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Abstract

The effect of an intense laser field on the Rutherford scattering prob-
lem and its relation to the inverse bremsstrahlung heating of of the
electron distribution function in a plasma is examined. A study of
the dissipation of particle velocity by elastic collisions yields a modi-
fication to the differential transport cross section in the high intensity
regime. Also an investigation of inelastic collisions reveals a modifi-
cation to the inverse bremsstrahlung heating rate. A kinetic particle
code is developed and the modified transport cross section is incor-

porated into the scattering algorithm.
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Chapter 1

Introduction

The goal of this study is to obtain an accurate solution to the Rutherford scat-
tering problem using a theoretical description of the microscopic dynamics of a
binary collision between an electron and an ion in the presence of an intense,
linearly polarized oscillating electric field. The kinetic model proposed is free
of any assumptions about the general behavior of the collision (¢.e. does not
assume small angle collisional dominance) and modifies long-standing theories of
the inverse bremsstrahlung heating of a plasma and collision transport processes.

For a plasma kinetic system dominated by electron-electron collisions, the
electron distribution function (EDF) can be approximated by a Maxwellian dis-
tribution. This then allows reduction of the kinetic theory to hydrodynamical
models that solve many problems in plasma physics. However, in a high Z, fully
ionized plasma it has been established that there exists a large region of param-
eter space where electron-ion collisions dominate and govern the behavior of the
EDF [1]. Further, Langdon [2] has shown that in this region, because of electron
heating due to the electron-ion collisions in the high-frequency field, the EDF is
highly non-Maxwellian. Thus it is essential that in order to describe the EDF in

this region, the dynamics of the electron ion collisions be fully understood.
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This study numerically solves the equation of motion for an electron scattering
with an ion in the presence of an intense, high frequency dipole electric field.
Our results indicate that the laser field can induce chaotic orbits where the
electron is effectively trapped or experiences a series of correlated collisions,
both of which lead to large angle scattering. We investigate the transport cross
section of the interaction and show deviations of up to fifty percent from the
Born approximation predictions of Shvets and Fisch [9] for the parallel launch
condition. Further we propose a modification to the Rutherford cross section for
elastic collisions in the presence of a high frequency field. Our investigation into
to inverse bremsstrahlung (IB) energy gain yields an expression for the effective
cross section for v < vye.. We also propose an increase in the IB heating rate
for temperatures on the order of 100 eV. Preliminary particle simulations that
incorporate our modified transport cross section show evidence of an increased
heating rate as well as a flash redistribution of a Maxwellian velocity distribution

resulting in a hole at low velocities.

1.1 Boltzmann Equation

I shall begin by deriving the Boltzmann kinetic equation generally following the
arguments put fourth originally in 1872 [3,4] and adapted by Balescu [27]. In
doing so I will demonstrate where the work of this study fits in the realm of
kinetic theory. Consider a neutral gas of like classical point particles of equal
mass that interact through a short range potential V(r). They are described by
a distribution function f,(Z, ¥,t). Boltzmann then describes the evolution of this
distribution in time. The evolution can be separated into two categories: (i) free
motion of the particles and (ii) the interaction processes that occur as a series of
discrete binary collisions happening over a limited region of space (established

by the effective range of the potential) and over a short period of time.
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Accounting first for the free motion, it is assumed that outside of the col-
lisions, the particles follow linear trajectories and therefore the evolution of

f1(Z, 7, t) must satisfy the continuity equation

%fl(f, 7,t) + 7 - VAL(E,T,t) = 0. (1.1)

To account for the collision consider the group of particles in phase space
about £ and ¥ in the volume defined by d3z, d®v. For this group, the effect of
the collisions can be modeled as gains determined by the operator G and losses
determined by the operator L, to the number of particles in this phase point
vicinity. Hence

%f1+z7-6fl=c—1;, (1.2)
where I have dropped the phase space variables and time to conserve space.

An elastic collision between two particles is depicted in Fig. (1.1).

vy

Figure 1.1: A sketch of a two body collision. The interaction sphere is defined

at a radius R,, the cutoff range of the potential.

A pair of particles with initial velocities ¢; and % interact within the sphere

of radius R, which is defined by the cutoff range of the interaction potential.
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The outcome of the collision results in velocities v*,, and /5.

By conservation of momentum (recall each particle has the same mass) we

know

—

U1 +’Uz=’l;’1+’l72. (13)
And by conservation of energy,
v? +vd =" + 02 (1.4)

The final velocities are then given by

v = ‘;‘(171 + 2 + gé) (1.5)
T = L@+~ 99) (1.6)
where
g =1 — s (1.7)
g€ =0y — Uy, (1.8)

In an elastic collision, the magnitude of § (the initial relative velocity) does not
change, rather it experiences a rotation in velocity space to a new coordinate
defined by & If we consider now Fig. (1.2), the scattering angle in the centre of

mass frame can be seen as x. To determine this, it is noted that
x =m— 20, (1.9)

where 8 is the angle between the initial velocity and the vector position of closest

approach (Rmin). 0 is given [17] by the equation

(o o]

£
= / dr L : (1.10)
Rm.in \/1 - (§)2 - %gzz

Knowing the solution to the two-body interaction problem, the goal is now

to estimate G and L. In a gas we are not concerned with the deflection of a single
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Final Velocity g?;/q

Initial Velocity &

p 6

Figure 1.2: A sketch of a collision in the centre of mass frame. The incident
particle approaches with velocity § and is elastically scattered by interaction

with the potential V(r), resulting in a final velocity of g€, at an angle x to g.

particle, but the scattering of a beam of incident particles all with a specified
initial velocity. Obviously because of the different impact parameters the parti-
cles will be scattered into different angles x. This is expressed in Fig.(1.3). Here
we fix a reference frame on an individual particle at Z with velocity v; at time
t. Recalling that we have established the outer range of the potential as R., any
particle that comes within this distance of the fixed body will then scatter. We
then define a time period At that is a) much larger than the collision time T¢,
and b) shorter than the relaxation time, i.e. the time for any change in the dis-
tribution function to occur. A cylindrical shell defined by the radii p and p+dp

and length gAt would then contain all the particles that will scatter into angle
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s

g At

Figure 1.3: An annulus beam of incident particles with uniform initial velocity

at a specific impact parameter p will scatter into the angle x in time At.

x. (Assuming of course that p < R..) Over the period At this number is
n = f(Z, 03, t)d*vy 2mp dpgAt. (1.11)

The total number of collisions that involve the test particle over this time
period per unit volume can be found by multiplying n by the number of particles
at £ with a velocity of v;. Integrating this expression over v we find an expression

for the loss term L because these particles will change velocity from v7.

/d3v2 f(Z, 03, t) F(Z, 01, t)d%v, 27p dp g At = L dPvy At (1.12)

If we then consider the reverse symmetry of the problem, we would see colli-

sions between particles with velocities of v’; and v'; and ending with v7 and 7,
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adding to this region of phase space, yielding the gain term G.

/dav'g f(Z, V', ) f(Z, v, )d%') 2mp dp gAt = G d3v', At (1.13)

The initial and final velocities here are related by a canonical transformation.
Examining the Liouville theorem applied specifically to this two body problem
where the collisions can be considered well-separated events in space and time,

Balescu [27] notes that we can observe the equality

d*v) d*vy = d0') d®v',. (1.14)
Thus, now having derived expressions for G and L, we can write the Boltz-

mann equation in its most basic form as

0 ... . = e I - . Y
ng(x’ U1, t)'*"U‘Vf(fL'a U1, t) = /d3U2 dp 27Tp g [f(l', Ully t)f(.’L‘, UI21 t)—f(zv vat)f(xa v, t)]
(1.15)
At this point I should introduce the differential cross section. Considering

our model above, the differential cross section is defined as

do = ﬂ, (1.16)
n

where dN is the number of particles that scatter through angles between x and
x + dx per unit time, and n is the total number of particles passing in unit time
through unit area of the beam cross section. It is assumed that the beam is
uniform over its cross section. From Fig. (1.3) it is apparent that all incident
particles that pass through the cross section annulus defined by p and p +dp
will scatter as required, therefore this area to that of the unit beam cross section

then defines the differential cross section, or

do =27p dp. (1.17)
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To relate do to the scattering angle, we simply rewrite Eq.(1.17) as

do = 2mp(x)

d—lc)l(xi)l dx. (1.18)

From here we can extend our definition from the plane angle element dx to

the solid angle element dQ2 = 27 sin (x)dx. We then arrive at the expression

do = 04d(Q, (1.19)
where
_ dp(x) |dp(x)
04 = - 00 | "dx dx. (1.20)

Thus, the Boltzmann kinetic equation becomes

0

57/ (@ 0,1) +7- v f(& 1,t) = Cs(f, f), (1.21)

where
CB(f7 f) = /d3U2 ds2 g O'd[f(fv 'Urht)f(f’ v72’t) - f(fv ’U-é,t)f(f, U-ia t)] (1‘22)

Note that the notation is simplified such that f(&,v1,t) = fi(Z, 01, t).

As a historical note, Boltzmann introduced the assumption that fo = fifi
or that there are no correlations before or after the collision which has come to
be known as Boltzmann’s Stosszahlansatz. The Boltzmann equation is a closed,
nonlinear equation for the one-particle distribution function. Subsequently, many

approximation techniques have been developed in search of its solutions.

1.2 The Landau Collision Operator

It is well known that the Boltzmann equation (1.22) can be solved (Cg(fu, fmr) =

0) with a Maxwellian distribution of the form

3
m 2 Mmooz )2
2 5.t = —m—  — TIT(EL (T—1(Z,t)) .
fu(Z,70,) (27rT(:i", t)) e TED , (1.23)
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where T'(Z,t) is the temperature and %(Z,t) is the drift velocity.

We are however more interested in finding solutions that evolve outside of an
equilibrium state (where the system is exposed to a heat source for example.)
Here I present a derivation of the Landau collision operator as proposed by
Landau in 1936 [5] to describe collisions between weekly interacting charged
particles.

In deriving the Landau equation we assume that the collisions that occur
between the particles in our system are a simple superposition of many small
angle deflections with associated small changes in momentum.

Going back to the Boltzmann equation, Eq.(1.22), we can interpret oyg as
the probability density of a collision transforming the velocities v7 and v5 into
v'; and v'5, thus

oqg = w(vi, U3; v71, v72). (1.24)

Also, equations 1.5 and 1.6 can be simplified by the introduction of the vector

A where
. 1, _
A=—5(g-99), (1.25)
so that now,
’U71 = 'U71 + 5
’U72 = 'U72 - 5 (126)

With this in mind, we can switch to the centre of mass frame and express the

probability density in terms of new variables

w(vy, v2; V"1, v'2) — w[;( 1+ v"), 502 +v'); vy — U1, v'2 — ,]
1. 1o - -
= n —A, Jo — — ,A, —‘A
w|v; + B 2 5 ]
= uf 1+58,% -3 ;AL (1.27)



CHAPTER 1. INTRODUCTION 10

This follows from the fact that the probability densities of the direct and inverse

collisions are equal. Thus w is an even function in A.

~ 1< = 1= 1 =
wloy + %A, Uy — §A; A] = wlvy + §L\, Uy — §A; -A]. (1.28)
The Boltzmann collision operator can then be expressed as
1 . 15 = - = I - -
Cg(f, f) =/d3U2 dQ wlv §A U2—§ s A f (02 = A) f(v1 4+ A) — f(91) f(92)],

(1.29)
where the £ and t variables have been omitted to simplify the expression.

From this point it is necessary to assume that the interactions between par-
ticles are weak which means A must be small compared to the velocities of our
particles

A<b A< (1.30)
Under this assumption, the functions above can be approximated using Taylor

series expansions

D R S - 1 dwlvi, v; A]  dwlvi, vs; A
UJ[ 1+§A, (2] _é-A’ A] ~ 'lU[’Ul,’Ug, A]+ 2A |: avlr — a’vg,-
(1.31)
o) 1 92 f (v1
Fi+ &) = fan) + 0,2 L IA A FIE) L (1)

a Vir 2 " savlravls
The expansion for f(v3 — A) follows in a similar fashion. The indexes r and s are

the three dimensional components of the vectors, i.e. r,s = (x,y,2).
When the expanded terms are inserted into Eq.(1.29) we arrive at a new

expression for the collisional operator

Catrf) = [@wan [wn 8 (r@2 - re 202 a,

Ovir Ovar

-+
avlr av2r

R 1 8%f(v3) 1
+ w[vlzv21 A] (2 a'U2r6 2sf( )+ 2f(v2)6vlravls 6U2T 81)13

+ ..

1 Bw[v",v";A] Bw['u'i,v";&] af(v1) 3f(v )
54\,( 2 : ) (f() ~ f(@) )

B o af(vt)) AA,

(1.33)



CHAPTER 1. INTRODUCTION 11

Recalling that w(v7, v3, 5] is an even function of A, the first order terms in

the equation above vanish identically. Next, we perform an integration by parts

with respect to v on the last two terms contalmng . The result is
1 BRI 3f(vz) of (v1) 6%f(v1)
C >~ 3 dQ} — riag ’
s(f, f) /d V2 2A A [w[vl’w’A] ( Ovar  Ous +f )3v1ravls

L Oulvi, %, A (af(v:)f(v;)_f(vdl)af(w))}

a'U]_r 5’013 av23
Cati,§) = [ @ jana, [uts o Bl (1 2L - pay 2
)

¢ 228 (1 -l

a'vlr

This can then be written in the form

0 5]
— 3 Grs A
Ce(f. f) /d v2 3 - (31113 81}23) f(01) f(v2) (1.34)
where
G™ = %/de[v’i,v‘é;&]A,As. (1.35)

To place this equation into a more practical form, the next step is to express
the tensor G™ in terms of the interaction potential between the particles. Going
back to our test collision, it can be seen that the velocity increment of the first
particle A can be expressed as the time integral of the force due to the second

particle or

5.—.% / dt [—av(ﬁgg(;)@(t)) . (1.36)

Again recalling that we are under the assumption that in this regime, the
particles experience only weak coupling, we can infer the following approximation

for the coordinate r(-%).

rt) = z.(t) — za(2)

)
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= 1~ Doliitiar + / g(t)dt’
~ G+ gt (1.37)

Thus r(-i) is approximately defined by a free trajectory during the collision.

We next examine the potential in Fourier space, noting the Fourier transform

V(F) = / dkVye* . (1.38)
Hence we observe
A — ik-r(t)
A /dt/(2 )3sz}ce
3
~ / dt / (d k — ik ViR @t (1.39)

It should also be noted that in cylindrical geometry
wlvy, Ua; ﬁ]dQ = 049dQ) = 2mgpdp (1.40)
Plugging these into the expression for G™*, Eq.(1.35) we find

27 o0 (e <] oo
1 d3k, d3k, = -
TS = ) + dt k1pikas Vi, Vi i[ky-7(t1)+k2-(E2)]
07 = s [ 40 [ doao [ e [ e [ 555 [ Gpibutkatintie
0 0 —00 —00

(1.41)

To further simplify this expression, we recall the approximation Eq.(1.37)

which allows us to say

pilkL Tt ) +k27(t2)] — Gi(K1+K2)-(+3t1) gike-(Gta—~Gt1) (1.42)

Also, we can take advantage of the cylindrical geometry and define the volume

element d3r(t;)

/d3f(t1) Eo/‘d¢/dpp/dt1g. (1.43)

0 —00
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If we then introduce the variable 7 = #; — t5, Eq.(1.41) reduces to

o0
L1 Bry [ Bhy ey e
G = 2m2/d3r(t1)/dT/(27r)13/(271')2361(k1+k2) )ik ikas Vi, Vip €297
—0oQ

(1.44)
Recalling then the relation
/ dBr(t,)efFr+R)78) — (91)35(Ky + k), (1.45)
the tensor expression finally reduces to
TS 1 1 d3 2
G = m2 Py o3 kl klrklslv(kln 6(’61 g) (146)

Inserting this back into Eq.(1.34) we finally arrive at Landau’s collision op-

erator

Cu(f.f) = 87r2m2 / d?v, / &k, |V (k)|
xR 806 01 - )6 - (g~ 5 ) SO F(E)-(L4)

To take this one step further we recall that for a Coulomb gas the potential
in Fourier space is given by

A Ze?

= (1.48)
1

V(k) =

In this situation the Landau collision operator takes the form

27%*% 8 kiky .~ . . ) 8 oy
C(f, f) = mze a—v-i/da”? /d3k1 ,:1415(’“1'(111—”2))'(3—13— %))f(vl)f(vz)-
(1.49)

This then gives us the famous Landau equation as proposed in 1936 [5], or the
kinetic equation for a weakly coupled plasma. I shall return to this in subsequent
chapters to explain where the assumptions fundamental to its derivation break
down in the presence of a strong oscillating field. In a similar manner to the

Boltzmann equation, Eq.(1.22), the Landau equation remains nonlinear in f.
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1.3 The Rutherford Cross Section

Before I go on to talk about the specifics of the research in laser-plasma inter-
actions, this thesis would not be complete without a classical derivation of the
Rutherford scattering cross section. If we once again refer to Fig.(1.2), the binary
collision in the centre of mass frame, the Rutherford scattering cross section cor-
responds to a two body interaction with the Coulomb potential as V(r). Recall

Eq.(1.10). Replacing V(r), the potential energy of the system with ZT"z

oo
6= / (1.50)
\/ 1— ( g_ 4Ze2
Rpyin I‘Tg
Note that the reduced mass of the system, p = 'nTLT_nfz’ is used so that we are

no longer confined to the assumption of identical mass particles. In effect this
is because electron ion collisions are examined later where the masses are not
equal. In this frame p will reduce to approximately the mass of the electron.
Performing the integration in Eq.(1.50) we find

Ze?

6 = cos™! k9% , (1.51)

Ze? 2
1+ (ugzp)

which can be expressed in the form

tan’§ = =2 (1.52)
From the relation of 6 to the scattering angle x Eq. (1.9), one obtains
2,42
X _ Kig'p
COt2 5 = -7267 (1.53)

This can be differentiated with respect to x, yielding on the left hand side
“;zs’; /22 dx , while on the right hand side we end up with a factor of 2pdp. The
latter allows us to use Eq. (1.18) to introduce the scattering cross section do.

Thus we see

cos x/2 w?gt do
dx = —. 1.54
sin x /2 X= Z2ef 1 ( )
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Using the definition dQ = 2wsinxdx, we get the classical expression for the

differential cross section
do _ Z2et 1
dQ ~ 4u2g*sint x/2’
which is the Rutherford formula.

(1.55)

The classical transport cross section oy, or the cross section for momentum
transfer can then be calculated by integrating this expression over the solid angle
sphere with the weighting function 1 — cos x, which represents the fractional
change of momentum due to scattering. Choosing X as the lower limit for the

integration over x gives us

T
Oy = / dx2m sin x(1 — cos x)
Xmin
Z?et 1
= 4 1 .
et [

The cross section(1.56) diverges as xmir approaches zero which is a consequence

2% 1

4p2g4 sin® x/2

(1.56)

of the long range Coulomb potential of interaction. In the specific treatment
of the electron-ion collision, the reduced mass is well approximated by that of
the electron, and because of the large mass difference, the ions are generally
considered stationary objects, thus the relative velocity § reduces to the velocity

of the electron alone.

Z%et 1
=4 In | — 1.57
9t 7rme?v‘1 n [sm xmin/2] (1.57)
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Chapter 2

Microscopic Electron-Ion

Collisions

2.1 Background

The dynamics of the binary electron-ion collision in a plasma in the presence
of a strong laser field are of fundamental importance in predicting the inverse
bremsstrahlung absorption of electromagnetic radiation and transport processes.
With the recent development of terawatt lasers, this issue has received a great
deal of attention [6]- [13]. The standard approximation involves a small-angle
scattering model where the electrons are assumed to obey linear trajectories
with the effects of collisions occurring as first order perturbations [8-10]. Such
a model is limited, however, to cases where the impact parameter is large versus
the quiver distance 7,5 = eE/mw3, and the drift velocity is large versus the

quiver velocity

Formally, our system is described as follows. We consider an electron-ion collision
in the centre of mass frame in the limit where the ion of charge Ze is stationary.

An electron of charge e is assumed to be launched with a drift velocity parallel to
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the z axis. We model the laser’s electric field as a linearly polarized wave given

by the equation
E(R,t) = Efi sin (wt + 6). (2.1)

Here 7 is a unit vector that defines the arbitrary orientation of the field while
w is the frequency of the laser. For reasons discussed below 71 is defined by
an angle with respect to the z axis. Because we investigate the high frequency
regime it is assumed that w > wpe (Where wpe is the plasma frequency), thus
assuring that the laser field will propagate in the plasma. Such a model can be
used locally to approximate the field in laser produced plasmas at high, close to
critical, densities, where the laser wavelength is long compared to the distance
scales involved in the collision process. The magnetic field exerts on the particles
a Lorentz force that will have a maximum on the order of *2< which, even for
the most extreme intensities we investigate, will be under ten percent. Thus, all
relativistic effects are neglected.

To define the equation of motion of the electron we need the potential due to
the ion. Ideally this would be given by the 1/R Coulomb potential however, in
order to more closely model a plasma system we have incorporated both a large
and small scale limit to this potential. First, the Debye screening limits the long
range at the Debye length Ap. Second, the quantum diffraction effects, limit the
ion’s potential at its deBroglie wavelength Ag = h/m;v,. Hence we arrive at a

potential given by

V(R) = %(1 _ e~FIM\=RlAp, (2.2)

Shvets [9] invokes a few different schemes for reducing the potential at the
Coulomb singularity, but this was done specifically to avoid large angle scattering.
The systems investigated by Fraiman et al. [12,13] and Wiesenfeld [11] simply

invoke an unmodified Coulomb potential. With the potential above, the equation
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of motion for the electron becomes

=, Ze2R _, R
= - - //\D -
R 3 © (1 + )\D)
Ze2R _, 11
£ o~ R(1/Ap+1/AH) S T,
+ R € (1+R(/\D+/\H)
eF _ .
+ —1i sin (wt). (2.3)

The equation of motion is normalized usin B =2Eadt = wg t, where the
g E

characteristic variables are established from the Keplerian orbit problem

leZ ] eE3 | Ze3E
Te = ok Wg = M2’ 1/E=4 m2 (2.4)

These are arrived at by setting rz as the distance from the ion where a regular

Coulomb field Ze/rg? is equal to the magnitude of the field E. Thus wg is then
the frequency of a Keplerian orbit around the ion. Further, for reference, it can

be shown that

Te = Q2rosC1 veg = QUose, (2'5)
where
eF eFE
Tose = — =, Vose = y (26)
mwy mwy
and
2
Wy mZ . 1
Q=—= ) 2.7
Wg ol eE3 A @7)

Hence in the new variables our equation of motion reduces to
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—

R ra/ap+1/am) 1 1
T e LR+ 5

+ 1 sin (Q2¢). (2.8)

We will solve Eq.(2.8) for the trajectory of an electron using the symplectic
integration algorithm defined below for chosen ranges of impact parameters, ini-
tial velocities, and phase of tkre laser field. From the trajectories we are able to
measure the pitch angle scattering with a collision angle ¢ as well as the kinetic
energy of the electron both before and after the collision. The angle itself is cal-
culated by examining the ratio of the z component of the final drift velocity after
the collision, to the total drift velocity after the collision (with the oscillations

due to the field subtracted from the motion of the electron).

cos § = 22Ut (2.9)

Vtot,out

To incorporate the incident phase into the initial conditions, we divided our

general coordinates (E(t), V(t)) into oscillatory and drift components

= 1

R(t) = 7(t) — Tosc SIN(QU),  Tosc = ﬁiﬁ (2.10)
> _, " " -1
V(t) = U(ty — TUpsc cos(§2),  Tpse = —Q—n (2.11)

All launches are initiated with the spatial drift coordinate (7(t = 0)) on the
launching grid and the initial drift velocity (#(t = 0)) along the z axis. The
phase 6 then modifies the initial conditions by adding a phase, or oscillatory

component. The initial conditions are given by
R(t = 0) = 7(t = 0) — Tose 5in(8), (2.12)

V(t = 0) = §(t = 0) + Tosc cos(). (2.13)

The offset due to the phase of the field is then averaged over by repeating each

launch with the same drift coordinates and varying # from 0 to 2.
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2.3 The Algorithm

Numerical simulation of the problem is carried out using the fourth order algo-
rithm for symplectic integration outlined by Candy and Rozmus [14, 15]. This
algorithm offered a simple scheme for a At time-step integration of a system with
a separable Hamiltonian. Essentially the symplectic technique has been devel-
oped to conserve volume in phase space during the numerical integration. Thus,
it preserves the hierarchy of global invariants in the system such as energy and
momentum. The results of our initial investigations into this problem are com-
pared to typical Runge-Kutta trials on a straight forward Rutherford scattering
system and are seen to demonstrate significantly less discrepancy from analytical
predictions for the final scattering angles.

The fourth order symplectic integration algorithm (SIA) described the evo-

lution of a system with a separable Hamiltonian in the general form

2

H(p,q,t) = 2p—m + Vg, 1), (2.14)

coupled with the initial conditions (@, Po, to). Hamilton’s equations of motion
can then be generated to yield the forces and velocities necessary to perform the

time step integration according to a cycled loop for i=1 to 4

B = Pict + biF (i1, tim1) A, (2.15)
& = Gi-1 + a:P(p) At (2.16)
t; = ti_1 + a; AL (2.17)

This results in the new coordinates (G, 5,) at t = to + At. The constants (a;,b;)

are defined in [14] as

1
ay = a4 = 6(2 -+ 21/3 + 2—1/3),

1
Q9 = Q3 = -6-(1 — 21/3 + 2-1/3),
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b, =0,
by = by = 5=,
bs =1 —122/3
(2.18)
The actual forces in our problem are determined from the Hamiltonian
H(R,R) = ff; —~ %‘3(1 — e~BAuYe=RIAD _ R sin(Qt), (2.19)

resulting in the force expression shown in Eq.(2.8).

The only significant problem presented by this algorithm is the choice of the
time step At. It is obvious that if this is chosen too large, we would not be
able to resolve the motion of the electron near the Coulomb singularity since its
kinetic energy drastically increases in this region. Conversely, if chosen too small,
the simulation would place unnecessary constraints on memory and computation
time. Fraiman et al. [12,13] introduced a time transformation to help resolve
this issue, however in the interest of simplicity we introduce a cascading test
condition that set the appropriate timestep to use based on the location of the
particle at the beginning of each integration cycle. This algorithmic solution

proves successful in resolving the motion of the particle in all valid regions.

2.4 Testing the Classical Results

Before going on to investigate the effects of the dipole field on the scattering
we demonstrate that this algorithm can generate acceptable results for a known
case. The best possible situation to model is the classical Rutherford scattering
case where the external field is turned off. Recall that the differential transport

cross section derived in chapter 1 is given by Eq. (1.57)

O't-,-(’U) = Wln A() (2.20)
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where In Ag is the Coulomb logarithm [16]. In the unit convention established

above, this reduces simply to

4T
ow(v) = — In50° (2.21)
v
10000 ¢ T T T T T T T
\ no field ryn ——
4t In(145vE) ——
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Figure 2.1: The conformation of the output of the simulation to the analyti-
cal expression in equation 2.21 is a clear demonstration of the accuracy of the

algorithm.

A more detailed discussion of this formulation, in particular the reduction
of the Coulomb logarithm to 5v? is done in section 3.2. The output of this
expression is listed in Fig.(2.1) and superimposed on the data obtained for the
no field run. As is apparent, the code and the analytical expression agree within
logarithmic, numerical accuracy, with a deviation only for small velocities. This
evidence suggests the code is able to accurately describe the collisions it was

intended to simulate. It was found that the logarithmic divergence seen in small
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-velocities can be safely removed by altering the argument of the logarithm to

1+ 592,

2.5 Individual Collisions

"The overall object of this study is to examine the effects of the oscillating dipole
electric field on the scattering and through averaging gain insight into the effects
of the inverse bremsstrahlung energy gain. We have been able to resolve behav-
#ors that result in large angle scattering. Interestingly enough, we find that on
awverage the scattering angle is reduced as compared with the Rutherford case.
"The following figures are included to represent the different observed trajectories.

Fig.(2.2) shows the electron trajectory scattering plane with the ion located at
&he origin. If we define a small angle as any angle less than %, then the scattering
observed without the field represents a typical case of small angle scattering in
the system. It is this small angle scattering that is assumed to dominate the
collisions during the heating of plasmas by an oscillatory field.

Here the electron is launched parallel to the z axis with an initial velocity
equivalent to vg and an impact parameter of 2rg along the x axis. In this case
tthe electric field is oriented along the y axis so the displacement in the y direction
arises from the oscillations of the electron in the field, however as this figure is a
projection on the scattering plane, this is not resolved here. The intensity of the
fiield is incorporated into the dimensionless frequency Q = 1, which corresponds
o about 10'° ¥, It should be noted that at this intensity 75 = o5 and ve =
®,sc from Eq.(2.5). The trajectory is superimposed over a classical Rutherford
Scattering (no external field) trajectory. It is widely accepted [8-10] that this
small angle change which follows the Rutherford trajectory prediction makes up
a strong majority of the collisions that are seen in weakly coupled plasmas.

Figure 2.3 illustrates the same collision as in figure 2.2 only in three dimen-
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Figure 2.2: An example of small angle scattering for an electron launched with
an initial velocity of vg and an impact parameter of 2rg inside an electric field
oriented along the z axis, parallel to the initial drift velocity. The Rutherford
trajectory is superimposed under the trajectory in the presence of the external
field. Most analytical work assumes that such trajectories dominate the colli-

sions. Note the reduction of the scattering angle in the presence of the field.

sions. This view allows for the resolution of the oscillations in the electron’s
trajectory and provides an overall description of the collision. It is rotated such
that the electron is incident on the ion from the top left in order to give a clear
view of the path difference after the collision has occurred.

The essence of this study is to observe the overall effect of the laser field on
the collisions at the microscopic level. It is clear that for a field orientation per-
pendicular to the scattering plane, the resultant scattering angle of the electron’s
trajectory is reduced. This angle reduction however, is not always observed. As

mentioned, the work of Fraiman et al. [12,13] identified cases where the laser
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Figure 2.3: The same collision as shown in projection in figure 2.2. The axes
have been rotated as to give the best qualitative picture possible and illustrate

the end path difference for the case including the field.

field induces large angle scattering. Two processes have been identified as the
culprits responsible for this behavior.

Fig.(2.4) illustrates an example of a large angle scattering case that occurs
in our model. Here we describe the trajectory of a particle in the same field
magnitude (2 = 1), with the same initial velocity and impact parameter as that
in Eq.(2.2). Here however the external field is oriented along the z axis parallel
to the incident launch velocity, and in this case its initial phase is set at 5. It
is obvious here that once the electron enters the ion field, it becomes trapped in
a chaotic orbit. The end result is a final velocity in the fourth quadrant, well
outside of the small angle regime established at %.

Obviously such events will contribute to an increase in the pitch angle scatter-

ing of the electrons in the kinetic model. The number of electrons experiencing
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Figure 2.4: An example of trapping under conditions similar to those in Fig.(2.2).
The external laser field as been oriented parallel to the launch direction (along
the z axis). Note the chaotic orbit of the electron before it finally escapes into

the fourth quadrant (inset).

such events is small and generally confined to those with smaller velocities.
Additionally, we also see an event where the electron experiences multiple
deflections. This effect naturally becomes more pronounced for higher field in-
tensities (which translates to lower values for our dimensionless frequency.) This
behavior, suggested in [8], which occurs when the electron oscillates in and out
of the interaction sphere, is depicted in Fig.(2.5). Here the frequency is set at €2
= 0.5. It is apparent that the multiple collisions are the reason for the deviation
of the electron’s drift coordinate from that suggested by the no external field

case superimposed below.
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Figure 2.5: An example of correlated collisions where the external field is again
oriented parallel to the launch velocity, along the z axis. This effect naturally
becomes more important as the strength of the field is increased which is why
we illustrate here the 2 = 0.5 case. For an impact parameter of 5rg and initial
velocity of vg we can see a significant deviation of the trajectory for a system

exposed to the field.

2.6 Chaotic Scattering

Before continuing to the next chapter where I will explain the details of the
transport cross section investigation, I should mention that the outcome of the
scattering process is no longer determined by a straight forward relation as in the
classical Rutherford case. The introduction of the laser field to the problem yields
a system with extreme sensitivity to the initial conditions or launch parameters.

Wiesenfeld [11] presented a similar two dimensional (four dimensional phase
space) study that looked at the inelastic scattering of an electron by an un-

screened Coulomb potential. He showed that for low drift velocities and impact
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parameters lower than r,.., the electron undergoes chaotic motion.
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Figure 2.6: An example of the sensitivity of the final scattering angle to the
initial phase of the laser field. 240 launches were performed with the parameters:
v = 0.5, Q = 0.3, and impact parameter p = 0.2. Orientations of the laser field
both parallel and perpendicular to the incident launch velocity are depicted.

Notice that there are regions where the scattering angle is reasonably stable, and

regions where it is chaotic.

Our simulations confirmed that the resulting scattering angle as well as the
electron IB energy absorption do in fact have an extreme sensitivity to the initial
phase of the laser field. Consider Fig.(2.6), which illustrates the resulting scat-
tering angles for an electron launched with the parameters v = 0.5, 2 = 0.3, and
impact parameter p = 0.2 in both a parallel and perpendicular field alignment.
The figure clearly shows both regions of reasonably stable and chaotic scattering
angles. Because of the high magnitude of the electric field when Q = 0.3, the

oscillations are large enough that for the right initial phase the electron has a
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chance to circumvent the ion without traveling excessively close, thus avoiding
the trapping scenarios resulting in a stable scattering angle. However, if the ini-
tial phase is altered such that the laser field then forces the electron to return to
the ion after an initial pass, or simply pushes it very close to the ion centre, both
the trapping and correlated collisional cases occur, resulting in chaotic motion

often including large angle scattering.
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Chapter 3

Transport Cross Section

3.1 Determining the Transport Cross Section

In order to determine the significance of the different trajectories observed in
the previous chapter on the transport cross section we commence a series of
tests launching millions of electrons at our ion target all with different initial
conditions of field phase, position on the launching grid (impact parameter),
velocity and orientation of the laser field. The theoretical system is illustrated
by the cartoon in Fig.(3.1).

The loss of directed particle velocity is characterized by the rate of pitch
angle scattering, which is in turn described by the transport collision frequency
V. After scattering through an angle ¢, the loss of initial velocity is vi, (1—cos ¢).

Thus the transport collision frequency is defined as
Vi = niv,—n// <1 — cos¢ > d°p. (3.1)

From this point we are able to arrive at an expression for the transport cross

section.

o (v) = // < 1—cos¢p>d%p (3.2)
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Figure 3.1: This figure illustrates the coordinate system used, as well as the
concept of the launching grid. In general the diagram is not to perfect scale.

The ion interaction sphere is defined by a Debye length as its radius.

Again this is given in the normalized units outlined in the previous chapter. The
square brackets indicate averaging over the initial phase of the laser field. A

more common practical formulation of the transport cross section is

o0

o (v) = f < 1—cos¢ > 2mpdp. (3.3)
0
This expression is commonly adopted for the classical analysis of the problem.

However, implicit in this formulation is the assumption of cylindrical symmetry,
which after careful inspection, is invalid in our problem. Going back to the
original definition, we define our cross section as the ratio of the flux of electrons

scattered into the solid angle d2 to the total number of particles that pass in
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unit time and through unit area incident on the ion.

dN
do = — .
o= (3.4)

To consider the total compliment of incident particles, one needs simply to
integrate over the annulus defined by 2mp for all values of p pertinent to the
problem. The problem is that because we have inserted a laser field with a
component aligned perpendicular to the z axis, an electron with its initial position
at one point in the azimuthal angle will have a different equation of motion than
one with a different value. Thus the cylindrical symmetry of the problem is
destroyed and we revert our expression for the cross section back to that given
in Eq.(3.2).

Particles at infinitely far distances will contribute nothing to this problem.
The parameter pn.. is introduced as a limit of integration. It is defined as
the maximum impact parameter at which the electron will feel any significant
perturbation to an otherwise linear trajectory. Generally this depends on the

density of the plasma and must satisfy the restriction:

By this definition p,.. becomes the average distance between ions in the plasma.
Should the integration exceed this maximum value, we would be forced to aban-
don the binary collision model all together as we would then be considering a
many body problem. Taking a density of 102'cm ™3 and a temperature of 1keV
(10°K) we find that the average distance between ions in a high Z plasma is
approximately a Debye length, Ap. Thus for these parameters, we are easily

confined to a binary problem.

Pmax Pmaz
ounr(v) = / / < 1—cos¢p > dzdy (3.6)

—Pmazr —Pmazx
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The averaging procedures are performed numerically. The number of points
over which to average all subsequent parameters are chosen using the criterion
that all observed behavior had to be resolved. Thus in order to account for
the stochastic nature of the scattering outlined in the previous chapter, when
averaging over the initial phase of the laser field, a minimum of sixty points
between 0 and 27 are used. As velocity increases it is found that up to a thousand
points are necessary. Further, 92 points are taken for the launch coordinates in
both the x and y directions for a total of 8464 points. Finally the velocities are
examined from v = 0.1-8.0 vg (sometimes even higher) for a total of at least 80
points.

Each transport cross section produced by this definition is found for a given
field intensity defined by the dimensionless frequency. Through this investigation,
we examine six different intensity cases of 2 = 0.50, 0.30, 0.25, 0.20, 0.10 and the
no field situation. This range corresponds to field intensities of 10WW/em? to
over 10*”W/cm? and obviously the zero intensity case. It should be mentioned
that the trials of 2 = 0.10 are included to examine the upper range of laser
intensity, however, these have to be taken as academic results only. At such
a high intensity, the oscillation displacement 7, is so large that we would be
required to expand the formulation of our system beyond the binary collision
problem.

The transport cross section, expressed as a function of initial drift velocity and
field magnitude and frequency, allows us to determine the electron ion transport

collision frequency as indicated by Eq. (3.1) by the simple relation
Vir = OteNillarift, (3.7)

which can then be assimilated into a particle code for further investigations such
as the inverse bremsstrahlung heating of the plasma which incorporates such

large angle collisions. (See chapter 5.) However this only gives a pitch angle
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contribution to the scattering rate for elastic collisions. Inelastic effects are not
included here.

The process requires one additional step. In order to obtain a complete ex-
pression for the transport cross section, we must average over all possible orien-
tations of the field. However, before those results are presented, it is important
to discuss the initial results that were obtained from a more simple situation
where the external laser field was set parallel to the launch direction along the z

axis.

3.2 The Case of the Parallel Launch

This particular situation has been the object of previous investigations [9, 12, 13],
and in particular Shvets et al. [9] has obtained an analytical result based on the
Born approximation which I shall use for comparison. It should be noted that
Shvets explicitly assumed the dominance of small angle collisions.

To consider this particular case, it was assumed that the impact parameter is
aligned such that g=é&,p thus establishing x-z to be the collisional plane. Further,
the drift velocity of the electron is initially set along the z axis. And finally, the
electric field is oriented along the z-axis as well.

Given these initial conditions, Shvets managed to analytically predict the
average deflection angle (denoted as 66 in reference [9], but referred to here
as ¢). From this and the definition of pitch angle scattering, he obtained the
rate of pitch angle scattering v,., which in conjunction with Eq.(5.43) yields the

expression

A = . .5 [ MWTose 1 nlw? k2,02
Oy = ’U_4 ln(k‘max/\p) + ; 2Jn (—-;—) |:<§ + m) in (1 + 202 -1
(3.8)
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Note that
A Z2%et
A= 5 (3.9)
and the term k., Is defined as
2
muv
kmaa: = W’ (3.10)

the distance of closest approach for like particles.

As I will be coming back to it later, it is worth mentioning here that the
first term recovers the classical expression for the transport cross section in the
absence of an external laser field 2.21. It was pointed out by Shvets that this
term corresponds to the n=0 case which described the elastic component of the
collision (all terms with n>1 were shown to have dependence on the initial phase
of the field and therefore had some inelastic contribution). Thus by the first

term, the classical expression

A
O'g-,-('U) = ;)IZTLAO (311)

is recovered where In Ag = In kpnezAp is the Coulomb logarithm.

As a brief aside, in our units Ky, can be written,

2,2
muvg
27 e?

In our system we are taking the inter-ion distance (pmqz) to be approximately

kma:z: -

(3.12)

10rg, which is the approximate value for a plasma with a temperature on the

order of 107K, or 1keV. Coupled together, this makes

= ——E10rg, (3.13)

which then reduces to
kmaz:pma:t = 57)2; (314)
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in our units. Therefore leaving us with the normalized expression for the trans-

port cross section of

4
o (v) = U—fznu + 5v2). (3.15)

The extra term in the logarithm has been inserted to avoid the logarithmic
divergence for small velocities.

Converting equation 3.8 into the unit convention established above

o = i—’j In(50?) +’§°2J3 (&) [(% + (2:;‘1)2) In (1 4 (221)2> _ 1] :
- (

10000 r T — 7
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Figure 3.2: The resulting transport cross section for parallel launching schemes

and the no field case.

Before going any further it is important to illustrate just how this particular
case conformed to the resulting output of the simulations. Fig. (3.2) shows the
transport cross section as calculated by the code (in accordance with Eq. (3.6)).

Here, the solid line represents the case where the collisions were simulated in the
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Figure 3.3: An example of how our simulation conformed to Shvets’ analytical

result in 3.16. There are deviations of up to 50 percent.

absence of the external field. The other two runs correspond to different field
intensities, one at 10® W/cm? (Q = 0.5) and the established upper limit of 10%7
W/em? (Q = 0.3). If one recalls Eq.(2.5) which relates vg to vos, it becomes
apparent that for velocities on the order of v, the transport cross section displays
a considerable increase as compared to that from the Rutherford case. As is also
apparent, the deviation grows with increasing intensity. In the limit of high
velocity, o, reduces to the classical case, for all values of laser intensity.

Fig.(3.3) presents the more visibly apparent deviation from the classical curve
in the case of 2 = 0.3. We observe a maximum deviation of approximately 50
percent between our results and Eq.(3.16).

Decker et al. [8] have suggested that the collision frequency would experi-
ence an increase from the analytically obtained Dawson-Oberman model due to

multiple (or correlated) collisions of the test electron with the same scattering



CHAPTER 3. TRANSPORT CROSS SECTION 38

ion. The correction factor is roughly the number of oscillations an electron makes
while passing the domain of interaction, found to be Ca wg/wp. [8].

Shvets et al. however refute this proposal citing that Eq.(3.16) taken in the
limit of small velocities does not display this increased behavior. They note that
Decker et al. are correct in their assumption that the electron will repeatedly
pass the ion, however there had been no account for the factor that the time of
interaction will be decreased. Analytically, the increase can be accounted for by
the behavior of the Bessel functions in Eq.(3.16) (JZ(&) achieve their maxima for
va1). Physically, Shvets et al. argue that the increase in the collision frequency
results from the stagnation points where the total speed of the electron is zero.
When v v,,. one can predict that for specific phases of the laser field the time an
electron spends inside of the interaction sphere will increase dramatically should
such a stagnation point (or multiples thereof) occur inside the sphere. This
argument is further supported by the restriction that this increase in collision
frequency can only occur for a parallel orientation between the electron’s initial
drift velocity and the electric field. As I shall show below, there is actually a
decrease in collision frequency for a perpendicular orientation.

It is clear from Fig.(2.5) that such behavior is resolved by our simulations.
It is however worth noting that in particular cases (small impact parameters for
example,) these stagnation points can give rise to a substantial increase in scat-
tering angle, violating the small angle collision assumption. The result obtained
in Fig.(2.4) provide a proof of this violation since the parallel field induces a large
angle scattering effect.

The deviation between the curves in Fig.(3.3) suggests that the Born approx-

imation and small angle scattering assumptions are violated in this problem.
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3.3 The Case of the Perpendicular Launch

As mentioned above, the particular case of the parallel launch orientation is
unique and does not describe the full picture when one is interested in observing
the macroscopic effects of a laser field interaction with a plasma. This was only
one of an infinite number of possible orientations. Before going on to observe the
net effects from all orientations, the next logical step is to consider the launch
where the field is oriented perpendicular to the launch velocity.

There are many possible conditions under which the dipole field can be ori-
ented perpendicular to an electron launched parallel to the z axis. The field
direction (defined by 7) must lie in the x-y plane. Because the technique we
have adopted launches the electrons from an x-y planar grid we immediately in-
troduce here the first phase of the averaging procedure. If we define angle 8, as
seen in Fig.(3.1) to be the angle between 7 and the z axis then the field’s orien-
tation with respect to the x-y plane is irrelevant. Consider a dipole field oriented
along the y axis (7 = &,). Then consider two separate particles to be launched
from our launching grid, one on the y axis, the other on the x axis, both with the
same resulting impact parameter. Both particles experience a field orientation
perpendicular to their drift motion, however the electron launched from the y
axis will oscillate in such a manner that it can drop deeper into the interaction
sphere or further away depending on its initial phase offset. The other electron,
will only oscillate perpendicular to the scattering plane during its collision. It
should then be apparent that an orientation with 7 = €, would simply switch
the behavior of these particles. Such a reflection of properties would then lead to
the conclusion that for a grid of incident particles any single orientation in the
x-y plane of the dipole field will result in an average of behaviors for particles
launched along a particular arbitrary axis. This then is the argument for sim-

ply placing the perpendicular component of of the dipole field only along the y
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axis. For future purposes the angle 8; will be used to describe field orientations
between the parallel and perpendicular case, but for this section one can simply

assume that 6, = 7/2.

pe‘rpendicularr{m —_—
paraliel run
no field run --------

1000 | % .

100 |
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0'tr/rE
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Figure 3.4: A decrease in the transport cross section when the dipole field is
aligned perpendicular to the initial launch velocity. Note that this in in contrast
with the increase observed about v,s. for the parallel launch case. This figure

depicts trials with the dimensionless frequency set at 2 = 0.3.

I have included in Fig.(3.4) the resulting transport cross sections for both
parallel (4, = 0) and perpendicular (6; = 7/2) trials with 2 = 0.3 superimposed
on the no field result. This case is representative of the general trend observed in
the case of the perpendicular launch, i.e. the transport cross section experiences
a decrease from the no field situation.

It is clear that the large angle scattering responsible for the hump in the
case of the parallel launch is insignificant here. The dominant behavior is a net

decrease in scattering angle. The physical reason for this reveals itself when one
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considers the mechanics of the problem.
Consider the classical Rutherford scattering problem for an electron and ion

pair without the external field. It is well known that the scattering angle is

cot (?) = pv?, (3.17)

predicted by the relation

2
in our normalized units. Thus we can see that as the impact parameter p in-
creases, the scattering angle ¢ decreases.

At the fundamental level, the application of the dipole field causes a devia-
tion from the classical case by altering two aspects of the problem: the impact
parameter and the time for the collision. By examining how the field affects
the impact parameter alone, we can develop a qualitative understanding for the
reduction in the scattering angle.

Consider the collision depicted in Figs.(2.2) and (2.3) where the laser field is
aligned along the y axis, perpendicular to the drift velocity of the particle. Now
recall that we are not interested in the behavior of such a particular collision, but
the behavior of all such collisions when averaged over the incident phase of the
laser field. Although the deviation from the drift coordinates due to the external
field is small (as this particular example illustrates a low intensity run), after
averaging over all incident field phases, the impact parameter is greater than 2p.
The oscillations from the laser field increase the average distance of the electron
from the z axis thus creating an effectively iarger impact parameter p/. When

the electron and field are set up as in this case, the new impact parameter could

o=+ () (3.18)

Note here that the new term is simply the average distance added in the

be expressed as

x direction due to the 7, term in our normalized notation. If this term were

to be inserted into Eq.(3.17), one can then see how the scattering angle would
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Figure 3.5: This graph illustrates an example of the observed average scattering
angle as a function of impact parameter for a field orientation similar to that
discussed in figure 2.2. This particular case considered only particles with an
incident drift velocity of vg. Note how the simple assumption of the modified

impact parameter greatly reduces the predicted scattering angle.

decrease. Naturally this result is an oversimplification. I have yet to account
for the contribution of v,s. to the picture although I believe that because the
particle’s speed is at a maximum when the additional distance is at a minimum,
this would only increase the effective impact parameter, further decreasing the
scattering angle.

Fig.(3.5) depicts a specific example of how the modified impact parameter in
Eq.(3.18) establishes a better prediction for the average scattering angle. This
case specifically examined particles with an initial velocity of vg with a dimen-
sionless frequency of 2 = 0.5. Note that in this case the particles were launched

from a. point on the x axis only with the dipole field aligned perpendicular, along
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the y axis. This clearly illustrates the reduction in scattering angle compared to
the classical prediction.

To complete the discussion of the perpendicular field alignment we must now
account for all the possible field orientations in the xy plane that are mutually
perpendicular to the launch. Obviously by rotating the field in this direction
the extra dimension to the effective impact parameter above will be reduced,
however, it will still remain larger than that predicted in the classical case. It
could be further argued that this process would involve averaging over these
orientations introducing another 2 factor to the additional dimension. Pursuit
of this however is simply meant to provide an element of quantity to a qualitative

description. To fully consider what occurs two extremes need to be discussed.
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Figure 3.6: This is an example of an event where the amplitude of oscillation
(defined by 2 = 0.3 is greater than the impact parameter itself at 57z. Thus
for specific initial phases of the field, there is a significant probability that the

electron will only experience a minimal deflection, effectively “missing” the ion.
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The first of which can be thought of as an extension of the impact parameter
argument. If we investigate larger €2 values that still lie within our established
physical parameters, the radius of oscillation can actually grow larger than the
impact parameter itself. When this happens events can occur where the electron
almost entirely misses the ion, experiencing only a very small deflection from its
drift path. In Fig.(3.6) I have launched the particle with an impact parameter of
5rg and given it an initial velocity of 0.5vg inside of a field characterized with Q
= 0.3. The Rutherford result, obtained by turning off the field shows a very sharp
scattering event, however with the application of the field, an electron under the
same initial conditions experiences only a very minor relative perturbation in its
trajectory.

However, it is also apparent that when the field is oriented along the same line
that connects the initial position of the particle and the z axis, the oscillations
average to the initial classical impact parameter. However, just as there exists
a possibility of missing the ion, such an orientation permits the possibility of an
interaction such as the one defined in Fig.(3.7).

Here I have included a diagram of a collision that occurred with the same
parameters as those outline for Fig.(3.6) only the initial phase of the field has
been displaced by a factor of /2. Obviously such events can lead to another
case of large angle scattering. It should be noted however that for such an event
to occur a specific alignment of the field is required and so when averaging over
all possible cases, such an event is relatively improbable.

Thus going back to Fig.(3.5) it is apparent that the dominant behavior for
the perpendicular launch is described by collisions where the field has increased
the effective impact parameter, decreased the time of interaction, and in extreme
cases resulting in a significant portion of electrons practically missing the ion.

Obviously this behavior decreases with decreasing field intensity. For example
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Figure 3.7: Just as the oscillations from the field can cause the electron to miss
the ion, the case also exists where the electron can be thrust straight towards
the ion. The parameters here are exactly the same as those outlined for figure

3.6 with the field offset by 7 /2.

as the value of ) gets larger (recalling the no field case is given by 2 = co), the
second term in the square root in equation 3.18 goes to zero. Hence the reasoning

for the decrease in scattering angle disappears and leaves us with the classical

Rutherford scattering case.

3.4 Large Angle Contribution

As mentioned above one factor in this work that separates it from standard in-
vestigations is the fact that it allows for large angle scattering to occur, thus
eliminating any errors that arise from the assumption that the system is dom-

inated by small angle collisions. A plot of the transport cross section as it is
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evaluated over different values of 2 is presented below. However, before I go
into detail about the observed cross section itself, the statistical contribution
of the large angle scattering particles to the transport cross section should be
addressed. For the sake of argument I shall assume that a “large” angle is any
scattering angle greater than %.

Fig.(3.8) provides two examples of the transport cross section evaluated for
Q = 0.25, with field orientations of 8; = 0, and :{—’o' respectively. Superimposed on
these, are the cross sections as calculated using only the electrons that scattered
at angle larger than 7. Noting that in the above example the scale is logarithmic,
it remains apparent that for velocities below v,, the contribution from such
electrons is very large. In the parallel cases it was often as much as fifty percent
or more. The contribution was seen to drop off rapidly however at higher drift

velocities.

3.5 Transport Cross Section

Now that we have discussed both the straight forward cases of the parallel and
perpendicular launches, the discussion of the electron ion collisions needs to be
extended to the general case where the resulting transport cross section is found
after averaging over all possible orientations of the the field. As outlined in
the preceding section, with our grid launch system the need to average over field
orientations in the xy plane has already been gratified. Thus in order to complete
the averaging procedure we consider a series of five steps in §;. Here the field
is increased from 6; = 0 (the parallel launch case) to 6; = % (the perpendicular
case) in steps of 75. Then the transport cross section returned is averaged over

all such cases.
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Figure 3.8: The transport cross section as calculated for a parallel launch (above)
and where the field is oriented at an angle of ‘% (below). The contribution from
large angle electrons is given by the solid lines. For velocities lower than v,
(4vg in these examples) the large angle electrons make a significant contribution

to the transport cross section. The significance is strongest in the parallel launch

case.
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x
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ouw(v) = / / / < 1 — cos¢ > dxdy sin(6,)do, (3.19)

0 —Pmazx —Pmaz

Because of its importance in the formulation of the particle-in-cell scatter-
ing algorithm, any deviation in the transport cross section from the established
Rutherford model (used in the previous chapter) will have significant conse-
quences on the resulting heating rate. Therefore it is imperative that we use the
information from this study to develop an expression for this cross section and
hence the electron ion collision frequency as a function of both velocity and the

field frequency and intensity as contained in (2.
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Figure 3.9: A series of curves plotting the transport cross section as a function of
velocity. Recall that our dimensionless frequency 2 is defined such that intensity
goes to infinity as ) goes to zero. Thus it is apparent that there is a decrease in

the transport cross section for increasing laser intensity.

Fig.(3.9) graphs the resulting cross sections as evolved for cases of 2 = 0.5,

0.3, 0.25, 0.2, 0.1 and the case of no field. It is apparent that for increasing
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intensities the transport cross section decreases and therefore we wish to establish
an analytical fit to these points that incorporates the 2 parameter.

We know that as the field establish drops to zero, and as the test electron’s
velocity becomes much greater than is oscillatory velocity (v >> vosc), the expres-

sion for the transport cross section must reduce to that given in Eq.(3.11).
4 _ o
o (v) = oy In (1 + 5v°). (3.20)

Further Fraiman et al. [12] proposed a modification to this expression of the

form
47 In (1 + 5v?)

v2(v2 + A(v,Q))’

where A(v,) is the correction term essential when v < . It appeared that

(3.21)

o (v,Q2) =

Fraiman left out the logarithmic factor in this expression. After numerous at-
tempts at fitting different forms to the curve, most of which involved adding a
subsequent term to the right hand side of expression 3.20 or insertion of a term
into the logarithm, it was found that equation 3.21 held the best form to fit the
curves in Fig.(3.9).

The big step was to determine the form of A(v,2). Starting with the obvious
knowledge of the behavior in the limits, we proposed a several different logical

forms. In the end the best fit to the curves was given by

1
A(v, ) = a(Q)vP® [ﬁ] : (3.22)
The coefficients a(Q2) and B(2) were then determined specifically by an anal-
ysis of data points. A method of least squares iteration program was used to
evaluate the coefficients that yielded the best possible fit. We were successful in
producing five points in addition to the no field situation on which to propose
possible expressions for these coefficients. The data points available are given

below.
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Q | (@ | 8Q)
0.10 | 0.382 | 1.900
0.20 { 0.182 | 1.688
0.25 1 0.124 | 1.545
0.30 | 0.060 | 1.350
0.50 | 0.008 | 1.100

Table 3.1: The coefficients found that gave the best fit approximation to the

curve transport cross section curve.

These points were analyzed and found to conform to the following two ex-

pressions.

a() = 121798 (3.23)

ﬁ(Q) — 2.006—0.70692—0.87449. (3.24)

For a sixth point we can also observe the known behavior of the classical no
field case. Because both a and 8 are decaying terms with increasing €2 and the
boxed term in Eq.(3.22) falls off as g7 we see that the A(v,Q) term vanishes in
the limit of @ — oo. Further, for v>> v, the A(v, ) term vanishes, as even for
an 2 value of zero the 8 term approaches 2 from below.

For application in the particle code later on it will be necessary to write
Eq.(3.21) without the Keplerian velocity. It is impractical to get rid of the
dimensionless frequency (2, but to this end the equation can be written in the

form
ORr

S 1P@—z ’
1+ () [m] [QZ(vg,c+v2)]

Utr(va Q) = (3'25)
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where v and v,s. have dimensions of velocity. Here o is the Rutherford cross
section while a(Q2) and B() have the same form as above, and one can recall

that the dimensionless frequency is given by equation 2.7

Wo mzZ
2= we wol eFE3

)3

To confirm the validity of this expression we observe that the Rutherford
expression is recovered in the limit as Q goes to infinity (field intensity drops to

Zero).
Aln (1 + kmaa:pma:r)

v

o4r(v, 0 = 00) = (3.26)

We can further extrapolate this data and gain insight as to how the cross
section behaves at even larger intensities by allowing Q to drop to zero. It
should be noted however that as Q drops below 0.1, v,s. becomes relativistic
and thus this classical model breaks down. There is also the binary collision
limit problem discussed earlier which also foxrces the model to break down at this
point. However, it is important to note that we recover an expression in the high

field limit that scales like Egzgﬂ which corresponds to I3/4.
E

éln (1 + kma::pma:c)
vt v2
3

To conclude this chapter I have included the results of this curve fitted onto

(3.27)

ot (v, Q = 00) =

our original data sets as shown in Figs.(3.10) through (3.14)). The resulting

expression returns curves consistent to within a 10 percent deviation from the

data.
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Figure 3.10: Fit for the Q = 0.5 run.
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Figure 3.11: Fit for the = 0.3 run.
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Figure 3.13: Fit for the 2 = 0.2 run.
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Chapter 4

Effective Cross Section

4.1 Energy Conservation

The newly presented model for the transport cross section is used in the defini-
tion of the collision operator in the kinetic particle code presented in chapter 5.
Therefore, our new theory of the cross section modifies all collisional processes,
including inverse bremsstrahlung (IB) heating of electrons. In order to verify
the results of particle code simulations we will examine the energy gained on the
microscopic level due to inelastic electron-ion collisions.

Consider a change in the energy over time of the external field in a physically
small volume. This will result in a change of the average drift kinetic energy of
the electrons which can be described as

od<e> 1
T = S MWUpsciNe Ve, (4.1)

ot 2
where v,; is the electron ion collision frequency and again the angled brackets
indicate an average over the oscillating field. The collision frequency is then

related to the effective cross section by

Vei = OeffTiVin, (42)
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where v;, is the initial drift velocity of the electron and n; is the ion density. The

electrons gain an average energy during the e-i scattering process only [12], thus

oo
1 1
§mvosc2ne’/ei = nivinneé’m / < Uaut2 - 'Uin2 > dzp- (4'3)
-0
where v, is the electron’s drift velocity after the collision. Combining Eqs.(4.2)

and (4.3) gives a definition for the effective cross section,

oo

2
Jeff(v) = / Vo2 < Uout2 - 'Uin2 > d2p- (4'4)

osc

—oo
The factor of 2 is included in order to be consistent with the definition proposed
by Fraiman et al. [12].

First we check the numerical accuracy of our code for the classical Rutherford
scattering case. It is well known that in the absence of a laser field, an electron
scattering off an ion must have the same kinetic energy before and after the
collision. The results of this test are outlined in Fig.(4.1).

As this figure indicates, we are only concerned with the kinetic energy dif-
ference before (in) and after (out) the collision and are measured outside the
interaction sphere. To investigate the no field case we decreased the intensity
of the field by setting 2 = 20000 so that its effects on the collision would be
insignificant. The errors show a maximum divergence of 1.3 x 107 (normalized
to v;,2 which is on the order of 1.) The increasing deviation can be attributed
to the structure of the algorithm. The system stops analyzing an event after the
electron’s spatial drift coordinate is found to be greater than its original drift
coordinate as measured radially from the scattering centre. At higher velocities
the displacement is subject to larger variation because the time step remains
constant. A reduced time step at high velocities would solve this problem. Al-
though the error is insignificant compared to the minimum energy variation we

will proceed with At = 0.05/wg outside of the interaction sphere and reduce this
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Figure 4.1: The result of a run where the laser field was turned off and the
energy difference before and after the collision was measured over the velocity
range we investigated. The increasing fluctuations with velocity are due to the
relatively large, time step assumed in the algorithm. The velocities in each case

are normalized to vg which set small enough that the effects of the field are

inconsequential.

to At = 0.001/wg for the radial drift coordinate r(t) = 50.0 £ 1.0rg. Therefore

the algorithm conserves energy in the no field scenario.

4.2 Inverse Bremsstrahlung Heating

The role of various laser absorption mechanisms remains a crucial issue in all
laser pulse interaction experiments. Our theory allows for an investigation into
inverse bremsstrahlung (IB) heating at high laser intensities. For the case of

weak laser fields where v,sc < vs, the IB heating rate is well known [21,31].
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Then Eq. (4.1) reduces to
d<e>

= KI, 4.5
= (4:5)
which relates the rate of change in energy per unit volume (€)to the laser intensity
I, with
Wy Ue;
K=="c 4.
e ool (4.6)

Here w, is the plasma frequency. The electron-ion collision frequency is given by

_ 4V2rm Z?e*n;In A

3 n2u3 (4.7)

Vei

where again In A is the Coulomb logarithm and vy = \/T/_m is the thermal
velocity.

It has been suggested by Vick [23] that the treatment of the problem in the
high intensity regime is to express the dependence of the collision frequency on
a parameter U = Uys:/Uy, as a multiplier which can be applied to the weak field

result
Ve = g1 Ves- (4.8)

I shall later illustrate how the results of this study compare to some of the
predictions for g(u).

The tests here begin with a system similar to that outlined for the transport
cross section. The difference being that here, the outcome of each collision reports
a value for output kinetic energy of the electron which is in turn inserted into
Eq.(4.4.) The averaging process is the same as that outlined for the transport
cross section. The only exception being that in order to average over the initial
phase of the electric field, the number of points used was increased from sixty at
lower velocities (v < v,sc) to one thousand for those in the higher range.

The output velocity (vs) is calculated in the following manner. The launch
coordinates of the electron are recorded at t = 0 and used to calculate the radial

starting distance (R,;) from the ion. We set this at Ry ~ 50rg. After the
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electron travels through its trajectory, its final velocity is recorded when its drift
coordinates again place it at R,;. Note that the drift coordinates do not include
the displacement due to the oscillation from the laser field. Because the launching
grid is planar and not spherical, R, varies up to a maximum of two percent for
each run. The value of R,; is established much larger than the Debye length cut
off range of the ionic potential.

This microscopic study allows us to observe the mechanism by which the
electron gains energy in the presence of a strong laser field. The electron enters
the ionic field while the laser field holds a particular phase. The electrons that
experience some degree of the trapping outlined in chapter 2 would then not feel
the effects from the electric field as their trajectories are dominated by the field
from the ion. Such electrons emerge from the ionic field while the laser field is
in a different phase and exerting a larger force on the electron. In fact often the
condition of a laser field phase giving the electron a higher kinetic energy is a
condition required for the electron to escape. Thus the electron emerges with a

higher energy level, accounting for the energy gain in the free - free transition.

4.3 Results

As with the transport cross section, runs were performed for five different orien-
tations of the field corresponding to §; = nn/10 where n = 1...5. (Recall that
0, is defined as the angle between the initial launch velocity vi, which lies along
the z axis and the laser field polarization vector E7.

The dependence of the effective cross section on the angle of laser field po-
larization for a run with v/vg = 2 and Q = 0.5 is shown in Fig.(4.2). Note
that the line depicted here actually shows ten points to present an idea of the

variance in energy difference across the angles studied. For some of the smaller
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Figure 4.2: As the angle between the drift launch velocity and the polarized
field increases from the parallel launch condition, a negative energy gain region
is observed for small values of the angle confirming the reports of Fraiman et al.

[12]. This negative region was generally observed as v approached vgsc-

angles (those close to the parallel launch case) there does in fact exist a region of
negative energy gain. However, after averaging over 6, the effective cross section
always ends up positive. What this does present however, is an averaging prob-
lem. At this time it was only feasible to perform these calculations based on the
results of five angles and therefore care was taken that each angle was averaged
over enough phase points to ensure that the results were accurate. Because there
is a region where these points approach zero it is feasible that small numerical
discrepancies can influence the output results. However the angles were weighted
with a sin 8; probability distribution accounting for the three dimensional nature
of the angle orientations. Thus the influence of the negative energy gain region

is not as significant as it may at first appear. It should also be noted that this
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negative energy gain region confirms the observations presented by Fraiman et

al. [13].
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Figure 4.3: The resulting effective cross section for a run with 2 = 2.0.

We next predict the low field behaviour of the effective cross section. Fig.(4.3)
shows the results of the 2 = 2.0 run which corresponds to a laser intensity of
2.25 x 104W/cm? after they have been averaged over all five orientations of
the laser field. A good approximation for these results is found when Eq.(4.7)
is combined with Eq.(4.2). If the thermal velocity is then replaced with the
drift velocity and we transform into our Keplerian coordinates we arrive at the
expression

8V2w

Oefft = 3 In (1 + 5v%), (4.9)

which is shown in Fig(4.3). The factor of two increase is due to the normalization
of s tO $Uosc? rather than vesc?.

To check this result against the low field result, we average it over a Maxwellian
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velocity distribution,

2

o
1 v 2
Vei = ni'UEr52 /v’_aeff(vla Q= 2) 7 3¢ 2o du'. (4-10)
J 2 U'th

Here v’ and v';; are the initial drift and thermal velocities normalized to vg re-
spectively. The factor of 1/2 that precedes the effective cross section has been
introduced to account for the 2 in Eq. (4.4). The integration was performed nu-
merically on the data points. Linear extrapolations were used to fill in unknown

points such that the quadrature could be performed over even intervals in dv.

The resulting expression is

TLiZ264
;= 11.6————. .
Vei Gmthh3 (4.11)
The evaluation of Eq.(4.7) yields
n; Z%e*
; ~ 3.3——InA. .
Vei = 3 3m2Uth3 n (4.12)

Thus the confirmation of our result to the low intensity run depends on the
evaluation of the Coulomb logarithm. Substituting vy, which holds a value of
2.03 for a 100 eV plasma into the logarithm in Eq.(4.9) results in
Vei = 10.3—77:;—2%. (4.13)
A more careful analysis using the modification suggested by Pert [22] with A =
Ven/Wobmin for high frequency absorption calculations gives
n; Z%et

. 4.14
m2'l)th3 ( )

Ve; =~ 12.9

Comparing the coefficients shows that we are roughly within a ten percent error
margin of the desired result, and therefore confirms our low field result with well
known IB theory.

Consider Fig.(4.4) which details the results for the effective cross section

after averaging over all angles. The individual points are superimposed on the
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Figure 4.4: The results of the effective cross section investigation for increasing
field intensities. The dotted line represents o.frr. As can be seen there is an
obvious decrease in the energy gain as the dimensionless frequency 2 (and thus

intensity) is increased for low velocities.

dotted line which corresponds again to g.sy,r,, our fit for the low field data. The
different series of points each correspond to a different laser intensity. As the
dimensionless frequency was decreased (corresponding to an increase in laser
intensity from 10W/cm? up to 10'"W/cm?) the effective cross section clearly
decreases in the region of lower velocities. One may recall that ves./ve = 1/ in
order to gain an idea of where these velocities lie relative to vosc-

With respect to the Q = 0.3 case as an example, (the points marked with
an x), it can be seen that as the velocity increased the resulting points crossed
over the low field fit and indicate a brief region where the effective cross section
is higher than the low field fit. The data then appears to conform with it for

the highest velocities. This region of higher than expected effective cross section
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values is responsible for the increase in the IB heating rate that will be apparent

below.
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Figure 4.5: An example of a Maxwellian velocity distribution for a T = 100eV

plasma as it changes in our intensity dependent velocity range.

I have included Fig.(4.5) to illustrate the behavior of a Maxwellian velocity
distribution ;‘%ﬁgeﬁf’ as it varies over our intensity dependent velocity range.
The velocity v is normalized to vg = \4/}3732 and therefore varies as E'/* as
indicated in Eq.(2.4). A significant portion of electrons exist in the velocity
space where v < vy for a plasma at T = 100 eV. It is this region of electron

velocities that contributes to IB absorption [19].

4.3.1 Effective Cross Section Modification

As in the preceding chapter, the observed deviation of the effective cross section
from the low field prediction prompts a proposal for a fit to the numerically

observed curves. The following fit was determined specifically for the velocity
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region v < 1/, or v < v,e. In the limit of high velocities it is expected that fit
for the low intensity run o.frsr will provide a sufficient description of the cross
section.

Beginning with the very low velocities the points are numerically differenti-
ated and it is shown that they exhibited roughly a 1/v dependence which became
the starting point for constructing the numerical fit.

It has been argued by Fraiman et al. [12] that for an arbitrary incidence angle
the effective cross section should have a dependence like 1/v? for low velocities
and later revert back to a 1/v* dependence. In particular it was suggested that

the curve behave as

Q2
Oeff = ;,,_-fl(Qv,cos2 6:) + Q2 fo(Qu, cos® ;), (4.15)
where f; and f; were not specifically described. It was specified however that in
the limit of high Q the result should reduce to the low field prediction. Attempts
were made to fit the data to an expression of this form, however no suitable
curves for f; and f, were found that agree to any reasonable approximation to

the data.
It is then proposed that for the velocity space v < 1/S2 the effective cross

section takes the from

Teff = 4?5@(9)3; + v2)’ (4.16)
where the expression for «(Q2) is found to conform best to an exponential decay.
Through a linear regression analysis performed on the three high intensity runs
the coefficients of this expression were determined and it was found that o(2)

behaves like
a(Q) = 0.0087 Q~14/3, (4.17)

The predictions made using this formula can be seen in Figs.(??). The coefficient

was chosen so as to be an integer multiple of the coefficient seen in front of the
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collision frequency Eq.(4.7).
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Figure 4.7: = 0.3 run curve fit.
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Figure 4.8: Q2 = 0.2 run curve fit.

As indicated above, a curve of this form deviates substantially from the values
obtained in the simulation when v > 1/. In this region the effective cross section
returns to the value predicted by the low intensity result. In order to obtain an
accurate theoretical model, one must incorporate a smoothing function to pass
from oeff(v < Uose) t0 Teff(U > Vosc) = OeffiL-

Because of the decaying form of «, Eq.(4.16) will quickly lose its dependence
on 1/v as laser intensity is decreased and behave as 1/v? at low intensities. Ex-~
panding the logarithm in equation 4.9 shows that for low velocities this expression
also has a 1/v? dependence. In the end this is not different from the suggestion
of Fraiman et al. mentioned above.

Because of the strong dependence on the dimensionless frequency it can be
proposed that as the laser intensity increases the effective cross section will be-
have as 1/v. Recalling that the effective collision frequency is related to the ef-

fective cross section by a factor of n;v, we see that the collision frequency would
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approach a constant value in this space defined simply by 1/a(2). Physically
speaking this would make sense in that when v < v,sc, the collision frequency
should only be a factor of the field intensity rather than the drift velocities of
each particle. This result is supported by Silin [7]. With the dependence on «
as expressed in Eq.(4.17) the collision frequency would then scale with the laser

field magnitude as E~7/2.

4.3.2 Modification to the IB Heating Rate

With the data obtained it was then possible to propose values for g(u) in equation
4.8. Because the expression for g(u) has no explicit dependence on velocity, it
is necessary to average the resulting cross sections over a Maxwellian velocity

distribution. We arrive at an expression for this multiplier using

T far v oefp(v, Q)dPv
g(u) = == (4.18)
J frvoep(v,Q=2)v

where the integration is based on the data points for o.sf at each intensity.

The integration indicated was performed numerically at temperatures of 80,
100 and 200 eV. The results of the high intensity runs are normalized to the Q2
= 2.0 run. It was assumed that these results could provide a benchmark against
which to measure the high intensity runs because it was firmly established by
Vick et al. [23] that at this intensity g(u) is approximately 1.

The plasma parameters used were taken to mirror those established by Vick
et al. and were: Z = 10, T. = 100 eV (80 and 200 eV as well), w,/wg = 0.1
and wg = 7 x 10'° Hz. The temperatures were chosen at this level also because
here the thermal velocities lie below the oscillatory velocity and the majority of

particles in the distribution lie in the regions of interest.
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In order to increase the accuracy of the result which is based on approximately
10 points for each intensity, it was necessary to extrapolate the curves between the
known points. That allowed for the integration to be done over equal intervals.
In the temperature regions investigated the Maxwellian curves (as indicated in
Fig.(4.5)) have the majority of particles about the regions where the the proposed
modification to the effective cross section exits. For higher temperatures the
bulk of electrons increase drift velocities thus a Maxwellian distribution for T
= 200 eV has significant portions of electrons that occupy both v < v,, and
U > U,se- Hence there are contibutors to the integral from the region where our
modification applies and where the data conformed to the low field results.

Tables 4.1 and 4.2 summarize the variables investigated in this study that

correspond to the above mentioned laser plasma parameters, and the resulting

values for g(u).

Q | IntensityW/cm? | v /ve | u | g(u)
0.2 1.05 x 107 0.94 | 4.47 | 0.34
0.3 3.55 x 10'6 1.08 | 2.60 | 1.42
0.5 8.97 x 10%® 1.28 | 1.32 | 2.08
2.0 2.25 x 104 2.03 |0.21] 1.00

Table 4.1: This table indicates the different parameters examined for the effective
cross section, and the associated values for g(u) after averaging the results over
a Maxwellian distribution for the T = 100 eV case. Note the increase in g(u)

above unity.

As these tables indicate there exists a region where the modifier to the ef-
fective collision frequency is greater that unity. The results above show that it
becomes more pronounced as the centre of Maxwellian is shifted into the region

where the effective cross section was obtained with values greater than the low
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T = 80 eV T = 200 eV
Q vn/vg | u | g(u) ven/ve | u | g(u)
0.2 0.84 |4.82|0.27 1.33 |3.50| 0.70
0.3 1.08 | 2.81} 1.10 1.52 | 2.07} 2.17
0.5 1.14 | 1.42| 2.00 1.81 | 1.05 | 2.49
2.0 1.81 | 0.22 | 1.00 2.87 |0.17 | 1.00

Table 4.2: The results averaged over Maxwellians with T = 80 and 200 eV.
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Figure 4.9: The results for g(u) plotted against a simple approximation.

field result. However as intensity further increases the value for g(u) again drops
below unity. Essentially this indicates a region where the IB heating rate should
exceed the rate predicted by the low field result. However, because these results
are seen to relax to the low field fit at higher velocities this increased heating
rate will be short lived. It would appear that as v, passes v,s. the heating rate

will compare to that of previous predictions. Further for higher laser intensities,
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this region of increased heating will not exist at all. As described by Vick et al.
there will be a notable decrease of g(u) from unity. Studies by Faehl and Roder-
ick [24], Silin [7], Schlessinger and Wright [25], and Dawson and Oberman [6]

predict that g(u) will follow a curve reasonably approximated by

u2 -3/2

g(u) = (1 + F) . (4.19)

QOur results are plotted against this expression in Fig.(4.9). This was suggested
by Faehl and Roderick who argued that the classical expression for v,; could be
modified simply by using a more suitable effective velocity where the electron’s

kinetic energy incorporates an averaging over the laser period.

1 3 1
5 < mv2 >= §T + vaosc', (420)

The region of increased effective cross section in our study will inhibit this

heating rate from decreasing as rapidly the curve above would indicate.
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Chapter 5

The Particle-Simulation Model

5.1 Introduction

The final goal of any kinetic model of a fully ionized plasma is to accurately
describe the interactions between the charged particles. In general these inter-
actions are comprised of two types: long range collective interactions, and short
range, binary collisions. The Debye length has been established as the scale of
reference separating the two. In plasma particle simulations the two interactions
are usually treated in two separate, uncoupled processes. The long range inter-
actions are dealt with by the Vlasov-Maxwell equations, while the short range
collisions are traditionally described by the Landau collision operator, Eq. (1.49).
The end result is then a superposition of the two processes.

In a particle simulation, the computation cycle is broken into discrete timesteps
denoted as At. During each step charges and currents are accumulated on a grid,
and the fields are calculated. Then the forces are computed at the particle po-
sitions and the particles are pushed. Finally, the collisions occur, leading to the
velocity scattering. This work has concentrated on the treatment of the collisions

through the modification of a binary model proposed by Takizuka and Abe [18].
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Also a great deal of insight was gained by a similar development presented by
Ma. et al. [20].

The intent of this chapter is to summarize this model and the modifications
we incorporated as well as introduce its relative performance and establish a base
for the heating tests that were later performed using this model. This chapter
will conclude with a discussion of how the transport cross section proposed in
chapter 3 was incorporated into this Monte Carlo kinetic particle code and its
subsequent effects on the heating rate when a short pulse laser is introduced to

the system.

5.2 Model

To simulate the collisions in the plasma, a Monte Carlo method is applied to a
system of binary paired particles. Our model is confined to 1D spatial and 3D
velocity space. To explain the details of the algorithm it should first be broken

into its constituent steps.

Constituent Steps of the Algorithm

1. The simulation system is established in one spatial dimension which is then
divided into a number of smaller domains, or spatial cells. The cell size is
subject to the constraint that any change in the properties of the plasma

must be insignificant across it. Typically a Debye length is used.

2. The initial position and velocity of each particle are set up in accordance

with the distributions of the proposed initial state of the plasma.

3. The particle motion is calculated using the finite-size particle method over a

discrete time step At. The time step itself is constrained to insignificance
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compared with the mean relaxation time. The particle motion and the

collision processes are taken to be mutually independent over At.

4. The particles are assigned random partners within the cell of respective
location, effectively pairing them for the collision process. It should be
noted that the finite separation of particles within a cell is neglected by
this model. During this process there are three uncoupled pairings possible:
ion-ion, electron-ion and electron-electron. The ion-ion interactions are
generally neglected however because their high mass and low velocity make
their contributions to the evolution of the system insignificant on the time

scales studied.

The algorithm then calculates the changes in velocities of the particles due

w

to the elastic binary collision over the time step At. The particles are then

assigned new velocities and moved accordingly.

6. For the duration of the run, the system is advanced in timestep increments

of At. Steps 3 through 5 are repeated in succession as prescribed.

5.2.1 Pairing the Particles

Our model incorporates both electron-electron collisions and electron-ion colli-
sions. As mentioned above these two separate collisions are taken to be uncou-
pled. The pairing process for the electron-electron collisions follows as a simpli-
fied version of the electron-ion case. Thus I shall limit the description below to
the case of the electron-ion collision from which the electron-electron algorithm
can be easily determined. There are three distinct steps to the pairing process
our model utilizes.

(i) We assume the system contains an identical number of particles (Vo)

for each species. In the first step, we associate a two dimensional array with
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each particle of each species. This allows us to ascertain which cell a given
particle is in, based on its location in the domain of the system, and enumerate
which number particle it is in that particular cell. For example, the expression
iploci(52,2) = 200 would indicate that the second ion in cell 52 is ion number
200, iploce(27,8) = 93 would indicate that the eighth electron in cell 27 is
electron number 93. The array values are assigned merely by using a cycled set
of test conditions. Additionally this step inherently yields the total number of
particles of each species in each cell.

(ii) We next randomize the particles inside each cell. The intention here is
to pair the first ion with the first electron, second ion with second electron, etc.
As noted above, the finite separation distances between particles within each
cell are neglected by this model. Thus, as long as the arranged particles are
inside a cell, their order is unimportant for pairing. However, to incorporate
the stochastic nature of the scattering process, the particle ordering inside each
cell is then randomly sorted. Table 5.1 outlines a typical case for an individual
cell. The particles are originally sorted as found on the left, but the algorithm
systematically repositions the particles randomly. To accomplish this we use a
random number generator that outputs a number between one and the number
of particles in the cell, then checks it against a list of previously selected numbers
(analogous to pulling numbers from a hat) and then assigns the particle a position
accordingly.

(iii) Once the pairing has been assigned the algorithm enters the scattering
loop. Due to the stochastic nature of the system, however, there is no guarantee
that the total number of particles of each species will be the same. Or, in the
case of electron-electron scattering, there exists the problem of an odd number of
electrons being found in a cell. Methods of treating this condition are outlined in

[18] and [20], however we have found excellent results through a more straight
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Initial Order Random Arrangement
electrons | ions electrons ions
200 199 203 202
201 200 206 204
202 201 205 199
203 202 202 201
204 203 204 203
205 204 201 200
206 200

Table 5.1: This table demonstrates the technique used to randomly order the
particles in in a particular cell. The actual numbers used are the identification
numbers of the particles in the entire system and for simplicity they are aligned
in ascending numerical order on the left. The right columns correspond to their
positions after the randomization process. The particles are then paired with
their horizontal neighbours. Note that there is a good possibility that there will

be an unequal total number of particles from each species.

forward scheme that remains true to the binary collision process. Takizuka and
Abe [18] suggest a pairing process that collides odd particles with ones that
have already collided, but this implies a tertiary (or even higher order) collision
process. Ma et al. [20] on the other hand suggest moving particles into adjoining

cells, but this method was found to be tediously impractical.

Our solution was simply to insert a test condition at the beginning of the
scattering loop. The code checks each cell for the difference between ion and
electron numbers. If there is a difference, the excess particles are allowed to

continue on their trajectory without undergoing a collision for that particular
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time step. There are three reasons we can get away with this. First, the spatial
particle distribution is relatively isotropic throughout the system and thus the
probability of obtaining a very large difference is small. Second, the system
redistributes itself each cycle and therefore it is unlikely a significant difference
will repeat. Third, At is on the order that for a single collision to be completed
in its entirety, one hundred scattering cycles must be run. Hence the error from
one step would be negligible(i.e. one percent per unpaired particle).

Finally, the remaining particles are paired in descending order, and then they
undergo a velocity transformation prescribed by the details of a binary collision

discussed below.

5.2.2 Detalils of the Collision

The fundamental system that we start with is that of a Lorentz gas with the
limiting case of cold, infinitely massive ions. We then have electrons free to
move in three-dimensional velocity space. They undergo Coulomb interactions
with the ions and hence experience small angle collisions. In this model, energy
is conserved and thus the end result of the collision is a rotation of the total
velocity vector in velocity space. An arbitrary rotation is depicted in Fig.( 5.1).

Because energy is conserved in the collision, the magnitude of the total ve-
locity vector in this space remains the same. Hence the result of the collision is

expressed as a function of two variables, 8 and ¢, where
@ describes the scattering angle and obeys a Gaussian distribution, and

¢ describes the polar angle and is uniformly distributed on the interval (0,27).

Thus the algorithm computes and returns these angles. To accomplish this,

we require P(6, ¢), which is defined as the probability distribution for an e-i
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Figure 5.1: This sketch illustrates the Lorentz model rotation of the total velocity
vector in velocity space as a result of the collision between the electron and ion.
The polar angle ¢ obeys a uniform distribution whereas the scattering angle 8 is

restricted to a Gaussian distribution.

collision resulting in a rotation of the total velocity vector about # and ¢ after a
given time At.
By definition the angles are independent of each other and therefore P(8, ¢)

is a separable function

P(6,¢) = P(6) P(¢), (5.1)

which is why the two angles can be examined separately. ¢ is assumed to have

a uniform distribution from 0 to 27, so this would result in the form

/]
P@) =5 [ 4. (5.2)
0
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Computationally, it is easy to find a random number generator that will return a
value R; confined to the interval (0,1) with a uniform distribution. Therefore to
produce the required uniform distribution on (0,27) for each collision, the polar

angle ¢ is assigned a value

The scattering angle presents a more involved problem. Fundamentally, it is
assumed that the particle motion in the plasma results from a random walk and
thus exhibits Brownian motion. It has been established that the general distri-
bution of the scattering angle should have a Gaussian form, but the particulars
of the form need to be determined. Following the derivation presented in [26]
the mean and standard deviation are determined from the diffusion equation

9P(®) _ ,8*P(6)
ot~ o082

(5.4)

where D is the self-diffusion coefficient, given by the transport collision frequency
Ve;. First, to find the mean we multiply both sides of equation 5.4 by 6 and

integrate over theta

/ oap (o)de D / 96281229) (5.5)

The left hand side becomes

g / 6P (0)d = < g>. (5.6)

The right hand side can be broken up through an integration by parts

82P(6) OP(6) s 9P(0) |
D/9 5 ) gg = pgL®) g 1= —D/ (5.7)

Because P(f = #00) = 0 and the spatial derivatives of P(f) at +oo are also zero

the first term vanishes. The remaining integral becomes D[P(§ = o0) — P(6 =
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—o0)] which is also zero. Thus

0 -
§<6> 0, (5.8)

which means < @ > is a constant, independent of time. The system requires that
@ = 0 as an initial condition, thus < #§ > = 0 for all time.

To calculate the mean square value (< 62 >) a similar procedure is followed.
First the diffusion equation is multiplied by 2 and then integrated

/ 926P ) 4o = D / 926261;_,(,_9 6. (5.9)

The left hand side results in the expression % < 6% >. The right hand side is

completed with two integrations by parts as above.

o o
D / 926 a’;fj’ De)?a];ég) f=> _D / 2981;(()9)019. (5.10)

With the first separation into parts the first term is again zero by the argument

presented above. The second term goes through the “by parts” integration one

_D / 298229) d6 = —2D (ep(e) o — / P(o)de) (5.11)

Finally the first term here goes to zero again, but by definition the second term

rmore time.

must go to unity. Thus we arrive at the expression

o ]
-a—t- < 6° >= -2D. ({).12)

And given that §(0) = 0 we can integrate and find
< 6* >=2Dt. (5.13)

Thus for a random walk in the scattering angle 6 governed by the diffusion

equation where the self diffusion coefficient is the transport collision frequency,
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over a time period At the mean square of the scattering angle will be described
by
< 6% >=2u,At. (5.14)

With this established, an expression for the scattering angle over a time period
At can be determined. I will begin with the assumption of a Gaussian probability
density and further assume that by the Coulomb nature of the collisions this

model describes that only positive values of § are physically possible,
2
P(f) = Ae” =% § >0 (5.15)

and the probability density is then zero for the disallowed range where 6 < 0.

Here A is the normalization constant. Using
/ P(9)d =1, (5.16)
-0

A was determined to have the value

f 1 1
T /T <02>  2/mugAt

(5.17)

To determine the scattering value for § the nonuniform Gaussian distribution
must be mapped onto a uniform distribution. This is accomplished using the

cumulative distribution function C(8). By definition,
8
c(o) = / P(@)dd. (5.18)

The cumulative distribution function can be generated by a uniform random

number generator, represented by R. Therefore

o
R, = / P(8)de'
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0

/ 1 —Zmgy
= ) ofmvanAt
0

)
2 2
= — [ e *du
7/
= erf(0), (5.19)

which is the error function. Numerically the error function can be approximated

as
erf(p) ~1—e 2. (5.20)
Hence
2
Ry =1 — ¢ et (5.21)

which leads to a value for # when solved for § that occurs after a time step of

At.
0 = [2v.:Atln (1 — R)]? (5.22)

5.2.3 Changes in Velocity

Having established Eq.(5.3) and Eq.(5.22), I shall describe briefly how the veloc-
ities of the paired particles change due to a collision. In the laboratory frame,

the relative velocity between the particles is defined as

a(t) = ve(t) — 0i(t) = (ug, uy, Uz, t). (5.23)

The post collision velocities are then given by

Me;

Tt + At) = Te(t) + At (5.24)

T+ AL = G(t) — =LA, (5.25)

(]
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where m,; is the reduced mass of the electron-ion system and At is the change in

the relative velocity of the particles due to the collision. To define our velocities

in spherical coordinates we state

iy = U siny cosy, (5.26)
Uy, = U siny siny, (5.27)
iy = U cosy, (5.28)

which defines the angles ¥ and . A% is then given by the deflection through

angles 6 and ¢ as given above. Thus components of A# are given by

Atd, = uﬁj’%uz(t) sinf cos¢ — Zi((i)) u(t) sinf sing — u.(t) (1 — cosh),

At, = :Z((?) u,(t) sinf cos¢ + ZZ((?) u(t) sinf sing — uy(t) (1 — cosb),

Atd, = —uy(t)sinb cosg — u.(t) (1 — cosh). (5.29)
where

v = Jul+ul+ul (5.30)
uy = /ul+ul. (5.31)

It should further be noted that in the case where u; = 0, the above expression

reduces to
A, = u(t) sinb cosp, (5.32)
At, = u(t) sind sing, (5.33)
Ad, = —ult) (1 — cosb). (5.34)
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5.3 General Results of Standard Tests

In order to test the kinetic behavior of this model, we performed simulations to
evaluate its performance against the analytical predictions of test particle theory
as outlined by Spitzer [28] and Trubnikov [29]. In such a theory we assume the
existence of a test particle which is assumed to have no effects on the medium,

and a medium with a of temperature 7; with a Maxwellian velocity distribution

3
m; 2 _mig? -
(v) =n; e i | 5.35
(0) = i) (539)
As a result of collisions with the medium, the test particle experiences diffusion

in velocity space, or relaxation.

5.3.1 Drift Velocity Slowing

We first considered the slowing down rate v;. Here, electrons were initially given
a shifted Maxwellian distribution in the x dimension of velocity space with a

mean velocity vg;o and temperature T .

3/2 .
fo(v) = ne (;—To) e el (5.36)
It is then known [28,29] that the evolution of v, with time goes like
dvdz
—= =y, 37
pr VsUdz (5 3 )
where 32
1 € Teo -
.= = . .38
= 3n() (%)

This introduces the parameters € = $MVaz0?, (5.38)and

2 T
ue) = —= [ e
0

_ 2 [_\/z-.L VT or f(\/E)e”] e, (5.39)

T
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Where er f(z) is the error function and vy is the electron-ion collision frequency
(o = n;UoRy). Further simulation parameters are m./m; = 0.01, T./T; = 1,
vpAt = 0.0001, and the number of particles was 51 200. (Note that the system
was shown to have less numerical noise for runs with 512 000 or more particles,

but sufficient results were obtained using the above number.)

1 T T T ¥ L} T L
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08 [ -
o7 | _
o066k 4
T
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04 | .
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02} -
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o L 1 1 i 1
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Figure 5.2: This figure is an example of the velocity relaxation for a shifted
Maxwellian initial distribution. This particular run looked at an initial parameter
of €/Teo of 0.5, with a collision frequency vg = 0.05. The system was run until
the drift velocity reached 1/e® of its initial value. The resulting curve conforms

well to the expected logarithmic decay.

Fig.(5.2) illustrates a typical example of a slowing run performed with an
initial velocity shift defined by z = €/Teo = 1/2(vazo/vsr)? = 0.5. The collision
frequency vy was set at 0.05. The run was allowed to go on until it reached about
five percent of its initial value. From this point the curve was linearized and then

analyzed using linear regression to determine the slowing rate v;.
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Figure 5.3: Slowing tests were performed for x = 0.5 through 1.5 using both
collision frequencies of 0.05 and 0.005 wy.. The resulting points came within six

percent at maximum of the analytical result.

In Fig.(5.3), we see the cumulative results of similar tests. These were taken
over the range of initial drift velocities defined with x = 0.5 to 1.5, and with
collision frequencies of 0.05 and 0.005 wp.. The results conformed well to the

analytical predictions, with a maximum deviation of six percent.

5.3.2 Thermal Isotropization

The next investigation examined the evolution of a system with an initial thermal
anisotropy. To accomplish this, we first established a difference between the
longitudinal (7}) and transverse (7)) temperatures. Such a system is known to
relax to an isotropic Maxwellian in a process known as thermal isotropization

[28,29]. As above, this relaxation can be predicted analytically and thus should
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approximately conform to

d
E ﬂl - T-L) = _Viso(ﬂI - T.L)’ (540)

where v;, is related to the collision frequency by

8
Viso = —F—U.
#0 T 5v2r

Here it should be noted that the collision frequency is calculated using the rela-

(5.41)

tion T = 1/3(T}) + 27'.). In this investigation T lies in the x direction, while
T, =1/2(T, +T) is in the y-z plane.

“. = 2. —
Moz =20mn ——

70

Figure 5.4: In this run the code was initialized with T;;/T, = 2. Again we
examined the run for 51200 particles at a collision frequency of vy = 0.05 wp..

The curve came within five percent of the analytical prediction.

Fig.(5.4) depicts the results of a 51200 particle run where the initial anisotropy
was established at T};/T, = 2. The collision frequency was set at vg = 0.05 wpe.

The anisotropy was tracked as a difference between T, and the T, , average as
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it fell from its original value to below ten percent. Again the logarithmic curve
was linearized and put through a regression analysis which resulted in a value
of v, = 0.0301, which compared to the prediction of 0.0319 has a deviation of

only five percent.

5.3.3 Temperature Relaxation

The next test considered the initial condition where the temperature of one
species (the electrons T.) was greater than the temperature of the other (the
ions T;.) Once again test particle theory predicts that the temperature difference

should decrease logarithmically with time and equilibrate approximately as
d ) . -
c—lZ(Te —T1) = —20q(T. — T%) (5.42)

with

N\ 3/2
mT) Y. (5.43)

Veq = gﬁ (1 + o

I have included Fig.(5.5) as an example of the relaxation of temperature. In
this run 5120 particles were used and the temperature of the ions was modi-
fied such that T.o/T;p = 2. the dashed line represents the analytical prediction
of equation 5.43. Once again the data was linearized and a regression analy-
sis showed that the simulation resulted in a six percent discrepancy from the
theoretical curve. It should also be noted here that the previous tests were in-
vestigated with the assumption of cold, infinitely massive ions, and therefore the

code performed with stationary ions. However, for this test the ions were given

non-zero velocities.
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Figure 5.5: This graph illustrates a typical 5120 particle run where the initial
temperatures were established such that Tp9/T; = 2. Again the result conformed

well to the analytical prediction for v,; with a deviation of only six percent.

5.3.4 Entropy

As one final test for the code, the entropy of the system is investigated. To do

this we examine the state function predicted by the Boltzmann H theorem
H= [ @oh@,0:,9), (5.44)

as it applied to each species. It is related to the thermodynamic entropy S

through
S = —kgH, (5.45)

where kp is the Boltzmann constant, 1.38 x 10-22J/K. Following the arguments
developed in Liboff [30] we know that dS/dt > 0, indicating that the entropy
of a system is always increasing, and the equality holding for an equilibrium. In

fact, looking at the Boltzmann equation it can be stated that for an arbitrary
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initial distribution function f, S(t) increases monotonically until f',f'; = fofi
whereafter it remains constant.

To model this behavior, a system was chosen with an initially constant ve-
locity distribution, i.e. all particles were given a velocity of v,, at the beginning
of the simulation and the system was observed to relax frorn that ordered state.

Fig.(5.6) follows the x component of the distribution function as it evolved in

time.
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Figure 5.6: This figure depicts the x direction velocity distribution evolving
from its initial state where all particles were issued a velocity equivalent to the
thermal velocity down to a roughly Maxwellian distribution . The entropy in this
case should increase until the system comes into equilibrium where it should level

off to an approximately constant value.

The total entropy and that of each particle species (electrons and ions) is
shown in Fig.(5.7). It was measured in units of Boltzmann’s constant kg. As

predicted, the change in entropy is always positive and as the system nears its
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Figure 5.7: The entropy in units of kg for both electrons, ions and the total of the
system is plotted against time as the system is allowed to evolve from a constant
velocity distribution to a rough Maxwellian as depicted above. The change in

entropy over time is always positive and very quickly reaches a constant state in

this 51200 particle test run.

equilibrium state, the total entropy approaches a constant value.

5.4 Notes on the Parallel Set Up

In order to speed up the computation time of this kinetic code we spent some time
rewriting it so that it would be able to run in parallel using the message passing
and FORTRAN paradigm (MPI). The basic idea behind parallel computing is
that in an ideal situation, N processors will be able to complete a task in 1/N

the time it would take for a single processor to perform it.

The approach of this simulation was to divide the problem across N proces-
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sors which would run an equal number of the total particies. Thus a simulation
involving x number of particles would ideally be able to be performed in the
time it would take to perform a simulation of x/N particles. The collisions were
performed and velocities and location data were tracked separately on each pro-
cessor. At the end of each time step however certain macroscopic quantities such
as temperature were collected and distributed accordingly through the system.
In that way each processor was allowed information describing the macroscopic
behavior of the other processors which was the difference between this and N
independently run simulations of x/N particles. It bears noting that particles
on different processors could not interact directly with each other, i.e. a particle
on processor one could not collide with and scatter off of a particle on processor
four. Thus although at any given time a cell may contain y particles, only y/N
particles are available to be paired with each other on each processor. Therefore,
it was necessary to ensure that this parallel technique was only applied when the
number of particles was large enough that the pairing-scattering process would
not result in any significant errors due to too few particles. Roughly speaking
this implies a condition that an even distribution of the x/N particles through
the domain on a given processor must result in a minimum of ten particles of
each species in any particular cell.

It should be mentioned that originally this problem was approached by al-
locating a particular domain in the spatial region to each processor. So during
the initialization process, processor number one was given the first x/N particles
which all lay at one end of the simulation domain. Processor two received the
next x/N particles which were placed beside those of the first processor, and so
on. The result was a spatial anisotropy between the particles on each processor
which led to some errors because spatial isotropy was implicitly assumed at the

beginning of the study. Efforts were made to allow for particles to cross between
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processors, however this treatment met with limited success because it placed a
new test in the computation cycle which identified the boundary of each proces-
sor. Eliminating the presence of a particle that crossed this boundary on one
processor and creating it on its adjacent partner proved so intensive that the
time gained by the parallel set up was lost attempting to account for all the
transitioning particles. The final solution to the problem was to redistribute the
particles isotropically over the entire spatial simulation domain for each individ-
ual processor. Again this limited the communication to the macroscopic level,

but the original goal of increasing the speed of the simulation was accomplished.

5.5 Heating Runs

With the kinetic portion of the PIC code developed the next step involved in-
corporating the laser field. An oscillating force based on the magnitude and
frequency of the field was added so that the particles would be driven by the in-
corporation of the laser and heating properties of the system could be observed.
At each time step the velocity due the the acceleration from the laser field was
calculated and added to the total velocity of the electrons. The process was
duplicated for the ions as well along with an option that allowed for the ions to
be locked in place.
Because of the incorporation of the laser field it was necessary to now revisit
Eq. (5.22),
8 = [—2ve;Atln (1 — Ry)]2. (5.46)

Note that here the electron-ion collision frequency refers specifically to the trans-
port collision frequency from chapter 3 because it considers elastic collisions only.

Since the collision frequency is related to the transport cross section by the re-
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Ve; = N0V, (5-47)
we can incorporate the modification proposed in Chapter 3, Eq.(3.25) by writing

Vgi = IR o (5.48)

HTra@)
It is important to note however that the velocity here is not the total velocity of
the particle, but the drift velocity of the particle, or the velocity that would be
observed in a frame oscillating with the laser frequency wy. The reason for this
is that equation 3.25 was formulated based on the initial input velocity averaged
over all phases of the laser field. The drift velocity was the only component of the
total velocity that survived the averaging process. Because of the stochastic na-
ture of this Monte Carlo simulation, the initial drift velocity is all that is needed.
The condition that is then placed on the algorithm is that at the beginning of
the scattering process, the drift velocity must be extracted. The final scattering

angle is then given by

’ Uth 3 Var Al 1 vosc2 -
=124 (Uosc) 1+ a(Q2) [Qvosc] o] [—————UOSCZ n 'Udrzjl Atln (1 — Ry)

(5.49)

)

where A’ is as defined in equation 3.9 multiplied by the ion density term.

The incorporation of this scattering angle into the particle code then yields a
Monte Carlo simulator capable of describing the effects of an intense laser field
heating a plasma. It should be noted however that this does not account for the
inelastic collisions as the collision process is still assumed to be elastic. What
this model does account for are effects from large angle scattering that previous
models ignored.

There is still ongoing work in this study, now that this result has been im-
planted in the described particle code. I shall conclude this chapter with a brief

example of some of the preliminary results.
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The inverse bremsstrahlung heating was the first property of the system we
examine using the code. The model considers a plasma with Z=1 and an initial
temperature of T, = 1.0 keV. The laser was assumed to have a frequency of
6.0wpe. Fig.(5.8) shows the results of heating runs where laser intensities were
defined by vesc/ven = 1.2 (graph a) and 12.2(graph b). For both intensities
the initial heating rate is significantly larger when the large angle scattering
effects are for (curve 1) than with the conventional model (curve 2). The inset
uses a dashed line to show the initial slope of the electron temperature of the
modified curve. It is suspected that the electron distribution function, which was
originally established as a Maxwellian, quickly redistributes itself, depleting the
low velocity particles as depicted in Fig.(5.9). Because of the redistribution, at
later times the heating rate decreases below that which is known for low intensity
fields.

Fig.(5.9) provides examples of the electron distribution function both initially
(curve 2) and soon after the simulation begins at tw,. = 100 (curve 1) as evidence
for the velocity redistribution. Graph a illustrates the function for vys. /v, = 0.17
while for b shows the higher intensity with v,s./v; = 12.2. Both clearly indicate
the presence of a depletion of low velocity electrons. It is suspected that this is
due to the extreme scattering that low velocity electrons experience. The “hole”
as it has been deemed, has been shown to remain for a long time until the electron
thermal velocity becomes sufficiently larger than the thermal velocity, at which

time the electron-electron collisions smooth it out.
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Figure 5.8: Evolution of the electron temperature over time due to IB heating.
The laser intensity is defined by the parameter v,s./ve,(0) = 1.2 (graph a) and
12.0 (graph b). Both graphs show curves with the modified transport cross
section (1) and the original Rutherford cross section (2) implementing in the
scattering algorithm. The inset graph presents the initial heating rate as depicted

by the dashed tangent line, which significantly exceeds the usual one.
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Figure 5.9: The electron distribution function at twpe = 100, for vesc/ven = 0.17
(graph a) and 12.0 (graph b). Again the curve 1 on each graph represents the
function obtained with the modified cross section while curve 2 displays the
classical form. It is apparent that very quickly after the laser is turned on, the
modified algorithm shows a redistribution from the initial Maxwellian to a shifted

state greatly depleting the low velocity electrons.
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Chapter 6

Summary and Conclusions

In summary this study has considered the problem of the effects of an intense
laser field on the scattering dynamics of electron-ion collisions in a plasma. Con-
ventional plasma kinetic theory relies on the assumption of dominant small angle
collisions. This is a fundamental theoretical assumption in the derivation of the
Landau collision operator. This study has shown that the presence of an oscil-
lating laser field, when introduced to the classical Rutherford scattering problem
significantly alters the conventional model’s predictions about IB heating and
transport processes.

The first phase of this project is the construction of a program to simulate
the trajectory of an electron incident on a stationary ion (modeling a collision
in the centre-of-mass frame) in the presence of a linearly polarized, oscillating
electric field. The model is constrained to a non-relativistic plasma where the
magnitude of the electric field is large, but generally confined to the restriction
that the quiver amplitude is less then the average inter-ion distance. This is to
restrict the investigation to a binary collisional process. Further the ion’s electric
field was modified to be cut off at a Debye length to account for field screening

effects normally present in a plasma, as well as at the deBroglie wavelength of
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the electron to account for quantum diffraction effects. A fourth order symplec-
tic integration algorithm is chosen to calculate the electron path based on the
solution of the Hamilton equations of motion, because of its ability to preserve
volume in phase space, reducing errors in energy and momentum conservation
over the more popular Runge-Kutta technique.

With this model, we were able to resolve behaviors discussed by Fraiman et
al. [12,13] and Decker et al. [8]. We observe examples of large angle scattering
induced by the laser field which included both scattering due to a classical trap-
ping of the electron in the ion’s field, and a correlation effect where the laser
field forces the electron back towards the ion after the initial interaction multiple
times hence multiplying the effect of the original scattering interaction. In effect
this leads to chaotic scattering of the electron with extreme sensitivity to the
phase of the laser field.

The next phase of the project set out to examine what implications such
behavior would have on the macroscopic behavior of the laser plasma interaction.
Specifically we looked at the differential transport (o) and effective (oefs) cross
sections which characterized the loss of directed particle velocity and energy

transfer respectively.

do, =<1 —cos¢ > d%p (6.1)

< Ut — Vin2 > d?p (6.2)

dO'e_ff = 2 B}
osc

Here the angular brackets indicate averaging over the initial phase of the laser
field, while d?p identifies an element of area on the launch grid, a plane perpen-
dicular to the initial launch velocity.

Predictions for the transport cross section in the case of a parallel launch
(where the electron’s initial velocity is parallel to the linearly polarized laser
field vector) have been obtained using the Born approximation [9] which assumes

small angle scattering. The simulations at such an orientation came within a fifty
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percent deviation of the predictions proposed by Shvets and Fisch [9]. In this
case there was a general increase in the transport cross section centered about
Uose compared to the prediction of the classical Rutherford cross section. The
size of this deviation was shown to increase with intensity.

For orientations where the field was set perpendicular to the launch velocity,
the transport cross section was shown to be generally smaller than the Rutherford
curve.

Defining a large angle as w/3, we looked at the number of particles that
contributed to the transport cross section that scattered through a large angle.
The results showed that for velocities lower than v,,. the transport cross section is
almost entirely made up of electrons that experience such behavior. The largest
number of large angle scattering electrons was observed for the parallel launch
alignment.

Functional dependence on the laser intensity and particle kinetic energy have
been found for the overall transport cross section after averaging over all possible
field alignments. This was examined for laser intensities from 10'° to 107W/em?.
This resulted in an expression for the transport cross section as a function of both

initial drift velocity and laser intensity. The final curve looked like

OR

= TE A 0)] (63)
where , 18@-2 | n 2
A’(Q,’U) = a(Q) [Q’Uosc] @ {m] s (64)
and
a(Q) = 1.21e7989¢

,3 (Q) = 9 .008_0'7192 —0.872 .
(6.5)
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Again op is the classical Rutherford differential scattering cross section. The
above fit reduces to the Rutherford case in the limit of low laser intensity. On
the other hand, in the limit of increasing laser intensity, I, the cross section scales
like I—3/%. This proposed fit is consistent with our data to within a ten percent
deviation.

The effective cross sectiom was also calculated averaging over the different
orientations of the laser field. For the case of the parallel launch (and orientations
in that vicinity) we observed regions of negative energy gain. However when
averaged over all orientations it was found that the net gain of kinetic energy of
the electrons was always positive.

Low intensity models show that the IB heating rate is directly proportional
to the effective collision frequency which is directly related to the effective cross
section. The results of this study illustrate that for high intensities, there is a
sharp drop in the value of the effective cross section for velocities below v,g..
There is also a small, but significant region where the effective cross section is
greater than predicted by the low intensity result. It is proposed for the region

v < Uosc the effective cross section can be approximated by

_8/(2m)5 1
Ueff - 3 2 (a/(Q)v + U2) b (6-6)
where
a'(Q) = 0.0087 Q~14/3. (6.7)

Note that here I have used the notation o' to avoid confusion with Eq.(6.5)
although in chapter four the term is denoted a. This form would indicate that
for low velocities there is a 1/v dependence which translates into an effective
collision frequency independent of drift velocity. This effect makes sense as,
in this region, the oscillatory velocity would be the dominant influence on the
collisions. With o/(Q) having the dependence on Q~'*/3 the collision frequency

scales as E~7/2.
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A numerical integration of the effective cross section over a Maxwellian ve-
locity distribution gives a prediction for the relative modification to the low field
IB heating rate. Previous work has shown that as laser intensity increases, the
heating rate will drop off from unity like 1/v3,,. Our results show a region when
temperature is low (on the order of 100 eV) where the heating rate will actually
increase, possibly by as much as a factor of 2.5.

A particle simulation code was developed for the purpose of heating investi-
gations in the presence of a linearly polarized laser field. A series of standard
tests showed excellent conformation to Spitzer relaxation theory. Then it was
shown how the scattering angle in such a code can be modified to incorporate
the altered transport cross section in the presence of a high intensity laser. Thus
heating at high frequencies can be examined incorporating elastic collisions with-
out any assumptions about small angle collision dominance. Preliminary results
of such investigations were presented.

In conclusion, it has been shown that the incorporation of a linearly po-
larized electric field into a classical Rutherford scattering model has dramatic
consequences on the inverse bremsstrahlung heating and transport processes of
a laser heated plasma. These effects are attributed to the chaotic scattering of
the electrons and their influence on the transport and effective differential cross
sections which govern the dissipation of directed particle velocity and IB energy

transfer in the plasma respectively.
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