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Abstract

Event-triggered control systems have emerged as an important alternative to classical digital

control systems, in which the flow of information between sensors, controller and actuators

takes place aperiodically in an event-based manner. Event-triggered control (ETC) has seen

much attention from the research community in recent years resulting in a comprehensive

theory which includes stability analysis, disturbance rejection, control design, etc. This the-

sis is concerned with important theoretical and practical aspects of event-triggered systems

that can be divided into two main categories.

The first part includes the robust analysis of ETC systems involving different types

of robustness measures. We start with designing a triggering condition (TC) for general

nonlinear event-triggered systems in a way that an L2-type performance is guaranteed.

The results are obtained in a local framework due to reliance on the assumption that the

admissible disturbance is norm bounded by some function of the states. The results are

then extended in two aspects. First, we study the Lp-stability of nonlinear event-triggered

systems and second, we relax the restriction on the class of disturbances. In addition,

the TC is proposed using a unifying framework which includes several dynamic and static

parameters to cover several existing TCs proposed earlier in the literature as special cases.

More importantly, the approach solves the non-trivial problem of isolating the triggering

instants in presence of arbitrary disturbances. As another extension, the more interesting

scenario of jointly designing the TC and control law is studied for nonlinear Lipschitz

systems. Our solution to this problem includes both state and output-based feedback laws

and consists of assigning the dominant eigenvalues of the stability matrices according to

desired control demands. We also consider the robust analysis of nonlinear input-affine

systems and study the input-to-state stability of ETC systems with respect to actuator

noise/error and exogenous disturbances. We consider both the design of the TC for a

pre-design controller as well as the more challenging simultaneous design of controller and

TCs. Finally, we consider the concept of dissipativity as general framework in the study of

various forms of robust performance and system properties (including passivity, ISS, and
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L2 gain performance), and study different forms of dissipativity for event-based network-

communicated physical processes. The second category of results in this thesis focuses on the

important problem of reducing the average sampling frequency for ETC systems. We study

this problem from two points of view. First, we modify a pre-designed TC to effectively

enlarge the intersampling intervals without violating the desired robust performance of the

event-triggered system. Also, we obtain a lower bound on the amount of inter-event times

extension. Moreover, for an ETC design to be successfully implemented in practice, the

uniform isolation of triggering instants has to be guaranteed. This is even more challenging

when disturbances are applied to the system. Our proposed triggering structure not only

provides a general platform for the event design but also serves to the isolation of sampling

instants in presence of arbitrary disturbances.
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Chapter 1

Introduction

This thesis explores robust design and analysis of event-triggered control (ETC) systems

subject to the exogenous disturbances. The purpose of this research is to offer solutions

to several open problems using novel techniques for event-based controller design. In this

chapter, we provide an overview of the subject along with some preliminary background,

overview of the literature, define the research objectives, and summarize the main contri-

butions.

1.1 Event-Triggered Control Systems

Modern feedback control systems are typically implemented digitally using a computer to

realize the controller. Sample and hold devices provide the interface with the (analog)

plant. In the classical approach data transmission between system components (such as

actuator, sensor and plant) takes place periodically, regardless of whether or not changes in

the measured output and/or commands require computation of a new control output. This

approach, often referred to as time-triggered control is well understood and has led to several

theories for control design of linear and nonlinear systems. See for example, [1–5]. The

periodic exchange of information, however, imposes unnecessary communication demands

that might become important and even critical in some systems such as distributed and

networked systems, where optimal usage of communication network capacity is of great

importance.

An alternative to time-driven systems is the so-called event-triggered approach, in which

a new control action takes place only when changes in the measured outputs overpass a pre-

established threshold. Event-based control systems has been an active area of research

over the last decade. The primary characteristic of event-based controllers is that they

can provide performance very similar to classical control approaches while reducing the

1



transmission of information between plant and controller. The importance of this property

is evidenced through several applications such as battery-operated systems with wireless

transmission between plant and controller, which often have limited energy and/or memory

supplies, or network control systems with shared wired or wireless communication channels,

[6].

In an event-based scenario, the system decides when to update the control output, based

on a so called real time triggering condition on the measured signals. This approach leads to

aperiodic communication between plant and controller that only takes place when needed.

In other words, the system components do not exchange information unless some TC is

satisfied. This condition can be defined in different forms and varies depending on the

nature of the system.

Mostly, the event-triggered mechanism (ETM) is designed to update the actuators when-

ever measurement error i.e., the difference between current and most recent value of output,

is above a pre-established threshold. The threshold can be a constant or a function of sys-

tem’s output or even a combination of them. Therefore, an event detector hardware is

required to continuously monitor the system’s output, compare it with the measurement

error, and finally release the information if it is needed. As a consequence, the actuator

receives an updated control signal at the triggering instants at which the TC is satisfied.

A zero-order hold (ZOH) device serves to maintain the controller signal constant between

events.

Two important aspects of an ETC are (i) the design should satisfy some form of closed-

loop performance, and (ii) should guarantee that the execution times have enough separation

to avoid excessive sampling. This second point is critical to any event design. Note that

reducing communication between plant and controller is, in fact, the primary motivation

behind event-based methods. However, since the execution time depends on the occurrence

of a new event, the TC has to be designed in a way to avoid excessive triggering, particularly

the existence of an accumulation point in which an infinite number of events are generated

in finite-time (also known as Zeno phenomenon). In other words, the event-based controller

has to be carefully planned to meet the hardware limitations associated with employed

sampling devices since the sampling devices cannot sample the measurements unlimitedly

fast. Therefore, a necessary practical requirement for designing and admissible TC is to

prevent the triggering instants to be arbitrarily close to each other.
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1.2 Literature review

Event-based systems have been used without theoretical supports for many years. The

resurgence of interest in the subject began with the work reported in reference [7], that

considers a first order stochastic system and shows that event-based sampling offers better

performance than classical time-triggered control, in terms of closed-loop variance and sam-

pling rate. Following publication of this work, event-triggered systems became a very active

area of research and many important contributions have been reported addressing stability

( [8–13]), and performance ( [14–20]), to mention a few (see also the references therein).

Reference [8], one of the first references on stabilization of ETC systems, proposes

an ETM for PID control. Reference [9], presents a clever and rather general solution to

the stability problem of event-triggered systems. In this reference the author assumes

the existence of a pre-designed continuous-time control law that results in input-to-state

stability of a nonlinear plant, and shows that restricting the measurement error (i.e., the

difference between the system state and the last sampled value) to stay within a threshold

which is a function of state, guarantees closed-loop global asymptotic stability.

Reference [9] has inspired much work and several event-based strategies have been pro-

posed that extend this work (see [21] and the references therein). Reference [9] is restricted

to state-feedback and therefore relies on full state measurement. This restriction is relaxed

in [10, 11]. Reference [10], considers periodic ETC of linear systems, in which the TC is

monitored at regular intervals instead of continuously, and can be viewed as a sampled data

version of event-triggered systems. Reference [11] considers output feedback stabilization

using the framework of passivity theory. References [12, 13] offer a unifying framework for

the stability problem of nonlinear event-based in the context of hybrid systems.

All of the above mentioned works focus on stabilization. The effects of an ETM on

control performance was first addressed in [15], which shows a trade-off between system

performance and the complexity of the control law. A decentralized ETM is proposed

in [22] for distributed linear systems. This reference considers an impulsive system approach

to system stability and proposes an ETM that satisfies an L∞ bound. References [16–

18, 23–27] focus on the L2-gain. The L2-gain stability analysis of ETC systems was first

investigated in [23] where a full-information H∞ controller is proposed for LTI systems.

[17, 24] continued the work of [23] in more details. [24] proposes an L2-gain performance-

preserving TC for a class of nonlinear affine systems. [17] considers LTI systems and derives

an explicit lower bound on the sampling periods. In this reference, the disturbance is
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assumed to be norm bounded by a linear function of the state norm. This condition is

then relaxed in [18]. Reference [25] considers the L2-gain of distributed multi agent systems

under event-triggered agreement protocols. Reference [16] proposes an ETM for distributed

network linear systems and guarantees finite gain L2-stability in the presence of packet data

dropouts. Reference [26] considers passive systems and proposes a TC that guarantees finite

gain L2-stability when the external disturbance is bounded and shows that their approach

preserves stability under constant network induced delays or delays with bounded jitters.

Reference [27] extends the results of [26] to systems with constant network induced delays

or time-varying delays with bounded jitters. [19] proposes a dynamic TC for the centralized

state feedback ETC of nonlinear network control systems with guaranteed Lp-stability.

Reference [20] extends the work of [19] to the output feedback and decentralized case.

The TC should be designed properly to guarantee Zeno-free bahaviour for the ETC

system. In this regard, most event-triggered laws define a threshold using the norm of a

measured signal, typically, the state. Examples include [9,13,16,17,28]. Although this type

of scheme has seen countless of successful applications and has provided an important place

in the literature, it is, however, not free of limitations. Indeed, in [9], the author designed a

TC departing from a continuous-time closed-loop ISS system (with respect to measurement

error) to achieve an closed-loop stable ETC system, with Zeno-free behaviour. Similar rules

can also guarantee other desirable performance measures such as L2 input-output bounds

(e.g., see [16,17,23]). However, it was recently shown in reference [19] that in the presence

of disturbance or sensor noise, static TCs defined in terms of solely the state vector norm

cannot guarantee positive minimum inter-event time (MIET), thus becoming vulnerable

to Zeno behaviour. The same issue may be encountered when dealing with dynamic TCs

(e.g., [13, 28]), or output-based TCs (e.g., [26, 27]).

As mentioned above, dealing with uncertainties in the event-triggered context is non-

trivial. Indeed the ETM is designed to update the actuators whenever measurement errors

are above a pre-established threshold. In the absence of disturbances, the error originates

during the intersample as the difference between the present value of the state and its last

sampled value. In the presence of exogenous disturbance, however, the error is also driven

by the disturbance term making it difficult to design an effective TC, thus incorporating

disturbance in event design is nontrivial.

The main problem is then to design the triggering mehanism in a way that the desired

stability and/or performance for the event-triggered system is acheived. In the absence of

disturbances, the sampling (measurement) error originates during the intersample as the
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difference between the present value of the state and its last sampled value. In the presence

of exogenous disturbance, however, the error is also driven by the disturbance term making

it difficult to design an effective TC. Thus, when designing an ETC law, two aspects need to

be considered: first, the resulting feedback control must satisfy some form of performance

criterion. Second, this performance must be satisfied when the control law is implemented in

event-triggered form. This second aspect is nontrivial because ETC systems are inherently

non-periodic, thus preventing the designer from using discrete-time models and forcing the

use of emulation techniques to recover continuous-time performance when the controller

is implemented in an event-triggered fashion. Indeed, the vast majority of the published

work to-date follows an emulation approach, consisting of first designing a control law in

continuous-time, ignoring implementation details, and often neglecting possible network

constraints. A TC is then designed to meet as closely as possible the performance of

the continuous-time design, possibly taking into account the effect of the communication

network. This approach has been predominant in the research community and includes the

majority of the works published up to date. Often control design is expressed in terms of

linear matrix inequalities (LMIs), for which feasibility is a non-trivial issue. We refer the

interested readers to [29–33] for full state feedback design and [22, 29, 30, 34–41] for output

feedback design. Note that since the control law is originally designed for the network-

free problem, the desired performance will not necessarily be optimal in presence of a

network, [30]. A more recent approach consists of jointly designing the controller and TC

and has recently seen attention, e.g., see [29–31,33,39,42]. As demonstrated in these works,

joint design can overcome possible deficiencies of the emulation approach by enhancing

optimal performance.

Regardless of the particular method used in the design (i.e. emulation design or joint

design), designing the TC also require careful attention. Indeed, a critical aspect of an

ETC system is that since execution times depend on the occurrence of an event, the TC

must be constructed in such a way to avoid events becoming excessively close. In this

regard, disturbance rejection becomes a challenge, since the effect of disturbances may lead

to execution times becoming arbitrarily close resulting in an accumulation point (maybe

the only exception is the periodic event-triggered scheme, [10], in which the separation

of triggering instants holds trivially). Therefore, constructing such TC in the presence of

exogenous disturbances is non-trivial and has been the subject of much research. This

problem is relatively well understood for linear ETC systems, for which several solutions

have been proposed. See [17,18,22,23,29,30,43–46]. References [11,19,20,26,27,47–53] study
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the more general nonlinear case. A major trend in these works is to ensure the separation

of execution times by enforcing a dwell-time between them, known as the time-regularized

approach. In this method, the TC is only checked after a positive dwell-time since the

last execution time. In this sense, the dwell-time can be seen as being inspired by classical

periodic sampling (see [54]). See also [55], [56], [34] for a different approach. As pointed

out in [19, 20], while offering guaranteed positive inter-event times, the time-regularized

controller may reduce to a time-triggered (periodic) control in certain situations. This

issue, however, has been avoided in the recent papers [20, 48] where a dynamic triggering

scheme is incorported with the time-regularization technique.

1.3 Research Motivation and Objectives

In this section we briefly discuss the motivation leading to the work presented and summarize

the main contribution in this thesis. In the previous section, we discussed several aspects

of ETC systems that have been well-studied in recent years. Despite major advances in the

field, however, there are some fundamental open issues that requires careful attention.

1.3.1 Robust Analysis

An important problem in the realm of ETC systems is the solution to finite L2-gain stability

for a wider class of systems and/or a less conservative set of assumptions. Indeed, in Chapter

3 we consider a rather general class of nonlinear system model with the sole assumption

of satisfying a mild local Lipschitz continuity condition. Taking exogenous disturbances

together with measurement errors as inputs, our proposed TC is obtained based on the

assumption that the system is ISS. The ISS assumption implies working with bounded

inputs and therefore suggests the need to consider small signals in some sense. To formalize

this concept, we present our results using an extension of the classical input-output theory

of systems with modified input spaces, referred to as local (or small signal) input-output

stability introduced in [57]. It is then assumed that the disturbance term is originated

from structural uncertainties in the system model and is norm bounded by some locally

Lipschitz-continuous function of state. This assumption is rather mild and more general

than previous references. For example, in the framework of self-triggered control, [17]

considers a similar L2 problem to the one studied here, but assumes that the norm of

disturbance is bounded by a linear function of the state norm. The results are then extended

in Chapter 6, where the interest is to answer the question of whether or not the linearization

of a nonlinear plant model can be rendered locally stable when the controller is implemented
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using an event-triggered approach. Note that this is different from the classical notion of

local stability achieved via linearization in continuous-time, which simply ignores the event-

triggered implementation. One can conjecture that the same principle holds, i.e. if the

linearized model is stabilized via feedback, then the true nonlinear system is locally stable,

even when the controller is implemented in event-triggered form. The results in Chapter

6, bring clarity to this conjecture using the fact that a wide range of nonlinearities satisfy

a Lipschitz condition, at least, locally. Moreover, the results of Chapter 3 is improved in

Chapter 6 from two main aspects. First, the restriction on the admissible input space is

removed, i.e., the disturbance here is not restricted to be norm bounded by some function of

state’s norm. Second, while in Chapter 3 the control and triggering laws are designed based

on nonlinear model specifications, in Chapter 6, we explore the local L2 problem based on

a linearized design. This problem is generally of more interest due to the existence of more

developed tools/theoretical supports for linear ETC systems.

As an another generalization to the results of Chapter 3, where the local L2 stability

of nonlinear ETC systems under state-dependent disturbances is studied, in Chapter 4

we generalize the problem to an Lp type performance and relax the restrictions on the

set of admissible disturbances, stating the results in a global (non-local) framework. We

consider a general class of nonlinear control-affine systems and a pre-designed state feedback

controller whose continuous implementation satisfy some Lp-gain performance level μ. We

provide a constructive TC design algorithm to achieve a new Lp-performance level for some

μd. References [20, 48] follows a different approach. In comparison to these references, the

results of Chapter 4 rely on a less conservative set of assumptions and a different approach

that lead to a different structure for the TC design. In fact, assumptions made in [20, 48]

require some sort of dissipativity property for ETC system, which we believe, is too strong

when applied to the problem considered in Chapter 4. Moreover, the results in this chapter

can be treated as a general framework for the construction of a dynamic TC, where several

design parameters can be selected for specific purpose. The resulting design covers several

well-known forms (namely, [9, 13, 19, 20, 28, 49, 58, 59]) as special cases.

While the majority of the literature on ETC design has focussed on the emulation

method, consistent of finding a TC that closely resembles performance of an analog design,

more recently some research has address the perhaps more important problem of jointly

designing both controller and TC. Current solutions proposed controller design based mostly

on the feasibility of LMIs. To improve these results, in Chapter 6 we propose a systematic

mechanism to jointly design static and/or dynamic controller gains and the TC parameters
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to meet an H∞ performance. The approach is different from other joint design techniques

in that our proposed method involves assigning dominant eigenvalues of the linear stability

matrices, based on the desired performance and triggering specifications. This approach

not only solves the intended H∞ performance objective, but also provides valuable insight

into the design limitations. We consider the output feedback case via state feedback plus

an observer, and discuss both the full and partial state feedback case.

Following the seminal work [9], most of the mentioned works on nonlinear ETC, design

the TC assuming the system to be ISS with respect to measurement error and external

disturbances. It is well-known for linear systems that a globally asymptotically stabilizing

controller for continuous-time unperturbed (zero-disturbance) system renders the resulting

perturbed ETC system ISS. More recently, [60] shows that instead of a primitive assumption,

the ISS property with respect to disturbance can be taken as the consequence of applying

the integral-based type of TC, [58], to linear output-based event-triggered systems. The

generalization of the above results to nonlinear event-triggered systems, i.e., building the

stability analysis on the different assumption rather than the ISS condition or finding suf-

ficient conditions for nonlinear event-triggered systems to have ISS property, has not seen

much attention. This motivates the results of Chapter 5 where we provide sufficient con-

ditions for input-to-state stability of the input-affine nonlinear sampled data systems with

respect to actuator error and exogenous disturbance, based on the convex feasibility of

nonlinear matrix inequalities (NLMIs). In addition, we propose a solution, independent of

ISS assumption, to the L2-stabilizing ETC design. As a consequence, by utilizing the affine

structure of the state space approach, the results obtained are built on different assumptions

when compared to the related works [20, 48, 49]. We follow both joint design and emula-

tion design approaches and express the robustness results in terms of convex feasibility of

NLMIs. We show in Chapter 5 that while in the absence of a communication network, the

theory of differential games, [61], can be effectively utilized to solve the desired L2 stability

problem by finding the so-called best strategies for control and disturbance signals, this tool

is not helpful when an event-based communication network is introduced.

A very powerful tool in the study of system performance, is the so-called dissipativity,

first introduced by Willems [62]. Generally speaking, a system is called dissipative with

respect to a specific supply rate, if the energy stored by the system at any time t does not

exceed the energy externally supplied with the given supply rate. In other words, the system

is dissipative if there is no internal production of energy. Dissipativity provides a general

framework in the study of various forms of performance and system properties, including
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passivity, input-to-state stability, and L2 gain. Extensions of the notion of dissipativity

include the concepts of quasi dissipativity and weak quasi dissipativity, introduced in [63,64].

These notions extend the original definition to include the possible existence of internal

generation of energy with finite power. Chapter 7 deals with the preservation of some forms

of dissipativity when a continuous-time plant is connected to a discrete-time controller via

a communication network. It is well established that, under continuous communication,

the feedback interconnection of a dissipative plant and controller results in a dissipative

closed-loop system [5]. When the communication between plant and controller is done via

periodic sampling, however, closed-loop dissipativity does not hold. It was shown in [65],

however that in this case the interconnection results in a quasi-dissipative closed-loop. The

analysis of dissipative systems under event-based communication is in fact, well understood

(see for example [11, 26, 27, 51, 52]). One issue, however, critical to any event-triggered

system, is ensuring that there is a time-separation between triggering events. The above

mentioned references prove the non-existence of Zeno behaviour by restricting disturbances

to Sobolev spaces, i.e. continuously differentiable signals with bounded derivative, and

showing that an accumulation point can only occur as time tends to infinity. Although

this approach indeed prevents the existence of Zeno behaviour in finite-time, it does not

however constraint the number of triggering events over finite intervals and therefore may

fail to serve the main purpose of a triggering system; namely, limit the transmission of

information between subsystems. This is mainly because the obtained lower bound on

intersampling times is not constant and may shrink to zero over time. In Chapter 7, we

study dissipativity properties of event-triggered feedback control systems by generalizing

the results given in [65] and show that under event-triggered sampling, different variations

of dissipativity property may hold. In particular, it is proved that the dissipativity property

in its classical sense or in its more general forms of quasi or weak dissipativity, in the spirit

of [63], may hold depending on how the triggering parameters are selected. Our solution

excludes the existence of Zeno behaviour using an approach different from that in [51, 52]

and addresses the above mentioned shortcomings associated with these references. Our

approach employs a fully event-based scenario in which the TC is monitored continuously

without the use of dwell-time, as opposed to time-regularization, thus avoiding the use

of dwell-time restrictions, [66]. Additionally, we propose a general framework to design

the parameters of the TC and show how the proper selection of these parameters leads to

different forms of dissipativity. We emphasize that our analysis and results do not require

input signals to be differentiable, thus relaxing to conditions used in references [51, 52].
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1.3.2 Sampling Frequency Improvement

The main objective of ETC is to reduce the communication traffic among the components

of a control system. However, the majority of the obtained results to date rely on the

Lyapunov theory and might provide conservative results in terms of transmission rates.

Therefore, reducing the associated conservatisms by modifying the existing TCs has been

at the centre of much research in recent years.

To reduce the conservatism associated with the application of the Lyapunov theory in

the analysis of ETC systems, in [67], a new TC based on a logic function of the Lyapunov

function is introduced. The result weakens the assumptions in [9] by considering an ISS

approach and assuming a lower bound on the derivative of the Lyapunov function. In

Chapter 8, we propose a different approach and re-examine the paper [9]. Assuming that

an analog controller has been designed and satisfies an ISS condition, we propose an alter-

native, less conservative, approach for the construction of the TC. The main idea consists

of using an integral-based ETM that allows the Lyapunov function to be non-decreasing

between triggering instants (thus allowing the time derivative of the Lyapunov function to

have instantaneous positive values between triggering instants). Unlike the work [67], our

proposed integral-based TC is a function of the state values and measurement error and

relies only on the ISS assumption for the original analog system to prove the results. The

existence of a lower bound for the inter-event times is also proved and an explicit value for

this bound is provided for a specific class of nonlinear systems. The proposed method is

shown to be more efficient than the existing results in terms of communication exchanged

between plant and controller.

Limiting the number of triggerings over a time interval (when necessary) may be of

higher importance than decreasing their number over an infinite time span. For exam-

ple, high data load on a communication channel over a finite time interval may result in

undesirable effects such as data packet drop out and/or transmission delay. Therefore,

instead of improving all inter-event times, we focus our study on controlling the number

of samples over a time interval in which the triggering frequency may become critical.

This is addressed in Chapter 3 where our proposed strategy improves existing results, see,

e.g., [13, 19, 20, 28, 58, 67], in that the increase in inter sampling-times can be designed a-

priori, at least for a desired period of time (or a desired number of triggering iterations). By

contrast, in [13,19,20,28,58,67] the intersampling increase is not estimated quantitatively.

We also show that there is a trade-off between intersampling improvement and stability of
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the zero-input system, in the sense that enlarging intersampling periods results in practical

sense stability rather than the classical notion of stability.

One issue, however, critical to any event-triggered system, is ensuring that there is a

time-separation between triggering events. Although this issue has been extensively stud-

ied in multiple references, recent research has shown that event-triggered systems can be

critically sensitive in the presence of external disturbances [59], possibly resulting in Zeno

behaviour, unless the TC is properly constructed. A recent line of research, known as time-

regularization, is recently proposed to address the separation of event times in presence of

exogenous disturbances, where the separation of events is guaranteed by imposing a posi-

tive dwell-time after each triggering instant, during which the TC monitoring is paused. It

is well-known that as states converge towards the origin, the time-regularization approach

converges to a time-triggered sampling and hence produce unnecessary samplings. Our

approach to design TCs in this research offers an independent solution of the event separa-

tion problem mentioned above. Indeed, in the time-regularized approach proposed in [59],

time-regularization holds by construction, by forcing a minimum dwell-time between events.

Our approach, however, is purely event-based, suggesting that the pre-designed dwell-time

assumption can be relaxed and can potentially offer better performance compared to the

time-regularized method.

1.4 Thesis Outline

The rest of this thesis is organized as follows.

Chapter 3: This chapter studies the performance preserving event design in nonlinear

ETC systems based on a local L2-type performance criterion. Considering a finite gain local

L2-stable disturbance driven continuous-time system, we propose a ETM so that the result-

ing sampled-data system preserves similar disturbance attenuation local L2-gain property.

The results are applicable to nonlinear systems with exogenous disturbances bounded by

some Lipschitz-continuous function of state. Also, it is shown that an exponentially de-

caying function of time, combined with the proposed TC, extends the inter-event periods,

which compared to the existing works, analytically estimates the increase in intersampling

periods at least for an arbitrary period of time. We also propose a so-called discrete trig-

gering condition to quantitatively find the improvement in inter-event times at least for an

arbitrary number of triggering iterations.

Chapter 4: In this chapter, we focus on generalizing the results in Chapter 3 from

several aspects. First, we propose a framework to design the TC while keeping global Lp
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performance within desired limits. Also, our general framework captures several existing

TCs as a special case, and can achieve the performance objectives while reducing trans-

mission rate. Indeed, this general structure is shown to enlarge the intersampling periods

by a specified amount, for a desired period of time. Moreover, compared to Chapter 3, we

consider a dynamic approach to design triggering condition.

Chapter 5: The results in Chapters 3, 4 proved that The ISS condition is a powerful

tool in designing TCs especially when dealing with nonlinear systems. In this chapter, we

seek to propose sufficient conditions for the ISS condition to be hold when nonlinearites has

the particular input-affine structure. Moreover, we propose an L2 stabilizing event-triggered

controller which guarantees the isolation of sampling instants in presence of arbitrary dis-

turbances. While our proposed design does not rely on the ISS assumption, it covers both

emulation and joint design approaches.

Chapter 6: While the majority of ETC literature, including our results in previous

chapter, concentrates on designing TC assuming control input to emulate an analog design,

in this chapter, both state and output feedback laws are jointly synthesized with the trigger-

ing law for nonlinear Lipschitz systems. In the proposed method, the dominant eigenvalues

of the linear stability matrices are assigned according to desired performance and trigger-

ing specifications. Moreover, the results serve as a local framework for stability of general

nonlinear ETC systems. In addition, it is shown for the output-based feedback case that

under the fast sampling at the controller-to-actuator channel, the separation principle for

designing the controller and observer gains hold.

Chapter 7: This chapter studies different forms of dissipativity property for the

network-communicated physical processes. The results are then a generalization of the

ines in previous chapters as several stability and robustness properties of control systems

can be unified under the notion of dissipativity. While this concept has been recently stud-

ied for network control systems with communication constraints, the obtained results suffers

from a concrete proof of Zeno-freeness property for the sampling times. In this chapter, we

address this issue and prove the triggering instants to guarantee the well-known separation

property.

Chapter 8: In this chapter, an integral-based event-driven mechanism is proposed for

a general class of nonlinear systems. The proposed scheme is less conservative than earlier

work on the subject and achieves asymptotic stability without forcing the derivative of the

Lyapunov function to be negative between samples. additionally, the results are applied as

an event-triggered solution to the consensus problem of multi-agent systems.

12



Chapter 2

Mathematical Background

This chapter provides some technical definitions and preliminaries that will be used through-

out the rest of the thesis.

Definition 2.1 A function f : Rn �→ R
p is said to be locally Lipschitz-continuous in an open

set B, if for each z ∈ B there exist Lf ∈ R
+ and r ∈ R

+ such that |f(x)−f(x̃)|≤ Lf |x−x̃| for
all x, x̃ ∈ {y ∈ B : |y−z|< r}. We also say that f is Lipschitz-continuous in a set D if there

exists Lf ∈ R
+ (called the Lipschitz constant of f on D) such that |f(x)− f(x̃)|≤ Lf |x− x̃|

for all x, x̃ ∈ D.

Definition 2.2 A function α : [0, a) �→ R
+
0 is said to belong to class K if it is strictly

increasing and α(0) = 0. A class K function α belongs to class K∞ if a =∞ and α(r)→∞
as r →∞. A continuous function η : Rp → R

p is of class L (η ∈ L) if it is decreasing and

η(s) → 0 as s → ∞. A function β:R+
0 × R

+
0 → R

+
0 is of class KL (β ∈ KL) if for each

s ≥ 0, β(·, s) ∈ K and for each r ≥ 0, β(r, ·) ∈ L. A function γ : R+
0 → R

+
0 is of class N

(γ ∈ N ), if it is continuous and nondecreasing.

Definition 2.3 A sequence {xi : i ∈ N0} is said to be uniformly isolated iff there exists

some r ∈ R
+ so that |xi − xj |> r for any i, j ∈ N0 with i �= j.

Definition 2.4 Every sequence T = {tk : k ∈ N0} of positive real numbers is called parti-

tion, if t0 = 0, tk < tk+1 and tk →∞ as k →∞.

Lemma 2.1 (Barbalat’s Lemma) Let f : R → R be an upper bounded function, i.e.,

|f(t)|≤ c for some c ∈ R. Suppose ḟ is positive semi-definite and is uniformly continuous

(satisfied if f̈ is finite). Then ḟ → 0 as t→∞.

The following lemma is a consequence of Schur complement.
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Lemma 2.2 For any vectors x, y and matrices A,B,C of appropriate dimensions with

C ≺ 0, we have (
x
y

)T(
A B
BT C

)(
x
y

)
< xT(A−BC−1BT)x. (2.1)

The Cauchy-Schwarz (C-S) inequality is referred to as the special case of the following

Holder’s integral inequality∫
T
‖x(t)y(t)‖dt ≤ (

∫
T
‖x(t)‖pdt)

1
p (

∫
T
‖y(t)‖qdt)

1
q

for scalar signlas x, y when p = q = 2.

2.1 Stability Criteria

Input-output stability is a key tool in this research to study the robustness performance of

the following nonlinear system G :

G :

{
ẋ = f(x, u, w)

z = h(x,w)
(2.2)

where x ∈ R
n represents the state, u ∈ U ⊆ R

m the control input, w ∈ W ⊆ R
q the

exogenous disturbance, and z ∈ R
p the measured output.

The classical definitions of the input-output stability can be found in many references,

see, e.g., [68]. However, the results are not applicable to the systems with norm bounded

input space. Instead, we build our theory using the local version of input-output stability

introduced in [57].

In the next definitions we exploit the concept of relations as a traditional tool to state

the local stability criteria. Equivalently, one can define the input-output stability as a

property of the operators. We recall that given two nonempty sets A1 and A2, a relation

R on A1 ×A2 is any subset of the Cartesian product A1 ×A2.

Definition 2.5 Let A1 × A2 be the Cartesian product of two sets A1 and A2. We denote

by Pi : A1 ×A2 → Ai, i = 1, 2 the evaluation map at i defined as Pi(x1, x2) = xi, i = 1, 2.

Definition 2.6 We define the set WQ ⊂ L2 as follows:

WQ = {w ∈ L2 : ‖w‖∞ < Q}, (2.3)

where Q ∈ R
+. We note that WQ, which is a subset of L2 ∩ L∞, is not a linear space in

general since there exists elements x, y ∈ WQ such that x+ y /∈ WQ.
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We remark that the triplet (L2, ‖·‖2, ‖·‖∞) consisting of linear space L2 and the norms ‖·‖2
and ‖·‖∞ is a binormed linear space, where ‖·‖2 and ‖·‖∞ are the primary and secondary

norms of the space L2. WQ is then the subset of L2 consisting of functions with secondary

norm less than Q ∈ R
+.

Definition 2.7 A relation R on L2 × L2 is said to be WQ-stable if the evaluation map at

2 is a bounded subset of L2 whenever the evaluation map at 1 belongs to the set WQ.

Definition 2.8 The system G defined in (2.2) is said to be locally L2-stable if for any

w ∈ WQ, the relation R
.
= {(w, z) ∈ L2 × L2} is WQ-stable.

In the next definition, we provide a local version of finite gain L2-stability
1, a deviation from

the classical definition by restricting the spaces of admissible inputs and initial conditions

to the sets WQ (defined in Definition 2.6) and

X0
.
= {r ∈ R

n : |r|≤ ε ∈ R
+}, (2.4)

respectively.

Definition 2.9 The system G described in (2.2) is said to be finite gain locally L2-stable

and has the local L2-gain less than or equal to Γ, if it is locally L2-stable and there exist

finite constants η ∈ R
+
0 , Γ ∈ R

+ and positive semi-definite C0 function μ such that for any

T, t0 ∈ R
+
0 , any w ∈ WQ and any x0 ∈ X0 ⊂ R

n

∫ T

t0

|z(s)|2ds ≤ Γ2

∫ T

t0

|w(s)|2ds+ μ(x0) + η. (2.5)

We shall denote the local L2-gain of system G by ‖G ‖L2
. We also say that G is finite gain

locally L2-stable with zero bias if η = 0 in (2.5).

The following theorem provides a sufficient condition to estimate an upper bound on the

local disturbance attenuation L2-gain of system G in the context of dissipative systems

theory introduced by [62].

Theorem 2.1 The nonlinear system G is finite gain locally L2-stable with zero bias and

has ‖G ‖L2
≤ Γ, provided there exist a positive definite C1 function V and a control input

u ∈ U such that for all w ∈ WQ

HΓ(V, u)
.
= ∇V (x) · f(x, u, w)− Γ2|w|2+|h(x,w)|2≤ 0. (2.6)

1See [68] for the classical finite gain L2-stability definition.
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Proof. The result is readily obtained by integration of (2.6), positive definiteness of

V (x) and Definition 2.9.

Remark 2.1 If system G is reachable from x0, condition (2.6) is necessary and sufficient

for finite gain local L2-stability of G with zero bias and ‖G ‖L2
≤ Γ.

Proof. The result follows directly from ( [69], Theorem 2.1).

Next we investigate the input-to-state stability of the the system G .

Definition 2.10 The C1 function V : Rn �→ R
+
0 is an ISS Lyapunov function for system

G defined in (2.2) if there exist class K∞ functions σ, σi, γi (i = 1, 2) such that

σ1(|ξ|) ≤ V (ξ) ≤ σ2(|ξ|) (2.7)

holds for all ξ ∈ R
n, and

∇V (ξ) · f(ξ, μ, w) ≤ −σ(|ξ|) (2.8)

for any ξ ∈ R
n, any μ ∈ R

n and any w ∈ WQ such that |ξ|≥ γ1(|μ|) + γ2(|w|).

The next theorem suggests an equivalent condition to the above given inequality (2.8). We

will use this theorem later to develop our main theorem in Section 3.2.

Theorem 2.2 The C1 function V is an ISS Lyapunov function for system G if and only

if (2.7) holds and there exist class K∞ functions σ̄ and βi (i = 1, 2) so that

∇V (ξ) · f(ξ, μ, w) ≤ −σ̄(|ξ|) + β1(|μ|) + β2(|w|) (2.9)

for any ξ ∈ R
n, any μ ∈ R

n and any w ∈ WQ.

Proof. We need to show that if there exist class K∞ functions σ, γi (i = 1, 2) so that

∇V (ξ) · f(ξ, k(ξ + μ), w) ≤ −σ(|ξ|) holds for any ξ ∈ R
n, any μ ∈ R

n and any w ∈ WQ

such that |ξ|≥ γ1(|μ|) + γ2(|w|) then one can find class K∞ functions σ̄, βi (i = 1, 2) such

that ∇V (ξ) · f(ξ, k(ξ + μ), w) ≤ −σ̄(|ξ|) + β1(|μ|) + β2(|w|) and vice versa. Let us start by

assuming ∇V (ξ) · f(ξ, k(ξ + μ), w) ≤ −σ(|ξ|) for |ξ|≥ γ1(|μ|) + γ2(|w|). Then we can say

that ∇V (ξ) · f(ξ, k(ξ + μ), w) + σ(|ξ|) ≤ β̄(|μ|, |w|) where

β̄(|μ|, |w|) = max{∇V (ξ)·f(ξ, k(ξ + r), s) + σ(|ξ|)| |r|≤ |μ|,

|s|≤ |w|, |ξ|≤ γ1(|r|) + γ2(|s|)}.

Defining classK∞ functions β1(|μ|) .
= β̄(|μ|, |μ|) and β2(|w|) .

= β̄(|w|, |w|) it is not difficult to

verify that β̄(|μ|, |w|) ≤ β1(|μ|) for |μ|≥ |w| and β̄(|μ|, |w|) ≤ β2(|w|) otherwise. Therefore
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we conclude that β̄(|μ|, |w|) ≤ β1(|μ|) + β2(|w|) that proves one part of the claim. To

prove the other side, assume that we have ∇V (ξ) · f(ξ, k(ξ + μ), w) ≤ −σ̄(|ξ|) + β1(|μ|) +
β2(|w|). Then we can write ∇V (ξ) · f(ξ, k(ξ + μ), w) ≤ −σ̄(|ξ|)/2 for σ̄(|ξ|)/4 ≥ β1(|μ|)
and σ̄(|ξ|)/4 ≥ β2(|w|). Finally defining γi

.
= σ̄−1(4βi) (i = 1, 2), we may conclude that

∇V (ξ) · f(ξ, k(ξ + μ), w) ≤ −σ̄(|ξ|)/2 for |ξ|≥ γ1(|μ|) + γ2(|w|) which completes the proof.

Definition 2.10 provides a characterization of the notion of ISS property, rather than its

definition, using Lyapunov-like conditions. Next theorem shows that these conditions are

necessary and sufficient for input-to-state stability.

Theorem 2.3 The closed-loop system G defined in (2.2) is ISS with respect to inputs u

and w iff there exists an ISS Lyapunov function V satisfying (2.7), (2.8).

Proof. The proof follows from Theorem 2.2 and ( [70], Theorem 1).

Remark 2.2 Later in Section 3.2 our study will focus on the systems with disturbances

norm bounded by some function of state , i.e., |w(t)|≤ γ3(|x(t)|). This assumption seems

to be implied in Definition 2.10 as condition (2.8) is valid for γ2(|w(t)|) ≤ |x(t)|−γ1(|e(t)|).
Thus to prevent any possible redundancy of these conditions, we will unify them later in

section 3.2.

Remark 2.3 When Q = R
+, the classical input-output stability can be extracted from the

above definitions and results.

2.2 Graph Theory

The following definitions and notation will mostly be used in Chapter 8. Consider a team

of n vehicles. A directed graph is a pair (Vn, En) where Vn = {1, . . . , n} is a finite nonempty

node set and En ⊆ Vn × Vn is a set of ordered pairs of nodes, called edges. Existence of

edge (i, j) in the edge set of a directed graphs shows that vehicle j can obtain information

from vehicle i, but not necessarily vise versa. In contrast to a directed graph, the pairs of

nodes in an undirected graph are unordered, where the edge (i, j) denotes that vehicles i

and j can obtain information from each other. We call node i to be a neighbor of node j

if an edge (i, j) ∈ En exists. We show the set of neighbors of node i by Ni ⊆ {1, . . . , n}.
A directed graph is strongly connected if there is a directed path from every node to every

other node. An undirected graph is connected if there is an undirected path between every

pair of nodes. The adjacency matrix An = [aij ] ∈ R
n×n of a directed graph (Vn, En) is
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defined such that aij is a positive constant if (j, i) ∈ En, and aij = 0 if (j, i) /∈ En. The

adjacency matrix of an undirected graph is defined analogously except that aij = aji for all

i �= j, because (j, i) ∈ En implies (i, j) ∈ En. aij denotes the weight for the edge (j, i) ∈ En.

If the weight is not relevant, then aij is set equal to 1 if (j, i) ∈ En. Matrix Ln = [lij ] ∈ R
n×n

defined as lii =
∑n

j=1,j �=i aij , and lij = −aij , i �= j. If (j, i) /∈ En, then lij = −aij = 0.

Matrix Ln satisfies lij ≤ 0, i �= j, and
∑n

j=1 lij = 0, i = 1, . . . , n. For undirected graph,

Ln is symmetrical and is called the Laplacian matrix. However, for a directed graph, Ln

is not necessarily symmetrical and sometimes called the nonsymmetrical Laplacian matrix

or directed Laplacian matrix. Note the Ln can be equivalently defined as Ln � D − An

where D = [dij ] ∈ R
n×n is the in-degree matrix given as dij = 0, i �= j, and dii =

∑n
j=1 aij ,

i = 1, . . . , n. In both the undirected and directed cases, because Ln has zero row sums,

0 is an eigenvalue of Ln with the associated eigenvector 1n, the n × 1 column vector of

ones. Ln is diagonally dominant and has nonnegative diagonal entries. For an undirected

graph, let λi(Ln) be the ith eigenvalue of Ln with λ1(Ln) ≤ λ2(Ln) ≤ . . . ≤ λi(Ln), so that

λ1(Ln) = 0. For an undirected graph, λ2(Ln) is the algebraic connectivity, which is positive

if and only if the directed graph is connected. The algebraic connectivity quantifies the

convergence rate of consensus algorithms. To simplify our notation, we denote Ln simply

by L.
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Chapter 3

Local Input-Output Stability of
Event-Triggered Control Systems

3.1 Problem Definition

In this chapter1 we study the input-to-state stability of the system G defined in (2.2).

We assume that f and h are class C0 and f(0, 0, 0) = 0, h(0, 0) = 0 so that x = 0 is

an equilibrium point of zero-input system. Moreover, we will assume the state x evolves

on an open subset of R
n containing the origin. We also assume that G is driven from

initial conditions x0 = x(t0) and the inputs u and w are applied at time t = t+0 . We shall

assume that the measurement of state is affected by an error e. As a result, designing

the state feedback controller u = k(x), where k is of class C0 and satisfy k(0) = 0, the

implemented control law will be k(x + e). The corresponding closed-loop system with

perturbed measurement is therefore

Ge :

{
ẋ = f(x, k(x+ e), w),

z = h(x,w).
(3.1)

To state our problem we shall need to define a continuous-time version of system Ge defined

by assuming measurement error to be zero all the time. This system will be referred as

Gc throughout the rest of this chapter. Now assume the existence of a positive definite

C1 function V and a C0 function k : Rn �→ R
m such that HΓ(V, k(x)) ≤ 0, i.e., the state

feedback control law u = k(x) renders the continuous-time system Gc finite gain locally L2-

stable with zero bias and ‖Gc‖L2
≤ Γ. We also assume the implementation of the control

law to be performed in an event-based scheme in which an event detector decides when

to update the control signal. As a consequence, the actuator receives an updated control

1The results of this chapter have been published in the article: M. Ghodrat and H. J. Marquez, “On the
Local Input-Output Stability of Event-Triggered Control Systems”, IEEE Trans. Autom. Control, vol. 64,
no. 1, pp. 174-189, 2019.
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signal at triggering instants {ti : i ∈ N0}, at which a TC is satisfied. The first sampling

instant can always be assumed to coincide with initial time t0. A ZOH device serves to

maintain the controller signal constant between two successive sampling instants. Thus,

between time instants ti and ti+1, the controller signal is k(x(ti)) and remains unchanged.

This enables us to define the measurement error e(t) as the difference between the current

value of state at the event detector, x(t), and the last triggered value of state, x(ti), i.e.,

e(t) = x(ti)− x(t), t ∈ [ti, ti+1). (3.2)

It follows that the measurement error is zero at each sampling instants and its value is

continuously monitored to check a TC which, as we will see later, sets an upper bound on

the norm of admissible measurement error. Once the condition holds, the system sends an

updated signal to the actuator and resets the measurement error to zero.

In [9] it is shown that in presence of an execution rule that restricts the measurement

error to satisfy

β1(|e|) ≤ cσ̄(|x|), (3.3)

where c ∈ (0, 1), and if there exists an ISS Lyapunov function V so that

∇V (x) · f(x, k(x+ e), 0) ≤ −σ̄(|x|) + β1(|e|), (3.4)

the system Ge with zero-input is globally asymptotically stable.

In general, the aforementioned ETM (3.3) guarantees closed-loop stability. However,

it is by no means clear how it affects the input/output performance of the system. More

specifically, in this chapter, we are concerned with finite gain L2-stability performance. The

purpose of this chapter is then to present an input-output stability analysis of ETC systems.

Departing from the TC offered in [9], we propose a condition which guarantees the finite

gain local L2-stability of the system.

3.2 L2-Gain Performance of Event Triggered Nonlinear Sys-
tems

In this section we present a novel TC that ensures finite gain local L2-stability of the ETC

system Ge. The design of such a sampling rule is based on the following assumptions.

Assumption 3.1 There exist a positive definite C1 function W and some Q ∈ R
+ such

that

HΓ(W,k(x)) ≤ 0, (3.5)

for all w ∈ WQ, where WQ is defined in (2.3).
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Assumption 3.2 There exist a radially unbounded positive definite C1 function V and

class K∞ functions σ̄, β1 satisfying

∇V (ξ) · f(ξ, k(ξ + μ), w) ≤ −σ̄(|ξ|) + β1(|μ|) (3.6)

for any ξ ∈ R
n, any μ ∈ R

n and any w ∈ WQ.

Recalling Theorem 2.1, condition (3.5) ensures that the continuous-time system Gc is finite

gain locally L2-stable with zero bias and has ‖Gc‖L2
≤ Γ. The following lemma describes

the connection between Assumption 3.2 and the previously defined ISS concept. Indeed, we

show that this assumption can be used to deal with unmodeled parameter uncertainties.

Lemma 3.1 (a) Assumption 3.2 holds if and only if there exists a radially unbounded

positive definite C1 function V satisfying ∇V (ξ) ·f(ξ, k(ξ+μ), w) ≤ −σ(|ξ|) for any ξ ∈ R
n,

any μ ∈ R
n and any w ∈ WQ such that |ξ|≥ γ(|μ|) for some σ, γ ∈ K∞. (b) The later

condition is satisfied when for any w ∈ WQ the followings hold:

(I) V is an ISS Lyapunov function for the system Ge,

(II) there exist solutions γ3, γ4 ∈ K∞ to the inequality

γ4 ◦ (γid − γ2 ◦ γ3)(r) ≥ r, (3.7)

for all r ∈ R
+
0 , where γid is the identity function and γ2 ∈ K∞ is defined in Definition

2.10,

(III) disturbance is bounded through

|w(t)|≤ γ3(|x(t)|) (3.8)

for all t ∈ R
+
0 where x denotes the state of system Ge defined in (3.1).

Proof. (a) This is an immediate consequence of Theorem 2.2. (b) We need to show that

under conditions I-III, there exists a class K∞ function γ so that ∇V (ξ) ·f(ξ, k(ξ+μ), w) ≤
−σ(|ξ|) for |ξ|≥ γ(|μ|). To this end, let us start with conditions II and III that suggest

γ4 ◦ (|ξ|−γ2(|w|)) ≥ γ4 ◦ (γid − γ2 ◦ γ3)(|ξ|) ≥ |ξ|. Now taking γ = γ4 ◦ γ1 we can say

that if |ξ|≥ γ(|μ|), we have |ξ|−γ2(|w|) ≥ γ1(|μ|) which, in view of condition I, implies that

∇V (ξ) · f(ξ, k(ξ + μ), w) ≤ −σ(|ξ|).
Note that condition (3.7) is similar to δ-admissible perturbation provided in ( [47],

Definition 2).
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We will need the following technical lemma to prove our main result. This lemma sets

the stage for the design of the TC required to achieve disturbance attenuation bound Γ for

the ETC system.

Lemma 3.2 Assumption 3.2 holds if and only if there exist a radially unbounded positive

definite C1 function V and class K∞ functions σ̂, σ0, β0, ψ, β̄1 and some c ∈ (0, 1) satisfying

∇V (ξ) · f(ξ, k(ξ + μ), w) ≤ −σ̂(|ξ|)− σ0(|ξ|)β0(|μ|) (3.9)

for any ξ ∈ R
n, any μ ∈ R

n and any w ∈ WQ such that cψ(|ξ|) ≥ β̄1(|μ|).

Proof. (if) From (3.9) we may conclude that ∇V (ξ) · f(ξ, k(ξ + μ), w) ≤ −σ̂(|ξ|) for

cψ(|ξ|) ≥ β̄1(|μ|). Then taking σ = σ̂, γ = ψ−1(β̄1/c) and applying Lemma 3.1 part

(a), the desired result is obtained. (only if) Starting from Assumption 3.2, by adding

and subtracting σ0(|ξ|)β0(μ) term to the right hand side of inequality (3.6), we may write

∇V (ξ) ·f(ξ, k(ξ+μ), w) ≤ −(1−c)σ̄(|ξ|)−σ0(|ξ|)β0(|μ|) for β1(μ)+σ0(|ξ|)β0(|μ|) ≤ cσ̄(|ξ|).
Now defining functions ψ(r)

.
= σ̄(r)/(1 + σ0(r)), β̄1(r)

.
= max{β1(r), β0(r)}, we claim that

if cψ(|ξ|) ≥ β̄1(|μ|) we have β1(μ) + σ0(|ξ|)β0(|μ|) ≤ cσ̄(|ξ|). This is true since cσ̄(|ξ|) ≥
(1 + σ0(|ξ|)) · max{β1(μ), β0(μ)} ≥ β1(μ) + σ0(|ξ|)β0(|μ|). Therefore, if cψ(|ξ|) ≥ β̄1(|μ|),
(3.9) holds for σ̂ = (1− c)σ̄ and hence the proof is complete.

Triggering Condition: Let ti, i ∈ N0, be the most recent sampling instant, the control

signal is updated again at ti+1 defined by the following rule:

t−i+1 = inf
{
t ∈ R

+
0 : t > ti

∧
β̄1(|e(t)|) ≥ cψ(|x(t)|)

}
, (3.10)

where c ∈ (0, 1) and ψ, β̄1 are defined as

ψ(r)
.
=

σ̄(r)

1 + σ0(r)
, β̄1(r)

.
= max{β1(r), β0(r)}. (3.11)

for σ0(r) = LfLkσ3(r) and β0(r) = r with Lf , Lk defined in Remark 3.4. Note that we

assume that the update of the control task is done at ti+1, shortly after the given inequality

in (3.10) is satisfied at t−i+1 The following theorem states that if the continuous-time system

has some local L2-gain property, it is always possible to guarantee the same disturbance

attenuation level for the ETC system by applying the above ETM.

Theorem 3.1 Let us consider Assumptions 3.1, 3.2 and the following conditions:

(i) |∇W (x)|≤ σ3(|x|) for some class K∞ function σ3, locally Lipschitz-continuous in R
+
0 ,
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(ii) σ̄−1, β1, γ3 are locally Lipschitz-continuous in R
+
0

2,

(iii) k and f are locally Lipschitz-continuous in R
n and R

n × R
m × R

q, respectively 2.

Then the system Ge driven from initial conditions x0 ∈ X0, defined in (2.4), is finite gain

locally L2-stable with zero bias and has ‖Ge‖L2
≤ Γ if the control signal is executed under

rule (3.10).

Proof. Let us start with Assumption 3.2 which, in view of proof of Lemma 3.2, implies the

existence of C1 function V such that

∇V (x) · f(x, k(x+ e), w) ≤ −(1− c)σ̄(|x|)− σ0(|x|)β0(|e|) (3.12)

for any x ∈ R
n, any e ∈ R

n and any w ∈ WQ such that cψ(|x|) ≥ β̄1(|e|). Now consider

positive definite C1 function U = V +W , where W is a positive definite C1 function that,

in view of Assumption 3.1, guarantees the finite gain local L2-stability of continuous-time

system Gc. We can easily write

U̇(x) = ∇V (x) · f(x, k(x+ e), w) +∇W (x) · f(x, k(x), w)

+∇W (x) · (f(x, k(x+ e), w)− f(x, k(x), w)). (3.13)

Also applying condition (i) and inequality (3.17) gives∇W (x)·(f(x, k(x+e), w)−f(x, k(x), w)) ≤
σ0(|x|)β0(|e|). As a consequence, in view of (3.5), (3.12) and (3.13) we can write

U̇(x) ≤ −(1− c)σ̄(|x|) + Γ2|w|2−|h(x,w)|2 (3.14)

for any x ∈ R
n, any e ∈ R

n and any w ∈ WQ such that cψ(|x|) ≥ β̄1(|e|). Thus under

TC (3.10) we obtain HΓ(U, k(x + e)) ≤ 0, i.e., the ETC system Ge has the disturbance

attenuation local L2-gain ‖Ge‖L2
≤ Γ.

It is worth remarking that Theorem 3.1 is stated in local form. Note that condition

(3.8) which restricts w to be norm bounded by some Lipschitz-continuous function of state,

plays an essential role in satisfying Assumption 3.2. This assumption is not consistent with

classical input-output stability notion that requires w to be any perturbation in L2. Thus it

remains to define Q such that for any given initial conditions in X0, w is guaranteed to be

in the set WQ. Condition (3.8) is a key tool to define such an admissible inputs set. Indeed,

later in view of Lemma 3.3, condition (3.8) and Lipschitz-continuity of γ3 with Lipschitz

constant Lγ3 defined in Remark 3.4, one can choose Q = Lγ3 ε̄.

2 This condition can be relaxed in the proof of Theorem 3.1, however, is needed in the proof of Theorem
3.2.
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Remark 3.1 The assumed dependence of γ3 on the state of the system in (3.8) is a gener-

alization of the assumption of state-dependent disturbance made in ( [17], Assumption 6.1).

Indeed, the Assumption 6.1 in [17] can be extracted from (3.8) by choosing γ3 to be a linear

function of state, i.e., γ3(|x|) = c0|x|, for all x ∈ R
n and some c0 ∈ R

+. This generalization

has to be considered more carefully as it gives more flexibility in choosing function γ2 in

(3.7), e.g., for γ2(r) =
√
r, (3.7) does not provide any solution for possible linear functions

γ3. However, it is not difficult to verify that the solution to this inequality exists assuming

γ3 to be locally Lipschitz-continuous in R
+
0 .

Remark 3.2 Using the same discussion as in ( [17], Remark 6.2), it is more precise to state

condition (3.8) as |w(t, x(t))|≤ γ3(|x(t)|) for all t ∈ R
+
0 to emphasize the state dependence

of exogenous disturbance. To simplify our notation, we write w(t) instead of w(t, x(t))

throughout the rest of this chapter.

Remark 3.3 The TC (3.3) proposed in [9] can be extracted from the one we proposed in

(3.10). Indeed, between consecutive sampling instants, (3.10) suggests

cσ̄(|x|) ≥ max{β1(|e|), β0(|e|)}(1 + σ0(|x|))

≥ β1(|e|) + β0(|e|)σ0(|x|) (3.15)

and hence we conclude that β1(|e|) ≤ cσ̄(|x|). This consequence simply suggests that under

the conditions assumed in this chapter, in order to preserve system performance (in L2

sense) along with asymptotic stability provided in [9], a more conservative execution rule

than the one proposed in [9] is needed.

Our next Lemma shows that the state of the ETC system Ge is constrained to some compact

set. The result is fundamental in the rest of this section.

Lemma 3.3 Under the assumptions of Theorem 3.1, X
.
= {r ∈ R

n : |r|≤ ε̄} for ε̄ =

σ−1
1 (σ2(ε)) is a positive invariant set for the trajectories of system Ge driven from any

x0 ∈ X0.

Proof. We deduce from inequality (3.15) that σ̄(|x|)−β1(|e|)−β0(|e|)σ0(|x|) ≥ (1−c)σ̄(|x|)
and hence σ̄(|x|)−β1(|e|) ≥ 0. Thus we conclude from (3.6) that V̇ (x) ≤ 0 and consequently

V (x(t)) ≤ V (x(0)) for all t ∈ R
+
0 . Since V is a radially unbounded positive definite function,

we conclude that there exists σ1, σ2 ∈ K∞ so that (2.7) holds and hence σ1(|x(t)|) ≤
V (x(t)) ≤ V (x(0)) ≤ σ2(|x(0)|). Then we can write |x(t)|≤ σ−1

1 (σ2(x0)) and since x0 ∈ X0

and σ−1
1 , σ2 are class k∞ functions, the desired result is obtained.
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Remark 3.4 We now show how this analysis can be applied to find upperbounds on the

norm of ẋ, something needed later to exclude Zeno-behaviour for the system Ge. Lemma

3.3 suggests that x(t) remains in the compact set X for all t ∈ R
+
0 . Moreover, in view of

definition of e given in (3.2) we have |e(t)|≤ 2ε̄ for all t ∈ R
+
0 . Thus we may conclude that

e(t) ∈ Xe
.
= {r ∈ R

n : r/2 ∈ X } for all t ∈ R
+
0 . Also the control signal u = k(x + e)

does not leave the compact set Xu
.
= {r ∈ R

n : r/k ∈ X } since |u(t)|≤ k|x(ti)|= kε̄ for

all t ∈ R
+
0 . Now consider compact sets Bx ⊂ X and Be ⊂ Xe. In the view of Lipschitz-

continuity of function k, one can define the compact set Bu ⊂ Xu of all points u ∈ R
m

satisfying |u|≤ |k(x+e)| for all x ∈ Bx and e ∈ Be. Similarly, we can define the compact set

Bw ⊂ WQ containing all points w ∈ R
q satisfying |w|≤ γ3(|x|) for all x ∈ Bx. Now using the

Lipschitz-continuity of function f with respect to (xT uT wT)T in compact set Bx×Bu×Bw

with Lf is the Lipschitz constant of the function f on X ×Xu ×WQ and applying triangle

inequality |f(x, u, w) − f(x̃, ũ, w̃)|≤ |f(x, u, w) − f(x, ũ, w)|+|f(x, ũ, w) − f(x̃, ũ, w̃)|, it is

not difficult to confirm the Lipschitz-continuity of function f̄(x, e, w)
.
= f(x, k(x + e), w)

in any compact set Bx ×Be ×Bw with Lipschitz constant Lf (Lk + 1). It is also straight

forward to check

|ẋ|≤ Lf (Lk + 1)|x|+LfLk|e|+Lf |w|, (3.16)

|f(x, k(x+ e), w)− f(x, k(x), w)|≤ LfLk|e|, (3.17)

that will be used further. Also inequality (3.16) in view of condition (3.8) in Theorem 3.1

and Lipschitz-continuity of γ3 in the compact set {r ∈ R
+
0 : r ≤ maxx∈Bx |x|} with Lipschitz

constant Lγ3 (defined on [0, ε̄]), reads as

|ẋ|≤ Lf (Lk + Lγ3 + 1)|x|+LfLk|e|. (3.18)

In the next theorem we show that the sequence of triggering instants is a uniformly

isolated set and hence there always exists a non-zero lower bound τ on the intersampling

times. This feature guarantees the non-existence of accumulation points and is thus critical

to the successful implementation of the proposed ETM.

Theorem 3.2 If the hypotheses of Theorem 3.1 hold, the inter sampling periods are lower

bounded by some τ ∈ R
+, i.e., ti ≥ ti−1 + τ for all i ∈ N.

Proof of Theorem 3.2 relies on Properties 3.1-3.2 outlined below.

Property 3.1 Function ψ−1 defined in (3.11) is Lipschitz-continuous in any compact set

Dx ⊂ R
+
0 .
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Proof. Let us define εm
.
= maxr∈Dx{r}. Also let Lσ0 and Lσ̄−1 be the Lipschitz constants

of functions σ0 and σ̄−1 on compact sets {ψ−1(r) : r ∈ Dx} = [0, ψ−1(εm)] and {σ̄(ψ−1(r)) :

r ∈ Dx} = [0, σ̄(ψ−1(εm))], respectively. Using the fact that σ̄ and σ0 are classK∞ functions,

one can write

|ψ(r)− ψ(r̃)| =
∣∣∣ σ̄(r)

1 + σ0(r)
− σ̄(r̃)

1 + σ0(r̃)

∣∣∣
≥
∣∣∣(1 + σ0(r))Δr,r̃(σ̄)− σ̄(r)Δr,r̃(σ0)

(1 + σ0(εm))2

∣∣∣
≥ (1 + σ0(r))|Δr,r̃(σ̄)| − σ̄(r)|Δr,r̃(σ0)|

(1 + σ0(εm))2

for any r, r̃ ∈ {s : ψ(s) ∈ Dx}, where functional Δr,r̃ is defined as Δr,r̃(ϕ)
.
= ϕ(r)−ϕ(r̃) for

some function ϕ. The Lipschitz-continuity of functions σ0 and σ̄−1 imply that |Δr,r̃(σ0)|≤
Lσ0 |r − r̃| and |r − r̃|≤ Lσ̄−1 |Δr,r̃(σ̄)| which together with Lemma 3.3 reduces the above

inequality to

|ψ(r)− ψ(r̃)| ≥
L−1
σ̄−1 − Lσ0 σ̄(εm)

(1 + σ0(εm))2
|r − r̃|. (3.19)

Property 3.2 The function β̄1(r) defined in (3.11) is of class K∞ and locally Lipschitz-

continuous in R
+
0 . Also if the Lipschitz constant of function β1 is Lβ1 on some compact set

De ⊂ R
+
0 , then Lβ̄1

= max{Lβ1 , 1} is the Lipschitz constant of β̄1 on this set.

Proof of Theorem 3.2. From Lemma 3.3, we have x(t) ∈ X for all t ∈ R
+
0 . Now in

view of Properties 3.1, 3.2 it can be inferred that function ψ−1(β̄1/c) is Lipschitz-continuous

in any compact set in R
+
0 . Let us denote by L̄ the Lipschitz constant of this function

on set De defined as De = {β̄−1
1 (cψ(s)) : s ∈ [0, ε̄]} = [0, β̄−1

1 (cψ(ε̄))]. Thus we have

ψ−1(β̄1(|e|)/c) ≤ L̄|e| which suggests that a more conservative lower bound on inter-event

times can be achieved when instead of (3.10), the next triggering of control task occurs

when L̄|e|≥ |x|. Following the same procedure as in ( [9], Theorem III.1), we can upper

bound the dynamics of y
.
= |e|/|x| as ẏ ≤ (1 + y)|ẋ|/|x|, which using (3.18) reads as

ẏ ≤ Lf

(
1 + y

)(
Lk + Lγ3 + 1 + Lky

)
. (3.20)

Thus the inter-execution times are lower bounded by the solution τ of y(τ) = 1/L̄, where y

is the solution to

ẏ = Lf (1 + y)(L+ Lky), y(0) = 0 (3.21)
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with L = Lk + Lγ3 + 1. It then follows that the lower bound on inter-event times is

0 < τ =
1

Lf (L− Lk)
ln (1 +

L− Lk

LL̄+ Lk
). (3.22)

Proof of Theorem 3.2 implies that τ is a function of Lf , Lk, Lγ3 . Applying Lemma 3.3

and Remark 3.4, we conclude that these constants are defined on invariant sets and hence

are valid for all initial conditions.

The proof of Property 3.1 suggests that function ψ−1 is Lipschitz-continuous in Dx with

Lipschitz constant Lψ−1 = (1+σ0(εm))2{L−1
σ̄−1−Lσ0 σ̄(εm)}−1, where εm = maxr∈Dx{r} and

Lσ0 = LfLkLσ3 . To make sure Lψ−1 is positive, σ3 which is the upper bound on the norm

of Lyapunov function W , has to be chosen so that LfLkLσ3Lσ̄−1 σ̄(εm) < 1. This condition

depends on the set Dx. In design procedure, however, one can choose σ3 such that

LfLkLσ3Lσ̄−1 σ̄(ε̄) < 1, (3.23)

where ε̄ is defined in Lemma 3.3. To see this, let us assume that system starts from initial

condition x(0) = x0. Then in view of Lemma 3.3, we have |x(t)|≤ ε̄ and hence for any

compact set Dx ⊆ [0, ε̄] we have εm ≤ ε̄. Thus since σ̄ is a class K∞ function, we will have

σ̄(εm) ≤ σ̄(ε̄) and hence (3.23) ensures that LfLkLσ3Lσ̄−1 σ̄(εm) < 1.

We finish our discussions in this section by showing the global asymptotic stability

property for the ETC system Ge in the absence of disturbances.

Corollary 3.1 Under the assumptions of Theorem 3.1, the zero-input ETC system Ge has

a global asymptotically stable point at 0 ∈ R
n.

Proof. From Remark 3.3 we conclude that β1(|e|) ≤ cσ̄(|x|) between triggering instants.

Then assuming w = 0 and taking (3.6) into account, we can write ∇V (x) ·f(x, k(x+e), 0) ≤
−(1− c)σ̄(|x|) < 0, i.e., x = 0 is an asymptotically stable point for disturbance-free system

Ge. The above argument is global since from Assumption 3.2, V is radially unbounded.

Although the L2-stability results are provided locally, the above result is global. Recall

that the local character of the results arises from the restrictions placed on the input space.

Thus, in the absence of disturbances, the result becomes global.

3.3 Improving Average Sampling Frequency

In this section, we are concerned with the problem of decreasing the average sampling rate

for the proposed ETM in Section 3.2. Our solution consists of modifying the TC (3.10) of
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section 3.2 by adding an exponentially time decaying term to the right hand side. We show

that following this idea, the ETC system enjoys the same Lp-gain performance as in section

3.2, however, the zero-input system is stable in practical sense as opposed to asymptotically

stable.

The results of this section can then be applied to limit high triggering during transient

response. In a regulation problem, after an initial transition, the state remains near the

equilibrium, possibly continuously excited by a disturbance or noise. Focusing on practical

stability of such problems, where the state is required to enter a stability bound, it is

reasonable to assume that the triggering frequency reduces when the transient response

vanishes. Note that when the state is near the equilibrium, the control action is only required

to keep the state within the desired bound. As a result, the system can be controlled with

much less attention and hence the number of triggering instants drops significantly. Similar

behaviour is expected when tackling regulation problems with non-persistent disturbances.

In such case, while in transient both disturbance and the change in the state’s norm affect

sampling frequency, during steady state a lower triggering rate is expected due to the non-

existence of disturbance.

We now state the main problem to be solved in this section. Note that we implicitly

assume that the system experiences finite transition interval over which the sampling fre-

quency exceeds a critical level. Without loss of generality, we assume that only one such

interval exists. Generalization to several transition intervalsdiscrete is discussed later.

Problem 1: Modify the proposed TC (3.10) so that while the resulting ETC system is finite

gain locally L2-stable with the same disturbance rejection bound Γ, the average sampling

frequency does not exceed fcr at least for

(A) a desired period of time, i.e., t ∈ [0, T̄ ].

(B) a desired number of triggerings, i.e., 1 ≤ i ≤ N .

3.3.1 Continuous Triggering Condition Scenario

We begin our study of Problem 1-(A) by modifying rule (3.10) as

t−i+1 = inf
{
t ∈ R

+
0 : t > ti

∧
β̄1(|e(t)|) ≥ cψ̃(|x(t)|)

}
, (3.24)

where ψ̃
.
= σ̃(t, r)/(1 + σ0(r)) and σ̃ is an exponentially time-decaying perturbation of

function σ̄ defined in Assumption 3.2, i.e.,

σ̃(t, r)
.
= σ̄(r) +

κ

c
e−ζt. (3.25)
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Also κ and ζ are positive parameters to be designed.

Stability Analysis

The following theorem shows that the time-decaying perturbation of function σ̄ introduces

a non-zero bias term (see Definition 2.9) but does not affect the L2 bound with respect to

the input.

Theorem 3.3 Under the hypotheses of Theorem 3.1, the system Ge is finite gain locally

L2-stable and has ‖Ge‖L2
≤ Γ if the control signal is updated under the execution rule

(3.24).

Proof. Following similar lines as in the proof of Theorem 3.1, we can upper bound U̇ as

U̇(x) ≤ −(1− c)σ̄(|x|) + κe−ζt + Γ2|w|2−|h(x,w)|2 (3.26)

for any x ∈ R
n, any e ∈ R

n and any w ∈ WQ such that cψ̃(|x|) ≥ β̄1(|e|). Integrating (3.26)

from 0 to T ∈ R
+ and using the positive definiteness of U we obtain

∫ T
0 |h(x(t), w(t))|2dt ≤

Γ2
∫ T
0 |w(t)|2ds + κ(1 − e−ζT )/ζ + U(x0), which by applying Definition 2.9 with η = κ/ζ

and μ = U , completes the proof.

Remark 3.5 It can be readily inferred from the proof of Theorem 3.3 that the exponential

time decaying term in (3.24) does not affect the finite gain local L2-stability of the ETC

system Ge as its integral from 0 to any T ∈ R
+ is finite, independent of T and hence can

be considered as the bias term η in Definition 2.9.

Corollary 3.2 Under the assumptions of Theorem 3.3, trajectories of the system Ge con-

verge to 0 ∈ R
n.

Proof. It can be inferred from execution rule (3.24) that between successive triggering

instants we have β1(|e|) ≤ β̄1(|e|) ≤ cσ̄(|x|) + κe−ζt. Then from (3.6), we can upper bound

V̇ as

V̇ (x) ≤ −(1− c)σ̄(|x|) + κe−ζt. (3.27)

Defining c̄ = 1− c, we conclude that V̇ (x) < 0 for |x|> σ̄−1(κe−ζt/c̄). Now define compact

set Λi = {x ∈ R
n : |x|≤ σ̄−1(κe−ζi/c̄)} for i ∈ N0. Also the set of boundary points of

Λi is defined as ∂Λi = {x ∈ R
n : |x|= σ̄−1(κe−ζi/c̄)} for i ∈ N0. We denote by mi the

argument of maximum value of V (x) over the set ∂Λi, i.e., mi = argmaxx∈∂Λi
V (x). Next

define compact set Ωi
.
= {x ∈ R

n : V (x) ≤ V (mi)} for i ∈ N0. Clearly Ωi is positive
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invariant under the dynamics of ETC system Ge for t ≥ i. We claim that Ωi is the global

attracting set of system Ge for t ≥ i. To see this, let us define the complement of Ωi in R
n

as Ωc
i = {x ∈ R

n : V (x) > V (mi)}. If x ∈ Ωc
i , we conclude that |x|> mi and since mi ∈ ∂Λi

we deduce that |x|> σ̄−1(κe−ζi/c̄). Then since t ≥ i it follows that |x|> σ̄−1(κe−ζt/c̄) and

consequently V̇ (x) < 0 for all x ∈ Ωc
i which confirms our claim. For t ≥ i + 1, however,

Ωi+1 ⊂ Ωi is the new global attracting set of the ETC system Ge. Thus the sequence of

positive invariant attracting sets {Ωi}i∈N0
with Ω0 ⊃ Ω1 ⊃ · · · ⊃ Ωi ⊃ · · · shrinks to the

origin as i→∞ (since mi converges to 0) which confirms the convergence of trajectories of

system Ge to the origin.

Remark 3.6 Note that Corollary 3.2 proves that trajectories converge to the origin, but

does not imply that the origin is asymptotically stable for the disturbance-free system. Asymp-

totic stability does not follow from this corollary since the result falls short of proving stabil-

ity of the origin of the zero-input ETC system Ge. This situation may occur, for example,

when the trajectories of the zero-input system that start from certain neighbourhood of the

origin, diverge from origin temporarily, but finally converge to it. In such situations, the

system may still be finite gain locally L2-stable, however, the zero-input system is not neces-

sarily stable since there exist neighbourhoods of the origin such that any trajectory starting

there, can not stay there forever. This happens for system Ge under TC (3.24) as the

proof of Corollary 3.2 suggests that in the absence of disturbances we have V̇ (x) ≥ 0 for

|x(t)|≤ σ̄−1(κe−ζt/(1 − c)), i.e., trajectories starting within this bound diverge from origin

at first but finally converge as the area of positive V̇ shrinks to zero.

The analysis, however, can be extended a bit further than the classical notion of stability.

Indeed, we now show that in the absence of disturbances, the ETC system Ge is practically

stable in the sense of following definition cited from [71]:

Definition 3.1 Given ς > ρ ∈ R
+
0 , the origin of the system ẋ = f(x, t) is (ς → ρ)-stable if

(a) for any ε > ρ there exists δ(ε) ∈ R
+ such that if |x0|≤ δ(ε), then |x(t)|< ε for all

t ∈ R
+
0 ,

(b) for a given r ∈ (0, ς) there exists a finite υ(r) ∈ R
+ such that if |x0|≤ r, then

|x(t)|< υ(r) for all t ∈ R
+
0 ,

(c) for a given r ∈ (0, ς) and ε > ρ there exists a finite T (r, ε) ∈ R
+ such that if |x0|≤ r,

then |x(t)|< ε for all t ≥ T (r, ε).

30



If we set ς = ∞ and ρ = 0 in the above definition, we obtain the familiar uniform global

asymptotic stability, ( [71], Remark 2.1). it is worth mentioning that the stability in the

above-mentioned ρ-practical sense guarantees convergence of trajectories of the system ẋ =

f(x, t) to the set {x ∈ R
n : |x|≤ ρ} through condition 3.1 in Definition 3.1. The converse,

however, is not generally true.

Theorem 3.4 Under the assumptions of Theorem 3.3, the zero-input ETC system Ge is

(∞→ σ̄−1(κ/(1− c)))-stable.

Proof. First we apply (3.27) to conclude that V̇ (x) ≤ −c̄σ̄(|x|)+κ and hence V̇ (x) < 0 for

|x|> σ̄−1(κ/c̄), where c̄ = 1− c. Then we just need to show conditions (a)-(c) in Definition

3.1 hold. To satisfy condition (a) we can choose δ(ε) such that 0 < δ(ε) < ε. For condition

(b) one can choose υ(r) = σ̄−1(κ/c̄) for r ≤ σ̄−1(κ/c̄) and some υ(r) > r for r > σ̄−1(κ/c̄).

Finally, to satisfy condition (c) we consider two cases. For r ≤ σ̄−1(κ/c̄) we can choose

T (r, ε) to be any positive number since trajectories of the system Ge do not leave the ball

{x ∈ R
n : |x|≤ σ̄−1(κ/c̄)} and hence |x(t)|< ε for all t ≥ 0 and all ε > σ̄−1(κ/c̄). However,

for r > σ̄−1(κ/c̄) we need a more detailed argument. Let us choose T ′ such that |x(T ′)|= ε

and integrate (3.27) from 0 to T ′ to obtain V (ε)−V (x0) ≤ −c̄
∫ T ′
0 σ̄(|x(t)|)dt+κ

∫ T ′
0 e−ζtdt ≤

−c̄T ′σ̄(|ε|) + κ
ζ (1− e−ζT ′). Since V (ε)− V (r) ≤ V (ε)− V (x0) we can upperbound T ′ as the

solution to inequality c̄T ′σ̄(|ε|)+κe−ζT ′ ≤ V (r)−V (ε)+κ. One can find a more conservative

upper bound on T ′ by neglecting the exponential term in left hand side, i.e., c̄T ′σ̄(|ε|) ≤
V (r)− V (ε) + κ− κe−ζT ′ ≤ V (r)− V (ε) + κ and obtain T ′ ≤ (V (r)− V (ε) + κ)/(c̄σ̄(|ε|)).
This is exactly what if we integrate the more conservative inequality V̇ (x) ≤ −c̄σ̄(|x|) + κ

instead. Choosing T (r, ε) > (V (r)− V (ε) + κ)/(c̄σ̄(|ε|)) completes the proof.

Inter-Event Lower Bound Comparison

We recall from Theorem 3.2 that the lower bound on intersampling periods of ETC system

Ge under execution rule (3.10) is τ and given in (3.22). Also by τ1 we denote the lower

bound on intersampling periods of this system under execution rule (3.24). We show that

one can design parameters κ and ζ in (3.24) such that for a given T̄ > 0 and τ∗ > f−1
cr ,

we have τ1 ≥ τ + τ∗ at least for t ∈ [0, T̄ ]. This guarantees that the average sampling

frequency is less than fcr for t ∈ [0, T̄ ]. To this end, defining κ̄ = κ/(1 + σ0(ε̄)), we assume

the updation of the control task is decided based on the following TC

β̄1(|e|) ≥ cψ(|x|) + κ̄e−ζt (3.28)
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which is more conservative than the one proposed in (3.24) and hence gives a lower bound

on τ1. Let Lψ−1 and Lβ̄1
be the Lipschitz constants of functions ψ−1 and β̄1, respectively. A

more conservative TC than (3.28) can be obtained from Lβ̄1
|e|≥ cL−1

ψ−1 |x|+κ̄e−ζt. In fact,

if this condition is not satisfied, we have

β̄1(|e|) ≤ Lβ̄1
|e|< cL−1

ψ−1 |x|+κ̄e−ζt ≤ cψ(|x|) + κ̄e−ζt (3.29)

and hence (3.28) will not be satisfied too. This TC restricts measurement error e to satisfy

cL−1
ψ−1 |x|(L̂

|e|
|x| − 1) ≤ κ̄e−ζt, (3.30)

where L̂ = c−1Lψ−1Lβ̄1
. We remark that L̂ ≥ L̄, where L̄ is the Lipschitz constant of

function ψ−1(β̄1/c). From the proof of Theorem 3.2 it follows that |e|/|x| ≥ 1/L̄ shortly

before the execution instant ti and hence we have L̂|e(t−i )|/|x(t
−
i )| > 1. We can even express

the TC more conservatively, by virtue of Lemma 3.3, so that the control signal is updated

at sampling instant ti when the following condition is satisfied

cε̄L−1
ψ−1(L̂

|e(t−i )|
|x(t−i )|

− 1) ≥ κ̄e−ζt−i . (3.31)

We now define L∗ so that y(τ + τ∗) = 1/L∗ where y is the solution to (3.21). Thus our

aim is to design κ and ζ such that the solution |e(t−i )|/|x(t
−
i )| to inequality (3.31) satisfy

L∗|e(t−i )|≥ |x(ti)| for all execution instants ti ≤ T̄ , i ∈ R
+
0 , i.e., until t = T̄ the intersampling

intervals are lower bounded by the solution τ1 of y(τ1) = 1/L∗. This means that the lower

bound on inter-event times increases to τ1 ≥ τ + τ∗ at least until instant t = T̄ . Finally it

suffices to choose κ and ζ so that

κ = cε̄L−1
ψ−1(

L̂

L∗ − 1)(1 + σ0(ε̄))e
ζT̄ . (3.32)

Then the lower bounds on intersampling periods are the solutions τ1 and τ to{
y(τ1) =

1
L∗ , for 0 ≤ t ≤ T̄

y(τ) = 1
L̄
, for t > T̄

(3.33)

Remark 3.7 Our result in section 3.3.1 is far more general than that of ( [9], Theorem

III.1, when the delay between state measurement and actuator updating is nonzero). In [9],

it is shown that the lower bound on intersampling times, τ , can be extended (due to the

time required to read state measurement, compute the control signal and update actuators)

to the solution τ ′ of y(τ ′) = 1/L̄′, where L̄′ is the Lipschitz constant of function ψ−1(β̄1/c
′)
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on compact set De defined in the proof of Theorem 3.2, where c′ ∈ (c, 1). Following this

approach, the lower bound on intersampling intervals is restricted (through the upper bound

limit on c′) to τ ′ < τmax, where τmax is the solution to y(τmax) = 1/L̄min with L̄min as the

Lipschitz constant of function ψ−1(β̄1). This limitation, however, is relaxed in our proposed

method by introducing the exponentially decaying term κe−ζt which allows taking L∗ smaller

than L̄min.

3.3.2 Discrete Triggering Condition Scenario

In this section we address Problem 1-(B). In section 3.3.1 we showed that an exponentially

time decaying term added to execution rule (3.10) enables us to affect average sampling

frequency arbitrarily at least for the period [0, T̄ ]. Here, we address the problem of improving

the average sampling frequency for the first N iterative triggerings of the control task using

a discrete version of the TC (3.24). Let i ∈ N denote the number of triggerings completed

up until time t assuming the first triggering occurs at t0 = 0. As a consequence, ti and ti−1

denote the upcoming and the most recent execution instants, respectively. We denote by

t′i > ti−1, i ∈ N, just a moment after the following so called discrete TC holds

t′i
− = inf

{
t ∈ R

+
0 : t > ti−1

∧
β̄1(|e(t)|) ≥ cψ̌(|x(t)|)

}
, (3.34)

where ψ̌
.
= σ̌(t, r)/(1 + σ0(r)) and σ̌ is a discrete decaying perturbation of σ̄ defined in

Assumption 3.2 defined as

σ̌(t, r)
.
= σ̄(r) +

κ̂eθ
i

ci!
, (3.35)

where κ̂ and θ are positive parameters to be designed. We refer to (3.34) as the discrete TC

as it depends on index i which changes non-continuously between successive triggerings.

Now suppose that the i-th execution of the control task happens at

ti = min{ti−1 +Δ, t′i}, (3.36)

where Δ ∈ R
+ is an upper bound on intersampling intervals. The following theorem then

states that discrete decaying perturbation of function σ̄ given in (3.35) satisfies the same

local L2-gain bound for the ETC system.

Theorem 3.5 Under the hypotheses of Theorem 3.1, the system Ge is finite gain L2-stable

and has ‖Ge‖L2
≤ Γ if the control signal is updated at triggering instants {ti : i ∈ N} defined

in (3.36).
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Proof. It can be inferred from (3.36) that ti ≤ t′i and hence we have β̄1(|e(t)|) ≤ cψ̌(|x(t)|)
for t ∈ [ti−1, ti). Then following similar lines as the proof of Theorem 3.1, for t ∈ [ti−1, ti)

we obtain U̇(x) ≤ −(1− c)σ̄(|x|) + κ̂θi/i! + Γ2|w|2−|h(x,w)|2 for any x ∈ R
n, any e ∈ R

n

and any w ∈ WQ such that cψ̌(|x|) ≥ β̄1(|e|). Integrating this inequality from 0 to some

T≥ 0, we arrive at

U(x(T )) ≤ U(x0) +

∫ T

0
(Γ2|w(t)|2−|h(x(t), w(t))|2)dt

+κ̂
{∫ t1

t0=0

θ1

1!
dt+ · · ·+

∫ ti

ti−1

θi

i!
dt+ · · ·+

∫ T

tN−1

θN

N !
dt
}
,

where we assume N triggering instants (including the first one at t0 = 0) occur until t = T ,

i.e., tN−1 = maxti≤T {ti}. Now since U(x(T )) ≥ 0 we conclude that
∫ T
0 |h(x(t), w(t)|2dt ≤

U(x0) + Γ2
∫ T
0 |w(t)|2dt+ κ̂ max

1≤i≤N
{ti − ti−1}

∑N
i=1 θ

i/i! and hence∫ T

0
|h(x(t), w(t)|2dt ≤ U(x0) + Γ2

∫ T

0
|w(t)|2dt+ κ̂Δeθ. (3.37)

We then choose η = κ̂Δeθ and μ = U in Definition 2.9 to obtain the desired result.

Remark 3.8 The Δ term in (3.36) imposes an upper bound on inter-event times. This

restriction on intersampling intervals is necessary as it confirms the finiteness of the bias

term in (3.37).

Corollary 3.3 Under the assumptions of Theorem 3.5, trajectories of the ETC system Ge

converge to 0 ∈ R
n.

Proof. Following similar lines as the proof of Corollary 3.2 we deduce that β1(|e|) ≤
cσ̄(|x|) + κ̂θi/i! for t ∈ [ti−1, ti) and hence from (3.6) it follows that

V̇ ≤ −c̄σ̄(|x|) + κ̂
θi

i!
(3.38)

for t ∈ [ti−1, ti). As a consequence we conclude that V̇ (x) < 0 for |x|≥ σ̄−1(κ̂θi/(c̄i! )) and

t ∈ [ti−1, ti). Now define compact set Λi = {x ∈ R
n : |x|≤ σ̄−1(κ̂θi/(c̄i! ))} for i ∈ N. Then

the set of boundary points of Λi can be defined as ∂Λi = {x ∈ R
n : |x|= σ̄−1(κ̂θi/(c̄i! ))}. We

denote the argument of maximum value of V (x) over set ∂Λi by mi = argmaxx∈∂Λi
V (x).

We remark that the discrete function θi/i! takes its maximum value at i = �θ� and is

strictly decreasing over i ≥ �θ�. Now define compact set Ωi = {x ∈ R
n : V (x) ≤ V (mi)} for

i ∈ N. Following similar lines as the proof of Corollary 3.2, we can show that for i ≥ �θ�,
Ωi is positive invariant under dynamics of the ETC system Ge and moreover, is the global
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attracting set of this system for t ≥ ti. Since ti − ti−1 ≤ Δ, we conclude that i → ∞ as

t→∞, i.e., the triggering instants never terminate. Thus the sequence of positive invariant

attracting sets {Λi}	θ
≤i∈N with Λ	θ
 ⊃ Λ	θ
+1 ⊃ · · · ⊃ Λi ⊃ · · · shrinks to the origin and

hence completes the proof.

Theorem 3.6 Under the assumptions of Theorem 3.5 and in the absence of disturbances,

the ETC system Ge is (∞→ σ̄−1(κ̂θ/(1− c)))-stable, where κ̂θ
.
= κ̂θ	θ
/�θ�!.

Proof. In view of (3.38) which is valid in [ti−1, ti), we conclude that V̇ (x) ≤ −c̄σ̄(|x|) + κ̂θ

for all t ∈ R
+
0 . Hence we have V̇ (x) < 0 for |x|> σ̄−1(κ̂θ/c̄). Then we just need to

show conditions (a)-(c) in Definition 3.1 hold. To satisfy condition (a) we can choose δ(ε)

such that 0 < δ(ε) < ε. To satisfy condition (b) we can choose υ(r) = σ̄−1(κ̂θ/c̄) for

r ≤ σ̄−1(κ̂θ/c̄) and υ(r) > r for r > σ̄−1(κ̂θ/c̄). For condition (c) we consider two cases.

For r ≤ σ̄−1(κ̂θ/c̄) we can choose T (r, ε) to be any positive number since the trajectories

do not leave the ball {x ∈ R
n : |x|≤ σ̄−1(κ̂θ/c̄)} and hence |x(t)|< ε for all t ≥ 0 and all

ε > σ̄−1(κ̂θ/c̄). For r > σ̄−1(κ̂θ/c̄), choose T ′ such that |x(T ′)|= ε. Then integrating (3.38)

from 0 to T ′ gives

V (ε)− V (x0) ≤ −c̄
∫ T ′

0
σ̄(|x(t)|)dt+ κ̂

{∫ t1

t0=0

θ1

1!
dt

+ · · ·+
∫ ti

ti−1

θi

i!
dt+ · · ·+

∫ T ′

tN′−1

θN
′

N ′!
dt
}
.

Hence we have V (ε)− V (x0) ≤ −c̄T ′σ̄(|ε|) +max1≤i≤N ′{ti− ti−1}κ̂
∑N ′

i=1
θi

i! ≤ −c̄T ′σ̄(|ε|) +
max1≤i≤N ′{ti − ti−1}κ̂eθ, where we assume N ′ triggering instants (including the first one

at t0 = 0) occur until t = T ′, i.e., tN ′−1 = maxti≤T ′{ti}. Then we can find an upper

bound on T ′ as the solution to inequality c̄T ′σ̄(|ε|) ≤ V (r)−V (ε)+max1≤i≤N ′{ti− ti−1}κ̂eθ

since V (ε) − V (r) ≤ V (ε) − V (x0). We remark that max1≤i≤N ′{ti − ti−1} is a function of

ε since N ′ depends on T ′ which is a function of ε. Then one can choose T (r, ε) so that

T (r, ε) > (V (r)− V (ε) + max1≤i≤N ′{ti − ti−1}κ̂eθ)/(c̄σ̄(|ε|)).
In the rest of this section, we provide a discrete counterpart to the analysis given in

section 3.3.1. Indeed, we design κ̂ and θ in (3.34) so that given some N ∈ N and τ∗ ∈ R
+,

we have τ2 ≥ τ+τ∗ at least for t ∈ [0, T̄ ], where τ2 denotes the lower bound on intersampling

periods of system Ge under execution rule (3.34).

Choosing Δ > τ + τ∗ in (3.36), it remains to consider the case where ti = t′i and hence

ti satisfy the TC (3.34). Even a more conservative TC can be obtained if the i-th execution
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of control task is fulfilled when the following holds

β̄1(|e|) ≥ cψ(|x|) + κ̃
θi

i!
, (3.39)

where κ̃ = κ̂/(1 + σ0(ε̄)). Now using the same procedures as (3.29) and (3.30) were derived,

we obtain a discrete version of TC (3.31):

cε̄L−1
ψ−1(L̂

|e(t−i )|
|x(t−i )|

− 1) ≥ κ̃
θi

i!
. (3.40)

Our goal is to design κ̂ and θ such that the solution |e(t−i )|/|x(t
−
i )| to the above inequality

satisfies L∗|e(ti)|≥ |x(ti)| for the firstN triggerings, where L∗ is defined such that y(τ+τ∗) =

1/L∗ and y is the solution to (3.21). We now consider two cases.

Case 1: If 1 ≤ N ≤ Nθ
.
= max{i : θi/i! ≥ θ} we have min1≤i≤N{θi/i!} = θ, i.e., the discrete

function θi/i! takes its minimum value at i = 1, and hence we can choose κ̂ and θ so that

κ̂ =
cε̄

θ
L−1
ψ−1(

L̂

L∗ − 1)(1 + σ0(ε̄)). (3.41)

That is, for any 1 ≤ N ≤ Nθ, the first Nθ inter-event intervals are lower bounded by the

solution τ2 of y(τ2) = 1/L∗.

Case 2: For N > Nθ we have min1≤i≤N{θi/i!} = θN/N ! and we can pick κ̂ and θ such that

κ̂ = cε̄L−1
ψ−1(

L̂

L∗ − 1)(1 + σ0(ε̄))
N !

θN
, (3.42)

i.e., for the first N samplings, the inter-event times are lower bounded by the solution τ2

of y(τ2) = 1/L∗. Therefore, the lower bounds on intersampling periods are the solutions τ2

and τ to ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

y(τ2) =
1
L∗ , for 0 ≤ i ≤ Nθ

y(τ) = 1
L̄
, for i > Nθ

}
for 1 ≤ N ≤ Nθ

y(τ2) =
1
L∗ , for 0 ≤ i ≤ N

y(τ) = 1
L̄
, for i > N

}
for N > Nθ.

(3.43)

Note that while the continuous and discrete scenarios proposed in this section have

similarities, they have different structures that lead to different properties. The primary

difference between these methods is that while in continuous-time the decaying term is a

function of time and will vanish as t grows, this is not the case in discrete scenario. The

decaying term in discrete approach is a function of the sampling instant and not time. Thus,

if only a few triggering instants occur, the effect of perturbation term may be considerable,

regardless of the time that has passed. This important feature of discrete scenario can be

seen from the examples provided in next section and shows that in contrast to continuous

counterpart, the decaying term may still be kept effective for a much longer time.
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3.4 Illustrative Examples

In this section we illustrate the L2-stabilizing triggering design through several examples.

Our examples are simple enough so that the L2-gain analysis can be done analytically, thus

enabling us to provide further insight. We show in Example 3.2 that if some of the con-

ditions of Theorem 3.1 are not satisfied, it may still be possible to relax these conditions

by redefining TC. In Example 3.3, we replace the Euclidean vector norm with the infinity

norm to obtain the L2-gain. This is important since this change facilitates the computation

of the Lyapunov function.

We continue with the following remarks, containing important points regarding the simu-

lations.

Remark 3.9 The examples are constructed according to our design principle, i.e. per-

formance is defined in L2-sense and the design is such that preserves the L2 gain of the

continuous-time design. In this approach, we have purposely ignored transient behaviour

and pushed the design to the extreme to save communications during transient, something

that should, of course, be corrected in a more realistic design. The simulations indeed show

a deterioration of the transient response. This should be interpreted as indicative that, in

general, L2 performance does not, in any way, imply good transient behaviour.

Remark 3.10 Note that the plots for verification of L2-gain and system’s trajectories are

provided for one single initial condition. However, the discussion on number of samples

and MIETs are provided based on averaging 100 initial conditions. Thus, one should be

careful that since the L2-gain plots depend on initial condition, no general conclusion (such

as comparing the L2-gain of continuous-time and ETC systems) other than verification of

the proposed L2-gain for different scenarios can be made from them.

Example 3.1 Consider the following first order system

ẋ = −x3 + xw + u, z = x, (3.44)

where x ∈ R, u = −k(x + e) for some k ∈ R
+ is the control input, e is the measurement

error and w is the exogenous disturbance belongs to the set WQ defined in (2.3). Choosing

the Lyapunov function V (x) = x2/2 it is straight forward to show that the system is ISS

with respect to e and w. Assuming e to be zero all the time, the continuous-time system

is finite gain locally L2-stable. To show this, we take W (x) = λV (x) for some λ ∈ R
+.

Now since V̇ (x) = −kx2 − x4 + x2w ≤ −kx2 + (γ1 − 1)x4 + w2/(4γ1), where γ1 ∈ R
+,
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we will have Ẇ (x) ≤ −λkx2 + λw2/(4γ1) for γ1 ≤ 1. As a consequence, the minimum

upper bound on the L2-gain of system (3.44) is 1/(2
√
γ1k) (when γ1 = 1). Finally by

choosing U = V +W we have U̇(x) ≤ λw2/4−λkz2− kx2+w2/4+ (1+λ)k|x||e|, which by

restricting e and w to satisfy |e|≤ c|x|/(1 + λ) and |w(t)|≤ γ3(|x(t)|) = 2
√
c̄k|x(t)|, reads

as U̇(x) ≤ λw2/4 − λkz2 − (1 − c − c̄)kx2. Thus we can design c and c̄ so that c + c̄ < 1

and hence ensure that the ETC system is finite gain L2-stable. Also it is not difficult to

verify that U̇(x) < 0 and hence |x| monotonically converges to zero. This enables us to find

Q assuming x0 ∈ X0, i.e., |x0|≤ ε. Indeed, we can write |w(t)|≤ 2
√
c̄k|x(t)|≤ 2

√
c̄k|x0|.

Hence taking Q = 2
√
c̄kε guarantees w(t) ∈ WQ.

We continue the discussion carried out above, numerically. Taking k = 1, ε = 1,

c = 0.5, c̄ = 0.45, Q = 1.34, λ = 0.5, κ = 15, ζ = 1.6, κ̂ = 1.5, θ = 1 and Δ = 1.1, we

arrive at the execution rule |e|= |x|/3. Consequently we have U̇(x) ≤ |w|2/8−|z|2/2, where
U(x) = 3x2/4. It then follows that the ETC system is finite gain L2-stable with zero bias

and has L2-gain less than or equal to 1/2. To confirm the value of L2-gain numerically, we

integrate U̇(x)−|w|2/8+ |z|2/2 ≤ 0 to get U(x)−U(x0)− 1
8

∫ t
0 |w(τ)|2dτ +

1
2

∫ t
0 |z(τ)|2dτ ≤ 0

which by defining Γ = 1
2 , μ = 2U and using positive definiteness of U reduces to∫ t

0 |z(τ)|2dτ∫ t
0 |w(τ)|2dτ

≤ Γ2 +
μ(x0)∫ t

0 |w(τ)|2dτ
(3.45)

and is verified in Fig. 3.1 for x0 = 1.
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Figure 3.1: Verification of L2-gain.

Also the corresponding state trajectory of the system is shown in Fig. 3.2.

38



0 1 2 3 4 5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t (sec)

x(
t)

Continuous−time
system
Section III
Section IV−A
Section IV−B

0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

t (sec)

u(
t)

Continuous−time
system
Section III
Section IV−A
Section IV−B

Section 3.2
Section 3.3.1
Section 3.3.2

Section 3.2
Section 3.3.1
Section 3.3.2

Figure 3.2: System’s trajectory (Left). Actuator signal (Right).

It is worth noticing that the L2-gain preserving nature of our proposed method can be

inferred from Fig. 3.1 as the curves for the event-based scenarios lie under the one for

continuous-time system. Also a comparison of the number of triggering instants and the

MIET is given in the following table, where we average the results obtained from 100 initial

conditions, uniformly distributed in [−1, 1]. The results of Table 3.1 clearly suggests that the

effectiveness of the methods proposed in Section 3.3 on the sampling rate and intersampling

interval diminishes with the passing of time.

Table 3.1: Comparison of different scenarios.

Simulation Section 3.2 Section 3.3
time (sec) 3.3.1 3.3.2

Number of samples
10 40 11 10
30 120 48 38
100 400 286 318

Min inter-event time
10 0.24 0.66 1.1
30 0.24 0.46 0.27
100 0.24 0.25 0.25

The proof of Theorem 3.2 suggests that nonzero inter-event times can be guaranteed

if instead of condition (ii) in Theorem 3.1, the function ψ−1(β̄1/c) is Locally Lipschitz-

continuous in R
n. Neither of the these conditions hold in the next examples, however, we

can still prove this important property for the ETC system through defining a new TC.

Example 3.2 In the next example, we consider the following second order system⎧⎪⎨⎪⎩
ẋ1 = x2,

ẋ2 = −h(x1) + u+ w,

z = x2.

(3.46)
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where u is the control input, w is the exogenous disturbance and is restricted to satisfy |w|≤ 1

and z is the measured output. We design u = −k(x2 + e) where e is the measurement error

in x2. The nonlinear function h : R �→ R is assumed to be in the sector [c1, c2], i.e.,

c1r
2 ≤ rh(r) ≤ c2r

2 for any r ∈ R. We first show that, in view of (2.9), the system

is ISS with respect to e and w. To this end, let us consider Lyapunov function V (x) =

1
2x

TPx + 2
∫ x1

0 h(r)dr, where x = [x1 x2]
T and P = [1 1; 1 2]. Then by choosing k = 1

we have V̇ (x) = −x1h(x1) − x22 + 2x2(−e + w) + x1(−e + w). Next we can rewrite the

last two terms in V̇ as 2x2(−e + w) = −1
4(x2 + 4e)2 − 1

4(x2 − 4w)2 + 1
2x

2
2 + 4e2 + 4w2

and x1(−e + w) = −1
4(x1 + 2e)2 − 1

4(x1 − 2w)2 + 1
2x

2
1 + e2 + w2. Assuming h to be in

the sector [1, 2], we conclude that r2 ≤ rh(r) ≤ 2r2. Taking this into account, we obtain

V̇ (x) ≤ −σ̄(|x|) + β1(|e|) + β2(|w|), where σ̄(r) = r2/2 and β1(r) = β2(r) = 5r2.

We also claim that when e ≡ 0, the continuous-time system is finite gain locally L2-

stable. To see this, consider the Lyapunov function W (x) = λV (x) for some λ ∈ R
+. Then

since V̇ (x) = −x1h(x1)− x22 + 2x2w + x1w = −x21(1− ε1)− x22(1− ε2) + (14ε
−1
1 + ε−1

2 )w2 =

−ε1(x1− 1
2ε

−1
2 w)2−ε2(x2−ε−1

2 w)2, we conclude Ẇ (x) ≤ λ(1−ε2)z
2+λ(ε−1

1 /4+ε−1
2 )w2, i.e.,

the continuous-time system has local L2-gain less than or equal to
√

(4ε1 + ε2)/(4ε1ε2(1− ε2)).

The minimum value of this upper bound on the L2-gain of the system is 4.4861 and obtained

by setting ε1 = 1 and ε2 = 0.4721.

To verify condition (3.8) we restrict w to satisfy |w(t)|≤ γ3(|x(t)|), where γ3(r) =√
c̄/2r for some c̄ ∈ (0, 1) is a solution to the inequality (3.7). So far we have showed that

Assumptions 3.1, 3.2 hold. Therefore it suffices to verify conditions (i)-(iii) in Theorem 3.1

hold as well. Condition (iii) is readily hold for functions f and k. Also, condition (i) holds

for σ3(r) = λ(‖P‖+2c2)r since we have

|∂W
∂x

(x)|= λ

∣∣∣∣[x1 + x2 + 2h(x1)
x1 + 2x2

]∣∣∣∣ ≤ λ(‖P‖+2c2)|x|.

Condition (ii) in Theorem 3.1 is not satisfied for the given functions σ̄, β1. However, we

will redefine functions ψ and β̄1 in (3.10) and show the results of theorem are still valid.

To this end, let us start with (2.9) which can be written as ∇V (x) · f(x, k(x + e), w) ≤
−(1− c0)σ̄(|x|)+β1(|e|) for some c0 ∈ (0, 1) when |w|≤ γ3(|x|). This is true since choosing

c0 ≥ 5c̄ ensures β2(|w|) ≤ c0σ̄(|x|). Therefore, (3.13) reduces to U̇(x) ≤ −(1 − c0)σ̄(|x|) +
β1(|e|) + σ0(|x|)β0(|e|) + Γ2|w|2−|z|2. Using the definition of β1 in this example, we can

write β1(|e|) + σ0(|x|)β0(|e|) = β1(|e|) + LfLk|e|σ3(|x|) = (
√
5|e|+LfLkσ3(|x|)/(2

√
5))2 −
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L2
fL

2
kσ

2
3(|x|)/20 and hence

U̇(x) ≤ −(1− c0)σ̄(|x|)−
L2
fL

2
k

20
σ2
3(|x|) + (

√
5|e|

+
LfLk

2
√
5
σ3(|x|))2 + Γ2|w|2−|z|2. (3.47)

Therefore, we can define ψ(r)
.
=
√

σ̄(r) + L2
fL

2
kσ3

2(r)/20− LfLkσ3(r)/(2
√
5) and β̄1(r)

.
=

√
5r. Thus if for some c ∈ (0, 1− c0) the next triggering of control task occurs when

√
5|e|≥

√
cσ̄(|x|) + LfL

2
k

20
σ2
3(|x|)−

LfLk

2
√
5
σ3(|x|) (3.48)

we conclude that U̇(x) ≤ −(1 − c0 − c)σ̄(|x|) + Γ2|w|2−|z|2. As a consequence, the ETC

system has the local L2-gain less than or equal to 4.4861. Also one can check the local

Lipschitz-continuity of ψ−1(β̄1/c) in R
n which is necessary to prove Zeno-freeness property

for the system.

To find Q, we have to find functions σ1 and σ2 so that (2.7) holds. Since x21 ≤
2
∫ x1

0 h(r)dr ≤ 2x21 and V (x) = (xTPx)/2+2
∫ x1

0 h(r)dr, one can choose σ1(r) = Σmin(P1)r
2/2

and σ2(r) = Σmax(P2)r
2/2, where Σmax(A) (respectively Σmin(A)) denotes maximum (re-

spectively minimum) eigenvalue of matrix A, and P1 = [3 1; 1 2], P2 = [5 1; 1 2]. Thus

we can take Q = Lγ3 ε̄ = Lγ3σ
−1
1 (σ2(ε)) = ε

√
(c̄Σmax(P2))/(2Σmin(P1)), where ε is the

upper bound on the norm of admissible initial conditions. For numerical simulations we

take ε = 1, λ = 10−3, c = 0.7, c̄ = 0.05, κ = κ̂ = 50, ζ = θ = 1, Δ = 4 and Q = 0.62.

The verification of L2-gain of the system for x0 = [0.87 0.5]T is presented in Fig. 3.3 as it

suggests (3.45) holds for Γ = 4.4861.
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Figure 3.3: Verification of L2-gain (Left). Actuator signal (Right).

The state trajectories of the system is also plotted in Fig. 3.4.
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Figure 3.4: System’s trajectories.

Finally, a comparison of the number of triggering instants and the MIET is given in

Table 3.2. To this end, we consider 100 initial conditions uniformly distributed in circle of

radius 1 and average the obtained results.

Table 3.2: Comparison of different scenarios.

Simulation Section 3.2 Section 3.3
time (sec) 3.3.1 3.3.2

Number of samples
10 47 6 3
30 139 89 8
100 466 415 70

Min inter-event time
10 0.09 1.21 4
30 0.09 0.1 4
100 0.09 0.09 0.49

In the next example, we apply the results of Theorem 3.1 but replacing the Euclidean

vector norm with the infinity norm.

Example 3.3 Using similar notations as in Example 3.2, we define the following second

order system ⎧⎪⎨⎪⎩
ẋ1 = x2 − bx1,

ẋ2 = −ax31 + u+ w,

z = x2,

(3.49)

where |w|≤ 1. Defining Lyapunov function V (x) = ax41/4 + |x|2/2, where x = [x1 x2]
T, we

will have V̇ (x) = x1x2− bx21−abx41+x2u+x2w, which by taking u = −(x1+ e1)− (x2+ e2)

can be written as

V̇ (x) ≤ −bx21 − abx41 − x22 −
√
2|x|∞|e|+|x|∞|w| (3.50)
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where e1 and e2 are the measurement errors in x1 and x2, respectively and e = [e1 e2]
T.

Then in view of the following inequality

bx21 + abx41 +
1

4
x22 ≥

{
b|x|2∞ + ab|x|4∞, if |x1|> |x2|,
1
4 |x|

2
∞, otherwise,

we conclude that bx21+abx41+x22/4 ≥ σ̄(|x|∞), where function σ̄(r) = min{br2+abr4, r2/4}
is of class K∞. This enables us to write (3.50) as

V̇ (x) ≤ −σ̄(|x|∞) +
√
2|x|∞|e|+|x|∞|w|. (3.51)

To show finite gain stability of continuous-time system, consider W (x) = λV (x) as the

Lyapunov function. Thus for e ≡ 0, we have V̇ (x) = −bx21 − abx41 − x22 + x2w ≤ −z2 + zw

which by using zw = ε̂z2/2 + w2/(2ε̂) − ε̂(z − w/ε̂)2/2 for some ε̂ ∈ R
+, gives Ẇ (x) ≤

−λ(1− ε̂/2)z2 + λw2/(2ε̂). As a consequence, it is not difficult to show that the minimum

upper bound on the L2-gain of continuous-time system (3.49) can be achieved by choosing

ε̂ = 1 and is equal to 1. This value, however, may be improved by a different choice of

Lyapunov function W (x).

Defining σ3(r)
.
= λr + aλr3 for r ∈ R

+
0 , we have |∂W∂x (x)|∞ ≤ σ3(|x|∞) since

|∂W
∂x

(x)|
∞

= λ

∣∣∣∣[ax31 + x1
x2

]∣∣∣∣
∞

≤
{
aλ|x|3∞ + λ|x|∞, if |x1|(1 + ax21) > |x2|,
λ|x|∞, otherwise,

and hence |∂W∂x (x)|∞ ≤ max{λ|x|∞, λ|x|∞+aλ|x|3∞} = λ|x|∞+aλ|x|3∞. Therefore, by taking

U = V +W and following the similar lines as in deriving (3.14), we can write

U̇(x) ≤ −λ

2
z2+

λ

2
w2+|x|∞

(
−|x|∞min{b+ab|x|2∞,

1

4
}+
√
2|e|+|w|+2λLfLk(1 + a|x|2∞)|e|

)
,

where we used the fact that

∂W

∂x
(x)(f(x, k(x+ e), w)− f(x, k(x), w)) ≤

2|∂W
∂x

(x)|
∞
|f(x, k(x+ e), w)− f(x, k(x), w)|∞ ≤

2|∂W
∂x

(x)|
∞
|f(x, k(x+ e), w)− f(x, k(x), w)| ≤

2LfLk|e||
∂W

∂x
(x)|

∞
.

We note that since u = k(x) = −(x1 + x2), it can be easily inferred that Lk =
√
2. Now

assuming |w(t)|≤ γ3(|x(t)|∞) where γ3(r) = min{br + abr3, r/4}c̄ and taking c ∈ (0, 1− c̄),
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we conclude that if the execution of control task occurs when

|e|≥ c
|x|∞min{b+ ab|x|2∞, 14}√
2(1 + 2λLf (1 + a|x|2∞))

, (3.52)

the system (3.49) is finite gain local L2-stable with zero bias and local L2-gain ≤ 1. To

find Q, let σ1(x) ≤ V (x) ≤ σ2(x), where σ1(r) = r2/2 and σ2(r) = (2 + a)r2/4. As

a consequence, assuming initial conditions to be norm bounded by ε, we can take Q =

Lγ3 ε̄ = Lγ3σ
−1
1 (σ2(ε)) = Lγ3ε

√
1 + a/2, which by choosing b > 1/4, reduces to Q =

(c̄ε
√

1 + a/2)/4. In simulations, let a = 1, b = 10, ε = 1, c = 0.5, c̄ = 0.45, κ = 10,

κ̄ = 10, ζ = 1, θ = 5, Δ = 1 and Q = 0.138. Therefore, the only parameter left to study the

system’s response is λ which appears in TC (3.52). We start our simulation with λ = 1,

however, the effect of this parameter on our results will be discussed later. Similar to the

past examples, in the next table, we give a comparison of number of samplings and MIETs

over different scenarios. The results are, indeed, the average over 100 initial conditions

uniformly distributed in the circle of radius 1.

Table 3.3: Comparison of different scenarios.

Simulation Section 3.2 Section 3.3
time (sec) 3.3.1 3.3.2

Number of samples
10 420 8 10
30 1190 23 30
100 3882 75 100

Min inter-event time
10 0.007 0.61 1
30 0.007 0.57 1
100 0.007 0.53 1

Recalling from Definition 2.9, the system (3.49) has local L2-gain ≤ Γ if for any T we

have (3.45). The local L2-gain of the system is then verified in Fig. 3.5 for x0 = [0.87 0.5]T

and Γ = 1. Also the corresponding state trajectories is presented in Fig. 3.6.
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Figure 3.5: Verification of L2-gain (Left). Actuator signal (Right).
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Figure 3.6: System’s trajectories.

Finally, the effect of parameter λ on the above results in the first 100 seconds of response

is investigated in Table 3.4. It suggests that λ has negligible effect on the triggering num-

bers and MIETs using the methods of Sections 3.3.1, 3.3.2. However, choosing λ > 10−2

degrades the efficiency of the results of Section 3.2, significantly.

Table 3.4: Investigating the effect of parameter λ.

λ
Method of
Section 10−3 10−2 10−1 1

Number of samples
3.2 149 152 176 420
3.3.1 8 8 8 8
3.3.2 10 10 10 10

Min inter-event time
3.2 0.023 0.022 0.019 0.007
3.3.1 0.670 0.669 0.680 0.610
3.3.2 0.999 0.999 0.999 0.999

Example 3.4 The following example illustrates the necessity of using a local L2 theory.

The example shows that while under arbitrary perturbations w in L2 space, the event times

are not necessarily guaranteed to be isolated, the local notion serves to exclude Zeno phe-

nomenon. Consider the following linear example from [59]

ẋ(t) = Ax(t) +Bu(t) + w(t), u(t) = Kx(t), (3.53)

where A, B, K are matrices of appropriate dimensions and the controller is applied in an

event-based fashion. The desired output is taken as z(t) = x(t). Assume t0 = 0, x0 �= 0,

and the TC |e(t)|≥ p|x(t)| for some p ∈ R
+, it is shown in [59] that under the following

choice of disturbance

w(t) = ((t− 1)A+ (ti − 1)BK)x0 − x0, t ∈ [ti, ti+1) (3.54)

45



for t ∈ [0, 1] and zero elsewhere (which is a signal in L2 space), the state and triggering

instants are analytically given by x(t) = (1−t)x0 and ti = 1−(1+p)−i, i ∈ N0, respectively.

It is then obvious that event times has an accumulation point at t = 1. To address this

issue, [59] suggests using the input-to-state practically stable (ISpS) property instead of ISS

condition (2.8). The proposed method, however, is not applicable to the problem studied in

this chapter since the L2-gain performance of the ETC system can not be guaranteed.

Note that the above discussion suggests that when w is an arbitrary signal in L2, as in

(3.54), the execution rules of the form (3.10) does not exclude the Zeno-behaviour. However,

in this chapter our solution to this problem is to restrict w to be in the admissible space

WQ and also satisfy condition (3.8) with γ3(r)
.
= ĉr, ĉ ∈ R

+. The price we paid is then the

local character of the results. We remark that w defined in (3.54) does not satisfy (3.8),

and hence is not a counter example of the local thoery. This is because (3.8) is violated near

t = 1.

Indeed, applying the results of Theorem 3.2 one can show that limiting w as above, the

triggering instants are separated at least by

τ =
1

‖A‖+ĉ
ln (1 +

‖A‖+ĉ

p(‖A‖+‖BK‖+ĉ) + ‖BK‖).

3.5 Summary

This chapter addresses the disturbance rejection problem of nonlinear ETC systems. As-

suming the existence of a pre-designed control law with desirable local L2 performance

characteristics, we propose a TC that preserves finite gain local L2-stability of the original

continuous-time design. Our formulation is rather general; i.e. we consider a nonlinear

plant and assume that disturbances are bounded by a Lipschitz-continuous function of the

state. We also show that, in the absence of external disturbances, the control law render

the origin asymptotically stable.

In addition to stability and disturbance rejection, we also study the intersampling be-

haviour of the proposed TC. First we show that the inter-event time period is lower bounded

by a nonzero constant and focus on enlarging this constant. We show that, regardless of the

construction of the ETM, the inter-event time period increase is actually lower bounded by

a constant. Increasing the value of this constant can be done at the expense of relaxing the

stability properties of the design.
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Chapter 4

Event-Triggered Design with
Guaranteed Minimum Inter-Event
Times and Lp Performance

4.1 Problem Statement

In this chapter1 we consider the nonlinear systems of the following form:{
ξ̇ = f(ξ, d) + g(ξ)u,

z = h(ξ, d),
(4.1)

where ξ ∈ R
n, u ∈ R

m, d ∈ Lq
p, z ∈ R

s represent the state, control input, exogenous

disturbance and measured output. The functions f , g and h are locally Lipschitz-continuous

and f(0, 0) = 0, h(0, 0) = 0 so that ξ = 0 is an equilibrium point of zero-input system. We

will assume the state ξ evolves from initial conditions ξ0 = ξ(t0) on an open subset of Rn

containing the origin. System (4.1) is said to be finite gain Lp-stable and has an Lp-gain

≤ μ if there exist real numbers η, t0, T , μ > 0, p ≥ 1 and positive semi-definite function β

such that for any T > t0, any d ∈ Ln
p and any ξ0 ∈ R

n

∫ T

t0

‖z(s)‖pds ≤ μp

∫ T

t0

‖d(s)‖pds+ β(ξ0) + η. (4.2)

We assume plant and controller communicate apperiodically through a digital network and

in an event-based manner. The ETC problem established in this chapter relies on the

emulation of the analog design and consists of two steps:

First, we assume continuous data transmission between plant and a full information

controller u = γ(ξ), where γ is locally Lipschitz-continuous. The resulting continuous-time

1The results of this chapter have been submitted for publication in the article: M. Ghodrat and H. J.
Marquez, “Event-Triggered Design with Guaranteed Minimum Inter-Event Times and Lp-Performance”,
Submitted to IEEE Trans. Autom. Control, May 2018.
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plant is then given by {
ξ̇ = fc(ξ, d),

z = h(ξ, d),
(4.3)

where fc(ξ, d) := f(ξ, d) + g(ξ)γ(ξ). It is then assumed that the controller renders the

closed-loop (4.3) finite gain Lp-stable with disturbance attenuation level μ.

Second, the communication between plant and controller occurs at the instants belong

to the set {tk : k ∈ K}, where K = {0, 1, 2, . . . ,K}. The sampling sequence is a monotone

increasing set, starting at t0 and implicitly defined through a TC. The actuator signal

is held constant between events using a hold device u(t) = u(tk), t ∈ [tk, tk+1) where

tK+1 = ∞ when K is finite. The proposed TC is continuously monitored and once it is

satisfied, the updated state is forwarded to the controller which computes the new control

signal and send it to the actuator instantaneously. More specifically, let tk be the most

recent sampling instant and TC be satisfied at some �k+1 > tk. Then the new control

signal applied through the actuator at tk+1 = �+
k+1 and hence u(tk+1) = γ(ξ(tk+1)). Let

ε(t) := ξ(tk) − ξ(t) represent the sampling error for t ∈ [tk, tk+1). ε(t) is then a right-

continuous signal with zero value at tk. In our analysis we neglect practical issues such as

transmission and computation delays, however, they can be readily addressed following the

approach introduced in [9]. The resulting closed-loop ETC system is then described by{
ξ̇ = fs(ξ, ε, d), z = h(ξ, d),

tk+1 = �+
k+1, �k+1 = inf {t ∈ R : t > tk ∧ Φ(t) = 0},

(4.4)

where fs(ξ, ε, d) := f(ξ, d) + g(ξ)γ(ξ + ε) and Φ(t) is the TC to be designed.

Assuming the existence of an Lp-stabilizing controller for (4.3), our main interest is to

design an ETM that retains this input-output property of the network-free design for the

resulting ETC system; perhaps with a worse disturbance attenuation level. The proposed

ETM shall (1) exclude the Zeno behaviour and (2) serve as a general platform for TC design

in ETC problems.

4.2 Event-Triggered Mechanism

In this section, we introduce a general structure to design Φ so that ETC system (4.4) has

Lp-gain ≤ μd. Consider the following TC structure:

Φ(t) := ϕ(ξ(t), ε(t))−
∑2

i=1kiφi(t) = 0 (4.5)

where k1, k2 > 0, and the dynamic variables φ1, φ2 and function ϕ are to be designed. We

start with designing ϕ, for which the following assumption is required.
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Assumption 4.1 There exist positive definite, radially unbounded functions Vs, Vc, positive

constants μ, ci, c̄i i ∈ {1, 2, 3} and some p ∈ [1,∞) satisfying

(i) ∇Vs(ξ) · fs(ξ, ε, d) ≤ −c1‖ξ‖p+c2‖ε‖p+c3‖d‖p,

(ii) ∇Vc(ξ) · fc(ξ, d) ≤ μp‖d‖p−‖z‖p,

(iii) Vs(ξ) ≤ c̄1‖ξ‖p, Vc(ξ) ≤ c̄2‖ξ‖p, ‖∇Vc(ξ)‖≤ c̄3‖ξ‖p−1.

Remark 4.1 Assumption 4.1(i) implies that system (4.4) is ISS with respect to the inputs

ε, d. Also Assumption 4.1(ii) implies that u = γ(ξ) renders the continuous-time system

(4.3) finite gain Lp-stable with Lp-gain ≤ μ.

The function ϕ is assumed to have the following form

ϕ(ξ, ε) = ϕ1(ξ) + ϕ2(ε) + ϕ3(ξ, ε), (4.6)

where ϕ1(r) = −c1σ‖r‖p, ϕ2(r) = c2‖r‖p,

ϕ3(r, s) = ∇Vc,λ(r) · g(r)(γ(r + s)− γ(r))

and σ < 1, p ∈ [1,∞), Vc,λ(r) = λVc(r) for some λ ∈ R
+. We then continue with the

design of φ1, φ2; dynamic parameters serve to enlarge the inter-event times and guarantee

the event-separation property for ETC system (4.4). Consider the equations below for

t ∈ [tk, tk+1)

d

dt

(
φ1

φ2

)
+

(
α1(φ1)− k2φ2

α2(φ2)

)
=

(
−ϕ
ϕ̄

)
, (4.7a)

ϕ̄(t) =

{
α2(δ̄), t ∈ [tk, t̂k),

δ̇k(t) + α2(δk(t)), t ∈ [t̂k, tk+1),
(4.7b)

where δ̄ is a positive constant and δk is a positive, bounded and piecewise differentiable

function defined over [t̂k, tk+1) and satisfies
∑

k

∫ tk+1

t̂k
δk(τ)dτ ≤ θ1 for some positive θ1.

Also t̂k = tk + τ̂ , where τ̂ is a positive parameter and will be designed in the sequel. Note

that function ϕ̄ is defined such that δ̄ (resp. δk(t)) is a solution of φ2 in (4.7a) over [tk, t̂k)

(resp. [t̂k, tk+1)). Moreover α2 is an arbitrary class-K∞ function and α1 ∈ K∞ is designed

based on the following assumption.

Assumption 4.2 α1(r) ≥ νr where ν = c1(1− σ)/(c̄1 + c̄2).
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To solve (4.7a), (4.7b) the following initial values are assumed

φ1(tk) = rk, φ1(t̂k) = r̂k, φ2(tk) = sk, φ2(t̂k) = ŝk, (4.8)

where rk, r̂k, sk, ŝk are non-negative real numbers and are designed based on the following

assumption.

Assumption 4.3 rk and r̂k are chosen from sequences with convergent series, i.e., there

exist finite numbers θ2, θ3 ∈ R
+ so that

∑
k rk ≤ θ2,

∑
k r̂k ≤ θ3. Moreover, sk and ŝk

satisfy sk ≥ δ̄ and ŝk = δk(t̂k).

Dynamic rules have been previously studied in [13, 28]. The variable φ1 in (4.5) which

satisfies the differential equation (4.7a), plays the role of dynamic parameter introduced in

the above references. Here, we introduce an additional dynamic variable φ2; while both

φ1, φ2 serve to extend the inter-event times, φ2 plays the fundamental role of guaranteeing

event separation property for ETC system (4.4).

Proposition 4.1 Under TC (4.5) and Assumption 4.3, φ1(t), φ2(t) ≥ 0 for all t ≥ t0. In

detail, φ2(t) ≥ δ̄ for t ∈ [tk, t̂k), φ2(t) = δk(t) for t ∈ [t̂k, tk+1).

Proof. From (4.5), (4.7a) φ1 satisfies φ̇1 + α1(φ1) + k1φ1 ≥ 0 for t ∈ [tk, tk+1). Note that

φ1(t) ≡ 0 is a solution to φ̇1 + α1(φ1) + k1φ1 = 0. Therefore, since φ1(tk), φ1(t̂k) ≥ 0 it

follows that φ1(t) ≥ 0 for all t ≥ t0. For the second part, since δ̄ (resp. δk(t)) is a solution

of φ2 in (4.7a) for t ∈ [tk, t̂k) (resp. t ∈ [t̂k, tk+1)) and sk ≥ δ̄ (resp. ŝk = δk(t̂k)), it follows

that φ2(t) ≥ δ̄ (resp. φ2(t) = δk(t)) over this interval. Finally, from the positiveness of δ̄

and δk(t), φ2(t) ≥ 0 for all t ≥ t0.

Proposition 4.1 illustrates the previous claim that φ1, φ2 enlarge the inter-event times.

In fact, in absence of φ1, φ2 triggering occurs when ϕ(ξ, ε) = 0. However, the positiveness

of φ1, φ2 postpones the triggering to occur when ϕ(ξ, ε) = k1φ1 + k2φ2.

Remark 4.2 While TC (4.5) was originally proposed to address the state feedback problem

with a guaranteed Lp-gain level, the idea of introducing dynamic variables φ1, φ2 can readily

be applied to the dynamic output feedback case. More specifically, let ϕ = 0 be a pre-designed

output based TC. The ETC system then enjoys the benefits offered by φ1, φ2 under the

modified condition ϕ − k1φ1 − k2φ2 = 0 with similar dynamics for φ1, φ2 as in (4.7a),

(4.7b).

To finish the design, it remains to define τ̂ . Let us start with the following lemma.
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Lemma 4.1 Under Assumptions 4.1-4.3 and if the control signal is updated under the TC

(4.5), all the trajectories of the ETC system (4.4) starting from Bρ will remain in Bρ̄,

where

ρ̄ = max
{
‖ξ‖: Vs(ξ) + Vc,λ(ξ) ≤ Vs(ξ0) + Vc,λ(ξ0) +

1

ν
(λμp

d‖d‖
p
∞ + k2‖φ2‖∞) + θ2 + θ3, ξ, ξ0 ∈ R

n, ‖ξ0‖≤ ρ
}
.

Proof. We shall need the following proposition whose proof can be obtained applying

integration by parts and Assumption 4.2.

Proposition 4.2 For φ1 defined in (4.7a) and (4.8), we have∫ t̂k

tk

−eντdφ1(τ) ≤ rke
νtk ,

∫ tk+1

t̂k

−eντdφ1(τ) ≤ r̂ke
νt̂k .

Now we start from Assumption 4.1(ii) to write

V̇c(ξ) ≤ μp‖d‖p−‖z‖p+∇Vc(ξ)g(ξ)(γ(ξ + ε)− γ(ξ))

Define V (ξ) = Vs(ξ) + Vc,λ(ξ), one can apply Assumption 4.1(i), (4.5), (4.6) to get

V̇ (ξ) ≤ −c1(1− σ)‖ξ‖p+(λμp + c3)‖d‖p+ϕ ≤

−c1(1− σ)‖ξ‖p+(λμp + c3)‖d‖p+k2φ2 − α1(φ1)− φ̇1

where the second inequality is obtained using (4.7a). Let A = λμp
d‖d‖

p
∞ + k2‖φ2‖∞, we can

apply Proposition 4.1 to write

V̇ (ξ) + νV (ξ) ≤ A− φ̇1,

where we used V (ξ) ≤ (c̄1 + c̄2)‖ξ‖p suggested by Assumption 4.1(iii). We then conclude

from Proposition 4.2 that

V (ξ(t̂k))e
νt̂k ≤ V (ξ(tk))e

νtk + rke
νtk +A

∫ t̂k

tk

eντdτ,

V (ξ(tk+1))e
νtk+1 ≤ V (ξ(t̂k))e

νt̂k + r̂ke
νt̂k +A

∫ tk+1

t̂k

eντdτ.

Adding the two inequalities and apply the result to the sampling intervals until t ≥ t0,

Assumption 4.3 yields V (ξ(t))eνt ≤ V (ξ0) + (θ2 + θ3)e
νt +A

∫ t
t0
eντdτ . Therefore,

V (ξ(t)) ≤ V (ξ0)e
−νt + θ2 + θ3 +A

∫ t

t0

e−ν(t−τ)dτ

≤ V (ξ0) + θ2 + θ3 + ν−1A

51



which gives the desired result.

Since ‖φ2‖∞ is limited by max{sk, ‖δk‖∞ : k ∈ K} and hence is bounded, Lemma 4.1

suggests that the trajectories of the ETC system (4.4) are bounded by a non-decreasing

function of ‖ξ0‖ and ‖d‖∞. Next lemma employs the Lipschitz property of functions f , g,

γ to provide an upper bound on the norm of state dynamics.

Lemma 4.2 With the same conditions as in Lemma 4.1, there exist λi = λi(‖ξ0‖, ‖d‖∞),

i ∈ {1, 2, 3}, non-decreasing on their arguments, so that

‖ξ̇‖≤ λ1‖ξ‖+λ2‖ε‖+λ3‖d‖.

Sketch of the proof. One can apply the Lipschitz property of functions f , g, γ to get

‖ξ̇ − ˙̃
ξ‖≤ λ1‖ξ − ξ̃‖+λ2‖ε − ε̃‖+λ3‖d − d̃‖ where λi’s are functions of ‖d‖∞ and ρ̄. The

result then follows by applying Lemma 4.1.

Remark 4.3 As Lemma 4.2 suggests, since the Lipschitz properties of functions f , g and

γ are only local, the Lipschitz coefficients λi are bounded provided ‖ξ0‖<∞, ‖d‖∞ <∞.

Let us define

τi := sup
{
t ∈ R

+
0 : λp

iψ(t, λ2) <
Bi

c

}
for i ∈ {1, 3} where B1 = c1σ − (c̄3λ)

q/q, B3 = λ(μp
d − μp)− c3, c = c2 + λp

2/p and

ψ(t, λ2) =
22p(p− 1)p−1

λp
2p

p
(e

λ2p
2(p−1)

t − 1)p−1(e
λ2p
2

t − 1).

τ̂ is then described by

τ̂ = min{τ1, τ3}. (4.9)

Later in Lemma 4.3 we will see that τ̂ > 0 is required to guarantee the isolation of triggering

instants for ETC system (4.4). Moreover, τ1 (resp. τ3) is the elapsed time since the most

recent triggering instant so that sampling error grows without violating stability (resp.

desired L2 bound) of the ETC system (4.4) (see the proof of Theorem 4.1).

Remark 4.4 To design λ one has to consider the restriction of having a positive τ̂ . τ̂ >

0 necessitates τ1, τ3 and hence B1, B3 to be positive. This gives the restriction on λ

as λ < c̄−1
3 (c1σq)

1
q and λ > c3(μ

p
d − μp)−1. The later condition implies μd > μ, i.e.,

the Lp-stability of ETC system (4.4) is achieved at the expense of a larger rejection level.

However, to minimize μd, we may choose c3 small enough by scaling Lyapunov function Vs

in Assumption 4.1 (refer to example section for more details). Obviously, one has to replace

ci, i ∈ {1, 2, 3} by the corresponding scaled values in all of the discussions.
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4.3 Main Results

4.3.1 Uniform Isolation of Triggering Instants

One of the difficulties encountered in ETC systems is undesirable Zeno behaviour which

happens when an infinite number of triggerings occur over a finite interval. This is even

more challenging when the system of interest is exposed to exogenous disturbances or sensor

noise, since in this case the sampling error is also driven by the disturbance/noise. As an

example, while Zeno behavior is excluded in [9] for disturbance free systems, the same does

not necessarily hold in presence of disturbance (see [59] for further discussion).

In the present chapter, we show that under TC (4.5), the ETC system (4.4) satisfies the

following robust event-separation property defined in [59].

Definition 4.1 Let τm = inf{tk+1 − tk : k ∈ K} be the MIET. ETC system (4.4) has the

robust semi-global event-separation property if there exists ε ∈ R
+ so that for any compact

set Ξ ⊂ R
n, inf{τm : ξ0 ∈ Ξ, ‖d‖∞ ≤ ε} > 0.

According to Definition 4.1, an ETC system has the robust semi-global event-separtion

property if the sequence of sampling times {tk : k ∈ K} is a uniformly isolated set provided

that ξ0 ∈ Ξ and ‖d‖∞ ≤ ε.

Lemma 4.3 Under Assumptions 4.1, 4.2, 4.3 the ETC system (4.4) with ETM (4.5)-(4.9)

has the robust semi-global event-separation property. In detail,

τm = min{τ∗(1), τ̂},

where m1 = (B1
c )

1
p , m2 = (k2δ̄c )

1
p , κ = max

{
2λ1
m1

, 2λ3ε
m2

}
and

τ∗(χ) =

{
1

λ2−m1
κ
2
ln( κ+λ2χ

κ(1+m1
χ
2
)
), κ �= 2λ2

m1
,

m1χ
λ2(2+m1χ)

, κ = 2λ2
m1

.
(4.10)

To prove Lemma 4.3 we report here two useful inequalities.

Lemma 4.4 For any p, q ≥ 1 with 1
p + 1

q = 1 and any r > 0

(i) ‖x+ y‖r≤ 2r‖x‖r+2r‖y‖r

(ii)

∫
T
‖x(τ)y(τ)‖dτ ≤

(∫
T
‖x(τ)‖pdτ

) 1
p
(∫

T
‖y(τ)‖qdτ

) 1
q
.

Proof of Lemma 4.3. Since any conservative TC than (4.5) gives rise to the lower bound

on MIET, we aim to modify (4.5) to find such a condition. To begin, we first make the use
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of Proposition 4.1 which implies φ1 ≥ 0, φ2(t) ≥ δ̄ for t ∈ [tk, t̂k) and hence modify (4.5) as

ϕ = k2δ̄ in this interval. Note that we will assume tk+1 ≤ t̂k since otherwise τm = τ̂ and the

event-separation property holds trivially. From the inequality given in the sketch of proof

of Lemma 4.2 with ξ̃ = ξ, ε̃ = 0, d̃ = d, one can conclude ‖g(ξ)(γ(ξ + ε) − γ(ξ))‖≤ λ2‖ε‖
and hence modify condition ϕ = k2δ̄ as

c2‖ε‖p+λ2‖∇Vc,λ(ξ)‖‖ε‖= c1σ‖ξ‖p+k2δ̄.

Next from Lemma 4.4(ii) and Assumption 4.1(iii), we find condition c‖ε‖p= B1‖ξ‖p+k2δ̄.

Finally in view of Lemma 4.4(i) which suggests

(
B1

1
p

2
‖ξ‖+(k2δ̄)

1
p

2
)p ≤ B1‖ξ‖p+k2δ̄

the desired modification of (4.5) is given by

2‖ε‖= m1‖ξ‖+m2. (4.11)

Define χ := 2‖ε‖/(m1‖ξ‖+m2), it can be concluded that

χ̇ ≤
(
1 +m1

χ

2

)( 2‖ξ̇‖
m1‖ξ‖+m2

)
≤
(
1 +m1

χ

2

)(
κ+ λ2χ

)
where Lemma 4.2 is used to obtain the last inequality. Therefore, τ∗ = t − tk can be

obtained as in (4.10) by solving

χ̇ =
(
1 +m1

χ

2

)(
κ+ λ2χ

)
from tk to t with χ(tk) = 0. Event rule (4.11) suggests that triggering occurs when χ = 1 and

is given by tk+1 = tk + τ∗(1). In addition, (4.10) implies that τ∗(1) is strictly nonzero since

for ξ0 ∈ Ξ and ‖d‖∞ ≤ ε, Lemma 4.2 suggests that λ1, λ2, λ3, and hence κ are bounded.

The robust semi-global event-separation property is then obtained from definition of τm

and positiveness of τ̂ .

4.3.2 Comparison with the Existing Strategies

In this subsection we study several popular existing ETMs that can be extracted as special

cases of (4.5)-(4.7b). We emphasize that the design criteria in these references is not the

same so our comparison is merely based on the structure of the TC with no reference to the

relative merits or performance in each design, simply because there seems to be no fair way

or value in such comparison. Moreover, since some of these works focus on output feedback,

in our comparisons we assume the measurable output to be the full state vector.
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Our proposed ETM is dynamic due to the existence of the dynamic variable φ1. See

[13,28] for discussions regarding the effect of this variable. To the best of our knowledge, the

parameter φ2 has not been introduced before. Thus, we provide the following observations

regarding φ2.

(i) The inter-event expansion that originates from φ2 can be quantified for a desired

period of time, or a desired number of trigger instants (see Section 3.3).

(ii) As shown in the examples provided in Chapter 3, φ2 serves to avoid redundant

samplings when the norm of state is close to 0. This is important since as a primary pitfall,

TCs based on the norm of the state tend to increase triggering as the state approaches the

origin.

(iii) The primary functionality of φ2 is to exclude Zeno behaviour as suggested by the

proof of Lemma 4.3.

(iv) While the approach in the present article is considered purely event-based, an

appropriate choice of parameters in the dynamics of φ2 enables the TC (4.5) to capture the

time-regularization strategies.

We conclude this subsection by extracting several TCs proposed in the literature from

(4.5).

• [49] (Chapter 3): For k1 = 0 and sk = δ̄, TC (4.5) reduces to the one proposed in [49].

In the rest of our comparisons we assume ϕ3 = 0 in (4.6).

� [59]: For k1 = 0 and δk(t) = sk = ŝk = δ̄ we obtain φ2 = δ̄. Hence, the TC becomes

ϕ(ξ, ε) = k2δ̄.

� [28]: Take k2 = 0, (4.5), (4.7a) reduce to ϕ(ξ, ε) = k1φ1, φ̇1 + α1(φ1) = −ϕ.

� [58]: Taking k2 = 0, k1 = ∞ and α1(r) = 0 for any r reduce (4.5) to φ1 = 0, where

φ1(t) = −
∫ t
tk
ϕ(ξ(s), ε(s))ds, i.e., the integral-based TC.

� [9]: Substitute k1 = k2 = 0 in (4.5) one can extract the TC ϕ = 0.

� [19, 20]: Define t̂k = tk + τm where τm = min{τ∗, τ̂}. This guarantees no triggering

of the control task occurs over [tk, t̂k). Then, if we set k1 =∞ for t ∈ [t̂k, tk+1), �k+1

in (4.4) can be written in a time-regularization fashion as �k+1 = inf{t ∈ R : t >

tk+τm
∧

φ1 = 0} where φ̇1 = −ϕ by setting k2 = 0 and α1(r) = 0 for any r in (4.7a).

� [48]: Set k1 = k2 = 0 and follow similar lines as in comparison with [19, 20], we get

�k+1 = inf{t ∈ R : t > tk + τm
∧

ϕ(ξ(t), ε(t)) = 0}.
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� [13]: Let k1 = 0, ϕ̄(t) = 0 for all t ∈ R and ŝk = φ2(t̂
−
k ). Choose sk ≥ 0 we have

φ2(t) ≥ 0 for all t ≥ t0. Then (4.5), (4.7a) reduce to ϕ2(ε) = −ϕ1(ξ) + k2φ2, where

φ̇2 + α2(φ2) = 0. In this case, φ2 plays the role of threshold variable defined in [13].

However, unlike the present work where φ2 appears in the TC as a positive term that

is added to some functions of state’s norm, in [13], the admissible measurement error

is bounded by the maximum of these two.

4.3.3 Lp-Gain Performance

We start with a useful lemma which is an application of Lemma 4.2.

Lemma 4.5 Let a = λp
1ψ(τ̂ , λ2), b = λp

3ψ(τ̂ , λ2). Then∫ t̂k

tk

‖ε(τ)‖pdτ ≤ a

∫ t̂k

tk

‖ξ(τ)‖pdτ + b

∫ t̂k

tk

‖d(τ)‖pdτ. (4.12)

Proof. We first define the notations below:

I(x) =
∫ s

tk

eλ2(s−τ)‖x(τ)‖dτ, Q(s) = (

∫ s

tk

e
λ2q
2

(s−τ)dτ)
p
q ,

J (x) =

∫ s

tk

e
λ2p
2

(s−τ)‖x(τ)‖pdτ, P(s) =
∫ s

tk

e
λ2p
2

(s−tk)ds.

From definition of ε and Lemma 4.2 we have

d‖ε‖
dt

≤ ‖ε̇‖= ‖ξ̇‖≤ λ1‖ξ‖+λ2‖ε‖+λ3‖d‖,

solving which for ε(tk) = 0 and s ≥ tk gives ‖ε(s)‖≤ λ1I(ξ) + λ3I(d). Then from Lemma

4.4(i) we conclude

‖ε(s)‖p≤ 2p(λp
1Ip(ξ) + λp

3Ip(d)) ≤ 2pQ(s)(λp
1J (ξ) + λp

3J (d))

where the last inequality is obtained using Lemma 4.4(ii). It is then straight forward to

check that for t ≥ tk,
∫ t
tk
J (ξ)ds ≤ P(t)

∫ t
tk
‖ξ(τ)‖pdτ and hence conclude∫ t

tk

‖ε(s)‖pds ≤ 2p
∫ t

tk

Q(s)(λp
1J (ξ) + λp

3J (d))ds

≤ 2pQ(t)P(t)(λp
1

∫ t

tk

‖ξ(τ)‖pdτ + λp
3

∫ t

tk

‖d(τ)‖pdτ).

The proof is then complete taking t = t̂k since ψ(τ̂ , λ2) = 2pQ(t̂k)P(t̂k).

Remark 4.5 In view of the definition of a, b and τ̂ , one can verify that a ≤ λp
1ψ(τ1, λ2),

b ≤ λp
3ψ(τ3, λ2). Also from definition of τ1, τ3 we conclude ac < B1, bc ≤ B3; inequalities

that will be used later in the proof of main results.
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Next theorem states our primary result where the finite gain Lp-stability of continuous-

time system (4.3) is shown to be preserved under the event-based execution of control task.

Compared to [20,48], our result relies on a less conservative set of assumptions.

Theorem 4.1 Under Assumptions 4.1, 4.2, 4.3 and ETM (4.5)-(4.9) the ETC system

(4.4) is finite gain Lp-stable with Lp-gain ≤ μd. In addition, the origin ξ = 0 is globally

asymptotically stable.

Proof. For t ∈ [tk, t̂k), Assumption 4.1(ii) suggests

V̇c(ξ) ≤ μp‖d‖p−‖z‖p+∇Vc(ξ) · g(ξ)(γ(ξ + ε)− γ(ξ)) (4.13)

which further reduces to

V̇c(ξ) ≤ μp‖d‖p−‖z‖p+λ2‖∇Vc(ξ)‖ ‖ε‖

by applying ‖g(ξ)(γ(ξ + ε)− γ(ξ))‖≤ λ2‖ε‖ (that is already proven in the proof of Lemma

4.3). Thus, from Lemma 4.4(ii) and Assumption 4.1(iii), we get

V̇c,λ(ξ) ≤
λq c̄q3
q
‖ξ‖p+λp

2

p
‖ε‖p+λμp‖d‖p−λ‖z‖p.

As a consequence, for V (ξ) = Vs(ξ) + Vc,λ(ξ) it follows from Assumption 4.1, (4.12) and

(4.13) that

V (ξ(t̂k)− V (ξ(tk)) ≤ −(c1 −
λq c̄q3
q

− ac)

∫ t̂k

tk

‖ξ(τ)‖pdτ

+(λμp + c3 + bc)

∫ t̂k

tk

‖d(τ)‖pdτ − λ

∫ t̂k

tk

‖z(τ)‖pdτ

≤ λμp
d

∫ t̂k

tk

‖d(τ)‖pdτ − λ

∫ t̂k

tk

‖z(τ)‖pdτ,

where the last inequality follows from Remark 4.5. For t ∈ [t̂k, tk+1) one can apply the TC

(4.5) to calculate an upper bound on V̇ as

V̇ (ξ) ≤ −c1(1− σ)‖ξ‖p+(λμp + c3)‖d‖p−λ‖z‖p+k2φ2 − φ̇1

where −α1(φ1) term is eliminated from the right hand side since φ1 is non-negative. It then

follows that

V̇ (ξ) ≤ λμp
d‖d‖

p−λ‖z‖p+k2δk − φ̇1
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and hence

V (ξ(tk+1))− V (ξ(t̂k)) ≤ λμp
d

∫ tk+1

t̂k

‖d(τ)‖pdτ

−λ
∫ tk+1

t̂k

‖z(τ)‖pdτ + k2

∫ tk+1

t̂k

δk(τ)dτ + r̂k.

Therefore, we may conclude

V (ξ(tk+1))− V (ξ(tk)) ≤ λμp
d

∫ tk+1

tk

‖d(τ)‖pdτ

−λ
∫ tk+1

tk

‖z(τ)‖pdτ + k2

∫ tk+1

t̂k

δk(τ)dτ + r̂k.

Apply this inequality to the sampling intervals until t ≥ t0, the positive definiteness of V

can be employed to write∫ t

t0

‖z(τ)‖pdτ ≤ μp
d

∫ t

t0

‖d(τ)‖pdτ +
1

λ
(k2θ1 + θ3 + V (ξ0)).

This proves Lp-stability of ETC system (4.4) with Lp-gain ≤ μd. To show asymptotic

stability, let d = 0. Using a similar process as we prove of Lp-stability, it can be shown then

suggests that for any for λ = 0, any t ≥ t0,

Vs(ξ(t)) ≤ −c1(1− σ)

∫ t

t0

‖ξ(τ)‖pdτ + k2θ1 + θ3 + Vs(ξ0).

This proves the ultimate boundedness of trajectories of system (4.4). However, global

asymptotic stability is postponed to show that for any ε ∈ R
+ there exists some δ ∈ R

+

such that if ‖ξ0‖≤ δ, ‖ξ(t)‖≤ ε for all t ≥ t0 and limt→∞ ξ(t) = 0. This is achieved by

redefining δk(t) (resp. r̂k) as λ0Vs(ξ0)δk(t) (resp. λ0Vs(ξ0)r̂k) for some λ0 ∈ R
+. Thus by

choosing

δ = V −1
s

( Vs(ε)

1 + λ0(k2θ1 + θ3)

)
for a given ε, we have

Vs(ξ(t)) ≤ −c1(1− σ)

∫ t

t0

‖ξ(τ)‖pdτ + Vs(ε),

i.e., ‖ξ(t)‖≤ ε for all t ≥ t0. Convergence of ξ to zero is easy to show, thus the details are

left to the interested readers.

4.3.4 Inter-Event Time Enlargement

In the sequel, we present an important feature of TC (4.5) on extending inter-event times.

For this purpose, we define

τ∗max
.
= max{τ∗ : ρ̄, χ ∈ R

+
0 },
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which in view of the following theorem, upperbounds the new extended inter-event times.

Note that in this definition τ∗ is assumed to be a function of ρ̄ and χ, a fact suggested by

(4.10) and dependence of λi, i ∈ {1, 2, 3} on ρ̄ (that is defined in Lemma 4.1).

Theorem 4.2 For any T ◦ ∈ R
+ and τ◦ ∈ [0, τ∗max], ϕ̄ in (4.7b) can be designed in a way

that τm ≥ τ◦ at least for t ≤ T ◦.

Proof. To find a lower bound on inter-event times, let us restrict the TC (4.5) to ϕ(ξ, ε) =

k2φ2 by taking k1 = 0. Recalling the proof of Lemma 4.3 where the triggering happens

when χ = 1, our goal here is to design φ2 so that the triggering occurs for some χ > 1. Note

that τ∗max ≥ τ∗(1) by definition. Due to continuity of τ∗ in (4.10), for any τ◦ ∈ [0, τ∗max] one

can find χ◦ (obviously ≥ 1) so that τ◦ = τ∗(χ◦). It only remains to choose the TC such

that χ ≥ χ◦ at sampling instants. With the same notation as in Lemma 4.3, let δ∗ := χ∗2δ̄

where χ∗ = χ◦ + m1
m2

ρ̄(χ◦ − 1). We redefine ϕ̄ in (4.7b) as

ϕ̄(t) =

{
α2(δ

∗), t ∈ [0, T ◦),

0, elsewhere.

This implies φ2(t) = δ∗ for t ∈ [0, T ◦). Then following similar lines as we derived (4.11),

the lower bound on the inter-event times can be calculated by assuming the TC

2‖ε‖= m1‖ξ‖+ χ∗m2.

From definition of χ given in the proof of Lemma 4.3 it is easy to verify that

χ =
m1‖ξ‖+χ∗m2

m1‖ξ‖+m2
≥ χ◦

at triggering instants and hence inter-event times are lower bounded by τ◦ for t ≤ T ◦.

Remark 4.6 Theorem 4.2 explores one of the advantages of our proposed strategy where

the inter-event times are extended to τ◦ for t ∈ [0, T ◦]. The numerical example in section

3.4 suggests that the average sampling time is also improved in this interval. Note that while

the results are not explicitly applicable to t > T ◦, numerical examples in Chapter 3 verify

the efficiency of this technique for all t ≥ t0.

4.4 Example

4.4.1 System Model

Consider the system (4.3) with ξ = [ξ1 ξ2]
T and

f(ξ, d) =

(
ξ2

−H(ξ1) + d

)
, g(ξ) =

(
0
1

)
, h(ξ, d) = ξ1,
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u(t) = γ(ξ(t)) = −ξ2(t)). The piecewise linear function H : R �→ R is given by: H(r) = 2r

for |r|≤ h∗, H(r) = h∗+r for r ≥ h∗ andH(r) = −h∗+r for r ≤ −h∗, some h∗ ∈ R
+
0 for some

non-negative h∗. Note that H satisfies r2 ≤ rH(r) ≤ 2r2 for any r ∈ R. In the following, we

study the finite gain L2-stability this system under event-based implementation of control

law.

4.4.2 Verification of Assumption 4.1

Taking Vs(ξ) =
υ1
2 ξ

TPξ + 2υ1
∫ ξ1
0 H(r)dr, P = [1 1; 1 2], it is straight forward to see that

item (i) holds for c1 = υ1
2 , c2 = c3 = 5υ1 (see Example 3.2 for an in-depth analysis). We

remark that υ1 is the scaling factor discussed in Remark 4.4. To show item (ii), we start

with 1
υ1
V̇s(ξ) = −ξ1H(ξ1)−ξ22+(ξ1+2ξ2)d ≤ −(1−n1)ξ

2
1−(1−n2)ξ

2
2+( 1

4n1
+ 1

n2
)d2−n1(ξ1−

d
2σ )

2−n2(ξ2− d
n2
)2 for some positive n1, n2. Choosing Vc(x) =

1
υ1(1−n2)

Vs(x) yields V̇c(x) ≤
|z|2−μ2|d|2 where μ2 = 1

1−n2
( 1
4n1

+ 1
n2
). The minimum value of μ is 4.49 and is obtained for

n1 = 1, n2 = 0.47. Note that one may find a less conservative bound from a more suitable

choice of Vc. Finally, it is easy to see that item (iii) holds for c̄1 = υ1
2 λmax([5 1; 1 2]),

c̄2 = 1
υ1(1−n2)

c̄1 and c̄3 = 1
1−n2

(‖P‖+4), where λmax(·) stands for the maximum eignevalue

of a desired real matrix.

4.4.3 Triggering Condition

Our design criteria is to guarantee μd ≤ 5. For this purpose, we consider here two scenarios

for δk in (4.7b):

δ1k(t) = D1e
−�1t, δ2k(t) = D2

�n2
n!

, n = � t
n̄
�,

where D1 = 10, D2 = 2, �1 = 0.05, �2 = 3, n̄ = 10. Also, we consider α1(r) = α2(r) = r in

(4.7a). To cover all strategies discussed in Section 4.3.2, we categorize our analysis into six

possible cases, depending on the values of the parameters k1, k2, δ
1
k, δ

2
k.

case: (i) (ii) (iii) (iv) (v) (vi)

(k1, k2) (1, 1) (1, 1) (1, 0) (0, 1) (0, 1) (0, 0)
δk δ1k δ2k n/a δ1k δ2k n/a

Cases (i), (ii) are the general dynamic triggering scenarios with both φ1, φ2 effective in

condition (4.5). The role of φ1 (resp. φ2) is studied in case (iii) (resp. cases (iv), (v)). Also,

case (vi) results in static TC since both φ1, φ2 are absent.

It is not difficult to verify λ1 = 3, λ2 = λ3 = 1 in Lemma 4.2. Therefore, we may choose

λ = 4.7 × 10−3, υ1 = 3.6 × 10−3 (which satisfy the required bounds on λ given in Remark
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4.4) and obtain τ̂ = 8.9 × 10−3 from (4.9). Finally, we take δ̄ = 10, rk = 0, r̂k = φ1(t̂
−
k ),

sk = 12.5.

4.4.4 Numerical Simulation

Signal d(t) follows a zero mean Gaussian distribution with variance 1 over t ∈ [0, 100) and

zero everywhere else. We also take h∗ = 0.3 and run the simulation for 100 initial conditions

uniformly distributed in a circle of radius 1 over 100 seconds and finally average the results.

The plots are provided for initial condition ξ0 = (sin(π3 ), cos(
π
3 )).
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Figure 4.1: Verification of L2-gain.
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Figure 4.2: Actuator signal at the triggering instants

Table 4.1: Comparison of different scenarios.

case: (i) (ii) (iii) (iv) (v) (vi)

N 3.24 3.25 12.9 4.34 4.72 18.7
τm×102 22.3 14.2 3.3 22.6 14.8 1.8

Table 4.1 illustrates the number of triggerings (N) and MIET (τm) for different scenarios.

Note that the valus of τm are in msec. Comparing different cases, it is clear that both φ1

and φ2 improve transmission rate, however, when k2 is non-zero, the number of samples
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and τm improve more significantly. This implies the effectiveness of parameter φ2 compared

to the φ1. This example suggests that when the trajectories of open-loop ETC system are

either converging to the origin or staying bounded, since ε remains bounded, an appropriate

choice of δ̄ and δk in φ2 avoid unnecessary samplings effectively.

We remark that, suggested by Table 4.1, the value of τm is much greater than τ̂ ; an

important feature of our design compared to time-regularization method. In fact, contrary

to our approach, time-regularization TC often result in periodic samplings (τ̂ in the case of

our design) whenever state is near origin.

4.5 Summary

This chapter introduces a framework for TC design. Although the proposed structure is

originally stated for Lp performance, the approach can be applied to different ETC system

problems. Our design introduces several design variables, used for different purposes and we

have shown that by proper selection of these variables, several existing TC proposed in the

recent literature can be extracted. Also the triggering instants are shown to be uniformly

isolated in presence of exogenous disturbance or sensor noise.

Our main contribution is the proposed ETM based on two dynamic variables φ1 and

φ2. Indeed, φ1 has a role similar to the one introduced in [28] and is intended to enlarge

inter-event times. φ2, on the other hand, is also used to extend the inter-event times, but

has the critical roles of (i) enabling us to analytically predict the increase of inter-event

times for a desired period of time, and, more importantly, (ii) excluding Zeno behaviour.
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Chapter 5

Robust Analysis of Affine
Nonlinear Systems Under Network
Constraints

5.1 Problem Setup

In this chapter we consider the following nonlinear system{
ẋ = ξx(x) + ξu(x)u+ ξw(x)w,

z = ηx(x) + ηu(x)u+ ηw(x)w.
(5.1)

where x ∈ R
n represents the state, u ∈ R

m the control input, w ∈ Lq
2 the exogenous distur-

bance and z ∈ R
p the measured output. Also ξx, ξu, ξw, ηx, ηu, ηw are smooth mappings. We

assume that system (5.1) starts off the initial condition x0 at time t0 = 0, i.e., x0 = x(0).

The control signal is sampled at the triggering instants t�, � ∈ Z≥0 and is held constant

between samples using a zero-order hold device. For simplicity, we assuming full state in-

formation and consider a state feedback law. This assumption limits the generality of the

results but it is analytically convenience. Therefore, using the smooth state feedback law

u = α(x), the actuator signal is

u(t) = α(x(t�)), t ∈ [t�, t�+1). (5.2)

In contrast to time-triggered scheme, the updating control instants are by no means specified

a priori. Instead, the system makes autonomous decisions using a triggering module through

continuous monitoring of system’s state. This triggering condition, however, has to be

designed in accordance to the desired design requirements. Also, to simplify the analysis,

we assume that the control task is executed without delay and data dropouts immediately

following the update by the triggering module. Interested readers are referred to [9], [16] to

see how to deal with these practical considerations. Indeed, as shown by these references,
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there is a tradeoff between the maximum tolerable delay/maximum allowable number of

successive data dropouts and the size of broadcast intervals (t�, t�+1).

To make use of the theory of continuous time signals, we state the sampled signal u

in terms of the actuation error, defined as the difference between the current and the last

executed control signals, i.e., ε(t) := α(x(t�)) − α(x(t)), t ∈ [t�, t�+1). Then the actuator

signal is u(t) = α(x(t)) + ε(t) and ε can be treated as an exogenous signal applied to the

system. Therefore, (5.1) reduces to

P :

{
ẋ = f0(x, α) + ξu(x)ε+ ξw(x)w,

z = h0(x, α) + ηu(x)ε+ ηw(x)w,
(5.3)

where f0(x, α) = ξx(x) + ξu(x)α, h0(x, α) = ηx(x) + ηu(x)α. For the sake of brevity,

throughout the rest of this paper we adopt the notation f(x, α,w, ε) = f0(x, α) + ξu(x)ε+

ξw(x)w and h(x, α,w, ε) = h0(x, α) + ηu(x)ε + ηw(x)w. We assume that the function α

satisfies f0(0, α(0)) = 0 and h0(0, α(0)) = 0 implying that the feedback control law u = α(x)

renders the origin x = 0 of following unperturbed closed loop system

ẋ = f0(x, α), z = h0(x, α) (5.4)

stable. Critical to any event-triggered control design is the uniform isolation of triggering

instants, known as the event separation principle [59]. Therefore, for a set of triggering

instants to be admissible, its elements must be isolated according to the following definition

(see [66]):

Definition 5.1 (Uniform isolation of triggering instants) The sequence of triggering

instants {t�}�∈Z≥0
is said to be uniformly isolated if and only if there exists τm ∈ R>0 so

that for any j, � ∈ Z≥0, j �= � we have |t� − tj |> τm.

The minimum inter-event time is then defined as the largest possible τm in Definition 5.1.

The desired robustness criteria is provided in the next definition, [5].

Definition 5.2 (Robust L2 gain property) The system (5.1) is said to be finite gain

L2-stable with L2 gain ≤ γ for some positive γ provided that there exist μ > 0 and bias term

μ̄ ≥ 0 such that the quadratic cost function

J(w, z) := ‖z|[0,t]‖2 − γ2‖w|[0,t]‖2 (5.5)

satisfes J(w, z) ≤ μ(x0) + μ̄ for any x0 ∈ R
n, any t ∈ R≥0 and any w ∈ Lq

2.
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In this paper we first aim to provide sufficient conditions for a given controller to be

ISS stabilizing w.r.t. actuation error and disturbance. Then we exploit the generalized

versions of these conditions to design an event-triggered controller for the system P defined

in (5.3) following both emulation and joint design approaches, where the resulting event-

based system is restricted to

• meet the desired robust L2 gain property (5.5),

while also

• ensuring the uniform isolation of sampling instants in presence of arbitrary distur-

bances.

5.2 Sufficient condition for input-to-state stability

The majority of the literature on robust analysis of event-triggered systems takes the input-

to-state stability as a primary assumption. Checking the existence of an ISS stabilizing

controller for systems of type (5.3) is not difficult. Indeed, as shown in [72] for the input-

affine structure, global asymptotic stabilizability in absence of inputs implies global input-

to-state stabilizability. In the realm of event-triggered control, this is interpreted as if

the unperturbed model (5.4) can be stabilized in the sense of Lyapunov, then there exists

an state feedback α(x) which renders the system P in (5.3) actuation error-to-state and

disturbance-to-state stable. However, finding an ISS stabilizing α(x) is non-trivial and

challenging in general. For example, consider P with ξx = 0, ξu = 1 and ξw = x2. It is

obvious that while P is not ISS w.r.t. ε and w for any linear choice of α(x) = −c1x, the ISS
property holds when nonlinearities of higher order than ξw are added to the control law,

e.g., α(x) = −c1x− c2x
3. This simple example motivates the necessity of finding sufficient

condition(s) to filter a proposed controller to be ISS stabilizing. In other words, while the

result of [72] serves as a necessary condition for the existence of an ISS stabilizing controller

for P, sufficient condition(s) are still required to check whether a given controller is ISS

stabilizing or not. To derive results the following assumptions are required:

(A1) There exist γu, γw ∈ R>0 such that

(i) Ru(x) := γ2uI − ηTu (x)ηu(x) > 0,

(ii) Rw(x) := γ2wI − ηTw(x)ηw(x) > 0.
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(A2) There exist a Lyapunov function V , class-K∞ functions β, β and a locally Lipschitz

function α such that1

β(x) ≤ V (x) ≤ β(x) (5.6)

and the following NMI hold for all x ∈ R
n \ {0}⎛⎜⎜⎝

V T
x f0(x, α) + ‖h0(x, α)‖2 ∗ ∗ ∗

1
2ξ

T
u (x)Vx + ηTu (x)h0(x, α) −Ru ∗ ∗

1
2ξ

T
w(x)Vx + ηTw(x)h0(x, α) 0 −Rw ∗

φ(x) 0 0 −I

⎞⎟⎟⎠< 0. (5.7)

According to the next theorem, any controller α that is obtained from (5.7) captures

the ISS property for P.

Theorem 5.1 Suppose that assumptions (A1), (A2) hold for some φ ∈ K∞ and ηTwηu =

0. Then α renders the system P defined in (5.3) ISS w.r.t. actuation error and input

disturbance.

Proof. For the sake of brevity, we shall adopt the notation:

α̂2 := R−1
u (x)(

1

2
ξTu (x)Vx + ηTu (x)h0(x, α)),

ŵ := R−1
w (x)(

1

2
ξTw(x)Vx + ηTw(x)h0(x, α)).

Using Schur complement argument, we have that (5.7) holds if and only if

V T
x f0(x, α)+‖h0(x, α)‖2+‖ŵ‖2Rw

+‖α̂2‖2Ru
+φ2(x) ≤ 0 (5.8)

for all x ∈ R
n. Now from ηTwηu = 0 it can be checked that

‖ηTwηuε‖2R−1
w
+2〈ŵ, ηTwηuε〉+ εTηTu ηuε ≤ γ2u‖ε‖2.

Hence by adding the last two inequalities and using the completion of squares we conclude

that

V T
x f(x, α,w, ε) + ‖h(x, α,w, ε)‖2−γ2w‖w‖2+‖ε−α̂2‖Ru

+ ‖w − ŵ −R−1
w ηTwηuε‖2Rw

≤ γ2u‖ε‖2−φ2(x). (5.9)

As a result, we have V T
x f(x, α,w, ε) ≤ −φ2(x)+ γ2u‖ε‖2+γ2w‖w‖2 which implies V is an ISS

Lyapunov function. Thus, P is ISS w.r.t. actutor error and exogenous disturbance, [5].

1Condition (5.6) implies that V is positive definite and radially unbounded.
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Several observations are in order. As suggested by (5.9), the set of control laws α

obtained from Theorem 5.1 are not only input-to-state stabilizing but also guarantees L2

gain property (5.5). Condition ηTwηu = 0 and assumption (A1) are borrowed from [73]

and is intended to simplify the analysis. Relaxing these assumptions, however, requires

more involved mathematical manipulations and possibly additional conditions and hence

is left as a follow-up work. Condition ηTwηu = 0 implies that there is no coupling between

exogenous and control inputs, however, it is not essential for our main results on the event-

triggered control design and will be relaxed in the next section. In addition, assumption

(A1) states that the control and disturbance weight matrices are norm bounded. When

‖ηu(x)‖∞, ‖ηw(x)‖∞ are bounded for all x ∈ R
n, where the ∞-norm of a matrix is defined

as the maximum absolute row sum of the matrix, assumption (A1) can always be satisfied

by choosing γu, γw sufficiently large. A linear counterpart of this assumption can also be

found in [74]. We also have the following connection between the result of Theorem 5.1

and [72]. As shown in Section 5.3.1, global asymptotic stability of unperturbed system

(5.4) is guaranteed under assumptions (A1), (A2). Thus, [72] suggests the existence of

an ISS stabilizing controller and Theorem 5.1 provides sufficient conditions to characterize

such a controller.

5.2.1 Robustness with respect to sensor measurement error

As defined in (5.3), our system is expressed in terms of the actuation error. An alternative

is to employ the sensor measurement error, e(t) := x(t�)− x(t), t ∈ [t�, t�+1), to design the

event-triggered rule. Using the sensor error has the advantage that no additional processing

time is required to calculate ε(t). However, doing so presents a fundamental problem:

indeed, it was shown in reference [75] that the ISS result of [72] fails to hold when the

input in the ISS condition is with sensor noise/error. Indeed, this reference shows via a

counter example, that ISS is used w.r.t. the sensor errors there is the possibility of having

a finite scape time. Additionally, to the best of our knowledge, there exist no general

sufficient condition for input-to-state stability of general nonlinear structures w.r.t. sensor

noise. Thus, the use of the input-to-state stability w.r.t. sensor error in [9] and related

works should be seen as a primitive assumption, but a more elaborate solution is clearly

imperative. It is worth remarking that when α is designed to be a globally Lipschitz function

of its arguments, then Theorem 5.1 ensures the ISS property w.r.t. sensor noise as well.
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5.3 Event-triggered design for robust stability

In this section, we study the L2 gain stability of system (5.3) under event-triggered com-

munications following two separate scenarios, namely, emulation and joint design. In the

emulation approach, we begin by designing a continuous-time controller that stabilize the

system in satisfies an L2 gain performance condition. The event condition is designed after-

wards to retain stability and with minimal deterioration of the L2 gain performance. This

is referred to as emulation approach. The emulation approach is effective and relatively

simple in the sense that breaks down the complexity of original event-based control design

into two simple stages. However, as suggested by [30], since the control law is originally

designed for the network-free problem, the performance level in presence of a network may

not necessarily be optimal. This motivates the more challenging joint design approach,

where controller and triggering conditions are designed simultaneously.

5.3.1 Joint design method

As mentioned earlier, in the joint design approach the event condition is designed together

with the control law to achieve a desired L2 gain bound. Since the controller is designed

directly based on commuincation constraint requirements, the resulting event-based sys-

tem is expected to enjoy an improved performance compared to emulation approach. To

proceed with the event-based control design, we need the following generalized versions of

assumptions (A1), (A2), in which the positive definiteness assumption on Ru(x) is relaxed

whenever Σu(x) := ηTu (x)ηu(x) > 0.

(A3) There exist γu, γw ∈ R>0 such that

(i) Ru(x) > 0
∨

Σu(x) > 0,

(ii) Rw(x) > 0.

(A4) There exist a Lyapunov function V , class-K∞ functions β, β, a locally Lipschitz α

and some invertible φ with φ(0) = 0 and locally Lipschitz inverse φ−1 such that (5.6)

holds and

• when Σu(x) > 0 the following holds for all x ∈ R
n \ {0}⎛⎝ V T

x f0(x, α) + ‖h0(x, α)‖2 ∗ ∗
1
2ξ

T
w(x)Vx + ηTw(x)h0(x, α) −Rw ∗

φ(x) 0 −I

⎞⎠ < 0, (5.10)

• otherwise (5.7) holds for all x ∈ R
n \ {0}.
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We now state the main result of this section.

Theorem 5.2 (Event-triggered robustness) Suppose that assumptions (A3), (A4) hold.

The triggering rule can be designed for system P so that

• the triggering times are uniformly isolated for any bounded x0 and w,

and the resulting event-based system is:

• L2-stable with L2 gain ≤ γd for some γd > γw,

• asymptotically stable.

In detail, once (5.7) or (5.10) is solved for V , α, γu, γw, φ, the triggering condition is given

by

ρ(ε) + ‖ηTwηuε‖2R−1
w
+2〈ŵ, ηTwηuε〉 ≤ Φ(x, t), (5.11)

where

ρ(ε) =

{
‖ε− α̂1‖2Σu

−‖α̂1‖2Σu
, when Σu(x) > 0,

γ2u‖ε‖2, otherwise,

Φ(x, t) = ςφ2(x) +

{
δ1, t� < t ≤ t� + τ̂ ,

δ2(t), t� + τ̂ < t ≤ t�+1,
(5.12)

and δ2(t) < min{δ3e−δ4t, (1− ς)φ2(x(t))}, for some δ1, δ3, δ4, τ̂ ∈ R>0, 0 < ς < 1 and

α̂1 := Σ−1
u (x)(

1

2
ξTu (x)Vx + ηTu (x)h0(x, α)).

The role of constant term δ1 in (5.12) is to avoid the possible accumulation of sampling

instants as discussed in details in [59]. Indeed, in this reference this is carried out at the

price of obtaining a practical stability performance for the resulting system. Here, we follow

the approach of [66] to avoid such a weak conclusion by restricting δ1 to be effective only

for periods of length τ̂ . Therefore, τ̂ has to be designed carefully so that L2 gain stability of

system P under triggering condition (5.11) is not violated during the interval [t�, t�+ τ̂). In

this sense, parameter τ̂ has the role of dwell-time concept in time-regularization approach

but in a generalized way since the actuator is allowed to trigger during the interval [t�, t�+τ̂),

hence better system performance may be attained. On the other hand, δ2 is a time varying

parameter intended to enlarge the broadcast intervals without violating the stability goals

defined in Section 5.1. As shown in [66, 76, 77], another role of δ2 is to turn practical

stability results obtained under constant triggering threshold into asymptotic stability. To

prove Theorem 5.2 we need the following boundedness result, whose proof is provided in

the sequel.
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Lemma 5.1 The trajectores x of system P are bounded by some functions of ‖x0‖ and

|w|∞.

Proof of Theorem 5.2. We first provide a methodology for designing τ̂ . For other

parameters δ1, δ3, δ4 any positive choices are admissible. The design of τ̂ consists of finding

the maximum possible τ̂ such that the L2 stability of P with the desired performance level

is not violated over [t�, t� + τ̂). Under the assumption on smoothness of the mappings in

(5.1), Lemma 5.1 implies the existence of some a, b functions of ‖x0‖, |w|∞ so that the

LHS of (5.11) can be upper bounded by a‖ε‖2+b‖ε‖‖x‖. We continue by finding an upper

bound on the norm of actuation error. Since ‖ε̇(t)‖≤ λk‖ẋ(t)‖, from (5.3) and smoothness of

ξx, ξu, ξw, α, we conclude that there exists l1, l2, l3 ∈ R
+ such that ‖ε̇‖≤ l1‖x‖+l2‖ε‖+l3‖w‖.

It is then not difficult to show that

‖ε|[t�,t�+τ̂ ]‖2 ≤ L1(τ̂)‖x|[t�,t�+τ̂ ]‖2 + L2(τ̂)‖w|[t�,t�+τ̂ ]‖2

for some L1, L2 ∈ K∞. Using Lemma 5.1 it holds that l1, l2, l3, L1, L2 are in general functions

of ‖x0‖ and |w|∞. Therefore, if one choose the maximum possible τ̂ so that

(a+ bc)L1(τ̂) +
b

c
< λ−2

φ−1

∧
(a+ bc)L2(τ̂) < γ2d − γ2w

for some c ∈ R
+, it is not difficult to verify that integral from t� to t� + τ̂ of LHS of (5.11)

is upper bounded by ‖φ|[t�,t�+τ̂ ]‖2 + (γ2d − γ2w)‖w|[t�,t�+τ̂ ]‖2 and hence in view of assumption

(A4), it can be checked that

V (x(t�+τ̂))−V (x(t�))≤ γ2d‖w|[t�,t�+τ̂ ]‖2−‖z|[t�,t�+τ̂ ]‖2 (5.13)

Part one: Without loss of generality we will assume τm ≤ τ̂ since otherwise one can simply

choose τm = τ̂ . The previous discussion leads us to the fact that the inter sampling intervals

obtained from triggering condition (5.11) are lower bounded by those obtained from condi-

tion a‖ε‖2+b‖ε‖‖x‖−λ−2
φ−1‖x‖2= δ1. Similarly, the lower bound on the triggering instants

of this condition is in turn obtained from ‖ε‖= σ1‖x‖+σ2 where

σ1 =
1

2a

((4aλ−2
φ−1 − b2

1 + c−1

) 1
2 − b

)
, σ2 =

( δ1
a(1 + c)

) 1
2
,

where c > b2λ2
φ−1/4a is an arbitrary constant. Now let χ := ‖ε‖/δ̄, we can apply Lemma 5.1

to conclude there exists some L̄ such that χ̇ ≤ L̄/δ̄. Since χ = 1 at the triggering instants,

we obtain τ̂ ≥ δ̄/L̄.
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Part two: To prove L2 stability, we first need to extend (5.13) to t ∈ [t� + τ̂ , t�+1). In this

interval, by applying Schur complement to (5.10) we obtain

V T
x f0(x, α) + ‖h0(x, α)‖2+‖ŵ‖2Rw

+φ2(x) ≤ 0 (5.14)

for all x ∈ R
n, which by adding to triggering condition (5.11) gives

V T
x f0(x, α) + ‖h0(x, α)‖2+‖ε− α̂1‖2Σu

−‖α̂1‖2Σu
+‖ŵ‖2Rw

+ ‖ηTwηuε‖2R−1
w
+2〈ŵ, ηTwηuε〉 ≤ −(1− ς)φ2(x) + δ2(t).

Then by completion of squares it is straight forward to conclude

V T
x f(x, α,w, ε) + ‖h(x, α,w, ε)‖2−γ2w‖w‖2+‖w − ŵ −R−1

w ηTwηuε‖2Rw
≤ 0. (5.15)

Therefore, we get

V̇ (x(t)) ≤ γ2d‖w(t)‖2−‖z(t)‖2 (5.16)

and consequently

V (x(t�+1))−V (x(t�+τ̂))≤ γ2d‖w|[t�+τ̂ ,t�+1]‖
2−‖z|[t�+τ̂ ,t�+1]‖

2

adding which to (5.13) gives

V (x(t�+1))− V (x(t�)) ≤ γ2d‖w|[t�,t�+1]‖
2 − ‖z|[t�,t�+1]‖

2.

Thus by applying this procedure to the triggering intervals until time t, it is obvious that

the system P is L2 stable with a gain of ≤ γd.

Part three: Using Schur complement, (5.10) reduces to (5.14) for all t ∈ R>0. Let us denote

the LHS of (5.14) by Λ. Then (5.14) is translated as Λ ≤ 0. Then if instead of Λ ≤ 0 we

start from the trivial inequality Λ ≤ Λ, it is easy to check that instead of (5.16) we will end

up with

V̇ (x(t)) ≤ γ2d‖w(t)‖2−‖z(t)‖2+Λ. (5.17)

Now setting w = 0 we have V T
x f(x, α, 0, ε) ≤ −‖h(x, α, 0, ε)‖2+Λ. Since for all x ∈ R

n \{0}
we have Λ < 0 from (5.10), V T

x f(x, α, 0, ε) = 0 holds if and only if x = 0.

Sketch of proof of lemma 5.1. While (5.15) is only valid for the interval t ∈
[t� + τ̂ , t�+1), we can apply similar process to conclude that for any t ∈ R

+ we have

V T
x f(x, α,w, ε) + ‖h(x, α,w, ε)‖2−γ2w‖w‖2

+‖w − ŵ −R−1
w ηTwηuε‖Rw< −(1− ς)φ2(x) + δ̄,
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where δ̄ := max{|δ1|, |δ3|}. Therefore, assuming δ1, δ3 to be selected as the functions of

‖x0‖, we conclude that V̇ (x) ≤ δ̄(‖x0‖) + γ2d |w|2∞−(1 − ς)φ2(x). Hence V̇ ≤ 0 for x ∈ R
n

such that φ2(x) >
γ2
d

1−ς |w|2∞+ 1
1−ς δ̄(‖x0‖). The rest of the proof is straight forward and left

to the readers.

5.3.2 Discussion on Theorem 5.2

We conclude several observations without proof.

• Conditions of Theorem 5.2: If conditions (5.7), (5.10) are satisfied as non-strict in-

equalities, then Theorem 5.2 holds if we assume the system P in (5.3) to be zero-state

detectable, i.e., for w = 0, and all x ∈ R
n, h(x, α, 0, ε) = 0 implies x(t)→ 0 as t→∞.

• Triggering condition: To simplify our presentation and avoid unnecessary complexity,

condition (5.11) is stated in static framework due to the triggering parameters all being

static. A more complex dynamic structure for the event design does not affect our main

findings. In essence, a generalization to the dynamic case is not difficult and can be

attained following the method discussed in [66].

• Computational costs: First, to check the triggering condition (5.11), V , α, γu, γw and

φ are obtained by solving (5.7) or (5.10) offline. Thus, the triggering condition can be

checked on-line with less computational effort. Second, the local Lipschitz-continuity of

φ−1 can be easily expressed in terms of linear matrix inequalities on φ. Third, when the

functions ξx(x) and ηx(x) are also affine in the state x, i.e., ξx(x) = A(x)x, ηx(x) = C(x)x

and state feedback controller is assumed to be of the form u = K(x)x, the resulting NMIs

(5.7), (5.10) can enjoy computational advantages. Indeed, in the numerical example we

show that for affine functions A(x)x and C(x)x, even the exact solution of NMIs (5.7),

(5.10) can be obtained after some careful manipulations. We refer the interested readers

to [78] for a detailed discussions on numerical solutions of NMIs using different algorithms

such as finite element and finite difference methods.

5.3.3 Emulation design method

The majority of the work on event-triggered systems, up to date, follows the emulation

approach which consists of first designing a controller for a continuous-time system based

on a desired criteria for stability performance and then designing a triggering condition to

recover similar performance under event-based implementations. To analyze the L2 gain
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performance of the network-free version of system (5.3):

P0 :

{
ẋ = f0(x, α) + ξw(x)w,

z = h0(x, α) + ηw(x)w.
(5.18)

One may think of applying Theorem 5.2 since faster sampling (in the limit, continuous

sampling) does not deteriorate the disturbance rejection performance level of the system.

However, it is reasonable to expect that the bound obtained from Theorem 5.2 is conser-

vative when applied for network-free analysis. Therefore, we recall the following theorem

from [78].

Theorem 5.3 (Network-free robustness) Let assumption (A3)-(ii) holds. Then the

closed loop system (5.18) is finite gain L2-stable with L2 gain ≤ γw if there exists a Lyapunov

function V , control law α and positive γw such that for all x ∈ R
n \ {0}(

V T
x f0(x, α) + ‖h0(x, α)‖2 ∗

1
2ξ

T
w(x)Vx + ηTw(x)h0(x, α) −Rw(x)

)
< 0. (5.19)

Remark 5.1 Similar to the discussion carried out in Section 5.3.2, if we assume P0 to

be zero-state detectable, then (5.19) can be stated as a non-strict inequality. In this case,

one may wonder whether (5.19), which implies L2 stability of P, together with zero-state

detectability implies ISS w.r.t. w. However, while this is a well-known result for linear

systems, the ISS condition for nonlinear system is a consequence of the L2 stability and

input-output-to-state stability (IOSS), which is a generalization of zero-state detectability,

[72].

Theorem 5.3 provides sufficient conditions for the Hamiltonian function

H(x, p, α, w) = pTẋ+ J̇(α,w) (5.20)

to be less than zero for all x ∈ R
n \ {0}. An interesting aspect of the network-free model

(5.18) is that we can state the sufficient conditions for H < 0 only in terms of V . The

results here constitute a mild extention of the seminal papers [73, 78–80]. Similar to above

mentioned works, our approach is framed in the context of differential games. Differential

games played a major role in the solution of the H∞ problem in the 1990s, starting with

the fundamental works [61, 81]. In this context, the problem of designing a controller to

minimize the upper bound of the L2 gain of a nonlinear system can be interpreted as a zero-

sum, two-player differential game with quadratic cost (5.5). In this game the minimizing

(respectively, maximizing) player controls the control law u (respectively, disturbance w).

Then the problem of upper bounding the L2 gain of P0 reduces to finding the best strategy

for each players. The above observations are then evidenced in the following theorem.
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Theorem 5.4 Let assumption (A1)-(ii) holds. The closed loop system (5.18) is finite gain

L2-stable with L2 gain ≤ γw if there exists a Lyapunov function V and positive γw such

that for all x ∈ R
n \ {0}

H(x, Vx, α
∗, w∗) < 0 (5.21)

where α∗, w∗ are the best strategies defined as(
α∗

w∗

)
=

{
−1

2M
−1N, M−1 exists,

−1
2M

†N + UTcol(0, q), otherwise,
(5.22)

M =

(
ηTu ηu ηTu ηw
∗ ηTwηw − γ2wI

)
, N =

(
ξTuVx + 2ηTu ηx
ξTwVx + 2ηTwηx

)
and UTΣU is the singular value decomposition of M and q is an arbitrary vector in R

m+q−r

with r = rank(M).

Proof. Let the Hamiltonian function H defined in (5.20) be associated with the dif-

ferential game, where the derivatives are along the trajectories of the system (5.18). Note

that when ηTu ηw = 0, the function H coincides with the one defined in [80]. The best

play corresponds to the saddle point (α∗, w∗) satisfying H(x, p, α∗, w) ≤ H(x, p, α∗, w∗) ≤
H(x, p, α, w∗) and obained through (Hα, Hw)(α

∗, w∗) = (0, 0). Consider

H(x, p, α, w) = 〈p, ξx〉+ ‖ηx‖2+
(
α
w

)T

M

(
α
w

)
+

(
α
w

)T

N,

then we can find α∗, w∗ from 2Mcol(α∗, w∗) + N = 0 and thus (5.22) is obtained. Conse-

quently, (5.21) can be obtained through

H(x, p, α∗, w∗) = 〈p, ξx〉+‖ηx‖2−Π(M,N)

where

Π(M,N) =

{
1
4N

TM−1N, M−1 exists,
1
4N

TM †N, otherwise.

Clearly, when M is invertible, α∗ and w∗ are uniquely obtained from (5.22). Also note

that the off-diagonal terms in the matrix M are the penalty terms introduced to compensate

for the coupling of α and w. When such a coupling doesn’t exist, i.e., ηTu ηw = 0, the saddle

points reduce to

w∗=−R−1
w (x)(

1

2
ξTwVx+ηTwηx), (5.23)

α∗=

{
−Σ−1

u (12ξ
T
uVx+ηTu ηx), Σu(x) > 0,

−Σ†
u(

1
2ξ

T
uVx+ηTu ηx)+UTcol(0, q), otherwise,

(5.24)
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where ŪTΣ̄Ū is a singular value decomposition of Σu and q̄ is an arbitrary vector in R
m−s

with s = rank(Σu). We remark that (5.23), (5.24) coincides with the results of [80] when

Σu(x) > 0. However, the discussion above is more general than [80] since it includes non-

invertible Σu, and the couplings of α, and w. Moreover, the obtained w∗, α∗ in (5.23),

(5.24) cover those proposed in [24], which is the closest work to the result of this section.

In the sequel, we make the following assumption:

(A5) There exist γ̄w ∈ R>0 and an invertible function ψ with ψ(0) = 0 and locally Lipschitz

inverse ψ−1 such that

(i) ηwη
T
w < γ̄2wI,

(ii) ‖12ξw(x)Vx + ηTw(x)h0(x, α)‖≤ ψ(x).

We denote that by restricting P0 to be a LTI control system and V to be a quadratic

Lyapunov function, assumption (A5)-(ii) readily holds for a linear choice of function ψ.

Moreover, assumption (A5)-(i) holds when ηw is norm bounded. Additionally, for symmet-

ric ηw this assumption automatically stems from assumption (A3)-(ii).

Theorem 5.5 Let assumptions (A3), (A5) hold and system P0 has a L2 gain ≤ γw ac-

cording to Theorem 5.3. Then the triggering rule can be designed for system P so that the

consequences of Theorem 5.2 hold.

Sketch of proof. We first claim that using assumptions (A3)-(ii), (A5)-(i) one can show

that given γd > γw, δ = γ2d − γ2w there exists ε ∈ R>0 such that

δI > ε(γ2wI − ηTwηw)(γ
2
dI − ηTwηw). (5.25)

To prove (5.25) it suffices to expand the right-hand side and use the fact that ηTwηwη
T
wηw <

γ̄2wη
T
wηw < γ̄2wγ

2
wI where for the first and second ieqnualities we utilized assumptions (A5)-

(i) and (A3)-(ii), respectively. The rest of the proof is easy and hence is left to the readers.

Using (5.25) and also assumptions (A3)-(ii) we can write (γ2dI − ηTwηw)(γ
2
wI − ηTwηw)

−1 =

I+ δ(γ2wI−ηTwηw)
−1 > I+ ε(γ2dI−ηTwηw) and hence (γ2wI−ηTwηw)

−1 > (γ2dI−ηTwηw)
−1+ εI.

Note that γ2dI − ηTwηw is invertible due to assumption (A3)-(ii) and the fact that γd > γw.

Therefore, pre- and post-multiplying the last inequality by 1
2ξ

T
w(x)Vx+ηTw(x)h0(x, α), in view

of Schur complement, (5.19) and assumption (A5)-(iii) we conclude that for all x ∈ R
n\{0}(

V T
x f0(x, α)+‖h0(x, α)‖2 ∗

1
2ξ

T
w(x)Vx+ηTw(x)h0(x, α) −γ2dI+ηTwηw

)
+ εψ2(x) < 0.
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We can now construct the triggering rule as follows. Let φ be:

φ(x) =

{
εψ(x), when Σu(x) > 0,
√
σεψ(x), otherwise,

(5.26)

for some σ ∈ (0, 1). Thus, we can choose γu arbitrarily when Σu(x) > 0 and such that

‖α̂2‖2Ru
≤ (1− σ)ψ2(x), (5.27)

otherwise, and adopt the triggering rule (5.11) to guarantee the conditions of Theorem 5.2.

The rest of the proof is similar to that of Theorem 5.2, hence left to the interested readers.

Remark 5.2 We denote that the joint design method has the advantage of offering an

optimized solution. There is a simple interpretation of this result: in the emulation method

the event-based control design is restricted to

• conditions (5.26) and (5.27) on φ and α̂2,

• the initial design of control law α in (5.19).

These limitations, however, do not exist in the joint design method. The interested readers

are referred to [30] for further discussion of the differences of the two approaches for the

linear case.

5.4 Numerical example

In the following two example, we show that under certain affine structure for ξx(x), ηx(x),

the exact solution V for NMIs (5.7), (5.10) can be obtained. It is worth mentioning that the

affine characterizations of ξx(x), ηx(x) enhance the application of the numerical techniques

to solve the corresponding NMIs, see [78] for more details. Consider the following model{
ẋ = exu− exw1 + exw2,

z = εx+ εw1,
(5.28)

for some ε ∈ (0, 1). With the control law u = −x, (5.28) is a two-input single-output process

with the L2 gain ε, [78], where w = col(w1, w2), ξw = (−ex, ex) and ηw = (ε, 0).

5.4.1 Joint design

Since ηTu ηu = 0, we pick some γu ∈ R>0, γw > ε and hence assumption (A3) holds.

Moreover, choosing Vx = P (x)x in (5.7), the exact solution to (5.7) is obtained from V (x) =
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∫ x
0 Vxdt = x2

∫ 1
0 tP (tx)dt where P (x) ≤ P (x) ≤ P (x). To compute the bounds P (x) and

P (x) we choose φ(x) = θP (x)exx for some θ ∈ R>0. Pre- and post-multiplying (5.7) by

diag(x, 1, 1, 1, 1) and applying the Schur complement, this inequality reduces to

γ2w−ε2
4γ2w

(
4θ2γ2w+1+

γ2w
γ2w−ε2

+
γ2w
γ2u

)
P 2e2x−γ2wPex+ε2γ2w < 0

which is a quadratic algebraic inequality in terms of Pex. Solving this inequality, we obtain

2γ2w(1−k
√
1− λ)e−x

λ1γ2
w

ε2
k2+k+1+k(γwγu )

2
≤ P (x) ≤ 2γ2w(1+k

√
1− λ)e−x

λ1γ2
w

ε2
k2+k+1+k(γwγu )

2

where λ = λ1 + λ2, λ1 =
4θ2ε2

k , λ2 =
ε2

γ2
uk

and k = 1− ( ε
γw

)2. Note that we have a limitation

on choosing θ, γw, γu such that λ < 1. Also the Lipschitz continuity of φ−1 follows from the

lower bound on P (x) and the resulting Lipschitz coefficient is (
λ1γ

2
w

ε2
k2+k+1+k( γw

γu
)2

2γ2
w(1−k

√
1−λ)θ

).

5.4.2 Emulation design

To find an exact solution to inequality (5.19) for some V (x), we use similar procedures as

above to obtain V (x) = x2
∫ 1
0 tP (tx)dt where

2ε2e−x

1 + k
≤ P (x) ≤ 2γ2we

−x. (5.29)

Therefore, using some careful manipulations, it is not difficult to conclude that taking some

P0 so that (5.29) holds for P (x) = P0e
−x, we can choose ψ(x) = θ̄x, θ̄ =

√
k2−(

P0
2γ2w

(1+k)−1)2

k(1−k) γw.

5.5 Simulation Results

Previous section examines the differences of the emulation and joint methods in designing

event condition, where different bounds on the admissible Lyapunov function and also

function φ are obtained. In this section, we study several aspects of our proposed event-

triggered control design through numerical simulations. The findings of this section are

independent of the particular design scheme, thereby simulations are only provided for the

joint design method. In the rest of this section, we adopt the following notations:

Minimum inter event time τmiet

Average intersampling τavg
Total number of triggerings N

a) We first consider the following scenario for w:

w(t) =

⎧⎪⎨⎪⎩
(
0.05 sin(2πt)

0.05 cos(2πt)

)
, 2 ≤ t ≤ 8

0, otherwise.
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The following plots are then obtained based on 10 seconds of simulation and initial condition

x(0) = 1. The disturbance is applied over the interval [2, 8] and the corresponding measure

output signal z is depicted in Fig. 5.1.

0 1 2 3 4 5 6 7 8 9 10

Time (Sec)

-0.5

0

0.5
z w

1
w

2

Figure 5.1: Measured output (solid), disturbances (dashed).

The evolution of measurement error signal and triggering threshold (Fig. 5.2) determines

the execution instants of the control task (Fig. 5.3).
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Figure 5.2: Satisfaction of triggering rule.
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Figure 5.3: Actuator signal.

Next plot (Fig. 5.4) reveals why treating disturbances is challenging and generally a non-
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trivial task in an event-based setting. Indeed, when states are close to the origin, arbitrary

disturbances may drive the measurement error to meet the event condition sooner, thereby

decrease the inter-event times.

Figure 5.4: Inter-event intervals.

The above simulations are provided neglecting the effect of δ2 term, i.e., δ2(t) = 0. The

role of δ2(t) is studied in the following table, where it clearly improve the sampling rate and

inter-event times.

Table 5.1: Effect of decaying function δ2.

τmiet τavg N

δ2 = 0 1.6512 0.0151 606

δ2 = e−0.5t 1.6747 0.3789 21

The results of Table 5.1 are obtaind based on 100 initial conditions, uniformly distributed

in the inerval [−1, 1], and then average the results. Furthermore, τ̂ = 0.001 seconds. Since τ̂

is a guaranteed periodic sampling time, the ratio of average sampling over τ̂ is a good index

indicating how far the event-based samplings are from the time-triggered, i.e., periodic

one. In fact, as this ratio get close to 1, the event-based system degenerates to a periodic

sampled-data system. This undesirable isssue, which contradicts the main goal of an event-

based design which is reducing the communication traffic, is the case e.g., for static time-

regularization methods, see [48] and the example therein. In our work, however, this ratio

is 15 for δ = 0 and 379 for δ = e−0.5t.

b) The next set of plots are obtained for w be a random singnal in (0, 1) and based on

10 seconds of simulation and the initial condition x(0) = 1. In these plots the effect of time

decaying term δ2 is included by setting δ3 = 1 and δ4 = −2. The resulting measured output
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is shown in (Fig. 5.5)
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Figure 5.5: Measure output under random disturbances.

The evolution of measurement error signal and triggering threshold (Fig. 5.6) determines

the execution instants of the control task (Fig. 5.7).
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Figure 5.6: Satisfaction of triggering rule.
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Figure 5.7: Actuator signal.
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In accordance with the result of Fig. 5.4, next plot shows that exogenous disturbance

may lead to triggering instants get arbitrary close to each other. However, the decaying

function δ2(t) effectively opposes this advert behaviour until it is vanished at t ≈ 7, according

to Fig. 5.8.

Figure 5.8: Inter-event intervals.

Similar to the previous case, the effect of δ2 is shown in the following table.

Table 5.2: Effect of decaying function δ2.

τmiet τavg N

δ2 = 0 1.6545 0.0073 844

δ2 = e−0.5t 1.8159 0.7923 12

The results of table 5.2 are obtaind based on 100 initial conditions, uniformly distributed

in the inerval [−1, 1], and then average the results. Since τ̂ = 0.001 seconds, the ratio of
τavg
τ̂ is obtained to be 7 for δ = 0 and 792 for δ = e−0.5t, confirming that effectiveness of

proposed method compared to periodic sampling.

c) Next, we will study the trade-offs between the L2-gain of the system and trigger-

ing parameters, namely the threshold coefficient ς and parameter τ̂ . These trade-offs are

discussed in the seminal works [20, 46, 48], where it is shown that the guaranteed L2-gain

has an inverse relationship with ς, τ̂ . This subject will be studied here under the following

structure for applied disturbance:

wi(t) = aie
qit sin(2πpit).
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0 1
0.2481

0.2483

0 0.04
0.1282

0.1284

For the left figure, we set a1 = 25, q1 = −0.1, p1 = 1, φ1 = 0, a2 = 2, q2 = −0.1, p2 = 1,

φ2 = π
2 and for the right one, a1 = 2, q1 = 0, p1 = 4.5, φ1 = 0, a2 = 2, q2 = 0, p2 = 2,

φ2 =
π
2 .

d) Finally, we turn our attention into the interesting scenario of efficiently attentive

triggering mechanisms, which is recently introduced in [82]. Roughly speaking, when the

transmission intervals is non-decreasing over time, the corresponding triggering condition

is said to be efficiently attentive since it produces fewer samples as states get close to the

equilibrium. This feature is studied under the proposed triggering condition in the present

paper, where for the sake of simplicity, we assume no disturbance to be applied to the event-

based system. Then, the inter-event intervals are studied for different value of δ3. Suggested

by Fig. 5.9, δ3 = 2.58 is a critical value to decide whether the proposed triggering condition

is efficiently attentive or not. Obviously, when δ3 = 0 the inter-event times decreasewith

time, a fact that reveals another role of time decying function δ2(t), which is to turn a

pre-designed triggering rule into a one with efficiently attentive property.
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Figure 5.9: Comparison of different scenarios for δ3.
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5.6 Summary

We have provided a sufficient condition in terms of NMI for the input-to-state stability of the

event-triggered control system with respect to actuator error and disturbance. Additionally,

we have designed an event-based state feedback controller, without directly using an ISS

assumption, which satisfies the desired L2 gain performance level, following both emulation

and joint design methods. The proposed event condition is shown to successfully rule

out the accumulation of triggering instants. Future works will study the more practical

scenarios such as output feedback case, decentralized triggering strategies [76], and will

include practical issues such as limited bandwidth [82, 83]. Also of interest is the study of

existence of an explicit optimal solution under event-based communication.
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Chapter 6

Event-Triggered Controller Design

6.1 Nonlinear Lipschitz Event-Based Modeling

In this chapter1 we consider a system consisting of a nonlinear Lipschitz plant connected to

a dynamic controller through a communication network. We assume the controller receives

(respectively, sends) information from sensor (respectively, to the actuator) at discrete in-

stants tiy (respectively, tju) i, j ∈ N0 through the network with t0y = 0 (respectively, t0u = 0).

Thus, the sensor measurements and the controller’s output are independently monitored

using ETMs (to be described later) that update and send signals through the network, as

required. Therefore, the event instants tiy, t
j
u are in general asynchronous. The discrete

signals us, ys are held constant between events using ZOH devices, i.e., for any i, j ∈ N0

ys(t) = y(tiy), t ∈ [tiy, t
i+1
y ), (6.1)

us(t) = u(tju), t ∈ [tju, t
j+1
u ). (6.2)

For the sake of simplicity we neglect the effects of transmission delays in the network as they

can be addressed following the method in [9] and neglect also measurement and transmission

noises (see [48, 60]). Note that the above mentioned references focus on checking whether

a pre-designed static or dynamic controller stabilize the ETC system or not, as opposed to

the design problem studied here.

We now defined the system to be used throughout the rest of this chapter. We consider

the nonlinear plant

ẋ = Ax+ φ1(x) +Buus +Bww (6.3)

1The results of this chapter have been submitted for publication in the article: M. Ghodrat and H. J.
Marquez, “On the Event-Triggered Controller Design”, Submitted to IEEE Trans. Autom. Control, October
2018.
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where x ∈ R
nx , us ∈ R

nu , w ∈ R
nw represent the plant’s state, control input and exogenous

disturbance. A, Bu, Bw are constant matrices of appropriate dimensions. The nonlinearity

φ1 satisfies Lipschitz property

‖φi(x)− φi(x̌)‖≤ cφi
‖x− x̌‖ (6.4)

for i = 1 and some positive constant cφ1 and all x, x̌ ∈ R
nx . Moreover, φ1(0) = 0, so that

x = 0 an equilibrium point of the zero-input system. We also assume the state x is driven

from initial condition x(0) = x0 in an open subset of Rnx containing the origin. The plant’s

output y ∈ R
ny is given by

y = Cyx+ φ3(x) (6.5)

where Cy is a constant matrix and the nonlinearity φ3 satisfy property (6.4). Since the state

is not available for measurement except in the special case Cy = Inx , we use an observer to

reconstruct the state and implement the output feedback law using the following observer-

state feedback formulation:

˙̂x = Ax̂+ φ1(x̂) +Buus + L(ys − Cyx̂− φ3(x̂)) (6.6)

represents the obsever, where L is the observer gain matrix to be designed so that x̂ con-

verges to x. The control law is then

u = Kx̂ (6.7)

for some matrix gain K ∈ R
nu×nx to be designed. We will also assume the following:

(A1) The pairs (A,Bu) and (A,Cy) are respectively, controllable and observable.

Remark 6.1 Assumption (A1) is made for convenience but can be relaxed to stabilizable

and detectable, respectively.

Remark 6.2 In model (6.3), matrix A contains the linear part of plant’s dynamics and

the nonlinearity φ1 represents the nonlinearities of order two or higher. Thus, in the study

of asymptotic stability the linear terms dominate and a necessary condition for local closed-

loop asymptotic stability is to design matrix K such that the eigenvalues of A + BuK are

in the left half plane.
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6.1.1 Performance Criterion

We will establish our control design using the standard L2 input-output formalism, [5, 68].

Let z ∈ R
nz to be given by

z = Czx+ φ2(x) (6.8)

where Cz is a constant matrix of appropriate dimension and φ2 satisfy the Lipschitz property

(6.4) for i = 2. Our design methodology is based on the following finite gain L2-stability

performance index:

Jγ
〈r,s〉 =

∫ s

r
(γ2‖w(τ)‖2−‖z(τ)‖2)dτ. (6.9)

The closed-loop system model is⎧⎪⎨⎪⎩
ẋ = Ax+ φ1(x) +Buus +Bww
˙̂x = Ax̂+ φ1(x̂) +Buus + L(ys − Cyx̂− φ3(x̂))

z = Czx+ φ2(x), y = Cyx+ φ3(x), u = Kx̂.

(6.10)

We have:

Definition 6.1 ( [68]) The closed-loop system (6.10) has the disturbance attenuation index

of Jγ
〈0,T 〉 provided that there exist finite constants γ ∈ R

+, β ∈ R
+
0 (called bias term) and

positive semi-definite continuous function α such that for any T ∈ R
+
0 , any perturbation

w ∈ Lnw
2 and any x0 ∈ R

nx

Jγ
〈0,T 〉 + α(x0) + β ≥ 0. (6.11)

Definition 6.2 The equilibrium point x = 0 of unperturbed system (6.10), obtained by

setting w = 0, is globally exponentially stable (GES) with a convergence rate σ̄2 if there

exists r ∈ R
+ such that∥∥∥(x(t), r(x(t)− x̂(t))

)∥∥∥ ≤ σ̄1e
−σ̄2t

∥∥∥(x0, r(x0 − x̂0)
)∥∥∥ (6.12)

for some σ̄i ∈ R
+, i ∈ {1, 2} and any x0, x̂0 ∈ R

nx × R
nx .

Our main interest is to obtain a systematic method to jointly design the gain matrices K,

L and the TCs, so that the following conditions are met:

(i) For a desired γd ∈ R
+, the disturbance attenuation index of the resulting ETC system

is given by Jγd
〈0,∞〉.

(ii) The unperturbed model (6.10) has a GES equilibrium point at x = 0 with a conver-

gence rate σ̄2.
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6.2 State-Feedback Controller

We begin with the full information case, i.e. assuming that Cy = Inx in (6.5), used primarily

to present the core ideas behind our design approach, without the complications of the

observer-based case. Let the static control law be:

u = Kx. (6.13)

Since the state is measured, the observer is unnecessary and we can use a single ETM at the

plant’s output. Therefore, the event instants will be denoted ti := tiu = tiy for any i ∈ N0.

We can define the state inter-events error, denoted by e ∈ R
nx , as follows:

e(t) = x(ti)− x(t), t ∈ [ti, ti+1), (6.14)

and we obtain the following closed-loop system:{
ẋ = Ā◦x+ φ1(x) +BuKe+Bww,

z = Czx+ φ2(x),
(6.15)

with e, and w as the inputs and Ā◦ := A+BuK.

6.2.1 Event-Triggered Mechanism

In this section, the general structure of our ETM will be proposed by generalizing the

method of the Chapter 3, where the proposed condition is intended to guarantee the local

L2 stabilty performance. Here, however, as we are interested in L2 stability in a global

sense.

We will assume without loss of generality that t0 = 0. Adopting the notation ξ :=

col(x, e), the event times are implicitly defined as

ti+1 = inf {t ∈ R : t > ti ∧ ξ(t)TX ξ(t)−Δ(t) = 0} (6.16)

for i ∈ N0, where t
i denotes the most recent triggering instant. The matrix X := (−P1 P2; � P3)

for some symmetric P1,P2,P3 ∈ R
nx×nx is restricted to be designed according to the fol-

lowing assumption:

(A2) ‖P2‖�= 0, λnx(P1) ∈ R
+, λ1(P3) ∈ R

+
0 .

Also, the function Δ has the following structure

Δ(t) = ηe−ζt + (δ − ηe−ζt)χT (t− ti), t ∈ [ti, ti+1) (6.17)
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for some η, δ, ζ ∈ R
+ and T := [0, τ̂ ] for some τ̂ ∈ R

+. This suggests that Δ is constant

over t ∈ [ti, ti + τ̂ ], i ∈ N0 and exponentially decreasing elsewhere.

We remark that that (6.16) is a static rule with time varying threshold Δ, which from

a practical perspective, is constructed to ensure that the event-based implementation is

free of accumulation points, a property known as the event-separation property, introduced

in [59]:

Definition 6.3 The system (6.15) has the robust semi-global event-separation property if

there exists ε ∈ R
+ so that for any compact set B ⊂ R

nx , inf{τm : x0 ∈ B, |w|∞ ≤ ε} > 0

where τm = inf{ti+1 − ti : i ∈ N0} is the MIET.

Using the terminology in [59], (6.16) is known as a mixed triggering condition suggesting

that the triggerings occur whenever measurement error exceeds some mixed threshold of

state and Δ, and is aimed to ensure the Zeno-freeness property for the ETC system in the

presence of exogenous disturbances. In such a case, since the measurement error is also

driven by the disturbance term, if Δ = 0, when the state’s norm is near zero the external

disturbance may result in a sudden growth of ‖e‖, possibly leading to redundant events

and Zeno behaviour. However, with the addition of the function Δ, the admissible e is

lower bounded by δ for t− ti ∈ T . This ensures that the events are uniformly isolated and

hence zero behaviour is avoided (see [59] for a more detailed discussion). This observation

is summarized in the next theorem.

Theorem 6.1 Under the execution rule (6.16) and assumption (A2), the closed-loop system

(6.15) has the robust semi-global event-separation property.

Proof. We assume ti+1 ≤ ti + τ̂ , otherwise τm = τ̂ and hence the proof is immediate.

Therefore, (6.16) suggests that the lower bound on MIET can be obtained by assuming

the triggerings occur whenever −xTP1x + xTP2e + eTPT
2 x + eTP3e = δ. Our goal is then

to find the lower bound on MIET by introducing new TCs, restricted than (6.16). We

start with the condition −α1‖x‖2+α2‖e‖‖x‖+α3‖e‖2= δ where α1 = λnx(P1), α2 = 2‖P2‖,
α3 = λ1(P3). It is not difficult to see that this condition is more restrictive than (6.16).

Next using the completion of squares we define another condition, even more restrictive

than the latter condition, as ‖e‖= a‖x‖+b, where

a =
1

2α3

((4α1α3 + α2
2

1 + α−1

) 1
2 − α2

)
, b =

( δ

α3(1 + α)

) 1
2

and α > α2
2/(4α1α3) is an arbitrary parameter. Note that the above choice of a, b is well-

defined under assumption (A2). In the rest we will show that the MIET obtained from the
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latest condition, is bounded away from zero, and hence the same property holds under TC

(6.16). To this end, let us define ρ = ‖e‖/(a‖x‖+b). Thus we have

ρ̇ ≤ ‖ė‖
a‖x‖+b

+
a‖e‖‖ẋ‖
(a‖x‖+b)2

≤
(
1 +

a‖e‖
a‖x‖+b

) ‖ẋ‖
a‖x‖+b

Now in view of (6.15) we conclude

d

dt
‖x(t)‖≤ a1‖x(t)‖+a2‖e(t)‖+a3‖w(t)‖ (6.18)

where ai, i ∈ {1, 2, 3} are as defined in Proposition 6.1. Thus defining κ = max{a1a ,
a3ε
b }

where |w|∞ ≤ ε we can write

ρ̇ ≤ (1 + aρ)
a1‖x‖+a2‖e‖+a3‖w‖

a‖x‖+b
≤ (1 + aρ)(κ+ a2ρ)

solving which for ς ≥ ti with ρ(ti) = 0 and ρ(ς) = 1 yields

ς(ρ) = ti +

{
1

a2−κa ln(
κ+a2ρ
κ+κaρ), κ �= a2

a ,
aρ

a2(1+aρ) , κ = a2
a .

(6.19)

Since ρ ≥ 1 at ti, i ∈ N0, we have τm ≥ ς(1)− ti > 0.

Remark 6.3 Assumption (A2) is not essential in the proof of Theorem 6.1 and can be

substituted by ‖P2‖= 0, λnx(P1), λ1(P3) ∈ R
+. The proof, however, is not difficult and left

to the interested readers.

Remark 6.4 The concept of dwell-time in time-regularized works [20,48,60] has been gen-

eralized here to the set T . Note that while in the above mentioned articles triggering is

forbidden when t− ti ∈ T . We do not impose such restriction here and hence better perfor-

mance in terms of L2-gain or GES convergence rate is expected.

The exponentially decaying term in (6.17) is introduced to enlarge the inter-event times

without violating the desired system performance. The amount of enlargement can be

estimated explicitly for a given period of time and is shown in the next theorem whose

proof is similar to that of Theorem 4.2 and also Section 3.3 and hence is omitted. As

an application, one can design η, ζ, δ, T to overcome possible delays in communication

channels.

Theorem 6.2 Given any T ◦ ∈ R
+ and any τ◦ ∈ [0, τ∗max], where τ∗max = ς(1)− ti and ς is

defined in (6.19), function Δ can be designed so that min{ti+1−ti : i ∈ N0, t
i+1 ≤ T ◦} ≥ τ◦.

It is shown in Chapters 3, 4 via simulation that compared to dynamic triggering approach

introduced in [28], the parameters η, ζ in (6.17) can reduce the transmission traffic more

effectively, especially when GES is addressed.
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6.2.2 Event-Based Controller Design

In this section we design an event-based H∞ controller following the joint design approach,

where the control gain matrix K and triggering parameters X , Δ are simultaneously de-

signed. Moreover, our design incorporates the desired GES convergence rate as a design

parameter. Our method is different from the emulation approach used in the majority of

literature where the controller is first designed in the abcense of communication network,

and then the triggering scheme is constructed to satisfy performance of the original design.

We start with with some preliminary results. The first one gives an upper bound on the

measurement error in terms of state x and disturbance w.

Proposition 6.1 Let a1 = ‖Ā◦‖+cφ1, a2 = ‖BuK‖, a3 = ‖BwK‖,

Λb−a := 2

∫ b

a

∫ s

a
e(2a2+σ)(s−τ)dτds

for some σ ∈ R
+, s ∈ [0, τ̄) and τ̄ ∈ R

+. Then for any i ∈ N0, σ̄ ≤ σ∫ t

ti
eσ̄s‖e(s)‖2ds ≤ Λt−ti

∫ t

ti
eσ̄s(a21‖x(s)‖2+a23‖w(s)‖2)ds.

Proof. From the definition of measurement error and since d‖e(t)‖/dt ≤ ‖ė(t)‖, we con-

clude from (6.18) that d
dt‖e(t)‖≤ a1‖x(t)‖+a2‖e(t)‖+a3‖w(t)‖, which by applying compar-

ison lemma gives

‖e(t)‖≤ a1

∫ t

ti
ea2(t−τ)‖x(τ)‖dτ + a3

∫ t

ti
ea2(t−τ)‖w(τ)‖dτ.

Define f(a, b, c;x) :=
∫ b
a ec(b−s)‖x(s)‖ds, it is easy to verify

‖e(t)‖2≤ 2(a1f(t
i, t, a2;x))

2 + 2(a3f(t
i, t, a2;w))

2.

Multiplying this inequality by eσ̄t for some σ̄ ∈ R
+
0 , the Cauchy-Schwartz inequality can be

applied to obtain

eσ̄t‖e(t)‖2≤ 2f(ti, t, 2a2 + σ̄; 1)

∫ t

ti
eσ̄τ
(
a21‖x‖2+a23‖w‖2

)
dτ,

integrating which gives the result noting that 2
∫ b
a f(a, s, 2a2 + σ̄; 1)ds ≤ 2

∫ b
a f(a, s, 2a2 +

σ; 1)ds =: Λb−a.

As discussed in Section 6.2.1, set T is responsible to guarantee the separation of event

times and Proposition 6.1 plays a key role in designing this set. To clarify this connection,

we first apply Proposition 6.1 for σ̄ = 0 to conclude∫ t

ti
‖e(s)‖2ds ≤ Λt−ti

∫ t

ti
(a21‖x(s)‖2+a23‖w(s)‖2)ds (6.20)
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which due to definition of Λt−ti implies that coefficients in the right hand side of (6.20) grow

with t. However, this growth is allowed until the stability criteria given in Section 6.1.1 is

violated. To show this, we need the next proposition.

Proposition 6.2 Let W (x) = xTPx and

Q = ĀT
◦P + PĀ◦ + γ−2PBwB

T
wP + CT

z Cz,

M = Q+ c̄Inx +
1

ε1
P 2 +

1

ε2 − 1
CT
z Cz

and c̄ =
∑2

i=1 εic
2
φi

for some P � 0, γ, ε1 ∈ R
+, ε2 > 1. Then for any t ∈ R

+
0

Ẇ ≤ γ2‖w‖2−‖z‖2+ξT
(
M PBuK
� 0

)
ξ. (6.21)

Proof. It is rather easy to check Ẇ ≤ xTQx + γ2‖w‖2−‖Czx‖2+〈∇W,BuKe + φ1(x)〉.
Now defining ξ̄ := col(x, e, φ1, φ2) and since z = Czx+ φ2(x), we conclude

Ẇ ≤ γ2‖w‖2−‖z‖2+ξ̄T

⎛⎜⎜⎝
Q PBuK P CT

z

� 0 0 0
� � 0 0
� � � Inz

⎞⎟⎟⎠ ξ̄. (6.22)

Writing (6.4) as ξ̄Tdiag(−c2φi
Inx , 0, r1iInx , r2iInz)ξ̄ ≤ 0 for i ∈ {1, 2} and r11 = r22 = 1,

r12 = r21 = 0, (6.22) holds if

Ẇ ≤ γ2‖w‖2−‖z‖2+ξ̄T

⎛⎜⎜⎝
Q+ c̄InxPBuK P CT

z

� 0 0 0
� � −ε1Inx 0
� � � (1− ε2)Inz

⎞⎟⎟⎠ ξ̄.

The desired result is then obtained by applying Lemma 2.2 to the last term in the right

hand side of above inequality.

Critical to the design of T is the following inequality which is obtained integrating (6.21)

and applying (6.20)

W (x(t))−W (x(ti)) ≤ Jγ◦
〈ti,t〉 +

∫ t

ti
ξ(τ)TOξ(τ)dτ, (6.23)

where γ2◦ = γ2 + ε◦a23Λt−ti and

O =

(
M+ ε◦a21Λt−tiInx PBuK

� −ε◦Inx

)
for some ε◦ ∈ R

+
0 and t ≥ ti. Then, in the view of Definition 6.1, Λt−ti is allowed to grow

until (i) the negative definiteness of O, and (ii) the desired index gain level γd, are violated.
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The above restrictions impose an upper bound on t − ti that will be used in Section 6.2.2

to design set T .

In the sequel, we provide the design methodology in two steps, which due to the joint

design nature of our approach, are dependent, i.e., the design condition for controller gain

depends on triggering parameters and vice versa.

H∞ State Feedback Controller Design

The criterion to design K is to ensure the existence of some P � 0 so that

M+ σP + (μ+ ε)Inx � 0, (6.24)

where σ ∈ R
+ is the desired convergence rate of unperturbed model and μ, ε ∈ R

+ are

triggering parameters and will be defined in the next subsection. To design K based on

(6.24), we follow the ideas given in [84]. Considering the notation

Āσ+jω := A+BuK + (σ + jω)Inx = Ā◦ + (σ + jω)Inx , (6.25)

suppose that assumption (A1) holds and K is designed such that Ā◦ is stable and

min
ω∈R+

0

Snx(Āσ
2
−jω) > ψ, (6.26)

where ψ = cφ1 + ‖Bw‖
γ (

√
μ+ ε + ‖Cz‖+cφ2), some γ ∈ R

+. While condition (6.26) is in

joint design form, it can also be used in emulation control, by neglecting μ, ε terms. Indeed,

if μ = ε = 0, then (6.26) guarantees finite gain L2-stability (with L2-gain ≤ γ) of the

network-free system obtained by setting e = 0 in (6.15).

In the sequel, the intuition behind (6.26) is clarified through several lemmas. We begin

with the following claim, stated without proof.

Claim 6.1 Choosing ε1, ε2 in Proposition 6.2 as follows:

ε1 =
γ
√

(cφ2+‖Cz‖)2+μ+ε

cφ1‖Bw‖ , ε2 = 1 + ‖Cz‖
cφ2

(6.27)

implies that

ψ̂2 =
(
‖Bw‖2

γ2 + 1
ε1

)(
ε2‖Cz‖2
ε2−1 + c̄+ μ+ ε

)
. (6.28)

where ψ̂ = cφ1 +
‖Bw‖

γ

√
μ+ ε+ (‖Cz‖+cφ2)

2. Indeed, this particular choice of ε1, ε2 mini-

mize the right hand side of (6.28).
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Lemma 6.1 Let K be designed under (6.26) and ε1, ε2 are as in (6.27). Then there exists

some σ ∈ R
+ so that matrix

Γ =

⎛⎝ Āσ
2

(‖Bw‖2
γ2 + 1

ε1
)Inx

− ε2CT
z Cz

ε2−1 − (c̄+ μ+ ε)Inx −ĀT
σ
2

⎞⎠ (6.29)

has no eigenvalue with zero real part.

Proof. From (6.26) we conclude (Āσ
2
−jω)

H(Āσ
2
−jω) > ψ2

Inx > ψ̂2
Inx and hence in light of

(6.28) we have

(Āσ
2
−jω)

H(Āσ
2
−jω) >

(
‖Bw‖2

γ2 + 1
ε1

)(
ε2CT

z Cz

ε2−1 + (c̄+ μ+ ε)Inx

)
To complete the proof, we shall need the following useful lemma whose proof is along similar

lines as the proof of [84, Theorem 2].

Lemma 6.2 The eigenvalues λ of matrix Γ are given by

det
{
(λInx + ĀT

σ
2
)(λInx − Āσ

2
)−

(
‖Bw‖2

γ2 + 1
ε1

)(
ε2CT

z Cz

ε2−1 + (c̄+ μ+ ε)Inx

)}
= 0.

Substituting λ = jωI in Lemma 6.2 and noting that (jωInx − Āσ
2
)H = −(jωInx + ĀT

σ
2
),

Claim 6.1 confirms that Γ has no eigenvalue with zero real part.

Here we recall a well-known result from [85].

Lemma 6.3 For a stable matrix R and some S � 0, if(
R S
T −RT

)
(6.30)

has no eigenvalue on imaginary axis, then there exists a positive definite solution X to the

algebraic Riccati equation

RTX +XR+XSX − T = 0. (6.31)

Applying Lemma 6.3 to matrix Γ defined in (6.29), we conclude the existence of some P � 0

solution to (6.24).

Design of Triggering Parameters

We start with designing T , which as discussed, is restricted to ensure O � 0 and γ◦ ≤ γd.

By applying Schur complement, the former reads as

M+ ε◦Λt−tia
2
1Inx +

1

ε◦
PBuKKTBT

uP � 0
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for some ε◦ ∈ R
+
0 . Thus, choosing τ1 such that Λτ1 = 1

4a
−2
1 ‖PBuK‖−2ε2, one can pick

ε◦ = 2ε−1‖PBuK‖2 to conclude

ε◦Λt−tia
2
1Inx + 1

ε◦PBuKKTBT
uP � εInx (6.32)

for t− ti ∈ [0, τ1] and consequently by using Lemma 2.2 and (6.24) we have

ξTOξ ≤ −μ‖x‖2−σxTPx.

Moreover, choosing τ2 such that Λτ2 = ε−1
◦ a−2

3 (γ2d − γ2), we have γ◦ ≤ γd for t− ti ∈ [0, τ2].

Then T can be designed as

T = [0, τ̂ ], τ̂ = min{τ1, τ2} (6.33)

Remark 6.5 Definition of Λt−ti implies that τ1, τ2 do not depend on particular choice of

ti. Thus, τ̂ is positive and independent of triggering index i and hence is defined globally.

Definition of T implies that Λτ̂ ≤ Λτ1 , Λτ̂ ≤ Λτ2 and hence Jγ◦
〈ti,t〉 ≤ Jγd

〈ti,t〉 and

ξT(t)Oξ(t) ≤ −μ‖x(t)‖2−σxT(t)Px(t)

for t ∈ [ti, ti + τ̂). Hence (6.23) reduces to

W (x(t))−W (x(ti)) ≤ Jγd
〈ti,t〉 − μ

∫ t

ti
‖x(τ)‖2dτ (6.34)

for t ∈ [ti, ti + τ̂). Next, we design matrix X as

X =

(
−μInx PBuK

� 0

)
, (6.35)

which according to the structure of X implies P1 = μInx , P2 = PBuK and P3 = 0.

Suggested by Remark 6.3, the event-separation property holds under the above choice.

Finally, we remark that there is no restriction on the rest of parameters η, ζ, δ. However,

as stated in Theorem 6.2, they can be chosen properly to enlarge the inter-event times.

6.2.3 Main Result

To show finite gain L2-stability of system (6.15), we need to extend (6.34) to the interval

[ti, ti+1), any i ∈ N0.
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Theorem 6.3 Under assumption (A1), let K to be designed such that Ā◦ is stable and

(6.26) holds for some γ ∈ R
+. Also assume triggering parameters T and X are defined as

in (6.33) and (6.35), respectively. The closed-loop system (6.15) is then finite gain L2-stable

and has L2-gain ≤ γd for some γd > γ.

Proof. First, define ε◦ for any i ∈ N0 as

ε◦ =

{
2ε−1‖PBuK‖2, t ∈ [ti, ti + τ̂),

0, t ∈ [ti + τ̂ , ti+1),
(6.36)

which, as shown before, when applied to (6.23) for t ∈ [ti, ti + τ̂) results in (6.34). When

t ∈ [ti + τ̂ , ti+1) we have ε◦ = 0 and hence (6.23) reduces to

W (x(t))−W (x(ti)) ≤ Jγd
〈ti,t〉 − ε

∫ t

ti
‖x(τ)‖2dτ +

∫ t

ti
ηe−ζτdτ

in view of (6.24) and TC (6.16). Combining this inequality with (6.34) and apply the

procedure to the triggering intervals from 0 to t ∈ R
+
0 , we get Jγd

〈0,t〉 +W (x0) + η ≥ 0.

Theorem 6.4 Under the conditions of Theorem 6.3 and taking ζ > σ, the closed-loop

system (6.15) is GES at equilibrium point x = 0 with a convergence rate σ.

Proof. Setting w = 0, it can be inferred from (6.21), (6.24) that for any t ∈ R
+
0

Ẇ + σW ≤ ξT
(
−(μ+ ε)Inx PBuK

� 0

)
ξ. (6.37)

Solving this inequality from ti to t ∈ [ti, ti + τ̂ ] and apply Proposition 6.1 with w = 0, we

can write

W (x(t))eσt ≤W (x(ti))eσt
i
+

∫ t

ti
eστξ(τ)T

(
−(μ+ ε)Inx + ε◦a21Λt−tiInx PBuK

� ε◦Inx

)
ξ(τ)

which by using Schur complement and (6.32) reduces to W (x(t))eσt ≤ W (x(ti))eσt
i
. To

Solve (6.37) from ti + τ̂ to t ∈ [ti + τ̂ , ti+1), we can apply TC (6.16) and obtain Ẇ + σW ≤
ηe−ζt. The solution is then

W (x(t))eσt ≤W (x(ti + τ̂))eσ(t
i+τ̂) + η

∫ t

ti+τ̂
e(σ−ζ)τdτ.

Therefore for the interval [ti, ti+1) we obtain

W (x(ti+1))eσt
i+1 ≤W (x(ti))eσt

i
+ η

∫ ti+1

ti
e(σ−ζ)τdτ.

Breaking the interval [0, t] into
⋃

i<N−1[t
i, ti+1)∪[tN , t) whereN is the most recent triggering

instant until t, it is rather easy to conclude W (x(t)) ≤W (x0)e
−σt+ η

ζ−σ (e
−σt−e−ζt). Thus,

choosing η = η̄W (x0) for some η̄ ∈ R
+, Definition 6.2 holds for r = 0, σ̄1 = (1+ η̄

ζ−σ )
λ1(P )
λnx (P ) ,

σ̄2 = σ.
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6.2.4 Admissible Set of Eigenvalues

While criterion (6.26) is stated in terms of the smallest singular value, the relation with

the eigenvalues may be of greater importance from design viewpoint. Amongst the earliest

attempts to fill this gap, [84, Theorem 5] provides very good insight by exploiting the Bauer-

Fike theorem to relate the perturbation of eigenvalues of a diagonalizable matrix in terms of

the condition number of the matrix of the eigenvector matrix. It is worth remarking that the

Bauer-Fike theorem is a weak form of Gershgorin theorem that locates the eigenvalues in the

circles centered in the diagonal elements; hence offers a less-tight radius, [86]. Our proposed

method, however, relies on another famous result from computational linear algebra, due

to Fan and Hoffman [87].

Theorem 6.5 For any A ∈ C
nx×nx , j ∈ {1, . . . , nx} we have

λj(ReA) ≤ Sj(A). (6.38)

Theorem 6.5 is stated for complex matrices. Moreover, for j = nx, (6.38) gives the relation

between smallest eigenvalue of ReA and smallest singular value of A and will be used later.

We start with the following lemma.

Lemma 6.4 To satisfy (6.26), it suffices to choose

minω∈R+
0
Snx(Ā−jω) > ψ + σ

2 . (6.39)

Proof. We first recall the following well-known property from linear algebra

Snx(A)− S1(B) ≤ Snx(A+B).

Choosing A = Ā−jω, B = σ
2 Inx and noting that Sj(αI) = |α|, for any α ∈ R, j ∈ {1, . . . , nx},

(6.39) reads as Snx(A)− S1(B) ≥ ψ and hence (6.26) is immediate.

In our next Lemma we state (6.39) as a necessary condition on the eigenvalues of Ā◦.

Our conjecture is that the eigenvalues of the matrix Ā◦ should be placed to the left of

−ψ − σ
2 in the complex plane. To gain familiarity with the result, we first provide a

simple interpretation of how this conjecture is obtained for nx = 2. Consider two extreme

scenarios: First, assume Ā◦ has pure imaginary eigenvalues, i.e., Ā◦ = (0 α;−α 0) and

hence Ā−jω = (jω α;−α jω) where ω ∈ R
+
0 , α ∈ R. The eigenvalues of (Ā−jω)

H(Ā−jω) are

ω2 + α2 ± 2αω. Therefore, when α ≥ 0 (respectively, when α < 0) to ensure Snx(Ā−jω) >

ψ + σ
2 , α needs to satisfy α > ψ + σ

2 + ω (respectively, α < −ψ − σ
2 − ω). Thus to

satisfy (6.39), the imaginary values between −j(ψ + σ
2 + ω) and j(ψ + σ

2 + ω) must to
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Figure 6.1: Admissible region for eigenvalues of matrix Ā◦ when Ā◦: (a) has pure imaginary
eigenvalues and (b) is symmetric.

be excluded from the eigenvalues of matrix Ā◦ (see Figure 6.1-(a)). Second, assume that

Ā◦ is symmetric and hence has pure real eigenvalues, i.e., Ā◦ = (c1 c2; � c3) and hence

Ā−jω = (c1 − jω c2; � c3 − jω) for some qi ∈ R, i = 1, 2, 3 and ω ∈ R
+
0 . The eigenvalues

of (Ā−jω)
H(Ā−jω) are

1
2(2ω

2 + c21 + c23 +2c22 ±
√
(c21 − c23)

2 + 4c22(c1 + c3)2). Since α is non-

negative, we have Snx(Ājω) > Snx(Ā◦) = |λnx(Ā◦)|, where the last equality follows from

the fact that Ā◦ is symmetric. Thus if λnx(Ā◦) < −ψ − σ
2 and we have |λnx(Ā◦)|> ψ + σ

2

and consequently (6.39) holds (see Figure 6.1-(b)). The above observations lead us to the

conjecture that to satisfy (6.39), points to the right hand of −ψ − σ
2 must to be excluded

from the spectrum of Ā◦.

Note that while these cases represent extreme conditions, they serve to provide a nec-

essary condition that (6.39) must satisfy. Next lemma brings clarity to our conjecture and

is starting point for designing K.

Lemma 6.5 To satisfy (6.39), Ā◦ can not have any eigenvalue on the right hand side of

−ψ − σ
2 .

Proof. Let us assume Ā◦ has an eigenvalue at −ψ1 + jω1 for some ψ1 < ψ + σ
2 , ω1 ∈ R

+
0 .

This implies that det(Ā◦ + ψ1Inx − jω1Inx) = 0 and hence −ψ1 is an eigenvalue of matrix

Ā−jω1 . Thus we conclude that |λnx(Ā−jω1)|≤ ψ1. Now we use a useful relation from linear

algebra, Snx(A) ≤ |λj(A)| for any j ∈ {1, . . . nx}. Applying this inequality for j = nx we

come to the following contradiction ψ + σ
2 < Snx(Ā−jω1) ≤ |λnx(Ā−jω1)|≤ ψ1, where the

first inequality is obtained from (6.39) for w = w1.

Next, we provide a sufficient condition to show that bound −ψ − σ
2 for choosing the

eigenvalues of Ā◦ is almost sharp.
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Lemma 6.6 Condition (6.26) holds if λ1(Re Ā◦) < −ψ − σ
2 .

Proof. We start with a simple property

Snx(AB) ≥ Snx(A)Snx(B)

which by choosing A = Ā−jω and B = −Inx reduces to Snx(Ā−jω) ≥ Snx(−Ā−jω) since

Snx(−Inx) = 1. Now because Re(−Ā−jω) = Re(−Ā◦) and λnx(Re(−Ā◦)) = −λ1(Re Ā◦),

Theorem 6.5 suggests that Snx(−Ā−jω) ≥ −λ1(Re Ā◦). Therefore, choosing λ1(Re Ā◦) <

−ψ− σ
2 ensures Snx(Ā−jω) > ψ+ σ

2 which by applying Lemma 6.4 gives the desired result.

It is worth noting that there exist certain situations where for any matrix K, the largest

eigenvalue of Re Ā◦ can not be pushed to the left side of −ψ − σ
2 , restrict the application

of Lemma 6.6. The authors of [84], however, provide another method to design matrix K,

summarized in the next lemma.

Lemma 6.7 If K is chosen such that for any j = 1, . . . nx,

Re { − λj(Ā◦)} > C(X)(ψ +
σ

2
) (6.40)

where Ā◦ = XΥX−1 and C(X) denotes the condition number of X, then (6.39) holds.

Note that since the choice of X is non-unique, it is much more reasonable to define the

condition number of X as

C(X) = inf{‖X‖‖X−1‖: XΥX−1 = A}. (6.41)

When X is fixed in (6.41), the condition number can be obtained from the ratio of its

largest and smallest singular values, i.e., C(X) = S1/Snx and suggests that C(X) ≥ 1. Due

to difficulty in calculating condition number, the method of Lemma 6.7 often reduces to

a trial and error procedure. We refer the interested reader to [84, Example 1] for more

details. The following example shows that our proposed method may relax the possible

conservatism associated with Lemma 6.7.

Example 6.1 Let

Ā◦ =

(
−1 −θ
0 −1− θ2

)
for some parameter θ ∈ R

+. The matrix Re Ā◦ is calculated as 1
2(Ā◦+ĀT

◦ ), thus λ1(Re Ā◦) =

−1 − θ2

2 + θ2

2

√
1 + 4

θ2
. Therefore, to satisfy (6.39) using the method of Lemma 6.6, the

following has to be satisfied

1 + θ2

2 −
θ2

2

√
1 + 4

θ2
> ψ. (6.42)
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However, following the approach of Lemma 6.7, the matrix Ā◦ has the eigenvalues at −1,
−1 − θ2 with the corresponding eigenvectors (1, 0), (1, θ). The condition number of X as

defined in (6.41) is 1
θ + θ

2 . Thus (6.40) reduces to

1 > (1θ + θ
2)ψ. (6.43)

Therefore, while (6.42) has a solution for θ for ψ ∈ [
√
2
2 , 1), (6.43) does not (since 1

θ +
θ
2 ≥√

2).

Remark 6.6 Our proposed method provides a sharp bound for designing controller gain K.

Indeed, suggested by [84, Theorem 3], if K is chosen such that (6.26) does not hold, then

there exists some E ∈ R
nx×nx so that the function φ1(x) = Ex has Lipschitz constant cφ1

and (6.15) is unstable.

6.3 Output-Based Controller

We consider the more important scenario of output-based control. We use the dynamic

observer (6.6) to reconstruct the state vector x̂, needed to implement the control law

u = Kx̂.

To formalize the problem, let us define the output measurement error ey and actuator error

eu as

ey(t) = ys(t)− y(t) = y(tiy)− y(t), t ∈ [tiy, t
i+1
y ),

eu(t) = us(t)− u(t) = u(tju)− u(t), t ∈ [tju, t
j+1
u ),

for any i, j ∈ N0. Contrary to the state feedback case, we assume asynchronous triggering

instants at the sensor-to-controller and controller-to-actuator channels which necessitates

the design of two independent ETMs.

Remark 6.7 Stating the TC in terms of ex̂ := x̂(tju) − x̂(t) rather than actuation error

eu = Kex̂ has certain practical advantages, as pointed out in [9]. Note that the use of the

actuation error requires processing time to compute eu and decide next execution instant,

which can only be ignored when the shared resource is transmission bandwidth rather than

processing time. Note that the result of this section are still valid if the TC is stated in

terms of ex̂.
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Define x̃ := x− x̂ and Â◦ := A− LCy, we can use (6.3) and (6.6) to write(
ẋ
˙̃x

)
=

(
Ā◦ −BuK

0 Â◦

)(
x
x̃

)
+

(
Bu 0
0 L

)(
eu
ey

)
+

(
Bw

Bw

)
w +

(
φ1(x)

φ̃1(x, x̂)− Lφ̃3(x, x̂)

)
,(6.44)

where φ̃j(x, x̂) = φj(x)−φj(x̂), j ∈ {1, 3}. Treating (eu, ey) and w as the exogenous inputs,

(6.44) describes the overall closed-loop model.

We propose two triggering policies at sensor-to-controller and controller-to-actuator

channels, inspired by (6.16). Assuming the first event to ocurr at t0y = t0u = 0, and adopting

the notations ξy := col(y, ey), ξu := col(u, eu), the execution times are implicitly defined as:

ti+1
y = inf {t ∈ R : t > tiy ∧ ξTy (t)Xyξy(t)−Δy(t) = 0} (6.45a)

tj+1
u = inf {t ∈ R : t > tju ∧ ξTu (t)Xuξu(t)−Δu(t) = 0} (6.45b)

for i, j ∈ N0, where t
i
y, t

j
u are the most recent execution instants. Matrices Xy = (−Py

1 P
y
2 ; � P

y
3 )

and Xu = (−Pu
1 Pu

2 ; � Pu
3 ) for some symmetric Py

l ∈ R
ny×ny , Pu

l ∈ R
nu×nu , l ∈ {1, 2, 3} are

designed according to the next assumption:

(A3) ‖Py
2‖�= 0, λny(P

y
1 ) ∈ R

+, λ1(Py
3 ) ∈ R

+
0 , ‖Pu

2 ‖�= 0, λnu(Pu
1 ) ∈ R

+, λ1(Pu
3 ) ∈ R

+
0 .

The functions Δy, Δu are also given by

Δy(t) = ηye
−ζyt + (δy − ηye

−ζyt)χTy(t− tiy), t ∈ [tiy, t
i+1
y ),

Δu(t) = ηue
−ζut + (δu − ηue

−ζut)χTu(t− tju), t ∈ [tju, t
j+1
u )

for some ηy, δy, ζy, ηu, δu, ζu ∈ R
+ and Ty := [0, τ̂y], Tu := [0, τ̂u] for some τ̂y, τ̂u ∈ R

+.

Proving the non-existence of accumulation point for the triggering instants tiy, t
j
u requires

boundedness of state trajectories of (6.44), and hence is postponed to Section 6.3.2.

6.3.1 Event-Based Output-Based Controller Design

Next we introduce a design methodology for jointly designing matrix gains K and L and

corresponding triggering parameters Xy, Δy and Xu, Δu. The method is similar to the

state feedback case where the desired GES convergence rate of closed-loop system is taken

as design parameter.

We start with some preliminary results. Similar to Proposition 6.1, H∞-synthesis of

system (6.10) relies on finding an upper bound for the errors ey, eu in terms of state x,

x̃ and disturbance w. However, as we will see, the output feedback assumption imposes a
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technical difficulty originates from the asynchronous triggerings at sensor-to-controller and

controller-to-actuator channels.

From the definition of eu we have

‖ėu‖= ‖K ˙̂x‖. (6.46)

For ey to be differentiable we need the following assumption:

(A4) The function φ3 is continuously differentiable.

Under assumption (A4) we have ėy = −ẏ = −Cyẋ− φ̇3(x) which in the view of the following

observation

‖φ̇3(x)‖=
∥∥∥ lim
dt→0+

φ3(x(t+ dt))− φ3(x(t))

dt

∥∥∥
≤ cφ3 lim

dt→0+

‖x(t+ dt)− x(t)‖
dt

= cφ3‖ẋ‖

gives ‖ėy‖≤ (‖Cy‖+cφ3)‖ẋ‖. Therefore, from (6.44), (6.46) we conclude that

˙‖ey‖ ≤ b1‖x‖+b2‖x̃‖+b3‖eu‖+b4‖w‖, t ∈ [tiy, t
i+1
y ) (6.47a)

˙‖eu‖ ≤ b̄1‖x‖+b̄2‖x̃‖+b̄3‖ey‖+b̄4‖eu‖, t ∈ [tju, t
j+1
u ) (6.47b)

for any i, j ∈ N0, where b̄1 = ‖KĀ◦‖+‖K‖cφ1 , b̄2 = b̄1 + ‖KLCy‖+‖KL‖cφ3 , b̄3 = ‖KL‖,
b̄4 = ‖KBu‖ and

b1
‖Ā◦‖+cφ1

=
b2

‖BuK‖
=

b3
‖Bu‖

=
b4

‖Bw‖
= ‖Cy‖+cφ3 .

As claimed, the technical difficulty of simultaneously solving (6.47a), (6.47b) arises from

asynchronous triggerings. This, however, is addressed in the next proposition.

Proposition 6.3 Given H1, H2 ∈ R
+ so that

b23b̄
2
3H1H2 < 1, (6.48)

let τ̂y and τ̂u be the solutions to h1(τ̂y) = H1 and h2(τ̂u) = H2, where

hi(s) = ri

∫ r+s

r

∫ τ2

r
eνi(τ2−τ1)dτ1dτ2

for r1 = 4, r2 = 3, ν1 = σ◦, ν2 = 2b̄4 + σ◦ for some σ◦ ∈ R
+. Then there exist constants

ki ∈ R
+, i ∈ {1, · · · , 5} so that for any t ∈ R

+, σ̄◦ ≤ σ◦, αj ∈ R
+, j = {1, 2}, the following
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holds ∫ t

0
eσ̄◦τ

(
α1‖ey(τ)‖2+α2‖eu(τ)‖2

)
dτ ≤∫ t

0
eσ̄◦τ

(
k1‖x(τ)‖2+k2‖x̃(τ)‖2+k3ry‖y(τ)‖2

+k4ru‖Kx̂(τ)‖2+k3ηye
−ζyτ + k4ηue

−ζuτ + k5‖w‖2
)
dτ

where k1 = α1β1 + α2β3, k2 = α1β2 + α2β4, k3 = β(α1 + α2H2b̄
2
4), k4 = β(α2 + α1H1b̄

2
3),

k5 = k3H1b
2
4, β = (1 − H1H2b

2
3b̄

2
4)

−1, β1 = βH1(b
2
1 + H2b

2
3b̄

2
1), β2 = βH1(b

2
2 + H2b

2
3b̄

2
2),

β3 = βH2(b̄
2
1 +H1b̄

2
3b

2
1), β4 = βH2(b̄

2
2 +H1b̄

2
3b

2
2).

Proof. Solving (6.47a) for ‖ey‖ gives

‖ey(t)‖≤
∫ t
tiy

{
b1‖x(τ)‖+b2‖x̃(τ)‖+b3‖eu(τ)‖+b4‖w(τ)‖

}
dτ.

Therefore we have

‖ey(t)‖2≤ 4
{(

b1

∫ t

tiy

‖x‖dτ
)2

+
(
b2

∫ t

tiy

‖x̃‖dτ
)2

+
(
b3

∫ t

tiy

‖eu‖dτ
)2

+
(
b4

∫ t

tiy

‖w‖dτ
)2}

, (6.49)

which by using Cauchy-Schwartz inequality reduces to

‖ey(t)‖2≤ 4

∫ t

tiy

e−σ̄◦τdτ

∫ t

tiy

eσ̄◦τ
{
b21‖x(τ)‖2

+b22‖x̃(τ)‖2+b23‖eu(τ)‖2+b24‖w(τ)‖2
}
dτ

and since 4
∫ r+s
r

∫ τ2
r eσ̄◦(τ2−τ1)dτ1dτ2 ≤ h1(s), we have∫ t

tiy

eσ̄◦τ‖ey(τ)‖2dτ ≤ h1(t− tiy)

∫ t

tiy

eσ̄◦τ
{
b21‖x(τ)‖2

+b22‖x̃(τ)‖2+b23‖eu(τ)‖2+b24‖w(τ)‖2
}
dτ. (6.50)

Similarly, solving (6.47b) for ‖eu‖ gives

‖eu(t)‖≤
∫ t

tju

eb̄4(t−τ)
{
b̄1‖x(τ)‖+b̄2‖x̃(τ)‖+b̄3‖êyτ)‖

}
dτ

which using Cauchy-Schwartz inequality reduces to

‖eu(t)‖2≤ 3

∫ t

tju

e2b̄4(t−τ)e−σ̄◦τdτ

∫ t

tju

eσ̄◦τ
{
b̄21‖x(τ)‖2

+b̄22‖x̃(τ)‖2+b̄23‖êyτ)‖2
}
dτ.
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Since 3
∫ r+s
r

∫ τ2
r e(2b̄4+σ̄◦)(τ2−τ1)dτ1dτ2 ≤ h2(s), we have∫ t

tju

eσ̄◦τ‖eu(τ)‖2dτ ≤ h2(t− tju)

∫ t

tiy

eσ̄◦τ
{
b̄21‖x(τ)‖2

+b̄22‖x̃(τ)‖2+b̄23‖ey(τ)‖2
}
dτ. (6.51)

Now consider ∫ t

0
eσ̄◦τ‖ey(τ)‖2dτ =

∑
i

{∫ tiy+τ̂y

tiy︸ ︷︷ ︸
1

+

∫ ti+1
y

tiy+τ̂y︸ ︷︷ ︸
2

eσ̄◦τ‖ey(τ)‖2dτ
}
,

∫ t

0
eσ̄◦τ‖eu(τ)‖2dτ =

∑
j

{∫ tju+τ̂u

tju︸ ︷︷ ︸
1

+

∫ tj+1
u

tju+τ̂u︸ ︷︷ ︸
2

eσ̄◦τ‖eu(τ)‖2dτ
}
.

For the terms in 1, we can apply (6.50) and (6.51) with h1(τ̂y) ≤ H1 and h2(τ̂u) ≤ H2. For

the terms in 2, however, we may apply TC (6.45). Therefore, we have∫ t

0
eσ̄◦τ‖ey(τ)‖2dτ ≤

∫ t

0
eσ̄◦τ

(
H1

{
b21‖x(τ)‖2+b22‖x̃(τ)‖2

+b23‖eu(τ)‖2+b24‖w(τ)‖2
}
+ ry‖y‖2+ηye

−ζyτ
)
dτ,∫ t

0
eσ̄◦τ‖eu(τ)‖2dτ ≤

∫ t

0
eσ̄◦τ

(
H2

{
b̄21‖x(τ)‖2+b̄22‖x̃(τ)‖2

+b̄23‖ey(τ)‖2
}
+ ru‖kx̂‖2+ηue

−ζuτ
)
dτ,

which can be written in matrix form as follows(
1 −H1b

2
3

−H2b̄
2
3 1

)(∫ t
0 e

σ̄◦τ‖ey(τ)‖2dτ∫ t
0 e

σ̄◦τ‖eu(τ)‖2dτ

)
≤

(
H1b

2
1 H1b

2
2

H2b̄
2
1 H2b̄

2
2

)(∫ t
0 e

σ̄◦τ‖x(τ)‖2dτ∫ t
0 e

σ̄◦τ‖x̃(τ)‖2dτ

)
+ (6.52)(∫ t

0 e
σ̄◦τ (ry‖y(τ)‖2+ηye

−ζyτ +H1b
2
4‖w(τ)‖2)dτ∫ t

0 e
σ̄◦τ (ru‖Kx̂(τ)‖2+ηue

−ζuτ )dτ

)
.

For β := (1− b23b̄
2
3H1H2)

−1, which is well-defined due to condition (6.48), we have∫ t

0
eσ̄◦τ

(
α1‖ey(τ)‖2+α2‖eu(τ)‖2

)
dτ =

(
α1 α2

)( β βH1b
2
3

βH2b̄
2
3 β

)
× RHS of (6.52)

which gives the desired result.

Note that the upper bound of the output measurement error ey (respectively, actuation

error eu) can be obtained by setting α2 = 0 (respectively, α1 = 0) in Proposition 6.3 for

σ̄◦ = 0.
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Remark 6.8 design of τ̂y, τ̂u are coupled according to condition (6.48) and hence unique

solutions does not exist.

Remark 6.9 Proposition 6.3, which can be viewed as the output-based counterpart of Propo-

sition 6.1, introduces several penalty terms for asynchronous triggerings at the sensor-to-

controller and controller-to-actuator channels.

The following proposition is the output-based counterpart of Proposition 6.2 and serve to

clarify the design ideas in the next section.

Proposition 6.4 Define γ̄2◦ = γ2+θγ̃2 for some γ, γ̃ ∈ R
+ and let V (x, x̃) = W (x)+θW̃ (x̃)

be the candidate Lyapunov function where W (x) = xTPx, W̃ (x̃) = x̃TP̃ x̃ for some P, P̃ � 0

and θ ∈ R
+. Also define Q as in Proposition 6.2 and

Q̃ = ÂT
◦ P̃ + P̃ Â◦ + γ̃−2P̃BwB

T
wP̃ ,

My = Q+ c̄yInx +
P 2

εy1
+

CT
z Cz

εy2 − 1
,

Mu = Q̃+ c̄uInx +
P̃ 2

εu1
+

P̃LLTP̃

εu3

for c̄u = εu1c
2
φ1

+ εu3c
2
φ3
, c̄y = εy1c

2
φ1

+ εy2c
2
φ2

and some εu1 , ε
u
3 , ε

y
1, ε

y
2 ∈ R

+. Then for any t ∈ R
+
0

V (x, x̃)− V (x0, x̃0) ≤ J γ̄◦
〈0,t〉 +

∫ t

0
ξ̂(τ)TŌξ̂(τ)dτ, (6.53)

where ξ̂ = col(x, x̃, ey, eu) and

Ō:=

⎛⎜⎜⎝
My − PBuK 0 PBu

� θMu θP̃L 0
� � 0 0
� � � 0

⎞⎟⎟⎠ .

Proof. Similar to the proof of Proposition 6.2, we have

Ẇ ≤ γ2‖w‖2−‖z‖2−〈∇W,BuKx̃〉

+

⎛⎜⎜⎝
x
eu
φ1

φ2

⎞⎟⎟⎠
T⎛⎜⎜⎝

Q+ c̄yInx PBu P CT
z

� 0 0 0
� � −εy1Inx 0
� � � (1− εy2)Inz

⎞⎟⎟⎠
⎛⎜⎜⎝

x
eu
φ1

φ2

⎞⎟⎟⎠
for some εy1 ∈ R

+, εy2 > 1. From Schur complement we conclude

Ẇ ≤ γ2‖w‖2−‖z‖2−〈∇W,BuKx̃〉+ ξ̄Ty

(
My PBu

� 0

)
ξ̄u, (6.54)
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where ξ̄u := col(x, eu). Similarly, for x̃ subspace we can write

˙̃W ≤ γ̃2‖w‖2+

⎛⎜⎜⎝
x̃
ey
φ̃1

φ̃3

⎞⎟⎟⎠
T⎛⎜⎜⎝

Q̃+ c̄uInx P̃L P̃ P̃L
� 0 0 0
� � −εu1Inx 0
� � � −εu3Iny

⎞⎟⎟⎠
⎛⎜⎜⎝

x̃
ey
φ̃1

φ̃3

⎞⎟⎟⎠ .

Using Schur complement and defining ξ̄y := col(x̃, ey), we have

˙̃W ≤ γ̃2‖w‖2+ξ̄Ty

(
Mu P̃L
� 0

)
ξ̄y (6.55)

The desired result is then obtained by merging (6.54), (6.55).

H∞ Observer-Based Controller Design

Inspired by state feedback case, the controller and observer gains K, L are designed to

ensure the existence of some P � 0, α ∈ R
+ so that

My +
1

α
PBuB

T
uP + σyP + μyInx + εyInx � 0, (6.56)

and some P̃ � 0 such that

Mu + σuP̃ + μuInx + εuInx � 0 (6.57)

where σy, σu ∈ R
+ will be used to determine the desired convergence rate of unperturbed

model and μy, μu, εy, εu ∈ R
+ are triggering parameters and will be specified in the next

subsection and α ∈ R
+ is . Note that (6.56), (6.57) are required later to prove the stability

of system (6.44). Let us adopt the following notation

Âσ+jω := A− LCy + (σ + jω)Inx = Â◦ + (σ + jω)Inx .

Under assumption (A1), the controller and observer gains K and L are designed such that

Ā◦ and Â◦ are stable and

minω∈R+
0
Snx

(
Āσy

2
−jω

)
> ψy, (6.58)

minω∈R+
0
Snx

(
Âσu

2
−jω

)
> ψu, (6.59)

where ψy = cφ1+(‖Bw‖
γ +‖Bu‖√

α
)(
√
μy + εy+‖Cz‖+cφ2) and ψu = cφ1+cφ3‖L‖+

‖Bw‖
γ̃

√
μu + εu,

some γ, γ̃ ∈ R
+.

Remark 6.10 Compared to the state feedback design (6.26), ‖Bu‖√
α

in (6.58) is introduced

as the penalty for output feedback.
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Remark 6.11 The design of L is non-trivial due to the presence of ‖L‖ in the right hand

side of (6.59). However, when cφ3 is small enough, one can readily guarantee the existance

of a solution for L. In limit, when φ3 = 0 and henec y = Cyx, L can be designed similar

to design of K in (6.58), (6.26) which is discussed in details in Section 6.2.4. To cover a

wider range of nonlinearities, one can maximize the admissible cφ3 denoted by c̄φ3 as the

maximum possible cφ3 such that (6.59) has a solution for some L.

Similar to Claim 6.1, it can be verified that choosing

εy1 =

√
(cφ2+‖Cz‖)2+μy+εy

cφ1

√
‖Bw‖2

γ2
+
‖Bu‖2

α

, εy2 = 1 + ‖Cz‖
cφ2

,

εu1 = 1
cφ1

√
εu3 c

2
φ3

+μu+εu

‖Bw‖2
γ̃2

+
‖L‖2
εu3

, εu3 = γ̃‖L‖√μu+εu
cφ3‖Bw‖ ,

(6.60)

implies that

ψ̂2
y =

(
‖Bw‖2

γ2 + 1
εy1

+ ‖Bu‖2
α

)(
εy2‖Cz‖2
εy2−1

+ c̄y + μy + εy

)
, (6.61)

ψ2
u =

(
‖Bw‖2

γ̃2 + 1
εu1

+ ‖L‖2
εu3

)(
c̄u + μu + εu

)
. (6.62)

where ψ̂y = cφ1+(‖Bw‖
γ + ‖Bu‖√

α
)
√

μy + εy + (‖Cz‖+cφ2)
2. The following lemma then clarifies

the idea behind (6.58), (6.59).

Lemma 6.8 Let K and L be designed under (6.58), (6.59). Under assumption (6.60), there

exist some σy, σu ∈ R
+ such that the following matrices have no eigenvalue on imaginary

axis.

Γ1 =

⎛⎝ Āσy
2

(‖Bw‖2
γ2 + 1

εy1
+ ‖Bu‖2

α )Inx

− εy2C
T
z Cz

εy2−1
− (c̄y + μy + εy)Inx −ĀT

σy
2

⎞⎠
Γ2 =

(
Âσu

2
(‖Bw‖2

γ̃2 + 1
εu1

+ ‖L‖2
εu3

)Inx

−(c̄u + μu + εu)Inx − ÂT
σu
2

)
.

Proof. From (6.58) we conclude (Āσy
2
−jω)

H(Āσy
2
−jω) > ψ2

yInx > ψ̂2
yInx . Next, similar to

Lemma 6.2, it can be shown that the eigenvalues of matrix Γ1, Γ2 are obtained from

det
{
(λInx + ĀT

σy
2

)(λInx − Āσy
2
)−

(
‖Bw‖2

γ2 + 1
εy1

+ ‖Bu‖2
α

)(
εy2C

T
z Cz

εy2−1
+ (c̄y + μy + εy)Inx

)}
= 0,

det
{
(λInx + ÂT

σu
2
)(λInx − Âσu

2
)−

(
‖Bw‖2

γ̃2 + 1
εu1

+ ‖L‖2
εu3

)
(c̄u + μu + εu)Inx

}
= 0.

Therefore, in light of (6.61), (6.62) the result follows.

Applying Lemma 6.3 to the matrices Γ1, Γ2, it is not difficult to verify the existence of

P, P̃ � 0 solutions to (6.56), (6.57).
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Design of Triggering Parameters

First define

OM :=

(
My − PBuK
� θMu

)
, OK :=

(
KTK −KTK
� KTK

)
.

The admissible range of parameters are restricted to ensure the stability of (6.44). To show

this, we apply Young’s inequality to (6.53) to get

V (x, x̃)− V (x0, x̃0) ≤ J γ̄◦
〈0,t〉 +

∫ t

0

{
ξ̃(τ)TOMξ̃(τ) + α‖eu‖2

+
1

α
xTPBuB

T
uPx+

1

α̂
θx̃TP̃LLTP̃ x̃+ θα̂‖ey‖2

}
dτ,

where α, α̂ ∈ R
+, V (x, x̃) as defined in Proposition 6.4 and ξ̃ := col(x, x̃). Then applying

Proposition 6.3 for α1 = α̂θ, α2 = α, σ̄◦ = 0, we obtain

V (x, x̃)− V (x0, x̃0) ≤ J

√
γ̄2◦+k5

〈0,t〉 +

∫ t

0

{
ξ̃T(OM + k4ruOK)ξ̃

+ xT
( 1
α
PBuB

T
uP + (k1 + k3ry(‖Cy‖+cφ3)

2)Inx

)
x (6.63)

+ x̃T
( 1
α̂
θP̃LLTP̃ + k2Inx

)
x̃+ k3ηye

−ζyτ + k4ηue
−ζuτ

}
dτ,

where we used the fact that ‖y‖≤ (‖Cy‖+cφ3)‖x‖. The design parameters are restricted to

the following conditions:

k5 ≤ γ2d − γ̄2◦ , (6.64a)

k1 + κ(‖Cy‖+cφ3)
2 ≤ εy, (6.64b)

P̃LLTP̃ + α̂ϑInx � α̂εuInx , (6.64c)

k2 ≤ θϑ, (6.64d)

k3ry ≤ κ, (6.64e)(
−μyInx + k4ruK

TK − PBuK − k4ruK
TK

� − θμuInx + k4ruK
TK

)
� 0. (6.64f)

Under conditions (6.64a-e) and in the light of (6.56), (6.57) we have the stability for

subsystem x, i.e.,

My +
1

α
PBuB

T
uP + k1Inx + k3ry(‖Cy‖+cφ3)

2
Inx � 0, (6.65)

and the subsystem x̃, i.e.,

Mu +
1

α̂
P̃LLTP̃ +

k2
θ
Inx � 0 (6.66)
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and also the guaranteed L2 performance level γd.

Due to dependence on ki, i ∈ {1, . . . 5}, H1 and H2 have to be designed not only based

on (6.48) but also such that (6.64) is satisfied. Therefore, we define

Ty×Tu:=
{
(τ1, τ2) :

(
H1

H2

)
=

(
h1(τ1)
h2(τ2)

)
, (6.48), (6.64a-d) hold

}
. (6.67)

Note that there is a tradeoff in the selection of (τ̂y, τ̂u) from Ty×Tu in the way that the larger

one is chosen, the smaller the other will be. Once H1, H2 and consequently ki, i ∈ {1, . . . , 5}
get fixed, θ, ru, ry, μu, μy has to be designed to satisfy (6.64e,f). In addition, matrices Xy,

Xu are given by

Xy = diag(− ryIny , Iny), Xu = diag(− ruInu , Inu). (6.68)

Similar to the state feedback case, the rest of parameters, ηy, δy, ζy, ηu, δu, ζu, can be properly

designed to improve inter-event times with no restriction on them.

Remark 6.12 Since ki, i ∈ {1, 3, 5} are linear functions of H1, H2, inequalities in (6.64)

are well-defined provided that H1, H2, ry and ru chosed small enough. However, suggested

by the multiplicative terms kyru, k3ry, the design seems to be a compromise between choosing

H1, H2 from one hand and ry, ru from the other hand.

Remark 6.13 Compared to state feedback case, design of Ty, Tu involves more complex

steps due to (i) output feedback assumption and (ii) asynchronous triggerings.

6.3.2 Isolation of Triggering Instants

To show the successful implementation of control task under the proposed ETM, the event-

separation property is required to be guaranteed. We first provide the following extension

of event-separation property definition for the system (6.44).

Definition 6.4 Let τym = inf{ti+1
y − tiy : i ∈ N0} and τ̂um = inf{tj+1

u − tju : j ∈ N0} be

the MIETs for the sensor-to-controller and controller-to-actuator channels. System (6.44)

has the robust semi-global event-separation property if there exists ε ∈ R
+ so that for any

compact sets B, B̃ ⊂ R
nx , inf{τym, τum : x0 ∈ B, x̃0 ∈ B̃, |w|∞ ≤ ε} > 0.

The event-separation property for system (6.44) relies on the following boundedness prop-

erty for trajectories x, x̃.

Lemma 6.9 Suppose that under assumption (A1), matrices K,L are designed such that

Ā◦, Â◦ are stable and (6.58), (6.59) hold for some γ, γ̃ ∈ R
+. Then under the TC (6.45)
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with Xy,Xu and Ty, Tu as defined in (6.68) and (6.67), respectively, and some ζy, ζu > σ◦,

the trajectories (x, x̃) of the system (6.44) starting from B×B̃ will remain in B′×B̃′ provided

that |w|∞ ≤ ε, where

B′ = {x ∈ R
nx : ‖x‖≤ �(λnx(P ))−

1
2 }

B̃′ = {x̃ ∈ R
nx : ‖x̃‖≤ θ−

1
2 �(λnx(P̃ ))−

1
2 }

and � =
γ2
dε

2

σ◦ +
k3ηy
ζy−σ◦ +

k4ηu
ζu−σ◦ + sup(x0,x̃0)∈B×B̃ V (x0, x̃0).

Proof. Using similar argument as in the proof of Theorem 6.8, we conclude that for

|w|∞ ≤ ε

V (x, x̃) ≤ V (x0, x̃0)e
−σ◦t +

γ2dε
2

σ◦
(1− e−σ◦t)

+
k3ηy

ζy − σ◦
(e−σ◦t − e−ζyt) +

k4ηu
ζu − σ◦

(e−σ◦t − e−ζut).

The fact that λnx(P )‖x‖2+θλnx(P̃ )‖x̃‖2≤ V (x, x̃) implies ‖x‖≤ λnx(P )−
1
2V (x, x̃) and ‖x̃‖≤

θ−
1
2λnx(P̃ )−

1
2V (x, x̃), hence completes the proof.

A decentralized version of event separation property is given in the following theorem.

Compared to the centralized case originally stated in [59], the main technical issue here is

the boundedness of x ,x̃, proven in Lemma 6.9.

Theorem 6.6 Under the execution rule (6.45) and assumption (A2), the closed-loop system

(6.44) has the robust semi-global event-separation property.

Proof. We first prove the result for the sensor-to-controller channel. We will assume

ti+1
y ≤ tiy+ τ̂y, otherwise τ

y
m = τ̂y and hence the proof is immediate. Using similar process as

in the proof of Theorem 6.1, we conclude from TC (6.45) that a lower bound on MIET can be

obtained through the condition ‖ey‖≤ ay‖y‖+by where ay, by are obtained by substituting

α1, α2, α3, δ in (6.18) by αy
1 = λny(P

y
1 ), αy

2 = 2‖Py
2‖, αy

3 = λ1(Py
3 ), δy, respectively.

Defining ρy = ‖ey‖/(ay‖y‖+by) we have

ρ̇y ≤
‖ėy‖

ay‖y‖+by
+

ay‖ey‖‖ẏ‖
(ay‖y‖+by)2

≤ (1 + ayρy)
‖ẏ‖

ay‖y‖+by

Therefore, from (6.47a) we have

ρ̇y ≤ (1 + ayρy)
(b1‖x‖+b2‖x̃‖+b3‖eu‖+b4‖w‖

ay‖y‖+by

)
.

Since the second bracket is bounded in view of Lemma 6.9, we conclude that ρ̇y ≤ cy
by
(1 +

ayρy), where cy = (b1+b3au‖K‖)(�λnx(P )−
1
2 )+(b2+b3au‖K‖)(θ−

1
2 �λnx(P̃ )−

1
2 )+b3bu+b4ε
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and |w|∞ ≤ ε. Solving this inequality from ρy(t
i
y) = 0 to ρy(ςy) = 1, at which the modified

TC is satisfied, we conclude ςy = tiy +
by
cy

ln(1 + ay) and hence τym ≥ by
cy

ln(1 + ay).

Now we use similar arguments to prove the result for the controller-to-actuator channel.

We assume tju ≤ tju + τ̂u. Therefore, the TC ‖eu‖≤ au‖Kx̂‖+bu gives the lower bound on

MIET where au, bu are obtained by substituting α1, α2, α3, δ in (6.18) by αu
1 = λnu(Pu

1 ),

αu
2 = 2‖Pu

2 ‖, αu
3 = λ1(Pu

3 ), δu, respectively. Thus by defining ρu = ‖eu‖/(au‖Kx̂‖+bu) we

have

ρ̇u ≤
‖ėu‖

au‖Kx̂‖+bu
+

au‖eu‖‖K ˙̂x‖
(au‖Kx̂‖+bu)2

≤ (1 + auρu)
‖K ˙̂x‖

au‖Kx̂‖+bu

which using (6.47b) gives

ρ̇u ≤ (1 + auρu)
( b̄1‖x‖+b̄2‖x̃‖+b̄3‖ey‖+b̄4‖eu‖

au‖Kx̂‖+bu

)
.

Applying Lemma 6.9, we conclude that ρ̇u ≤ (1 + auρu)(b̄4 + cu
bu
), where cu = (b̄1 +

b̄3ay(‖Cy‖+cφ3))(�λnx(P )−
1
2 ) + b̄2(θ

− 1
2 �λnx(P̃ )−

1
2 ) + b̄3by. Using similar process as in the

proof of first statement, we solve this inequality from ρu(t
j
u) = 0 to ρu(ςu) = 1 to conclude

τum ≥ (b̄4 +
cu
bu
)−1 ln(1 + au).

6.3.3 Discussion: Separation Principle

So far, the matrices K, L were designed in (6.58), (6.59) to stabilize the subsystems x, x̃.

However, there remains to establish overall system stability (6.44) obtained by combining

these subsystems. In the absence of a network, overall stability of the combination follows

by the well-known separation principle. However, the same does not hold in the presence

of the ETMs, [21]. This can be seen from (6.66), (6.65) which are insufficient to prove

the stability of (6.44) and hence the additional condition (6.64f) is required. We now show

that fast sampling at the controller-to-actuator channel is the key to solving this issue and

guarantee the independency of K and L design in an event-based scenario. Indeed, from

(6.64f) it can be inferred that when θ is chosen large enough so that(
−μyInx − PBuK

� − θμuInx

)
≺ 0, (6.69)

(6.64f) holds for sufficiently small ru, i.e., fast sampling at the controller-to-actuator chan-

nel. On the other hand, due to presence of the term ry in (6.65), the effect of fast sampling

at the sensor-to-controller channel is to reduce the conservatism in designing matrix K.

Note that choosing K such that the eigenvalues of A + BuK are pushed further negative,

from the definition of My it can be concluded that (6.65) can be solved for larger ry.
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6.3.4 Main Result

Theorem 6.7 Suppose that assumption (A1) holds and let K,L to be designed such that

Ā◦, Â◦ are stable and (6.58), (6.59) hold for some γ, γ̃ ∈ R
+. Also assume triggering

parameters Xy,Xu and Ty, Tu are defined as in (6.68) and (6.67), respectively. Then the

closed-loop system (6.44) is finite gain L2-stable and has L2-gain ≤ γd for some γd > γ̄◦ :=√
γ2 + θγ̃2, θ ∈ R

+.

Proof. From (6.56), (6.57), (6.66) and (6.64) one can easily show that the integral in the

right hand side of (6.63) is upper bounded by −σyxTPx− σux̃
TP̃ x̃+ k3ηy + k4ηu. Thus we

conclude Jγd
〈0,t〉 + V (x0, x̃0) + k3ηy + k4ηu ≥ 0.

Theorem 6.8 Under the conditions of Theorem 6.7, the closed-loop system (6.44) is GES

at equilibrium point x = 0 with convergence rate σ◦ = min{σy, σu}.

Proof. Define

Θ̄3 =

(
−(μy + εy)Inx −PBuK

� −θ(μu + εu)Inx + θ P̃LLTP̃
α̂

)
,

similar to the proof of Theorem 6.7, from (6.54), (6.55), (6.56), (6.57) we conclude that for

w = 0 and any t ∈ R
+
0

V̇ (x, x̃) ≤ −σ◦V (x, x̃) + ξ̃TΘ̄3ξ̃ + α1‖ey‖2+α2‖eu‖2,

which can be solved as V (x, x̃)eσ◦t − V (x0, x̃0) ≤
∫ t
0 e

σ◦τ{ξ̃TΘ̄3ξ̃ + α1‖ey‖2+α2‖eu‖2}dτ .
Therefore, by applying (6.66), (6.64) and Proposition 6.3 for σ̄◦ = σ◦ we conclude

V (x, x̃)eσ◦t − V (x0, x̃0) ≤
∫ t

0
eσ◦τ (k3ηye

−ζyτ + k4ηue
−ζuτ ),

and finally

V (x, x̃) ≤ V (x0, x̃0)e
−σ◦t +

k3ηy
ζy − σ◦

(e−σ◦t − e−ζyt) +
k4ηu

ζu − σ◦
(e−σ◦t − e−ζut).

It is then easy to check (6.12) holds for r =
√
θ, σ̄2 = σ◦ and

σ̄1 =
min{λ1(P ),λ1(P̃ )}

max{λnx (P ),λnx (P̃ )}

(
1 +

k3η̄y
ζy−σ◦ +

k4η̄u
ζu−σ◦

)
choosing ηy = η̄yV (x0, x̃0), ηu = η̄uV (x0, x̃0), η̄y, η̄u ∈ R

+.
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6.4 Application: Event-Based Lyapunov’s Indirect Method

In this section, we take the advantage of the results of previous sections to design local

H∞ controller for general nonlinear ETC systems. To simplify our presentation we restrict

attention to the state feedback case, premising that the more complicated output-based

control structure will not change the resulting outcomes. Therefore, consider the nonlinear

plant

ẋ = f(x) +Buu+Bww

with the performance output z given by

z = h(x).

The functions f and h are continuously differentiable and locally Lipschitz-continuous.

According to the classical Lyapunov indirect method if the continuous-time control law

u = Kx

stabilizes the linearized plant, then the original nonlinear model is also stable, at least

locally. It it, however, unclear whether or not this important classical result still holds

when the control law is implemented in event-triggered form. To the best of our knowledge,

this problem has not been studied so far. Let us define

A :=
∂f(x)

∂x

∣∣∣
x=0

, Cz :=
∂h(x)

∂x

∣∣∣
x=0

,

the resulting ETC system is described by{
ẋ = (A+BuK)x+ ϕ1(x) +BuKe+Bww,

z = Czx+ ϕ2(x).
(6.70)

where

ϕ1(x) = f(x)−Ax, ϕ2(x) = h(x)− Czx.

The nonlinear functions ϕ1, ϕ2 are locally Lipschitz-continuous. Given some cϕ1 , cϕ2 , system

(6.70) is equivalent to (6.15) provided that the trajectories of (6.70) remains in

D = {x ∈ R
nx : ‖x‖≤ xd}

where xd = inf{x, x̌ ∈ R
nx : ‖ϕi(x)− ϕi(x̌)‖≤ cϕi‖x− x̌‖, i = 1, 2}. To see that this is the

case, let us first redefine c̄ in Proposition 6.2 by replacing cφi
by cϕi , i ∈ {1, 2}. Then we

conclude from the TC (6.16), Proposition 6.2 and (6.24) that for any t ∈ R
+
0

Ẇ + σW ≤ γ2d‖w‖2+Δ,
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solving which gives

λnx(P )‖x‖2≤ λ1(P )‖x0‖2+ sup
0≤τ≤t

{γ2d
σ
‖w(τ)‖2+‖Δ(τ)‖

σ

}
.

Thus choosing r0, ε such that √
λ1(P )
λnx (P )r0 +

γdε+
√

|Δ|∞√
σλnx (P )

≤ xd,

it can be inferred that x(t) ∈ D for all t ∈ R
+
0 and any w ∈ Lnw

2 with |w|∞ ≤ ε, and any

initial conditions with ‖x0‖≤ r0. Hence the H∞ ETC design discussed in Section 6.2 can

be applied to linearized model (6.70). The above results are summarized in the following

theorem.

Theorem 6.9 There exist some neighborhoods D0 ⊂ R
nx , Dw ⊂ Lnw

2 of origin such that

the closed-loop system (6.70) is finite gain L2-stable and has L2-gain ≤ γd for all w ∈ Dw,

all x0 ∈ D0.

6.5 Numerical Examples

In this section, we illustrate the proposed procedures for designing matrices K and L.

Note that conditions (6.58), (6.59) are of limited use from a design perspective, as they

are not originally stated in terms of the eigenvalues of stability matrices. To circumvent

this limitation, two different strategies are provided in Section 6.2.4 and are summerized in

Lemmas 6.6, 6.7. In our first example, we follow the method of Lemma 6.6 to design matrix

gains K, L. In the second example, however, we provide a model for which the design can

not be performed based on the result of Lemma 6.6 and hence Lemma 6.7 is exploited to

for design.

6.5.1 Example 1

The first example is chosen in consistent with the statement of Lemma 6.6, i.e., the largest

eigenvalue of Re Ā◦ can be assigned negative by appropriate choice of K. Consider the

system model (6.10) with

A =

(
−1 1
1 0

)
, Bu =

(
0
1

)
, Cy =

(
0 1

)
,

Note that due to the symmetry of matrix A and similarity of Bu, C
T
y , the desgin procdure

for K, L are similar. Taking

K =
(
k1 k2

)
, L =

(
l1 l2

)T
(6.71)
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implies that assumption (A1) holds. It is then easy to check

∏2
i=1 λi(Re Ā◦) = −k2 − (1 + k1

2 )
2,∑2

i=1 λi(Re Ā◦) = −1 + k2,

solving which for λ1(Re Ā◦) gives

λ1(Re Ā◦) =
1
2(k2 − 1) + 1

2

(
(k2 + 1)2 + 4(1 + k1

2 )
2
) 1

2
.

Then choosing k1, k2 such that k2 < −(1 + k1
2 )

2 results in λ1(Re Ā◦) ∈ (−1, 0] and hence

Lemma 6.6 can be used to design K, i.e., we can assign ψy +
σy

2 ∈ [0, 1). Also since

ĀT
◦ = Â◦|L=−KT and CT

y = Bu, we have Re Â◦ = Re Ā◦. Similarly, matirx L can be

designed appropriately to ensure ψu + σu
2 ∈ [0, 1).

6.5.2 Example 2

We now consider the case where the the largest eigenvalue of Re Ā◦ can not be set negative

and hence Lemma 6.6 is useless to design K, L. Therefore, the design is performed using

the result of Lemma 6.7. Consider the system model (6.10) with

A =

(
0 1
1 − 1

)
, Bu =

(
0
1

)
, Cy =

(
0 1

)
which is the generalization of the model proposed in [84] to the output feedback case. It is

easy to check that assumption (A1) holds. Moreover, choosing K, L as in (6.71), we have

det(Re Ā◦), det(Re Â◦) ≤ 0 and hence λ1(Re Ā◦), λ1(Re Â◦) ≥ 0. This implies that Lemma

6.6 is useless to designK, L. Thus, we design these matices according to Lemma 6.7. In [84],

it is shown that the design can be performed for matrix L as L = col(69.5523, 11.5679).

Also the resulting closed-loop eigenvalues of Â◦ are placed at −6.2839± j5.3911. Now since

ĀT
◦ = Â◦|L=−KT it can be inferred that K = (−69.5523,−11.5679) and hence the same

closed-loop eigenvalues as Ā◦. The maximum ψy +
σy

2 (respectively, ψu +
σu
2 ) for which the

stable controller (respectively, observer) is guaranteed can be calculated as 0.49. We refer

the interested readers to [84] for more details.

6.5.3 Range of Parameters and Admissible Nonlinearities

In previous examples, it is shown that by proper choices of matricesK, L one can ensure ψy+
σy

2 ∈ [0, �), where� = 1 (respectively, � = 0.49) in the first (respectively, second) example.

Therefore, from definition of ψy we obtain cφ1+(‖Bw‖
γ + ‖Bu‖√

α
)(
√
μy + εy+‖Cz‖+cφ2)+

σy

2 ≤
�. This introduce an upper bound on the admissible range of γ, μy, εy, σy and Lipschitz
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coefficients cφ1 , cφ2 . Similarly, from ψu + σu
2 ∈ [0, �), the parameters γ̃, μu, εu, σu and

Lipschitz coefficients cφ1 , cφ3 are restricted to satisfy cφ1+cφ3‖L‖+
‖Bw‖

γ̃

√
μu + εu+

σu
2 ≤ �.

6.6 Summary

We have proposed a design methodology to simultaneously synthesize the feedback law

and the TC for nonlinear Lipschitz systems. The study covered both state and output-

based controller designs. Several triggering and performance variables are introduced as

the design parameters which has to chosen properly to meet the desired configuration of

the closed-loop poles. In addition, it is shown for the first time that for the output feedback

case, under the fast sampling at the controller-to-actuator channel, the separation principle

holds. Moreover, the results are shown to be a platform for the local stability of general

nonlinear systems.
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Chapter 7

Dissipativity Properties of
Nonlinear Systems Under Network
Constraints

7.1 Problem Statement

In this chapter1 we consider two subsystems Σi (i = 1, 2) of the following form

Σi :

{
ẋi = fi(xi, ui),
yi = hi(xi),

(7.1)

where xi ∈ R
ni , ui ∈ R

mi and yi ∈ R
mī . The functions fi and hi are locally Lipschitz

with respect to their arguments and satisfy fi(0, 0) = 0 and hi(0) = 0 so that xi = 0 is an

equilibrium point of the unforced subsystem i. The following notation is used throughout

this chapter

ī =

{
1, i = 2,
2, i = 1.

Definition 7.1 (Dissipativity property) A state space system Σi is said to be dissipa-

tive with respect to the supply rate si : R
mi × R

mī → R if there exists ηi(xi0) ≥ 0 such that

for all xi0 := xi(t0) ∈ R
ni, all ui ∈ Lmi

2 , and all t1 ≥ t0∫ t1

t0

si(ui(t), yi(t))dt+ ηi(xi0) ≥ 0. (7.2)

With the assistance of a differentiable function Vi : R
ni → R

+, called storage function,

condition (7.2) can be re-stated as follows: Σi is dissipative with respect to si, provided

that for all xi0 ∈ R
ni , all ui ∈ Lmi

2 , and all t1 ≥ t0

V̇i(xi(t)) ≤ si(ui(t), yi(t)).
1The results of this chapter have been submitted for publication in the article: M. Ghodrat and S. H.

Mousavi and A. H. J. de Ruiter and H. J. Marquez, “Dissipativity Properties of Nonlinear Systems Under
Network Constraints”, Submitted to IEEE Trans. Autom. Control, November 2018.
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Assumption 7.1 Each subsystem Σi (i = 1, 2) is dissipative with respect to the supply rate

si(ui, yi) = yTi Qiyi + yTi Siui + uTi Riui, (7.3)

with differentiable storage function Vi, where Qi, Si, Ri, i = 1, 2 are matrices of appropriate

dimensions and QT
i = Qi, R

T
i = Ri.

For the feedback interconnections of the two subsystems which is obtained through the

relations u1 = r1− y2, u2 = r2+ y1, dissipativity follows immediately from Assumption 7.1.

However, this manuscript focuses on a more realistic scenario where the interconnection be-

tween systems takes place through a communication network. More specifically, we assume

that data exchange between subsystems Σi, i = 1, 2 is carried out through a digital network

with limited communication rate. Being stated in the context of sampled-data theory, this

situation has received a lot of attention up to date and has a rich body of literature, see [4].

In this chapter we relax the periodic sampling assumption and focus on aperiodic sampling

in the form of an ETM while maintaining the properties of the original design.

7.1.1 Event-Based Architecture

We will consider two independent triggering modules Γi for the subsystems Σi. Γ1 (resp.

Γ2) exploits its local available information to schedule the data transmission from Σ1 to Σ2

(resp. Σ2 to Σ1). In such structure, the interconnections between subsystems Σi, i = 1, 2

are expressed as follows:

u1 = r1 − ŷ2, u2 = r2 + ŷ1, (7.4)

where ri ∈ R
qi is the exogenous input to the system Σi, i = 1, 2 and ŷi, i = 1, 2 is the

intermittent information exchanged between two subsystems defined by

ŷi(t) := y(tiji), ∀ t ∈ [tiji , t
i
ji+1),

for ji ∈ N0, and i = 1, 2. In the above definition, {t1j1 : j1 ∈ N0} and {t2j2 : j2 ∈ N0} are the

asynchronous transmission instants at the Σ1 and Σ2 sides, respectively. The general system

structure is depicted in Fig. 7.1, where the solid and dashed lines represent continuous and

intermittent information flow of information, respectively. Denote, x := (xT1 , x
T
2 )

T ∈ R
n,

r := (rT1 , r
T
2 )

T ∈ R
m and y := (yT1 , y

T
2 )

T ∈ R
p as the state, input and output, respectively,

with n = n1 + n2 and m = p = m1 + m2. Then, In order to study the input-output
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Figure 7.1: General structure of feedback system Σ

properties, the overall interconnected system is described as follows:

Σ :

⎧⎪⎪⎨⎪⎪⎩
ẋ =

(
f1(x1, r1 − ŷ2)
f2(x2, r2 + ŷ1)

)
,

y =

(
h1(x1)
h2(x2)

)
.

As mentioned earlier, the problem of event-triggered dissipative has been recently studied in

[11,26,27,51,52]. However, there are two main issues with the proposed mechanisms: i) The

results in the aforementioned references are limited to the cases that inputs ri, i = 1, 2 are

continuously differentiable signals with bounded derivative; a restrictive assumption when

dealing with arbitrary unknown disturbances. ii) More importantly, the event separation

in the presence of arbitrary inputs ri, i = 1, 2 is not fully guaranteed. In fact, when

states approach the origin, arbitrary exogenous inputs may result in an unlimited number

of events.

In this chapter, our goal is to design triggering policies such that the dissipativity prop-

erty of the proposed feedback system is guaranteed, while the separation property for trig-

gering instants of each module holds, assuming only disturbances in L2. In this regard,

define the following sampling error for each subsystems Σi, i = 1, 2

ei(t) = ŷi(t)− yi(t). (7.5)

Remark 7.1 While the connections between subsystems Σ1 and Σ2 are interrupted in be-

tween the sampling instants and they operate in an open-loop fashion, taking ei, i = 1, 2 as

external inputs one can treat Σ as a closed-loop control system. This enables us to apply

the existing input/output theories to the system Σ.

Assuming the initial sampling instants at both sides occur simultaneously at ti0 = 0, and

denoting tiji as the most recent triggering instants for the triggering modules Γi, i = 1, 2,

the upcoming sampling instants are decided through

tiji+1 = inf{t > tiji : ‖ei(t)‖
2≥ σi‖yi(t)‖2+Δi(t)}, (7.6)
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where the parameters σi ∈ R
+ and the functions Δi(·), i = 1, 2 have the following structure

Δi(t) =

{
δi, tiji ≤ t ≤ tiji + τi,

ψi(t), t
i
ji
+ τi ≤ t ≤ tiji+1,

where τi, δi ∈ R
+ are constant parameters and ψi ∈ L∞ are bounded functions which can

be designed based on three different scenarios ψi ∈ Z0∩L∞, ψi ∈ L1∩L∞ or ψi ∈ L∞, each

leads to a different dissipativity property for the ETC system. In the sequel, it will be shown

that the positiveness of τi, δi are incorporated to guarantee the separation of triggering

instants. Moreover, as suggested in Chapter 4, proper choices of functions ψi provide the

flexibility to enlarge the inter-event times. It is worth remarking that an alternative to

the TC proposed in (7.6), is the time-regularization approach recently proposed in [20,48],

where triggering is not permitted until some dwell-time has passed since the last transmitted

signal. Condition (7.6) is free of this limitation and hence may offer better performance

when compared to time-regularization method.

It will be shown in Section 7.3 that the boundedness of the trajectoriesof subsystems Σi,

i = 1, 2 is key to guarantee Zeno-free behavior for the system Σ. Generally speaking, the

dissipativity property (7.2) does not imply boundedness of states and hence an auxiliary

assumption is required. The missing element in the input-output theory is the link between

boundedness of input-output signals and that of state trajectories. This is entirely analogous

to the detectability-type properties that ensure ultimate boundedness of states by some

function of inputs and outputs norms [88]. Thus, our conjecture is to exploit a detectability

assumption in one of its forms, in order to admit the boundedness property of states.

7.2 Motivation

It is not difficult to verify that finite-gain L2 stability is a special case of the dissipativity

property (7.3), with a specific choice of matrices Qi, Si and Ri, [5]. The L2 stability

analysis of ETC systems has seen much attention in recent years, including [16–18,20,49] to

mention just a few. All these works are built on two main assumptions: first, L2 stability

of network-free system and second, ISS of ETC model. Therefore, in order to address the

dissipativity problem, it is reasonable to generalize these assumptions. To generalize the

first assumption on the L2 stability of a network-free setup, it suffices to assume that each

subsystem Σi, i = 1, 2 is dissipative. Moreover, a general counterpart of ISS assumption is

the following notion of input-output to state stability (IOSS). An equivalent definition can

be found in [89].
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Definition 7.2 (Input-output to state stability) The system Σi has IOSS property pro-

vided that there exists a class KL function ξi and class K functions γi, νi so that

‖xi(t)‖≤ ξi(‖xi0‖, t) + γi(‖ui(t)‖∞) + νi(‖yi(t)‖∞)

for every intial state xi0 ∈ R
ni.

The above definition suggests that when inputs and outputs are zero, states converge to

zero. So, it is strongly connected to detectability of Σ, [88]. This property serves to show

the boundedness of trajectories of Σ. Note that a similar but stronger concept, defined as

strongly finite-time detectability, is used in [90] for the same purpose.

Depending on how the parameters in the TCs (7.6) are selected, these generalized as-

sumptions render a dissipativity property for the event-based setup, either in classical form

or weak form. Indeed, we will show that there exists a trade-off in the parameter selection

such that improved inter-event behaviour comes at the expense of a weaker form of dis-

sipativity for feedback system Σ. The above statement also explain why the dissipativity

results given in [51, 52] have been stated in its classical form by sacrificing the separation

of triggering instants.

The following variation of the dissipativity property will be required. Note that a similar

definition was introduced in [63].

Definition 7.3 (Weakly quasi-dissipativity property) System Σ is said to be weakly

quasi-dissipative with respect to supply rate s : Rm × R
p → R if there exist some α, β ∈ R

+
0

such that for all x0 ∈ R
n, all r ∈ R

m, and all t1 ≥ t0∫ t1

t0

s(r(t), y(t))dt+ α(t1 − t0) + β ≥ 0.

Whenever α = 0 (resp. β = 0), the system Σ is called weakly dissipative (resp. quasi-

dissipative). Thus the main deviation of weak dissipativity from the regular concept is

that it allows the storage function to include finite power sources. This is analogous to the

concept of a bias term in theory of L2 stability [68].

7.3 Boundedness Properties

We shall need the following notion of state boundedness.

Definition 7.4 (Bounded-input bounded-state stability) System Σ is bounded-input

bounded-state stable (BIBS) if there exist �1, �2 ∈ N such that for any x0 ∈ R
n and any
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r ∈ Lm
2

sup
t≥t0

‖x(t, x0, r)‖≤ max{�1(‖x0‖), �2(|r|∞)}. (7.7)

As stated earlier, the IOSS property is the key toward showing the state boundedness

in the ETC system. However, Definition 7.2 is not practically applicable for checking

this property for a given system. As a solution, the following definition characterizes this

property in terms of Lyapunov functions.

Definition 7.5 (Characterization of IOSS property) An IOSS-Lyapunov function for

system Σi is any continuously differentiable function Wi, satisfying

ϕ
i
(xi) ≤Wi(xi) ≤ ϕ̄i(xi), (7.8)

d

dt
Wi(xi(t)) ≤ −αi(xi(t)) + κi(ui(t)) + φi(yi(t)), (7.9)

for some class K∞ functions ϕ
i
, ϕ̄i, αi, κi, φi.

Assumption 7.2 Each subsystem Σi (i = 1, 2) has IOSS property.

The following lemma characterizes the BIBS property for the proposed ETC system.

Lemma 7.1 Suppose that:

(i) Assumption 7.2 holds with respect to IOSS-Lyapunov functions Wi, i = 1, 2. More-

over, functions ϕ̄i, αi, κi, φi in (7.8), (7.9) satisfy ϕ̄i(xi) ≤ d̄i‖xi‖2, ϕi
(xi) ≥ di‖xi‖2,

αi(xi) ≥ α∗
i ‖xi‖2, κi(ui) ≤ κ̄i‖ui‖2, φi(yi) ≤ φ̄i‖yi‖2 for some d̄i, α

∗
i , κ̄i, φ̄i ∈ R

+;

(ii) Assumption 7.1 holds with respect to storage functions Vi i = 1, 2, satisfying vi‖xi‖2≤
Vi(xi) ≤ v̄i‖xi‖2 for some vi, v̄i ∈ R

+;

(iii) There exists some � ∈ R
+ such that matrix Q̂ defined as

Q̂ =

[
Q1 + �R2

1
2(−S1 + �ST

2 )
1
2(−ST

1 + �S2) R1 + �Q2

]
. (7.10)

is negative definite

Then, feedback system Σ has BIBS property.

Proof. According to Assumption 7.1, there exist storage functions Vi : R
ni → R

+, i = 1, 2

such that

V̇i(xi) ≤ yTi Qiyi + yTi Siui + uTi Riui. (7.11)
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Consider the storage function V (x) = V1(x1) + �V2(x2) for some � ∈ R
+, it follows from

(7.11), (7.4) and (7.5) that

V̇ (x) ≤ yTQ̂y + yTŜr + rTR̂r +Φ(e, r, y)

where Q̂ is defined in (7.10),

Ŝ =

[
S1 2�R2

−2R1 �S2

]
, R̂ =

[
R1 0
0 �R2

]
and Φ(e, r, y) = eT(Φee+Φrr +Φyy) with

Φe =

[
�R2 0
0 R1

]
, Φr =

[
0 2�R2

−2R1 0

]
, Φy =

[
2�R2 �S2

− S1 2R1

]
.

Using the fact that

eTΦrr ≤
‖e‖2
λr

+ λr‖Φrr‖2, eTΦyy ≤
‖e‖2
λy

+ λy‖Φyy‖2,

for some λr, λy ∈ R
+, we conclude that

V̇ (x) ≤ yTQ̄y + yTS̄r + rTR̄r +
2∑

i=1

�̄i‖ei‖2, (7.12)

where �̄1 = �‖R2‖+ 1
λr

+ 1
λy
, �̄2 = ‖R1‖+ 1

λr
+ 1

λy
and

Q̄ = Q̂+ λyΦ
T
yΦy, S̄ = Ŝ, R̄ = R̂+ λrΦ

T
r Φr.

Now, take U(x) = V (x) + ρW (x) for some ρ ∈ R
+ where W (x) = W1(x1) + W2(x2).

According to inequality (7.9) and condition (i) we have

Ẇ (x) ≤ −α∗‖x‖2+κ‖u‖2+φ‖y‖2 (7.13)

with α∗ = min{α∗
1, α

∗
2}, κ = max{κ̄1, κ̄2} and φ = max{φ̄1, φ̄2}. Using Young’s inequality

it is obtained that

‖u‖2=
2∑

i=1

‖ui‖2= ‖r1 − y2 − e2‖2+‖r2 + y1 + e1‖2

≤yTQuy + yTSur + rTRur + (1 +
1

ε3
+

1

ε4
)‖e1‖2+(1 +

1

ε1
+

1

ε2
)‖e2‖2 (7.14)

where ε1, ε2, ε3, ε4 ∈ R
+ and

Qu =

[
1 + ε4 0

0 1 + ε2

]
, Su =

[
0 2
−2 0

]
, Ru =

[
1 + ε1 0

0 1 + ε3

]
.
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In view of (7.12), (7.13) and (7.14) we can write

U̇(x) ≤ yTQ̃y + yTS̃r + rTR̃r +
2∑

i=1

�i‖ei‖2−ρα∗‖x‖2 (7.15)

where �1 = �̄1 + ρκ(1 + 1
ε3

+ 1
ε4
), �2 = �̄2 + ρκ(1 + 1

ε1
+ 1

ε2
) and

Q̃ = Q̄+ ρφI + ρκQu, S̃ = S̄ + ρκSu, R̃ = R̄+ ρκRu.

Now since Q̂ is negative definite in the light of condition (iii), there exists some ρ, λy such

that Q̃ is also negative definite. Hence, applying [90, Proposition 1] we see that there exist

some positive η, μ such that

yTQ̃y + yTS̃r + rTR̃r ≤ −η‖y‖2+μ‖r‖2. (7.16)

Exploiting conditions (i), (ii) there exists some θ ∈ R
+ such that θU(x) ≤ ρα∗‖x‖2. Using

the last inequality alongside with (7.15), (7.16), and TCs (7.6) results in

U̇(x) ≤ −θU(x)− yT(ηI −Qe)y + μrTr +

2∑
i=1

�iΔi

for ρ∗ < ρ and

Qe =

[
�1σ1 0
0 �2σ2

]
.

Choosing σi such that

σi <
η

�i
, (i = 1, 2) (7.17)

we have ηI > Qe, and hence

U̇(x) ≤ −θU(x) + μ|r|2∞+

2∑
i=1

�iΔi.

Multiplying both sides of above inequality with eθt and integrating from 0 to t yields

U(x(t))eθt − U(x0) ≤
∫ t

0
eθτ
{
μ|r|2∞+

2∑
i=1

�i|Δi|∞
}
dτ.

Note that |Δi|∞ is well-defined due to boundedness of δi, ψi(t). It is then easy to verify

that

U(x(t)) ≤ U(x0) +
μ

θ
|r|2∞+

2∑
i=1

�i
θ
|Δi|∞. (7.18)

It is then straight forward to show that BIBS property (7.7) holds.
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Remark 7.2 The BIBS property of system Σ can also be shown if condition (i) of Lemma

7.1 is substituted by an IOSS condition on the overall feedback system Σ. The details are,

however, left to the interested readers.

Remark 7.3 In [90], a similar condition to (7.10) is used to guarantee boundedness of in-

terconnected systems. Condition (7.10) is a special version of the graph separation condition

(originally defined in [91]) and is used to prove similar boundedness results. Moreover, as

shown in [90], following condition (7.10) system Σ has a uniform finite power gain.

We continue with the following lemma that gives an upper bound on the linear combi-

nation of measurement errors.

Lemma 7.2 Define

A =
{
(z1, z2) ∈ R

+ × R
+ : z1z2 < 1

}
(7.19)

and let compact sets Di ∈ R
ni and H1, H2, ε ∈ R

+given such that x0 ∈ D1×D2, (H1, H2) ∈
A, |r|∞≤ ε. Also let ϑ ∈ R

+ and denote τi ∈ R
+, i = 1, 2 as the solutions to

ϑ

∫ l+τi

l

∫ π2

l
dπ1dπ2 = Hi (i = 1, 2). (7.20)

Then, for any k1, k2, t ∈ R
+ we have∫ t

0

2∑
i=1

ki‖ei(τ)‖2dτ ≤
∫ t

0

(
yT(τ)Qcy(τ) + rT(τ)Rcr(τ)

+
2∑

i=1

{
ci‖xi(τ)‖2+ψi(τ)

})
dτ,

where

ci =
(ki + kīHī)Hi

1−HiHī

, (i = 1, 2),

c3 = c1, c4 = c2, c5 = c2 +
σ1c1
H1

, c6 = c1 +
σ2c2
H2

and

Qc =

[
c5 0
0 c6

]
, Rc =

[
c3 0
0 c4

]
.

Proof. Define X0 = maxx0∈D1×D2‖x0‖. Since x0 ∈ D1×D2 and |r|∞≤ ε, it can be inferred

from Lemma 7.1 that the state trajectories x remain in the compact set

Dx =
{
ξx ∈ R

n : ‖ξx‖≤ max{�1(X0), �2(ε)}
}
. (7.21)
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Moreover, using this fact and interconnection equations (7.4), we can write ‖u‖= ‖(u1, u2)‖≤
‖r‖+‖ŷ‖, and thus conclude that the signal u does not leave the compact set

Du =
{
ξu ∈ R

m : ‖ξu‖≤ ε+ max
ξx∈Dx

‖h(ξx)‖
}
. (7.22)

Denote the Lipschitz coefficients of functions fi, hi on the compact sets Dx,Du by λfi , λhi
.

From (7.5) and (7.1) it is concluded that

‖ėi‖= ‖ẏi‖ = lim
dt→0+

1

dt
‖hi(xi(t+ dt))− hi(xi(t))‖

≤ λhi
‖fi(xi, ui)‖.

Exploiting the interconnection equations (7.4) we can write

‖ėi‖≤ λ̄i(‖xi‖+‖ri‖+‖yī‖+‖eī‖), (7.23)

where λ̄i = λfiλhi
, i = 1, 2. Using the fact d‖ei‖/dt ≤ ‖ėi‖ and the inequality (7.23) we

have

‖ei(t)‖≤
∫ t

tiji

λ̄i(‖xi‖+‖ri‖+‖yī‖+‖eī‖)dτ.

By applying Young’s inequality it is obtained that

‖ei(t)‖2≤ 4λ̄2
i

{(∫ t

tiji

‖xi(τ)‖dτ
)2

+
(∫ t

tiji

‖ri(τ)‖dτ
)2

+
(∫ t

tiji

‖yī(τ)‖dτ
)2

+
(∫ t

tiji

‖eī(τ)‖dτ
)2}

.

Finally, we can apply C-S inequality to get

‖ei(t)‖2≤4λ̄2
i

∫ t

tiji

dτ

∫ t

tiji

{
‖xi(τ)‖2+‖ri(τ)‖2

+ ‖yī(τ)‖2+‖eī(τ)‖2
}
dτ. (7.24)

Breaking down the integral term of
∫ t
0‖ei(τ)‖2dτ as∫ t

0
‖ei(τ)‖2dτ =

∑
ji

{∫ tiji
+τi

tiji

+

∫ tiji+1

tiji
+τi

‖ei(τ)‖2dτ
}
,

where for the most recent triggering index Ni until time t, we define tiNi+1 = t, i = 1, 2. We

can upper bound ‖ei‖2 using TC (7.24) for [tiji , t
i
ji
+ τi) (resp. using (7.6) for [tiji + τi, t

i
ji+1

))
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and apply (7.20) with ϑ = 4(λ̄i)
2 to write the result in the following matrix form[

1 −H1

−H2 1

] [∫ t
0‖e1(τ)‖2dτ∫ t
0‖e2(τ)‖2dτ

]
≤[

H1

∫ t
0 (‖x1(τ)‖2+‖r1(τ)‖2+‖y2(τ)‖2)dτ

H2

∫ t
0 (‖x2(τ)‖2+‖r2(τ)‖2+‖y1(τ)‖2)dτ

]

+

[∫ t
0 (σ1‖y1(τ)‖2+ψ1(τ))dτ∫ t
0 (σ2‖y2(τ)‖2+ψ2(τ))dτ

]
. (7.25)

This completes the proof noting that∫ t

0

2∑
i=1

ki‖ei(τ)‖2dτ ≤
[
k1 k2

] [ 1 −H1

−H2 1

]−1

× RHS of (7.25).

7.4 Main Results

As the first part of our main results, Theorem 7.1 shows the Zeno-free behaviour for the

proposed TC (7.6). Before that we need the following definition.

Definition 7.6 (Event-separation property) Let τ im = inf{tiji+1 − tiji : ji ∈ N0} be the

MIETs for the triggering modules Γi, i = 1, 2. The event-separation property holds for the

system Σ provided that for any ε ∈ R
+ and any compact sets Di ∈ R

ni, i = 1, 2, we have

inf{τ im : x0 ∈ (D1 ×D2), |r|∞≤ ε, i = 1, 2} > 0.

Theorem 7.1 Under the TC (7.6) the event-separation property holds for system Σ.

Proof. We assume tiji+1 < tiji + τi, i = 1, 2 at least for some ji ∈ N0, since otherwise we

can choose τ im = τi, i = 1, 2 and the proof is immediate from the positiveness of τi. The

rest of proof relies on modifying TC (7.6) to obtain a more conservative one so that TC

would be reached sooner. Then, MIET for this new condition is readily a lower bound for

the inter-event times of (7.6). In this regard, let us choose

‖ei‖≥ ai‖yi‖+bi, (i = 1, 2), (7.26)

as the modified TC where

ai =
( σi
1 + εi

) 1
2
, bi =

( δi

1 + ε−1
i

) 1
2
,
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for some εi ∈ R
+. Note that one can easily check that (7.26) is more conservative than

(7.6) through verfying the following inequality

(A+B)2 ≤ (1 + κ)A2 + (1 + κ−1)B2,

and setting A = ai‖yi‖, B = bi and κ = εi. Now defining χi = ‖ei‖/bi we have

χ̇i ≤
‖ėi‖
bi

Using the fact ‖ẏi‖= ‖ėi‖ and inequality (7.23), it is concluded that

χ̇i ≤
λ̄i

bi

(
‖xi‖+‖ri‖+‖yī‖+‖eī‖

)
.

Since the second brackets is bounded due to Lemma 7.1, there exists some positive L1, L2

such that

χi ≤
λ̄iLi

bi
t, (i = 1, 2). (7.27)

Based on the definition of χi and condition (7.26), the triggering in the modified rule occurs

when χi = 1. Thus Solving (7.27) for χi(0) = 0 and χi(τ̄i) = 1 it is straight forward to

conclude

τ̄i =
bi

λ̄iLi
> 0 (i = 1, 2).

Since τi ≥ τ̄i, the proof is complete. As the second part of our main result, Theorem 7.2

states the dissipativity properties of system Σ.

Theorem 7.2 Under conditions (i)-(iii) of Lemma 7.1 and if

ci < ρα∗ (i = 1, 2), (7.28)

then, system Σ has the following dissipativity properties with respect to the supply rate

s̃(r, y) = yT(Q̃+Qc)y + yTS̃r + rT(R̃+Rc)r. (7.29)

Proof. Integrating (7.15) from 0 to t and applying Lemma 7.2, it is obtained that

U(x(t))− U(x0) ≤
∫ t

0

{
yT(Q̃+Qc)y + yTS̃r + rT(R̃+Rc)r

+ c1‖x1‖2+c2‖x2‖2−ρα∗‖x‖2︸ ︷︷ ︸
(a)

+ψ1(τ) + ψ2(τ)︸ ︷︷ ︸
(b)

}
dτ

Suggested by (7.28), the integral term (a) is upper bounded by 0. Moreover, we have the

following three scenarios For the integral term (b):
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Table 7.1: Different dissipativity properties

Admissible space Dissipativity (Diss.) of system Σ
for ψi(t) weakly diss. quasi-diss. (classical) diss.

Z0 ∩ L∞ � � �
(L1\Z0) ∩ L∞ � � ×
L∞\L1 × � ×

1) ψi(t) ∈ Z0 for i = 1, 2: we have (b) = 0.

2) ψi(t) ∈ L1\Z0 for i = 1, 2: there exists some β ∈ R
+ such that (b) ≤ β.

3) ψi(t) ∈ L∞\L1 for i = 1, 2: there exists some α ∈ R
+ such that (b) ≤ αt.

In view of Definition 7.3, the above formulations yields the results summarized in Table 7.1.

This completes the proof.

7.4.1 Design Algorithm for Triggering Conditions Parameters

Sections 7.3 - 7.4 introduce several constraints in the design of TC. In this section we

proposed an algorithm to complete the design and select the parameters in (7.6).

i. Choose σi, i = 1, 2 based on (7.17).

ii. Select ε > 0, the upper-bound of the norm of the disturbance, and X0 > 0, the

upper-bound of the initial state, respectively. Define compact sets Dx, Du according

to (7.21), (7.22). Then, calculate λfi , λhi
as the Lipschitz coefficients of functions fi,

hi on these compact sets.

iii. For a desired pair of (H1, H2) ∈ A, where A is defined in (7.19), and for ϑ = 4(λfiλhi
)2,

calculate τi, i = 1, 2 according to (7.20).

iv. Choose a positive constant δi, i = 1, 2 and ψi, i = 1, 2 according to desired dissipativity

property in Table 7.1.

Under the above algorithm, system Σ is dissipative with respect to supply rate s̃ defined in

(7.29), for the initial conditions ‖x0‖≤ X0 and exogenous disturbance |r|∞≤ ε.

128



7.5 Case Study

Let fi, hi in (7.1) have the linear structures fi(xi, ui) = Aixi + ui, hi(xi) = xi for i = 1, 2,

which under interconnection (7.4) gives⎧⎨⎩
ẋ1 = A1x1 − x̂2 + w1,
ẋ2 = A2x2 + x̂1 + w2,
yi = xi, (i = 1, 2).

We assume the following TCs proposed in [51]

tiji+1 = inf{t > tiji : ‖ei(t)‖≥ σi‖yi(t)‖}, (7.30)

for i = 1, 2. Choosing wi, i = 1, 2 as follows

w1(t) = −A1x1(t) + x̂2(t)− x1(0),
w2(t) = −A2x2(t)− x̂1(t)− x2(0)

results in the following dynamics

ẋi = −xi(0), (i = 1, 2)

between sampling instants. Thus using a process similar to [59, Theorem IV.1], it can be

shown that

xi(t) = xi(0)(1− t), ei(t) = xi(0)(t− tiji), t ∈ [tiji , t
i
ji+1

).

Thus applying TCs (7.30), the sampling instants are analytically obtained from

tiji = 1−
( 1

1 + σi

)ji
, (i = 1, 2).

This proves the existence of accumulation points at t = 1 for both Γ1, Γ2 sides. However,

under our proposed TCs (7.6), Theorem 7.1 suggests the existence of some positive Li, εi,

i = 1, 2 such that the inter-event times are guaranteed to be separated at least by

τ̄i =
1

max{1, ‖Ai‖}Li

( δi

1 + ε−1
i

) 1
2
.

7.6 Summary

This chapter proposed a TC design structure to meet different types of dissipativity property

for the event-triggered interconnected subsystems. It is shown that by proper choices of

triggering parameters, the resulting closed-loop system may enjoy weak-, quasi- or the

classical dissipativity property. Moreover, the proposed TC is showed to be favorable from

implementation perspective by showing the sampling times to be uniformly isolated. Finally,

the obtained results are validated through a compelling example.
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Chapter 8

An Integral Based Event-Triggered
Control Scheme of Distributed
Network Systems

8.1 Problem Definition

1 In [9], using an ISS Lyapunov function, an ETM is designed for nonlinear systems:

ẋ = f(x, u) (8.1)

where x ∈ R
n and u ∈ R

m are the state and inputs. Assuming state feedback controller

u = k(x) (8.2)

and defining measurements error as e(t) := x(ti) − x(t) for t ∈ [ti, ti+1) where ti’s are

triggering instants, one can rewrite (8.1) as

ẋ = f(x, k(x+ e)) (8.3)

Assume also that an ISS Lyapunov function V exists so that nonlinear system ẋ =

f(x, k(x+ e)) is ISS with respect to measurements error e, i.e., there exist α, γ ∈ K∞ such

that

α(|x|) ≤ V̇ (x) ≤ α(|x|), (8.4)

V̇ (x) ≤ −α(|x|) + γ(|e|). (8.5)

1An early part of the results of this chapter has been published in the article: S. H. Mousavi and M.
Ghodrat and H. J. Marquez, “Integral-Based Event Triggered Control Scheme for a General Class of Non-
Linear Systems”, IET Control Theory & Appl., vol. 9, no. 13, pp. 1982-1988, 2015.

130



Then the following TC

γ(|e|) ≤ σα(|x|), σ ∈ (0, 1) (8.6)

guarantee that V̇ (x) < 0 and hence the system is asymptotically stable in presence of

measurements error, i.e.,

∂V

∂x
f(x, k(x+ e)) ≤ (σ − 1)α(|x|) (8.7)

In this chapter we look for a less conservative TC that can increase the inter-execution

times. To improve the inter-event times, we introduce in integral event-based scheme which

allow the Lyapunov function to have positive derivative until the asymptotic stability of

overall system does not violate. We will show that the new law achieves stability while

significantly reducing the amount of information sent between plant and controller. To this

end, we integrate (8.5) over the interval [ti, t):

V (t)− V (ti) ≤ −
∫ t

ti

α(|x|)dτ +

∫ t

ti

γ(|e|)dτ (8.8)

and define the integral-based TC as follows:∫ t

ti

γ(|e|)dτ ≤ σ

∫ t

ti

α(|x|)dτ t ≥ ti (8.9)

where 0 < σ < 1 is an arbitrary coefficient and next execution time (ti+1 ∈ T) is the time

when above inequality is violated; i.e.∫ ti+1

ti

γ(|e|)dτ = σ

∫ ti+1

ti

α(|x|)dτ. (8.10)

In the following theorem, we show that the TC (8.9) preserves asymptotic stability of

the closed-loop system, while a positive MIET is guaranteed for the scheme.

Theorem 8.1 Consider the continuous-time nonlinear system (8.1) with the pre-defined

stable state feedback law (8.2) and assume that the following conditions, introduced in [9],

hold:

1. f : Rn × R
m → R

n is Lipschitz continuous on compacts.

2. k : Rn → R
m is Lipschitz continuous on compacts.

3. There exists an ISS Lyapunov function for the closed-loop system, satisfying (8.4) and

(8.5) with α−1 and γ Lipschitz continuous on compacts.
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Assume now that instead of continuous information flow from plant to the controller, the

control law updates based on an event-based scheme with integral-based TC (8.9). If 0 <

σ < 1, then we have the following properties for the ETC system:

(A) The origin is an asymptotically stable equilibrium point.

(B) For any compact set S ⊂ R
n, containing the origin, there exists a lower bound τmin ∈

R
+ such that for any initial condition in S we have

ti+1 − ti ≥ τmin ∀ ti, ti+1 ∈ T (8.11)

where partition T, defined in Definition 2.4, is the sequence of the triggering instants.

Proof.

(A) Substituting (8.9) in (8.8) we have

V (t)− V (ti) ≤ (σ − 1)

∫ t

ti

α(|x|)dτ (8.12)

and so, for σ < 1:

V (t) < V (ti) ∀t ∈ [ti, ti+1), (8.13)

and asymptotic stability follows from [58, Lemma 1].

(B) To show the existence of positive MIET τmin, we introduce an auxiliary system with

the same dynamic as (8.3):

ζ̇ = f(ζ, k(ζ + e′)) (8.14)

but with the TC proposed in [9]:

γ(|e′|) ≤ σα(|ζ|). (8.15)

Assume now that both systems update their control law at time instant ti and also

have the same state values at this time, i.e.:

x(ti) = ζ(ti). (8.16)

Denote the next execution times of system (8.14) by t′i+1; i.e.

γ(|e′(t′i+1)|) = σα(|ζ(t′i+1)|) (8.17)

and

γ(|e′(t)|) < σα(|ζ(t)|) ∀t ∈ [ti, t
′
i+1). (8.18)
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Based on (8.16) we have

e′(t) = e(t) ∀t ∈ [ti, t
′
i+1). (8.19)

Integrating (8.18) from ti to t′i+1 and using (8.10), we can easily see that ti+1 > t′i+1.

Since the auxiliary system has lower bound for its execution time, [9], so does the

ETC system with integral-based TC (8.9).

In order to make a fair comparison between the proposed and traditional TC schemes,

in this section we consider two ETC systems with the same dynamic but different triggering

strategies and compare the resulting inter-event times. The following theorem is then stated.

The proof, however, can be find in [58].

Theorem 8.2 Consider the event-triggered nonlinear system (8.3) implemented using the

integral-based TC (8.9), and let partition T = {ti : i ∈ N0} denote the triggering instants.

Consider also the system (8.14) with the same dynamic but implemented using the classical

TC (8.15) and let the partition T
′ =

{
t′j : j ∈ N0

}
represent the triggering instants. As-

suming that α is Lipschitz continuous on compacts and that the conditions of Theorem 1

are satisfied, then the following properties hold:

(A) Zero Triggering-Time State Difference: If x(tm) = ζ(t′n) for some tm ∈ T and t′n ∈ T
′,

then

tm+1 − tm > t′n+1 − t′n.

(B) Non-Zero Triggering-Time State Difference: For every t′n ∈ T
′, there exists ε > 0 such

that if

|x(tm)− ζ(t′n)|< ε ∀tm ∈ T (8.20)

then

tm+1 − tm > t′n+1 − t′n (8.21)

8.2 Integral Based Event Triggered Cooperative Control of
Distributed Network Systems

In this section2 we consider a system of n agents operating in R. Let xi ∈ R and ui ∈
R denote the state and control input for agent i, respectively, with the following single-

2The results of this section have been published in the article: M. Ghodrat and H. J. Marquez, “An
Integral Based Event Triggered Control Scheme of Distributed Network Systems”, Proc. Eur. Control Conf.
(ECC), pp. 1724-1729, 2015.
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integrator dynamics

ẋi(t) = ui(t), i = 1, . . . , n. (8.22)

Assume agent i communicates with a limited number of agents in the network. Our problem

is to design a decentralized control law together with a TC (centralized and decentralized)

to insure that the agents achieve average consensus, i.e., they converge to the agreement

point 1
n

∑
i xi(0) which is the average of initial states of the agents. In this section we

consider the problem of designing an event-based controller for a group of agents. Our goal

is to ensure the consensus of agents both using centralized and decentralized approaches

8.2.1 Centralized Approach

In the centralized approach, each agent needs information from other agents in the network

to decide the next triggering instant based on a global (same) execution rule. To this end,

each agent needs to communicate with all other agents in the network. This condition,

however, is relaxed in decentralized approach. Moreover, in a centralized control scheme all

agents’ actuators update simultaneously which is perhaps too conservative compared to the

decentralized approach. Let us define the measurements error e as the difference between

the current and the last sampling value of state, i.e.,

e(t) := x(tk)− x(t), t ∈ [tk, tk+1), (8.23)

where {tk : k ∈ N0} is the sequence of control task execution times and x = (x1, . . . , xn)
T.

It is known that using the control law u(t) = (u1, . . . , un)
T = −Lx(t), average consensus is

achieved for a connected network. In the presence of measurements error, the closed-loop

dynamics for the systems is given by

ẋ(t) = −Lx(ti) = −L(x(t) + e(t)). (8.24)

Now defining the vector δ(t) as the deviation of agent’s positions from the average, a =

1
n

∑
i xi(t), we can write x(t) = a1n + δ(t). We avoid using time dependence representation

for a since it is easy to verify that ȧ = 1
n

∑
i ẋi(t) = 0, i.e., the average position remains

constant over time [92]3. Then it is possible to find the dynamics for position disagreements

vector δ(t) as

δ̇ = −L(δ + e), (8.25)

where we use the fact that 1n is an eigenvector of Laplacian matrix corresponding to the

eigenvalue 0. Now we are at the point to find the TC using the Lyapunov function V (δ(t)) =

3This property relies on the structure of matrix L and hence can be easily extended to ETC systems.
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1
2δ

T(t)δ(t). Note that to ensure the average consensus of all agents, we only need to show

that V (δ(t))→ 0 as t→∞. Using the same method as in [93], an upper bound for dynamics

of V (δ) can be found as

V̇ (δ) = −δTLδ − δTLe ≤ −λ2(L)|δ|2+|δ|‖L‖|e|. (8.26)

Enforcing control task to execute when

|e|−σλ2(L)|δ|
‖L‖ = 0, (8.27)

where σ ∈ (0, 1), V̇ (δ) becomes negative definite, i.e., V̇ (δ) ≤ −(1 − σ)λ2(L)|δ|2. In the

following theorem we propose an integral based execution rule which, compared to (8.27),

improves inter-event times.

Theorem 8.3 Consider a network of agents having single integrator dynamics ẋ(t) = u(t),

where the state feedback control law u(t) = −Lx(t) is designed to ensure the average consen-

sus of the network. Suppose that tk is the most recent triggering instant of the agents. Then

if the actuator value for each agent updates at time instant tk+1 > tk when the following

execution rule is satisfied∫ tk+1

tk

|e(τ)||δ(τ)|dτ − σλ2(L)

‖L‖

∫ tk+1

tk

|δ(τ)|2dτ = 0, (8.28)

where σ ∈ (0, 1), and ZOH module is used to keep the last transmitted control value at the

intervals between triggering times, the following hold:

(I) The network achieves average consensus.

(II) The time intervals between consecutive triggering instants are bounded below by 1
‖L‖ ln(1+

σλ2(L)
‖L‖ ).

Proof.

(I) Integrate (8.26) from tk to t ∈ [tk, tk+1), we get

V (δ(t))− V (δ(tk)) ≤ −λ2(L)

∫ t

tk

|δ(τ)|2dτ + ‖L‖
∫ t

tk

|δ(τ)||e(τ)|dτ. (8.29)

Now, considering the integral TC∫ t

tk

|e(τ)||δ(τ)|dτ ≤ σλ2(L)

‖L‖

∫ t

tk

|δ(τ)|2dτ, (8.30)

we can rewrite (8.29) as

V (δ(t))− V (δ(tk)) ≤ −(1− σ)λ2(L)

∫ t

tk

|δ(τ)|2dτ. (8.31)
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Since σ ∈ (0, 1), we have

V (δ(t)) < V (δ(tk)), t ∈ [tk, tk+1[. (8.32)

Therefore we conclude that the value of Lyapunov function at the next triggering instant,

V (δ(tk+1)), is strictly less than its value at the most recent triggering instant, V (δ(tk)). As a

consequence, the discrete time sequence of {V (δ(tk)) : k ∈ N0} is monotonically decreasing,

bounded below and consequently convergent. In fact, we show that the convergence point

is 0. It is important to note that V (δ(t)) can be increasing at some points in the interval

[tk, tk+1), while not deteriorating the convergence of Lyapunov function to 0. To explain this

point, consider inequality (8.32). It is obvious that even if the Lyapunov function increases

in the interval [tk, tk+1), its value can not exceed V (δ(tk)). Therefore we can write

0 ≤ V (δ(t)) < V (δ(tk)), t ∈ [tk, tk+1). (8.33)

Now if {ti : i ∈ N0} constitutes a partition, i.e., the number of triggering instants tend to

infinity, from sandwich rule we get V (δ(t))→ 0 as tk →∞. However, if execution of control

task stops after finite number of triggering instants, then one can integrate (8.26) from 0

to tk and apply TC (8.28) on inter-event periods [tk′ , tk′+1) for k
′ = 0, . . . , k − 1 to get

V (δ(tk))− V (δ(0)) ≤ −(1− σ)λ2(L)

∫ tk

0
|δ(τ)|2dτ. (8.34)

From (8.31), (8.34) and positive definiteness of V (δ(t)), we obtain 2
∫ t
0 V (δ(τ))dτ =

∫ t
0 |δ(τ)|2dτ ≤

V (δ(0))
(1−σ)λ2(L)

. Since
∫ t
0 |δ(τ)|2dτ is a nondecreasing function of t which is bounded from above

and d2

dt2

∫ t
0 |δ(τ)|2dτ = 2V̇ (δ(t)) is finite, from Barbalat’s Lemma we have lim

t→∞
d
dt

∫ t
0 |δ(τ)|2dτ =

lim
t→∞

|δ(t)|2= 0 and hence δ(t) converges to 0.

(II) Let us define new variable

� :=

∫ t
tk
|e(τ)||δ(τ)|dτ∫ t
tk
|δ(τ)|2dτ

(8.35)

which has the following dynamics

�̇ =
d

dt

∫ t
tk
|e(τ)||δ(τ)|dτ∫ t
tk
|δ(τ)|2dτ

=
|e(t)||δ(t)|

∫ t
ti
|δ(τ)|2dτ

(
∫ t
tk
|δ(τ)|2dτ)2

−
|δ(t)|2

∫ t
tk
|e(τ)||δ(τ)|dτ

(
∫ t
tk
|δ(τ)|2dτ)2

. (8.36)

Since the second part in the last inequality is always negative we can write

�̇ ≤
|e(t)||δ(t)|

∫ t
tk
|δ(τ)|2dτ

(
∫ t
tk
|δ(τ)|2dτ)2

≤ |e(t)||δ(t)|
(
∫ t
tk
|δ(τ)|2dτ)

. (8.37)
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Integrating (8.24) from tk to t and using ė(t) = −ẋ(t) we get

e(t) =

∫ t

tk

L(x(τ) + e(τ))dτ =

∫ t

tk

L(δ(τ) + e(τ))dτ,

and thus

|e(t)|≤
∫ t

tk

|L(δ(τ) + e(τ))|dτ ≤ ‖L‖
∫ t

tk

(|δ(τ)|+|e(τ)|)dτ. (8.38)

Multiplying the last inequality by minτ∈[tk,t] |δ(τ)|, we get

min
τ∈[tk,t]

|δ(τ)||e(t)|≤ ‖L‖
∫ t

tk

(|δ(τ)|2+|e(τ)||δ(τ)|)dτ. (8.39)

Now consider the following TC

|δ(t)||e(t)|≤ ‖L‖
∫ t

tk

(|δ(τ)|2+|e(τ)||δ(τ)|)dτ (8.40)

which is more restrictive than the one given in (8.39) and hence gives a lower bound for

inter sampling times. Then we are able to find an upper bound for �̇ as

�̇ ≤ ‖L‖(
∫ t
tk
(|δ(τ)|2)dτ +

∫ t
tk
(|e(τ)||δ(τ)|)dτ

(
∫ t
tk
|δ(τ)|2dτ)

). (8.41)

Then we have

�̇ ≤ ‖L‖(1 + �), �(tk) = 0, (8.42)

which shows that the trajectory of � over [tk, tk+1) is bounded above by ϕ which has the

following dynamics

ϕ̇ = ‖L‖(1 + ϕ), ϕ(tk) = 0. (8.43)

Thus, the inter sampling times are lower bounded by the solution τ̄ of ϕ(τ̄) = σλ2(L)
‖L‖ , i.e.,

τ̄ = 1
‖L‖ ln(1 +

σλ2(L)
‖L‖ ).

Remark 8.1 The main reason that this method, compared to the one proposed in [93],

results in larger inter sampling intervals is that condition (8.28) allows increase of Lyapunov

function in some interval within two consecutive triggering instants, see, e.g., [94].

8.2.2 Decentralized Approach

In this section we consider decentralized approach. Here we assume that each agent in the

network has some communication limits in the sense that it can only exchange information

with its neighbors in the network. The importance of the decentralized approach becomes

more apparent as the number of agents in the network increases. To design a decentralized

ETC law for each agent, we propose two methods both using a decentralized control law

but one with a centralized TC and the other one with a decentralized one.
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Semi-Decentralized Triggering

In this approach the control law for each agent is decentralized but the TC is designed in a

semi-decentralized fashion. We assume that in order to check the TC, each agent needs not

only information from its neighbors in the network but also some global information about

the whole network. We now make the following assumption.

Assumption 8.1 Each agent updates the control signal both at its own event instants as

well as the triggering instants of its neighbors.

To formulate the problem in this case, we first introduce the following notation from [93].

The set of triggering instants for agent i is denoted by {tik : k ∈ N0}. The measurements

error and control law for agent i are then defined as ei(t) = xi(t
i
k)− xi(t) and

ui(t) = −
∑
j∈Ni

(xi(t
i
k)− xj(t

j
k′)) = −

∑
j∈Ni

[(xi(t)− xj(t)) + (ei(t)− ej(t))] (8.44)

for t ∈ [tik, t
i
k+1), where tjk′ := max{tjK : tik − tjK ≥ 0,K ∈ N0} is the most recent triggering

instant for agent j. Then under Assumption 8.1, the set of actuator updating times for

agent i is {tik} ∪ {
∑

j∈Ni
tjk′}, k, k′ ∈ N0. Similar to the centralized approach, we may find

an upper bound for dynamics of Lyapunov function V (δ) = 1
2δ

Tδ as

V̇ (δ) = −δTLδ − δTLe ≤ −λ2(L)
∑
i

δ2i −
∑
i

∑
j∈Ni

δi(ei − ej). (8.45)

Then we conclude

V̇ (δ)≤ −λ2(L)
∑
i

δ2i −
∑
i

∑
j∈Ni

|δi||(ei − ej)|

≤ −λ2(L)
∑
i

(δ2i −
∣∣∣ δi
λ2(L)

∣∣∣ ∑
j∈Ni

(|ei|+|ej |)).

Now using the following execution rule for control task∑
j∈Ni

(|ei|+|ej |)− λ2(L)σi|δi|= 0, (8.46)

where σi ∈ (0, 1), it can be shown (see [93]) that the time derivative of the Lyapunov

function becomes negative definite, i.e., V̇ (δ) ≤ −λ2(L)
∑

i (1− σi)δ
2
i . In the following

theorem, however, we relax this execution condition to achieve larger sampling times for

the network.
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Theorem 8.4 Consider a network of agents having single integrator dynamics ẋ(t) = u(t),

where the state feedback control law u(t) = −Lx(t) is designed to ensure the average con-

sensus of the network. Suppose tik is the most recent triggering instant of agent i. If the

control task execution is performed when the following execution rule holds at time instant

tik+1 > tik for agent i or one of its neighbors∫ tik+1

tik

|δi(τ)|
∑
j∈Ni

(|ei(τ)|+|ej(τ)|)dτ − σiλ2(L)

∫ tik+1

tik

|δi(τ)|2dτ = 0, (8.47)

where σi ∈ (0, 1), and the system uses a ZOH module to keep the last transmitted control

value at the intervals between triggering times, the following hold:

(I) The network achieves average consensus.

(II) The inter sampling time intervals are bounded below by some non-zero constant.

Proof.

(I) Integrate inequality (8.46) from 0 to t ∈ [tik, t
i
k+1) gives

V (δ(t))− V (δ(0)) ≤
∑
l

[−λ2(L)

∫ t

0
|δl(τ)|2+

∫ t

0
|δl(τ)|

∑
j∈Nl

(|el(τ)|+|ej(τ)|)dτ. (8.48)

One can brake the interval [0, t] into subintervals
⋃

0≤r≤k−1[t
i
r, t

i
r+1) ∪ [tik, t]. Under As-

sumption 8.1, triggering instants are same for l ∈ {i} ∪Ni and since (8.47) holds over any

of these subintervals, we conclude that∫ t

0
|δl(τ)|

∑
j∈Nl

(|el(τ)|+|ej(τ)|)dτ ≤ σlλ2(L)

∫ t

0
|δl(τ)|2dτ. (8.49)

For l /∈ {i} ∪Ni, however, one can choose another subintervals
⋃

0≤r≤k′−1[t
l
r, t

l
r+1) ∪ [tlk′ , t],

where tlk′ is the most recent triggering instant of agent l. Now by applying (8.47) on any

these subintervals, we conclude that (8.49) holds. Then (8.48) can be rewritten as

V (δ(t))− V (δ(0))≤−λ2(L)
∑
l

(1− σl)

∫ t

0
|δl(τ)|2dτ

≤−λ2(L)(1−max
l

σl)

∫ t

0
|δ(τ)|2dτ.

(8.50)

From definition of V (δ(t)) we get an upper bound for V (δ(t)) as

V (δ(t)) ≤ V (δ(0))− 2λ2(L)(1−max
l

σl)

∫ t

0
V (δ(τ))dτ (8.51)
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which is a decreasing function of t. Since V (δ(t)) ≥ 0, we conclude that
∫ t
0 V (δ(τ))dτ ≤

V (δ(0))
2λ2(L)(1−maxl σl)

, i.e.,
∫ t
0 V (δ(τ))dτ is bounded from above and because it is a nondecreasing

function of t and d2

dt2

∫ t
0 V (δ(τ))dτ = V̇ (δ(t)) is finite, from Barbalat’s Lemma we conclude

that lim
t→∞

d
dt

∫ t
0 V (δ(τ))dτ = lim

t→∞
V (δ(t)) = 0. As a consequence, δ(t) converges to 0.

(II) The proof outline is similar to Theorem 1.

Remark 8.2 As we mentioned before, in semi-decentralized triggering scheme each agent

needs some global information from the network system. This is actually because of existence

of terms λ2(L) and δi(t) in the TC (the later needs the knowledge of a).

Decentralized Triggering

We now consider the problem of designing a decentralized control law and TC. In contrast to

the previous results, each agent now decides the next execution of the control task only based

on the information from its neighbors. Using the same expressions for the measurements

error ei(t), control law ui(t) and triggering time instants tik for agent i, and considering the

Lyapunov function V (x) = 1
2x

TLx, we get

V̇ (x) = xTLẋ=−(Lx)T(Lx)− (Lx)TLe

=−
∑
i

(Lx)2i −
∑
i

∑
j∈Ni

(Lx)i(ei − ej)

=−
∑
i

(Lx)2i −
∑
i

‖Ni‖(Lx)iei +
∑
i

∑
j∈Ni

(Lx)iej , (8.52)

where ‖Ni‖ denotes the number of neighbors for agent i. Now using the Young’s inequality,

we can write

V̇ (x)≤−
∑
i

(Lx)2i +
∑
i

γ‖Ni‖(Lx)2i

+
∑
i

1

2γ
‖Ni‖e2i +

∑
i

∑
j∈Ni

1

2γ
e2j , (8.53)

where γ ∈ R
+ is an arbitrary constant. From the symmetric property of adjacency matrix

of the network, the last two terms in (8.53) are the same and hence

V̇ (x) ≤ −
∑
i

(1− γ‖Ni‖)(Lx)2i +
∑
i

1

γ
‖Ni‖e2i . (8.54)

In [95], it has been shown that using the execution rule

e2i −
σiγ(1− γ‖Ni‖)

‖Ni‖
(Lx)2i = 0 (8.55)

for agent i, V̇ (x) < 0 for σi ∈ (0, 1) and 0 < γ < 1
‖Ni‖ . In a similar way to the previous two

sections, we relax this condition by defining an integral based one.
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Theorem 8.5 Consider a network of agents having single integrator dynamics ẋ(t) = u(t),

where the state feedback control law u(t) = −Lx(t) is designed to ensure the average consen-

sus of the network. Suppose tik is the most recent triggering time instant of agent i. Assume

that the control task for this agent executes whenever the following execution rule holds at

time tik+1 > tik for agent i or one of its neighbors∫ tik+1

tik

e2i (τ)dτ −
σiγ(1− γ‖Ni‖)

‖Ni‖

∫ tik+1

tik

(Lx(τ))2i dτ = 0, (8.56)

where σi ∈ (0, 1) and 0 < γ < 1
‖Ni‖ . Then using a ZOH module to keep the last transmitted

control value at the intervals between triggering time instants, the following hold:

(I) The network achieves average consensus.

(II) The inter sampling times are bounded below by some non-zero constant.

Proof.

(I) Integrate inequality (8.54) from 0 to t ∈ [tik, t
i
k+1), we get

V (x(t))− V (x(0))≤−
∑
l

(1− γ‖Nl‖)
∫ t

0
(Lx(τ))2l

+
∑
l

1

γ
‖Nl‖

∫ t

0
e2l (τ)dτ. (8.57)

Using Assumption 8.1, for l ∈ {i} ∪ Ni, we can brake the interval [0, t] into subintervals⋃
0≤r≤k−1[t

i
r, t

i
r+1) ∪ [tik, t] so that over each one (8.56) holds. The same argument is true

for l /∈ {i} ∪ Ni and subintervals
⋃

0≤r≤k′−1[t
l
r, t

l
r+1) ∪ [tlk′ , t], where tlk′ is the most recent

triggering instant of agent l. Thus we have∫ t

0
e2l (τ)dτ ≤

σlγ(1− γ‖Nl‖)
‖Nl‖

∫ t

0
(Lx(τ))2l dτ (8.58)

for l = 1, . . . , n. Then (8.57) can be rewritten as

V (x(t))− V (x(0))≤ −
∑
l

σ̄l

∫ t

0
(Lx(τ))2l dτ

≤ −min
l

σ̄l

∫ t

0
|Lx(τ)|2dτ, (8.59)

where σ̄l = (1 − σl)(1 − γ‖Nl‖) and minl σ̄l = (1 − maxl σl)(1 − γmaxl ‖Nl‖). From

0 < γ < 1
‖Ni‖ , we conclude 1 − γmaxl ‖Nl‖ ≥ 0. Then since V (x(t)) ≥ 0, we get∫ t

0 |Lx(τ)|2dτ ≤ V (x(0))
(1−maxl σl)(1−γmaxl ‖Nl‖) , meaning that

∫ t
0 |Lx(τ)|2dτ is upper bounded by

some positive constant and since it is a nondecreasing function of t and d2

dt2

∫ t
0 |δ(τ)|2dτ =
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2V̇ (x(t)) is finite, from Barbalat’s Lemma we get lim
t→∞

d
dt

∫ t
0 |Lx(τ)|2dτ = lim

t→∞
|Lx(t)|2= 0.

This means that Lx(t) (and hence V (x(t)) = 1
2x(t)

TLx(t)) converges to zero.

(II) The proof outline is similar to Theorem 1.

8.3 Simulation Results

8.3.1 Centralized and Semi-Decentralized Approach

Consider the network of agents given in Fig. 8.1 with the following neighboring sets

N1 = {2, 3}, N2 = {1, 3}, N3 = {1, 2, 4}, N4 = {3}. (8.60)

1

2

43

Figure 8.1: Communication graph of network system

Then the corresponding Laplacian matrix is

L =

⎡⎢⎢⎣
2 −1−1 0
−1 2 −1 0
−1−1 3 −1
0 0 −1 1

⎤⎥⎥⎦ . (8.61)

We have λ2(L) = 1 and ‖L‖= 4. We also assume σ = 0.65 for centralized case and

σ1 = σ2 = 0.55 and σ3 = σ4 = 0.65 for decentralized case. In Figs. 2, 3, we present the

control input of the agents for initial conditions x1(0) = −0.4, x2(0) = −0.2, x3(0) = 0

and x4(0) = 0.6. Fig. 2 is corresponding to the centralized approach and Fig. 3 to the

semi-decentralized one.
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Figure 8.2: Control input of the agents: traditional classic state feedback controller (black),
traditional event-based controller (solid) and the proposed event-based controller (dashed).

Figure 8.3: Control input of the agents: traditional classic state feedback controller (black),
traditional event-based controller (solid) and the proposed event-based controller (dashed).

8.3.2 Decentralized Approach

Consider the following network of agents

2

3

4

1

Figure 8.4: Communication graph of network system
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with the following Laplacian matrix

L =

⎡⎢⎢⎣
1 −1 0 0
−1 3 −1−1
0 −1 2 −1
0 −1−1 2

⎤⎥⎥⎦ . (8.62)

Also assume σ1 = σ2 = 0.55 and σ3 = σ4 = 0.65. Fig. 5 shows the control input of the

agents.

Figure 8.5: Control input of the agents: traditional classic state feedback controller (black),
traditional event-based controller (solid) and the proposed event-based controller (dashed).

The simulation results support our claim that, compared to the existing methods, our

integral based approach increases the inter sampling times.

8.4 Summary

In this chapter we proposed a novel event-triggered condition to solve the stability problem

of general nonlinear systems while reducing the frequency of samplings. Our slution involves

relaxing the conservative condition on the derivative of Lyapunov function to be negative

all the times, which is the core assumption in many related works. In Chapter 4 it is

shown that the integral-based type of TCs are indeed a special case of the proposed general

TC design structure. The obtained results are then applied to the multi agent consensus

problem.
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Chapter 9

Summary and Conclusions

This thesis investigates the ETC design of nonlinear systems by focusing on the robustness

properties of the resulting ETC system with respect to exogenous disturbances. In this

regard, while our main focus is on different input-output stability performances, we also

visit some of the main practical issues that may affect proper implementation of the ETC

task.

The main contributions of this research can be highlighted as follows.

1. In Chapter 3, we address the problem of disturbance rejection of general nonlinear

ETC systems while an L2-type stability performance is preserved. Our study is built

on the assumption that the disturbance originates from structural uncertainties and

hence its norm can be upper bounded by the norm of some function of states. As

a consequence, the validity of the obtained results is only locally proved. It is also

shown that by properly modifying the proposed TC, the intersampling intervals can

be enlarged for a desired period of time or a desired number of sampling instants. This

is, however, obtained at the price of relaxing the stability properties of the design.

2. In Chapter 4, we propose a rather general platform for TC design. Indeed, several

dynamic and static parameters are introduced to capture the existing TC in the lit-

erature. Additionally, the results of Chapter 3 are extended in two aspects. First,

instead of local L2 stability, the proposed TC is shown to guarantee global Lp per-

formance for the ETC system. Second, the proposed TC is designed in a way that

Zeno-behaviour is excluded in the presence of arbitrary disturbances. The restriction

on admissible disturbances made in Chapter 3 is relaxed.

3. Chapter 5 considers the event-triggered analysis of a special class of nonlinear systems.

Indeed, it is shown that when the system’s inputs are introduced through an affine
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structure, several restrictive assumptions in previous chapters can be relaxed. In

detail, it is shown that the ETC problem can be solved without using an ISS condition.

Both emulation and joint design approaches are studied. Moreover, the input-to-state

stability of this class of nonlinear systems can be guaranteed through sufficient NLMI

conditions.

4. Chapter 6 addresses one of the aspects of ETC systems that has not seen much

attention yet. Indeed, in this chapter, we propose a design methodology to jointly

design an ETC law for nonilinear Lipschitz systems under both state and output

feedback scenarios. The obtined results is novel in that while most of the existing

results in the literature solve the problem by proposing a set of LMIs to be solved, the

design here is directly based on assigning the eigenvalues of stability matrices. As an

another contribution of this chapter, we show that the output-based controller can be

designed following the classical separation principle, i.e., th controller and observer

gains are designed independently, provided that the sampling at the controller-to-

actuator channel is performed sufficiently fast. As an application, it is shown that the

results can effectively serve as an event-based version of Lyapunov’s indirect method,

where an H∞ controller for the linearized ETC model renders the nonlinear ETC

system locally stable.

5. Dissipativity is known as a powerful tool in unifying different forms of input-output

stabilities. Thus to generalize the robustness performances studied in previous chap-

ters, it is natural to study the dissipativity properties of nonlinear systems under

event-based communications. In Chapter 7, it is shown that the general framework

of TC design that is proposed in Chapter 4 can serve to extract different dissipativ-

ity properties for nonlinear ETC systems. Moreover, the proposed TC is proved to

guarantee the isolation of triggering instants in presence of arbitrary disturbances.

6. Chapter 8 focuses on the problem of reducing the sampling frequency of ETC systems.

In particular, it is shown that by using an integral based Lyapunov approach, we

can proposed a less conservative triggering condition and hence improve the average

frequency of samplings. The results, are then applied to solve the cooperative control

problem of multi agent systems under event-based communications. As shown in

details, the integral-based TCs can be extracted from the general TC design structure

proposed in Chapter 4.
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9.1 Directions for Future Work

Our proposed results in this thesis can be pursued in the following areas:

� Network control systems are considered as one of the main applications of the theory

of event-based control. While, in this research we have focused on some interesting

aspects of ETC systems such as performance in presence of disturbances and inter-

event time properties, the validity and/or efficiency of the obtained results, when

typical practical issues of a network control system such as time-delays and data

packet dropouts are introduced, remains as an open research area.

� In Chapter 6, we have shown that under the proposed ETC design, when the TC at the

observer-to-actuator channel is designed with a small enough triggering threshold, the

event-triggered observer design reduces to two simpler design steps on the controller

and observer gains. This is in accordance with the classical separation principle.

However, this interesting result is restricted to our proposed method for designing

controller and observer gains and also triggering conditions, an open area of research

is then to extend the results to the other design methods.

� We proposed a general platform for designing TC in Chapter 4, which is shown to

capture several existing TC designs. Our focus in this comparison was merely based

on the structure of the TC with no reference to the relative performance in each

design. Therefore, an interesting open area for future research is to extend this result

and possibly propose a general TC famework which not only capture different TC

structures but also covers the performance of each design.

� In Chapter 5 it is shown that while the notion of game theory is powerful tool in

analysis of continuous-time input-affine nonlinear systems, when the communication

between plant and controller is performed in an event-based manner this method

this tool is of limited use to obtain the best control strategy when an event-based

communicaton network is introduced. We have a conjecture that in such case, thebest

strategy for minimizing player (control signal) can not be obtained explicitly. The

proof or rejection of this conjecture can be pursued in future studies.

� The attention of this research is mostly focused on the robust stability of ECT sys-

tems under more famous robustness indices such as L2-gain and in general Lp-gain

performances. However, the (more stronger) incremental form of these performances
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has not seen much attention yet. Indeed, while the usual gain definition deals with

the ratio of the norm of output to the norm of input, the incremental gain considers

the ratio of the norm of changes at the output to the one at the input. Therefore,

a natural way of generalization of the the obtained results in this thesis is to re-visit

the problems when the usual gain performance is replaced with the incremental one.
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