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Abstract

The topological recursion is a construction in algebraic geometry that takes in

the data of a so-called spectral curve, S = (Σ, x, y) where Σ is a Riemann surface

and x, y : Σ → C∞ are meromorphic, and recursively constructs correlators which,

in applications, are then interpreted as generating functions. In many of these appli-

cations, for example the r-spin Hurwitz case S =
(
C, x(z) = ze−zr , y(z) = ez

r),
x has essential singularities when the underlying Riemann surface is compactified.

Previously, these essential singularities have been ignored and the topological recur-

sion considered on the non-compact surface. Here we argue that it is more natural to

include the essential singularities as ramification points and give the corresponding

definition for topological recursion; that is, a topological recursion for transalge-

braic spectral curves rather than algebraic spectral curves. We use this definition to

shed light on the TR/QC connection, Hurwitz theory, the Gromov-Witten invariants

of CP1, and mirror curves.
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Chapter 1

Introduction

The intersection between mathematics and physics has long been a fruitful area for

researchers to examine. In the past, research in this area has been focused upon

providing new physical insights using mathematics. However, as the mathematics

used in physical theories has become increasingly sophisticated research has been

conducted in the opposite vein, using physical intuition to arrive at new mathematical

insight. It is this rich vein that is mined in the following work. In particular, we

will focus on a construction in algebraic geometry known as topological recursion

[Eynard and Orantin, 2007c, Bouchard and Eynard, 2013] and its relation to formal

WKB solutions of certain Schrödinger-like equations [Gukov and Sulkowski, 2011,

Norbury, 2015, Bouchard and Eynard, 2017].

The topological recursion (TR) was first developed in the context of matrix

theory and QFT [Eynard, 2004], wherein it was viewed as a special solution to

certain loop equations, but it was quickly realised it could be generalised to a wide

field of applications [Eynard and Orantin, 2007c, Bouchard and Eynard, 2013,

Borot et al., 2018, Bouchard et al., 2008, Bouchard and Mariño, 2008]. It is a

recursive formalism that starts with the data of a so-called spectral curve, which is
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an algebraic curve P (x, y) = 0 along with additional structure on the first homology

class. We then parametrise the two variables x and y as meromorphic functions

on the corresponding Riemann surface, denoted Σ, by choosing an atlas on Σ and

considering the coordinate expression of projection onto x and y. With this the

topological recursion then constructs an infinite tower of symmetric n-differentials

denoted ωg,n that take in points on Σn. The interest in these ωg,n comes from the

fact that they often act as generating functions encoding interesting information in

their expansion coefficients. The most celebrated example of this is for the simple

spectral curve P (x, y) = x − y2 where the corresponding ωg,n encode the famous

Witten-Kontsevich numbers that were central to Kontsevich’s Fields Medal winning

proof of Witten’s conjecture [Witten, 1991, Kontsevich, 1992, Eynard and Orantin,

2007c]. But this is only one such example, and the topological recursion profits

from deep connections with such diverse topics as BPS structures [Iwaki and Kidwai,

2022, 2021], Givental formalsim and Frobenius manifolds [Dunin-Barkowski et al.,

2014], Hurwitz theory [Bouchard and Mariño, 2008, Eynard et al., 2009, Borot et al.,

2011], Gromov-Witten invariants of the complex projective line [Dunin-Barkowski

et al., 2017], Weil-Petterson volume of moduli spaces [Eynard and Orantin, 2007b,

Eynard, 2011], and beyond [Eynard and Orantin, 2009].

One important connection that topological recursion has to other fields, and

the connection that will be of primary importance to this thesis, is an intimate

relation to WKB theory, called the quantum curve/topological recursion connection

or QC/TR connection for short. To outline this connection we define the so-called

wave function from our tower of meromorphic forms ωg,n in a natural way

ψ(z) = exp

[
∞∑
g=0

∞∑
n=1

ℏ2g+n−2

n!

∫ z

b

· · ·
∫ z

b

(ωg,n − δg,0δn,2x
∗x∗ω0,2)

]
, (1.1)
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where b is a base point and the x∗x∗ω0,2 1 term can just be thought of as a ‘correction’.

Then, if we quantise a spectral curve P (x, y) by sending x and y to operators x̂ and

ŷ such that the canonical commutation relation [ŷ, x̂] = ℏ holds there is often a

so-called quantum curve P̂ (x̂, ŷ; ℏ) with P̂ (x, y; 0) = P (x, y) and

P̂ (x̂, ŷ; ℏ)Ψ(z) = 0. (1.2)

This is a rather remarkable result and has been shown to hold in a wide variety of

cases [Bouchard and Eynard, 2017, Eynard and Garcia-Failde, 2019, Eynard et al.,

2021].

Our focus then is on extending the numerous results in this area, but we will

particularly focus on the methods of Bouchard and Eynard [2017]. Critical to the

argument in Bouchard and Eynard [2017] was that the functions x and y lived on

a compact genus zero Riemann surface and were meromorphic. This precludes

important curves such as the r-spin Hurwitz curve P (x, y) = y − e(xy)
r whose

corresponding parametrisation can only be defined on a non-compact Riemann

surface [Bouchard and Mariño, 2008, Mulase et al., 2013]. To attack this case we

redefine the topological recursion so it can deal with essential singularities of x

and then consider the curve on a compact Riemann surface where the function x

has essential singularities. Dealing with the resulting spectral curves necessarily

involves dealing with transalgebraic [Pérez-Marco, 2019a] rather than algebraic

geometry; we therefore denote these spectral curves with essential singularities as

transalgebraic spectral curves. Importantly, this approach allows us to get quantum

curves in the r-spin Hurwitz case, but they are, shockingly, not the same quantum

curves as those obtained working directly with the r-spin Hurwitz numbers [Mulase

1ω0,2 is symmetric, so it does not matter which of its two variables one takes the pullback of the
pushforward in.
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et al., 2013].

In particular, this journey leads us to realise that our new topological recursion

calculates not the regular r-spin Hurwitz numbers (which are the ones calculated

when one neglects the essential singularity), but the r-atlantes Hurwitz numbers

and their corresponding quantum curve [Alexandrov et al., 2016]. Hitherto, it was

thought atlantes Hurwitz could not be calculated via topological recursion despite

satisfying loop equations as their spectral curves should be the same as regular r-spin

Hurwitz numbers, and it was know regular r-spin Hurwitz numbers were calculated

by topological recursion [Dunin-Barkowski et al., 2019]; our results conclusively

resolve this conundrum.

Furthermore, there are other curves of importance that have essential singulari-

ties. For example, the curve P (x, y) = x − 2 cosh(y), which encodes information

about Gromov-Witten invariants ofCP1 [Norbury and Scott, 2014, Dunin-Barkowski

et al., 2014, Zhou, 2012], is considered; to do this we need to define topological

recursion when dx has infinitely many zeros, which is another case that hasn’t been

considered previously. Relatedly, there are a wide class of curves [Bouchard et al.,

2008, Liu, 2012], related to string theory and the Gromov-Witten theory of toric

Calabi-Yau threefolds, called mirror curves, that take the form P (ex, ey) = 0 where

our method yields further insight into their quantum curves.

Outline

We begin, in the first chapter, to set the stage, with an examination of the well-

established Eynard-Bouchard topological recursion. This necessitates, perforce,

a discussion on spectral curves and their geometry, the initial data inputted into

the recursive formalism of TR, along with an introduction to the key players and

objects that have a role in the formalism. With this established, we move onto the
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definition of the topological recursion and outline the myriad properties enjoyed

by this remarkable formalism. Finally, the chapter is concluded with an original

reformulation of the topological recursion that will be of ineluctable utility for our

purposes.

With the stage set, the players well-rehearsed, and the audience’s interest perked,

we begin with main production in the second chapter. Following the outline for

the prior chapter, we first examine how the transition to a transalgebraic setting

affects spectral curves and their geometry. Here we will also briefly examine

transalgebraic geometry in general, a field that, excitingly, is still in its incipient

stages. Next, we present our definition of transalgebraic topological recursion based

on limits of sequences of algebraic spectral curves; the well-definedness of this

is established, multiple properties are discussed, and a formula for calculating the

limiting topological recursion in a wide variety of cases is presented. Briefly, an

example is considered, where we get to see the formula for the limiting topological

recursion in action calculating a correlator in the q-orbifold r-atlantes Hurwitz case.

Finally, we conclude the chapter by further generalising the topological recursion to

the case where x has a ramification locus of countably infinite cardinality.

In the final chapter we demonstrate how our new topological recursion may be

used to construct quantum curves. Just as the first chapter required a prefatory

discussion on spectral curves, here we must begin with a prefatory discussion on

quantum curves and their relation to spectral curves. With this newfound knowledge

on quantum curves we are able to describe in some detail the connection between

topological recursion and quantum curves and present some new results in this area.

Finally, the denouement comes and we use our previous results to construct quantum

curves for the r-atlantes Hurwitz case, the case of the Gromov-Witten invariants of

the projective line, and provide some conjectural statements on mirror curves, all
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exclusively from TR based considerations, rather than considerations based on the

individual theories.
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Chapter 2

Algebraic Topological Recursion

2.A The Geometry of Algebraic Spectral Curves

Only a brief perusal of the literature will lead one to as many different definitions

of spectral curves as papers one reads [Eynard and Orantin, 2007c, Borot et al.,

2018, Andersen et al., 2017]. For us, we will be mainly interested in two equivalent

viewpoints on spectral curves; one that focuses on analytic properties of the objects

and another that focus on the algebro-geometric properties. First, we must define

the notion of a Torelli marking.

Definition 2.A.1. Given a connected algebraic curve Σ of genus g, a Torelli mark-

ing is a choice of a symplectic basis of cycles, i.e., a canonical basis of H1(Σ),

A1, . . . ,Ag,B1, . . . ,Bg with the obvious symplectic pairing

Ai ∩ Aj = Bi ∩ Bj = 0, Ai ∩ Bj = δi,j. (2.1)

With this definition we can define the algebro-geometric notion of a spectral

curve.
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Definition 2.A.2. A spectral curve S is a Torelli marked connected algebraic curve

Σ = {P (x, y) = 0}.

However, although this is a geometrically nice way to view a spectral curve, when

we wish to feed it into the topological recursion, ultimately a recursive analytic

formula, we don’t want the abstract algebraic curve but a parametrisation of the

curve. To get to this promised land, take the defining polynomial equation for our

algebraic curve P (x, y) and note that any point on the algebraic curve is given by the

pair (x, y) ∈ C2
∞. Then, in a slight abuse of notation we denote the projection onto

x and y as meromorphic functions x, y : Σ = {P (x, y) = 0} → C∞, respectively,

and, given an atlas on Σ, x and y will then define meromorphic functions between

compact Riemann surfaces. This brings us to the following definition of a spectral

curve.

Definition 2.A.3. A spectral curve is a triple S = (Σ, x, y) where Σ is a compact

connected Torelli marked Riemann surface, and x and y are two meromorphic

functions on Σ that generate the function field on Σ, i.e., K(Σ) = C(x, y).

This definition is equivalent to the previous one, as given two meromorphic

functions on Σ, they must satisfy identically a polynomial relation P (x, y) = 0 that

we may take to be irreducible and non-trivial as K(Σ) = C(x, y). In this later

definition, the polynomial equation P is hidden, so it is more natural to not think

of Σ as an algebraic curve, but rather just a compact Riemann surface (the two, of

course, being equivalent). In either definition, the genus of the spectral curve is

taken to be the genus of the underlying algebraic curve/Riemann surface.

Remark 2.A.4. Both these definitions bring the geometry of the spectral curves to

the forefront. This geometry plays a key role in the so-called quantum curves and
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therefore the TR/QC connection, and therefore this thesis. For the purposes of TR,

the definition of a spectral curve can be generalised to a fairly large degree, but a

lot of the geometry, and therefore the relevance to this thesis, is lost. For details on

this, see Borot et al. [2018].

Now that we have our spectral curves we proceed by defining a number of key

supporting characters that will appear throughout our story. First, let us return to

the defining polynomial equation of a spectral curve

P (x, y) =
d∑

i=0

pd−i(x)y
i =

∑
(i,j)∈Z2

≥0

αi,jx
iyj, (2.2)

where the pi are polynomials in one variable and the αi,j are complex valued

coefficients. We denote by A = {(i, j)|αi,j ̸= 0} ⊂ Z2
≥0 the set of points (i, j)

where the corresponding coefficient αi,j is non-zero. This allows us to make the

following definition.

Definition 2.A.5. The Newton polygon of P is the convex hull of A, which we will

denote by ∆.

With this important definition under our belt we can define two sets of numbers

that will play critical roles when we attempt to construct quantum curves

αm = inf{a|(a,m) ∈ ∆}, βm = sup{a|(a,m) ∈ ∆}, (2.3)

and using these, we can calculate the number of interior points (considered as a

subset of N2) I of ∆ quite easily

I =
d−1∑
i=1

(⌈βi⌉ − ⌊αi⌋), (2.4)
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where ⌊·⌋ is the floor function and ⌉ · ⌈ is the ceiling function. There is a classical

result due to Baker [Baker, 1895], know as Baker’s formula, that says g ≤ I where g

is the genus of our algebraic curve Σ. Next, if we define the meromorphic functions

on Σ

Pm(x, y) =
m∑
i=1

pm−1−i(x)y
i, (2.5)

we get the following result from Beelen [2009].

Lemma 2.A.6. For m = 2, . . . , d we have

div(Pm) ≥ αd−m+1div0(x)− βd−m+1div∞(x), (2.6)

where, for a meromorphic function f on Σ, div(f) denotes the divisors of f , div0(f)

denotes the divisors of zeros of f , and div∞(f) denotes the divisors of poles of f .

We now turn our attention away from the polynomial P and define two differen-

tials from the data of our Riemann surface and Torelli marking that are ubiquitous

in the classical theory of Riemann surfaces and, as we will see, in the topological

recursion.

Definition 2.A.7. The canonical bilinear differential of the second kind1 B is the

unique meromorphic 2-differential on Σ2 satisfying:

• it is symmetric, i.e., B(z1, z2) = B(z2, z1);

1In the physics literature, this is often referred to as the Bergman kernel. As the Bergman kernel
already refers to an entirely unrelated notion, this terminology is avoided in recent mathematics
publications and here.
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• its only pole is on the diagonal and near this pole it has the following expansion2

B(z1, z2)
z1→z2∼ dz1 ⊗ dz2

(z1 − z2)2
+O(1);

• it is normalised on A-cycles

∫
Ai

B(·, z) = 0, ∀i.

Definition 2.A.8. Fix a, b ∈ Σ. The canonical differential of the third kind Sb
a is

the unique meromorphic 1-form on Σ satisfying:

• it is holomorphic on Σ \ {a, b};

• it has a simple pole at a, b with residues +1,−1 respectively;

• it is normalised on A-cycles

∫
Ai

Sb
a = 0, ∀i.

By integrating along the unique homological chain [b]− [a] that doesn’t intersect

our homology basis we can observe the following relation between B and Sb
a

Sb
a(z) =

∫ b

a

B(·, z). (2.7)

Whenever we write this integral as simply being from a to b we actually mean the

homological chain described above. For an example of these two objects we can

look at curves of genus zero where Σ ∼= C∞ and we have the following simple

2We will always presume that we have an atlas on Σ and write things in coordinate charts in this
atlas; we abuse notation by not distinguishing between points and their values in coordinate charts.
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expressions

Sb
a(z1) =

1

z1 − a
− 1

z1 − b
=

∫ b

a

dz1 ⊗ dz2
(z1 − z2)2

=

∫ b

a

ω0,2(z1, ·), (2.8)

where zi is an affine coordinate on C∞.

As the next step in our journey through the geometry of spectral curves we

briefly discus the properties of x : Σ → C∞. As a meromorphic function between

compact Riemann surfaces, x automatically induces a branched covering between

Σ and C∞ which we will also denote by x. Given that x is meromorphic on Σ for

each point z0 on Σ there exists a unique integer l such that

x(z)
z→z0∼

∞∑
n=l

cn(z − z0)
n,

where cl is assumed to be non-zero. Then we may define the order and multiplicity

of x at z0 as Ordx(z0) = l and Multx(z0) = max{1, |l|}, respectively. We may also

define the ramification locus of x, R = {a ∈ Σ|Multx(a) ≥ 2}, as the set of points

on Σ where x fails to be a proper covering map.

Let us now zoom in on the local geometry about a ramification point a ∈ R. In

an open neighbourhood Ua near a, x|Ua is a fully ramified Galois covering of degree

da = Multx(a). Thus there are da local biholomorphic involutions σ1, . . . , σda on

Ui such that x|Ua ◦ σi ≡ x|Ua and σi(a) = a. Furthermore, there exists a local

coordinate ζ defined by

ζd =

x− x(a), x(a) ̸= ∞,

x−1, x(a) = ∞,

and in this local coordinate the σi just amount to multiplications by da’th roots of
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unity. We denote by σa the group of these local deck transformations σi and for

z ∈ Ua we denote by σa · z = {σi(z)|i = 1, . . . , da} the orbit of z where σa acts on

Ua in the obvious way and z is any coordinate chart on Ua. We introduce for later

the notation σ′
a = σa \ {idUa}, which is the local deck transformation group of x

about a without the identity map.

We can, to some extent, extend our discussion globally. Let d = deg(x) be the

degree of x as a covering map, i.e., the number of preimages of a generic point (non-

ramification point) in Σ under x. Then we denote by σ = {σ : Σ → Σ|x ◦ σ = x}

the group of all deck transformations of x; it is important to note these are not,

in general, well-defined functions on the whole of Σ3 and will require branch cuts

between ramification points to become so. If we define the pushforward or trace of

a 1-form η : Σ → C∞ under x as

x∗η : C∞ → C∞, z 7→
∑

w∈x−1({z})

η(w), (2.9)

we can then take the pullback of x∗η to get the symmetrisation of η under the deck

transformation group of x

x∗x∗η :Σ → C∞,

z 7→
∑

w∈x−1(x({z}))

η(w) =
∑
w∈σ·z

η(w).
(2.10)

It is rather important to observe that such a construction is automatically a well-

defined 1-form of x, i.e., there exists a 1-form ω : C∞ → C∞ (depending on both x

and η) such that

x∗x∗η(z) = ω(x(z)). (2.11)

3Many authors require the maps to be well-defined without branch cuts for it to be considered a
deck transformation. For us, this would highly inconvenient.

13



Finally, as the last meander in our journey through the properties of algebraic

spectral curves, we define two important classes of ‘nice’ curves.

Definition 2.A.9. Given a spectral curveS = (Σ, x, y) define the 1-formω0,1 = ydx.

For a ramification point a ∈ R put ra = Multx(a) and take the local coordinate

traa = x− x(a) if x(a) ̸= ∞ and t−ra
a = x if x(a) = ∞. Then, near a, ω0,1 has the

expansion

ω0,1(t) =
∑
l=r+1

τal t
l−1
a dta.

Let sa = min{l|τal ̸= 0∧ l ∤ ra} be the smallest integer such that τal is non-zero and

l does not divide ra.

The spectral curve is then called admissible if for every a ∈ R we have that

the point (x(a), y(a)) is non-singular, sa ≤ ra + 1, and one of the following two

conditions is satisfied

• ra = ±1 mod sa;

• sa ≤ −1.

From now on we will always assume we are dealing with only admissible spectral

curves. The topological recursion is not well-defined for spectral curves that are not

admissible; for a discussion of why this is so, see Borot et al. [2018], Bouchard and

Eynard [2013].

Definition 2.A.10. Given a spectral curve {P (x, y) = 0} we say it is regular if the

following two conditions hold:

• the Newton polygon ∆ has no interior points;

• if the origin is on our curve, i.e. P (0, 0) = 0, then as an affine curve it must be

smooth at this point.

It is important to note that, by Baker’s formula, all regular spectral curves are
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genus zero4.

2.B The Eynard-Bouchard Topological Recursion

The goal of the Eynard-Bouchard Topological Recursion is to construct an infinite

tower of symmetric n-differentials ωg,n, called correlators (the terminology comes

from matrix models [Eynard, 2004]), from the initial data of a spectral curve;

the hope being that these correlators will be generating functions for numbers

interesting to the given problem. In this spirit, we take as given a spectral curve

S = (Σ, x, y) and assuming we have a set of symmetric meromorphic n-differentials

on Σ, {ωg,n}∞g,n=0 we define the following two combinatorial combinations of these

ωg,n

Definition 2.B.1. Let A,B ⊂ Σ be two sets of points with cardinality i and n − 1

respectively. Then define

Ωi
g,n(A|B) =

∑
A1,...,Aj⊢A

′∑
g1+···+gj=g+j−i
B1⊔···⊔Bj=B

j⊗
k=1

ωgk,♯Ak+♯Bk
(Ak, Bk),

E i
g,n(A|B) =

∑
A1,...,Aj⊢A

∑
g1+···+gj=g+j−i
B1⊔···⊔Bj=B

j⊗
k=1

ωgk,♯Ak+♯Bk
(Ak, Bk),

(2.1)

where ⊢ means set partition, ⊔ is the disjoint union (note: using this notation we

allow the Bk to be empty), for a set S ♯S denotes the cardinality of the set, and the

prime over the sum means we exclude terms with factors of ω0,1.

As a final step before we define the topolgical recursion itself, we must define

the recursion kernel that will appear in the recursive formula.

4It is possible to classify all regular spectral curves. See Bouchard and Eynard [2017].
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Definition 2.B.2. Let A ⊂ Σ be a set of cardinality i − 1 and let z1, t ∈ Σ. Then

we define the so-called Eynard-Bouchard Recursion Kernel

Ki(z1, t, A) = St
∗(z1)

∏
z∈A

1

ω0,1(t)− ω0,1(z)
, (2.2)

where St
∗(z1) was defined in Definition 2.A.8, ω0,1 = ydx, and the base point ∗ is

arbitrary; it can be seen that the topological recursion does not depend on this choice

[Bouchard and Eynard, 2013].

We now come to the main definition of this chapter, the Eynard-Bouchard

topological recursion itself.

Definition 2.B.3. Set ω0,1 = ydx and let ω0,2 be the canonical bilinear differential

of the second kind. Then define recursively, for 2g + n− 2 ≥ 1

ωg,n(z1, B) =
∑
a∈R

Res
t=a

Multx(a)∑
i=2

∑
A⊂σa·t

|A|=i,t∈A

Ki(z1, t, A \ {t})Ωi
g,n(A|B), n ≥ 1,

ωg,0 =
1

2− 2g

∑
a∈R

Res
t=a

(∫ t

∗
ω0,1

)
ωg,1(t), g ≥ 2,

(2.3)

where the base point ∗ is arbitrary (other than the fact it can’t be a pole of ω0,1). The

definition is recursive on the negative of the “Euler characteristic” −χ = 2g+n−2

(the integer g is often referred to as the ‘genus’, although it has nothing to do with

the genus of the spectral curve). The correlators with 2g + n − 2 ≥ 1 are called

stable.

Remark 2.B.4. The 0-differentials (complex numbers) ω0,0 and ω1,0 can be defined

in a natural way. However, this definition is rather involved and strays too far from
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the topic of this thesis to be included. See Eynard and Orantin [2007c] for details.

Furthermore, if ω0,1 is not exact in an open set near a ramification point a, then the

definition of ωg,0 will obviously have to be amended.

Remark 2.B.5. When taken as the initial data for topological recursion, a spectral

curve is often given as a quadruple S = (Σ, x, ω0,1, ω0,2) where Σ is a compact

connected Riemann surface, x : Σ → C∞ is meromorphic, ω0,1 is a meromorphic

1-form, and ω0,2 is a meromorphic bidifferential of the second kind with its only

pole a double pole on the diagonal and normalised so this double pole term has a

coefficient of unity. To get back to our original definition, we set y = ω0,1/dx and

take the Torelli marking on Σ that gives ω0,2 as the canonical bilinear differential of

the second kind.

It should now be clear where the ‘topological’ in topological recursion comes

from; the recursion is done on the negative of the Euler characteristic −χg,n = 2g+

n− 2, which is an invariant of topological surfaces. After defining the topological

recursion the first step in our study is to examine some of the extraordinary properties

enjoyed by the correlators ωg,n. This is the content of the next theorem.

Theorem 2.B.6. For 2g + n − 2 ≥ 1 the ωg,n constructed from the topological

recursion satisfy the following properties [Eynard and Orantin, 2007c, Bouchard

and Eynard, 2013, Borot et al., 2018].

• Symmetry: the ωg,n are symmetric in all of their n variables.

• Pole structure: the ωg,n have poles only at the ramification points of x.

• Residueless: for k = 0, 1, 2g+ n− 2 ≥ 0, and every ramification point a ∈ R we

have

Res
z=a

x(z)±kωg,n(z, z2, . . . , zn) = 0,
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where the plus and the minus correspond to ramification points that are zeros and

poles of dx, respectively.

• String Equations: for k = 0, 1 and 2g+n− 2 ≥ −1 the following relation holds5

∑
a∈R

Res
z=a

x(z)ky(z)ωg,n+1(z, z1, . . . , zn) =
n∑

j=1

dzj

x(zj)
kωg,n(z1, . . . , zn)

dx(zj)
.

• Homogeneity: under the rescaling ω0,1 → fω0,1 we have ωg,n → f 2−2g−nωg,n.

• Modularity: under the group of Torelli marking changes the ωg,n are quasi-

modular forms.

• Normalised: for 2g + n− 2 ≥ 0 the ωg,n are normalised on A-cycles, i.e.,

∫
Ai

ωg,n(·, z2, . . . , zn) = 0, ∀i.

• Diagrammatic Representation: The recursive definition of the correlators ωg,n can

be represented using Feynman-like6 graphs [Eynard and Orantin, 2007c, Bouchard

et al., 2013].

• Deformations: the ωg,n satisfy variational deformation equations [Eynard and

Orantin, 2007c].

• Limits: under reasonable restrictions, the ωg,n are well-defined when taking limits

of spectral curves; see Eynard and Orantin [2007c] for singular limits and Bouchard

and Eynard [2013] for the case when ramification points collide.

• Loop Equations: the ωg,n can be viewed as ‘nice’ solutions of certain abstract

loop equations [Borot et al., 2018]. In the case when the ωg,n are the correlator

in a matrix model these loop equations are simply the ones of the underlying QFT

5In general, when such relations are stated, it is implicitly assumed that the only ramification
points that are to be included in R are those at which the ωg,n have poles.

6It is important to note that these are emphatically not actual Feynman graphs.
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[Eynard, 2004].

•Dilaton Equations: whenω0,1 is locally exact near ramification points the following

relation holds for an arbitrary base point ∗ and set of n points A ⊂ Σ

(2− 2g − n)ωg,n(A) =
∑
a∈R

Res
t=a

(∫ t

∗
ω0,1

)
ωg,n+1(t, A).

On the above list, we intentionally omitted what is thought to be perhaps the

deepest and most mysterious property of these ωg,n, which is the so-called sym-

plectic invariance, i.e., that the ωg,0 should somehow remain unchanged under

the transformations of (x, y) → (x̃, ỹ) that preserve the natural symplectic form

dx ∧ dy = ±dx̃ ∧ dỹ up to sign. Unfortunately, it is not know whether this is true

in general and if so, why. See Eynard and Orantin [2007c,a] for a proof of this

valid in some generality. It is, however, known that the proof in Eynard and Orantin

[2007c,a] fails in some cases; see Bouchard et al. [2013] for details.

2.C Rewriting the Topological Recursion

Eventually, we wish to study topological recursion not for algebraic spectral curves,

but for certain transalgebraic curves. Practically, this will involve allowing the func-

tion x to have essential singularities; our task will then be to define the contributions

at these essential singularities. The observant reader might instantly spot one of the

chief issues with this: the local deck transformation group of x near the essential

singularity will, if it can be defined in a sensible manner, certainly be an infinite

group due to the arbitrarily non-injective behavior of an analytic function near an

essential singularity. To avoid this problem, we present a rewriting of the topolog-

ical recursion that trades out the sum over the deck transformation group of x, for
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a sum over ramification points, coinciding points, and deck transformations of y.7

This approach is accomplished by rewriting the symmetrisation over the non-trivial

sheets as integration over a contour integral before using the compactness of the

Riemann surface Σ to pick out the residues on the other side of the contour integral.

Before we present the rewriting, we need some notation. LetC = {t, t1, . . . , ti} ⊂

Σ and C ′ = C \ {t} be sets of i+ 1 and i points, respectively. For an i-differential

η that has vanishing residue when any two of its arguments coincide we define

Res
C=t

η(t1, . . . , ti) = Res
C′=t

η(t1, . . . , ti) = Res
t1=t

· · ·Res
ti=t

η(t1, . . . , ti).

This notation makes sense precisely because η has vanishing residue at points where

its arguments coincide so the order in which we take the residues is irrelevant. For

our purposes, we note this condition is clearly satisfied if η is taken to be symmetric.

Similarly, we use the related, but common, notation that

Res
t=C′

=
∑
t0∈C′

Res
t=t0

.

For a set C ⊂ Σ we denote by tC one fixed point in this set. Lastly, as we will have

to take many residues at once, we define the conveniently compact notation

Res
tl=al

l=1,...,n

= Res
t1=a1

· · · Res
tn=an

,

along with the obvious generalisation to the previous two notations. With all this

notation safely in our memory vaults, we may proceed to the theorem of this section.

Theorem 2.C.1. Let Y (t) = y−1(y({t})) and B ⊂ Σ a set of n − 1 points. Then

7The author was made aware of the possibility of this approach by Prof Vincent Bouchard from
notes by Dr Nitin K Chidambaram. The actual result presented here is, however, original.
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the correlators of the topological recursion satisfy the alternative recursive formula

ωg,n(z1, B) = Res
t=R

deg(x)∑
i=2

St
∗(z1)

∑
C1,...,Cj⊢{t1,...,ti−1}

(−1)1−δj,i−1

j!
Res

tCl
=R,B,Y (t)

l=1,...,j

Res
Cl=tCl
l=1,...,j j∏

l=1

1

x(t)− x(tCl
)

∏
t0∈Cl\{tCl

}

1

x(t0)− x(tCl
)

 Ωi
g,n(t, t1, . . . , ti−1|B)∏i−1

l=1(y(t)− y(tl))
, (2.1)

where, as before, R is the ramification locus of x, St
∗ is defined in Definition 2.A.8,

and⊢ denotes a set partition. Note that we have committed a notational peccadillo by

writing that theCl partition the dummy integration variables ti outside the integrand

when the ti are, of course, only defined inside the integrand (i.e., under the residue).

This is of no fundamental importance as we really only need a partition of the set

{1, . . . , i− 1}; it is just more convenient to immediately attach these indices to the

coordinates.

Proof. We first perform the obvious rewriting8

∑
A⊂σ·t

|A|=i,t∈A

Ki(z1, t, A \ {t})Ωi
g,n(A|B)

= St
∗(z1)

∑
{σ1,...,σi−1}⊂σ′

Res
tl=σl(t)

l=1,...,i−1

Ωi
g,n(t, t1, . . . , ti−1|B)∏i−1

l=1(x(tl)− x(t))(y(t)− y(tl))
.

(2.2)

Now we notice that, in our new writing, the summand is actually well-defined when

two or more of the σl coincide, it will just result in higher order poles at tl = σl(t).

Therefore, we may add and subtract all terms where two or more σl coincide. This

gives us two main terms: the original sum plus the added terms where two or more

σl coincide; the subtracted terms where two or more σl coincide. We first examine

8It is a theorem in Bouchard and Eynard [2013] that one may replace σa with σ in the sum in
topological recursion, i.e., one may replace the sum over the local deck transformations of x about a
ramification point a with the sum over all the global sheets.
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the first term

∑
σ1,...,σi−1∈σ′

1

(i− 1)!
Res

tl=σl(t)
l=1,...,i−1

Ωi
g,n(t, t1, . . . , ti−1|B)∏i−1

l=1(x(tl)− x(t))(y(t)− y(tl))

=
1

(i− 1)!
Res

tl=R,B,Y (t)
l=1,...,i−1

Ωi
g,n(t, t1, . . . , ti−1|B)∏i−1

l=1(x(t)− x(tl))(y(t)− y(tl))
.

(2.3)

All we have done here is used the fact that Σ is a compact Riemann surface so

the sum of all the residues of any differential must be zero. That we only pick up

residues at the listed points is because the ωg,n only have poles at coinciding points

and ramification points.

We now wish to apply the same logic to the terms with coinciding points. To this

end, we want to know what happens when j ≤ i− 1 of the same tl are specialised

to the same sheet. Thus, for illustration, we examine the following expression

∑
σ∈σ′

Res
tl=σ(t)
l=1,...,j

Ωi
g,n(t, t1, . . . , ti−1|B)∏i−1

l=1(x(tl)− x(t))(y(t)− y(tl))

=
∑
σ∈σ′

Res
tl=σ(t)

l=1,...,j−1

Ωi
g,n(t, t1, . . . , tj−1, σ(t), tj+1, . . . , ti−1|B)

dx(t)(y(t)− y(σ(t)))
∏i−1

l=1
l ̸=j

(x(tl)− x(σ(t)))(y(t)− y(tl))

=
∑
σ∈σ′

Res
tj=σ(t)

Res
tl=tj

l=1,...,j−1

Ωi
g,n(t, t1, . . . , ti−1|B)

(x(tj)− x(t))(y(t)− y(tj))
∏i−1

l=1
l ̸=j

(x(tl)− x(tj))(y(t)− y(tl))

= Res
tj=R,B,Y (t)

Res
tl=tj

l=1,...,j−1

Ωi
g,n(t, t1, . . . , ti−1|B)

(x(t)− x(tj))(y(t)− y(tj))
∏i−1

l=1
l ̸=j

(x(tl)− x(tj))(y(t)− y(tl))
.

(2.4)

With the above calculation in mind, the subtracted terms with the coinciding deck
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transformations may be written as

−
i−2∑
j=1

1

j!

∑
σ1,...,σj∈σ′

∑
C1,...,Cj⊢{t1,...,ti−1}

Res
Cl=σl(t)
l=1,...,j

Ωi
g,n(t, t1, . . . , ti−1|B)∏i−1

l=1(x(tl)− x(t))(y(t)− y(tl))

=−
i−2∑
j=1

1

j!

∑
C1,...,Cj⊢{t1,...,ti−1}

Res
tCl

=R,B,Y (t)

l=1,...,j

Res
Cl=tCl
l=1,...,j j∏

l=1

1

x(t)− x(tCl
)

∏
t0∈Cl\{tCl

}

1

x(t0)− x(tCl
)

 Ωi
g,n(t, t1, . . . , ti−1|B)∏i−1

l=1(y(t)− y(tl))
,

(2.5)

and the desired result then follows.
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Chapter 3

Transalgebraic Topological

Recursion

3.A The Geometry of Transalgebraic Spectral Curves

Now we wish to generalise the topological recursion to a more inclusive notion

of spectral curves so as to analyse new cases using the powerful properties of the

correlation functions ωg,n. For example, an important use of topological recursion

is its application to Hurwitz theory [Bouchard and Mariño, 2008, Dunin-Barkowski

et al., 2019]. Here the spectral curves for what are known as the q-orbifold r-spin

Hurwitz numbers are1

S =
(
C, x(z) = ze−zqr , y(z) = zq−1ez

qr)
. (3.1)

1Usually in the literature this curve is written slightly differently with y(z) = zq; ω0,1 is then
taken to be yd log(x) rather than ydx. This is, of course, entirely equivalent to what is presented
here.
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Indeed, this is not a spectral curve in the sense of Definition 2.A.3 and the key

missing component is the fact that C is not a compact Riemann surface2. After

seeing the definition of the topological recursion, the astute reader may note that we

actually need, in a sense, very little of the spectral curve structure to define it. All

that is needed, strictly speaking, is for there to be a set of points R, an open disk

around each of these points, and a germ of x, ω0,1, and ω0,2 on these disks. This

is the approach of Borot et al. [2018]. For instance, in our example, the q-orbifold

r-spin Hurwitz case, in the traditional approach in the literature [Dunin-Barkowski

et al., 2019] one merely ignores the essential singularity at infinity and considers

and simply computes the topological recursion for the ramification points dx(z) = 0

with z ∈ C.

This dropping of the essential singularity does, at first glance, solve the issue.

However, the more one loses geometric properties of the spectral curve and drifts

towards the more geometrically nebulous union-of-disks approach, the more the

topological recursion itself loses its geometric properties for the simple reason that

there is no underlying geometry. In particular, establishing the TR/QC connection

becomes increasingly difficult.

To regain these properties, the aim of this chapter is to define the topological

recursion at essential singularities; in the aforementioned example this would allow

us to work on a compact Riemann surface, namely C∞ ∼= CP1, and, therefore,

gain back the lost properties of the correlators. In summary, rather than restrict the

domains of x and y in (3.1), we treat x and y as transalgebraic functions on the

compactified Riemann surface. To do so, we must chart the waters of transalgebraic

geometry.

Unfortunately, the study of transalgebraic geometry of this type is only in its

2For genus zero curves the Torelli marking is irrelevant as the first homology class is trivial.
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nascent stages and the waters are therefore relatively uncharted. Even more un-

fortunately, a digression into this new field would bring us too far away from our

topic, so we will have to take a low road of sorts. But before we venture down

our low road, we make a brief bibliographic divertissement for those interested in

seeing what waters have been charted in this geometry: for preliminary study and

motivation of these surfaces see Marco [1995]; particularly relevant to us will be the

the convergence of surfaces [Biswas and Pérez-Marco, 2010a] and defining the class

of transalgebraic functions on a compact Riemann surface [Pérez-Marco, 2019a];

as far as the author knows, a complete bibliography on the study of this geome-

try is (in chronological order) Marco [1995], Biswas and Pérez-Marco [2010a,b,

2015a,b], Pérez-Marco [2019b,a], Biswas and Pérez-Marco [2019], Pérez-Marco

[2020], Biswas and Biswas [2020].

To begin our trek down this low road of sorts we follow Pérez-Marco [2019a] in

defining the notion of an exponential singularity, and then define the precisely what

a transalgebraic function is.

Definition 3.A.1. A point s0 ∈ Σ is said to be an exponential singularity of a function

f if there exists an open neighbourhood U ⊂ Σ of s0 such that f : U \ {s0} → C×

is a well-defined holomorphic function, but x does not extend to a meromorphic

function on all of U . The exponential order of f at s0 ∈ S is defined as

Erdf (s0) = inf{d ∈ R≥0| lim sup
z→s0

|z − s0|d log |f(z)| <∞}, (3.2)

and Erdf (s0) is taken to be infinity if the infimum does not exist (i.e., the set of such

d is empty).

Definition 3.A.2. We define the transalgebraic functions with at most n ∈ Z≥0
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zeros, poles, and exponential singularities as

Tn(Σ) =

{f ∈ K(Σ\S)|
(
♯S ≤ n

)
∧
(
f(z) ∈ C× ∀z ∈ Σ\S

)
∧
(
Erdf (s0) <∞ ∀s0 ∈ S

)
}.

(3.3)

In words, these are all the holomorphic functions on Σ without n points, that have

no zeros or poles (i.e., zeros and poles are only possible at the n removed points),

and finite exponential order at the n removed points. Then, we define the class of

transalgebraic functions as the union

T (Σ) =
⋃

n∈Z≥0

Tn(Σ) (3.4)

It is a natural question to ask why we insist that there are finitely many zeros and

poles near each s0 in Definition 3.A.1. Of course, by the great Picard theorem, all

points in C∞ are obtained infinitely often as one approaches an essential singularity

save for possibly two points and we may put those two points (if they exist) at zero

and infinity via a change of coordinates. The following proposition tells us that if

we didn’t have two such points, sometimes called Picard points in the literature,

then s0 would be a cluster point of ramification points. Although we will deal with

such things in the section following the next, for now we wish to exclude them.

Proposition 3.A.3. Let π : Bϵ(0) \ {0} → C∞ be a branched covering from the

punctured disk of radius ϵ > 0 to C∞ with an essential singularity at zero. Assume

the only Picard point of π is infinity, and if infinity is a Picard point ϵ is small enough

that π never takes the value infinity. Then π has a ramification point in Bϵ(0) \ {0}.

Proof. Proceed by contradiction and assume π : Bϵ(0) \ {0} → C is an honest

27



covering map where C = π(Bϵ(0) \ {0}) is either C or C∞. As C is simply

connected the monodromy group of π is trivial. Ergo, there exists a right inverse

map (non-unique) π−1 : C → Bϵ(0) \ {0} so that π ◦ π−1 = idBϵ(0)\{0}. If we

define the image of π−1 to be B then the map π′ : C → B with π′ ≡ π−1 is

biholomorphic and, in particular, a homeomorphism so B is simply connected;

therefore, π′−1 : B → C is the universal cover of C so there exists a covering map

ϕ : B → Bϵ(0) \ {0} such that π ◦ ϕ = π′−1. As π′−1 has the inverse π′, it is

bijective so ϕ must be injective. As ϕ is a covering map, it must be surjective so

it is in fact a homeomorphism. Thus, Bϵ(0) \ {0} is simply connected, an obvious

contradiction.

Thus, if we only have one (or zero) Picard points then, for any ϵ > 0 sufficiently

small, we get a ramification point in the disk of radius ϵ about the essential singularity

so that the essential singularity must be an accumulation point of ramification points.

Noting that algebraic functions automatically have a discrete ramification lo-

cus we see transalgebraic functions as, in some sense, a natural generalisation of

algebraic functions where instead of considering functions of finite order we con-

sider functions of finite exponential order. This, however, tells us little about how

fearsome transalgebraic functions encountered in the wild may be. May our low

road end in some unruly jungle with no order? The following theorem from Pérez-

Marco [2019a] tells us that these functions are quite shockingly tame by giving us

a relatively simple explicit expression for them.

Theorem 3.A.4.

T (Σ) = {M0 exp(M1)|M0,M1 ∈ K(Σ)}. (3.5)
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From this we easily see that for s0 a pole of M1 we have the simple formula

ErdM0 exp(M1)(s0) = −OrdM1(s0). With this knowledge, we are now fully prepared

to generalise the notion of a spectral curve to allow for transalgebraic functions.

Definition 3.A.5. A spectral curve is a triple S = (Σ, x, y) where Σ is a Torelli

marked connected compact Riemann surface, x and y are in T (Σ), xy ∈ K(Σ),

and y(z) ̸= z0 for every z ∈ x−1(x(z0)) and z0 ∈ Σ \ R where R is the set of all

ramification points (in the sense of the previous chapter) and essential singularities of

x. The spectral curve is called algebraic if x ∈ K(Σ) and transalgebraic otherwise.

Recalling that the topological recursion always produces meromorphic differen-

tials, we see the requirement that xy ∈ K(Σ) is so that ω0,1 = ydx is meromorphic

and, as we will see in the subsequent section, the topological recursion for transalge-

braic spectral curves will still give meromorphic differentials onΣ. More practically,

the proof of Theorem 3.B.2 requires this fact. Note that the above definition reduces

to Definition 2.A.3 in the case where M1 is constant, i.e., x ∈ K(Σ).

Now, as in the algebraic case, we must examine the structure of x as a branched

covering from Σ to C∞.3 First, for any function x ∈ T (Σ) \ K(Σ) we define

deg(x) = ∞ and for any point z with Erdx(z) > 0 we define Multx(z) = +∞.

Then, the definition of ramification points as a point with multiplicity greater than

or equal to two extends in the obvious way to include exponential singularities

as ramification points. Following Biswas and Pérez-Marco [2015a] we naturally

split the ramification locus R of x into two sets by defining infinite ramification

points as those with infinite multiplicity and finite ramification points as those with

finite multiplicity; we denote the set of these as R∞ and R0, respectively, so that

R = R∞ ⊔R0.

3The concerned reader may wonder whether x even is a branched covering; see Biswas and
Pérez-Marco [2015a] for a verification of this and details.
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The local geometry around elements ofR0 remains unchanged from the algebraic

case so to complete a local study of the transalgebraic geometry we therefore only

have to study the local geometry around a generic infinite ramification point a ∈ R∞.

Let x = M0 exp(M1), denote by m0 the order of M0 at a and denote by m1 the

multiplicity ofM1. Of course, the choice ofM0,M1 is not unique; we can add toM1

a holomorphic function h on Σ if we then multiply M0 by exp(−h). It is important

to note, however, that this non-uniqueness will not affect the values of m0 and m1

so these are, perforce, defined independently of the choice of M0 and M1. We can

then define the natural local coordinate of x near a as a coordinate ζ such that near

a

x(ζ) = ζm0eζ
−m1 . (3.6)

The existence of such a coordinate is assured as follows. If m0 = 0, existence

is clear as near a log(x) is a well defined meromorphic function of order −m1

at a (fixing a branch of the logarithm) so there exists a local coordinate such that

ζ−m1 = log(x(ζ)). If m0 ̸= 0 we may take z as the coordinate such that near a

M0(z) = zm0 . The coordinate ζ , if it exists, can then be defined through the relation

(up to branch choices)

M1(z)− ζ−m1 −m0 log (ζ/z) = 0, (3.7)

where we are then able to sub in the ansatz ζ =
∑

n≥1 anz
n with a1 ̸= 0 and

recursively solve for the coefficients. This explicitly constructs ζ in terms of z and

thereby guarantees the existence of such a ζ .

However, unlike in the case of finite ramification points we see that there are

infinitely many different choices of ζ corresponding to the branch choices for the
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m1th root and the logarithm. It follows that our local deck transformation group

about a will be of infinite order. Unlike the finite case, even in a local coordinate

ζ , the local deck transformations have no simple expression in terms of elementary

functions (except when m0 = 0). In principle, it is possible to write them in terms

of the different branches of the Lambert W function, but this approach appears to

be mostly useless for us.

As an alternative, one can derive series expansions by subbing in an ansatz of

the form ∑
n≥0

snζ
nm1+1, (3.8)

where s0 is a m1th root of unity and s1 is log(sm0
0 ) where different choices of the

branch of the logarithm will yield different local deck transformations. It is a rather

annoying feature of the geometry that the radius of convergence of these series will

depend on the choice of logarithm; there is no open set on which all such expansions

converge.4

As we trek along our low road it is hopefully becoming impressed upon the

reader that the rewriting of the topological recursion at the end of the first chapter so

as to remove the deck transformation group of x will be, in the transalgebraic case,

a key simplification. There is, however, something quite nice we can say about the

local deck transformation group of x at a and that is the asymptotic behaviour as

the chosen branch of the logarithm becomes ‘large’ in some sense. To define this

precisely recall that each local deck transformation is uniquely defined by the first

4This is obvious in the case m0 = 0 where all local deck transformations take the form(
ζ−m1 + 2πik

)−1/m1

for some integer k and choice of the m1th root as the radius of convergence is clearly |2πik|−1/m1 .
That this holds in general can easily be seen through subbing in series expansions. For each choice of
m1th root of unity one will get two series with radius of convergence |2πik|−1/m1 for each k ∈ Z>0.
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and second coefficient in its expansion about a (3.8). The first, which we denoted

s0, was just a m1th root of unity. If we let θ be a primitive m1th root of unity then

we can index the choice of s0 by m = 0, 1, . . . ,m1 − 1 where s0 = θm. The second

coefficient was log(sm0
0 ) = log(θmm0). If we fix a choice of log with a branch cut

chosen along an irrational angle in the complex plane (in particular, the cut must

not ‘cut out’ any integer power of θ) then the choices of s1 are in a one-to-one

correspondence with the integers where s1 = log(θmm0) − 2πik for k ∈ Z. We

denote the local deck transformation with first coefficient θm and second coefficient

log(θmm0) + 2πik as σk,m
a . The following lemma, then, characterises the large k

behaviour of these deck transformations.

Lemma 3.A.6.

σm,k
a (ζ) = θm(2πik)−1/m1

(
1 +O

(
log(|k|)

k

))
, |k| → ∞,

dσm,k
a

dζ
(ζ) = θmζ−m1−1(2πik)−1/m1−1

(
1 +O

(
log(|k|)

k

))
, |k| → ∞,

(3.9)

Proof. Taking the equation for σm,k
a (we denote by Log the principle branch of the

logarithm)

ζ−m1 + 2πik − Log

((
σm,k
a (ζ)

θmζ

)m0
)
− log(θmm0) = σm,k

a (ζ)−m1 ,

we can rearrange to find

σm,k
a (ζ) = θζk−1/m1

(
−1

k
Log

((
σm,k
a (ζ)

θmζ

)m0
)
− 1

k
log(θmm0) +

1

k
+ 2πiζm1

)−1/m1

.

Then, clearly, as |k| → ∞ we have the leading order result σm,k
a (ζ) = O(k−1/p∞);
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subbing this in to the logarithm yields the estimate for the NLO term. Taking

derivatives and using identical arguments gives the second line of the lemma.

Using the above result, it is easy to see that for a 1-form η that is holomorphic

at all essential singularities of x we have that x∗x∗η is well-defined in the sense

that the sum over deck transformations is convergent. However, for the topological

recursion, we want to look at forms with poles at the essential singularities. In this

case the sum in x∗x∗η is not absolutely convergent,5 which is yet another reason to

rewrite the topological recursion. Using the previous lemma, we can make the work

of checking the y(z) ̸= z0 condition in Definition 3.A.5 more straightforward. This

is the content of our next lemma.

Lemma 3.A.7. Given a ramification point a ∈ R and a non-trivial deck transfor-

mation σ ∈ σ′
a of x with infinite order (i.e. σ composed with itself n times will never

yield the identity for any n) the only possible zero of (xy)(σ(z)) − (xy)(z) is a or

xy is a constant.

Proof. Assume there exists z0 ̸= a near a such that (xy)(σ(z0)) = (xy)(z0). As

σ has infinite order and z0 is not a ramification point, σ◦n(z0) ̸= z0 for every

n ∈ Z≥1, but (xy)(σ◦n(z0)) = (xy)(z0). The set S = {σ◦n(z)|n ∈ Z≥0} is

therefore an infinite set and has an accumulation point at a. As xy is continuous we

see (xy)(z) = (xy)(a) for all z ∈ S. If a is a pole of xy then clearly xy /∈ K(Σ),

whereas if a is not a pole of xy we have xy ≡ (xy)(a).

Recalling our discussion about deck transformations, and that they are fixed by

the first two coefficients in their series, a finite order deck transformation can occur

5Curiously, if we define summation to be over the index m first, then sum over the sign of k if
k ̸= 0, and then finally sum from k = 1, . . . ,∞ (at some point adding in the k = 0 term) it is
straightforward to see the sum from k = 1 to k = ∞ is absolutely convergent if the 1-form η has, at
each a ∈ R∞, a pole of order no more than Erdx(a).
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only if m0 = 0. In this way, the y(z) ̸= z0 condition in Definition 3.A.5, although

initially, perhaps, daunting, is in applications usually rather obvious and not worth

mentioning.

Next, we would like to naturally extend notions like regularity, admissibility, and

the topological recursion from algebraic spectral curves to transalgebraic spectral

curves. A natural way to accomplish this is to take a sequence of algebraic spectral

curves SN = (Σ, xN , yN) such that xN → x and yN → y where S = (Σ, x, y) is a

transalgebraic spectral curve. Explicitly, if we write x = M0 exp(M1), y = M2/x

(clearly, by Definition 3.A.5 M2 ∈ K(Σ)) we will consider the approximations,

fixing τ ∈ C,

xN =M0

(
1 + (τ − 1)

M1

N

)−N (
1 + τ

M1

N

)N

, yN =M2/xN , (3.10)

which converge compactly to x and y, respectively, away from the poles of M1. At

this point, the reader is probably wondering about the introduction of τ ; why would

we consider a 1-parameter family of sequences rather than the clearly simpler option

of choosing, say, τ = 0? The answer is twofold. First, we will see in Theorem

3.B.2 that the limiting correlators do not depend on the choice of τ , which is,

philosophically speaking, good evidence that the our definition of the transalgebraic

topological recursion is indeed the correct one for the limiting curve and not an

artefact of the particular sequence chosen. Second, there is a practical consideration

involved. When we eventually construct quantum curves we will see that we get

different a quantum curve for each choice of τ . However, in both the r-spin Hurwitz

case and the case of the Gromov-Witten invariants of the projective line, we will see

that this dependence can be naturally transformed away.

For these curvesSN we divide the ramification points of xN , denoted collectively
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as RN , into two sets of ramification points RN
∞ = {M1 = −N/τ} ∪ {M1 =

N/(1− τ)}∪{M1 = ∞} consisting of the ramification points colliding at essential

singularities of xN and RN
0 = RN \ RN

∞ consisting of those ramification points

not colliding at essential singularities of xN . The notion of admissibility of the

ramification points in R0 is clear; it should be the same as in Definition 2.A.9. At

the elements of R∞ we quite obviously need a new definition based on the notion

of admissibility for the elements of RN
∞.

We distinguish two distinct cases for a ramification point a ∈ R∞: first, when

M2 = xy has a pole at a; second, when M2 = xy does not have a pole at a.

In the first case, for finite N , it is easy to see via pole counting arguments that

the ramification point at a will not contribute to the topological recursion. For

sufficiently large N , M2 will have multiplicity one at the solutions of M1 = N

and it is then obvious that SN is admissible at these points. Ergo, for this case,

the admissibility condition should be nothing beyond requiring xy has a pole at a.

There appears to be significant challenges in defining the topological recursion in the

second case and as it appears in no applications of signifiant interest, it is not done

here. However, from the admissibility requirement at the pole at a for finite N , it

is somewhat straightforward to see that in the limit we should have the requirement

±1 mod sa = m0,a modm1,a with m0,a = OrdM0(a) and m1,a = MultM1(a),

m0,a = OrdM0(a), which naturally reduces to Definition 2.A.9 when m1 = 0.

Given this caveat, for us, admissibility at infinite ramification points will be defined

as follows.

Definition 3.A.8. Given an infinite ramification point a ∈ R∞ we say a spectral

curve S = (Σ, x, y) is admissible at a if the meromorphic function xy has a pole at

a.
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Next, we turn our attention to the notion of regularity. As was mentioned

previously, in Bouchard and Eynard [2017] the authors classified all algebraic regular

spectral curves P (x, y) = 0 as follows.

• Linear in x, i.e., P (x, y) = xE1(y)− E2(y) where E1, E2 are polynomials.

• Has Newton polygon ∆ given by the convex hull of {(0, 0), (0, 2), (2, 0)}.

• Is obtained from one of the two previous cases via a transformation (x, y) →

(xayb, xcyd) with ad − bc = 1 and rescaling by powers of x and y to get an

irreducible polynomial equation.

In the case of transalgebraic spectral curves we must replace the polynomial P

by an entire function in two variables. The Taylor expansion of P will therefore

have infinitely many terms; clearly, in the case when ∆ is given by the convex hull

of {(0, 0), (0, 2), (2, 0)} (up to transformation and rescaling) P can have at most

six terms so we can eliminate this option in the transalgebraic case. Thus, up to

rescaling, a transalgebraic regular spectral curve should take the form

xaybE1(x
cyd)− E2(x

cyd) = 0,

where ad − cb = 1, E1, E2 are entire functions of finite order6, and at least one of

E1, E2 is transcendental7. However, we want a curve that results in functions x, y ∈

T (C∞) (in particular, no exponentials of exponentials allowed) with xy ∈ K(C∞).

As such, the only combination of x and y that should appear with arbitrarily high

powers should be xy. Thus, the argument of our entire functions E1, E2 must be xy

6The order of an entire function E is defined as the infimum over all positive numbers d ∈ R>0

such that E(z) = O
(
exp(|z|d)

)
, z → ∞. If no such positive integers d exist, then the order of E

is defined to be infinite. Clearly, if E ∈ T (C∞), then the order is given by ErdE(∞).
7An entire function is transcendental if it is not a polynomial; equivalently, it is transcendental if

it has non-zero order.
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so we get c = d = 1 and a = b+ 1. Therefore, up to rescaling to get an irreducible

entire equation in x and y, we have

x(xy)bE1(xy)− E2(xy) = 0.

We then absorb the factor of (xy)b into E1 to get x = E1(xy)/E2(xy). Now, x and

xy can not share any nontrivial symmetries. Since x should be a function of xy

this means xy should have no non-trivial symmetry. Ergo, we can choose a global

coordinate z on C∞ such that xy = z. This motivates the following definition.

Definition 3.A.9. A transalgebraic spectral curve is regular if and only if it is genus

zero and xy ∈ Aut(CP1 ∼= C∞) is a Möbius transformation.

Thus, a regular transalgebraic spectral curve is of the form x = x(xy) (our

abuse of notation in denoting by x both the projection onto the coordinate x and

the coordinate itself is a bit awkward here) for x ∈ T (C∞) ∩K(C) where infinity

is placed at the pole of xy. It is then clear if we introduce a sequence of algebraic

curves as xN = xN(xNyN) with the sequences xN , yN defined as before, this will

be a sequence of regular algebraic spectral curves. That we have such a sequence

of algebraic regular spectral curves will be of near paramount importance when we

construct quantum curves from transalgebraic spectral curves.

3.B The Topological Recursion for Transalgebraic Spec-

tral Curves

Now that we have finished our walk along the low road of the previous section, we can

present the definition of the topological recursion for transalgebraic spectral curves
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straight away, and then spend the rest of the section arguing and demonstrating why

it works.

Definition 3.B.1. Given a transalgebraic admissible spectral curve S = (Σ, x, y)

with x = M0 exp(M1) and y = M2/x with M0,M1,M2 ∈ K(Σ) fix τ ∈ C and

define the sequence of spectral curves S = (Σ, xN , yN) where

xN =M0

(
1 + (τ − 1)

M1

N

)−N (
1 + τ

M1

N

)N

, yN =M2/xN .

Then, if ωN
g,n are the correlators constructed from the spectral curve SN we define the

correlators of the spectral curve S as the N → ∞ limit. This topological recursion

shall be referred to as the transalgebraic topological recursion in contrast to the

topological recursion of Definition 2.B.3, which will be referred to as the algebraic

topological recursion.

Obviously, this defines nothing if the limit depends on τ or does not yield well-

defined meromorphic correlators. Allaying these fears is the content of the next

theorem, which will unfortunately take some work to prove.

Theorem 3.B.2. Let S = (Σ, x, y) be a transalgebraic spectral curve. Then the

ωg,n constructed from Definition 3.B.1 are well defined meromorphic n-differentials

and do not depend on the choice of τ .

Proof. Our strategy will be to first prove the that ωg,n are well-defined for τ = 0,

and then show that the limit is independent of τ .

Proceeding inductively in the τ = 0 case on −χg,n = 2g+n−2, and noting that

the induction beginning (corresponding to ω0,1 and ω0,2) the result holds trivially,

we fast-forward directly to the induction step. For finite N use Theorem 2.C.1 to
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write

ωN
g,n(z1, B) = Res

t=RN

deg(xN )∑
i=2

St
∗(z1)

∑
C1,...,Cj⊢{t1,...,ti−1}

(−1)1−δj,i−1

j!
Res

tCl
=RN ,B,Y(t)

l=1,...,j

Res
Cl=tCl
l=1,...,j j∏

l=1

xN(t)

xN(t)− xN(tCl
)

∏
t0∈Cl\{tCl

}

xN(tCl
)

xN(t0)− xN(tCl
)

 Ωi,N
g,n (t, t1, . . . , ti−1|B)∏i−1
l=1(M2(t)−M2(tl))

,

(3.1)

where Y(t) = (xy)−1
(
(xy)({t})

)
. This isn’t a copy and paste of the result of

Theorem 2.C.1 so a couple of remarks are in order so it is clear how we get here:

• in the denominator of the integrand in the original TR we rewrote yN(t) −

yN(σ(t)) = (M2(t)−M2(σ(t)))/xN(t) so we ended up with the M2 = xy =

xNyN in the denominator and the xN(t) in the numerator;

• as xN(t) = xN(σ(t)) for every deck transformation, we can choose which

deck transformation we take the argument of xN to be at; in particular, we

take j of them to just be t and the other i − 1 − j to be precisely those deck

transformations that gives us tCl
;

• when we flipped the contour we then had to pick out residues at Y(t) rather

than Y (t).

The residues at tCl
= RN

∞ actually vanish for sufficiently large N as the following

argument shows. For the points in RN
∞ that satisfy M1 = N we have that xN(tCl

)

has a pole of order N . xN(tCl
) appears in the denominator one time with no

corresponding xN(tCl
) in the numerator to give the overall integrand in the variable

tCl
a zero of order N . We then claim the rest of the integrand has, at worst, a
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pole of uniformly bounded order in N . At these ramification points ωN
0,1 has a

simple pole; it is known that in this case the ωN
g,n have poles of order no more than

2g [Do and Norbury, 2018, 2016] and so the Ωi,N
g,n certainly won’t have a pole of

unbounded order in N . Similarly, M2 is meromorphic and constant in N . For

the xN(tCl
)/(xN(t0) − xN(tCl

)) the xN appears in both the denominator and the

numerator. Finally, we need to examine the residues at Cl = tCl
. This will be a

residue of a pole of order no more than three (two from a potential ω0,2 contribution

plus one for the difference of the xN in the denominator). Thus, this residue may

be replaced by multiplication by (t0 − tCl
)3 and twice differentiating by t0, for

each t0 ∈ Cl \ {tCl
}, before taking the limit as tCl

→ t0. By the quotient rule for

differentiation we will have the same total power of derivatives ofxN in the numerator

and denominator, just in different combinations and orders of differentiation. Thus,

at the residues at points where M1 = N we may drop the residue in tCl
.

Now we examine the residues in tCl
where the point at which the residue is

taken satisfies M1 = ∞. Here, when we take the residue at Cl = tCl
, as discussed

previously, this ultimately corresponds to derivatives. However, the pole counting

is now a little more subtle so we do it explicitly. In particular, observe8

xN(tCl
)ω0,2(t0, tCl

)(t0 − tCl
)3

xN(t0)− xN(tCl
)

=
xN(tCl

)

x′N(tCl
)
− (t0 − tCl

)
xN(tCl

)x′′N(tCl
)

x′N(tCl
)2

+ (t0 − tCl
)2
(
xN(tCl

)x′′(tCl
)2

4x′N(tCl
)3

− xN(tCl
)x′′′N(tCl

)

x′N(tCl
)2

)
+O

(
(t0 − tCl

)3
)
. (3.2)

In the constant term and the t0 − tCl
term there is no pole at tCl

equalling a pole of

M1. However, the (t0− tCl
)2 has a simple pole here. On the other hand, the ωN

g,n are

8We are technically using t to denote points on Σ and not as a coordinate. Thus the derivatives
in the following should be understood to mean derivatives with respect to a chosen coordinate. This
abuse of notation does not matter, as the particular coordinate that is chosen is irrelevant to the
argument.
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regular at these points (this is clear from pole-counting the normal, non-rewritten

topological recursion, Definition 2.B.3) andM2(t0), which has at least a simple pole

by admissibility, appears in the denominator. Thus, in terms with an ω0,2(t0, tCl
) we

don’t have contributions from these points. For terms without this factor, the pole

at t0 = tCl
is simple. Ergo, observing

xN(tCl
)(t0 − tCl

)

xN(t0)− xN(tCl
)
=
xN(tCl

)

x′N(tCl
)
+O (t0 − tCl

) , (3.3)

we see the exact same argument still holds. In summary, we may replace the residues

in each tCl
at all the points in RN with just those at R0

N .

First we note this argument shows that the integrand in t is well defined in the

limit. We may simply commute the limit in N → ∞ with the residues (integrals)

in the t0 ∈ Cl and tCl
using dominated convergence before using the induction

assumption that ωN
g,n → ωg,n. However, we of course want the integral, not just the

integrand, to be well-defined in the limit. To this end, we note the contributions

from the residues at t = RN
0 go to the contributions at t = R0 in the limit simply by

pulling the limit in N inside each integral using dominated convergence, as before,

and applying the induction assumption. This simplistic argument will not, however,

work for the residues at t = R∞ as these points are not isolated singularities in the

limit.

To deduce that the actual integral must be well-defined in the limit, we will

pushforward to work in the M1 plane where all elements of R∞
N fall at either

M1 = N,∞. To move the action to the origin, let w = 1/M1 be a coordinate in

the M1-plane. For a deck transformation σ of M2, i.e., σ(t) ∈ Y(t), we define a

corresponding transformation ν through ν(w) = ν(1/M1(t)) = 1/M1(σ(t)). One

should note that the value of individual ν may depend on where we are in the t-plane
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which initially may seem to render them totally ill-defined; however, we sum over

ν at every step and so avoid this issue. In performing this sum, as from now on we

will suppress this detail, it is advisable to realise that the sum over ν must include

both the sum over σ (from all elements of Y(t)) and partial inverse of M1 (from the

fact we pushforward in M1). Let ν1, . . . , νr be all such non-trivial ν and note, for

generalN , νp(w = 1/N) ̸= 1/N for all p = 1, . . . , r. We claim the integrand of the

topological recursion, pushed forward under M1 and then written in the coordinate

w takes the following form (where expN(z) = (1− z/N)−N )

N d
N(w|z1, B) expN(w

−1)d +N d−1
N (w|z1, B) expN(w

−1)d−1 + · · ·+N 0
N(w|z1, B)

Dd
N(w|z1, B) expN(w

−1)d +Dd−1
N (w|z1, B) expN(w

−1)d−1 + · · ·+DN
0 (w|z1, B)

,

(3.4)

where each of the N k
N and Dk

N are meromorphic functions9 with the order of their

zeros and poles at ofw = 1/N bounded uniformly inN and it is assumed Dd
N(w|B)

is not identically zero. To get this expansion first note we can write every derivative

of xN as expN(M1) = expN(1/w) times a sequence of meromorphic functions with

the order of their poles and zeros bounded uniformly in N . Then, when we take the

residues at t0 = tCl
we get expansions like (3.2) and (3.3) which we may put over

a common denominator. Next, when we take the residues at tCl
= R0

N , B,Y(t) we

can, if necessary (such as the residue at tCl
= t), do similar expansions. However,

the important thing to note is we always, for each term, get the same leading power

of xN in the numerator and denominator. Thus, when we pushforward and put

everything over a common denominator, we get an expansion of the form (3.4).

Now, such an expansion is self-evidently non-unique, but by the above construction

we can take the coefficients N k
N and Dk

N to be well-defined in the limit, although

9Due to the presence of St
∗(z1) in the integrand, this isn’t strictly true for non-zero genus.

However, all we want to do in the end is integrate, so the reader is encouraged to forgive our slight
misuse of terminology.
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they may have essential singularities due to the presence of exp(1/νp(w)) factors

and therefore not be meromorphic in the limit. In particular, we will be interested in

the ratio N d
N(w|B)/Dd

N(w|B), so the non-uniqueness will not matter, as this ratio

is unique.

We now need to verify two important properties of N d
N(w|B)/Dd

N(w|B). First,

we claim it has no pole at w = 0. Second, we claim that it does not have essential

singularity in the limit and its only potential pole near w = 0 is the one at w = 1/N .

Note the only place an essential singularity could come from are the expN(1/νp(w)).

The proof of these claims is a bit more involved. Our strategy will be to examine

the individual terms that we put over a common denominator before pushing forward

to the w-plane; by examining the ratio of the coefficient of the highest power of xN

in the numerator, to the one in the denominator, we can deduce the behaviour of

the coefficients in the fraction put over a common denominator (note that, before

pushing forward, xN is expN(M1) times a meromorphic function M0, so looking

at leading powers of xN is the same as looking at leading powers of expN(M1)).

The lack of poles at t = R∞ will give us the lack of a pole at w = 0, and the

lack of expN(M1(σ(t))) factors in the leading order, will give us the no essential

singularities result. To this end we first examine the contributions

Res
tCl

=R0
N ,B

l=1,...,j

Res
Cl=tCl
l=1,...,j j∏

l=1

xN(t)

xN(t)− xN(tCl
)

∏
t0∈Cl\{tCl

}

xN(tCl
)

xN(t0)− xN(tCl
)

 Ωi,N
g,n (t, t1, . . . , ti−1|B)∏i−1
l=1(M2(t)−M2(tl))

.

(3.5)

Here, the residues in the tCl
are taken at points that do not depend on t. Thus, due
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to the pole of M2 at the poles of M1 guaranteed by admissibility, these residues will

all contribute some sort of zero to the ratio of leading order coefficients in powers

of xN . Obviously, these will never contribute expN(M1(σ(t))) factors.

More involved are the contributions from the residues at Y(t). Here, we divide

these into three sub-cases: the first, where we take the residues at σ(t) ∈ Y ′(t)

that do not preserve M1, and it is these that correspond to the ν1, . . . , νr where

the potential dangers of essential singularities in the limit of N d
N(w|B)/Dd

N(w|B)

lurk; the second, where we take the residues at σ(t) ∈ Y ′(t) that preserve M1, i.e.,

M1 ◦ σ =M1; the third, where we take the residue at t itself. Starting with the first

case take an element σ(t) ∈ Y ′(t), fix an l, and note

Res
tCl

=σ(t)
Res

Cl=tCl xN(t)

xN(t)− xN(tCl
)

∏
t0∈Cl\{tCl

}

xN(tCl
)

xN(t0)− xN(tCl
)

 Ωi,N
g,n (t, t1, . . . , ti−1|B)∏

t0∈Cl
(M2(t)−M2(t0))

.

(3.6)

After performing the residues Cl = tCl
we will be left with an expression of the

form

Res
tCl

=σ(t)

xN(t)

xN(t)− xN(tCl
)

fN(t, tCl
, {t1, . . . , ti−1} \ Cl|B)

(M2(t)−M2(tCl
))♯Cl

, (3.7)

where fN is a differential in all its variables except t. Furthermore, fN is meromor-

phic in t and tCl
and remains so in the limit (note in (3.2) and (3.3) the derivatives in

xN appear in the same power in the numerator and denominator so we may cancel

out the factor of expN(M1)), and there is no pole in t or tCl
at the poles of M1

(we established this before to show the residues at tCl
= R∞ do not contribute).

Furthermore, there is no way fN has a pole at tCl
= σ(t).
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Now, clearly, we have a pole of order no more than ♯Cl. We can therefore

calculate the residue with the formula

lim
tCl

→σ(t)

(−1)♯Cl

♯Cl!

d♯Cl−1

dt♯Cl−1
Cl

xN(t)fN(t, tCl
, {t1, . . . , ti−1} \ Cl|B)

xN(t)− xN(tCl
)

(
tCl
σ(t)

M2(tCl
)−M2(t)

)♯Cl

.

(3.8)

If we take the derivatives of the 1/(xN(t)−xN(tCl
)) we will end up with subleading

terms in powers of xN ; these do not concern our analysis. All we care about when

we take derivatives of f , is that derivatives can’t create poles. Finally, we have the

expansion

(
tCl
σ(t)

M2(tCl
)−M2(σ(t))

)♯Cl

=
1

M ′
2(σ(t))

♯Cl

∞∑
k=0

Hk(σ(t))(tCl
− σ(t))k, (3.9)

where Hk has a pole of order at most k at elements of R∞ (poles of M1). The

pre-factor has a zero of at least order ♯Cl (as M2 has a pole at all elements of R∞),

and the only Hk that can contribute are those with k ≤ ♯Cl. Thus, for the leading

terms in xN , we will never get poles. Furthermore, from the above discussion, it is

clear the expN(1/νp(w)) will never enter the leading order power in expN(1/w).

Now, we move on to the deck transformations that preserve M1; let σ(t) be such

a deck transformation and examine the expression

lim
tCl

→σ(t)

(−1)♯Cl

♯Cl!

d♯Cl−1

dt♯Cl−1
Cl

xN(t)fN(t, tCl
, {t1, . . . , ti−1} \ Cl|B)

xN(t)− xN(tCl
)

(
tCl
σ(t)

M2(tCl
)−M2(t)

)♯Cl

,

(3.10)

which is the same as the prior case as nothing changes prior to the examination of

this expression. The thing that does change upon analysing this expression is that

when we take derivatives of the xN(t)/(xN(t) − xN(tCl
)) factor we don’t end up

with only subleading terms as xN(σ(t)) now has a factor of exp(M1(t)). Instead,
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when we take k derivatives of this factor we get a pole of order at most k in the ratio

of the coefficients of the leading powers of xN . Thus, we still can’t get a pole as we

have the factor of M ′
2(σ(t))

−♯Cl , as before.

Finally, we examine the case where we take the residue at tCl
= t

Res
tCl

=t

xN(t)

xN(t)− xN(tCl
)

fN(t, tCl
, {t1, . . . , ti−1} \ Cl|B)

(M2(t)−M2(tCl
))♯Cl

. (3.11)

Here, we may have a pole of order at most ♯Cl + 3. In particular, we get a pole

of order one from the sN(t)/(xN(t) − xN(tCl
)) factor, a pole of order ♯Cl from

the difference of the M2 in the denominator, and a potential double pole in fN at

tCl
= t due to possible presence of an ω0,2(t, tCl

). Here, however, the M ′
2(t)

−♯Cl

has at least a zero of order 2♯Cl. Using identical arguments with the expansions of

the individual factors it is then clear that this case will not create an undesired pole

in N d
N(w|z1, B)/Dd

N(w|z1, B).

With these properties established it is easy to prove the ωN
g,n well-defined in the

limit. First note

Res
w=1/N

N d
N(w|z1, B) expN(1/w)

d + . . .

Dd
N(w|z1, B) expN(1/w)

d + . . .
= Res

w=1/N

N d
N(w|z1, B)

Dd
N(w|z1, B)

(
1 +O(w − 1/N)N

)
= Res

w=1/N

N d
N(w|z1, B)

Dd
N(w|z1, B)

.

(3.12)

As we have established N d
N(w|z1, B)/Dd

N(w|z1, B) has no pole at w = 0 we may

change the residue at w = 1/N to a contour integral about a small circle around

w = 0. Then, using dominated convergence to bring the limit asN → ∞ inside the
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contour we conclude

lim
N→∞

Res
w=1/N

N d
N(w|z1, B) expN(1/w)

d + . . .

Dd
N(w|z1, B) expN(1/w)

d + . . .
= Res

w=0

N d
∞(w|z1, B)

Dd
∞(w|z1, B)

. (3.13)

Finally, we establish that all choices of τ yield the same result in the N → ∞

limit as the τ = 0 case. To this end we proceed inductively on −χg,n = 2g + n− 2

with the induction assumption that ∂mτ ωN
g,n(z1, . . . , zn)|τ=0 exists and goes to zero

for every value of m ∈ Z≥1 as N → ∞. Before proving this, we pause briefly

to note that this result straightforwardly establishes the theorem since we have the

expansion for sufficiently small τ and generic choices of z1, . . . , zn ∈ Σ

ωN
g,n(z1, . . . , zn) =

∞∑
m=0

τm

m!
∂mτ ω

N
g,n(z1, . . . , zn)|τ=0, (3.14)

and may take the limit as N → ∞ inside the sum as the ωg,n may only have

singularities at ramification points, wherefore the radius of convergence remains

non-zero in the limit.

Ergo, we turn our cerebration to the induction proof first noting that the result

is straightforward for ωN
0,1 and entirely trivial for ω0,2 so we may proceed directly

to the induction step and assume the result holds for all prior correlators. We first

argue that we may commute derivatives in τ with all residues in (3.1). To do this, we

transform all residues into contour integrals; even if the point at which the residue is

being taken depends on τ , the contour may be taken to be locally constant in τ . Then

we may commute the derivatives in τ with the τ -independent contour integrals and,

as the derivatives in τ can not create new poles, we may switch all contour integrals

back to the same residues.

As discussed previously, the residues at tCl
= RN

∞ do not contribute, and so
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we may conclude the derivatives in τ of the integrand in t go to zero as N → ∞.

Therefore, as before, we must now check that the same result holds for the integral

and not just the integrand. Again, as before, for the residues at t = RN
0 this result

is clear as we may merely take the N → ∞ limit inside the contour integral so we

concentrate our thoughts on the residues at t = RN
∞. Here, for generic τ , we will

have residues at solutions of M1(z) = N/(1 − τ),−N/τ . When we set τ = 0,

we end up with no poles at M1(z) = ∞, even after taking derivatives, as we can’t

create poles by taking derivatives. For our purposes, we may therefore neglect the

residues at M1(z) = −N/τ , as they will drop out in the end.

Thus, at these points, we need to take τ derivatives of the analogous expression

to (3.4) where the N and D coefficients acquire the suitable τ dependence and

expN(w
−1) = (1 + (τ − 1)/(Nw))−N(1 + τ/(Nw))N is appropriately modified10.

After taking m τ derivatives, the ratio of the new leading order coefficients won’t

have a pole at w = τ = 0 by the quotient rule and the fact that the τ derivative can

only decrease the order of poles at w = 0. We may then conclude that the same

argument with the N → ∞ limit holds, but this time the ratio of the leading order

coefficients must go to zero, as, recalling the manner in which we put everything

over a common denominator, the whole integrand is converging to zero. This proves

the theorem.

First we state an obvious corollary of the fact that our definition of the transal-

gebraic topological recursion is based on the limit of the algebraic topological

recursion.

Corollary 3.B.3. The symmetry, pole structure, residueless, homogeneity, nor-

10τ derivatives obviously commute with the pushforward in M1.
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malised, diagrammatic, and modularity properties listed in Theorem 2.B.6 carry

over to the case of transalgebraic topological recursion.

Proof. The claimed properties obviously carry over as they hold for each element

of our sequence of spectral curves and there is no issue with taking the limit.

Now, we provide a bound on the order of the poles of the correlators at the

infinite ramification points in certain cases.

Proposition 3.B.4. Given an infinite ramification point a ∈ R∞ let m1 denote

the multiplicity of M1 and ζm1 = M1 be a local coordinate on a punctured disk

about a (note: ζ(a) = ∞). If locally near a we have that M0(ζ) = ζd0f0(ζ
m1) and

M2(ζ) = ζd2f2(ζ
m1) for some integers d0, d2 ∈ Z and f0, f2 meromorphic functions

at a, then the ωg,n have poles of order no greater than m1 at a provided m1 ≥ 2.

Proof. Let θ be a primitive m1th root of unity and take the sequence of spectral

curvesSN as before (choose τ = 0 for simplicity, as the result will be τ independent).

Note that, under the rescaling ζ → θmζ we have that ωN
0,1 → θmd0d2ωN

0,1. Therefore,

by the homogeneity of the topological recursion, the simultaneous coordinate change

ζ → θmζ in all variables is equivalent to the rescaling ωN
g,n → θ(2−2g−n)md0d2ωN

g,n

where B ⊂ Σ. Thus, letting B be a set of n − 1 points, the principle part of

ωN
g,n(ζ, B) at the solutions of M1 = N that are near a should read

2g∑
l=2

m1∑
m=1

wN
m,l(B)d log(ζ)

(ζ − θmN1/m1)l
. (3.15)

If we re-scale the coordinates ζ → θm
′
ζ and use homogeneity we get the following

equality

2g∑
l=2

m1∑
m=1

wN
m,l(θ

m′
B)d log(ζ)

(θm′ζ − θmN1/m1)l
= θ(2−2g−n)m′d0d2

2g∑
l=2

m1∑
m=1

wN
m,l(B)d log(ζ)

(ζ − θmN1/m1)l
, (3.16)
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so we find wN
m,l(θ

m′
B) = θm

′lwN
m−m′,l(B) where the subtraction m − m′ is taken

modulo m1 so the answer is between one and m1. Thus, if we put everything on a

common denominator we obtain

2g∑
l=2

m1∑
m=1

wN
m,l(B)d log(ζ)

(ζ − θmN1/m1)l
=

2g∑
l=2

ζ(2−2g−n)d0d2−lWN
l (ζm1 ;B)d log(ζ)

(ζm1 −N)l
, (3.17)

where the WN
l (ζm1 ;B) are polynomials in ζ±m1 and the ζ(2−2g−n)d0d2−l pre-factor

ensures the correct scaling property. The terms that will survive in the N → ∞

limit of the WN
l (ζm1 ;B) are the ones with the highest powers of N . However, this

term will be the surviving term with the lowest power of ζm1 , as when we put things

over a common denominator to get the RHS of the above expression, the term with

the most powers of N will have the fewest powers of ζ . Thus, in each term in the

sum over l, the leading order expression in N must have a power of ζ that is strictly

less than m1. This proves the claim.

The following conjecture is the natural extension of the previous proposition to

m1 = 1, given the fact that the ωg,n are residueless.

Conjecture 3.B.5. At points where M1 has simple poles, the ωg,n are regular for

2g + n− 2 ≥ 1.

This conjecture will be proven in Bouchard et al. [2022]. Finally, we give a

formula for the topological recursion, in a wide variety of cases, without using a

sequence of correlators and taking limits.

Lemma 3.B.6. When M1 is a well-defined function of M2, given a set B ⊂ Σ of

cardinality n− 1, then we may use the following formula to recursively compute the
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correlators of the transalgebraic topological recursion.

ωg.n(z1, B) = Res
t=R

deg(x)∑
i=2

St
∗(z1)

∑
C1,...,Cj⊢{t1,...,ti−1}

(−1)1−δj,i−1

j!
Res

tCl
=R0,B,Y(t)

l=1,...,j

Res
Cl=tCl
l=1,...,j j∏

l=1

x(t)

x(t)− x(tCl
)

∏
t0∈Cl\{tCl

}

x(t)

x(t0)− x(tCl
)

 Ωi
g,n(t, t1, . . . , ti−1|B)∏i−1

l=1((xy)(t)− (xy)(tl))
,

(3.18)

where Y(t) = M−1
2

(
M2({t})

)
and the residues at the infinite ramification points

R∞ are defined as, letting x =M0 exp(M1),

Res
t=R∞

↔ 1

(2g − 1)!
lim

w→0+

d2g−1

dw2g−1
M1∗, (3.19)

where the expression on the left is to be interpreted as follows: we take the push-

forward under the map M1 so are now working in the M1 plane; we define the

coordinate w = 1/M1 so the infinite ramification points are all located at w = 0;

the formula is then the standard one for a pole of order 2g at w = 0 except we take

the limit as w → 0 along the positive real axis.

Proof. Adopting the notation of the proof of Theorem 3.B.2 note that, asN d
N(w|z1, B)/Dd

N(w|z1, B)

has a pole of order at most 2g atw = 1/N , we will have thatN d
∞(w|z1, B)/Dd

∞(w|z1, B)

will have a pole of order no more than 2g at w = 0. Ergo, we can compute the

topological recursion in the limit (note here, by assumption, there are no ν). By
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definition, this is

1

(2g − 1)!
lim

w→0+

d2g−1

dw2g−1

N d
∞(w|z1, B) exp(d/w) + . . .

Dd
∞(w|z1, B) exp(d/w) + . . .

=
1

(2g − 1)!
lim

w→0+

d2g−1

dw2g−1

N d
∞(w|z1, B)

Dd
∞(w|z1, B)

(
1 +O(exp(−w−1))

)
=

1

(2g − 1)!
lim

w→0+

d2g−1

dw2g−1

N d
∞(w|z1, B)

Dd
∞(w|z1, B)

= Res
w=0

N d
∞(w|z1, B)

Dd
∞(w|z1, B)

.

(3.20)

It is the belief of the author that this works even when M1 is not a well-defined

function ofM2, but it is tricky to establish due to the possibility of the exp(1/ν(w))

contributing to the leading order coefficients in the limit. It is therefore clear that

this corollary still holds if M1 is not a well-defined function of M2, but one can

prove the exp(1/ν(w)) do not contribute to the leading order in the limit.

We then conjecture, with reasonable evidence, that the principal parts of the

correlators at essential singularities actually take an exceedingly nice form.

Conjecture 3.B.7. The projection of ωg,n onto its principal parts (principal part

being defined through the choice of polarisation induced by ω0,2) at the essential

singularities is (B ⊂ Σ is a set of n− 1 points)

∑
a∈R∞

Res
t=a

St
∗(z1)ωg,n(t, B)

= δn,1
(21−2g − 1)B2g

(2g)!

∑
a∈R∞

Res
t=a

St
∗(z1)d

(
d

dM2(t)

)2g−1

log(x(t))

= δn,1 (dM2(z1))
(21−2g − 1)B2g

(2g)!

(
d

dM2(z1)

)2g

M1(z1),

(3.21)

where B2g denotes the 2gth Bernoulli number. Note that this formula necessarily

implies that the only correlators that have poles at essential singularities are those

52



with n = 1 and of these, only finitely many have poles.

The only explicit evidence for this conjecture provided here is that this agrees

with the rescaling arguments presented in Proposition 3.B.4, the fact that if we

replace x by xN in the above formula we reproduce the correct pole-structure for

finite N in the n = 1 case, and the fact that the ω0,n will have vanishing principal

parts at essential singularities. However, in an upcoming publication [Bouchard

et al., 2022], it will be shown that this conjecture is always true for the simplest

non-trivial correlators with −χg,n = 2g + n − 2 = 1 and the conjecture will be

proven for all correlators in the r-atlantes Hurwitz case.

If this conjecture is indeed true, it means that throughout this section we have

been something like Krylov’s inquisitive man sifting through fine details and noticing

gnats on the wall while missing the obvious big picture; we have, in short, done

something rather complicated to achieve something rather remarkably simple. In

such cases, there should be a different lens that brings the big picture more into

focus and allows us to see the elephant in the room.

3.B.1 Example: q-Orbifold r-Atlantes Hurwitz Curve

At this point, we pause briefly our elucidation of the general theory of the transal-

gebraic topological recursion to consider an example. Let z be an affine coordinate

on C∞, r, q ∈ Z≥1, and consider the spectral curve

S =
(
C∞, x(z) = ze−zqr , y(z) = zq−1ez

qr)
, (3.22)

which we will call the q-orbifold r-atlantes Hurwitz curve. It is the content of

Theorem 4.B.8 that this curve, in the case q = 1, produces correlators that are

generating functions of the r-atlantes Hurwitz numbers (see Alexandrov et al. [2016]
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for an explanation of atlantes Hurwitz numbers). For q > 1 it can be taken as

conjectural that this spectral curve will calculate the q-orbifold r-atlantes Hurwitz

numbers.

In any case, here we will use Lemma 3.B.6 to calculate the contribution from

the essential singularity at infinity to the correlator ω1,1. Given our spectral curve

we have M1(z) = −zqr, M2(z) = zq, and Ω2
1,1(t, t1|∅) = ω0,2(t, t1). Choosing our

base point ∗ to be infinity and letting θ be a primitive qth root of unity we see that

this contribution will be

Res
t=∞

St
∞(z1)ω1,1(t) = Res

t=∞

dz1
z1 − t

Res
t1=R0,Y(t)

te−tqr

te−tqr − t1e−tqr1

ω0,2(t, t1)

tq − tq1
. (3.23)

The residues at t1 = R0 will drop out, as the integrand has no poles here. For

the residues at t1 = Y(t) we must be careful to distinguish between the trivial and

non-trivial sheets of M2, as the pole structure of the integrand is different in these

two cases. First, we look at the non-trivial sheets, where there is only a simple pole

q−1∑
m=2

Res
t1=θmt

te−tqr

te−tqr − t1e−tqr1

ω0,2(t, t1)

tq − tq1
=

q−1∑
m=2

1

1− θm
θm

−q
dt

t2(1− θm)2
, (3.24)

which we see has no pole at t = ∞ and so will not contribute to the final result.

Next, we examine the residue at t1 = t. The calculation is done on Sagemath as it

is long and unenlightening and we just give the result here

Res
t1=t

te−tqr

t1e−tqr1 − te−tqr

ω0,2(t, t1)

tq1 − tq
= −qr(r − 1)tqr−q−1dt

24
+O(t−2)dt. (3.25)

Then, multiplying by St
∞(z1) and taking the residue at infinity we obtain

Res
t=∞

St
∞(z1)ω1,1(t) = −rdz

q(r−1)
1

24
, (3.26)
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which is in agreement with Conjecture 3.B.7. Note that we did not have to use

the re-definition of the residue at t = R∞ in Lemma 3.B.6 as the integrand is

meromorphic. It is straightforward to see this is generic to calculations of ω1,1, but

that this will not hold for more complicated correlators.

3.C The Topological Recursion for Curves with Infi-

nite Ramification Loci

It has hitherto been assumed that the ramification locus ofx,R, is of finite cardinality.

In the case of algebraic curves, this is always the case, however, in the transalgebraic

case it is interesting to examine the loosening of this restriction. Here, we define the

topological recursion for a broad class of transalgebraic spectral curves11 where the

ramification locus is countable infinite.

To avoid toilsome complications we will impose some restrictions on the be-

haviour of these spectral curves, although it seems likely the topological recursion

is definable for virtually any branched covering x. Indeed, by the Weierstraß fac-

torisation theorem, given a countable subset R ⊂ C, there exists an entire function

with zeros at R of any prescribed order so tackling the general case seems rather

broad even for genus zero. We will therefore restrict to genus zero, assume that x is

periodic with period p, and that the set of all ramification points may be written as

(assuming an essential singularity only at infinity)

R = {aj + kp|k ∈ Z, 1 ≤ j ≤ r} ∪ {∞}, (3.1)

11Of course, these won’t be spectral curves in the sense of Definition 3.A.5 where the ramification
locus is more or less assumed finite.
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where a1, . . . , ar are ramification points that generate the ramification locus; we

assume such a collection of aj is chosen to be minimal, i.e., aj1 ̸= aj2 + kp. These

assumptions are broad enough to encompass applications to the Gromov-Witten

theory of the projective line and mirror curves, as we will see in Chapter 4, but are

still restrictive enough that that the development of the general theory is manageable.

We now argue that these assumptions imply a rather specific form for dx. Letting

bj be the order of dx at aj we may conclude that

dx

dz

r∏
j=1

(z − aj)
−bj

∞∏
k=1

[
1−

(
z − aj
kp

)2
]−bj

, (3.2)

is a never zero entire function. Thus, it is equal to C exp(f(z)) for some C ∈ C and

entire function f with f(0) = 0. We assume, as before, that f is in fact meromorphic

on C∞; in this case, as f(0) = 0 and f(z+p) ∈ 2πiZ−f(z) from the periodicity of

x, we may then conclude that f is linear so f(z) = λz where λp ∈ 2πiZ. Putting it

all together, and setting C = 1 as the normalisation of x is irrelevant for topological

recursion (we can always put the normalisation in y), we arrive at

dx(z) = eλz
r∏

j=1

(z − aj)
bj

∞∏
k=1

[
1−

(
z − aj
kp

)2
]bj

dz. (3.3)

This leads us to the following definition of admissibility for curves of this form.

Definition 3.C.1. A triple S = (C∞, x, y) is called a spectral curve with infinite

ramification locus R if dx takes the form given in (3.3), and ω0,1(z)/ω(x(z)) =

y(z)dx(z)/ω(x(z)) is holomorphic at each ramification point of x and meromorphic

on the whole of C∞ where ω(x) is a meromorphic 1-form on C∞. We say S is

acceptable if ω(x) = dx and λ = 0 in (3.3).

56



Remark 3.C.2. Note that we now allow ω0,1 itself to not be meromorphic on C∞.

Even more generally, we could actually choose ω to be locally different around each

ramification point (provided any two ramification points ω is different at are not

related by addition of the period), but this seems like rather pointless generality.

The definition of admissibility carries over verbatim at the finite ramification

points; given Conjecture 3.B.5 we will simply ignore the ramification point at infin-

ity. With these facts in mind, the following definition of the topological recursion is

the obvious one.

Definition 3.C.3. Given a spectral curve admissible in the sense of definition 2.A.9

we define the topological recursion to be exactly that of definition 2.B.3 except the

sum over R is now infinite. The ramification point at infinity is ignored.

The next lemma checks that we may indeed take Definition 2.B.3 to hold at

each ramification point and sum up the infinitely many contributions to obtain a

well-defined result. The lemma succeeding the next demonstrates that, for accept-

able curves, we may obtain this topological recursion as a limit of the algebraic

topological recursion.

Lemma 3.C.4. The sum over R in Definition 3.C.3 converges absolutely for admis-

sible spectral curves. Furthermore, for g ≥ 0, n ≥ 1, and 2g + n − 2 ≥ 1 the n

differentials constructed are periodic in all their variables with period p.

Proof. We prove this by induction on 2g + n− 2. The statement trivially holds for

ω0,2 and ω0,1 so we may fast forward straight to the induction step. First note that by

the induction assumption ωg,n is automatically periodic in all its arguments save the

first, provided it converges. Therefore, we must check only that ωg,n is well-defined,

and that it is periodic in its first arguments.
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We will start by demonstrating the periodicity property, from which the con-

vergence property will follow naturally. To accomplish this, we will begin with an

examination of the local deck transformations to find (perhaps unsurprisingly) that

they obey a periodicity-like property. For notational convenience, up to periodicity,

we assume we have only one ramification point a (it will be clear that the proof

easily generalises). Let θ be a primitive ra’th root of unity. Fixing k ∈ Z, every

σm
a+kp ∈ σa+kp has an expansion of the form

σm
a+kp(z) = a+ kp+ θm(z − a− kp) +O(z − a− kp)2.

We then compute

x(σm
a+kp(z + p)) = x(z + p) = x(z),

so σ(z) := σm
a+kp(z+ p) is also a deck transformation. One can then observe, using

prime to denote a z derivative

σ′(a+ (k − 1)p) = θm,

to conclude that, using the uniqueness of local deck transformations upon fixing

their first derivative,

σm
a+kp(z+a) = σm

a+(k−1)p(z) = a+(k−1)p+θm(z−a−(k−1)p)+O(z−a−(k−1)p)2.

Finally, we may use induction to establish the result that for any k − l with l ∈ Z

there are expansion coefficients sml not depending on k such that

σm
a+kp(z) = a+ kp+

∞∑
l=1

sml (z − a− kp)l. (3.4)
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Let us now take ω as in Definition 3.C.1 and define M2(z) := ω0,1(z)/ω(x(z)).

We wish to show there exists coefficients Mm
l which do not depend on k such that

(M2 ◦ σm
a+kp)(z)−M2(z) =

∞∑
l=1

Mm
l (z − a− kp). (3.5)

As M2 is assumed regular at each ramification point it suffices to show the result for

the case M2(z) = zj for some j ∈ Z>0; if it is true for each j, then it is true for a

general expansion of a holomorphic function. We use the well-known identity for

a, b ∈ C

aj − bj = (a− b)

j−1∏
i=1

(
a− be2πii/j

)
.

Applying this to our situation we find

(
σm
a+kp(z)

)j − zj = (σm
a+kp(z)− z)

j−1∏
i=1

(
σm
a+kp(z)− ze2πii/j

)
=

(
(θm − 1)(z − a− kp) +

∞∑
l=2

sml (z − a− kp)l

)

×
j−1∏
i=1

(
(θm − e2πii/j)(z − a− kp) +

∞∑
l=2

sml (z − a− kp)l

)
, (3.6)

from which the existence of such Mm
l is clear. Next, we note

ω0,2(z1, z2) =
d(z1 − a− kp)⊗ d(z2 − a− kp)(
(z1 − a− kp)− (z2 − a− kp)

)2 , (3.7)

so any ω0,2(σ
m1
a+kp(z), σ

m2
a+kp(z)) clearly has an expansion about a + kp with coeffi-

cients independent of k. As x is periodic in p, ω(x(z)) certainly has an expansion

about z = a + kp with coefficients that do not depend on k. By the induction

assumption and the same reasoning, the ωg′,n′ with 2g′ + n′ − 2 < 2g + n− 2 also
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have such expansions. Ergo the entire integrand

ra+kp∑
i=2

∑
A⊆σa+kp·t
|A|=i,t∈A

Ki(z1, t, A \ {t})Ωi
g,n(A|B),

clearly has such an expansion in t = a + kp. Thus the ωg,n will have an expansion

of the form

ωg,n(z1, . . . , zn) =
∞∑

k=−∞

∞∑
l=2

al(z2, . . . , zn)

(z1 − a− kp)l
, (3.8)

where all but finitely many of the al are zero. This proves that the sum over the

ramification points (which is the sum over k) converges and that ωg,n is periodic in

its first argument. Note that the property that the ωg,n are residueless (and therefore

don’t have simple poles) is locally guaranteed at each ramification point; the fact we

have an infinite sum does nothing to the argument.

Lemma 3.C.5. Given an acceptable admissible spectral curve with a countably

infinite ramification locus, S = (C, x, y), there exists a sequence of spectral curves

SN = (C, xN , yN) with finite ramification locus (a spectral curve in the sense of

Definition 2.A.3 or Definition 3.A.5) such that theωN
g,n constructed fromSN converge

to the ωg,n constructed from S.

Proof. By admissibility we may assume the form (3.3) for dx. By relabelling the

generating set of ramification points {a1, . . . , aj}, we will assume a1 is a zero of

dx. Then define

dxN(z) =
r∏

j=1

(z−aj)bj
N∏
k=1

[
1−

(
z − aj
kp

)2
]bj

dz, xN(z) = C+

∫ z

a1

dxN , (3.9)

where C ∈ C is the unique value so that xN → x. There is no ambiguity in defining

the integral of dxN as dxN clearly has no simple poles and is thus exact (recall we
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are working in genus zero). Define

ωN
0,1(z) =

ω0,1(z)dxN(z)

dx(z)
, (3.10)

and note that this defines yN through yN = ωN
0,1/dxN .

We now make two key observations. First, the finite N ramification locus is a

strict subset of the limiting ramification locus. Second, by Bouchard and Eynard

[2013] at each finite ramification point of xN we get locally uniform convergence

of the ωN
g,n constructed from SN from the locally uniform convergence of the xN

and ωN
0,1 in small punctured disks about these points. We will use the Weirerstrauss

M -test to then commute the limit in N with the sum over ramification points.

For simplicity12 we assume that p = 1, and up to periodicity there is only one

ramification point a. Then, inductively, we claim for 2g + n− 2 ≥ 1 (we make no

claim on ωN
0,1 and ωN

0,2)

ωN
g,n(z1, . . . , zn) =

Lg,n∑
l=2

∞∑
k=−∞

aNl,k(z2, . . . , zn)

(z1 − a− k)l
, (3.11)

whereLg,n are some positive integers and the aNl,k(z2, . . . , zn) are uniformly bounded

in k and N , i.e. there exists M(z2, . . . , zn) ∈ R≥0 such that |aNl,k(z2, . . . , zn)| <

M(z2, . . . , zn) (as the sum over l is finite the non-dependence of M on l is clear).

As we make no claim on the form of ωN
0,1 and ωN

0,2 the induction beginning is

trivial. Thus, we move onto the induction step. The claim follows if we can

show the following integral is bounded independently of k,m,N ∈ Z where B =

{z2, . . . , zn} (we abuse notation slightly by saying bounded as this is a n − 1

12If the reader is concerned this assumption is too much, in our applications it is the case up to an
additional Z2 symmetry.
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differential)

∮
|t−a−k|=ϵ

(t−a−k)m
ra+k∑
i=2

∑
A⊆σa+k·t
|A|=i,t∈A

(
1

dxN(t)

)i−1 ∏
t0∈A

(
MN

2 (t)−MN
2 (t0)

)−1
Ωi,N

g,n (A|B),

(3.12)

where MN
2 = ωN

0,1/dxN . This follows if we can show the following is bounded

ϵm max
|t−a−k|=ϵ

ra+k∑
i=2

∑
A⊆σa+k·t
|A|=i,t∈A

∣∣∣∣ dt

dxN(t)

∣∣∣∣i−1 ∏
t0∈A

∣∣MN
2 (t)−MN

2 (t0)
∣∣−1

∣∣∣∣∣Ωi,N
g,n (A|B)

dt⊗i

∣∣∣∣∣ .
(3.13)

Obviously, the pre-factor |t− a− k|m = ϵm is bounded in the desired manner, and

by the induction assumption the
∣∣Ωi,N

g,n (A|B)
∣∣ term is also bounded in the desired

manner so all that is left is the two factors from the recursion kernel. The argument

that the factor involving the difference MN
2 (t)−MN

2 (t0) is bounded independently

of k is a virtual copy and paste of the argument given in the previous lemma. As

both MN
2 and all deck transformations will converge uniformly near a + k we get

that this is bounded uniformly in N for free. The remaining factor is

∣∣∣∣ dt

dxN(t)

∣∣∣∣i−1

,

and this is the most involved part. We wish to show dxN(t)/dt is bounded below

independently of k and N for t = a+ k + ϵeiθ for some 0 ≤ θ < 2π. Explicitly, we

have

dxN(t) =
N∏
l=1

[
1− (k + ϵeiθ)2

l2

]b
dt, (3.14)
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for some b ∈ Z. Now note

∣∣∣∣1− (k + ϵeiθ)2

l2

∣∣∣∣2 = 1 +
k2

l2

(
−2− 4ϵ cos θ

k

)
+
k4

l4

(
1 +

4ϵ cos θ

k
+

2ϵ2

k2
(1 + 2 cos2 θ) +

4ϵ3 cos θ

k3

)
+O

(
ϵ2k0

l2

)
=

(l2 − (k2 +O(k0l0ϵ))2)
2

l4
+O

(
ϵ2k0

l2

)
. (3.15)

Ergo, we can choose ϵ ≪ 1 small enough to get arbitrarily close to having this

expression be (l2 − k2)2/l4 independently of k, provided k ̸= l so the leading order

behaviour does not cancel out. We then note

k−1∏
l=1

(
k2 − l2

l2

)b

=
k−1∏
l=1

(
1 +

k

l

)b

=

(
(k + 1)k

(k − 1)!

)b

, (3.16)

where xn = x(x+ 1) · · · (x+ n− 1) is the rising factorial. Next note

N∏
l=k+1

(
k2 − l2

l2

)b

≥
∞∏

l=k+1

(
k2 − l2

l2

)b

=

(
(k!)2

(2k)!

)b

, (3.17)

putting these two together we see

(
k−1∏
l=1

k2 − l2

l2

)b( N∏
l=k+1

k2 − l2

l2

)b

≥ kb. (3.18)

Finally, the k = l term is clearly Os(ϵ/k)
b so we get our k-independent lower bound.

The desired result then follows.

Although we define topological recursion for all admissible spectral curves,

we only prove the existence of a sequence of spectral curves for the acceptable

curves. This is not ideal (it would be better to have a sequence for every curve),
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but as the definition of the topological recursion remains unchanged locally at

each ramification points the key properties, like symmetry or residueless, still hold

without requiring the sequence. However, when we construct quantum curves, the

results will be rigorous only for acceptable curves.
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Chapter 4

Quantum Curves

4.A What is a Quantum Curve

In the context of matrix models, the correlators ωg,n are related to the expectation

values of the traces of the matrices under consideration [Eynard, 2004, Eynard and

Orantin, 2007c]. But the trace is only one of the two natural basis-independent ob-

jects one can form from a matrix; the other is, of course, the determinant. Quantum

curves provide the topological recursion link to this other perspective. In particular,

in a matrix model, the expectation values of the determinants satisfy certain differ-

ential equations; roughly speaking, the solution of these differential equations is the

so-called wavefunction and the operator that kills it is the quantum curve. It is then

intuitively clear that the wavefunction should somehow involve the exponential of

the ωg,n given that the exponential of a trace is a determinant. This is indeed the

case, as, explicitly, given a spectral curve S = (Σ, x, y) we define the wavefunction

as

ψ(x(z)) = exp

[
∞∑
n=1

∞∑
g=0

ℏ2g+n−2

n!

(∫ z

· · ·
∫ z

ωg,n + corrections
)]

, (4.1)
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which is an exponential of the correlators as claimed. Here ℏ is a formal expansion

parameter, there are n integrations in each term, and it is conventional to write ψ

as a function of x(z), rather than z, even though it is not globally well-defined as

such.1 The exact nature of the integration will be more carefully defined later.

Given the prior discussion, it should come as no surprise that there should be

a Schrödinger-like operator that kills the wavefunction. To gain insight into what

form this operator takes, we make the following curious observation. If we define

a quantisation of our original (x, y) variables (x, y) → (x̂, ŷ) where x̂ = x and

ŷ = ℏd/dx then

P (x̂, ŷ)ψ(x(z)) = P (x, ℏ
d

dx
) exp

[
1

ℏ

∫
ydx+O(ℏ0)

]
= P (x, y)ψ(x(z))+O(ℏ),

(4.2)

where our spectral curve is defined byP (x, y) = 0.2 Thus, up to order ℏ, our desired

Schrödinger-like equation is just the spectral curve evaluated at our canonically

quantised variables (x̂, ŷ)! We formalise this ‘coincidence’ with the following

definition.

Definition 4.A.1. Let S be a meromorphic spectral curve, with x and y satisfying

the relation P (x, y) = 0. We say that P̂ (x̂, ŷ; ℏ) is a quantisation of P (x, y) if we

have the following expansion for some m ∈ N ∪ {∞}:

P̂ (x̂, ŷ; ℏ) = P (x̂, ŷ) +
m∑
i=1

ℏiP̂i(x̂, ŷ),

where P (x̂, ŷ) is taken to be normally ordered (in each term all the x̂ are put to the

1This convention is the natural one as the way one obtains the expectation values of the traces
from the ωg,n is through formal expansion in x where the expectation values of the traces are read
off from the expansion coefficients.

2There is, of course, ambiguities in writing down P (x̂, ŷ) due to ordering, but different orderings
are the same up to order ℏ, so are irrelevant for the given argument.
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left of the ŷ) and the P̂i are normal ordered polynomials of degree at most degP −1.

We say that the quantisation is simple if m <∞.

Of course, such a definition will require a formal approach to defining the

wavefunction, one that defines both the integrations and the correction terms. Nev-

ertheless, given the previous, along with other evidence [Norbury, 2015], we are

lead to the following conjecture, commonly referred to as the Gukov-Sulkowski con-

jecture in the literature [Gukov and Sulkowski, 2011]. For the sake of correctness,

however, it should be noted the name of this conjecture is somewhat of a misnomer;

the result has been well-known in the context of matrix models [Mehta, 1990] long

before the topological recursion and it was already being considered more generally

in Bergère and Eynard [2009] in the context of the then recently discover topological

recursion.

Conjecture 4.A.2. Given a spectral curve and the correlators ωg,n constructed

through the topological recursion, there exists a wavefunction of the form (4.1) and

a corresponding quantum curve in the sense of Definition 4.A.1.

4.B The Quantum Curve/Topological Recursion Con-

nection

We saw in the previous section that there is good reason to believe that quantum

curves and the topological recursion enjoy an intimate and deep connection. This

‘good reason’ has been turned into hard proof by a number of authors exploring a

myriad of different cases [Bergère and Eynard, 2009, Bouchard and Eynard, 2017,

Marchal, 2017, Eynard and Garcia-Failde, 2019, Eynard et al., 2021]. For us, the

key results in this area will be those of Bouchard and Eynard [2017], wherein the

67



authors proved Conjecture 4.A.2 for all regular spectral curves. More precisely, they

derived quantum curves for the wavefunctions3 (recall regular spectral curves are

genus zero and so integration along a path is unambiguously defined)

ψ(x(z); b) = exp

[
∞∑
n=1

∞∑
g=0

ℏ2g+n−2

n!

(∫ z

b

· · ·
∫ z

b

ωg,n − δg,0δn,2x
∗x∗ω0,2

)]
,

(4.1)

where, as ω0,2 is symmetric, it does not matter which variable the pullback of the

pushforward is taken in. The integral of ω0,1 may need to be regularised, but this

character plays no part in the QC/TR story.

Unfortunately, for the sake of maintaining a reasonable level of brevity, this

section will not be self contained and will have to refer to Bouchard and Eynard

[2017] with great frequency. Whenever possible, we will refer explicitly to the

analogues of what we are doing in Bouchard and Eynard [2017] so confusion will

hopefully be avoided. However, in Bouchard and Eynard [2017] everything was

indexed starting from the degree of the curve which for us may be infinite;4 it is

therefore an inauspicious, but ultimately unavoidable, fact that we will have to re-

index virtually all objects considered in Bouchard and Eynard [2017] where infinite

degree curves were not a consideration.

We begin by defining multiple re-indexed objects related to the irreducible

equation in Definition 2.A.2.

Definition 4.B.1. Given a spectral curve P (x, y) = 0 and letting ∆ be the Newton

3The authors actually examined a slightly more general case than the one listed here, where the
chosen integration divisor could be more complex than integration from a base point b to z.

4For us, any curve that does not have a well-defined finite degree is of infinite degree.
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polygon of P and d be the degree, define, for m = 0, . . . , d,

qm(x) =
∑

(i,m)∈A

αi,mx
m, Qm(x, y) =

d−m−1∑
i=1

qm+i+1(x)y
i

αm = inf{a|(a,m) ∈ ∆}, βm = sup{a|(a,m) ∈ ∆}

(4.2)

The αm and βm correspond directly to Definition 2.3 in Bouchard and Eynard

[2017] and were previously defined in Section 2.A. The qm and Qm correspond to

re-indexed versions of the pm and Pm of Remark 2.2 and Definition 2.5, respectively,

in Bouchard and Eynard [2017].

Given that we now have a number of definitions that will, in short order, be

critical to our construction of quantum curves it is helpful to pause briefly and

consider an example.

Example 4.B.2. Consider the degree two spectral curve

P (x, y) = y2 + (2− x2)y + 1 = 0,

which has the parametrisation

S =
(
C∞, x(z) = z + 1/z, y(z) = z2

)
.

Here the non-zero qm and Qm are

q0(x) = 1, q1(x) = 2− x2, q2(x) = 1, Q0(x, y) = y = z2. (4.3)

Next note the Newton polygon is ∆ = {(0, 0), (0, 1), (0, 2), (1, 1), (2, 1)}, which

means this spectral curve is not regular as (1, 1) is an interior point. From ∆ we
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also write down the αm and βm for illustrative purposes

α0 = 0, α1 = 0, α2 = 0, β0 = 0, β1 = 2, β2 = 0. (4.4)

In this simple case, the infimum and supremum in the definition of the αm and βm,

respectively, are actually achieved; however, in general, this may not be the case and

the αm and βm could take on non-integer values.

We now define analogues of the Ck and Dk that appear in Bouchard and Eynard

[2017]. Let x = x(z) and xi = x(zi) for z, zi ∈ C and i ∈ N, i.e., we write things

in terms of the coordinate on the base.

Definition 4.B.3. Let b ∈ C be a pole of dx where all the ωg,n are holomorphic and

x is meromorphic. Then define

Ei = − lim
z1→b

Qi−1(x1, y1)

x
⌊αd−k⌋+1
1

, Fi = ℏ
x⌊αi⌋

x⌊αi−1⌋
d

dx
, (4.5)

where ⌊·⌋ is the floor function.

With these definitions out of the way we are ready to state that, as expected, we

can construct quantum curves for transalgebraic regular admissible spectral curves.

Theorem 4.B.4. Given a transalgebraic regular spectral curve S = (C, x, y), a

base point b that is a pole of dx but not an essential singularity of x, and at which

the ωg,n are regular, and ψ(z; b) as in (4.1) we have that,

(
q0(x)

x⌊α0⌋
+

d∑
i=1

F1F2 · · ·Fi−1
qi(x)

x⌊αi⌋
Fi + ℏ

d−1∑
i=1

EiF1F2 · · ·Fi−1
x⌊αi⌋

x⌊αi−1⌋

)
ψ(z; b) = 0.

(4.6)

Proof. Let x = M0 exp(M1), y = M2/x with M0,M1,M2 rational and take the
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sequence of spectral curves (recall regularity implies genus zero)

SN =

(
C∞, x

N =M0

(
1 + (τ − 1)

M1

N

)−N (
1 + τ

M1

N

)N

, yN =
M2

xN

)
.

As the ωN
g,n are convergent, if they are regular at b in the limit then they must

be regular for large enough N . We then define BN
i , EN

i , FN
i , and ψN(z; b) in

the natural fashion. We quickly see that ψN(z; b) → ψ(z; b) as the exponential

is continuous, the sum is formal, and the ωN
g,n are well-defined in the limit so we

can bring the limit inside the integrals using dominated convergence. The fact that

FN
i → Fi is clear, as the Newton polygon will converge. Finally, we must deal with

the EN
i . In Bouchard and Eynard [2017] it was argued, using arguments based on

an inequality of divisors, that the Ci (which correspond to re-indexed Ei) must be

finite as z1 → b. That an argument will carry over in the limit as N → ∞ is clear

as: (i) x is meromorphic near b by assumptions on b; (ii) as xN will be uniformly

convergent away from x infinity it will be uniformly convergent, in particular, near

b; (iii) the required inequalities are non-strict. Finally, as already noted, near b, xN

is uniformly convergent so by the Moore-Osgood theorem,

lim
N→∞

lim
z1→b

QN
i−1(x1, y1)

(xN − xN1 )(x
N
1 )

⌊αN
d−k⌋

= lim
z1→b

lim
N→∞

QN
i−1(x1, y1)

(xN − xN1 )(x
N
1 )

⌊αN
d−k⌋

, (4.7)

at which point we may just take the limit, concluding that BN
i → Bi and the Bi’s

are not identically infinity.

Remark 4.B.5. It is important when one constructs the limiting (d = ∞) quantum

curve to take the right spectral curve. For example, there is no guarantee that the

family of equations

ye(τ−1)(xy)r − eτ(xy)
r

= 0,
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which all yield the same correlators, will give the same quantum curve. The correct

choice(s) are clearly given by considering the sequence of spectral curves. For

example, the choice of sequence in the theorem gives the listed equation for each τ

in the r-atlantes Hurwitz case.

This theorem therefore gives us a canonical way of creating a quantum curve

for a regular transalgebraic spectral curves. In particular, we don’t actually have to

construct a quantum curve for each finiteN and take the limit; the mere existence of

such a sequence of curves guarantees we can construct the quantum curve directly

from the limiting curve. It is important to note, that when d = ∞, the constructed

quantum curve is under no obligation to be simple, which is in sharp contrast to the

d <∞ case.

As in Bouchard and Eynard [2017], the choice of divisor can be generalised

from being the rather trivial D = [z]− [b] in an analogous way to the generalisation

presented in Remark 5.15 in Bouchard and Eynard [2017]; the key steps of the proof

carry over virtually without modification.

However, choosing one’s base point to be a pole of dx is extraordinarily inconve-

nient when dx has no pole; a case that may arise when x has an essential singularity.

In Bouchard and Eynard [2017], they considered the case of the base point b being

a zero of qd(x(b)) = 0, but only when d = 2. Here, we generalise this choice to the

case d > 2 and then use it to construct quantum curves with this base point. We

begin this process with a lemma before proving a theorem analogous to Theorem

4.B.4.

Lemma 4.B.6. For b a zero of qd(x) that is not in the ramification locus of x we

have

ψi(x(b); z; b) = ψ(z; b) lim
z1→b

1

x(z1)⌊αd−i⌋
Qd−i−1(x(z1), y(z1)), (4.8)
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where the ψi are defined in Definition 5.9 of Bouchard and Eynard [2017].

Proof. From Bouchard and Eynard [2017] Definition 5.9

ψi(x(b); z; b) = ψ(z; b) lim
z1→b

(
1

x(z1)⌊αd−i⌋

(
qd(x(z1))ξi(x(z1);D)− qd−i(x(z1))

))
.

(4.9)

Using the notation of Bouchard and Eynard [2017] and subbing in the definition of

the ξk (Definition 5.6 in Bouchard and Eynard [2017])

qd(x(z1))ξi(z1) = (−1)iqd(x(z1))
∞∑
n=0

∞∑
g=0

ℏ2g+n

n!

Gi
g,n+1(z1)

dx(z1)⊗i
, (4.10)

where theGi
g,n+1 are defined in Definition 5.3 of Bouchard and Eynard [2017]. First

we examine the power ℏ0. Here we have, where the U i
0,1 are defined in Definition

4.1 of Bouchard and Eynard [2017]

(−1)iqd(x(z1))
Gi

0,1(z1)

dx(z1)⊗i
= (−1)iqd(x(z1))

U i
0,1(z1)

dx(z1)⊗i
= Qd−i−1(x(z1), y(z1))+qd−i(x(z1)).

(4.11)

Note then we have the inequality (Lemma 2.6 in Bouchard and Eynard [2017])

div(Qd−i−1(x, y)) ≥ αd−idiv0(x)− βd−idiv∞(x). (4.12)

So we therefore have that the limit

lim
z1→b

1

x(z1)⌊αd−i⌋
Qd−i−1(x(z1), y(z1)), (4.13)

is finite. This is in agreement with the result in Bouchard and Eynard [2017] for

d = 2 as, when d = 2, we have Q0(x, y) = qd(x)y. Now we examine the higher

order powers of ℏ. As b is not in the ramification locus of x we have that each
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Gi
g,n+1(z1) is regular at b for 2g + n ≥ 1, furthermore it can’t be a zero of dx so for

each i,
Gi

g,n+1(z1)

dx(z1)⊗i
, (4.14)

is regular at b. Ergo, if b is not a zero of x the terms of higher order in ℏ never

contribute. Assume then that b is a simple zero of x and we claim that still

lim
z1→b

qd(x(z1))

x(z1)⌊αd−i⌋
= 0, (4.15)

for i = 1, . . . , d−1. As our curve is irreducible there is some k = 0, . . . , d−1 with

qk(x) = const. as we could otherwise cancel out an overall factor of x in P (x, y).

Let i1 ≤ k ≤ i2 such that the αi1 = · · · = αi2 = 0. Then, as the αm are the smallest

point on the convex hull at the power of ym, they are strictly increasing for m ≥ i2

and strictly decreasing for m ≤ i1 by the convexity of the convex hull. Finally,

observe that α0 and αd will be non-negative integers and note α0 ≤ αd as, if this

inequality didn’t hold, (1, i1) would be an interior point of the Newton polygon.

Thus, we have αd = ⌊αd⌋ > ⌊αm⌋ for all d > m > 0. This establishes (4.15) as the

order of the zero of qd(x) in x is αd.

Ergo, we get that the ℏ corrections vanish and we have the explicit expressions,

ψi(x(b); z; b) = ψ(z; b) lim
z1→b

(
1

x(z1)⌊αd−i⌋
Qd−i−1(x(z1), y(z1))

)
, (4.16)

as claimed.

This gives an analogous theorem to Theorem 4.B.4 except with this new choice
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of base point. First, we define the new coefficients Gi and Hi

Gi = lim
z1→b

1

x(z1)⌊αi⌋
Qi−1(x(z1), y(z1)), Hi = ℏ

x⌊αi⌋

x⌊αi−1⌋

(
d

dx
− 1

x− x(b)

)
.

(4.17)

Then, Theorem 5.11 of Bouchard and Eynard [2017] reduces to

ℏ
d

dx
ψi−1(x; z; b) =

x⌊αd−i⌋

x⌊αd−i+1⌋
ψi(x; z; b)−

qd−i+1(x)x
⌊αd−1⌋

qd(x)x⌊αd−i+1⌋
ψ1(x; z; b)

+ ℏ
1

x− x(b)
(ψi−1(x; z; b)−Gd−i+1ψ(z; b)) . (4.18)

We can now derive a quantum curve in the manner of Lemma 5.14 of Bouchard and

Eynard [2017].

Theorem 4.B.7. Given a regular spectral curve S = (C, x, y), a base point b that

is a zero of qd(x) for d <∞ or, if d = ∞, a zero of x, with b not in the ramification

locus of x, and ψ(z; b) as in (4.1) we have that

(
q0(x)

x⌊α0⌋
+

d∑
i=1

H1 · · ·Hi−1
qi(x)

x⌊αi⌋
Fi + ℏ

d−1∑
i=1

GiH1 · · ·Hi−1
x⌊αi⌋

x⌊α0⌋(x− x(b))

)
ψ(z; b) = 0

(4.19)

Proof. First assume d <∞. Rewriting (4.18) we have

ψi(x; z; b) = Hd−i+1ψi−1(x; z; b) +
qd−i+1(x)

x⌊αd−i+1⌋
Fd−i+1ψ(z; b)

+ ℏ
x⌊αd−i+1⌋

x⌊αd−i⌋(x− x(b))
Gd−i+1ψ(z; b), (4.20)

where we used the fact that (Lemma 5.10 in Bouchard and Eynard [2017])

ψ1(x; b) =
qd(x)

x⌊αd−1⌋
ℏ
d

dx
ψ(z; b).
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We can sub the i = d− 1 result into the i = d result to obtain

ψd(x; z; b) = H1ψd−1(x; z; b) +
q1(x)

x⌊α1⌋
F1ψ(z; b) + ℏ

x⌊α1⌋

x⌊α0⌋(x− x(b))
G1ψ(z; b)

= H1H2ψd−2(x; z; b) +H1
q2(x)

x⌊α2⌋
F2ψ(z; b) + ℏH1

x⌊α2⌋

x⌊α1⌋(x− x(b))
G2ψ(z; b)

+
q1(x)

x⌊α1⌋
F1ψ(z; b) + ℏ

x⌊α1⌋

x⌊α0⌋(x− x(b))
G1ψ(z; b). (4.21)

Applying this iteratively, before finally using the fact that (again Lemma 5.10 in

Bouchard and Eynard [2017])

ψd(x; z; b) = −q0(x)
x⌊α0⌋

ψ(z; b),

yields the desired result. Taking the limit to get the d = ∞ result is completely

analogous to the d = ∞ case in Theorem 4.B.4.

4.B.1 Hurwitz Numbers

Here we examine derive the quantum curve for the spectral curve

S =
(
C∞, x(z) = ze−zr , y(z) = ez

r)
, (4.22)

where r ∈ Z≥1 is a fixed integer referred to as the ‘spin’. As in Subsection 3.B.1

we will refer to this curve as the r-atlantes Hurwitz curve; in fact, it is the content

of Theorem 4.B.8 that this curve indeed calculates the r-atlantes Hurwitz numbers.

First, note that this is a regular spectral curve as xy = z and that the following
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irreducible equation holds for all τ ∈ C

P (x, y) = ye(τ−1)(xy)r − eτ(xy)
r

=
∞∑

m=0

(τ − 1)m

m!
xrmyrm+1 −

∞∑
m=0

τm

m!
xrmyrm,

(4.23)

so it is easily obtained that αm = m− 1 + δm,0, qm(x) = 0 if r ∤ m− 1 and r ∤ m,

qrm(x) = − τmxrm

m!
, and qrm+1(x) =

(τ−1)mxrm

m!
. Choosing the base point b = 0 we

easily compute the following coefficients

H1 =ℏ
(

d

dx
− 1

x

)
, Hi = ℏ

(
x
d

dx
− 1

)
,

F1 =ℏ
d

dx
, Fi = ℏx

d

dx
, Gi = 0.

(4.24)

Then, from Theorem 4.B.7 we get the quantum curve, where x̂ = x and ŷ = ℏ d
dx

P̂ (x̂, ŷ; ℏ) =

− 1 +
1

x

∞∑
m=0

(τ − 1)mℏrm+1

m!

(
x
d

dx
− 1

)rm

x
d

dx
− 1

x

∞∑
m=1

τmℏrm

m!

(
x
d

dx
− 1

)rm−1

x2
d

dx

=
ℏ
x
e(τ−1)ℏr(x d

dx
−1)rx

d

dx
− eτℏ

rxr dr

dxr .

(4.25)

We can rearrange to obtain a cleaner result

(
e(τ−1)ℏr(x d

dx
−1)rxℏ

d

dx
− xeτℏ

rxr dr

dxr

)
ψ(x; 0) = 0,

⇒
(
xℏ

d

dx
− xe−(τ−1)ℏrxr dr

dxr eτℏ
rxr dr

dxr

)
ψ(x; 0) = 0,

⇒
(
ŷ − e(x̂ŷ)

r)
ψ(x; 0) = 0,

(4.26)
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where we used the identity

exp

(
aℏr

(
d

du
− 1

)r)
exp(bu) = exp(u) exp

(
aℏr

(
d

du

)r)
exp((b− 1)u),

(4.27)

with a = 1 − τ , b = 1, and u = log(x). It is important to note that we started

with a quantum curve that depended on τ and ended up with a result that had no

τ dependence.5 This is because all the quantum curves for different τ were related

by multiplication on the left by an invertible operator and multiplying on the left by

an invertible operator does not change the solution of the corresponding differential

equation.

Next, we can compare with Mulase et al. [2013], who obtained their result not

by working with TR, but by working directly with the r-spin Hurwitz numbers to

compute the following quantum curve where Ŷ = x̂ŷ,

P̂ ′(x̂, Ŷ ; ℏ) = Ŷ − x̂3/2e
1

r+1

∑r
i=0 x̂

−1Ŷ ix̂Ŷ r−i

x̂−1/2. (4.28)

Clearly, in general, this is not the same curve. However, we can observe an interesting

relation between the two results that was first noticed in a more limited form in

[Chotai, 2016]. Defining u = log(x) assume an operator,

Ĥ = exp

(
r∑

n=1

ℏr−nhn
dn

dun

)
, (4.29)

such that Ĥψ = ψ̃ where ψ̃ is killed by (4.28). Then, noting that [Ŷ , Ĥ] = 0 and

5It is unclear to the author whether this holds in general, or is unique to the cases considered.
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x̂−1Ŷ x̂ = Ŷ + ℏ, so [x̂−1Ĥx̂, Ŷ ] = 0,6

0 = Ĥ0 = Ĥ
(
Ŷ − x̂eŶ

r)
ψ

=
(
Ŷ − Ĥx̂eŶ

r

Ĥ−1
)
Ĥψ

=
(
Ŷ − x̂x̂−1Ĥx̂eŶ

r

Ĥ−1
)
ψ′

=
(
Ŷ − x̂eŶ

r

x̂−1Ĥx̂Ĥ−1
)
ψ′.

(4.30)

Ergo, our operator Ĥ is the solution to

x̂eŶ
r

x̂−1Ĥx̂Ĥ−1 = x̂3/2e
1

r+1

∑r
i=0 x̂

−1Ŷ ix̂Ŷ r−i

x̂−1/2

⇒ x̂−1/2eŶ
r

e
∑r

n=1 ℏr−nhn(Ŷ+ℏ)ne
∑r

n=1 ℏr−nhnŶ n

x̂1/2 = e
1

r+1

∑r
i=0(Ŷ+ℏ)iŶ r−i

⇒ e(Ŷ+ ℏ
2
)re−

∑r
n=1 ℏr−nhn

(
(Ŷ+ 3ℏ

2
)n−(Ŷ+ ℏ

2
)n
)
= e

1
r+1

∑r
i=0(Ŷ+ℏ)iŶ r−i

.

(4.31)

Then, equating the exponentials, absorbing any factor of 2πi into h0, which is

6This calculation was originally done incorrectly by the author. The author would like to
acknowledge Dr Reinier Kramer for providing the correct calculation.
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arbitrary anyway,

(
Ŷ +

ℏ
2

)r
+

r∑
n=1

ℏr−nhn

((
Ŷ +

3ℏ
2

)n − (Ŷ +
ℏ
2

)n)
=

1

r + 1

r∑
i=0

(Ŷ + ℏ)iŶ r−i

⇒
r∑

n=1

hn

n∑
j=0

(
n

j

)((3
2

)n−j −
(1
2

)n−j
)
ℏr−jŶ j

=−
r∑

j=0

(
r

j

)(ℏ
2

)r−j
Ŷ j +

1

r + 1

r∑
i=0

i∑
k=0

(
i

k

)
ℏi−kŶ k+r−i

⇒
r∑

j=0

r∑
n=j

hn

(
n

j

)((3
2

)n−j −
(1
2

)n−j
)
ℏr−jŶ j

=
r∑

j=0

(
−
(
r

j

)(1
2

)r−j
+

1

r + 1

r∑
i=r−j

(
i

r − j

))
ℏr−jŶ j

⇒
r∑

n=j+1

hn

(
n

j

)((3
2

)n−j −
(1
2

)n−j
)

=−
(
r

j

)(1
2

)r−j
+

1

r + 1

(
r + 1

j

)
, 0 ≤ j ≤ r .

(4.32)

Such an Ĥ therefore exists and is unique. It is easy to see now that Ĥ ̸= 1 except in

the case when r = 1 where it can be seen that (4.26) and (4.28) agree.

Although it’s certainly clear that there should be some operator that transforms

ψ to ψ̃, it is not at all obvious that this operator is the exponential of an operator that

is of degree precisely r − 1; this immediately begs the deeper question of why this

is the case. To see this deeper reason we must note a couple of facts: the quantum

curve we get, (4.26), is precisely the one obtained for the r-atlantes Hurwitz numbers

[Alexandrov et al., 2016]; it is known the topological recursion ignoring the essential

singularity computes the regular r-spin Hurwitz numbers [Dunin-Barkowski et al.,

2019]; for r = 1 when there are no contributions from infinity (Conjecture 3.B.5)
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atlantes and regular Hurwitz numbers coincide [Alexandrov et al., 2016] and the two

quantum curves, as already discussed, are the same. Therefore, in the face of such

evidence, the answer to the deeper question appears to be that the transalgebraic

topological recursion actually computes the r-atlantes Hurwitz numbers. This is

the content of the following theorem from the upcoming publication Bouchard et al.

[2022].

Theorem 4.B.8. For the choice of spectral curveS =
(
C∞, x(z) = ze−zr , y(z) = ez

r),
the transalgebraic topological recursion defined in Definition 3.B.1 computes the

r-atlantes Hurwitz numbers.

The degree of the operator, from this perspective, is no surprise; a degree r − 1

operator is precisely the degree needed to reduce all contributions from the essential

singularity to constants by Corollary 3.B.4 and/or Conjecture 3.B.7.

4.B.2 Gromov-Witten Theory of the Projective Line

It is well-known that topological recursion produces generating functions for the

Gromov-Witten invariants of CP1 from the initial data of the following spectral

curve [Zhou, 2012, Norbury and Scott, 2014, Dunin-Barkowski et al., 2014]7

S =

(
CP1 ∼= C∞, x(z) = z +

1

z
, y(z) = log(z)

)
, (4.33)

which is a parametrisation of the transalgebraic equation

P (x, y) = x− 2 cosh(y) = 0. (4.34)

7This isn’t a spectral curve in the sense of this paper, but the notion of a spectral curve can be
generalised to include this case [Borot et al., 2018].
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Given our previous results, it seems far more natural to consider a different parametri-

sation of the above equation, namely

S∞ = (C∞, x(z) = 2 cosh(z), y(z) = z) . (4.35)

Initially, one might naively guess that since x and y in the curve (4.35) are just the

pullbacks of x and y in the curve (4.33) that the correlators ωg,n constructed from

the initial data of (4.35) will be the pullbacks of the correlators constructed from

the initial data of (4.33). This, however, is not the case as ω0,2 is the same for both

curves.8 We will denote by ωg,n the correlators constructed from (4.33) and ω∞
g,n the

correlators constructed from (4.35). In the spirit of our previous work, we define

the sequence of spectral curves

SN =

(
C∞, xN(z) = 2

∫ z

π/2

w
N∏
k=0

(
1 +

w2

k2π2

)
dw, yN(z) = y(z) = z

)
,

(4.36)

which corresponds to the polynomial equation

0 = PN(xN , y) = xN − 2

∫ y

π/2

w
N∏
k=0

(
1 +

w2

k2π2

)
dw

= xN −
∫ w=y

w=π/2

N∑
m=0

(
w2

π2

)m ∑
N≥km>···>k1≥0

1

k2 · · · k2
dw2

= xN −
N∑

m=0

π2

m+ 1

(
y2

π2

)m+1 ∑
N≥km>···>k1≥0

1

k21 · · · k2m
+ CN ,

(4.37)

8If one did redefine ω0,2 in the curve (4.35) to be the pullback under the exponential map, then it
is straightforward to see that all the correlators will be pullbacks.
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for a constantCN whose explicit form is irrelevant but makes xN(π/2) = 0. Denote

the correlators constructed by this curve as ωN
g,n. To construct the quantum curve, we

choose the base point to be b = ∞ (a pole of dxN at which the ωN
g,n are holomorphic)

and note

q2m+2(xN) = (xN+CN)δm,−1−
1

(m+ 1)π2m

∑
N≥km>···>k1≥1

1

k21 · · · k2m
,m = −1, . . . , N,

(4.38)

with all other qm being zero; ergo, αm = 0. With this, using Theorem 4.B.4, we see

the quantum curve is

P̂N(x̂N , ŷN ; ℏ) = x̂N −
N∑

m=0

π2

m+ 1

(
ŷ2

π2

)m+1 ∑
N≥km>···>k1≥0

1

k21 · · · k2m
+ CN ,

(4.39)

where x̂N = xN and ŷN = ℏd/dxN . This kills the wavefunction

ψN(xN(z)) = exp

[
∞∑
n=1

∞∑
g=0

ℏ2g+n−2

n!

(∫ z

∞
· · ·
∫ z

∞
ωN
g,n − δg,0δn,2x

∗
NxN ∗ω0,2

)]
.

(4.40)

Taking the N → ∞ limit of the quantum curve is straightforward; clearly, one

obtains

P̂∞(x̂, ŷ; ℏ) = x̂− 2 cosh(ŷ), (4.41)

where x̂ = x = 2 cosh(z) and ŷ = ℏd/dx, which agrees with the result in Marchal

[2017]. However, taking the N → ∞ limit of the wavefunction is a bit more subtle

as ∞ will be an essential singularity of the limiting ω∞
g,n. To deal with this we note,

as we saw in the proof of Lemma 3.C.4, that the ω∞
g,n will have an expansion of the

form

ω∞
g,n(z1, B) =

Mg,n∑
l=2

W l
g,n(B)

∞∑
k=−∞

dz1
(z1 − kπ)l

, (4.42)
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where Mg,n is some positive integer and the W l
g,n(B) are symmetric n − 1-

differentials in their variables. For l ≥ 3 note

∫ z

−∞

∞∑
k=−∞

dz1
(z1 − kπ)l

= − 1

l − 1

∞∑
k=−∞

1

(z1 − kπ)l−1
, (4.43)

where
∫ z

−∞ means we approach ∞ along the negative real axis. We could commute

the integral and sum using dominated convergence as, along the negative real axis,

we avoid the singularities of the integrand. For l = 2, this argument doesn’t work

as the RHS is no longer convergent. It is easy to adopt the argument

∫ z

−∞

∞∑
k=−∞

dz1
(z1 − kπ)2

= −1

z
+

∫ z

−∞

∞∑
k=1

(
dz1

(z1 − kπ)2
+

dz1
(z1 + kπ)2

)

= −1

z
− 2

∞∑
k=1

1

z2 + k2π2
.

(4.44)

Thus, we see the wavefunction is well-defined for the limiting curve if we agree to

approach infinity along the negative real axis. That the limit of the wavefunction is

the wavefunction of the limit is clear from the arguments of Lemma 3.C.5.

As noted, in the limit, we obtain the same quantum curve (up to changing x from

z + z−1 to 2 cosh(z)) that was found from topological recursion using other means

in Marchal [2017]. Although initially unsurprising, this is in fact a bit miraculous,

as this quantum curve was constructed for the wavefunction corresponding to the

ωg,n of the spectral curve (4.33), not the ω∞
g,n of the spectral curve (4.35).

To examine the relation, define π to be the exponential. As discussed, the naı̈ve

guess that the relation π∗ωg,n = ω∞
g,n holds is incorrect; however, as we know the two

quantum curves are the same (up to the change in x) and the relation ω∞
0,1 = π∗ω0,1

holds, our wavefunction must be the pullback of their wavefunction under π.9

9One may wonder what happens with the ℏ0 term, as ω0,2 is not pulledback under π. In fact,
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Even more curiously, the author knows of no other known case in the literature

where two different sets of correlators produce the same wavefunction. That this

is so clearly connected to a change in ω0,2 makes one suspicious that it is related

to the properties of the ωg,n under a change in polarisation10 [Borot et al., 2018]

and somehow the wavefunction is left invariant under certain polarisation changes.

Further investigation of this would certainly be of great interest, not only for the

Gromov-Witten theory of CP1, but for the theory of the topological recursion itself.

4.B.3 Mirror Curves

Here we study the so-called mirror curves. For background on mirror curves and

their interpretation the reader may refer to Bouchard et al. [2008], Bouchard and

Sulkowski [2012], Zhou [2012]. In particular, the specific curve we will study here

is what is commonly referred to in the literature as the framed mirror curve of C3

which, given a parameter f ∈ Z called the framing, has the following form

P (x, y) = −yf+1 + yf − x = 0, (4.45)

where we consider (x, y) ∈ (C×)2. Initially, transalgebraic geometry may appear to

be irrelevant here, but we are considering x and y to be in C× so the natural choice

for the 1-form ω0,1 is ω0,1 = log(y)d log(x) [Bouchard et al., 2008]. However, if we

make the transformation y → exy we see we restore the natural form ω0,1 = ydx.

the ℏ0 term in the wavefunction has to be fudged from what one would naturally expect when the
quantum curve is derived directly from enumerative considerations [Dunin-Barkowski et al., 2017].
This fudge term makes it precisely agree with our results once the wavefunction is pulled back. In
fact, the author has verified explicit agreement of the two wavefunctions up to and including the
O(ℏ) term.

10The fundamental bilinear differential of the second kind induces a symplectic structure on the
space of 1-forms, and changing it therefore induces a change in polarisation on the space of 1-forms
[Borot et al., 2018].
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This transformation applied to our spectral curve yields

P (x, y) = −e(f+1)xy + efxy − x = 0, (4.46)

which has the parametrisation

S =
(
C∞, x(z) = efz(1− ez), y(z) = z/x(z)

)
, (4.47)

where we now see the transalgebraic geometry brought to the fore. To truncate this

curve in the style of Lemma 3.C.5, for f ̸= 0 (the case f = 0 is uninteresting as all

the stable correlators should be zero by Conjecture 3.B.5)

dx(z) = efz(f − (f + 1)ez)dz

= −fefz+z/2+Log(1+f−1)/2
(
ez/2+Log(1+f−1)/2 − e−z/2−Log(1+f−1)/2

)
dz

= −
√
f 2 + fe(f+1/2)z

[
z + Log(1 + f−1)

] ∞∏
k=1

[
1 +

(
z + Log(1 + f−1)

2πk

)2
]
dz,

(4.48)

where Log denotes the principal branch of the logarithm. By now, there should be

no surprises in our approach. To compute the quantum curve we will consider the

sequence of transalgebraic spectral curves

SN =

(
C∞, xN(z) =

∫ z

b0

dxN , yN(z) = z/xN(z)

)
, (4.49)

for a base point b0 ∈ 2πiZ where

dxN(z) = −
√
f 2 + fe(f+1/2)z

[
z + Log(1 + f−1)

] N∏
k=1

[
1 +

(
z + Log(1 + f−1)

2πk

)2
]
dz.

(4.50)

86



Here we should pause and note that ωN
0,1 = yNdxN , by Conjecture 3.B.5 there

should not be a contribution from the pole at infinity, and this curve is regular

and admissible as xNyN = z has a simple pole at the infinite ramification point at

z = ∞. However, this curve is not quite acceptable as ω(x) = d log(x) rather than

dx so the fact that the correlators of the limit are the limit of the correlators should

be taken as conjectural. We choose our base point to be b = 0, which is a simple

zero of xN so we may apply the results of Theorem 4.B.7. We could choose b to

be any element of 2πiZ, but due to the 2πi periodicity of the correlators, it doesn’t

seem like this choice gives a meaningful difference. Given this choice of b, it is

easiest to set b0 = b = 0.

Now, computing the quantum curve for each N and then taking the limit would

clearly be rather involute. Ergo, our approach will be to argue that all the coefficients

HN
i , F

N
i , G

N
i converge to the right coefficients in the limit. Due to the convergence

of the Newton polygon, this is clear for the HN
i and FN

i . The GN
i are easily seen to

be zero for both for finite N and in the limit as αN
i = i and QN

i (xN , yN) = O(xi+2
N )

for all N . Thus, we examine the limiting curve

−1

x

∞∑
m=1

[(f + 1)m − fm]
(xy)m

m!
− 1 = 0. (4.51)

Then, noting αm = m− 1 + δm,0 and qm(x) = − [(f + 1)m − fm] x
m−1

m!
− δm,0 we

find the coefficients

H1 = ℏ
(

d

dx
− 1

x

)
, Hi = xH1, F1 = ℏ

d

dx
Fi = xF1, Gi = 0. (4.52)
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Therefore, we may compute the quantum curve as

[
−1− 1

x

∞∑
m=1

ℏm

m!
[(f + 1)m − fm]

(
x
d

dx
− 1

)m−1

x
d

dx

]
ψ(z; 0) = 0. (4.53)

Unfortunately, this does not appear to have a nice closed form, or match the results

of Zhou [2012]. One can introduce a factor of eτxy in P , but this seems to do little

to remedy either problem.11 As in the Gromov-Witten case, it would be interesting

to examine these, for lack of a better word, inconsistencies to yield further insight

into the TR/QC connection.

11Interestingly, differentiating with respect to τ after quantising allows one to get a closed form
for the ‘quantum curve’, but this equation is no longer irreducible so is not an actual quantum curve
as one can’t properly take the classical limit
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Chapter 5

Conclusion

In trying to extend the results of Bouchard and Eynard [2017] to the scenario where x

was not meromorphic on a compact Riemann surface we were motivated to consider

sequences of spectral curves converging to the desired curve. These sequences led

to a new, natural, definition of the topological recursion at essential singularities, the

transalgebraic topological recursion, that takes in the initial data of a transalgebraic

spectral curve. This new topological recursion enjoys most of the key properties

enjoyed by the original formalism of Eynard and Orantin [2007c].

Armed with this new definition and the technique of constructing sequences

of algebraic spectral curves that converge to transalgebraic ones, we were able to

rigorously construct quantum curves for the r-atlantes Hurwitz numbers and the

Gromov-Witten invariants of CP1 as well as obtain some conjectural results on

quantum mirror curves.

However, there is more to be done. Although our new definition of the topo-

logical recursion works for arbitrary genus, all quantum curve related results are

done only for genus zero curves; there are, however, interesting higher genus curves

where our results should yield new insight [Bouchard et al., 2008, Liu, 2012, Eynard
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and Garcia-Failde, 2019, Eynard et al., 2021]. Furthermore, it is somewhat unclear

how the new topological recursion should be viewed from the perspective of the

higher quantum Airy structures of Borot et al. [2018]. Studying this should yield

interesting new connections between the topological recursion and certain twisted

modules of W(gl∞+1) algebras.
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Henri Poincaré, 12:1431–1447, Dec 2011. URL https://arxiv.org/abs/

0706.4403.

Bertrand Eynard and Elba Garcia-Failde. From topological recursion to wave

functions and PDEs quantizing hyperelliptic curves, Nov 2019. URL https:

//arxiv.org/abs/1911.07795.

Bertrand Eynard and Nicolas Orantin. Topological expansion of mixed correlations

in the Hermitian 2-matrix model and x–y symmetry of theFg algebraic invariants.

Journal of Physics A: Mathematical and Theoretical, 41(1):015203, Dec 2007a.

URL https://arxiv.org/abs/0705.0958.

Bertrand Eynard and Nicolas Orantin. Weil-Petersson volume of moduli spaces,

Mirzakhani’s recursion and matrix models, May 2007b. URL https://arxiv.

org/abs/0705.3600.

Bertrand Eynard and Nicolas Orantin. Invariants of algebraic curves and topological

expansion. Communications in Number Theory and Physics, 1:347–452, March

2007c. URL https://arxiv.org/abs/math-ph/0702045.

Bertrand Eynard and Nicolas Orantin. Topological recursion in enumerative geom-

etry and random matrices. Journal of Physics A: Mathematical and Theoretical,

42(29):293001, Jul 2009. URL https://arxiv.org/abs/0811.3531.

Bertrand Eynard, Motohico Mulase, and Brad Safnuk. The Laplace transform of the

cut-and-join equation and the Bouchard-Mariño conjecture on Hurwitz numbers.

Publications of The Research Institute for Mathematical Sciences, 47:629–670,

July 2009. URL https://arxiv.org/abs/0907.5224.

95

https://arxiv.org/abs/0706.4403
https://arxiv.org/abs/0706.4403
https://arxiv.org/abs/1911.07795
https://arxiv.org/abs/1911.07795
https://arxiv.org/abs/0705.0958
https://arxiv.org/abs/0705.3600
https://arxiv.org/abs/0705.3600
https://arxiv.org/abs/math-ph/0702045
https://arxiv.org/abs/0811.3531
https://arxiv.org/abs/0907.5224


Bertrand Eynard, Elba Garcia-Failde, Olivier Marchal, and Nicolas Orantin. Quan-

tization of classical spectral curves via topological recursion, June 2021. URL

https://arxiv.org/abs/2106.04339.

Sergei Gukov and Piotr Sulkowski. A-polynomial, B-model, and quantization.

Journal of High Energy Physics, 02(070):1–57, Aug 2011. URL https://

arxiv.org/abs/1108.0002.

Kohei Iwaki and Omar Kidwai. Topological recursion and uncoupled BPS structures

II: Voros symbols and the τ -function, Aug 2021. URL https://arxiv.org/

abs/2108.06995.

Kohei Iwaki and Omar Kidwai. Topological recursion and uncoupled BPS structures

I: BPS spectrum and free energies. Advances in Mathematics, 398:108191, Jan

2022. URL https://arxiv.org/abs/2010.05596.

Maxim Kontsevich. Intersection theory on the moduli space of curves and the

matrix Airy function. Comm. Math. Phys., 147(1):1–23, June 1992. URL https:

//link.springer.com/article/10.1007/BF02099526.

Chiu-Chu Melissa Liu. Localization in Gromov-Witten theory and orbifold Gromov-

Witten theory, July 2012. URL https://arxiv.org/abs/1107.4712.

Olivier Marchal. WKB solutions of difference equations and reconstruction by the

topological recursion. Nonlinearity, 31(1):226–262, Dec 2017. URL https:

//arxiv.org/abs/1703.06152.
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Ricardo Pérez-Marco. Log-euclidean geometry and “Grundlagen der Geometrie”,

Nov 2019b. URL https://arxiv.org/abs/1911.08919.
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