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: ! ABSTRACT ' i}

~

The purpose of this study is to review the problem of
V multicgllinearity in regression.analysis. 'Spegifically, the
difficulties Ehat arise éhen multicoliinearity is prespnt} the
alternative procedures available for detecting the Problem, and the

methods by which it may be resolved, are discussed. It is discovered

that an error exists ‘in Kirchdorfer's method of detection, thus

4

rendering'the procedure invalid. ’

-

In considering the strengths and ﬁeaknesses of each method
of detection or resolution, what crystallizes is the view that to date,
no high1y~satisfactory means of treating the’problem has yet appeared.
An illustrative applic§tién of the tﬁéory is obtained using Farrar- j
‘ Glau§er's téchniques'to detect multicollinearity in a sample of economic
data. Hoerl and Kenné;d's Ridge Trace is thén constructed, followed
by calculatioh of Mayef;Willke shfunken estimator to{remedy the

detected multicollinearity.

(iv)



.~. .- J

- ACKNOWLEDGMENTS

t

%

" 1 am deeply grateful to Dr. Feuerverger for his patient

-

guidance and valuable suggestions throughout the preparation of this ,

_thesié; and to Mrs. Billie Chiang for her excellent typing.
Vame



Chapter Page
I INTRODUCTION  « oo e ee e oo ee ee s
1.1 The Regression Model: - ., .. . ee  wb e 1
1.2 The Multicollinearity Problem . .. .. .. - 6
II DETECTION Of MULTICOLLINEARITY ce  se  ee  ee 211
2.1 Measures of Multicollinearity .. .. .. 11
2.2 Frisch Bunch Map .Analysis ce e e ee 15
2.3 Tintner Method .. «. «v o oo oo e 16
2.4 Farrar-Glauber Technique . .. .. . .. 21
2.5° Kirchdorfer Pro€edure v e Tee e e 24
a2 ) ) K
III _ RESOLVING MULTICOLLINEARITY .. .. .. .. .. 28
3.1 ,Generalizéd Inverses «. .o oo e :.. .. 28
3.2 Using Additional Data Cee e ee e e 33
" 3.3 Incorporating Extraneous Information .. .. 35
3.4 The Mean Square Error .Criterion .. .. .. 42
3.5 «Principal Component Estimators TR e 47
3.6 Factor Analysis .. <. .o oo ee .o e 55
3.7 Ridge Regression .. .. . .. e. oo . ¢,59
~ 3.8 Narquardl Generalized Inverse Estimators .. 62
3.9 Mayer-Willke Shrunken Estimators .. L. " 64
. 3.10 Mulfipollinearity in Two-stage Least-squares , 65
IV AN EMPIRICAL STUDY OF MULTICOLLINEARITY e .o 69
\ .1 Description of the Model .. oo .o .- .. 69
4.2 Appllcatlon of.Farrar-Glauber Technique .. * ;71_
. 4.3 Ridge Analysils of the Data .. | e e 73
4.4 Calculatlon of Mayer—W1I1ke Shrunken Estimator 76
REFERENCES A e e e WD T e e T8
al ¢ N -, ' . :'\ ! L
-A/P%ENDIX.I B T
R 3 . . - . . . 5 Y (.;
APPENDIX II .. «s . ee oo oo el e ee e ee Teew 89
oo . 7
» . © -~

TABLE OF CONTENTS

LV



Tab1$

IIx

ITI

v

VI

LIST OF TABLES

Description . Page

Imports, Praduction, Stock Formation and
Consumption in France (in Milliards of

New Francs at 1956 Prices) .. .. .. .. .. 8

Ratio of Original‘to Revised.Estimqtes ce e 10

]

Adjoints for Subsets and Full Set of Variables
in the French Economy Data ee ed ei e 18

Eigenvalues of Correlation Matrix for the
French Economy Data ce  ee  se e ee e 53

Normalized Eigenvectors for the First Two .
Components «. «o o+ e ee  ee  se e ee 53

Parkial Correlation Coefficient ¢ and

i3”

associated tij' between Pairs of Vq;iables

with RX on Dlagonal R LR T 72

(vii)



f L.IST OF FIGURES .
Figure ’
1. Bunch Maps for Variablks in the French
Economy Data .. .. «c «s  es ee en
2. Ridge Trace for Inflation Data et e
3. Squared Length of Coefficient Vector .. 
/
. \\ "
-
4
K
s
v
A {
i
L 14 "’
Y
¢
>

\ S (viii)

Page
17

74

75

S,

’.A



CHAPTER I

' . INTRODUCTION

One of the most vexing problems in multiple regression
analysis is that of multicollinearity, a terﬁ used to denote the
presence of near linear relationships among the "independent' variables.
Alfhough'econometricians and others seldom éace the situation in which
there is perfect multicollinearity, that is, one or more variables are
exact linear combinations of o;her variable(s), high intercorrelation
is nevertheless often an inevitable occurrence. This is due to the

fact that economic variables are not generated by experimentally con-

° r

trolled conditions; It would therefore be of considerable value to
investigate the problem of multicollinearity and the diffiéulties
associated with a multicollinear seﬁ of.data. Such was the intent of

this study.

\ "i
1.1 The Regression Model €

The model on which our discussion centres is the familiar

1inea: multiple regression equation *
y=XB8+u (1)

where X is an n * m matrix of n observations on m "indeggndent"
variables, rank X =Tt <m <n, B is an m x 1 vector of unknown

parameters and u 1is a vector of disturbances.



'};" .\-,

, St

The minimal assumptions underlying the least squares tHeory.,
- . , J 4

are as follows:

\ ‘
. SN
the elements of u are independently distributed-Tténdom

. L2
variables with mean zerc and constant variancg\ g ..

. . N C e
According to the theory of least squares, we minimize
(y—XB)’(y—XB) and obtain the normal equations: R .
sy ’ *) >
X'XB = X'y (2)

Two cégés can be considered depending on ‘the singularity or

~
. 14
nonsingularity of X'X .

P
\

S om

(D If X is of full rank, (X'X)_1~ exists and the least squares

estimator is given by °

"= o Iy s

A A
The estimates Bi rare unbiased, efficientvand consistent as stated in

the Gauss Markov theorem, a simplifieé proof of which is presented.below.
. » B L' - hi
”

The Gauss Markov Theorem. In the classical linear regression madel,

the best linear unbiused estimator of B is the least squares vector

n -1 ~
g = (X'X) X'y. "
N » . N
Proof (Plackett [44]). Let Wy be any unpiased estimator of B , -
i.e. -EWy = B . Sincé - ) . . )
Ey = X8 ,

this implies



WX =1.

Thus we can write

(x'x)’1 = wx(x'}()'l

.

and obtain the 1dentity

W= (0 TR TIERTRT - - TR

That is, the diagonal elements of WW' are least when W = (X'X)-lx'

3

4 N
which is the solution provided by least squares.

Adding to (1) the assumption that u 1s normally distributed,. »

~

the results for the classical least squares model carry over. 8 has
the same mean and variance as before. . (n-m)ﬁ'ﬁ/o2 is distributed as
Xi-m . In addition, B ='(X'X)—1X'y is now normally distributed

since it is a linear form in a normally distributed vector. It is also

y

a uniforﬁly minimum‘variance unbiased estimator of 8 .

Since the likelihood function of he sample is

- —L—(y-%8)" (y-X8) ‘ -
. 1 (267) »
_1
n

(2r0%)?

maximizing it with respect to ‘8 is equivalent to choosing B sPch
that (y-XB)'(y-XB) 1is minimized. As thisrds precisely the least
. squares/{iiterion establiéhed earlieé, the maximum likelihood estimator
is simply theyleast’gquéges estimator. 8 1is thus consistent and

A

: 2
asymptotically efficient. The maximum likelihood estimator of o can

be obtained as (u'u)/n .
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v N
(I1) If rank X = r < m , no unblased estimator of B exists. How-
ever, a clasé of linear functions L}B , where L 1is an m ; 1 vector,
may have unbiased estimators. Thesg are the so-called ;estimable
functions'". The egtimable functionals L' are chéracterized by thé

property that a solution to the equations a'X = L' exists, i.e. they

are vectors_in the row space of X . We have the following result.

-

Theorem 1.1.1. The»best linear unbiased estimator of L'8 1is L'B ,

~

where B is any solution to the normal equations (2).

L'B may be expressed as L'(X'X)gX'y where (ij)g> is any
generalized inverse of (X'X) . A generalized inverse of an n. X m
matrix A of any rank is an m X n matrix A% such that for any
vector Y for‘which\ AX = Y 1s a consistent equation, X = ABY is a
solution. Penrose [43] shows that for any matrix ‘A , there exists 5

g
unique matrix A P satisfying the four conditiomns:

- 8
(i) A Pa=a ) ,
g 8 g
(i) APaaP=aP " -
g 8
(iii) (AA P)r = AA P ()
g. £ 8 i »
(iv) (A PaA)' =aAPa.
g ' : " .

A P is referred to as the Moore-Penrose inverse. However, a solution
to AX =Y , where A. is a singular square or rectangular matrix,

requires a genefalizéa inverse which satisfies only condition (i). Such
o oLt , 8
a matrix is called a gi—invérse of A and denoted by A 1 . Likewise,
' ' g g , )
the g,- and g3-inverse of A , denoted by A 2 and A 3 . are defined

A

P
"



respectively by the first two and the first three conditions of (t).

Bekore proceeding with the proof of Theorem 1.1.1, we state

first the following lemma: h
Lemma 1.1.1. A matrix G is a g3-inverse of X iff it can be written.

o 8
as G = (X'X) xX'.

-~

Proof of Theorem 1.1.1. (Chipman [9]). let B =My +d . For L'8

to be an unbiased estimator of L'B , we require

S E(L'8) = E(L'My + L'd)
= L'MXB + L'd
=L'8. R &))

Condition (3) is satisfied iff
L'MK=1', L'd=0

or

y , S8y v :
Thus for M = X }; L'My 4is an unbiased estimator of an estimable

function L'B | Now . . )
| ‘ 8 , 8
var (L'X "y). = var (@'XX “y)

2 .

LY

8, 8,
o= a'Xx Ix l'X"'a_a
- gl R

a'XAA'X'aoz'.wheré‘ A=X" . (&)

o

We wish ¥o find an A which minimizes (4) suﬁject to\LXAX‘= X.

,

Consider



&3 83
XA[I - XX °X ~'X']A'X' ,
since
By B4 83 83
I - XX X 'X'=1-XX"XX (condition (1ii) of g3—inverse)
83 :
=1 - XX .(condition (ii) of g3—inverse)
84 !
£ (I-XX D) (I-XX 7) (since idempotent)
>0 .

Thus XAA'X' is minimal when A is a g3—inverse’of' X . Since
8y gy _ '
(X'X) X' =X (Lemma 1.1.1) and any generalized inverse is a

g,-inverse, the proof is completed. ' .

The two cases which have been discussed above may be treated
wi%ﬂin a unified framework. If (X'X) is square and of full rank,
(xﬁx)g = (X'X)_1 . Moreover, as Rao [48] has pointed out, (X'X)gX'y
and\yoz(x'x)g may be regarded as "es_imat =5 of B aﬁd the dispersion

i . ’ ‘
matrix of estimates respectively, fo: puirorcs of building up an
o . . o

.- v /
estimate of any estimable function L'. ar determining its variance".

{
e O, v "
- . NP — o
4

1.2 The Multicollinearity Problem

*Linear relationships among- the independent variables may
exist in various forms, either between pairs of independent variables
or in a more complicated manner involving several members of the

independent set. In general, such intercorrelation results in:

(1) inaccurate\estimation of parameters due to large sampling variances

of the coefficientg:~ As the columns of " X become increasingly collinear,



,

the matrix (X'X) approaches singularity, regulting in the inverse
matrix having some very large diagonal elements. In the limiting case,

the determinant of (X'X) is zero and its inverse would not exist,

leading tg\a completely indeterminate set of parameter estimates.

(2) wuncertain specification of the model with respect to inclusion of
variables and a danger that relevant variables will be discarded incor-
rectly. For example, if the i-th diagonal element is 1arge,' X’i may
appear to be statistically insignificant eveﬁjif it is important in the

true relation.

(3). estimates of coefficients become very sensitive to slight changes

in the data sample.

‘As a simple demonstration of the third difficulty, we consider
the data in Table I concerning the imports, production, stock formation
.:d consumption obtained from the French national accounts. These data

reveal an approximate multicollinearity between production and consumption, -

3
namely X3 ~% X1 .

Using least squares computer program MLREGR [42], we obtain,

// ”

-0.06788

B, ) =
éz = | 0.58914
B, ) = | 0.34725



Source:

Imports, Produ¥tion, Stock Formation and

Consumption in France (in Milliards of

TABLE I

New Francs at 1956 Prices)

i

y X X, X,
Gross Stock
Year Imports Domestic Formation Consumption
Production
1949 15.9 149.3 4.2 108.1
1950  16.4 161.2 4.1 114.8
1951 19.0 171.5 3.1 123.2
1952 19.1 175.5 / 3.1 126.9
1953 18.8 180.8 1.1 132.1
1954 20.4 190.7 2.2 137.7.
11955 22.7 202.1 2.1 146.0
1956 26.5 212.4 5.6 154.1
1957 28.1 226.1 5.0 162:3
1958 27.6 231.9 5.1 164.3
1959 26.3 239.0 0.7 167.6
1960 31.1 258.0 r 5.6 176.8
1961 33.3 269.8 3.9 186.6
1962 37.0 288.4 3.1 199.7
1963 43.3 304.5 4.6 213.9
1964 49.0 323.4 7.0 223.8
1965-  50.3 ' 336.8 1.2 232.0
1966 56.6 353.9 4.5 242.9

E. Malinvaud, Statistical Methods-of Econometrics
(North-Holland: 1971).




and the estimated relation

y = -15.21577 =~ 0.06788X, + 0.58914X£\4 0.34725X,

(-0.72478) (2.96977) (2.44402)

"t values are given in parenthesis. The squared multiple correlation

coefficient RZ = 0.9847.

Suppose now the original model is re-estimated from data for
18 years, namely 1949 to 1966, instead of the original 15 years 1949 to
1963. A different set of parameter estimates is obtained and the

estimated relation becomes
%

y = -19.73039 + 0.03210Xl + 0.41421X2 + 0.24293)(3

(0.17198) (1.28690) (0.85253)

where the number in parenthesis refer again to t ‘values . Here

R-2 = 0.9731 and the sample correlations matrix is obtained as

1.00000 0.21545  ©.99893
0.21545  1.00000 0.21369 | . , -
0.99893  0.21369  1.00000 ' | x/// |

Table I gives'the ratio of the original .to revised estimates for the .

C

two parameters.

r It can be seen that both éZ~ and ° é3 vary by more than 40%;

P

while the coefficient Bl of Xl in the revised model turns out‘to'bé

positive. With the addition of three further years' data, the coeffi-
\ . )
~ o~

cients 82_ and é3 , formerly significant at the 5% level

(t0.975,1l =2.201) are now 1n51gn§f1cant (t0.975,14 = 2.145) . \Thus



extension of the sample period has produced dramatic ehauges in the
. estimated relationship.
TABLE II

Ratio of Original to Revised Estimates

"

Original Estimate) N 100

( Revised Estimate
82 142 /
83 5 143

Difficulties at the computational level also arise in situations

where multicollinearity is very severe, that is, when the determinant

of (X'X) is very close to but not zero. The observations of Klein

o
o o

nd Nakamura [31] 4n thlS regard include the fact that while the T

elements of the inverse matrix x' X) in the two variable case can

‘

still be. calculated with sufficlent accuracy by carrying enOugh digits
at each computational stage, accurate) estimation is con51derab1y more

" difficult to attain when the matrix size is- 5 by 5 or larger. In-
/ .

deed given the sort of 1ntercorrelation frequently existing in

econometric data, they note the v1rtua1 1mpossibility of calculating

the.inverses of }ﬁ/ by 30 ‘mattices, even if the most powerful

electronic computer is available.

[y

/ -



CHAPTER II

DETECTION OF MULTICOLLINEARITY

?

Two practical issues arise in connection with the problem of
multicollinearit; and its treatment. Firstly, how is its existence to’
be detected and its severity established? Secendly, how serieus must
multicolliqearity,be before it can be considered "harmful"? In
attempting toTanswer these duestions,fseveral research workers have

suggested various measures of multicollinearity and possible means of

detection. The efforts of these workers are discﬁssed below. <

2.1 Measures of Multicollinearity

A common measure-ef the degree of multicollinearity is the
value of the determinant of i'i , where X 1is X normalized so that

"each column has zero mean and unit variance. - ,X X is accordingly the

& .
sample correlations matrix C J The value of IX XI ranges from O

to 1 as multicollinearity becomes less severe.
!

ot 7

Another measure of multicollinearity is the von-Neumann and
- :

Goldstine,[58] condition number

1
A =3

where Alz the largest of the’eigenQelueé of X'X

Am: the smallest of the eigenvalues of i X .

..'ll..



If the columns of X are orthogonal A will be 1 . How~
ever, as they become collinear, Am will become ve&y small, so that A
becomes quite large. As ~X increases,; the probability of significant

error of estimates also increases.

Between these two measures, A 1is to be preferred owing to
its more direct relationship with the effect of multicollinearity. Not-
withstandlng this, disadvantages exist in that both measures do not give

Ainformation about the pattern of interdependence, and that in neither
' of them can absolute conceptions of bigness or smallness be fixed.

%Nevertheless, in the case of ° , some guidelines may be obtained from
. k]

Ethe fact that for a correlation matrix _

' . C= (cij)

which has been scaled according to

. A o .
0;99:i : Max ( z ci L z ij ij) 0.99
_ ~j=l,...,m OT i=1  ..,m i=1 3 3’ j=1
A has a minimum value of 1 and - n with probability asymptotically
1.
/ Multicollinearity can be Inc. “zad by calculacvion of the
determinant of (i'i) and those of (i’ , w .ch are matrices

~

obtained by omitting each of the independe: - fariat’~s in “urm. CIf Xi
is orthogonal to the other members of X . the-

@yl - FE G

athhe diagonal element cil of (i'i)_l , because it is equal to
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: .

A X%, | .
~ o~ ’
x|

s

would have the value 1 . This can be shown to be its minimum value in

the following way. Defining RX as the squared multiple correlgtion

between Xi and the other members\bi X/ we have

cii _ 1
- 2
1 -
: in
and ?
0 j_Ri <1.
i
! .
Thus ’ ) i
. f“}f.-'». ‘."."’v
. ~a ~ o~ 4
‘ \ I(X'X)iil z |X'XI
' ’ ’ :_‘7 ' . Gow RN
)} : .
When ii 1s perfectly dependent on theeremaihing,pembers of
8~ ~
]X'XI vanishes whlle I(X X)iil > sincf it does not contain Xi s
remains uraffected. 1In this case, cli-= o . TIf perfect linear

~ A~ B [
dependency exists in (X'X) , then cii = 0/0 which is indeterminate.

However, one would not have proceeded to locallze multlcollinearity if

¢

the. determinant ie\{Ound to be exactly O in the first place. Therefore;
ii

< o

the size of the diagcnal elemeqts of (X'X) , 1<c <= ,1isa

good indicator of the ‘location of the problem.

Td decide whether multicollinearity is harmful, a -number of
" . I .
rules-of—-thumb have been proposed. Farrar and Glauber [15] suggest the

rule -

2 2
max (Ry, ) <R .
§ A
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: 2
In other words, the overall R should exceed the highest R2 of any

\Zv\fegression‘of one independent variable on its couterparts. In a recent

r )
review, Raduchel [46] ha$ explicated this rule in terms of the generalized

variance»%f the coefficients, that is, the determinant of their variance-

, covariance matrix. Defininé p as the ratlo of generalized variance

i

of the coefflcients of a regression including X‘ to the generalized
N\ varianée of the coefficients of a regress1on excluding it, and applying

standard theorems on correlation coefficients, he obtains

2, m-1

- %

. P, =
] P aRg)

i

.

where r, is the partial correlation c. y and Xi , given the

influence of the remaining independent variableg.

Farrar-Glauber's rule of thumb therefore guaranteeé that all
p, will be less than 1 . As a modificeti_on of this rule, Haitovsky
t22] has suggested that.compa;ison should be made instead between the
partial correlagion coefficients of all pairs of the independent
variables and the overall R2 . His views will be published in a
\

' fo;thcoming paper [23]4‘ ‘ \

\
Turning now to the subject of detection, a comprehensive-

search of the literature revealed as many as four methods have been
proposed since 1934. The earliest attempt to deal with the problem

' goes back to Frisch [18].
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2.2 Frisch Bunch Map Anaiyéis - o ,

Essentially the basic idea of this technique is the deter-
mination of the regression plane by minimizing‘the residual sums pf
squares in various directions, for each of all possible subsets as wellﬁ“\
- as the full set of variables including the dependent variable 'y

(usually denoted by Xl)'

The construction.of bunch maps for any subset Xl,XZ;...,Xk,
2 <k <mtl , or the full set involves only two variables in each map.
For example, a subset consisting of three variables will have 302
bunch maps. Each bunch map consists of k beams, the k-th beam having
_ 4 < . .
slope Rkj/Rki ’ where . j and RkJ ‘denotes the cofactor of rkj

. .9
in the correlation matrix C .

Using standardized variables, it can easily be shown that -

Rkj/Rki is simply thé rath)of the-coefficients of Xj a?d Xi in the
reg?ession of Xk on xl’XZ’”"’Xk—l .

Following construction of the Bunch maps, each bunqh is
.compared with the correspo;ding bunch in .. first subsets of the set
cqnsiééred, comparison being in terms of the dispersioq of the beams
orgiheir lengths. When the inclusion of a variable renders the new

bunch more widely spread, the variable is deduced to be correlated with

o

the other variables in the bunch. Conversely, if the variable added
possess a very short beam relative to the other beams, it is orthogonal
to the other variables. A theqfetical explanation of these deductions

has been given by Malinvaud [36].



An elucidation of the use of Frisch's Bunch Map analysis is
provided by considering the bunch maps (Figure 1) which have been
constructed from the data in Téble 1I1. Focussing first on the bunch (24),
we see thét the bunch remains more or less unchanged upon the inclusion
of variable No. 3. In addition, the beam correspondiﬁg to varjiable
No. 3 is extremely short. We therefore conclude that variable No. 3
is approximately orthogohal to the other variables. Multicollinearity

" on the other hand is exemplified by the behaviour of the bunch {123)
whgn variable No. 4 is added to it. Since the bunch becomes lessftight,
-we deduce that variable NJ: 4 is correlated witﬁ the other variables

)

in the set.

To a certain extent then, Frisch's technique involves sub- '\
jectivity in interpretation of the bunch maps. This lack of precision;
as well as the laborious calculation required for all the cofactors

have renderéa the technique obsolete.” Another early technique that has

been developed but which fared no bettér, was that by Tintne;'[SA].

>

2.3 Tintner Method

Tintner adopts Frisch's view that the variables are composed
- .

of two parts,

= + i=1,...
o K T M Py 2T Lheeem
t=1,...5n
<
where Mit is the systematic or '"true" part and Yie is the random

or "error" component which arises as error of measurement. The Yie

are supposed to be normally distributed w%ph mean zero.

16.
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FIGURE 1 -

Bunch Maps for Variables in the French Economy Data




TABLE IM

Adjoints.for Subsets and Full Set of
Variables in the French Economy, Data

0.030209 =-0.029721

0.030370

Ry, 1 2 Ry 1
' s

1 1.000000 ~-0.984180 1 1.000000] =0.265910
2 1.000000 . 1.000000 ~
Ry 1 4. - Ry 2 3

1 1.000000 -0.984770 1.000000 -0.215450

' 1.000000 3 ' 1.000000
. 1

Ry 2 4 R 3 4

2 1.000000° =-0.998930 1.000000 -0.213690

4 1.000000 1.000000
R 1 2 3 /

1 0.953580 -0.926890 -0.053870

‘ 0.929290  0.046250
3 ' 0.031389
. , . | p
Rij_ 4

1 0.002137 -0.000463 ~0.001642

(9%
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0.002037 -0.000332
| 0.025770

TABLE ITI1
Ry, 1 3 4
1 0.954320 -0.055470 -0.927940
N
0.030230  0.048170
0.929280
Ry 2 3 4 _
. : . L
2 0.954350 =-0.001989  -0.952900
3 0.002139 = 0.001529
4 ’ 0.953450
Ryj 1 2 3 4

.000055 -0.001649
.000034  -0.025409
. 000064,

0.000137
.+ 0.027032

o~
£
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We assume that the varilance-covariance matrix [

20.

] of the

cij

errors is known or that it can be estimated, for example, by the’

Variate Difference Method.

Then, to estimate

the Mit in the hyppthetic%&%y\{rfinite population wh

. to our sample, Tin

equation be formed

a is the

where ij

We form

A

1 is the

where
' so on. According
with G}"(n—m—l+r)

shown that

has an asymptotic

denote the estimate of

Let ]

[Vij

the number of independent linear relationships among

ich corresponds
‘b.b & oo .

pnef suggesté\fﬁﬁt the following determinantal

B TR TR T I T ™
SAV, Ay, mAV, 3, AV,
=0 (5)
- 3 -
- ] 7 N A —
fXle %m2 AVmZ Av \,/)/ N

covariance of X, the variance

-

andﬂﬂxilwaﬁawﬂa.’
) J ii

the. test function

= {n- +A. ...
Ar {n 1)(Al Az +xr)

ANy

.is the next smgllest and

smalleét root of (5), XZ

to Hsu [27], Ar is asymptotically x2 distributed

degreeé_of freeaom. In-addition, Anderson [1] has

normal distribution with mean 0. and variance 1 .
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yA A are not significant, but A

J , .
Therefore, if A PRRREEL

1

“ is, we can conclude that there are q independent linear relationships

q+l

C
among the Mit .

A%
Tintner publisheiy technique ir D952 but since then it has

seen little use due to a n er of inherent wéaknesses. These include

the facts that it is valid only for large .samples and that dits

appropriateness is conditional upon the existence of error of observations.
\ [

Moreover, it relies on the assumption that t ariance-covariance matrix

of the errors can be known or estimated.

2.4 Farrar-Glauber Technique

In recent years, more satisfactory methoﬂg have emerged, one .
major congribution being that of.Farrar and Glauber [15].. Viewigi
mglticollinearity a: a feature of the sample rather than»that of the
population, ghey havé'defined multicollinearity in terms of departufes
from orthogonality. Undér the_assumption that thé sample is tagen

from an orthogonal, multivariate nqrmal‘population, they then p:opoée

a three le&él test for the '"'presence, location and sevefity of multi-
collinéarity". At'the primary levelxpf detection, tﬁe deferminant of
(i'i) is transfdrmed into )

X2 _ () = -[n - 1 - $(2m¥5)]log |X'X]

2&

X%] ®

which was shown by Bartlett [2] to have an approximate Chi‘square dis-
tribution with v = m(m-1)/2 dégrees of freedom undér the null hypothesis

that the columns of X arefprthogonal (|§'§IV='1) . Next, to determine
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which particular variable.is affected by mhiticollinearity, diagonal

o
~ A~ - .

1
elements of (X'X) are transformed in such a way as to enable the use
of F test. By applying the results obtained by Wilks [60] on the
distribution of the ratio of the determinant of correlation matrix to

h of its principal minors which are mutually exclusive, and making the

transformation
v .
i1 .
v= (b : (6)
v
2 ,
where v, = n-m v, =m -1 . Farrar and Glauber derive the density
function of w as an F distribution with vy and vy, degrees of
freedom. '
/ g
Since ¢ ='——l-—§ , (6) can be written as ‘
1 - RX ’ ‘

1

. w=[l_é)%) ' . .

i

Finally, a notion of the pattern of interdependence can be
obtained by examining the .partial correlapign coefficients of the:' -
vériables{ Farrar and Glauber show that normalized off - diagonal

" elements of (i'i)_l’ yield the partial correlation coegficients among

~

the independent variables, namely, for any pair Xi’ ij ,

f

N : : ij



The t test is used as a criterion since the statistic

has a t distribution with v = n - m degrees of freedom.

Nevertheless, as Haitovsky has pointed out, since economic
data are hardly ever orthogonal, this test is of little meaning to him.
He suggests an alternative method using the statistic

Xe(w) = =[-a 1 - 22m5)] 1og (1-[X'XD) .

'S

In this context, the'nuil hypothesis becomes Ii'il = 0 , that ‘is, the
/feta are perfectly eollinear. The value of xé would Ee small when .
hulticollinearity'is high since Ii'if would aﬁproach zero. The
severity of multicollinearity can‘be measured by.the level of signi-

ficance at which the null hypéthesis is accepted. A x2 value, for
X . - . \
example, éignificant'at\the 0.9 level, would indicate a high degree of

multicollinearity.

In a recent review, Raduchel expresses agreement with
Haitovsk}fs comment on the test of Farrar ena Glauber.' HeJeriticizes
though the usefulness of Haitovsky's proposal of a heuristically'
motivated test of the corverse hypothesis. Tﬁe situation of perfect
'colllnearlty is just as unlikely as the other extreme in practice, or

when it does, there would be little meanlng in applying regression

anyway.

23.
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2.5 Kirchdorfer. Procedure . ' -

The latest development in the -problem of detection comes from

{
{

tﬁi\gsfman statistician Kirchdorfer [30]. His method is bésedvon the

Gram-Schmidt orthogonalization process. Suppose X is factored 1nﬁ6

"~~~

an orthonormal.matrix D and an upper triangular matrix U .

-

X = DU . ) ‘ (7)

The elements of D and U are ﬁetermided_by a process
involving-.an intermediate matrix E . Let xij denote the elements of .
T \

iQ ° the eleﬁeptgtof the variable XO , equal to .1 for all

i, i=1,...,n . The elements of D, U, and E, denoted by dij’

X, with x

a

u , and éij respectively, are obtained .in the following way:

ij -
Beginning with k = 0, let

ek - Xk for 1i=1,2,...,0 . (8)
_ n
) 2 .
=[] e , 9
“kk o [,5 ik |
| _
e
dp =-;i5 with 1= 1,2,...,n (10)
k
: R ¥ I with j = k+l,k+2,...,m (11)
. ' i=1 '
b “
and then with k =k +1 , let
. j‘
| k-1 - ‘ ,
e T Xy T Z ujkdij for 1 =1,2,...,n . (12)
j=0 ’ i
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The above procedure is rgpeéted from (9) to (12) until
k=m., . . : £

/

By simple manipqlationlof the original model, Kirchdorfer

derives the result

Since‘ ;
(U'D'DU)_l

@t

(U'U)—; (by orthonormality of D)

Y
4

1]

v it . (13)

the process of detecting multicollinearity is much simplified by con-

sidering the matrix U instead.. An examination of the size of the

diagonal elements of U would/EHEE;ate the source of multicollinearity.
- . y )

In the general case, if ugy is smail irchdorfer concludes that Xi

is correlated with the remaining i ependent “variables.

Ly A ‘
Kirchdorfer's proced

re is é recently'invenfed one and since
‘its puBlication in 1971, no reports have app&ared in théﬁliteraturé - |
concerning either its the;;y 6 practice: It therefore seemed of
interest to applyvthé technique to our data on the Fredch economy

(Table I).. Using Pfogr;m A (AppendixliI), thevresultant matrix U is

obfained as follows:
[ 4.24264 1007.69751 '15.60349  710.12354

0 ' 261.88599  1.54679  171.25647

"o 0 7.01129  -0.26582 o

0 ' 0 0 ' 7.91342



Examining the diagbnal elements, it is seen that none of

. them have small value. More importamtly, variable No. 4 is not

>

identifiable on the basis of Kirchdorfer's procedure as the éoUrce of

-multicollinearity. Yet as we;recal;,_the calculations of,Chaptef I and

Ehe Bunch Map analysis perforged earlier in this chapter, pointvto~the

existence of multicollinearity between the variables No. 2 and 4. Thus

our particular set of data constitutes a counterexample to Kirchdorfer's

-

procedure.

4

o

How may this phénomenon be explaihéd? Consider agaﬁh

equation (13)
@t = v igt
. U ' 11
where U is an upper triangular matrix., If we let x. be the
/ v

diagonal elements of (X'X)_1 , then

\
-

[

| N O i R oo b
o Y11, | ‘
% =
P2 WBH e Wl ™
Y22
x(m—l)(.m--l) - — 1 + (u(m—l)(m))Z '
| - m-1) (@-1) -
' = _l;_ & ‘ | (14
‘;/, - 2 \ . . . ( )
2 u
L . mm
15 i ' ' -1
where u. is the ij-th element in the matrix U .
. - / P

-/

26.
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: 3
We know that when Xi . is multicollinear with other members
s .
of the independent set, x 1 will be large. From our set of equations

i1

in'(l4), it is cleérythat u will liﬁély be very small when x is

ii

large only in the case 1 = ﬁ . Forall 1= 1,2,...,m;1 » the presence
" of additional squared terms in the set of equations (14) may result in-

17uii net being necessarily large even if xii is large.

A

In sum, Kirchdorfer's methodusucceeds with certainty only for

<

Athe case when the m-th variable is affected by multicollinearity. Thé

diagonal elements of U in all other instances of multicollinearity

3

may or ﬁay not be smali, so that no certain indication is obtained as to

whether or not the problem exists.

3

Kirchdorfer's own nﬁmerical example illustfa;eg the above é\\////

vargument-wéllu It is coincidéntal that only. the ;hird vériable in his
. set bf Xi }s is affedtea by multicollineérity, as evidenced by the
signifiéantly small valhe.of Usq - If multicollinearity had béég
locéted.in othef Yariaé}es, and‘not in the ;ast vafiable X3 » then

u may not be necessarily small. -

P

11
-

¢



CHAPTER III

RESOLVING MULTICOLLINEARITY

E\//\\
!
The discussion thus far has delineated multicollinearity in
terms of its detection by a variety of methods. Given that the problem

indeed exists in a particular situation, the next logical task to face
5

is rhe search for meaningful remedy. A number of alternative means of

A

resolution have been proposed, some for cases where X 1is less than-™
full rank, and others applyihg to cases where multicollinearity is only
approximate. The latter category of procedures are less easily ;

¢
accomplished than those used to resolve situations of perfect collinearity
on account of»the need for a priori information or tedious computation.

What folloﬁs is a. review of the procedures of both categories that have

,been'suggested to date.

3.1 Generaiized Inverses

One approach to the estlmation of the linear model of . leSS
than full rank u51ng generalized inverses has been discussed in Chapter I.
.In an alternatlve approach, the parameters .are subjected to linear

. constraints of the form
RB = c'

where R is an n X (m-r) matrix of rank s and s j!(m—r) <n .

’
Minimization of the constrained sum of squares leads to

- 28 -
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" equations of the form

or

Lc h . |

" where Y 1s a vector of Lagrange's multipliers. We have the following

lemma

Lemma 3.1.1. The gl—inverse of M 1is given by

g1 B

g g g, 8
w lglgrg trg Y Kk IR'G L

M- o= f : (16) .

g
where K = (X'X+R'R) and G = RK Ige .

The derivatibn of Lemma 3.1.1 is based on the following
results due to Bose [6] and Rao [47].
(1) (1) X(X'X) X'Xx=X »

g
(1) X'XE'®) X' = X'

8
(iidi) AX lX =A 'iff A 1is contained in the row spaceyof X .

(2) 1f H isa qxk matrix such that the row space'of H is con~

tained in the row space off;hé  k x k matrix S = (X'X) , then
o 6, Y
(1) r(dS "H') = r(H) where r(i) denotes the rank of H .

O g \ , _ :
(ii) . HS 1H' is unique and positive definite.



Proof of Lemma 3.1.1. (Dwyer. [13]). Let M be premultiplied by F ,

0
where T R'Qk‘ I

(1

sO éhat
s+tR'R R'
m- M)
R .0
Now 7 e ) v
S+ R'R=K
g
RK IR' = G

and consider the reduction B(FM)Q , where

I 0

and

Let .P = BF , then. 'P is clearly nonsingular. Furthermore,

>
2 P

X
- 1 '
K [X' R ?[R]
. =T'T (say) . . .
By (1) and (ii) of 1, -
¢ .
- gl
© T(T'T) T'T=T
and
8, .
T'T(T'T) "T' =T

¥



thus the following relations hold

g
RK 1K = R

8
) KK 1R' = R

g,
’ xx~1x = X

g
KK lX'v= X'

~

It follows from (17), (18) and (19) that

= (K 0
mas )
0o -~
and ,
g
g, (X 1 9
ut = 5 )P
0 -G
with
1 L R'
P = g
, el 16
v
8

4

By (17) .,and (1) and (4i) of 2, G = RK R'

. 31.

a1n

(18)

(19)

&
. (20)

is unique,-positive

definite and has the same rank as R . It then follows |from 1 (1i1)

that, since the row spate of R' and G are the same,

’ 4

R'G 1 =R".
. : (2
On completion of the reduction, M

1 e obfained as given in (16).

A\

N,

AN

e
—

e
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’

It is evident that a soLution to equation (15) is given by

Y g1

. g 8 g, 8
F=(kY-kre! lpig 1

RK l)X'y + K “R'G "¢ . (21)

N

{‘ : ~ ~ N
Rao [47] has shown that L'B , with B as given in (21),
4s the best linear‘unbiased conditional estimate of én\estimable

fuhction L'B .

Plackett [45] considers the case where the restrictidns are
chosen in such a way that [X' R'] has the full rank m (R 1is thus

comﬁlementary to X) gnd obtains the minimum variance conditionally

unbiased estimator of f as

B= (X'X + R'R) L(X'y + R'c) .

A further‘illustration of Plackett's solution in tefms of
gé-inverses is provided by Chipman [9]. Defining

.

.x‘

z = I3
we have ¥
\
. g “ _
o z 3= (2'2) 10
' [ =1.., ]
= (X'X+R'R) [X' R']
[ v -1 [ v ' -1 []
= [(X'X+R'R) X (X*X+R'R) "R'] -
=1. @)
Since X and B are comﬁi%ﬁbntary, ' » .
. \\ . - P

X(X'X+R'R) IR’ (R(x'x+R'R)"1x')'

0.
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Thus premultiplying (22) by X and postmgltiplying by (X'X+R'R)-1X' ,
conditions (i) and (ii) of g3—inyerse are verified respectively.
~Verification of condition, (iii) is trivial. Performing similar

operations on (X'X+R'R)-1R' , we thus have

-~ B, g
g =X 3y + R 3c .

3.2 Using Additional Data

One proposed remedy involves the .acquisition of additional
data, wPich however may hot always be available. In the fortunate case
when the lesearcher has access to new data, an effiicient criégrion of
seleetion which»would best reduce the standard error of estimates has

J .
been suggested by Silvey [51]. He points out that for the parametric

KX

function L'B to be estimable, L must be a linear combindtion of
eigehvectoré of (X'X) corresponding to nonrzero roots. L °can thus

be written in the form

= a,v, + ’ -
L a}vl b o,y + + ajvjﬂ. , g//i/
where v, are normalized eigenvectors of X'x) .. Utilizing thev
fact that - 7 1
. i i ‘
a2‘ uZ : qZ ’ 5 4
-~ x . o ¢/
var (L'B) B ilgf KZ'+ eoo A+ ii- r
1 2 h e °

which implies that ‘the bigger ap Ai , the smaller is its contxibutioﬁ y
to the variance, Silvey is thus able to show that precise estimation\ig

possible in the direction of elgenvectors corresponding {; large

eigenvalues.
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Silvey's selection criterion is to asshme an additioﬁal

T
bservati is taken at the- ! =
observation y_., 1ken 1t the values f4n+l (xl,n+1’x2,n+1""’
xm,n;l) of the independent variables, where x;+1 = lvi, £ some non-

zero number.

The new model is

or
Ve = KB+ uy -
Then
1y = y! '
N A = XX X %04
= X'X + lzv v!

id

o

Lo -
' = ' + '
- X*X*vi X Xvi L VivivVy

2
= (Xi+l )vi .

L}

e L : 3

Thus vy is an eigenvector of X;X* corresponding to the root

(Ai+£2) . In additien,

(oY

; 2
; ' = X'X + v
Xl IVj Vj 2 VIV ivj

&+

It
>
<
]
|
=}
(¢}

-
<
e -
<
[
o

,|
so that Vv, 1is an eigenvector of X;X* corresponding to root Aj .
‘The eigenvectors ‘(X'X) are thus those of X;X* and all eigenvalue

are the same:except that Ai is now increased -to (Ai+£2)b. Therefore,



if the new independent variables are chosen in the direction of

eigenvectors of (xX'X) corresponding to small roots, the standard error

would be reduced.

In the case when the new observation x is not necessarily

n+1

in the direction of an eigenvector of (X'X) , Silvey shows that the

2

. f . 3 . A ’ =
optimum direction o X 41 ? subject to‘the‘condition X 11%041 b

is that of the vector (I+b—2X'X)-1L , which holds for béth singular
or nonsingular X . This same result has been obtained by Gupta [21]

in a simpler %nd more concise fashion.
‘ )

Researchers have also grapﬁled with the'problem of treating
multicoliinearity‘when additional data are not readily available. Of

Eeveral possible remedies that have appeared, some have been more
<.

successful than others. The methods presently available will now be

discussed.

[

3.3 Incorporating Extraneous Information

One procedure which has seen extensive use involves the

~

inéorporating of information<ex£raneous to the sample followed by re-
estimation of the régreséion equation. An invéstigatof,‘foy instance,
-may have knowledge of thé rakio of some coefficients. AICernég}vely,

| the values of certain coefficients 6r their linéar combinations ‘may

be known. This procedure of using extraneous information varies in

form according to the type of information available.

a

The method com@only employed by econometricians involves

1
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combining time-series and~éross—sectional ééﬁples. An example is seen

in demand studies where incomé and prices in time-series data are usually

collinear. Cross-sectional samples are then used for estimating the

income coefficients. The procedure may be formulated in the following

way.

Suppose that we have estimates of (m-p) éf the m elements

~of B .- Withodt loss of genérality, wé“may renumber the X wvariables

so that the estimated coefficients refer to the last (m-p) variables.

The coefficients of the first p variables are then to be estimated.

Consider the partitioned’relationship‘u

=XB +X B _+u. . 23
y PBP m-p m-p - : (23)
Let B be an unbiased estimator of B
m-p . m-p
) B =g _+d (24)
x m-p m-p : .

. . L
with Ed = 0 and the-varlance—covayiance matrix is known,

~%k ~k . * .
E(R. -8B )(B -8B )'=1V , and assume Edu' = 0 . We regress
mw-p m-p’  m-p ‘m-p m-p o . ke

* C o~k
‘= y-X ron X B_. to estimate B_ as
Yo=Y T A pfnp o %% p
~%k -1 * -1 » ~k 1
B = (X'X X' = (X'X X' (y-X B
P ( P P)_ Py ( % P) P(y m=p m‘P)

Substitution of (23) gilves
. o . . .
= g +(X'X X'u - (X'X X'X B B )
By = By PORED T - G (

pm-p m-p mp - -

Since / ’ L .

E(u) = 0
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and
~k
BB, = fop s
thus
~k _'
E(Bp) = Bp

and from the dssumption of independence of the two sets of data, the

- N . N*
variance-covariance matrix for Bp is

<
jae)
|

E(E -8 ) (B -8 )"
P P P P

2, vy 371 -1 * -1
GS(X'X )T+ (XK XXV X' X (X'X
(Xp%p) () XXV pm-p™p Fpp?

02 can be estimated by u'u/n-m where
~ * X 'él* X E* X E*
u = - =y - - .
4 PP Y PP m-p m-p

One shortcoming of’the above procedure has been'attributed to
the fact that crqsé—sectional data are by nature usually 1Qng—run,i£\~
whereas annugl time-series data are often short-run in character. 'As
. Kuh and Meyér [33] has ﬁointed oﬁt, the combination of diffgrent structures

to overcome multicollinearity is improper, and leads in fact to dis-

crepancies in the estimation.

h

"As the second variant of the procedure of using extraneous
information, suppose that the extreneous information consists of exact

linear restrictioné on the coefficients,

H'8 = h
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where- h 1is a k x 1 known vector and H' an k x m known matrix

of rank k < m . We have, therefore, k independent réstrictions on
the elements of B .

i

In incorporating thiS“information, we utilize the method of
Lagrange's multipliers to determine the estimator of B -which minimize
(y-XB)' (y-XB) subject to the restriction H'B - h=0. It can eaéily
be shown that the solution for the coefficient estimator under constraint
is

B =é+(gwf4muwwfouﬂapwé).a L @s)

Substitution of B = 8+ (X'X)™1X'u into (25) yields

k]

e o e+ @ e en i T et (0 7K )

- . x ; ‘ . ‘

Therefore, if H'B = h is true, B would;be unbiased. The variance-~-
~% T ‘

covariance matrix of B is given by.

* . -
/ V =) .=V - VH(H'VH) gy

B B

where V = ZAA‘; crz(}('-X)-1 is the variance covariéncg matrix of the
. 88 ‘

ordinary least squares estimator B8 . : : .

v

]

P

~k ~ ' . ' .
This estimator 8 - has been shown by Theil [52] to be the
best linear unbiased estimator of B in the class of all unbiased

estimators which are linear functions of y and H , prdvidéﬂ H'@ = h

&

is true.

. The third context involving use of extraneous information is
. > ‘\ ! . ) - N ~ )

a method Ghigh utilizes both the extraneous and sample information to.
N .

N
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estimate Bm—p and Bp efficiently. We assume that the eitraneous

" information may be represented by

r=H'B+d. ‘ (26)

- : o
Combining (26) with the basic model, we have ?

0-Cke0)-

The variance-covariance matrix of the extended disturbance is

“u o - o
E{][u d]' = [ ] _ (27)
d 0 ]

where

y = Edd’.

The zero nature of the off~diagonal submatrices results from
the'assumption.of independence between the sample and prior information.
Since the variance-covariance matrix (27) is not oI , ordinary least

, 5 o , ‘
squares cannot be used. An application of Aitken's generalized least

.squares procedure leads to estimates . c
- o?1 0y Tx )7t 21 0y Ly
ool C) e w0
‘ - 0 ¢ ! 0 Y T
= (—17 X %y gy "t (i2 X'y+Hw-lr) .
o g )

. Specifically, for the example in the previOUé\section, where

t
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we have estimateé of the coefficients of the iast ‘(m4p)ﬂ'variab1e§

v’0 w
0 Ny
—N* — ~* ’ )‘
r T “m-p Bp+1 ¢
_ 3
i . l)v'
~%k
| B )
m .
and
cQ - - e « « 0
Hl = : 1.0 se s 0
0 . 0. . .
1 . : ) 1 N
A . .0
LO 0-0.-‘ 01)

w

~

* o .
8" has the property of being the best linear unbiased

estimator "best' refers to both extraneous and sample information. The

-

variancercovariance matrix of this estimator 'is given by--

~k ‘ - -
var (B ),=‘[!3 X'X + Hw'lH'] L '
o] _ o '
& - . : ) e
A shortcoming of this method lies in the fact that knowledge

of 02 and ¢ is'redhired. This difEiculfy can be circumvented by

employing unbiased estimators of these variances .and covariances. Theil

[53], in search of a heuristic procedure, has. suggested the following

conditional_estimator of B

~% . - - i . —'
3 - & xx o+ mTED 1l xy + w7l
[ .
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where.
o2 =y - xx'0 X' 1 X'y/om. .
Alternatively, the investigator may have knowledge about the

bounds on the values of some coefficients. Nppose it is known a priori

that the coefficient B lies between O and 1 , probably between -%

1
and %~. This knowledge can be formulated as
1 7 .
2 = Bl +d
with o
- Ed=0 P,
by
‘ ' B =
R 16 : -
so that B8 Ex: Jgiveé a range from 1 to 3 and B, * 20, gives
1 B . 4 4 1 8

1 : 1
a range from 0O to 1 . The procedure described in the preceding -

4paragraph is then applicable to obtain the best linear estimator. In
thiécjase, we set

3

H
n
N

H' = [10 :.-..f 0]

and _
=L
V=16
R
_Knowledge about linear combinations of coefficients may also
be. handled by a similar progedure‘to‘the above. : <

Finally, we may have situations in which the extraneous

information take on the form
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H'B < h .

In this event, the familiar technique of quadratic programming
is then applied to minimize the sum of squared debiations (y-XB) ' (y-X8) -

subject to the constraints.: :

~
4 :

T— We note in conclusion that the utilization of extraneous

information, as a procedure of resolving multicollinearity, leads to

better estimates. One shortcoming though may be-said to reside in the

.

fact that a priori informaﬂion often consists of facts or relationshipdx

’ . L
RN

-adduced from expirical economic studies. The validity of this informationi‘

(15 therefore always a problem to ﬂé faced. Fox [17] has in fact quite .
. strongly stated that. "if we use purely arbitrary coefficients to get
around a statistical impasse, we deserve criticism from both economists

and statisticians".

3.4 The Mean Square Error Criterion

It has been seen in the preceding section that restrictions on
theﬁregression model result in reduction of the variances of the |
Vregression estimates, though the restricted estimator will he biased if
the restriction is not exactly true. Testing procedures have been
devised for rejecting orvadopting restrictions on the- parameter space in

a regression model.

The classical procedure for. testing the validit& of the

restriction H'B = h , where H is m x k of rank k ,-has been the
Rl : ¢
Snedecor F test which can be shown to be uniformly most powerful {U.M.P.).

S
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It is obtained via the stafistic

N* ~ ~
_ SSE(B ) - SSE(B) . SSE(B)
-k ‘n ~-m

B

where _SéE(E*) is the error sSum of. squares in the least squates
regression constrained by the hypothesis and SSE(é) is the error sum
of squares in the ordinary least squares (o.%.s.) regression. Under
the null hypothesis, H'8=h, z has the central F distribution with
- k and ﬁ - m degrees of freedom. . Consequently, we are able,ﬁo employ
the F test to choose between two sets of'estimators, as for example,

a variable is dropped when found insignificant using the F test.

A number of disadvan:ages‘arise however, from using this test,
as Wallace [59] has recently reiterated. Most importantly, the validity
of> H'B = h constitutes an "overstroné" criterion, and e?en in caées
where«multicollinearity is se&ere, it wo:id Still.seem reasonable to
trade some bias for a smaller var}ance of the estimator. As amn alter- = -
native which better captures the."notion of tradeof} between bias and

variance", Toro-Vizcarrondo and Wallace [56] have proposed a testing

procedure based ‘on the Mean Square Error. criterion. ' :
s : s

The mean square error for an estlmator is ‘the estimato?’ s
variance plus the square of its bias. Let 6 be an m x 1 vector

of estimates, then

E(6- e)(é’é)'

fl

MSE
GE)

Iz + (bias 8) (bias e)'-
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~

Between two alternative m X 1 vector estimators, 6 and

-=0 ., 8 is said to be better in the Mean Square Error (MSE) sense 1if

for any mx 1 vector d # 0

MSE d'8 <.MSE d'® .

This inequality is equivalent to the requirement

24

) . . . » . \
E(6-8)(8-68)' -~ E(6-8)(8-6)' = a positive semi~definite matrix .

' N * .
Thus, in the linear regression framework, we question whether

»

MSE - MSE_, ., 1is a positive semi-definite matrix . - (28)

. B8 BB
. ~k ) o .
If it is so, B is the better estimator by the MSE criterion.

. Toro-Vizcarrondo and Wallace derive the condition for (28) to

iy

hold as

(H'B-h)'(H'(X’X)-¥H)‘10ﬂ8—h) <1 © 29
2 S ~
g

Dividing bot" sides of (29) by 2 and denoting the left hand side so

obtained by ' . (29) can be restated as

\

: 1
k\\ : | AT .

~% ~ ’
In other words, in testing whether B8 1is tetter than B8 according to

-

the mean square error criterion, the hypothesis of interest is

< 1
| Hyt M <5 -



They further show that the statistic z has a non-central
F distribution witQ_parameters k, n-m, A . Under the null
hypothesis H'B = h o;‘equivaIently' A =0, z has the central F

distribution as stated earlier.

Applying a theorem frem Lehmann [34] and making the trans-

formation

W .
w = X2 4 12
n-m

4

they obtain a U.M.P. test for the MSE criterion

45.

1 ' 1 /
HO: §_i-§ agaipst H,: Ay , -
| . §
Accept» HO: if w < v,
. : * - "
Reject Hyy 1f w 2w, (30)
* ’ T
w . stands for the computed value of "w and the critical point W,
is determined by
w N
a -
[ hiy(w)dw =1~ o
o %
2
‘where ) 1is the density’function of w whicﬁ can be easily derived

from.the non-central density of =z as

~

o 1 oa r@tkmom o logacgy Ln-n-2)
Ae S 2 2 .
z 1! w (1-w)

n-m 24+k,

h, (w) =
. 0 FC‘E—)F(——E—O

i

hx(w) can be recognized asfthe beta distribution for i =0 and the

non-central: beta distribution for A > 0 .

-

(31)



-46.

1

Since multicollinearity is closely linked to zerovrestrictiohs—
dropping a variable or set of variables, (30) can be regarded as a U.M.P.
test for "multicollinearity". We delete the set of variable xm-r

(n x m-r) from our partitioned model

= + +
y Xr Br Xm—r Bm—r u

when we consider Xm.r to be multicollinear with Xr (n x rh R i.e.

when the null hypothesis, A‘i-% is accepted. _
. . . . / i . .

In essence then the Mean Square criterion test takes into
N ¢ ’ a ' B
account both the bias and .the variance, rendering an operational

»

;,advantage over the standard F test mentionedlat thé beginning of .

’

the discussion.

Two alternative but weaker criteria of thé Mean Square Error
have been recently developed by Wallac 139]. He refers to them>as

the First Weak Mean Square Error and the Second Weak Mean Square Error

criterion. <
’ : -/
. ' ~k ‘
, . According to the lst weak criterion, B is better in
average squared distance ‘if . e J
- tr (MSE_,_,) < tr (MSE_)) (32)

B B BB | o

" which holds when S S

A<D e R T e i M e

and Am' is the smallest eigenvalue of | (X'X) .
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The 2nd weak MSE criterion is a test of the betterness of the
restricted pver the unrestricted estimator of XB = E(yIX) . XB is
seid td be the better estimator of E(yIX) in-weakwmean sgnared error
iff “ . . h

. . * ~k ~ A
. E(XB-XB )' (XB-XB') < E(XB-XB) ' (XB-X8)

or equivaIEntly _ ’

T
L

~%k ~k ~ ~ ‘ .
E(B -B)'X'X(8 -B) < E(B-B)'X'X(B-B) . - (33)

0

‘Alnecessary’and sufficient condition for (33) to hold is

>
NYF

'

To recapitulate the gist of the foregoing discussion, -it may
simply'be stated that average squared distence criteria for linear-
restrictions in regression yield operational tests more appropriate

for deciding the exclusion of variables in the event of multicollinearity

o

3.5 Principal Component Estimators

B

~ein situations of multicoll&nearity was provided by Keﬂdall [29]. Suppose_h

we have a matriX' X of n observations on  m variables, where the

Vobservations -are expressed in deviation form from the sample means, the

, principal components of X are the artificnl var1ab1es l’ 2,...,Zm

which are linear combinations of the Xi 's so chosen,that the variance :

of 2 is a maximum, the wariance of 22 is a maximum subject to the . -

1
condition that z, is orthogonal to z, and so forth. Let a be

an m—component column vector such that =a'a = 1.. The variance of Xa

The initial impetus to the use of principal component estimators :

—_
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is

He s

(X‘a)'2 a'X'Xa . . . o (34)

. . X - ) .
In finding a normalized eigénvector al (all’alz,"”alm)

which maximizes (34), we seek the solution to .the equation

4

2

ty = '
X'X All) 0
9 ) ‘ s _/‘"'\_ ‘ :,.
where Al is the largest eigenvalue of (X'X) . It can be seen that a;

is the eigenvector of '(X'X) _corresponding to the eigenvalue A -

Zl = Xa1 then constitutes the first principal comboﬁent.: The second

principal component, Z2 = Xa2 , where--a2 is the eigenvector

corresponding to the second largest eigenvalue‘of (X'X) , is found by

maximizing the objective function
v ¢2 = a'X'Xa - y(a'a - 1) —‘u(a'al) .
' 2
Proceeding in this @anﬁer, we obtain all m principal com-

;pbnéﬁ;s of X given by

'z =XA. | @35

Thus it turns out that A 1is an orthogonal matrix and is com-

posed of normalized eigenvectors ay corresponding to decreasing eigen-

values A, of (X'X) . The matrix of eigenvalues ‘ o )
rx1 1 o
A, Q
A= y
0 .
A




satisfies

To explain how principal component‘analysis resolves

multicollinearity, let us supppse that the analysis have been applied
—
to the variables Xi . The regression model can then be written in

terms of the components as

<

y =XB8 +u

ZA'B +.u

ZA + u
where A = A'B .

In this cdase, the Gauss.Markov theorem is applicable and the

least squares estimator A of A is then obtained. , We have, from (36)
) S ;

B = AR . ‘ . (37)
In Kendéll's viéw, a better estimator of B than the ordinary

least squareS‘(o.th) eétimator is afforded by deleting from A those

components corresponding to small eigenvalues. The estimator so obtained

. o i *
is referred to as th¢ nrincipal component estimator denoted by b . 1Im

.- symbols, ‘ 4
" - b o= A e,

. * ' N
where A =AA and A dis a < «. ~ - .rix with ¢ (a ‘binary
m—compoheht vector, each eler .nt is c¢:th r 0 or 1) down the principal
- : e ) - . ‘ % X . 1%
diagonal. It can be shown that b  i: distributed as

2

* *‘_1 % o
N(A A, oA A TA ) .
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' The justification for the betterness of b* over é is
évident‘from the following: Let b:(h) represent the principal ;om—
ponent gstimate-éf Bi obtained by deletion of the component h .

Var éi then exceeds var b:(h) by tﬁe amoun; ozaihlkh which is

necessarily positive.
N\,

The desirability of using a é?inciéal component estim;tor
rathér than an o.%.s. estimator has been further delineated by McCallum
[40].. In essence, his proposal entails adopting the Mean Square Error
as a criterion for selection of the components. Mbre-;pecifically,,the :

: *
~ principal component estimate bi of a single parameter is better than

the o.2%.s. estimate :éi by the Mean Square Error criterion if

* -~
MSE (by) < MSE (8y) -

A component is therefore deleted if its exclusion reduces

the mean square error of estimating Bi . Since

1

Lk do %k : *
var bi(h) + bias bi(h) - bias bi(h)"

1}

: *
MSE (b (h))

| 2 '
o , a“.
o Sofy s (Bbh ()-8, (BB} (-8 (39)
j#h 73] ‘ '
and _
o * m ‘
b1as_bi(h) = J;h'alJ 5 jz 2450

(from (36)) (40)
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we see that the Mean Squgré Error criterion per se is not operational.
Iﬁ (39), both the true value of Bi ., which we want to estimate, and h
the 02 , are unknown. Mqreover, (40) tells us that the ﬁagnitude of
the bias depends upon the true values of 81,82,.;.,Bm . -Fo;tunately,(
though; this difficulty may be overcome if é priori knowledge of relative
parameter magnitude or their estimates is available. Such information

. *
will indicate situations in which bi is better than Bi according to

the Mean Square Error criterion.

Farebrother [14] has extended McCallum's analysis to the
general criterion of minimizing a weighted sum of elements in the

equation

‘ : MSE(b™) = E(b*—B)(b*—B)i : . (41)

The off-diagonal elements of‘(41)

* *
E(bi—Bi)(bj-Bj) T
' %

. % * % *
‘are referred to as the mean product error of bi and bj or MPE(bi; bj)'

The minimum weighted mean square error (MWMSE)-criteriDn

seeks to minimize the function
Y ¥ 5 a@E ®,b%) = tr MSE () - F 42)
) ZFji_E(bi,j)—tr E(b) - | (

R =1 j=1

where F is an ‘m x m matrix of fixed weighté.
Since it follows from (39) and (40) that

* ok x
tr var b *F + tr (A-A )A\>A'(A-A ) «F -

[

' *
tr MSE (b ) *F

S

~ Lk 2 =1 Tk o
tr var B *F + tr (A-A )(AA'=0c"A 7)(A-A )'+F
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. & . . .
of which the first term on the right side is constant, Farebrother is
yiagie to show that (42) is equivalent to minimizing

1

2

; Ctr (M'-02n Yy (a-ay'Fa-aT)

v

The principal component estimator b is thus better than the

o.%2.s. estimator B by the MWMSE criterion if

2

tr (AA'-o A”l)(A—A*)'F(A—Af) <0 . (43)

Deletion of a component is therefore desirable if 1£s exclusion reduces

the left side of (43). - . .

-

The work of McCallum and Farebrother described above has been
Eoncerned with finding a better estimate of B . Reécently, Mitchell [41]

chose instead to éscus on obtaining a good estimate of XB . Adopting-

}
\

the 2nd weak MSE criterion, he suggests minimizing the "average pre- \

* .
diction mean square error APMSE" of Xb as an estimate of XB

2 |

* *. %
APMSE (Xb ) E(Xb -XB)'(Xb -XB)

v

“

%
= tr MSE (b )X'X

which is (42) with F = %—X'X .

As a practical illugtration:of the method, we use Bnce again
our French economy data (Chapter I). - On applying a principal component
analysis to the sample correlations matrix using CEIGS [8], results

shown in Tabie IV and V are obtained. N



It is seen that the first two components account for -nearly

all ;%%the total variability. Given the small value of A3', the

contribution of the third component can be neglected.

- TABLE 1V

Eigenvalues of Correlation Matrix for:

the'?rench Economy Data

' Compdﬁent Eigenvalue Percentage of Vagiabi;ity
1 2.08388 69.46 ! !
2 » 0.91505 ) 30.50 |
3 0.00107 0.94
We thus have o <
Zl = 0.68104}(—1 + O.2§960X2 + 0.68081X3'
Z2 = 0.18971X1 - 9.96297X2 + Q.191§6x3 ‘

TABLE V ,

Normalized EigenvectorsAfor the First Two Components

\

Variable 1 . 2.
'xl ~ 0.68104 0.18971 !
0.26960 -0.96297
Xg o.esosi 0.19156

53.
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Since the correlation of y with the X 's are respectively

‘ 0.98418, 0.26591 and 0.98477 ,
' /

| ~

1 teoes o '

Ay = 5755788 [ (0. 68104) (0. 98418)+(0.26960) (0. 26591)+(0.68081) (0.98477) ]
= 0.67777,

p 1 | S ;

A, = 551505 [(0.18971) (0.98418)+(-0.96297) (0.26591)+(0. 19156) (0.98477) ]

0.13036 .

From equation (38),

-

0.68104  0.18971y (0.67777
b¥ = 10.26960 -0.96297]

0.68081  0.19156’ '0.13036

0.48632
= lo.05720| .

0.48640

The regression equation may now be re—-expressed in terms of

the standardized variables,

- 0.48632%, + 0.05720%, + 0.48640X, . = - (44) .

W

In accordance with the theory discussed above, the estimates

*
~-bi of Si are b1ased but have smaller variance then the o.%.s.
estimator (44) is thus the regre851on equatlon ‘for our French ecdnomy

e L

data corrected for multicolllnearity. 53 ' .
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A »
Our discussion in this section has therefore elucidated the
“utility of the method of principal component in achieving orthogonization
vof the regression calculation. In addition,. the method has the desir-
able feature of involving a minimum of assumptions and, given the
availability of electronic computers, it is basically easy to apply.
" Two 1imitations to the procedure however exiét, the first being that
ﬂ,it works only ﬁx linear models. Secondly, in those‘situations where

‘“a priori information about the grOuping of the variables is available,

other procedures are more appropriately employed.

3.6 Factor Analysis

In a 1966 paper,-Scott [50] proposes applying the well known
orocedure of factor analysis to resolve multicollinearity in regression
analysig« Essentially his method involves adding the correlation
coefficients between bhe dependent variable and the independent
variable to the correlation matrix. = Applying factor ana]ysis to the
augmented'matrix, Scott then derives the appropriate'regression
coefficients from the factors obtained. To\nnderstand his pr0cedurez'

| a brief look at the factor model is necessary.

2 .
The factor model can be expressed briefly as

= BE + ¢ ’ - (45)

where

x is an -m x 1 vector of m standardized variables.

°

.

B is the m x p matrix of factor loadings, p <m .
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"f dis a p x 1 vector of factors.

e 1is the m x 1 error vector which is distributed
independently of f . Both f and € have multivariate

normal distributions.
E(e) = 0 and E(f) =0
E(ee')=V , a diagonal matrix

E(ff') = I , i.e. the factors are uncorrelated. and with

¥

unit variance.

It then follows that the covariance matrix of x 1is given by

_1x = BB' + V - | / ; (46)

A number of different methods exist for deteréining the
matrix B , including the method of principal factor solution, maximum

likelihood method, Whittle least squares method, canonical factor .
analysis and Joreskog method. _ : T ' .

©

Follbwing determination of the matrix B , the factors can be

/ :

obtained in at least three different fo

(B'B) 'B'x = £ S (47
B'i_l x=f | (48)

(I + B'V—lB)B'V_lx =f . - (49)
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Scott derives from the factor model a stochastic linear
equation called factor analysis regression which can be used in place

of the least squares régression when multicollinearity is present.

Assuming Xl is the dependent variable and that N = B'I;l ’
f
we have from (48) £ = Nx . Substituting Nx for f in'(45), Scott !
then derives by simple algebraic manipulation the factor analysis

regression equation as /

jgl-bljnjz | jEl 14733 jEl 13%m
X, = § X, + E — X+ .. E X, - (50)
1 - b,.n 1 - b,.n b
Let bi be a row vector of the matrix: B ‘and ni be a
column vector of matrix N . Equation (50) then_assumes-a simpler
form
] L
X, = ———————blnz X +\ b1ty X, + + — P1n X
—5 —35 + ... —3 .
1 1 blnl blrzl 1 blnl m | (51)

Putting W = BB'I;I , the factor analysis equation geduces to

L

W w w
— X1=1——1u27 x2+1—13 x3+'...+————l__12 X
11 11 - T ¥ "

where Wij ithhe element of W in the i-th row and j-th column.

4 e

In general, any.one/df the variables may be the dependent

variable. Suppose the i-th variable is selected as the dependent
@ v ' :

variable
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where all variables except 'Xi appear on the right.

.

On the other hand, if we use (49) and denote

B(I + B'V—lB)'_—.lB'V—1 by W, we‘obtain the linear model

‘W
- Y B Y R im ¢ .
O 1-w,,6 ¢
id Vi1 ii

As before, all variables except Xi appear on the right.

n

)

o

To conclude, we note with integrest Scott's recommendatioﬂ

that stochastic linear equations deriveasfrom factor analysis are
especially appfopriate for economic data involving high multicollinearity
or errors in the variablés. Theurationéle is that the coefficients sé
obtained are better from the view point of '"their economic meaning and
thebretiéal expectation"4than those estimated by tfaditional least
squares. Thus, given the availasility nowadays of gléctronic computer
for the iterative-type calculafion"needed;:théAféégér“;nalysis

regression«maylyel; see more use in econometrics than has hereto occurred.



3.7 Ridge Analysis )

LA

"In all the preceding procedures for resolving multi-
collinearity, the estimator of B 1s the least squares vector é .

In 1970, Hoerl and Kennard [24]Apublishéd an alternative method of

, ‘ ‘ %k
estimation known as ridge,&@gression in which a biased estimator B

3

{

is introduced, namely,

> ) T : .
B8 is related to the least squares estimator in the form

A D o i B I

1

- ) Akt ~%k ~o A ‘h* ) o -~
.In addition, for k # 0, B "B < B'B , i.e. B is shorter] than B8 .

/

5

Basically, the idea of ridge reéression is that when a'small
positive nuéﬁer k is added to the diagonal elements of X'X ,.the
instability of thé estimates is lowefed. This_cén be éeeﬁ firom the

4 fact that if Ai is the eigenvalue of X'X , thep 1/)\i + k| is the
eigenvalue of fi'i + kI]-'l . ”More specifiéally, Hoerl and [Kennard
have shown that choiée oﬁ an optimum” k can, in fact, rddu&e thé

\ .

variance and lead to a minimum value'of_the'mean square err¢r of the

estimate of B8 . |

The optimal value of k is manifested by a‘number of’
. [ 4

simulranébhéAconditions, namely, the stabilizatdon of the estimates,

3 o , ; _ p

the disappear...ce >f unreasonably large absolute value;of the
. X . - '/” v

coefficients, the correction of wrong signs of the coefficients and

the reduction of unreasonably iérge value of the residual sum of




o

squares.

60.

i

)

Io detect this bptimal k ,’HQerl and Kénnafd utili;e ﬁidgg—'
Traéé which is 5 two-dimensional plot of é*(k) .and thé residual sum |
of squares'for the number of values of k in tﬂe“interval. [(0,1] . Ih
gﬁm;‘Ridge-TraCe reflects the complex interrelationships existing

among the non-orthogonal independent variables aﬂd the effect of these

interrelationships on the estimate of B . Eb

As the authors of this technique have pointed out, Ridge

Regression presents two advantages over procedures such as principal .

components and zero restrictions which do not portray how multi-

- collinearity is actually causing ihstability, over-estimations and

incorrect signs. 1In addition, "they can actually amplify the deficiencies
of ordinary least squares for non-orthogonal data". We note, of course, ¢
the presence of subjéctivity in interpretation of the Ridge-Trace to

dbtain the optimum k .

—~

Most recently, ébnniffe and Stone [12] have made somevcritical

comments on Ridge Reggression. Their principal contention is that

: ' - Ak
"Hoerl and Kennard's proof that the mean square error of B 1is less

«
,.

than that of B for certain valies of k is valid only if k is

-

assumed known; The ridge procedufe howevér involves the estimation of
k . Mayer and Willke [39] confirﬁing thisgoversight of_Héefl‘and
Kennard, have: listed two result;nﬁ weaknegées in Ridge Analysis. First,
it'ig‘pot possible to state with abé&lugﬁfé%gtainty that‘the‘éstimator

\ # _ .

‘chosen has smaller total mean square error than the variance of the

. [ 3 ’ . o~k
least squares estimator. Secondly, the moments of B obtained for

_fixed k  are not .the moments of the estimator being used.

b
b

“
M

»



Conniffe and Stone also argue; quitebcorrectly, thatfﬂoerl |

¢ . 4

and Kennard ‘provide no proof that the appropriate value of k .can be

o

recognized by the four criteria discussed previously. Their.additionalj
comment is that the second and third criteria entail allot of prior -

’ knowledge which they claim a researcher rarely has. In this regard,
it’ might bj/fg;ntered:that in economic situations, at least, theory

has developed to a stage where the true nature of the variables

intercorrelation is known For example, one would expect the coeffi- .
. { /

cient of the- rate of change in wages to have positive sign in.a price{ L

andeage_Change relationship.' .

A thlrd point of Conniffe and Stone relates to the

stabilization critéria. By showing that even- if the Oii s are

(9 ~%

orthogonal, B values would change more slowly with ' increasing k,

.

they concluded that the tendency towards stability is not a consequence

of the ill—conditioned (X X) i&he final critical comment refers to

the fact that if (X X) is singular, ordlnary least squares estimator

. B does not exist. However, since = (X'X + kI) X y and

~%

(§'§;+ kI) 1is non—31ngular,;-8- does exist\and their values are

k)
/

non—sensical. <§pwever, Conniffe and Stone s argument overlooké the

relationship existing between B and “é ,_name1y>
: s (FHns B , . ] ‘ E

N ) .
ik _1. -
B = (I + k(x X) ) + 3

which involves also the 1nverse of (i'i). In sum, taking into’

account thc weaknesses of their critic, Conniffe and Sténe's’ conclusion

L d
[y

that "We°believe.ridge estimators are unlikely to be of practical use

to the researcher with data to- analyse'" would seem slightly over-strong.

<

-



3.8 Marquardt Generalized Inverse Estimators

Marquardt'[36] has proposed the use of another class of

L]
/
biased estimators termed generalized inverse estimators which share
. ‘ .
many of the properties of ridge estimators, though they are more .
' P
X
relevant when the matrix X is singular.
~Let X'X be diagonalized into its matrix of ordered ,
! eigenvélues_by ahjorthogonal matrix J such that ‘ y“
J'X'X)J =D
- where i .
N b
J'J=1.
1
Suppose X'X 1is cr rans 1. so that the last (m—r) elements of D
‘are zeré,'or nearly 0. In the latter case, a.criterion for determining
o ) . -y ';7'; -1 -7 '-.
the rank r 1is to preselect w in the range’ 10 to 100 ° and then
" choosing the smallest r satisfying -
. m
A .
~ i=x}z:1-f i
L s < W, ‘L ’
S Trace D . > Ls e
{ - ’ \
r /‘“, . t o 4fj“,,:' A LF '~'~ R N o
4 . 7T obtain the’ inverse of (X'X) , J d4nd D are both
partitioned gg#isimildr fashion, giving e .
NS DAt ‘ _ :
' o r :
. , R J
PN I (Jr . m—r)
. ! g ,
; . - Dr . 0
d R O . D A
R : . m-r
. .- *
- i :
X S Lo e
¥ !
VL I
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& .

— ’ - L nansl
Since Dm—r is 0 , Dm—r equals zero. The inverse (X'X) thus
_becdmes ‘ : )
o 2t - g pl |
X'X) = J. '
e e XX, ‘JrPr I
. P e )
SRR L s -
TE r -
s LA . ENRC S ‘
oA e e ‘ ] oI55 - -S?_ (53)
> =1 01 7% : ;
t > "'The class of géﬁeraliﬁé& inverse estimators is then defined
by K ' A
U e s R L
R x' e
L fgr .(X X)'r Y o ©
.)u”‘,'! " g

. ~ o~ . i <
where }(X'X)r "is as given in (53).

/

Marquardt indicates that the best r can be selected by

D

: . I, '
examining the size of the variance -inflation factor, which is defined

f
i

-as the diagonal element of" (i‘i):/ for p: -assigned rank r ,

v {

0 <r <m . The criterion suggested is that thé. maximumvariancde
: o j B

inflation fagtof_sbould.be~"usualﬁy larger»thaﬁ 1.0 but certainly not

as large as 10" . / '
j i

. In proposing the\gene?alizé& inverse estimator, Marquardt

has emphasized with little resetvation.its superiority over o.2%.s.

gy
B 33

/ estimator in non-orthogonal data.- Nevertheless, it needs to be point%d
out that the same sort of criticisms which have been levied by others

‘against the ridge estimator, apply equally to the geheralized inverse
estimator. Thus Marquardt criterion for®choosing the best r lacks

~

. .. : ‘ > e, . - a4
.+ precision,-and, . .morg 1mportangﬂy, he hag,not proved that Br has a
: B § . . ,

- -ssmaller mean square error-than the o0.2.42 estimator.
i o, - e ?

Ty .
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3.9 Mayer-Willke Shrunkeﬁ Estimator

4
4

\\
An alter. ive class of biased estimtor- similar to t“e

ridge estimators and labelled shrunken estimator., have been recently

proposed by Mayer and Willke [39]. These estimators are defined by

3, = A@DHTEY = 08, x 10,9
SR ‘\\‘ o
s . . \\\

1 Lo ’ A

If A 1s&a'scalar,, ék is called a.deterministically
shrunken estimator. But if A is a function of

I

B'B

s ;BA‘ is
referred to as a stc .nastically shrqgkén estimator.
b , -
In their paper, Mayet andCWillke outline a dumber of methods
by which .A can bedselected. On approach involves putting
“ : 9D A= 2
y = [+ EsZ(B B R (54)
. "
A PR
as the shrinkage factor where
v B w s
2 S NFCAERY
s =y'y - B"(X'X)B

]

i

7. shrunken estimator is then given by

éx = [1+ asz(é'é)'llé . (55)
;

/[49]

. As Sclove

has proved, when the aumber of independent
variables’

m,i.3 ,;%nd 0 < g < 2(m—2)(n—m+2)—1,' 8

BA has smaller
minimum weighted méan square’ error (MWMSE) than B

e
kv

Indeed, if
i
1 : ' -1
L s e @m) T,
9 . @ ' ’

/

/ ST

¢
A
‘x‘*!»-.r‘

P
)
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then o

MWMSE (B ,) = min MWMSE (B. ,.\) -

: A (E)

A(E,

A}

Thus the claés'of stochastically shrunken:estimator with ‘A
as‘definéd in (54) is superior to ﬁhe ridge estimators dr!detérminisﬁi-
égﬁ.\g"caE}y shrunken estimators, since a valye of A ' can ﬁe‘determinéd
< Y . T .
3 which will guarantee a better estimator ofc B than the ordinary least
squares éstimator 8 s "bettergess" being in the sense of the Minimu;
Weighted Mean SquareyError‘criterion. It must be stressed, howévegi

that shrunken estimators with other values of A face the same S v

. problems as ridge estimators because they involve the estimation of A .

\ /

3.10 Multicollinearity in Two-stage Least-squares

The techniques discussed thus far are designed to resolve

Tl

multicollinearity when it occurs in ordinary least squares estimation.
[ o4 9

-..

As Klein and Nakamura [31] hé&e shown, two-stage 1east—square§
estimations are even more sensitive to the pre;éﬁée of multicollineafity;
an&;a,remedy for such situations hasfbeen devised by Kloek and Meﬁﬁég
[32]. To understand their procedure, a brief discussion of two-stage
;east—squdtes will be necessary. .
7 ’ . 5
In brief, the model concerned is '

y = VlB + Xla + y

.'ﬁ where y is an n x 1 vector of observations on the "dependent”

variables. ‘ x 7 . e
’ R b

E
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<

Vl is an n x & matrix of the other enéogeneous variables present in

the equation. X1 is an n x k matrix of observations on the

prédetermined variables appearing in the equation. 4 1s an n x 1

i
vector of disturbances.

Basically, two-stage least-squares estimation inVolves

%eplacing Vl by their least squares estimator V ereq
v = XX Ky -
- 1 i 1 .
X = [Xl X2]

and X2 is an n X (K-K) matrix of predetermined variables not

-~

.
appearing in the equation. Next y 1is regressed on Vl‘ and X1

~

to obtain two-stage least sqares estimates a and é as
A _ ) '
1111 ke [(yl V) y}
| =
. : v A ' -
lel .xlxl le

[V y vV leil

B

- where V. 1is the .n x £ "matrix of residuals from the least squares

1
regression of. Vi an X .

w0

4.
P A

As is well khnwn; difficulpieS~arise when the number of
predetermined variables exceeds thernumber.of observations, or when
the number of dégreeS'éflffé’dom for thefregiessions is unsatisfactorily
o ) 1 !

small. An attempted solution to these difficultles tonsists of

replacing X by a small number of prlncipah Gbmponents. Unfortunately,

-
L~

as it often turns out multlcolllnearlty may exist between one or more
)

of the .components with some of the variables in -Xl'.
oS . : 3
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To resolve thils impasse, Kloek and Mennés'have suggested a

number of alternative meﬁhods, each beginning with normalization of all

- €

predetermined variables. .

‘One alternative involves utilization of the principal
components of the residual when X2 "is regressed on 'Xl , the

residual being

i

\ !
§
i

- _ ' -1 [}
E= XZ Xl (xlxl) Xlx?.

e

The principal components used are then given by

j ‘ - ' S ;:f(%’
. u . \ ¥
;herefore avoided as the following

Multicollinearity is
- \\\ )’.33

1.

g ~

argument demonstrates.

Xle

' ) .
1 Xlon

(] o ] -1 []
X¥[X2 xl(xlxl) X1X2]oj

-

'3 - [ )
[X]¥, = X3X;loy
-0 . . j.=1,..;‘,K—k.LA

[
R /
2 R £ v

A second alternative involves select®ng those components

with the greatésp ej , defined as : : T

-



. , |
8, = A" (1 - R} = lyeee k-
i J( J) j=1 K-k

where Rj is the n ..tiple correlation coefficient when P, , the o

3

j-th principal component of X2 » 1s regressed on X1 and K; is

the j-th eigenvalue of (X3X,) -
Multicollirdearity is resolved since

' v -1 ]
“in g = PJXI(Xle) xlfi
“ PIP
33

o

by definition and Pst =¢X§.fﬁso that

e 2 - 1| _ ' "1" a i
Aj(l Rj) PJ,[I xl(xlxl) xl]pj . , 3

The right gide of (56) is the residual sum of squares when

Pj. is regressed on X1 . In other words, the components chosen are

those which are least correlated with Xl .

68..
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CHAPTER IV

AN EMPIRICAL STUDY OF MULTICOLLINEARITY

%

Our discussion in the preceding chapters has presented an .
overview of the problems, detection and correction of multicollinearity

4

in regression analysis. ?5 illustrate the practical implications of
the theory reviewed, we.have empirically(investigated multieoliinearity :;jy
in economié data related to inflation,aa problem of considerabie
; , ,
current 1nterest and 51gn1f1cance. .In essence, we will attempt to
apply the Farrar G@auber technlques to the moét recent data available
concerning prlce changes in relation to the rate of change in wages
and certain other contributing factors ' This is followed by the
construction of Hoerl and Kennard's Rldge Trace to v1sually demonstrate
the harmful effects of multlcolllnearlty in our sample of data. Finally,

Mayer and Willke's shrunken estimator is calculated to :emedv the

detected-multicollinearity.‘

4.1 Desctiption of the Model

i ’

The ecohomic model we employ is that found in the Special
Study No. 5 publlshed by the Economic Council of Canada in 1965l This
study estimated the prlce.change equation by flttlng regre551ons to
quarterly data over the period 1949 : 1 to 1965 : 2 . TFor the purposes
of our investigation, the same relatlonshlp is utillzed for quarterly |

.

data which has been collected for the perlod 1959 : 1 to 1972 : 4 .

. -69 =
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We have the model

T S . . .
Pe _Bo * Bth‘ BFy ¥ B3PUSt AP T BsPr_2

where
. P Py
Po=—5 —  ° 100 = percentage change in the, Consumef Price
t-4 Index between the current quarter and
the same quarter of the preceding year.
(DBS: “62-002).
/
T - ‘ -
Wt = v + 100 = percentage change in average hourly
t-4 earning of produétion‘workers in
manufacturing (DBS: 72-204).
. Ft . —4 : . i
Ft = ——ir——li—— + 100 = percentage change in the implicit deflator
t-4 for imports of goods and services in the
/ National Accoﬁnts (DBS: 13-001).
= P *» 100 = percentage rate of change in the U.S..
Ust—4 ' Consumer Price Index (Laboué Review,

U.S. Department of Labour).

]

the value of Pt' in the immediate preceding quarter

t-1

i - ?t_z ﬁt? lagged two §uarters.
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<] ) ., . P !

oy ot . » C
3¥ﬁf“. 4.2 Application of Farrar—Glauber technique
i ' o
Using least-squares analysis computer program MLREGR, the

v

estimated relationship is obtained.as

ét = -0.44201 + 0.24887€1t + p.llossﬁt

1(2.99345)  (1.91801).

—0.19881ﬁ + 0.87283§ Cy 0.09i12ﬁ . :
‘US\/I:\ t-l t—2 ) \
- (-1.83583) (6.22947) (-0.59336) YD

The squared'multiple correlation coefficient

'w“ﬂ‘

- ) | R® = 0.87400 . o

" The matrix of simple correlation coeffiﬁiént between the independent

i
[

variables is

(1.00000 -0.07353  0.89543 ., 0.81324 0.83302"
0.07352 - 1.00000 70.05934 0.03715 -0.04068 | Bl
, . . ~ . .
¥ ¢ = 0.89543 0.05934 1.00000 0.780: 0.82513
4 3
0.81324 0.02715 0.78036 .1.00000 0.91583"|
| 0.83302 ~-0.04068  0.82513 0.91583  1.00000
Since |C{= 0.00724 , substantial mﬁlticollineafit§ exists ghbng the

independent variables. .

XTCI is -calculated an “equal to

7 N
7

-[52 - 1 --%(15)](—4.9282) = 239.018 . s

5 ' Q%



By regressing each ihdependent variable on the remaining

ones, we obtain the values of the multiple correlation coefficilent
. y . .

2

RX and the associated F statistic as follows:
L :
. o/, I" . 03
T T Peor Pe2
‘Ri " 0.850  0.127  0.839  0.854  0.876
i - N

F © 66.583 1.709 61.231 68.295 83.008 -

The coefficient of partial correlation between pairs of

independent variables and associated t-ratio are qalchlated and st owr

in Table VI. - T &
TABLE VI
Partial Correlation Coefficient Cij" and Assébiated tij'
R - . ® ) u
between Pair of Variables with. Ri on Diagonal

; .
e Ft U Peoy t-2
oo 0.850  -0.286  0.691 0.254  0.039
F 2.046  0.127 - 0.301  0.207 -0.192
éﬁé 6.553  2.269  0.839 -0.116  0.303
P, 1.800  1.483 -0.806  0.854  0.739
P,  0.268  1.367  2.287 11.162  0.876

72.
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In the estimated telat%onship (57), the coeﬁficiept of the -
' |

. |
variable PUS is observed to h?ve negative sign. This résult seems
t 6 ; ‘

73.

unlikely as one could reasonably expect an upward drift in U.S.'prices

“

to beé accompanied by a similar drift in Canadian prices. One might

suspect multicollinearity is the cause of this phenomenon from the

small value of ICI .

s The squared multiple correlation coefficient R2 indicates

that 87/ of the total variation in the Consumer Price Indeg can be
/

explained by the regression equatien. From the F values of the

" independent variables, one may deduce that W p R ét—l and (-2

e Us,
are affected by multicollinearity. Indeed, Table VI shows that a
-5 linkage exists-between ﬁt “and éUS and in another instance between
‘ t
P and P . R » . ;

t-1 t-Z

4,3' Ridge Analysis of the Data

g

Figures 2 and 3 represent the Ridge Trace that have been

 obtained by‘applying Ridge Regression to our set of economic data.

O Appefentifroé the Ridge Trace constructed are the following

results:
. i

'(1) over-estimation of the coeffieients of all the veriables when

using the least squares estimator is clearly evident.

El

. ) i
(2) it is"seen that when k = 0 , the coeff1c1ents of the variables

ét 2. and éUS have negative signs which move quickly to zero. upon
- t .
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o,

the addition of k > 0 and subsequently become positive. From this,
« ‘. O : .?‘ .
we déduce\that these two coefficients have the wrong signs in the

original estimated reiationsbip. , o ‘ '

a

(3) ginstahility‘characterizes the coefficients of variables Q‘, 'ﬁt’

ﬁt 1 and Pt -7 indlcating the presence of multlcolllnearity among

. these variabJes. We note that the same result is obtained using
u . g 7,

'
i

r\.Sarr,ar—Glauber's technique.
v % ) . ¥ N . .
#§ " e4) the stabilization of the system is observed to occur at a value

) , - . ‘ :
" such a value of k , according-to Hoerl and Kennard, affords more
. N . 2 . Wt

. . < ks

o, ‘gpfof ¥ in the interval (0;5,‘D.J)“. Coefficients‘oHtained”by‘bmbl .o

stable preﬁqttion than the least squares estimator. - -  ~ .
e N . A {::q‘- » . o r,;\’ . » IS ‘ . . - ‘ s i o .
- e/ e

s n <« ez ' ‘. A . o .. . .
N . ‘; - : < ' LN . Y . - B

4 4 Calculatlon of Mayer- W1llke Shrunken Estlmator

b . Fo%}0w1ng the procedure of Mayer and Wli?ke, the shrunken

& .
L ,- Sw‘

/'.. S estimator for our set of data,ls calcu}ated (with &&= (m- 2)(n—m+2) -1

2 - -

: e ST 0.40845 1
| S T ~ Jo.tosss | ¢ -
e . M 9 . A “ ’ : b4
R : © . Bsi,.y = |=0.24158
Lo L O T e :
) ’ ' S . 0.86099 o o
v . ‘ i " " - /l M ) .
. S S \~0.08891;”. I
- o . R A ‘ '
S o ) N " ) " . ) .
it is observed that the shrunken estimator obtained does S

B

l .not, correspond to the ridge estimator calculated uglng a k value

‘ in the‘range (O 5, 0. 7) . As we recail the shrunken estlmator has

R : : . . kD
S - ¢ : 7.

)
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remedy for multicollimearity in our set of data.

A : o, 77ﬂ-

¢ - . S /
/
been shoyp by Sclove to have smaller min;mpm weighted mean square error

.« o
than the least squares estimator. -@n the other hand, owing to lack
. . Al A’.
. ) . ‘: A N “ | '- 4 .
of rigorous prooﬁ,x;he,nuperior
Bl N - F

squares estlmatOQ“LS stil]»an lS

He ridge fstimator over least

einder debate,. Pending the

-

-~

resolution of this caﬂtroversy, it would Seem reasonablg therefore to_,vl

- s W

employ the shrunken estiﬁanszzéather_thanfthe ridge estimator as a .
. . | . R . w 3 .

Yo e

-

: o
e 5 - : . ’(
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APPENDIX I

.

. o
INVERTING ILL-CONDITIONED MATRICES .

' : Cg

/

-
[ AN

A well known difficulty in solvihg least—squarés equation
stems from the need to invert X , matrices which are often ill-

conditioned. To circumvent:this difficulty, a common procedure lies
) M | ¢ R

véin the following process of iterative refinement proposéd by Wilkinsén

¥ L

t61].  The seq&%nce of vectors é(s), s = 0,1,2,.. defined by

v 3t . ’ . - B . . . "/w
O NN ) )

) | e A () (o) o
&-” -, ~ . N 3> A __\ . . @(

is computed. , In the computation of the residual rss)., double ~
precision accumulation of inner produéts is employed. All other steps

are carried gut with single precision.

’ \
/ ‘”\

#ecent years have seen the development of various alporithms
aimed at obtaining more accurate solutions. Some of the more successful
, N

methods age those ofxgusinggr [7]a Martin, Peters and Wilkinson [37,,58], .
. - -~ , : ¢\ ‘ y
Golub [4, 20], quer,[B],/Bjﬁrck f4]. < B L

*

3

-

Y N ) . . —
Businger and Golub'. procedure employs orthqgonal’ House-

.

holder transformation. Since length is iﬁvarfant:uﬁder ortﬁoquél-!

transformation, _ o . » - .
» ' m :
[ el - e, e

- . ]

N
i

a—
IS



‘G

the least squar& JArlbien reduces to that of minimizing |1Qy-Q¥(B"2 .

Q is chosen in such a'way that

v

R } n .x k .
QX = o (1-1)
0 } n x (m~k) '

~

where R 1is an upper triangqlar matrix. The decomposition in @-1)
can be accomplished ef‘ficien.tly by the Householder transformation [26]

and clearly, e

<ghere Qy 1is the first k components of Qy . )
& , . ’:&'Ef

Once an 1n1t1a1 solutlop has been obta
oS , 3.'

' 1mpro&zed"to con51derab1e accuracy by the process o,‘r

ment. Iteration is continued as long as 1mproved estlmates of B can

be obtained. 'The 'iterative technique shouid be'uosed"only if the dinitial

approximation ‘is sufficiently accurate, otherwise theji’g‘ration will.
. ™ :
. Y
not converge.

L , . RO IEI

The(ﬁnethod .of Martin, Peters and &Wilkinson' decomposes the
synnnet‘:'ric, positive definite matrix X ,&\to LL' , where L 1s a
. TR . S

-

non—51mgular lower\rlangularkg)trlx. _The elenients of L are
( o

3
N

2

obtalped by the Cholesky decomp@sltlom,gﬁlzl and then used to solve s, B

- the least squares SOluthn. Since -"*"4 ’ . o .

s
L] . ~

XB=LL'B=Lv=C,y : S ~
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o .
o i-1
= - £ £ = v
, vﬂi (yi Zl ikvk)/ i1’ i 1,, s
- E ’ :
B, = m - )/2 ’ i=1 yeeennl -
i | ¥ K=i+1 ki k ii . ?
in each iteratdon of the refinement process, A(S) is improved by a o
", g (s) '
cbrrcction S8 that is determined using the computed LL
/ : v -
factorization. Ground rules for iteration are again as laid down ) 5
earlier. -

{e

Bauer has formulated an ALGOL procedure in which X is

decomposed into GDB, wﬁere G cons1sts ‘of orthogon&i&non-zero

-columns{ (G’ G) , and B ‘'is upper triangular.
G'(y—XB)fﬁ.O‘ yields the triangular system
- ", BB =G'y

which is then solved by back-substitution.

The condition*

<y

The’procédurérgsNisedlby Bjorck réqd@ies‘JEComposing X, - (
. — - ) . Ca- B ,

v o - N . - Pad
¥ Ta ;g V- . v A
e & . : X = VC o
’ » N ° . ik A
4 ‘ ‘
mhere' C is unif upper triangular, and W is dﬁggonal.“ To - v
.!\9 . ex \

~ e

actdmplishxthe decomp051t10n, BJorck uses
Sohmldt orthogonization process
process in that £he elements of C

one column at a time.'

Once the decomp051t10n is realized,

a modification of the Gram—"

ThlS differs from the classical

K

are computed one row instead of

[
the least
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v

squares solution is given by

é = Cf1V~ly .
¥ ) _
Iteﬁgfiye'refinement is -then carried out in the usual way.

L #y
e
T

/

N f% Bjorck has also proposed ptilizing,the fapt that the residual
-, r e "M
R $% orthogonal to the columns of X . His procedure therefore
dﬂ“&iders the augmented system. ° -
v s

‘“&

: : 4 ,
. ; ) ) ' S ’?ﬂ, #%L';.ﬂ<
fe lagglh‘hisvthfee—stage?iterative refinement procedure, BJorck &
v L _ , .9 ' - IR
begins by computing the residuals . o Lo v o ' Rt
- (-0-69E) o
; , ' ' N B s
g(S) 0’ X 0 (f) ' ) N 3
,% ... . with doqhie;precisioh”éccumulation of "inner products This, is foilowed
: by obtain;pg.the correetions‘ Gr( s) and«»dﬁ( ) from /
M :. ’ ,ﬂl‘ . )} v 1} . . " ’ . , : ! 5 ) h
TN ' . ' : . k ™ : A
. . g R [I X){ﬁr(s) f(s? ‘ o : R
£ /- o . v L. ] = [ ' v'r‘ : N . P
v :,1» p "f\.,“ E X' X 0 é(s) g - . R . S o
. -, Y. - . P i
.&-‘"*‘-/"" S e ‘ , ,
o whlch can be obtalned by the Householder's' Jé modifiéd'Gram—Schmidt
. Y - N , ' &
. method The correctlons are’ then added\cn the final step,‘
Y S S < }

{r(s+1)) ‘ t%gég] \ arfs)
é(s+1) qé(S) '53(5)1

\. . H



In conclusion, it needs only be said thit the above procedur“e,s(_v

" attain their obJective highly satisfgctorlly Eit‘hei:‘_'“ inversion“’of the -

111 conditioned matrix is achieved to working accuracy, or the system
=
jfound too ill- condltloqed to be solved without working to higher )
: 'prércision. No attempt, howev:_r, has yet.been made to compare the
procedures with respect to computer t?:jrme requ;rred,ipllcability,TL

4

storage requirements or program@gutput. A line of Wuherical analysis .

("J . vuyn.'
: research may wel'i be »‘fmrltfully pursued towards such a compa;ison.
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‘ : o APPENDIX II .
f" :A-/ ‘r‘ 2
RS M S
A - PROGRAM A
‘& PR Cﬁ ’ A4 X "
. i C - e

C' PROGRAM TO CALCULATE MATRIX U OF KIRCHDORFER PROCEDURE
DIMENSION Xl2(26) DI1(20,XI3(20),E12(20) ,5QR(20) ,D12(20) , EI3(20),
. JEIL(20), x11(é0) ; &
o READ(5,11) L o d |

11  FORMAT(I2)
DO 10 II=1,L

‘ READ(5,20) XIl(II)VXIZCII),XI3(I§Q#ﬁ~
20 FORMAIX3F6 3) - PR 4 :
10 CONTINUE =~ ° . X . Eyﬁ& -

E L U00=sSQRT(1.*L) P e ’ : -
E . . DI0=1./000 T - i I s

CALL SUMN, (pI0, XIl L,U01)

' CALL SUMN (DIO,%I2,L,U02) : S . s
CALL SUMN (DIO, X13,L,U03) R A
. Dp0%2 12=1,L : B L B : ‘ '
2 EI1(I2)=XI1(I2)- UOl*DIO . '
CALL SUMM (EIL,EI1,L, sss> . | ,
'Ul1=SQRT(SSS) . . & L v
¢ DO.4 J4=1,L . . ‘ e
'+ 4 DIL(I4)=EIL(I14)/U11 C u g K / 8
. . CALL SUMM (DI1,X12,L,U12) L N :
¢ CALL SUMM® (DIl x13¢h U13) ¢ , o s
SUM=0. s D LT
Do 30-I=1,L. ' L o e
© ET2(I)=XI12(I)- UOZ*DIO UlZ*DIl(I) ' = LT
SQR(I)*EIZ(I)**Z o o . L. B A
i-30 SUM=SUMHSQR(L) -~ +° o . S
T U22=SQRT{SUM) - e e
. DO 40 J=I3L- -~ .7 . Ghu”' I
© 40’ DI2(I)=EI2(J)/U22. T B PR
Y CALL SUMM (DIZ XLB L, U23) I R
.. ss=0. S et
: DO 60 M=1,L - - P e i
‘ - EI3(M)=XI3 (M)~ UOB*DIO—UlB*DIl(M) U23*DIZ(M) ’ -
©t 760 - SS=SS+EI3(M)**2 - co L
S U33=SQRT(SS) L \¥+_
e WRITE(6,123) . x
© 7123 ° FORMAT('1',9X,"ET1' 13X,'DIl ,12X,'E12! 12x 'D12;,12x 'R13’ //) .
DO: 70 N=1; L ) —
WRITE(6,99) ELL(N); bxl(N) EIZ(N) DI2(N),EI3(N) . 4
- 99 “FORMAT(" ',5F15.5) PN oL
70 CONTINUE (ORI L RN
'\ U10=0. . - SO BT :
o U20=0." o T Ca e Ty
U21=0. S - R B See



999

991
992
993
994

1234

g,}

{

U30=0. L

U31=0. » : A
U32=0. !
WRITE(6,999)

FORMAT('1',' MATRIX U IS '//) :
ITE(6,991) ;
g§§§2(6,991)»UOO,UOl,UOQ,UO3 - .
FORMAT (' ',4F10.5//) . }
WRITE(6,992) U10,U11,U12,U13 (
FORMAT(' ',4F10.5//) .

WRITE(6,993) U20,U21,U22,U23
FORMAT(' ', 4F10.5//)
WRITE(6,994) U30,U31,U32,U33
FORMAT(' ',4F10.5//)
WRITE(6,1234)

FORMAT('1")

STOP
END —
-
SUBROUTINE SUMM (B,X,L,S)
DIMENSION B(20),X(20)
$=0._
DO 1 I=1,L
S=S+B(I)*X(I) A
RETURN | - AN
END ~

o

SUBROUTINE SUMN (BB,X,L,S) ~.
DIMENSION X(20) ‘
S=0.

DO 1 I=1,L

S=S+BB*X(I)

RETURN

END
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