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: Absttact

A, finite element model to analyse incipient flow for

cohesionless materials in silos: is presented. The model is

formulated on e princip;e of virtual work, and is based on
small displacement theory. Wall friction is included in the’
formulation by the use of a thin layer interface element.
The effécts of load history égé simulated by layering the
bulk material in stages during filling and incrementally
releasing the outlét force during incipient flow. Since time
dependent conétitutive parameters are not geﬁerally

available, an elastic perfectly plastic material is used as

'a material model. $

Model problems are analysed and the results for both
initial filling and incipient fldw cases are compared with,
classical theories. These model-problems consist of a silo
deometry with differing sets of wall interface and bulk
material properties. In addition, recommendations for wall

design loads are made.
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1. INTRODUCTION
1.1 Background

The subject of mass flew pressures in silos has come
under increasing investigation by researchers ifi“recent
years. Mass flow refers to the continuous movement of all
bulk solid in the silo during emptying. The problem lies
mainly with the development of overpressures, both in the
cylinder and in the hopper.

Steady state bulk solids flow has been extensively
feSearched. Many experimental ihvestigators (Jenike et. al.
1973, walker and Blanchard 1967, Moriyama and Jotaki 1980,
to name a few) confirm that a wall pre eure reducfion under
static loads eecurs in the lower regioh of a hopper: In
addition, wall pressures were found to increase |
substantially over static pressures in a localized reqion
near the transition from hopper to cylinder. It has been
suggested by Jenike et. al. (1959-1973), Walker (1966), and
Walters (R973), that these reéults are an equilibrium
consequence of a switch in pressure fields at the transition
from active to paseive. Finite element results from Eibl and
Hayssler' (1984) are in agreement with the concept of an
arched passive field. B =

The subject of incipient flow has not draen extensive
research. Walker and Blanchard (1967), and Smith and

SimmOnds-(1983), show limited experimental evidence of

overpressures that do not occur at the transition., Most

1.
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other experimental investigators do not report on pressures

other than those for steady state flow. Jenike (1968) and

Walters (1973) contend that overpressures of this nature are
due to a moving switch point, but so far no design practice
has adopted this concept. The finite element analy51s of
Eibl and Haussler (1984) also shows a pressure increase in
the hopper during the beginning stages of flow.

Askari and Elwi (1986) analysed a%ﬁumbef of silo
configurations using the finite element method. The results
indicated that a localized overpressure éxisted at the silo
outlet during flow. Unfortunately, it is possible that a
static arch may have formed over the outlet which prevented
flow. In addition, load and displacement coévergence éould
not be obtained for weaker materials.

This study is a finite element )mvestigation of
incipient flow in silos, and is an attempt to model

incipient flow conditions using a static elaStic»plastic

incremental analysis,

1.2 Scope and DbjecéfVés of Thesis
The objectives of ‘this thesis are as follows:

1. To provide an éxtgnsive review of the work of Jenike et.
al. (1959-1973), and Walker (1966), since their
approaches are the most commonly used in practice, and
to clarifyvany misconceptions,

2. To develop a finite element representation that models

the effects of nonlinear material behavior, wall



‘ E ‘ R
- friction, and load history.

3. To run sample problems with di fere:k)material
properties; and to compare strzék\history, magnitude,
and orientation to those predicted by classical theories
for both.initial filling and incipient flow conditions.

4. To make recommendations for design and further study

based on observation of the finite element results.

1:3-0rganization'of Thesis

Chapter‘two'is divided into three parts{ The first part

is an extensive literature review of the work of Jenike and
_Walker. The second part is a review of some of the research
done in the area of finite element analysis. The last part

of the chapter reviews some of the field measurements that
were done on full scale silos.

Chapter three is a discussion of the formulation of the
finite element problem. In Chapter féur, the finite element
model of the wall - bulk solid interface is presented.
Chapter five is a discussion of granular material modélling.

Chapter six is divided into two pafts. In the first
part, the modelling of load hi;tory aﬁd outlet.release,
procedures are described. Secondly, sémple problems are run
using the models described in earlier chapterg, and results
are compared ﬁo classical‘theories. The third part is a
diseussion of design situations involving incipient flow and
"lock in" stresses. Finally, the reasons for lack of

_ -

convergence of the silo problem are discussed.



Chapter seven contains the summary, recommendations for

further study, and conclusions.



2. LITERATURE REVIEW

2.1 Introduction

There is extensive literatu;e regarding the design,
testing, and analysis of silo structures (Wwalli -and
Schwaighofer 1979). In this chapter, some of Q e major work

done regarding silos and hoppers is examined. ﬁn the first

regarding bulk solids flow is examiﬁﬁ?ﬁﬁ

of two selected silo testing programs

and Simmonds 1983) are reviewed. ‘

2.2 Radial Stress Fields - Jenike's Theories

In a series of papers, Jenike et. al. (1959-1973)
formulated a number of theories on bin loads and design of
axisymmetric and plane strain hoppers. Two distinct design
criteria were examined; wall loads and flowability. Both
initial filling and flow cases were considered in
determining wall loads. Flowability criteria were given
regarding outlet size to prevent the occurence of stable:
arching or the formation of a small channel in the material,
known.as piping. Only the design criteria regarding hopper

loads are discussed here.



2.2.1 Bin Loading
Equilibrium expressions for bin loads were derived
considering the stresses existing on a solid element in a
channel as shown in Fig. 2.1. In deriving these expr- ~ ons,
Jenike (1961) makes the following assumptiones:
1) The bulk material is assumed compressible during initial
filling, and incompressible during flow.
2) For both initial and flow stress fields, a mean stress
o_ is assumed wgich increases linearly from the apex of

the channel with coordinate ray, r, and is defined as

. o, = yrs,(8), [2.1].

for initjal filling and

o, = yrS,(6), ‘ ' : [2.2]

m

for flow conditions, where Si(é) and S,(8) are
dimensionless stress parameters for initial filling and
flow conditions respectively. Equations 2.1 and 2.2 hold
in the hopper as long-as equilibrium is maintained 1in
the phyéical'system. This is discussed in more detail
subsequently.

3) For initial stress fields, the ratio of the

circumferential stress, o,, to the radial stress, o, is

assumed to be constant

0, »
o = ke [2.3]

The coefficient k, is analogous to Janssen's K factor,



and is dependent upon the compressibility and Poisson's
ratio of the bulk solid (Jenike and Johanson 1968).

4) For flow stress fields, the material is assumed plastic,
and the ratio of the major principal stress, o,, to the

minor principal stress, o,, is assumed to be of the form

0y 1 + sin .
1 - sin &' (2.4]

Wwhere & is the effective angle of internal friction. A
Mohr's circle representation of the stress state at a
wall is shown in Fig. 2.2. The mean stress o, is the
consolidating stress which exists during flow. The
Mohr's circle is tangent to the éctual yield locus (YL)
and the effective yield locus (EYL). The advantage of
using the effecﬁive yield locus }s that material
behavior at yield can be modelled with one yield locus.
1f the actual yield locus were used, a family of these
curves wouldaresult, since it expands and contracts with
changes in o, (Jenike and Shield 1959). )

5) The material at the wall is assumed to slip,fthéreby

developing the full kinematic angle of wall friction ¢'.

The solution to the initial filling and flow stress
fields proceeds in a similar manner. From the assumed stress
relations and geometry, expressions are written for o,, 0,,
and the out of plané stress o,. These Expressions are
inserted into the eqguilibrium eqguations for spherical

cocrdinates. The resﬁ}ting expressions are solved



vl ‘
i . 8

T
“fiumerically for the stress parametérs S, (6) and S, (6) for
specified problem parameters (¢', k , and hopper angle 6'
for initial filling; ¢', &, and 6' for flow).
L
2.2.2 Initial Filling
As mentioned previously, Egs. 2.1 and 2.2 are valid in
the hopper as long as equilibrium is maintained. In the case
of a hopper with no surcharge (Fig. 2.3a), the radial field
can only be maintained below a certain level, z,. Above
that level, overall equilibrium warrants a reduction in wall
__ pressure, terminating in o, = 0 at z = z,. From 2z, to z,, a
linear distribution is assumed.

In an actual bin, a surcharge is present which is
equivalent to Janssen's vertical preSSufe in the cylinder at
the transition. If a surcharge is added,‘&he hopper walls
above z, must carry the'additional load (Fig. 2.3b).

Major principal stresses dur:ing filling line up close
to the vertical direction. This stress field is referred to
as active.

Since the determination of S,(6') is complex, Jenike
et. al. (1973) proposed a simplification. If a-hydrostatic

pressure distribution is assumed, the pressure at the apex

can be derived as

- YB
s~ 2(tan 6' + tan ¢')"

[2.5]

For a hopper with a vertical surcharge pressure, o,

the pressure at the .transition, o,,, can be expressed as



0 = o |2rm tan 6°
v s {1 + m|] tan ' + tan o' '

[2.6]

where m is a geometry parameter which equals 0 for plane
strain, and | for axisymmetry. Between the top and the apex,

one can interpolate linearly for a pressure value (Fig.

2.4),

2.2.3 Flow Pressures

As flow is initiated, the major grincipal stresses
switch froa~; vertical to a horizontal direction, forming an
arched (passive) field, as showh in Fig. 2.5a for no
surcharge, and Fig. 2.5b with surcharge. In the case of no
surcharge, the flow wall pressures are obtained in the same
manner as initial filling pressures bx considering overall
equilibrium of the system. The flow radial stress field is
subst ituted for the initial filling stress field.

As flow progresses, a plastic passive field is
developed below the switch point, and moves upwards as the
switch poiht moves upward. Below the switch point, pressures
reduce from initial filling values in accordance with the
flow radial stress field bound. This causes a net loss in
equilibrium. If the bin 1s not to move, the unbalanced load
(equivalent to the shaded regions in Figs. 2.5a and 2.5b)
must be balanced in a region above the switch point. The
imbalance is treated as a concentrated compressive load
acting over an arbitrary distribution depth at the switch

point.
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It is generally assumed that the switch moves up the
r hopper. Hence the sw1tch forces are con51dered short lived.

Only the stable overpressure, Wthh occurs as the switch

kY

‘point arrests~at the transition, is considered in design.
The solution for the transition overpressure, 0. is
* arrived at (Jenike 1964) by consideration of vertical

equ111br1um at the transition. The magnltude of the T

hl \ —

unbalanced vert1cal force at the tran51t10n aQ,, is
obtained as the difference between the force at filling
(assuming Jans;en“s‘stresses) and the force during flow, Q.

The force Q, may be obtained as
Q¢ = quhm- o [2.7]

where{éiis the hopper diameter at ‘the transition, and g is a
dimensionless parameter obtained by integrating the vertical
components of the”radial stress field over the transicion
crosSrsectionai area. dharts for g as a function of 6' , &,
and ov have been developed: by Jenike (T961). The‘flogqﬁorce
Qr is ekpressed'in units of force for axisymmefric hoppers,
.and force/metre for plane strain hoppers._ - .

' The unbalanced vertlcal force, AQt, is equ111brated by

oo
ver§1ca1,components of wallunormal and tangential transition

- %o .
T . . °

forces N and T respectively, where - K
T = N tan ¢'. | IRRE [2.8]

L3

These forces are assumed to.act as a triangular pressure
distribution over .a slant height of 0.3B (Jenike 1973). The

\o
-
/ - »
. o
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value of the peak transition pressure, o, is obtained as

} 3.3(gn" (4/7)"qyB)
(2.- 0.4 sin 6')"(sin §' + cos 6'tan ¢')’

6t24= o [2.9]

tr

where o, is the vertical Janssen pressure at the transition,

. - . TR b SN
and can be expressed as R —

o, = jg%(1 - MRy, - [2.9a}

where RAis the hydrauiic radius of the silo cylinder, u' is
the coefficient: of friction of the wall-material interface
v(gqgivaieﬁt.to ﬂén $'), H 1s the height of solid in the
cylinder, and K is the Janssenvlaﬁeral‘pressure coefficient.

The radial tranéitionApressuré, Oypr 318 determined by
the §olutioh of the radial stress field at the transition.
Values for q".are expressed as |

o, = (o'/yB)7B, ‘ | [2.10]

\

where o'/fﬁ is a dimensibnless stress parameter analogous to
S.(6). Charts for this paraméter haQé also been developed by
Jenike (1é61).r . .
‘The final desigﬁ envelope fof‘the hopper region is as
shown'in Fig. 2.5c. Jeniké et. al. (1973) compared preséure‘

measurements of a model silo to this design envelope and

found agreement.-
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2.3 The Diffe;enfial Slice Approaches py Walker and Walters
Walker (1966) obtained a solution to the stead& state

flow in converging channels by considering equilibrium of a

differential, slice of matgrial, shown in Fig. 2.6. The

followinglaséumptions were made:

1) Material'yiélding is governed by the Jenike effective
yield locus -(EYL), Shown in Fig.’2.2. The stress field
in the hopperﬁis assumed bassive during‘flow, and hence
the ratio of princfpal\stressés'is given by Eq. 2.4.

2) The shear stress at the\;iginity of the wall, 7,, is

related to the vertical stress at the wall, o,, as

r, = A0, [2.11]

v

where A is a constant.
3) The vertical stress, o, -is related to the average

vertical stress o, by

o = Do

vw v/’

where D is a stress distribution factor which takes into
account the variation in vertical stress across the
cross section. The parameter D is normally taken as 1.0

-(Janssen's assumption)

Considering-equilibrium of the slice dz under its own
weight, the vertical stress field o,, and the shear stresses

Ty

one can write a differential equation of equilibrium

orIy-in terms of o, -

[2.12]

e
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do o

v v

5 " C 7 = 7. [2.13)

The solution is obtained as

I P N PR
v T - Z, zglr e
w.
~f{m + 1)D sin & sin 2(6' + B)
¢ tan 6' [1 - sin & cos 2(8' + B)|’ [2‘15],
and
1 . [sin ¢']} |
B = 2[¢ + Arc51ﬁ[ ain § ]]. (2.16]

: v :
~ The expression for the wall pressures o, is found by

"transforming o, to local coordinates by using Eq. 2.76a

_ 1 +'sin & cos 28 '
O, = 7= sin 6 cos 2(8' + B) ‘w° (2.16a)

'

Walker and Blanchard (1967) performed some experimental
pressure measuremenps in fﬁll scale silos and hoppers and
concluded that pressures calculated with D = 1 gave a éood
fit.of data points. Thiéwmethod is relatively simple
compared ta Jenike's (1964), which involves a riéorous
solution of the radial stress field.

walters (1973) propose@é@ more rigorous solution of thé
differential slice. Shear stresses actiﬁg on thé slant
height of the wall wefe c&nsidered, as shown in Fig. 2.7. In
addition, an exact value of D was derived; The solution was
extended to accommodate both initial filling (active) and

flow (passive) stress states.
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The solution to the resulting~3}{£?rgn§}al equation was
similar in form to that of Walker's (1966), ;ﬁd was
applicable to calculation of the switch stress at any switch
point 21. The author suggested that structural design should
proceed on the basis of an envelope of these switch
stresses. | '

An envelope of wall switch pressufes were calculated
for a silo with & = 50°, ¢' = 25°, and ' = 4°, Switch
stresses were many times over the static pressures (the
ratio of switch to static pressure at the transition was
approximately 40), and were distributed over a relatively
small depth. Theée pressures are high compared to ﬁﬁose of
Jenike and'Walker; and design on the basis of the switch
pressure envelope is overly conservative.

In calculating initial pressures, the assumption was
made that the stress field 1n the hopper was plastic active.
This assumption is unjustified, since the bulk solid is L
compressed triaxially, and is likely elastic because of high

mean strésses and low shearing stresses.

2.4 Finite Element S;ﬁd{es
Although there have been numerousnpapers (Jofriet et.
al. 1977, Chandrangsu and Bishara 1978) deallng with static
bin loads, there have been few papers wh1ch attempt a flow
solution. ’
Eibl and Haussler (1984) developed a nonlinear

incremental viscoplastic formulation in which material
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stress increments were divided into ratﬁﬁdependqugand rate
"independent components. The formulation included both
inertial and viscous effects and was developed along
stream;ines so-that incompressibility was maintained during
flow. The rate independent component of stress was assumed
to be bonﬁaed by ‘the yield surface proposed by Lade (1978),
which considered plastic contractive and expansive strain
componénts. The rate dependent stfess component was assumed
to be of a form analogous to Newtonian flow, relating‘stresé
increments to strain rates. Coulomb friction was assumed
along the walls ex;ept at the outlet, where a conditioh of
zero;spress was enforced. The problem was formulated in an
Eulerién frame of reference, relating velocities to a fixed
spatial mesh. |

Initial pressures were obtained for two silos of
differing:%dpper incliﬁation, and results compared favorably
with experimentaljpressurés obtained by'Motikus (1974). Flow
pressures were then obtained for a 6.5 ft. (1.98 m.) by 39
ft. (11.88 m) plane strain silo with an outlet diameter of
3.3 ft. (1.01 m.). The principal stress directions and wall
pressure d;ggributions compared favorably with those-
predicted by Jenike et. al. (1973), Walker (1966), and
Wwalters (1973), although the authors. made Yo numerical
comparisons.‘

The silo that was analysed had a fairly large outlet
diameter in relation to the cylinde:sdigmeter. Such 2 silo

would not exist in practice. It would have been more
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convincing to analyse a silo with a more practicai outlet
diameter, following the guidelines'Suggesteé by Jenike
(1961) or Walker (1966).

In addition, the outlet constraint of zero wall stress
does not exist. Figure 2.8 shows the consequence of that
assuhption. Instead bf-ﬁollowing‘the wall when leaving the
hopper, the material point is unrestrained, and falls
vertically. There is nothing to stop the material from
moving into ;hebwall (having a nonzero velocity component
normal to the silo wall). ‘

Askari and Elwi (1986) préposed uéing a double
iterative scheﬁé“to solve the 'silo problem. Initially, the
silo material displacgments are obtained with all wall
tangential forces F, equal to-zero. Then, tangential forces

are obtained as
{F,} = R{Fyltan ¢', [2.17)

where‘{F } tare the wall‘normal forces, and R, 1s a
”predetermlned relaxat1on factor less than 1.0 used to
maintain solut1on stability. Equation 2.17 is transformed to
the global_axes and added to the silo load vector. The
nonlinear iteration for material stresses represents the .
first loop, and the iteration for frictional forces
represents the second loop of the iteration cycle. The
iterative cycle is continued until specified load,
displacement, and friction force tolerances are met. The

Drucker-Prager yield criterion was used for material
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yielding.

In all, 12 silos with varying geometries and maﬁerial
parameters were analysed in an atteppt to perform a
parametric study. The silos were analyséd using "single step
switch on" gravity loading instead of;using layers of
material eléﬁénts. The results indiqated a good agreement
with Janssen cylinder pressures,'bu; a substantial increase
over Jenike'é maximum hopper pressures was observed. The
author attributed‘the increase in pressures to the
conservativé strength characteristics and extreme dilatency
ratios of the Drucker-Prager yield.surface. Large
overpressures existed at the outlet and transition regions.

Plots of plastified points seem to indicate an .elastic
stress field in the hopper for all cases considered. The
increase in hopper pressures directly contradicts the
pressure dec;;ése assumed 1n most floQ pressure ;heories and
found in many experimental measurements. The overpressure at
the outlet may be thé result of elastic arching occuring
there which would prevent flow. The results just described-

are consistent with the formationm of a stable static

pressure field, which means that flow is not taking place.

2.5 Experimental Studies

walker and Blanchard (1967) performed a series of
pressure measurements during initial filling and flow
conditions on three steel hopper configurations shown in

r

Fig. 2.9. Load diaphragms mounted flush to the silo wa}l
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were used to record measurements. In addition, during some
tests a water filled pressure bladder was inserted into the
silo at various depths to record vertical pressures.

Although there was a substantial scatter in test
results, the results dﬁring flow showed a general pressure
decrease in the lower hopper reéion, and a pressure increase
in the upper hopper region over pressures at initial
filliﬁg. The flow pressure magnitudes and distribution were
found to be relatively independent of flow rate. Results
"were close to the distributions predicted by Walker (1966).
In addition, flow pressures were observed to "lock in" if
flow was stopped.

smith and Simmonds (1983) performed préSSure
measurements on a full scale coal silo in Elkford, B.C. (See
Fig. 2.10). The silo was axially.symmetric in the cylinder
region, cbnverging into 2 pyramidal hoppers. Strain gauges
were mounted at the gauge locations shown in Fig. 2.10.
Cylindrical pressure vessel theory was used to relate normal
_ wéil stresses to hoop strains. .
| Overpressures were detected at gauge locations 3, 4,
and 5 that were satisfactorily bounded by Jenike's minimum
strain energy field. At gauge 6, there were no observed-
overpressures. In addition, there was evidence of "locked
in" overpressures once flow was terminated. The .authors
recommended the use of overpressure factors (ratio of flow
switch pressures to static pressures) in de51gn. In

add1t1on; the authors further suggested that the larger
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stresses of Jenike's minimum strain energy distribution and

ACI 313-77 should be used to design the cylinder region.
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Figure 2.1 Stress on an element of solid .
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Figure 2.2 Mohr's circle representation
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(a). (b)

Figure 2.3 Initial filling pressures
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Figure 2.4 Design initial filling pressures
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Figure 2.7 Walters' .,diffefen‘tial slice”
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*3. PROBLEM FORMULATION

3.1 Introduction

Using\the principle of virtual work, the structural
* response of- the ens}led;material and the frictional
interface is formulated in an incremental sense, and is :
based on small displacement fields. Material and frictional

nonlinearities can be readily included in the formulation.

3.2 Variationai Formulation

Consider a mechanical system at a certain load step in
equilibrium'undér a set‘of prescribed tractions T, body
forces F°, and kinematic constraints aq. Let the body in
Fig. 3.1 be divided into "k" number of elements. Let V,
denote the element 'volume and S,,, S, be those portions of
element surfaces on which prescribed tractions and
displacements, respectively, are applied. Also, assume that
the ffdctional‘surface is approximated by a thin layer and
denote the.vblume of that léyer 6n the element surfaces as
V. The prescriped body forces and surface tractions are in
equilibriup with the internal stresses o% and the

frictional stresses ag. The displacement field q° is

£0
ij*

compatible with the strains e% and e
I1f the structure is loaded with increments of traction =
AT, body forces AF, and kinematic constraints Ag, the stress

and strain increments Ao, Ae;; and Aa% are generated. This

jl

“load increment, or load step, is the case for whichﬂa

28
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sqlution is desired.
! (_ The principle of virtual work states that the sum of
all virtual work W done by the external and internal forces
in going through a set of infinitesimal arbitrary

displacements 84q; satisfying prescribed kinematic

constraints is zero ie. 8W = 0. Thus,

t ;
SW = Zk [IVAOij6AeijdV + ‘JvAoijéAeijdV
k fx

* [a?jGAeijdV + J 0{384¢,,dV

J
\vk’, fx
- J (F° + AF;)84qdV - J‘ (T> + AT,)8Aq,dV| = O. | [3.1]
v o S

k > ok

In this study, évaldation Qf the frictional work terms
is based on the assymption that £he~work done on a’
frictional surface can be approximafed by the work done‘on a
thin boundary layer if ﬁhe normal stiffness of the thin

layer is large, i.e.

J 0,88q,dS = J (0!% + Aof;)8Ae AV, w7 [3.2)
S v |

. Finite element matrices can now be generated from Eq.
3.1. The strain increment tensor is related to the

displacement field tensor by

1 0
Afij = E(Aqilj + qu,i)' . | [3.31
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)

The displacement field can be written in terms of nodal

quantities as

-

{ad} = [Nl{aq}. ' [(3.4]

Sy
LS

where [N] is a matrix of Shape functions. If Eq. 3.2 is
rewritten in matrix form, the incremental strain -

displacement rélatibnship is obtained as
{ae} = [Bl{Aq}, | [3.5]

where [B] is a displacement derivative operator matrix.
Wwithin the bulk material, the stress increment tensor

is related to.the strain increment tensor as
’

Aaij = 'CijklAekll [(3.6]

or, in matrix form

2 o)

It is assumed that the concept of Eqg. 3.6 holds true

[c]{Ae}. | [3.71

for the friction layer as well, i.e.

(A0}t = [Ccl'{Ae}. ' - [3.8]

r

If Egs. 3.3 to 3.8 are substituted into Eg. 3.1, and ;
the necessary variations are carried out, Eqg. 3.1 is written

as



<5A9>[” [B)7[C](BlaV + j

KR

» )[B]T[C]t[B]dV]{Aq}

k Vk v(l ‘ i B

+ J [8]"(0°}avV + j [B]"{c'"}av - J [(N1"{F°}qv
v § v v
| 3 fk Yk

- j[u]"{amdv - [ mmedas - J (N1"{aT}ds]| = 0. (3.9]
Vh ) Sak . ok

- Equation 3.9 can be reduced to the form

<sag>[Kl{aq} = <6ag>{aQl, o [3.10]
where, \
[K] = Z [J [B)T[{clIBlav + J (817(C1f[Blav|, [3.11]
LAY \Y
k fk
{aQ} = {F} + {T} - {Q}. ' Co13.12)

The terms.of Eq. 3.12 are defined as

~a—
oo ]|
o

n
=M

;13]

[ ITE 4 [ INTreRdav), 3
Y v
B k |

(11 =z [[ e s | nT(aTiav), S 13.14)

3 "S S , . .

ok ok

(@) - £ [[ 81 teNav + [ [81740"1av]. (3.15)

) "Vk vlk

The terms {F} and {T} refer to the work equivalent body

force and surface traction vectors, and {Q} is the

equilibrating load vector.
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since <8Ag> has arbitrary values, Eg. 3.10 becomes
[(kl{aq} = {aQ}. [3.16]

Equatiom 3.16 represents the usual stiffness equations

resulting from a displacement formulation.

3.3 Non-Linear Solution sfrategy

The finite element model described in the previous
section is a displacehent model. It satisfies kinematic
compatiblility everywhere and apbroximately satisfies
equilibrium oniy on a global level. The set of linear
algebraic equations (Eq. 3416) are considered a piecewvise
linear?zation of a non-linear structural response, and are
solved for an increment of displacement, which yields an
increment of Strain. Stress increments are calculated by
constitutive laws, Total stresses are updated either by
difect addition of the stress increments, or by satisfaction
of a governing stress condition (this method is necessary
for the friction interface, where the increment ot‘interfacé
shearbstress developed during slip is not constitutively
dependent). When integrated over the volume of the
é%fucture, the total stresses yleld the equilibrating loads
{Q}.

The structural model is said to be in equ;librium if
the unbalanced locad {AQ} vanishes. If {AQ} # 0, the stresses
which SatiSfY‘the constitutive laws and governing stress

conditions are not in equilibrium with the external loads.
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One way to arrive at a state of stress that satisfies
equilibrium is to elimjnate the unpalanced load {AQ} through
an iterative scheme.

The iterative scﬁeme used in this study is known as the
standard Newton Rhapson method, or tangential stiffness
method. Fig. 3.2 qualitatively illystrates the tangential
stiffness approach. The curved line represents the actual
load - displacement respoﬂSE’Of the structure. The stiffness
matrix K is first assembled 35 K,, and a displacement
increment Ag, is calcylated corresponding to K,. The.
equ111brat1ng load Q, at displacement g, is less than the
external load F + T. The stiffness matrix 1is reaSSembled as
K, # K‘h and the strdcture 16 reloaded with an unbalanced
load AQ, = F + T - Q. This process. is continued until
convergenée is achieved. Euclidean| norms are used to form
tﬁe critériaﬁfor convergehnce: ' .

A pictorial description ©f Eyclidean norm convergence
is shown in Fig. 3.2. The symbols A, and A represent
relative absolute tolefances less than one, and are set
arbitrarily by the program user. The values A “q" and A |F +
T" represent the maximum allowed magnitudes of the errors in
displaceﬁents and ldaas respectiyely, point 3 in Fig. 3.2
has passed both error 1imits, and has, therefore, converged.

Acceptable values of Ag @nd ), are problem dependent.

In this study, a range of 0.01 to 0,03 was used for both

tolerances.
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The piecewise linearization of Eq.‘3-16 requires that
the load'increment be reasonably small. If the structural
response is path depeﬁdent, the resulting strain increment
may still be large enough to cause the solution to drift. If
the strain increment is divided into a number of smaller
subincrements, better control of the solution ig achieved.
This is known as the subincrement method of updating

stresses (Elwi and Murray 1980).,

kR



Figure 3.1 Structural configufation
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Figure 3.2 Modified Newton-Rhapson solution strategy
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‘4. FRICTION MODEL

4.1 Introduction

Wall friction has a majo: i*luence on the magnitude of
bin pressures. Therefore, it is important to include the
frictional interface between material and wall in the
formulation of the structural problem. The solution to the
problem is béth nonlinear and iterative in nature. In this
chapter, én intuitive and practjcal solution to the friction
problem is discussed. The element formulation is similar to
an approach taken by Desai et. al. (1984). This involves
using a thin interface element to describe interface
behavior under loading.

In this study, Coulomb friction is assumed. Coulomb
friction is a simple concept and requires only one parameter
to describe sliding frictional behavior. Kinetic and
aahesion effects are neglected, although the friction model
can be modified to accommodate both.

The limiting equatiom—for the Coulomb friction law can

be expressed as
R, = R, tan ¢', [4.1]

where R, is compressive. Eq. 4.1 may be expressed in terms

of stresses as

Tiime = 0 tan é', [4.2]

where ¢' refers to the angle of “friction of the interface.

36
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It is assumed to remain constant under all lpading
conditions, and has different values for different wall -
material combinations.

A simple model illustrates sliding frictional behavior.
Consider a block of incompressible material resting in
contact with a surface as shown in Fig. 4.1. The interface
has an angle of friction ¢'. The block is subjected to loads
R, and R, acting in the normal and tangential directions
respectively. Three states may now be identified to govern

the relation between R; and R,

|R,| < R, tan ¢', (4.3)

P
"

. R, tan o', (4.4)

= 0. (4.5]

:7,; Ao
The three states an%rred to as stick, slip, and debond

in that order. When an increment of shear AR, and an

increment of normal force AR, are added to the system, the
interface may pass between the three states in a manner
discﬁssed in detail subseqguently. In this case, (R, * AR,)
is the independent variable and R, is determined
accordingly. The remainder of AR, and/or AR, beyond that
allowed Sy Eqs. 4.3, 4.4, and 4.5 must be redistributed,
Equations 4.3 to 4.5 may be referred to as force type
constraints. Corresponding displacement constraints can be

derived in the form
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- g =0, g =0 (stick) " l4.61
Py : ' , |

q #0, g, =20 ) (slip) v : [4.7]

q. * 0, g, >0 (debond) - " [4.8]

' where q, and g, refer to tangential and'normal displatements
,respect1vely ‘

Coulomb friction may be introduced in a finite element
program 1in many ways. The bougdary 1ntegral approach
(Jofr1et et. al. 1977) is rejeéted on E;e premise that the
result1ng formulatlon is unsymmetrlc and requires special
equatlon solv1ng §¥ograms. In add1t1on, the method is based
on the assumptlon that the full frictional bourdary 1is
sllpped, which may not be the case. The iterative process
' adopted by Askari and Elwi (1986) is also rejected. This
‘method also assumes full fr1ct10na1 boundary slippage. In
this study, a thzn interface element with spec1f1c materlall

3

"propertles de51gned to satasfy‘EgE;\i~3 to 4.8 is adopted

: / V.

4.2 Model Description L ‘

4.2.1 Representation of terfﬁ"e\states
As descrlbed earller,_lt is propoeed to use %’tﬁ1n
'1nterface element to model frlctlon effects. This element
|

(shown in F1gure 4.2) must have material propertles that

enforce the necessary constralnts for st1ck€Ksllp, -and

debond. B | . '§§§.
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Adopting an incremental approach based on displacement
formulation, an increment of stress is obtained in terms of

an increment of strain as
{a0c} = [Cl{ae}.  [4.9)

where [C] is the constitutive matrix.

In an axisymmetric formulation only four cemponents of
the stress and strain tensors exist. Of these, the only
stresa increments of eoncern are the stress component Ao,

" normal to the interface and the corresponding shear
component A7,,. All other stress increﬁents are zero. This

relation may be described as

Mo, ] [E, 0 0 0 ]{Ae, ) (4.10]
Ao, 0,0 0-0 Ae,
Ao, 0 0 0 0 ||ae,
ar, ) 1lo 0 0 G.llay,

Physically, [C] represents the normal‘and tangential
stiffness of the interface. Straih (and displacement)
condltlons are dependent upon the values 'in [C]. Also, it
can be said that the total stresses {o} represent the force

ond1t1ons that exist at the 1nterface. I1f this is true,
then [C] and {o} can be used to describe the three
frictional states of Sllp, stick, and debond
| In the stick state (r,, < o0, tan ¢'), no relative
movement occurs along or against the friction surface (Eq.

4.6). To enforce these two constraints, arbitrarily large
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values of E, and G,, are used. This ensures small movements
since the correspondingustfains are small. There are no

force constraints because the interface can carry the full
i ! \ -

—

stresses o, and 7.

As the slip state is 1n1t1ated (r,, 2 0, tan ¢'), no
relatiVe movement occurs in the normal direction (Eq. 4.7).
Hewevef, movement does occur in the tangentiel direction
because the limit condition is exceeded. If e'stress -
strain plot of the intefface is examined (Fig. 4.3), it can
be seen that once slip starts, the shear stiffness G,, of
the 1nterface reduces to zero. This means that’ G,, must be
set to zero. In addition, the force constralnts specified in

Eq. 4.4 must be enforced as

T2

Ty = T——W—‘a,| tan ¢' .[4.11]

© For debonding (0, 2 0), the surfaces no longer remain

in contact. There is relative movement in both d1rect1ons,

and the effective st1ffness of the interface is zero. In
this case, &

EY = G, =0, =1, = 0. » ' [4.12)

¥ - o ) oo
Table 4.1 shows the force,constralﬁts and the

3

correspondlng ¢onst1tut1ve matrices for the three cases

¢;d$5£&esed above.

f&x

-
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4.2.2 Change in Interface State

As an interface is .loaded, it is possible that ‘the
interface state may change, e.g. from a stick to a slip
cond1t1on Normally, this is modelled by changing the force
- d1sp1acement constraints to those of the new state within
_ the load step. However, some ‘state changes need to be givén
specialxconsideration due to model limitatipns.

It is”cc‘vemientwto show state changes in the form of a

) e

decision matr ﬁga$=hown in Table 4. 2 The left column of |

I‘

the matrix denotes the old state, and the top row denotes

the mew state. The members of the matrix represent what
conditions must occur for the change and what correspondlng
constraint changes need to be made. Most changes in the
table are fairly obvious. However, some changes in statéﬁti
bear explana,tion. ' . , ‘ ﬁ

1f one surface has‘aebonded-from another, it means that
there is‘sohe gap or separation of the two surfaces.

ER

Therefore, it is convenient to use the element normal strain
€, as an indicator of separation. If e, < 0 and the surface} s
was previously debonded, the gap no longer exists, and the
interface is under compression; At this point, the interface
stresses are set to zero.

The case of debond te slip is not a%lowed. This‘is
because the conditions for this change are not clearly
defined, so it is assumed that a steppedrpath is taken to

achieve this change ie. debond to stick to slip. This method

is also used by Katona (1982).
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{

Also, the case 6f s%}ﬁ to stick is not allowed. Once
the interface has slipped in a given load step, it stays
slipped. The assumptioh ié made that once slfpped, the final
equilibrium posifion of the interface is at a limiting )
condition sh?ar stress (r,, = 0, tan ¢'). This assumption is

used by many researchers for friction formulation (Katona

t982, Eibl 1984, Askari 1985, and Bishara 1979)’&

4.2,3 Computational Algorithm

Given the background theory of thé model , fhe
implementation of the model into a finite element ppogram is
now explained. In each load step an initiai fricgigﬁal state

. w \
(usually stick) is assumed at selgcted sampling (Gauss)

points on the integface._The styuctye is then loaded.
Interkace.stresses and strainsjare calculated, and the
inter face condition at the Gauss\points is checked (Table -
4,2). If-the iQterface state changeé, corresponding’changes
are made to [C] and {0} from Ta&?e 4.2, fhéxunbalanced load

{aQ]} is calculated and the structufe is reloaded%with {aQ1}

- using the new intefface state conditions. The process is

fepeaﬁed until .convergence of loads and displacements is
achiéved. | |
Inter face stresses are calculated using a simple
material model. The model's function is to assign
stiffnesses (displacement constraints) and stresses (force
constraints) that correspond to the state of the interface.

Y

The flowchart for such a model is shown in Fig. 4.4.
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To understand‘the logic flow, it 1is neceﬁsa;y to
examinerFig. 4.4, step by step, noting that all calculations
are for one Gaussmééint. In‘Step 1, global stress increments
'{Aa}g'are calculatéd. Next, the global stress components are
transformed to the point localqaxes. The local axes are axes
which define directiohs normal and parallel to ‘the
interface. The total local stresses {0}, and global strains
{e}, are updated in Step 3. As well, a global load step
strain increment {e}gls is updated. The.strain increment
{e},, represents the sum of the strain increments ___
accumulated during the load step. The term {e}qpls refers to
thé total strain from the previous load step. When {el, is‘
transformed to the local strain increment {e},,, the load
step shear strain increment (y,;),, determines the sign of
the interface shear stress (7,,), during slip. This is useful
in cases where the ioading is reversed in subsequent load -
steps.

In Stép 5, the: interface state is checked, and
appropriate stress (force) constraiﬂts'are assigned. Also, a
condition flag is assigned to tge Gauss point. This flag is
used to determine appropriate stiffness (displacement)
constraints for the Gauss point (Step 6). Finally, [C], and
{0}, are transformed to the global frame of reference (Step
7).'These steps are repeated for all the Gau;s points on the
interfage.

Té simulate the permanent deformatioﬁ that occurs

during slip (see Fig. 4.3), the constitutive matrix [c], for
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each Gauss point is reset to [C),,;cx after each load step.
This has the effect of inducing a permanent: "set” if the

interface is unloaded in a subsequent load step.

9

4.2.4 Limitations
The friction element described in this chepter has a
* number of advantaées. It is formulated just like any other
solid element, which makes it easy to implement in a finite

element program. Adhesion and non-linear friction laws can

1

be modelled fairly simply. The element converges rapidly for

. !
some limitations as té its use.

In reality, the thlckness of an interface is either
g'ﬂ
zero-or, very small. The efore, it is necessary for the

problems without severe stress gradients. However, tagre are

interface element to be thin",ﬂi.e.'the element has a large

aspect ratio. It is well\ nown that large aspect ratios

invite numerlcal trouble (zienkiewicz 1977). In the silo
problem, this shows up in the form of stress oscillatighs

near the transition if the yvalues of E, and G,, become” too

i

large for a g1ven aspect raélo. To determlne suitable v
'parameters of‘E and Gy, it hs necessary to perform
parametric stud1es with varying aspect ratios. This may only
amount to varying E, ang G,, until the oscillations are sm%}
or have disappeared, »hich is the epptoach followed here. \

Alternatively, an errc: balancing method involving penalty

functions (Zienkiewic: "7) may be used.
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In the model, the process of rebonding a debonded
element is not done entirely correctly. This can be
~illustrated by examining Fig. 4;5. Assume that the element
started 6ut in config ationyc‘ with Gauss point #1
debondea. The interface would have zero stiffness and would
be free to increase or narrow the gap. If, in the subsequent
iterate, the element moved to cqnfiguration C,, Gauss point
#1 is rebonded. The interface would then have full

stiffness. Also, e, would be less than zero, with a possible

+ case of nodal penetration when e, < -1. The correction for

this would be to set e, = 0 if eq < 0 for a debonded
element, i.e. réstore the displacement constraint g, = 0.
However, this correction requires another iterative cycle,
and is not done here.

For the silo problem, it is ggnerally found that
debonding takes place at the top corners of material layers-
during loading, Considerable tensile stresses are generated
there.4since fipﬁi Coﬁpressive stresses at the top corners

are relatively small, the error in rebonding is considered

inconsequential to the final results.
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Table 4.1 Model description of interface states
: I

State Constitutive Matrix
N ], . = (£,0 00 ]
Stick ktiek= |00 00
, 0000
(T|2<a.lv ton¢>) 0 0 OGI&
, _[eooo]
Slip [C]slip = loooo0
o ton | 0000
(152 oytang’) (0000 |
(0000
bond -
; L 0000
(0,20 or €20 0000
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Table 4;.2}Inter£ace decision matrix

N

From ° Stick ‘Sllp Debond
. ( qrrq‘ =0 gn =0 No Displacement
. = ‘ Constraints
Stick [Cl=[Clyy, -
| No Forczmk [C] l'-C]slip [C] = [C]debond
Constraints 1= o) fan ¢' | 97 72=0
Not gz O ' No Displacement
n .
- Allowed Constraints
| -
> 'E Within a [C]' [C]slip ' [C] = [C]debond
LDQd Step 1579 tan ¢ o= T|2:'O
! qn=9¢=0 No Displacement
Debond Not Constraints
" [c] - [C]S?ick Allowed [] = [Clgebond
SRR o= T2"

47
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(a) Stick: Ry(Rytang'

Y
RT—RN tan ¢|
R
AL ]
—— |
T RNton¢
RN

(b) Slip: RT 2Ry tang'

‘ RthfRN ’

e | ;T
NI

Figure 4.1 Interface states
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Figure 4.3 Interface shear stress characteristics
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5..:MATERIAL MODEL

5.1 Introduction
| Ensiled materials are mostly granular in nature, with
iz\cr without a certain amount of cohesion. Only cohesionless .
Materials are examined in this study. Granular materials
‘have certainkbehav?%ral characteristics under loading. These
characteristics are summarized as:

. 1) An_increase in‘density with increased mean stress

Fr

o

m* -

2)" A plastic volume.decrease with increasing o,.

3) 1In the elastic range, an increase in_elastic modulus
E withﬂtncreasing am: |

4), Elastic - prastlc uork hardening behavior.

5)° Time depegdent load = defornation:behavior.

6) An 1ncr7 ase 1n shear strength w1th increasing o

7) A plasd\c volume expans;on when the shear strength
‘of the. materlal is reached and plastlc flow
commences.‘ - o :

The first three characteristics are consequences of

compressinility, Compressibility of‘granular materials underA

load is due to defbrhation of the grains (usuallfl L

negligible), ccmpressibn of air in, the voids which exist“

:between the grairns, and squee21ng out of a1r and water from

’the v01ds. For most granular materials, compre551b111ty is

not a time dependent phenomenon because granular materlals

l

»are usually highly permeable, whlch helps for water and air

52



- to squeeze out of the bulk mass relatzvely qu1ck1y
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.

Jenlke (1964) has found that the material unit we1ght Y:
can be expressed in terms of theﬁ‘ stress o, by the

expression

[5.1]

)

where y, is the unit weight intercept dnd n is a
compressibility.parameter.

_For most materia}s, n < 0.3; and the effect of
compressibiiity on unituweight is negligible. General
practice, in most design situations, assumes a max imum
expected unit weight value for f. Although this assumption
is conservative, it is the apprdach followed herein.
However, signfficant error may be introdqced'in”the analysis
for highly compressible materials or a small head of - .
materlal (smith and Slmmonds 1983).

As a bulk mass compresses, progre551ve st1£fen1ng of
'the materlal system occurs (Lade 1977) . Lade relates the
average elastic modulus, E, to the confining stress in a
trlaxlal test, o,, as

. 0 t '
E = Kmpa[sl] . - [5.2]

Ywhere K, is a modulus number pafameter, p, is the

atmospheric pressure, and ﬁ is an exponeht barameter;
The values of K and t are determ1ned from triaxial

compression tests under varlous levels of the confining

J K
. stress o,. However, thesg parameters are not available in

s - . !
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the literature for ensile%”materials. Therefore, a constant B
value of E is used herexﬁnfor the purpose of analysis.

Flgure 5.1 shows the varaatlon of volumetric straln e,
with axial straln in a tr1axia1 compression test e,. The
straln increment tensors are composed of three distinct
parts; elastic, plastic contractive, and plastic expansive
combonents. In most cases, theéeffect5~of compressibility
are negllglble, and consequently the magnltude of the
plastic contractive strain 1s small. Therefore,. in thls
study only elastic and plastic expansive components of
stress and strain are considered.

Grpnularvmateriels exhibit%triaxial stress - stfein
characteristics similar to those shown in ?ig.,S,Z. There is
a Einear initial portion followed by a curved work hardening
region. Unloading is generally elastic with a small
‘HYSt;retic loop. Since, inbmost cases, the parameters needed
to describe the haréenihg process are not available, it is
propqsed to use ‘an elastlc - perfectly plastic
approx1mat10n, neglectlng both work hardenlng iand . k

- - &
hystene51s. ' : %

Time dependent load deformatlon behav1or\
(viscoplasticity) is not considered hgre. There is very
little information regarding the flow properties of bulk

solids which can be used in a finite element analysis.

*

Viscoplastic formulations await future research, elthgygh

some attempts have been made (Eibl and Haussler 1984) to -

i
-

solve the problem.
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" To summafizé the ‘above discussion; if the effects of
compressibility are small, then density changes, plastic
volume contraction; and cﬁanggs in bulk modulus are all
negligble. The-stress - strain relation is approximated by
an elastic -vperfectly plasﬁic approach, while time |
dependent behavior awaits further Fesearch;‘Finally, plastic

¢ .
volume expansion and shear strength dependence on the mean

stress level have a major influence on material behavior,

and are discussed in the next section.

- 5.2 Model.Desdription

It is desired to model‘the ensiled material as an
elastlc perfeetly plastlc mater1a1 wh1ch exhibits an
increase in shear’ strength with 1ncrea51ng mean stress o,
In addition, once the mater1al~shear strength is reached, a
plastic volume expansion, known as dilatency, occurs. An
approach used extensivelyvby geotechnical ‘engineers to model
these characteristics is to adopt a Drucker-Prager failure

. < ,
criterion (Drucker and Prager 1952). A more accurate
approach may use the failure surface proposed by Ladéxf7977)'
or an adaptation of that ptéposed by Willam and Warnke |
(1977). However, parameters fér‘these surfaces are not
readily obtainable. The Drucker Prager surface is sxmple,‘
B S

requiring only two commonl& obtalned parameters to descrlbe

it, and is dlscussed‘gg sﬂ@bequent sections.

lf“
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The theory of perfect plaéticity is based on three

assumptions (Chen 1982):

1.

ARy
‘L'.l ﬂ'j
Y

2.

a ‘recoverable, or elastic, component and g non

Existence of a“yield surface - The material is elastic
until a certain function of the stress cémponents

reaches a certain value. This function is known as the
yield function, and for perfect plasticity the value of

the function is zero i.e,

f(o,.) = 0. [5.3]

13
1f £(0,;) < 0, the material is elastic. The condition
f(o;y) > 0 i; not allo&ed for a perfectly plastic
material. |

Once the yield surface has been reached, plastic
deformation takes place without limit. This means that
the state of stresswmust remain on the yield surface

i.e.

of .
aoijd"ij = 0. _ - [5.4]

The strain increment tensor de;; can be decomposéd into

B

recoverable, or plastic, component such that

~ :
de;; = dej; + Aef ~ [5.5]

i) R eij'

IS

The stress increment tensor is related to the elastic

strain increment tensor by Hooke's Law

do;; = Cijuden. [5.6]
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3. Existence of plastic potential - It is assumed that
there exists a plastic potential function,“é(o”), such

that

def, = —g,—dr, ' [5.7]

ij .

where d\ is a positive scalar quantity.
1f the function g(o};) defines a plastic potential

. defines the direction

surface, the surface gradient 3g/d0;

that the plastic strainfincremént must follow.
1f Eqs. 5.5 to 5.7fare used in conjunction with the
assumptions of perfect ﬁlasticity (Eq. 5.4), a constitutive
iv’ :

law relating the stress increment tensor to the strain

increment tensor is obtained (Chen 1982)

Cijmn baf/aamn ag}aapq Cqul
do‘,j = [Cijkl - af7aora Crato ag/aotu ]de“, [5.8]

v

or, in matrix form

[c] {af/d0} <dg/de> [C]
{AO}_ = [[C] - <3t/30> 1CJ (3g/30] ].{AG}. , [5.9]

With two different functions f(o¢,;) and g(an)) the
_elastic plastic constitutive matrix of Eq. 5.9 is
unsymmetric, and the flow rule of EQ. 5.6 is called a non
associated flow rule. If g(o;;) is assumed to have the form
of f(aU),‘an associated flow rule is eStabliéhed, and the
constitutive matrix is symmetric. "

There is evidence related to dilatency to sugsig% that

cohesionless material behavior should be described with a

P

P BB
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non associated flow rule (Lade 1977), However, the
associated flow rule has found widespread use because of its

simplicity, and is adopted here. for the same reason.

5.2.1 Drucker-Prager Surface

The Drucker-Prager surface is a right cifculag cone
with its axes equally inclined to the coordinate axes in
principal stress space, as sho&n in Fig. 5.3. The yield

function is expressed as

*

£(1,/3;) =al, +V3, - k=0, [5.10]

where « and k are real material constants. The terms I, and
J, are the first stress ihvarient and second deviatoric
stress invarient respectively. These invariénts can Se'
expressed in terms of the mean shear stress 7, and the mean

normal stress o, as

I, = 30 [5.11]

m!

2 : L
P J, = 5/27,, o [5.12]
where o is the average of Ehe;three principal streSsss and

o

7, is given as

ro = V5,875 .. | "~ - [5.13]

m ij

& '

The. deviatoric stress tensor S;; is expressed as

3 o , : S )
T L 8y = ooy m 0,8,,/3. o [5.14]

o~ J 1)
39 ’
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If Eqs. 5.11 and 5.12 are substituted into Eq. 5.10 and

th?,expression is normalized with respect to uniaxial
B : :

compressive strength, T., an expression is obtained

.

relating the yield function t¢ mean stress components

(Askari and Elwi 1986)

L) T B N ‘
g om 18 -2y =
F— S e, Ty 5k=0 (5.15]

f(o
fcu

' That form is suited for concrete materials for which
‘:he applicationrpnogram FEPA?CS was written. In the current
context, it is épﬁlied with the-value f_, = -1. The .
representation of the yield surface in mean stress
coordinates is shown in Fig. 5.3c.

It is desirable to relate the Drucker - Prager strength
parameters a and kK to the Mohr - Coulomb strength parameters
¢ and c. The terms ¢ and ¢ refer to the angle of internal
friction of the material and the cohesion intercept

respectively. For axisymmetry and plane strain, the

‘' relationships are given as (Chen 1982)

« = tang - [5.16)

V9 + 12 taﬂ?¢

Y Kk = 3¢ i (5.17]
/§7+ 12»ta;7¢

The mathematical description of the Druckér - Prager
surface is now complete. The yield surface description in
Eg. 5.15, with parameters from Eqs. 5.16 and 5.17, can be

used in conjunction with Eq} 5.9 to model elastic perfectly
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plastic behavior of a granular material.

5.2.2 Computational Algorithm

The numerical implementation of the material model is
described in detail in Appendix A. To summarize, an elastic
stress increment is calculated, and a trial total stress
state is obtained. The total stress state is then éhecked
againét yield criterionl‘If yielded, the stress and strain
ihcrementslare decomposed into two componehts; an elastic
stress (strain) increment, and a stress (strain) increment
after onset of yielding. To obtain this decomposition, the
intersection point of the stress increment with the yield
surface is computed. Elastic stress‘increments are

calculated using the matrix form of Eqg. 5.6
{ao} = [Cl{ae} [5.18)

Stress increments after onset of yielding {Ao},, are
obtained using Eg. 5.9 %na {ae} = {8e},,. Finally, the error
in the incremental approach is scaled to an acceptable
tolerance, and the total stress state lies near the yield
surface. If the stress increment is small, the assumption of
a linear stress increment is a good approximation&@@sinéga
linear stress increment with the point of intersectio%uat o,
= 0 presents difficulties because the surface gradient

<3f/d0> is not uniquely defined. It is proposed here to use
e

‘a stepwise stress path to move away fr

on the yield surface where the surface, gt

-
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defined. In this process, the test stress increment {A¢},,,,

is divided into a mean, {Ac},, and a deviatoric component

{B0},

{80}, = (8o}, + {Bo},. [5.19)

Tﬁe stepwise stress path is used for all increments of
mean stress Ao, < 0. The stress increment {40}, is applied
in two steps. First, {Ao} is applied which does not lead to
yield if {Ag}, < 0 f
{o} = {0}, + {B0},. : [5.20]°

3
i

A
Then, the deviatoric component is added
(0),ee = (0} + 1Bo},. (5.21]

The ratiohgle for using the stepwise stress path for
all mean stress\increments less than zero can be seen by
examination of Fig. 5.4. If a linear stress paﬁh is
followed, the point of intersection with the yield surface
is at point a. If a stepwise stress path is used, the 7
intersection is at point b. The actual stress state is close
to point c. It can be seen thét point b is closer to the
actual stress state than point a. This means that yield
surface drift is reduced because point b has a bétter

estimate of the surface gradient than point a.
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Figure 5.3 Drucker-Prager yield surface
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6. IMPLEMENTATION LEADING TO INCIPIENT FLOW

In chaptegg;three, four%’and five, finite element
- 0

models were preséhted for wall interface and material

6.1 Introduction

behavior. These models are now used along with special

. & ' : : :
provisions for loading history to determine wall pressures.

"In this chapter, one axisymmetric silo geometry with three
>, .

sets of material properties is analysed using a hodified
version of the program FEPARCS (Elwi and Murray 1980).

In the first phase of the analysis, a typ&cal silo is
filled in stages, and comparisons with the Jenike and
Janssen pressure distributions are made. Ingshe second-

ghaﬁe, the silo outlet closure is removed in an incremental

»manner,vqnd the resulting stress field is examined. Finally,
failure #o obtain a free flowing solution is examined, and

recommendations for design are made.

-8

. 6.2 Procedure for F%lliﬁg and Release

, To obtain correct wall pressures, it 1s necessary to

g

¢ kndw the load history of the silo. This is because the »
. 3 “ [y

A/ 3
constitutive behavior of both the ensiled material and wall

“?ihterface are path dependent. The load history of a silo

’i ‘consists.of two parts; filling and release.

Filling usually takes place continuously, but it 1s
suffiéientiy accurate to model the filling process as a

sequence of material layers. The material layeréiaré placed

65
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‘in a serles of load steps unt11 the 5110 is fllled An31YSlS
(!
in steps normally y1elds better results than n51ngle step
sw;tch on" gravity methods (Clough and Duncan 1969)
A si@ple method of stepwise filling is 1mplemented in

w ) ,

“brogram'FEPARCS, Each matetrial and ihterfacevelement is,
glven a layer aCtlvathﬂ number. The number corresponds to
the layer the element ‘belongs to. ‘when a layer act1vatlon
number is SPeCIfQEd in a load step, all elements that have
o actlvatlon numbe r less than or equal to the spec1f1ed
value are aCtlvatEd In other words, stiffnesses and grav1tY
~ loads are calculated for these elementS Elemen»s that are
- pot act;v&ieq are assigned small elastic moduli, and’ thel?;
gravity loads are not céichlated. | ' .' L
g 1n practice, when the en51led material is requlred the
butlet bottom is released and thehpaterlal flows freely or.
‘Pow is controlled by a feeder. FOr the purpose of analysls,
1t is de51rable to control the reléase procedure inh order o
A closely monltor mater1al y1e1d1ng Full release is dlﬁflcult
.,;1n 3. statlc analysis, since the material- near ‘the bottom of
__w,.the,s1lo falls, causlng numérléal 1“Stab111t§, Therefore,
:fthe analy51s 1s 11m1ted to 1nc1p1ent flow.'- ";@,. ; L
. The bouhdary cdndltlons o: a Closed outlet bottom éan

.}be modelled by: a series ‘of st1ff Sprlngs' ‘asg shown 1n‘*ﬁg

6. 1a. To control the release ptqgeSS. it isy poss1ble to

’

A >

‘lreplaCe the spflngs w1th a Serles OfaeQUJVBIEHt nodal fofCes -

}
.(F1g 6. 1b) These forces can be jincrementally removed from
the outlet untll éhe mater1a1 starts flow1ng. Flow. is"

‘\

Congg ¥
~oh

) o
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detected by a sudden increase in displacements at the \égs
outlet, followed by convergence failure of the numeriC§l

procedure.

6.3 Description of Silo Model ; ‘ o
As described earlier, one)axisymmetric silo geometh~
under three different sets of interface and mater1al
propertles is analysed These analyses are referred %0,
hereinafter as Silo #1, Silo #2, and %ilo #%ﬂ’Thépilﬁrie

'E” @ v
element dlssretlzatlon of the silo geometry is sM&Wn. in Fig.

L]

6.2. Because of symmetry, only one half of the total
c;oss SeCtlon is. con51dered To ellmlnate the effectS of
wall flexibility on wall pressures the nodes at' the silo
».wall are prevented from mov1ng The bulk material region is.
’ characterlzed by eight node 1soparametr1c elements. The
m1d51de nodes along the top and bottom of tte ;nterface
Qlemenqﬁr%@Ve bgfnugfiﬁﬁnated beca%ge 1nclu51on ofqﬁheseg'
nodes may - cause ze?o stlffness terms to appear on the main
'dlagonal of ehe stlffness matrix dur1ng slip. Thus,
. isoparametric eleéents'witﬁ six nodes are used to describe
théAiﬁtetfaoe; _ | “:  o - . | _
' The outlet éﬂosure.during filling'is represented by a
"SErles of stiff sp 1ngs as shown in F1g 6.1a. The sprlngs
are. removed and replaced’ by 2 serles of equ1valent nOdal
forces for release condxtlons as descrlbed in the pfeVlOUS

+
s . A k . L

section.
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Silo #1 has‘an internal angle of friction ¢ of 35°, and

a wall friction angle ¢ of 20°, Silo #2 has ¢ and ¢ angles
of 25° and 15° réépectively, and Silo #3 has values of ¢ and
¢ of 1;: and 10° respectively. The unit«weight of the
material is identical for all three silos, and is similar to
Mthat of finely graded coal at 9.5 kN/m . An average modulus
w{of elasticity E of 1. SX10 kPa is used It was observed in
‘prellmlnary analyses with a hopper conflguration, that a
substantial variation in E caused only a minor variation in
étresses. |

| As described in Chapter 4, values of E, and G,, for the.
interface elements are determined by varying these
par;meters until the stress oscillations near the transition
area are‘smél; or have di&gbpéared. Generally, values for E,
- and G,, of 1.0x10* kPa and 1.0x10° kPa respectively were
found suitable, although some oscillations%gf pressure

results were still present.

6.4 piscussion of Results

1

6.4.1 Initial Filling o | - B
'Figures 6.3, 6.4:Iand 6.5 show the wall pressure
. results for initial fillingvof Silos*#1, #2, and #3
vreépeétively. These are plotted as’wall pressure vs. height
above the silo outlet. For the purpose of comparison, two

other curves are plotted. These curves are the pred1ct1on of

wall pressures u51nq/Janssen s theofy for the cyllnder ‘and

4 .

=
d
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_Jenike's initial pressure theory for the hopper region

(Jenike et, al. 1973). The first curyg%is obtained using a
lateral pressure cqefficient, K, of 0.4. This is the value
recommended by Jenike et; al. (1973) based on experience and
test results. The second curve is derived using an "at rest”

value of K recommended by Jéky (1948). The "at rest‘

" coefficient, K, has been determined experimentally as

K, = 1 - sin'§, ~ [6.1)

An examination of Figs. 6.3 to 6.5 shows that the
variation in wall pressures follow a similar pattern. In the

cylinder reg1on, the wall pressures closely approximate a

Janssen dlstw;: hion. The plot us1ng K = Ko gives a cldser

estimate‘of f{V’te element wall pressures than does the plot

usipg K = 0.4//4An each case. In the hopper region, the finite
5

-
elem res lts are close to the Jenike pressures in most

areas, and/are slightly less than the Jenike pressures near

| the outlet of Silos #1 and #2 As’ for the cyl1n§ér region,

. the plot using K = K, provides a closer fit of the finite

element data than the plot using K = 0.4.

v Oécillations aﬁd a large overpressure are evident near
the transition regxon for all three silo cases. Some of the
overpressure may be due to the ex1stence of a stress
concentration at the sharp co:ner of the tran51t1on. More
llkely, the oscillations and, overpressure may be due to the

—

numerlgal 1nstab111ty dlscussed earlier in Chapter 4

~However, the osc111at10ns and overpressure only occur near
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,the transition. and thelr effects tend to be locallzed
Figures 6.6 tO 6 8 show the direction and magnltude of
Principal stresses for Silos #1 to #3 respectively. In an
actiye state of stress, the major principal stresses are
aligned in more or less the vertical direction. Examination
of the principal stress directions confirms that the stress
fleld close1y¢approx;mates an active field, which is
C°ns1stent w1th both the Janssen and Jenike theorles.
Flgures 6.9 t0'6.11 show the nodal displacements of the
bulk material in the SllowSmce the silo wall is very
o St1ff the dlsplacements of the ensiled mass are mostly in
¢ Qhe vertlcal dlreCtlon. The ensiled material in the cylinder

de(orms P@%g1dlyr with' most of the deformat1on occurlng in

L ‘

the yeak ma;éflal at the 5110 wall. Exam1natlonaof FlgS.
6. 12 6. 13 and 6.14, VWh1c¥$show the location of plastlc

Gaygsg polnts in all thqge s;ﬂos, 1ndicates that the bulk

&

Material in the cylinder is not rigiad %lasthgas asBumed by s g

P

Janggen (A plastic Gauss point is a mater1a1 sampl1ng point
whlch has y1elded according to the yleld crlterlaﬁd1scussgd L
in chapter 5.) Thus, the assumption of a'rigid moving systqﬂ;
‘Seen‘\s valid, and the use .of K,, an experimental parameter,
Sigesteps the assumption of a fully plastic active field.

In Jenike's derivation of'in%tal filling pressures in
h°ppers, it waS assumed that the hopper stress field was
€lastic act1ve. Exam1nat1on of Figs. 6.12 to 6.14 tends to

¢

Confirm this aSSUmpt1on.
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From the above discussion, 1t is evident that the
finite element analY51S closely”represents the stress flelds
_ProPoseq by Jenike and Janssen during f1111ng The finite

| element analysis, therefore, gives a good est1mate odﬁan
initia) stregs field With which to study condltiOns of

incipignt flow.
.. # o . -
6.4.2 Incipient Flow

e outlet are

Plots of wall pressure vs. height

~shown i, pigs. 6.15 to 6,17 for!

e%l"a%*ent ‘nodal

-0+5, half of £

. characterizea by e éUadeh large increése in displacements at
the oypjet, indicating localized material failure.

As the release Procesg"QS initiated, all three s1los
eXPerignced a sudden, localdzed overpressure near the Jf"
outlet rhis overpragsure contlnued to increase. until:
fall“re for the stronger mater1a1 in Sllo #1. However as
o »x@preleaSe progresged for the weaker materlals in silos #2 and

#3, there was a sharp decrease in pressure ‘at the outlet,
and a ¢oncommitant Pressure lnCrease in the material above
.'the;OUtle§&§In the case of Silo #3, tbe_pressure 1nerease

o

.mqvﬁgiupward as release progressed.
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"~ Plots of principal strese directions for selected U
values are. shown in Figs. 6.18 to 6.22. In all cases, it is 
evident that arching occurs in the hopper region. .;'3ﬁt

%igures 6.23 to 6.27 show the y1e1d Status of the 1
material Gauss points in the silos during selected stagesxof
outlet release. All silos shoﬁ“loealized plastification
regions near the silo outlet. . | - ;!{

The y1eld1ng history of Silo #3 is exam1ned ‘in the ';k-
following, since ;hls silo gives the best 1nd1cat10n of o
materlal flow.” . o ' ' | wlk

Y1e1d1ng at the outlet began at U =.-0.70. The'piastic

arch extended to a height, QQ.1 metre, with elastic archlng

occuring from 1 to 2 metre (See Fig. 6 20). The upper

boundary of y1eld1ng c01nc1deQ)w1th the 1ncrease in wall

-pressure (See F1g. 6. 17) At U = -0.8, y1eld1ng progressed’

~ to the 2.5 metre 1eveI, wlth elastic archlng extend1ng to 4

-
metres, and ,the upper Yield boundary ﬁhly,commded with

the increase if wall pressure. At U = -0.9, the level of

. -~
yielding had progressed to 4 metres, and the elastic arch

moved to 5.5 metres. The ‘upward motion ofuthe upper ield ) "
» | p é@,pp%<w
boundary was consistent with the behavior*of the previous

two load steps.

Fxgures 6.29 and 6. 30 show the varlatlon of horlzontal

and vert1ca1 stresses thh load h1story at two selected

'Gauss 1ntegrat10n poxnts (shown in F1g.,§ 28). Load steps #1

to #12 represent ‘the 12 layers of elements used in Pilllng

the. sxlo. Load steps #13 to #16 are outlet unloadxng stages

mﬁf



2

73

with U values , -7, 0.8, and -0.9 ,SPECtively, a4

the silo is filled, it is evident frdm boty tl9ureS thyt the

¢ . . O )
vettical stress, o,, is larger than the hoﬂ¢ tal stress,

. . . ’ . . t
., indicating an active stress field. Bogp 5tlesses

. . : . » . b r ‘v
increase with increasing consoi;datlng pteﬁsg & (laYErs). As

-, 4

nd
outlet unload1ng progresses, 0, decreases 9 ’

n €ONtinyesg
iv
to increase, indicating a switch from an Q&” & toa ~Passive
e
stress state. Figplly, after both points yY Plastifiay, at

load step #15, both stresses decrease untit f311ure

t
Variation in K' vs. load history is D}Ot ed in Fig

\‘k.v”p P ! .
'""".6.31 for the selected Gauss p01nts.2The~p pometer K° tefers

to the ratio of m1nor pr1nc1pal stress to major prlnc1pa1

-

RVl V‘
stress. Bounds for the active bK,) and o ;?1 ® (Kpj are also

'plotted for refereﬁle, where, K, i§ as dg 5flbed by Eq 6.1

and - N
' L .
. Ke = 1/Kp = %—{}~§%ﬁ—%u 16.2]
, \
Initially there is a sharp variation in k', As the load

-

steps continue, K' ‘o uoth'points assuheg a fairly Constant
value close to Ko,. Du-:ing load steps #13 a”d #14, wh?n the
release process starts, the stresses swlt&b difeCtéony
caUang an increase in K'. At load steps /1 and #16{ the .
p01nts yield and closely approach KP. '
Based on the above discussion, a mvdfl °f inCipieny
flow can now be described. As outlet unlo%d N9 PrOQgregges,

;he material at the outlet forms a stable AFCh uNtil pe

material shear stredgth is reached. A log? of equulbnum at
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the outlet is balanced by an overpressuré‘which exists in
the elastic arch, Once the material shear strength is
reached, subsequent unloading of the outlet (release of
outlet pressures) causes a reduction in the mean stresses
and hence a decrease in the material shear strength.
Consequently, a reduction in wall pressures ensues. This
process moves upwards behind the front of elastic arching.
The effects of outlet pre55qre release are shown in
ﬁj,ﬁigr 6r32;~wh§ch showé a projection.of the stress state
pistory at a point on the o,-0, plane. For simp%irity, the
, wqwgge of strgss is assumed to be on the axis of symmetry.

]5:’5

Po1nt "y represents the state of stress dur1ng filling. 1f

'l

dﬁF outlet is slowly opened, increments Ao, are tensile. AS
o’

dmﬁérements b0, are reqpved the material is drawn dowt;?rd

déus1ng compre551on in the horizontal direction becau of

%he converglng geometry of the hopper. The reduction in o,

»4¢.', . .
A o and increase 1n-02 imply a'\switch in pressure fields. Once
M*; . the yield surface is reachgd, further increase in o, is not

g;f xy%pqss1ble, since the stafe of stress myst follow the yield
‘fupface and o, must céhtinve to reduce. Therefore, the
mater;al strength decreases, and wall pressures reduce.
. The upward propagation of the archlng action is caused

by the decrease in vertical stresses of the underlying

and yields, causzng subSequent overpressures and pressure
"reductxons respect1vely This arch;ng ‘may or may not arrest

at the tran51t1on. The behavxor described above matches

Y
¥

,"matprial The material above the. outlet progressively arches

.
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closely the process hypothesized by Jenike (1964). Further
insight can‘be achieved by the use of a simple illustration.
consider the hopper coﬁfiguration shown in Fig. 6.33.
Initially, the system is in equilibrium. If the outlet is
unloaded to the point just before material yield (Fig.
6.33b), there is a net loss in equilibrium which must be
palanced_by the hopper walls. The overptessure force, N,(is
carried mostly 'in the elastic arch. Let the outlet be

" further unloaded so that the material yfelds (Fig. 6.33c)
The yielded ﬁaterial loses strength, and stresses are
reduced in the solid as described earlier. In order to v
maintain vertical equilibrium, the walls above the yielded
material must carry the difference in initial outlet étreés,
8oy, and the difference in wall initial and flow forces.
according to Jenike et. al. (1973), a ¢oncentrated load
acting over a distribution depth of 0.3B providés the
equiliérium imbéiance (shown in Fié. 6.33c). According to

walker (1966), a sharp pressufe increasewa;vtthswitch and

k]

preséure decrease below the switch are equilibrium
c0nsequence§ of the switch in pressure fields. Walker's
approach can be thought of as a "smoothed"” approximation,
while Jenike's approach impliss a sharp stress
aiscontinuity. | |

. Table 6.1 shows a comparison Qf finite. element max imum
pressures wit; pressures calculated using the Jenike and

Walker approachés at the outlet region. The wall pressures

vere calculated using expressions for the switch pressure,

—
e
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assuming the switch point can occur anywhere in the hopper.
The derivation of these expressions is given in Appendix B.
\
The finite element pressures agree more closely with

(R

Walker's results than Jenike's at the outlet region.

-

However, Walker's results were calculated assuming
uniformity of vertical stress across the hopper
cross-section (D = 1 in Eq. 2.12). Walters (1973) has shown
that D is always greater than 1 for flow pressures, and
Walker (1966) estimates D as between 1 and 2. Therefore,
Walker's switch pressures should be higher than taf ;alues
givgn in Table 6.1. If Walter's mgtbod of calculating D 1is
used, valﬁss of 1.3 to 1.6 are ogfained‘for Silos #1 to #3.
” It is evident that maximum outlet pressures obtained in
the finite element ‘analycis are loxer than both Jenike's and

Walker's predicitons. The discrepan in results may be due

to the assumption of a switch p the analytical

studies compared to the softer distribution of the e&astlc

&

a§¢hing in the finite element results. As discussed earller

&
By it
. F TS l

eldétic arching takes place over a finite heléht of hopper,kV
thereby reducxng the stress xnten51t1e§§at the switch
location because the unbalanced load 1s.dzstr1buted over the
arch height.

Generally, the orientaﬁion and propagation of the
plastic arched stress field for Silo #3 seems to be in
' agreement with thevries proposed Ry Jenike and Walker. It
was not possible to develop an extens1ve plastxg flow f1eld

in Silos #2 snd #3. Reasons for this are exam1ned in Sectzon )
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6.5 Design Situations Involving Incipient Flow and "Lobk In®

Stresses

It has been postulated that the 'switch pressure,
although it exists everywhere in the hopper, is short lived;
Therefore, design practices for hoppers tend to ignore ali?ﬁ?
switch loading except thar at the transition area. This may
be unwise, since switch loads can exist in the form of "lock .y
in" stresses. These stresses occur when flow is interrupted;
and the switch overpressure4is trapped between the hopper
outlet and the transition, and exists as a static load.

Figures 6.34 and 6.35 are plots of wall pressure Vvs.
hopper height obtained by Walker and Blanchard (1967) for <.
15° pyramidal and conical hoppers respectively. Hopper
geometries are shown in Fig. 2.9. The first curve, labelled
"normal loading", represents f1111ng by dropping coal from a -
loading belt. The second curve, labelled "part low
pressure”, is an attempt to reduce stress buildup at the
" outlet. The hopper ‘was filled to the one-third level, then
100-200 lbs. (45.5-91.0 kg.) of coal #as drawn 5ff the base
of the hopper. Filling was then completed The third‘curve,
labelled "extreme low pressure , was achieved by filling for
30 seconds at a specified filling rate, followed by 30 F
seconds discharge at a rate lower than f1111ng until the

‘hopper was finally filled. The stralght lxne (é,a¢ f__;}[’ b

hydrostatxc pressure dmstrxbut1on for referenge.;
f kil
) T L : . ' *ﬁt“

2 R
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/ﬁg is apparent thet there is a pressure decreasé at the
outiet for "part low pressure" filling. There is a '
correspond1ng pressure 1ncrease at higher levels in the =
hopper. The switch appears to be "locked 1n‘ -at the poxnt of

greatest pressure for both hoppers. In the jextreme low

[y

. pressure” filling, the static loading curve is simi|

the flow pressure curve. The conditions described al§ ;
o o 4 BT

similar to the results obtained from Silos #1 to A?mg

incipient flow. - R
Conditions OJ "lock in" stresses can,oecurngTflow'is
;ferminated. Any additional filling of the silo ceuses the
Iswitch pressure to increase. This may cause problems not
only wiuﬁ loading; but with arching.hlf.a cohesive material
is present in the silo, high overpressures at the switcﬁ
»po1nt may cause a strength increase such that a stable arch
is formed. The collapse of thxs arch may 1nduce addltlonal
-dynamic lbads. This has been observed experimentally by
Smith and Simmonds (1983) 1n the cylinder region of a silo.
It has been suggested by both Jen1ke et. al. (1973) and
Walters (1973) that silos should be de51gned on the basis of
- a pressure envelope which bounds all maximum pressures. This
seems overly conServat1ve, considering that the switch at
any one time is at one locatlon. Tt seems more rational to
investigate the effect of a fnncentrated lifd or stress
distrisutioﬁ\op»sélo’wa}&s in ordegito determine design
‘parameters. A .

'r‘a"’u
- 4&4,‘

N - . o o S
Coh e RN § & PR N T S



Based on the limited results obtained by the finite
element analysﬂ% of Silos #1 to #3, it may be possible to
reduce the loads obtained ty the theories'of'Jenike and

Walker. However,,parametrxc studies are needed with a more

soph1st1cated model to deéirm1ne a full envelope of design

1 -

pressures for hoppers.

Gld Convergence Failure

As described earlier, converoence was measured as the
ability of the solution to achieve specified load and
displacement tolerances. Failure occurred if the solut{on
could not meet these tolerances within a specified number of
iterates. Convergence failufe occurred in Silos #1, #2, and
#3 during outlet release U values of ~0.98, -0.88, andﬁlﬂ90
respectively. For each failure,‘there~was evidence of a*

»
localized solutlon instability. At failure, outlet
displacements increased substantially over ‘those of previous
load steps, whereas other material displacements were
relatively unaffected B |

In bin loadlng th@or1es proposed by Jenike (1961),
Walker (1966), and Wwalters (1973),'the.assumption is made

)

that a plastic passive stress field exists in the hopper.

- Pressure measurements 1n hoppers confirm that a pressu;e

reduction takes place during flow (Jenike et. al. 1973

Walker and Blanchard 1967, Morxyama and Jotak1 1980) Frqp

.
the preceeding dlSCUSSlon this seems to. 1nd1cate ‘the

phy51calﬂexgstence of a plastic pass1ve stress fxeld’gln

Y

. . ; -)
, A . ‘ ) 3 .
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thiststudy,_it was not ‘possible to develop an extensive

plastic field in the hoppers of Silos #1 and #2.

N

In an actual hopper, if the outlet is opened, bulk

\ 3

material flows in a state of dynamic equilibrium. Material
sttesses in exceSS\of yield are balanced by 1nert1al and
-viscous forces. These forces were not 1nc1uded in the
analysis; and hence a net force imbalance at the outlet

results which may cause convergence failure before a full

= e,

'plastic field can develop. It may be ultimately necessary to

é . »
use an Eulerian formulation for which velocities and

accelerations are,measuredwrelative_to'a fixed spatial mesh
(Eibl'and Haussler l984). Alternatively; a‘hardening
parameter may be introduced into the plasticity approachl
The héfdening parameter would serve as an artificial neans
ofpenspring solution stability.' .

It may be possihle to extend the solution in a
Lagrangian frame of reference by using a‘displacement
constraint strategy in which the outlet.hodes are ) N

constrained to move vertically once the hopper is vacated.

This is analogous to forming a vertical tube around the

© outlet.

Problems also exist with the choice of yield surface.

The yield surface for actual materials is compared with the

A

—_—

Drucker—Prager yield surface in Fig. 6.36. The state of

"stress in the hopper material during yield follows the line‘

o, > 02‘= ag,(Jenike 1961). The Drucker- Prager surface gives
' - /

. a conservative estimate of yielding in this region. In



/

- - )

addition, the rate of dilatency for the Drucker-Ppager

~ 4

surféce in this region is high. Since plastic volgme
increases éfe résttained in the hopper, the restrainf forces
increase the material séggngthfand getafd yielding. It may'
be advisable';Q:;dopt a yi;ld‘éurface{similar.t0ﬂL$de s

. (1978), wHere the yield strength of a material is dependent

}

_on the mix of stresses (See Fig: 6.36).

4
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Table 6.1 Comparison of maximum outlet pressures witn

kN

Jenike's and Walker‘s'pressufes_

SILO
1. ¢' = 20°  Jenike
© § = 35° Walker

F.E.

2. ¢' = 150°Y Jenike

5 = 25° Walker
A F.E.
N
4 PR
3. ¢' = Jb° Jenike
§ = 15° Walker
F.E. .

OUTLET PRESSURE (kPa)
248.

119,

- 86

278.
119;

88.

- 332

113.

2
6

.6

8

111, 3,

4

\

B2 -
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Figure 6.32 Stress path of material’during outlet release
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(b) Rendulic Plane Properties

Figure 6.36 Comparison of Drucker-Prager

actual yield surface

yield surface with



ﬁ@ﬁ 7. SUMMARY AND CONCLUSIONS
AR '
L& 3 %’j . . . N
A nonliniﬁr incremental static finite element

formulation of the silo problem is presented. The analysis
includes the effects of nonlinear material behavior, load
history, and wall friction on silo wall pressures.

Nonlinear material behavior is idealized by using a
Drucker-Prager yield surface. Previous numerical
~difficulties encountered by Askari (1986) are avoided by
using‘a stepwise stress increment to intersect the yield
surface. The effects of load history are modelled using a
layering technique in which layers of elements were placed
as filling proceeded. Wall friction is modelled with a thin
layer interface element. The -interface element is capable of
simulating the interface state of stick, slip, and debond.
In addition, the element has rebonding capabilities.

The finite element results of three analyses carried
out on an axisymmetric silo using different material and
wall friction properties are presented and compared with the
classical theories of Jenike, Walker, and Janssen. The
analyses‘simulate initial filling and opening of the outlet
to the initiation of incipient flow. The wall pressureg
during initial filling gave good agreement with solutions
obtained by Jenike and Janssen., The assumption of an active
stress field made by Jenike and Janssen wasvjustifed based
on inspection of the principal stress directions.

The stress field during incipient flow was similar in

orientation to the arched field assumed by Jenike. Results

118
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indicated the initial formation of an elastic arch at the
outlet, followed by a stress reduction due to yield and
subsequent upward movement of the elastic arch. This is 1in
partial agreement with Jenike's assumption of a moving
switch poi%£. Switch pressures obtaiged at the outlet are
greater than static pressures, but smaller than those
obtained using Jenike's and Waiker's solutions. It is
suggested that the switch "point"™ has a finite thickness,
and distribution of the unbalanced load over this thickness
has the effect of reducing wall pressures. Thus, deéign
pressures may be between the static.pressure and those
pressures predicted by Jenike and Walker.

Current design procedures do not recognize the
existence of incipient flow overpressures in hoppers, even
though there is evidence,}goth experimental and theoretical,
as to their existence., Ignoring these overpressures 1is
unconservative, since these pressures can be "locked in",
~and act as static loads. The author suggests the use of an
influence type analysis, instead of a pressure envelope, to
determine load effects on the sflo structure. SianMFwitch
pressures are found to be in between static pressures and
those obtained by classical flow pressure theories, it is
suggested that Jenike's and Walker's solutions can be used
to obtain a conservative estimate of wall pressures.

It was not possible to-develop an extensive plastic
hopper stress field (assumed by Jenike during flow

conditions) in the stronger materials. Possible reasons
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120
¢ _ ,

include the conservative strength characteristics and high
dilatency ratio of the Drucker-Prager yield surface, and the
dxclusion of viscous and inertial effects.

It is recommended that a viscoplastic analysis be the
next step in research. Determination of flow parameters
(analogous to viscosity) may not be important, since there
is some evidence (Eibl and Haussler 1984) that a significant
viscosity change causes only a small change in ma;erial
stresses. In addition, a more realistic yield surface
similar to Lade's (1977) should be used.

It is believed that the new interface element developed
in this work may be of significant value in small
displacement problems. However, further work 1s needed to

investigate the numerical stability of its use.

*®
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APPENDIX Numerical'lmplementation of the Material

Constitutive Model

The numerical implementation of the elastic perfectly
plastic material model used in this study can be described

as follows: N

1) An elastic stress increment {Ac},, is calculated from
the strain increment {Ae} as a trial stress‘path. A
trial total stress state {o} ,, 1is obtained as the sum

of the stress state ffom the previous load step {0}, and

the trial stress increment.

{Ac},.,. = [Cl{ael, | [A.1]

{o}

{0}, + {80} 0ger . (a.2] -

2) The total stress state is tested against the yield

criteria
a) flo,,) 0
A N
b) flo,,) = 0 <3f/30>{d0} ,, < 0
c) flo,,) 20 <3f /do>{Ac} > 0

test

3) 1f conditions a) or b) are satisfied, then the test path
is elastic and we can now proceed to the next straiﬁ
increment. If condition c) is obtained, then the strain
increment {Ae} includes.plastic“flow. If the original
'stress state, {o}, in Eq. A.2, was plastic, then one can -
proceed directly to Step 4. If it was elastic then it is_

necessary that the stress increment {4o},, be divided

' ) 126



4)

5)

" the approéch chosen here is an interval halving
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into two parts (See Fig A.V); an elastic part {Ac},, and

a part after onset of yield {Aa}oY

{ao0}

test

= {40}, + {do},,. [A.3)

K

Dividing the stress increment in this way requires
determination of the intersection point A in‘Fig. A.1.

There is a variety of methods available to do this, and

e

technique. The total stress state-is updated as

{0} = {0}, + {Aac},. ' [A.4]
\ .

The total stress is represé ed by Point "A" in Fig.

A.1. Note that {0} now lies on the yield surface.

3

The strain increment {Ae}, corresponding to {4c}, is

‘calculated as

{ae}, = (|facl},|/|{ac}]){Ae}, [a.5]

Ve

and the ftrain increment after onset of yield is

computed as >

{ae},, = {ae} - {bel,. - [a.6]

4

The stress increment after onset of yielding is
calculated using {Ae},,.and the constitutive
relationship in Eq. 5.9

; [c} {af/d0} <dg/do> [C]y’
{AO}‘?Y = [[C] - <a.f/aa> [C] {ag/aoﬁ} {Ae}oy' [A.?]

The éalculation is illustrated in Fig. A.1. The total-



6)
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stress state is updated to the state of stress at point
"B". The stress increment {la}, is pfojected in a
direction tangent to the yield surface at the point of
intersection. | |
As shown by Fig. A.1, the total stress vector is not on
the yield surface, point' B. This is because the
incremental stress - strain relationship is, in theory,
continuous. This means that the sﬁrface gradient {3f/30}
should be evaluated on a continuous basis. Equation A.7
implies a piecewise linear approximation of {Ao}or‘
Since {Ac}, moves linearly in a direction tangent to
the yield Eurface, Point B is not on the curved yield
surface.

Point B must be scaled onto the yield surface. An
approach used by Chen (1982) is to assume the correction

is normal to the yield surface, i.e.

{60} = af{of/d0}, [(A.8]
where a is a scaling factor The expression for the
correction ‘'stress can then be derived using the
normality cohdition, Egq. 5.4, as

4
{0f /301 f(0)
<af/aa>{8f/ao}'

{60}= - [(A.9]

The total stress state is then updated f-om Point B to a
point close to the yield surface. The scaling procedure
may have to be repeated several times to obtain an

acceptable error tolerance in regions of high surface
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curvature,.
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Figure A.1 Illustrative repfesentation of numerical

implementation of material model
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APPENDIX B - Derivation of the Jenike and Walker

Overpressure Envelopes

It is relatively simple to obtain a Jenike envelope of
switch stresses. Consider a hopper configuration as shown in
Fig. B.1. The position of the switch is at level Bz, where
B, = z,/z,. Above the switch point, the stress field is
active, and a vertical force, Q;, acts on the cross section
at z,. Below the switch point, the field is passive, and a
reduced flow force Q, reacts. In order to maintain
equilibrium at the switch point, the wall must develop an
overpressure- or concentrated force. To obtain a Jénike

envelope, the equation of equilibrium is written from

examination of Fig. B.2.
N(sin 6' + cos 6' tan ¢') = Q; - Q (B.1]

Jenike et. al. (1973) obtained an expression for the
overpressure at the transition based on Eq. B.1. This
expression, Eg. 1.9, can be extended to obtain the solution
for the switch envelope (assuming a distribution depth of
0.38,B).

3.3(o,, - (4/7)"qv(B;B))
Oci = ori + : m . ' [B.2]
(2 - 0.4 sin,8')"(sin 68' + cos 6'tan ¢')

where o, is the vertical initial filling stress at the
switch point. The flow radial stress at the switch point,

0“,

is obtaineq as a modification of Eq. 2.10
'

o., = (0'/yB)B,YB. [B.3]

r
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Charts for (o'/yB) as a function of 6', &, and ¢' have been
developed by Jenike (1961). The stress parameter q is °
obtained by integrating the vertical componenfs of the
radial stress field over the cross sectional area, and
charts for g have also been developed by Jenike (1961).
Examination of Fig., B.1 yields the expression for the
vertical stress o, using Jenike's approximation (discussed

-

in Section 2.2.2).

ovx = YZO(1 - ﬂ\) + ond' [8'4]

where o, is the Janssen pressure at the transition (Eq.
2.9a).

It is also simple to obtain a Walker envelope. The
expression of Eg. 2.15 can be modified to calculate vertical

stresses below a variable switch point

; a‘vi[—z—]c, [B.5)

where o, is the vertical stress at the switch point z,. The
dimensionless stress parameter-C is obtained frc¢ Eg. 2.15.
If the switch occurs at z = z,, the above expression

3

reduces to
o, = 0,,. . [(B.6]

To transform the vertical stress into wall pressure, Walker

(1966) derived the expression

o . = 1 + sin & cos 28 o

si 1 - sin 6 cos 2(8' + B) v’ [B.7]
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where

B = % o' + Arcsin[éiﬂ—ﬂL]}. “ (B.8]

sin §

Switch stresses may be obtained directly from Eq. B.7.
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z \ B, z;

Yz,
| Stress Distribution

Figure B.1 Determination of

Figure B.2 Equilibrium of switch point



