
Concordia University College of Alberta

Master of Information Systems Security Management (MISSM) Program

7128 Ada Boulevard, Edmonton, AB

Canada T5B 4E4

Statistical Analysis of Software Design Error Vulnerability Data

by

NJI, Lionel

A research paper submitted in partial fulfillment of the requirements for the degree of

Master of Information Systems Security Management

Research advisors:

Pavol Zavarsky, Director of Research and Associate Professor, MISSM

Dale Lindskog, Assistant Professor, MISSM

Statistical Analysis of Software Design Error Vulnerability Data

by

NJI, Lionel

Research advisors:

Pavol Zavarsky, Director of Research and Associate Professor, MISSM

Ron Ruhl, Director and Associate Professor, MISSM

Reviews Committee:

Andy Igonor, Assistant Professor, MISSM

Dale Lindskog, Assistant Professor, MISSM

Ron Ruhl, Assistant Professor, MISSM

Pavol Zavarsky, Associate Professor, MISSM

The author reserve all rights to the work unless (a) sprecifically stated otherwise or (b) refers to referenced

material the right to which is reserved by the so referenced authors.

The author acknowledges the significant contributions to the work by Academic Advisors and Review

Committee Members and gives the right to Concordia Univeristy College to reproduce the work for the

Concordia Library, Concordia Websites and Concordia MISSM classes.

 Concordia University College of Alberta, 7128 Ada Boulevard, Edmonton AB T5B 4E4, Canada

A Thesis for the Degree of A Thesis for the Degree of A Thesis for the Degree of A Thesis for the Degree of Master of Information SystemMaster of Information SystemMaster of Information SystemMaster of Information Systemssss

Security ManagementSecurity ManagementSecurity ManagementSecurity Management

Statistical Analysis of Statistical Analysis of Statistical Analysis of Statistical Analysis of Software Software Software Software

Design Error Vulnerability DataDesign Error Vulnerability DataDesign Error Vulnerability DataDesign Error Vulnerability Data

Nji Lionel NjiNji Lionel NjiNji Lionel NjiNji Lionel Nji

M.Sc. Physics, ADDIS, B.Sc. Physics and Computer ScienceM.Sc. Physics, ADDIS, B.Sc. Physics and Computer ScienceM.Sc. Physics, ADDIS, B.Sc. Physics and Computer ScienceM.Sc. Physics, ADDIS, B.Sc. Physics and Computer Science

Information Security is my responsibility, and so it’s yours.

The security depends not only on how strong the lock is but also on how well you protect the key
that opens the lock.

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 2 of 61

Dedication
This thesis is dedicated to my lovely daughter, Andin Elvevoll-Nji and her wonderful
mum, Lena Susanne Elvevoll.

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 3 of 61

Acknowledgement

I am grateful to Dr. Dale Lindskog and Dr. Pavol Zavarsky, my academic supervisors,
and to Ron Ruhl, the Director of the Information Systems Security Management
Program. Your advice, reviews and feedback were very helpful. I benefited a lot from
your experience.

My gratitude goes to Andin Elvevoll-Nji, my lovely daughter. Your lovely and timely
chats were very sweet and supportive. In fact, they were and remain priceless. Thank
you, indeed, Lena Susanne Elvevoll, the wonderful mother of my princess. You tirelessly
took care of her and this gave me the much needed peace of mind and concentration.
Words alone can not express my appreciation for the quality of work you have done and
are currently doing.

My appreciation goes to Mary Gallivan (Landlady). You gave me the much needed
shelter, home and supports. Above all, you gave me a family in Edmonton. Thank you
for packaging my lunch box. You did a great job.

My gratitude also goes to my brothers (Jomia Denis Nji, Bambot Wilfred Nji) and my
sisters (Ndungbowo Eevlyn Nji, Bibiana Bisona Nji and Mirabel Mbewo) in Cameroon for
their continuous support. My cousins, Dr Bigoga Jude Daiga and Nyema Lilian Bigoga
are not left out.

I can not forget you, mummy Andin Paulin and Ba Nji Ndimafon. You both work very
hard to lay a solid foundation for today’s work. Apart from being the best parents in the
world, both of you are the best teachers of all times. Thank you, indeed.

I would like to thank my former teacher of the former After-Degree program in
Information Systems Security and now my work supervisor, Robert Martin. Your
continuous support can not be forgotten. Thank you for the reviews and feedback. I
would also like to thank the members of the Information Policy and Compliance Unit,
Alberta Health and Wellness, for their moral support.

I would like to particularly offer my appreciation to Anuj Tewari, my former classmate of
the former After-Degree program in Information Systems Security and now my colleague
at Alberta Health and Wellness, for being there for me whenever I needed his support.

To finish, I would like to thank the authorities of Concordia University College of
Alberta, Canada, for offering such an innovative program in Information Systems
Security Management. My appreciation for the Athletic and Jimmie Condon
Scholarships awarded to me. The money was well spent on my tuition.

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 4 of 61

Abstract

The research studied the trend followed by software design error vulnerabilities.
Statistical analysis methods were used to analyze software design error vulnerability
data that were collected after January 1988 and before January 2007. The source of the
data was the U.S Government National Vulnerability Database (NVD). The purpose of
this research was to obtain an understanding and hence attempt to explain the trend
followed by designed error vulnerabilities during the above specified period.

It was found out that more that half the software vulnerability data collected and stored
in the NVD between 1988 and 2006 were high severity vulnerability data.
Approximately, one third of the data stored in the NVD within this period were software
design error vulnerability data. The majority of the software design error vulnerabilities
were of high severity. Software design error vulnerabilities generally exhibited a
decreasing trend between 1998 and 2006.

Design error vulnerabilities that targeted information confidentiality, integrity and
availability fluctuated in the cause of the years and generally exhibited an increasing
trend from 1988 to 2006. The research also revealed that most of the software design
error vulnerabilities increasingly and particularly targeted information confidentiality. A
probably reason being that there has been a gradual shift in the motives behind
vulnerability exploitation towards financial gain.

Finally, it was found out that most of the design error vulnerabilities were exploited
remotely. This could partly be attributed to the rapid growth and the influence of the
Internet. The mode of exploitation whereby a target accesses an attacker’s resource was
least utilized for exploiting these vulnerabilities. The variation of the remote of
exploitation of the design error vulnerabilities during the course of the years was found
to be inversely proportional to the local mode of exploitation.

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 5 of 61

Table of Content

DEDICATION .. 2
ACKNOWLEDGEMENT .. 3
ABSTRACT ... 4
1.0 INTRODUCTION .. 7
2.0 SOFTWARE VULNERABILITY BASICS (7) .. 10
2.1 SOFTWARE BUG AND SOFTWARE VULNERABILITY .. 10
2.2 MODES OF VULNERABILITY EXPLOITATION ... 11
2.3 VULNERABILITY CLASSIFICATION .. 11
2.3.1 DESIGN ERROR VULNERABILITY .. 12
2.3.2 IMPLEMENTATION VULNERABILITY .. 13
2.3.2 OPERATIONAL VULNERABILITY ... 13
3.0 RESEARCH METHODOLOGY ... 15
3.1 THE NATIONAL VULNERABILITY DATABASE ... 15
3.1.1 COMMON VULNERABILITY SCORING SYSTEM (CVSS) .. 15
3.1.2 NVD STATISTIC ENGINE AND DATA ACQUISITION ... 17
3.2 THE DATA ... 19
3.2.1 OVERALL VULNERABILITY STATISTICS... 20
3.2.2 DESIGN ERROR VULNERABILITY STATISTICS .. 21
3.2.3 STATISTICS ON VULNERABILITIES AFFECTING CONFIDENTIALITY 22
3.2.4 STATISTICS ON VULNERABILITIES AFFECTING INTEGRITY .. 24
3.2.5 STATISTICS ON VULNERABILITIES AFFECTING AVAILABILITY 27
4.0 ANALYSIS OF RESULTS .. 30
4.1 DATA ANALYSIS METHOD .. 30
4.1.1 THE CARTESIAN CO-ORDINATE SYSTEM ... 30
4.1.2 MEAN .. 30
4.1.3 CURVE FITTING ... 30
4.2 ANALYSIS OF RESULTS .. 31
4.2.1 OVERALL VULNERABILITY STATISTICS... 31
4.2.2 DESIGN ERROR VULNERABILITY .. 32
4.2.2.1 HIGH, MEDIUM AND LOW SEVERITY DESIGN ERROR VULNERABILITIES 33
4.2.3 CONFIDENTIALITY, INTEGRITY AND AVAILABILITY .. 34
4.2.4 CONFIDENTIALITY .. 35
4.2.4.0 HIGH, MEDIUM AND LOW SEVERITIES ... 35
4.2.4.1 MODES OF EXPLOITATION FOR HIGH SEVERITY VULNERABILITIES 38
4.2.4.2 MODES OF EXPLOITATION FOR MEDIUM SEVERITY VULNERABILITIES 39
4.2.5 INTEGRITY .. 41
4.2.5.0 HIGH, MEDIUM AND LOW SEVERITIES ... 41
4.2.5.1 MODES OF EXPLOITATION FOR HIGH SEVERITY VULNERABILITIES 42
4.2.5.2 MODES OF EXPLOITATION FOR MEDIUM SEVERITY VULNERABILITIES 43
4.2.5.3 MODES OF EXPLOITATION FOR LOW SEVERITY VULNERABILITIES 44
4.2.6 AVAILABILITY .. 45
4.2.6.0 HIGH, MEDIUM AND LOW SEVERITIES ... 45
4.2.6.1 MODES OF EXPLOITATION FOR HIGH SEVERITY VULNERABILITIES 46
4.2.6.2 MODES OF EXPLOITATION FOR MEDIUM SEVERITY VULNERABILITIES 46
4.2.6.3 MODES OF EXPLOITATION FOR LOW SEVERITY VULNERABILITIES 47
5.0 INTERPRETATION OF STATISTICAL RESULTS .. 49
5.1 DESIGN ERROR VULNERABILITY DISCOVERY .. 49

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 6 of 61

5.1.1 FEW DESIGN ERROR VULNERABILITY DISCLOSURE LOG DATA 50
5.1.2 CHANGES IN THE MOTIVES OF ATTACKERS ... 50
5.2 INTERPRETATION OF RESULTS .. 51
5.2.1 FINANCIAL IMPACT TO SOFTWARE VENDORS.. 51
5.2.2 THE INFLUENCE OF UNSATISFIED SECURITY EXPERTS .. 52
5.2.3 THE INFLUENCE OF THE INTERNET ... 53
5.2.4 CHANGES TO COMPUTER USAGE AND OPERATING SYSTEM 53
5.2.5 LEGISLATIVE OR REGULATORY OBLIGATIONS ... 54
5.2.6 ADOPTION OF SECURE CODING STANDARD ... 55
5.2.7 CHANGES IN THE SECURITY INDUSTRY ... 56
5.3 LIMITATIONS OF NVD ... 56
6.0 CONCLUSION ... 58
7.0 BIBLIOGRAPHY ... 60

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 7 of 61

1.0 Introduction

Information security is the protection of the confidentiality, integrity and availability of
information assets. A piece of information is kept confidential if and only if it is
disclosed only to those who have the need-to-know. The integrity of information refers to
the completeness and the correctness of the information. By availability, the information
is readily available to authorized users when needed. Design error vulnerabilities, a
problem that arises from a fundamental mistake in a software design, if successfully
exploited, can lead to breaches of confidentiality, integrity and/or availability.

A large number of software vulnerabilities are reported every year (Table 1.0) by software
vendors and information security watchdogs such as NIST (National Institute of Science
and Technology). These vulnerabilities take different forms and could include buffer
overflow, race conditions, and configuration vulnerabilities.

Table 1.0: General Statistics

Input validation error (e.g., boundary condition error and buffer overflow): This error occurs when a
functional module fails to properly validate the input it accepts from another module or process.
Failure to validate the input may cause the module accepting the input to fail or it may indirectly
cause an interacting module to fail [14].

Access validation errors are errors, which result from incorrectly specified constructs. [14]
Exceptional condition error can include unanticipated return codes and failure events.

A race condition or race hazard is a flaw in a system or process whereby the output of the process
is unexpectedly and critically dependent on the sequence or timing of other events. The term
originates with the idea of two signals racing each other to influence the output first. Race
conditions can occur in poorly designed electronics systems, especially logic circuits, but they can
and often do also arise in computer software [11].

Configuration errors consist of faults introduced after software has been developed and faults
introduced during the maintenance face of the software development life cycle. A static audit

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 8 of 61

analysis of a system can reveal a majority of configuration errors [14]. This may also result when
software is adapted to a new environment.

A design error vulnerability is a problem that arises from a fundamental mistake in the design of a
software.

Software vulnerabilities have widespread impact and can potentially cause billions of
dollars in downtime and disruptions to firms. Every year, the Computer Security
Institute [10] conducts a survey on computer crime and security. According to the 2006
report, based on 331 respondents, a significant amount of dollars was lost by firms due
to computer crimes or exploited vulnerabilities as depicted in Table 1.1.

A large amount of vulnerability statistics data is publicly available. This research
studies the trend followed by design error vulnerability by statistically analyzing
software design error vulnerability data that were collected after January 1988 and
before January 2007. The purpose of this analysis was to try and obtain an
understanding and hence attempt to explain the trend followed by designed error
vulnerabilities during this specified period. Consequently, the results obtained were
used in predicting the evolution of information security activities such as the
development of secure software, between 1988 and 2006 and also make predictions for
future trends.

This document contains five chapters. Chapter Two provides the fundamentals of
software vulnerability. The distinction between software vulnerability and software bugs
is addressed. Ways by which vulnerabilities could be exploited are discussed. The
chapter closes by classifying vulnerabilities into three groups vis-à-vis design error,
configuration and operational vulnerabilities.

Table: 1.1: Statistics of dollar amount lost due to exploited vulnerabilities.

Type of Attack Dollar Amount Loss (USD)
Virus contamination 15,69,460
Unauthorized access to information 10,61700
Denial of service 2,922,2010
Phishing 647,510
System penetration by outsiders 758000
Website defacement 162,500
Password sniffing 161,210
Exploit of organisational DNS server 90100
Total Losses for 2006 52,494,290

Chapter Three discusses the research methodology used during the research. For a
better understanding of the source of the data used in this research and how the data
was collected, a brief description of the National Vulnerability Database is presented.
The various steps followed during data acquisition are provided. The close of the chapter
presents the collected data sets.

In Chapter Four, the statistical methods that were used for data analysis are described.
The results obtained are presented and the analyses of those results are provided. The

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 9 of 61

results are split into five major sections. The first section presents the overall picture of
software vulnerabilities that were reported and registered in the NVD after January
1988 and before January 2007. The second section presents results pertaining to design
error vulnerabilities. Finally, the last three sections provide results for design error
vulnerabilities that allowed unauthorized disclosure of information, unauthorized
modification of information and disruption of service, respectively.

Chapter Five attempts to interpret the results presented in chapter four in the context of
information system security. The chapter is composed of nine sections. Section 5.1
looks at the interpretation of the results in relation to the changes in the security
industry. Section 5.2 provides an interpretation of the results in relation to the financial
impact suffered by software vendors when a vulnerability is reported in their products.
In Section 5.3 an interpretation to the results is provided by considering the influence of
security experts when t security concerns are made public. Section 5.4 looks at the
interpretation of the results from the view point of the change in the motives of
attackers. Section 5.5 looks at the influence of the Internet. Section 5.6 and 5.7 relates
the results to changes to computer usage and operating system, and the need to meet
legislative or regulatory obligations, respectively. Section 5.8 looks at the part played by
user of secure coding standard by software vendors. Section 5.9 provides some
limitations to the use of the NVD. Chapter Six concludes the research work.

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 10 of 61

2.0 Software Vulnerability Basics (7)

A software [8] is simply a set of written coded commands that tells a computer what
tasks to perform, e.g. Windows 2003 operating system, Microsoft Office, Photoshop, etc.
Computer software is utilized by different organizations for performing various tasks. In
fact, organizations are so dependent on computer software that it has became an
integral part of many business processes. However, many questions are usually raised
about the security of computer software and the implication of the presence of security
holes in them.

This chapter provides the fundamentals of software vulnerabilities that will facilitate the
understanding of the research materials presented in this thesis. It is divided into three
sections. Section 2.1 attempts to make a distinction between a software vulnerability
and a software bug. Section 2.2 identifies and explains three different ways or modes
through which vulnerabilities could be exploited. In Section 2.3, an attempt is made to
classify vulnerabilities into three major groups.

2.1 Software Bug and Software Vulnerability

A software bug [7] is a mistake or error in a program that results in unexpected and
typically undesirable outcomes. A program that is relatively free of bugs is reliable [7]. It
rarely fails on users and handles exceptional conditions gracefully. It is written
“defensively” so that it can handle uncertain environment and malformed inputs.

On the other hand, a software vulnerability [7] is a specific flaw (error) in a piece
software that allows an attacker to do something malicious such as expose or alter
sensitive information, disrupt or destroy a system or take control of a computer system
or program. The Organization of Internet Security [9] defines vulnerability as a flaw
within a software system that can cause it to work contrary to its documented design
and could be exploited to cause the system to violate its documented security policy. A
security policy is simply a list of what are allowed and what are forbidden. For instance,
a security policy might state that a particular software system must accept at least an
eight-character password for authentication. If there is problem that allows the system
to accept a six-character password, then that security policy has been violated.
Generally, a vulnerability may either allow an attacker to [12]:

• Execute commands as another user.
• Access data that is contrary to the specified access restrictions for that data.
• Pose as another entity.
• Deny service to authorized users.

In general, software vulnerabilities can be thought of as a subset of software bugs. A
bug must have some security relevant impact or properties for it to be considered a
security vulnerability. Consequently, almost all security vulnerabilities are software
bugs but only some software bugs turn out to be security vulnerabilities. In some cases,
it is difficult to draw a clear-cut line between software vulnerability and software bug.

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 11 of 61

For instance, a program that allows a user to edit a critical system file that he or she
should not have access to might be operating correctly according to its specification and
design. This probably would not fit into the definition of a software bug but would
definitely be termed a security vulnerability. A secure program is similar to a robust
program. It can repel a focused attack by intruders who attempts to manipulate its
environment and input so that they can leverage it to achieve some nefarious end.

2.2 Modes of Vulnerability Exploitation

The process of attacking a vulnerability in a program is known as exploiting [7].
Attackers might exploit a vulnerability by running the program in a clever way such as
by altering or monitoring the program's environment while it runs, or if the program is
inherently insecure, simply using the program for its intended purpose. When attackers
use an external program or script to perform an attack, this attacking program is often
called an exploit. An exploit [11] is therefore, a piece of software or sequence of
commands that take advantage of a bug or vulnerability in order to cause unintended or
unanticipated behaviour to occur on computer software (or hardware). Many exploits
are designed to provide super user-level or administrator access to a computer system.
However, it is also possible to use several exploits, first to gain low-level access, then to
escalate privileges repeatedly until root or administrative privileges are gained. An
attacker can exploit a vulnerability [11]:

• Remotely: A remote exploit works over a network and exploits the security
vulnerability without any prior access to the vulnerable system e.g. virus attack.

• Locally: A local exploit requires prior access to the vulnerable system and usually
increases the privileges of the person running the exploit past those granted by the
system administrator.

• When a target accesses an attacker’s resource: This is an exploit against client
application that requires some interaction with the user. It may be used in
combination with social engineering method.

Social engineering is a collection of techniques used to manipulate people into performing actions or
divulging confidential information, e.g. Phishing. Phishers attempt to fraudulently acquire sensitive
information, such as usernames, passwords and credit card details, by masquerading as a
trustworthy entity in an electronic communication. eBay, PayPal and online banks are common
targets. Phishing is typically carried out using email or an instant message, and often directs users
to a website, although phone contact has been used as well

2.3 Vulnerability Classification

In this section, attempts are made to distinguish between vulnerabilities and classify
them. A vulnerability class [7] is collection or set of vulnerabilities that share some
unifying features—a pattern or concept that isolates a specific feature shared by several

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 12 of 61

different software flaws. In other words, vulnerability classes are just mental devices for
conceptualizing software flaws. There is no single and clean taxonomy for grouping
vulnerabilities into accurate, non-overlapping classes. It is quite possible for a single
vulnerability to fall into multiple classes, depending on the code auditor's terminology,
classification system, and perspective [7]. Generally, there are three classes of
vulnerabilities:

• Design error vulnerabilities
• Implementation vulnerabilities
• Operational vulnerabilities.

2.3.1 Design Error Vulnerability

A design error vulnerability is a problem that arises from a fundamental mistake in the
design of a software. With respect to the Software or System Development Life Cycle
(SDLC) phases, this fundamental mistake may occur during phase 1, 2 or 3. A SDLC is
a framework for describing the phases involved in developing information systems [22].
These types of flaws often occur because of assumptions made about the environment
in which a program will run or the risk of exposure that program components will face
in the actual production environment. Design flaws are also referred to as high-level
vulnerabilities, architectural flaws, or problems with program requirements or
constraints.

Based on the SDLC, the design of a software system is driven by a set of requirements.
This is a list of objectives a software system must meet in order to accomplish the goals
for which it was created. Requirements usually address what a software system has to
accomplish, e.g. allow a user to retrieve a transaction file from a server. They can also
specify capabilities the software must have, e.g., it must support 1000 simultaneous
downloads. From the set of requirements, the design specifications of the software are
constructed. This specifications focus on how the software will meet its intended goals.
Specifications are the plans for how the program should be constructed to meet the
requirements. Typically, they include

• A description of the different components of a software system,
• Information on how the components will be implemented and what they will do,
• Information on how the components will interact.

Specifications could involve architecture diagrams, logic diagrams, process flowcharts,
interface and protocol specifications, class hierarchies, and other technical
specifications.

As an example, Internet Explorer (IE) prior to IE7 has been the target of the majority of
Phishing and malware attacks over the past few years. Many of these attacks have taken
advantage of the close integration between the browser and the operating system. The
browser and hence malwares inherited elevated privileges from the user and was able to
make damaging changes to the host system. IE7 that was released with Microsoft VISTA
in November 2006 was rewritten to have reduced integration with the core operating

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 13 of 61

system and to run with a reduced privilege (privilege escalation exploits based on code
injection to other processes in the same session should no longer work) [23].

2.3.2 Implementation Vulnerability

In implementation vulnerability, the code is generally doing what it should, but there is
a security problem in the way the operation is carried out. This vulnerability occurs
during the implementation stage of the SDLC and it is often carried to the integration
and testing phases. These problems can happen if the implementation deviates from the
design to solve technical discrepancies. However, technical artifacts and nuances of the
platform and language environment in which the software is constructed cause most
exploitable situations. Implementation vulnerabilities are also referred to as low-level
flaws or technical flaws. Buffer overflows is an example of implementation vulnerability.

A buffer overflow [11] is an anomalous condition where a process attempts to store data beyond
the boundaries of a fixed-length buffer. The result is that the extra data overwrites adjacent
memory locations. The overwritten data may include other buffers, variables and program flow
data and may cause a process to crash or produce incorrect results. They can be triggered by
inputs specifically designed to execute malicious code or to make the program operate in an
unintended way.

Some previous implementations of Telnet daemons did not cleanse user environment
variables correctly, allowing intruders to leverage the dynamic linking features of a UNIX
machine to elevate their privileges on the machine. There were also flaws that allowed
intruders to perform buffer overflows and format string attacks (caused by the use of
unfiltered user input) against various versions of Telnet daemons, often without
authenticating at all. These flaws resulted in attackers being able to remotely issue
arbitrary commands on the machine as privileged users. Basically, attackers could run
a small exploit program against a vulnerable Telnet daemon and immediately get a root
prompt on the server [7].

2.3.2 Operational Vulnerability

Operational vulnerabilities are security problems that arise through the operational
procedures and general use of a piece of software in a specific environment [7].
Specifically, these can include:

• Configuration issues of the software in its environment or supporting software and
computers.

• Automated and manual process issues that surround the system.
• Certain types of attacks on users of the system, such as social engineering and theft.

In terms of the SDLC phases, these vulnerabilities occur during operation and
maintenance phases, although they have some overlap into the integration and testing
phase. Consider a business software application. One of the enforced password policies
for this application is that password expires after 60 days. In order to change expired
passwords, each user connects to the server via telnet and is prompted for the old

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 14 of 61

password. Only after entering the correct old password is the user allowed to enter a
new password. Depending on the environment, this process could represent a major
operational vulnerability because of the multiple risks associated with using Telnet,
including sniffing and connection hijacking. In a nutshell, the operational procedure for
changing expired passwords for the application is flawed because it exposes
authentication credentials to attackers as telnet traffic is not encrypted.

To conclude this section, the SDLC provides a clean distinction between design and
implementation vulnerabilities. However, this is deceptive as it is not usually easy to
distinguish between the two. Many implementation vulnerabilities could also be
interpreted as situations in which the design did not anticipate or address the problem
adequately. On the flip side, one could argue that lower-level pieces of a software system
are also designed, in a fashion. In general, when people refer to design vulnerabilities,
they mean high-level issues with program architecture, requirements, base interfaces,
and key algorithms.

In some situations, it is also not easy to distinguish between operational vulnerabilities
and implementation or design vulnerabilities. For instance, if a program is installed in
an insecure manner, one could easily argue that it is a failure of the design or
implementation. The application is expected to be developed in a manner that it is not
vulnerable to these environmental concerns. As a consequence of a lack of a strict
distinction between operational vulnerabilities and implementation or design
vulnerabilities, operational vulnerabilities can, alternatively, be defined as [7] security
issues that results from the unsafe deployment and configuration of software, unsound
management and administration practices surrounding software, supporting
components such as application and web servers, and direct attacks on the software
users.

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 15 of 61

3.0 Research Methodology

This chapter provides information about the data that was used in conducting this
research and the method that was used to collect the data. It is divided into three main
sections. The first section provides a brief description of the U.S National Vulnerability
Database (NVD) and its main components. Data for this research was retrieved from this
database. The second section describes the method that was adopted in order to retrieve
data from the NVD. This section also identifies and defines the various variables that
were studied during the research. The last section presents and categorizes the data
sets that were collected.

3.1 The National Vulnerability Database

NVD is a comprehensive cyber security vulnerability database that integrates all
publicly available U.S. Government vulnerability resources and provides references to
industry resources. It was created with a unique mission and mandate of providing
previously unavailable technical capabilities and to offer needed support for a variety of
vulnerability standards. The database is used by the U.S Department of Homeland
Security (DHS) to offer official vulnerability information on all known computer
vulnerabilities. This information is provided via a fine-grained search engine while
integrating all publicly available U.S. Government vulnerability resources. Statistics on
the nature of these vulnerabilities are provided through the NVD statistics engine. This
service allows users to assess changes in vulnerability discovery rates within specific
products or within specific types of vulnerabilities. The NVD is a product of the NIST
(National Institute of Standard and Technology) Computer Security Division and is
sponsored by the U.S Department of Homeland Security’s National Cyber Security
Division.

The NVD is completely based upon the Common Vulnerabilities and Exposures (CVE)
standard vulnerability dictionary and it is synchronized with CVE - a list of
standardized names for vulnerabilities and other information security exposures. An
exposure is a state in a computing system (or set of systems), which [12]:

• Allows an attacker to conduct information gathering activities.
• Allows an attacker to hide activities.
• Includes a capability that behaves as expected, but can be easily compromised.
• Is a primary point of entry that an attacker may attempt to use to gain access to the
system or data.

• Is considered a problem according to some reasonable security policy.

3.1.1 Common Vulnerability Scoring System (CVSS)

The NVD depends completely upon CVE. The NVD provides Common Vulnerability
Scoring System (CVSS) scores for all CVE vulnerabilities and integrates Open
Vulnerability Assessment Language (OVAL) queries. OVAL [12] is an international,

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 16 of 61

information security, community standard to promote open and publicly available
security content, and to standardize the transfer of this information across the entire
spectrum of security tools and services. It is a collection of XML (Extensible Markup
Language) schema for representing system information, expressing specific machine
states, and reporting the results of an assessment.

CVSS is an open standard for scoring vulnerabilities. It is used for assigning
vulnerability severity. The CVSS scores within NVD can be used to prioritize how an
organization handles vulnerabilities. For example, vulnerabilities with scores of 7 and
greater should be addressed with great rapidity (possibly through an expedited change
management process) while vulnerabilities with scores of less than 3 can usually be
addressed through the regular patching process. In addition, one can click on a CVSS
score within the NVD to bring up a scoring calculator that will allow users to
understand how the score was created and to customize the score for the organization.

Sometimes, not all the information needed to create CVSS scores may be available. This
typically happens when a vendor announces a vulnerability but declines to provide
certain details. In such situations, the NVD analysts assign CVSS scores using the
information that is available. The NVD provides severity rankings of “Low”, “Medium”,
and “High” in addition to the numeric CVSS scores but these qualitative rankings are
simply mapped from the numeric CVSS scores:

• Vulnerabilities are labeled “Low” severity if they have a CVSS base score in the range
0.0-3.9.

• Vulnerabilities are labeled “Medium” severity if they have a base CVSS score in the
range 4.0-6.9.

• Vulnerabilities are labeled “High” severity if they have a CVSS base score in the
range 7.0-10.0.

The NVD is updated immediately with raw vulnerability information whenever a new
vulnerability is added to the CVE standard dictionary of vulnerabilities. These raw
vulnerabilities are then analyzed by NVD analysts and augmented with vulnerability
attributes (e.g. vulnerable version numbers) within hours on normal U.S. government
business days. The following impact types are assigned to the NVD vulnerabilities:

• Allows unauthorized disclosure of information.
• Allows unauthorized modification of information.
• Allows disruption of service.
• Security protection: provides unauthorized access. This refers to getting some sort of
general privileges in the application or entire computer (e.g., getting "root access" or
an application account). This could be user level access to the operating system or
getting administrator privileges.

The NVD only records what impact types a vulnerability directly allows. Many
vulnerabilities give an attacker general privileges on a computer or within an application
(e.g., the ability to execute code). With that privilege, an attacker can always violate
confidentiality, integrity, and availability. This is not denoted within NVD for two
reasons:

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 17 of 61

• It is obvious that this is true.
• Some vulnerabilities (usually buffer overflows) allow direct violation of confidentiality,
integrity, or availability (usually availability) and then also allow one to gain general
"unauthorized access".

At the time of this research, all the NVD data were freely available via XML feeds. There
were no fees, licensing restrictions, or even a requirement to register. As of May 2, 2007,
there were 24135 CVE Vulnerabilities, 90 US-CERT (Computer Emergency Response
Team) Alerts, 1918 US-CERT Vulnerability Notes and 2966 Oval Queries.

3.1.2 NVD Statistic Engine and Data Acquisition

The NVD statistics engine is a general-purpose vulnerability statistics generation engine
that allows one to generate statistics on vulnerability trends over time. It could be used
to graph and chart vulnerabilities discovered within a product or to graph and chart
sets of vulnerabilities containing particular characteristics (e.g. remotely exploitable
buffer overflows). With the statistical engine, one can track particular products or
vendors as well as sets of vulnerabilities with particular attributes (such as remotely
exploitable buffer overflows). The most important usage of the statistics engine is to look
at the past history of a product as an indicator to see whether or not it is likely to be
vulnerable in the future. The figure below shows the graphical user interface of the
statistic engine.

Fig 3.1.2: NVD Statistic Engine.

The statistic engine allows one to choose:

• A vendor on which a search is to be performed, e.g. Apple, Microsoft. As this
research is not focused on a particular vendor, this field was therefore irrelevant
during data acquisition. It was not taken into consideration during data search.

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 18 of 61

• A product of the selected vendor above, e.g. AFP server (Apple). As this research is
not focused on a particular product, this field was irrelevant during data search and
was not considered.

• The version number of the product chosen: NVD may not contain all vulnerable
version numbers. Using this option may cause one to overlook vulnerabilities. This
field did not play a role during data acquisition for this research.

• A start date for the search: The values for this field ranged from “after January 1988”
to “before January 2007”. For this research it was set to “after January1988”.

• An end date for the search: The values for this field also ranged from “after
January1988” to “before January 2007”. For this research it was set to “before
January 2007”

• The vulnerability severity to be considered during a search. Possible values for this
field are: any, high, “medium and high”, medium and low. The value “medium and
high” was irrelevant for this research. All the others were, however, relevant.

• The associated exploit range: Possible values for this field are: any, remotely
exploitable, locally exploitable and “target must access attacker’s computer”.

• The impact type: This field value could take one of the following values: any, “allows
unauthorized disclosure of information”, “allows unauthorized modification of
information”, “allows disruption of service”, “provides administrative access”,
“provides user account access” and “provides other access”. Only the first three
values were considered for this research.

• Vulnerability types: In addition to the vulnerbility types described under Table 1.0 in
the Introduction section of this document, they include:

o Environmental error: These errors are dependent on the operational
environment, which makes them difficult to detect. It is possible that this
vulnerability manifest itself when the software is run on a particular machine,
under a particular operation system or a particular configuration [14].

o Race condition: A race condition or race hazard is a flaw in a system or
process whereby the output of the process is unexpectedly and critically
dependent on the sequence or timing of other events. The term originates with
the idea of two signals racing each other to influence the output first. Race
conditions can occur in poorly designed electronics systems, especially logic
circuits, but they can and often do also arise in computer software [11].

o Design error: Design error was the only consideration during this research
and is described above.

o Other error. This could be synchronization error (this is introduced because of
the existence of a timing window between two operations or fault that results

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 19 of 61

due to improper or inadequate serialization of operations), origin validation
error (this is introduced when an object accepts input from an unauthorized
subject or when the system fails to properly or completely authenticate a
subject), etc [14].

• Vulnerabilities that contain one or none of the following associated resources: US-
CERT technical alerts, US-CERT vulnerability notes, US-CERT technical alerts or
vulnerability notes or OVAL queries. None of these was considered during this
research.

Based on the classification of vulnerabilities presented in Chapter Two, exceptional
condition error and race conditions are design error vulnerabilities. Input validation
error is an implementation vulnerability while configuration error and environmental
errors are operational vulnerabilities.

3.2 The Data

This section presents the data sets acquired from the NVD. The rationale is to make the
data available to researchers who, for whatever reason, may want to perform the same
research again or analyze the same data using different methods. In the tables below,
the absence of vulnerability statistics for a particular year simply means that the search
engine did not return any data corresponding to that year. Also, by considering
percentage values, errors associated with sheer volume of sold software are eliminated.
Without loss of generality, the percentage values were calculated to the nearest whole
numbers. Five major data sets were retrieved from the NVD database. They include:

• An overall vulnerability statistics for all vulnerabilities that occurred after January
1988 and before January 2007.

• Design error vulnerability statistics for all design error vulnerabilities that occurred
after January 1988 and before January 2007.

• Design error vulnerability statistics for all design error vulnerabilities that occurred
after January 1988 and before January 2007 and allowed unauthorized disclosure of
information (breach of confidentiality).

• Design error vulnerability statistics for all design error vulnerabilities that occurred
after January 1988 and before January 2007 and allowed unauthorized modification
of information (breach of integrity).

• Design error vulnerability statistics for all design error vulnerabilities that occurred
after January 1988 and before January 2007 and allowed disruption of service
(breach of availability).

Each of the above five major data sets was sub-divided into three sets base on the
severity (high, medium and low) of the design error vulnerabilities. Each severity-based
data set was again divided into three subsets based on the three modes of exploitation
described above.

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 20 of 61

The percentage values for each “daughter” data set were calculated relative to the
“mother” data set. If a data set is split into subsets, the original data set is the mother
data set and the subsets are the daughter data sets. For instance, the design error
vulnerability data set is a daughter data set of the overall vulnerability data set which is
the mother data set.

3.2.1 Overall Vulnerability Statistics

To obtain this data set, the “search start date” field of the statistic engine was set to
“after January 1988” while the “search end date” field was set to “before January 2007”.
The entries of all other fields were set to “any”. No particular vendor (and hence product
and version) was considered in this research. Since this is an overall vulnerability
statistics, the percentage values are set to 100.

Table 3.2.1.0: Overall vulnerability statistics

Keeping the above setup constant, entry of the vulnerability severity field was varied
from high through medium to low to obtain severity-based statistics presented in tables
3.2.1.1, 3.2.1.2 and 3.2.1.3. For each table, the percentage of the data that forms the
overall statistics is indicated. Within the limit of statistical error, the partial percentage
values should add up to approximately 100 (with approximately ±2 difference). The rest
of the data sets were obtained by assigning appropriate values to the fields of the search
engine.

High Severity

Table 3.2.1.1: Overall statistics for high severity vulnerabilities

Medium Severity

Table 3.2.1.2: Overall statistics for medium severity vulnerabilities

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 21 of 61

Low severity

Table 3.2.1.3: Overall statistics for low severity vulnerabilities

3.2.2 Design Error Vulnerability Statistics

Table 3.2.2.0: Design vulnerability statistics

High Severity

Table 3.2.2.1: Statistics for high severity design error vulnerabilities

Medium Severity

Table 3.2.2.2: Statistics for medium severity design error vulnerabilities

Low severity

Table 3.2.2.3: Statistics for low severity design error vulnerabilities

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 22 of 61

3.2.3 Statistics on vulnerabilities affecting Confidentiality

This section provides statistics for design error vulnerabilities that allowed unauthorized
disclosure of information. Overlaps between daughter data sets that were obtained
based on the mode of vulnerability exploitation are expected. This is because it is
possible for a vulnerability to have more than one mode of exploitation. In this case,
adding up the partial percentages may results to a value higher than a 100. This line of
reasoning holds for the next two sections involving statistics that affected integrity and
availability. Also, since the NVD has four severity levels and only three are considered
for this research, the partial percentages for severity-based data sets would not add up
to 100. This should also hold through for partial percentages for data sets that allowed
unauthorized disclosure of information, unauthorized modification of information and
disruption of services since design error vulnerabilities that allowed user and
administrative accesses were not considered in this research.

Table 3.2.3.0: Overall statistics for vulnerabilities that affected confidentiality

High Severity

Table 3.2.3.0.1: Statistics for high severity vulnerabilities that affected confidentiality

Table 3.2.3.0.1.0: Statistics for high severity vulnerabilities that affected confidentiality
and could be exploited remotely

Table 3.2.3.0.1.1: Statistics for high severity vulnerabilities that affected confidentiality
and could be exploited locally

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 23 of 61

Table 3.2.3.0.1.1: Statistics for high severity vulnerabilities that affected confidentiality
and could be exploited via a target accessing attacker’s resource

Medium Severity

Table 3.2.3.0.2: Statistics for medium severity vulnerabilities that affected
confidentiality

Table 3.2.3.0.2.0: Statistics for medium severity vulnerabilities that affected
confidentiality and could be exploited remotely

Table 3.2.3.0.2.1: Statistics for medium severity vulnerabilities that affected
confidentiality and could be exploited locally

Table 3.2.3.0.2.2: Statistics for medium severity vulnerabilities that affected
confidentiality and could be exploited via a target accessing attacker’s resource

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 24 of 61

Low severity

Table 3.2.3.0.3: Statistics for low severity vulnerabilities that affected confidentiality

Table 3.2.3.0.3.0: Statistics for low severity vulnerabilities that affected confidentiality
and could be exploited remotely

Table 3.2.3.0.3.1: Statistics for low severity vulnerabilities that affected confidentiality
and could be exploited locally

Table 3.2.3.0.3.2: Statistics for low severity vulnerabilities that affected confidentiality
and could be exploited via a target accessing attacker’s resource

3.2.4 Statistics on vulnerabilities affecting Integrity

This section provides statistics for design error vulnerabilities that allowed unauthorized
modification of information.

Table 3.2.4.0: Overall statistics for vulnerabilities that affected integrity

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 25 of 61

High Severity

Table 3.2.4.0.1: Statistics for high severity vulnerabilities that affected integrity

Table 3.2.4.0.1.0: Statistics for high severity vulnerabilities that affected integrity and
could be exploited remotely

Table 3.2.4.0.1.1: Statistics for high severity vulnerabilities that affected integrity and
could be exploited locally

Table 3.2.4.0.1.2: Statistics for high severity vulnerabilities that affected integrity and
could be exploited via a target accessing an attacker’s resource

Medium Severity

Table 3.2.4.0.2: Statistics for medium severity vulnerabilities that affected integrity

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 26 of 61

Table 3.2.4.0.2.0: Statistics for medium severity vulnerabilities that affected integrity
and could be exploited remotely

Table 3.2.4.0.2.1: Statistics for medium severity vulnerabilities that affected integrity
and could be exploited locally

Table 3.2.4.0.2.2: Statistics for medium severity vulnerabilities that affected integrity
and could be exploited via a target accessing an attacker’s resource

Low severity

Table 3.2.4.0.3.0: Statistics for low severity vulnerabilities that affected integrity

Table 3.2.4.0.3 Statistics for low severity vulnerabilities that affected integrity that could
be exploited remotely

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 27 of 61

Table 3.2.4.0.3.0 Statistics for low severity vulnerabilities that affected integrity that
could be exploited locally

Table 3.2.4.0.3.1 Statistics for low severity vulnerabilities that affected integrity that
could be exploited via a target accessing an attacker’s resource

3.2.5 Statistics on vulnerabilities affecting availability

This section provides statistics of design error vulnerabilities that allowed disruption of
service.

Table 3.2.5.0: Overall statistics for vulnerabilities that affected availability

High Severity

Table 3.2.5.0.1: Statistics for high severity vulnerabilities that affected availability

Table 3.2.5.0.1.0: Statistics for high severity vulnerabilities that affected availability and
could be remotely exploited

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 28 of 61

Table 3.2.5.0.1.1: Statistics for high severity vulnerabilities that affected availability and
could be locally exploited

Table 3.2.5.0.1.1: Statistics for high severity vulnerabilities that affected availability and
could be exploited via a target accessing an attacker’s resource

Medium Severity

Table 3.2.5.0.2: Statistics for medium severity vulnerabilities that affected availability

Table 3.2.5.0.2.0: Statistics for medium severity vulnerabilities that affected availability
and could be exploited remotely

Table 3.2.5.0.2.1: Statistics for medium severity vulnerabilities that affected availability
and could be exploited locally

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 29 of 61

Table 3.2.5.0.2.1: Statistics for medium severity vulnerabilities that affected availability
and could be exploited via a target accessing an attacker’s resource

Low Severity

Table 3.2.5.0.3: Statistics for low severity vulnerabilities that affected availability

Table 3.2.5.0.3.0: Statistics for low severity vulnerabilities that affected availability and
could be exploited remotely

Table 3.2.5.0.3.1: Statistics for low severity vulnerabilities that affected availability and
could be exploited locally

Table 3.2.5.0.3.2: Statistics for low severity vulnerabilities that affected availability and
could be via a target accessing an attacker’s resource

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 30 of 61

4.0 Analysis of Results

In this chapter, the analyses of the data presented in section 3.2 are provided. The
chapter is divided into two main sections. The first section provides information about
the methods that were used to analyze the data. The second section presents the results
and the analyses of the results.

4.1 Data Analysis Method

This section provides the data analysis methods that were used in this research. It is
divided into three sub sections: the Cartesian coordinate system, mean and curve
fitting.

4.1.1 The Cartesian Co-ordinate System

The data sets presented in section 3.2 were plotted on the two–dimensional Cartesian
coordinate system. The percentage values were plotted on the y-axis while the “year of
occurrence” of the vulnerabilities was plotted on the x-axis. To produce each of the
graphs presented below, MATLAB program codes were written and run.

4.1.2 Mean

The arithmetic mean is the standard average, often simply called the mean. It is the
sum of the individual data points of a data set dived by the total number of data points.
Mathematically,

In this case, since each year from 1988 to 2006 had a data entry, the value of n was set
to 19. 19 is the number of years from 1988 to 2006 and hence the number of data
points for each data set. In section 3.2, years with zero data points were not included in
the data sets. The equation above was implemented using MATLAB built-in function,
mean.

4.1.3 Curve Fitting

Curve fitting is finding a curve which matches a series of data points and possibly other
constraints. In curve fitting or regression analysis an approximate fit rather than exact
fit is looked for. Regression analysis estimates relationships between one or more
response variables. In this research non linear regression (polynomial fit) was used to
estimate the relationship between quantities. This entailed fitting the data points with
an nth degree polynomial function. The main task was associated with finding the
coefficients of the polynomial function. The polynomial function was then evaluated
using the data points and then plotted against the independent variable to estimate the

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 31 of 61

relationship between the quantities. MATLAB built-in function polyfit and polyval were
used to calculate the polynomial coefficients and to evaluate the polynomials at the data
points, respectively.

4.2 Analysis of Results

In this section, the results obtained from analyzing the data sets are presented. First
the overall vulnerability statistics are presented. This is followed by results for design
error vulnerability statistics. Other results include those of design error vulnerbility
statistics that allowed unauthorized disclosure of information, unauthorized
modification of information and disruption of service.

4.2.1 Overall Vulnerability Statistics

This subsection presents the results for the overall vulnerability statistics. The graph
below shows a comparative study for high, medium and low severity vulnerabilities.

Figure 4.2.1.0: Graph of overall vulnerability percentage against year of occurrence.

The percentage of high severity vulnerabilities, although, it fluctuated in the course of
the years, generally followed a decreasing trend attaining a minimum percentage value
of 35% in 1999. The curve shows that in 2004, 2005 and 2006, about 40% of the
vulnerabilities were of high severity. All in all, high severity vulnerabilities varied
between 35% and 100% (1988, 1992) in the course of the years.

Unlike high severity vulnerabilities, medium severity vulnerabilities, generally took a
rising trend between 1988 and 2006. It attained a maximum percentage value of 51% in
2004. A minimum value of 0% for a particular year either means that none of the

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 32 of 61

vulnerability data registered in the NVD for that year was of medium severity or that no
information about medium severity vulnerability was found in the NVD for that year.

Apart from a few extreme values, low severity vulnerabilities have largely been constant
in the course of the years. In 1989, a maximum percentage value of about 33% of
vulnerabilities was of low severity.

An average of 59.7% of the vulnerabilities was of high severity followed by low severity
vulnerabilities with an average value of 26.3%. Medium severity vulnerabilities averaged
14.1%.

4.2.2 Design Error Vulnerability

Figure 4.2.2.0: Graph of design error vulnerability percentage against “Number of
years”. The section of the graph from 1993 to 2006 has been fitted with a 5th degree
polynomial function.

From figure 4.2.2.0, it can be seen that there was a sharp rise in design error
vulnerabilities between 1988 and 1991. In 1991, 60% of the vulnerabilities registered in
the NVD were design error vulnerabilities. This value dropped to 46% in 1992 before
attaining a maximum of 77% in 1993. In 2006, only 13% of the registered vulnerabilities
were design error vulnerabilities. From 1993 to 2006, design error vulnerabilities,
generally, followed a decreasing trend. The variation could, approximately, be described
by the 5th degree polynomial:

f(x) = ax5 + bx4 + cx3 + dx2 + ex + g (1)

Where the constant coefficients a = -0.0014, b = 0.1056, c = -3.0764, d = 43.8942, e = -
302.0499 and g = 813.0975. X is the number of years and X ≥ 5. In fact, X = y – y1,
where y1 = 5 and y is any value on the X-axis. X = 0 (the origin) corresponds to the year
1988 while X = 18 corresponds to the year 2006. Also, since the values on the y-axis are
percentage values,

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 33 of 61

0≤ │f(x) │≤ 100

If there is a value of X = W such that │f (W) │ > 100, where 5 ≤ X < W, then the
polynomial representation of the variation of the design error vulnerabilities breaks
down.

By evaluating equation (1) and within the limit of statistical error, it can be predicted
that in 2007 (y = 19, X = y - y1 = 19 - 5 = 14), 49.8% of all vulnerabilities will be design
error vulnerabilities. Similarly, in 2008 (y = 20, X = y - y1 = 20 - 5 = 15), 58.6% of all
vulnerabilities will be design error vulnerabilities.

On an average, 29.5% or approximately 3 of 10 of the overall vulnerabilities registered in
the NVD between January 1988 and December 2006 were design error vulnerabilities.
Considering that there are pieces of information about other types of vulnerability
registered in this database, this value is significantly high. However, it should be kept in
mind that the mean value is very sensitive to extreme values.

4.2.2.1 High, Medium and Low Severity Design Error Vulnerabilities

Figure 4.2.2.1.0 shows that there was a sharp rise is high severity design error
vulnerabilities from 1989 to 1992. In 1992, all the design error vulnerabilities that were
recorded in the NVD were high severity giving a percentage value of 100%. Between
1992 and 2006, there was a decreasing trend in high severity design error
vulnerabilities. In 2006, a minimum percentage value of 24% was attained. An average
of 46.3% of the design error vulnerabilities were of high severity.

Figure 4.2.2.1.0: Comparative study of high, medium and low severity design error
vulnerabilities

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 34 of 61

The mean percentage for medium severity component of the design error vulnerability
was found to be 20.8%. In 1989, 100% of the registered design error vulnerabilities were
of medium severity. There was just one design error vulnerability registered during that
year. Between 1993 and 2006, medium severity design error vulnerabilities varied
closely about the mean. A maximum of 36% (1994) of these vulnerabilities were of
medium severity as oppose to a minimum of 11% in 2004.

Low severity design error vulnerabilities, while randomly fluctuating between some
upper and lower values, increased from zero to 59% in 2006. On the average, 27.3% of
the design vulnerabilities registered in the NVD between January 1988 and December
2006 were of low severity.
To conclude, most of the design error vulnerabilities were of high severity, followed by
low severity design error vulnerabilities. Medium severity design error vulnerabilities
were the least.

4.2.3 Confidentiality, Integrity and Availability

This section provides the results of a comparative study of design error vulnerability
statistics that affected confidentiality, integrity and availability of information. Although
the signals are quite noisy, it can clearly be seen that the overall result is an increase in
all three quantities over the years. Design error vulnerabilities that allowed
unauthorized disclosure of information (breach of confidentiality) varied between 0% (in
1992) and 20% (in 1993 and 1995). From 1996 to 2000, there was sharp rise in the
percentage of these vulnerabilities. In 2000, 38% of design error vulnerabilities allowed
a breach of information confidentiality. This percentage value dropped to 28% in 2004
before rising to a maximum of 46% in 2006.

Figure 4.2.3.0: Comparative study of design vulnerabilities that affected confidentiality,
integrity and availability of information or information processing systems.

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 35 of 61

In 1988, 1989, and 1996, there was either no registered design error vulnerability in the
NVD that allowed unauthorized modification of information or there was no information
in the database that could be associated with design vulnerabilities that allowed
unauthorized disclosure of information. In 2003, a maximum value of 30% of the
registered design error vulnerabilities could allow unauthorized modification of
information.

In 1998, a peak percentage value of 31% of design error vulnerabilities allowed
disruption of service. Between 1999 and 2006, the percentage values varied between
17% and 24%, respectively. In 1988, 1989, 1991, 1994 and 1995, either there was no
design error vulnerability allowed disruption of service or there was no information in
the NVD that could be associated to design error vulnerabilities that allowed disruption
of service.

On an average 20.6% of the design error vulnerabilities allowed unauthorized disclosure
of information, 13.2% of them allowed unauthorized modification of information and
11.4% of them allowed disruption of service. Based on these averages and the curves
above, it is clear that the design error vulnerabilities targeted information confidentiality
the most and disruption of service the least. These average percentages do not add up
100 because some of the design error vulnerabilities that allowed administrative and
user account access have not been studied in this research.

It should be noted that that decreasing trend of design error vulnerabilities shown in
Figure 4.2.2.0 has not been reflected in Figure 4.2.3.0. A possible reason is because the
quantities plotted in Figure 4.2.3.0 are not the only components that contributed to the
design error vulnerability statistics. For instance, part of the design error vulnerabilities
allowed administrative access and user account access. This contribution was left out
during this research. Also, the NVD, during this research, reported only those impact
types that directly affected a vulnerability. In this light, the impact types that did not
directly affect software design error vulnerability were never taken into account and so
their contributions are not represented in this study.

4.2.4 Confidentiality

This section presents the results obtained from the data sets for design error
vulnerabilities that allowed unauthorized disclosure of information. First, the results of
a comparative study of the severities of these vulnerabilities are presented. Second, for
each level of severity, the results of a comparative study of the modes of exploitation of
these vulnerabilities are presented.

4.2.4.0 High, Medium and Low Severities

Figure 4.2.4.0.1 shows that variation of high and low severity design error
vulnerabilities were basically random between 1988 and 1996 with the variation
alternating between zero and 100%. Before 1996, no medium severity design error
vulnerabilities were in the NVD or none of the registered design error vulnerabilities
were of medium severity.

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 36 of 61

Figure 4.2.4.0.1: Comparative study of high, medium and low severity design error
vulnerabilities that allowed unauthorized disclosure of information.

From 1998 to 2006, there was a decreasing variation in high severity vulnerabilities the
variation could be approximated by the 5th degree polynomial (Figure 4.2.4.0.2)

f(x) = ax5 + bx4 + cx3 + dx2 + ex + g (2)

Where the constant coefficients a = -0.0554, b = 1.2922, c = -10.8218, d = 38.9088, e =
-56.3348, g = 37.1702. X = 0 corresponds to the year 1998 while X = 8 corresponds to
the year 2006. For this polynomial to be meaningful in this context,

0≤ │f(x) │≤ 100

Equation (2) predicts that in 2007 (x = 9), 0.5% of software design error vulnerabilities
that allow unauthorized disclosure of information will be of high severity. This value will
rise to 75.1% in 2008 (x = 10). This polynomial does appropriately represent the
variation of the vulnerabilities for all values of X such that

0≤ │f(x) │≤ 100 for 0≤ X < Y

Where Y is the value of X for which │f (Y) │ > 100.

The variation in low severity vulnerabilities could be approximated by the 5th degree
polynomial (Figure 4.2.4.0.2). Similarly, X = 0 corresponds to the year 1998 while X = 8
corresponds to the year 2006.

g(x) = ax5 + bx4 + cx3 + dx2 + ex + f (3)

Where the constants coefficients a = 0.0580, b = -1.4627, c = 13.3749, d = -53.4773, e =
89.1219, f = 24.5781. Low severity design error vulnerabilities increased from 25% in
1998 to maximum of 82 % in 2004. Similarly,

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 37 of 61

0≤ │g(x) │ ≤ 100

Equation (3) predicts that in 2007 (x = 9), 73.4% of software design error vulnerabilities
that allow unauthorized disclosure of information will be of low severity. However, the
prediction for 2008 (x = 10) gives a value of 116. The polynomial model, therefore,
breaks down after at x = 10 and can no longer be used to describe the variation of the
vulnerabilities. An as a result,

0≤ │g(x) │≤ 100 for 0≤ X < P

Where P is the value of X for which │g (P) │ > 100.

Figure 4.2.4.0.2: Polynomial fit for high and low severity design error vulnerabilities that
allowed unauthorized disclosure of information.

Like high severity vulnerabilities, medium severity vulnerabilities decreasingly varied
from 1998 to 2006. This variation was, approximately, found to be a 7th degree
polynomial equation of the form (Figure 4.2.4.0.3)

f(x) = px7 + qx6 + rx5 + sx4 + tx3 + ux2 vx + w (4)

Where the constants coefficients, p = 0.0103, q = -0.3045, r = 3.5269, s = -20.0921, t =
57.1345, u = -69.4251, v =10.9709, w = 37.0199. X = 0 corresponds to the year 1998
while X = 8 corresponds to the year 2006.

0≤ │f(x) │≤ 100

In 2007 (X = 9), 39.8% of software design error vulnerabilities that allow unauthorized
disclosure of information will be of medium severity. However, for X = 10, which
corresponds to the year 2008, the value of │f (10) │ = 607.7. This means that the
polynomial model breaks down and hence can not describe the variation of medium

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 38 of 61

severity software design error vulnerabilities that allowed unauthorized disclosure after
2007. In this respect,

0≤ │f(x) │≤ 100 for 0≤ X < K

Where K is the value of X for which │f (K) │ > 100

Medium severity design error vulnerabilities that allowed unauthorized disclosure of
information varied between a maximum percentage value of 37% (1998) and a minimum
of 10% (2004)

It can be concluded that while high and medium severity designed error vulnerabilities
showed a decay pattern from 1998 to 2006 and 1996 to 2006, respectively, low severity
design error vulnerabilities rose significantly from 1998 to 2006.

On an average, 17.3% of the design error vulnerabilities that allowed unauthorized
disclosure of information were of high severity as oppose to 14.4 % and 51.7% medium
and low severity design error vulnerabilities, respectively.

Figure 4.2.4.0.3: Polynomial fit for medium severity design error vulnerabilities that
allowed unauthorized disclosure of information.

4.2.4.1 Modes of Exploitation for High Severity Vulnerabilities

Figure 4.2.4.1.0 presents the results of a comparative study of the three modes of
exploitation in relation to high severity design error vulnerabilities that allowed
unauthorized disclosure of information. In 1991 the lone high severity design error
vulnerability that was registered in the NVD could only be exploited remotely. Similarly,
the lone high severity design error vulnerability registered in 1994 could be exploited
locally.

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 39 of 61

From 1998 to 2006, at least 67% (1998) of high severity design error vulnerability that
allowed unauthorized disclosure of information could be exploited remotely. On the
other hand, at least 11% (2003) and at most 41% (1999) of medium severity design error
vulnerabilities could be exploited locally. Between 1988 and 2004, there was either no
high severity design error vulnerability that could be exploited by a target accessing an
attacker’s resource or there was no information in the NVD about this mode of
exploitation for high severity design error vulnerabilities. However, there was a linear
increase from zero in 2004 to a maximum of 4% in 2006 of high severity design error
vulnerabilities that could be exploited by this means.

All in all, most of the high severity design error vulnerabilities that allowed unauthorized
access to information could be exploited remotely. On an average, 45.4% of the high
severity design error vulnerabilities that allowed authorized disclosure of information
were exploitable remotely, 17.3% of them were exploitable locally while only 0.4% were
exploitable by a target accessing an attacker’s resource.

Figure 4.2.4.1.0: Comparative study of the modes of exploitation for high severity design
error vulnerabilities that allowed unauthorized disclosure of information.

4.2.4.2 Modes of Exploitation for Medium Severity Vulnerabilities

Figure 4.2.4.2.0 it can be seen that, for each year starting from 1996 to 2006, the
percentage of medium severity design error vulnerabilities that allowed unauthorized
disclosure of information and could be exploited remotely were inversely proportional to
the percentage of medium severity design error vulnerabilities that allowed
unauthorized disclosure of information and could be exploited locally. For each increase
in the percentage of medium severity vulnerabilities that could be exploited remotely,
there was, to a fair degree of approximation, a corresponding decrease in percentage of
medium severity vulnerabilities that could be exploited locally. In fact, each point on the
curve representing remotely exploitable medium severity design error vulnerabilities is a

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 40 of 61

mirror image of a point on the curve representing locally exploitable design error
vulnerabilities.

In 1997, 50% of the medium severity design error vulnerabilities that allowed
unauthorized disclosure of information could be exploited both remotely and locally. In
2004, a maximum of 7% of those vulnerabilities could be exploited by a target accessing
an attacker’s resource. Unlike between 1988 and 1998 where there were many zero
percentage values of these vulnerabilities that could be exploited remotely and locally,
between 1999 and 2006, vulnerabilities that could be exploited locally varied between
18% in 2006 and 83% in 1999 while those that could be exploited remotely varied
between 25% in 1999 and 80% in 2006. Between 1988 and 2002, 0% of these
vulnerabilities could be exploited by a target accessing an attacker’s resource.

On an average, 23.1% of medium severity design error vulnerabilities that allowed
unauthorized disclosure of information could be exploited remotely, 34.5% could be
exploited locally and 0.9% could be exploited by a target accessing an attacker’s
resource.

Figure 4.2.4.2.0: Comparative study of the modes of exploitation for medium severity
design error vulnerabilities that allowed unauthorized disclosure of information.

4.2.4.3 Modes of Exploitation for Low Severity Vulnerabilities

Figure 4.2.4.3.0 shows that between 1998 and 2006 the curve representing low severity
design error vulnerabilities that allowed unauthorized disclosure of information and
could be exploited remotely is a mirror image of the curve representing low severity
design error vulnerabilities that allowed unauthorized disclosure of information and
could be exploited locally - an inverse proportionality variation. The curve representing
remotely exploitable low severity vulnerabilities shows a variation between 59% (1998)
and 89% (2006) while that representing locally exploitable low severity vulnerabilities

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 41 of 61

shows a variation between 41% and 18% within the same period. Before 1999, 0% of the
vulnerabilities could be exploited by a target accessing an attacker’s resource. However,
between 2001 and 2006, low severity design error vulnerabilities that affected
information confidentiality and could be exploited by a target accessing an attacker’s
resource was periodic in nature with a period of one year and amplitude of 3%,
approximately.

A period is an interval of time that an event takes place within. It is measured between a start
point and an end point and generally repeats or progresses, in a cycle with the end point of one
period being the start point of the next. The amplitude is the magnitude of the maximum
disturbance (percentage value) during one wave cycle.

Figure 4.2.4.3.0: Comparative study of the modes of exploitation for low severity design
error vulnerabilities that allowed unauthorized disclosure of information.

Between 1988 and 2006, 38.7% of the low severity design error vulnerabilities that
allowed unauthorized disclosure of information and could be exploited remotely as
oppose to 31.2% of those that could be exploited locally and 1.7% of those that could be
exploited by a target accessing an attacker’s resource.

4.2.5 Integrity

This section presents the results obtained from the data sets for design error
vulnerabilities that allowed unauthorized modification of information. First, the results
of a comparative study of the severities of these vulnerabilities are presented. Second,
for each level of severity, the results of a comparative study of the modes of exploitation
of these vulnerabilities are presented.

4.2.5.0 High, Medium and Low Severities

Between, 1988 and 1996, high and medium severity design error vulnerabilities that
allowed unauthorized modification of information varied in a random manner between

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 42 of 61

0% and 100%. One occurrence of high severity design error vulnerability that allowed
unauthorized modification of information was found in the NVD for 1991 and 1994. A
similar result was registered in 1990, 1993 and 1995 for medium severity design error
vulnerability.

0% of low severity vulnerability was registered between 1988 and 1996. Between 1997
and 2006, between 50% (1998) and 12% (2004) of the design error vulnerabilities that
allowed unauthorized modification of data were of high severity. Within the same period,
between 0% (1998) and 40% (2000) of these vulnerabilities were of medium severity and
between 36% (2003) and 71% (2004) were of low severity.

Figure 4.2.5.0.1: Comparative study of high, medium and low severity design error
vulnerabilities that allowed unauthorized modification of information.

On an average, 25.8%, 26.9% and 26.1% of the design vulnerabilities that allowed
unauthorized modification of information were of high, medium and low severities,
respectively.

4.2.5.1 Modes of Exploitation for High Severity Vulnerabilities

Between 1998 and 2006 (figure 4.2.5.1.0) there was a rapid rise in the percentage of
remotely exploitable high severity design error vulnerabilities that allowed unauthorized
modification of information from a minimum of 0% in 1998 to a maximum of 94% in
2003. On the other hand, there was a rapid decrease in those vulnerabilities that were
locally exploited from a maximum of 100% in 1998 to 14% in 2003. To a very rough
approximation, the increase in remotely exploitable vulnerabilities could be said to be
an exponential increase while the decrease in locally exploitable vulnerabilities could be
said to an exponential decay in nature. The two curves show an inverse relationship
with each other. Vulnerabilities that could be exploited by a target accessing an
attacker’s resource basically stayed constant at 0% until 2006 that it rose to a
maximum of 4%.

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 43 of 61

On an average, 36.1%, 28.8% and 0.2% of the high severity design error vulnerabilities
that allowed unauthorized modification of information were, respectively, remotely
exploitable, locally exploitable and exploitable by a target accessing an attacker’s
resource.

Figure 4.2.5.1.0: Comparative study of the modes of exploitation for high severity design
error vulnerabilities that allowed unauthorized modification of information.

4.2.5.2 Modes of Exploitation for Medium Severity Vulnerabilities

Figure 4.2.5.2.0: Comparative study of the modes of exploitation for medium severity
design error vulnerabilities that allowed unauthorized modification of information.

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 44 of 61

Between 1999 and 2006 (figure 4.2.5.2.0) the variation of medium severity design error
vulnerabilities that allowed unauthorized modification of information and could be
exploited remotely mirrored the variation of vulnerabilities that could be exploited
locally. To a rough approximation, for each percentage increase in the remotely
exploitable vulnerabilities, there was corresponding percentage decrease in the locally
exploitable vulnerabilities.

Remotely exploitable vulnerabilities varied between 25% in 1999 and 79% in 2006 while
locally exploitable vulnerabilities varied between 100% in 1999 and 17% in 2006.
Medium severity design error vulnerabilities that allowed unauthorized modification of
information and could be exploited by a target accessing an attacker’s resource varied
from 0% to a maximum of 10% with a linear increase from 0% in 2002 to 10% in 2005.

On an average, 30.8% of these vulnerabilities could be exploited remotely, 38.2% locally
and 1.8% by a target accessing an attacker’s resource.

4.2.5.3 Modes of Exploitation for Low Severity Vulnerabilities

Between, 1998 and 2006 low severity design error vulnerabilities that allowed
unauthorized modification of information and could be exploited remotely varied
between 0% (1998) and 80% (2000) while locally exploitable design error vulnerabilities
varied between 100% (1998) and 19% (2002). Generally, remotely exploitable
vulnerabilities increased within this period.

Figure 4.2.5.3.0: Comparative study of the modes of exploitation for low severity design
error vulnerabilities that allowed unauthorized modification of information

Locally exploitable vulnerabilities, on the other hand dropped. In 1997 all the low
severity vulnerabilities were remotely exploitable. Similarly, in 1998, all the low severity
vulnerabilities were locally exploitable. Prior to 1996, 0% of low severity design error
vulnerabilities that allowed unauthorized modification of information could either be

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 45 of 61

exploited locally or remotely. For vulnerabilities that require a target to access an
attacker’s resource before they could be exploited, there was a rise from 0% to a
maximum of 14% in 2005.

On an average, 29.8% of low severity design error vulnerabilities that allowed
unauthorized modification of information were exploitable remotely, 21.9% of them were
exploitable locally and 2.4% could only be exploited if a target did access an attacker’s
resource.

4.2.6 Availability

This section presents the results obtained from the data sets for design error
vulnerabilities that allowed disruption of service. First, a comparative result of the
severities of these vulnerabilities is presented. Second, for each level of severity, a
comparative result for the mode of exploitation of these vulnerabilities is presented.

4.2.6.0 High, Medium and Low Severities

From 1996 to 2005, high and medium severity design error vulnerabilities that allowed
disruption service, varied in a similar fashion. In fact, the curve representing high
severity design vulnerabilities is a medium severity design error vulnerability curve
shifted forward by one year but with some minor differences in their percentage values.
Between 0% and 24% of the design error vulnerabilities that allowed disruption of
service were either high or medium severity between 1996 and 2006. In 1992 and 1993,
100% of these vulnerabilities were of high and medium severities, respectively.

Figure 4.2.6.0.1: Comparative study of high, medium and low severity design error
vulnerabilities that allowed disruption of service.

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 46 of 61

On the other hand, low severity design error vulnerabilities that allowed disruption of
service varied between 100% (1996) and 64% (2006) and 0% otherwise.

On an average, 12.2% of the vulnerabilities were of high severity, 11.2% were of medium
severity and 44.7% were of low severity.

4.2.6.1 Modes of Exploitation for High Severity Vulnerabilities

Figure 4.2.6.1.0: Comparative study of the modes of exploitation for high severity design
error vulnerabilities that allowed disruption of service.

The variation of high severity design error vulnerabilities that allowed disruption of
service and were remotely or locally exploitable was random. A majority of these
vulnerabilities were remotely exploitable. Between 2000 and 2006, at least 60% (2004)
and at most 86% (2006) of the vulnerabilities were remotely exploitable. Within the
same period, at least 18% (2006) and at most 54% (2003) were locally exploitable. In
1992, 100% of the vulnerabilities were locally exploitable.

On an average, 29.1% of the high severity design error vulnerabilities that allowed
disruption of service were exploitable remotely, 21% were exploited locally and 0.4% by
a target accessing an attacker’s resource.

4.2.6.2 Modes of Exploitation for Medium Severity Vulnerabilities

As seen on figure 4.2.6.2.0, in 2000, 2002 and 2004, 50% of medium severity
vulnerabilities that allowed disruption of service were remotely and locally exploitable as
opposed to 52% in 2005.

In 1999, 2001, 2003 and 2006, a rise in remotely exploitable vulnerabilities was
accompanied by a drop in locally exploitable vulnerabilities. Between 1999 and 2006,

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 47 of 61

while between 50% and 82% (2001) of the vulnerabilities were remotely exploitable,
between 23% (2006) and 52% of the vulnerabilities were locally exploitable.
In 1993 and 1997, 100% of the vulnerabilities were locally exploitable.

0% of the vulnerabilities were remotely exploitable between 1988 and 1998. Also, 0% of
them were exploited by a target accessing an attacker’s resource between 1988 and
2004.
Figure 4.2.6.2.0: Comparative study of the modes of exploitation for medium severity
design error vulnerabilities that allowed disruption of service.

On an average, 31.2% of the medium severity design error vulnerabilities that allowed
disruption of service were exploitable remotely, 27.3% were exploited locally and 0.8%
by a target accessing an attacker’s resource.

4.2.6.3 Modes of Exploitation for Low Severity Vulnerabilities

From 1996 to 2006 Low severity design error vulnerabilities that allowed disruption of
service and were remotely exploitable mirrored those vulnerabilities that were exploited
locally. An increase in those vulnerabilities that were remotely exploitable was
accompanied by a decrease in locally exploitable vulnerabilities.

After 1996, between 56% (2005) and 85% of low severity design error vulnerabilities that
allowed disruption of service were remotely exploitable while between 15% (2005) and
42% (2001) were locally exploitable. In 1996, 100% of the vulnerabilities were locally
exploitable.

From 1988 to 1996, 0% of the vulnerabilities were remotely exploitable and from 1988
to 1995, 0% of the vulnerabilities were locally exploitable. From 1988 to 2003, 0% of the
low severity vulnerabilities that allowed disruption of service were exploitable by a target
accessing an attacker’s resource. The percentage rose to 5% in 2006.

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 48 of 61

On an average, 37.8% of the low severity vulnerabilities that allowed disruption of
service were remotely exploitable, 21.3% of them were locally exploitable and 0.6% was
exploitable by a target accessing an attacker’s resource.

Figure 4.2.6.3.0: Comparative study of the modes of exploitation for low severity design
error vulnerabilities that allowed disruption of service.

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 49 of 61

5.0 Interpretation of Statistical Results

This chapter provides possible interpretations of the results presented in the previous
chapter. The chapter is divided into three sections. In the Section 5.1, attempts are
made to identify some of the conditions or factors that affected the discovery of software
vulnerabilities especially during the late 1980s or the early 1990s. During these periods,
very few vulnerability data were recorded in the NVD. There are two sub-sections in this
section. Section 5.1.1 attempts to provide an explanation for the few design error
vulnerability disclosure logs that existed during the late 1980s and the early 1990s.
Section 5.1.2 attempts to explain why design error vulnerability that allowed
unauthorized disclosure of information showed and increase. This explanation is
provided from a vulnerability discovery point of view by considering the shift in the
motives of attackers.

In Section 5.2, potential facts that provide possible explanations to the variation of
design error vulnerabilities between 1988 and 2006 are presented. This section is
divided into severn sub-sections.

Section 5.2.1 attempts to interpret the results in relation to the financial loss
experienced by software vendors when a vulnerability is announced in their products.
Attempts are made in Section 5.2.2 to interpret the results in relation to the
dissatisfaction of customers due to an increasing number of reported vulnerabilities in
software products.

Section 5.2.3 attempts to interpret the results in relation to the growth and the growing
influence of the Internet between 1988 and 2006. In Section 5.2.4 an attempt is made to
interpret the results in relation to changes in the number of users per computer and
changes in the operating system during the period from 1988 to 2006.

While Section 5.2.5 looks at the interpretation from the legislative or regulatory
obligation stance point, Section 5.2.6 looks at the interpretation from the view point of
the adoption of secure coding standard by software vendors. In section 5.2.8, attempts
are made to interpret the results in relation to changes in the security industry.

Finally, this chapter closes by identifying some of the limitations of using the NVD.
These limitations are presented in Section 5.3.

5.1 Design Error Vulnerability Discovery

This section addresses some of the issues associated with vulnerability disclosure log
data. It provides potentials reasons why, for instance, in the late 1980s and the early
1990s, very few vulnerability data, in general, and design error vulnerability data, in
particular, were recorded in NVD.

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 50 of 61

5.1.1 Few Design Error Vulnerability Disclosure Log Data

In Figures 4.2.4.0.1, 4.2.4.1.0, 4.2.4.2.0, 4.2.4.3.0 etc, it could be seen that that
between 1988 and 1996, the percentages of these vulnerabilities were generally very
high, often attaining 100%. A very limited number of vulnerabilities were recorded
during these years as they were very few information security firms or organizations
that kept track of vulnerability disclosures. There was no universally accepted
information security standard at the time. Although the International Organization for
Standardization was in existence since 1946 [28], it only got involved in information
security in 1999 and in 2000, ISO 17799 (information security code of best practice)
was published [29].

In the late 1990 going forward, many security firms probed up that brought about
security awareness. Firms like Deloitte, KPMG, Ernst & Young started providing
information security services like auditing, risk assessment, etc to businesses.

Every year, since 2001, the SysAdmin, Audit, Networking, and Security (SANS) institute
releases a list of SANS top 20 most critical Internet security vulnerabilities [31]. Also, to
educate developers, designers, architects and organizations about the consequences of
the most common web application security vulnerabilities the Open Web Application
Security Project (OWASP) releases, every year, OWASP Top 10 list of the most serious
web application vulnerabilities and provides basic methods to protect against these
vulnerabilities [30].

5.1.2 Changes in the Motives of Attackers

Figure 4.2.3.0 shows that most of the design error vulnerabilities targeted information
confidentiality, followed by information integrity and then information availability. This
trend could potentially be attributed to the fact that attacker motives, [16] has shifted to
monetary gain instead of to prove skills and satisfy curiosity. Confidential data that
could potentially lead to financial gain is the most sort after by attackers. Thus, more
efforts seem to have been concentrated or invested in searching and finding design error
vulnerabilities that allowed unauthorized disclosure of information than those that
allowed unauthorized modification of information or allowed disruption of service.

Unauthorized disclosure of information is usually in the form of identity theft using
various methods such as Phishing (see section 2.2) and spyware. By Phishing, a bogus
e-mail message directs a recipient to an imitation Web site that mimics the appearance
of a bank or Internet merchant Web site. The consumer is asked to update or confirm
his or her personal information, and in doing so unwittingly disclose sensitive and
confidential information such as social security, credit card or bank account numbers.
According to report from Symantec in 2005, Phishing attempts were up 100 percent in
the past six months prior to September 2005 [16].

On the other hand, spyware, in its most extreme form, steals social security numbers,
passwords and other information stored on the hard drives of computers, either by
searching for it or by recording the keystrokes of computer users. Spyware typically
reaches a computer by being inadvertently downloaded from a Web site or by being

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 51 of 61

secretly bundled with free downloadable Internet software used for listening to music or
watching movies on a computer [16].

According to [16], the threat from information-stealing software exceeds the threat
posed by computer viruses and worms that cause disruption of service and spread
themselves via e-mail. Between January 1, 2005 and June 30, 2005, malicious software
code that revealed confidential information represented 74 percent of the top 50
malicious code samples reported to software security firm Symantec, up from 54
percent in the previous six-month period [16].

Traditional attack activity is usually motivated by curiosity, a desire to show off
technical virtuosity, power, self-expression and peer recognition. This kind of attack
which, in many cases, is likely to lead to unauthorized modification of data or
disruption of service is gradually being paid less attention by attackers as their motive
has shifted towards profit making.

5.2 Interpretation of Results

This section attempts to provide possible interpretation of the results obtained in the
previous Chapter from the existence point of view of design error vulnerabilities between
1988 and 2006.

5.2.1 Financial Impact to Software Vendors

According to [4], many believe that software vendors follow the policy of “sell today and
fix it tomorrow” or “I would rather have it wrong than late” for launching software
product in the market. This policy is dictated by the need to launch products quickly
before competitors. It seemed to work in the past because software errors which escape
detection during pre-launch testing appear very infrequently in normal operations.

With the present Internet age, this theory will definitely not hold since hackers,
researchers, independent security bodies look for flaws in vendors’ software products
drastically, increasing the chances of exposing vulnerabilities. From the declining trend
presented in figures 4.2.2.0 (from 1993) and 4.2.2.1.0 (from 1992), it appears one
could, to a fair approximation, say that software vendors are drifting away from this
policy and adopting a better policy that incorporate security into their products. Based
on these results, perhaps, one may rephrase the above policy as “fix today and sell
tomorrow” or “I would rather have it right and late”

One of the potential reasons why software vendors would incorporate good security
features into their software products could likely be the impact of software vulnerability
disclosure on their products. When a vulnerability from a software product is disclosed,
there is negative and significant change in market value for the software vendor [4]. An
average 0.6% value in stock price is lost by a vendor when a vulnerability is reported.
This translats to an equivalent loss in market capitalization values of $0.86 billion per
vulnerability announcement. Also, if an announced vulnerability is of high severity, the
loss in market value of a software vendor is greater. The loss in market value is even

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 52 of 61

higher if the vulnerability is discovered by rivals or third party security firm rather than
the software vendor itself.

According to Wall Street Journal report in Feb 2004 software vendors are spending time
and effort in discovering flaws in their rivals’ software products in order to influence the
rivals’ stock prices [4]. In this respect, software vendors are pressured to head towards
the development of secure software. In addition, it costs vendors time and money to
produce patches to fix vulnerabilities. For instance, the Wall Street Journal
(11/09/2004) reported that Microsoft’s Internet Explorer (IE) loses market share in the
web browser market to competitors like Mozilla’s Firefox, due to numerous flaws
discovered in IE.

5.2.2 The Influence of Unsatisfied Security Experts

One could also argue that software consumers, in general, and information security
experts, in particular, demand for more secure products now than before. This demand
then puts pressure on software vendors to incorporate security into their software
products.

For instance, in April 19, 2004 (Computerworld), Michael Kamens, global security
director at Thermo Electron Corp said: “We are extremely concerned by the high amount
of vulnerabilities and patches from Microsoft. This goes against the credibility of what
they have been saying," [15].

“Despite the fact that Microsoft has made this huge commitment to security, they are not
saying why these vulnerabilities are showing up and what exactly they are doing to
research and patch them," Kesner said [15].

"There are more questions asked than answered when such a large update is released,"
said Robert Bagamery, a systems support specialist at a large Canadian utility
company. "I wonder what they've broken with the fix," Bagamery said. "I wonder how
many more there are, and how many they know about but aren't talking [about]" [15].

Security concerns like these, although Microsoft may not response to them, make them
think “security” when it comes to developing software. For instance, Microsoft VISTA
released in November 2006 was developed with better and enhanced security features
than previous versions of Windows.

Before the advent of VISTA, user privileges in Windows XP, for instance, were controlled
through group membership, including ‘users’ and ‘administrators’ with additional
granularity achieved through local or Group Policy settings. The difficulty in controlling
certain functions such as software installation led to many corporate IT departments to
grant local Administrator to users. [23]

In VISTA, the User Account Control feature allows almost all users to have
administrator privileges removed. Users logged in with administrator accounts operate
as standard users until higher privileges are required. Standard users are prompted for
the password of an administrator whenever they attempt a task requiring that privilege.

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 53 of 61

Administrators on the other hand are also prompted when they or an application wishes
to perform a privileged operation. VISTA also has Windows Defender malware protection
and enhanced Windows Firewall among other security features that were not found in
previous versions of Microsoft operating systems [23].

In contrast, the large amount of updates release by Microsoft could be seen as a good
security practice. In this respect, Microsoft recognizes the security problems and is
committed in fixing them. When an antivirus vendor has many updates this is seen as a
good security practice. In terms of ISO 15408 this would be seen as good security
product support over time. Microsoft updates could, similarly, be considered good
security product support over time.

5.2.3 The Influence of the Internet

From figures 4.2.4.1.0, 4.2.4.3.0, 4.2.5.1.0, 4.2.5.3.0, 4.2.6.1.0 and 4.2.6.3.0, it can be
seen that high and low severity design error vulnerabilities that allowed unauthorized
disclosure of information, unauthorized modification of information and disruption of
service were predominantly exploited remotely. Generally, from 1998 – 2006, the figures
above show that there was a significant rise in the percentage of design error
vulnerabilities that were exploited remotely.

This rise could be explained by the evolution of web access which started approximately
in the mid 1990s. For instance, in 1998, Microsoft released Windows 98 with integrated
web technology (Internet Explorer 4.0) that facilitated Internet access. Also the number
of Internet users in the world rose significantly from 1990. It rose from 2.6 million in
1990 to 385 million in 2006 [19]. In 1998, 145 million people had access to the Internet
world wide.

In addition, the year 1998 which marked the rise of remote mode of exploitation for
design error vulnerabilities fall within the dot-com bubble era [20]. The dot-com bubble
was a speculative bubble covering roughly 1995–2001 during which stock markets in
Western nations saw their value increase rapidly from growth in the new Internet sector
and related fields.

Furthermore, in the mid 1990s there was a significant growth in computing power. Due
to competition among manufacturers, the prices of computing equipment began to drop
thus, making them readily affordable to a large number of users. Combined with the fall
in the cost of the Internet, attackers were exposed to various types of readily available
exploits, many of which were free. In some cases, exploits for some design error
vulnerabilities were available at the Internet before vendors released patches to fix them.

5.2.4 Changes to Computer Usage and Operating System

The percentage of locally exploitable design error vulnerabilities, on the other hand,
generally, dropped from1998 to 2006. Before the 1990s, the number of users per
computer was relatively high. From the mid 1990s onwards the number of users per
computer dropped reducing the number of possible events of local exploitation of

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 54 of 61

vulnerabilities. Many universities, for instance, deployed large number of computers for
research purposes. The availability of open source operation system such as UNIX
facilitated this mass computer deployment in research institutions.

From an operating system perspective, there has been a significant improvement in
access control methods. For instance, in Microsoft Windows 95 and 98 released in 1995
and 1998, respectively, there were serious security issues associated with access control
methods that CERT (Computer Emergency Response Team) issued a warning in April
17, 2000. CERT Coordination Center warned that MS Windows 95/98 operating
systems were not designed to be used with computers storing data that was considered
critical to a project or that had to be very securely protected” [21].

In Windows 2000, access control methods were improved to include administrator,
power user and user. Windows 2003 was made to be installed in a lock down mode.
Windows 2000, 2003 and XP all have better authentication mechanism and enforceable
password policies.

From an organizational view point, for an external attacker to locally exploit a
vulnerability, he or she must first pass the physical security barriers before gaining
access to the organization’s network environment. Administrative controls such as oath
of confidentiality help to deter internal users from locally exploiting design error
vulnerabilities.

The mode of exploitation for which a target must access an attacker’s resource showed
an insignificant variation generally, staying at 0% before 1998. Social engineering such
as Phishing plays a significant role in this mode of exploitation. Phishing is prominent
in web applications. Just after 1998, as shown on Figures 4.2.5.2.0 and 4.2.5.3.0, to
use of this mode of exploitation on design error vulnerabilities rose slightly. This was
immediately after the release of Windows 98 with integrated web browser that facilitated
the use of web applications.

5.2.5 Legislative or Regulatory Obligations

Another reason that might have contributed to the downward trend of design error
vulnerabilities, in general, and high severity design error vulnerabilities, in particular,
between the mid 1990 and 2006 is the fact that business organizations became
obligated to comply with government passed legislations. Some of these legislations were
put in place to ensure accountability while others were to ensure the protection of
personal or health information.

In Canada, the Alberta Health Sector is governed by the Health Information Act (HIA).
This act was passed in 2000 and one of its key components is that a custodian is
responsible for protecting all health information under his or her control. A custodian as
stated in the Act is a health services provider who is paid under the Alberta Health Care
Insurance Plan to provide health services.

In 2002, the Sarbane-Oxley Act was passed in the United States in response to a
number of major corporate and accounting scandals including those that affected

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 55 of 61

Enron. According to the Act, management is responsible for protecting the data with
appropriate IT resources, procedures and practices and ensuring that outsourced data
is protected.

A Violation of legislation could lead to heavy financial penalty in addition to reputable
damage and loss of sensitive information. In order to avoid these impacts, organizations
are obliged to select and implement secure software solutions, among other solutions, to
protect corporate data. This then calls for the developing of more secure software by
software vendors. As an example, the HIA states that access to health information must
be on a need-to-know basis. This, thus, calls for stronger authentication features to be
incorporated into clinical systems. Also, software systems that will transmit or share
information across untrusted network would need to have strong encryption capabilities
incorporated into it to ensure compliance with privacy legislation.

5.2.6 Adoption of Secure Coding Standard

Considering the negative financial impact to software vendors when vulnerabilities are
reported in their products, the shift in motives of attackers towards financial benefits,
software consumer complaints due to ever increasing number of design error
vulnerabilities in software products, legislative or regulatory obligations, the presence of
widely available and sophisticated attack tools over the Internet, etc, organizations have
increasingly been making more efforts in developing, maintaining and implementing
secure coding standards for developing software products. The gradual adoption of this
standard by software vendors may have contributed to the development of more secure
software and hence may have contributed the drop experienced by high severity design
error vulnerabilities between the mid 1990s and 2006 (Figure 4.2.2.0).

In addition, there have been significant advancements in software engineering and
software design (new software development tools, code security auditing and testing,
new ways to identify and prevent software vulnerabilities, advances in threat modeling,
etc) that may have contributed to the drop in design error vulnerabilities.

Five years ago (2002), Microsoft committed to the Trustworthy Computing initiative in
response to the large number of malware attacks that targeted security weaknesses of
Windows XP. Service Pack 2 for Windows XP that came with a host-based firewall was
developed under this banner.

Trustworthy Computing is Microsoft’s aim to deliver secure, private, and reliable computing
experiences for everyone based on sound business practices [26]. The Committee on Information
Systems Trustworthiness’ publication, Trust in Cyberspace, [25] defines such a system as one
which does what users expect it to do and not something else despite environmental disruption,
human user and operator errors, and attacks by hostile parties. Design and implementation errors
must be avoided, eliminated or somehow tolerated. It is not sufficient to address only some of these
dimensions, nor is it sufficient simply to assemble components that are themselves trustworthy.
Trustworthiness is holistic and multidimensional.

From Microsoft Trustworthy Computing initiative, Microsoft Security Development
Lifecycle (SDL) was born. The SDL is the methodology that was used to ensure that

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 56 of 61

VISTA was developed with secure code. Windows VISTA is the first desktop operating
system that was written completely under the SDL.

The Trustworthy Computing Security Development Lifecycle (SDL) is a process that Microsoft has
adopted for the development of software that needs to withstand malicious attacks. The process
encompasses the addition of a series of security-focused activities and deliverables to each of the
phases of Microsoft's software development process [27].

Windows XP is the most targeted operating system by malware attacks since it is most
widely used. Many malware attacks relied on design error vulnerabilities in the core
Windows systems such as Internet Explorer (IE) running as part of the operating system
with elevated privileges. In VISTA, many of the hooks used by malware to install into the
system are now being blocked or monitored. For instance, while changes to startup
program require user confirmation, IE runs at a reduced privilege.

5.2.7 Changes in the Security Industry

Looking at the overall vulnerability picture, figure 4.2.1.0, the percentage of high
severity vulnerabilities, generally, declined especially between 1995 and 2006. Figure
4.2.2.0 shows that the percentage of design error vulnerabilities also dropped from 1993
towards 2006. There was a decline in higher severity design error vulnerabilities from
1992 to 2006 as shown on figure 4.2.2.1.0.

The decrease is these vulnerabilities could be partly attributed to the fact that the scope
of security has been gradually shifting from technical to organizational. Information
security is now being incorporated into business drivers. With respect to software
development, security is incorporated into software development processes. In this case,
funding to security is now looked upon as an investment rather than an expense. For
instance, Microsoft Trustworthy Computing initiative described above.

5.3 Limitations of NVD

It is worth pointing out that the use of the NVD as a source of data presented a number
of limitations or shortcomings. These include:

• The NVD only records impact types that a vulnerability directly allows.
Consequently, impact types that a vulnerability indirectly allows is out of the
picture.

• Information needed to create CVSS scores may not be unavailable. For instance, a
vendor announces a vulnerability but declines to provide certain details. In such
situations, the NVD analysts assign CVSS scores using the information that is
available. This lack of adequate information may affect the score allocated to a
vulnerability and hence its impact.

• At the time that data this research was conducted, vulnerabilities in the NVD were
scored using CVSS version 1. Version 2 of CVSS was released in June 2007 [32].

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 57 of 61

CVSS version 1 metrics did not contain the granularity of CVSS v2. While these
scores are approximations, there are expected to be reasonably accurate CVSS v2
scores.

• If a NVD value is zero for a particular year for a particular vulnerability type, there is
no way to determine whether the zero value means that there was no record about
the vulnerability in the database for that year or that there was no occurrence of the
vulnerability for that year.

• There were very few records of vulnerabilities data during the late 1980s and early
1990s. This may partly explain the noise (very random variations) associated with
the data sets as shown by the various plots. This, somehow, affected the
interpretation of the results.

• Since there were limited number of vulnerabilities registered during the late 1980s
and early 1990s and since arithmetic mean is sensitive to extreme values, the
calculated mean values may not reflect the correct picture.

• The period from 1988 to 2006 for which the research was based may be too short for
the research results to be generalized.

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 58 of 61

6.0 Conclusion

This chapter closes the curtain for this research. Despite the limitations outlined in
Section 5.9, the research results led to a number of conclusions.

On the overall, most of the vulnerabilities registered in the NVD between 1988 and 2006
were high severity vulnerabilities. High severity vulnerabilities statistics in this database
averaged 59.7% - more than half of the NVD data. This indicates that, despite the
decreasing trend followed by the overall high severity vulnerabilities, the high average
value of these vulnerabilities is a serious cause of security concerns. This suggests that
applying fixes for these vulnerabilities should accordingly be prioritized. Overall low
severity vulnerabilities did variably increase during the period from 1988 to 2006.

With an average of 29.5%, design error vulnerabilities data occupied, approximately, one
third of the content of the NVD. Taking into consideration that the database holds
information about a good number of other vulnerabilities, the high average percentage
of design error vulnerabilities is potential indication that these vulnerabilities are the
primary means through which information assets could be exposed to threat agents.
Within the limit of statistical errors, the results obtained by evaluating equation (1) at X
= 14 and X = 15 predict that 49.8% and 58.6% of the vulnerabilities in 2007 and 2008,
respectively, will be design error vulnerabilities. Although an average, 46.3% of the
design error vulnerabilities were of high severity, high severity design error vulnerability
followed a decreasing trend.

Design error vulnerabilities that targeted information confidentiality, integrity and
availability, although fluctuated in the cause of the years, generally exhibited an
increasing trend (Figure 4.2.3.0). Low severity design error vulnerabilities that affected
information confidentiality, integrity and availability, generally, increased from 1997 to
2006. On the other hand, high and medium severity design error vulnerabilities that
allowed unauthorized disclosure of information, unauthorized modification of
information and disruption of service, generally, declined since the late 1990.

Most of the design error vulnerabilities targeted information confidentiality. A probable
reason being that vulnerability exploitation has shifted more towards financial profit
rather than proving skills and satisfying curiosity. By evaluating equation (2) at X = 9
(2007)and X = 10 (2008), it could be predicted that in 2007 and 2008, 0.5% and 75.1%,
respectively, of design error vulnerabilities that will allow unauthorized disclosure of
information will be of high severity. In 2007 (X = 9), equation (3) predicts that 73.4% of
the design error vulnerabilities that will allow unauthorized disclosure of information
will be of low severity. The equation could not be used to predict the percentage value of
these vulnerabilities for 2008.

Information availability was targeted the least by design error vulnerabilities between
1988 and 2006.

From the late 1990 onward, remote exploitation was the principal method of exploiting
design error vulnerabilities. With the growing power of the Internet, it could be predicted
that, remote mode of vulnerability exploitation will still be the principal method of
exploiting vulnerabilities. The mode of exploitation whereby a target accesses an

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 59 of 61

attacker resource was found to be a least utilize method of exploiting design error
vulnerabilities.
It was found out that, generally after 1998, the variation of the remote mode of
exploitation of the design error vulnerabilities was inversely proportional the local mode
of exploitation of the vulnerabilities. The variation of these two modes of exploitation
mirrored each other is some cases. In this case, to a fair approximation, knowing the
variation of one mode of exploitation could possibly predict the variation of the other.
Figures 4.2.4.0.1, 4.2.4.3.0, 4.2.5.2.0 illustrate this fact.

All in all, the results seem to indicate that more security features were incorporated into
software by software vendors during the period from 1988 to 2006. Nevertheless, more
sophisticated ways of exploiting design error vulnerabilities, in particular, and
vulnerabilities, in general, are continuously being developed by attackers and hackers.

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 60 of 61

7.0 Bibliography

[1] National Vulnerability Database: http://nvd.nist.gov/statistics.cfm

[2] NVD Common Vulnerability Scoring System Support:

 http://nvd.nist.gov/cvss.cfm

[3] Phil K. “How to Write an Abstract”, 1997.

[4] Rahul T., Sunil W. “Impact of Software Vulnerability Announcements on the

 Market Value of Software vendors-an Empirical Investigation”, 2005.

[5] http://www.first.org/cvss/cvss-guide.html#scoring

[6] http://cve.mitre.org/about/terminology.html

[7] Mark D. John M., Justin S. “The Art of Software Security Assessment

 Identifying and Preventing Software Vulnerabilities”, 2006.

[8] http://amol.org.au/capture/course/glossary.html

[9] The Organization of Internet Safety (OIS): http://www.oisafety.org

[10] Computer Crime and Security Survey 2006 by Computer Security

 Institute: http://www.gocis.com

[11] http://en.wikipedia.org

[12] http://oval.mitre.org/

[13] http://securitytracker.com/alerts/2005/Dec/1015335.html

[14] Taimur A., Ivan K., and Eugene H. S. “Use of Taxonomy of Security Faults”,

 1996.

[15]http://www.computerworld.com/softwaretopics/os/windows/story/0,10801,92349,

00.html

[16] http://www.detnews.com/2005/technology/0509/20/A04-320608.htm

[17] http://www.aic.gov.au/publications/htcb/htcb006.html

[18] http://www.softwaretechnews.com/stn8-2/noopur.html

[19] http://www.unesco.org/courier/2001_02/photoshr/46uk.htm

[20] http://en.wikipedia.org/wiki/Dot-com_bubble

[21] http://www.cert.org/tech_tips/win-95-info.html

[22] Kathy S. “Information Technology Project Management”, Third Edition.

[23] Information Security Forum Special Interest Group: “Best Practice in Endpoint

 Security”.

[24] http://www.microsoft.com/windows/products/windowsvista

Statistical Analysis of Software Design Error Vulnerability Data August, 2007

ISSM571 Practicum Research Page 61 of 61

[25] http://en.wikipedia.org/wiki/Trustworthy_Computing

[26] http://www.microsoft.com/mscorp/twc/default.mspx

[27] Steve L. “The Trustworthy Computing Security Development Lifecycle” March 2005.

[28] http://www.sis.pitt.edu/~mbsclass/standards/martincic/isohistr.htm

[29] http://17799-news.the-hamster.com/issue10-news7.htm

[30] http://www.owasp.org/index.php/Top_10_2007

[31] http://www.sans.org/top20/

[32] http://www.first.org/newsroom/releases/20070620-1.html

