

Introduction

Roads

Fragmentation

Ecological effects

Habitat loss

Barrier to movement

Reduced gene flow

Limited access to resources

Introduction

Transportation agencies have begun **constructing wildlife passages** in an attempt to offset the ecological consequences.

Most studies focus on large mammals.

Few have examined the effects on smaller mammals at a multispecies level.

Research Questions

(1) **Does crossing success differ** between passages and if so, what environmental and structural characteristics best explain these differences?

(2) Does crossing success differ by species?

Factors

Crossing success should decrease with:

- limited cover
- artificial light
- open median
- openness

Objective

To provide targeted **management recommendations** for future development projects that intend to incorporate small fauna passages into the infrastructure design process.

Methods

- Highway 175
- Laurentides Wildlife Reserve
- forest dominated
- between Québec City and Saguenay
- 17 passages

rezi

- remotely triggered cameras
- monitored year round (2012 to 2014)

Passage Types

(a) Pipe culvert (PC) (n=6)
(b) Box culvert with dry concrete ledge (DCC) (n=7)
(c) Box culvert with dry wooden ledge (DWC) (n=4)

Statistical Methods and Models

- generalized linear mixed model
- binary data
- success (coded as a 1) or failure (coded as a 0) of each event
- fixed effects
- random effect (passage id)
- generated three models:
 - (a) a model ignoring species
 - (b) a model including species
 - (c) species specific models
 - micromammals
 - weasels

Results

- Total photos: 176,197
- Total independent events: 15,097
- Total species observed: 18 species
 - micromammals grouped as one taxa

Pipe culverts were significantly **less likely** to be crossed.

Prezi

Passages were significantly **less likely** to be crossed if the structure:

- had an open median (with the exception of weasels)
- had a low openness ratio
- was located at higher latitudes

Micro-mammals were the only species where artificial light had a significant (negative) effect on crossing success.

Discussion

- crossing success of smaller mammals is a function of the environmental and structural characteristics associated with the monitored passages
- smaller mammals have been found to avoid using passages that limit their visibility or expose them to areas of human activity, hence:
 - pipe culverts (which have a lower openness ratio) were not favoured, nor were passages where artificial light was present

Discussion

- segmented passages have the advantage of a higher openness ratio, but this comes at the cost of interrupting the animal's movement across the highway
- passages at higher latitudes experienced significantly less crossings
 - this may be due to the presence of wildlife fencing at lower latitudes that may have helped direct animals towards the passages

Conclusions

This study highlights how agencies can engineer more effective wildlife passages by minimizing the barrier effect of the structures themselves.

nank VOU

Model Without Species

Variables	Beta	Standard Error	Z-value	P-value
Passage Type (DWC)	-0.064	0.48	-0.14	0.89
Passage Type (PC) 🔶	-0.71	0.35	-2.01	0.044*
Openness	1.15	1.22	0.95	0.34
Median 🔶	-1.03	0.38	-2.69	0.0072*
Distance to Cover	-0.46	1.40	-0.32	0.75
Artificial Light	-0.48	0.56	-0.87	0.39
Location (km)	1.04	0.75	1.39	0.16

*Denotes a significant p-value at the 5% level of significance.

oner Monny

Model With Species

GLOBAL SPECIES MODEL					
Variables	Beta	Standard Error	Z-value	P-value	
Passage Type (DWC)	-0.34	0.44	-0.77	0.44	
Passage Type (PC)	-0.25	0.31	-0.80	0.43	
Openness 🔶	2.43	0.96	2.53	0.011*	
Median 🔶	-1.20	0.37	-3.25	0.0011*	
Distance to Cover	-2.10	1.12	-1.87	0.062	
Artificial Light	-0.20	0.45	-0.46	0.65	
Location (km) 📩	-1.46	0.66	-2.22	0.027*	
Species (MICRO) 📩	-3.85	0.27	-14.40	< 0.001*	
Species (MUVI) 🛛 🔶	-0.67	0.29	-2.32	0.020*	
Species (MUXX) 🔶	-1.73	0.23	-7.57	< 0.001*	
Species (ONZI) 🛛 🔶	-1.10	0.29	-3.73	< 0.001*	
Species (TAHU)	-3.28	0.48	-6.78	< 0.001*	

*Denotes a significant p-value at the 5% level of significance.

Prezi

Species-Specific Model for Micromammals

SPECIES-SPECIFIC MODEL FOR MICROMAMMALS

Beta	Standard Error	Z-value	P-value
-0.22	1.47	-0.15	0.88
0.44	0.91	0.49	0.63
5.02	3.04	1.65	0.099
-2.79	1.21	-2.30	0.022*
3.12	3.41	0.92	0.36
-2.00	0.96	-2.08	0.038*
-2.74	1.06	-2.60	0.0095*
	-0.22 0.44 5.02 -2.79 3.12 -2.00	-0.22 1.47 0.44 0.91 5.02 3.04 -2.79 1.21 3.12 3.41 -2.00 0.96	-0.22 1.47 -0.15 0.44 0.91 0.49 5.02 3.04 1.65 -2.79 1.21 -2.30 3.12 3.41 0.92 -2.00 0.96 -2.08

*Denotes a significant p-value at the 5% level of significance.

Species-Specific Model for Weasels

SPECIES-SPECIFIC MODEL FOR WEASELS

Variables	Beta	Standard Error	Z-value	P-value
Passage Type (DWC)	-0.56	0.64	-0.88	0.38
Passage Type (PC) 🔶	-1.37	0.63	-2.16	0.031*
Openness	2.77	2.55	1.08	0.28
Median	-0.73	0.61	-1.21	0.23
Distance to Cover	-1.96	2.62	-0.75	0.45
Artificial Light	1.81	1.09	1.66	0.097
Location (km)	-0.42	1.48	-0.29	0.77

*Denotes a significant p-value at the 5% level of significance.

Bédard, Y., C. Dussault, J. A. G. Jaeger, M. Leblond, J. Ouellet, J. Peltier, and M. St-Laurent, editors. 2012. Le Naturaliste Canadien. 136:2-108.

Bellis, M. A., C. R. Griffin, P. Warren, and S. D. Jackson. 2013. Oecologia Australis 17:111-128.

Clevenger, A. P., and A. V. Kociolek. 2013. Environmental Management 52:1299-1312.

Clevenger, A. P., and N. Waltho. 2000. Conservation Biology 14:47-56.

Clevenger, A. P., B. Chruszcz, and K. Gunson. 2001. Journal of Applied Ecology 38:1340-1349.

Forman, R. T. T., D. Sperling, J. A. Bissonette, A. P. Clevenger, C. D. Cutshall, V. H. Dale, L. Fahrig, R. France, C. R. Goldman, K. Heanue, J. A. Jones, F. J. Swanson, T. Turrentine, and T. C. Winter. 2003. Road Ecology.

Gagnon, J. W., N. L. Dodd, K. S. Ogren, and R. E. Schweignsburg. 2011. The Journal of Wildlife Management 75:1477-1487.

Glista, D. J., T. L. DeVault, and J. A. DeWoody. 2009. Landscape and Urban Planning 91:1–7.

Jaeger, J. A. G. 2012. Berkshire Publishing Group, Great Barrington, MA, pp. 344-350.

McDonald, W. R., and C. C. St. Clair. 2004. Journal of Applied Ecology 41:82-93.

Prezi

Reed, D. F., and A. L. Ward. 1985. Service d'Etudes Techniques de Routes et Autoroutes, Bagneaux, France, pp. 285-293.

Rodriguez, A., G. Crema, and M. Delibes. 1996. Journal of Applied Ecology 33:1527-1540.

Sollmann, R., A. Mohamed, H. Samejima, and A. Wilting. 2013. Biological Conservation 159:405-412.