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Abstract 
 

Objective  

We apply data-driven approaches to identify predictors of heterogeneous trajectories 

across normal aging, Mild Cognitive Impairment (MCI), and Alzheimer’s disease (AD). In Study 

1, we investigated predictors of left and right hippocampal (HC) volume trajectory classes. In 

Study 2, we identified the leading predictors of cognitive resilience, cognitive vulnerability, and 

brain/cognitive stability in varying contexts of morphometric brain changes. In Study 3, we 

examined the leading predictors of AD, MCI, and dementia from a set of risk factors/biomarkers 

including novel metabolomics markers. 

Methods 

Study 1 participants (n=351) were cognitively normal (CN) older adults from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) with longitudinal imaging and baseline 

biomarker/risk factor data. We applied latent class growth analysis (LCGA) to identify separable 

HC trajectory classes. We then applied a machine learning (ML) algorithm to identify leading 

biomarker predictors (from 38) discriminating the highest and lowest trajectory classes. 

Study 2 participants (n=415) were CN older adults from ADNI with longitudinal imaging 

and baseline biomarker/risk factor data. We used LCGA for two foundational goals, identifying 

HC and cognitive trajectory classes. We applied ML algorithms to identify the leading predictors 

(from 42) of (a) cognitive resilience, (b) cognitive vulnerability, and (c) brain/cognitive stability.  

Study 3 participants included two samples of three age- and sex-matched cohorts from the 

Comprehensive Assessment of Neurodegeneration in Aging study: cognitively unimpaired (CU; 

n1=33; n2=32), MCI (n1=33; n2=33), and AD (n1=33; n2=21). For each sample, we used three ML 
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algorithms and 111-112 risk factors/biomarkers, and metabolite predictors to identify the leading 

predictors of AD (CU-AD), MCI (CU-MCI), and dementia (MCI-AD).  

Results 

Study 1: We detected three trajectory classes for the left HC and three classes for the right 

HC (highest, middle, lowest). For the left HC, seven predictors from four modalities 

discriminated the lowest and highest HC trajectory classes: plasma Aβ1-40, plasma tau, plasma 

Aβ1-42, sex, education, depression, and body mass index. For the right HC, three predictors 

from two modalities discriminated the lowest and highest HC trajectory classes: sex, education, 

and plasma Aβ1-42.  

Study 2: We first detected two HC trajectory classes and two cognitive trajectory classes 

(low and high). Based on differential combined class membership, we identified three target 

subgroups: cognitively resilient (n=72), cognitively vulnerable (n=144), and brain and 

cognitively stable (n=92). Cognitive resilience was predicted by higher CSF Aβ1-42, higher 

education, lower plasma Aβ1-42, lower CSF p-tau, lower plasma Aβ1-40, and lower age. 

Cognitive vulnerability was predicted by lower education, higher plasma Aβ1-40, higher BMI, 

higher age, lower glucose, higher plasma Aβ1-42. Brain/cognitive stability was predicted by 

higher CSF Aβ1-42, lower polygenic risk score, female sex, higher plasma Aβ1-42, higher pulse 

pressure, and lower age. 

Study 3: We report leading predictors at a 40% model explanation criterion. AD was 

predicted by six biomarkers from three domains (sensory, imaging, and metabolomics) in 

Sample 1 and nine biomarkers from five domains (imaging, demographic, and clinical health, 

sensory, and metabolomics) in Sample 2. MCI was predicted by 12 biomarkers from three 

domains (metabolomics, clinical health, and imaging) in Sample 1 and 13 biomarkers from five 
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domains (metabolomics, clinical health, vascular/metabolic, imaging, and demographic) in 

Sample 2. Dementia was predicted by nine predictors from four domains (sensory, imaging, 

metabolomics, and vascular/metabolic) in Sample 1 and nine biomarkers from seven domains 

(imaging, demographic, clinical health, metabolomics, gait/function, lifestyle, and 

vascular/metabolic) in Sample 2. 

Discussion 

The overall aim of this dissertation research was to apply data-driven approaches to the 

prediction of heterogeneous trajectories and outcomes in brain/cognitive aging and dementia. 

Study 1 demonstrated that HC trajectory classes represent secondary phenotypes of brain aging 

that are predicted by a wide range of AD-related risk factors/biomarkers. Study 2 demonstrated 

that (a) cognitive trajectories can supplement HC trajectories and represent alternative pathways 

of brain and cognitive aging and (b) these pathways can be predicted by a similar roster of AD-

related risk factors/biomarkers. Study 3 identified the leading predictors originating from 

established risk domains as well as novel metabolomics predictors that are associated with MCI, 

AD, and/or dementia. Overall, the dissertation research highlights the relative importance of risk 

factors/biomarkers and candidate metabolites in the prediction of both desirable (high HC 

trajectory classes, resilience, stability) and undesirable (low HC trajectory classes, cognitive 

vulnerability, MCI, AD, dementia) aging trajectories and outcomes.  
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Chapter 1: Introduction 

Characterized by vast variability in level and change as well as heterogeneous outcomes, 

pathways of brain and cognitive aging range from healthier (stable) trajectories to rapid decline 

and pathological changes associated with clinical syndromes (Bocancea et al., 2021; Dixon, 

Small, MacDonald, & McArdle, 2012; S. M. Drouin et al., 2022; Nyberg & Pudas, 2019). These 

aging trajectories differ not only across and within individuals, but also domains (e.g., memory, 

executive function), at-risk conditions (e.g., Type 2 diabetes, hypertension), sex, brain regions 

(e.g., cortical thickness, hippocampal volume), and asymptomatic and clinical phases of 

neurodegenerative disease (Ding et al., 2019; R. Dixon & M. Lachman, 2019; Ezzati et al., 2019; 

Giorgio et al., 2020; Heilman & Nadeau, 2019; Koran, Wagener, & Hohman, 2017; McCarrey, 

An, Kitner-Triolo, Ferrucci, & Resnick, 2016; Mielke et al., 2013; Minkova et al., 2017; Nyberg 

& Pudas, 2019; Pettigrew et al., 2016; Small, Dixon, & McArdle, 2011). Some of these non-

normative (preclinical and clinical) outcomes include Alzheimer’s disease (AD) and Mild 

Cognitive Impairment (MCI), the latter of which often precedes an AD diagnosis.  

Global population aging and overall increases in average adult life expectancy have led to 

significant increases to aging-related morbidity rates, including that of AD and other 

neurodegenerative diseases. The most common form of dementia, the AD clinical syndrome is 

characterized by rapid and accelerating cognitive decline, especially in memory. Distinct 

neuropathology (i.e., beta-amyloid [Aβ] plaques and tau neurofibrillary tangles) as well as 

neurodegeneration (i.e., hippocampal atrophy, ventricular enlargement) distinguishes the disease 

biologically (D. Hu et al., 2021; Jack Jr et al., 2018; Seto, Weiner, Dumitrescu, & Hohman, 

2021). Notably, global rates of dementia are expected to double every twenty years to reach 

131.5 million by 2050 (Prince et al., 2015). The growing prevalence of AD and other forms of 
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dementias in older adults has become an urgent public health crisis with mounting societal, 

health, and economic costs. In Canada alone, close to one million older adults will be living with 

dementia by 2030 (Navigating the Path Forward for Dementia in Canada: The Landmark Study 

Report #1, 2022). In addition to the considerable amounts of healthcare resources necessary for 

this increasing proportion of older adults, health and opportunity costs for caregivers and other 

affected populations represent another aspect of the socioeconomic burden that is becoming a 

major and growing concern. For example, care partners to individuals with dementia in Canada 

contribute on average 26 hours a week of informal caregiving, representing a considerable 

economic impact on the current and future work force (Navigating the Path Forward for 

Dementia in Canada: The Landmark Study Report #1, 2022). 

Despite the significant emphasis on identifying an efficacious treatment (e.g., drug 

therapy), therapeutic and clinical research has been generally unsuccessful in this regard (J. L. 

Cummings, Tong, & Ballard, 2019), with 99% of drug candidates being discontinued (Tatulian, 

2022). Indeed, although there is a growing and strong focus on the development of disease-

modifying drugs in the AD drug development pipeline (83% of clinical trial agents in 2021), 

most of these therapies have not successfully met phase III efficacy targets (J. Cummings, Lee, 

Zhong, Fonseca, & Taghva, 2021; J. L. Cummings et al., 2019). As of now, only two disease-

modifying drugs has been approved by the US Food and Drug Administration (aducanumab, 

lecanemab) and expert opinion on their efficacy has been mixed at best (Tatulian, 2022). 

Possible reasons for the lack of success in clinical trials include the complex etiology and long 

prodromal period of AD (J. L. Cummings et al., 2019; Wilkins & Trushina, 2018). Specifically, 

AD-specific neuropathology (Aβ and tau) has been shown to accumulate decades prior to the 

onset of clinical symptoms such that current clinical therapeutics may be aimed at individuals too 
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late in the disease process to be effective (Wilkins & Trushina, 2018). As such, the identification 

of early signals and predictors of non-normative trajectories (i.e., exacerbated cognitive decline 

or regional brain atrophy) prior to diagnosis (and neuropathology accumulation) has become an 

emerging and important facet of brain and cognitive aging research (K. J. Anstey, R. 

Eramudugolla, D. E. Hosking, N. T. Lautenschlager, & R. A. Dixon, 2015; R. Dixon & M. 

Lachman, 2019). One important example of non-normative trajectories includes exacerbated 

hippocampal atrophy, a robust neuroimaging biomarker of AD-related neurodegeneration. 

Predictors of progressive atrophy of this key brain structure have been identified both cross-

sectionally (Chetelat & Fouquet, 2013; O'Shea, Cohen, Porges, Nissim, & Woods, 2016) and 

longitudinally (S. M. Drouin et al., 2022; Gorbach et al., 2017; O'Shea et al., 2016; Rosano et al., 

2012; Zhao et al., 2019). Selected examples of these predictors include a number of AD-related 

CSF and plasma biomarkers (S. M. Drouin et al., 2022; Stricker et al., 2012), education (Piras, 

Cherubini, Caltagirone, & Spalletta, 2011), smoking (Durazzo, Meyerhoff, & Nixon, 2013), and 

increased AD genetic risk (Chetelat & Fouquet, 2013; Kerchner et al., 2014; Warzok et al., 

1998). 

Similarly, the investigation of predictors and risk factors leading away from non-

normative trajectories or pathways (and towards healthier and stable brain and cognitive aging) 

has been lauded as an important research direction (R. Dixon & M. Lachman, 2019; Kaup et al., 

2015; McDermott, McFall, Andrews, Anstey, & Dixon, 2017). These factors may be non-

modifiable (potential early identification or stratification variables for at-risk individuals) or 

modifiable (potential targets for preventative interventions prior to disease diagnosis) (R. Dixon 

& M. Lachman, 2019). Specifically, the identification of modifiable AD-related risk factors is 

especially important as this can both (a) facilitate the early detection of at-risk individuals and 
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(b) enable the targeting of specific factors. The latter goal is emphasized in a recent Lancet report 

describing 12 potentially modifiable risk factors across the lifespan which account for 40% of 

dementias globally (Livingston et al., 2020). These factors were lower education (in early life), 

hypertension, hearing impairment (< 25 dB), smoking, obesity (BMI > 30), depression, physical 

inactivity, diabetes, low social contact, excessive alcohol consumption (> 21 drinks per week), 

traumatic brain injury, and air pollution (i.e., high nitrogen dioxide concentration and fine 

ambient particulate matter) (Livingston et al., 2020). This report highlights the potential 

advantages of targeting specific factors—perhaps in combination—at the population and 

individual level in order to avoid or delay a considerable proportion of dementias worldwide 

(Livingston et al., 2020).  

Moreover, a recent systematic review included a meta-analysis of numerous risk factors 

differentially for AD (34) and vascular dementia (VaD, 26) (Anstey, Ee, Eramudugolla, Jagger, 

& Peters, 2019). This review evaluated quality and breadth of evidence for such key modifiable 

risk factors as education, smoking, physical activity, diabetes, depression, obesity, hypertension 

and social engagement. Although these factors (and many others considered in the report) are 

repeatedly identified as associated with increased risk of AD and promoted as having the 

potential to be targeted in prevention protocols, the evidence base for differential influence varies 

across factor, domain, outcome, and generalizability (Anstey et al., 2019).  

The consideration of sex and/or gender as risk factors has been increasingly encouraged 

in emerging ADRD research (Tierney, Curtis, Chertkow, & Rylett, 2017). Despite this, the 

majority of ADRD research studies were noted to not adequately measure or define sex and 

gender (Stites, Cao, Harkins, & Flatt, 2022). The inclusion of sex and gender in ADRD research 

is especially important for several reasons. First, women outnumber men in clinical diagnoses of 
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AD, with over 2/3 of cases being the former. Second, AD-related risk factors differ in both 

prevalence and impact across sex and gender. For example, some risk factors are sex-specific 

(e.g., menopause) and others occur more commonly in one sex or gender (e.g., increased risk of 

stroke for men versus women, lower mean education in women) (Mielke, Vemuri, & Rocca, 

2014). Other risk factors, such as BMI, have been found to have a greater impact on one sex or 

gender. Specifically, a higher body mass index was found to be associated with better cognitive 

(executive function, memory, neurocognitive speed) trajectories in females but not males (L. 

Bohn, McFall, Wiebe, & Dixon, 2020). Other examples include the stronger risk effect of the 

Apolipoprotein E (APOE) ε4 allele for females versus males and the female-specific risk 

increasing effect of the Met66 allele of Brain Derived Neurotrophic Factor (Fukumoto et al., 

2010). In summary, AD-related risk factors can be organized into meaningful clusters of risk 

domains, each associated with varying levels of risk for exacerbated decline in asymptomatic 

aging or transitions from normal to impaired aging. Specific examples of these domains include 

metabolic (e.g., Type II diabetes, body mass index [BMI]), medical history (e.g., depression, 

head injury), vascular (e.g., hypertension, atrial fibrillation), lifestyle (e.g., diet, physical activity, 

social engagement), genetic (e.g., APOE), and demographic (e.g., sex, education) (Boyle, 

Buchman, Wilson, Leurgans, & Bennett, 2009; R. Dixon & M. Lachman, 2019; C. R. Jack et al., 

2015; G. P. McFall, Bäckman, & Dixon, 2019; G. P. McFall et al., 2020; G. P. McFall et al., 

2015b; Olaya, Bobak, Haro, & Demakakos, 2017; Shen, Zhou, Chen, Zhang, & Initiative, 2019; 

Waldstein et al., 2008; Zahodne et al., 2016). Importantly, some of these clusters of risk domains 

can vary in magnitude or prevalence by sex and/or gender. 

Complementing the growing body of AD risk factor research have been substantial 

advances in an area that aims to identify biological and possibly mechanistic markers of 
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degenerative brain aging, impairment and AD diagnosis and progression (Adav & Wang, 2021; 

Habartová et al., 2019; Huan et al., 2018; Riedel et al., 2018; Sebastiani et al., 2017; Tam et al., 

2019; Tanaka et al., 2020; Varma et al., 2018). These studies have produced promising evidence 

that biological markers may be independently predictive of exacerbated preclinical decline or 

disease diagnosis and progression, but may also operate interactively (e.g., as moderators) or in 

larger clusters, such as signatures (i.e., biological patterns), networks, panels, or composites 

(Badhwar et al., 2020a; Huan et al., 2018; Riedel et al., 2018; Sapkota et al., 2018; Schwarz et 

al., 2016; M. Wang et al., 2016). Like individual risk factors, such clusters of biological markers 

may include multiple modalities of AD-related risk or mechanisms (Fransquet & Ryan, 2018; 

Riedel et al., 2018; Sebastiani et al., 2017; Tanaka et al., 2020). For example, combinations of 

imaging, genetics, plasma, and CSF markers were found to be associated with varying levels of 

cognitive decline, brain atrophy, and clinical progression to AD (Riedel et al., 2018). 

Among the promising recent approaches, panels of “omics”-based markers have been 

identified as strong predictors of AD (Adav & Wang, 2021; Badhwar et al., 2020a; Huan et al., 

2018; Sapkota et al., 2018; Varma et al., 2018). Omics technologies involve the large-scale study 

of biological systems, such as genes (genomics), proteins (proteomics), lipids (lipidomics), and 

metabolites (metabolomics) (Adav & Wang, 2021). In addition to elucidating possible 

biochemical pathways towards (or away from) AD, metabolomics and other omics markers have 

been especially promising as candidate biomarkers in recent research (Bader et al., 2020; 

Habartová et al., 2019; Xianlin Han et al., 2011; Huan et al., 2018; Johnstone, Milward, Berretta, 

Moscato, & Initiative, 2012; Lista, Faltraco, Prvulovic, & Hampel, 2013; Trushina & Mielke, 

2014; Varma et al., 2018). Examples include metabolite panels derived from saliva (three-

metabolite panel) and serum (26-metabolite panel) found to accurately discriminate between 
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cognitively normal controls and AD (Huan et al., 2018; Varma et al., 2018). Similarly, 

metabolite panels have also been found to be associated with pre-AD syndromes such as MCI. 

Specifically, studies have identified panels including two (Huan et al., 2018), five (G. Wang et 

al., 2014), and 12 (Mapstone et al., 2017) metabolites which discriminate between normal 

controls and MCI. As these recent research efforts have captured some of the heterogeneity of 

AD from a multi-system biological perspective, they point towards the contributions of omics 

sciences to personalized and precision science approaches of AD-related prognosis and diagnosis 

(Clark, Dayon, Masoodi, Bowman, & Popp, 2021; Hampel et al., 2021). For example, a recent 

integrative multi-omics study identified specific molecular patterns associated with five different 

dimensions (latent factors) underlying heterogeneity in AD pathology (Clark et al., 2021) These 

latent factors captured AD heterogeneity across varying amounts multi-omics modalities (from 

2-6), in so that each latent factor was associated with differing types core AD pathology. For all 

identified latent factors, proteins accounted for the most of the variance within the cohort 

(39.8%) and other (not one-carbon metabolites) accounted for the least (3.7%) (Clark et al., 

2021).  

Although considerable recent research has focused on predicting trajectories associated 

with the pre-clinical and clinical AD spectrum (i.e., MCI, AD), complementary research has 

focused on detecting signals of differential asymptomatic or typical aging, a long period that is 

especially vital for promoting brain health strategies and implementing risk reduction efforts (K. 

J. Anstey, 2014; Daffner, 2010; Nyberg & Pudas, 2019; Pudas et al., 2013; K. Yaffe et al., 2009). 

Notably, that aging outcomes range from the pathological to the non-pathological further 

highlights the dynamic heterogeneity of pre-outcome aging trajectories. In addition to 

impairment and neurodegenerative disease, aging trajectories encompass typical declines to very 
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stable and possibly improving (i.e., ‘successful’ or healthy aging) performance (Bocancea et al., 

2021; Dixon et al., 2012; Nyberg & Pudas, 2019). Specifically, moderate declines in episodic 

memory and neurocognitive speed are considered typical with increasing age (Daffner, 2010; 

Dixon et al., 2012). Other changes in brain structure, such as some reductions in cortical gray 

matter volume, are also considered typical and not indicative of disease when moderate in 

presentation (Taki et al., 2011). Despite this expected general decline, stable (and high) cognitive 

trajectories amongst older adults have also been observed, indicating that the aging process is not 

consistently defined by decline (Dixon et al., 2012; Josefsson, de Luna, Pudas, Nilsson, & 

Nyberg, 2012; G. P. McFall, McDermott, & Dixon, 2019; Nyberg & Pudas, 2019). Representing 

an alternative pathway to even typical cognitive aging, subsets of older adults have been found to 

exhibit consistent high levels and maintenance despite increasing age or cognitive levels 

comparable to that of younger cohorts (i.e., stable/healthy aging) (Cosco, Prina, Perales, Stephan, 

& Brayne, 2014; Kok, Aartsen, Deeg, & Huisman, 2015; Lin et al., 2017; Martin et al., 2014; 

Nyberg & Pudas, 2019; Rogalski et al., 2020; Yu et al., 2019).  

 High levels and relative stability of memory and cognitive performance have also been 

observed in subsets of older adults, including in those who are at elevated risk for AD. Indeed, 

recent research has revealed that some older adults may continue to exhibit sustained levels of 

cognitive function even in the face of pertinent adversities, such as elevated AD-related 

neurodegeneration, neuropathology, or genetic risk (Aiello Bowles et al., 2019; K. J. Anstey & 

Dixon, 2021; Arenaza-Urquijo & Vemuri, 2018; Bocancea et al., 2021; R. Dixon & M. 

Lachman, 2019; D. Hu et al., 2021; McDermott et al., 2017; Montine et al., 2019; S. Negash, 

Wilson, et al., 2013; Seto et al., 2021). Coined ‘cognitive resilience,’ this phenomenon represents 

an opportunity for elucidating pathways away from AD in individuals who would otherwise be 
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considered at increased risk. Recent studies have identified several factors from different risk 

domains (e.g., demographic, functional, lifestyle) associated with cognitive and memory 

resilience (R. Dixon & M. Lachman, 2019; Kaup et al., 2015; McDermott et al., 2017; Perry et 

al., 2021). For example, four diverse risk factors (younger age, higher education, stronger grip 

strength, novel cognitive activity) were leading predictors of memory resilience in cognitively 

normal older adults who are at increased AD genetic risk (McDermott et al., 2017). Notably, the 

predictive risk factors also differed between females and males. Specifically, seven risk factors 

were selectively predictive for females (walking time, volunteering, pulse pressure, social visits, 

turning time, peak flow, living and marital status) and one for males (depressive symptoms) 

(McDermott et al., 2017). Other studies have identified predictors (e.g., higher literacy level, no 

recent negative life events) from several other domains to be associated with higher performing 

cognitive trajectories in those at greater genetic risk for AD (Kaup et al., 2015). Similarly, some 

subgroups of older adults have been found to maintain cognitive performance into older age and 

avoid AD-related adversities (stability). Research efforts aimed towards the study of brain and 

cognitive aging pathways, including resilience, in at-risk adults can aid in (a) advancing 

knowledge about potentially modifiable predictors of sustained healthy cognitive aging and (b) 

developing early interventions with risk-reducing lifestyle and other factors that promote stable 

(or less rapidly declining) cognitive trajectories. 

The heterogeneous, multifactorial, and multi-directional nature of cognitive and brain 

aging has continued to encourage the use and application of varied approaches, methodologies, 

and theoretical perspectives. Cutting-edge approaches have been developed and proposed as 

necessary for optimizing the exploration and determination of the key factors (and their 

interactions) associated with the variable trajectories of aging (e.g., stable memory, memory 
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decline, memory resilience, clinical impairment). First, the investigation of factors from multiple 

modalities of risk have been consistently noted to outperform approaches considering one factor 

or even several factors from single domains (K. J. Anstey et al., 2015; Badhwar et al., 2020a; 

Fratiglioni, 1993; Hinrichs, Singh, Xu, Johnson, & Initiative, 2011; Korolev, Symonds, & 

Bozoki, 2016; Prakash et al., 2021; Sheppard & Coleman, 2020; Venugopalan, Tong, 

Hassanzadeh, & Wang, 2021). Due to the variability characterizing AD etiology, mechanisms, 

and clinical presentation, it is expected that risk factors from multiple modalities affect 

trajectories both independently and interactively (K. J. Anstey et al., 2015; Badhwar et al., 

2020a; Baumgart et al., 2015; Fratiglioni, 1993; Hersi et al., 2017; Lipnicki et al., 2013; Mielke 

et al., 2014; Rusanen et al., 2010; Sachdev et al., 2012; Sheppard & Coleman, 2020; K. Yaffe et 

al., 2009). Accordingly, recent research has focused on testing large sets of biomarkers and risk 

factors from multiple modalities on pre-clinical and clinical outcomes (McDermott et al., 2017; 

G Peggy McFall et al., 2019; Sapkota et al., 2018; Sapkota, McFall, Masellis, & Dixon, 2021). 

Promising results include strong prediction performance of multi-modal biomarker networks in 

predicting AD as well as multi-modal (and sex-specific) risk factor clusters predicting memory 

resilience in asymptomatic older adults (McDermott et al., 2017; Sapkota et al., 2018). Similarly, 

strong prediction performance has been observed for indicators from multiple AD-related risk 

domains in the prediction of left and right hippocampal atrophy (S. M. Drouin et al., 2022). 

Second, there are several emerging and sophisticated tools as well as approaches that are 

especially well-suited for this line of research. For example, the investigation of risk factors from 

multiple domains of risk simultaneously begets the use of analytical approaches that allow for 

non-linearity, high-order interactions, and a greater number of predictors than n (Jacobucci & 

Grimm, 2020; Pedregosa et al., 2011). Supervised machine learning techniques are a type of 
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data-driven analytic approach in which hypotheses are guided by existing data in a post-hoc 

manner. Specifically, supervised ML algorithms are trained on labeled data (i.e., known and 

identified outcomes) in order to create a predictive model (Breiman, 2001; Jacobucci & Grimm, 

2020; Pedregosa et al., 2011). Depending on data characteristics, supervised machine learning 

algorithms can include random forest classification, support vector machines, and gradient 

boosting, decision trees, and artificial neural networks. These approaches are especially useful 

because of their ability to handle the above-noted complex data associations in a flexible and 

computationally competitive manner. In addition, person-oriented approaches feature an 

important data-driven component and are aimed at detecting similarities and patterns among 

individuals in an assumed heterogeneous population. As such, person-oriented approaches can be 

especially useful to detect and uncover subtypes or subgroups underlying population 

heterogeneity (Masyn, 2013a; Ram & Grimm, 2009).  

These analytic approaches represent an emerging and important tool for understanding 

person-level characteristics in brain aging, cognitive impairment, and dementia research (Masyn, 

2013a; G. P. McFall et al., 2019; Ram & Grimm, 2009). As such, these data-driven approaches 

can elucidate the vast variability in the level and change associated with aging trajectories and 

clinical outcomes. Valuable insights may be gained by identifying: (a) pathways towards 

healthier brain and cognitive aging, (b) pathways away from pathological outcomes (e.g., AD, 

clinical impairment), and (c) potential mechanisms of avoidance of clinical syndromes for those 

aging with or without elevated AD risk (e.g., APOE ε4+, amyloid beta positive, hippocampal 

atrophy) (Badhwar et al., 2020a; R. Dixon & M. Lachman, 2019; McDermott et al., 2017; G. P. 

McFall et al., 2019). Specifically, these approaches work to uncover heterogeneity, detect 
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unbiased subtypes which may not have been previously hypothesized, and identify relevant 

predictors despite complex data associations.  

The Dissertation Research 

My dissertation research focused on leveraging multi-modal datasets and applying data-

driven approaches to explore multi-modal harbingers of heterogeneous and multifactorial 

trajectories in older age. Specifically, these trajectories or pathways included (a) left and right 

hippocampal volume trajectories, (b) cognitive resilience, cognitive vulnerability and 

brain/cognitive stability in varying contexts of morphometric brain changes, and (c) predictors of 

clinical diagnoses (AD) and preclinical classifications (MCI). I employed an array of data types 

such as imaging (e.g., structural magnetic resonance imaging [MRI]), AD-related genetic and 

other biomarkers (e.g.,  APOE, Omics-derived biomarkers), AD risk and protective factors (e.g., 

lifestyle, vascular health), and cognitive (e.g., episodic memory, executive function) in 

conjunction with large-scale cross-sectional and longitudinal datasets (Canadian Consortium on 

Neurodegeneration in Aging [CCNA] Comprehensive Assessment of Neurodegeneration and 

Dementia Study [COMPASS-ND], AD Neuroimaging Initiative [ADNI]). In order to explore 

potential independent, interactive and synergistic biomarker/risk factor associations with 

phenotypes of brain and cognitive aging, I applied data-driven approaches (e.g., machine 

learning) to these data from a multi-determinant perspective. In brief, the overarching goal of my 

dissertation work was to identify specific risk/protective factors and biomarkers that are 

associated with the varying and differential levels of cognitive and brain health exhibited across 

the pre-AD and AD spectrum (cognitively unimpaired aging, MCI, AD). 
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Background 

Hippocampal atrophy is a well-documented anatomical process that typically occurs 

during brain aging (De Leon et al., 1997; Potvin, Mouiha, Dieumegarde, Duchesne, & Initiative, 

2016; Raz, Ghisletta, Rodrigue, Kennedy, & Lindenberger, 2010; Rusinek et al., 2003). 

However, aged individuals may vary in several indicators of hippocampal atrophy, including 

level (e.g., overall volume loss), slope (e.g. rate of volume loss), and associated clinical 

outcomes (e.g., memory impairment, Alzheimer’s disease) (N. Fox, Scahill, Crum, & Rossor, 

1999; N. C. Fox & Schott, 2004; Jack et al., 2000; Rusinek et al., 2003). In a distribution of 

cognitively normal (i.e., unimpaired or asymptomatic) older adults, hippocampal volume 

trajectories characterized by relatively lower levels and steeper decline may be suggestive of 

elevated risk for subsequent clinical transitions to Mild Cognitive Impairment (MCI) or 

Alzheimer’s disease (AD) (Apostolova et al., 2012; Byun et al., 2015; Pini et al., 2016). Given 

its heterogeneity in level and change, further studies are required to ascertain and disentangle 

important features that characterize hippocampal atrophy in cognitively normal aging. Among 

the considerations are accumulating evidence of hippocampal hemispheric differences that are 

reflected in volume trajectories and various clinical outcomes (B. Ardekani, Hadid, Blessing, & 

Bachman, 2019; Minkova et al., 2017; Wachinger, Salat, Weiner, Reuter, & Initiative, 2016). For 

example, left and right hippocampal trajectories have been found to be differentially moderated 

by sex and APOE (McFall et al., unpublished data). Hemispheric differences in hippocampal 

subfields have also been observed between clinical cohorts (i.e., normal controls, subjective 

cognitive decline, MCI, and AD) (Zhao et al., 2019). We investigated this issue by deploying a 

sequence of two data-driven analytic approaches (i.e., latent class growth analysis, random forest 

classification) in parallel for the left (LHC) and right (RHC) hippocampi: (a) objectively 
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discriminating classes within a distribution of individualized volume longitudinal trajectories, 

and (b) identifying key biomarkers and risk factors that discriminated between the observed 

classes. 

Previous hippocampal atrophy research has been conducted with both cross-sectional 

(comparing age or clinical groups at one time point) and longitudinal (following groups over two 

or more time points) designs (Apostolova et al., 2012; Jack et al., 2000; Jack et al., 2005; Raz et 

al., 2010; Y. Zhang et al., 2010). Although useful for determining average group differences or 

mean-level change in multiple domains of asymptomatic brain and cognitive aging, these 

variable-oriented approaches (i.e., focused on relationships between variables in assumed 

homogeneous populations) are not typically aimed at scrutinizing the well-established individual 

heterogeneity in either the level or slope of trajectories (Glisky, 2007; G. P. McFall et al., 2019; 

G. P. McFall et al., 2015a; Raz et al., 2010) as compared to person-oriented approaches (i.e., 

focused on similarities and patterns among individuals in an assumed heterogeneous population) 

(Masyn, 2013b). Recently, the growing interest in examining heterogeneity in brain aging and 

dementia (Badhwar et al., 2020b; Habes et al., 2020) has led to a corresponding effort to adapt 

data-driven technologies to the (a) examination of individualized trajectories of cognitive 

changes in older adults and (b) determination of possible underlying classes of trajectory patterns 

(Habes et al., 2020; G. P. McFall et al., 2019; Melis, Haaksma, & Muniz-Terrera, 2019). These 

latent classes, which are determined via application of algorithms based on performance 

intercept (level) and slope (rate of change) parameters (Masyn, 2013b), may later be clarified by 

identifying predictors most associated with reduced or exacerbated risk for cognitive decline or 

clinical impairment (Habes et al., 2020).  
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 A growing body of neurocognitive aging and dementia research has demonstrated the 

viability of applying data-driven technologies to model heterogeneity in both cross-sectional and 

longitudinal (trajectory) distributions, including the identification of detectable asymptomatic 

classes and the determination of differential biomarker predictors (Habes et al., 2020; 

McDermott et al., 2017; G. P. McFall et al., 2019). One such longitudinal example in an AD 

sample identified atrophy subtypes associated with differing degrees of memory performance 

(Ferreira et al., 2017). In asymptomatic individuals, three cross-sectional biomarker profile 

subtypes were extracted from a combination of magnetic resonance imaging (MRI) data and 

cerebrospinal fluid (CSF) biomarkers (Nettiksimmons et al., 2010). One of these subtypes, 

similar in biomarker profile to a comparative AD group, was associated with accelerated 

cognitive decline and lower baseline scores on cognitive tests (Nettiksimmons et al., 2010). 

Although few studies have explored longitudinal data-driven subtypes (Habes et al., 2020), 

separate cross-sectional studies of cognitively unimpaired older adults have previously reported 

distinct imaging subtypes (Dong, Honnorat, Gaonkar, & Davatzikos, 2015; Eavani et al., 2018; 

Jung et al., 2016; Malpas, 2016; Orban et al., 2017; Tam et al., 2019). As both cognitively 

unimpaired aging and AD are characterized by progressive hippocampal atrophy, the possible 

presence of detectable longitudinal subtypes of hippocampal trajectories in cognitively normal 

older adults and their potential associations with AD-related risk factors merit further 

investigation.  

Research on early detection of AD risk in asymptomatic older adults has identified a 

large number of modifiable and non-modifiable factors (e.g., APOE genetic risk, education, 

metabolic health, sex) which are associated with increased risk of (or protection from) 

accelerated cognitive decline, MCI, and AD (Jack Jr et al., 2018; Livingston et al., 2017; Sapkota 
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et al., 2018). Similarly, previous studies of normal aging and hippocampal atrophy in normal 

aging and clinical groups have identified predictors from multiple domains. For example, both 

traditional CSF AD-related biomarkers, such as baseline p-tau181p and Aβ1-42 (Henneman et al., 

2009; Stricker et al., 2012), and such disparate lifestyle risk factors as smoking (Durazzo et al., 

2013) and complex mental activity (Valenzuela, Sachdev, Wen, Chen, & Brodaty, 2008) have 

been associated with hippocampal atrophy. In addition, three CSF biomarkers (Henneman et al., 

2009) have been previously used in a multiple linear regression model to predict longitudinal 

hippocampal atrophy. Although some recent biomarker reports have featured data-driven 

technologies applied to large numbers of predictors of AD outcomes (Beltrán et al., 2020), 

longitudinal studies of hippocampal atrophy in cognitively unimpaired older adults have not 

included a large number of biomarkers or biomarker domains. Previous reports have emphasized 

the need to include biomarkers from multiple modalities in prediction models over the use of a 

single biomarker or domain in order to achieve increased prediction accuracy (Falahati, 

Westman, & Simmons, 2014; Ritter et al., 2015). 

We aimed to address a knowledge gap regarding hippocampal volume trajectories in 

cognitively asymptomatic aging. Specifically, the gap refers to the extent to which the 

heterogeneity of trajectory distributions can be clarified by the detection of underlying 

longitudinal latent classes and the determination of leading risk factor and biomarker predictors. 

Because hippocampal hemispheric atrophy differences have been reported both cross-sectionally 

(Cherbuin, Réglade-Meslin, Kumar, Sachdev, & Anstey, 2010; Minkova et al., 2017) and 

longitudinally (J. Barnes et al., 2005; Bernard et al., 2014; Koran et al., 2017), we implemented 

this aim by testing two main research goals, both of which included parallel analyses of LHC and 

RHC. For the first research goal (RG1), we analyzed distributions of hippocampal volume 
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trajectories (up to six time points, maximum of 7.2 years) for predominantly cognitively normal 

(asymptomatic) participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We 

used latent class growth analyses (LCGA) to detect discriminable classes of trajectories. LCGA 

is a data-driven longitudinal quantitative modeling technology that applies an algorithm of level 

and slope to identify statistically separable trajectory classes. Our study focused on a brain aging 

phase not yet characterized by clinical impairment. Despite normal cognitive function, some 

individuals may exhibit relatively lower and declining hippocampal volume likely associated 

with increased risk of future cognitive decline or AD. Notably, membership in higher volume 

trajectory classes may indicate reduced risk for (or protection from) age-typical morphological 

shrinkage, membership in lower volume trajectory classes may indicate elevated risk for 

impending pathological changes. For our second research goal (RG2), we compiled a large, 

multi-modal set of 38 AD-related biomarkers and risk factors (e.g., CSF Aβ1-42, body mass 

index, hypertension, sex) from the ADNI database. Whereas most studies have investigated these 

factors independently or in relatively small clusters, we examine them simultaneously in the 

context of a competitive quantitative model. We used random forest analyses (RFA), a machine-

learning technology for evaluating the relative importance of multiple biomarker and risk factors 

predictors to the discrimination of higher and lower classes of LHC and RHC atrophy 

trajectories.  

Methods 

Alzheimer’s Disease Neuroimaging Initiative 

Data used in preparation of this article were obtained and downloaded from the ADNI 

database (adni.loni.usc.edu on June 30 2020). The ADNI was launched in 2003 as a public-

private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of 
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ADNI has been to test whether serial MRI, positron emission tomography, other biological 

markers, and clinical and neuropsychological assessment can be combined to measure the 

progression of MCI and early AD. For up-to-date information, see www.adni-info.org.  

Participants 

From the ADNI database, we used a subsample of older adults who were cognitively 

normal at baseline with at least one wave of successful MRI data that were processed with the 

longitudinal imaging pipeline by UCSF (files: UCSFFSL_02_01_16.csv, 

UCSFFSL51Y1_08_01_16.csv, and UCSFFSL51ALL_08_01_16.csv). The final sample 

consisted of 351 participants who were (a) cognitively unimpaired at baseline (Mean [M] age at 

baseline = 74.8, SD = 5.7, baseline range = 59.8-90.6 years, Mini-Mental State Examination 

[MMSE] M = 29.1; ADAS-Cog M = 9.2, 48.7% Female, 14% ε2+, 25% ε4+) and (b) followed 

for up to six times points (M interval between successive time points = 0.91 years [SD = 0.53]). 

The full distribution analyzed in this study populated a 35-year band of aging (ranging from 59.8 

to 94.6 years). The total wave observations in this study were overwhelmingly cognitively 

normal (96.3%), with only 3.7% and 0.56% of observations being persons with MCI or AD 

respectively. As such, the present sample was uniformly CN at the outset of the study and 

predominantly CN throughout the remainder of the study period. Baseline participant 

characteristics and demographic information can be found in Table 1. Individuals were 

considered cognitively unimpaired at baseline if they: (a) had no memory complaints, (b) scored 

between 24-30 on the MMSE, (c) had a Clinical Dementia Rating (CDR) score of 0, and (d) 

scored equal to or above a cut-off based on years of education (3, 5, or 9 for 0-7, 8-15 and 16 or 

more) on the Logical Memory II subscale of the Wechsler Memory Scale-Revised (Petersen et 

al., 2010). The ADNI data collection procedures were in certified compliance with prevailing 

http://www.adni-info.org/
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human ethics guidelines and boards. All participants or authorized representatives provided 

informed written consent. 

MRI Acquisition and Image Processing 

MRI data were provided by the ADNI neuroimaging team and full details about the image 

processing can be found on adni.loni.usc.edu in the following file: 

UCSF_FreeSurfer_Methods_and_QC_OFFICIAL_20140131.pdf. Briefly, cortical reconstruction 

and volumetric segmentation was performed with the FreeSurfer image analysis suite, which is 

documented and freely available for download online (http://surfer.nmr.mgh.harvard.edu/). We 

used longitudinal pipelines (freesurfer.net) which uses each subject as their own control and 

processed the data using FreeSurfer 4.4 (1.5T) and FreeSurfer 5.1 (3T) (Reuter, Schmansky, 

Rosas, & Fischl, 2012). The technical details of these procedures are described in prior 

publications (A. Dale, Fischl, & Sereno, 1999; A. M. Dale & Sereno, 1993; Fischl & Dale, 2000; 

Fischl, Liu, & Dale, 2001; Fischl et al., 2002; Fischl, Salat, et al., 2004; Fischl, Sereno, & Dale, 

1999; Fischl, Sereno, Tootell, & Dale, 1999; Fischl, van der Kouwe, et al., 2004; Xiao Han et al., 

2006; Jovicich et al., 2006; Segonne et al., 2004). Briefly, this processing includes motion 

correction and averaging (Reuter, Rosas, & Fischl, 2010) of multiple volumetric T1 weighted 

images, removal of non-brain tissue using a hybrid watershed/surface deformation procedure 

(Segonne et al., 2004), automated Talairach transformation, segmentation of the subcortical 

white matter and deep gray matter volumetric structures (including hippocampus, amygdala, 

caudate, putamen, ventricles) (Fischl et al., 2002; Fischl, Salat, et al., 2004) intensity 

normalization (Sled, Zijdenbos, & Evans, 1998), tessellation of the gray matter white matter 

boundary, automated topology correction (Fischl et al., 2001; Segonne, Pacheco, & Fischl, 

2007), and surface deformation following intensity gradients to optimally place the gray/white 

http://adni.loni.usc.edu/
http://surfer.nmr.mgh.harvard.edu/
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and gray/cerebrospinal fluid borders at the location where the greatest shift in intensity defines 

the transition to the other tissue class (A. Dale et al., 1999; A. M. Dale & Sereno, 1993; Fischl & 

Dale, 2000). ADNI protocols have ensured that MRI harmonization is performed by using (a) a 

standardized protocol, harmonized across all three vendors (GE Healthcare, Siemens Medical 

Systems, Philips Healthcare); (b) the use of a geometric phantom for distortion evaluation; and 

(c) manual quality control of the image data (Gunter et al., 2009; Jack Jr et al., 2008). 

Quality control was conducted by the ADNI neuroimaging team. We removed all failed 

segmentations, indicating a global failure due to extremely poor image quality, registration 

issues, gross misestimation of the hippocampus, or a processing error. In the present sample, 

60.1% of the images were processed with the FreeSurfer 4.4 (1.5T) and 39.9% with the 

FreeSurfer 5.1 (3T) pipelines. Hippocampal volumes and estimated intracranial volume from the 

aseg file were used. We corrected LHC and RHC volume for head size at the individual level 

(and at each time point) using the following formula (Sundermann, Tran, Maki, Bondi, & 

Initiative, 2018): 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑎𝑎𝑎𝑎𝐻𝐻𝑎𝑎𝑎𝑎 𝑣𝑣𝐻𝐻𝑎𝑎𝑣𝑣𝑎𝑎𝑣𝑣
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎 − 𝐻𝐻𝐼𝐼𝑎𝑎𝐼𝐼𝐻𝐻𝑎𝑎𝑎𝑎 𝑣𝑣𝐻𝐻𝑎𝑎𝑣𝑣𝑎𝑎𝑣𝑣

 𝑥𝑥 103 

Magnetic field strength (coded as 1.5T, 3T, or change from 1.5T to 3T) was used as a covariate 

for hippocampal volume level and slope within each class in the LCGA. 

Biomarkers and Risk Factors 

Based on previous literature and availability, we identified 38 biomarkers and risk factors 

available at baseline which have been identified to be associated with increased risk of AD. We 

included these biomarkers and risk factors in the machine learning prediction models for RG2 

(see Table 2).  For interpretive convenience, we sorted the biomarkers and risk factors into eight 

modalities: biospecimen (e.g., CSF t-tau; n = 6), demographic (e.g., sex; n = 3), genetic (APOE, 
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coded as ε2+ [ε2/ε2, ε2/ε3], ε3/ε3, and ε4+ [ε3/ε4, ε4/ε4] with ε2/ε4 carriers removed; n = 1), 

vascular and metabolic (e.g., systolic blood pressure; n = 5), lifestyle (e.g., smoking history; n = 

2), comorbidities (e.g., cardiovascular disease; n = 17), familial background (e.g., paternal 

dementia history; n = 2) and cognitive status (e.g., MMSE; n = 2).  

Statistical Analyses 

RG1. Classes of LHC and RHC. We analyzed the longitudinal data with chronological 

age as the metric of change. Accordingly, age is included directly into the analyses and is 

essentially co-varied. We used LCGA, which implements an algorithm based on individual level 

(i.e., intercept) and slope, to identify differentiable classes of individual trajectories within the 

overall distribution of trajectories (Ram & Grimm, 2009). Analyses were conducted in Mplus 8.2 

(Muthén & Muthén, 2018) and performed separately for LHC and RHC volume change data. 

The analysis plan specified the development of the most parsimonious one class (baseline) 

model, followed by the testing and comparison of four alternative k-class models to the k-1 

models. LCGA can model non-linear trajectories; however, quadratic models were tested and 

removed from consideration due to poorer model fit. Thus, all tested models were random 

intercept, random slope linear growth models with the variance fully constrained within each 

class. We evaluated model fit in three steps only for models with entropy values greater than 0.8, 

which confirm that the model has satisfactory class separation and classification precision. 

Higher entropy is the best indicator of model separation, with values of 1 indicating perfect 

classification precision and separation between classes (Masyn, 2013b). First, we considered 

models which had lower values (compared to the baseline model) of the following recommended 

statistical fit indices: Akaike information criterion (AIC), Bayesian information criterion (BIC), 

and sample-size adjusted BIC (SABIC) (Masyn, 2013b). For this step, we plotted the values of 
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fit indices (i.e., AIC, BIC, SABIC) on the number of classes in a scree or elbow plot (Masyn, 

2013b; Nylund, Asparouhob, & Muthén, 2007) to identify a possible inflection point (i.e., the 

point at which the values the slope changes). Second, as is recommended for LCGA research in 

which classes will be used for subsequent analyses (Little, 2013), we applied an a priori cut-off 

criterion for model selection which stipulated that candidate models would have greater than 

10% of the sample in each class. This ensured that the subsequent prediction analyses (in the 

second research goal) would have sufficient participants in each identified class for stable and 

robust multiple-group analyses and solutions. As a consequence of this model selection criterion, 

possible low prevalence classes of potential clinical interest were not identified or studied. We 

aimed to represent as much as possible the broader distribution of initially cognitively normal 

aging adults and account for any existing heterogeneity using this recommended approach 

(Masyn, 2013b). Third, we consulted related and neighboring literature to ensure that class 

parameters for the final model were consistent with theoretical expectations. Based on 

complementary findings in the episodic memory literature, we expected to find a three class 

model for hippocampal volume trajectories (G. P. McFall et al., 2019). 

RG2. Important Predictors of LHC and RHC Class Membership. Prediction analyses 

were also conducted separately for LHC and RHC and used the full pool of 38 AD-related 

biomarkers and risk factors. Using RFA (R 3.2.5, “Party” package) (Hothorn, Buehlmann, 

Dudoit, Molinaro, & Van Der Laan, 2006), we simultaneously tested these biomarkers and risk 

factors for relative importance in discriminating the lowest vs. highest hippocampal trajectory 

classes. We used the conditional probabilities provided in the LCGA to determine class 

membership for individuals. Specifically, the models determined each individual’s LHC and 

RHC volume at every wave (i.e., level) and the slope of volume change (Lanza, Collins, 
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Lemmon, & Schafer, 2007) and then assigned them to the class to which they had the highest 

probability of membership. The conditional probabilities for membership assignment were very 

high for both LHC (M = 0.96; % > 0.8 = 92.3) and RHC (M = 0.97, % > 0.8 = 92.8). 

Due to its robustness to overfitting and ability to accommodate a large number of 

predictors, RFA was selected as the optimal technique for simultaneous testing of a large number 

of mixed-type (i.e., categorical and continuous) variables (G. P. McFall et al., 2019). Unlike 

conventional statistical methods (e.g., multinomial logistic regression), which require 

conservative correction approaches, RF prediction models are equipped with provisions that lead 

to accurate and stable prediction solutions with many predictors (Couronné, Probst, & 

Boulesteix, 2018; Hapfelmeier & Ulm, 2013). Combining multiple classification predictions and 

regression trees (ntree) based on a random sample of participants and predictor variables (mtry), 

RFA is a recursive partitioning multivariate data exploration technique. Each forest was 

comprised of ntree = 1000 (sufficient for good model stability) and each potential split evaluated 

a random sample of the square root of the total number of predictors (biomarkers and risk 

factors; mtry = 6) (G. P. McFall et al., 2019). We utilized the cforest function in the “Party” 

package to determine biomarker and risk factor importance based on their conditional 

permutation accuracy importance (varimp function; conditional = TRUE), utilizing an algorithm 

that averages the prediction weight of each of the variable across all 1000 permutations 

(Couronné et al., 2018; Hapfelmeier & Ulm, 2013; C. Strobl, Boulesteix, Zeileis, & Hothorn, 

2007). Interactions between predictors are taken into account with each permutation when 

variable importance is determined, although specific interactions are not reported (Hapfelmeier 

& Ulm, 2013). Specifically, conditional permutation importance provides a measure of the 

association between the outcome (i.e., hippocampal trajectory class) and each predictor based on 
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the values of other predictors (Carolin Strobl, Boulesteix, Kneib, Augustin, & Zeileis, 2008). The 

conditional variable importance method is especially advantageous in that it accounts for 

potentially correlated predictors to avoid typically occurring multicollinearity issues (Gregorutti, 

Michel, & Saint-Pierre, 2017; Carolin Strobl et al., 2008; Toloşi & Lengauer, 2011). As such, 

results regarding ranked predictor importance are presented and discussed in the context of all 

included predictors. After removing biomarkers and risk factors that were of lowest importance, 

the final RFA consisted of 16 variables (mtry = 4). Important variables were determined based on 

observation of an ‘elbow’ in the RFA plot. The cforest function also computes out-of-bag 

estimates, which can be used in place of cross-validation procedures (Hastie, Tibshirani, & 

Friedman, 2009). For both LHC and RHC volume trajectory models, we reported the 

concordance statistic (C), which is equivalent to the area under the curve. In non-medical 

prediction analyses an area under the curve or C value of 0.5 is considered to be chance, between 

0.6 and 0.7 is considered to be a medium effect size, and 0.8 or greater is considered a strong 

effect size (G. P. McFall et al., 2019). In order to clarify the direction of relationship between the 

identified important predictors and hippocampal trajectory class membership, we report post-hoc 

correlational analyses as well as group means frequencies. These were interpreted independently 

from other predictors and do not represent formal probabilities of risk. 

Missing biomarker and risk factor data was addressed as follows. Across the biomarker 

and risk factor modalities, with one exception, missing data rates were very low (range = 0 to 

3.9% for LHC; 0 to 2.6% for RHC). The exception was the biospecimen modality (range = 38.2-

55.6% for LHC; 35.3-50.0% for RHC). Details by biomarker and risk factor are provided in 

Table 2. Missing data were imputed using the “missForest” package as recommended in R 

(Daniel J. Stekhoven & Bühlmann, 2012; Waljee et al., 2013). This package is especially 
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recommended in the case of mixed-type missing data. Used together with the “RandomForest” 

package in R, the “missForest” package utilizes a random forest trained on the data matrix for 

missing value prediction (Daniel J Stekhoven, 2011; Daniel J. Stekhoven & Bühlmann, 2012).  

Results 

RG1: LHC and RHC Trajectory Classes 

Left Hippocampal Volume Trajectories. Model fit statistics for all analyses are presented 

by number of classes in Table 3. All tested models had acceptable entropy values (i.e., > 0.8). 

The two-, three-, and five-class models were selected as possible candidate models as they had 

lower AIC, BIC and SABIC values than the baseline model and sufficient participants in each 

class. We selected the three-class model as the final model following the inspection of a scree 

plot (see Supplementary Materials, Figure 1) and in the context of past findings in the related 

domain of memory aging trajectory analyses (G. P. McFall et al., 2019). The three-class model is 

portrayed in Figure 1c, with parameter means (level and slope) reported in Table 4. 

Discriminated and ranked by a combination of both level and slope, from highest to lowest 

volume in the trajectory distribution, the three classes can be characterized as follows. Class 1 (n 

= 100; the group at the top of the distribution) was characterized by the highest combination of 

level and slope, followed by Class 2 (n = 173), the group in the middle of the distribution, and 

Class 3 (n = 78), the group at the bottom of the distribution. Informally, the classes appear to 

differ more in level than in slope (with Class 2 and 3 having the steeper slopes), but both 

parameters contributed to the latent class solution. Specifically, the LCGA algorithm identifies 

distinguishable trajectory classes based on simultaneous consideration of level and slope, both of 

which are essential parameters in model identification. It is important to note that the resulting 

trajectory classes are statistically differentiated even though they may not appear visually as 
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dramatically distinct at their edges. This between-class distinction is clearly indicated by the 

entropy values (revealing good class separation) and the level and slope parameters (and 95% 

confidence intervals) for each class (see Table 4).  

Right Hippocampal Volume Trajectories. Model fit statistics for all analyses are 

presented by number of classes in Table 3. Similar to the LHC models, all tested models had 

acceptable entropy values (> 0.8). The four-class model was removed from consideration as the 

loglikelihood failed to replicate, indicating that no global solution was reached. The five-class 

model was removed from consideration due to insufficient participants in one class (9%). The 

two- and three-class models were selected as possible candidate models as they had lower AIC, 

BIC and SABIC values than the baseline model and sufficient participants in each class. As with 

LHC trajectories, we selected the three-class model as the final model based on past findings and 

inspection of the scree plot of relative fit indices for the inflection point (see Supplementary 

Materials, Figure 2). Thus, we identified three unique classes of RHC volume trajectories within 

the overall sample (Figure 1f). Parameter means (level and slope) are reported in Table 4. 

Discriminated and ranked by a combination of level and slope, from highest to lowest volume in 

the trajectory distribution, the classes can be characterized as follows. Class 1 (n = 96; the group 

at the top of the distribution) was characterized by the highest combination of level and decline, 

followed by Class 2 (n = 167), the group in the middle of the distribution, and Class 3 (n = 88), 

the group at the bottom of the distribution. Comparable to the LHC trajectory class distribution, 

the classes appear to differ in level more than slope; however, both parameters contributed to the 

latent class solution. Informally, the level (but not slope) of each RHC class appears to be 

consistently higher than that of the corresponding LHC class. 
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RG2: Important Predictors of LHC and RHC Class Membership  

We performed RFA to identify biomarkers and risk factors that best discriminated 

between the highest (Class 1) and lowest (Class 3) trajectory classes within LHC and RHC 

volume separately. 

Left Hippocampal Volume Trajectory Classes. The higher and lower LHC volume 

trajectory classes were discriminated by seven biomarkers and risk factors from four modalities: 

biospecimen (plasma Aβ1-40, plasma tau, plasma Aβ1-42), demographic (sex, education), co-

morbidities (geriatric depression scale [GDS] score), and lifestyle (body mass index; C = 0.80; 

Figure 2a). As informed by post-hoc correlational analyses, we found that individuals belonging 

to the lower LHC volume trajectory class were more likely to have lower levels of plasma Aβ1-

40, Aβ1-42 and tau, greater number of years of education, higher GDS scores (indicating more 

depressive symptoms), a lower BMI, and be male (see Table 5 for biomarker/risk factor 

frequencies and means per class).  

Right Hippocampal Volume Trajectory Classes. The higher and lower RHC volume 

trajectory classes were discriminated by three biomarkers and risk factors from the following two 

modalities: demographic (sex, education) and biospecimen (plasma Aβ1-42; C = 0.78; Figure 

2b). As informed by post-hoc correlational analyses, we found that individuals belonging to the 

lower RHC trajectory class were more likely to be male, have lower levels of plasma Aβ1-42, as 

well as have greater number of years of education (see Table 5 for biomarker frequencies and 

means per class).  

Discussion 

          This study applied data-driven technologies to longitudinal imaging data to (a) extract 

computationally separable classes based on individual level and slope from LHC and RHC 
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trajectory distributions and (b) subsequently identify key AD-related biomarkers and risk factors 

that discriminate between the higher and lower trajectory classes. To our knowledge, no previous 

study has used these technologies to (a) identify trajectory classes based on separate LHC and 

RHC volume change in a sample of predominantly cognitively normal older adults and (b) 

assemble and test a large pool of putative biomarker and risk factor predictors of trajectory class.  

Overall, the class structures (number and membership) and constituent trajectory 

characteristics (levels and slopes) for the two hemispheres were similar. One exception is that 

RHC volumes appeared consistently higher (in level) for each corresponding class. This RHC 

advantage is consistent with previous research indicating that RHC volumes are generally more 

preserved at corresponding ages than LHC volumes in cognitively normal older adults (J. Barnes 

et al., 2005; Cherbuin et al., 2010; Cherbuin, Sargent-Cox, Easteal, Sachdev, & Anstey, 2015). 

Our results provide a new and discriminating indicator of this advantage; namely, the advantage 

can be observed at all corresponding classes (higher, middle, and lower) of aging change. For 

both hemispheres, the slope means across classes were relatively similar; however, the two 

lowest classes (middle, lowest) exhibited steeper slopes than the highest class. This pattern was 

expected as the current sample consisted of uniformly cognitively normal older adults at baseline 

and who remained clinically non-impaired over 96% of the analyzed longitudinal observations. 

Notably, even in the more limited heterogeneity of a cognitively unimpaired older adult sample 

(as compared to a more clinically diverse sample), our analytic approach detected discriminable 

classes of HC volumetric change. In addition, although there was some overlap between the 

participants classified into the LHC and RHC classes, there were a substantial number of 

individuals (n = 93) who were uniquely classified (e.g., were in the lowest LHC but not the 
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lowest RHC) in the two hemispheric analyses. These findings provide further evidence for the 

consideration of LHC and RHC differences in future research. 

As increasing hippocampal atrophy is associated with incipient clinical progression 

(Apostolova et al., 2012; Apostolova et al., 2010; Byun et al., 2015), two potential implications 

of our data-driven latent class approach could be considered. First, these classes of hippocampal 

trajectories could be provisionally considered as “secondary phenotypes” of brain aging in that 

they (a) differ in objective and salient brain aging trajectory characteristics and (b) may be 

associated with differential outcomes or clinical phenotypes such as cognitive impairment or 

AD. A post-hoc informal check of the current data revealed that cognitive performance over time 

decreased in a stepwise manner across hippocampal trajectory classes (see Supplementary 

Materials for ADAS-Cognition and ADNI Memory Composite scores by wave). In addition, 

higher scores on the Clinical Dementia Rating (CDR) were somewhat more prevalent in the 

lowest classes and none of the participants with a CDR of 1 were classified in the highest 

trajectory classes. Similarly, a recent study identifying four spatiotemporal trajectory subtypes of 

tau deposition found that longitudinal MMSE outcomes differed between subtypes (Vogel et al., 

2021). The interpretation was that data-driven groups based on other AD-related biomarkers 

(tau) have also identified differences in cognitive trajectories (Vogel et al., 2021). Taken 

together, the present and complementary findings chart an important direction for future 

research, in which studies with comprehensive clinical outcome information could provide 

insights into AD or impairment risk based on long-term pre-clinical trajectory class membership. 

Second, members of higher trajectory classes may have lower exposure to AD risk factors. We 

investigated these implications in the next research goal by testing associations with AD 

biomarkers and risk factors.  
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Accordingly, we tested predictor importance for a roster of 38 multi-modal AD risk 

factors and biomarkers. The machine learning technology (RFA) evaluated the relative 

importance of all of the predictors in a quantitatively competitive context. The leading predictors 

of extreme classes (higher vs. lower) were thus identified for their prediction importance with 

both independent and interactional contributions considered. The present prediction models do 

not establish mechanisms of association, but instead identify the risk factors that emerge in data-

driven analyses from a large panel of potential predictors and thereby point to promising future 

directions of both validation and mechanistic research. The full roster of predictors was 

presented earlier and listed (by modality) in Table 2. Three aspects of the results are discussed: 

(a) the subset of predictors that were observed for both LHC and RHC, (b) any predictors that 

were selectively associated with either hemisphere, and (c) notable predictors (e.g., factors that 

have been associated in candidate biomarker studies) that did not emerge in the present analyses. 

In all cases, we refer to any available candidate biomarker and risk factor literature to establish 

the context. Three important predictors from two modalities were robust across the hemispheres: 

demographic (sex, education) and biospecimen (plasma Aβ1-42). Four additional predictors 

were observed selectively in the LHC analyses. We characterize the three common predictors 

briefly and then discuss the unique predictors for LHC.  

Regarding predictors in common for LHC and RHC classes, the sex factor indicated that 

being male was associated with membership in the lower trajectory classes. For hippocampal 

atrophy in cognitively unimpaired aging, a common result is that, for given ages, males 

experience more overall atrophy than females (Fraser, Shaw, & Cherbuin, 2015). Our results 

conducted separately on LHC and RHC extend this pattern to both hemispheres. As an 

illustration, for both LHC and RHC we noted that membership of the upper (less atrophied) class 
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was predominantly female (64-70%) whereas the lower class membership was predominantly 

male (66.7-68.2%). Notably, our current multimodal approach highlights the importance of sex 

relative to other established AD biomarkers and risk factors in predicting differential 

hippocampal atrophy. This female advantage is concordant with (a) findings in the cognitively 

asymptomatic aging literature, whereby cognitively normal females often perform at higher 

levels than males, and (b) our post-hoc check regarding cognitive trajectories for this sample (see 

Supplementary Materials). Specifically, mean memory scores for the lowest HC trajectory 

classes (predominantly male) were lower than for the highest trajectory classes (predominantly 

female), which is consistent with the growing evidence of a male disadvantage in asymptomatic 

memory aging (Shannon M Drouin, McFall, & Dixon, 2021; Laws, Irvine, & Gale, 2016; 

McDermott et al., 2017). However, it should be noted that this female advantage may be 

reversed in persons living with AD or even preclinical AD. For example, studies have found that 

females with AD exhibit more rapid hippocampal atrophy (B. A. Ardekani, Convit, & Bachman, 

2016) and similar associations have been reported for females with AD-related neuropathology 

(Koran et al., 2017). In contrast, we found that in predominantly cognitively unimpaired 

individuals, men made up a higher proportion of the hippocampal trajectory class characterized 

by the lowest level and steepest decline (i.e., most atrophy). Thus, future research can aim to 

resolve whether there is (a) a selectively accelerated rate of hippocampal volume loss for 

preclinical and clinical (where AD-related neuropathology, such as low CSF AB42 levels, would 

be evident) females or (b) some other factor accounts for the contrasting observations.  

More years of education was associated with the lowest (most atrophied) classes of both 

LHC and RHC volume trajectories. In cognitively unimpaired older adults, non-significant cross-

sectional associations between hippocampal size (volume and thickness) and education have 
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been reported (Seo et al., 2011; Shpanskaya et al., 2014). In contrast, education has been 

previously identified as a potential protective factor in the AD epidemiological literature 

(Livingston et al., 2020). Longitudinal findings regarding associations with cognitive reserve 

(including education) have also been mixed (R. A. Dixon & M. E. Lachman, 2019; Whitwell, 

Dickson, et al., 2012). These inconsistencies may originate from a number of study-related 

differences, including: (a) design (cross-sectional vs. longitudinal), (b) measurement (years of 

schooling vs. attainment), (c) cohort (education differing across generations), (d) study sample 

(cognitively normal vs. clinical; higher vs lower education), (e) analytic approaches (most often 

single variable vs. multi-variable prediction models), (f) study role (correlate, covariate, and 

even AD protective factor), and (g) outcome (cognitive differences/changes, brain 

differences/changes). In the current ADNI sample, the majority of participants were relatively 

highly educated (M years of total schooling at baseline = 16.3). Previous findings regarding the 

moderation of hippocampal volume by education (Noble et al., 2012) indicate that these effects 

are diminished among those with higher education attainment. A relevant previous result (Piras 

et al., 2011) led us to explore whether the commonly used proportional approach to correcting 

for head size (Shen, Zhou, Chen, & Zhang, 2019; Sundermann, Tran, Maki, & Bondi, 2018; 

Voevodskaya et al., 2014) could lead to potential overcorrections in volume estimates for highly 

educated samples. Specifically, the common approach corrects the numerator (hippocampal 

volume) by the denominator (intracranial volume). In a post-hoc check we observed a positive 

correlation between intracranial volume and education (Piras et al., 2011). We suggest (a) careful 

monitoring of education effects in cognitively normal brain aging, (b) further specific attention 

to intracranial HC volume corrections when education levels are high, and (c) increasing 
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attention to education effects in research on other brain regions and related biomarkers (e.g., 

hippocampal to cortex atrophy ratio (Whitwell, Dickson, et al., 2012)). 

Lower levels of plasma Aβ1-42 were associated with the lower trajectory classes for both 

LHC and RHC. Although a conventional biomarker of AD, Aβ1-42 has been found to be more 

strongly related to overall neurodegeneration (versus AD specifically) as increased levels in the 

brain and decreased levels in CSF also occur in other neurodegenerative diseases (Jack Jr et al., 

2018). Evidence for brain atrophy associations with plasma levels of Aβ1-42 have been mixed. 

For example, higher plasma Aβ1-42 levels and lower volumes of hippocampal subfields have 

been linked in older adults with, but not those without, subjective complaints (Cantero, Iglesias, 

Van Leemput, & Atienza, 2016). In a separate study using a large sample of cognitively normal 

older adults, decreased levels of plasma Aβ1-42 were associated with smaller hippocampal 

volumes and increased risk of dementia (Hilal et al., 2018). Similarly, plasma levels of Aβ1-42 

were found to be lower in amnesic MCI individuals as compared to cognitively normal older 

adults (Shi et al., 2019). Our results contribute to the existing and emerging evidence that (a) 

lower Aβ1-42 levels are a detectable biomarker of emerging neurodegeneration (hippocampal 

trajectory classes) in initially cognitively normal individuals and (b) less invasive biomarker 

collection procedures (e.g., plasma) provide reliable indicators of this early trend toward 

neurodegeneration (Hampel, O’Bryant, et al., 2018; Jack Jr et al., 2018). 

Four additional predictors discriminated LHC trajectory classes only. From the 

biospecimen modality, plasma Aβ1-40 and plasma tau predicted class membership uniquely for 

the LHC. Specifically, lower levels of both plasma Aβ1-40 and plasma t-tau were associated 

with membership to the lowest LHC trajectory class. Our findings support and extend previous 

reports of lower levels of plasma Aβ1-40 in preclinical AD and AD-related neurodegeneration 
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(Hilal et al., 2018; Shi et al., 2019). Specifically, our results indicate that lower baseline levels of 

plasma Aβ1-40 predict trajectories associated with more left (but not right) hippocampal atrophy 

prior to detectable disease stages. For plasma t-tau, increased levels have been associated with 

lower gray matter volumes in Aβ+ (but not Aβ-) older adults (Deters et al., 2017) as well as 

higher risk of incident dementia (Pase et al., 2019). However, our results suggest that lower 

plasma t-tau may be differentially associated with “secondary phenotypes” of clustered 

individuals representing different patterns of longitudinal atrophy in cognitively normal adults. A 

possible explanation is the potential effect of age on plasma t-tau levels. In a recent study, older 

adults (compared to middle-aged adults) were found to have higher levels of plasma t-tau after 

controlling for sex and APOE (Chiu et al., 2017). Although not directly testable in the present 

data, the average age of the lowest class LHC class (MW1 = 73.9, MW2 = 74.3, MW3 = 74.8, MW4 

= 75.7, MW5 = 77.0, MW6 = 78.6) was somewhat lower than that of the highest LHC class (MW1 = 

75.1, MW2 = 75.6, MW3 = 75.9, MW4 = 76.7, MW5 = 78.2, MW6 = 79.5) at each time point. It is 

possible that the reported age-related effects extend to a higher age range and to subtler age 

differences, representing an important area of future investigation. 

  Depressive symptoms (at a non-clinical level) were a selective predictor of LHC 

trajectory classes, with higher mean GDS score associated with the lowest trajectory class. This 

result is concordant with previous literature in which depression has been linked with increased 

AD risk (Livingston et al., 2017). Similarly, depressive symptoms have been associated with 

increased limbic and prefrontal atrophy over a four-year follow-up in cognitively normal older 

adults (Lebedeva et al., 2018). The left hippocampus (but not the right hippocampus) has also 

been found to be reduced in major depression disorder in adults (Bremner et al., 2000). In our 

sample, only 2% of individuals were considered mildly depressed at baseline and no individuals 
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had GDS scores indicating moderate or severe depression. The present findings suggest that the 

association between mild depressive symptomology and prefrontal/limbic atrophy also extends 

to the left hippocampus. Although the mechanism of this relationship remains largely unknown, 

it is possible that such mood or affect symptomology is associated with the subtle changes in 

cognition as a function of emerging hippocampal and cortical atrophy (Mosti, Rog, & Fink, 

2019). Another perspective is that hippocampal atrophy may be directly affecting networks that 

are associated with mood and impact depressive symptomology through numerous mechanisms 

such as estrogen depletion and deregulation of certain neural circuits (Elbejjani et al., 2014). 

A lower body mass index (BMI) was associated with the lower LHC, but not RHC, 

trajectory class. BMI associations with brain and cognitive aging are complex (Alosco et al., 

2017; K. Anstey, Cherbuin, Budge, & Young, 2011; Bischof & Park, 2015). A previous studying 

using BMI as a predictor of HC volumetric change reported a negative association between 

hippocampal volume (across hemispheres, but with stronger effects for the LHC) and BMI 

(Cherbuin, Sargent-Cox, Fraser, Sachdev, & Anstey, 2015). Participants of that study were, on 

average, a decade younger than those of the current study. Our findings indicate that a protective 

effect of higher BMI persists in an older cohort, and further support that this effect occurs more 

strongly in the LHC. Potential protective effects of increased BMI in older age (vs. midlife or 

young-old cohort) have been reported in the context of AD risk (Atti et al., 2008; Luchsinger & 

Mayeux, 2007) and cognitive decline (L. Bohn et al., 2020) and may act similarly for risk 

reduction for hippocampal atrophy. Notably, it appears that higher BMI might be an important 

AD risk factor in midlife, but this association reverses towards protection or risk-reduction in 

later life and older age, perhaps due to weight changes occurring in preclinical AD phases (Dye, 

Boyle, Champ, & Lawton, 2017; Suemoto, Gilsanz, Mayeda, & Glymour, 2015). 
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 We tested 38 biomarkers and risk factors as potential predictors of trajectory class 

membership. Our analytic approach considered all predictors simultaneously in a 

computationally competitive context. In addition to the seven predictors of trajectory classes, we 

note that there were 31 AD-related predictors that did not successfully emerge in either (LHC or 

RHC) of the analyses. Within the biospecimen modality, plasma measures of Aβ and tau 

outperformed CSF Aβ and tau to discriminate between hippocampal trajectories. Although CSF 

measures of Aβ have been consistently reported as sensitive biomarkers of MCI and AD, recent 

developments have identified less invasive and lower cost alternatives such as blood-based 

biomarkers (Hampel, O’Bryant, et al., 2018). Potentially, these peripheral biomarkers are more 

useful in predicting specific pathological changes and broader neurodegeneration, such as 

hippocampal atrophy. Alternatively, it is possible that the present plasma markers are better 

suited as predictors of non-clinical aging outcomes (i.e., hippocampal classes representing a 

dynamic distribution of cognitively normal longitudinal trajectories) as compared to related 

findings for CSF markers and associations with AD diagnosis and clinical progression patterns. 

For the genetic modality, although APOE genetic risk is the most important genetic risk factor 

for sporadic AD (Michaelson, 2014), it did not appear as one of the important or leading 

predictors of the lowest HC atrophy class (although it was among the lesser contributing 

predictors). This may point to an attenuated importance of single genetic factors within an 

interactive network of wide-ranging AD risk factors. The inclusion of a polygenic AD-related 

risk score may have revealed more predictive utility in the context of other risk-related AD 

predictors and should be investigated in future research (Badhwar et al., 2020b). Within the 

vascular/metabolic modality, no factors reached sufficient variable importance to be considered 

important predictors despite past findings suggesting possible associations (Cooper et al., 2016; 
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G. P. McFall et al., 2015a). For the demographic modality, chronological age was not found to 

be an important predictor of the lowest hippocampal trajectory class membership.  Instead, our 

findings indicate that, when available, certain aging-related mechanistic predictors may be more 

important than age per se for predicting adverse brain aging outcomes in predominantly 

cognitively normal samples. This provides additional support to the growing evidence that 

markers of biological age (vs. chronological age) are important to consider in predictions of 

exacerbated decline in non-demented aging (DeCarlo, Tuokko, Williams, Dixon, & MacDonald, 

2014; Levine et al., 2018; S. W. MacDonald, DeCarlo, & Dixon, 2011; J. W. Wu et al., 2021). 

Given the current analytic approach and the use of a conditional variable importance measure, 

we identified the most prominent predictors of hippocampal trajectory classes in the context of 

other previously identified and often closely related AD-related biomarkers and risk factors.  

        There were several limitations to the present study. First, previous reports have 

acknowledged some limited generalizability of the ADNI cohort due to convenience sampling 

and possible biases in recruited participants (e.g., familial history of AD) (Whitwell, Wiste, et 

al., 2012). However, these potentially at-risk individuals are key targets of clinical trials and 

prevention efforts. As our study aimed to identify biomarkers and risk factors associated with 

morphometric change in cognitively normal older adults, we have identified biomarker 

associations in individuals that are likely to be targeted for these purposes. Second, although 

variables included in the current study had few missing data (0-3.9%), there was a notable 

exception for biomarkers in the biospecimen modality. For the biospecimen biomarkers, missing 

data ranged from 35 to 51.3%. Missing data were imputed using the ‘missForest’ package in R 

which utilizes a random forest to iteratively predict missing values. The present imputation 

procedure and RFA models allowed for the inclusion of many predictors from multiple 
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modalities despite some with higher rates of missing data. We consider this a notable strength of 

our approach, as previous studies predicting AD risk have often employed fewer biomarker or 

risk factor predictors, possibly due to analytical restrictions (e.g., multiple comparison issues) 

(Gomar et al., 2011; Kwon, Gupta, & Lama, 2019; Shaffer et al., 2013). Replicating and 

validating these findings using additional biomarker data would be an important future step. 

Third, because of data limitations we were unable to investigate whether preclinical trajectory 

class membership would predict clinical diagnostic outcomes such as MCI or AD. As shown in 

Table 5, 96.3% of the analyzed longitudinal observations were with participants who were free 

of MCI or AD and over 99% included persons who were non-AD. In total, there were very few 

participants who transitioned to AD (n = 8) or MCI (n = 32, with 5 reverting back to CN) within 

the six waves under study—and together they contributed data for only 3.7% of the analyzed 

longitudinal observations (AD = 0.56%). By design, the present sample was selected initially to 

be cognitively asymptomatic (all were cognitively normal at baseline) and remained 

predominantly so throughout the study. The very small number of observations that could be 

characterized as impaired was appropriate for our objectives and expected in our design. No 

separate machine learning prediction analysis of this small cluster is possible due to severely 

imbalanced groups. However, a post-hoc check revealed that, in general, most of the individuals 

transitioning to impairment status were members of the lower trajectory classes. Accordingly, we 

suggest future work aimed at testing whether lower HC trajectory class membership is a reliable 

precursor condition for impairment and AD diagnosis. Fourth, the correlational analyses to 

clarify predictor directionality were focused more on describing associations with predictor 

variables than interpreting potential underlying mechanisms. Specific mechanisms should be 

further explored in future studies. Fifth, due to the ADNI MRI methods and protocols, almost all 
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participants from ADNI1 were scanned using 1.5T scanners and all participants from ADNI2 

were scanned using 3T scanners. However, we found no significant associations between scanner 

strength and hippocampal trajectory classes. This indicates that scanner strength was properly 

corrected for at the modelling stage, as has been done in previous studies (Koran et al., 2017). 

Sixth, other (non-AD specific) pathologies and risk factors unavailable in this study may have 

contributed to the observed hippocampal volume and atrophy trajectories. 

Conclusions 

        We used multi-wave MRI data from ADNI to identified three data-driven trajectory classes 

of left and right hippocampal volume in asymptomatic older adults. Our analytic approach, based 

on an algorithm of level and slope, revealed that the vast individual variability in hippocampal 

atrophy could be clustered into trajectory classes which capture the heterogeneous and dynamic 

nature of brain aging in cognitively normal older adults. We then applied machine learning 

technology to a large, multi-modal set of AD-related biomarkers and risk factors and identified 

the best predictors that discriminated lower versus higher hippocampal trajectory classes. The 

current findings identify several emerging and prominent risk factors and biomarkers associated 

with early stages of hippocampal atrophy, all of which merit further investigation in future 

mechanistic and clinical research. 
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Tables 

Table 2-1. Baseline characteristics for the entire sample (n = 351) 
 

 

 

 

 

 

 

 

 

 

 

 

  

 Whole LHC 

(Highest) 

LHC 

(Middle) 

LHC 

(Lowest) 

RHC 

(Highest) 

RHC 

(Middle) 

RHC 

(Lowest) 

N 351 100 173 78 96 167 88 

n in ADNI-1 214 60 113 41 55 105 54 

n in ADNI-2 137 40 60 37 41 62 34 

Sex (% Female) 48.7 64.0 46.8 33.3 69.8 45.5 31.8 

Age M (SD)  74.8 (5.7) 75. 1 (5.9) 75.0 (2.6) 73.9 (5.6) 74.6 (6.2) 75.1 (5.5) 74.5 (5.4) 

Education M (SD) 16.3 (2.7) 15.7 (2.6) 16.3 (2.9) 17.2 (2.4) 15.3 (2.8) 16.5 (2.7) 17.2 (2.4) 

Mini Mental State Exam 

M (SD)  

29.1 (1.0) 29.1 (1.2) 29.1 (1.0) 29.0 (1.1) 29.2 (1.2) 29.1 (1.1) 29.1 (1.0) 

ADAS-Cog M (SD) 9.3 (4.3) 8.5 (3.9) 9.7 (4.4) 9.2 (4.6) 9.0 (4.0) 9.3 (4.4) 9.5 (4.7) 
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Table 2-2. Predictors by modality and measurement characteristics 
Modalities Biomarkers Metric % Missing 

for LHC 
% Missing 
for RHC 

Biospecimen Plasma Aβ1-401 pg/mL  47.2 44.6 
Plasma Aβ1-421 pg/mL 46.6 44.0 
CSF Aβ1-422 pg/mL 38.2 35.3 
CSF total-tau2 pg/mL 38.8 35.9 
CSF p-tau2 pg/mL 38.2 35.3 
Plasma tau3 pg/mL 55.6 50.0 

Demographic Age Years 0 0 
Sex Female/Male 0 0 
Education Years 0 0 

Genetic APOE  ε2+, ε3/ε3, ε4+ 0 0 

Vascular/Metabolic Systolic blood pressure mm Hg 0 0 
Diastolic blood pressure mm Hg 0 0 
Hypertension 140/90 mm Hg 0 0 
Subjective report of diabetes Yes / no 0 0 
Glucose level at baseline mg/dL 3.9 2.2 

Lifestyle Body mass index kg/m2 1.1 0.5 
History of smoking Yes / no 0 0 

Co-morbidities Geriatric depression scale score Mild (5-8), moderate 
(9-11), severe (12-15) 

0 0 

Cardiovascular, alcoholism, psychiatric, neurological, 
head/eyes/ears/nose/throat, respiratory, hepatic, dermatologic connective tissue, 
musculoskeletal, endocrine-metabolic, gastrointestinal, hematopoietic-
lymphatic, renal-genitourinary, allergies/drug sensitivities, malignancy, and/or 
major surgeries 

Yes / no 0 0 

Familial Background Maternal dementia history Yes / no 0.6 0 

Paternal dementia history Yes / no 1.7 2.6 
Cognitive Status MMSE 0-30, >24 indicates no 

dementia 
0 0 



54 
 

ADAS-Cog  0-70, ≥ 18 indicates 
cognitive impairment 

0 0 

1Plasma collection - University of Pennsylvania (UPENNPLASMA.csv); 2CSF collection - University of Pennsylvania 

(UPENNBIOMK_MASTER.csv, median re-scaled values); 3Plasma collection – Blennow Lab (BLENNOWPLASMATAU.csv). 
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Table 2-3. Latent class growth analyses model fit statistics and class proportions for left and right hippocampal volume 

Note. AIC, Akaike information criteria; BIC, Bayesian information criteria; SABIC, Sample-size adjusted BIC.  
* Identified as best model fit based on low AIC, BIC, SABIC and no class proportion less than 10%

Volumetric Variable 
 

Number of 
Classes 

Class Proportions AIC BIC SABIC Entropy 

Left Hippocampus 1 - 403.50 442.12 410.39 - 

 2 0.49/0.51 -909.04 -851.13 -898.71 0.90 

 3* 0.49/0.29/0.22 -1907.10 -1829.88 -1893.33 0.92 

 4 Did not replicate - - - - 

 5 0.10/0.26/0.22/0.13/0.30 -2707.13 -2591.31 -2686.48 0.89 

Right Hippocampus 1 - 399.19 437.80 506.08 - 

 2 0.46/0.54 -885.82 -827.91 -875.49 0.90 

 3* 0.25/0.27/0.48 -1997.35 -1920.14 -1983.58 0.93 

 4 0.12/0.34/0.23/0.31 -2450.80 -2354.28 -2433.59 0.92 

 5 0.12/0.09/0.36/0.22/0.21 -2765.27 -2649.45 -2744.62 0.90 
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Table 2-4. Final latent class growth analyses models statistics and parameters 

 

 

 

 

 

 

 

Note. Class 1 refers to the higher group; Class 2 refers to the middle group; Class 3 refers to the lower group. 

 

 

 

 

 

Volumetric Variable 
 

Class n (%) Level (Intercept) 
[95% CI] 

Slope  
[95% CI] 

Left Hippocampus 1 100 (28.5) 2.50 [2.50-2.51] -0.02 [-0.025—0.021] 

 2 173 (49.3) 2.14 [2.13-2.14] -0.03 [-0.028—0.024] 

 3 78 (22.2) 1.79 [1.78-1.80] -0.03 [-0.030—0.022] 

Right Hippocampus 1 96 (27.4) 2.53 [2.53-2.54] -0.02 [-0.025—0.021] 

 2 167 (47.6) 2.21 [2.20-2.21] -0.03 [-0.028—0.023] 

 3 88 (25.1) 1.83 [1.83-1.84] -0.03 [-0.027—0.023] 
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Table 2-5. Biomarker and risk factor means and frequencies for LHC and RHC trajectory classes 

Significant Biomarker Lowest LHC 
Trajectory Class 

Highest LHC Trajectory 
Class 

Lowest RHC Trajectory 
Class 

Highest RHC 
Trajectory Class 

N 78 100 88 96 

Plasma Aβ1-40 139.72 (56.78) 171.46 (47.03) 142.23 (47.19) 168.31 (45.30) 

Sex (%, female) 33.33 64.0 31.82 69.80 

Plasma t-tau 2.41 (0.94) 2.65 (1.05) 2.50 (1.42) 2.55 (1.07) 

Plasma Aβ1-42 34.71 (10.58) 41.00 (14.62) 34.35 (10.13) 42.04 (14.52) 

Education, years (SD) 17.15 (2.42) 15.73 (2.56) 17.17 (2.43) 15.33 (2.73) 

GDS 0.91 (1.27) 0.52 (0.88) 0.81 (1.19) 0.67 (1.01) 

BMI 26.06 (4.47) 27.35 (4.69) 26.11 (4.43) 27.36 (5.07) 

Follow-up Cognitive Status 
Documentation 

    

# of person-waves (observations) 398 496 442 473 

% of person-waves that are non-
AD 

98.2 99.8 98.6 100 

% of person-waves that are non-
AD and non-MCI 

93.0 98.6 92.5 98.7 
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Figures 

 

Figure 2-1. Distribution of left (1a) and right (1d) hippocampus volume data. Individual trajectories of left (1b) and right (1e) 
hippocampal volume. Three classes were identified within left (1c) and right (1f) hippocampal volume trajectories: Class 1 (Highest, 
Least Atrophied), Class 2 (Middle), and Class 3 (Lowest, Most Atrophied). Hippocampal volume was corrected for head size using 
(hippocampal volume / intra cranial volume) x 103 
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Figure 2-2. Variable importance (permutation accuracy) in the discrimination of the (2a) lowest (n = 78) vs. highest (n = 100) classes 
of left hippocampal volume trajectories (C = 0.80, ntree = 1000, mtry = 4), and (2b) lowest (n = 88) vs. highest (n = 96) classes of 
right hippocampal volume trajectories (C = 0.78, ntree = 1000, mtry = 4). Note. GDS, Geriatric Depression Scale score; BMI, body 
mass index; APOE, Apolipoprotein E genotype; MH, medical history; ADAS-Cog, Alzheimer's Disease Assessment Scale-Cognitive 
Subscale; CSF Aβ1-42, cerebrospinal fluid amyloid β-42; CSF t-tau, cerebrospinal fluid total tau; CSF p-tau, cerebrospinal fluid 
phosphorylated tau; MMSE, Mini-Mental State Examination score. 
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CHAPTER 3: STUDY 2 

Cognitive Resilience, Cognitive Vulnerability, and Brain/Cognitive Stability in Older 

Adults with Varying Hippocampal Trajectory Patterns: Data-Driven Approaches to 

Detection and Prediction 
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Background 

Defining Resilience, Vulnerability, and Stability in Brain/Cognitive Aging and Dementia. 

Aging is characterized by vast and dynamic heterogeneity in individual brain and 

cognitive trajectories. In terms of interpretable change patterns, several general classes or types 

have been identified. These include (a) relatively higher and stable performance (i.e., sustained 

healthy or exceptional), (b) moderate levels with relatively shallow decline (i.e., typical or 

unimpaired) and (c) lower levels with steeper or accelerating decline (i.e., severely declining, at 

risk for impairment). Similarly, older adults also vary in the extent and magnitude of exposure 

to AD-related risk factors and adversities across the lifespan (but especially in midlife and 

later). Examples of such adversities can include established AD risk factors (e.g., smoking, 

Type 2 diabetes), neuropathology accumulation (e.g., Aβ accumulation), accelerated 

neurodegeneration (i.e., hippocampal atrophy), various lifestyle factors (e.g., diet) and increased 

genetic risk (e.g., presence of an APOE e4 allele). Resulting brain and cognitive aging 

trajectories as modified by incident and accumulated AD-related adversity have become a target 

of growing research attention. These heterogeneous pathways, each with varying levels of AD-

related adversity and associated trajectory patterns include: cognitive resilience (i.e., stable/high 

cognitive trajectories despite high AD-related adversity), cognitive vulnerability (i.e., 

low/declining cognitive trajectories despite low AD-related adversity), and brain/cognitive 

stability (i.e., stable/high cognitive trajectories in conjunction with low AD-related adversity). 

Other schemes for representing these varying trajectory patterns cover similar phenomena with 

related methods, interpretations and terminology (K. J. Anstey & Dixon, 2021; Farrell, Kane, 

Bisset, Howlett, & Rutenberg, 2022; Montine et al., 2019; Stern et al., 2023).  An important 

commonality among approaches to these change-related phenomena is the emphasis on 



DATA-DRIVEN APPROACHES TO HETEROGENEITY IN AGING  

62 
 

longitudinal data (e.g., Farrell et al., 2022). 

Regarding resilience, increasing evidence has revealed that some aging adults in the 

face of pertinent adversities that exceed those of typical chronological aging—such as specific 

and objective elevated Alzheimer’s disease (AD)-related neurodegeneration, neuropathology, 

or genetic risk—still exhibit sustained levels of cognitive function (Arenaza-Urquijo & 

Vemuri, 2018; R. Dixon & M. Lachman, 2019; Kaup et al., 2015; Latimer et al., 2017; 

McDermott et al., 2017; Melikyan et al., 2022; Montine et al., 2019; Ramanan et al., 2021). 

Characterized as ‘cognitive resilience,’ this phenomenon represents an opportunity for insight 

into pathways toward normal or even healthier brain and cognitive aging in the context of 

person-specific AD-related adversity. Evidence for cognitive resilience has emerged from 

studies whereby an important proportion of older adults with AD neuropathology in vivo or at 

autopsy did not exhibit cognitive decline in their lifetime (Arenaza-Urquijo & Vemuri, 2018; 

D. Hu et al., 2021; Melikyan et al., 2022; Selamawit Negash, A Bennett, S Wilson, A 

Schneider, & E Arnold, 2011; S. Negash, Xie, et al., 2013). Notably, findings from the 

Religious Orders Study indicate that over 75% of older adults without cognitive impairment 

had amyloid pathology at death (Bennett et al., 2012). Several other studies have also used 

observable criteria to define resilience, such as the presence of an APOE e4 risk allele (Ferrari 

et al., 2013; Kaup et al., 2015; McDermott et al., 2017; Zheng et al., 2023) and amyloid 

pathology (Ramanan et al., 2021; Rentz et al., 2017).. These studies have identified several 

predictors associated with the maintenance of cognitive function despite varying forms of AD-

related adversities (e.g., genetic risk, neuropathology). Examples of observed predictors of 

cognitive resilience include full-scale intelligence quotient (higher), age (lower), favourable 

levels of physical activity (higher), and vascular health (better). Findings from these studies 
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point towards possible subsets of older adults with  accumulated and varying levels of 

risk/protective exposures which allow for cognitive decline to be minimized, or forestalled in 

the face of different kinds of increased AD-related adversity (R. Dixon & M. Lachman, 2019).  

Regarding vulnerability, this pathway represents the conceptual flipside to resilience, 

whereby aging individuals follow worse cognitive trajectories than would be expected based 

on (relatively low incidence or dosage of) observed (a) adversities such as accumulated AD 

risk or current neurodegeneration or (b) pertinent risk-reducing or protection factors. This 

subset of older adults exhibits unexpected moderate or severe declines in cognition without the 

apparent presence of prominent or assessed AD-related adversities, such as substantial 

hippocampal atrophy, increased neuropathology or genetic risk. Although such vulnerability is 

conceptually compelling, this potential pathway has rarely been directly targeted in brain and 

cognitive aging or dementia research. One reason may be that researchers rarely investigate or 

have access to all prominent (much less all possible) sources of accumulated adversity. It is 

possible that some older adults demonstrate objective evidence indicating the absence of 

specific AD-related adversities (i.e., the apparent presence of preserved brain health) yet still 

decline in cognitive performance. Alternatively, not all adversities may be associated with 

immediate, direct or severe detrimental cognitive effects, and not all aging individuals may 

accumulate sufficient or typical counterbalancing protection factors. Similarly, varying 

lifespan levels of exposures to, and accumulation of, different types and combinations of risk 

and protective factors may result in differing trajectories of cognitive change even in the 

context of less AD-related adversity. A methodological strategy that emphasizes the 

connection between the observed adversity (e.g., hippocampal atrophy) and the tested 

cognitive change function (e.g., episodic memory) may provide an opportunity for reliably 
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detecting and empirically testing this profile.   

Regarding brain/cognitive stability, the phenomenon of stable brain and cognitive 

aging would be demonstrated by evidence reflecting a balancing of (a) low or absent specific 

adversities or vulnerabilities, (b) notable presence of risk-reduction or protection factors, and 

(c) observed long-term maintenance of relatively high levels and stable trajectories of 

cognitive performance into later life (R. Dixon & M. Lachman, 2019; Nyberg & Pudas, 2019). 

Specifically, this subset of older adults manages to both (a) maintain high levels of cognitive 

performance over extended years of aging and (b) experience minimal AD-related adversity, 

as assessed in the present categories of genetic risk (APOE e4), neurodegeneration (atrophy), 

or neuropathology (Nyberg & Pudas, 2019). In the case of brain/cognitive stability, favourable 

cognitive trajectories and absence of detected AD-related adversities are intrinsically linked, as 

there exists a strong association between brain health (e.g., very little neuropathology, 

preserved brain volume) and cognitive health (De Godoy et al., 2021; Gorbach et al., 2017; 

Pudas et al., 2013). For example, older adults with higher and stable hippocampal volume and 

function have been found to have higher performing memory (Gorbach et al., 2017; Lars 

Nyberg, Martin Lövdén, Katrine Riklund, Ulman Lindenberger, & Lars Bäckman, 2012; 

Pudas et al., 2013). In a previous study, a data-driven stable memory aging trajectory class was 

identified (G. P. McFall et al., 2019). Several precision factors (education, depressive 

symptoms, living status, body mass index, heart rate, social activity) were identified as 

predictors of stable memory aging. Accordingly, in the present study, we extend this approach 

by operationalizing brain/cognitive stability as the objective presence of a subgroup with 

relatively stable hippocampal volume combined with the observation of relatively higher and 

stable cognitive trajectories.  
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Risk and Protective Factors Associated with Resilience, Vulnerability, and Brain/Cognitive 

Stability 

An important facet of emerging research has been the identification of risk and 

protective factors associated with differential trajectories of asymptomatic brain and cognitive 

aging, including patterns potentially representing the presently targeted phenomena of cognitive 

resilience, vulnerability and brain/cognitive stability (Aiello Bowles et al., 2019; R. Dixon & M. 

Lachman, 2019; S. M. Drouin et al., 2022; G. P. McFall et al., 2019). Specifically, risk and 

protective factors from multiple domains may contribute independently, interactively and 

differentially to affect pathways of cognitive and brain changes in the context of AD-related 

adversities (K. J. Anstey et al., 2021; R. Dixon & M. Lachman, 2019). Following the 

identification of patterns of cognitive resilience, vulnerability, and brain/cognitive stability, an 

important next goal is to determine the predictors that discriminate those who follow these 

patterns and those who do not. An important long-term consideration is which predictors are 

modifiable and which are non-modifiable, as preventative and intervention care can be 

appropriately targeted (Livingston et al., 2020). 

In the case of cognitive resilience, both modifiable and non-modifiable risk factors 

have been identified in previous research. For example, occupational complexity has been 

found to predict cognitive resilience in people at neuropathological risk of AD (Boots et al., 

2015). Physical and cognitive activities have also been previously linked to cognitive 

resilience (Casaletto et al., 2020). A recent study used a multi-modal dataset to identify 

predictors of cognitive resilience in older adults (Topiwala et al., 2019). Older adults were 

classified as resilient if they (a) were determined to have hippocampal atrophy according to a 

visual rating scale (Scheltens score > 0) and (b) scored up to 1.5 standard deviations below the 
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mean on all given cognitive tasks. Using logistic regression models, age, full-scale intelligence 

quotient, and social class were identified as predictors of cognitive resilience Moreover, Zheng 

and colleagues (2023) identified sex-specific predictors of resilience when defined by high and 

stable cognitive trajectories in the presence of an APOE ɛ4 allele. Using logistic regression 

models, they found that resilience in male APOE ɛ4 carriers was predicted by mild physical 

activity and employment at baseline, whereas only higher number of mental activities 

predicted resilience in female APOE ɛ4 carriers (Zheng et al., 2023). 

A form of cognitive vulnerability has been consistently reported in sex and gender 

research, whereby females have been found to exhibit more cognitive impairment than males 

for increasing AD-related pathology (L. L. Barnes et al., 2005; Mielke et al., 2014). Estrogen 

deficiency in post-menopausal women has been hypothesized as a possible contributing factor 

to the female vulnerability to AD pathology on cognition. Similarly, it is possible that other 

(at-risk) subsets of older adults who experience age-related cognitive decline despite having 

little AD pathology, neurodegeneration, or AD genetic risk. This may be due to specific 

independent or interactive risk factors which exacerbate existing cognitive declines even in the 

absence of AD-related adversity. 

Specific risk and protective factors associated with long-term brain/cognitive stability 

have also been identified; however, relevant studies of this pattern have explored predictors of 

cognitive stability and brain stability separately and not simultaneously. Stable cognitive health 

longitudinally has been offered as a potential defining characteristic of “successful aging” 

(Nyberg & Pudas, 2019). Lin and colleagues (2017) identified a class of successful agers (i.e., 

high and stable cognitive trajectories over five years) which were predicted by female sex, 

lower AD genetic risk, and less AD-related neuropathology. Similarly, Josefsson and colleagues 
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(2012) found that successful memory aging (i.e., stability over 15 years) was predicted by 

higher education, female sex, higher levels of physical activity, the met allele of the catechol-O-

methyltransferase gene, and cohabitation. Other modifiable lifestyle factors (e.g., leisure 

activities, occupational complexity) have been also found to be associated with stable cognitive 

and memory aging in other studies (L. Nyberg, M. Lövdén, K. Riklund, U. Lindenberger, & L. 

Bäckman, 2012). Stability in brain health has also been found to be associated with modifiable 

lifestyle factors, such as spatial navigation training (Lövdén et al., 2012). Female sex, lower 

education, and higher plasma Aβ1–42 also predicted high and stable left and right hippocampal 

trajectories in a sample of cognitively unimpaired older adults (S. M. Drouin et al., 2022). 

Methodological Issues: Design and Analytic Approaches to Risk and Protective Factor 

Research on Resilience, Vulnerability and Stability 

Research investigating risk factors and predictors of cognitive resilience, cognitive 

vulnerability, and brain/cognitive stability presents two important methodological challenges. 

First, in order to explore factors associated with increased (or reduced) risk of these aging 

pathways, specific research attributes are required (but not always readily available) within large 

long-term studies on aging. These include longitudinal data with aging adults differing in both 

adversity (risk) exposure and cognitive trajectory patterns (Farrell et al., 2022). Specifically, the 

inclusion of multiple risk factors and biomarkers as predictors to represent potential mechanisms 

of healthier (resilience, stable) and adverse (vulnerability) brain and cognitive pathways (R. 

Dixon & M. Lachman, 2019; McDermott et al., 2017) is paramount and can be a major challenge 

to investigate. Second, the broader literature in this research area includes varying conceptual 

and operational definitions of the phenomena addressed in this dissertation. The present 

approach integrates longitudinal designs, objective and AD-related adversities, and subsequent 
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patterns of brain and cognitive aging pathways. Although related, other definitions of (and 

approaches to) cognitive resilience, vulnerability, and brain/cognitive stability have been 

proffered (Aiello Bowles et al., 2019; Arenaza-Urquijo & Vemuri, 2018; Bocancea et al., 2021; 

R. Dixon & M. Lachman, 2019; S. Negash, Wilson, et al., 2013; Nyberg & Pudas, 2019).  

For the first methodological challenge, the inclusion of large multi-modal rosters of risk 

factors and biomarkers has become increasingly possible with available databases and new and 

emerging analytic approaches. Recently, data-driven and machine learning approaches have been 

deployed to adequately test large numbers of predictors simultaneously and overcome some of 

the challenges that accompany conventional statistical approaches. Notably, as compared with 

conventional statistical approaches in related literature, machine learning approaches allow for 

more flexible prediction analyses, such as the ability to include predictors with non-linear 

associations with the outcome of interest as well as accounting for potential higher-order 

interactions between predictors (Breiman, 2001; Jacobucci & Grimm, 2020). Most importantly 

in the context of risk factor research, such approaches can include a large number of predictor 

variables that can be considered in a computationally competitive context. As risk factors are 

often present in multiple numbers with varying degrees of interaction, data-driven approaches 

capable of managing these types of data have been encouraged and recently used in this research 

sector (Badhwar et al., 2020a; R. Dixon & M. Lachman, 2019). Examples of applications of 

these include the prediction of memory trajectories (G. P. McFall et al., 2019), hippocampal 

volume trajectories (S. M. Drouin et al., 2022), as well as MCI and AD prediction (Tanveer et 

al., 2020). A specific example includes a recent study by McDermott and colleagues (2017) 

where the authors used a data-driven approach to identify memory trajectory patterns displaying 

resilience to AD genetic risk. Subsequently, machine learning prediction analyses were used to 
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identify predictors of memory resilience in genetically at-risk older adults. Of the 22 multi-

modal risk factors tested, 13 (nine unique) and five (one unique) were predictive for women and 

men respectively (McDermott et al., 2017). Kaup and colleagues (2015) also used random forest 

analyses to test predictors of cognitive resilience in APOE ε4 carriers stratified by race. Predictors 

for white APOE ε4 carriers included no recent negative life events, higher age, and more reading 

time predictors. Predictors for black APOE ε4 carriers included female sex and no type II 

diabetes. Higher literacy level and higher education were found to be common predictors (Kaup 

et al., 2015).  

Similarly, data-driven and machine learning approaches have also been used to 

investigate a large number of predictors of healthy and stable memory aging simultaneously. For 

example, a recent study identified a group of stable memory aging adults using data-driven 

analyses (G. P. McFall et al., 2019). Education, depressive symptoms, living status, body mass 

index, heart rate, and social activity were identified as predictors of stable memory aging via a 

machine learning approach (G. P. McFall et al., 2019). As these data-driven and machine 

learning approaches allow for large numbers of predictors (needed to represent the dynamic and 

complex phenomenon of brain and cognitive aging), the current study deploys these types of 

analyses on a large multi-modal prediction roster for all three research goals. 

For the second methodological challenge, we note that operational definitions of 

resilience that focus on cognitive maintenance in the documented context of specifically 

identified cognitive health-related adversities (e.g., amyloid pathology, AD genetic risk) are not 

universal. Indeed, some approaches and studies define resilience more generally as older adults 

remaining unimpaired or performing cognitively normal levels with advancing age as the 

principal (and only noted) ‘adversity’. For example, the common absence of cognitive 
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impairment in older adults aged 90+ has been previously used to operationalize resilience 

(Nienke Legdeur et al., 2018). A recent review provides a broad definition of resilience as “a 

general term that subsumes any concept that relates to the capacity of the brain to maintain 

cognition and function with aging and disease” (Stern et al., 2023, p.101).  present perspective 

acknowledges that aging per se is a generic and universal adversity in that it is typically 

accompanied by brain and cognitive decrements. However, the present perspective aims to 

refine this generic perspective with a longitudinal approach and a more mechanistic operation 

that focuses on a specific and theoretically important adversities that are present in some but not 

all aging adults (Dixon & Lachman, 2019). In the context of aging adults, the presence (or 

absence) of an AD-related adversity is key to the present conceptualizations of cognitive 

resilience, vulnerability, and brain/cognitive stability (Aiello Bowles et al., 2019; R. Dixon & 

M. Lachman, 2019). For example, some of these operational approaches of cognitive resilience 

have included: (a) measuring the discordance between global cognition and global pathology 

(S. Negash, Wilson, et al., 2013), (b) high cognitive performance within two years of death 

despite high or intermediate neuropathology at autopsy (Aiello Bowles et al., 2019) and, (c) 

high cognitive trajectories despite AD genetic risk or other AD-related adversity (Kaup et al., 

2015; McDermott et al., 2017).  In the current study, we operationalize these trajectories based 

on stable or declining (adverse) hippocampal trajectories and cognitive trajectory patterns. 

The Dissertation Study 

 In this study, we adapted an established approach consistent with the conceptual and 

methodological considerations detailed above (Kaup et al., 2015; McDermott et al., 2017). 

Specifically, among aging adults, cognitive resilience was operationally defined as relatively 

high and sustained cognitive (memory and executive function) trajectories despite objective 
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evidence of an AD-related adversity known to affect cognitive performance and change. 

Similarly, cognitive vulnerability was operationally defined as relatively low and declining 

cognitive trajectories despite little objective evidence of an AD-related adversity often 

associated with such decline patterns. Finally, brain/cognitive stability was operationally 

defined as relatively high and sustained cognitive trajectories in addition to no observed and 

objective evidence of an AD-related adversity.  

          Whereas some alternative approaches have based operational definitions on other AD-

related adversities (i.e., genetic risk), in this study we used objective evidence of substantial 

hippocampal atrophy as the pivotal adversity. Although hippocampal atrophy occurs in normal 

brain aging, higher levels of atrophy and accelerated rates of volume loss have been established 

as important neurodegeneration biomarkers of incident Mild Cognitive Impairment (MCI) or 

AD. In addition, hippocampal atrophy is strongly associated with memory decline. Associations 

between hippocampal atrophy and executive function have also been previously reported 

(Milne et al., 2018; O'Shea et al., 2016). We used longitudinal imaging (MRI) and cognitive 

(memory, executive function) data in order to identify groups of older adults who are 

cognitively resilient (i.e., hippocampal atrophy with stable/high cognitive trajectories), 

cognitively vulnerable (i.e., stable hippocampal trajectories but low/declining cognitive 

trajectories), and brain/cognitive stable (i.e., stable hippocampal trajectories and stable/high 

cognitive trajectories). 

Prior to the main research goals, we performed two pre-analytical foundational goals. 

The first was to identify statistically distinct classes of hippocampal volume trajectories. To 

accomplish this, we identified data-driven trajectory classes of left and right hippocampal 

volume (based on an algorithm of intercept and slope) in a large AD Neuroimaging Initiative 
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(ADNI) sample (n = 415) of older adults with up to six waves of MRI data. The second was to 

identify statistically distinct classes of cognitive trajectories. To accomplish this, the same 

sample was used to identify data-driven trajectory classes of two cognitive variables (episodic 

memory and executive function). With membership to both hippocampal and cognitive trajectory 

classes established, each individual in the sample was assigned to a group (i.e., resilient, 

vulnerable, stable) based on both of their respective hippocampal and cognitive memberships for 

the subsequent three main research goals. These groups, which are defined below, represent 

aging pathways, each potentially differentially affected and moderated by specific risk and 

protective factors.  

For the first research goal, we focused on the cognitive resilience group (i.e., low and 

declining hippocampal trajectories combined with high and stable cognitive trajectories) as 

compared to the non-resilient group (i.e., low and declining hippocampal trajectories combined 

with low and declining cognitive trajectories). We used random forest classifier analyses to 

identify the leading predictors of cognitive resilience from a large roster of available multi-modal 

factors. For the second research goal, we focused on the cognitive vulnerable group (i.e., high 

and stable hippocampal trajectories combined with low and declining cognitive trajectories) as 

compared to the non-vulnerable (stable) group (i.e., high and stable hippocampal trajectories 

combined with high and stable cognitive trajectories). We used random forest analyses to 

identify the leading predictors of cognitive vulnerability from a large roster of available multi-

modal factors. For the third research goal, we focused on the brain/cognitive stable group (i.e., 

high and stable hippocampal trajectories in conjunction with high and stable cognitive 

trajectories) as compared to the non-stable group (i.e., low and declining hippocampal 

trajectories in conjunction with low and declining cognitive trajectories). We used random forest 
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analyses to identify the leading predictors of brain/cognitive stability from a large roster of 

available multi-modal factors. 

For all three research goals we used the same multi-modal roster of biomarkers and risk 

factors in order to allow for comparisons of predictors and prediction performance across these 

alternative pathways. Specific predictors of each of these alternative aging pathways may 

provide key insights into mechanisms behind resilient, stable, and vulnerable trajectories of 

cognitive and brain aging. 

Methods 

Data Source: Alzheimer’s Disease Neuroimaging Initiative  

Data used in preparation of this article were obtained and downloaded from the ADNI 

database (adni.loni.usc.edu on June 30 2020). The ADNI was launched in 2003 as a public-

private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of 

ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission 

tomography (PET), other biological markers, and clinical and neuropsychological assessment 

can be combined to measure the progression of mild cognitive impairment (MCI) and early AD. 

For up-to-date information, see www.adni-info.org.  

Participants 

The initial source sample consisted of 415 initially cognitively normal participants (M 

age at baseline = 74.9, SD = 5.7, baseline range = 56.3-90.0 years, MMSE M = 29.1; ADAS-Cog 

M = 9.3, 49.9% Female) with at least one and up to six MRI scans processed by the Mayo clinic. 

The sample consisted of predominantly cognitively normal participants, with 88% of participants 

(n = 365) remaining so throughout the six waves. Of those who did not, 9.4% transitioned at 

least once to MCI (n = 39) and 2.7% transitioned at least once to AD (n = 11). See Table 1 for 

http://www.adni-info.org/
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full participant characteristics. Informed written consent was provided by all participants and 

IRB approval was obtained by our centers to conduct these analyses. 

Measures: Magnetic Resonance Imaging (MRI) 

 MRI data were provided by the ADNI neuroimaging team with full details about the 

image processing found on adni.loni.usc.edu. Briefly, cortical reconstruction and volumetric 

segmentation was performed with the FreeSurfer image analysis suite, which is documented and 

freely available for download online (http://surfer.nmr.mgh.harvard.edu/). The FreeSurfer 6.0 

longitudinal pipeline (Reuter et al., 2012) was used to process the sequential scans with 

procedure details extensively discussed elsewhere (A. Dale et al., 1999; A. M. Dale & Sereno, 

1993; Fischl & Dale, 2000; Fischl et al., 2001; Fischl et al., 2002; Fischl, Salat, et al., 2004; 

Fischl, Sereno, & Dale, 1999; Fischl, Sereno, Tootell, et al., 1999; Fischl, van der Kouwe, et al., 

2004; Xiao Han et al., 2006; Jovicich et al., 2006; Segonne et al., 2004). Quality control was 

conducted by the ADNI neuroimaging team and each brain segmentation was visually inspected 

through at least 20 evenly distributed coronal sections. In total, 17 images (0.6%) were removed 

due to failed segmentations. 

 For the current study, we used hippocampus (left and right) volume Z-scores derived 

from the MRI data for each participant by NOMIS (https://github.com/medicslab/NOMIS). 

NOMIS is a new open MRI tool designed to assess morphometric deviation from established 

norms in adults (Potvin et al., 2021). The left and right hippocampal volume z-scores were 

controlled for scanner vendor, magnetic field strength, image quality, and intracranial volume. 

Measures: Memory and Executive Function 

We used two composite variables developed and validated within ADNI to represent 

important domains of cognition in our analyses. The first composite variable was an established 

http://adni.loni.usc.edu/
http://surfer.nmr.mgh.harvard.edu/
https://github.com/medicslab/NOMIS
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memory composite variable (ADNI-Memory) to measure memory for up to six waves (7.1 

years). This composite variable includes multiple indicators derived from the Rey Auditory 

Learning Test, AD Assessment Schedule (Cognition), Mini-Mental State Examination and 

Logical Memory tasks (Crane et al., 2012). The second composite variable was an established 

executive function composite variable (ADNI-EF) to measure executive function for up to six 

waves (7.1 years). This composite variable included the following indicators: WAIS-R Digit 

Symbol Substitution, Digit Span Backwards, Trails A and B, Category Fluency, and Clock 

Drawing (Gibbons et al., 2012). The memory and executive function composite variables were 

used simultaneously to represent cognition in our pre-analytic foundational goal. The pre-

analytic foundational goal procedures are explained in detail below. 

Measures: Risk Factors and Biomarkers  

We implemented machine learning classifier models for testing AD-related biomarker 

and risk factor importance for predicting cognitive resilience, cognitive vulnerability, and 

cognitive and brain stability. Specifically, we selected 42 putative predictors from eight 

modalities: biological (e.g., CSF t-tau; n = 6), demographic (e.g., sex; n = 4), genetic (e.g., 

APOE; n = 2), vascular and metabolic (e.g., pulse pressure; n = 8), lifestyle (e.g., smoking 

history; n = 3), comorbidities (e.g., cardiovascular disease; n = 17), and familial background 

(e.g., paternal dementia history; n = 2). A full table with included biomarkers and risk factors is 

presented at the end of this chapter (see Table 2). Missing biomarker data across most modalities 

were generally quite low for the entire sample (range = 0 to 3.9%) with the exception of the 

biological modality in which only a subset of participants provided data due to the ADNI 

biosample collection design (range = 33.7 to 54.2%). Missing biomarker and risk factor data 

were handled using a sophisticated imputation approach (IterativeImputer, Python 3.9; 
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www.python.org) which utilizes regularized linear regression to impute missing data. Variables 

with the least missing data were imputed first and followed by variables with successively more 

missing data.  

Analyses 

Pre-analytic Foundational Goals: Data-Driven Classes of HC Volume and Cognition  

We used latent class growth analyses (LCGA) in Mplus 8.2 in order to identify 

statistically separable trajectory classes of (a) hippocampal volume (left and right) and (b) 

cognition (memory and executive function)  (Muthén & Muthén, 2018; Ram & Grimm, 2009). 

The first foundational analysis investigated hippocampal volume. In this analysis, left and right 

hippocampal volume were included in the same LCGA model but with separate intercept and 

slope parameters. The second foundational analysis investigated cognition. In this analysis, 

memory and executive function were also included simultaneously in the same LCGA model 

with separate intercept and slope parameters. This allowed us to classify individuals into 

hippocampal volume groups based on the simultaneous consideration left and right hippocampus 

trajectories and into cognitive groups based on the simultaneous consideration of memory and 

executive function trajectories. 

LCGA utilizes a data-driven algorithm of level and slope in order to identify distinct 

classes based on growth patterns while constraining the variances of these parameters within 

each class. As the ADNI longitudinal data are distributed intra-individually across chronological 

age, we used age as the metric of change in the LCGA. Therefore, age is included directly in the 

analyses and the model co-varies for increasing age. As is recommended in the mixture 

modelling literature, we first identified a one-class baseline growth model. We then tested 

models with additional classes until model non-identification or the emergence of a small 
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(<10%) class. For models with adequate class separation (entropy values greater than 0.8), final 

model selection was informed by intercept and slope parameter interpretation as well as lower 

values of the following recommended statistical fit indices: Akaike information criterion (AIC), 

Bayesian information criterion (BIC), and sample-size adjusted BIC (SABIC) (Masyn, 2013a). 

In the case of similar model selection criteria, more parsimonious models were preferred 

(Masyn, 2013a). As LCGA utilizes maximum likelihood estimation methods for missing data, all 

participants are included in these analyses as long as they contributed at least one wave of both 

MRI and cognitive data. 

Research Goal 1, 2 and 3: Data-Driven Prediction of Cognitive Resilience, Cognitive 

Vulnerability, and Brain/Cognitive Stability in Aging  

Using a multi-modal set of 42 biomarkers, we tested three separate research goals: the 

prediction of (a) cognitive resilience, (b) cognitive vulnerability, and (c) brain/cognitive stability. 

We used three machine learning (ML) classifier algorithms in Python (3.9; www.python.org) 

(Pedregosa et al., 2011). The purpose of including three alternative algorithms for each research 

goal was to compare their performance in each analysis and select the best performing algorithm 

for final reporting and interpretation within each goal (G. P. McFall, Bohn, L., Drouin, S.M., 

Gee, M., Han, W., Li, L., Camicioli, R., & Dixon, R.A., 2023; Tseng et al., 2020), We selected  

random forest (RF; sklearn RandomForestClassifier), gradient boosting (GB; sklearn 

GradientBoostingClassifier) and K-Nearest Neighbours (KNN; sklearn KNeighborsClassifier). 

RF classification is an ensemble machine learning algorithm which combines multiple decision 

trees independently to classify an output (Géron, 2022; Pedregosa et al., 2011). For the RF 

algorithm, the predicted output is determined based on the aggregation of all the trees via 

majority voting. GB classification is also an ensemble machine learning algorithm which 

about:blank
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combines multiple decision trees sequentially to classify an output. For the GB algorithm, the 

predicted output is determined by the sum of all trees which are individually weighted. KNN is a 

non-parametric machine learning algorithm which classifies outputs based on a distance metric 

(i.e., Euclidean distance). For the KNN algorithm, the classification of the output is based on the 

majority class of its K nearest neighbor as determined by the Euclidean distance (Géron, 2022; 

Pedregosa et al., 2011). All three machine learning algorithms account for possible interactions 

and allow for the inclusion of large number (p > n) of mixed-type predictors which is typically 

discouraged in conventional parametric statistical analyses (i.e., logistic regression) (Hapfelmeier 

& Ulm, 2013; Pedregosa et al., 2011).  

For each research goal, we used stratified five-fold cross-validation to evaluate both 

internal and external validation. Cross-validation is recommended in the case of single or smaller 

samples unsuited for the creation of separate adequately large training and testing sets (Hastie et 

al., 2009). In five-fold cross validation, each pairwise dataset was subdivided into five folds, 

with four of the five folds used for training (internal validation) and the remaining fold used for 

testing (external validation). This process was repeated until all five folds have been used once 

for testing.  

For each research goal, we built all three ML algorithms and estimated missing data 

within a sklearn pipeline simultaneously. This procedure allowed for all missing data to be 

imputed within each cross-validation fold and it avoided potential data leakage issues. The 

pipelines consisted of the following steps conducted at each fold: (a) missing data imputation 

(using IterativeImputer, a multivariate imputation approach) and (b) ML classification with three 

models (RF, GB, KNN). In addition, for each training fold, several combinations of possible 

hyperparameters were tested (via sklearn GridSearchCV) in order to identify the best 
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hyperparameters for each of the ML algorithms. For the RF and GB algorithms, the tested set of 

hyperparameters were ‘n_estimators [100, 500, 750, 1000],’ ‘max_depth [3, 5, 10, 15, None],’ 

and ‘max_features [srqt, log2, None].’ For the KNN algorithm, these were ‘n_neighbors [3, 5, 7, 

9],’ ‘weights [uniform, distance],’ and ‘algorithm [ball_tree, kd_tree, brute].’ The average 

evaluation metrics (across cross-validation folds) for the RF, GB, and KNN algorithms were 

compared. Then, the ML algorithm with the best performing evaluation metrics on average was 

selected as the final model and was re-fit with the best identified hyperparameters.  

We used the following evaluation indices (averaged across the cross-validation folds) to 

select the best performing ML algorithm: (a) area under the ROC curve (AUC), (b) accuracy (i.e., 

% correct classification), (c) precision (i.e., % of correct positive classifications), (d) recall (i.e., 

% of those in the positive class who are correctly predicted), and (e) F1 score, a harmonic mean 

of precision and recall recommended for imbalanced samples. AUC values can be interpreted as 

follows: values between 0.6-0.7 are considered to have mild distinguishing power, values 

between 0.7-0.8 are considered to have moderate distinguishing power, and values over 0.8 are 

considered to have strong/excellent distinguishing power (Duan et al., 2020; Mandrekar, 2010). 

Ranging from 0-1, higher values of accuracy, precision, recall and F1 indicate better 

classification. 

For further interpretative purposes, we determined variable importance for each research 

goal using the final fitted ML models. We used Tree Shapley Additive exPlanation (SHAP) 

values (Lundberg, Erion, & Lee, 2018) to identify the leading predictors of cognitive resilience, 

cognitive vulnerability, and brain and cognitive stability. Originating from cooperative game 

theory, Tree SHAP values take into account both main effects and interaction effects (coalitions 

of all predictors) to estimate relative variable importance in the context of all other variables 
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included in the tree-based model. As such, each possible combination of variables is used to 

estimate the importance of individual variables (Lundberg et al., 2018).  

In this study, we provide two established Tree SHAP plots: (a) SHAP waterfall plots and 

(b) SHAP summary plots. First, SHAP waterfall plots display the average absolute SHAP values 

as well as the composition (individual contribution) and cumulative (total contribution) ratio for 

each predictor on the model output. The SHAP waterfall plots were used to compare the leading 

predictors that explained (based on the cumulative ratio) a significant portion of the ML model. 

We begin by reporting the leading predictors corresponding to four cumulative ratio benchmarks: 

40%, 50%, 60% and 70%. Second, SHAP summary plots provide information on predictor 

magnitude, prevalence and direction. Predictors are shown in descending order of importance. 

Each individual’s SHAP value is plotted across the x-axis for each predictor. Positive SHAP 

values predict membership to the positive class (e.g., cognitive resilience, cognitive 

vulnerability, brain/cognitive stability) whereas negative SHAP values predict membership to the 

alternative (opposite) group. The absolute value of Tree SHAP values relates to the magnitude of 

the predictor effect, such that a higher absolute value (further to the right of the plot) indicates a 

stronger predictor effect. The colour of the dots display the value of the predictor (low = blue, 

high = red). We subsequently discuss and interpret the leading six predictors for each research 

goal using these SHAP summary plots. In sum, Tree SHAP values provide meaningful 

information on the (a) direction, (b) magnitude, and (c) prevalence of prediction effects for each 

predictor variable and are reported here for interpretative purposes. 
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Results 

Pre-analytic Foundational Goals: Data-Driven Classes of HC Volume and Cognition  

HC Volume Trajectory Classes. We tested the 2-, 3- and 4-class LCGA models of HC 

volume trajectories. In these 2-, 3- and 4-class models, left and right hippocampus volume were 

included within the same LCGA but were specified to load onto separate intercept and slope 

parameters. All three tested models had acceptable entropy (>0.8) and were considered candidate 

models (see Table 3 for detailed fit indices for all models). The 2-class model demonstrated 

excellent precision of classification with an entropy value of 0.93 and represented the inflection 

point of the AIC and BIC values across all tested models. The final 2-class solution parameter 

estimates for the intercept and slope values of LHC and RHC can be found in Table 4. Figure 1a 

displays the six-wave individualized trajectory plots for all HC measurements class. The highest 

class (n = 236) was characterized by a larger proportion of older adults with higher levels and 

relatively sustained hippocampal volume across time. The lowest class (n = 179) was 

characterized by a minority group of overall lower (more atrophied) hippocampal volume 

trajectories.  

Memory and Executive Function Trajectory Classes. We tested 2-, 3- and 4-class LCGA 

models of memory and executive function trajectories. For the 2-, 3- and 4-class models, 

memory and executive function were specified to load onto separate intercept and slope 

parameters within the same LCGA. All three tested models had acceptable entropy (>0.8) and 

were considered candidate models (see Table 3 for detailed fit indices for all models). Similar to 

the HC trajectory models, the 2-class model demonstrated excellent precision of classification 

with an entropy value of 0.88 and represented the inflection point of the AIC and BIC values 

across all tested models. The final 2-class solution parameter estimates for memory and 
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executive function intercepts and slopes can be found in Table 5. Figure 1b displays the six-wave 

individualized trajectory plots for the memory and executive function composite variables by 

class. The highest class (n = 164) was characterized by a smaller proportion of older adults with 

higher levels and relatively sustained memory and executive function trajectories across time. 

The lowest class (n = 251) was characterized by a majority group of overall lower memory and 

executive function trajectories. 

The integrated results of these two pre-analytic foundational analyses provided the bases 

for classifying individuals as members of one of four groups (see Table 6). Of the 179 

participants classified as having AD-related adversity based on being in the lowest hippocampal 

trajectory class, 107 were also classified as in the lowest cognitive trajectory class (i.e., 

low/declining trajectories) and 72 were classified as being in the highest cognitive trajectory 

class (i.e., cognitive resilience). Of the 236 participants classified as having very little AD-

related adversity based on being in the highest hippocampal trajectory class, 144 were also 

classified as in the lowest cognitive trajectory class (i.e., cognitive vulnerability) and 92 were 

classified as being in the highest cognitive trajectory class (i.e., brain and cognitive stability). 

The lowest/declining trajectory class was used as the prediction benchmark group for Research 

Goal 1 and 3. The resilient trajectory class was used as the prediction benchmark group for 

Research Goal 2. 

Research Goal 1, 2 and 3: Data-Driven Prediction of Cognitive Resilience, Cognitive 

Vulnerability, and Stable Brain/Cognitive Aging  

In a series of three pairwise comparisons, we used ML algorithms within a sklearn 

pipeline to identify important biomarkers which differentiate three pathways of brain and 

cognitive aging (i.e., cognitive resilience, cognitive vulnerability, and brain and cognitive 
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stability). For each research goal, we report the best fitting algorithm (RF, GB, KNN) and the 

best selected hyperparameters. We then report the leading predictors corresponding to four 

cumulative ratio benchmarks: 40%, 50%, 60%, and 70% (Table 7, 8, and 9). For comparison 

purposes, we center our discussion and interpretation on the leading six predictors for each 

analysis. 

Research Goal 1: Predictors of Cognitive Resilience (vs. Low/Declining Trajectories). 

Three ML classification algorithms were tested to predict membership to the cognitive resilience 

group (vs. low/declining). These were RF (accuracy = 0.62, precision = 0.55, recall = 0.32, AUC 

= 0.63, F1 = 0.39), GB (accuracy = 0.62, precision = 0.53, recall = 0.38, AUC = 0.67, F1 = 0.44), 

and KNN (accuracy = 0.56 precision = 0.43, recall = 0.39, AUC = 0.53, F1 = 0.41). We 

identified GB ('max_depth': 5, 'max_features': 'log2', 'n_estimators': 100) as the best performing 

algorithm for the prediction of cognitive resilience (Table 10). Based on the SHAP waterfall plot 

(Figure 2), four predictors explained 40% of the ML model, six predictors explained 50% of the 

ML model, nine predictors explained 60% of the ML model, and 12 predictors explained 70% of 

the ML model. The leading predictors for each of these cumulative ratio benchmarks are shown 

in Table 7. The leading six predictors overall which discriminated cognitive resilience from 

low/declining trajectories originated from two domains of risk (i.e., biological and demographic). 

In order of importance, these predictors were: higher CSF Aβ1-42, higher education, lower 

plasma Aβ1-42, lower CSF p-tau, lower plasma Aβ1-40, and lower age (Figure 3).  

Research Goal 2: Predictors of Cognitive Vulnerability (vs. Resilient Trajectories). Three 

ML classification algorithms were tested to predict membership to the cognitive vulnerability 

group (vs. cognitive resilience). These were RF (accuracy = 0.65, precision = 0.68, recall = 0.87, 

AUC = 0.70, F1 = 0.77), GB (accuracy = 0.61, precision = 0.67, recall = 0.80, AUC = 0.62, F1 = 
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0.73), and KNN (accuracy = 0.61, precision = 0.67, recall = 0.82, AUC = 0.53, F1 = 0.73).  We 

identified RF ('max_depth': 5, 'max_features': ‘None’, 'n_estimators': 750)  as the best 

performing algorithm for the prediction of cognitive resilience fairly (Table 10). Based on the 

SHAP waterfall plot (Figure 4), two predictors explained 40% of the ML model, three predictors 

explained 50% of the ML model, four predictors explained 60% of the ML model, and six 

predictors explained 70% of the ML model. The leading predictors for each of these cumulative 

ratio benchmarks are shown in Table 8. The leading six predictors overall which discriminated 

cognitive vulnerability from stable/sustained trajectories originated from four domains of risk 

(i.e., demographic, biological, vascular/metabolic, lifestyle). In order of importance, these 

predictors were: lower education, higher plasma Aβ1-40, higher BMI, higher age, lower glucose, 

higher plasma Aβ1-42 (Figure 5).   

Research Goal 3: Predictors of Stable/Sustained Trajectories (vs. Low/Declining 

Trajectories). Three ML classification algorithms were tested to predict membership to the brain 

and cognitive stability group (vs. low/declining). These were RF (accuracy = 0.60, precision = 

0.58, recall = 0.51, AUC = 0.64, F1 = 0.54), GB (accuracy = 0.58, precision = 0.54, recall = 

0.23, AUC = 0.66, F1 = 0.32), and KNN (accuracy = 0.51, precision = 0.48, recall = 0.45, AUC 

= 0.56, F1 = 0.46).  We identified RF ('max_depth': ‘None’, 'max_features': ‘log2’, 

'n_estimators': 100) as the best performing algorithm for the prediction of cognitive resilience 

fairly (Table 10). Based on the SHAP waterfall plot (Figure 6), six predictors explained 40% of 

the ML model, eight predictors explained 50% of the ML model, 11 predictors explained 60% of 

the ML model, and 15 predictors explained 70% of the ML model. The leading predictors for 

each of these cumulative ratio benchmarks are shown in Table 9. The leading six predictors 

overall which discriminated stable/sustained trajectories from low/declining trajectories 
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originated from four domains of risk (i.e., genetic, biological, demographic, vascular/metabolic). 

In order of importance, these predictors were: higher CSF Aβ1-42, lower polygenic risk score, 

female sex, higher plasma Aβ1-42, higher pulse pressure, and lower age (Figure 7).  

Discussion 

We used a sequence of data-driven approaches in order to identify and predict three 

objectively observed brain and cognitive aging pathways: cognitive resilience, cognitive 

vulnerability, and brain and cognitive stability. We first used a data-driven approach based on the 

combination of intercept and slope to identify separable classes of hippocampal (left and right) 

volume and cognitive (memory and executive function) trajectories. Within one longitudinal 

sample of cognitively unimpaired aging adults, we identified and then selectively linked two 

coordinated sets of statistically separable trajectory classes: hippocampal volume (left, right) 

trajectories and cognitive (memory, executive function) trajectories. Based on each individual’s 

combination of class memberships for hippocampal trajectories (high/low) and cognitive 

trajectories (high/low), we classified them into one of four groups: (a) cognitively resilient, (b) 

cognitively vulnerable, (c) brain and cognitively stable, and (d) low/declining. We expected and 

focused on the first three of these alternative pathways, with the latter serving as the benchmark 

group in two analyses. Subsequently, we applied three ML algorithms (RF, GB, KNN) and SHAP 

value explanation to identify and characterize the leading predictors of each of the three aging 

pathways. The identification of leading predictors of differential brain and cognitive aging 

pathways further our understanding of contributing factors to and potential mechanisms of 

different facets of both (a) declining (e.g., vulnerability) and (b) desirable/healthier (e.g., 

resilience, stability) aging trajectories. In this section, we discuss the leading risk factors and 

biomarkers which predicted cognitive resilience, cognitive vulnerability and brain and cognitive 
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stability. We first report the leading predictors which explained 40, 50, 60 and 70% of the ML 

model. Second, we interpret and focus on the top six predictors for each research goal and the 

associated amount of the model explained. Third, we discuss shared predictors across the 

prediction models (Figure 11).  

For the first research goal, four predictors (CSF Aβ1-42, education, plasma Aβ1-42, CSF 

p-tau) explained 40% of the ML model. Six predictors (plasma Aβ1-40, age) explained 50% of the 

model. Nine predictors (APOE, BMI, smoking) explained 60% of the model. Twelve predictors 

(polygenic hazard score, medical history of allergies/drug sensitivities, cardiovascular medical 

history) explained 70% of the model. The leading six predictors of cognitive resilience to declining 

HC trajectory adversity explained 50% of the ML prediction model. These were: higher CSF Aβ1-

42, higher education, lower plasma Aβ1-42, lower CSF p-tau, lower plasma Aβ1-40, and younger 

age were identified as leading predictors of cognitive resilience (vs. low/declining). We identified 

higher levels of CSF Aβ1-42 as the leading predictor of cognitive resilience. Previously, levels of 

CSF Aβ1-42 have been found to be inversely related to amyloid burden in the brain. Lower levels 

have been identified as key biomarkers of incipient AD or cognitive impairment in other 

neurodegenerative diseases (Hampel & Blennow, 2022; Jack Jr et al., 2018; Siderowf et al., 2010). 

Our results are indicative that older adults with less intensive doses of this prominent AD-related 

neuropathological burden (higher CSF levels) are more likely to exhibit cognitive resilience to 

adverse HC trajectories. Specifically, we note that in higher levels of CSF Aβ1-42, older adults 

with hippocampal atrophy may be less likely to exhibit cognitive impairment and decline. This 

suggests that resilience to declining cognitive trajectories in cognitively normal older adults is 

closely related to specific (amyloid) neuropathological burden rather than broad hippocampal 

neurodegeneration. Notably, older adults who may be considered to be at a higher risk of a 
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preclinical (higher amyloid burden) phase of disease are less likely to exhibit resilience to 

hippocampal atrophy.  

Education (more years of schooling) was the second leading predictor of cognitive 

resilience. Education has been consistently associated with cognitive resilience in previous studies 

and related ADRD literature (Alipour & Goldust, 2016; Josefsson et al., 2012; Kaup et al., 2015; 

Stern, 2012). This association has been mainly explained via cognitive reserve, whereby older 

adults with higher educational attainment have gathered more cognitive reserve over their lifespan 

and are therefore more equipped to tolerate AD-related pathology and neurodegeneration with 

advancing age (K. J. Anstey, 2014; K. J. Anstey & Dixon, 2021; Kaarin J. Anstey, Ranmalee 

Eramudugolla, Diane E. Hosking, Nicola T. Lautenschlager, & Roger A. Dixon, 2015; Montine et 

al., 2019; Rogalski et al., 2020; Stern, 2012; Stern et al., 2023). Our current findings are in line 

with this interpretation; as in this sample of cognitively unimpaired aging adults, higher education 

was associated with belonging to a higher cognitive trajectory class in the context of hippocampal 

atrophy (i.e., resilience). 

We identified lower levels of plasma Aβ1-42 as the third leading predictor of cognitive 

resilience. Associations between plasma measures of Aβ1-42 and cognitive impairment, 

neurodegeneration, and dementia risk have been inconsistent, leading to some contradictory 

interpretations (Alcolea et al., 2021; Chouraki et al., 2015; Lambert et al., 2009; van Oijen, 

Hofman, Soares, Koudstaal, & Breteler, 2006). These contradictory results have been noted to be 

likely due to the low concentration of proteins in plasma which requires extremely sensitive 

measurement approaches for detection and quantification (Alcolea et al., 2021). Some studies have 

found plasma Aβ1-42 to be associated with risk of AD and cognitive impairment in cognitively 

normal older adults (Lee et al., 2023). Specifically, higher levels of plasma Aβ1-42 has been found 
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to be associated with more cognitive decline or preclinical AD (MCI) in older adults (Lee et al., 

2023; Mamo et al., 2008). In contrast, other studies have found that lower levels of plasma Aβ1-

42 were associated with greater risk of converting to AD in MCI (Hanon et al., 2022) or greater 

hippocampal atrophy (Hilal et al., 2018). In our study, lower levels of plasma Aβ1-42 were 

predictive of cognitive resilience in cognitively normal older adults, providing additional evidence 

that lower levels of plasma Aβ1-42 may indicate protection from AD-related neurodegeneration  

Of the six leading predictors, higher levels of CSF p-tau was the fourth leading predictor 

of cognitive resilience. Increased levels of CSF p-tau are an established AD biomarker and has 

been found to sensitively distinguish between normal aging adults, MCI, and AD (Hampel & 

Blennow, 2022). Increased levels of CSF p-tau have also been found to predict conversion from 

MCI to AD (Hampel & Blennow, 2022) and predict cognitive impairment in Parkinson’s disease 

(X. Hu, Yang, & Gong, 2017). In the current study, we found that lower levels of CSF p-tau were 

associated with cognitive resilience. This is concurrent with previous findings in which higher 

levels of CSF p-tau were negatively associated with cognitive resilience defined as a longitudinal 

residual of cortical thickness and cognitive performance (Svenningsson, Ossenkoppele, Stomrud, 

Palmqvist, & Hansson, 2021). Our current results provide further evidence that levels of CSF p-

tau are associated with cognitive resilience in the face of AD-related brain atrophy. However, we 

note that despite the CSF p-tau mean value being relatively normal for a cognitively normal sample 

(M = 30.5 pg/ml), the range (6.9-156 pg/ml) was somewhat unusual compared to other published 

ADNI studies (Duits et al., 2021; Toledo, Xie, Trojanowski, & Shaw, 2013). 

Lower levels of plasma Aβ1-40 were the fifth leading predictor of cognitive resilience. 

Similarly to plasma Aβ1-42, associations between levels of plasma Aβ1-40 and risk of AD or 

cognitive impairment have been mixed (Alcolea et al., 2021; Chouraki et al., 2015; Lopez et al., 
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2019; van Oijen et al., 2006). However, many studies have consistently identified positive 

associations between levels of plasma Aβ1-40 and risk of AD (van Oijen et al., 2006; Yang, Huang, 

Hsieh, & Huang, 2020). For example, plasma Aβ1-40 levels have been noted to be increased in 

those at risk of AD (i.e., familial history) and in those with more advanced dementia (as compared 

to mild dementia) (van Oijen et al., 2006; Yang et al., 2020). We found that plasma levels of Aβ1-

40 were strongly associated with cognitive trajectory class; in that they indicate maintained higher 

cognitive levels over 7.1 years despite hippocampal atrophy. 

The sixth leading predictor of cognitive resilience identified in this research goal was 

younger age. Older chronological age has been consistently reported as a reliable risk factor for 

pathological outcomes (e.g., impairment, cognitive decline, neurodegenerative disease) in brain 

and cognitive aging. Specifically, age is still considered the strongest risk factor for AD and is 

among the “triad” of AD risk factors (along sex and APOE genetic risk) (Clifford R Jack et al., 

2015). Our results indicate that younger age is also predictive of cognitive resilience, and thus is 

related to maintenance of higher cognitive trajectories even in the face of objective AD-related 

adversity. 

For the second research goal, we examined an under-explored (and relatively undesirable) 

aging trajectory pattern which is characterized here by low and declining cognitive trajectories in 

the context of intact hippocampal trajectories (little to no adversity due to this common potential 

source). Although not previously examined, our foundational analyses detected a substantial 

membership in a group meeting these empirical criteria. It is possible that this subset of older adults 

are experiencing objective declining trajectories due to other unexplained adversities, such as an 

accumulation of risk factors for non-AD-related cognitive impairment or preclinical phases of 

other neurodegenerative diseases characterized by exacerbated atrophy in other brain regions (e.g., 
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frontotemporal dementia, lewy body dementia). Two predictors (education, plasma Aβ1-40) 

explained 40% of the ML model. Three predictors (BMI) explained 50% of the model. Four 

predictors (age) explained 60% of the model. Six predictors (glucose level, plasma Aβ1-42) 

explained 70% of the model. The leading six predictors of cognitive vulnerability explained 70% 

of the ML prediction model. These were: lower education, higher plasma Aβ1-40, higher BMI, 

older age, lower glucose, and higher plasma Aβ1-42 were identified as leading predictors of 

cognitive vulnerability (vs. cognitive resilience). The leading predictor was lower education. As 

higher education was also a predictor of cognitive resilience (i.e., the conceptual flipside and more 

desirable outcome to cognitive vulnerability), our finding that less education predicts cognitive 

decline even in those without hippocampal atrophy suggests that education has an important role 

in modifying risk for cognitive impairment and decline irrespective of AD-related brain atrophy.  

Higher levels of plasma Aβ1-40 was the second leading predictor of cognitive 

vulnerability. This result is consistent with our findings in our first research goal, whereby lower 

levels of plasma Aβ1-40 predicted cognitive resilience. Higher levels of plasma Aβ1-40 have been 

previously associated with increased risk of AD and with severe cases of dementia (van Oijen et 

al., 2006; Yang et al., 2020). We extend these findings and show that plasma Aβ1-40 levels are 

associated with membership to a group of cognitively normal older adults characterized by low 

and declining cognitive trajectories but high and stable hippocampal trajectories. This may 

highlight a subgroup of individuals with higher levels of Aβ1-40 experiencing objective cognitive 

impairment due to other unmeasured adversities. For example, CSF levels of Aβ1-40 have been 

associated with risk of non-AD neurodegenerative diseases (e.g., frontotemporal dementia, 

cerebral amyloid angiopathy, multiple sclerosis) (Lehmann et al., 2020). Our results suggest that 
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these associations may also be true for plasma concentrations of Aβ1-40 and should be tested in 

clinical populations. 

We identified higher BMI as the third leading predictor of cognitive vulnerability. 

Although obesity has been identified as a mid-life risk factor for dementia, associations in later 

life have been less clear (Livingston et al., 2020; Bohn et al., 2020; Michaud et al., 2018). Looking 

specifically at older adults aged 76 and over, one study found that higher BMI at baseline to be 

associated with more rapid cognitive decline (Michaud et al., 2018). Other studies have found 

opposite associations, with lower BMI being associated with higher risk of AD and dementia - 

likely due to the rapid weight loss that can occur in preclinical phases of AD (Nguyen, Killcross, 

& Jenkins, 2014). Notably, higher BMI in general has been consistently linked with other 

comorbid vascular and metabolic syndromes which put older adults at risk for cognitive decline 

(Alosco et al., 2017; Bischof & Park, 2015; Nash & Fillit, 2006).This indicates that the relationship 

between BMI and cognition which may be unrelated to typical AD-mechanistic cognitive decline 

(e.g., hippocampal atrophy) and related to unexamined adversities (e.g., increased vascular 

pathology). 

Older age was the fourth leading predictor of cognitive vulnerability. Notably, we 

identified younger age as a leading predictor of cognitive resilience in our first research goal. As 

such, chronological age appears to predict opposing dynamics of brain and cognitive aging 

pathways: resilience and vulnerability. Specifically, older chronological age may predict 

cognitively vulnerability as it is likely associated with other aging risk factors which may increase 

risk of non-clinical cognitive decline. his result is concordant with previous findings suggesting 

that risk of negative or undesirable brain and cognitive aging outcomes (e.g., vulnerability, AD) 
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increases with age (Riedel, Thompson, & Brinton, 2016; Sliwinski, Hofer, Hall, Buschke, & 

Lipton, 2003).   

We observed that lower glucose was the fifth leading predictor of cognitive vulnerability 

in the context of HC adversity. This could indicate that glucose levels affect brain health and 

cognitive health differently - in that lower levels predict stable hippocampal volumes but 

negatively affect cognitive function. The relationship between glucose levels and cognitive health 

has been reported as complex in related literatures. For example, higher fasting glucose and 

glycated hemoglobin have been associated with increased risk of AD, severe hypoglycemia (low 

blood glucose levels) has also been consistently associated with poorer cognitive outcomes 

(Feinkohl et al., 2014) (Wheeler et al., 2017).  Our findings suggest that even non-severe and 

clinically normal lower glucose levels (M = 97.3 mg/dl for the cognitively vulnerable group) may 

be a risk factor for cognitive declining trajectories in a subgroup of older adults. Interestingly, a 

medical history of diabetes did not appear as a leading predictor in our analysis. This suggests that 

glycemic control – a key component of meeting the brain’s energy demand – more precisely 

explains the relationship between metabolic health and cognitive and brain health (Wheeler et al., 

2017). 

We found that higher plasma Aβ1-42 was the sixth leading predictor of cognitive 

vulnerability. Notably, we identified a complementary result in our first research goal for the 

opposing dynamic to cognitive vulnerability (i.e., cognitive resilience), whereby lower levels of 

plasma Aβ1-42 were predictive of cognitive resilience. A previous cross-sectional study have 

found a positive association between plasma Aβ1-42 and hippocampal volume (Hilal et al., 2018). 

No studies have investigated plasma biomarkers of AD in the context of hippocampal volumes in 

conjunction with cognitive trajectories. Results from our first two research goals in parallel with 
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that of Hilal and colleagues (2018) suggest that higher circulating levels of Aβ1-42 may not only 

be indicative of more stable hippocampal trajectories, but also of simultaneous declining cognitive 

trajectories. This subset of older adults may thus be at-risk for further cognitive decline due to 

other risk factors or adversities that were unstudied in the present research (e.g., APOE genetic 

risk). 

For the third research goal, six predictors (CSF Aβ1-42, polygenic hazard score, sex, 

plasma Aβ1-42, pulse pressure, age) explained 40% of the ML model. Eight predictors (BMI, 

diastolic blood pressure) explained 50% of the model. Eleven predictors (CSF p-tau, medical 

history of endocrine-metabolic disorders, pulse rate) explained 60% of the model. Fifteen 

predictors (geriatric depression scale score, CSF t-tau, systolic blood pressure) explained 70% of 

the model. The leading six predictors of brain and cognitive stability explained 70% of the ML 

prediction model. These were: higher CSF Aβ1-42, lower polygenic risk score, female sex, higher 

plasma Aβ1-42, higher pulse pressure, and younger age. As with cognitive resilience, higher levels 

of CSF Aβ1-42 (i.e., lower amounts of Aβ1-42 in the brain) were the leading predictor of brain 

and cognitive stability. We show that CSF Aβ1-42, a robust biomarker and neuropathological 

hallmark of AD, is associated with healthier and more desirable trajectories in aging  (Hampel & 

Blennow, 2022; Jack Jr et al., 2018; Siderowf et al., 2010). As CSF Aβ1-42 also predicted 

cognitive resilience, our results highlight how older adults with less AD-related amyloid burden 

are more likely to either (a) maintain their brain and cognitive health, or alternatively (b) maintain 

their cognitive health despite declining brain health. 

The second leading predictor of brain and cognitive stability was a lower polygenic risk 

score. The ADNI polygenic risk score was computed using APOE and 31 other genetic variants 

whereby a lower score indicates lower cumulative incidence rate of AD (Desikan et al., 2017). In 
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our study, brain and cognitive stability was predicted by a lower AD polygenic risk score. Older 

adults at lower genetic risk for AD were thus predicted to exhibit maintained hippocampal and 

cognitive trajectories (as compared to low and declining), even in cognitively normal populations. 

This is in line with previous findings in which being at AD risk via polygenic risk score, but not 

APOE e4, predicted worse cognitive trajectories in cognitively unimpaired older adults (Kauppi, 

Rönnlund, Nordin Adolfsson, Pudas, & Adolfsson, 2020). Polygenic risk scores relating to AD 

risk have also been associated with cortical thickness in cognitively normal populations (Sabuncu 

et al., 2012). Our results extend these findings in that polygenic risk applies to the healthier 

‘flipside’ to aging decline and impairment: brain and cognitive stability. This finding supports the 

idea that understanding pathways away from AD risk represent an important facet of AD risk 

reduction. In brief, healthier aging pathways such as stability likely have similar mechanisms, risk 

factors, and biomarkers (in opposing direction) to AD-related impairment and decline – including 

genetic risk. 

We identified female sex as the third leading predictor of brain and cognitive stability. 

Female sex has been consistently associated with better cognitive performance in older age and 

greater stability over time in cognitively normal older adults (de Frias, Nilsson, & Herlitz, 2006; 

Josefsson et al., 2012; T Howrey, A Raji, M Masel, & Kristen Peek, 2015; Z. Wu, Phyo, Al-Harbi, 

Woods, & Ryan, 2020). For example, a main predictor of longitudinal successful (stable) memory 

aging has been found to be female sex (Josefsson et al., 2012). Similarly, females have been 

reported to exhibit less hippocampal atrophy than males (Fraser et al., 2021) and female sex has 

been previously found to be a predictor of higher (less atrophied) hippocampal trajectory classes 

(S. M. Drouin et al., 2022). In this study, we confirm a dual advantage in which cognitively normal 
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females appear to both maintain better brain and cognitive health (i.e., stable vs declining 

trajectories) as compared to cognitively normal males.  

Our study also identified that higher levels of plasma Aβ1-42 were the fourth leading 

predictor of stable (and desirable) brain and cognitive trajectories in older age. Lower levels have 

also been associated with adverse outcomes such as increased risk of transitioning to MCI 

(Rembach et al., 2014) and accelerated progression of white matter hyperintensities (Kaffashian, 

2014).. Only one study has specifically investigated associations between hippocampal volume 

and plasma Aβ1-42, whereby lower levels of plasma Aβ1-42 were found to be associated with 

reduced hippocampal volumes at baseline (Hilal et al., 2018). Our results extend this previous 

association to longitudinal hippocampal volumes in conjunction with cognitive trajectories. In 

addition, our findings in our two previous research goals provide complementary evidence for 

associations between plasma Aβ1-42 and brain and cognitive trajectories. We found that lower 

levels of Aβ1-42 were predictive of cognitive resilience our first research goal, while higher levels 

were predictive of cognitive vulnerability in our second research goal. Importantly, a shared facet 

of membership to the cognitive vulnerability and brain and cognitive stability groups is relatively 

stable and high hippocampal trajectories. As such, our findings in this context indicate that levels 

of plasma Aβ1-42 may be more closely associated with declining hippocampal trajectories than 

cognitive changes. 

We identified higher pulse pressure as the fifth leading predictor of brain and cognitive 

stability. Interestingly, higher pulse pressure – indicative of worse vascular health -- has been 

associated with worse cognitive outcomes previously (McFall et al., 2015). One reported 

phenomena reported relating to this risk factor is the age dependency of risk effects. Other studies 

have reported an attenuation of risk factor effects – including hypertension and vascular health -- 
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with increasing age, and a possible reversal of risk in the oldest-old (80+ years) (N Legdeur et al., 

2018). The mean age for the brain and cognitively stable group was 75.5 years, suggesting that 

this hypothesized attenuation and reversal may also occur at earlier ages than previously reported. 

Younger age was the sixth leading predictor of brain and cognitive stability. Younger age 

has been previously identified as an important predictor of cognitive stability and successful 

cognitive aging (M. S. Albert et al., 1995; Cosco et al., 2014; Daffner, 2010; Josefsson et al., 2012; 

G. P. McFall et al., 2019). Although not a mechanistic marker of aging trajectories, these results 

show that an easily measured and reliably collected variable in large-scale longitudinal studies is 

predictive of objectively determined brain and cognitive aging trajectories.  

Notably, several predictors were commonly identified across two or all of the prediction 

analyses—with generally complementary and mechanistically appropriate prediction directions. 

Plasma Aβ1-42 was a common predictor of all three aging pathways: cognitive resilience (lower), 

cognitive vulnerability (higher), and brain and cognitive stability (higher). Plasma Aβ1-40 was a 

common predictor of cognitive resilience (lower) and cognitive vulnerability (higher). Reflecting 

circulating levels of Aβ associated with amyloid deposition in the brain, these plasma markers may 

be especially useful markers of aging trajectories differentially associated with AD risk (or 

protection). Age was a common predictor of all three aging pathways: cognitive resilience 

(younger), cognitive vulnerability (older), and brain and cognitive stability (younger). Higher CSF 

Aβ1-42 was a common predictor of cognitive resilience and brain and cognitive stability. 

Education was a common predictor of both cognitive resilience (higher) and cognitive 

vulnerability (lower). 
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Strengths and Limitations 

There were several limitations to the current study. First, we acknowledge the use of 

convenience sampling in ADNI (e.g., individuals with family history) which may lead to 

recruitment biases and limited generalizability of our findings (Whitwell, Wiste, et al., 2012). 

However, at-risk individuals are considered important targets of therapeutic and preventative 

protocols. In the current study, we have identified several biomarker and risk factor associations 

in older adults who represent an important target of prevention efforts as they represent potential 

higher risk (cognitive vulnerability) or lower risk (cognitive resilience, brain/cognitive stability) 

for exacerbated cognitive decline and other non-normative aging trajectories. Second, we 

included several predictor variables from the biospecimen modality which had considerable 

missing data (ranging from 33.7-50.4%). However, we used a sophisticated imputation approach 

in order to allow for the inclusion of these important AD-related biomarkers as predictors despite 

higher amounts of missing data. Specifically, missing data were imputed using the 

IterativeImputer package in Python (sklearn). This package deploys a multivariate imputer which 

utilizes Bayesian Ridge to predict missing values sequentially from most to least missing based 

on all included predictors. Missing data imputation was conducted within a cross-validation 

pipeline in order to avoid potential data leakage. Third, the performance of the ML algorithms 

for our three research goals ranged between mild to moderate in distinguishing power (AUC = 

0.64 – 0.70). However, the leading predictors identified for each model were consistent with 

previous literature and could be interpreted in the expected direction for a cognitively normal 

sample. As such, our prediction models provided strong evidence for reliable biomarker and risk 

factor associations with all three aging pathways despite mild to moderate distinguishing power. 

It is likely that the predictor roster available within AD, which are highly relevant to the 
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prediction of AD and clinical status, may be less applicable to a cognitively normal sample when 

predicting alternative trajectories in older adults. Notably, some predictors that have previously 

appeared in resilience, vulnerability and stability literature that were unavailable within ADNI 

include: living status, social activity, novel cognitive activities, literacy level, negative life 

events, reading time, and grip strength. We anticipate that model performance would be 

strengthened by the inclusion of some of these predictors. Accordingly, future studies 

investigating cognitive resilience, cognitive vulnerability, and brain and cognitive stability 

should include a broader range of predictors from multiple risk modalities. Fourth, we report and 

interpret the leading predictors for the best ML algorithm for each research goal, but not those 

for the alternative (unselected) ML algorithms. We chose to report only the leading predictors for 

each best fitting ML algorithm as these represent the best suited algorithm with the strongest 

evaluation metrics. In addition, we note that previous reports using SHAP values to interpret ML 

prediction analyses have also followed a similar approach (Alabdullah et al., 2022; Ullah, Liu, 

Yamamoto, Zahid, & Jamal, 2023). 

There were also several strengths to the current study. First, we used a data-driven 

approach to detect subgroups of older adults with varying hippocampal and cognitive 

trajectories. As such, individuals were classified into trajectory groups (cognitively resilient, 

cognitively vulnerable, low/declining, brain and cognitive stability) in an unbiased manner based 

on the simultaneous consideration of an objective presence or absence of an AD-related 

adversity (i.e., declining hippocampal trajectories) and their cognitive trajectory group 

membership. Second, we utilized a large roster of predictors originating from several AD-related 

areas of risk. Our data-driven approach allowed for a computationally competitive consideration 

of all predictors to identify the leading and most important for each prediction model. Third, we 
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tested three established ML algorithms (RF, GB, KNN) simultaneously within a sklearn pipeline 

with hyperparameter tuning to optimize our prediction model. This allowed for the selection of 

the best performing ML algorithm for each research goal. Our findings suggest that among these 

datasets, GB (RG1) and RF (RG2 and RG3) emerged as the best performing ML algorithms. 

Conclusion 

In this study, we identified several key predictors of cognitive resilience, cognitive 

vulnerability, and brain and cognitive stability in a computationally competitive context. The 

identification of these predictors is key to elucidating the complex and dynamic trajectories of 

brain and cognitive aging.  Pathways towards (and away from) resilient, vulnerable, and stable 

aging trajectories represent an important facet of emerging research on healthier cognitive aging. 

Importantly, many of these predictors are modifiable and targetable (e.g., education, BMI, glucose, 

pulse pressure) and could help (a) encourage stable brain and cognitive trajectories despite 

potential AD-related risk factors and adversity and (b) prevent declining and vulnerable cognitive 

trajectories in the face of stable brain aging. Similarly, several predictors (amyloid level, genetic 

risk, age, sex) are important risk identification and stratification variables that can be used in both 

research and applied prevention contexts. 
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 Tables 
 

Table 3-1. Full sample baseline characteristics (n = 415) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

Characteristics Full Sample 

N 415 

n in ADNI-1 229 

n in ADNI-2 186 

Sex (% Female) 49.9 

Age M (SD)  74.9 (5.7) 

Education M (SD) 16.3 (2.7) 

Mini Mental State Exam M (SD)  29.1 (1.1) 

ADAS-Cog M (SD) 9.3 (4.1) 
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Table 3-2. Biomarkers and AD-related risk factors by modality 
Modalities Biomarkers Metric 

Biological Plasma Aβ1-40 pg/mL  
Plasma Aβ1-42 pg/mL 
CSF Aβ1-42 pg/mL 
CSF total-tau pg/mL 
CSF p-tau pg/mL 
Plasma tau pg/mL 

Demographic Age Years 
Sex Female/Male 

 Race White, black, Asian, 
Hispanic/Latino 
(dummy coded) 

 Marital status Partnered, not 
partnered 

Genetic APOE  ε2+, ε3/ε3, ε4+ 

 Polygenic hazard score Vector product of 31 
single nucleotide 
polymorphisms 

Vascular/Metabolic Systolic blood pressure mm Hg 
Diastolic blood pressure mm Hg 
Hypertension 140/90 mm Hg 
Subjective report of diabetes Yes / no 
Glucose level at baseline mg/dL 

 Heart rate  Beats per minute 

 Respiratory rate Breaths per minute 

Lifestyle Body mass index kg/m2 
Education Years 
History of smoking Yes / no 

Co-morbidities Geriatric depression scale score Mild (5-8), moderate 
(9-11), severe (12-
15) 

Cardiovascular, alcoholism, psychiatric, neurological, 
head/eyes/ears/nose/throat, respiratory, hepatic, dermatologic 
connective tissue, musculoskeletal, endocrine-metabolic, 
gastrointestinal, hematopoietic-lymphatic, renal-genitourinary, 
allergies/drug sensitivities, malignancy, and/or major surgeries 

Yes / no 

Familial 
Background 

Maternal dementia history Yes / no 

Paternal dementia history Yes / no 
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Table 3-3. Fit indices for HC volume and memory/executive function LCGA 

 Number of Classes AIC BIC SABIC Entropy 

HC Volume 1 12874.31 12938.77 12887.99 - 

 2 10033.13 10117.72 10051.08 0.93 

 3 8534.52 8639.25 8556.75 0.94 

 4 7645.79 7770.66 7672.29 0.97 

Cognition 1 7257.77 7322.23 7271.46 - 

 2 6164.98 6249.57 6182.94 0.88 

 3 5878.76 5983.50 5900.99 0.84 

 4 5578.98 5703.86 5605.49 0.84 
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Table 3-4. Intercept and slope parameter estimates for the 2-class HC volume LCGA 

HC Volume Intercept Slope 

Highest Class LHC: -0.56 

RHC: -0.60 

LHC: -0.11 

RHC: -0.11 

Lowest Class LHC: -2.27 

RHC: -2.29 

LHC: -0.11 

RHC: -0.12 
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Table 3-5. Intercept and slope parameter estimates for the 2-class Memory and Executive 
Function LCGA 

Memory and Executive 

Function  

Intercept Slope 

Highest Class Memory: 1.55 

Executive Function: 1.41 

Memory: -0.03 

Executive Function: -0.05 

Lowest Class Memory: 0.78 

Executive Function: 0.56 

Memory: -0.03 

Executive Function: -0.05 
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Table 3-6. HC/cognitive classes and RFA groupings 

 Lowest HC Trajectory Class 

(n = 179) 

Highest HC Trajectory Class 

(n = 236) 

Lowest Cognitive Trajectory 

Class (n = 251) 

Low/Declining Trajectories 

(n = 107) 

Cognitive Vulnerability 

(n = 144) 

Highest Cognitive Trajectory 

Class (n = 164) 
Cognitive Resilience 

(n = 72) 

Stable/Sustained Trajectories 

(n = 92) 
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Table 3-7. Leading predictors of cognitive resilience identified by cumulative ratio criteria 

 40% 50% 60% 70% 
CSF Aβ1-42 ✓ ✓ ✓ ✓ 
Education ✓ ✓ ✓ ✓ 
Plasma Aβ1-42 ✓ ✓ ✓ ✓ 
CSF p-tau ✓ ✓ ✓ ✓ 
Plasma Aβ1-40  ✓ ✓ ✓ 
Age  ✓ ✓ ✓ 
APOE   ✓ ✓ 
BMI   ✓ ✓ 
Smoking   ✓ ✓ 
Polygenic Hazard 
Score 

   ✓ 

Allergies/Drug 
Sensitivities 
Medical History 

   ✓ 

Cardiovascular 
Medical History  

   ✓ 
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Table 3-8. Leading predictors of cognitive vulnerability identified by cumulative ratio criteria 

 40% 50% 60% 70% 
Education ✓ ✓ ✓ ✓ 
Plasma Aβ1-40 ✓ ✓ ✓ ✓ 
BMI  ✓ ✓ ✓ 
Age   ✓ ✓ 
Glucose Level    ✓ 
Plasma Aβ1-42    ✓ 
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Table 3-9. Leading predictors of brain and cognitive stability identified by cumulative ratio 
criteria 

 40% 50% 60% 70% 
CSF Aβ1-42 ✓ ✓ ✓ ✓ 
Polygenic Hazard 
Score 

✓ ✓ ✓ ✓ 

Sex ✓ ✓ ✓ ✓ 
Plasma Aβ1-42 ✓ ✓ ✓ ✓ 
Pulse Pressure ✓ ✓ ✓ ✓ 
Age ✓ ✓ ✓ ✓ 
BMI  ✓ ✓ ✓ 
Diastolic Blood 
Pressure  

 ✓ ✓ ✓ 

CSF p-tau   ✓ ✓ 
Endocrine-
Metabolic 
Medical History 

  ✓ ✓ 

Pulse Rate   ✓ ✓ 
Plasma Aβ1-40    ✓ 
Geriatric 
Depression Scale 
Score 

   ✓ 

CSF t-tau    ✓ 
Systolic Blood 
Pressure 

   ✓ 
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Table 3-10. Machine learning classification prediction model evaluation metrics for RG1, RG2 and RG3 

  Accuracy Precision Recall F1 Score ROC AUC 

RG1: Cognitive 
Resilience 
Prediction 

Random Forest 0.62 0.55 0.32 0.39 0.63 

Gradient 
Boosting 
Classifier 

0.62 0.54 0.39 0.44 0.68 

K-Nearest 
Neighbour 

0.56 0.43 0.39 0.41 0.53 

RG2: Cognitive 
Vulnerability 
Prediction 

Random 
Forest 

0.65 0.69 0.87 0.77 0.70 

Gradient 
Boosting 
Classifier 

0.61 0.67 0.80 0.73 0.62 

K-Nearest 
Neighbour 

0.61 0.67 0.82 0.73 0.53 

RG3: Brain and 
Cognitive 
Stability 
Prediction 

Random 
Forest 

0.61 0.59 0.51 0.54 0.64 

Gradient 
Boosting 
Classifier 

0.58 0.54 0.23 0.32 0.66 

K-Nearest 
Neighbour 

0.51 0.48 0.45 0.46 0.56 
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Figures 
 

Figure 3-1. HC (left and right) and cognitive (memory and executive function) trajectory plots 
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Figure 3-2. Waterfall plot for predicting cognitive resilience (RG1)

  
Figure 3-2. Tree SHAP Waterfall Plot showing the composition (top x-axis) and cumulative (bottom x-axis) 
ratios for the baseline predictors tested in the ML model. Predictors are shown in descending order of 
importance and their individual composition ratio (individual contribution to the model prediction) is indicated 
by the blue bars. The blue curved line indicates the cumulative ratio for each additional predictor. 
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Figure 3-3. SHAP summary plot for predicting cognitive resilience (RG1) 
 

 
 
Figure 3-3. Tree SHAP Summary Plot showing the twenty most important predictors of cognitive resilience. 
Predictors are shown in descending order of importance. Each individual point on the plot represents a 
participant’s Tree SHAP value for that predictor (bottom x-axis for scale). The position of the points indicates 
the effect on the model prediction. Specifically, Tree SHAP values over 0 (to the right of the figure) predict 
cognitive resilience. The colour of the dots indicates the direction of the effect for each predictor shown (red = 
higher values, blue = lower values, grey = imputed values). 
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Figure 3-4. Waterfall plot for predicting cognitive vulnerability (RG2) 
 

 
Figure 3-4. Tree SHAP Waterfall Plot showing the composition (top x-axis) and cumulative (bottom x-axis) 
ratios for the baseline predictors tested in the ML model. Predictors are shown in descending order of 
importance and their individual composition ratio (individual contribution to the model prediction) is indicated 
by the blue bars. The blue curved line indicates the cumulative ratio for each additional predictor. 
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Figure 3-5. SHAP summary plot for predicting cognitive vulnerability (RG2). 
 

 
 
Figure 3-5. Tree SHAP Summary Plot showing the twenty most important predictors of cognitive 
vulnerability. Predictors are shown in descending order of importance. Each individual point on the plot 
represents a participant’s Tree SHAP value for that predictor (bottom x-axis for scale). The position of the 
points indicates the effect on the model prediction. Specifically, Tree SHAP values over 0 (to the right of the 
figure) predict cognitive vulnerability. The colour of the dots indicates the direction of the effect for each 
predictor shown (red = higher values, blue = lower values, grey = imputed values). 
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Figure 3-6. Waterfall plot for predicting brain and cognitive stability (RG3). 
 

 
Figure 3-4. Tree SHAP Waterfall Plot showing the composition (top x-axis) and cumulative (bottom x-axis) 
ratios for the baseline predictors tested in the ML model. Predictors are shown in descending order of 
importance and their individual composition ratio (individual contribution to the model prediction) is indicated 
by the blue bars. The blue curved line indicates the cumulative ratio for each additional predictor. 
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Figure 3-7. SHAP summary plot for predicting brain and cognitive stability (RG3). 
 

 
Figure 3-7. Tree SHAP Summary Plot showing the twenty most important predictors of brain and cognitive 
stability. Predictors are shown in descending order of importance. Each individual point on the plot represents 
a participant’s Tree SHAP value for that predictor (bottom x-axis for scale). The position of the points 
indicates the effect on the model prediction. Specifically, Tree SHAP values over 0 (to the right of the figure) 
predict brain and cognitive stability. The colour of the dots indicates the direction of the effect for each 
predictor shown (red = higher values, blue = lower values, grey = imputed values). 
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Figure 3-8. Unique and shared predictors for cognitive resilience, cognitive vulnerability, and 
brain and cognitive stability 
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CHAPTER 4: STUDY 3 

Data-Driven Predictions of Mild Cognitive Impairment and Alzheimer’s Disease:  
Relative Importance of Multi-Modal and Omics Biomarkers and Risk Factors in the 

COMPASS-ND Study 
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Background 

 Currently the most common cause of dementia worldwide, Alzheimer’s disease (AD) is 

characterized by specific neuropathology (beta-amyloid plaques and neurofibrillary tau tangles) 

as well as progressive cognitive and functional impairment (Barnes & Yaffe, 2011; Jack Jr et 

al., 2018; Livingston et al., 2020; X. Wang, Sun, Li, Cai, & Han, 2019; Zvěřová, 2019). The 

growing prevalence rates of AD point towards increasing societal and economics costs globally, 

projected to be $2 trillion by 2030 (Wimo et al., 2017). Marked by a lengthy prodromal period 

driven by accumulating multi-modal risk factors and indicated by advancing neuropathology 

and cognitive impairment, research attention has broadened to include the early detection of 

individuals or precision subtypes who are in earlier phases of the pathogenic process (K. J. 

Anstey et al., 2015; K. J. Anstey et al., 2020; Badhwar et al., 2020a; Iturria-Medina, Sotero, 

Toussaint, Mateos-Pérez, & Evans, 2016; Livingston et al., 2020; Tam et al., 2019; Vogel et al., 

2021). The phase of aging prior to cognitive impairment, but with potentially accumulating AD 

risk, is referred to as asymptomatic or Cognitively Unimpaired (CU) aging. Aging persons in 

the CU phase may be experiencing moderate memory decline, early hippocampal (HC) atrophy, 

or even subjective concerns about their cognitive status. Mild Cognitive Impairment (MCI) is as 

a formally classifiable phase characterized by exacerbated cognitive decline with impaired 

performance (but not dementia), as well as increased risk of subsequent transition to AD 

(Marilyn S Albert et al., 2011; J.-Q. Li et al., 2016; Song, Poljak, Smythe, & Sachdev, 2009). 

Early identification of key characteristics and vulnerable individuals who are presently in either 

a CU or MCI phase but at risk of developing AD will aid in the precision understanding of the 

multi-modal networks potentially involved in AD-related neuropathological progression. In 

addition, such personalized and mechanistic advances may aid in the development of targeted 
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intervention and prevention protocols to delay or treat clinical impairment or disease onset (K. 

J. Anstey et al., 2020; Iturria-Medina et al., 2016; Röhr, Kivipelto, Mangialasche, Ngandu, & 

Riedel-Heller, 2022; Tam et al., 2019). Notably, it has been contended that efforts to delay or 

offset symptoms can have substantial benefits for controlling worldwide AD prevalence and 

costs (K. J. Anstey et al., 2020; Livingston et al., 2020).  

Multi-Modal Risk Factors and Biomarkers Associated with MCI and AD 

Accumulating research has identified risk factors and biomarkers associated with MCI and AD 

across a wide range of domains or modalities. Examples of these domains and their 

representative risk factors include brain health (lower HC volume), lifestyle (poor diet), 

vascular (hypertension), medical history (head injury), sensory (hearing), mental health 

(depression), metabolic (diabetes), cardiovascular (physical activity), education (years 

schooling), toxin exposure (smoking), engagement (cognitive activity), demographic (female 

sex/gender), biological (low CSF amyloid levels), and genetic (APOE e4 allele) (K. J. Anstey, 

Ee, Eramudugolla, Jagger, & Peters, 2019; Livingston et al., 2020). Risk factors from these 

modalities have been independently, or in combination, robustly associated with non-normative 

aging outcomes, including rapid cognitive decline, MCI and AD (K. J. Anstey et al., 2019; 

Livingston et al., 2020). The importance of risk factor management has been highlighted in 

recent reports. For example, 12 modifiable risk factors have been noted to be associated with 

40% of dementias globally, providing specific modifiable targets that could substantially  

reduce dementia incidence (Livingston et al., 2020). As such, the identification of risk 

biomarkers and factors is key to the early detection of older adults at increased risk of AD and 

subsequent interventions and/or treatments. 

Due to the large number and variegated types of potential predictors of AD risk, 
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researchers have encouraged approaches that allow for the investigation of multiple risk factors 

simultaneously. Notably, multi-modal predictions have been shown to (a) better represent the 

heterogeneous nature of MCI and AD as compared to individual single-domain predictors (K. J. 

Anstey et al., 2015; Badhwar et al., 2020a; Imtiaz, Tolppanen, Kivipelto, & Soininen, 2014; J.-

Q. Li et al., 2016; Payton et al., 2018; Sapkota et al., 2018; Kristine Yaffe et al., 2019) and (b) 

provide valuable information on the relative importance of specific risk factors (G. P. McFall et 

al., 2019; Sapkota et al., 2021). For example, when evaluated simultaneously in a 

computationally competitive context, risk factors from five domains (genetic, lifestyle, 

cognition, functional health, metabolite panels) were found to discriminate between MCI and 

CU controls, while fewer risk domains were found to be statistically important when 

discriminating between cognitively normal and AD cohorts (Sapkota et al., 2018). Given that 

many diverse risk factors and biomarkers have been associated with AD risk, analytical 

approaches that include and evaluate risk factors simultaneously may help identify the leading 

predictors out of an established and heterogeneous set. In turn, the collection, examination, and 

preventative targeting of certain risk factors and biomarkers can be directed based on relative 

importance. 

Omics-Based Predictors as Candidate Biomarkers of MCI and AD 

Complementing the multi-modal risk factor research in the ADRD literature, there have 

been notable advances in the identification of biological and mechanistic markers which may 

also indicate increased AD risk. These include advances in ‘omics’ approaches which have 

especially supported the clarification of the multifactorial and heterogeneous nature of cognitive 

aging and AD (Badhwar et al., 2020a; Wilkins & Trushina, 2018) and have become an 

important approach in identifying and testing early dementia risk. As well-known and 
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established AD biomarkers (amyloid, tau, neurodegeneration) capture a crucial but 

circumscribed portion of the heterogeneous nature of AD etiology and disease-specific 

pathophysiology (Badhwar et al., 2020a), recent research has incorporated the investigation of 

broad biological patterns from emerging omics domains that may indicate mechanisms and 

level of differential risk for MCI or AD (Badhwar et al., 2020a). These omics approaches focus 

on a global or large-scale study of different biological systems (e.g., genes – genomics, lipids – 

lipidomics, metabolites – metabolomics) which may exhibit specific and identifiable 

perturbations or patterns of disease progression (Costa, Joaquim, Forlenza, Gattaz, & Talib, 

2020; Hasin, Seldin, & Lusis, 2017). A recent focused review presented a graphical roadmap 

integrating omics analyses with machine learning technologies with the goal of addressing the 

etiological and clinical heterogeneity of Alzheimer’s disease and related dementias (ADRD) 

(Badhwar et al., 2020a). Specifically, machine learning tools were noted to be especially 

advantageous in the cases of highly heterogeneous data, such as in ADRD (Badhwar et al., 

2020a). Indeed, paired with sophisticated data-driven analytic approaches such as machine 

learning, the integrated study of multiple biological systems (i.e., ‘multi-omics’) provide a 

clearer characterization of the underlying disease process and identify new candidate 

biomarkers predictive of AD or AD risk based on novel biological pathways (Badhwar et al., 

2020a; Hasin et al., 2017; Jia et al., 2021). These approaches are emerging as important 

complements to existing risk factor research. Specific to AD, metabolite and lipid biomarker 

panels have been developed from serum, saliva, and CSF via the application of data-driven 

algorithms (Badhwar et al., 2020a). These panels, which often vary in size, provide information 

on sets of molecules (in this case, metabolites or lipids) that are associated with clinical 

diagnoses of AD (Badhwar et al., 2020a) compared to heathy aging controls. For example, a 
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recent study identified a set of 24 serum lipids which accurately classified AD (Proitsi et al., 

2017). Another recent study identified a smaller set of three metabolites, two acylcarnitines 

(dodecanedioylcarnitine [C12-DC], dodecanoylcarnitine [C12]) and one phosphatidylcholine 

(phosphatidylchline [PCaaC26:0]), which distinguished between AD and controls (Costa et al., 

2020). Acylcarnitines are a lipid class important in the cholinergic cascade, via processes 

involving B-oxidation and acetyle coenzyme A (Costa et al., 2020). Notably, cholinergic 

dysfunction has been previously identified as an important pathophysiological component of 

AD (Hampel, Mesulam, et al., 2018). Similarly, disrupted phosphatidylcholine metabolism has 

been noted in AD through interactions with cholesterol transport and apolipoprotein E (Whiley 

et al., 2014). Other metabolite panels have been found to differentiate between AD and other 

types of dementias (Jia et al., 2021) and to be associated with preclinical signals of transitions 

from asymptomatic aging through MCI and AD (Hampel et al., 2021).   

Moreover, metabolomics analyses have found that alterations in bile acids may occur in 

MCI and AD. Briefly, bile acids are derived from cholesterol and are produced in the liver to 

aid in lipid breakdown and clearance. Of specific interest to the disease pathophysiology of AD, 

bile acids represent the end product of cholesterol metabolism (i.e., an established mechanism 

of disease progression in AD) and are can be an indicator of key peripheral metabolic changes 

(Puglielli et al., 2003; Marksteiner et al., 2018; Nho et al., 2018). One study investigating 

plasma levels of bile acids found that lithocholic aid differentiated between AD and healthy 

controls while glycochenodeoxycholic acid, glycodeooxycholic acid and glycothithocholic acid 

differentiated between AD and MCI samples (Marksteiner et al., 2018). Similarly, lower serum 

concentrations of cholic acid and increased concentrations of deoxycholic acid were found in 

AD individuals as compared to controls (MahmoudianDehkordi et al., 2019). Higher 
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deoxycholic acid and cholic acid ratios in serum and brain tissue have also been consistently 

found to be associated with cognitive decline (MahmoudianDehkordi et al., 2019). Other studies 

have found similar associations between bile acid metabolites and AD-related neuropathology. 

Specifically, three bile acid ratios were found to be associated with CSF AB1-42 

(glycodeoxycholic acid: cholic acid, taurochenodeoxycholic acid: cholic acid, clycolitocholic 

acid: chenodeoxycholic acid), and three bile acid metabolites were found to be associated with 

CSF p-tau (glycochenodeoxycholic acid, glycolithocolic acid, and taurolithocholic acid) (Nho et 

al., 2019)  

The Relative Importance of Omics-Based Predictors in the Context of AD-Related Risk 

Factor Research 

An important consideration for these approaches includes the potential added value of 

omics predictors as compared to other established, and perhaps more readily accessible, AD-

related biomarkers and risk factors. For example, metabolite panels were identified as important 

predictors of clinical status (CU, MCI, AD) even among several established AD-related risk 

factors (Sapkota et al., 2018). This study followed an exhaustive metabolomics analysis that 

identified three leading biomarker panels from the same participants (Huan et al., 2018).  In the 

multi-modal comparative prediction study, different metabolite panels involved with protein 

regulation were found to be important relative to other established AD risk factors for each 

pairwise comparison. Specifically, these panels were: (a) a 3-metabolite biomarker panel 

discriminating AD and CU (Methylguanosine, Histidinyl-Phenylalanine, Choline-cytidine), (b) 

a 3-metabolite biomarker panel discriminating AD and MCI (Amino-dihydroxybenzene, 

Glucosylgalactosyl hydroxylysine − H2O, Aminobutyric acid + H2., and (c) a 2-metabolite panel 

discriminating MCI and CU (Glucosylgalactosyl hydroxylysine − H2O, Glutamine-carnitine). In 
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this study, the simultaneous consideration of metabolite panels and established AD-related risk 

factors provided additional evidence for the value of metabolomics-based predictors in addition 

to the advantages of multi-modal risk prediction models (Sapkota et al., 2018). In other fields, 

omics-based predictors have been found to improve prediction for diseases such as type II 

diabetes when used simultaneously in models with traditional risk factors (Liu et al., 2017). 

Importantly, omics-based predictors have emerged as powerful markers AD, and in conjunction 

with established risk factors, can serve as early indicators of increased risk in individuals who 

may benefit from targeted prevention and/or intervention protocols. Although a parallel study in 

Parkinson’s disease dementia has been conducted with metabolomics markers integrated with 

multiple modalities of other predictors (G. P. McFall, Bohn, L., Drouin, S.M., Gee, M., Han, 

W., Li, L., Camicioli, R., & Dixon, R.A., 2023), no other studies in ADRD to date have 

investigated omics and established risk factors simultaneously to discriminate between cohorts 

or predict AD-related risk. 

The Dissertation Study 

In the current study, we leveraged a large roster of established AD-related multi-modal 

risk factors as well as previously identified metabolite and bile acid predictors from the 

Comprehensive Assessment of Neurodegeneration and Dementia Study (COMPASS-ND) 

dataset featuring three distinct cohorts (CU, MCI, AD) of older adults. COMPASS-ND is a 

comprehensive cross-sectional and multi-site Canadian study of older adults with several types 

of dementia and has collected extensive clinical, neuropsychological, MRI, and biofluid data. 

The large roster of multi-modal risk factors was selected based on (a) data availability and (b) 

previous findings in observational studies and reviews regarding MCI and AD risk. Beyond this 

roster, metabolomics (salivary and serum) and bile acid (serum) data were identified in a 
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previous study (S. Zhang, Drouin, Dixon, & Li, 2022; S. Zhang, Drouin, Li, & Dixon, 2022). 

Given that the performance of typical AD biomarkers (CSF amyloid and tau, PET 

neuroimaging) as early markers is still being explored, omics-based analyses may represent 

important a complementary approach for identifying (from a broad range of potential 

biomarkers) predictors associated with early perturbations in AD-related mechanistic pathways. 

These approaches could thus be a promising means of identifying candidate biomarkers for 

large-scale early screening of AD risk (Jia et al., 2021) and have thus far offered promising 

results (Badhwar et al., 2020; Hampel et al., 2021; Sapkota et al., 2018; Wilkins & Trushina, 

2018). 

The overall aim of this study was to test relative predictor importance of a multi-modal 

AD-related roster of biomarkers and risk factors, with focused attention on the comparative 

contributions of metabolite and bile acid biomarkers derived from a metabolomics analysis 

designed to identify leading predictors in discriminating between normal aging (CU) and two 

clinical classifications (MCI, AD). To accomplish this aim, we used machine learning 

technology to test predictor importance in three pairwise classification tasks (CU-MCI, MCI-

AD, CU-AD) in two separate but comparable samples (Sample 1, Sample 2) extracted from the 

COMPASS-ND database. 

Methods 

Database 

The COMPASS-ND Study is a large clinical cohort study of the Canadian Consortium of 

Neurodegeneration in Aging (Chertkow et al., 2019). This multi-site national study includes 

subsets of older adults (aged 50-90) with different clinically diagnosed neurodegenerative 

diseases as well as a CU comparison group. Participant conditions include Subjective Cognitive 
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Impairment (SCI), MCI, Subcortical Ischemic Vascular MCI, mild Alzheimer’s disease, 

Dementia of Mixed Etiology, Lewy Body disease, Parkinson’s dementia/MCI, and 

Frontotemporal dementia. The main goals of COMPASS-ND are (a) to identify those at early 

risk of dementia and (b) the early identification and detection of dementia. COMPASS-ND 

features a large roster of demographic, lifestyle, medical, functional, neuropsychological, 

biofluid, and imaging variables for recruited individuals (Chertkow et al., 2019). 

Participants 

The current study included two separate samples of older adults from three cohorts of 

the COMPASS-ND Study that were previously selected for metabolomics and bile acid 

analyses. For sample one (total n = 99, 57.6% Female, M age = 70.6, age range = 60.6-84.3), 

this included: (a) CU (n = 33), (b) MCI (n = 33), and (c) AD (n = 33) (S. Zhang, Drouin, 

Dixon, et al., 2022; S. Zhang, Drouin, Li, et al., 2022). For sample two (total n = 86, 50% 

Female, M age = 74.1, age range = 59.1-89.2, this included: (a) cognitively unimpaired (n = 

32), (b) MCI (n = 33), and (c) AD (n = 21) (S. Zhang, Drouin, Dixon, et al., 2022; S. Zhang, 

Drouin, Li, et al., 2022). The three main cohorts in each sample are clinically comparable, with 

one deliberate exception: Whereas the CU cohort of Sample 1 includes persons with and 

without minor SCI, the CU cohort of Sample 2 includes only persons with no cognitive 

concerns. We present baseline descriptive statistics for the two samples divided by cohort in 

Table 1. Diagnostic status was determined by COMPASS-ND clinicians based on previously 

outlined criteria (Chertkow et al., 2019). Ethics approval was obtained from the Research 

Ethics Board of each participating study site and participants provided informed consent. 

Measures 

We assembled a predictor roster including both (a) established and emerging AD-related 
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biomarkers and risk factors originating from multiple domains available within the COMPASS-

ND dataset and (b) metabolomics predictors derived from salivary and serum samples and bile 

acid predictors derived from serum samples only (as they were not detected in salivary 

samples). 

AD-Related Risk Factors. Ninety-two predictors from this category were selected and 

assembled into a large multi-domain roster based on availability in the database and existing 

literature on AD-related biomarkers and risk or protective factors (R. Dixon & M. Lachman, 

2019; Livingston et al., 2020). These predictors originated from ten risk domains: demographic 

(e.g., age, sex), lifestyle (e.g., physical activity, sleep), mental health (e.g., history of 

generalized anxiety disorder, history major depressive disorder), anthropometric measures (e.g., 

body mass index, waist circumference), sensory (e.g., olfaction, vision), function/gait (e.g., 

balance confidence, grip strength), vascular/metabolic (e.g., systolic blood pressure, heart rate), 

imaging (e.g., HC volume, EC volume), fluid biomarkers (e.g., triglycerides, Interleukin 6), and 

clinical health (e.g., HBA1C, platelet count). A complete list of included predictors from each 

risk domain and baseline descriptive data for each cohort is presented in Table 1.  

Metabolomics: Selective Extraction of Leading Serum and Salivary Metabolite and Bile 

Acid Biomarkers. The metabolites and bile acids used in the current study were collected and 

identified from a series of metabolomics analyses conducted within two separate but similar 3-

cohort samples (Sample 1, Sample 2) drawn from the COMPASS-ND database. The original 

metabolomics procedures and results are fully described in two technical reports (Zhang, 

Drouin, Dixon & Li, 2022; Zhang, Drouin, Li & Dixon, 2022). In brief, untargeted 

metabolomics (chemical isotope labeling liquid chromatography mass spectrometry platform; 

CIL LC-MS) analyses were applied to produce metabolite predictors derived from both salivary 
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and serum biofluids differentiating between three pairwise comparisons of cohorts of older 

adults within the two separate samples. The pairwise discriminations are: (1) CU-AD, referred 

to as predicting AD, (2) CU-MCI, referred to as predicting MCI, and (3) MCI-AD, referred to 

as predicting dementia. The identified metabolites for each sample are described below and 

presented in Table 3. For interpretative purposes, we have identified a working name (below 

and in Table 3) for each metabolite compound based on the two cohorts each discriminates for 

subsequent use in the dissertation. The assigned working name identifies the prediction goal 

(AD, MCI, or dementia), the biofluid analyzed (serum or saliva) and an alphanumeric label 

(ranging from 1 to 3 in Sample 1 or A to C in Sample 2). In every case, the three leading 

predictive metabolites were extracted, precisely identified, and labelled for convenience 

according to this nomenclature. However, we note that the leading metabolites are essentially 

equivalent in their predictive function and thus the ordering of the compounds (1,2,3 or A,B,C) 

does not reflect an interpretable ordinal ranking.  Moreover, we note that the analytic context 

for each of the pairwise metabolomics analyses for both serum and saliva biofluids included 

over 7000 detected metabolite peaks. Thus, the leading three are promising putative biomarkers 

likely associated with mechanistic pathways of AD progression.  

In the serum analyses for Sample 1, the leading three metabolites discriminating each 

pairwise comparison were selected. For the CU-AD comparison, these were 3beta Hydroxy-

delta5-cholenic acid (AD Metabolite Serum 1), 20,26-Dihydroxyecdysone (AD Metabolite 

Serum 2), and N(gamma)-Acetyldiaminobutyric acid (AD Metabolite Serum 3). For the CU-

MCI comparison, these were Erythronic acid (MCI Metabolite 1 Serum), O-

Hydroxylaminobenzoic Acid (MCI Metabolite 2 Serum), and Hypoxanthine (MCI Metabolite 3 

Serum). For the MCI-AD comparison, these were Methionyl-Hydroxyproline (Dementia 
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Metabolite 1 Serum), 2,3,6-Trihydroxypyridine (Dementia Metabolite 2 Serum) and Batatasin 

IV (Dementia Metabolite 3 Serum).  

In the salivary analyses for Sample 1, the leading three salivary metabolites were 

selected from each comparison. For the CU-AD comparison, these were 4-Pyridoxolactone (AD 

Metabolite 1 Saliva), DL-Benzylsuccinic acid (AD Metabolite 2 Saliva), and 3-

Hydroxyisoheptanoic acid (AD Metabolite 3 Saliva). For the CU-MCI comparison, these were 

Pyrocatechol (MCI Metabolite 1 Saliva), Hydroxyprolyl-Tryptophan (MCI Metabolite 2 

Saliva), and 2-Hydroxy-3-(4-Hydroxyphenyl) Propenoic Acid (MCI Metabolite 3 Saliva). For 

the MCI-AD comparison, these were 2-Methylbenzaldehyde (Dementia Metabolite 1 Saliva), 3-

Oxodecanoic acid (Dementia Metabolite 2 Saliva), and Ammeline (Dementia Metabolite 3 

Saliva).  

Finally, for Sample 1, the original metabolomics analyses identified 20 bile acids in the 

serum sample analyses and none in the salivary sample analyses. Based on previous research 

(MahmoudianDehkordi et al., 2019), we selected two serum-based bile acids for this study. 

These were cholic acid (CA), deoxycholic acid (DCA), and the deoxycholic acid:cholic acid 

ratio (DCA:CA ratio). These three measures are used only in the prediction models for serum.  

As with Sample 1, we applied the same selection procedures for metabolite and bile acid 

biomarkers in Sample 2. Specifically, in the serum analyses for Sample 2, the leading three 

serum metabolites discriminating each pairwise comparison were selected. For the CU-AD 

comparison, these were 2,8-Dihydroxyadenine (AD Metabolite A Serum), Serotonin (AD 

Metabolite B Serum), and Uridine (AD Metabolite C Serum). For the CU-MCI comparison, 

these were 3-Mercaptolactate-cysteine disulfide (MCI Metabolite A Serum), N-Acetyl-2-Oxo-

4-hydroxy-5-aminovaleric acid (MCI Metabolite B Serum), and Threonolactone (MCI 
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Metabolite C Serum). For the MCI-AD comparison, these were Ureidoacrylic Acid (Dementia 

Metabolite A Serum), Histidinyl-Aspartate (Dementia Metabolite B Serum), and 3-Methoxy-4-

hydroxyphenylacetaldehyde O-glucuronide (Dementia Metabolite C Serum).  

In the salivary analyses for Sample 2, the three leading metabolites were selected for 

each pairwise comparison. For the CU-AD comparison, these were Mandelic Acid (AD 

Metabolite A Saliva), 4-Hydroxybenzaldehyde-3-Hydroxybenzaldehyde (AD Metabolite B 

Saliva), and Carbapenem Biosynthesis Intermediate 5 (AD Metabolite C Saliva). For the CU-

MCI comparison, these were Mandelic Acid (MCI Metabolite A Saliva), Diethanolamine 

(MCI Metabolite B Saliva), Phenylalanyl-Methionine (MCI Metabolite C Saliva). For the 

MCI-AD comparison, these were L-Pyrrolysine (Dementia Metabolite A Saliva), 2-Methyl-4-

heptanone (Dementia Metabolite B Saliva), and Aspartyl-Glutamate (Dementia Metabolite C 

Saliva). Finally, for Sample 2, we selected the same two serum-based bile acids as with 

Sample 1: CA, DCA, and the DCA:CA ratio. These three measures are used only in the 

prediction models for serum.  

RGs and Biomarker Prediction Analyses 

Analyses Goal and Implementation. We implemented an analysis plan that follows a 

sequential set of six RGs. The sequence of analyses is designed to facilitate comparisons of each 

cohort pair (CU-AD, CU-MCI, MCI-AD) across the two samples. Accordingly, we separately 

analyzed and report the results for the parallel pairs of cohorts. The first RG was to test relative 

predictor importance in discriminating between CU and AD cohorts in Sample 1. The second RG 

was to test relative predictor importance in discriminating between CU and AD cohorts in 

Sample 2. The third RG was to test relative predictor importance in discriminating between CU 

and MCI cohorts in Sample 1. The fourth RG was to test relative predictor importance in 
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discriminating between CU and MCI cohorts in Sample 2. The fifth RG was to test relative 

predictor importance in discriminating between MCI and AD cohorts in Sample 1. The sixth RG 

was to test relative predictor importance in discriminating between MCI and AD cohorts in 

Sample 2. In order to consider CA/DCA and the DCA:CA ratio predictor variables adequately, 

all six RGs were conducted twice: (a) once with both bile acids independently included (CA and 

DCA) and (b) once including only the DCA:CA ratio. The best model (including CA/DCA 

independently or the DCA:CA ratio) for each RG was subsequently chosen as the final model 

and was reported in the dissertation. For both Sample 1 and 2, the final predictor roster included: 

92 AD-related risk factors and biomarkers from COMPASS-ND, nine serum metabolite 

compound predictors, nine salivary metabolite compound predictors, and one (DCA:CA) or two 

(CA, DCA) bile acid predictors (total number of predictors = 111 and 112). Figure 1 shows a 

detailed flowchart of the analysis procedures for each RG. 

Machine Learning (ML) Prediction Analyses. All prediction models depicted in the RGs 

were analyzed with three ML algorithms in Python 3.9 (scikit-learn package) (Pedregosa et al., 

2011). The ML algorithms were random forest (RF; sklearn RandomForestClassifier), gradient 

boosting (GB; sklearn GradientBoostingClassifier) and K-Nearest Neighbours (KNN; sklearn 

KNeighborsClassifier). These algorithms are especially suitable for these RGs and data, as they 

allow for predictor interactions and the inclusion of large number (p > n) of mixed-type 

predictors (Hapfelmeier & Ulm, 2013; Pedregosa et al., 2011). Specifically, RF classification is 

an ensemble machine learning algorithm which determines a predicted classification based on an 

aggregation of multiple decision trees (Géron, 2022; Pedregosa et al., 2011). GB classification is 

an ensemble ML algorithm whereby decision trees are combined sequentially and are 

individually weighted in order to classify a final output. A key difference between RF and GB is 
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that for the former, decision trees are independent and built in parallel (Müller & Guido, 2016). 

Comparatively, in GB, the decision trees are built sequentially in order to correct previous errors 

in prediction (Müller & Guido, 2016). KNN is a non-parametric ML algorithm in which the 

predicted output is classified based on the majority class and its K-nearest neighbour as 

determined by a selected distance metric (i.e., Euclidean distance) (Géron, 2022; Pedregosa et 

al., 2011). We opted to test three ML algorithms equipped to deal with our specific data 

characteristics and then compare their performance to select the most suitable and best 

performing algorithm for each pairwise comparison. 

For each analysis, we used (a) stratified five-fold cross-validation to evaluate both 

internal and external validation and (b) a sklearn pipeline. First, in five-fold cross validation, 

each dataset was subdivided into five folds, with four of the five folds used for training (internal 

validation) and the remaining fold used for testing (external validation). This process was 

repeated until all five folds have been used once for testing. Second, we tested and cross-

validated all three ML algorithms and estimated missing data within a sklearn pipeline. The use 

of a sklearn pipeline allowed for all missing data to be imputed within each cross-validation fold 

to avoid all potential data leakage issues from the training set into the testing set. As such, at 

each fold, the sklearn pipeline consisted of: (a) missing data imputation (using IterativeImputer) 

and (b) ML classification and evaluation (via cross-validation) with three models (RF, GB, 

KNN). In addition, for each training fold, different combinations of hyperparameters were tested 

during the ML classification step (via sklearn GridSearchCV). This allowed us to identify and 

select the best hyperparameters (i.e., pre-defined parameters that control the ML algorithm 

behaviour and performance) for each of the ML algorithms within the pipeline. For the RF and 

GB algorithms, the tested set of hyperparameters were ‘n_estimators [100, 500, 750, 1000],’ 
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‘max_depth [3, 5, 10, 15, None],’ and ‘max_features [srqt, log2, None].’ For the KNN algorithm, 

these were ‘n_neighbors [3, 5, 7, 9],’ ‘weights [uniform, distance],’ and ‘algorithm [ball_tree, 

kd_tree, brute].’ We report averaged (across five cross-validation folds) evaluation metrics for 

the RF, GB, and KNN algorithms. We then selected the best performing ML algorithm overall as 

the final model and this was re-fit with the best identified hyperparameters.  

We used five averaged evaluation indices to select the best performing ML algorithm: (a) 

area under the ROC curve (AUC), (b) accuracy (i.e., % correct classification), (c) precision (i.e., 

% of correct positive classifications), (d) recall (i.e., % of those in the positive class who are 

correctly predicted), and (e) F1 score, a harmonic mean of precision and recall recommended for 

imbalanced samples. AUC values can be interpreted as follows: values between 0.6-0.7 are 

considered to have mild distinguishing power, values between 0.7-0.8 are considered to have 

moderate distinguishing power, and values over 0.8 are considered to have strong/excellent 

distinguishing power (Duan et al., 2020; Mandrekar, 2010). Ranging from 0-1, higher values of 

accuracy, precision, recall and F1 indicate better classification. 

Predictor Importance. Following the selection of the best ML model for each RG, we 

aimed to identify the leading predictors of AD, MCI, and dementia in both samples. We 

leveraged Shapley Additive exPlanation (SHAP) values to determine variable importance in the 

prediction of (a) AD (RG 1 and 2), (b) MCI (RG 3 and 4), (c) dementia (RG 5 and 6) (Lundberg 

et al., 2018). SHAP values address the ‘black-box’ issue of ML models in that they provide 

interpretable explanations of ML algorithms by identifying the individual contribution of each 

variable in the prediction of the desired outcome. In this study, we report two established Tree 

SHAP plots: (a) SHAP waterfall plots, and (b) SHAP summary plots. SHAP waterfall plots 

display the composition (individual contribution) and cumulative (total contribution) ratio for 
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each predictor on the model prediction. The waterfall plots were used to determine and report the 

predictors corresponding to four cumulative ratio benchmarks: 40%, 50%, 60% and 70%. 

Subsequently, SHAP summary plots show predictors descending order of importance with SHAP 

values for each individual in the sample shown across the x-axis for each predictor. SHAP values 

over 0 predict membership to the positive class whereas SHAP values less than 0 predict 

membership to the alternative (opposite) group. For the CU-AD comparison, we considered AD 

the positive class. For the CU-MCI comparison, we considered MCI the positive class. For the 

MCI-AD comparison, we considered AD the positive class. Higher absolute SHAP values 

indicate greater magnitude of the predictor effect. The colour of the dots display the value of the 

predictor (low = blue, high = red).  

Previous ML studies using SHAP values have reported and interpreted a large range (3-

20) of the identified top predictors which explained a sizeable proportion of the model (% of 

variance explained).  (L. Bohn, Drouin, S.M., McFall, G.P., Rolfson, D., Andrew, M.K., & 

Dixon, R.A., 2023; Gebreyesus, Dalton, Nixon, De Chiara, & Chinnici, 2023; Ju et al., 2021; J. 

Li et al., 2022; G. P. McFall, Bohn, L., Drouin, S.M., Gee, M., Han, W., Li, L., Camicioli, R., & 

Dixon, R.A., 2023; K. Wang et al., 2021; Zhou et al., 2022). We reported all predictors 

corresponding to a benchmark of 40% of the ML prediction model explained. Subsequently, we 

also report the number of predictors which correspond three larger cumulative ratio benchmarks 

of model explanation: 50%, 60% and 70%.  

Results 
 

 The order of the RGs provides for sequential reporting that compares each cohort pair 

(CU-AD, CU-MCI, MCI-AD) across the two samples. For the prediction of AD, we report all 

predictors corresponding to 40% of the ML model explanation in Sample 1 (RG 1) and Sample 2 
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(RG 2). We then provide the number of predictors corresponding to 50%, 60%, and 70% of the 

ML model prediction of AD. For the prediction of MCI, we report all predictors corresponding 

to 40% of the ML model explanation in Sample 1 (RG 3) and Sample 2 (RG 4). We then provide 

the number of predictors corresponding to 50%, 60%, and 70% of the ML model prediction of 

MCI. For the prediction of dementia, we report all predictors corresponding to 40% of the ML 

model explanation in Sample 1 (RG 5) and Sample 2 (RG 6). We then provide the number of 

predictors corresponding to 50%, 60%, and 70% of the ML model prediction of dementia. 

A detailed list of all leading predictors corresponding to 50%, 60% and 70% of the model 

explanation can be found in Tables 7 (for RG 1), 8 (for RG 2), 9 (for RG 3), 10 (for RG 4), 11 

(for RG 5), and 12 (for RG 6). The SHAP Waterfall Plots depicting the exact composition and 

cumulative ratios for each predictor are shown in Figures 1 (for RG 1), 3 (for RG 2), 5 (for RG 

3), 7 (for RG 4), 9 (for RG 5) and 11 (for RG 6). 

Research Goal 1 (Sample 1, CU-AD). We tested three ML classification algorithms for 

the prediction of AD in Sample 1. In the analysis including CA and DCA (Table 4), these were 

RF (accuracy = 0.84, precision = 0.82, recall = 0.88, F1 = 0.84, AUC = 0.95), GB (accuracy = 

0.68, precision = 0.76, recall = 0.40, F1 = 0.49, AUC = 0.94), and KNN (accuracy = 0.45, 

precision = 0.45, recall = 0.31, F1 = 0.35, AUC = 0.51). In the analysis including the DCA:CA 

ratio (Table 5), these were RF (accuracy = 0.83, precision = 0.82, recall = 0.88, F1 = 0.83, AUC 

= 0.89), GB (accuracy = 0.72, precision = 1.0, recall = 0.45, F1 = 0.61, AUC = 0.94), and KNN 

(accuracy = 0.57, precision = 0.58, recall = 0.52, F1 = 0.53, AUC = 0.53). The RF analysis 

(model #1) with CA and DCA (no ratio) was identified as the best performing algorithm 

('max_depth': X, 'max_features': X, 'n_estimators': 100) for predicting AD (Table 6). Six 

predictors from three domains explained 40% of the prediction model and discriminated between 
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CU and AD in Sample 1: lower general olfaction score, lower right EC volume, lower left HC 

volume, lower left EC volume, lower right HC volume, and lower Dementia Metabolite 3 Saliva 

(Table 7; Figure 3). These predictors originated from the sensory, imaging, and metabolomics 

domains of risk. Specific to the metabolite predictors, one compound (Dementia Metabolite 3 

Saliva) emerged when considering the 40% cumulative ratio benchmark for the model 

explanation. We also report the number of leading predictors corresponding to model 

explanations at three additional criteria: (a) 50% (nine predictors, four of which were 

metabolites), (b) 60% (15 predictors, seven of which were metabolites) and (c) 70% (24 

predictors, nine of which were metabolites). A full list of predictors of AD in Sample 1 

corresponding to 50%, 60% and 70% of the model explanation can be found in Table 7 and 

Figure 2.  

Research Goal 2 (Sample 2, CU-AD). We tested three ML classification algorithms for 

the prediction of AD in Sample 2. In the analysis including CA and DCA (Table 4), these were 

RF (accuracy = 0.94, precision = 1.0, recall = 0.86, F1 = 0.92, AUC = 0.98), GB (accuracy = 

0.87, precision = 1.0, recall = 0.68, F1 = 0.80, AUC = 0.98), and KNN (accuracy = 0.81, 

precision = 0.80, recall = 0.77, F1 = 0.77, AUC = 0.82). In the analysis including the DCA:CA 

ratio (Table 5), these were RF (accuracy = 0.86, precision = 0.93, recall = 0.71, F1 = 0.81, AUC 

= 0.98), GB (accuracy = 0.88, precision = 0.95, recall = 0.76, F1 = 0.84, AUC = 0.97), and KNN 

(accuracy = 0.74, precision = 0.75, recall = 0.63, F1 = 0.65, AUC = 0.80). The RF analysis 

(model #4) with CA and DCA (no ratio) was identified as the best performing algorithm 

('max_depth': X, 'max_features': X, 'n_estimators': 100) for predicting AD (Table 6). Nine 

predictors from five domains explained 40% of the prediction model and discriminated between 

CU and AD in Sample 2: lower left HC volume, lower right HC volume, lower right EC volume, 
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higher age, higher IL6, lower general olfaction score, higher AD Metabolite A Serum, lower 

APOA, and lower cholesterol (Table 8, Figure 5). These predictors originated from the imaging, 

demographic, and clinical health, sensory, and metabolomics domains of risk. Specific to the 

metabolite predictors, one compound (AD Metabolite A Serum) emerged when considering the 

40% cumulative ratio benchmark for the model explanation. We also report the number of 

leading predictors corresponding to model explanations at three additional criteria: (a) 50% (13 

predictors, two of which were metabolites), (b) 60% (18 predictors, three of which were 

metabolites), and (c) 70% (26 predictors, four of which were metabolites). A full list of 

predictors of AD in Sample 2 corresponding to 50%, 60% and 70% of the model explanation can 

be found in Table 8 and Figure 4.  

Research Goal 3 (Sample 1, CU-MCI). We tested three ML classification algorithms for 

the prediction of MCI in Sample 1. In the analysis including CA and DCA (Table 4), these were 

RF (accuracy = 0.66, precision = 0.73, recall = 0.58, F1 = 0.63, AUC = 0.71), GB (accuracy = 

0.70, precision = 0.69, recall = 0.48, F1 = 0.58, AUC = 0.83), and KNN (accuracy = 0.47, 

precision = 0.39, recall = 0.29, F1 = 0.32, AUC = 0.50). In the analysis including the DCA:CA 

ratio (Table 5), these were RF (accuracy = 0.70, precision = 0.70, recall = 0.70, F1 = 0.69, AUC 

= 0.81), GB (accuracy = 0.65, precision = 0.83, recall = 0.42, F1 = 0.53, AUC = 0.78), and KNN 

(accuracy = 0.49, precision = 0.46, recall = 0.47, F1 = 0.46, AUC = 0.45). The RF analysis 

(model #25) with the DCA:CA ratio was identified as the best performing algorithm 

('max_depth': 5, 'max_features': ‘sqrt’, 'n_estimators': 750) for predicting MCI (Table 6). Twelve 

predictors from three domains explained 40% of the prediction model and discriminated between 

CU and MCI in Sample 1: lower MCI Metabolite 1 Serum, lower MCI Metabolite 2 Serum, 

higher MCI Metabolite 1 Saliva, lower MCI Metabolite 3 Serum, lower HDL, lower SHBG, 
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lower MCI Metabolite 2 Saliva, higher AD Metabolite 1 Serum, lower left EC, lower APOA, 

lower sodium levels, and higher left HC volume (Table 9; Figure 7). These predictors originated 

from the metabolomics, clinical health, and imaging domains of risk. Specific to the metabolite 

predictors, six compounds (MCI Metabolite 1 Serum, MCI Metabolite 2 Serum, MCI Metabolite 

1 Saliva, MCI Metabolite 3 Serum, MCI Metabolite 2 Saliva, AD Metabolite 1 Serum) emerged 

when considering the 40% cumulative ratio benchmark for the model explanation. We also 

report the number of leading predictors corresponding to model explanations at three additional 

criteria: (a) 50% (18 predictors, eight of which were metabolites), (b) 60% (24 predictors, 11 of 

which were metabolites), and (c) 70% (35 predictors, 15 of which were metabolites). A full list 

of predictors of MCI in Sample 1 corresponding to 50%, 60% and 70% of the model explanation 

can be found in Table 9 and Figure 6.  

Research Goal 4 (Sample 2, CU-MCI). We tested three ML classification algorithms for 

the prediction of MCI in Sample 2. In the analysis including CA and DCA (Table 4), these were 

RF (accuracy = 0.80, precision = 0.83, recall = 0.76, F1 = 0.79, AUC = 0.86), GB (accuracy = 

0.68, precision = 0.70, recall = 0.48, F1 = 0.51, AUC = 0.90), and KNN (accuracy = 0.62, 

precision = 0.67, recall = 0.64, F1 = 0.62, AUC = 0.69). In the analysis including the DCA:CA 

ratio (Table 5), these were RF (accuracy = 0.89, precision = 0.92, recall = 0.88, F1 = 0.89, AUC 

= 0.95), GB (accuracy = 0.78, precision = 0.96, recall = 0.60, F1 = 0.73, AUC = 0.95), and KNN 

(accuracy = 0.68, precision = 0.67, recall = 0.82, F1 = 0.73, AUC = 0.75). The RF analysis 

(model #28) with the DCA:CA ratio was identified as the best performing algorithm 

(‘max_depth’: 15, ‘max_features’: ‘log2’, ‘n_estimators’: 1000) for predicting MCI (Table 6). 

Thirteen predictors from five domains explained 40% of the prediction model and discriminated 

between CU and MCI in Sample 2: lower MCI Metabolite A Serum, lower AST, lower MCI 
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Metabolite B Serum, higher IL6, higher anion gap, higher systolic blood pressure, lower APOB, 

higher homocysteine, lower DHEAS, lower left HC volume, lower MCI Metabolite C Serum, 

lower number of reported spoken languages, and higher creatinine levels (Table 10; Figure 9). 

These predictors originated from the metabolomics, clinical health, vascular/metabolic, imaging, 

and demographic domains of risk. Specific to the metabolite predictors, three compounds (MCI 

Metabolite A Serum, MCI Metabolite B Serum, MCI Metabolite C Serum) emerged when 

considering the 40% cumulative ratio benchmark for the model explanation. We also report the 

number of leading predictors corresponding to model explanations at three additional criteria: (a) 

50% (18 predictors, five of which were metabolites), (b) 60% (25 predictors, eight of which were 

metabolites), and (c) 70% (35 predictors, nine of which were metabolites). A full list of 

predictors of MCI in Sample 2 corresponding to 50%, 60% and 70% of the model explanation 

can be found in Table 10 and Figure 8.  

Research Goal 5 (Sample 1, MCI-AD). We tested three ML classification algorithms for 

the prediction of dementia in Sample 1. In the analysis including CA and DCA (Table 4), these 

were RF (accuracy = 0.83, precision = 0.84, recall = 0.85, F1 = 0.84, AUC = 0.88), GB 

(accuracy = 0.69, precision = 0.68, recall = 0.48, F1 = 0.56, AUC = 0.84), and KNN (accuracy = 

0.46, precision = 0.49, recall = 0.54, F1 = 0.49, AUC = 0.44). In the analysis including the 

DCA:CA ratio (Table 5), these were RF (accuracy = 0.81, precision = 0.80, recall = 0.85, F1 = 

0.81, AUC = 0.91), GB (accuracy = 0.68, precision = 0.86, recall = 0.52, F1 = 0.59, AUC = 

0.85), and KNN (accuracy = 0.44, precision = 0.43, recall = 0.49, F1 = 0.44, AUC = 0.43). The 

RF analysis (model #31) with CA and DCA (no ratio) was identified as the best performing 

algorithm ('max_depth': 3, 'max_features': ‘sqrt’, 'n_estimators': 500) for predicting dementia 

(Table 6). Nine predictors from four domains explained 40% of the prediction model and 
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discriminated between MCI and AD in Sample 1: lower general olfaction score, lower right HC 

volume, lower right EC volume, lower left HC volume, lower Dementia Metabolite 3 Serum, 

lower Dementia Metabolite 3 Saliva, higher Dementia Metabolite 2 Serum, lower systolic blood 

pressure, and lower diastolic blood pressure (Table 11; Figure 11). These predictors originated 

from the sensory, imaging, metabolomics, and vascular/metabolic domains of risk. Specific to 

the metabolite predictors, three compounds (Dementia Metabolite 3 Serum, Dementia Metabolite 

3 Saliva, Dementia Metabolite 2 Serum) emerged when considering the 40% cumulative ratio 

benchmark for the model explanation. We also report the number of leading predictors 

corresponding to model explanations at three additional criteria: (a) 50% (13 predictors, five of 

which were metabolites), (b) 60% (19 predictors, seven of which were metabolites), and (c) 70% 

(27 predictors, eight of which were metabolites). A full list of predictors of dementia in Sample 1 

corresponding to 50%, 60% and 70% of the model explanation can be found in Table 11 and 

Figure 10.  

Research Goal 6 (Sample 2, MCI-AD). We tested three ML classification algorithms for 

the prediction of dementia in Sample 2. In the analysis including CA and DCA (Table 4), these 

were RF (accuracy = 0.76, precision = 0.87, recall = 0.48, F1 = 0.60, AUC = 0.82), GB 

(accuracy = 0.72, precision = 0.58, recall = 0.51, F1 = 0.53, AUC = 0.82), and KNN (accuracy = 

0.58, precision = 0.46, recall = 0.34, F1 = 0.37, AUC = 0.55). In the analysis including the 

DCA:CA ratio (Table 5), these were RF (accuracy = 0.74, precision = 0.73, recall = 0.51, F1 = 

0.55, AUC = 0.78), GB (accuracy = 0.82, precision = 0.93, recall = 0.57, F1 = 0.70, AUC = 

0.86), and KNN (accuracy = 0.63, precision = 0.57, recall = 0.39, F1 = 0.45, AUC = 0.59). The 

GB analysis (model #35) with CA and DCA (no ratio) was identified as the best performing 

algorithm ('max_depth': 15, 'max_features': ‘sqrt’, 'n_estimators': 500) for predicting dementia 
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(Table 6). Nine predictors from seven domains explained 40% of the prediction model and 

discriminated between MCI and AD in Sample 2: lower right EC volume, lower left HC volume, 

lower right HC volume, higher age, lower glucose, lower Dementia Metabolite B Saliva, lower 

balance, lower physical activity, and lower diastolic blood pressure (Table 12; Figure 13). These 

predictors originated from the imaging, demographic, clinical health, metabolomics, 

gait/function, lifestyle, and vascular/metabolic domains of risk. Specific to the metabolite 

predictors, one compound (Dementia Metabolite B Saliva) emerged when considering the 40% 

cumulative ratio benchmark for the model explanation. We also report the number of leading 

predictors corresponding to model explanations at three additional criteria: (a) 50% (11 

predictors, three of which were metabolites), (b) 60% (16 predictors, four of which were 

metabolites), and (c) 70% (23 predictors, eight of which were metabolites). A full list of 

predictors of dementia in Sample 2 corresponding to 50%, 60% and 70% of the model 

explanation can be found in Table 12 and Figure 12.  

 
Discussion 

 
 In the current study with COMPASS-ND data, we tested pairwise cohort comparisons to 

predict AD (CU-AD), MCI (CU-MCI), and dementia (MCI-AD) using a large roster (p = 111 or 

112) of AD-related risk factors, demographic, anthropometrics, biomarkers, imaging markers, as 

well as novel metabolites and bile acids. To this end, we applied three ML algorithms (RF, GB, 

KNN) and SHAP values in parallel to two separate clinical research samples (Samples 1 and 2), 

each of which included independent and equivalently characterized cohorts of participants fitting 

formal CU, MCI and AD classifications. The specific aim was to identify the leading predictors 

of AD, MCI, and dementia from the multi-domain roster.  
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Our first RG tested relative predictor importance in discriminating between CU and AD 

cohorts (predicting AD) in Sample 1. Our second RG tested relative predictor importance in 

discriminating between CU and AD cohorts (predicting AD) in Sample 2. Our third RG tested 

relative predictor importance in discriminating between CU and MCI cohorts (predicting MCI) 

in Sample 1. Our fourth RG tested relative predictor importance in discriminating between CU 

and MCI cohorts (predicting MCI) in Sample 2. Our fifth RG tested relative predictor 

importance in discriminating between MCI and AD (predicting dementia) cohorts in Sample 1. 

Our sixth RG tested relative predictor importance in discriminating between MCI and AD 

cohorts (predicting dementia) in Sample 2. Analyses for each RG were conducted twice to 

consider important AD-related bile acids (CA and DCA) independently and as a ratio 

(DCA:CA). We subsequently selected and report results for the best model (with or without the 

DCA:CA ratio) for each RG. 

Although evidence for hallmark biomarkers of AD diagnosis has been rapidly 

accumulating, early predictors of AD etiology, mechanisms and pathways have been found to be 

highly variable and potentially represented by risk factors and biomarkers from multiple 

modalities operating independently and interactively. Accordingly, we compiled a large multi-

modal roster (number of predictors = 92) of risk factors and biomarkers from the COMPASS-

ND study. In addition to the available factors in the database, we included novel candidate 

biomarkers as selected from recent metabolomics analyses on blood and saliva from the same 

cohorts in both samples (Zhang, Drouin, Dixon & Li, 2022; Zhang, Drouin, Li & Dixon, 2022. 

We included in our roster of predictors the leading metabolite biomarker predictors of clinical 

status as well two selected bile acids. Specifically, we selected the top metabolite predictors from 

both the serum and salivary biofluid study samples, as well as two prominent bile acids (in two 
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forms, CA, DCA;DCA:CA ratio). These recently discovered biomarkers were included in a 

computationally competitive context vis-à-vis other established AD-related factors. For each 

comparison, both established (e.g., HC volume) and novel metabolomics (e.g., erythronic acid) 

biomarkers were tested identified as leading discriminating predictors. 

 Our findings suggest that several important risk domains (imaging, sensory, clinical 

health, demographic, vascular/metabolic, gait/function, lifestyle, and metabolomics) feature 

leading predictors of AD, MCI, and dementia. To illustrate, we focus our summary on the 

diversity of results obtained for the most restrictive model explanation criterion (40%). For the 

prediction of AD (RGs 1 and 2), six predictors from three domains (sensory, imaging, and 

metabolomics) and nine predictors from five domains (imaging, demographic, and clinical 

health, sensory, and metabolomics) explained 40% of the prediction model in Samples 1 and 2, 

respectively. In Sample 1, these leading predictors of AD included one metabolite which was 

previously identified as discriminating between MCI and AD: Dementia Metabolite 3 Saliva 

(Zhang, Drouin, Dixon & Li, 2022; Zhang, Drouin, Li & Dixon, 2022). In Sample 2, these 

included one metabolite that was previously identified as a leading serum metabolite 

discriminating between CU and AD: AD Metabolite A Serum in Sample 2 (Zhang, Drouin, 

Dixon & Li, 2022; Zhang, Drouin, Li & Dixon, 2022). The number of metabolomics predictors 

corresponding to model explanations of 50 to 70% ranged from four to nine in Sample 1 and two 

to four in Sample 2. Our selected bile acid markers did not emerge as predictors for any of the 

cumulative ratio benchmarks (40-70%) in either sample in the prediction of AD. 

For the prediction of MCI (RGs 3 and 4), 12 predictors from three domains 

(metabolomics, clinical health, and imaging) and 13 predictors from five domains 

(metabolomics, clinical health, vascular/metabolic, imaging, and demographic) explained 40% of 
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the prediction model in Samples 1 and 2 respectively. In Sample 1, these leading predictors of 

MCI included six metabolites, five of which were previously found to discriminate between CU-

MCI: MCI Metabolite 1 Serum, MCI Metabolite 2 Serum, MCI Metabolite 1 Saliva, MCI 

Metabolite 3 Serum, MCI Metabolite 2 Saliva, AD Metabolite 1 Serum (Zhang, Drouin, Dixon 

& Li, 2022; Zhang, Drouin, Li & Dixon, 2022). In Sample 2, these included three metabolites 

that were previously identified as the leading serum metabolites discriminating between CU and 

MCI: MCI Metabolite A Serum, MCI Metabolite B Serum, MCI Metabolite C Serum (Zhang, 

Drouin, Dixon & Li, 2022; Zhang, Drouin, Li & Dixon, 2022. The number of metabolomics 

predictors corresponding to model explanations of 50 to 70% ranged from eight to 15 in Sample 

1 and five to nine in Sample 2.  Our selected bile acid markers did not emerge as predictors for 

any of the cumulative ratio benchmarks (40-70%) in either sample in the prediction of MCI. 

For the prediction of dementia (RGs 5 and 6), nine predictors from four domains 

(sensory, imaging, metabolomics, and vascular/metabolic) and nine predictors from seven 

domains (imaging, demographic, clinical health, metabolomics, gait/function, lifestyle, and 

vascular/metabolic domains) explained 40% of the prediction model in Samples 1 and 2, 

respectively. In Sample 1, these leading predictors of dementia included three metabolites which 

were previously identified as among the leading serum and salivary metabolites discriminating 

between MCI and AD: Dementia Metabolite 3 Serum, Dementia Metabolite 3 Saliva, Dementia 

Metabolite 2 Serum (Zhang, Drouin, Dixon & Li, 2022; Zhang, Drouin, Li & Dixon, 2022). In 

Sample 2, these included one metabolite which was previously identified as a leading salivary 

metabolite discriminating between MCI and AD: Dementia Metabolite B Saliva (Zhang, Drouin, 

Dixon & Li, 2022; Zhang, Drouin, Li & Dixon, 2022). The number of metabolomics predictors 

corresponding to model explanations of 50 to 70% ranged from five to eight in Sample 1 and 
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three to eight in Sample 2. Our selected bile acid markers did not emerge as predictors for any of 

the cumulative ratio benchmarks (40-70%) in either sample in the prediction of MCI. 

Below, we further discuss and interpret a selection (i.e., the top five) of the leading 

predictors of AD, MCI, and dementia which originate from five risk domains. Specifically, these 

risk domains were imaging, sensory, clinical health, demographic, and metabolomics. 

Subsequently, we discuss additional predictors which correspond to the most restrictive model 

explanation criterion (40%) but were not among the top five predictors. Finally, we discuss the 

bile acid predictors (CA, DCA, and DCA:CA) which did not emerge as leading predictors in any 

of our analyses. 

Volumetric Imaging Domain 
 

Lower volume measurements for all four included MRI measurements (left HC volume, 

right HC volume, left EC volume, right EC volume) emerged as leading predictors of both AD 

and dementia. Specifically, in order of importance, right EC volume, left HC volume, left EC 

volume, and right HC volume were the second to fifth most important predictors of AD in 

Sample 1. Left HC volume, right HC volume, and right EC volume were the first to third most 

important predictors of AD in Sample 2. Right HC volume, right EC volume, and left HC 

volume were the second to fourth most important predictors of dementia in Sample 1. Right EC, 

left HC, and right HC were the first to third most important predictors of dementia in Sample 2. 

In previous studies, lower levels and steeper decline (atrophy) in both HC and EC volume have 

been suggestive of elevated risk for subsequent clinical transitions to MCI or AD (Apostolova et 

al., 2012; Byun et al., 2015; Pini et al., 2016). The HC is an important neurological site 

responsible for episodic and working memory. Similarly, the EC is an important medial temporal 

lobe structure with a major role in memory, cognition, spatial awareness, and navigation. 
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Notably, the EC is a pivotal structure connecting the HC with the rest of the brain – allowing for 

communication between the neocortex and the HC. Along with the HC, the EC has been reported 

to be one of the first and primary sites of neuropathology and neuronal loss in AD and is 

especially affected at earlier phases of the disease. Overall, atrophy and reduced metabolism in 

the HC and EC is considered a general neurodegeneration biomarker for AD. Volume and 

thickness differences for both of these structures have been repeatedly observed between normal 

controls, MCI, and AD (Apostolova et al., 2012; Apostolova et al., 2010; Bobinski et al., 1999; 

Devanand et al., 2012; Pini et al., 2016; Velayudhan et al., 2013). For example, smaller thickness 

measurements in these two regions have been identified in older adults with AD as compared to 

those with MCI or who are cognitively normal (Velayudhan et al., 2013). Our findings suggest 

that lower HC and EC volumes are consistent and leading predictors of AD and dementia. In 

some studies, atrophy of these regions has been found to be more pronounced and accelerated in 

those with AC (Devanand et al., 2012). The results of the current study suggest that volume 

differences in HC and EC may be too subtle to emerge as a leading predictor of MCI (in the CU-

MCI comparison) when other AD-related risk factor and metabolomics data are available and 

used simultaneously. 

Notably, we found that left EC volume was not among the leading five predictors of AD 

in Sample 2 or of dementia in either sample. Previous research has identified differences 

between the left and right HC between clinical cohorts (i.e., normal controls, subjective cognitive 

decline, MCI, and AD) (Zhao et al., 2019). It has also been noted that atrophy of the left HC is 

more commonly reported in normal aging and begins before atrophy of the right HC in MCI and 

AD (Donix et al., 2013). This suggests that right HC atrophy may occur only in later stages of 

disease and is more strongly associated with predictions of clinical transitions towards MCI and 
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AD. Similar findings have been found for other medial temporal lobe structures, including the 

EC (Donix et al., 2013).  

Sensory Domain 

One sensory predictor emerged as a leading predictor of both AD and dementia. 

Specifically, a lower olfactory score (i.e., worse olfactory function) was one of the leading five 

predictors in the CU-AD comparisons (Sample 1) and in the MCI-AD comparison (Sample 1). 

Olfactory dysfunction has been consistently reported as a key sensory predictor of cognitive 

changes in aging (Stuart WS MacDonald, Keller, Brewster, & Dixon, 2018) and one of the 

earliest clinical symptoms of AD (Djordjevic, Jones-Gotman, De Sousa, & Chertkow, 2008; 

Son et al., 2021; Zou, Lu, Liu, Zhang, & Zhou, 2016). Although also exhibited in normal aging, 

olfactory deficits in individuals with AD have been reported to be much more severe 

(Djordjevic et al., 2008). In addition, previous research has shown that greater olfactory deficits 

are associated with AD-related neurodegeneration in those with MCI and AD, such as left HC 

atrophy (Kjelvik et al., 2014). Importantly, the timing of olfactory deficits has been a key 

research question in recent literature, as early detection of AD could be improved if these 

deficits occurred early in the disease and could be detected reliably (Djordjevic et al., 2008; Son 

et al., 2021). In the current study, olfaction did not emerge as a leading predictor of MCI. These 

results indicate that although olfactory dysfunction is a strong predictor of AD and dementia, 

prediction of early (preclinical) stages of disease are not captured by this factor. As olfaction 

predicted dementia (MCI-AD comparison), it is likely that olfactory changes that are severe 

enough to emerge as a leading predictor occur during or after the MCI stage. 
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Clinical Health Domain 

Several peripheral serum biomarkers were identified as leading predictors of AD, MCI, 

or dementia in the current study. These include higher levels of IL-6 (MCI and AD), lower HDL 

cholesterol (MCI), higher anion gap (MCI), lower glucose (dementia), and lower levels of AST 

(MCI). Specifically, higher IL-6 discriminated the CU-AD cohorts and the CU-MCI cohorts in 

Sample 2. Inflammatory pathways have been consistently linked in recent research to play an 

important role in AD pathogenesis. It has been hypothesized that several components of 

inflammatory pathways, such as microglial and astrocyte activation as well as cytokine 

overproduction contribute to neuronal damage seen in AD (Lyra e Silva et al., 2021; Stamouli & 

Politis, 2016). Increased levels of IL-6 have been reported in AD brain tissue post-mortem and 

have been inversely associated with cognitive performance (Lyra e Silva et al., 2021). Similarly, 

increased serum levels of IL-6 have been found in AD patients as compared to MCI or controls 

(Kim, Lee, & Kim, 2017). We extend this finding and demonstrate that IL-6 levels also 

discriminate between CU and MCI cohorts.  

Several other peripheral markers of clinical health predicted MCI. Lower HDL 

cholesterol was identified as a leading predictor of the CU-MCI comparison in Sample 1. Several 

mechanistic links between cholesterol and risk of AD have been discussed in related ADRD 

literature, including inflammation and oxidative stress (Candore et al., 2010; Casserly & Topol, 

2004; Hansen & Wang, 2023; Zarrouk et al., 2020) as well as vascular dysfunction and 

impairment (K. J. Anstey, Ashby-Mitchell, & Peters, 2017; Nordestgaard, Christoffersen, & 

Frikke-Schmidt, 2022; Z. Zhou et al., 2020). HDL, also known as ‘good’ cholesterol, has been 

associated with better cardiovascular outcomes and lower risk of MCI, AD, and other 

neurodegenerative diseases (Marsillach et al., 2020; Pillai et al., 2023). Increased LDL or total 



DATA-DRIVEN APPROACHES TO HETEROGENEITY IN AGING  

150 
 

cholesterol (hypercholesterolemia), on the other hand, has been posited to be a risk factor for AD 

(Vasantharekha, Priyanka, Swarnalingam, Srinivasan, & ThyagaRajan, 2017). Specifically, 

lower concentrations of HDL in CSF have been previously associated with better cognitive 

function (Martinez et al., 2023) while lower levels of serum HDL have been found to be 

associated with neurotoxicity (Marsillach et al., 2020; Martinez et al., 2023; Vasantharekha et 

al., 2017). Similarly, increased AD risk in older adults has been associated with higher levels of 

serum HDL cholesterol (Vasantharekha et al., 2017). On the other hand, other studies have 

reported no links between HDL cholesterol and dementia (K. J. Anstey et al., 2017). Our 

findings suggest that previous findings regarding HDL cholesterol and AD extend to MCI, and in 

the presence of other predictive factors, should be tested for associations with actual preclinical 

trajectories. 

We also identified higher anion gap as a leading predictor of MCI in Sample 2. In a 

previous study, higher levels of anion gap have been found to be associated with lower scores on 

The Consortium to Establish a Registry for Alzheimer’s Disease test (Supasitthumrong et al., 

2019). Raised anion gap can indicate metabolic acidosis (increased blood acidity) or renal 

failure. Finally, lower levels of AST were also identified as a leading predictor of MCI in Sample 

2. Elevated levels of AST can indicate live dysfunction or an underlying cardiovascular 

condition (e.g., myocardial infraction) (Javaid, Hasan, Zohra, & Hussain, 2012). Increased levels 

of AST have been fond to be associated with increased risk of MCI in a previous case-control 

study (X. Zhou et al., 2020). Similarly, a negative correlation between MMSE scores and AST 

has been reported previously in cognitively normal older adults (Sanke et al., 2014). A potential 

mechanism includes glucose metabolism dysfunction leading to the upregulation of alternative 
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energy sources which would lead to increased AST activity (Riemenschneider, Buch, Schmolke, 

Kurz, & Guder, 1997). 

One marker of peripheral clinical health (lower glucose levels) emerged as one of the 

leading five predictors of dementia in Sample 2 (none in Sample 1). Previously, higher levels of 

glucose have been found to be associated with poorer memory function (Supasitthumrong et al., 

2019). In the current study, we note that the SHAP Summary Plot (Figure 13) shows a significant 

number of imputed values as driving the prediction towards dementia which may contribute to 

this contradictory finding. Further research should explore the association between fasting 

glucose levels and AD. 

Demographic Domain 

Age was a leading predictor in Sample 2 for both the CU-AD and MCI-AD (dementia) 

comparisons. In both comparisons, older age predicted membership to the AD cohort. Older 

chronological age is associated with advancing frailty, increased disability, and the accumulation 

of different morbidities, all of which are associated with pathological clinical outcomes such as 

AD and dementia (L. Bohn, Drouin, S.M., McFall, G.P., Rolfson, D., Andrew, M.K., & Dixon, 

R.A., 2023; Riedel et al., 2016). Despite not capturing health status or a measure of an 

individual’s ‘healthspan,’ our findings highlight that chronological age represents a key variable 

that can be used to reliably predict AD and dementia and is often collected in large-scale 

longitudinal studies. To note, biological sex (male/female) did not emerge as a leading predictor 

in any of the prediction models.  

Metabolomics Domain 

Precision medicine perspectives have highlighted the importance of incorporating 

biomarkers that go beyond the conventional markers of amyloid and tau in order to adequately 
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address AD heterogeneity. Several omics-based biomarkers have been identified as promising 

candidate biomarkers in previous studies, including individual metabolites (e.g., 

(dodecanedioylcarnitine, phosphatidylchline) and panels (e.g., (3-metabolite panel: 

Methylguanosine, Histidinyl-Phenylalanine, Choline-cytidine) (Bader et al., 2020; Habartová et 

al., 2019; Xianlin Han et al., 2011; Huan et al., 2018; Johnstone et al., 2012; Lista et al., 2013; 

Trushina & Mielke, 2014; Varma et al., 2018). Notably, a previous study incorporated 

metabolomics-based biomarkers in machine learning prediction models in a similar design 

(Sapkota et al., 2018; see also McFall et al., 2023, for a Parkinson’s disease example). In the 

current study, we included the leading three serum and salivary metabolites discriminating 

between each pairwise comparison (CU-AD, CU-MCI, and MCI-AD) as identified in recent 

metabolomics analyses performed separately on the present cohorts. The full results of this 

recent metabolomics analyses are currently summarized in two technical reports (Zhang, Drouin, 

Dixon & Li, 2022; Zhang, Drouin, Li & Dixon, 2022). The present design resulted in nine 

salivary and nine serum metabolites discovered by these analyses and added to the present 

predictor roster. 

 For the CU-AD comparisons (RG 1 and RG 2), no metabolites emerged in the leading 

five predictors.  For the CU-MCI comparisons (RG 3 and RG 4), six metabolites were identified 

as leading predictors (4 in Sample 1, 2 in Sample 2). The leading metabolite in Sample 1 was 

lower serum erythronic acid (MCI Metabolite 1 Serum). This compound was identified in a 

previous study as one of three leading metabolites discriminating between the CU-MCI cohort. 

Erythronic acid is a glucose-related metabolite and the diastereomer of threonic acid (Engelke et 

al., 2010). Higher urine concentrations have been associated with transaldolase deficiencies in 

pediatric populations (Engelke et al., 2010). Specific to AD and cognitive impairment, it has 
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been studied in both brain tissue and serum studies. Elevated levels of erythronic acid have been 

identified in the hippocampus and EC of AD patients (Xu et al., 2016). However, lower levels 

have been identified in plasma in individuals with schizophrenia and cognitive impairment as 

compared to those without cognitive impairment (Jiang et al., 2022). Briefly, it has been 

hypothesized that the downregulation of erythronic acid may be a contributor and indicator of 

cognitive decline and impairment (Jiang et al., 2022). Our results are concordant with this 

interpretation in that lower levels of serum erythronic acid predicted MCI. An extension is that 

erythronic acid was not a leading predictor of AD or dementia, suggesting that alterations in 

some metabolites that have been associated with cognitive impairment may be specific to pre-

clinical (early) stages of disease. 

Lower O-Hydroxyaminobenzoic acid (MCI Metabolite 2 Serum) and higher pyrocatechol 

(MCI Metabolite 1 Saliva) were also identified as leading predictors for the CU-MCI for Sample 

1. The involvement of O-Hydroxyaminobenzoic acid in cognitive impairment, MCI, or AD has 

not been previously established. Our findings suggest that this metabolite compound is a leading 

(second most important) predictor of MCI and should be further investigated. Pyrocatechol is a 

metabolite involved in several degradation pathways, including chlorocyclohexane and 

chlorobenzene degradation, benzoate degradation, fluorobenzoate degradation, dioxin 

degradation, naphthalene degradation and aminobenzoate degradation. In a previous study 

exploring the effect of caffeine consumption on risk of AD, pyrocatechol (produced during 

coffee roasting from chlorogenic acid) was found to reduce Aβ production in SH-SY5Y cells 

(Fukuyama et al., 2018). Our findings provide additional support for a neuroprotective role (via 

reduced Aβ production) of pyrocatechol. 
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Lower serum hypoxanthine (MCI Metabolite 3 Serum) was also identified as a leading 

predictor in the CU-MCI comparison for Sample 1. Hypoxanthine is the catabolic intermediate 

of purine metabolism and is strongly associated with the uric acid cycle (Kaddurah-Daouk et al., 

2013; Xu et al., 2016). Several purine derivatives have been identified as neuroprotective via 

anti-inflammatory and antioxidant mechanisms. These include uric acid, guanosine, and inosine. 

Previous findings have suggested that uric acid may have a neuroprotective effect (Kaddurah-

Daouk et al., 2013). Hypoxanthine specifically has been found to be decreased in the brain tissue 

(Xu et al., 2016), saliva (Liang et al., 2015), and plasma (Chouraki et al., 2017) of AD patients – 

reflecting abnormal purine metabolism in AD individuals. 

 In addition, lower 3-Mercaptolactate-cysteine disulfide (MCI Metabolite A Serum) and 

lower N-Acetyl-2-Oxo-4-hydroxy-5-aminovaleric acid (MCI Metabolite B Serum) were 

identified as leading predictors of MCI in Sample 2. For the MCI-AD comparisons (RG 5 and 

RG 6), one metabolite compound (BatatsinIV [Dementia Metabolite 3 Serum]) was identified as 

a leading predictor of dementia in Sample 1. Though previously unexplored, these metabolic 

compounds were identified as discriminating metabolites between the MCI and CN and MCI and 

AD cohorts in the previous metabolomics study, respectively (Zhang, Drouin, Dixon & Li, 2022; 

Zhang, Drouin, Li & Dixon, 2022). Possible linkages to pathways of the AD clinical spectrum 

with 3-Mercaptolactate-cysteine disulfide, N-Acetyl-2-Oxo-4-hydroxy-5-aminovaleric acid, and 

BatatsinIV should be further explored. 

Notably, our findings reveal a noteworthy pattern in the prediction of AD, MCI, and 

dementia using serum and salivary metabolites. When considering the leading five predictors for 

each RG, no metabolites emerged as leading predictors of AD, six metabolites emerged as 
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leading predictors of MCI, and one metabolite predicted dementia. All but one (pyrocatechol) 

metabolites originated from the serum analyses. 

Additional Leading Predictors of AD, MCI, and Dementia 

Several AD-related risk factors, biomarkers, and metabolite predictors contributed to 

40% of the model explanation but were not among the leading five predictors discussed in the 

sections above. For RG 1 (predicting AD in Sample 1), this included one predictor from the 

metabolomics domain (ammeline). For RG 2 (predicting AD in Sample 2), this included 

predictors originating from the sensory (general olfaction score), metabolomics (2,8-

Dihydroxyadenine [AD Metabolite A Serum]), and clinical health (APOA, cholesterol) domains. 

For RG 3 (predicting MCI in Sample 1), this included predictors from the clinical health (SHBG, 

APOA, sodium), metabolomics (Hydroxypropyl Tryptophan [MCI Metabolite 2 Saliva], 3-beta-

Hydroxydelta-5-cholenic Acid [AD Metabolite 1 Serum]), and imaging (left EC volume, left HC 

volume) domains. For RG 4 (predicting MCI in Sample 2), this included predictors originating 

from the vascular/metabolic (Systolic BP), clinical health (APOB, homocysteine, DHEAS, 

creatinine), imaging (left HC volume), metabolomics (Threonolactone [MCI Metabolite C 

Serum]), and demographic (languages) domains. For RG 5 (predicting dementia in Sample 1), 

this included predictors originating from the metabolomics (Ammeline [Dementia Metabolite 3 

Saliva], 2,3,6-Trihydroxypyridine [Dementia Metabolite 2 Serum]) and vascular/metabolic 

(systolic BP, diastolic BP) domains. For RG 6 (predicting dementia in Sample 2), this included 

predictors originating from the metabolomics (2-Methyl-4-Heptanone [Dementia Metabolite B 

Saliva]), gait/function (balance), lifestyle (physical activity), and vascular/metabolic (diastolic 

BP) domains. 
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Bile Acids (CA, DCA, DCA:CA) 

In the current study, the included bile acids (CA or DCA) and the bile acid ratio 

(DCA:CA) did not appear as leading predictors in any of our analyses for any of the cumulative 

ratio benchmark values (40%, 50%, 60%, 70%). Specifically, the composition (individual 

contribution) of each of the bile acid variables (CA, DCA, or DCA:CA) were under 1%. 

Previous studies have found lower levels of CA and increased levels of DCA acid in AD as 

compared to cognitively normal older adults (MahmoudianDehkordi et al., 2019) and were a 

notable interest of the current study. Bile acids are thought to be associated with AD in several 

ways, including gut microbiota and cholesterol metabolism. First, the pathogenesis of AD has 

been more recently associated with disturbances in the brain-gut-microbiota (Mulak, 2021). Bile 

acids and gut microbiota have been closely associated in previous studies, as bile acids are 

important signaling molecules for a number of metabolic processes (Mulak, 2021). Second, in 

humans, cholesterol is cleared from the body through bile acid production. Alterations in bile 

acid profiles can be linked to dysfunctional cholesterol clearance which could contribute to AD 

pathophysiology (MahmoudianDehkordi et al., 2019; Shao et al., 2020). Our findings indicate 

that in the context of a other AD-related risk factors and biomarkers which included a large 

roster of metabolomics predictors, bile acids did not add significant contributions to the 

prediction model. 

Limitations and Strengths  

There were several limitations associated to our study. First, we conducted our analyses 

on two relatively small samples. The samples included three cohorts, which ranged from 32-33 

(CN), 33-33 (MCI), and 21-33 (AD) per group. We note, however, that the samples were 

balanced in that they were selected to be relatively age- and sex-matched. In addition, the final 
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selected ML algorithms (RF and GB) are powerful ensemble methods, that when used in 

conjunction with five-fold cross-validation and hyperparameter tuning, are considered well-

suited for smaller samples and large predictor sets as they are less prone to overfitting than other 

algorithms. Second, our CN cohort in Sample 1 consisted of CN and older adults with subjective 

cognitive impairment. However, the CN cohort in Sample 2 consisted of CN older adults only. 

Due to this, we decided to conduct and report analyses in both samples separately, as is common 

in biomarker research. Moreover, this design feature provided an opportunity to check the 

generalizability of mixed versus “pure” CN group. Third, although CSF markers are invited in 

the COMPASS-ND data collection, the volunteer uptake has been small. This fact produced high 

proportions of missing CSF data for the present study, and thus we were unable to include 

conventional AD CSF biomarkers (Aβ1-42, t-tau) in our predictor roster. Although we note that 

our classification models resulted in good to excellent discrimination between cohorts despite the 

exclusion of these key predictors, future studies should consider adding these predictors to test 

and report their relative importance within a large set of AD-related risk factors. 

The present study also features several notable strengths. First, we used a comprehensive 

predictor roster featuring AD-related risk factors and biomarkers from 12 domains of risk. These 

included demographic, lifestyle, mental health, anthropometric, sensory, gait/function, 

vascular/metabolic, imaging, fluid biomarkers, clinical health, metabolites (serum and salivary), 

and bile acids. In total, our predictor roster included 111 or 112 predictors covering a breadth of 

risk domains. Second, we took several steps to optimize the final selected prediction models for 

each RG. These included: (a) testing a set of three ML algorithms (RF, GB, KNN) 

simultaneously within a sklearn pipeline, (b) using hyperparameter tuning to select the best 

possible hyperparameters, and (c) testing two predictor rosters (one with CA and DCA bile acids 
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independently and one with the DCA:CA ratio). Third, the evaluation metrics (precision, 

accuracy, recall, F1 score, ROC-AUC) for the final ML prediction models indicated strong 

classification performance. Notably, the ROC-AUC values ranged from 0.81 to 0.98 which 

suggest strong distinguishing power for all comparisons. Finally, the COMPASS-ND database 

features clinically well-characterized and deeply phenotyped cohorts, including but not limited to 

the AD spectrum.  

Conclusions 

The current study examined a large roster of AD-related risk factors and biomarkers in a 

computationally competitive context to identify the leading predictors of AD, MCI, and 

dementia. For each prediction, established AD-related risk factors and biomarkers (e.g., HC 

volume, age, sex) as well as candidate metabolomics (e.g., erythronic acid, ammeline, 

hypoxanthine) and bile acids (i.e., CA, DCA, DCA:CA) predictors were tested. We identified 

several factors from varied AD-related risk domains (volumetric imaging, sensory, clinical 

health, demographic, metabolomics) which emerged as the leading predictors of AD, MCI, and 

dementia. Notably, several candidate metabolite predictors significantly contributed to the 

prediction of all three diagnoses, but especially the subtle differences between CU and MCI 

older adults. Overall, our findings highlight that advancing our knowledge of the AD spectrum 

benefits from a comprehensive approach which integrates multi-modal risk factors and 

biomarkers with metabolomics data.  
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Table 4-1. Sample characteristics predictors organized by domain 

Domain Predictor Sample 1 
 CU (n = 33) 

Sample 1  
MCI (n = 33) 

Sample 1  
AD (n = 33) 

Sample 2  
CU (n = 32) 

Sample 2  
MCI (n = 33) 

Sample 2  
AD (n = 21) 

D
em

ographic 

Age, months 842.0 843.8 856.4 850.1 890.0 949.5 

Sex (% Female) 81.1 54.5 42.4 68.8 48.5 23.8 

Number of Languages 
Spoken 1.88 2.22 1.70 2.3 1.8 2.0 

Total Years of Education 15.9 15.4 16.0 16.1 15.8 14.8 

L
ifestyle 

General physical activity 
score (PASE) 117.7 118.6 108.8 153.0 121.6 83.1 

Nutrition Risk Score 38.6 38.3 41.2 40.2 38.6 39.6 

PSQI Sleep Score 5.6 4.7 3.9 5.5 4.4 5.0 

Regular Smoking (% Yes) 54.5 33.3 30.3 56.3 38.7 45.0 

Alcohol Consumption  
(% 7+) 21.2 18.2 9.0 25.0 9.7 10.0 

Oral Health Score 2.7 2.4 3.2 2.8 2.7 2.5 

Current number of 
medications 5.3 5.7 5.5 6.3 6.1 7.6 

Current health perception  
(% Very Good) 54.5 33.3 60.6 53.1 30.3 38.1 
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M
ental H

ealth 

Major depressive disorder  
(% Yes) 15.2 15.2 18.2 9.4 18.2 28.6 

Generalized anxiety disorder 
(% Yes) 3.0 15.2 18.2 12.5 12.1 4.8 

Other mood disorder  
(% Yes) 0 0 3.0 6.3 0.0 9.5 

Phobic disorder (% Yes) 0 3.0 0 3.1 0.0 0.0 

Post-traumatic stress disorder 
(% Yes) 0 3.0 0 6.3 0.0 0.0 

Suicide attempts (% Yes) 3.0 6.0 0 3.1 15.2 4.8 

A
nthropom

etric 
M

easures 

BMI 26.4 26.9 25.9 25.9 26.3 28.7 

Waist Circumference 92.2 95.4 93.8 91.4 91.3 96.2 

Hip Circumference 103.2 103.1 98.9 102.6 97.2 101.6 

Neck Circumference 35.1 36.8 37.5 36.1 34.9 38.7 

Sensory 

Olfaction Score 10.3 9.6 6.2 10.5 8.7 6.5 

Vision Score 0.1 0.14 0.16 0.14 0.19 0.23 

Hearing Score 6.8 8.7 4.2 5.1 8.6 7.2 
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G
ait and 

Function 

Balance confidence  
(ABC Score) 86.9 84.5 91.7    

Grip Strength  
(M of left and right hand) 23.7 25.5 29.7 28.8 26.4 31.5 

V
ascular and M

etabolic 

1 minute Orthostatic Change 
(% Yes) 18.2 9.0 9.0 18.2 23.3 14.3 

3 minute Orthostatic Change 
(% Yes) 15.2 6.0 6.0 19.0 24.1 14.3 

Systolic Blood Pressure  
(M supine, seated, standing) 127.8 133.3 123.1 123.7 136.4 128.2 

Diastolic Blood Pressure (M 
of supine, seated, standing) 75.9 76.4 71.8 74.1 79.5 71.4 

Resting heart rate (M of 
supine, seated, standing) 69.1 69.3 66.5 68.7 68.7 65.2 

Im
aging 

Hippocampus Snipe Left  
(Z-Score) -0.23 -0.2 -1.3 0.07 -0.3 -1.04 

Hippocampus Snipe Right 
(Z-Score) -0.3 -0.4 -1.1 -0.07 -0.3 -0.9 

Entorhinal Cortex Snipe Left 
(Z-Score) -0.08 -0.3 -0.7 -0.2 -0.3 -0.6 

Entorhinal Cortex Snipe 
Right (Z-Score) -0.1 -0.3 -1.0 0.01 -0.2 -0.8 

Fluid 
B

iom
arkers 

Albumin, g/L 43.1 43.4 44.2 42.5 42.8 41.5 

Alkaline Phosphatase, U/L 70.1 82.1 70.6 71.1 67.4 75.2 

Alpha1 Antitrypsin, mg/dL 125.6 128.1 122.2 124.5 129.4 132.9 
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Fluid B
iom

arkers 

Alanine aminotransferase 
(ALT), U/L 14.4 36.0 18.6 18.5 15.7 14.2 

Anion Gap, mmol/L 12.4 12.8 11.7 9.3 12.5 12.1 

Aspartate Aminotransferase 
(AST), U/L 17.2 43.0 19.3 23.1 16.1 17.3 

Bicarbonate, mmol/L 26.1 25.8 26.2 27.4 25.1 25.1 

Bilirubin Total, mmol/L 9.8 7.8 9.8 8.6 9.1 10.5 

Chloride, mmol/L 101.3 99.3 100.3 100.9 102.0 102.2 

Cholesterol total, mmol/L 4.9 4.6 4.8 5.8 4.8 4.3 

Cortisol, mmol/L 336.3 322.3 344.9 365.4 342.0 331.6 

Creatinine, mmol/L 71.3 76.0 80.4 67.6 83.0 88.6 

Cystatin C, mg/L 1.0 1.0 1.1 0.9 1.2 1.2 

Dehydroepiandrosterone 
(DHEA) sulfate, umol/L 2.4 1.6 2.5 2.6 1.7 1.3 

Estradiol, pmol/L 44.5 61.2 71.3 51.5 66.8 91.0 

Ferritin, ug/L 124.9 196.4 183.2 173.9 141.3 165.0 

Follicle-stimulating hormone 
(FSH), U/L 56.7 49.6 40.1 48.9 41.8 21.5 
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Fluid B
iom

arkers 

Glucose, mmol/L 5.3 5.7 5.6 5.2 6.0 5.3 

HDL cholesterol, mmol/L 1.7 1.5 1.6 1.7 1.5 1.3 

Homocysteine, umol/L 11.6 11.2 12.0 10.4 12.7 13.3 

Insulin, pmol/L 75.2 102.0 70.8 69.4 98.8 90.6 

LDL cholesterol, mmol/L 2.7 2.6 2.7 3.4 2.6 2.3 

Luteinizing hormone (LH), 
U/L 27.3 25.5 21.4 24.3 22.7 12.9 

Non-HDL cholesterol, 
mmol/L 3.2 3.1 3.4 4.0 3.4 2.9 

Potassium, mmol/L 4.4 4.2 4.4 4.3 4.4 4.2 

Prolactin, ug/L 9.8 9.8 10.2 9.6 11.5 12.0 

Sex hormone binding 
globulin, nmol/L 88.8 70.8 65.9 68.5 68.8 60.4 

Sodium, mmol/L 139.8 137.9 138.5 137.6 139.7 139.4 

Adrenocorticotropic 
Hormone (ACTH) , pmol/L 4.9 4.6 5.4 5.0 5.4 5.8 

Androstenedione, nmol/L 5.7 3.6 6.5 3.4 5.9 4.5 

High-sensitivity C-reactive 
protein, mg/L 1.4 5.2 2.1 1.9 1.5 2.1 
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Fluid B
iom

arkers 

Insulin-like Growth Factor-1, 
nmol/L 17.0 17.8 26.1 17.2 15.3 17.8 

InterLuken 6, ng/L 4.0 3.5 3.6 3.2 4.2 2.7 

Apolipoprotein-A 
Quantitation, g/L 1.7 1.6 1.5 1.8 1.6 1.4 

Apolipoprotein-B 
Quantitation, g/L 0.9 0.9 1.0 1.1 0.9 0.9 

Ratio total cholesterol / HDL 3.1 3.2 3.3 3.6 3.6 3.4 

Triglycerides, mmol/L 1.1 1.4 1.4 1.3 2.0 1.4 

Thyroid stimulating hormone 
(TSH) , mU/L 2.4 3.1 2.5 2.8 2.6 3.12 

Urea, mmol/L 5.4 5.7 6.1 5.6 6.2 6.9 

Vitamin B12, pmol/L 405.4 482.1 387.9 511.5 392.3 483.1 

25-Hydroxy Vitamin D, 
nmol/L 405.4 482.1 387.9 105.1 84.0 77.0 

C
linical H

ealth 
(C

linical B
lood 

C
ount) 

HBA1C 5.6 6.0 5.7 5.5 5.8 5.6 

Hemoglobin 140.8 141.4 145.6 142.1 138.0 137.0 

Red blood count 4.6 4.7 4.7 4.7 4.5 4.6 

Hematocrit 0.4 0.4 0.4 0.4 0.4 0.4 
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C
linical H

ealth (C
linical B

lood C
ount) 

Mean corpuscular volume 92.6 90.8 92.8 90.7 91.8 91.9 

Mean corpuscular 
hemoglobin concentration 331.1 333.1 330.7 340.1 332.6 328.8 

Red Cell Distribution Width 13.2 13.4 13.3 12.9 14.0 13.9 

Platelet count 234.2 229.1 227.0 246.6 234.4 208.1 

Mean platelet volume 9.8 10.3 10.4 9.8 9.7 10.6 

White blood count 5.5 5.7 6.0 5.2 6.1 6.2 

N neutrophils 3.1 3.2 3.6 3.0 3.5 4.0 

N lymphocytes 1.5 1.8 1.5 1.6 1.6 1.5 

N monocytes 0.4 0.4 0.5 0.4 0.5 0.5 

N eosinophils 0.2 0.2 0.2 0.2 0.2 0.1 

N basophils 0.03 0.02 0.03 0.03 0.02 0.04 
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Serum
 M

etabolite C
om

pounds (Sam
ple 1) 

Hypoxanthine 0.95 0.71 0.80 N/A N/A N/A 

N(gamma)-
Acetyldiaminobutyric acid 1.1 0.92 0.89 N/A N/A N/A 

O-Hydroxylamino benzoic 
Acid 1.07 0.1 0.91 N/A N/A N/A 

3beta Hydroxy-delta5-
cholenic acid 0.40 0.67 0.76 N/A N/A N/A 

Erythronic acid 1.1 0.79 0.92 N/A N/A N/A 

Methionyl-Hydroxyproline 0.52 0.57 0.42 N/A N/A N/A 

20,26-Dihydroxyecdysone 0.92 0.89 0.79 N/A N/A N/A 

2,3,6-Trihydroxypyridine 1.2 1.1 1.3 N/A N/A N/A 

Batatasin IV 0.9 0.95 0.83 N/A N/A N/A 

Serum
 M

etabolite 
C

om
pounds (Sam

ple 2) 

Uridine N/A N/A N/A 1.05 0.90 0.94 

Histidinyl-Asparatate N/A N/A N/A 1.36 1.72 1.34 

Serotonin N/A N/A N/A 1.35 1.0 0.55 

3-Mercaptolactate-
cysteinedisulfide N/A N/A N/A 1.20 0.67 0.84 

2,8-Dihydroxyadenine N/A N/A N/A 1.10 1.21 1.33 
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Serum
 M

etabolite 
C

om
pounds (Sam

ple 2) 

Ureidocrylic Acid N/A N/A N/A 0.75 0.65 1.56 

N-Acetyl-2-Oxo-4-Hydroxy-
5-Amino Valeric aAid N/A N/A N/A 1.03 0.65 0.78 

Threonolactone N/A N/A N/A 1.06 0.74 0.77 

3-Methoxy-4-hydroxyphenyl 
actaldehyde Oglucuronide N/A N/A N/A 0.54 0.68 0.53 

Saliva M
etabolite C

om
pounds (Sam

ple 1) 

Pyrocatechol 0.57 0.93 0.79 N/A N/A N/A 

4-Pyridoxolactone 0.68 0.52 0.41 N/A N/A N/A 

Ammeline 1.75 2.46 1.12 N/A N/A N/A 

2-Hydroxy-3- 
(4-Hydoxyphenyl) Propenoic 

Acid 
0.78 1.02 0.86 N/A N/A N/A 

DL-Benzylsuccinic acid 3.04 2.92 2.33 N/A N/A N/A 

Hydroxyprolyl-Tryptophan 0.84 0.62 0.74 N/A N/A N/A 

3-Hydroxyisoheptanic acid 1.99 1.88 1.40 N/A N/A N/A 

2-Methylbenzaldehyde 0.79 0.69 0.89 N/A N/A N/A 

3-Oxodecanoic Acid 1.05 0.92 1.17 N/A N/A N/A 
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Saliva M
etabolite C

om
pounds (Sam

ple 2) 

Aspartyl Glutamate N/A N/A N/A 1.07 0.86 1.13 

Phenylalanyl Methionione N/A N/A N/A 0.91 1.64 1.19 

4-Hydroxybenzaldehyde-3-
Hydroxybenzadehyde N/A N/A N/A 1.06 0.98 0.85 

Diethanolamine N/A N/A N/A 0.85 1.9 0.87 

L-Pyrrolysine N/A N/A N/A 1.39 1.03 1.75 

Carbapenem Biosynthesis 
Intermediate-5 N/A N/A N/A 0.66 0.77 0.87 

Mandelic Acid N/A N/A N/A 1.23 0.86 0.69 

2-Methyl-4-Heptanone N/A N/A N/A 0.99 1.02 0.95 

Serum
 B

ile 
A

cids 

Cholic Acid 0.73 0.55 0.61 0.56 0.62 0.85 

Deoxycholic Acid 0.58 0.92 0.90 0.80 0.93 1.41 

Deoxycholic Acid:  
Cholic Acid Ratio 3.26 4.82 5.26 2.78 3.81 4.73 
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Table 4-2. Predictors and working names and/or abbreviations 

Domain Predictor Name Working Name 

D
em

ographic 

Age, months Age 

Sex (% Female) Sex 

Number of Languages Spoken Languages 

Total Years of Education Education 

L
ifestyle 

General physical activity score (PASE) PASE 

Nutrition Risk Score Nutrition 

PSQI Sleep Score PSQI 

Regular Smoking (% Yes) Smoking 

Alcohol Consumption (% 7+) Alcohol 

Oral Health Score Oral Health 

Current number of medications Medication 

Current health perception (% Very Good) Health Perception 

M
ental H

ealth 
Major depressive disorder (% Yes) Depression 

Generalized anxiety disorder (% Yes) Anxiety 

Other mood disorder (% Yes) Mood Disorder 

Phobic disorder (% Yes) Phobic Disorder 

Post-traumatic stress disorder (% Yes) PTSD 

Suicide attempts (% Yes) Suicide 
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A
nthropom

etric 
M

easures 

BMI BMI 

Waist Circumference Waist Circumference 

Hip Circumference Hip Circumference 

Neck Circumference Neck Circumference 

Sensory 

Olfaction Score Olfaction 

Vision Score Vision 

Hearing Score Hearing 

G
ait and 

Function 

Balance confidence (ABC Score) Balance 

Grip Strength (M of left and right hand) Grip Strength 

V
ascular and M

etabolic 

1 minute Orthostatic Change (% Yes) Orthostatic Change (1 min) 

3 minute Orthostatic Change (% Yes) Orthostatic Change (3 min) 

Systolic Blood Pressure (M supine, seated, 
standing) Systolic BP 

Diastolic Blood Pressure (M of supine, 
seated, standing) Diastolic BP 

Resting heart rate (M of supine, seated, 
standing) Heart rate 

Im
aging 

Hippocampus Snipe Left (Z-Score) Left Hippocampus 

Hippocampus Snipe Right (Z-Score) Right Hippocampus 

Entorhinal Cortex Snipe Left (Z-Score) Left Entorhinal 

Entorhinal Cortex Snipe Right (Z-Score) Right Entorhinal 

Fluid 
B

iom
arkers 

Albumin, g/L Albumin 

Alkaline Phosphatase, U/L ALP 

Alpha1 Antitrypsin, mg/dL AAT 



DATA-DRIVEN APPROACHES TO HETEROGENEITY IN AGING  

171 
 

Alanine aminotransferase, U/L ALT 

Fluid B
iom

arkers 

Anion Gap, mmol/L Anion Gap 

Aspartate Aminotransferase, U/L AST 

Bicarbonate, mmol/L Bicarbonate 

Bilirubin Total, mmol/L Bilirubin 

Chloride, mmol/L Chloride 

Cholesterol total, mmol/L Cholesterol 

Cortisol, mmol/L Cortisol 

Creatinine, mmol/L Creatinine 

Cystatin C, mg/L Cystatin C 

Dehydroepiandrosterone sulfate, umol/L 
DHEA 

Estradiol, pmol/L Estradiol 

Ferritin, ug/L Ferritin 

Follicle-stimulating hormone, U/L FSH 

Glucose, mmol/L Glucose 

HDL cholesterol, mmol/L HDL 

Homocysteine, umol/L Homocysteine 

Insulin, pmol/L Insulin 

LDL cholesterol, mmol/L LDL 

Luteinizing hormone, U/L LH 

Non-HDL cholesterol, mmol/L Non-HDL cholesterol 
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Potassium, mmol/L Potassium 

Prolactin, ug/L Prolactin 

Sex hormone binding globulin, nmol/L SHBG 

Fluid B
iom

arkers 

Sodium, mmol/L Sodium 

Adrenocorticotropic Hormone, pmol/L ACTH 

Androstenedione, nmol/L Androstenedione 

High-sensitivity C-reactive protein, mg/L hs-CRP 

Insulin-like Growth Factor-1, nmol/L IGF-1 

InterLuken 6, ng/L IL-6 

Apolipoprotein-A Quantitation, g/L APOA 

Apolipoprotein-B Quantitation, g/L APOB 

Ratio total cholesterol / HDL Cholesterol ratio 

Triglycerides, mmol/L Triglycerides 

Thyroid stimulating hormone, mU/L TSH 

Urea, mmol/L Urea 

Vitamin B12, pmol/L B12 

25-Hydroxy Vitamin D, nmol/L Vitamin D 

C
linical H

ealth 
(C

linical B
lood 

C
ount) 

HBA1C HBA1C 

Hemoglobin Hemoglobin 

Red blood count RBC 

Hematocrit Hematocrit 
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Mean corpuscular volume MCV 

Mean corpuscular hemoglobin concentration MCHC 

Red Cell Distribution Width RCDW 

Platelet count PC 

C
linical H

ealth (C
linical B

lood C
ount) 

Mean platelet volume MPV 

White blood count WBC 

N neutrophils Neutrophils 

N lymphocytes Lymphocytes 

N monocytes Monocytes 

N eosinophils Eosinophils 

N basophils Basophils 

Serum
 B

ile 
A

cids 

Cholic Acid CA 

Deoxycholic Acid DCA 

Deoxycholic Acid: Cholic Acid Ratio DCA:CA 
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Table 4-3. Metabolites discriminating between CU-AD, CU-MCI, and MCI-AD in Sample 1 and 
Sample 2 and provisional AD-related pathways 

Predictor Name Comparison Working Name Pathway 

3beta-Hydroxy-delta5-cholenic 
acid 

Sample 1:  
CU-AD 

AD Metabolite 1 
Serum  

20,26-Dihydroxyecdysone Sample 1:  
CU-AD 

AD Metabolite 2 
Serum 

Insect hormone 
biosynthesis 

N(gamma)-Acetyldiaminobutyric 
acid 

Sample 1:  
CU-AD 

AD Metabolite 3 
Serum 

Glycine, serine, and 
threonine 

metabolism 

2,8-Dihydroxyadenine Sample 2:  
CU-AD 

AD Metabolite A 
Serum Purine metabolism 

Serotonin Sample 2:  
CU-AD 

AD Metabolite B 
Serum 

Tryptophan 
metabolism 

Uridine Sample 2:  
CU-AD 

AD Metabolite C 
Serum 

Pyrimidine 
metabolism 

4-Pyridoxolactone Sample 1:  
CU-AD 

AD Metabolite 1 
Saliva 

Vitamin B6 
metabolism 

DL-Benzylsuccinic acid Sample 1:  
CU-AD 

AD Metabolite 2 
Saliva  

3-Hydroxyisoheptanoic acid Sample 1:  
CU-AD 

AD Metabolite 3 
Saliva  

Mandelic Acid Sample 2:  
CU-AD 

AD Metabolite A 
Saliva 

Aminobenzoate 
degradation 

4-Hydroxybenzaldehyde/ 
3-Hydroxybenzaldehyde 

Sample 2:  
CU-AD 

AD Metabolite B 
Saliva 

Toluene degradation; 
Aminobenzoate 

degradation 

Carbapenem Biosynthesis 
Intermediate 5 

Sample 2:  
CU-AD 

AD Metabolite C 
Saliva 

Carbapenem 
biosynthesis 

Erythronic acid Sample 1:  
CU-MCI 

MCI Metabolite 1 
Serum  

O-Hydroxylaminobenzoic Acid Sample 1:  
CU-MCI 

MCI Metabolite 2 
Serum 

Aminobenzoate 
degradation 

Hypoxanthine Sample 1:  
CU-MCI 

MCI Metabolite 3 
Serum Purine metabolism 

3-Mercaptolactate-cysteine 
disulfide 

Sample 2:  
CU-MCI 

MCI Metabolite A 
Serum  
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N-Acetyl-2-Oxo-4-hydroxy-5-
aminovaleric acid 

Sample 2:  
CU-MCI 

MCI Metabolite B 
Serum  

Threonolactone Sample 2:  
CU-MCI 

MCI Metabolite C 
Serum  

Pyrocatechol Sample 1: 
CU-MCI 

MCI Metabolite 1 
Saliva 

Chlorocyclohexane 
and chlorobenzene 

degradation; 
Benzoate 

degradation; 
Fluorobenzoate 

degradation; Dioxin 
degradation; 
Naphthalene 
degradation; 

Aminobenzoate 
degradation 

Hydroxyprolyl-Tryptophan Sample 1:  
CU-MCI 

MCI Metabolite 2 
Saliva  

2-Hydroxy-3-(4-Hydroxyphenyl) 
Propenoic Acid 

Sample 1:  
CU-MCI 

MCI Metabolite 3 
Saliva Tyrosine metabolism 

Mandelic Acid Sample 2:  
CU-MCI 

MCI Metabolite A 
Saliva 

Aminobenzoate 
degradation 

Diethanolamine Sample 2:  
CU-MCI 

MCI Metabolite B 
Saliva 

Glycerophospholipid 
metabolism 

Phenylalanyl-Methionine Sample 2:  
CU-MCI 

MCI Metabolite C 
Saliva  

Methionyl-Hydroxyproline Sample 1: 
MCI-AD 

Dementia 
Metabolite 1 

Serum 
 

2,3,6-Trihydroxypyridine Sample 1: 
MCI-AD 

Dementia 
Metabolite 2 

Serum 

Nicotinate and 
nicotinamide 
metabolism 

Batatasin IV Sample 1: 
MCI-AD 

Dementia 
Metabolite 3 

Serum 
 

Ureidoacrylic Acid Sample 2: 
MCI-AD 

Dementia 
Metabolite A 

Serum 

Pyrimidine 
metabolism 

Histidinyl-Aspartate Sample 2: 
MCI-AD 

Dementia 
Metabolite B 

Serum 
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3-Methoxy-4-
hydroxyphenylacetaldehyde  
O-glucuronide 

Sample 2: 
MCI-AD 

Dementia 
Metabolite C 

Serum 
 

2-Methylbenzaldehyde Sample 1: 
MCI-AD 

Dementia 
Metabolite 1 

Saliva 
Xylene degradation 

3-Oxodecanoic acid Sample 1: 
MCI-AD 

Dementia 
Metabolite 2 

Saliva 
 

Ammeline Sample 1: 
MCI-AD 

Dementia 
Metabolite 3 

Saliva 
Atrazine degradation 

L-Pyrrolysine Sample 2: 
MCI-AD 

Dementia 
Metabolite A 

Saliva 
Lysine biosynthesis 

2-Methyl-4-heptanone Sample 2: 
MCI-AD 

Dementia 
Metabolite B 

Saliva 
 

Aspartyl-Glutamate Sample 2: 
MCI-AD 

Dementia 
Metabolite C 

Saliva 
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Table 4-4. Evaluation metrics for analyses including CA and DCA (no DCA:CA ratio) 

 ML  
Algorithm 

Model 
# Accuracy Precision Recall F1 

Score 
ROC-
AUC 

Research Goal 1 
CU-AD  
(Sample 1) 

RF 1 0.84 0.82 0.88 0.84 0.95 

GB 2 0.68 0.76 0.40 0.49 0.94 

KNN 3 0.45 0.45 0.31 0.35 0.51 

Research Goal 2 
CU-AD  
(Sample 2) 

RF 4 0.94 1.0 0.86 0.92 0.98 

GB 5 0.87 1.0 0.68 0.80 0.98 

KNN 6 0.81 0.8 0.77 0.77 0.82 

Research Goal 3 
CU-MCI  
(Sample 1) 

RF 7 0.66 0.73 0.58 0.63 0.71 

GB 8 0.70 0.69 0.48 0.58 0.83 

KNN 9 0.47 0.39 0.29 0.32 0.50 

Research Goal 4 
CU-MCI  
(Sample 2) 

RF 10 0.80 0.83 0.76 0.79 0.86 

GB 11 0.68 0.70 0.48 0.51 0.90 

KNN 12 0.62 0.67 0.64 0.62 0.69 

Research Goal 5 
MCI-AD  
(Sample 1) 

RF 13 0.83 0.84 0.85 0.84 0.88 

GB 14 0.69 0.68 0.48 0.56 0.84 

KNN 15 0.46 0.49 0.54 0.49 0.44 

Research Goal 6 
MCI-AD  
(Sample 2) 

RF 16 0.76 0.87 0.48 0.60 0.82 

GB 17 0.72 0.58 0.51 0.53 0.82 

KNN 18 0.58 0.46 0.34 0.37 0.55 

Note. Bolded rows indicate the best algorithm out of the tested three (RF, GB, KNN) for each 
research goal. 
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Table 4-5. Evaluation metrics for Analyses including DCA:CA ratio only  

 ML 
Algorithm 

Model 
# Accuracy Precision Recall F1 

Score 
ROC-
AUC 

Research Goal 1 
CU-AD 
(Sample 1) 

RF 19 0.83 0.82 0.88 0.83 0.89 

GB 20 0.72 1.0 0.45 0.61 0.94 

KNN 21 0.57 0.58 0.52 0.53 0.53 

Research Goal 2 
CU-AD 
(Sample 2) 

RF 22 0.86 0.93 0.71 0.81 0.98 

GB 23 0.88 0.95 0.76 0.84 0.97 

KNN 24 0.74 0.75 0.63 0.65 0.80 

Research Goal 3 
CU-MCI 
(Sample 1)  

RF 25 0.70 0.70 0.70 0.69 0.81 

GB 26 0.65 0.83 0.42 0.53 0.78 

KNN 27 0.49 0.46 0.47 0.46 0.45 

Research Goal 4 
CU-MCI 
(Sample 2) 

RF 28 0.89 0.92 0.88 0.89 0.95 

GB 29 0.78 0.96 0.60 0.73 0.95 

KNN 30 0.68 0.67 0.82 0.73 0.75 

Research Goal 5 
MCI-AD 
(Sample 1) 

RF 31 0.81 0.80 0.85 0.81 0.91 

GB 32 0.68 0.86 0.52 0.59 0.85 

KNN 33 0.44 0.43 0.49 0.44 0.43 

Research Goal 6 
MCI-AD 
(Sample 2) 

RF 34 0.74 0.73 0.51 0.55 0.78 

GB 35 0.82 0.93 0.57 0.70 0.86 

KNN 36 0.63 0.57 0.39 0.45 0.59 

Note. Bolded rows indicate the best algorithm out of the tested three (RF, GB, KNN) for each 
research goal. 
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Table 4-6. Final reported ML models for each research goal 

 Selected Final  
ML Algorithm Selected Final Model Selected Final 

Model # 

Research Goal 1 
CU-AD (Sample 1) RF With CA and DCA (no ratio) 1 

Research Goal 2 
CU-AD (Sample 2) RF With CA and DCA (no ratio) 4 

Research Goal 3 
CU-MCI (Sample 1) RF With DCA:CA ratio 25 

Research Goal 4 
CU-MCI (Sample 2) RF With DCA:CA ratio 28 

Research Goal 5 
MCI-AD (Sample 1) RF With CA and DCA (no ratio) 31 

Research Goal 6 
MCI-AD (Sample 2) GB With DCA:CA ratio 35 

Note. The selected final model # refers to the assigned model number shown in Tables 4 and 5. 
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Table 4-7. Leading predictors for Research Goal 1 including CA and DCA (no DCA:CA ratio) 
for CU-AD for Sample 1 

Predictor 
Benchmark % (Model Explained) 

40% 50% 60% 70% 

General Olfaction Score X X X X 

Right Entorhinal Cortex Volume X X X X 

Left Hippocampal Volume X X X X 

Left Entorhinal Cortex Volume X X X X 

Right Hippocampal Volume X X X X 

Ammeline1 X X X X 

DL-Benzylsuccinic acid2  X X X 

3-Hydroxyisoheptanoic acid3  X X X 

20,26-Dihydroxyecdysone4  X X X 

APOA   X X 

Hypoxanthine5   X X 

O-Hydroxylamino Benzoic Acid6   X X 

Estradiol   X X 

N-gamma-Acetyldiaminobutryic acid7   X X 

Num E   X X 

Erythronic Acid8    X 

Num N    X 

3-beta Hydroxydelta5cholenic acid9    X 

SHBG    X 

PSQI    X 

Num M    X 

Oral Health    X 

Diastolic BP    X 

AST    X 
1Dementia Metabolite 3 Saliva 
2AD Metabolite 2 Saliva 
3AD Metabolite 3 Saliva 
4AD Metabolite 2 Serum 
5MCI Metabolite 3 Serum 
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6MCI Metabolite 2 Serum 
7AD Metabolite 3 Serum 
8MCI Metabolite 1 Serum 
9AD Metabolite 1 Serum 
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Table 4-8. Leading predictors for Research Goal 2 including CA and DCA (no DCA:CA ratio) 
for CU-AD for Sample 2 

Predictor 
Benchmark % (Model Explained) 

40% 50% 60% 70% 

Left Hippocampal Volume X X X X 

Right Hippocampal Volume X X X X 

Right Entorhinal Cortex Volume X X X X 

Age X X X X 

IL6 X X X X 

General Olfaction Score X X X X 

2,8-Dihydroxyadenine1 X X X X 

APOA X X X X 

Cholesterol X X X X 

Left Entorhinal Cortex Volume  X X X 

Mandelic Acid2  X X X 

Num N  X X X 

RDWCV  X X X 

MPV   X X 

MCHC   X X 

Creatinine   X X 

3-Mercaptolactatecysteinedisulfide3   X X 

ACTH   X X 

TSH    X 

Balance    X 

Bicarbonate    X 

FSH    X 

DHEAS    X 

Estradiol    X 

Uridine4    X 

Vision    X 
1AD Metabolite A Serum 
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2MCI Metabolite A Saliva 
3MCI Metabolite A Serum 
4AD Metabolite C Serum 
 

  



DATA-DRIVEN APPROACHES TO HETEROGENEITY IN AGING  

184 
 

Table 4-9. Leading predictors for Research Goal 3 including DCA:CA ratio for CU-MCI for 
Sample 1 

Predictor 
Benchmark % (Model Explained) 

40% 50% 60% 70% 

Erythronic Acid1 X X X X 

O-Hydroxylaminobenzoic Acid2 X X X X 

Pyrocatechol3 X X X X 

Hypoxanthine4 X X X X 

HDL X X X X 

SHBG X X X X 

Hydroxyprolyl Tryptophan5 X X X X 

3-beta-Hydroxydelta-5-cholenic Acid6 X X X X 

Left Entorhinal Cortex Volume X X X X 

APOA X X X X 

Sodium X X X X 

Left Hippocampal Volume X X X X 
2-Hydroxy-34-Hydroxyphenyl Propenoic 
Acid7  X X X 

CRPH  X X X 

ALT  X X X 

BatatasinIV8  X X X 

Ferritin  X X X 

Num_B  X X X 

Vision   X X 

Chloride   X X 

N-gamma-Acetyldiaminobutric Acid9   X X 

4-Pyridoxolactone10   X X 

TSH   X X 

2,3,6-Trihydroxypyridine11   X X 
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Cholesterol    X 

Systolic BP    X 

MCV    X 

Bilirubin    X 

MPV    X 

2-Methylbenzaldehyde12    X 

AST    X 

3-Hydroxyisoheptanoic Acid13    X 

DL-Benzylsuccinic Acid14    X 

Num L    X 

Ammeline15    X 
1MCI Metabolite 1 Serum 
2MCI Metabolite 2 Serum 
3MCI Metabolite 1 Saliva 
4MCI Metabolite 3 Serum 
5MCI Metabolite 2 Saliva 
6AD Metabolite 1 Serum 
7MCI Metabolite 3 Saliva 
8Dementia Metabolite 3 Serum 
9AD Metabolite 3 Serum 
10AD Metabolite 1 Saliva 
11Dementia Metabolite 2 Serum 
12Dementia Metabolite 1 Saliva 
13AD Metabolite 3 Saliva 
14AD Metabolite 2 Saliva 
15Dementia Metabolite 3 Saliva 
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Table 4-10.  Leading Predictors for Research Goal 4 including DCA:CA ratio for CU-MCI for 
Sample 2 

Predictor 
Benchmark % (Model Explained) 

40% 50% 60% 70% 

3-mercaptolactate-cysteine disulfide1 X X X X 

AST X X X X 
N-Acetyl-2-Oxo-4-hydroxy5aminovaleric 
acid2 X X X X 

IL6 X X X X 

Anion Gap X X X X 

Systolic BP X X X X 

APOB X X X X 

Homocysteine X X X X 

DHEAS X X X X 

Left Hippocampal Volume X X X X 

Threonolactone3 X X X X 

Languages X X X X 

Creatinine X X X X 
3-Methoxy-4-
hydroxyphenylacetaldehydeOglucuronide4  X X X 

Bicarbonate  X X X 

RDWCV  X X X 

Uridine5  X X X 

SHBG  X X X 

Cystatin C   X X 

Diethanolamine6   X X 

LDL   X X 

Histidinyl Aspartate7   X X 

Carbapenem Biosynthesis Intermediate-58   X X 

Mandelic Acid9   X X 
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Cholesterol   X X 

Left Entorhinal Cortex Volume    X 

Num N    X 

Sodium    X 

Non-HDL    X 

General Olfaction Score    X 

Phenylalanyl Methionine10    X 

Glucose    X 

Prolactin    X 

Age    X 

Diastolic BP    X 
1MCI Metabolite A Serum 
2MCI Metabolite B Serum 
3MCI Metabolite C Serum 
4Dementia Metabolite C Serum 
5AD Metabolite C Serum 
6MCI Metabolite B Saliva 
7Dementia Metabolite B Serum 
8AD Metabolite C Saliva 
9AD Metabolite A Saliva 
10MCI Metabolite C Saliva 
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Table 4-11.  Leading predictors for Research Goal 5 including CA and DCA (no DCA:CA ratio) 
for MCI-AD for Sample 1 

Predictor 
Benchmark % (Model Explained) 

40% 50% 60% 70% 

General Olfaction Score X X X X 

Right Hippocampal Volume X X X X 

Right Entorhinal Cortex Volume X X X X 

Left Hippocampal Volume X X X X 

BatatasinIV1 X X X X 

Ammeline2 X X X X 

2,3,6-Trihydroxypyridine3 X X X X 

Systolic BP X X X X 

Diastolic BP X X X X 

Left Entorhinal Cortex  X X X 

Mentionyl Hydroxyproline4  X X X 

3-Hydroxyisoheptanoic Acid5  X X X 

3-Oxodecanoic Acid6  X X X 

2-Methylbenzaldehyde7   X X 

Anion GAP   X X 

DL-Benzylsuccinic Acid8   X X 

Oral Health   X X 

LH   X X 

Nutrition   X X 

CRPH    X 

FSH    X 

Heart rate    X 

DHEAS    X 

Pyrocatechol9    X 

Cortisol    X 
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MCV    X 

Current health rating    X 
1Dementia Metabolite 3 Serum 
2Dementia Metabolite 3 Saliva 
3Dementia Metabolite 2 Serum 
4Dementia Metabolite 1 Serum 
5AD Metabolite 3 Saliva 
6Dementia Metabolite 2 Saliva 
7Dementia Metabolite 1 Saliva 
8AD Metabolite 2 Saliva 
9MCI Metabolite 1 Saliva 
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Table 4-12.  Leading predictors for Research Goal 6 including DCA:CA ratio for MCI-AD for 
Sample 2 

Predictor 
Benchmark % (Model Explained) 

40% 50% 60% 70% 

Right Entorhinal Cortex Volume X X X X 

Left Hippocampal Volume X X X X 

Right Hippocampal Volume X X X X 

Age X X X X 

Glucose X X X X 

2-Methyl-4-Heptanone1 X X X X 

Balance X X X X 

Physical Activity X X X X 

Diastolic BP X X X X 

Aspartyl Glutamate2  X X X 

2,8-Dihydroxyadenine3  X X X 
3-Methoxy-4-
hydroxyphenylacetaldehydeOglucuronide4   X X 

General Olfaction Score   X X 

MPV   X X 

Urea   X X 

Neck circumference   X X 

L-Pyrrolysine5    X 

Left Entorhinal Cortex Volume    X 

Ureidoarcylic Acid6    X 

Diethanolamine7    X 

Vision    X 

SHBG    X 

Histidinyl Aspartate8    X 
1Dementia Metabolite B Saliva 
2Dementia Metabolite C Saliva 
3AD Metabolite A Serum 
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4Dementia Metabolite C Serum 
5Dementia Metabolite A Saliva 
6Dementia Metabolite A Serum 
7MCI Metabolite B Saliva 
8Dementia Metabolite B Serum  
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Figures 
 

Figure 4-1. Flowchart of the analysis procedures for predicting AD (Research Goals 1 and 2), 
MCI (Research Goals 3 and 4), and dementia (Research Goals 5 and 6) 
 

 
 
Figure 1. Flowchart illustrating the analyses conducted for each research goal. Each prediction (AD, MCI, 
dementia) was comprised of two research goals: one for each sample in the analysis. For each research goal, 
two analyses were conducted: including CA and DCA and including the DCA:CA ratio only. The final model 
that was selected and reported in the dissertation (with CA and DCA or with the ratio) for each research goal is 
shown in the far-right column.  
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Figure 4-2. SHAP Waterfall Plot for Research Goal 1 including CA and DCA (no DCA:CA 
ratio) for CU-AD for Sample 1 

 
Figure 2. Tree SHAP Waterfall Plot showing the composition (top x-axis) and cumulative (bottom x-axis) 
ratios for the 112 baseline predictors tested in the random forest classifier model. Predictors are shown in 
descending order of importance and their individual composition ratio (individual contribution to the model 
prediction) is indicated by the blue bars. The blue curved line indicates the cumulative ratio for each additional 
predictor.  
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Figure 4-3. SHAP Summary Plot for Research Goal 1 including CA and DCA (no DCA:CA 
ratio) for CU-AD for Sample 1 

 
Figure 3. Tree SHAP Summary Plot showing the twenty most important predictors of AD in Sample 1. 
Predictors are shown in descending order of importance. Each individual point on the plot represents a 
participant’s Tree SHAP value for that predictor (bottom x-axis for scale). The position of the points indicates 
the effect on the model prediction. Specifically, Tree SHAP values over 0 (to the right of the figure) predict 
AD. The colour of the dots indicates the direction of the effect for each predictor shown (red = higher values, 
blue = lower values, grey = imputed values). 
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Figure 4-4. SHAP Waterfall Plot for Research Goal 2 including CA and DCA (no DCA:CA 
ratio) for CU-AD for Sample 2 

 
 

Figure 4. Tree SHAP Waterfall Plot showing the composition (top x-axis) and cumulative (bottom x-axis) 
ratios for the 112 baseline predictors tested in the random forest classifier model. Predictors are shown in 
descending order of importance and their individual composition ratio (individual contribution to the model 
prediction) is indicated by the blue bars. The blue curved line indicates the cumulative ratio for each additional 
predictor. 
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Figure 4-5. SHAP Summary Plot for Research Goal 2 including CA and DCA (no DCA:CA 
ratio) for CU-AD for Sample 2 

 
Figure 5. Tree SHAP Summary Plot showing the twenty most important predictors of AD in Sample 2. 
Predictors are shown in descending order of importance. Each individual point on the plot represents a 
participant’s Tree SHAP value for that predictor (bottom x-axis for scale). The position of the points indicates 
the effect on the model prediction. Specifically, Tree SHAP values over 0 (to the right of the figure) predict 
AD. The colour of the dots indicates the direction of the effect for each predictor shown (red = higher values, 
blue = lower values, grey = imputed values). 
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Figure 4-6. SHAP Waterfall Plot for Research Goal 3 including DCA:CA ratio for CU-MCI for 
Sample 1 
 

 
Figure 6. Tree SHAP Waterfall Plot showing the composition (top x-axis) and cumulative (bottom x-axis) 
ratios for the 111 baseline predictors tested in the random forest classifier model. Predictors are shown in 
descending order of importance and their individual composition ratio (individual contribution to the model 
prediction) is indicated by the blue bars. The blue curved line indicates the cumulative ratio for each additional 
predictor.  
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Figure 4-7. SHAP Summary Plot for Research Goal 3 for CU-MCI including DCA:CA ratio for 
Sample 1 
 

 
Figure 7. Tree SHAP Summary Plot showing the twenty most important predictors of MCI in Sample 1. 
Predictors are shown in descending order of importance. Each individual point on the plot represents a 
participant’s Tree SHAP value for that predictor (bottom x-axis for scale). The position of the points indicates 
the effect on the model prediction. Specifically, Tree SHAP values over 0 (to the right of the figure) predict 
MCI. The colour of the dots indicates the direction of the effect for each predictor shown (red = higher values, 
blue = lower values, grey = imputed values). 
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Figure 4-8. SHAP Waterfall Plot for Research Goal 4 including DCA:CA ratio for CU-MCI for 
Sample 2 
 

 
 
Figure 8. Tree SHAP Waterfall Plot showing the composition (top x-axis) and cumulative (bottom x-axis) 
ratios for the 111 baseline predictors tested in the random forest classifier model. Predictors are shown in 
descending order of importance and their individual composition ratio (individual contribution to the model 
prediction) is indicated by the blue bars. The blue curved line indicates the cumulative ratio for each additional 
predictor.  
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Figure 4-9. SHAP Summary Plot for Research Goal 4 including DCA:CA ratio for CU-MCI for 
Sample 2 
 

 
Figure 9. Tree SHAP Summary Plot showing the twenty most important predictors of MCI in Sample 2. 
Predictors are shown in descending order of importance. Each individual point on the plot represents a 
participant’s Tree SHAP value for that predictor (bottom x-axis for scale). The position of the points indicates 
the effect on the model prediction. Specifically, Tree SHAP values over 0 (to the right of the figure) predict 
MCI. The colour of the dots indicates the direction of the effect for each predictor shown (red = higher values, 
blue = lower values, grey = imputed values). 
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Figure 4-10. SHAP Waterfall Plot for Research Goal 5 including CA and DCA (no DCA:CA 
ratio) for MCI-AD for Sample 1 
 

 
 
Figure 10. Tree SHAP Waterfall Plot showing the composition (top x-axis) and cumulative (bottom x-axis) 
ratios for the 112 baseline predictors tested in the random forest classifier model. Predictors are shown in 
descending order of importance and their individual composition ratio (individual contribution to the model 
prediction) is indicated by the blue bars. The blue curved line indicates the cumulative ratio for each additional 
predictor.  
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Figure 4-11. SHAP Summary Plot for Research Goal 5 including CA and DCA (no DCA:CA 
ratio) for MCI-AD for Sample 1 

 
Figure 11. Tree SHAP Summary Plot showing the twenty most important predictors of dementia in Sample 1. 
Predictors are shown in descending order of importance. Each individual point on the plot represents a 
participant’s Tree SHAP value for that predictor (bottom x-axis for scale). The position of the points indicates 
the effect on the model prediction. Specifically, Tree SHAP values over 0 (to the right of the figure) predict 
dementia. The colour of the dots indicates the direction of the effect for each predictor shown (red = higher 
values, blue = lower values, grey = imputed values). 
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Figure 4-12. SHAP Waterfall Plot for Research Goal 6 including DCA:CA ratio for MCI-AD 
for Sample 2 

 
 
Figure 12. Tree SHAP Waterfall Plot showing the composition (top x-axis) and cumulative (bottom x-axis) 
ratios for the 111 baseline predictors tested in the random forest classifier model. Predictors are shown in 
descending order of importance and their individual composition ratio (individual contribution to the model 
prediction) is indicated by the blue bars. The blue curved line indicates the cumulative ratio for each additional 
predictor. 
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Figure 4-13. SHAP Summary Plot for Research Goal 6 including DCA:CA ratio for MCI-AD 
for Sample 2 

Figure 13. Tree SHAP Summary Plot showing the twenty most important predictors of dementia in Sample 2. 
Predictors are shown in descending order of importance. Each individual point on the plot represents a 
participant’s Tree SHAP value for that predictor (bottom x-axis for scale). The position of the points indicates 
the effect on the model prediction. Specifically, Tree SHAP values over 0 (to the right of the figure) predict 
dementia. The colour of the dots indicates the direction of the effect for each predictor shown (red = higher 
values, blue = lower values, grey = imputed values). 
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Chapter 5: General Discussion 
 

The dissertation work represents three thematically and analytically linked studies aimed 

at examining the heterogeneous trajectories and outcomes associated with brain and cognitive 

aging across asymptomatic phases and the AD clinical spectrum. We achieved this aim in a 

series of three data-driven studies featuring two large-scale datasets (one longitudinal [ADNI], 

one cross-sectional [COMPASS-ND]). The specific aims, results, and details of each of the three 

studies are discussed in Chapter Two, Three, and Four. The current chapter will provide a broad 

integrative overview of the findings and conclusions of the dissertation work.  

 In Study 1 (published as Drouin et al., 2022), we employed two analytic phases on 

longitudinal volumetric imaging (MRI) and baseline multi-modal biomarker data from ADNI for 

a sample of 351 cognitively normal older adults spanning a 35-year band of aging (60-95 years 

old). In the first analytic phase, we used a data-driven classification approach to longitudinal 

trajectory data. The aim was to identify statistically separable and distinct classes for both right 

and left hippocampal volume trajectories. We identified three separable classes (low, middle, 

high) of hippocampal volume trajectories for both the left and right hippocampus. These classes 

were statistically different in intercept (LHC Class 1: 2.5, LHC Class 2: 2.14, LHC Class 3: 1.79; 

RHC Class 1: 2.53, RHC Class 2: 2.21, RHC Class 3: 1.83) and slope (LHC Class 1: -0.02, LHC 

Class 2: -0.03, LHC Class 3: -0.03; RHC Class 1: -0.02, RHC Class 2: -0.03, RHC Class 3: -

0.03). Our results were concordant with previous evidence of a more preserved right 

hippocampus in cognitively normal adults (i.e., higher intercept and slope across all classes) (J. 

Barnes et al., 2005; Cherbuin et al., 2010; Cherbuin, Sargent-Cox, Easteal, et al., 2015). An 

important extension of prior research is the evidence that cognitively normal older adults can be 

objectively classified into constituent trajectory classes of hippocampal volume change. 
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In the second phase, we used random forest classification to test a large multi-modal 

roster of AD-related biomarkers and risk factors in a computationally competitive machine 

learning context. As older adults belonging to the least atrophied (most preserved) hippocampal 

trajectory classes may have lower exposure to AD risk factors, our main aim was to detect the 

leading biomarkers and risk which predicted the highest (least atrophied) as compared to the 

lowest (most atrophied) hippocampal trajectory classes. Our results indicated that three 

biomarker predictors from two modalities were robust across hemispheres. These predictors were 

sex, plasma Aβ1-42, and education. Moreover, four biomarkers from three modalities uniquely 

predicted left hippocampal trajectory class. These predictors were plasma Aβ1-40, plasma t-tau, 

the geriatric depression scale score, and BMI. These findings provide novel information about 

(a) differential predictors of left and right hippocampal trajectory classes and (b) the leading 

predictors that emerge when considered in a computationally competitive context with other AD-

related risk factors and biomarkers.  

Several of the identified predictors in this study (i.e., sex, plasma Aβ1-42, plasma Aβ1-

40, depressive symptoms, BMI) were consistent with previous results in the ADRD literature and 

extend these findings to be predictive of desirable HC trajectory patterns in cognitively normal 

older adults. Other predictors (i.e., education, plasma t-tau) revealed novel patterns of 

hippocampal trajectory classes that should be explored in future studies. In sum, Study 1 

employed a two-phased data-driven analytic approach using cognitively normal adults to 

produce evidence for three underlying or latent classes of hippocampal atrophy. Our analytic 

approach, which was based on the simultaneous consideration of level and slope, produced 

trajectory classes which capture the individual variability in longitudinal hippocampal atrophy. 

We identified several AD-related biomarkers and risk factors and determined their relative 
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importance in discriminating between the potentially protective higher HC trajectory class and 

the potentially risk-elevated lower HC trajectory class. 

In Study 2, we employed a sequential pre-analytic and analytic plan. First, we identified 

statistically discriminable classes of hippocampal (left and right) volume and cognitive (memory 

and executive function) trajectories. In this pre-analytic phase, we identified two classes of left 

and right hippocampal trajectories and two classes of cognitive trajectories. Based on each 

participant’s membership to the identified data-driven classes, they were classified into one of 

four groups: cognitively resilient, cognitively vulnerable, brain and cognitively low/declining, or 

brain and cognitively stable. Older adults who were low on hippocampal trajectories, but high 

cognitive trajectories, were classified as cognitively resilient (n = 72). Older adults who were 

high and stable on hippocampal trajectories and but low on cognitive trajectories were classified 

as cognitively vulnerable (n = 144). Older adults who were low and declining for both 

hippocampal trajectories and cognitive trajectories were classified as brain and cognitively 

low/declining (n = 107). Older adults who were high and stable on both hippocampal trajectories 

and cognitive trajectories were classified as brain and cognitively stable (n = 92).  

As our main analytic plan, we then used three ML algorithms to identify key predictors of 

these trajectory classes from a multi-modal roster of baseline risk factors and biomarkers. These 

ML algorithms were random forest (RF), gradient boosting (GB), and k-nearest neighbours 

(KNN). We then identified and interpreted the leading predictors of cognitive resilience 

(Research Goal 1), cognitive vulnerability (Research Goal 2), and brain and cognitive stability 

(Research Goal 3) using a set of ML algorithms (RF, GB, KNN) and Tree SHAP values.  

For our first research goal, the GB model was selected as the best model and higher CSF 

Aβ1-42, higher education, lower plasma Aβ1-42, lower CSF p-tau, lower plasma Aβ1-40, and 
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lower age were the six leading predictors of cognitive resilience. Notably, conventional AD 

biomarkers such as CSF p-tau and CSF Aβ1-42 emerged as important predictors of this aging 

trajectory. Additionally, peripheral markers of amyloid deposition (plasma Aβ1-40 and plasma 

Aβ1-42) were also featured as top predictors. These results indicate that markers of amyloid and 

tau neuropathology (in CSF and serum) are also indicative of cognitive trajectories in the context 

of adverse hippocampal trajectories in cognitively normal older adults. Moreover, two 

demographic predictors (education and age) were amongst the six leading predictors – with 

education appearing as the second leading predictor after CSF Aβ1-42. Previous findings have 

consistently linked higher educational attainment with resilience to AD-related adversity – an 

association hypothesized to be related to cognitive reserve (K. J. Anstey, 2014; K. J. Anstey & 

Dixon, 2021; Kaarin J. Anstey et al., 2015; Stern, 2012).  

For our second research goal, we identified the RF model as best performing. Lower 

education, higher plasma Aβ1-40, higher BMI, higher age, lower glucose, higher plasma Aβ1-42 

were identified as the six leading predictors of cognitive vulnerability. In this study, we explore a 

unique and previously unexamined aging trajectory pattern characterized by low and declining 

cognitive trajectories coupled with intact hippocampal trajectories (i.e., little to no hippocampal 

adversity). Notably, in this research goal, lower education was identified as the leading predictor 

of cognitive vulnerability. Coupled with our findings in our first research goal, our findings 

provide further evidence that education is a strong and robust predictor of two opposing aging 

trajectories (cognitive resilience and cognitive vulnerability), whereby higher levels of this 

important early life factor provide a form of protection in the face of AD-related 

neurodegeneration (i.e., hippocampal atrophy) and lower levels may put older adults at risk of 

declining cognitive trajectories despite very little neurodegeneration.  
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For our third research goal, we identified RF as the best performing ML algorithm. We 

identified higher CSF Aβ1-42, lower polygenic risk score, female sex, higher plasma Aβ1-42, 

higher pulse pressure, and lower age as the six leading predictors of brain and cognitive stability. 

Although predictors of stability in cognition and brain health among aging adults has been 

independently investigated in the context of successful aging, predictors for aging trajectories 

characterized by the simultaneous stability in hippocampal volume and cognition had not been 

previously explored. Our results extend previous findings and identify predictors of trajectories 

characterized by high levels and stability in both favourable aging trajectories.  

Younger age, lower AD genetic risk, and female sex have been previously linked with 

successful cognitive trajectories (Goveas et al., 2016; Josefsson et al., 2012; G. P. McFall et al., 

2019). Our results indicate that these same predictors extend to cognitive and hippocampal 

stability. In addition, two conventional AD biomarkers emerged as important predictors of brain 

and cognitive stability (higher CSF Aβ1-42, higher plasma Aβ1-42). This finding underscores 

how factors contributing to brain and cognitive stability are likely to also be associated (in 

opposite directions) with increased risk of pathological aging outcomes, such as MCI and AD. 

The investigation of stable brain and cognitive trajectories can help provide a broader and more 

comprehensive perspective on heterogeneous aging trajectories, including pathological and non-

normal outcomes. In sum, Study 2 employed an analytic phase consisting of two pre-analytic 

foundational goals (latent class growth analyses) followed by a series of three main research 

goals (machine learning algorithms). In a computationally competitive context, we identified 

several predictors from multiple AD-related risk domains associated with cognitive resilience, 

cognitive vulnerability, and brain and cognitive stability.  
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Study 1 and 2 utilized a similar roster of baseline predictors from ADNI (with the 

addition of polygenic risk score, race, marital status, heart rate and respiratory rate in Study 2). In 

addition, a similar sample of participants was used: however, Study 2 used a larger sample of 

cognitively normal individuals who provided MRI data that was processed using NOMIS. 

NOMIS is a MRI tool which generates Z-scores for volumetric measures. They represent 

deviations from normality while accounting for several confounding characteristics (i.e., sex, 

age, intracranial volume, image resolution, image contrast-to-noise ratio, and surface 

reconstruction defect holes) (Potvin et al., 2021). As such, the NOMIS processed data had less 

bias and variability in volumetric measures as it accounts for variations in scanner vendor, 

magnetic field strength, image quality, and intracranial volume. Four risk factors and biomarkers 

emerged as leading predictors in both studies. These were sex, plasma Aβ1-40, plasma Aβ1-42 

and education. Female sex predicted the least atrophied class in Study 1 and brain and cognitive 

stability in Study 2. Our findings in Study 2 extend that of Study 1 in that female sex presents an 

advantage in both brain health in aging but also the maintenance of cognitive function.  

Higher levels of plasma Aβ1-42 predicted the least atrophied class in Study 1 and 

predicted cognitive vulnerability and brain and cognitive stability in Study 2. Lower levels of 

AB1-42 predicted cognitive resilience. Similarly, higher levels of plasma Aβ1-40 predicted the 

least atrophied class in Study 1 and cognitive vulnerability in Study 2. Lower levels of plasma 

Aβ1-40 predicted resilience. Together, these findings indicate a robust prediction association 

between higher levels of Aβ1-42 and Aβ1-40 and stable hippocampal trajectories. Education 

followed an unexpected pattern in Study 1, whereby lower education predicted the least 

atrophied hippocampal trajectory class. Conversely, in Study 2, higher education predicted 

cognitive resilience and lower education predicted cognitive vulnerability. Study 2 results 
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provide further confirmation that the unexpected education association identified in Study 1 may 

have been due to the intracranial volume adjustment used to account for head size and sex. 

Special attention should be paid to intracranial volume controls in future studies as they may 

produce unexpected patterns between volume measurements and other AD-related factors. 

Plasma tau, depressive symptoms, and BMI only emerged as predictors in Study 1 when 

investigating hippocampal trajectory patterns. These findings highlight how AD-related 

predictors may be differentially associated with (a) hippocampal trajectories and (b) 

hippocampal trajectories considered simultaneously with cognitive trajectory patterns. In Study 

3, we advance our approach by applying data-driven ML algorithms to examine the full AD 

spectrum (CN, MCI, AD) and associated predictors.   

Study 3 was conducted in the context of the Canadian Consortium on Neurodegeneration 

in Aging study, using a database known as COMPASS-ND (Chertkow et al., 2019). We 

assembled a large (p = 111 and 112) predictor roster of multi-modal risk factors and biomarkers 

in conjunction with previously identified metabolite compounds and bile acids. Our overall 

research aim was to apply a set of three ML algorithms (RF, GB, KNN) to test the relative 

predictor importance of risk factors and biomarkers as well as candidate (saliva and serum) 

metabolite and (serum) bile acid data in discriminating between CU (n1 = 33; n2 = 32), MCI (n1 = 

33; n2 = 33), and AD (n1 = 33; n2 = 21) cohorts. To do this, we conducted a series of three 

research goals in each sample (Research Goal 1 [AD], 3 [MCI], and 5 [Dementia]: Sample 1; 

Research Goal 2 [AD], 4 [MCI], and 6 [Dementia]: Sample 2). 

In this summary we review the predictors identified and their associated domains of risk 

corresponding to the most restrictive model explanation criterion (40%; Results from additional 

criteria are reported in the chapter). For our first research goal, six predictors (one metabolite) 
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from three domains (sensory, imaging, and metabolomics) explained 40% of the model 

predicting AD in Sample 1. The leading five predictors for RG 1 were: lower general olfaction 

score, lower right EC volume, lower left HC volume, lower left EC volume, and lower right HC 

volume. For our second research goal, nine predictors (one metabolite) from five domains 

(imaging, demographic, and clinical health, sensory, and metabolomics) explained 40% of model 

predicting AD in Sample 2. The leading five predictors for RG 2 were: lower left HC volume, 

lower right HC volume, lower right EC volume, higher age, and higher IL-6. 

For our third research goal, 12 predictors (six metabolites) from three domains 

(metabolomics, clinical health, and imaging) explained 40% of the model predicting MCI in 

Sample 1. The leading five predictors for RG 3 were: lower MCI Metabolite 1 Serum, lower 

MCI Metabolite 2 Serum, higher MCI Metabolite 1 Saliva, lower MCI Metabolite 3 Serum, and 

lower HDL. For our fourth research goal, 13 predictors (three metabolites) from five domains 

(metabolomics, clinical health, vascular/metabolic, imaging, and demographic) explained 40% of 

the model predicting MCI in Sample 2. The leading five predictors for RG 4 were: lower MCI 

Metabolite A Serum, lower AST, lower MCI Metabolite B Serum, higher IL-6, and higher anion 

gap. 

For our fifth research goal, nine predictors (three metabolites) from four domains 

(sensory, imaging, metabolomics, and vascular/metabolic) explained 40% of the model 

predicting dementia in Sample 1. The leading five predictors for RG 5 were: lower general 

olfaction score, lower right HC volume, lower right EC volume, lower left HC volume, and 

lower Dementia Metabolite 3 Serum. For our sixth research goal, nine predictors (one 

metabolite) from seven domains (imaging, demographic, clinical health, metabolomics, 

gait/function, lifestyle, and vascular/metabolic) explained 40% of the model predicting dementia 
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in Sample 2. The leading five predictors for RG 6 were: lower right EC volume, lower left HC 

volume, lower right HC volume, higher age, and lower glucose. 

Overall, several of the leading predictors of AD, MCI and dementia in this study have 

been identified in previous research in ADRD literature. Examples include HC and EC volume, 

age, IL-6, glucose, olfaction, anion gap, AST, and HDL (Chang et al., 2017; Fraser et al., 2021; 

Lim, Krajina, & Marsland, 2013; Lyra e Silva et al., 2021; Marsillach et al., 2020; Martinez et 

al., 2023; Supasitthumrong et al., 2019; Zhao et al., 2019). In addition, we identified several 

novel predictors of AD, MCI, and dementia originating from the metabolomics domain, which 

potentially reflect early changes in AD-related molecular pathways. Our results also indicate that 

metabolomics predictors seem to be especially important in the prediction of MCI, representing a 

potential preclinical window when metabolic perturbations are highly indicative of cognitive 

impairment. All metabolite compounds emerging within the leading five predictors were 

previously identified as one of the leading compounds discriminating between CU and MCI in 

previous metabolomics studies (Zhang, Drouin, Dixon & Li, 2022; Zhang, Drouin, Li & Dixon, 

2022). Our results of this research goal provide evidence that these metabolite compounds (a) are 

the leading compounds predicting MCI (as opposed to the other tested compounds), and (b) have 

a stronger effect on the prediction of MCI than other AD-related risk factors and biomarkers 

(including imaging markers). Our findings underscore the importance of investigating 

established risk factors and biomarkers as well as novel metabolite predictors and their 

respective mechanisms alongside other AD-related risk factors. Future work should aim to 

further investigate these leading predictors and other predictors in the same domains of risk to 

advance our understanding of their mechanistic association with AD risk.  
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 Study 3 demonstrates several differences and extensions in comparison to Studies 1 and 

2. These include: (a) the predictor roster, (b) the ML classification performance, and (c) the 

nature of the predicted outcomes. In comparison to Studies 1 and 2, Study 3 utilized a much 

larger roster of predictors which were available within the COMPASS-ND dataset for all three 

cohorts. In addition, we were able to include eighteen important metabolomics predictors (nine 

serum and nine saliva metabolite compounds) and two bile acids and their ratio (CA, DCA, 

DCA:CA) to the predictor roster for Study 3. These metabolomics data bolstered an already 

comprehensive roster of AD-related risk factors and biomarkers, which expanded the data 

available within ADNI used in Studies 1 and 2. However, CSF Aβ and tau measures were 

unavailable within COMPASS-ND due to high rates of missing data (>50%). As in Studies 1 and 

2, we anticipate that these biomarkers might have emerged as among the leading predictors in the 

pairwise comparisons if they were more widely available for participants in this study. Two 

predictors which were available in both datasets (ADNI and COMPASS-ND) emerged as leading 

predictors in Studies 2 and 3. These were age and glucose level. For age, lower age predicted 

cognitive resilience and brain/cognitive stability (Study 2) while higher age predicted cognitive 

vulnerability (Study 2), AD (Study 3), and dementia (Study 3). For glucose level, lower glucose 

levels predicted cognitive vulnerability (Study 2) and dementia (Study 3). There were no 

common predictors that emerged between Study 1 (predicting HC trajectory classes) and Study 3 

(predicting AD, MCI, dementia). Importantly, many of the leading predictors of AD and 

dementia in Study 3 were HC volume (the outcome of interest in Study 1).  

The notably stronger performance of the ML classification metrics (precision, accuracy, 

recall, AUC, F1) in Study 3 as compared to Study 1 and 2 can be attributed to two main factors. 

First, the predictor roster in COMPASS-ND was more extensive and included additional 
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established predictors of MCI and AD such as olfaction, clinical markers associated with key 

AD-related mechanisms (e.g., inflammation and IL-6), and emerging metabolites which had 

been previously identified as discriminating between cohorts in a previous study. Second, the 

goal of Study 1 and 2 was to predict distinct secondary phenotypes of aging (e.g., hippocampal 

trajectory classes, cognitive resilience, cognitive vulnerability, brain/cognitive stability) which 

are (a) less discriminable outcomes than objective clinical diagnoses (MCI, AD) used in Study 3, 

and (b) likely predicted by a broader array of risk factors, including lifestyle and health 

predictors (e.g., social activity, living status) (McFall et al., 2019; Josefsson et al., 2012). In 

Study 3, we use a similar approach to identifying leading predictors as in Studies 1 and 2 but 

extend our previous findings by deploying these methods predicting clinical cohorts. Our data-

driven ML results contribute to and extend the literature on predictors that may be associated 

with increased risk of MCI and AD. 

Future Directions 

For Study 1, future work should aim to test whether objective hippocampal trajectory 

classes can be considered a valid precursor condition associated with future clinical transitions. 

Our informal check revealed that a larger proportion of those transitioning to MCI or AD within 

ADNI belonged to the lowest HC trajectory classes. Regarding Study 2, future studies should 

aim to include predictors from a wider breadth of risk domains in the investigation of cognitive 

resilience, cognitive vulnerability, and brain/cognitive stability. Our results indicated mild to 

moderate distinguishing power (AUC = 0.64 – 0.70), and we anticipate that the inclusion of risk 

factors previously associated with some of these trajectories would improve classification 

performance. For example, lifestyle factors such as physical activity and living status have been 

previously used to robustly predict memory maintenance (Josefsson et al., 2012). Similarly, 

factors such as social activities and lifestyle (cognitive, self-maintenance, social) activities were 
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found to be associated with stable and declining memory aging respectively (McFall et al., 

2019). The approach deployed in Study 3 could be extended to include other diagnostic groups 

available within COMPASS-ND, including the Parkinson’s disease dementia and mixed etiology 

cohorts. Specifically, clusters of risk factors and biomarkers may emerge as predictive of several 

dementia diagnoses while other predictors may emerge as specific to specific clinical diagnoses. 

In addition, several of the risk factors and biomarkers included in the current roster are known to 

have differing effects depending on APOE genotype and sex, for example. When sufficient data 

are available within COMPASS-ND, the stratification of the cohort groups by these known AD 

risk factors would likely reveal novel prediction patterns consistent with a precision medicine 

approach. 

Significance and Conclusion 

Overall, the dissertation research aimed to model and predict heterogeneous outcomes in 

brain and cognitive aging using a data-driven approach. In Study 1 (Drouin et al., 2022), we used 

a large sample of CN older adults (n = 351) and identified four trajectory classes of left and right 

HC volume. Subsequently, we identified the leading predictors that were associated with 

discriminating between the lowest and highest trajectory classes. In Study 2, we detected HC and 

cognitive trajectory classes within a large sample of older adults (n = 451). We classified 

individuals as being cognitive resilient, cognitively vulnerable, low/declining, or brain and 

cognitively stable based on the simultaneous consideration of their HC and cognitive trajectory 

class membership. We then identified the most important predictors of cognitive resilience, 

cognitive vulnerability, and brain and cognitive stability. In Study 3, we assembled a large multi-

modal roster of AD-related risk factors and biomarkers as well as metabolomics and bile acid 

markers for two samples and three clinical cohorts (CU, MCI, AD). We identified the leading 
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predictors discriminating between CU-AD, CU-MCI, and MCI-AD for each sample and 

examined the relative importance of metabolomics predictors when considered in a 

computationally competitive context with other established risk factors. Together, these studies 

advance our understanding of important AD-related risk factors that may contribute to (a) 

increased risk of undesirable trajectories in cognitively normal aging (e.g., lowest HC trajectory 

classes, cognitive vulnerability), (b) desirable or protective trajectories in cognitively normal 

aging (e.g., highest HC trajectory classes, cognitive resilience, stable brain and cognitive aging), 

and (c) increased risk of MCI and AD. 
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Appendix A 

Supplemental Material for Chapter 2 (as published in Drouin et al., 2022) 

 
Supplementary Figure 1. Scree plot for the AIC, BIC, and SABIC values across the tested 1-, 2-
, 3-, 4- and 5-class LCGA models for the LHC. 
 

 
Supplementary Figure 2. Scree plot for the AIC, BIC, and SABIC values across the tested 1-, 2-
, 3-, and 4-class LCGA models for the RHC. 
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 Lowest LHC 
Class 

Highest LHC 
Class 

Lowest RHC 
Class 

Highest RHC 
Class 

Wave 1, Mean 
(SD) 

9.04 (4.49) 8.39 (3.77) 9.03 (4.60) 8.66 (3.90) 

Wave 2, Mean 
(SD) 

8.63 (4.69) 7.54 (3.44) 8.83 (4.91) 7.98 (3.50) 

Wave 3, Mean 
(SD) 

8.82 (4.61) 7.07 (3.56) 8.94 (4.89) 7.96 (3.70) 

Wave 4, Mean 
(SD) 

9.57 (5.13) 7.27 (3.11) 9.82 (5.83) 8.28 (3.69) 

Wave 5, Mean 
(SD) 

11.02 (6.28) 7.48 (3.55) 10.81 (6.59) 8.27 (3.44) 

Wave 6, Mean 
(SD) 

9.88 (6.54) 7.22 (3.39) 9.93 (6.27) 8.46 (3.73) 

Supplementary Table 1. Mean (SD) Alzheimer’s Disease Assessment Scale-Cognition scores by 
wave and hippocampal trajectory class. 
 
 Lowest LHC 

Class 
Highest LHC 
Class 

Lowest RHC 
Class 

Highest RHC 
Class 

Wave 1, Mean 
(SD) 

1.21 (0.61) 1.16 (0.49) 1.10 (0.61) 1.10 (0.46) 

Wave 2, Mean 
(SD) 

1.10 (0.64) 1.26 (0.58) 1.10 (0.64) 1.17 (0.55) 

Wave 3, Mean 
(SD) 

1.05 (0.61) 1.26 (0.56) 1.02 (0.59) 1.14 (0.54) 

Wave 4, Mean 
(SD) 

1.02 (0.61) 1.30 (0.54) 0.99 (0.62) 1.14  (0.56) 

Wave 5, Mean 
(SD) 

0.83 (0.61) 1.31 (0.56) 0.92 (0.71) 1.12 (0.45) 

Wave 6, Mean 
(SD) 

0.73 (0.88) 1.31 (0.61) 0.98 (0.77) 1.16 (0.54) 

Supplementary Table 2. Mean (SD) Memory Composite scores by wave and hippocampal 
trajectory class. 
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