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Abstract—Security threats in Android applications 

have grown in sync with Android’s growth. Machine 

leaning can be used to add functionality to traditional 

antivirus systems. Such an approach necessitates the 

identification and labelling of a large amount of harmful 

and benign code in advance to use it for model training. 

The modeling techniques and its practical implementation 

using the Android Malware Permission based dataset to 

find whether it is benign, or malware have been proposed 

in this paper. Random Forest Classifier, Logistic 

Regression, Decision Tree Classifier, XGB Classifier are 

the machine learning algorithms implemented in this 

research. The overall performance of approximately 85% 

of accuracy has been achieved on the dataset. The dataset 

is freely available to the research community. 

 

   Keywords— Machine learning, Android Malware, 

Permission, Dataset, Malware. 

I. INTRODUCTION 

 This research looks at the problem of classifying 

Android applications whether it is benign or malware 

depending on the characteristics that can be extracted from the 

application package prior to its execution. The suspicious 

behavior of an application typically requires permissions that 

could be an indicator of suspicious activity being carried out 

by that application. This project superimposes machine 

learning algorithms on a raw dataset of Android permissions 

which have been classified as malware or benign to learn the 

characteristics of malware. 

 

 Android’s file format for distributing and installing 

applications is APK, which stands for Android Package Kit 

(also known as Android Application Package). It contains all 

of the components that an app needs to properly run on your 

smartphone [1]. This research will help in uncovering the 

various patterns that are followed by an infected apk while 

accessing permissions. This will allow us to better prepare for 

such malware and help in early detection using machine 

learning algorithms. 

 

 In order to tackle the ever-changing security issues 

caused by malware there is a need of an up-to-date Android 

malware dataset. This dataset should be able to provide the 

various characteristic features of malware in Android APKs. 

Such characteristic features are identified based on the 

permissions that have been sought by the apk being analyzed. 

The dataset used for this research maps the permissions for 

each apk as used and not used. A binary mapping of this sort 

allows the machine learning models to learn the characteristics 

of the malware and better predict the nature of unknown 

APKs. 

 Various models exist in machine learning to apply to 

Android malware datasets to uncover the underlying features. 

However, there is a need for building novel models given the 

nature of the dataset. This will help train the model better on 

the existing dataset and deliver good test results when tested 

against relatively new set of APKs. Models that allow for 

binary classification of data will be used for the purpose of this 

research.  Some popular types of Android malware are 

Trojans, Keyloggers, Spyware, Ransomware. 

 

 To protect against the breakout of Android malwares 

it is crucial to be able to defend the devices in real time. This 

is achieved through machine learning by checking for the 

permissions requested by different APKs. The dataset being 

used contain numerous such APKs identified as malware or 

benign and the permissions that they sought after. This will 

allow for models to be trained to detect malicious activity 

based on the permissions being requested by the application.   

II. LITERATURE REVIEW  

A. Malware Detection Techniques 

 Several malware detection techniques are used in 

real world to detect the malwares. The most popular detection 

techniques are signature-based detection and behavior-based 

detection. 

 

1) Signature Based Detection 

A fingerprint of the file is known as Signature which can be 

uniquely identify. In case of malware, these fingerprints are 

extracted from the common patterns followed by the malware 

to identify it.  Most of the antivirus software use this detection 

technique. Signature based detection however performs 

poorly in case of unknown malware [2]. 

 

2) Behavior Based Detection 

Behavior based detection techniques detect malware based on 

the behavior of the file with the environment. Behavior based 

techniques cover the short coming of signature-based 

mailto:ssuruliy@student.concordia.ab.ca
mailto:mnaralas@student.concordia.ab.ca
mailto:alnu28@student.concordia.ab.ca
mailto:akothaka@student.concordia.ab.ca
mailto:srudrara@student.concordia.ab.ca
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mailto:smetla@student.concordia.ab.ca
mailto:sergey.butakov@concordia.ab.ca


   

 

7 

 

detection since they can detect malicious content based on the 

behavior. This is particularly helpful when the malware 

mutates and changes its code to avoid detection since it 

requests for the same permissions and system resources and is 

thus possible to detect [2]. 

 

3) Heuristic Based Detection 

Heuristic based approaches make use of techniques from 

signature-based detection and behavior-based detection. IT 

makes use of various hybrid features such as opcodes, APIs, 

and DLLs. These techniques have enabled the detection of 

zero-day malwares which are very hard to detect. However, 

in the case of complex malwares this process proves to be a 

weak detection technique [2]. 

 

4) Deep Learning Based Detection 

Deep learning is a subsection of Artificial Intelligence and 

can work on unlabeled data for detecting patterns among 

them. From these patterns the program can learn and can then 

detect malicious behavior from files. Deep learning also 

reduces the number of features required for detecting 

malware [2]. 

 

5) IOT Based Detection 

Internet of Things devices are becoming more popular 

nowadays and include devices such as smart home 

appliances, mobile devices etc. Due to their growing 

popularity, they have become the target of attackers who 

previously focused on computers. The malware on Android 

devices is detecting by looking at the set of permissions being 

requested and classifying them as benign or malware [2]. 

 

6) Cloud Based Detection 

Cloud technology is rapid growing these days. It has found 

its application in malware detection as well through security 

as a service. Users can upload any file to the cloud and detect 

if the file is malicious or not. This is possible due to the 

capacity to store large datasets on the cloud and thus enhance 

the detection techniques of mobile and personal computers by 

providing security as a service [2]. 

 

7) Machine Learning Algorithms 

Most detection techniques make use of machine learning 

techniques to detect anomalous behavior among files. In the 

case of an apk file, the features that can be used to classify it 

as benign or malware are permissions, system calls etc. Once 

the features have been extracted, machine learning algorithms 

to it such as random forest, linear regression etc. can be 

applied [2]. 

 

B.  Machine Learning Approaches to detect Malware 

 Malicious traffic can be detected through numerous 

ways which is divided into supervised learning, unsupervised 

learning, and reinforcement learning.  

 

1) Supervised Learning 

Supervised machine learning is one of the sub-categories 

of artificial intelligence and machine learning. In this 

technique labelled datasets are used to train and test the 

performance of the models and to identify the data accurately. 

During cross validation when the input is given to the model, 

the weights are adjusted until it is fitted properly [3]. 

Supervised machine learning is further divided into two 

categories for data mining: Classification and Regression. 

 

i) Classification:   

To accurately assign test data into certain categories, 

classification uses an algorithm. It identifies certain entries in 

the datasets which then tries to conclude that, this is how the 

attributes are labelled or identified. Linear Classifier, 

Random Forest Classifier, Decision Tree Classifier and 

XGBooster Classifier are the most used classification 

algorithms. 

 

ii) Regression 

     Regression is a technique to find the relationship between 

the dependent and independent variables. It is commonly 

used to produce estimates for an organization’s sales revenue. 

Linear Regression, Logistic Regression, and Polynomial 

Regression are some of the popular regression algorithms [3]. 

 

2) Unsupervised Learning 

Unsupervised machine learning uses the ML techniques to 

process based on unlabeled datasets and helps to analyses and 

form clusters depending on the data. This algorithm can 

provide data groupings and patterns automatically without 

human interventions. It can find the similarities and 

differences in the data. It is a good option for exploratory data 

analysis and cross-selling techniques [4]. Clustering, 

association, and dimensionality reduction are the three basic 

tasks that unsupervised learning models use. 

 

3) Reinforcement Learning 

When machine learning models are trained to make a 

series of decisions is called as reinforcement learning. The 

agent acquires to achieve its goal in an uncertain and 

potentially complex environment. An artificial intelligence 

undergoes a game-like occurrence in reinforcement learning. 

The computer uses the trial-and-error method to identify a 

solution for a problem [4]. 

C. Existing Datasets 

 Android malware datasets, which used one of the 

above detection techniques and machine learning approaches 

to detect malware. 

 

CICMalDroid 2020: 

  

• The total number of android samples are 17341. 

• This dataset consists of recent and complex android 

malware samples up to 2018. 

• It contains diverse samples from five different types 

such as SMS malware, banking malware, Adware, 

riskware, and benign malware which are examples 

of malicious software. 

• When compared to other public databases, it has the 

most comprehensive set of static and dynamic 

functionality.  

 

Data Collection:  

 The android samples were gathered through various 

sources like the Contagio security blog, AMD, VirusTotal, 
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MalDozer, and other datasets which have all been included in 

recent research contributions. All the samples are gathered 

from December 2017 to 2018. To develop effective 

countermeasures and mitigation strategy, the cybersecurity 

researchers need to identify the malwares in Android apps. 

 

 The five categories of data in the dataset are SMS 

malware, banking malware, adware, riskware and benign 

malware. 

 

Data Analysis: 

CopperDroid was used as a VMI-based dynamic 

analysis framework, recreation of low level OS specific and 

high level android specific behaviours of samples are analyzed 

dynamically to collected data. The successful test runs are for 

13717 samples while rest of them are failed due to the errors 

including timed-out, invalid APK files, and allocation of 

memory failures. 

 

Preprocessing of CICMalDroid 2020 dataset: 

In the pre-processing phase, three categories of 

dynamically observed behaviour are extracted from the 

captured log files and the modules are system calls, binder 

calls, and composite behaviours. This helped them to 

automatic reconstruction of system call semantics such as 

IPC, RPC, and complex android objects. The examples of 

composite behaviour that grouped together widely used low 

level system calls are FS_access (create, write), 

network_access (read, write), and fs_pipe access (read, 

write). Specifically, get_DisplayInfo, register_Callback, and 

composite actions fs access(write) are binder calls which can 

be obtained in JSON format from CopperDroid analysis. 

With an F1- Score of 97.84 percent and a false 

positive rate of 2.76 percent, the model can detect and 

categorize malware. [5]. 

 

The Drebin Dataset 

This dataset consists of 131,611 applications from 

various malware families, in which is samples are gathered 

from August 2010 to October 2012 [6]. Samples are collected 

through the applications from GooglePlay, various alternative 

app markets located in China and Russia, and other Android 

websites, malware forums and security blogs and the 

malwares from Android Genome Project. They used Anti-

virus scanners to detect the malicious applications which 

helped them to ensure that the data are split accurately 

between benign and malware [7].  

 

The dataset has been spilt into eight categories such as [8], 
• Hardware components are used to set required 

permission by the software. 

• Requested permissions, grant access to users to 

install or use their appropriate resources. 

• App components has activities, services, content 

providers and broadcast receivers. 

• Filtered intents which communicates between 

various components and applications. 

• Restricted API, Used permissions and Suspicious 

API calls for sensitive data or resources.  

• Network address, IP address, hostname, and the 

URL. 

Family name Top 5 features 

FakeInstaller sendSMS 

SEND_SMS 

android.hardware.telephony 

sendTextMessage 

DroidKungFu SIG_STR 

system/bin/su 

BATTERY_CHANGED_ACTION 

READ_PHONE_STATE 

getSubscriberId 

GoldDream sendSMS 

lebar.gicp.net 

DELETE_PACKAGES 

android.provider.Telephony.SMS 

_RECEIVED 

getSubscriberId 

GingerMaster USER_PRESENT  

getSubscriberId 

READ PHONE STATE 

system/bin/su 

HttpPost 
Table 1: Top 5 Malware families and its features 

Obfuscation Technology 

 To render it more complicate for reverse engineers to 

comprehend the apps or for detection technologies to identify 

them, malicious application developers would obscure static 

features to some level. The primary ways are Identifier 

Renaming, String Confusion, Call Indirection, Junk Code 

Insertion, Dynamic Code Loading [9]. 

 Various static detection approaches have different 

counters for the obfuscation approaches mentioned above. 

Static detection often enhances detection accuracy by 

leveraging a multiple features. 

 

Test Results 

 When this dataset is trained using the models of 

Logistic Regression, Decision Tree, Random Forest and 

Neural Network for the 42,570 samples are as below [8]. 

 

Model Accuracy Precision Recall 

Logistic Regression 99.45% 1 96.32% 

Decision Tree 99.86% 1 95.91% 

Random Forest 99.92% 1 95.85% 

Neural Network 99.83% 1 99.95% 
Table 2: Test results of Drebin dataset 

 The Android malware dataset is different from 

existing dataset since it makes use of obfuscation to better 

capture the permissions used by the apk files being analyzed. 

Obfuscation shortens the names of the application’s classes, 

methods, and fields. Obfuscation is a security through 

obscurity technique which alters the code to prevent automatic 

or manual code analysis. 

 

 The dataset contains obfuscated samples which are 

used by malware authors to prevent detection without 
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changing original malware. The models being trained on this 

dataset have a better scope of detecting the malware in the real 

world where the code is often obfuscated to avoid detection. 

III. METHODOLOGY  

1) Data engineering:  

The APKs were downloaded from the CIC Dataset provided 

by University of New Brunswick. These APKs were 

classified using Virus Total into Benign and Malware. The 

permissions in these APKs were extracted and compared with 

a default permission list, if a match occurs those permissions 

were labelled as 1 otherwise 0. The columns were filtered 

based on the unique values they contain and the total number 

of columns are 536. Principal Component Analysis was 

performed on the dataset to reduce the number of columns. 

The columns were reduced to 300 after performing PCA 

analysis.  

  

2) Model Building:  

Scikit learn library was used to build the Logistic Regression 

model. The dataset was split into 20% test data and 80% 

training data.  

  

3) Model verification:  

The accuracy of the model was calculated using the accuracy 

score function. 

IV. ANDROID MALWARE PERMISSION BASED DATASET 

Android Malware permission Based Dataset is a newly 

generated dataset which comprises of permission with benign 

and malware. The actual dataset consists of 10686 rows 

signifies the APKs and 536 columns represents the various 

Android permissions and apk files. These APKs were 

collected from the CIC Dataset by University of New 

Brunswick. The permission in these APKs is compared with 

the default list of permissions by using python code and if 

match occurs then it is labelled as malware else benign, which 

is used for the purpose of machine learning. 

V. DATA COLLECTION 

The APK samples was gathered from AndroZoo, which is a 

growing repository of Android apps extracted from a variety 

of sources, including the official Google Play app store. It 

currently contains 15,510,743 APKs, each of which has been 

(or will soon be) analyzed by dozens of Antivirus products to 

determine which applications are classified as Malware [10].  

This was started in 2016 by researchers from the University 

of Luxembourg and is still growing. For this experiment, 

10,686 APKs from AndroZoo were selected from 2013 to 

2016 by filtering them by virus total detection with 0 to 30+ 

to obtain higher certainty of malware samples, allowing for 

efficient and broad Android application markets to be 

included. 

VI. ML DATASET GENERATION 

A. Feature extraction 

 Android applications are packaged as APK archives. 

The manifest, AndroidManifest.xml, is a critical component 

of this file. Android manifest.xml contains several elements, 

including the package name, permissions. App permissions 

protect user privacy by limiting access to Restricted data 

(such as device state and a user's contact information) and 

Restricted actions. 

B. Data set generation 

 Android malware has emerged as the most serious 

threat to the widely used Android ecosystem. Several machine 

learning-based techniques for detecting Android malware are 

continually being developed. 

 

 Permissions are extracted from Malware and Benign 

applications in their respective folders using jadx, a Dex to 

Java decompiler through which each APK is unpacked and 

permissions are extracted using AndroidManifest.xml by 

setting the status to permission list which exists in Perm List 

and it constantly updating the list, and then combined into a 

single Comma Separated Values (.csv) for use in machine 

learning techniques [11]. 

 

 The first column provides the "NAME" of the 

relevant APK, while the last column "CLASS" indicates if the 

application corresponds to the benign or malware training set. 

[Benign=0, Malware=1], in between Name and Class all are 

of permissions [0=The Android application does not use this 

permission, 1=The Android application uses this permission]. 

 
File Name P 1 P 2 … P N CLASS 

Malware APK 1 1 1 … 0 1 

Malware APK 2 0 0 … 1 1 

Benign APK 1 1 1 … 1 0 

Benign APK 2 1 1 … 0 0 

Table 3: Data Set Format 

 Table (3) shows how data is formatted, and data set 

is produced for 10685 APK samples i.e., 3000 samples of 

Benign and 7686 samples are malware, and 536 unique 

permissions are extracted [12]. 

 

 Data set produced from the above extraction which 

is a sparce data set means that a large percentage of the values 

are zeros on each row for an Android Application Packages 

with the permissions used and class either malware or benign. 

and with 10686 APK samples on average 0.017 permissions 

are used of 536 permissions Table (4) shows the detailed count 

of the data set. 

 
COUNT SUM AVERAGE 0’s 1’s 

5727696 101806 0.017774337 5625890 101806 

Table 4: Data Set Count 

 Table (5) shows permissions that are repeated and 

merged as one column in order to reduce the number of 

columns with unique permissions, in this case for 

permission.C2D_MESSAGE is given as [application's 

package + ".permission.C2D_MESSAGE"] in APK 

AndroidManifest.xml over 750 out of 10685 similarly for the 

other permissions mentioned below with their count on the 

side. 
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PERMISSION Count  PERMISSION Count  

C2D_MESSAGE 750 WRITE_SETTINGS 21 

JPUSH_MESSAG 41 RECEIVE 12 

MAPS_RECEIVE 98 INSTALL_SHORTCUT 8 

READ_SETTINGS 33 ACCESS_DOWNLOAD_MANAGER 6 

WRITE_SETTINGS 20 ACCESS_DOWNLOAD_MANAGER_
ADVANCED 

6 

 Table 5: Merged Permissions 

VII. DATASET PREPROCESSING 

1) Removing unimportant columns:  

In Android Malware Permission Based Dataset, the column 

"NAME" is not an important feature so this is removed by 

using the drop command. This feature does not provide much 

importance in detecting the malware in building machine 

learning models and some of features are also removed using 

feature selection techniques. 

 

2) Splitting the dataset to train and test:  

Splitting of train and test dataset is to evaluate how good 

the machine learning models are performing. Training the 

data is to build a model and testing the data is to evaluate the 

models. This evaluation is done in our dataset. 

 

3) Feature Scaling:  

Feature scaling is a technique for normalizing the 

independent variables range or data components. It is also 

known as data normalization. On our dataset some of the 

techniques are used as follows, 

Two feature scaling techniques below are used to analyze 

the attributes in the dataset which helped to identify top 

important features for developing the model. 

A. Principal Component Analysis 

 PCA is an unsupervised learning technique that 

reduces the dimensionality of the data which is used 

frequently in machine learning. If the dataset has larger 

dimensionalities, it will be expensive when training the model, 

also this will reduce the accuracy or efficiency of the model. 

So, it is important to reduce the dimensions of the data and 

then train the system. But there should not be any loss of 

information while reducing the dimensions of the data. PCA 

helps to identify the important features of the data based on 

the variance. The feature which has the highest variance is the 

first principal component and arranges them in the order of 

feature’s variance [13]. 

 

 The graph is plotted with the xlabel as number of 

components to the ylabel as cumulative explained variance. It 

shows that there are approximately 300 out of 567 features 

contains important data which is used to train, test and create 

a model and the remaining features can be less important or 

null values. This further helps to improve the performance of 

the model. Models are created for 350 features to compare the 

performance based on the attributes given by PCA analysis. 

 

Figure 1: PCA-Cumulative variance 
 

Then using PCA gives the top 10 components depends on its 

variance. 

 

 
Figure 2: PCA-Variance 

  

 The above PCA variance graph shows that the first 

principal component (PCA1) has the variance of 2.25 which 

then decreases gradually, these 10 components are considered 

in this dataset in which these information can be used to test 

and train the model and predict its accuracy and another data 

processing is done by using feature importance. 

B. Feature Importance 

 The important factor that has an impact on the 

performance of the machine learning malware detection 

system is the features present in the sample data [14]. Feature 

importance is a technique which assign a score to the input 

values or features and predict whether they are useful to target 

variable. This helps for dimensionality reduction and feature 

selection which helps in improving the accuracy and 

effectiveness of the model. 

  

 Here, Random Forest classifier is used to get the 

feature scores of the features using feature importance. 
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Figure 3: Visualization of feature score of the features. 

 

The top 5 features of the Android malware dataset are, 

 

Feature name Feature 

score 

permission.READ_PHONE_STATE 0.175198 

permission.ACCESS_WIFI_STATE 0.078058 

permission.INSTALL_SHORTCUT 0.041135 

permission.GET_TASKS 0.040872 

android.permission.SYSTEM_ALERT_WI

NDOW 

0.036117 

Table 6: Top 5 features of Android Malware Data Set 

 Feature importance method is used to get the top 300 

features by using its variance or the feature score, which helps 

to identify the important features that helps to build an 

efficient model. DERBIN dataset has 113 Manifest 

permissions on which 108 are found similar from Android 

permission Based Data set’s 526 Permissions i.e., 418 unique 

permissions are found up on compared with DERBIN dataset.  

VIII. EXPERIMENTAL RESULTS 

The efficiency of the ML-based models can be evaluated  

using metrics such as accuracy, precision, recall and f1-score. 

The overall effectiveness of the machine learning algorithms 

in detecting the malware based on the Android permissions is 

given by accuracy. To evaluate the performance of the 

classification or information retrieval precision and recall are 

used. It helps to define the false positive and false negative. 

Higher the F1-score the better the performance of the machine 

learning model. 

 

Algorithms ML Evaluation Metrics 

Accuracy Precision Recall F1-

score 

Logistic 

Regression 

85.22% 0.81 0.81 0.81 

Random 

Forest 

Classifier 

85.73% 0.84 0.79 0.81 

Decision 

Tree 

Classifier 

83.72% 0.80 0.78 0.79 

XGB 

Classifier 

86.20% 0.85 0.80 0.82 

Table 7: Result Analysis using PCA 

 By considering 300 features in the dataset, Logistic 

regression, Random Forest classifier, Decision Tree Classifier 

and XGBooster Classifier model have been trained and 

predicted its accuracy of the model. 

 

 By performing feature importance, the top 300 

features are filtered out and built a machine learning models 

to detect malware. Accuracy of the model tells how effective 

the ML models in Table 7 in detecting the malware. 

 

Algorithms ML Evaluation Metrics 

Accuracy Precision Recall F1-

score 

Logistic 

Regression 

84.94% 0.81 0.81 0.81 

Random 

Forest 

Classifier 

86.44% 0.84 0.79 0.81 

Decision 

Tree 

Classifier 

84.89% 0.80 0.78 0.79 

XGB 

Classifier 

86.00% 0.82 0.82 0.82 

Table 8: Result Analysis using Feature Importance 

 From this result, the Random Forest Classifier Model 

has the highest accuracy of 86.44% in detecting malware and 

Decision Tree Classifier has the least accuracy of 84.89%. The 

other two models such as Logistic Regression and XGB 

Classifier also obtained better accuracy of 84.94% and 

86.00% respectively. 

 

 A confusion matrix is a methodology for describing 

a classification algorithm's performance. When there are an 

uneven number of observations in each class or more than two 

classes in the dataset, classification accuracy alone might be 

deceptive. Calculating a confusion_matrix can help 

to understand whether the classification model is getting 

correctly and what kind of errors it is making. 

 

 Predicted Label 

A
ct

u
al

 

L
ab

el
 

 

0 

0 1 

74.46% 64.90% 25.53% 35.09% 

65.07% 66.06% 34.92% 33.93% 

1 10.51% 8.81% 89.48% 91.18% 

6.07% 5.55% 93.92% 94.44% 

 

 

 

 

 
Table 9: Confusion Matrix of Android Malware Dataset 

 Confusion matrix of Android Malware Permission 

Based Dataset indicates that performance of Logistic 

Regression, Decision Tree Classifier, Random Forest 

Classifier and XGBooster Classifier algorithms are almost 

similar, which is around 80% of true positives. But when 

compared to all four algorithms, XGBooster Classifier has 

lesser number of false positives of 5.55% and Logistic 

Regression has lesser number of false negatives of 25.53%. 

 

___ Logistic Regression 

___ Decision Tree Classifier 

___ Random Forest Classifier 

___ XGBooster Classifier 
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 By using the feature scaling technique of Principal 

Component Analysis, attributes are scaled to various numbers 

of 10, 300 and 350. The machine learning algorithms such as 

Logistic Regression, Random Forest Classifier, Decision Tree 

Classifier and XBG Classifier are used, and its overall 

performance are compared to find the efficiency of the model 

when various levels of attributes are taken into consideration. 

This paper mainly focuses on the accuracy for 300 features but 

to differentiate the performance of the model through various 

attributes selection. 

 

ML Algorithms Accuracy for 10 

features 

Accuracy for 

350 features 

Logistic 

Regression 

73.85% 85.31% 

Random Forest 

Classifier 

84.28% 85.50% 

Decision Tree 

Classifier 

81.34% 82.46% 

XGBooster 

Classifier 

83.21% 86.58% 

Table 10: Accuracy Comparison 

 When compared the accuracy for 10 and 350 

features, the performance of Logistic Regression model is 

more efficient for 350 features. Random Forest Classifier has 

higher accuracy of 84.28% for 10 attributes and XGBooster 

Classifier has higher accuracy of 86.58% for 350 attributes. 

 

 Even if 350 attributes are taken into consideration, 

the overall performance of the algorithms are similar by using 

the feature scaling techniques of Principal Component 

Analysis but there is a better difference in the performance of 

models selection of 10 features are considered. 

IX. DISCUSSION 

CICMalDroid vs Android-Malware-Permission-Based-

Dataset 

 

CICMalDroid 2020 dataset is extracted from  17,341 Android 

samples from various datasets, including the VirusTotal 

service, Contagio security blog, AMD, MalDozer, and others. 

upon comparing with our permission-based data set we have 

performed with 10685 APKs of 14 different markets and both 

are from the same source Androzoo of 15,510,743 APKS.  

 

When it comes to feature extraction maldroid extracted 

Activities, Metadata, permissions, System features (camera 

and internet) which comes under static analysis Data set. 

Permission based data set is well organized compared to 

Maldroid data set within detail representation of each 

permission. 

 

Considering the results of both datasets, CICMalDroid 2020 

has high F1 score of 97.84 % compared to the Permission 

based Dataset which has 81%. Even though the F1 score is 

comparatively less than the CICMalDroid, the accuracy of 

86.44% that has been obtained by performing Machine 

learning models is good enough to say that the Dataset which 

has been created is effective. 

 

DERBIN vs Android-Malware-Permission-Based-Dataset 

 

For over 123,453 applications from various markets and 

5,560 recent malware samples from Chinese Markets, 

Russian Markets, and other sources, DREBIN performs a 

comprehensive static analysis by capturing as many features 

as possible from the application's manifest for feature 

extraction such as permissions, API calls, and network 

addresses. with the similar approach we have extracted 

permissions by labelling malware / benign though virus total 

detection rate.  

 

READ_PHONE_STATE was noted in top 5 features among 

both the datasets, of DERBIN’s FakeInstaller DroidKungFu, 

GingerMaster families and Permission based dataset. As 

DERBIN using large number of APK samples their top 

feature varies from our Permission based dataset.   

 

The accuracy obtained in DERBIN Dataset by performing 

Logistic regression, Decision Tree, random forest, Neural 

network is around 99.92%, whereas accuracy of the 

Permission Based Dataset is around 86.44%. 

 

X. CONCLUSION 

 Once the Android Malware Permission Based 

dataset is created for different android permissions, it has been 

analyzed and cleaned. This is known as data preprocessing 

such as removing unwanted features, splitting the dataset and 

feature scaling to get final dataset. The dataset has 10686 rows 

and 538 columns. The rows represent the different apk. 

 

 Different types of machine learning techniques were 

used to detect malware from Android Malware Permission 

Based Dataset: Logistic regression, Random Forest Classifier, 

Decision tress classifier, XGB classifier.  

 

 Logistic Regression can be used to examine the 

association of the permissions with either benign or malware 

label. Random forest classifier was particularly useful in the 

case of missing values such that it can maintain high accuracy 

even with missing values. Decision tree and XGB classifier 

models work on structured data, they help to distinguish 

various permission patterns and their outcomes as benign or 

malware. All these models are compared with their accuracy 

and the effectiveness of the model is obtained.  

 

 The Android Malware Permission Based Dataset can 

be used to identify the malware based on the set of permissions 

that are requested from the system. The dataset has 537 

columns which enlist the permissions requested by the apk 

files and their classification as Malware or Benign. For this 

paper we worked with 300 features to train the models. 

Extracting few more features with large number of APK 

samples helps in getting good results which benefits the  

developers working on ML techniques to detect malware. The 

models that have been trained on the dataset show promising 

results in detection of malware.  

 

 A possible future application of this research could 

be the use of these trained models in building an anti-virus 
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system. The detection capabilities will allow for previously 

unknown malwares to be detected.  

 

Dataset is available for download at  

https://github.com/harrypro02/Android-Malware-

Permission-based-Dataset 
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