

Analysis of Android Malware Permission Based Dataset Using
Machine Learning

ISSM581: Research Project

Spring 2021

Sushmitha Suruliyandi Ramani (ssuruliy@student.concordia.ab.ca)

Manikanta Naralasetty (mnaralas@student.concordia.ab.ca)

Avneesh (alnu28@student.concordia.ab.ca)

Ambica Kothakapu (akothaka@student.concordia.ab.ca)

Shainija Rudraraju (srudrara@student.concordia.ab.ca)

Sai Harish Nasina (snasina@student.concordia.ab.ca)

Sirisha Metla (smetla@student.concordia.ab.ca)

Research Project

Submitted to Faculty of Graduate Studies

Concordia University Of Edmonton

In Partial Fulfilment of the

Requirements of ISSM-581 Course

Concordia University Of Edmonton

FACULTY OF GRADUATE STUDIES

Edmonton , Alberta

Advisor: Dr. Sergey Butakov (sergey.butakov@concordia.ab.ca)

Department of Information Systems Security Management

Concordia University of Edmonton,

Edmonton T5B 4E4, Alberta, Canada

mailto:ssuruliy@student.concordia.ab.ca
mailto:mnaralas@student.concordia.ab.ca
mailto:alnu28@student.concordia.ab.ca
mailto:akothaka@student.concordia.ab.ca
mailto:srudrara@student.concordia.ab.ca
mailto:snasina@student.concordia.ab.ca
mailto:smetla@student.concordia.ab.ca
mailto:sergey.butakov@concordia.ab.ca

2

Analysis of Android Malware Permission Based Dataset Using
Machine Learning

Sushmitha Suruliyandi Ramani, Avneesh,

Manikanta Naralasetty, Ambica Kothakapu,

Shainija Rudraraju, Sai Harish Nasina,Sirisha Metla

Approved:

Sergey Butakov [Original Approval on File]

Sergey Butakov Date: June 23, 2021

Primary Supervisor

Patrick Kamau [Original Approval on File]

Patrick Kamau, PhD, MCIC, PChem. Date: June 23, 2021

Dean, Faculty of Graduate Studies

3

Table of Contents

List of Tables ---

3

List of Figures --

4

I. Introduction --

5

II. Literature Review--

5

 A. Malware Detection Techniques --- 5

 1. Signature Based Technique -- 5

 2. Behavior Based Detection -- 5

 3.Heuristic Based Detection --- 6

 4. Deep Learn Detection --- 6

 5. IOT Based Detection -- 6

 6. Cloud Based Detection -- 6

 7. Machine Learning Algorithms --- 6

 B. Machine Learning Approaches to Detect Malware --- 6

 1. Supervised Learning -- 6

 2. Unsupervised Learning --- 6

 3. Reinforced Learning --

6

 C. Existing Datasets --

6

III. Methodology --- 8

 1. Data Engineering --- 8

 2. Model Building --- 8

 3. Model Verification --- 8

IV. Android Malware Permission Based Dataset --- 8

V. Data Collection --- 8

VI. ML Dataset Generation --- 8

VII. Data Preprocessing -- 9

 A. Principal Component Analysis --- 9

 B. Feature Importance -- 9

VIII. Experimental Results -- 10

IX. Discussion -- 11

X. Conclusion --- 11

XI. References -- 12

4

List of Tables

Table 1: Top 5 Malware families and its features --

7

Table 2: Test results of Drebin dataset ---

7

Table 3: Data Set Format --

8

Table 4: Data Set Count ---

8

Table 5: Merged Permissions ---

9

Table 6: Top 5 features of Android Malware Data Set --

10

Table 7: Result Analysis using PCA ---

10

Table 8: Result Analysis using Feature Importance ---

10

Table 9: Confusion Matrix of Android Malware Dataset ---

10

Table 10: Accuracy Comparison --- 11

5

List of Figures

Figure 1: PCA Cumulative Variance --

9

Figure 2: PCA Variance ---

9

Figure 3: Visualization of Feature Score of the Feature -- 10

6

Analysis of Android Malware Permission Based Dataset
Using Machine Learning

Sushmitha Suruliyandi Ramani (ssuruliy@student.concordia.ab.ca)

Manikanta Naralasetty (mnaralas@student.concordia.ab.ca)

Avneesh (alnu28@student.concordia.ab.ca)

Ambica Kothakapu (akothaka@student.concordia.ab.ca)

Shainija Rudraraju (srudrara@student.concordia.ab.ca)

Sai Harish Nasina (snasina@student.concordia.ab.ca)

Sirisha Metla (smetla@student.concordia.ab.ca)

Sergey Butakov (sergey.butakov@concordia.ab.ca)

Abstract—Security threats in Android applications

have grown in sync with Android’s growth. Machine

leaning can be used to add functionality to traditional

antivirus systems. Such an approach necessitates the

identification and labelling of a large amount of harmful

and benign code in advance to use it for model training.

The modeling techniques and its practical implementation

using the Android Malware Permission based dataset to

find whether it is benign, or malware have been proposed

in this paper. Random Forest Classifier, Logistic

Regression, Decision Tree Classifier, XGB Classifier are

the machine learning algorithms implemented in this

research. The overall performance of approximately 85%

of accuracy has been achieved on the dataset. The dataset

is freely available to the research community.

 Keywords— Machine learning, Android Malware,

Permission, Dataset, Malware.

I. INTRODUCTION

 This research looks at the problem of classifying

Android applications whether it is benign or malware

depending on the characteristics that can be extracted from the

application package prior to its execution. The suspicious

behavior of an application typically requires permissions that

could be an indicator of suspicious activity being carried out

by that application. This project superimposes machine

learning algorithms on a raw dataset of Android permissions

which have been classified as malware or benign to learn the

characteristics of malware.

 Android’s file format for distributing and installing

applications is APK, which stands for Android Package Kit

(also known as Android Application Package). It contains all

of the components that an app needs to properly run on your

smartphone [1]. This research will help in uncovering the

various patterns that are followed by an infected apk while

accessing permissions. This will allow us to better prepare for

such malware and help in early detection using machine

learning algorithms.

 In order to tackle the ever-changing security issues

caused by malware there is a need of an up-to-date Android

malware dataset. This dataset should be able to provide the

various characteristic features of malware in Android APKs.

Such characteristic features are identified based on the

permissions that have been sought by the apk being analyzed.

The dataset used for this research maps the permissions for

each apk as used and not used. A binary mapping of this sort

allows the machine learning models to learn the characteristics

of the malware and better predict the nature of unknown

APKs.

 Various models exist in machine learning to apply to

Android malware datasets to uncover the underlying features.

However, there is a need for building novel models given the

nature of the dataset. This will help train the model better on

the existing dataset and deliver good test results when tested

against relatively new set of APKs. Models that allow for

binary classification of data will be used for the purpose of this

research. Some popular types of Android malware are

Trojans, Keyloggers, Spyware, Ransomware.

 To protect against the breakout of Android malwares

it is crucial to be able to defend the devices in real time. This

is achieved through machine learning by checking for the

permissions requested by different APKs. The dataset being

used contain numerous such APKs identified as malware or

benign and the permissions that they sought after. This will

allow for models to be trained to detect malicious activity

based on the permissions being requested by the application.

II. LITERATURE REVIEW

A. Malware Detection Techniques

 Several malware detection techniques are used in

real world to detect the malwares. The most popular detection

techniques are signature-based detection and behavior-based

detection.

1) Signature Based Detection

A fingerprint of the file is known as Signature which can be

uniquely identify. In case of malware, these fingerprints are

extracted from the common patterns followed by the malware

to identify it. Most of the antivirus software use this detection

technique. Signature based detection however performs

poorly in case of unknown malware [2].

2) Behavior Based Detection

Behavior based detection techniques detect malware based on

the behavior of the file with the environment. Behavior based

techniques cover the short coming of signature-based

mailto:ssuruliy@student.concordia.ab.ca
mailto:mnaralas@student.concordia.ab.ca
mailto:alnu28@student.concordia.ab.ca
mailto:akothaka@student.concordia.ab.ca
mailto:srudrara@student.concordia.ab.ca
mailto:snasina@student.concordia.ab.ca
mailto:smetla@student.concordia.ab.ca
mailto:sergey.butakov@concordia.ab.ca

7

detection since they can detect malicious content based on the

behavior. This is particularly helpful when the malware

mutates and changes its code to avoid detection since it

requests for the same permissions and system resources and is

thus possible to detect [2].

3) Heuristic Based Detection

Heuristic based approaches make use of techniques from

signature-based detection and behavior-based detection. IT

makes use of various hybrid features such as opcodes, APIs,

and DLLs. These techniques have enabled the detection of

zero-day malwares which are very hard to detect. However,

in the case of complex malwares this process proves to be a

weak detection technique [2].

4) Deep Learning Based Detection

Deep learning is a subsection of Artificial Intelligence and

can work on unlabeled data for detecting patterns among

them. From these patterns the program can learn and can then

detect malicious behavior from files. Deep learning also

reduces the number of features required for detecting

malware [2].

5) IOT Based Detection

Internet of Things devices are becoming more popular

nowadays and include devices such as smart home

appliances, mobile devices etc. Due to their growing

popularity, they have become the target of attackers who

previously focused on computers. The malware on Android

devices is detecting by looking at the set of permissions being

requested and classifying them as benign or malware [2].

6) Cloud Based Detection

Cloud technology is rapid growing these days. It has found

its application in malware detection as well through security

as a service. Users can upload any file to the cloud and detect

if the file is malicious or not. This is possible due to the

capacity to store large datasets on the cloud and thus enhance

the detection techniques of mobile and personal computers by

providing security as a service [2].

7) Machine Learning Algorithms

Most detection techniques make use of machine learning

techniques to detect anomalous behavior among files. In the

case of an apk file, the features that can be used to classify it

as benign or malware are permissions, system calls etc. Once

the features have been extracted, machine learning algorithms

to it such as random forest, linear regression etc. can be

applied [2].

B. Machine Learning Approaches to detect Malware

 Malicious traffic can be detected through numerous

ways which is divided into supervised learning, unsupervised

learning, and reinforcement learning.

1) Supervised Learning

Supervised machine learning is one of the sub-categories

of artificial intelligence and machine learning. In this

technique labelled datasets are used to train and test the

performance of the models and to identify the data accurately.

During cross validation when the input is given to the model,

the weights are adjusted until it is fitted properly [3].

Supervised machine learning is further divided into two

categories for data mining: Classification and Regression.

i) Classification:

To accurately assign test data into certain categories,

classification uses an algorithm. It identifies certain entries in

the datasets which then tries to conclude that, this is how the

attributes are labelled or identified. Linear Classifier,

Random Forest Classifier, Decision Tree Classifier and

XGBooster Classifier are the most used classification

algorithms.

ii) Regression

 Regression is a technique to find the relationship between

the dependent and independent variables. It is commonly

used to produce estimates for an organization’s sales revenue.

Linear Regression, Logistic Regression, and Polynomial

Regression are some of the popular regression algorithms [3].

2) Unsupervised Learning

Unsupervised machine learning uses the ML techniques to

process based on unlabeled datasets and helps to analyses and

form clusters depending on the data. This algorithm can

provide data groupings and patterns automatically without

human interventions. It can find the similarities and

differences in the data. It is a good option for exploratory data

analysis and cross-selling techniques [4]. Clustering,

association, and dimensionality reduction are the three basic

tasks that unsupervised learning models use.

3) Reinforcement Learning

When machine learning models are trained to make a

series of decisions is called as reinforcement learning. The

agent acquires to achieve its goal in an uncertain and

potentially complex environment. An artificial intelligence

undergoes a game-like occurrence in reinforcement learning.

The computer uses the trial-and-error method to identify a

solution for a problem [4].

C. Existing Datasets

 Android malware datasets, which used one of the

above detection techniques and machine learning approaches

to detect malware.

CICMalDroid 2020:

• The total number of android samples are 17341.

• This dataset consists of recent and complex android

malware samples up to 2018.

• It contains diverse samples from five different types

such as SMS malware, banking malware, Adware,

riskware, and benign malware which are examples

of malicious software.

• When compared to other public databases, it has the

most comprehensive set of static and dynamic

functionality.

Data Collection:

 The android samples were gathered through various

sources like the Contagio security blog, AMD, VirusTotal,

8

MalDozer, and other datasets which have all been included in

recent research contributions. All the samples are gathered

from December 2017 to 2018. To develop effective

countermeasures and mitigation strategy, the cybersecurity

researchers need to identify the malwares in Android apps.

 The five categories of data in the dataset are SMS

malware, banking malware, adware, riskware and benign

malware.

Data Analysis:

CopperDroid was used as a VMI-based dynamic

analysis framework, recreation of low level OS specific and

high level android specific behaviours of samples are analyzed

dynamically to collected data. The successful test runs are for

13717 samples while rest of them are failed due to the errors

including timed-out, invalid APK files, and allocation of

memory failures.

Preprocessing of CICMalDroid 2020 dataset:

In the pre-processing phase, three categories of

dynamically observed behaviour are extracted from the

captured log files and the modules are system calls, binder

calls, and composite behaviours. This helped them to

automatic reconstruction of system call semantics such as

IPC, RPC, and complex android objects. The examples of

composite behaviour that grouped together widely used low

level system calls are FS_access (create, write),

network_access (read, write), and fs_pipe access (read,

write). Specifically, get_DisplayInfo, register_Callback, and

composite actions fs access(write) are binder calls which can

be obtained in JSON format from CopperDroid analysis.

With an F1- Score of 97.84 percent and a false

positive rate of 2.76 percent, the model can detect and

categorize malware. [5].

The Drebin Dataset

This dataset consists of 131,611 applications from

various malware families, in which is samples are gathered

from August 2010 to October 2012 [6]. Samples are collected

through the applications from GooglePlay, various alternative

app markets located in China and Russia, and other Android

websites, malware forums and security blogs and the

malwares from Android Genome Project. They used Anti-

virus scanners to detect the malicious applications which

helped them to ensure that the data are split accurately

between benign and malware [7].

The dataset has been spilt into eight categories such as [8],
• Hardware components are used to set required

permission by the software.

• Requested permissions, grant access to users to

install or use their appropriate resources.

• App components has activities, services, content

providers and broadcast receivers.

• Filtered intents which communicates between

various components and applications.

• Restricted API, Used permissions and Suspicious

API calls for sensitive data or resources.

• Network address, IP address, hostname, and the

URL.

Family name Top 5 features

FakeInstaller sendSMS

SEND_SMS

android.hardware.telephony

sendTextMessage

DroidKungFu SIG_STR

system/bin/su

BATTERY_CHANGED_ACTION

READ_PHONE_STATE

getSubscriberId

GoldDream sendSMS

lebar.gicp.net

DELETE_PACKAGES

android.provider.Telephony.SMS

_RECEIVED

getSubscriberId

GingerMaster USER_PRESENT

getSubscriberId

READ PHONE STATE

system/bin/su

HttpPost
Table 1: Top 5 Malware families and its features

Obfuscation Technology

 To render it more complicate for reverse engineers to

comprehend the apps or for detection technologies to identify

them, malicious application developers would obscure static

features to some level. The primary ways are Identifier

Renaming, String Confusion, Call Indirection, Junk Code

Insertion, Dynamic Code Loading [9].

 Various static detection approaches have different

counters for the obfuscation approaches mentioned above.

Static detection often enhances detection accuracy by

leveraging a multiple features.

Test Results

 When this dataset is trained using the models of

Logistic Regression, Decision Tree, Random Forest and

Neural Network for the 42,570 samples are as below [8].

Model Accuracy Precision Recall

Logistic Regression 99.45% 1 96.32%

Decision Tree 99.86% 1 95.91%

Random Forest 99.92% 1 95.85%

Neural Network 99.83% 1 99.95%
Table 2: Test results of Drebin dataset

 The Android malware dataset is different from

existing dataset since it makes use of obfuscation to better

capture the permissions used by the apk files being analyzed.

Obfuscation shortens the names of the application’s classes,

methods, and fields. Obfuscation is a security through

obscurity technique which alters the code to prevent automatic

or manual code analysis.

 The dataset contains obfuscated samples which are

used by malware authors to prevent detection without

9

changing original malware. The models being trained on this

dataset have a better scope of detecting the malware in the real

world where the code is often obfuscated to avoid detection.

III. METHODOLOGY

1) Data engineering:

The APKs were downloaded from the CIC Dataset provided

by University of New Brunswick. These APKs were

classified using Virus Total into Benign and Malware. The

permissions in these APKs were extracted and compared with

a default permission list, if a match occurs those permissions

were labelled as 1 otherwise 0. The columns were filtered

based on the unique values they contain and the total number

of columns are 536. Principal Component Analysis was

performed on the dataset to reduce the number of columns.

The columns were reduced to 300 after performing PCA

analysis.

2) Model Building:

Scikit learn library was used to build the Logistic Regression

model. The dataset was split into 20% test data and 80%

training data.

3) Model verification:

The accuracy of the model was calculated using the accuracy

score function.

IV. ANDROID MALWARE PERMISSION BASED DATASET

Android Malware permission Based Dataset is a newly

generated dataset which comprises of permission with benign

and malware. The actual dataset consists of 10686 rows

signifies the APKs and 536 columns represents the various

Android permissions and apk files. These APKs were

collected from the CIC Dataset by University of New

Brunswick. The permission in these APKs is compared with

the default list of permissions by using python code and if

match occurs then it is labelled as malware else benign, which

is used for the purpose of machine learning.

V. DATA COLLECTION

The APK samples was gathered from AndroZoo, which is a

growing repository of Android apps extracted from a variety

of sources, including the official Google Play app store. It

currently contains 15,510,743 APKs, each of which has been

(or will soon be) analyzed by dozens of Antivirus products to

determine which applications are classified as Malware [10].

This was started in 2016 by researchers from the University

of Luxembourg and is still growing. For this experiment,

10,686 APKs from AndroZoo were selected from 2013 to

2016 by filtering them by virus total detection with 0 to 30+

to obtain higher certainty of malware samples, allowing for

efficient and broad Android application markets to be

included.

VI. ML DATASET GENERATION

A. Feature extraction

 Android applications are packaged as APK archives.

The manifest, AndroidManifest.xml, is a critical component

of this file. Android manifest.xml contains several elements,

including the package name, permissions. App permissions

protect user privacy by limiting access to Restricted data

(such as device state and a user's contact information) and

Restricted actions.

B. Data set generation

 Android malware has emerged as the most serious

threat to the widely used Android ecosystem. Several machine

learning-based techniques for detecting Android malware are

continually being developed.

 Permissions are extracted from Malware and Benign

applications in their respective folders using jadx, a Dex to

Java decompiler through which each APK is unpacked and

permissions are extracted using AndroidManifest.xml by

setting the status to permission list which exists in Perm List

and it constantly updating the list, and then combined into a

single Comma Separated Values (.csv) for use in machine

learning techniques [11].

 The first column provides the "NAME" of the

relevant APK, while the last column "CLASS" indicates if the

application corresponds to the benign or malware training set.

[Benign=0, Malware=1], in between Name and Class all are

of permissions [0=The Android application does not use this

permission, 1=The Android application uses this permission].

File Name P 1 P 2 … P N CLASS

Malware APK 1 1 1 … 0 1

Malware APK 2 0 0 … 1 1

Benign APK 1 1 1 … 1 0

Benign APK 2 1 1 … 0 0

Table 3: Data Set Format

 Table (3) shows how data is formatted, and data set

is produced for 10685 APK samples i.e., 3000 samples of

Benign and 7686 samples are malware, and 536 unique

permissions are extracted [12].

 Data set produced from the above extraction which

is a sparce data set means that a large percentage of the values

are zeros on each row for an Android Application Packages

with the permissions used and class either malware or benign.

and with 10686 APK samples on average 0.017 permissions

are used of 536 permissions Table (4) shows the detailed count

of the data set.

COUNT SUM AVERAGE 0’s 1’s

5727696 101806 0.017774337 5625890 101806

Table 4: Data Set Count

 Table (5) shows permissions that are repeated and

merged as one column in order to reduce the number of

columns with unique permissions, in this case for

permission.C2D_MESSAGE is given as [application's

package + ".permission.C2D_MESSAGE"] in APK

AndroidManifest.xml over 750 out of 10685 similarly for the

other permissions mentioned below with their count on the

side.

10

PERMISSION Count PERMISSION Count

C2D_MESSAGE 750 WRITE_SETTINGS 21

JPUSH_MESSAG 41 RECEIVE 12

MAPS_RECEIVE 98 INSTALL_SHORTCUT 8

READ_SETTINGS 33 ACCESS_DOWNLOAD_MANAGER 6

WRITE_SETTINGS 20 ACCESS_DOWNLOAD_MANAGER_
ADVANCED

6

 Table 5: Merged Permissions

VII. DATASET PREPROCESSING

1) Removing unimportant columns:

In Android Malware Permission Based Dataset, the column

"NAME" is not an important feature so this is removed by

using the drop command. This feature does not provide much

importance in detecting the malware in building machine

learning models and some of features are also removed using

feature selection techniques.

2) Splitting the dataset to train and test:

Splitting of train and test dataset is to evaluate how good

the machine learning models are performing. Training the

data is to build a model and testing the data is to evaluate the

models. This evaluation is done in our dataset.

3) Feature Scaling:

Feature scaling is a technique for normalizing the

independent variables range or data components. It is also

known as data normalization. On our dataset some of the

techniques are used as follows,

Two feature scaling techniques below are used to analyze

the attributes in the dataset which helped to identify top

important features for developing the model.

A. Principal Component Analysis

 PCA is an unsupervised learning technique that

reduces the dimensionality of the data which is used

frequently in machine learning. If the dataset has larger

dimensionalities, it will be expensive when training the model,

also this will reduce the accuracy or efficiency of the model.

So, it is important to reduce the dimensions of the data and

then train the system. But there should not be any loss of

information while reducing the dimensions of the data. PCA

helps to identify the important features of the data based on

the variance. The feature which has the highest variance is the

first principal component and arranges them in the order of

feature’s variance [13].

 The graph is plotted with the xlabel as number of

components to the ylabel as cumulative explained variance. It

shows that there are approximately 300 out of 567 features

contains important data which is used to train, test and create

a model and the remaining features can be less important or

null values. This further helps to improve the performance of

the model. Models are created for 350 features to compare the

performance based on the attributes given by PCA analysis.

Figure 1: PCA-Cumulative variance

Then using PCA gives the top 10 components depends on its

variance.

Figure 2: PCA-Variance

 The above PCA variance graph shows that the first

principal component (PCA1) has the variance of 2.25 which

then decreases gradually, these 10 components are considered

in this dataset in which these information can be used to test

and train the model and predict its accuracy and another data

processing is done by using feature importance.

B. Feature Importance

 The important factor that has an impact on the

performance of the machine learning malware detection

system is the features present in the sample data [14]. Feature

importance is a technique which assign a score to the input

values or features and predict whether they are useful to target

variable. This helps for dimensionality reduction and feature

selection which helps in improving the accuracy and

effectiveness of the model.

 Here, Random Forest classifier is used to get the

feature scores of the features using feature importance.

11

Figure 3: Visualization of feature score of the features.

The top 5 features of the Android malware dataset are,

Feature name Feature

score

permission.READ_PHONE_STATE 0.175198

permission.ACCESS_WIFI_STATE 0.078058

permission.INSTALL_SHORTCUT 0.041135

permission.GET_TASKS 0.040872

android.permission.SYSTEM_ALERT_WI

NDOW

0.036117

Table 6: Top 5 features of Android Malware Data Set

 Feature importance method is used to get the top 300

features by using its variance or the feature score, which helps

to identify the important features that helps to build an

efficient model. DERBIN dataset has 113 Manifest

permissions on which 108 are found similar from Android

permission Based Data set’s 526 Permissions i.e., 418 unique

permissions are found up on compared with DERBIN dataset.

VIII. EXPERIMENTAL RESULTS

The efficiency of the ML-based models can be evaluated

using metrics such as accuracy, precision, recall and f1-score.

The overall effectiveness of the machine learning algorithms

in detecting the malware based on the Android permissions is

given by accuracy. To evaluate the performance of the

classification or information retrieval precision and recall are

used. It helps to define the false positive and false negative.

Higher the F1-score the better the performance of the machine

learning model.

Algorithms ML Evaluation Metrics

Accuracy Precision Recall F1-

score

Logistic

Regression

85.22% 0.81 0.81 0.81

Random

Forest

Classifier

85.73% 0.84 0.79 0.81

Decision

Tree

Classifier

83.72% 0.80 0.78 0.79

XGB

Classifier

86.20% 0.85 0.80 0.82

Table 7: Result Analysis using PCA

 By considering 300 features in the dataset, Logistic

regression, Random Forest classifier, Decision Tree Classifier

and XGBooster Classifier model have been trained and

predicted its accuracy of the model.

 By performing feature importance, the top 300

features are filtered out and built a machine learning models

to detect malware. Accuracy of the model tells how effective

the ML models in Table 7 in detecting the malware.

Algorithms ML Evaluation Metrics

Accuracy Precision Recall F1-

score

Logistic

Regression

84.94% 0.81 0.81 0.81

Random

Forest

Classifier

86.44% 0.84 0.79 0.81

Decision

Tree

Classifier

84.89% 0.80 0.78 0.79

XGB

Classifier

86.00% 0.82 0.82 0.82

Table 8: Result Analysis using Feature Importance

 From this result, the Random Forest Classifier Model

has the highest accuracy of 86.44% in detecting malware and

Decision Tree Classifier has the least accuracy of 84.89%. The

other two models such as Logistic Regression and XGB

Classifier also obtained better accuracy of 84.94% and

86.00% respectively.

 A confusion matrix is a methodology for describing

a classification algorithm's performance. When there are an

uneven number of observations in each class or more than two

classes in the dataset, classification accuracy alone might be

deceptive. Calculating a confusion_matrix can help

to understand whether the classification model is getting

correctly and what kind of errors it is making.

 Predicted Label

A
ct

u
al

L
ab

el

0

0 1

74.46% 64.90% 25.53% 35.09%

65.07% 66.06% 34.92% 33.93%

1 10.51% 8.81% 89.48% 91.18%

6.07% 5.55% 93.92% 94.44%

Table 9: Confusion Matrix of Android Malware Dataset

 Confusion matrix of Android Malware Permission

Based Dataset indicates that performance of Logistic

Regression, Decision Tree Classifier, Random Forest

Classifier and XGBooster Classifier algorithms are almost

similar, which is around 80% of true positives. But when

compared to all four algorithms, XGBooster Classifier has

lesser number of false positives of 5.55% and Logistic

Regression has lesser number of false negatives of 25.53%.

___ Logistic Regression

___ Decision Tree Classifier

___ Random Forest Classifier

___ XGBooster Classifier

12

 By using the feature scaling technique of Principal

Component Analysis, attributes are scaled to various numbers

of 10, 300 and 350. The machine learning algorithms such as

Logistic Regression, Random Forest Classifier, Decision Tree

Classifier and XBG Classifier are used, and its overall

performance are compared to find the efficiency of the model

when various levels of attributes are taken into consideration.

This paper mainly focuses on the accuracy for 300 features but

to differentiate the performance of the model through various

attributes selection.

ML Algorithms Accuracy for 10

features

Accuracy for

350 features

Logistic

Regression

73.85% 85.31%

Random Forest

Classifier

84.28% 85.50%

Decision Tree

Classifier

81.34% 82.46%

XGBooster

Classifier

83.21% 86.58%

Table 10: Accuracy Comparison

 When compared the accuracy for 10 and 350

features, the performance of Logistic Regression model is

more efficient for 350 features. Random Forest Classifier has

higher accuracy of 84.28% for 10 attributes and XGBooster

Classifier has higher accuracy of 86.58% for 350 attributes.

 Even if 350 attributes are taken into consideration,

the overall performance of the algorithms are similar by using

the feature scaling techniques of Principal Component

Analysis but there is a better difference in the performance of

models selection of 10 features are considered.

IX. DISCUSSION

CICMalDroid vs Android-Malware-Permission-Based-

Dataset

CICMalDroid 2020 dataset is extracted from 17,341 Android

samples from various datasets, including the VirusTotal

service, Contagio security blog, AMD, MalDozer, and others.

upon comparing with our permission-based data set we have

performed with 10685 APKs of 14 different markets and both

are from the same source Androzoo of 15,510,743 APKS.

When it comes to feature extraction maldroid extracted

Activities, Metadata, permissions, System features (camera

and internet) which comes under static analysis Data set.

Permission based data set is well organized compared to

Maldroid data set within detail representation of each

permission.

Considering the results of both datasets, CICMalDroid 2020

has high F1 score of 97.84 % compared to the Permission

based Dataset which has 81%. Even though the F1 score is

comparatively less than the CICMalDroid, the accuracy of

86.44% that has been obtained by performing Machine

learning models is good enough to say that the Dataset which

has been created is effective.

DERBIN vs Android-Malware-Permission-Based-Dataset

For over 123,453 applications from various markets and

5,560 recent malware samples from Chinese Markets,

Russian Markets, and other sources, DREBIN performs a

comprehensive static analysis by capturing as many features

as possible from the application's manifest for feature

extraction such as permissions, API calls, and network

addresses. with the similar approach we have extracted

permissions by labelling malware / benign though virus total

detection rate.

READ_PHONE_STATE was noted in top 5 features among

both the datasets, of DERBIN’s FakeInstaller DroidKungFu,

GingerMaster families and Permission based dataset. As

DERBIN using large number of APK samples their top

feature varies from our Permission based dataset.

The accuracy obtained in DERBIN Dataset by performing

Logistic regression, Decision Tree, random forest, Neural

network is around 99.92%, whereas accuracy of the

Permission Based Dataset is around 86.44%.

X. CONCLUSION

 Once the Android Malware Permission Based

dataset is created for different android permissions, it has been

analyzed and cleaned. This is known as data preprocessing

such as removing unwanted features, splitting the dataset and

feature scaling to get final dataset. The dataset has 10686 rows

and 538 columns. The rows represent the different apk.

 Different types of machine learning techniques were

used to detect malware from Android Malware Permission

Based Dataset: Logistic regression, Random Forest Classifier,

Decision tress classifier, XGB classifier.

 Logistic Regression can be used to examine the

association of the permissions with either benign or malware

label. Random forest classifier was particularly useful in the

case of missing values such that it can maintain high accuracy

even with missing values. Decision tree and XGB classifier

models work on structured data, they help to distinguish

various permission patterns and their outcomes as benign or

malware. All these models are compared with their accuracy

and the effectiveness of the model is obtained.

 The Android Malware Permission Based Dataset can

be used to identify the malware based on the set of permissions

that are requested from the system. The dataset has 537

columns which enlist the permissions requested by the apk

files and their classification as Malware or Benign. For this

paper we worked with 300 features to train the models.

Extracting few more features with large number of APK

samples helps in getting good results which benefits the

developers working on ML techniques to detect malware. The

models that have been trained on the dataset show promising

results in detection of malware.

 A possible future application of this research could

be the use of these trained models in building an anti-virus

13

system. The detection capabilities will allow for previously

unknown malwares to be detected.

Dataset is available for download at

https://github.com/harrypro02/Android-Malware-

Permission-based-Dataset

REFERENCES

[1] B. STEGNER, "What Is an APK File and What Does

It Do?," 12 December 2017. [Online]. Available:

https://www.makeuseof.com/tag/what-is-apk-file/.

[Accessed 09 May 2021].

[2] B. M. Mehtre, "Advances In Malware Detection-An

Overview," arXiv e-prints, 2021.

[3] I. C. Education, "IBM Cloud Learn Hub," IBM, 19

August 2020. [Online]. Available:

https://www.ibm.com/cloud/learn/supervised-

learning. [Accessed 01 June 2021].

[4] B. Blazej, Osinski and Konard, "What is reinforcement

learning? The complete guide," 5 July 2018. [Online].

Available: https://deepsense.ai/what-is-reinforcement-

learning-the-complete-guide/. [Accessed 01 June

2021].

[5] S. Mahdavifar, A. K. Fitriah, Andi, F. Rasool, A. Dima

and A. G. Ali, "Dynamic Android Malware Category

Classification using Semi-Supervised Deep Learning,"

in The 18th IEEE International Conference on

Dependable, Autonomic, and Secure Computing

(DASC), 2020.

[6] D. Arp, M. Spreitzenbarth, M. Huebner, H. Gascon and

K. Rieck, ""Drebin: Efficient and Explainable

Detection of Android Malware in Your Pocket"," in

21th Annual Network and Distributed System Security

Symposium (NDSS), February 2014.

[7] M. Spreitzenbarth, F. Echtler, T. Schreck, F. C. Freling

and J. Hoffmann, ""MobileSandbox: Looking Deeper

into Android Applications"," in 28th International

ACM Symposium on Applied Computing (SAC), 2013.

[8] X. Liu, X. Du, X. Zhang, Q. Zhu, Z. H. Wang and M.

Guizani, ""Adversarial Samples on Android Malware

Detection Systems for IoT Systems"," Sensors (Basel,

Switzerland), vol. 19, February 2019.

[9] Q. Wu, X. Zhu and B. Liu, "A Survey of Android

Malware Static Detection Technology Based on

Machine Learning," Mobile Information Systems, vol.

vol. 2021, 2021.

[10] K. Allix, T. F. Bissyande, J. Klein and Y. L. Traon,

"AndroZoo: collecting millions of Android apps for the

research community," in 13th International

Conference on Mining Software Repositories, 2016.

[11] A. Kumar, V. Agarwal, S. K. Shandilya, A.

Shalaginov, S. Upadhyay and B. Yadav, "Platform for

Android Malware Classification and Performance

Evaluation," in IEEE, Los Angeles, CA, USA, 2019.

[12] harrypro02, "GitHub," Wednesday June 2021.

[Online]. Available:

https://github.com/harrypro02/Android-Malware-

Permission-Based-Dataset. [Accessed Wednesday

June 2021].

[13] P. Joshi and G. Ciaburro, Python Machine Learning

Cookbook - Second Edition, Packt Publishing, 2019.

[14] V. Kouliaridis, G. Kambourakis and T. Peng, "Feature

Importance in Android Malware Detection," in The

19th IEEE International Conference on Trust, Security

and Privacy in Computing and Communications (IEEE

TrustCom 2020), 2020.

https://github.com/harrypro02/Android-Malware-Permission-based-Dataset
https://github.com/harrypro02/Android-Malware-Permission-based-Dataset

