multiplying this inequality by ! for some & € R{, the Cauchy-Schwartz inequality can be
applied to obtain

t
eI 21(¢ 202+ 331) [ e (@l a3l
t

integrating which gives the result noting that 2fab fla,s,2a2 +7;1)ds < 2 f; f(a,s,2as +
o;)ds =1 Ap_,. ®

As discussed in Section 6.2.1, set T is responsible to guarantee the separation of event
times and Proposition 6.1 plays a key role in designing this set. To clarify this connection,

we first apply Proposition 6.1 for & = 0 to conclude
t t
/ le(s)2ds < A,y / (a2 ()| +a o (5)|2)ds (6.20)
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which due to definition of A;_;: implies that coefficients in the right hand side of (6.20) grow
with . However, this growth is allowed until the stability criteria given in Section 6.1.1 is

violated. To show this, we need the next proposition.

Proposition 6.2 Let W(x) = 2" Pz and

Q=A'P+PA,+~2PB, BTP +clc.,
cle,

1
M=9+dl,, +—P+
€1 62—1

and ¢ = 2?21 eicii for some P =0, v,e1 € RT, eo > 1. Then for any t € Rg

M PB,K
W <Al nuﬁfT< )a

o (6.21)

Proof. It is rather easy to check W < xTQx + v2|w||?—||C.z||>*4+(VW, B,Ke + ¢1(z)).
Now defining & := col(x, e, ¢1, ¢2) and since z = C,x + ¢o(x), we conclude

Q PB,K P Cf
: * 0 0 0 |;
W<l T T o € (6.22)
* * * I,

Writing (6.4) as &' diag(— C¢ L., 0,710, , 20, )6 < 0 for ¢ € {1,2} and 717 = 192 = 1,
T12 = T91 = 0, (6.22) holds if

Q+el,, PB,K P cy
* 0 0 0 .
* x  —el,, 0 &
* * * (1 —e)l,,

W < 2wl ~|l)*+€"

The desired result is then obtained by applying Lemma 2.2 to the last term in the right
hand side of above inequality. m

Critical to the design of T is the following inequality which is obtained integrating (6.21)
and applying (6.20)

W (a(t) = Wa(t) < T2 / £(r)TOE(T) (6.23)
where 72 = 7% + €,a3A;_; and

O- (M + €02 Ny_yilly, PBUK>

* —6ollp,

for some €, € Ry and t > t!. Then, in the view of Definition 6.1, A,_, is allowed to grow

until (i) the negative definiteness of O, and (ii) the desired index gain level 74, are violated.
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The above restrictions impose an upper bound on ¢ — ¢; that will be used in Section 6.2.2
to design set 7.

In the sequel, we provide the design methodology in two steps, which due to the joint
design nature of our approach, are dependent, i.e., the design condition for controller gain

depends on triggering parameters and vice versa.

H,, State Feedback Controller Design

The criterion to design K is to ensure the existence of some P > 0 so that
M+oP+ (p+e)l,, <0, (6.24)

where 0 € R* is the desired convergence rate of unperturbed model and pu,e € RT are
triggering parameters and will be defined in the next subsection. To design K based on

(6.24), we follow the ideas given in [84]. Considering the notation
Apijw = A+ ByK + (0 + jw)l,, = Ao + (0 + jw)l,,, (6.25)
suppose that assumption (A1) holds and K is designed such that A, is stable and

ul:rel]gé Sn, (fl%_jw) > ), (6.26)
where ¢ = ¢y, + @(m + ||C.||+¢g,), some v € RT. While condition (6.26) is in
joint design form, it can also be used in emulation control, by neglecting i, € terms. Indeed,
if 4 = e = 0, then (6.26) guarantees finite gain Lo-stability (with Li-gain < ) of the
network-free system obtained by setting e = 0 in (6.15).

In the sequel, the intuition behind (6.26) is clarified through several lemmas. We begin

with the following claim, stated without proof.

Claim 6.1 Choosing €1, €2 in Proposition 6.2 as follows:

_ /(e FlIC: ) +pte o [leA
€1 = corTBw] , e=1+7"" (6.27)
implies that
~ 2 2
7= (185 + L) (2l s e b pre). (6.28)

where ¢ = ¢y, + @\/u + e+ ([|CL||+cp,)?. Indeed, this particular choice of €1, ex mini-
mize the right hand side of (6.28).
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Lemma 6.1 Let K be designed under (6.26) and €1, ez are as in (6.27). Then there exists

some o € Rt so that matriz

1 1Bull> , 1
4 (5=t &) (6.29)

I'= -
- (6 + lu + E)an _A%

_GQC;I—CZ
ea—1

has no eigenvalue with zero real part.

Proof. From (6.26) we conclude (fl%_jw)H(fl
(6.28) we have

“jw) > V2L, > 1[12]IM and hence in light of

_ - 2 T
(A%fjw)H(A%fjw) > (% + %) <62€§727% + (E+ M+ 5)Hnm>

To complete the proof, we shall need the following useful lemma whose proof is along similar

lines as the proof of [84, Theorem 2.

Lemma 6.2 The eigenvalues A of matriz I' are given by

det{ (AL, + AD) (A, — Ag) — (1258 4 1) (2%C 4 ey s oyr,, )} =0,

vy €1 ea—1

Substituting A = jwl in Lemma 6.2 and noting that (jwl,, — A%)H = —(jwl,, +Al),
2
Claim 6.1 confirms that I' has no eigenvalue with zero real part. m

Here we recall a well-known result from [85].
Lemma 6.3 For a stable matriz R and some S = 0, if

(? B %) (6.30)

has no eigenvalue on imaginary axis, then there exists a positive definite solution X to the

algebraic Riccati equation
R"™X +XR+XSX -T=0. (6.31)

Applying Lemma 6.3 to matrix I" defined in (6.29), we conclude the existence of some P > 0
solution to (6.24).

Design of Triggering Parameters

We start with designing 7, which as discussed, is restricted to ensure O < 0 and v, < 7y4.

By applying Schur complement, the former reads as

1
M+ eoMy_ia3l,, + E—PBUKKTBI P=0
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for some €, € R. Thus, choosing 71 such that A, = ial_2||PBuKH_2£2, one can pick

€0 = 26 || PB,K]|? to conclude
€ohy_yiaily, + ZPB,KKTB P < ¢l,, (6.32)
for t — ' € [0,71] and consequently by using Lemma 2.2 and (6.24) we have
§10¢ < —pla|*~oxT Pz.

Moreover, choosing 72 such that A, = e;taz (72 — 72), we have 7, < 4 for t — ' € [0, 7).
Then T can be designed as

T =10,7], 7 = min{r, 72} (6.33)

Remark 6.5 Definition of Ay_,i implies that 71, T2 do not depend on particular choice of

t'. Thus, 7 is positive and independent of triggering index i and hence is defined globally.

Definition of 7 implies that Az < A, Az < A, and hence J?t‘; y < J&f # and
ET(HOL(L) < —pllz()|*—oxT (t) Pa(t)
for ¢t € [t!,#' + 7). Hence (6.23) reduces to
W(a(t) - Wia(t) < T2, / Je(r) 2 (6.34)
for t € [t!,#' + 7). Next, we design matrix X as
X = ("“f” P%“K) , (6.35)

which according to the structure of & implies P; = ul,,, P2 = PB,K and P3 = 0
Suggested by Remark 6.3, the event-separation property holds under the above choice.
Finally, we remark that there is no restriction on the rest of parameters 7, ¢, 6. However,

as stated in Theorem 6.2, they can be chosen properly to enlarge the inter-event times.

6.2.3 Main Result

To show finite gain Lo-stability of system (6.15), we need to extend (6.34) to the interval
[t ¢ T1), any i € Ny.
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Theorem 6.3 Under assumption (A1), let K to be designed such that A, is stable and
(6.26) holds for some v € RT. Also assume triggering parameters T and X are defined as
in (6.33) and (6.35), respectively. The closed-loop system (6.15) is then finite gain La-stable

and has Lo-gain < 4 for some vq > 7.

Proof. First, define ¢, for any ¢ € Ny as

267 |PBK|?, teltht +7),
eo:{g IPB.KIl 1#,6+7) (6.36)

0, t e[t + 7, ¢,
which, as shown before, when applied to (6.23) for ¢ € [t!,#' + 7) results in (6.34). When

t € [t' + 7,t"1) we have ¢, = 0 and hence (6.23) reduces to

t t
W(a(t) = Wialt) < Tty e [ e+ [ near

in view of (6.24) and TC (6.16). Combining this inequality with (6.34) and apply the
procedure to the triggering intervals from 0 to t € R, we get Jg()dt) +W(zo)+n>0. m

Theorem 6.4 Under the conditions of Theorem 6.3 and taking ¢ > o, the closed-loop

system (6.15) is GES at equilibrium point © = 0 with a convergence rate o.

Proof. Setting w = 0, it can be inferred from (6.21), (6.24) that for any ¢ € R

W+ oW <7 (_(“ tg)ﬂ”z P%“K) . (6.37)
Solving this inequality from ¢ to t € [t, ' + 7] and apply Proposition 6.1 with w = 0, we
can write
o _ 20,
W) < Wa(t)e™ + [ e ( et PﬁK) &(r)
i O Ng

which by using Schur complement and (6.32) reduces to W (xz(t))e”t < W (x(t'))e?". To
Solve (6.37) from t' 4+ 7 to t € [t' + 7,1, we can apply TC (6.16) and obtain W + oW <

ne~¢t. The solution is then

o t
W(:C(t))eat < W($(tz + %))60(151-1-7) + 7]/ CEoL
it

Therefore for the interval [t!,#!) we obtain

ti+1

W(x(t”l))eatiﬂ < W(:L‘(ti))eati n 77/ o0 g

¢
Breaking the interval [0, ¢] into |, y_, [t', £ T1)U[tV, ) where N is the most recent triggering

instant until ¢, it is rather easy to conclude W (z(t)) < W (zg)e 7t + C_Lg(e_"t —e~¢Y). Thus,

A (P)
)‘nz (P) ’

choosing n = W (z¢) for some 77 € RT, Definition 6.2 holds for r = 0, 61 = (1+ g—io)

09 =0. N
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6.2.4 Admissible Set of Eigenvalues

While criterion (6.26) is stated in terms of the smallest singular value, the relation with
the eigenvalues may be of greater importance from design viewpoint. Amongst the earliest
attempts to fill this gap, [84, Theorem 5] provides very good insight by exploiting the Bauer-
Fike theorem to relate the perturbation of eigenvalues of a diagonalizable matrix in terms of
the condition number of the matrix of the eigenvector matrix. It is worth remarking that the
Bauer-Fike theorem is a weak form of Gershgorin theorem that locates the eigenvalues in the
circles centered in the diagonal elements; hence offers a less-tight radius, [86]. Our proposed
method, however, relies on another famous result from computational linear algebra, due

to Fan and Hoffman [87].

Theorem 6.5 For any A € C" "= j € {l,...,n,} we have
)\j(Re A) § 8](A> (6.38)

Theorem 6.5 is stated for complex matrices. Moreover, for j = n,, (6.38) gives the relation
between smallest eigenvalue of Re A and smallest singular value of A and will be used later.

We start with the following lemma.

Lemma 6.4 To satisfy (6.26), it suffices to choose
Min, g+ S (A_ju) >+ 5. (6.39)
Proof. We first recall the following well-known property from linear algebra
Sn,(A) = 81(B) < S, (A+ B).

Choosing A = A_j,, B = %I, and noting that Sj(al) = |af, forany o € R, j € {1,...,n,},
(6.39) reads as Sy, (A) — S1(B) > v and hence (6.26) is immediate. m

In our next Lemma we state (6.39) as a necessary condition on the eigenvalues of As.
Our conjecture is that the eigenvalues of the matrix A, should be placed to the left of
—1 — % in the complex plane. To gain familiarity with the result, we first provide a
simple interpretation of how this conjecture is obtained for n, = 2. Consider two extreme
scenarios: First, assume A, has pure imaginary eigenvalues, i.e., A, = (0 a;—a 0) and
hence A_j, = (jw a; —a jw) where w € Ry, a € R. The eigenvalues of (A_;,)"(A_j,) are
w? + a? & 2aw. Therefore, when a > 0 (respectively, when o < 0) to ensure S, (A_j,,) >
Y 4+ %, a needs to satisfy o > ¢ + ¢ + w (respectively, o < —1) — § —w). Thus to
satisfy (6.39), the imaginary values between —j(¢ 4+ § + w) and j(¢) + § + w) must to
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Figure 6.1: Admissible region for eigenvalues of matrix A, when A.: (a) has pure imaginary
eigenvalues and (b) is symmetric.

be excluded from the eigenvalues of matrix A, (see Figure 6.1-(a)). Second, assume that

A, is symmetric and hence has pure real eigenvalues, i.e., A, = (c1 ca2;% ¢3) and hence

A_j, = (c1 — jw co;% c3 — jw) for some ¢; € R, i = 1,2,3 and w € RJ. The eigenvalues

of (A_ju,)N(A_j,) are $(2w? + ¢} + 3 +2c3 £ /(¢ — )2 + 4c3(c1 + ¢3)?). Since « is non-
negative, we have S, (Ajw) > Sn,(4s) = [An, (Ao)|, where the last equality follows from
the fact that A, is symmetric. Thus if A, (As) < =1 — § and we have |\, (4o)|> ¢ + §
and consequently (6.39) holds (see Figure 6.1-(b)). The above observations lead us to the
conjecture that to satisfy (6.39), points to the right hand of —¢ — § must to be excluded
from the spectrum of As.

Note that while these cases represent extreme conditions, they serve to provide a nec-
essary condition that (6.39) must satisfy. Next lemma brings clarity to our conjecture and

is starting point for designing K.

Lemma 6.5 To satisfy (6.39), A, can not have any eigenvalue on the right hand side of
-4

Proof. Let us assume A, has an eigenvalue at —i + jw; for some 11 < 1 + g, w1 € Rg.
This implies that det(A, + 11, — jwil,,) = 0 and hence —1); is an eigenvalue of matrix
A_ju, . Thus we conclude that |\, (A_j,)|< ¥1. Now we use a useful relation from linear
algebra, Sy, (A) < |A\;(A4)| for any j € {1,...n,}. Applying this inequality for j = n, we
come to the following contradiction ¢ + § < S,, (A_ju,) < |An, (A—jw,)|< 1, where the
first inequality is obtained from (6.39) for w = w;. m

Next, we provide a sufficient condition to show that bound —1 — § for choosing the

eigenvalues of A, is almost sharp.
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Lemma 6.6 Condition (6.26) holds if A\1(Re A;) < —tp — 5.
Proof. We start with a simple property

Sny(AB) = 8, (A)Sn, (B)

which by choosing A = A_j,, and B = —I,,, reduces to S,,(A_j,) > Sn,(—A_j,) since
Sn,(—I,,) = 1. Now because Re(—A_j,) = Re(—A4,) and A, (Re(—4,)) = —A1(Re 4s),
Theorem 6.5 suggests that S, (—A_j,) > —A1(Re A,). Therefore, choosing A1 (Re 4,) <
—1 — § ensures Sy, (A_ju) > v+ § which by applying Lemma 6.4 gives the desired result.
[

It is worth noting that there exist certain situations where for any matrix K, the largest

eigenvalue of Re A, can not be pushed to the left side of —1) — g, restrict the application
of Lemma 6.6. The authors of [84], however, provide another method to design matrix K,

summarized in the next lemma.
Lemma 6.7 If K is chosen such that for any j =1,...n,,

Re{ —X(4o)} > C(X)(¥ + 3) (6.40)
where Ao = XTX ! and C(X) denotes the condition number of X, then (6.39) holds.
Note that since the choice of X is non-unique, it is much more reasonable to define the
condition number of X as

C(X) =inf{||X|[| X }: XTX ! = A}. (6.41)

When X is fixed in (6.41), the condition number can be obtained from the ratio of its
largest and smallest singular values, i.e., C(X) = §1/S,, and suggests that C(X) > 1. Due
to difficulty in calculating condition number, the method of Lemma 6.7 often reduces to
a trial and error procedure. We refer the interested reader to [84, Example 1] for more
details. The following example shows that our proposed method may relax the possible

conservatism associated with Lemma 6.7.

A "

Ao = < 0 —-1- 02>
for some parameter @ € RY. The matriz Re A, is calculated as %(Ao—i—;loT), thus A1 (Re A,) =
-1 - % + % 1+ 5%. Therefore, to satisfy (6.39) using the method of Lemma 6.6, the

Example 6.1 Let

following has to be satisfied

1+ 2 -2 14+ 4 >0 (6.42)
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However, following the approach of Lemma 6.7, the matriz A, has the eigenvalues at —1,
—1 — 6% with the corresponding eigenvectors (1,0), (1,0). The condition number of X as

defined in (6.41) is § + g Thus (6.40) reduces to

1> (5+

IS

). (6.43)

D=

Therefore, while (6.42) has a solution for 0 for ) € [g, 1), (6.43) does not (since %4— g >
V2).

Remark 6.6 Our proposed method provides a sharp bound for designing controller gain K.
Indeed, suggested by [84, Theorem 3], if K is chosen such that (6.26) does not hold, then
there exists some E € R"*™ so that the function ¢1(x) = Ex has Lipschitz constant cg,

and (6.15) is unstable.

6.3 Output-Based Controller

We consider the more important scenario of output-based control. We use the dynamic

observer (6.6) to reconstruct the state vector &, needed to implement the control law
u= Kz.

To formalize the problem, let us define the output measurement error e, and actuator error

€, as

ey(t) = ys(t) — y(t) = y(ty) —y(t), t € [t ;™)

eu(t) = us(t) —u(t) = u(t]) —u(t), t € [t], ),

for any 7,j € Ng. Contrary to the state feedback case, we assume asynchronous triggering
instants at the sensor-to-controller and controller-to-actuator channels which necessitates

the design of two independent ETMs.

Remark 6.7 Stating the TC in terms of e; = 2(t),) — &(t) rather than actuation error
ey = Kesz has certain practical advantages, as pointed out in [9]. Note that the use of the
actuation error requires processing time to compute e, and decide next execution instant,
which can only be ignored when the shared resource is transmission bandwidth rather than
processing time. Note that the result of this section are still valid if the TC is stated in

terms of eg.
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Define & := x — & and A, := A — LC,,, we can use (6.3) and (6.6) to write

()= 2D (B2 ) () (e i) 0

where ggj (z,2) = ¢j(x) —p;(2), j € {1,3}. Treating (ey, ey) and w as the exogenous inputs,
(6.44) describes the overall closed-loop model.

We propose two triggering policies at sensor-to-controller and controller-to-actuator
channels, inspired by (6.16). Assuming the first event to ocurr at tg =t = 0, and adopting

the notations &, := col(y, ey ), &, := col(u, e,), the execution times are implicitly defined as:

it =inf{t e R:t > ) A& (1) X6, (1) — Ay(t) = 0} (6.45a)
Y —inf {t e R:t > t) ANET (H)XuEu(t) — Ay(t) = 0} (6.45b)

fori, j € Ny, where t;, #J are the most recent execution instants. Matrices X, = (=P PY;xPY)
and X, = (=P} Py;* Py) for some symmetric P} € R Pl e R™*™ [ e {1,2,3} are

designed according to the next assumption:
(A3) [[P3]1# 0, A, (PY) € RT, M(PS) € Ry, [[P[I# 0, A, (P}) € RT, Mi(PY) € Ry

The functions A,, A, are also given by

Ay(t) = nye™ " + (8, — Uye_gyt)XTy (t — t;), te [t;7 t;H),

Au(t) = mue™" + (6w — mue” )X, (¢t — ), t € [t )

for some 1, 0y, Gy, Mus Ous Cu € RT and Ty, := [0,7,], Ty, := [0, 7] for some 7,7, € RT.

%

v tJ, requires

Proving the non-existence of accumulation point for the triggering instants ¢

boundedness of state trajectories of (6.44), and hence is postponed to Section 6.3.2.

6.3.1 Event-Based Output-Based Controller Design

Next we introduce a design methodology for jointly designing matrix gains K and L and
corresponding triggering parameters X,, A, and X,, A,. The method is similar to the
state feedback case where the desired GES convergence rate of closed-loop system is taken
as design parameter.

We start with some preliminary results. Similar to Proposition 6.1, H..-synthesis of
system (6.10) relies on finding an upper bound for the errors ey, e, in terms of state z,

T and disturbance w. However, as we will see, the output feedback assumption imposes a
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technical difficulty originates from the asynchronous triggerings at sensor-to-controller and
controller-to-actuator channels.

From the definition of e, we have
léull= [ KZ]. (6.46)

For e, to be differentiable we need the following assumption:
(A4) The function ¢3 is continuously differentiable.

Under assumption (A4) we have ¢, = —j = —Cd: — d3(x) which in the view of the following

observation

. -

HW@H:H#LH& p3(x(t + tc)l?f ¢3($(7§))H
dt) —

R e et

gives ||éy]|< (||Cyl|+cgs) | E]|. Therefore, from (6.44), (6.46) we conclude that

lleyll < bullzl|+b2lll|+bsllewll+ballwll, t € [£,, ) (6.47a)

leull < billll+b2 )| 2]l +bslley I +balleull, t € [t], ) (6.47D)
for any 4, j € No, where by = | K As||+[|K|lcg,, b2 = by + [|[KLC, |[+[| KL cg,, bs = KL,
by = || K B,|| and

b1 . by . b3 _ by _
[Aoll+cg,  [I1BuK|  [[Bull  [|Buwll

1Cyll+cgs-

As claimed, the technical difficulty of simultaneously solving (6.47a), (6.47b) arises from

asynchronous triggerings. This, however, is addressed in the next proposition.
Proposition 6.3 Given Hy, Hy € RT so that

b3H Hy < 1, (6.48)
let 7, and 7, be the solutions to hi(7y) = Hi and ha(7y,) = Ha, where

r+s T2
hi(s) = ri/ / e (=) dr dry

forri =4, r0o =3, v1 = 0o, V3 = 2b4 + 0o for some o, € RT. Then there exist constants

ki € R, ie{1,---,5} so that for any t € R", 55 < 0o, aj € RT, j = {1,2}, the following
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holds
Ly 2 2
e (anley(MIEaslen ()| dr <

t
e (rallo) -+l r) -+ o)

+k4ruHK:&(7)H2+k377y67<yT + kanue T + k5\|w|]2) dr

where ki = a1B1 + a2fs, ko = a1 B2 + asf, ks = Blan + aoHab3), ks = B(ag + a1 H1b3),
ks = ksHqb3, B = (1 — HiH2b3b3) ™', B1 = BH1(b + Hob3b?), Bo = BH1(b3 + Hab3b3),

B3 = ,BHQ(B% + Hll;%b%); Bs = ,BHQ(B% + H1B§b%)

Proof. Solving (6.47a) for ||e,|| gives

leo(®I< i {balla()+bll#(0)] +bsllew(r)] +balleo(r) | b

Therefore we have

ley @12 4 (br /t;||ﬂc|d7)2 + (b2 /;Hfilldf)2
; ;
(o [[1eatir)” (o f1tor)’}

which by using Cauchy-Schwartz inequality reduces to
t t
ley@P< 4 [ erar [ e {iatr)
ty ty

+b§\|56(7)H2+b§Heu(T)H2+bi\lw(7)ll2}d7

and since 4 f:+s f? (2T dr dry < hy(s), we have

t

t . _
| e leiar < e~ ) [ (el
Y

Yy

+b3H56(T>HQ+b§Heu<7)H2+bin(T)H2}dT-

Similarly, solving (6.47b) for ||e,| gives

t
lewtll< [, 0 {lla(lala(lbale, )l far

which using Cauchy-Schwartz inequality reduces to

t ) t
leu®IP<3 [ e rar [ e (Rijatr) P
ty

th

B3| (r) I2+53 eyT) |1 fdr.
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Since 3 [77° [T e(2at0)(2=1) 4 dy < hy(s), we have

t t
[ e leatmPar < ate— ) [ e {Batr)?
J t

ty 21
B3I 7)1+ ey (7)]2 fdr. (6.51)
Now consider
t ) th 47y it )
[ e lemper =3 { [ [ el dT},
0 tz ti +Ty
t]+l

/Otewue(ndf— {/+ /+ o eatrlPar

For the terms in 1, we can apply (6.50) and (6.51) with hi(7,) < Hy and ho(7,) < Ha. For
the terms in 2, however, we may apply TC (6.45). Therefore, we have

[ e lesmitar < [ (m e+ s1ae)1
len (P02} + e
[ e leanitar < [ e (g3l
B lley (D)2} + rullka |+~ ) dr,

which can be written in matrix form as follows
(L~ 00) (Bletniar) o
—Hby 1 Jo € llew(n)|?dr | —
2 2 [ 2
(Hll_a Hb) (fo o (7)] dT) . (6.5

Hyb? Habs ) \ [] 77| &(7)|2dr

(fo 7 oy () |2y -<yT+H1bzuw<T>H2>dT>.

J 7T (ry | K& (7) |2+ nue 7 )dr

For (3 := (1 — b2b3H1 Hy) ™!, which is well-defined due to condition (6.48), we have
t
| e (anlleyr) Praslentr|) ar -

2
(o1 ag) <51§252 Bl_gb?’) x RHS of (6.52)
3
which gives the desired result. m
Note that the upper bound of the output measurement error e, (respectively, actuation

error e,) can be obtained by setting s = 0 (respectively, a; = 0) in Proposition 6.3 for

0o =0.

103



Remark 6.8 design of 7,, 7, are coupled according to condition (6.48) and hence unique

solutions does not exist.

Remark 6.9 Proposition 6.3, which can be viewed as the output-based counterpart of Propo-
sition 6.1, introduces several penalty terms for asynchronous triggerings at the sensor-to-

controller and controller-to-actuator channels.

The following proposition is the output-based counterpart of Proposition 6.2 and serve to

clarify the design ideas in the next section.

Proposition 6.4 Define 72 = 424032 for some v,5 € RT and let V (z,%) = W (x)+0W (&)
be the candidate Lyapunov function where W (z) = ' Px, W(&) = &' P& for some P,P = 0
and € R*. Also define Q as in Proposition 6.2 and

O=ATP+ PA,+5?PB,BIP,

2 cIc
e 7]1 - 4 z
My = Q+¢l,, + J +eg—1’
- P?  PLLTP
My=090+el,, +—+—1—
€1 €3

for ey = €y, +e4cl ¢, = €l +ebcs, and some €, ¢4, €], €5 € RT. Then for any t € Ry
— t ~ — A
V(w8) = Viaodo) < Ty + [ €070 (6.5)
’ 0

where £ = col(z,Z, ey, e,) and

M, -PB,K 0 PB,
x  OM, OPL 0
* * 0 0
* * * 0

O:=

Proof. Similar to the proof of Proposition 6.2, we have

W < P2|wl®~|l2|*~(VW, B.K )

2\ /O+¢el, PB, P cT x
ey * 0 0 0 €y
i o1 * *x —€ell,, 0 o1
b2 * * x (1-€e)I,.) \¢2

for some €] € RT, € > 1. From Schur complement we conclude

. - M, PB,)\ -
Wgfy?\\wrr?—rz\2—<vw,Bqu>+EJ< v )

o )G (6.54)
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where &, := col(x, e,). Similarly, for Z subspace we can write

#\' (O+el., PL P PL 7
Vo< 52 2 Cy * 0 0 0 Cy
W < 7%|lw|*+ & . « —el,. 0 o
b3 * * & —esly, ) \¢3

Using Schur complement and defining &, := col(%, e, ), we have

L M, PL\ -
W < 32 P+ &7 ( )

i) g (6.55)
The desired result is then obtained by merging (6.54), (6.55). =

H,, Observer-Based Controller Design

Inspired by state feedback case, the controller and observer gains K, L are designed to

ensure the existence of some P = 0, o € RT so that
My + éPBuBJP + 0y P + pyln, + &y, <0, (6.56)
and some P > 0 such that
Moy + 0o P + pl, + ey, <0 (6.57)

where 0,0, € RT will be used to determine the desired convergence rate of unperturbed
model and jiy, fiy, £y, €, € RT are triggering parameters and will be specified in the next
subsection and « € R™ is . Note that (6.56), (6.57) are required later to prove the stability
of system (6.44). Let us adopt the following notation

Agijw =A—LCy + (0 + jw)l,, = As + (0 + jw)l,, .

Under assumption (A1), the controller and observer gains K and L are designed such that

A, and flo are stable and

min, gt Sn, (A%y_jw> > Py, (6.58)
min, g+ Sn, (A%u,jw) > Y, (6.59)
Buw By, B
where Py = C¢1+(H 5 ”‘|‘”\/5H )(\/Ny + 5y+||02||+c¢2) and ¢, = C¢1+C¢3||L||+ny7”v My T+ Eu,

some 7,5 € RT.

Remark 6.10 Compared to the state feedback design (6.26), ”%H in (6.58) is introduced

as the penalty for output feedback.
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Remark 6.11 The design of L is non-trivial due to the presence of |L|| in the right hand
side of (6.59). However, when cy, is small enough, one can readily guarantee the existance
of a solution for L. In limit, when ¢3 = 0 and henec y = Cyx, L can be designed similar
to design of K in (6.58), (6.26) which is discussed in details in Section 6.2.4. To cover a
wider range of nonlinearities, one can mazximize the admissible cy, denoted by cy, as the

mazimum possible cy, such that (6.59) has a solution for some L.

Similar to Claim 6.1, it can be verified that choosing

y _ V(oo tIC:D Huytey 4y [C=|l
61 — 9 62 - 1 + 9
IBuwl2 | |Bull? o2
C¢1 2 + «
- (6.60)
o= L[Sty SIIL| Vs
17 ¢y 1Bwl® | ILIZ 3 cos || Bwll 2
¥ €3
implies that
72 _ (IBul® 1 | [IBul?Y[ellC:l? | -
y—< 72 +¥+ o 263_21 +Cy+My+5y ) (6'61)
2 _ (IBuwl®> | 1  |ILI?
Yy = < v tat e (Gt huteu) (6.62)

where 121y =cp (57 + NG Wiy + &y + (| Cz[[+¢4,)?. The following lemma then clarifies
the idea behind (6.58), (6.59).

Lemma 6.8 Let K and L be designed under (6.58), (6.59). Under assumption (6.60), there

exist some oy, 0, € RT such that the following matrices have no eigenvalue on imaginary

axis.
- B2 Buy|?
; Ary (Bl 4 3 4 12elyr,
1= eyC’;—Cz _ T
_ 253—1 — (Cy + py +€y)ln, —ALy

Proof. From (6.58) we conclude (Ag_jw)H(Aay W) > wy ne > @25]1,% Next, similar to
2 2

Lemma 6.2, it can be shown that the eigenvalues of matrix I'y, I'o are obtained from

- - 2 2\ [/ ¥oTo, B
det{(/\ﬂnw + AT ) (AL, — Agy) - (% + &+ L ) (% (@ + py + ay)llnw)} =0,

det{(mm + AT )L, — Aew) — (”B”J” + 44+ L )(Eu + i+ su)ﬂnx} —0.
2 2

Therefore, in light of (6.61), (6.62) the result follows. m
Applying Lemma 6.3 to the matrices I'y, I's, it is not difficult to verify the existence of
P, P > 0 solutions to (6.56), (6.57).
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Design of Triggering Parameters

First define

(M, —PB,K (K"K -K'K
OM'_<* oM, >’OK'_<* K'K |-

The admissible range of parameters are restricted to ensure the stability of (6.44). To show

this, we apply Young’s inequality to (6.53) to get

t
Vi.3) = Vinio) < Ty + [ {E0TOME) +alea]?
| 1 1~ 1=
+—2TPB,BIPr + 05" PLLTP7 + HdHey||2}dT,
[0 «

where a,& € RT, V(z,%) as defined in Proposition 6.4 and & := col(z, #). Then applying

Proposition 6.3 for oy = a#, as = a, 6o = 0, we obtain
t
~ ~ /A2 +E ~
Viz,z) — V(zo,Zo) < J(O,Z) s +/ {ET(OM + kyry Ok )€
0
1
+ 2T (=PB.BIP + (k1 + kary (|G, 1460, ) (6.63)
1 -~ .
o (aHPLLTP + kQ}Inx>5c + ksngeST & k:477ue_<“7}d7,

where we used the fact that ||y||< (]|Cyl|+ce,)|z||. The design parameters are restricted to

the following conditions:

ks < 73— 75, (6.64a)
k1 4 K(]|Cyll4cos)? < &y, (6.64b)
PLLTP + a1, < Ge,l,,, (6.64c)
ke < 09, (6.64d)
ksry < K, (6.64e)
T T
R e st

Under conditions (6.64a-¢) and in the light of (6.56), (6.57) we have the stability for

subsystem =z, i.e.,
1
M, + aPBuBJ P+ kL, + k3ry (|| Cyll4-cps) T, <0, (6.65)
and the subsystem z, i.e.,

1~ - k
My + =PLLTP + ?Q]Inz <0 (6.66)
(0]
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and also the guaranteed Lo performance level v,.
Due to dependence on k;, i € {1,...5}, H; and Hy have to be designed not only based
on (6.48) but also such that (6.64) is satisfied. Therefore, we define

nxn;:{(ﬁ,ﬁ) : (g;) = (Z;E:;D ,(6.48), (6.64a-d) hold}. (6.67)

Note that there is a tradeoff in the selection of (7, 7,) from 7T, x T, in the way that the larger
one is chosen, the smaller the other will be. Once H;, Hy and consequently k;, i € {1,...,5}
get fixed, 0, ry, 7y, fu, f1y has to be designed to satisfy (6.64e,f). In addition, matrices X,
X, are given by

X, = diag( —ryl,,, 1), &y = diag( —ruly,, Iy, ). (6.68)

Similar to the state feedback case, the rest of parameters, 1y, dy, Gy, Mu; Ou,; Cu, can be properly

designed to improve inter-event times with no restriction on them.

Remark 6.12 Since k;, i € {1,3,5} are linear functions of Hi, Hs, inequalities in (6.64)
are well-defined provided that Hy, Ha, v, and r, chosed small enough. However, suggested
by the multiplicative terms kyry, k3ry, the design seems to be a compromise between choosing

H,y, Hy from one hand and ry, v, from the other hand.

Remark 6.13 Compared to state feedback case, design of Ty, T, involves more complex

steps due to (i) output feedback assumption and (ii) asynchronous triggerings.

6.3.2 Isolation of Triggering Instants

To show the successful implementation of control task under the proposed ETM, the event-
separation property is required to be guaranteed. We first provide the following extension

of event-separation property definition for the system (6.44).

Definition 6.4 Let 7, = inf{t/*' —t : i € No} and 7% = inf{t;*' —t} : j € No} be
the MIETs for the sensor-to-controller and controller-to-actuator channels. System (6.44)
has the robust semi-global event-separation property if there exists € € R™ so that for any

compact sets B, B C R™, inf{r}, 7% : z¢ € B, &y € B, lw|, <e}>0.

The event-separation property for system (6.44) relies on the following boundedness prop-

erty for trajectories x, 7.

Lemma 6.9 Suppose that under assumption (A1), matrices K, L are designed such that

Ao, A, are stable and (6.58), (6.59) hold for some v,5 € RT. Then under the TC (6.45)
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with Xy, X, and T,, Ty as defined in (6.68) and (6.67), respectively, and some (,, Gy > 0o,
the trajectories (x, %) of the system (6.44) starting from Bx B will remain in B' x B’ provided
that |w|,, < €, where

1

B'={z e R™ : ||z[|< o(An,(P))"2}

N[

B = {&eR™ :||7]|< 0720\, (P)) "7}

2.2
__ 7ac k3ny kany ~ 5
and 0= Jo + Gy—0o + Cu—00 + Sup(“l‘OaiO)eBXB V(IE(], 33()).

Proof. Using similar argument as in the proof of Theorem 6.8, we conclude that for

|w]o < €

2 2
V(xyfi‘) S V(xo,.’io)e*Uot + M(l _ e*UOt)

Oo
ksny o oot —Gyt kanu oot —Cut

+ ——— (e %" —e ) + e " —e ).

@—%( )+ ool )
The fact that A, (P)||z]|?+0n, (P)||Z||?< V (z, &) implies ||z||< )\nz(P)’%V(x, Z) and ||Z||<

9_%)\% (P)_%V(l‘, Z), hence completes the proof. ®

A decentralized version of event separation property is given in the following theorem.
Compared to the centralized case originally stated in [59], the main technical issue here is

the boundedness of = ,z, proven in Lemma 6.9.

Theorem 6.6 Under the execution rule (6.45) and assumption (A2), the closed-loop system
(6.44) has the robust semi-global event-separation property.

Proof. We first prove the result for the sensor-to-controller channel. We will assume
t?fl < tiy +7y, otherwise 7%, = 7,, and hence the proof is immediate. Using similar process as
in the proof of Theorem 6.1, we conclude from TC (6.45) that a lower bound on MIET can be
obtained through the condition |ley||< ay||y|+b, where a,, b, are obtained by substituting
o1, az, a3, 6 in (6.18) by of = X, (PY), af = 2||PY||, af = M\ (PY), dy, respectively.

Defining py, = |ley|l/(ay||y||+by) we have

91l
aylly|[+by

€yl aylley |l
ayllyl[+by, — (ayllyll+by)

Therefore, from (6.47a) we have

py < 5 < (1+aypy)

b |z [|4b2 |||+l eu||+bal|w]] )

ﬁy S (1 + ayPy)( a ||y”+b
Yy Yy

Since the second bracket is bounded in view of Lemma 6.9, we conclude that p, < %(1 +

a,py), where ¢, = (by +bsay || K||) (0An, (P) ™2 )+ (by +bsay | K||) (672 0An, (P) "2 ) +bsby +bye
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and |w|, < e. Solving this inequality from p, (t;) =0 to py(sy) = 1, at which the modified
TC is satisfied, we conclude ¢, = t; + Z—z In(1 + ay) and hence ¥ > % In(1+ ay).

Now we use similar arguments to prove the result for the controller-to-actuator channel.
We assume ), < t + 7,. Therefore, the TC |ley||< ay||[KZ||+b, gives the lower bound on
MIET where a,, b, are obtained by substituting aq, ag, asg, § in (6.18) by af = A, (P}),
oy = 2||PY|, o = A1 (P4), 0y, respectively. Thus by defining p, = ||ey||/(au || KZ|+by) we
have

1K |
au | K] +b,

< e aulleu ||| K2
t au || K2||+by (aul\Kfll+bu)2

p < (14 aupu)

which using (6.47b) gives

blIIwH+b2||3?H+b3||6yH+b4H€uH)

e < (1 (

Applying Lemma 6.9, we conclude that p, < (1 + ayupu)(bs + ICTZ)’ where ¢, = (b +
bsay(||Cyll+ces)) (0An, (P)_%) + 62(9_%Q)\nz(ﬁ))_%) + bsby. Using similar process as in the
proof of first statement, we solve this inequality from py(#,) = 0 to pu(su) = 1 to conclude

7% > (by + Z—Z)_l In(1+a,). =
6.3.3 Discussion: Separation Principle

So far, the matrices K, L were designed in (6.58), (6.59) to stabilize the subsystems z, Z.
However, there remains to establish overall system stability (6.44) obtained by combining
these subsystems. In the absence of a network, overall stability of the combination follows
by the well-known separation principle. However, the same does not hold in the presence
of the ETMSs, [21]. This can be seen from (6.66), (6.65) which are insufficient to prove
the stability of (6.44) and hence the additional condition (6.64f) is required. We now show
that fast sampling at the controller-to-actuator channel is the key to solving this issue and
guarantee the independency of K and L design in an event-based scenario. Indeed, from
(6.64f) it can be inferred that when 6 is chosen large enough so that

—pyln, —PB,K
( 2 g, ) <0 (6.69)

(6.64f) holds for sufficiently small 7, i.e., fast sampling at the controller-to-actuator chan-
nel. On the other hand, due to presence of the term 7, in (6.65), the effect of fast sampling
at the sensor-to-controller channel is to reduce the conservatism in designing matrix K.
Note that choosing K such that the eigenvalues of A + B, K are pushed further negative,
from the definition of M, it can be concluded that (6.65) can be solved for larger r,.
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6.3.4 Main Result

Theorem 6.7 Suppose that assumption (A1) holds and let K, L to be designed such that
Ao, Ao are stable and (6.58), (6.59) hold for some v, € R*. Also assume triggering
parameters X, X, and Ty, T, are defined as in (6.68) and (6.67), respectively. Then the
closed-loop system (6.44) is finite gain Lo-stable and has Lo-gain < ~q for some yq > 7o :=

V24052, 0 e RT.

Proof. From (6.56), (6.57), (6.66) and (6.64) one can easily show that the integral in the
right hand side of (6.63) is upper bounded by —c,zT Pz — 0w P+ k3ny + kany. Thus we
conclude J?Od,w + V(xo, Zo) + ksny + kany, > 0. m

Theorem 6.8 Under the conditions of Theorem 6.7, the closed-loop system (6.44) is GES

at equilibrium point x = 0 with convergence rate o, = min{o,, oy, }.
Proof. Define

O — —(py + €y)ln, -PB,K
3 — * _Q(Mu + Eu)]ITLq; + 9%@3 )

similar to the proof of Theorem 6.7, from (6.54), (6.55), (6.56), (6.57) we conclude that for

w:OandauayteRar

V(.f,.i') < —UOV([B,.f) + gé3g+ Ck1”€yH2+042H€uH2,

which can be solved as V(x,%)e%t — V(zg,Zo) < fot e T{ETOZE + ailey||*+azl e }dr.

Therefore, by applying (6.66), (6.64) and Proposition 6.3 for 5, = 0, we conclude
t
V(x, .f)@ﬂot — V(xo,Z0) < / eaof(kgnye*Cy‘r + k4’)7u€7<“7),
0
and finally

. - ksny - kanu -
174 7 <V oot Y oot Gyt oot Cut )
(z,%) < V(xg,Tp)e + C — s (e e ) + T (e e )

It is then easy to check (6.12) holds for r = v/#, 52 = 0o and

= min{Al(P)v/\l(P)} ( k3 kamu >
01 = D P (7 L T Gmoe T 2o

choosing n, = 7,V (z0, Z0), 1y = 7.V (20, Z0), Ty, Tu € RT. ®
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6.4 Application: Event-Based Lyapunov’s Indirect Method

In this section, we take the advantage of the results of previous sections to design local
H, controller for general nonlinear ETC systems. To simplify our presentation we restrict
attention to the state feedback case, premising that the more complicated output-based
control structure will not change the resulting outcomes. Therefore, consider the nonlinear

plant
= = f(x) + Byu + Byw
with the performance output z given by
z = h(x).

The functions f and h are continuously differentiable and locally Lipschitz-continuous.

According to the classical Lyapunov indirect method if the continuous-time control law
u=Kzx

stabilizes the linearized plant, then the original nonlinear model is also stable, at least
locally. It it, however, unclear whether or not this important classical result still holds
when the control law is implemented in event-triggered form. To the best of our knowledge,

this problem has not been studied so far. Let us define

of(x) . Oh(x)

oz sz7 N

A=

= ox sz’

the resulting ETC system is described by

{:i; = (A+ BuK)z + ¢1(z) + BuKe + Buuw,

2z =C,x + pa(x). (6.70)

where

e1(x) = f(z) — Az, @a(z) = h(x) — C.z.

The nonlinear functions ¢1, g3 are locally Lipschitz-continuous. Given some ¢, , ¢, , sSystem

(6.70) is equivalent to (6.15) provided that the trajectories of (6.70) remains in
D={zeR":|z|< 24}

where x4 = inf{z,Z € R™ : ||¢;(x) — ¢i(Z)[|< ¢y, ||z — ||, ¢ = 1,2}. To see that this is the
case, let us first redefine ¢ in Proposition 6.2 by replacing ¢4, by ¢y, i € {1,2}. Then we
conclude from the TC (6.16), Proposition 6.2 and (6.24) that for any ¢ € R{

W+ oW < yg[lw]*+A4,
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solving which gives
2
7 A
Ay (P)|2]2< A1 (P)||wo]|*+ sup {—d |w(7)]|? _|_|| (r )H}
o<r<t + O

Thus choosing rg, € such that

N(P) o dacty/IAl

Xng (P)'0 g (P)

it can be inferred that z(t) € D for all t € RJ and any w € £ with |w|_ < ¢, and any
initial conditions with ||z¢||< ro. Hence the Hoo ETC design discussed in Section 6.2 can
be applied to linearized model (6.70). The above results are summarized in the following

theorem.

Theorem 6.9 There exist some neighborhoods Dy C R"*, D,, C L3™ of origin such that
the closed-loop system (6.70) is finite gain Lo-stable and has Lo-gain < ~vq for all w € Dy,
all xg € Dy.

6.5 Numerical Examples

In this section, we illustrate the proposed procedures for designing matrices K and L.
Note that conditions (6.58), (6.59) are of limited use from a design perspective, as they
are not originally stated in terms of the eigenvalues of stability matrices. To circumvent
this limitation, two different strategies are provided in Section 6.2.4 and are summerized in
Lemmas 6.6, 6.7. In our first example, we follow the method of Lemma 6.6 to design matrix
gains K, L. In the second example, however, we provide a model for which the design can
not be performed based on the result of Lemma 6.6 and hence Lemma 6.7 is exploited to

for design.

6.5.1 Example 1

The first example is chosen in consistent with the statement of Lemma 6.6, i.e., the largest
eigenvalue of Re A, can be assigned negative by appropriate choice of K. Consider the

system model (6.10) with

1=(30) 2= () -,

Note that due to the symmetry of matrix A and similarity of B,, C’;— , the desgin procdure

for K, L are similar. Taking
-
K= (ki kz), L= (1 ls) (6.71)
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implies that assumption (A1) holds. It is then easy to check

Hle Ai(Re Ady) = —ky — (14 %)2’
S22 Ai(Redy) = =1+ ko,

solving which for \;(Re A,) gives

1
2

M(Redo) = L(ky — 1) + %((1@ F1)2 4401+ %)2) .

Then choosing k1, ko such that ks < —(1 + £1)2 results in A\;(Re A;) € (—1,0] and hence
Lemma 6.6 can be used to design K, i.e., we can assign 1, + %y € [0,1). Also since
/_l;r = AO|L:—KT and C;— = B,, we have Re A, = ReA,. Similarly, matirx L can be

designed appropriately to ensure v, + %+ € [0, 1).
6.5.2 Example 2

We now consider the case where the the largest eigenvalue of Re A, can not be set negative
and hence Lemma 6.6 is useless to design K, L. Therefore, the design is performed using

the result of Lemma 6.7. Consider the system model (6.10) with

A:G’ _11> Bu:<(1)>, Cy=(01)

which is the generalization of the model proposed in [84] to the output feedback case. It is
easy to check that assumption (A1) holds. Moreover, choosing K, L as in (6.71), we have
det(Re A,), det(Re A,) < 0 and hence Ay (Re A,), A (Re Ao) > 0. This implies that Lemma
6.6 is useless to design K, L. Thus, we design these matices according to Lemma 6.7. In [84],
it is shown that the design can be performed for matrix L as L = col(69.5523,11.5679).
Also the resulting closed-loop eigenvalues of A, are placed at —6.2839 4 j5.3911. Now since
Al = flo]szKT it can be inferred that K = (—69.5523, —11.5679) and hence the same
closed-loop eigenvalues as A,. The maximum t, + %y (respectively, ¥, + %) for which the
stable controller (respectively, observer) is guaranteed can be calculated as 0.49. We refer

the interested readers to [84] for more details.

6.5.3 Range of Parameters and Admissible Nonlinearities

In previous examples, it is shown that by proper choices of matrices K, L one can ensure ), +
% € [0, @), where w = 1 (respectively, @ = 0.49) in the first (respectively, second) example.
Therefore, from definition of ¢, we obtain cg, + (HBW#‘| + %)(w [fiy T €y +||Call+co,) + % <

w. This introduce an upper bound on the admissible range of v, p,, €y, 0, and Lipschitz
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coefficients cy,,cg,. Similarly, from v, + %+ € [0,@), the parameters 7, jiy, €y, 0y and

Lipschitz coefficients ¢y, , ¢y, are restricted to satisfy cg, +cg, ||LH+@«/ o +eu+% < w.

6.6 Summary

We have proposed a design methodology to simultaneously synthesize the feedback law
and the TC for nonlinear Lipschitz systems. The study covered both state and output-
based controller designs. Several triggering and performance variables are introduced as
the design parameters which has to chosen properly to meet the desired configuration of
the closed-loop poles. In addition, it is shown for the first time that for the output feedback
case, under the fast sampling at the controller-to-actuator channel, the separation principle
holds. Moreover, the results are shown to be a platform for the local stability of general

nonlinear systems.
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Chapter 7

Dissipativity Properties of
Nonlinear Systems Under Network
Constraints

7.1 Problem Statement

In this chapter! we consider two subsystems ¥; (i = 1,2) of the following form
z; = fi(xi, u;),
PP 7.1
’ {yz‘zhi(%’), (7.1)
where x; € R™, u; € R™ and y; € R™i. The functions f; and h; are locally Lipschitz
with respect to their arguments and satisfy f;(0,0) = 0 and h;(0) = 0 so that z; = 0 is an
equilibrium point of the unforced subsystem i. The following notation is used throughout

this chapter

Definition 7.1 (Dissipativity property) A state space system ¥; is said to be dissipa-
tive with respect to the supply rate s; : R™i x R™i — R if there exists n;(x0) > 0 such that
for all z;0 := l’i(to) e R all u; € ,anl, and all t1 >ty
t1
[ s0), e+ mtro) 2 0. (72)
With the assistance of a differentiable function V; : R™ — R, called storage function,
condition (7.2) can be re-stated as follows: ¥; is dissipative with respect to s;, provided

that for all z;0 € R™, all u; € £5", and all ¢; > tg

Vi(i(t)) < si(ui(t), yi(t))-
!The results of this chapter have been submitted for publication in the article: M. Ghodrat and S. H.
Mousavi and A. H. J. de Ruiter and H. J. Marquez, “Dissipativity Properties of Nonlinear Systems Under
Network Constraints”, Submitted to IEEE Trans. Autom. Control, November 2018.
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Assumption 7.1 Fach subsystem %; (i = 1,2) is dissipative with respect to the supply rate
si(ui yi) = yi Qayi + i Siwi + u] Ryw, (7.3)

with differentiable storage function Vi, where Q;,S;, R;,i = 1,2 are matrices of appropriate

dimensions and Q;r =Q;, R;r =R;.

For the feedback interconnections of the two subsystems which is obtained through the
relations uy; = r1 — yo, us = ro +y1, dissipativity follows immediately from Assumption 7.1.
However, this manuscript focuses on a more realistic scenario where the interconnection be-
tween systems takes place through a communication network. More specifically, we assume
that data exchange between subsystems 3J;, 7 = 1, 2 is carried out through a digital network
with limited communication rate. Being stated in the context of sampled-data theory, this
situation has received a lot of attention up to date and has a rich body of literature, see [4].
In this chapter we relax the periodic sampling assumption and focus on aperiodic sampling

in the form of an ETM while maintaining the properties of the original design.

7.1.1 Event-Based Architecture

We will consider two independent triggering modules I'; for the subsystems ;. T'; (resp.
I'2) exploits its local available information to schedule the data transmission from ¥; to s
(resp. X9 to X1). In such structure, the interconnections between subsystems ¥;, i = 1,2

are expressed as follows:
up =711 —Y2, u2=r2+9Y1, (7.4)

where ; € R% is the exogenous input to the system X;, ¢ = 1,2 and g;, ¢ = 1,2 is the

intermittent information exchanged between two subsystems defined by

for j; € Ng, and 7 = 1,2. In the above definition, {tjll : 71 € Ng} and {t?2 : jo € Ng} are the
asynchronous transmission instants at the 3, and X sides, respectively. The general system
structure is depicted in Fig. 7.1, where the solid and dashed lines represent continuous and
intermittent information flow of information, respectively. Denote, z := (:UI,x-Qr)T € R”,
ri=(r{,ra)T € R™ and y := (y{,y4 )T € RP as the state, input and output, respectively,

with n = n; +ng and m = p = my + may. Then, In order to study the input-output
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Figure 7.1: General structure of feedback system 3
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(s

properties, the overall interconnected system is described as follows:
<f (21,1 — ))

fa(w2, 72 + 91)
()

ha(w2)
As mentioned earlier, the problem of event-triggered dissipative has been recently studied in
[11,26,27,51,52]. However, there are two main issues with the proposed mechanisms: i) The
results in the aforementioned references are limited to the cases that inputs r;, ¢ = 1,2 are
continuously differentiable signals with bounded derivative; a restrictive assumption when
dealing with arbitrary unknown disturbances. ii) More importantly, the event separation
in the presence of arbitrary inputs r;, ¢ = 1,2 is not fully guaranteed. In fact, when
states approach the origin, arbitrary exogenous inputs may result in an unlimited number
of events.

In this chapter, our goal is to design triggering policies such that the dissipativity prop-
erty of the proposed feedback system is guaranteed, while the separation property for trig-

gering instants of each module holds, assuming only disturbances in Lo. In this regard,

define the following sampling error for each subsystems >;, 1 = 1,2

ei(t) = 3i(t) — vi(t). (7.5)

Remark 7.1 While the connections between subsystems ¥1 and ¥o are interrupted in be-
tween the sampling instants and they operate in an open-loop fashion, taking e;, i = 1,2 as
external inputs one can treat ¥ as a closed-loop control system. This enables us to apply

the existing input/output theories to the system 3.

Assuming the initial sampling instants at both sides occur simultaneously at tj = 0, and
denoting tl as the most recent triggering instants for the triggering modules I';, ¢ = 1,2,

the upcoming sampling instants are decided through
541 = nf{t > 15« [les(0)[1*> aillyi (1) +2:(6)}, (7.6)
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where the parameters o; € RT and the functions A;(+), i = 1,2 have the following structure
Ai(t):{di t§i§tﬁt§-i+fz‘7
Pi(t), U+ T S t<t g,

where 7;,; € RT are constant parameters and v; € L, are bounded functions which can
be designed based on three different scenarios ¥; € 20N Lo, ¥; € L1N Lo Or Y; € Lo, €ach
leads to a different dissipativity property for the ETC system. In the sequel, it will be shown
that the positiveness of 7;, d; are incorporated to guarantee the separation of triggering
instants. Moreover, as suggested in Chapter 4, proper choices of functions 1; provide the
flexibility to enlarge the inter-event times. It is worth remarking that an alternative to
the TC proposed in (7.6), is the time-regularization approach recently proposed in [20,48],
where triggering is not permitted until some dwell-time has passed since the last transmitted
signal. Condition (7.6) is free of this limitation and hence may offer better performance
when compared to time-regularization method.

It will be shown in Section 7.3 that the boundedness of the trajectoriesof subsystems >3;,
1 = 1,2 is key to guarantee Zeno-free behavior for the system Y. Generally speaking, the
dissipativity property (7.2) does not imply boundedness of states and hence an auxiliary
assumption is required. The missing element in the input-output theory is the link between
boundedness of input-output signals and that of state trajectories. This is entirely analogous
to the detectability-type properties that ensure ultimate boundedness of states by some
function of inputs and outputs norms [88]. Thus, our conjecture is to exploit a detectability

assumption in one of its forms, in order to admit the boundedness property of states.

7.2 Motivation

It is not difficult to verify that finite-gain Lo stability is a special case of the dissipativity
property (7.3), with a specific choice of matrices @;, S; and R;, [5]. The Lo stability
analysis of ETC systems has seen much attention in recent years, including [16-18,20,49] to
mention just a few. All these works are built on two main assumptions: first, Lo stability
of network-free system and second, ISS of ETC model. Therefore, in order to address the
dissipativity problem, it is reasonable to generalize these assumptions. To generalize the
first assumption on the Lo stability of a network-free setup, it suffices to assume that each
subsystem >;, ¢ = 1,2 is dissipative. Moreover, a general counterpart of ISS assumption is
the following notion of input-output to state stability (IOSS). An equivalent definition can
be found in [89].
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Definition 7.2 (Input-output to state stability) The system ¥; has I0SS property pro-

vided that there exists a class KL function & and class IKC functions v;,v; so that

2 @< &(llzioll, t) + i llui(®)ll o) + villlyi ()]l o)
for every intial state x;9 € R™.

The above definition suggests that when inputs and outputs are zero, states converge to
zero. So, it is strongly connected to detectability of ¥, [88]. This property serves to show
the boundedness of trajectories of ¥. Note that a similar but stronger concept, defined as
strongly finite-time detectability, is used in [90] for the same purpose.

Depending on how the parameters in the TCs (7.6) are selected, these generalized as-
sumptions render a dissipativity property for the event-based setup, either in classical form
or weak form. Indeed, we will show that there exists a trade-off in the parameter selection
such that improved inter-event behaviour comes at the expense of a weaker form of dis-
sipativity for feedback system 3. The above statement also explain why the dissipativity
results given in [51,52] have been stated in its classical form by sacrificing the separation
of triggering instants.

The following variation of the dissipativity property will be required. Note that a similar

definition was introduced in [63].

Definition 7.3 (Weakly quasi-dissipativity property) System X is said to be weakly
quasi-dissipative with respect to supply rate s : R™ x RP — R if there exist some a, 5 € ]RSr

such that for all xg € R™, all r € R™, and all t1 > tg

t1
[ sty +ater —10) + 5 > 0.
to

Whenever o« = 0 (resp. 8 = 0), the system X is called weakly dissipative (resp. quasi-
dissipative). Thus the main deviation of weak dissipativity from the regular concept is

that it allows the storage function to include finite power sources. This is analogous to the

concept of a bias term in theory of Lo stability [68].

7.3 Boundedness Properties

We shall need the following notion of state boundedness.

Definition 7.4 (Bounded-input bounded-state stability) System X is bounded-input
bounded-state stable (BIBS) if there exist wy,ws € N such that for any o € R™ and any
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re LY

supl|(t, zo, r)l|< max{w ([lzo]) @2(|rfec) - (7.7)

As stated earlier, the TOSS property is the key toward showing the state boundedness
in the ETC system. However, Definition 7.2 is not practically applicable for checking
this property for a given system. As a solution, the following definition characterizes this

property in terms of Lyapunov functions.

Definition 7.5 (Characterization of IOSS property) An I0SS-Lyapunov function for

system X; is any continuously differentiable function Wi, satisfying

o, (i) < Wilz:) < @i(zi), (7.8)

LWiit)) < —auli®)) + ralus() + 6:(u: (1), (7.9)

dt

for some class K functions P;r Pis Oy Ki, ;.-
Assumption 7.2 Fach subsystem %; (i = 1,2) has 10SS property.

The following lemma characterizes the BIBS property for the proposed ETC system.
Lemma 7.1 Suppose that:

(i) Assumption 7.2 holds with respect to I0SS-Lyapunov functions Wi, i = 1,2. More-
over, functions @;, oy, ki, ¢; in (7.8), (7.9) satisfy @;(z;) < di||z:]|?, El(l‘z) > d, ||z,
ai(w;) > afllil?, wi(w) < Filluill?, di(yi) < @illyill® for some di, af, Fi, ¢ € RF;

(ii) Assumption 7.1 holds with respect to storage functions V; i = 1,2, satisfying v, || z;]|*><
Vi(z;) < vgl|z:]|? for some v;,v; € RT;

(111) There exists some o € RT such that matriz @ defined as

A Q1+ oRs %(—514-95';)

0= 3(=ST +0S2)  Ri+0Q2 (7.10)

is negative definite
Then, feedback system 3 has BIBS property.

Proof. According to Assumption 7.1, there exist storage functions V; : R% — R¥ i =1,2

such that
Vi(l‘z‘) < szszz + szSMz + U;I-Rzuz (7.11)
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Consider the storage function V(z) = Vi(z1) 4+ oVa(z2) for some o € RY, it follows from
(7.11), (7.4) and (7.5) that

V(a:) < yTQy + yT§r + T Rr + (e, r,y)

where Q is defined in (7.10),

a_ S1 QQRQ 5 Rl 0
5= [—231 952}’ = [0 QRQ]

and ®(e,r,y) = e' (®ee + O,r + ®,y) with

_ | 0R2 0 _ 0 20R _ | 20R2 05
(D“’_[ 0 Rl]’cb’"_[ —2R; 0 > By = — S, 2Ri|°

Using the fact that

le]?
)\y

2
e
e ®,r < )\H + A2, eT@ny +)‘y”¢yy”2’
T

for some A, A, € R", we conclude that
' ) ) ) 2
V(@) <y Qu+y Sr+r Rr+ > i, (7.12)
i=1

where 01 = QHRQH-F/\% + /\iy, 02 = ||R1H+% + )le and
Q=0Q+\0d, 5=5, R=R+\o 0,

Now, take U(z) = V(z) + pW(x) for some p € RT where W(z) = Wi(z1) + Wa(xs).

According to inequality (7.9) and condition (i) we have
W(z) < —a*||z|*+rllul*+¢lly]* (7.13)

with o* = min{aj, a3}, k = max{&, o} and ¢ = max{¢y,p2}. Using Young’s inequality
it is obtained that

2

ul?= > fluill®= [Ir1 = y2 — e2l*+llr2 + 1 + e |)?
=1
1 1 1 1
<y"Quy +y" Sur + 1 Ryr + (1+ P a)\|€1||2+(1 to Tt a)||€2||2 (7.14)

where €1, €2, €3,€64 € RT and
Ou = 1+e4 O g — 0 2 1+ e O
v 0 14el|” ™ |=200" " 0 1+4e3|"”
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In view of (7.12), (7.13) and (7.14) we can write

2
Ux) <y'Qy+y Sr+7r"Rr+ Z oillei||*—pa*||z|? (7.15)
i=1

_ = 1 1 = 1 1
where 01 = 01 + pr(l+ S + ), 02 =02+ pr(1 + S + ) and
Q=Q+ pdl + prQu, S =5+ prSy, R= R+ prR,.

Now since @ is negative definite in the light of condition (iii), there exists some p, A, such
that Q is also negative definite. Hence, applying [90, Proposition 1] we see that there exist

some positive 7, p such that
Yy Qy+y"Sr+rT Rr < —nlly|*+pr|*. (7.16)

Exploiting conditions (i), (ii) there exists some # € R such that U (z) < pa*||z||>. Using
the last inequality alongside with (7.15), (7.16), and TCs (7.6) results in

2
Uw) < —0U(x) =y (0] = Qo)y + pr'r + Y 0
=1

for p* < p and

o101 O
Qe_[ 0 9202}

Choosing o; such that
noo.
o< —, (i=1,2) (7.17)

we have nl > Q., and hence

2
U(w) < ~0U(x) + plrfet 3 oitdi
i=1
Multiplying both sides of above inequality with e’ and integrating from 0 to ¢ yields

t 2
U(m(t))eet—U(xo)g/O Ll - ol Al b
=1

Note that |A;|o is well-defined due to boundedness of d;, 1;(¢). It is then easy to verify
that

2
o2 Qi
Ux(t)) < U($0)+0‘T|oo+;0Ai|oo- (7.18)
It is then straight forward to show that BIBS property (7.7) holds. m
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Remark 7.2 The BIBS property of system 3 can also be shown if condition (i) of Lemma
7.1 is substituted by an 10SS condition on the overall feedback system 3. The details are,

howewver, left to the interested readers.

Remark 7.3 In [90], a similar condition to (7.10) is used to guarantee boundedness of in-
terconnected systems. Condition (7.10) is a special version of the graph separation condition
(originally defined in [91]) and is used to prove similar boundedness results. Moreover, as

shown in [90], following condition (7.10) system ¥ has a uniform finite power gain.

We continue with the following lemma that gives an upper bound on the linear combi-

nation of measurement errors.

Lemma 7.2 Define
A={(21,2) ERF xR 1 2125 < 1} (7.19)

and let compact sets D; € R™ and Hy, Ho, e € RT given such that xg € Dy x D, (Hy,Hs) €

A, r|o< €. Also let 9 € RT and denote 7, € RT, i = 1,2 as the solutions to

l+7; Uy
19/ / dmdmre = H; (i =1,2). (7.20)
l l

Then, for any ki, ks, t € RT we have

t 2 .
/ngiﬂei(ﬂHQdTﬁ /0 (yT(T)Qcy(T)+7"T(T)RCr(7-)

2

+ 3 e P+ } ) ar,

i=1
where

(ki + kg Hy) H; -
Ci = 1_H1H{ ’ (7’_172)7

o1C1 _ g2C2
o C6 = C1+ Tt and

. 650 . 630
Qe = [0 CJ’RC_ [0 04]

Proof. Define Xy = maxy,ep, xD,||Zol|- Since xg € D1 X Dy and |r|oc< €, it can be inferred

C3 =1C1, C4 =C2, C5 = C2 +

from Lemma 7.1 that the state trajectories z remain in the compact set

D, = {gm ER": &)< max{wl(Xo),zEg(e)}}. (7.21)
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Moreover, using this fact and interconnection equations (7.4), we can write ||u||= || (u1, u2)||<

|l7[|+]|9]l, and thus conclude that the signal u does not leave the compact set

Dy = {& € B™: Jleul< e+ max [h(&:)]}. (7.22)

Denote the Lipschitz coefficients of functions f;, h; on the compact sets D, D, by Ay, Ap,.
From (7.5) and (7.1) it is concluded that

1
'7;:'@‘21' 7hi i(t dt —hi (T
léall= Ngall = Jim Aot + b)) ~ hiCo(e)]

< Al fili, i)l
Exploiting the interconnection equations (7.4) we can write
leall< XCllaill i 1+ Nzl + el (7.23)

where \; = ApAp,, @ = 1,2. Using the fact d|le;||/dt < |é;]| and the inequality (7.23) we

have

t
Hei(t)llé/ﬁ_ ([l s+ [lyz |+l ezl dr-

Ji

By applying Young’s inequality it is obtained that

_ ¢ 2 t 2
JestlP< 432 ([ esollar)”+ ([ rcoyir)
t;.i t;i
t 2 t 2
#( [ o)+ ([ estolar)’}.
t}i t;z
Finally, we can apply C-S inequality to get
2 32 ! ! 2 2
<432 [ ar [l P+l
t;-i t;-i
() P Hles ()1 (724

Breaking down the integral term of fot lles(7)||2dT as

: Bm
[leipar =S { [*+ [ e,
0 Ji £ ttmi

where for the most recent triggering index N; until time ¢, we define tévi 1=t i=12 We

can upper bound ||e;]|? using TC (7.24) for [t;i,téi +7;) (resp. using (7.6) for [t;z + 7, t§i+1))
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and apply (7.20) with ¥ = 4();)? to write the result in the following matrix form

1 Jollex()[12dr
B Hfﬁrez !\de]<
[H1 Syl )2 Hra (7)) 2 >d¢]

(1) (

Hy [y (lz2(m) 1P+ llr2(7) [P +Hlya (7)) dr
) )
) )

| frln @) dT] (7.25)

Jo (o2 lly2(7)1P+42(1))dr

This completes the proof noting that

1 —H!
/ Zk les(r)||2dr < [k1 k2] { . 11} « RHS of (7.25).
— 412

7.4 Main Results

As the first part of our main results, Theorem 7.1 shows the Zeno-free behaviour for the

proposed TC (7.6). Before that we need the following definition.

Definition 7.6 (Event-separation property) Let 7', 1nf{t] 41 t'i : Ji € No} be the
MIETs for the triggering modules I';, i = 1,2. The event-separation property holds for the
system Y provided that for any e € R™ and any compact sets D; € R™, i = 1,2, we have

inf{7! : g € (D1 x Dy), |r|eo< €,i = 1,2} > 0.
Theorem 7.1 Under the TC (7.6) the event-separation property holds for system 3.

Proof. We assume t;l 41 < t;z + 75, 1 = 1,2 at least for some j; € Ny, since otherwise we
can choose 7!, = 7;, i = 1,2 and the proof is immediate from the positiveness of 7;. The
rest of proof relies on modifying TC (7.6) to obtain a more conservative one so that TC
would be reached sooner. Then, MIET for this new condition is readily a lower bound for

the inter-event times of (7.6). In this regard, let us choose

as the modified TC where
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for some ¢; € R*. Note that one can easily check that (7.26) is more conservative than

(7.6) through verfying the following inequality
(A+B?*<(1+r)A2+ 1+ 1B

and setting A = a;||y;||, B = b; and k = ¢;. Now defining x; = ||e;||/b; we have

llé:|
b;

Xi <
Using the fact ||9;]|= ||é;|] and inequality (7.23), it is concluded that
SPPY
% < 2 (llll Il el +lles ).
(2

Since the second brackets is bounded due to Lemma 7.1, there exists some positive Ly, Lo

such that

Liy (i=1,2). (7.27)

Based on the definition of y; and condition (7.26), the triggering in the modified rule occurs
when x; = 1. Thus Solving (7.27) for x;(0) = 0 and x;(7;) = 1 it is straight forward to
conclude

L

Ti

>0 (1=1,2).

Since 7; > 7;, the proof is complete. m As the second part of our main result, Theorem 7.2

states the dissipativity properties of system 3.

Theorem 7.2 Under conditions (i)-(iii) of Lemma 7.1 and if
¢ < pa® (i=1,2), (7.28)
then, system Y has the following dissipativity properties with respect to the supply rate

§(r,y) =y (Q+ Qc)y +y ' Sr+1"(R+ Re)r. (7.29)

Proof. Integrating (7.15) from 0 to ¢ and applying Lemma 7.2, it is obtained that

Ula(t) = Utan) < [ {s7(@+Quly+u"5r+17(F+ Ror

+ erl|z|P+eaf| w2 —pa || z|? + vi(7) + a(7) }dT
(a) (0)

Suggested by (7.28), the integral term (a) is upper bounded by 0. Moreover, we have the

following three scenarios For the integral term (b):
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Table 7.1: Different dissipativity properties

Admissible space Dissipativity (Diss.) of system X

for 1;(t) weakly diss. quasi-diss. (classical) diss.
Z0N L v v v
(£1\20) N Loo v v X
Eoo\‘cl X v X

1) i(t) € Zp for i = 1,2: we have (b) = 0.
2) ;(t) € L1\ 2 for i = 1,2: there exists some 3 € R* such that (b) < f.
3) Yi(t) € Loo\L1 for i = 1,2: there exists some o € R such that (b) < ot.

In view of Definition 7.3, the above formulations yields the results summarized in Table 7.1.

This completes the proof. m

7.4.1 Design Algorithm for Triggering Conditions Parameters

Sections 7.3 - 7.4 introduce several constraints in the design of TC. In this section we
proposed an algorithm to complete the design and select the parameters in (7.6).

i. Choose o, i = 1,2 based on (7.17).

ii. Select ¢ > 0, the upper-bound of the norm of the disturbance, and Xy > 0, the
upper-bound of the initial state, respectively. Define compact sets D, D, according
to (7.21), (7.22). Then, calculate Ay, A\, as the Lipschitz coefficients of functions f;,

h; on these compact sets.

iii. For a desired pair of (Hy, Ha) € A, where A is defined in (7.19), and for ¥ = 4(Af, A, )?,
calculate 7;, i = 1,2 according to (7.20).

iv. Choose a positive constant d;, i = 1,2 and v;, i = 1, 2 according to desired dissipativity

property in Table 7.1.

Under the above algorithm, system ¥ is dissipative with respect to supply rate § defined in

(7.29), for the initial conditions ||z¢||< Xy and exogenous disturbance || < €.
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7.5 Case Study

Let f;, h; in (7.1) have the linear structures f;(z;,u;) = A;x; + ui, hi(z;) = x; for i = 1,2,
which under interconnection (7.4) gives

1 = A1y — T2 + wy,
To = Asxo + T1 + wo,
Yi = Xy, (’L = 1,2).

We assume the following TCs proposed in [51]
1 = inf{t > 5, [les(£)]|> oills (1)1}, (7.30)

for i = 1,2. Choosing w;, i = 1,2 as follows

wy(t) = —Ajz1(t) + Z2(t) — 21(0),
wQ(t) = —AQZ‘Q(t) — ii‘l

results in the following dynamics
.fi - —xi(()), (Z = 1,2)

between sampling instants. Thus using a process similar to [59, Theorem IV.1], it can be

shown that

zi(t) = 2 (0)(1 = t), e;(t) = as(0)(t — %), te[th .t ).

Ji? “Ji+1

Thus applying TCs (7.30), the sampling instants are analytically obtained from

. 1 Ji
t’-,:1—< ) i —1,2).
Ji 1+0.Z (Z )

This proves the existence of accumulation points at ¢ = 1 for both I'y, I'y sides. However,
under our proposed TCs (7.6), Theorem 7.1 suggests the existence of some positive L;, &;,

1 = 1,2 such that the inter-event times are guaranteed to be separated at least by

_ 1 ( 5; )é
T = .
" max{L, Al \1 4!

7.6 Summary

This chapter proposed a TC design structure to meet different types of dissipativity property
for the event-triggered interconnected subsystems. It is shown that by proper choices of
triggering parameters, the resulting closed-loop system may enjoy weak-, quasi- or the
classical dissipativity property. Moreover, the proposed TC is showed to be favorable from
implementation perspective by showing the sampling times to be uniformly isolated. Finally,

the obtained results are validated through a compelling example.
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Chapter 8

An Integral Based Event-Triggered
Control Scheme of Distributed
Network Systems

8.1 Problem Definition

!'In [9], using an ISS Lyapunov function, an ETM is designed for nonlinear systems:

T = f(x,u) (8.1)
where x € R™ and u € R™ are the state and inputs. Assuming state feedback controller
u=k(zx) (8.2)
and defining measurements error as e(t) := x(t;) — x(t) for t € [t;,ti+1) where t;’s are
triggering instants, one can rewrite (8.1) as

&= f(z,k(x +e)) (8.3)

Assume also that an ISS Lyapunov function V exists so that nonlinear system & =
f(z, k(z +e)) is ISS with respect to measurements error e, i.e., there exist a,y € Ko such

that

a(lz]) < V(z) <alz)), (8.4)

V(z) < —a(|z]) +(le]). (8.5)

!An early part of the results of this chapter has been published in the article: S. H. Mousavi and M.
Ghodrat and H. J. Marquez, “Integral-Based Event Triggered Control Scheme for a General Class of Non-
Linear Systems”, IET Control Theory & Appl., vol. 9, no. 13, pp. 1982-1988, 2015.
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Then the following TC

V(lel) < oaflz]), o€ (0,1) (8.6)

guarantee that V(x) < 0 and hence the system is asymptotically stable in presence of

measurements error, i.e.,

%f{x,k(m+e)) < (0 — Da(ja|) (8.7)

In this chapter we look for a less conservative T'C that can increase the inter-execution
times. To improve the inter-event times, we introduce in integral event-based scheme which
allow the Lyapunov function to have positive derivative until the asymptotic stability of
overall system does not violate. We will show that the new law achieves stability while
significantly reducing the amount of information sent between plant and controller. To this
end, we integrate (8.5) over the interval [t;,1):

t

V)~ V(L) < - / a|l)dr + / Y(lel)dr (3.8)

i T

and define the integral-based TC as follows:

/t. v(le))dr < O'/t. a(|z|)dr t>t; (8.9)

where 0 < o0 < 1 is an arbitrary coefficient and next execution time (¢;+1 € T) is the time

when above inequality is violated; i.e.

tit1 tit1
/ v(le])dT = a/ a|x|)dr. (8.10)
ti t;

In the following theorem, we show that the TC (8.9) preserves asymptotic stability of

the closed-loop system, while a positive MIET is guaranteed for the scheme.

Theorem 8.1 Consider the continuous-time nonlinear system (8.1) with the pre-defined
stable state feedback law (8.2) and assume that the following conditions, introduced in [9)],
hold:

1. f:R" xR™ — R" is Lipschitz continuous on compacts.
2. k:R"™ = R™ s Lipschitz continuous on compacts.

3. There exists an ISS Lyapunov function for the closed-loop system, satisfying (8.4) and

(8.5) with o~ and ~ Lipschitz continuous on compacts.
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Assume now that instead of continuous information flow from plant to the controller, the
control law updates based on an event-based scheme with integral-based TC (8.9). If 0 <
o < 1, then we have the following properties for the ETC system:

(A) The origin is an asymptotically stable equilibrium point.

(B) For any compact set S C R™, containing the origin, there ezists a lower bound Tyin €

R such that for any initial condition in S we have
tiv1 — b > Tomin Vit tip €T (8.11)
where partition T, defined in Definition 2.4, is the sequence of the triggering instants.
Proof.

(A) Substituting (8.9) in (8.8) we have

V)~ V(t) < (0 —1) /t a(lz])dr (8.12)
and so, for o < 1:
V(t) < V(tl) YVt € [ti,ti+1), (813)

and asymptotic stability follows from [58, Lemma 1].

(B) To show the existence of positive MIET 7,5, we introduce an auxiliary system with

the same dynamic as (8.3):

¢=f(GR(C+e)) (8.14)

but with the TC proposed in [9]:

V(le']) < aa([C). (8.15)

Assume now that both systems update their control law at time instant ¢; and also

have the same state values at this time, i.e.:
x(ti) = ¢(t)- (8.16)
Denote the next execution times of system (8.14) by t;_; i.e.
V(e (tig)) = oa(C(ti)]) (8.17)

and

V(€' ®)]) < oallCt)]) Vt € [ti, tip1)- (8.18)
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Based on (8.16) we have
et)y=e(t) Vteltiti ). (8.19)

Integrating (8.18) from ¢; to t;,; and using (8.10), we can easily see that ;11 > ;.
Since the auxiliary system has lower bound for its execution time, [9], so does the

ETC system with integral-based TC (8.9).

In order to make a fair comparison between the proposed and traditional TC schemes,
in this section we consider two ETC systems with the same dynamic but different triggering
strategies and compare the resulting inter-event times. The following theorem is then stated.

The proof, however, can be find in [58].

Theorem 8.2 Consider the event-triggered nonlinear system (8.3) implemented using the
integral-based TC (8.9), and let partition T = {t; : i € No} denote the triggering instants.
Consider also the system (8.14) with the same dynamic but implemented using the classical
TC (8.15) and let the partition T' = {t; 1 j € No} represent the triggering instants. As-
suming that o is Lipschitz continuous on compacts and that the conditions of Theorem 1

are satisfied, then the following properties hold:

(A) Zero Triggering-Time State Difference: If x(t,,) = ((t],) for some ty, € T and t], € T,
then

b1 — tm > Uy — 1.

(B) Non-Zero Triggering-Time State Difference: For everyt, € T’, there exists € > 0 such
that if
lz(tm) — C(th)|<e Vtm €T (8.20)

then
b1 — > Ty — T (8.21)

8.2 Integral Based Event Triggered Cooperative Control of
Distributed Network Systems

In this section? we consider a system of n agents operating in R. Let z; € R and w; €

R denote the state and control input for agent i, respectively, with the following single-

2The results of this section have been published in the article: M. Ghodrat and H. J. Marquez, “An
Integral Based Event Triggered Control Scheme of Distributed Network Systems”, Proc. Eur. Control Conf.
(ECC), pp. 1724-1729, 2015.

133



integrator dynamics

xz(t) :ui(t), 1= 1,...,??,. (8.22)

Assume agent i communicates with a limited number of agents in the network. Our problem
is to design a decentralized control law together with a TC (centralized and decentralized)
to insure that the agents achieve average consensus, i.e., they converge to the agreement
point %ZZ x;(0) which is the average of initial states of the agents. In this section we
consider the problem of designing an event-based controller for a group of agents. Our goal

is to ensure the consensus of agents both using centralized and decentralized approaches

8.2.1 Centralized Approach

In the centralized approach, each agent needs information from other agents in the network
to decide the next triggering instant based on a global (same) execution rule. To this end,
each agent needs to communicate with all other agents in the network. This condition,
however, is relaxed in decentralized approach. Moreover, in a centralized control scheme all
agents’ actuators update simultaneously which is perhaps too conservative compared to the
decentralized approach. Let us define the measurements error e as the difference between

the current and the last sampling value of state, i.e.,

e(t) = x(ty) —x(t), tE€ [t,tkt1), (8.23)
where {t; : k € Ng} is the sequence of control task execution times and x = (z1,...,2,)".
It is known that using the control law u(t) = (u,...,u,)’ = —Lx(t), average consensus is

achieved for a connected network. In the presence of measurements error, the closed-loop

dynamics for the systems is given by
z(t) = —Lx(t;) = —L(x(t) + e(t)). (8.24)

Now defining the vector d(¢) as the deviation of agent’s positions from the average, a =
L5 @i(t), we can write z(t) = al, + 6(t). We avoid using time dependence representation
for a since it is easy to verify that @ = 3" i;(t) = 0, i.e., the average position remains
constant over time [92]3. Then it is possible to find the dynamics for position disagreements
vector §(t) as

§=—L(6+e), (8.25)

where we use the fact that 1, is an eigenvector of Laplacian matrix corresponding to the

eigenvalue 0. Now we are at the point to find the TC using the Lyapunov function V(6(t)) =

3This property relies on the structure of matrix L and hence can be easily extended to ETC systems.
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367 (t)8(t). Note that to ensure the average consensus of all agents, we only need to show
that V' (0(t)) — 0 as t — oo. Using the same method as in [93], an upper bound for dynamics
of V(§) can be found as

V(6) = —0TLS — 6" Le < —Xo(L)|6)*+|6]|| L]||e]. (8.26)

Enforcing control task to execute when
A2 (L)[9]
le]|—o——"— =0, (8.27)
IL]
where o € (0,1), V(8) becomes negative definite, i.e., V(§) < —(1 — o)Ao(L)[6]?. In the
following theorem we propose an integral based execution rule which, compared to (8.27),

improves inter-event times.

Theorem 8.3 Consider a network of agents having single integrator dynamics @(t) = u(t),
where the state feedback control law u(t) = —Lx(t) is designed to ensure the average consen-
sus of the network. Suppose that ty, is the most recent triggering instant of the agents. Then
if the actuator value for each agent updates at time instant ty1 > t;, when the following
execution rule is satisfied

/t e 18(r) dr - “T,QL(HL) /t o) dr =0, (5.28)

where o € (0,1), and ZOH module is used to keep the last transmitted control value at the

intervals between triggering times, the following hold:
(1) The network achieves average consensus.

(II) The time intervals between consecutive triggering instants are bounded below by m In(1+

o2 (L)
o)

Proof.
(I) Integrate (8.26) from ¢ to t € [tx,tx+1), we get

V() - Vi5(0) < -alt) [ P + 120 [ Boleiar (329)
Now, considering the integral TC
e tiriar < 5 [arpar, (8:30
we can rewrite (8.29) as
V(o(t)) —V((ty)) < —(1 —0o)A(L) t:|5(7)|2d7'. (8.31)



Since o € (0,1), we have
V() <V(6(ty)), tE€ [t trr] (8.32)

Therefore we conclude that the value of Lyapunov function at the next triggering instant,
V(8(tk+1)), is strictly less than its value at the most recent triggering instant, V' (6(¢;)). Asa
consequence, the discrete time sequence of {V(d(tx)) : k € Np} is monotonically decreasing,
bounded below and consequently convergent. In fact, we show that the convergence point
is 0. It is important to note that V(d(¢)) can be increasing at some points in the interval
[tk, tk+1), while not deteriorating the convergence of Lyapunov function to 0. To explain this
point, consider inequality (8.32). It is obvious that even if the Lyapunov function increases

in the interval [tg, tx+1), its value can not exceed V(0(x)). Therefore we can write
0<V(6(t) <V(0(tk)), tE [t trsa)- (8.33)

Now if {¢; : i € No} constitutes a partition, i.e., the number of triggering instants tend to
infinity, from sandwich rule we get V(6(¢)) — 0 as ¢, — co. However, if execution of control
task stops after finite number of triggering instants, then one can integrate (8.26) from 0

to tx and apply TC (8.28) on inter-event periods [tg/, tpr11) for K =0,...,k — 1 to get

V(6(ts)) — V(6(0)) < —(1 — 0)Aa(L) /0 6(r) 2dr. (8.34)

From (8.31), (8.34) and positive definiteness of V' (d(t)), we obtain 2 fg V(§(r))dr = fg\5(7)|2d7 <
% Since fot |6(7)|2d7 is a nondecreasing function of ¢ which is bounded from above
dt2 0 H6(7)|2dr = 2V (8(t)) is finite, from Barbalat’s Lemma we have tli)m 4 fg|5(7)]2d7 =

tlim |6(t)]?= 0 and hence 6(t) converges to 0.
—00

and 4

(IT) Let us define new variable

e(T)||6(7)|dT
ft il 2 ) (8.35)
ftk|5 T)|2dT
which has the following dynamics
dft D6(r)ldr  le()[[5(t)],; 16(r T)Pdr o)) S le()16(r)|dr (8.36)
T dt ftk|5 7)|2dT ft |6(7)|2dT)? ft |6(7)|2dT)?
Since the second part in the last inequality is always negative we can write
eOS@)] [F |8(7)|2dr S(t
_ le@lIs@)1f, 16(7)] L _le13() 537)

T P (18
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Integrating (8.24) from ¢, to t and using é(t) = —&(t) we get

e(t) = / L(x(r) + e(r))dr = / L(S() + e(r))dr,

ty tg
and thus
t t
le(t)]< t [L(6(7) + e(7))|dT < ||LH/t ([6(7)[+e(r)])dr. (8.38)
k k
Multiplying the last inequality by min ¢, 4 [6(7), we get
t
g[llkn [0(7)[le(®)|< I L]l t (16(m) P+le(r)[16(7)] ). (8.39)
TElk:t k

Now consider the following TC
t
6(8)lle(t)|< !LH/t (18(r)1*+le(m)[16(T)])dr (8.40)
k

which is more restrictive than the one given in (8.39) and hence gives a lower bound for
inter sampling times. Then we are able to find an upper bound for ¢ as

ftk 2)dr + [, (le(n)]16(r) )dr
ft |6(T ’2(17'

0 < |ILII( (8.41)

Then we have

o< |[ILI(L1+0), oltr) =0, (8.42)
which shows that the trajectory of o over [tx,tx+1) is bounded above by ¢ which has the
following dynamics

=L +¢), @) =0. (8.43)

Thus, the inter sampling times are lower bounded by the solution 7 of ¢(7) = T ie.,

- _ 1 O')\Q(L)
7=+ ). =

Remark 8.1 The main reason that this method, compared to the one proposed in [93],
results in larger inter sampling intervals is that condition (8.28) allows increase of Lyapunov

function in some interval within two consecutive triggering instants, see, e.q., [94].

8.2.2 Decentralized Approach

In this section we consider decentralized approach. Here we assume that each agent in the
network has some communication limits in the sense that it can only exchange information
with its neighbors in the network. The importance of the decentralized approach becomes
more apparent as the number of agents in the network increases. To design a decentralized
ETC law for each agent, we propose two methods both using a decentralized control law

but one with a centralized TC and the other one with a decentralized one.
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Semi-Decentralized Triggering

In this approach the control law for each agent is decentralized but the TC is designed in a
semi-decentralized fashion. We assume that in order to check the TC, each agent needs not
only information from its neighbors in the network but also some global information about

the whole network. We now make the following assumption.

Assumption 8.1 Fach agent updates the control signal both at its own event instants as

well as the triggering instants of its neighbors.

To formulate the problem in this case, we first introduce the following notation from [93].
The set of triggering instants for agent i is denoted by {t! : k € Ng}. The measurements

error and control law for agent i are then defined as e;(t) = x;(t}) — z;(t) and

wit) ==Y (@i(th) —2j(t)) = = D [(@i(t) — x5(1) + (eilt) —ej(1))]  (8.44)

JEN; JEN;
for ¢t € [t} t}. ), where ti, = max{tjl'( Lt — ti( > 0, K € Ny} is the most recent triggering
instant for agent j. Then under Assumption 8.1, the set of actuator updating times for
agent i is {t},} U {> " cn, ti,}, k, k' € No. Similar to the centralized approach, we may find

an upper bound for dynamics of Lyapunov function V' (J) = %51—6 as

V() =—0TL6—6"Le < —Xao(L)D> 67 = > Y dilei — ¢j). (8.45)
i i JEN;
Then we conclude
V()< =2a(L)> 67 = > [8ill(es — ¢;)]
i i JEN;

< —0(L) D02 - [l | 3 eil+es)),

i JEN;

Now using the following execution rule for control task

S (el Hesl) — Aa(L)oilil= 0, (3.46)
JEN;
where o; € (0,1), it can be shown (see [93]) that the time derivative of the Lyapunov
function becomes negative definite, i.e., V(§) < —Xo(L) Y2, (1 —03)6?. In the following

theorem, however, we relax this execution condition to achieve larger sampling times for

the network.
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Theorem 8.4 Consider a network of agents having single integrator dynamics (t) = u(t),
where the state feedback control law u(t) = —Lx(t) is designed to ensure the average con-
sensus of the network. Suppose t}; is the most recent triggering instant of agent i. If the
control task execution is performed when the following execution rule holds at time instant
t};H > t}; for agent i or one of its neighbors

ths thit

[EOIE (el e mdr = oa@) [ a0, san)

th JEN; th
where o; € (0,1), and the system uses a ZOH module to keep the last transmitted control
value at the intervals between triggering times, the following hold:

(1) The network achieves average consensus.

(II) The inter sampling time intervals are bounded below by some non-zero constant.

Proof.
(I) Integrate inequality (8.46) from 0 to ¢ € [t ;) gives

VIS(0) - V00D < Tl-elr / 5P+ / 51 (el +Hes (r))dr. (848
JEN;

One can brake the interval [0,¢] into subintervals Uogrgk—ﬂti’ti +1) U ti,t]. Under As-
sumption 8.1, triggering instants are same for [ € {i} U N; and since (8.47) holds over any

of these subintervals, we conclude that

/|5l IS ler(m)l+es( )|)d7§al)\2(L)/0 16,(7) 2dr (8.49)

JEN;

For I ¢ {i} U N;, however, one can choose another subintervals (J, o _1[th, t\, 1) U [t} 1],
where t%c, is the most recent triggering instant of agent [. Now by applying (8.47) on any
these subintervals, we conclude that (8.49) holds. Then (8.48) can be rewritten as

V(8(1)) = V(5(0) < =X2(L) Y (1~ o) /0 |6 ()[*dr
l

< (L)1 - max o) /0 5(r) .
(8.50)

From definition of V(§(t)) we get an upper bound for V((¢)) as
V(5(1)) < V(5(0)) ~ 20a(L)(1 ~ maxay) /0 V(5(r))dr (8.51)
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which is a decreasing function of ¢. Since V(4(¢)) > 0, we conclude that f(f V(§(r))dr <
M#sz i.e. fo ))dT is bounded from above and because it is a nondecreasing
function of ¢ and 4 W fo ( ))dT = V(8(t)) is finite, from Barbalat’s Lemma we conclude
that tli}m 4 fg V(§(r))dr = tli)m V(4(t)) = 0. As a consequence, 6(t) converges to 0.

(IT) The proof outline is similar to Theorem 1. m

Remark 8.2 As we mentioned before, in semi-decentralized triggering scheme each agent

needs some global information from the network system. This is actually because of existence

of terms Aa(L) and 6;(t) in the TC (the later needs the knowledge of a).

Decentralized Triggering

We now consider the problem of designing a decentralized control law and TC. In contrast to
the previous results, each agent now decides the next execution of the control task only based
on the information from its neighbors. Using the same expressions for the measurements
error €;(t), control law u;(t) and triggering time instants ¢; for agent i, and considering the

Lyapunov function V(x) = %xTLx, we get
V(z) =" Li=—(Lz)" (Lz) — (Lz)" Le

:—ZLx ZZ Lz);(e; — ej)

i jEN;

- _Z(Lx)i - ZHN [(La)iei + > Y (La)iey, (8.52)

1 JEN;
where || N;|| denotes the number of neighbors for agent . Now using the Young’s inequality,

we can write

vmm—Zaﬂ+Zwmwﬁ
+Z—HNH6 +y° Z (8.53)

i JEN;
where v € RT is an arbitrary constant. From the symmetric property of adjacency matrix
of the network, the last two terms in (8.53) are the same and hence
. 1
Vie)<=) (1 —WHNiII)(L:U)?+Z;||Nz‘||6?- (8.54)
i i
In [95], it has been shown that using the execution rule

o (1= ]V}
1 1Nl

(Lz)? =0 (8.55)

for agent i, V(z) < 0 for o; € (0,1) and 0 < v < ”N 7- In a similar way to the previous two

sections, we relax this condition by defining an integral based one.
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Theorem 8.5 Consider a network of agents having single integrator dynamics @(t) = u(t),
where the state feedback control law u(t) = —Lx(t) is designed to ensure the average consen-
sus of the network. Suppose t}; is the most recent triggering time instant of agent i. Assume
that the control task for this agent executes whenever the following execution rule holds at

time t};H > t}; for agent i or one of its neighbors

t A=A [
| e - 7 | N7HH ) | wamyiar = (3.56)

t th

where o; € (0,1) and 0 < v < m Then using a ZOH module to keep the last transmitted

control value at the intervals between triggering time instants, the following hold:
(I) The network achieves average consensus.
(II) The inter sampling times are bounded below by some non-zero constant.

Proof.
(I) Integrate inequality (8.54) from 0 to ¢ € [t} ), we get

V(1) - V(x(0) < - 3 (1 -~ M]) / (La(r))?
1 0
+;iHNzH/O e2(r)dr. (8.57)

Using Assumption 8.1, for [ € {i} U V;, we can brake the interval [0,¢] into subintervals
Uogrgkq[tivtiﬂ) U [ti,t] so that over each one (8.56) holds. The same argument is true
for [ ¢ {i} U N; and subintervals U()Srgk’—l[tgi‘7ti’+l) U [, t], where t, is the most recent
triggering instant of agent [. Thus we have

/0 3 (r)dr < "”(1”;\77H’Nl”) /0 (La(r))Pdr (5.59)

for l=1,...,n. Then (8.57) can be rewritten as

V() - V) < - o [ (Lalr)idr
1 0
< —mlinal/o |Lz(7)|?dr, (8.59)

where 5, = (1 — oy)(1 — 74||Vy||) and min;6; = (1 — max;07)(1 — ymax; |[|[V;]|). From

0 < v < |\J\1f-||’ we conclude 1 — ymax; ||N;|| > 0. Then since V(z(t)) > 0, we get

fOt\Lx(T)\sz < Tmem JX((TE(B)IMM Ty meaning that fJ\Lx(T)FdT is upper bounded by

. o : . 2
some positive constant and since it is a nondecreasing function of ¢ and C‘li? Jolo(m)|Pdr =

141



y . . 5 . d t 2 — 5 2:
2V (x(t)) is finite, from Barbalat’s Lemma we get tlgglo & Jo|La(T)2dr tlgélO]Lx(tﬂ 0.

This means that Lz(t) (and hence V(z(t)) = z(t) " La(t)) converges to zero.

(IT) The proof outline is similar to Theorem 1. m

8.3 Simulation Results
8.3.1 Centralized and Semi-Decentralized Approach

Consider the network of agents given in Fig. 8.1 with the following neighboring sets

Ny ={2,3}, Ny = {1,3}, N3 = {1,2,4}, N; = {3}. (8.60)

Figure 8.1: Communication graph of network system

Then the corresponding Laplacian matrix is

2 ~1-10
-12 -10

L=|""% 4 4| (8.61)
0 0-11

We have A2(L) = 1 and ||L||= 4. We also assume o = 0.65 for centralized case and
01 = o9 = 0.55 and o3 = 04 = 0.65 for decentralized case. In Figs. 2, 3, we present the
control input of the agents for initial conditions z1(0) = —0.4, x22(0) = —0.2, 23(0) = 0
and z4(0) = 0.6. Fig. 2 is corresponding to the centralized approach and Fig. 3 to the

semi-decentralized one.
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Figure 8.2: Control input of the agents: traditional classic state feedback controller (black),
traditional event-based controller (solid) and the proposed event-based controller (dashed).
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Figure 8.3: Control input of the agents: traditional classic state feedback controller (black),
traditional event-based controller (solid) and the proposed event-based controller (dashed).

8.3.2 Decentralized Approach

Consider the following network of agents

)
@ @)
O

Figure 8.4: Communication graph of network system
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with the following Laplacian matrix

1-10 0
13 —-1-1

L=1|y "5 1| (8.62)
0 -1-12

Also assume 01 = 09 = 0.55 and o3 = 04 = 0.65. Fig. 5 shows the control input of the

agents.

Control Input

Figure 8.5: Control input of the agents: traditional classic state feedback controller (black),
traditional event-based controller (solid) and the proposed event-based controller (dashed).

The simulation results support our claim that, compared to the existing methods, our

integral based approach increases the inter sampling times.

8.4 Summary

In this chapter we proposed a novel event-triggered condition to solve the stability problem
of general nonlinear systems while reducing the frequency of samplings. Our slution involves
relaxing the conservative condition on the derivative of Lyapunov function to be negative
all the times, which is the core assumption in many related works. In Chapter 4 it is
shown that the integral-based type of TCs are indeed a special case of the proposed general
TC design structure. The obtained results are then applied to the multi agent consensus

problem.
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Chapter 9

Summary and Conclusions

This thesis investigates the ETC design of nonlinear systems by focusing on the robustness
properties of the resulting ETC system with respect to exogenous disturbances. In this
regard, while our main focus is on different input-output stability performances, we also
visit some of the main practical issues that may affect proper implementation of the ETC
task.

The main contributions of this research can be highlighted as follows.

1. In Chapter 3, we address the problem of disturbance rejection of general nonlinear
ETC systems while an Lo-type stability performance is preserved. Our study is built
on the assumption that the disturbance originates from structural uncertainties and
hence its norm can be upper bounded by the norm of some function of states. As
a consequence, the validity of the obtained results is only locally proved. It is also
shown that by properly modifying the proposed TC, the intersampling intervals can
be enlarged for a desired period of time or a desired number of sampling instants. This

is, however, obtained at the price of relaxing the stability properties of the design.

2. In Chapter 4, we propose a rather general platform for TC design. Indeed, several
dynamic and static parameters are introduced to capture the existing TC in the lit-
erature. Additionally, the results of Chapter 3 are extended in two aspects. First,
instead of local Ly stability, the proposed TC is shown to guarantee global £, per-
formance for the ETC system. Second, the proposed TC is designed in a way that
Zeno-behaviour is excluded in the presence of arbitrary disturbances. The restriction

on admissible disturbances made in Chapter 3 is relaxed.

3. Chapter 5 considers the event-triggered analysis of a special class of nonlinear systems.

Indeed, it is shown that when the system’s inputs are introduced through an affine

145



structure, several restrictive assumptions in previous chapters can be relaxed. In
detail, it is shown that the ETC problem can be solved without using an ISS condition.
Both emulation and joint design approaches are studied. Moreover, the input-to-state
stability of this class of nonlinear systems can be guaranteed through sufficient NLMI

conditions.

. Chapter 6 addresses one of the aspects of ETC systems that has not seen much
attention yet. Indeed, in this chapter, we propose a design methodology to jointly
design an ETC law for nonilinear Lipschitz systems under both state and output
feedback scenarios. The obtined results is novel in that while most of the existing
results in the literature solve the problem by proposing a set of LMIs to be solved, the
design here is directly based on assigning the eigenvalues of stability matrices. As an
another contribution of this chapter, we show that the output-based controller can be
designed following the classical separation principle, i.e., th controller and observer
gains are designed independently, provided that the sampling at the controller-to-
actuator channel is performed sufficiently fast. As an application, it is shown that the
results can effectively serve as an event-based version of Lyapunov’s indirect method,
where an H,, controller for the linearized ETC model renders the nonlinear ETC

system locally stable.

. Dissipativity is known as a powerful tool in unifying different forms of input-output
stabilities. Thus to generalize the robustness performances studied in previous chap-
ters, it is natural to study the dissipativity properties of nonlinear systems under
event-based communications. In Chapter 7, it is shown that the general framework
of TC design that is proposed in Chapter 4 can serve to extract different dissipativ-
ity properties for nonlinear ETC systems. Moreover, the proposed TC is proved to

guarantee the isolation of triggering instants in presence of arbitrary disturbances.

. Chapter 8 focuses on the problem of reducing the sampling frequency of ETC systems.
In particular, it is shown that by using an integral based Lyapunov approach, we
can proposed a less conservative triggering condition and hence improve the average
frequency of samplings. The results, are then applied to solve the cooperative control
problem of multi agent systems under event-based communications. As shown in
details, the integral-based TCs can be extracted from the general TC design structure

proposed in Chapter 4.
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9.1 Directions for Future Work

Our proposed results in this thesis can be pursued in the following areas:

e Network control systems are considered as one of the main applications of the theory
of event-based control. While, in this research we have focused on some interesting
aspects of ETC systems such as performance in presence of disturbances and inter-
event time properties, the validity and/or efficiency of the obtained results, when
typical practical issues of a network control system such as time-delays and data

packet dropouts are introduced, remains as an open research area.

e In Chapter 6, we have shown that under the proposed ETC design, when the TC at the
observer-to-actuator channel is designed with a small enough triggering threshold, the
event-triggered observer design reduces to two simpler design steps on the controller
and observer gains. This is in accordance with the classical separation principle.
However, this interesting result is restricted to our proposed method for designing
controller and observer gains and also triggering conditions, an open area of research

is then to extend the results to the other design methods.

e We proposed a general platform for designing TC in Chapter 4, which is shown to
capture several existing TC designs. Our focus in this comparison was merely based
on the structure of the TC with no reference to the relative performance in each
design. Therefore, an interesting open area for future research is to extend this result
and possibly propose a general TC famework which not only capture different TC

structures but also covers the performance of each design.

e In Chapter 5 it is shown that while the notion of game theory is powerful tool in
analysis of continuous-time input-affine nonlinear systems, when the communication
between plant and controller is performed in an event-based manner this method
this tool is of limited use to obtain the best control strategy when an event-based
communicaton network is introduced. We have a conjecture that in such case, thebest
strategy for minimizing player (control signal) can not be obtained explicitly. The

proof or rejection of this conjecture can be pursued in future studies.

e The attention of this research is mostly focused on the robust stability of ECT sys-
tems under more famous robustness indices such as £o-gain and in general £,-gain

performances. However, the (more stronger) incremental form of these performances
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has not seen much attention yet. Indeed, while the usual gain definition deals with
the ratio of the norm of output to the norm of input, the incremental gain considers
the ratio of the norm of changes at the output to the one at the input. Therefore,
a natural way of generalization of the the obtained results in this thesis is to re-visit

the problems when the usual gain performance is replaced with the incremental one.
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