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Abstract— This note presents a novel approach for task-
space tracking control of redundant manipulators with bounded
actuation. Inspired by the leader-follower containment problem
in multi-agent systems, the proposed controller is utilized to
address the containment control of a single follower manip-
ulator led by multiple manipulators. In the controller design,
the redundancy of the robots is exploited for achieving sub-task
control such as singularity avoidance, and joint limit avoidance.
The asymptotic stability condition for the closed-loop dynamics
is obtained using Lyapunov functional. For the containment,
the proposed controller makes sure that the leaders track
their desired positions and the follower robot’s end-effector
asymptotically converges to the convex hull formed by the
leaders’ traversed trajectories. The efficiency of the proposed
control algorithm is verified through numerical simulations and
experimental results.

I. INTRODUCTION
The control of multi-agent systems has caught on quickly

due to its growing applicability in areas like autonomous
vehicles, swarm robotics, and multilateral teleoperation [1].
In the area of the multi-agent system, the consensus problem
in the presence of a leader and a follower is called the leader-
follower consensus. With multiple leaders, the containment
control emerges wherein the followers are to be steered into
a given geometric shape spanned by the leaders [2]. The
bottom line in the containment control is that the desired
area should ultimately contain the system (e.g., a group of
autonomous vehicles or robots). In practice, actuators can
supply bounded signals, and thus the control torques are
always subject to bounded actuation. This limitation can
adversely affect the system’s performance and render un-
desirable responses [3]. Therefore, addressing this limitation
has practical importance and should be taken into account in
the controller design.

In literature, various schemes have been proposed to
address the stability and position tracking of the single
manipulators subjected to saturation. In [4], a nonlinear anti-
windup scheme has been proposed to guarantee stability and
task-space tracking performance on Euler–Lagrange systems
subject to input magnitude saturation. In [5], a nonlinear
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PID regulator has been proposed to address the joint-space
tracking and stability performance for manipulators with
bounded torques. In [6], a robust adaptive model reference
impedance controller is developed for an n-link robotic
manipulator with parameter uncertainties, actuator saturation
and imprecise force sensor measurement.

In teleoperation systems, the saturation compensation has
been also received a great deal of attention. In [7], a
nonlinear-proportional-derivative-like controller is designed
under no velocity measurements for nonlinear teleoperation
system in the presence of asymmetric time-varying delays
and actuator saturation to address stability and joint-space
tracking problems. The work in [8] introduces the nP+D
controller by which addresses the stability and joint-space
synchronization problem of the bilateral teleoperation system
subject to actuator saturation and time-varying delays. In [9],
an adaptive switching-based control framework is developed
for joint-space synchronization problem of nonlinear tele-
operation system with taking account of actuator saturation
and asymmetric time-varying delays. In [10], to address the
finite-time joint-space tracking control problem for nonlinear
teleoperation systems, the anti-windup control framework is
adopted and a modified anti-windup compensator is devel-
oped to analyze and handle the actuator saturation. In [11],
an adaptive nonlinear fractional power proportional+damping
control scheme is designed to address the joint-space syn-
chronization control problem of flexible telerobotics with
input saturation.

A kinematically redundant robot can be controlled in such
a way as the joint motions do not affect the position of
the end-effector [12]. This redundancy can be exploited to
achieve a sub-task such as singularity avoidance, manipula-
bility enhancement, and/or joint limit avoidance [13], [14]
while performing the main task. In [15], a study has been
done to show that the redundancy can be used to increase
the manipulability of the human interface, and consequently
improve the resolution of force feedback for the user. In the
presence of actuators saturation, the proposed controller in
[16] tackles the task-space position synchronization prob-
lem for bilateral teleoperation with the redundant remote
robot. Our work exploits some overlooked properties of the
nonlinear function introduced in [8] and proposes a novel
controller along the lines of the controller of [16]. The main
function of the proposed controller is to ensure that the
stability and tracking performance of the single manipulator
with bounded actuation is achieved. However, inspired by the
containment problem in multi-agent systems [17], [18], and
given that the desired reference trajectory for the follower
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in cooperating systems is typically determined by either the
leaders’ dynamics or preset time-varying functions, we have
developed the problem formulation in such a way as to
make the controller well-suited for the containment control
of the redundant manipulator. The containment control is
mainly utilized to ensure that a group of agents does not
enter into unintended areas. In this case, a portion of agents
as followers move into the region spanned by the leaders.
Also, in the case of the proposed controller, it can force the
robot to contain within the desired trajectories and so keeps
the robot away from being diverted to the undesired paths
during its move. Also, as another practical application of
the containment control, the proposed method can enable a
manipulator (e.g., a welding manipulator) to track not only
predetermined trajectories but also the trajectories contained
between them without the need for knowing their exact
equation.

This paper is organized in sections as follows. Sections
II and III give problem formulation and preliminaries while
proposed controller and stability analysis are studied in Sec-
tions IV and V. In Section VI sub-task control and in Section
VII simulation and experimental results are discussed. In
Sections VIII and IX, conclusion and appendix are presented,
respectively.

II. PROBLEM FORMULATION

In this section, we tend to formulate the problem of
addressing both 1) tracking performance of the leader ma-
nipulators, each given a desired task-space trajectory. 2)
the containment control in the task-space for the follower
manipulator. We will briefly touch on the definition of
the containment control in Section III. Let {L1,L2,...,Ln}
denote the leader manipulators and n is the numbers of the
leaders. Also, let F be the follower. With the assumption
that the redundant manipulators, either the leaders or the
follower, are modeled by lagrangian systems, driven by
actuated revolute joints and their control signals are subject
to actuators saturation, let their dynamics be given by

Mk(qk)q̈k+Ck(qk,q̇k)q̇k+Gk(qk)=Sk(τk) (1)
where for k∈{L1,L2,...,Ln,F}, qk,q̇k,q̈k∈Rβk×1 are the
vectors of the joints positions, velocities and accelerations
of the robots, respectively, such that βk denotes the number
of joints. Also, Mk(qk)∈Rβk×βk, Ck(qk,q̇k)∈Rβk×βk and
Gk(qk)∈Rβk×1 are the inertia matrix, the Coriolis/centrifugal
matrix and the gravitational vector, respectively. The satu-
raion of the control signals is modeled by the vector function
Sk(τk):Rβk×1→Rβk×1 whose elements; ski(τki):R→R, i=
1,...,βk, are defined as follows

ski(τki)=


Bki if τki>Bki
τki if |τki|≤Bki
−Bki if τki<−Bki

(2)

where Bki∈R>0 is the saturation level of the corresponding
actuator and τki denotes the control signal applied on the ith

joint of the relevant robot. It is imperative to have 0<Ωki<
Bki where |gki(qk)|≤Ωki, and gki(qk) is the ith element of
the gravity vector Gk(qk). This condition implies that the

actuators of the manipulators are capable of overcoming the
gravity within their workspaces. Let Xk∈Rε×1 represent the
position of the robots in the task-space and ε denotes the
dimension of the task-space. The relation between the task-
space positions and the joint-space positions of the robots
are as

Xk=hk(qk), Ẋk=Jk(qk)q̇k (3)

where hk(qk):Rβk×1→Rε×1 describes the nonlinear map-
ping between the joint-space positions and the task-space
positions, and Jk(qk)∈Rε×βk is the Jacobian matrix defined
as Jk(qk)=∂hk(qk)

∂qk
. For simplicity, in the rest of the paper

notations Mk, Ck, Gk, Jk, JTk and J+
k are used instead

of Mk(qk), Ck(qk,q̇k), Gk(qk), Jk(qk), JTk (qk) and J+
k (qk)

(Rβk×1→Rβk×ε, being the pseudo-inverse of Jk(qk) defined
later), respectively.

III. PRELIMINARIES

According to [19], [20], the important properties of the
revolute-joint manipulators (1) are revisited as follows.

Property 1: The inertia matrix Mk∈Rβk×βk is symmetric
positive-definite and has the following upper and lower
bounds as 0<λmin(Mk)Iβk≤Mk≤λmax(Mk)Iβk<∞ where
Iβk is the identity matrix of size βk.

Property 2: Ṁk−2Ck is a skew symmetric matrix.
Property 3: The gravity vector Gk is bounded. In other

words, there exist positive constants Ωki such that each
element of the gravity vector gki satisfies |gki|≤Ωki.

Property 4: For a manipulator with revolute joints, there
exists a positive υ bounding the Coriolis/centrifugal term as
‖Ck(qk,x)y‖2≤υ‖x‖2‖y‖2
A. Containment Control

Definition 1: The convex hull Co(S) of a finite set of
points S={s1,s2,...,sn} is the minimal convex set containing
all points in S. Expressing this as a single formula, the convex
hull is the set [21]:

Co(S)=

{
n∑
z=1

azsz| sz∈S, az∈R, az≥0,
n∑
z=1

az=1

}
(4)

Consider the robots dynamics as (1). Let Xdz(t)∈Rε×1;
z=1,...,n, represent the desired task-space positions for the
leader manipulators. Let the coefficient az be assigned to the
zth leader manipulator where for each choice of coefficients,
the resulting convex combination is a point in the convex
hull, and the whole convex hull can be formed by choosing
coefficients in all possible ways. Also, let the leaders’ task-
space positions be as a set C,{XL1

(t),...,XLn(t)}. The
error signal is defined as

ek,

{
XLz(t)−Xdz(t) if k=Lz
XF(t)−Co(C) if k=F

(5)

in which eLz and eF denote task-space tracking error of
the zth leader manipulator and the containment error of the
follower, respectively. Also, Xdz(t) shows the desired task-
space position for the zth leader. Furthermore, it is assumed
that the given desired positions have bounded and continuous
first and second derivatives.
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It is worth noting that various selection of the coefficients
az can be used as the dominance factors in the shared auton-
omy teleoperation systems in which one leader is controlled
by a human user and the other leaders are prompted by the
computer-generated commands, and the controlled interplay
of the coefficients will determine which direction of action
the follower robot (slave) takes.

Definition 2: The follower robot achieves containment if
the control law ensures that its task-space position will
converge to the convex hull formed by the leaders’ task-
space positions as t→∞. In other words, eF→0.

B. Incorporation of sub-task control into the controller

To lay the groundwork for achieving the containment
control and a sub-task control, inspired by [13], [22], let us
find the modified form of the robots’ dynamics in order to
incorporate the sub-task control into the controllers develop-
ment. To achieve this, let signals ζk∈Rβk×1 and ϕk∈Rβk×1

be defined as ϕk,q̇k−ζk and

ζk,


J+
Lz

(
−eLz+Ẋdz

)
+
(
Iβk−J

+
LzJLz

)
ΨLz if k=Lz

J+
F

(
−eF+

n∑
z=1
ẊLz

)
+
(
Iβk−J

+
FJF

)
ΨF if k=F

(6)
where Ψk∈Rβk×1 is the negative gradient of an appropriately
defined function for the sub-task control. Also, J+

k ∈Rβk×ε
is the pseudo-inverse of Jk defined by J+

k ,J
T
k (JkJ

T
k )−1

which satisfies JkJ+
k =Iβk and Jk

(
Iβk−J

+
k Jk

)
=0, and ac-

cordingly Jk
(
Iβk−J

+
k Jk

)
Ψk=0 which in turn implies that(

Iβk−J
+
k Jk

)
projects the vector Ψk onto the null space of Jk.

Therefore, if the link velocity in the null space of Jk is such
that tracks

(
Iβk−J

+
k Jk

)
Ψk, then not only it will not influence

the task-space motion, but also it can be regulated by Ψk.
Now, taking the derivative of the both sides of the equation
ϕk=q̇k−ζk with respect to time, premultiplying them by the
inertia matrix Mk and substituting Mkq̈k with its equivalent
from (1), the robot’s modified dynamics can be derived as
Mkϕ̇k+Ckϕk=Θk+Sk(τk); Θk,Mkζ̇k+Ckζk−Gk (7)

IV. PROPOSED CONTROLLER

In this part, the proposed controller is intended for achiev-
ing ek→0. Consider the dynamical system (7) and let the
control signal be given by

τk=−Θk−JTk
(
∂Pk(ek)

∂ek
ΦkPk(ek)+Λkėk

)
︸ ︷︷ ︸

,∆k

−Σkϕk (8)

where Φk,Λk∈Rε×ε and Σk∈Rβk×βk are positive-definite
diagonal matrices with elements φkj∈R>0, λkj∈R>0 and
σki∈R>0, respectively. Motivated by [8], for any xkj∈
R and Xk∈Rε×1, Pk(Xk):Rε×1→Rε×1 is a nonlinear
vector function with elements pkj(xkj):R→R; j=1,...,ε.
The nonlinear scalar function pkj(xkj) is required to be
strictly increasing, bounded, continuous, passing through
the origin, concave for positive xkj and convex for neg-
ative xkj with continuous first and second derivative
around the origin such that |pkj(xkj)|≤|xkj|, pkj(−xkj)=
−pkj(xkj), 0≤pkj(xkj)pkj(xkj)≤xkjpkj(xkj)≤xkjxkj and

∂Pk(Xk)
∂Xk

≤diag{$k1,...,$kε} where 0<
∂pkj(xkj)

∂xkj
≤$kj. For

instance, by choosing pkj(xkj)=bkjtan−1(xkj); 0<bkj≤1,

all the mentioned properties are satisfied,
∂pkj(xkj)

∂xkj
is positive

and bounded such that ξk,
∂Pk(Xk)
∂Xk

≤diag{bk1,...,bkε}≤Iε
and Nkj,suppkj(xkj)=bkjπ/2. Note that diag{bk1,...,bkε}
denotes a block-diagonal matrix formed by bk1,bk2,...,bkn.

V. STABILITY ANALYSIS
In this section, the stability and asymptotic performance

of the system (7) with the proposed controller (8) is ana-
lyzed. Applying the controller to the modified dynamics, the
following closed-loop dynamics can be found:

Mkϕ̇k+Ckϕk=Sk(∆k−Σkϕk)+Θk (9)

Theorem 1: Assume that Ẋdz,Ẍdz∈L∞ and the robots
(7) are able to avoid the singularities. With the proposed
controller (8), the leaders converge asymptotically to the
desired task-space positions, and the follower robot achieves
the containment regardless of whether Ψk=0 or Ψk 6=0,
provided that

φkmax<
Bkmin−Ωkmax−Υk

ε$kmaxJkmaxNkmax
(10)

where Υk,max
i

{∣∣∣∣∣βk∑b=1

(
Mkibζ̇kb+Ckibζkb

)
+

ε∑
j=1

Jkjiλkjėkj

∣∣∣∣∣
}

,

$kmax,max
j
{$kj}, φkmax,max

j
{φkj}, Nkmax,max

j
{Nkj},

Bkmin,min
i
{Bki} and Ωkmax,max

i
{Ωki}. Also, Mkib,Ckib∈

R are the elements of Mk and Ck matrices, respectively
in which i,b=1,...,βk. Moreover, ζ̇kb,ζkb∈R are the ele-
ments of the vectors ζ̇k and ζk, respectively. Also, Jkmax,
max
ji

{
sup
∣∣Jkji∣∣}. Note that Jkji are the elements of the

matrix Jk such that j=1,...,ε and i=1,...,βk.
Proof: Consider the positive definite storage function

V (t)=
1

2

∑
k

(
ϕTkMkϕk+P

T
k (ek)ΦkPk(ek)+e

T
kΛkek

+2

t∫
0

βk∑
i=1

−ϕki(µ)(ski(∆ki(µ)−σkiϕki(µ))−∆ki(µ))dµ


(11)

where ∆ki(µ); the elements of ∆k(µ), can be shown as

,−θki(µ)−
ε∑
j=1

Jkji

(
∂pkj(ekj(µ))

ekj(µ)
φkjpkj(ekj(µ))+λkjėkj(µ)

)
(12)

such that (see APPENDIX)

−ϕki(µ)(ski(∆ki(µ)−σkiϕki(µ))−∆ki(µ))≥0 (13)

Note that θki(µ)∈R denotes the elements of the vector
Θk(µ)∈Rβk×1. Now, given (9) and Property 2, differentiating
the storage function V (t) along the system trajectory results
in

V̇ (t)=
∑
k

(
ϕTk (Sk(∆k−Σkϕk)+Θk)+P

T
k (ek)Φk

∂Pk(ek)

∂ek
ėk

+eTkΛkėk−ϕTk (Sk(∆k−Σkϕk)−∆k)
)

(14)
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Therefore, considering the fact that Jkϕk=ek+ėk yields

V̇ (t)=
∑
k

(
−ϕTkJTk

∂Pk(ek)

∂ek
ΦkPk(ek)−ϕTkJTk Λkėk

+PTk (ek)Φk
∂Pk(ek)

∂ek
ėk+e

T
kΛkėk

)
=
∑
k

(
−eTk

∂Pk(ek)

∂ek
ΦkPk(ek)−ėTkΛkėk

)
≤
∑
k

(
−PTk (ek)ξkΦkPk(ek)−ėTkΛkėk

)
(15)

In conclusion, we would have V̇ (t)≤0, which means
all terms in V (t) are bounded. Therefore, ϕk,Pk(ek),ek∈
L∞ and given Jkϕk=ek+ėk results in ėk∈L∞ and so
d
dt(Pk(ek))∈L∞. Given Ẋdz∈L∞ and ėk∈L∞ yields Ẋk∈
L∞. Integrating both sides of (15), it is possible to see that
Pk(ek),ėk∈L2. Given Ẋk∈L∞ results in q̇k∈L∞. Given the
system dynamics (1), q̇k∈L∞, and Properties 1, 3 and 4
results in q̈k∈L∞, and considering Ẍk=Jkq̈k+J̇kq̇k stands
to reason that Ẍk∈L∞. Also, Ẍdz,Ẍk∈L∞ readily leads
to ëk∈L∞. Because ëk, ddt(Pk(ek))∈L∞ and ėk,Pk(ek)∈L2,
using Barbalat’s lemma results in ėk,Pk(ek)→0. Noting
that for any xkj∈R, pkj(xkj) passes through the origin,
we get ek→0. Therefore, the containment is achieved and
the proof of Theorem 1 is completed. Having shown that
ek,ėk→0, and assuming that the robots are able to avoid
the singularities, results in ϕk→0. It is worth noting that
by the containment achievement the follower manipulator
converges to a ”scaled” centroid of the convex hull defined
by the leaders wherein the parameter az plays the role of
dominance factor (mainly used in the shared control systems)
of the zth leader manipulator.

Remark 1: In stability condition (10), the parameters
Ωkmax and Jkmax are function of the robots’ physical param-
eters. Therefore, disparities between real (let be denoted by
an overbar notation) and nominal values affect the system’s
stability. For the sake of simplicity, let’s assume that the
sub-task control is not required. Thus, the stability condition
becomes

φkmax<
Bkmin−Ωkmax

ε$kmaxJkmaxNkmax

If nominal values are bigger than real values, then we get
Ωkmax>Ω̄kmax and Jkmax>J̄kmax which consequently results
in

φkmax<
Bkmin−Ωkmax

ε$kmaxJkmaxNkmax
=⇒φkmax<

Bkmin−Ω̄kmax
ε$kmaxJ̄kmaxNkmax

Also, if nominal values are lesser than real values, then
we get Ωkmax<Ω̄kmax and Jkmax<J̄kmax which consequently
results in

φkmax<
Bkmin−Ωkmax

ε$kmaxJkmaxNkmax
6=⇒φkmax<

Bkmin−Ω̄kmax
ε$kmaxJ̄kmaxNkmax

Therefore, using the nominal values, we should set the
controller parameters far enough beyond the stability condi-
tion’s boundary in order to keep the system stable.

VI. SUB-TASK CONTROL
This section adopts a similar approach used in [13] for

the sub-task control of the redundant robots. As mentioned

earlier, the link velocity in the null space of Jk does not
influence the task-space motion and does not contribute to
the task-space velocity. Therefore, if it is such that tracks[
Iβk−J

+
k Jk

]
Ψk, then the movement of the telemanipulator

in this configuration-dependent subspace can be regulated
by Ψk. This kind of motion is called self-motion since
it is not observed at the end-effector [12]. The function[
Iβk−J

+
k Jk

]
Ψk can be considered as the desired velocity

in the null space of Jk through which one can define
an appropriate function for Ψk to complete the sub-task
control. On the one hand, the sub-task tracking error for
the redundant robot (let it be ekste) was defined as ekste,[
Iβk−J

+
k Jk

]
(q̇k−Ψk) [12] where, on the other hand, it can

be shown as well as
ekste,

[
Iβk−J

+
k Jk

]
(q̇k−Ψk)=

[
Iβk−J

+
k Jk

]
ϕk (16)

in which the properties
[
Iβk−J

+
k Jk

][
Iβk−J

+
k Jk

]
=Iβk−

J+
k Jk and

[
Iβk−J

+
k Jk

]
J+
k =0 are used [12]. Therefore, if

ϕk→0 (Theorem 1), then the sub-task tracking error ap-
proaches the origin and the link velocity in the null space of
Jk tracks

[
Iβk−J

+
k Jk

]
Ψk. The gradient projection method

[23] is utilized in this paper to achieve the sub-task control.
As described in [13], the sub-task of the robot can be con-
trolled by any differentiable auxiliary function Ψk provided
that it is expressed in terms of the joint angles or the end-
effector position. Hence, one can define a differentiable cost
function f(qk):Rβk×1→R for which a lower value corre-
sponds to more desirable configurations. Then, the auxiliary
function Ψk=− ∂

∂qk
f(qk) can be utilized for achieving the

sub-task control of the robot.
VII. SIMULATION AND EXPERIMENTAL RESULTS

In this section, verification of results is provided through
simulation and experimental conducts. In both the simula-
tions and experiments, we have three robots as the leaders
and one robot as the follower. Using the proposed controller,
each leader tracks its desired task-space position and the
follower converges to the convex hull formed by the leaders’
task-space trajectories.

A. Simulation results

For simulations, the manipulators all are assumed to
be 3-DoF planar revolute-joint robots. The links lengths
for the first leader, the second leader, the third leader
and the follower are [0.4,0.4,0.4] m, [0.45,0.45,0.45] m,
[0.42,0.42,0.42] m and [0.5,0.5,0.5] m, respectively. The
links masses in the same order are [0.35,0.35,0.35] kg,
[0.4,0.4,0.4] kg, [0.37,0.37,0.37] kg and [0.42,0.42,0.42]
kg. The conditions qL1

(0)=[π7 ,
π
7 ,−

π
7 ]T , qL2

(0)=[π6 ,
π
6 ,−

π
6 ]T ,

qL3
(0)=[π8 ,

π
8 ,
π
4 ]T and qF(0)=[π8 ,

π
4 ,−

π
3 ]T are chosen for

the robots’ initial joints positions. Also, it is assumed
that q̇k(0)=q̈k(0)=0. The nonlinear function pkj(xkj)=
tan−1(xkj) is used in the controllers, i.e., Nkj=Nkmax=

π
2

and $kj=$kmax=1. It is assumed that the control signals
are subject to the actuators saturation at levels +20 N/m
and −20 N/m which means Bki=Bkmin=20 N/m. Also,
in the controller (8), the matrices Λk and Σk are assumed
to be the identity matrixes of sizes 2 and 3, respectively.
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Fig. 1: The task-space positions and the error signals.

Having clues from [12], [22], for the singularity avoidance,
the auxiliary function is assumed to be Ψk,−0.01(qk1−
2qk2+qk3)[1,−2,1]T which is the negative of the gradient
of the cost function f(qk)=0.005(qk3−2qk2+qk1)

2. Let the
desired task-space positions for the leaders be given as

Xd1=[−0.5+0.15sin(t) 0.6+0.1cos(t)]
T

Xd2=[−0.4+0.12sin(t) 0.8+0.07cos(t)]
T

Xd3=[−0.3+0.09sin(t) 1+0.04cos(t)]
T

(17)

and for the containment control, let the coefficients be
equal to a1=0.3, a2=0.3 and a3=0.4. Therefore, for k∈
{L1,L2,L3,F}, the controllers are

τk=−Θk−JTk

 φkmax
1+ekxekx

0

0
φkmax

1+ekyeky

Pk(ek)+ėk
−ϕk (18)

which are designed to have the leaders reach and track
the desired positions (17), and render the follower robot’s
end-effector converged to the convex hull formed by the
leaders’ trajectories. Fig. 1 shows the leaders’ desired task-
space positions, the robots’ trajectrories in the task-space
and the error signals. As we see in Fig. 1a, the leaders’
end-effectors converge asymptotically to the desired task-
space positions, and the follower’s end-effector converges to
the convex hull formed by the leaders’ task-space positions.
Please note that at any moment of the simulation, the smallest
convex polygon containing the leaders’ trajectories is a
dashed line triangle formed by the leaders’ trajectories as
the triangle’s vertices. Also, it is worth noting that at t=0
sec the follower’s end-effector (designated by asterisks) is
outside the triangle, but as the time elapses, it goes gradually
inside the triangle. Also, Fig. 1b shows the error signals, in
which the subscripts x and y denote the errors in the X and
Y directions, respectively.

B. Experimental results

To provide evidence for the feasibility of the proposed
controller in practice, three simulated 3-DoF planar revolute-
joint robots are considered as the leaders (like the simulation
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0 1 2 3 4 5 6 7 8 9 10

−0.4

−0.2

0

0.2

0.4

0.6

Time (sec.)

E
rr
or

(m
.)

 

 

0 2 4 6 8 10

−0.01

0

0.01

Time (sec.)

E
rr
or

(m
.)

 

 eL1x
eL2x
eL3x
eFx

eL1y
eL2y
eL3y
eFy

Zoomed

(b) Experiment results: The convergence of the error singnals to zero.

0 1 2 3 4 5 6 7 8 9 10

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (sec.)

T
o
rq
u
e
(N

.m
.)

 

 

τF1
τF2
τF3
τF4

(c) Experiment results: Joints torque of the follower.
Fig. 2: The task-space positions and the error signals.

section), and one real 4-DoF planar robot is used as the fol-
lower which is developed by serially connecting two robots,
a 2-DoF PHANToM 1.5A (Geomagic Inc., Morrisville,
NC, USA) and a 2-DoF planar upper-limb rehabilitation
robot 1.0 (Quanser Inc., Markham, ON, Canada). The base
joint of the 3-DoF PHANToM robot is detached to turn it
into a 2-DoF planar robot. The links lengths for the first
leader, the second leader, the third leader and the follower
are [0.4,0.4,0.4] m, [0.37,0.37,0.37] m, [0.35,0.35,0.35] m
and [0.254,0.140,0.210,0.170] m, respectively. The links
masses in the same order for the leaders are [0.35,0.35,0.35]
kg, [0.32,0.32,0.32] kg and [0.3,0.3,0.3] kg. Also, initial
joints positions for the robots are qL1

(0)=
[
π
4 ,
−2π

5 ,−2π
5

]T
,

qL2(0)=
[
π
4 ,
−π
3 ,
−π
3

]T
, qL3(0)=

[−π
5 ,

π
4 ,
−π
5

]T
and qF(0)=[

0,0,−π8 ,
π
4

]T
. The follower robot has joint angle limitation

such that qF1,min=−0.95 rad, qF1,max=1.57 rad, qF2,min=
0 rad, qF2,max=2.53 rad, qF3,min=−0.95 rad, qF3,max=2
rad, qF4,min=−0.34 rad and qF4,max=1.39 rad. Therefore,
to obtain the auxiliary function for the follower and maintain
the joint limits, the following cost function [24] is used.

f(qF),
1

2

4∑
j=1

(
qFj−qFj,mid

qFj,max−qFj,min

)2

(19)

The saturation levels for the real robot are set to be at
+0.5 N/m and −0.5 N/m, i.e., BFi=BFmin=0.5 N/m.
For the containment control, the coefficients are assumed to
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Fig. 3: A snapshot of the experiment on the 4-DoF robot.

be to a1=0.6, a2=0.2 and a3=0.2. Also, in the controller
(8) of the follower, the matrices ΛF and ΣF are assumed
to be diag(0.01,0.01) and diag(0.015,0.015,0.015,0.015),
respectively. Please note that given (15), Λk needs to be
positive definite, and Σk is assumed to be positive definite
and (13) is proved accordingly. The quasi-experimental re-
sults are shown in Fig. 2. The leaders are given concentric
desired trajectories, and as Fig. 2a shows, the leaders’ end-
effectors reach and track the desired positions, and the
follower reaches the containment which both are clear from
Fig. 2b where shows the convergence of the error signals
to zero. Also, it is worth noting that the robots’ dynamics
(1) are considered based on certain dynamics, and practical
features like friction are ignored. Therefore, this may account
for the noticeable swing of the follower’s error signals near
zero which is shown by the zoomed section in Fig. 2b. The
joints’ torque of the follower is depicted in Fig. 2c. As shown
in this figure, the first and the second joints of the follower
are saturated during the first 0.1 second of the experiment.
Fig. 3 shows a snapshot of the experiment video1 prepared
to shed more light on the issue. The readers are strongly
encouraged to download and watch the video.

VIII. CONCLUSION

In this note, a novel scheme was presented to address
the task-space position control of redundant manipulators
whose actuators practically supply bounded torques. The
redundancy was incorporated into the controller development
to achieve a sub-task control. The asymptotic stability of the
closed-loop dynamics was studied using a Lyapunov func-
tional under conditions on the controller parameters. It was
shown that the controller is well-suited to the containment
control of the redundant manipulator. The validity of the
proposed controller was verified using numerical simulations
and experimental results.

IX. APPENDIX
Proof of inequality (13): Following (2) and the condition

(10), one can readily conclude that
|∆ki(µ)|≤Bki and ∆ki(µ)=ski(∆ki(µ)) (A.1)

Due to the strictly increasing property of the saturation
function (2) in the linear region, we have{

ski(∆ki(µ))≤ski(∆ki(µ)) if ϕki(µ)≥0

ski(∆ki(µ))>ski(∆ki(µ)) if ϕki(µ)<0
(A.2)

1https://bit.ly/2XXCzun

Therefore, it can be concluded that

ϕki(µ)(ski(∆ki(µ)−σkiϕki(µ))−∆ki(µ))≤0 (A.3)
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