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Abstract  

The discrimination of earth surface materials using hyperspectral sensing can be facilitated 

by selecting a subset of spectral bands that focuses on essential features. Materials in detailed 

classes such as rock types and tree species often present great spectral similarity, producing 

challenges for band selection. A method named the N-dimensional Solid Spectral Angle (NSSA) 

was proposed to select the most dissimilar spectral regions amongst targets for their maximum 

spectral separation, however, the use and performance of this method in practical application 

needed to be explored.  

In chapter 2, the NSSA method was applied to two real datasets of geologic relevance to 

establish guidelines for the selection of parameters that will allow non-expert users to exploit this 

method. This study demonstrated that the NSSA method is a robust tool for feature identification, 

since bands selected from the two datasets not only captured absorption feature position, and shape 

and depth, but also showed improved class separation. 

In chapter 3, the NSSA method was applied in a hierarchical manner to address the inter- 

and intra-class variability among materials. Two datasets were analyzed, including airborne image 

endmembers for geological mapping and leaf spectra for tree species discrimination. Bands were 

separately selected from different hierarchies of those categorized materials using the NSSA and 

combined into a single band set. The agreement between bands selected by the hierarchical strategy 

and by experts suggested that the hierarchical band selection using the NSSA method is both 

practical and effective in addressing the spectral variability. 

In chapter 4, an ensemble of multiple band selection methods encompassing random forest, 

minimum redundancy maximum relevance, and the NSSA was used to select and characterize 

longwave infrared features of leaves for the discrimination of tree species which display great 
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spectral similarity.  The selected features could be related to leaf constitutional compounds such 

as cellulose and oleanolic acid. Meanwhile, the band selection improved the classification using a 

regularized logistic regression method by 3%. These results can be useful to future image mapping 

of tree species at large scales.  The ensemble strategy was recommended for the band analysis of 

vegetation.  

Chapter 5 proposed a strategy that simultaneously employed band selection and 

endmember selection by incorporating the NSSA into the Spatial Spectral Endmember Selection 

(SSEE) method in order to select bands that enhance the spectral contrast of endmembers and 

hence improve the estimation of fractional abundances from hyperspectral images. The detailed 

methodology was described and an airborne image that was acquired for the mapping of mafic and 

ultramafic rocks was used to evaluate the proposed method. The results showed that the integration 

of NSSA and SSEE automates band selection in spectral mixture analysis and reduces the efforts 

in field investigations for feature identification. 

The results of this thesis demonstrated that the NSSA method, whether used in a 

hierarchical manner or integrated with other methods, was robust in the analysis of spectral 

libraries collected from field samples or from hyperspectral imagery collected from laboratory or 

airborne imaging systems. Its effectiveness also spans the visible near-infrared, shortwave infrared 

to the thermal infrared range of the data. The band selection results were evaluated by both 

classification performance and the physical meaning of spectral features, which balanced the need 

for high accuracies in statistical learning algorithms and application significance highlighted by 

remote sensing experts. The proposed method, guidelines, and experimental designs provided in 

this thesis contribute in identifying meaningful features from data encompassing a small number 
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of labeled samples for the discrimination of spectrally similar material in a variety of fields 

including geology, ecology, urban and agriculture.  
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Chapter 1 Introduction 

1.1 Background and research motivation 

Hyperspectral remote sensing, also known as imaging spectroscopy, is an advanced 

technology that collects spectral information across the electromagnetic spectrum spanning the 

visible, near-infrared to the thermal-infrared range for the detection or identification of earth 

surface materials (Borengasser et al., 2007; Van der Meer and De Jong, 2011). Hyperspectral 

sensors onboard ground, airborne or spaceborne platforms collect the radiation intensity (usually 

reflectance values) as a function of wavelength (a spectrum) for a point observation or imagery. A 

hyperspectral image can be regarded as a three-dimensional data cube consisting of adjacent pixels 

with a spatial dimension (x, y) and a third dimension (λ) that describes the spectral radiance. A 

spectrum is thus captured for each pixel of the image. The wavelength interval, or the spectral 

channel that stores the radiant information is referred to as a 'band' or 'bandwidth'. Each layer of 

the data cube is called a band image. Hyperspectral sensors acquire hundreds or thousands of 

contiguous and narrow bands, typically smaller than 20nm (e.g., AVIRIS, 224 bands, 0.4-2.5 μm). 

In contrast, multispectral sensors have wider bands with only a small number of non-contiguous 

bands (e.g., Landsat 7 ETM+: 7 bands, 0.4-2.5 μm) (Landgrebe, 2002). Narrower bands enable the 

detection of finer spectral features and thus more detailed material discrimination. Specific classes 

such as different rock types can be distinguished by hyperspectral sensing, as opposed to 

multispectral sensing that can only classify broad classes (Van der Meer and De Jong, 2011; Pu, 

2017). 

A variety of statistical methods exist for the classification of hyperspectral data and the 

discrimination of targets (Plaza et al., 2009). Conventional tools such as the Spectral Angle Mapper 
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(SAM), maximum likelihood and clustering analysis have been commonly used, and they are 

easily accessible in remote sensing software (e.g., ENVI).  With advances in computational 

capacity in hardware and software for statistical learning, machine learning techniques offer many 

effective tools to analyze hyperspectral data (Chang, 2000; 2013). For example, Support Vector 

Machines, Random Forest, neural networks and logistic regression have been widely used to 

classify geologic, ecological, urban and water materials (Camps-Valls et al., 2013; Fassnacht, 

2016; Van der Meer, 2011). Compared to conventional methods, machine learning classifiers show 

advantages in processing large amounts of spectral data. However, the performance of these 

methods is sensitive to the number of labeled samples. Another technique for classifying 

hyperspectral imagery is Spectral Mixture Analysis (SMA) (Keshava and Mustard, 2002). A linear 

SMA model treats each pixel of the imagery as a mixture of distinct components, hence, the mixed 

spectrum for that pixel can be represented by a linear combination of spectrally pure signatures 

(endmembers). The process to extract the distinct endmembers from the imagery is referred to as 

‘endmember extraction’. Once the endmember set is defined, one can retrieve the proportion of 

each endmember present in the pixel, namely fractions or abundances, and this process is referred 

to as ‘spectral unmixing’. The accuracy of SMA is largely impacted by the endmember variability 

in materials of interests. The endmember set must therefore capture not only the broad spectral 

classes in the scene (e.g., water, soil, rock, vegetation) but also more subtle differences amongst 

spectrally similar materials of a given class (e.g., within the rock class). The inter-class variability, 

referring to the similarity among endmembers of a given class of materials, introduces challenges 

to accurate discrimination of materials (Somers et al., 2011). To address the variability, effort has 

been put into the use of spatial information in endmember extraction and the use of multiple 

endmembers for each class in an iterative unmixing process (Bateson et al., 2000; Plaza et al., 
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2002; Rogge et al., 2006). The Spatial-Spectral Endmember Extraction (SSEE) and Iterative 

Spectral Mixture Analysis (ISMA) are two representative approaches proposed to address the issue 

of intra-class spectral variability and subtle spectral differences amongst classes (Rogge et al., 

2006; 2007). The two approaches have been applied together to enhance the discrimination of 

spectrally similar lithologies in the context of regional geological mapping and mineral exploration 

(Rogge et al. 2014). Despite these innovations, the process of defining a final endmember set as 

input into the unmixing process generally still requires the aid of expert knowledge.  

Focusing on the most important spectral features can facilitate the discrimination of targets 

of interest since it avoids the influence of other spectral bands or regions where similarity and 

noise negatively impact spectral discrimination in data of high dimensionality. The performance 

of classifiers can decrease beyond a certain dimensionality, a phenomenon known as the “curse of 

dimensionality” (Chang, 2013). A common approach for reducing the high dimensionality is to 

select a subset of spectral bands from the hyperspectral data. The band selection improves the 

accuracy of classification models by reducing the strong correlation between contiguous bands, 

and more importantly, by resolving the problem of the disparity in the number of training samples 

(typically scarce) in contrast to the numerous variables (number of spectral bands). The 

dimensionality can also be reduced using feature extraction approaches, such as principal 

component analysis that conducts a linear transformation of the spectral bands. Feature or band 

selection approaches can retain the original information in the data, allowing for a meaningful 

interpretation of spectral features (e.g., peaks or troughs) and a better understanding of the drivers 

(feature origin) for the target separation (Van der Meer, 2004). For example, leaf pigments, water 

content are associated with wavelength regions in the visible-near infrared and shortwave infrared 
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(Asner, 1998). Diagnostic bands for capturing related absorption features are often selected for the 

discrimination of vegetation types (Fassnacht et al., 2016). 

Band selection methods generally fall into two groups, supervised or unsupervised, based 

on the availability of prior knowledge of labeled classes or large training samples (Bajcsy and 

Groves, 2004). Supervised methods such as Random Forest (RF) and Support Vector Machine 

(SVM) models (Chan and Paelinckx, 2008; Abdel-Rahman et al., 2013; Feilhauer et al., 2015) are 

prevalent in a wide range of applications. For hyperspectral analysis, the band importance is 

quantified, and bands are selected based upon the prediction accuracy of classification or 

regression (Tuia et al., 2015) models. Unsupervised methods such as cluster analysis and Non-

negative Matrix Factorization (NMF) are preferred when prior knowledge is lacking or insufficient 

(Jia and Qian, 2009; Jia et al. 2016). These methods often use distance measurements in spectral 

data, also known as “spectral similarity” (Chang, 2000; Keshava, 2004; Du and Yang, 2008; Li et 

al., 2014). For example, the method of Variable-Number Variable-Band selection (VNVBS) has 

been proposed for feature selection from a single spectrum based on the similarity between this 

spectrum and a reference spectrum (Harsanyi and Chang, 1994; Wang and Chang, 2007). Another 

example is the Band Add-On (BAO) (Keshava, 2004) method that attempts to maximize the 

separability of targets by using the "Spectral Angle"(SA), the most common measure of similarity 

in hyperspectral analysis. Both methods, however, are limited to the discrimination of two classes. 

The need for unsupervised methods that are designed for the discrimination of multiple classes 

arises. 

Few band selection methods have been proposed specifically for discriminating spectrally 

similar targets. The spectral contrast of targets in many applications is high, making the separation 

(e.g., vegetation vs. soils) of targets using classification tools a comparatively easy task. However, 
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in several applications such as rock type or plant species discrimination, the targets display great 

similarity in their material make-up (e.g., mineral abundance), which results in low spectral 

contrast amongst targets of interest. The difficulty in differentiating low-contrast targets stimulates 

the need for robust methods for feature identification. A method named the N-dimensional Solid 

Spectral Angle (NSSA) was recently proposed by Tian et al. (2016) to select bands for the 

improved discrimination of objects with similar spectral properties. By selecting bands 

characterized by the largest solid spectral angles (e.g., NSSA values), one can capture the most 

important spectral information to distinguish a set of spectra. NSSA is an unsupervised method 

that overcomes the limitations of the large number of training samples and the numbers of classes 

(e.g., two) that affects many classification methods. Prior to my research, the method was assessed 

on simulated data, and no information was available on the selection of key methodological 

parameters. This thesis aims to fill this gap while conducting a test with datasets acquired from 

natural targets spanning two disciplines. Because the NSSA can be calculated from a suite of 

spectra or endmembers, it is also well suited for use within spectral mixture analysis and therefore 

to analyze point data and imagery. Thus this application was pursued as part of my research.  

A majority of band selection methods, especially those driven solely by classification 

accuracy, can be problematic in that they overlook the physical meaning of spectral features. 

Spectral bands are treated as variables rather than important information revealing physical or 

chemical properties of targets. In practice, remote sensing experts rely on spectroscopy to select 

meaningful bands (Clark, 1999) and to identify spectral absorptions or peaks associated with 

specific chemical bonds in targets. Throughout my research, I tried to examine the results of band 

selection in the context of the known spectroscopy of targets investigated to provide an applied 

meaning to the results.  
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Another issue that I identified in my early research is that novel methods are often 

evaluated using “standard” publicly available hyperspectral datasets typically those of Cuprite, 

Pavia and Indian Pines (Bioucas-Dias et al., 2013; Williams et al., 2017). However the users of 

these datasets are typically not familiar with the intricacies of the ground data that was assembled 

or with the characteristics of the scene, and they are unaware of flaws in the data or how the data 

can be misused. Throughout the development of my research, I aimed to design band selection 

methods that capture realistic features for target separation and test the feasibility of the methods 

in well-designed case studies for data that are well understood. 

 

1.2 Thesis Objectives 

This research aims to investigate the use of the N-dimensional Solid Spectral Angle 

(NSSA) for band selection in hyperspectral data, either from spectral libraries or imagery; and its 

integration with spectral mixture analysis for improved mapping of ground targets. The specific 

objectives are: 

1) to establish guidelines for the selection of the two parameters that will enable the use of the 

NSSA band selection method for practical applications; and to evaluate the performance of the 

method in detecting subtle features from spectral data of geologic relevance (Chapter 2); 

2) to identify key spectral features for geological and ecological applications using Hierarchical 

Band Selection with the NSSA Method (Chapter 3);   

3) to investigate the use of band selection methods including the NSSA method for the 

discrimination of spectrally similar targets, here, diverse tree species of a tropical dry forest 

using thermal infrared hyperspectral data (Chapter 4); 



7 
 

4) to explore the use of the NSSA band selection method to improve the mapping of spectrally 

similar rock types by integrating this method with an endmember extraction method as part of 

spectral unmixing. In doing so, I aim to develop a new methodology that incorporated the 

NSSA band selection within the SSEE process (defined as “NSSA-SSEE) and examine the 

impact of band selection on endmember selection and spectral unmixing. This would imply 

the per pixel band selection in imagery (Chapter 5). 

 

1.3 Thesis Outline 

This thesis compiles three research papers and an IEEE conference paper that are either 

published, submitted, or ready for submission. The thesis starts with an introduction chapter 

followed by four chapters that respectively address the four objectives of the research. Chapter 6 

provides conclusions. 

Chapter 2 explores the use of the NSSA method for band selection from point spectral data 

of natural targets, which is a continuing of the methodological development by Tian et al., 2016. 

The paper has been published in 2019 as:  Long, Y., Rivard, B., Rogge, D., & Tian, M., 

“Hyperspectral band selection using the N-dimensional Spectral Solid Angle method for the 

improved discrimination of spectrally similar targets” in the International Journal of Applied Earth 

Observation and Geoinformation, 79, 35-47. The two datasets used for analysis were provided by 

Dr. Jilu Feng and Dr. Derek Rogge, as part of previous research conducted in the Earth Observation 

Science Laboratory (EOSL) at the University of Alberta. The code for the NSSA algorithm was 

modified in the ENVI/IDL software based on the original version written by Dr. Minghua Tian, 

who is in the author list. Dr. Rogge made constructive comments on the manuscript, and Dr. Benoit 

Rivard was the supervisory author and helped the composition and editing of the manuscript. 
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Chapter 3 proposes a hierarchical strategy for band selection based on the NSSA method 

and applies the strategy in two geological and vegetation case studies, through which the paper 

demonstrates how band selection can be used for analyzing targets that show spectral variability. 

This study was presented as an oral presentation at the 2018 IEEE International Geoscience and 

Remote Sensing Symposium held in Valencia, Spain in July, 2018. The publication appears as 

Long, Y., & Rivard, B. (2018). Hierarchical Band Selection Using the N-Dimensional Solid 

Spectral Angle Method to Address Inter-and Intra-Class Spectral Variability. IEEE International 

Geoscience and Remote Sensing Symposium (pp. 8377-8380).  The data for the geologic and 

vegetational applications are from prior studies by Dr. Rogge and Dominica Harrison. The paper 

was edited by Dr. Rivard as the supervisory author.  

Chapter 4 applies multiple band selection methods to identify spectral features in 

Longwave Infrared (LWIR) spectra of leaves of tree species in the tropical dry forest of Costa 

Rica. The NSSA band selection method was used as an independent band selector and also 

combined with other methods to form an ensemble band selection that is then used for species 

classification. The resulting manuscript has been edited and prepared for publication as a research 

paper. Dominica Harrison provided the thermal infrared spectral data for the analysis in this paper. 

Dr. Rivard was involved with structuring and editing the paper with further edits required by Dr. 

Sanchez-Azofeifa.  

Chapter 5 proposes a novel band selection method that incorporates the NSSA method in 

the spatial selection of spectral endmembers for a better distinction of similar targets. The resulting 

manuscript has been submitted to the International Journal of Applied Earth Observation and 

Geoinformation in March 2019. Dr. Rogge contributed to the design of the methodology and 

editing of the manuscript following edits by Dr. Rivard.  
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Chapter 2 Hyperspectral Band selection Using the N-dimensional 

Spectral Solid Angle Method for the Improved Discrimination of 

Spectrally Similar Targets 

2.1 Introduction 

Hyperspectral remote sensing has been used in a wide array of applications over the last 

thirty years (Goetz, 2009; Bioucas-Dias et al., 2013). Among those applications, the mapping of 

ground   targets (e.g., rock, vegetation, soil, etc.) in remote and inaccessible areas greatly benefits 

from the availability of high spectral resolution data. Hyperspectral data consist of measurements 

acquired for a large number of contiguous spectral bands. As the number of spectral bands 

increases, which is typically commensurate with an increase in spectral resolution, the abundant 

information facilitates more accurate discrimination and identification of targets. However, some 

information may be redundant and not critical to the discrimination, specifically the strong 

correlation between contiguous bands can negatively impact data analysis algorithms (Peng et al., 

2005; Van der Meer and Jia, 2012). The effectiveness of these algorithms for class separation can 

decrease once it reaches a certain number of bands, a phenomenon known as the ‘curse of 

dimensionality’ (Chang, 2013). The high data dimensionality (e.g., hundreds to thousands of 

bands) also results in a computational burden that can hinder hyperspectral analysis. These 

negative effects can be mitigated by dimensionality reduction techniques. Of these techniques, the 

process of band selection (i.e., feature selection), aims to identify a subset of original bands from 

the data, focusing on the most essential spectral features (e.g., peaks or troughs) to distinguish the 

targets of interest (Bajcsy & Groves, 2004; Keshava, 2004). Accordingly, band selection alleviates 

the negative effects on both accuracy and computational burden.    
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Most published methods of band selection perform effectively to discriminate objects that 

are spectrally distinct, but they may perform poorly when faced with objects displaying spectral 

similarity. For example, geological applications often involve similar rock types characterized by 

almost identical spectra (Rogge et al., 2007, 2014).  Discrimination of plant species can also be 

impacted by the similarity in their reflectance spectra (Rock et al., 2016). Therefore, Tian et al. 

(2016) proposed the N-dimensional Solid Spectral Angle (NSSA) as an extension of the Spectral 

Angle (SA) to the n-dimensional space (Figure 2.1a), to select bands and improve the 

discrimination of objects with similar spectral properties.  The earth observation remote sensing 

community is well versed with the use of the spectral angle mapper (SAM) method that enables 

the measurement of the spectral angle between two vectors. One of the most extensive use of this 

tool is to classify satellite or airborne multi or hyperspectral imagery using an input spectral library. 

The NSSA is an extrapolation of the SAM to more than 2 vectors and the resulting band selection 

method making use of the N-dimensional Solid Spectral Angle is intended to improve 

discrimination of spectrally similar targets. However Tian et al. (2016) conducted a limited 

assessment of the NSSA band selection method using synthetic data that left an important 

knowledge gap as to the applicability of the method for the investigation of natural targets and 

more importantly no guidelines were established for the parameter selection in the NSSA band 

selection method. The later would be a deterrent to the exploratory use of the method by the wider 

user community. Therefore, the primary objective of this paper is to examine the use of the NSSA 

method for different spectral libraries from natural targets, here of geological relevance. As well 

we aim to establish guidelines for the selection of the two parameters that will enable the use of 

the band selection method for practical applications including whether the two parameters can be 

assigned fixed values for a given application.  As an outcome of this study we provide access to 
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the code for the method on a public forum (Github) and together with the guidelines resulting from 

this study, other researcher will be able to expand the scope of its application. Here we illustrate 

its use to analyze spectral libraries, comparing spectra with low spectral contrast that has 

applications for mapping using airborne and satellite hyperspectral data though other uses are 

possible that are the subject of future publications. 

To achieve these objectives, this paper is organized as follows. The geological sample suite 

and spectral data collected are described in section 2.2. The method to examine the selection of 

the two parameters and for the evaluation of bands selected by the NSSA and VNVBS methods is 

explained in section 2.3. Results are presented in section 2.4 followed by a discussion. We also 

compare the performance of the NSSA band selection method that of its competitor, the Variable-

Number Variable-Band selection method (VNVBS) (Harsanyi and Chang, 1994; Wang and 

Chang, 2007) though this method is limited to the selection of bands for the discrimination of two 

classes. 

 

2.2 NSSA method 

2.2.1 NSSA definition  

While the spectral angle (SA) describes the similarity between two spectra (either collected 

from point spectrometer or hyperspectral image) by calculating the angle between them, the NSSA 

measures the solid angle or the similarity among n (more than two) spectra (Figure 2.1a). Treating 

spectra as vectors, the solid angle in n-dimensional space can be calculated (detailed equation seen 

in the Appendix and Tian et al., 2016), but the number of spectra defining the angle must be equal 

to the number of bands over which they are compared. For example, the NSSA among seven 
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spectra can only be calculated for a dimensionality of seven bands. This is a paramount 

characteristic of the NSSA method.  

 

2.2.2 Use of the NSSA for band selection 

 Following the description of the computation of the NSSA, Tian et al. (2016) described an 

approach for band selection based on the characteristics of the NSSA for varying band sets. By 

selecting a subset of spectral bands characterized by the largest solid spectral angles (e.g., NSSA 

values), one can capture the most important spectral information to distinguish a set of spectra. 

For this method, the NSSA is computed by moving a sliding window with varying band intervals 

(denoted by “k”) over the available spectral range (Figure 2.1). The band interval “k” is a user-

defined parameter and can be adjusted in order for the sliding window to cover spectral features 

of varying widths; with larger k values covering wider features. For the example shown in Figure 

2.1, seven spectra are used for the computation of the NSSA. When the band interval is zero (k=0), 

the window first encompasses reflectance values from the first seven contiguous bands (band1-

band7). Note that the computation of the NSSA requires that the number of bands is equal to the 

number of spectra. This data matrix is used for the computation of the NSSA for the middle band 

(band 4) of the window. Then the window slides to the data subset encompassing band2-band8 for 

the determination of the NSSA value for band 5 and so forth, ultimately producing a continuous 

profile of NSSA values (red line in Figure 2.1) from which bands can be selected based on a given 

threshold value (dashed red line on Figure 2.1). If k=1, then the starting window is enlarged; and 

the window encompasses band 1, 3, 5, 7, 9, 11, and 13 to account for a one band interval while 

retaining a filter that encompasses 7 bands for 7 spectra. Bands with lower NSSA values (regions 
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lacking distinguishing features) are deemed less important because they reflect greater similarity 

amongst spectra within the specific subset spectral regions. Bands with NSSA values above the 

user-defined parameter threshold are retained. Thus, the threshold determines the number of bands 

selected. The two parameters, k and threshold, must be determined for NSSA band selection. 

 

2.3 Data 

This study makes use of hyperspectral data collected from two geological sample suites. 

The first sample suite consists of powdered clay minerals and the second consists of mafic and 

ultramafic rock samples. The spectral data from these two sample suites represent respectively a 

simple and more complicated case of band selection with the NSSA method. The powdered clay 

mineral samples are pure, simplifying their spectral discrimination in contrast to the rock samples, 

which in this case, encompass minerals juxtaposed to lichen coatings resulting in greater spectral 

variability. In addition, both sample suites were measured with spectrometers encompassing 

different spectral ranges and with a different number of bands. These differences allow for testing 

of the use and performance of the NSSA method. 

 

2.3.1 Sample suites 

2.3.1.1 Clay minerals 

 A suite of seven powdered clay minerals was obtained from the Clay Mineral Society 

repository (Figure 2.2a). These include clays with little or no structural water which for this study 

are Ca-Montmorillonite and Na-Montmorillonite [(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2·nH2O]. Also 
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included is a synthetic hectorite [Na0.3(Mg,Li)3Si4O10(OH)2] which, as seen from spectra, is not 

water free. The remaining four clays are water-bearing and include palygorskite 

[(Mg,Al)2Si4O10(OH)·4(H2O)], kaolinite [Al2Si2O5(OH)4] high and low defect, and a synthetic 

Mica-Montmorillonite [K partially substitutes for Na or Ca]. These clay samples underwent 

mineral characterization in a series of baseline studies by the Clay Minerals Society (Costanzo and 

Guggenheim, 2001; Costanzo, 2001). The samples show a high degree of purity enabling 

comparison of their spectra without the potential complications introduced by mineral mixtures. 

However, the use of powders as opposed to solid samples results in greater spectral contrast and 

thus should facilitate the distinction of spectra based on a reduced band set. Finally, clay minerals 

were selected because they represent a key mineral class in mining exploration and as such their 

spectra and spectral discrimination will be familiar to remote sensing geologists (Speta et al., 

2016). 

2.3.1.2 Mafic and ultramafic rock samples  

 The second sample suite consists of unaltered naturally exposed weathered surfaces of 

mafic and ultramafic rocks as described by Rogge et al. (2014). The 77 samples encompass six 

rock types namely dunite (6), peridotite (25), olivine-pyroxenite (9), pyroxenite (11), gabbro (16) 

and basalt (10). The first four are referred to as ultramafic rock types while the last two are mafic 

rock types. The sample surfaces display variable and typically extensive lichen cover as seen in 

Figure 2.2b. As reported by Rogge et al. (2014) using X-ray diffraction analysis, these weathered 

and metamorphosed rocks are comprised of similar mineralogy and differ in the relative abundance 

of three dominant minerals namely antigorite [(Mg,Fe)3(Si2O5)(OH)4],  actinolite 

[(Ca2(Mg,Fe)5Si8O22)(OH)2], and clinochlore [(Mg6(Mg4Al2)[Si6Al2O22](OH)16] with plagioclase 

also present in gabbro and basalt (Lesher, 2007).  Dunite and peridotite have the highest abundance 



20 
 

of antigorite, olivine-pyroxenite and pyroxenite have a mixture of antigorite, actinolite, and 

clinochlore, and basalt and gabbro have actinolite and clinochlore. The presence of lichen on the 

weathered rock surfaces complicates the discrimination of rock types from spectra and as such 

represents a more challenging case study of band selection. 

 

2.3.2 Acquisition of spectral data 

 The seven powdered clay samples were scanned at the University of Alberta using a 

SisuROCK imaging spectrometer (Specim Ltd., www.specim.fi). As discussed in the next section, 

clays show discernible spectral variations in the Short-wave Infrared (SWIR) region, so radiance 

measurements were collected for 256 bands in the wavelength range of 0.970-2.530 μm. The first 

eleven bands were omitted owing to lower responsivity, leaving 245 bands extending from 0.997-

2.530 μm. A reflectance spectrum for every pixel in the image was then obtained by normalizing 

the radiance obtained from the sample to that of a Spectralon™ panel (~100% reflectance). The 

seven clay samples were imaged at a spatial resolution of 1 mm per pixel.  For data analysis, a first 

dataset referred herein as ClaySamples consisted of the image data encompassed by a region of 

interest (ROI) over the most uniform part of each clay powdered surface. The ROI’s on average 

captured 460 pixels per sample (min 163, max 668). From these data, a second dataset referred 

herein as ClayAverages, consisted of the average spectrum captured by each ROI resulting in seven 

clay spectra.   

 Spectra for the seventy-seven mafic and ultramafic rocks were collected as part of a prior 

study, with one spectrum reported per sample (Rogge et al. 2014). The spectra were measured 

using an Analytical Spectral Devices (ASD) spectrometer that has 2151 bands ranging from 0.350 

to 2.500 μm and an average band sampling interval of 2 nm.  Thus these spectral data display a 
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considerably higher spectral dimensionality (number of bands) and resolution than that obtained 

for the clay samples with implications, as seen below, on the selection of k values in the band 

selection process. For each rock sample, spectral measurements were initially taken at 4–11 

random points (2 cm diameter), as illustrated by the numbered paper on the photo of sample 

surfaces seen in Figure 2.2b. The spectral measurements collected for each sample were then 

averaged to obtain a representative spectrum per sample. Note that these spectra encompass 

contributions from weathered rock and lichen. For data analysis, a first dataset, referred herein as 

RockSamples, consisted of the average spectrum for each of seventy-seven samples. From these 

data, a second dataset, referred herein as RockAverages, consisted of the average spectrum per 

rock type resulting in six spectra.  The spectral range of 0.426-2.426 μm (2001 bands) was retained 

for analysis to minimize regions of poorer system responsivity. 

 

2.3.3 Spectral characteristics of samples  

To assist in the evaluation of the band selection results, diagnostic spectral features observed for 

each sample suite are summarized below. These features were labeled on the basis of features 

documented in the literature and serve as a reference band set.  

2.3.3.1 Spectral features of clay minerals  

 The spectral characteristics of clay minerals are described in the literature (Hunt, 1977; 

Clark et al., 1990; Bishop et al., 2008). The spectra of the seven clays (ClayAverages) fall into two 

broad categories based on diagnostic absorption features (Figure 2.3). The absorption feature 

centered near 1.4 µm is present in all the clay minerals of this study, but its depth, position, and to 

some extent, its asymmetry varies across the spectral suite. The first category includes kaolinite 

high and low defect, minerals with little to no structural water and their spectra display a weak 
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absorption near 1.9 um. Kaolinites present a distinct triplet absorption feature centered at 1.4 μm 

and a doublet at 2.162 and 2.205 μm. The spectra of both kaolinites in this study are distinguishable 

on the basis of weak differences in reflectance in certain wavelength regions and in the depth of 

the strongest absorptions at 1.4, 1.9 and 2.386 um. Minerals in the second category (hectorite, 

palygorskite, and three montmorillonites) are water-bearing and display a strong absorption feature 

at 1.9 μm. These minerals can be discerned on the basis of the shape and position of the water 

absorptions near 1.4 and 1.9 μm and of a singlet cation-hydroxyl feature near 2.200 or 2.311 μm. 

Hectorite has no obvious features around 2.200 μm but has an absorption band at 2.311 μm. 

Palygorskite and the Na and Ca montmorillonites can be distinguished on the basis of the detailed 

location of a singlet absorption near 2.200 μm. These two montmorillonites have absorptions 

located respectively at 2.180 um to 2.205 μm and the feature of palygorskite is closer to 2.218 μm. 

The mica-montmorillonite is a synthetic sample that displays two absorptions near 2.100 and 2.180 

μm. Thus the band selection process is expected to reveal bands that capture the presence of key 

absorptions and their subtle positional differences across minerals. 

2.3.3.2 Spectral features of mafic-ultramafic rocks 

 Figure 2.4 displays the average spectra of the six rock units (RockAverages) that include 

the spectral contributions of lichen and weathered rock (e.g., minerals). Their broad overall 

spectral similarity is attributed to the extensive coverage of lichen.  As explained in Bechtel et al. 

(2002), spectra of rock encrusting lichen can vary significantly in the visible and near-infrared 

(0.4–0.8 μm) due to light-absorbing pigments that explain their black, grey, white, yellow, green, 

and orange color (Figure 2.4a). The reflectance of lichens beyond the VNIR (>1 μm) increases 

reaching a maximum near 1.860 μm with a small and relatively narrow absorption feature at 1.730 

μm attributable to cellulose. Pronounced absorptions near 1.4 and 1.9 μm are due to water. Lichen 
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spectra are very similar in the SWIR. For pure lichen surfaces, two broad absorption features also 

caused by cellulose are seen near 2.1 and 2.3 μm, but their detail is modified by the presence of 

three key minerals for the samples of this study.  As shown by Rogge et al. (2014), spectra of 

powdered antigorite, actinolite and clinochlore taken from the USGS spectral library 

(http://speclab.cr.usgs.gov/spectral- lib.html) present diagnostic absorption features at [2.285, 

2.325], [2.245, 2.315, 2.386] and 2.345 µm respectively, which are caused by various overtone 

and combination tones of the OH stretching (Clark et al. 1990; Clark, 1999). This information 

translates into key observations for the discrimination of the six rock units.  As seen from the 

detailed view of spectra in the shortwave infrared (Figure 2.4b), the decreasing relative abundance 

of antigorite versus actinolite leads to a subtle shift in a prominent absorption from 2.323 to 2.315 

μm and the progressive increase of an absorption at 2.386 μm progressing from dunite, peridotite, 

olivine-pyroxenite, and pyroxenite. In contrast, basalt and gabbro contain more clinochlore, 

resulting in a relatively flat and broad absorption spanning 2.315 to 2.345 μm.  

 The observed absorptions for lichens and minerals for these rocks led Rogge et al. (2014) 

to manually select bands for the lithologic analysis of airborne data acquired with the Specim 

AisaDUAL system. A relevant subset of these bands is listed in Table 2.1 and serves to evaluate 

the NSSA band selection given the successful mapping results obtained and validated by Rogge et 

al. (2014) using field evidence. Seven bands were selected from 0.45-0.75 um with an approximate 

interval of 0.05 um because lichen species and some non-geological materials are more readily 

discriminated in this region. Note that some of the bands listed in Table 2.1 were selected from 

AISA airborne imagery with 10nm spectral resolution, a resolution considerably lower than that 

of the ASD data of this study and thus disparities in the fine detail of band selection results (e.g., 

band location) can be expected. 
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2.4 Methods 

This section describes three methodological aspects of this study. Working with the 

hyperspectral datasets obtained from the clay minerals and rock samples, we first describe 

adjustments to the k parameter to examine impacts on NSSA profiles and consequently band 

selection. Next, we determine an approach to select the k and threshold parameters to define a band 

set for each dataset. Afterward, the selected bands are evaluated in regards to the agreement with 

known features and the impact of band selection on class separability. Lastly, the bands selected 

with NSSA are compared to that obtained from the VNVBS method.  

 

2.4.1 Parameter adjustment 

 For this aspect of the study, we made use of the average spectra per clay sample (7 spectra 

of ClayAverages) and the average spectra per rock type (6 spectra, RockAverages). 

2.4.1.1 Adjustment of k 

 As stated in section 2.2.2, k defines the width of the spectral region over which the NSSA 

is measured and thus relates to the width of the spectral features seen in spectra that influence the 

measurement of the NSSA. The maximum width of the sliding window cannot exceed the entire 

available spectral range. The maximum k value cannot exceed (l-n)/n, where l and n denote the 

number of bands and spectra in a given dataset. Based on this equation, the maximum value of k 

for ClayAverages (245 bands, 6 spectra) and RockAverages (2001 bands, 7 spectra) is 39 ((245-

6)/6) and 284 ((2001-7)/7) respectively. When possible, one can further constrain the k values to 
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investigate based on a priori knowledge of realistic feature widths encountered in the spectra of 

targets of interest.  

 For clay minerals, the broadest features expected occupy less than one-quarter of the full 

wavelength range available so less than 60 bands. Therefore, the maximum value for k could be 

further reduced to 9 (bands 1, 11, 21, 31, 41, 51, 61). In the same manner, the maximum k for the 

rock type can be reduced to 63 on the basis that absorptions do not exceed 500 bands in width. 

Based on the above constraints, continuous values of k (0-9) were used for the clay dataset. 

However when the number of bands is large, as is the case in the rock dataset (2001 bands), the 

use of continuous k values can impose an overwhelming computational burden. Thus for this 

dataset, we examine a subset of profiles (k=0,1,3,7,15,31,63) by doubling the window size starting 

with k=0 (7 bands wide).  For each dataset, a continuous profile of NSSA values as a function of 

wavelength was produced for each k value.  It thus follows, as will be shown in section 2.5 and 

discussed in section 2.6.2, that the spectral dimensionality, namely the number of bands, which 

also typically relates to spectral resolution (smaller bandwidths), can require the selection of a 

subset of k values for the band selection process. 

2.4.1.2 Adjustment of the threshold  

 As stated in section 2.2.2, a threshold can be applied to a given continuous profile of NSSA 

values to retain bands with greater NSSA values and thus of higher importance in target 

discrimination.  Early research revealed that NSSA values decrease remarkably with increasing k 

as results will show below. This implies that a single threshold cannot be applied to continuous 

profiles of NSSA values obtained for different k. To define how a threshold could be selected for 

a range of k values, we examined the graphical representation of ranked NSSA values obtained for 
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each k value used in section 2.4.1.1. These graphs can then be compared and, if a general pattern 

can be observed for various k values, a threshold can be defined from the derivative analysis of 

the ranking curve. This strategy was explored to estimate a threshold for each k value.  

 As will be seen below, the first result establishes the selection of a subset of k values and 

their corresponding threshold for the clay and rock datasets. From this process, bands are selected 

for each k value, and these are then combined in a single band set that can then be evaluated for 

the given dataset. 

 

2.4.2 Evaluation of selected bands 

 Bands selected for ClayAverages and RockAverages were first evaluated by examining the 

agreement between spectral regions encompassed by the selected bands and that of spectral 

features documented in the literature. For clay minerals, these features are described in section 

2.3.3 and for the rock types these features were documented by Rogge et al. (2014) and are listed 

in Table 2.1.  Then the bands selected for ClayAverages and RockAverages were respectively used 

for ClaySamples (clay image data, 245 bands and an average of 460 pixels per mineral) and 

RockSamples (average spectrum of each rock sample, 2001 bands and 77 samples) to examine 

class separation. Specifically, for each case, we compared the class separation with and without 

band selection. In doing so, we assess if distinctive and informative bands are selected (Khoder et 

al., 2015). Principle Component Analysis (PCA) was chosen for the analysis of ClaySamples as 

this dataset has highly correlated variables. Because the clay samples are compositionally 

homogeneous (e.g. pure), results of classification accuracy are close to 100% accuracy with or 

without band selection and do not offer valuable insights. Such insights are however obtained 
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when the data distribution is shown as scatterplots of the loadings of selected principal 

components.  PCA was not used for the RockSamples because it requires that the number of 

samples be considerably larger than the number of bands. Thus, Linear Discriminant Analysis 

(LDA) was used to visualize class separation by plotting loadings of selected discriminants that 

are the linear combinations of original features (Hastie et al., 2008).  

 

2.4.3 Method comparison 

 Bands selection for ClayAverages using NSSA were compared to that selected by the 

Variable Number Variable Bands Selection (VNVBS) method. This method has been proposed 

for feature selection from a single spectrum based on the similarity between this spectrum and a 

reference spectrum. It measures an Orthogonal Subspace Projection (OSP) - Band Prioritization 

Criterion (BPC) by applying a matrix transformation on the two spectra until all undesired features 

are removed and the spectra have been decomposed into two orthogonal components. Bands with 

high priority scores derived from this OSP-BPC are retained after being compared against the 

scores of the reference spectrum (Harsanyi and Chang, 1994; Wang and Chang, 2007). This 

method, like NSSA, can be applied to a spectral library; but it requires a reference spectrum against 

which all other spectra are compared (Wang and Chang, 20007). In this study, the reference 

spectrum is the average spectrum of the seven clay mineral spectra, an approach used in past 

studies with the VNVBS method (Sun et al. 2014).  After selecting the reference spectrum, two 

sets of results are obtained for each mineral that include a band set and a profile of scores as a 

function of wavelength measured by the OSP-Band Prioritization Criterion (BPC). The profile can 

be interpreted as the band-importance for the given mineral spectrum. 



28 
 

 

2.5 Results 

2.5.1 Parameter adjustment 

 Continuous profiles of NSSA values as a function of wavelength were produced for 

selected k values using ClayAverages (Figure 2.5) and RockAverages (Figure 2.6). These profiles 

reveal wavelength regions of high NSSA values where the spectra of interest are best discerned. 

Because k defines the width of the sliding window for the NSSA computation, the profiles can 

highlight regions, and thus features or groups of features, of greater width as the k value increases 

as seen near 2.2 μm in Figure 2.5. With increasing k values there is a general increase in the NSSA 

values, for example, values in the order of 10-15 at k=0 and 10-12 at k=3 for clay minerals (Figure 

2.5). On this figure, one can also observe the progressive loss of some regions of higher NSSA 

values with increasing k value, as seen near 1.4 μm. Referring to Figure 2.3 this region 

encompasses a relatively narrow wavelength interval where displacement of the hydroxyl or water 

absorption feature is observed across several clay minerals (from 1.395-1.414 μm). This key 

interval is thus captured at low k values despite being part of a water feature that is relatively broad. 

For clay minerals, another region of high NSSA value is observed near 2.2 μm for k=0 and 1. This 

region gets broader extending to about 2.4 μm for the highest k values. However, within this range, 

two prominent excursions of NSSA values near 2.2 and 2.3 μm are seen in profiles for k values > 

2. On that basis, and to retain the regions at 1.4 and 1.9 μm observed at low k values, band selection 

for ClayAverages was performed using NSSA profiles at k=0, 1 and 3. The profile for k=2 is 

omitted because it offers largely redundant information to that of k=1. In doing so, the primary 

regions of high NSSA values seen across all k values for ClayAverages are encompassed. Band 

selection can then proceed from this selection of NSSA profiles. To define how a threshold of 
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NSSA values could be selected for band selection, Figure 2.5 also shows the graphical 

representation of ranked NSSA values obtained for each of the selected k values. From these 

graphs, a general pattern is observed characterized by an asymptotic decrease in NSSA value as a 

function of the number of bands. The presence of a graphical pattern enables a method of band 

selection. Here the number of bands was selected setting a threshold (black arrows on Figure 2.5b) 

that is defined as the maximum value of the second derivative of the ranking curve (e.g., slope of 

0). From this process bands retained at each of the selected k values are combined in a single band 

repository. 

 For RockAverages, the six NSSA profiles shown on Figure 2.6 span a wide range of k 

values from 0 to 63. Profiles at k=3,7,15 appear distinct from those at k=31,63. For the first group, 

regions of high NSSA values are located around 0.5, 1.4 and 2.3 µm, but for the second group the 

regions near 1.4 and 2.3 µm are not apparent and the one near 0.5 µm shifts to longer wavelengths 

and is at its broadest for k=63. As was done for ClayAverages, these observations guided the 

selection of profiles that capture the range of dominant regions of high NSSA values. Thus, as 

shown in Figure 2.6b, profiles at k values of 3, 15, and 63 were used to obtain a graphical 

representation of ranked NSSA values and conduct band selection.  

 

2.5.2 Evaluation of selected bands 

 On the basis of the observations described in the prior section, a total of 44 and 265 bands 

were selected from clay minerals and rock types. The location of these bands is shown on Figures 

7 and 8 along with the position of known relevant mineral features described in section 2.5.2.1 

(see features in Table 2.1 for the rock types) as part of background knowledge. These figures also 

show the spectra of the clay minerals and rock types respectively to facilitate the evaluation of the 
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selected bands. Table 2.2 lists the 44 bands of clay minerals and the wavelength regions 

encompassed by the more numerous bands (265) selected for rock types that have an almost tenfold 

greater spectral dimensionality.  

2.5.2.1 Agreement with known features  

 As expected for clay minerals, features near 1.4 and 1.9 µm are selected (Figure 2.7). The 

absorption feature centered near 1.4 µm is present in all the clay minerals of this study but its 

depth, position, and to some extent its asymmetry, varies across the spectral suite. The relatively 

narrow wavelength range occupied by the selected bands (1.383-1.415 μm) with respect to the full 

width of the feature and the position of the selected bands near the center of the absorption 

indicates that spectral differences across the clay minerals near 1.4 um are primarily capturing the 

variable position of the absorption center (1.395-1.414 μm). In contrast, the feature depth at 1.9 

μm is highly variable in the clay minerals of this study and these minerals display variability in the 

shape of this absorption feature. Consequently, a larger number of bands (1.886-1.949 μm) are 

selected to account for these differences and for the observed range of absorption position centers 

(1.904-1.917 μm). The largest number of selected bands is in the SWIR ranging from 2.149 to 

2.287 µm (Figure 2.7b) and, with the exception of hectorite, encompassing the full width of the 

most pronounced absorption features of these clays. The near contiguous set of SWIR bands 

accounts for the need to capture differences in the number, position, depth, and asymmetry of 

absorptions that occur in the same spectral region. The absorption for hectorite near 2.3 µm is 

distinct and consequently few bands were selected to capture this feature. The bands selected for 

clay minerals encompass spectral regions that are consistent with the mineral relevant 

spectroscopy knowledge used to discriminate these minerals.   
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 For the rock types seen in Figure 2.8, the bands selected encompass three primary regions 

that essentially include the bands listed in Table 2.1 and selected by Rogge et al. (2014) on the 

basis of spectral knowledge of non-geological materials, lichens, and minerals relevant to the rocks 

investigated. In the VNIR, this study selected bands in three regions (0.436-0.493, 0.586-0.677, 

0.700-0.713 µm) consistent with variability in light-absorbing pigments that explain their black, 

grey, white, yellow, green, and orange color. Rogge et al. (2014) selected seven bands uniformly 

distributed from 0.45-0.75 µm, and these were primarily selected to distinguish non-geological 

materials, not the rock types. It is thus not surprising that the bands selected in this study within 

this wavelength interval encompass more defined spectral regions. Next one notes the selection of 

a few bands near 1.4 µm on the edge of an absorption feature of variable depth across rock types. 

Importantly the NSSA method effectively selects a near contiguous suite of bands in the SWIR 

encompassing four of the five wavelength regions selected by Rogge et al. (2014) to account for 

key absorptions features of the primary rock-forming minerals, namely antigorite, actinolite, and 

clinochlore.  The band at 2.245 µm, which is missing in the selection, sits immediately outside of 

the lower extent of the region selected by the NSSA method (starting at 2.256 µm). 

2.5.2.2 Impact of band selection on class separability  

 The bands selected above for ClayAverages and RockAverages were respectively used for 

ClaySamples (average of 460 pixels per clay mineral image) and RockSamples (77 rock samples) 

to compare class separation with and without band selection.  From the PCA conducted on 

ClaySamples and the LDA conducted on RockSamples, Figures 2.9 and 2.10 show the distribution 

of these respective data as scatterplots of the loadings of selected components or discriminants. 

 For clay minerals, two combinations of the first three principal components are shown as 

these provided the best class separation. The most significant improvement resulting from band 
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selection is the ability to discern three classes namely kaolinite L, kaolinite H, and Ca-

montmorillonite. In particular, the first two classes show extensive overlap prior to band selection 

(Figure 2.9a, 2.9b). This should come as no surprise as seen by the similarity in these spectra in 

Figure 2.3. Band selection also resulted in a decrease in intra-class variability particularly in Figure 

2.9d that provides complete class separation for all data points. The reduced intraclass variability 

is particularly apparent for Ca-montmorillonite.  

 For rock types, Figure 2.10 shows plots of the first three linear discriminants. The mafic 

rocks (gabbro and basalt) are readily discernable from the four ultramafic rocks along the LD1 

direction, with or without band selection. Amongst the ultramafic rocks, dunite can be discerned 

from all other rocks using a particular combination of linear discriminants without (LD 1 and 2) 

or with (LD 2 and 3) band selection.  Olivine pyroxenite is only distinguished from all other rock 

types using band selection (LD 2 and 3). Peridotite (Figure 2.10 cross symbol) is consistently 

mixed with pyroxenite though several pyroxenite samples of this study are better distinguished 

from those of peridotite using band selection (LD 2 and 3). Note that these ultramafic rock types 

have similar mineralogy and differ primarily in their abundance of the serpentine mineral with 

peridotite having a relatively lower and higher abundance than dunite and pyroxenite respectively. 

Thus, the observed overlap of peridotite and pyroxenite on Figure 2.10 is consistent with the 

mineralogical continuum displayed by these rocks. However, band selection improves the 

discrimination among dunite, olivine-pyroxenite and pyroxenite, as seen from the three dotted 

circles in Figure 2.10a and 2.10b as well as the distinction of olivine pyroxenite from all other 

rocks, and to some extent that of pyroxenite as well. Generally, the band selection enhances 

discrimination among similar ultramafic rocks.  
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2.5.3 Comparison with bands selected using the VNVBS method 

 According to the rules in VNVBS, the reference spectrum has to provide information from 

the original spectra (Wang and Chang, 2007). Through several experiments using VNVBS, the 

average spectrum of the seven clay mineral spectra was selected as the suitable reference spectrum. 

Other reference spectra were tested, for example, a random combination including some minerals 

(kaolinite L*0.2 + hectorite*0.3) or including all spectra ([random weights]*[spectra of seven 

minerals]). When the spectrum of any mineral was discarded, subtle changes in the calculation 

processes appeared, while, using all spectra and only adjusting their weights produced little 

difference. However, in all trials, no bands were selected.  To ensure that there were no issues with 

the functionality of the method, tests were conducted with targets presenting a high spectral 

contrast, for example, a comparison of soil and water spectra. In such a case the result showed that 

the method could effectively select a subset of bands. Though no bands were selected for the 

datasets of this study, the scores calculated based on the OSP-BPC can be used for a comparison 

of VNVBS and NSSA results.  

 For the VNVBS method, a pair of scores from two orthogonal components provides key 

information on a spectrum (Pr1) of interest with respect to the reference spectrum (Pr2). The score 

for the spectrum of interest (Pr1) can be used to prioritize bands (e.g., highest score for highest 

importance) (Wang and Chang, 2007).  Figure 2.11 plots the band importance represented by the 

VNVBS band prioritization score for each mineral.  For the two kaolinites, the water feature 

centered near 1.9 μm has high importance values (Figure 2.11). Because no bands are selected, a 

specific number of bands or the width of captured features could not be known. The same 

limitation applies to the known absorption features near 2.2 μm seen as high values in the profiles 

for Palygorskite, and Ca-and Na-Montmorillonite. A wide region from 1.0-1.4 μm is highlighted 
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in the profiles of hectorite and Mica-Montmorillonite; however little variation was observed from 

the spectrum of these minerals (Figure 2.3) suggesting that this region has low significance. Also, 

an absorption of hectorite near 2.3 μm, that distinguishes it from the other clay minerals, is not 

highlighted.  Unlike the NSSA results, the VNVBS results are not as highly consistent with known 

distinguishing mineral spectral features and do not provide adequate information for the selection 

of bands that are key to the discrimination of these clay minerals. 

 

2.5.4 Computing time   

 The applicability of the NSSA band selection method for analysis of spectral data with 

high dimensionality (e.g., hyperspectral data) is dependent on the computing efficiency of the 

program used to compute the NSSA. As part of this study, we implemented improvements in 

ENVI/IDL on the code for the calculation of the NSSA made available by Tian et al. (2016). Here 

we present observations on the performance of the calculation. Figure 2.12 reveals that the 

computing time is dependent on the data size and increases with the numbers of spectra (n) and 

the number of bands (l).  For our datasets, l is much larger than n; thus the computing time is 

primarily impacted by the number of bands, i.e., the spectral dimensionality. The maximum 

computing time for our data is approximately10 minutes when the number of bands is in the 

thousands, and the number of spectra is around 20. Most airborne and spaceborne hyperspectral 

data do not exceed two to three hundred bands thus it is entirely feasible to apply the use of the 

NSSA to the analysis of such imagery. The current version of the NSSA program was run on a 

computer equipped with an Intel(R) Core (TM) i5-4590 @3.30GHz CPU, with 8 GB of installed 

memory (RAM) and a 64-bit Operating System. 
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2.6 Discussion 

2.6.1 Merits of the NSSA band selection method 

 There are several valuable band selection methods reported in the literature, but few can 

be applied to datasets encompassing a relatively small number of spectra and to select bands that 

enable the discrimination of spectrally similar materials. The NSSA band selection method can do 

both and is thus potentially useful in a range of hyperspectral applications and related analysis 

scenarios.  The primary aim of this study was to establish guidelines for the selection of key 

parameters using this band selection method and thus focus was given to one use of the method, 

namely the analysis of spectral libraries, with dataset examples pertinent to a geologic audience 

and materials that are challenging to discriminate because of their spectral similarity.  

 Our findings indicate that bands selected from the two datasets are in good agreement with 

known features. Of significance is that the selected bands encompass a range of distinguishing and 

often subtle spectral characteristics that include absorption feature position (2.25-2.35 μm for rocks 

and 1.383-1.415 μm for clays), and shape (asymmetry) and depth (1.9 μm for clay). These results 

indicate that the NSSA method is sensitive to the key discriminating spectral characteristics of 

these materials, the same that are recognized by experts, and thus can be used to assist experts in 

identifying key features when using a limited number of spectra. Bands selected for the two 

datasets resulted in the improved separation of targets as seen in reduced intra-class variability 

(e.g., Ca-montmorillonite) and generally better discrimination of specific classes (e.g., ultramafic 

rocks). Kaolinite L and H, materials that present very similar spectra, could readily be 

distinguished following band selection.  
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The assessment of the current computational burden of the method has relevance for its 

future use in a wider range of data analysis scenarios. Prior to this investigation, several hours 

were consumed to process a data set of fewer than 10 spectra and 200 bands for the NSSA 

calculation whereas 200 seconds are now required due to the improved efficiency of the codes 

resulting from this study. One can now consider using this method in image analysis where data 

sizes exponentially increase.  

 

2.6.2 Guidelines for the use of the NSSA band selection method 

 A key outcome of this study is that it is now feasible to provide general recommendations 

for the selection of the k and threshold parameters that define the use of the NSSA method.  

 The first guideline consists in constraining the maximum k value based on the spectral 

dimensionality of the widest significant spectral feature (typically an absorption feature) expected 

from the materials under study. Therefore, the maximum window size should cover the widest 

feature. For example, if the broadest feature seen in a group of 8 spectra encompasses a width of 

90 bands, the maximum k value under consideration would be 10 (calculated as 90/(8+1)). 

Furthermore, if the multiple continuous k values impose a computational burden, we recommend 

examining k at intervals by doubling the window size (e.g., k=0,1,3,7,15…).  With the resulting 

permissible k values defined and using a zero threshold, a profile of the NSSA value as a function 

of wavelength for each k value can be produced. These profiles will reveal wavelength regions 

highlighted through the range of k values.  
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 The second guideline applies to the selection of k values based on these NSSA profiles. 

This step aims to capture the primary wavelength regions of high NSSA values that can be 

compiled across all k values and exclude, when possible, k values that contain redundant features.  

 In the last guideline, the threshold parameter should be defined for each k selected, and the 

value should be estimated from a graph of the NSSA value as a function of the number of bands 

as illustrated in Figure 2.5b. The methodology for this estimation was described in section 2.4.1.2 

and results shown in section 2.5.1.   

 

2.6.3 Additional applications of the NSSA band selection method 

 The use of the NSSA band selection method on the geological datasets of this study resulted 

in the selection of band sets consistent with known spectral features. Future work can thus expand 

to fields outside of geology. The use of vegetation spectroscopy in ecologic applications is a prime 

target as it typically involves materials with high spectral similarity (e.g., optical region) and/or 

low contrast (e.g., longwave infrared). Materials in urban settings or soils can also present very 

similar spectra, and studies attempting to discriminate these materials based on the use of spectral 

libraries could also benefit from this band selection method as should any study involving 

spectrally similar targets. 

 Another application concerns the analysis of airborne and satellite hyperspectral imagery 

and the use and extraction of spectral endmembers that can vary as a function of time (e.g., 

phenological cycle) and sensor spatial and spectral resolution (Somers et al., 2011). Because the 

selection of bands using the NSSA method can help to increase class separation and minimize 

intra-class variability, there is potential in integrating this method with the endmember selection 
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process as part of spectral Mixture analysis (SMA). Regional mapping or monitoring 

investigations can often encompass imagery covering hundreds of square kilometers, and it is a 

challenging and time-consuming process to assemble spectral endmembers prior to unmixing. 

With the upcoming launch of hyperspectral satellite missions such as PRISMA (PRecursore 

IperSpettrale della Missione Applicativa) and the Environmental Mapping and Analysis Program 

(EnMAP) and the Hyperspectral Infrared Imager (HyspIRI), the NSSA method may prove 

valuable to assemble and analyze such datasets. 

 

2.7 Conclusions 

The NSSA band selection method can detect subtle differences among spectrally similar 

targets and select bands for their discrimination. The method can be used for the analysis of a 

limited number of spectra and is thus well suited to the analysis of spectral libraries either resulting 

from the collection of field spectra or the extraction of endmembers from imagery. When applied 

to such data, the results indicate that spectral regions with highest contrast in spectral shape 

(depicted by the largest NSSA values) are captured. For the geological datasets investigated, the 

spectral regions captured are consistent with documented features of mineral spectra. Thus, the 

NSSA band selection method is a valuable tool to assist experts in feature identification and 

spectral analysis.  

This study was also able to define guidelines to constrain the selection of the two key 

parameters behind the method.  The first guideline consists in constraining the maximum k value 

based on the spectral dimensionality of the widest significant spectral feature (typically an 

absorption feature) expected from the materials under study. Therefore, the maximum window 

size should cover the widest feature. Furthermore, if the multiple continuous k values impose a 
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computational burden, we recommend examining k at intervals by doubling the window size (e.g., 

k=0,1,3,7,15…). The second guideline is to use a profile of the NSSA value as a function of 

wavelength for each permissible k value to capture the primary wavelength regions of high NSSA 

values. These can be compiled while excluding, when possible, k values that contain redundant 

features. In the last guideline, the threshold parameter for each k is estimated from a graph of the 

NSSA value as a function of the number of bands as illustrated in Figure 2.5b. The guidelines on 

the parameter definition allow non-expert users to select a subset of bands while capturing both 

narrow and broad discriminating features. The NSSA method is a powerful tool for band selection 

that should be of value to any study involving spectrally similar targets. 

  

Acknowledgments 

The research would not have been accomplished without the financial support from a 

collaborative doctoral program between the China Scholarship Council (CSC) and the University 

of Alberta.   

  



40 
 

Table 2.1 Bands used to evaluate the NSSA band selection for the rock datasets. 

Spectral range Band location (μm) Source 

VNIR 
0.454, 0.500, 0.546, 0.603, 0.651, 0.698, 

0.746 

Table 3, Rogge et al. (2014) 

from AISA imagery 

SWIR 2.245, 2.285, 2.315, 2.345, 2.386 
Figure 7, Rogge et al. (2014) 

from USGS spectral library 
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Table 2.2 Bands or wavelength regions obtained from the NSSA band selection method. 

Dataset Bands or wavelength regions (µm) of selected bands 

Clay 

minerals 

1.383, 1.389, 1.396, 1.402, 1.408, 1.415, 1.886, 1.892, 1.899, 1.905, 1.911, 1.917, 

1.924, 1.930, 1.936, 1.943, 1.949, 2.124, 2.130, 2.137, 2.149, 2.155, 2.162, 2.168, 

2.174, 2.180, 2.187, 2.193, 2.199, 2.206, 2.212, 2.218, 2.224, 2.231, 2.237, 2.243, 

2.249, 2.256, 2.262, 2.274, 2.281, 2.287, 2.306, 2.355 

Rock 

types 
0.436-0.493, 0.586-0.677, 0.700-0.713, 1.391-1.404, 2.256-2.386, 2.405-2.411 
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Figure 2.1 Schematic representation of the NSSA (a) and its use for band selection (b) and (c). 

The example provided is for 7 spectra (A-G). The sliding window, calculated NSSA profile, and 

threshold are also shown. 
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Figure 2.2 Photographs of samples. Powder clay minerals (a), and mafic and ultramafic weathered 

and partially lichen covered rock samples (b). The numbered white paper squares in (b) indicate 

the location where point spectra were collected. 
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Figure 2.3 Averaged spectra of clay mineral samples (ClayAverages) (a), and enlargement of 

features observed between 2.00-2.53 μm (b). 

  



45 
 

 

Figure 2.4 Averaged spectra for each rock type (RockAverages) (a) and enlargement of mineral 

features observed between 2.0-2.5 μm (b). 
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Figure 2.5 Parameter adjustment for clay minerals. (a) plot of the NSSA value as a function of 

wavelength for k=0-9, and (b) plot of ranked NSSA value as a function of the number of bands for 

k=0,1,3. The black arrow on each of these three plots defines the number of bands selected. 
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Figure 2.6 Parameter adjustment for rock types. (a) plot of the NSSA value as a function of 

wavelength for k=0,3,7,15,31,63 and (b) plot of ranked NSSA value as a function of the number 

of bands for k=3,15,63. The black arrow on each of these three plots defines the threshold value 

(i.e., the number of bands selected). 
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Figure 2.7 Average spectrum of each clay mineral (ClayAverages) and bands selected with the 

NSSA method shown as vertical dashed lines. (a) full wavelength (0.97-2.50 μm), and (b) the 2.00-

2.50 μm region. Water and cation-hydroxyl features summarized in section 2.2.3.1 are labeled by 

dots in (a) and by vertical solid lines in (b). 
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Figure 2.8 Average spectrum of each rock type (RockAverages) and bands selected with the 

NSSA method shown as vertical dashed lines. (a) full wavelength (0.35-2.50 μm), and (b) the 2.20-

2.50 μm region. 
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Figure 2.9 Class separation from scatterplots of PCA loadings obtained for clay minerals (245 

bands and an average of 460 pixels for each of the seven mineral sample).  (a) and (b) using all 

bands, (c) and (d) using the bands selected with the NSSA method. Data from the seven minerals 

are represented by different colors. 
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Figure 2.10 Class separation from scatterplots of LDA loadings obtained for rock types. (a) and 

(c) using all bands, and (b) and (d) using the bands selected by the NSSA method. The field 

occupied by dunite is highlighted in all plots but that of olivine-pyroxenite and pyroxenite are 

highlighted in the upper plots because of the enhanced separation of these rock types with band 

selection. 

  



52 
 

 

Figure 2.11 Profiles of band importance for each clay mineral obtained using the VNVBS method. 

Band importance corresponds to the Pr1 score output of the VNVBS method (Wang and Chang, 

2007). 
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Figure 2.12 Computing time as a function of the number of bands and endmembers (e.g., data 

size). 
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Chapter 3 Hierarchical Band Selection Using the N-Dimensional 

Solid Spectral Angle Method to Address Inter- and Intra- Class 

Spectral Variability 

3.1 Introduction 

The ever increasing spectral resolution of hyperspectral sensing data enables a detailed 

discrimination or mapping of ground targets such as minerals and vegetation (Goetz et al., 1985). 

However, the high dimensionality of the data and the strong correlation between contiguous 

spectral bands creates obstacles for accurate mapping of target materials. A careful selection of 

wavelength bands, i.e. band selection, can alleviate the problem by focusing on significant features 

that maximize spectral differences between targets (Van der Meer and Jia, 2012). This process not 

only reduces the high spectral dimensionality but also does not transform the original data, which 

is required in specific applications.   

However, the intrinsic spectral variability within a specific class of material (intra-class 

variability) and the spectral similarity among different classes (inter-class variability) can 

introduce challenges that are not typically taken into account in the band selection process and 

material discrimination (Kruse and Fairbarn, 2013). Most mainstream band selection methods 

apply if the materials are quite spectrally distinct. However, some applications in geology (Rogge 

et al, 2014), vegetation (Zhang et al., 2006) or urban environments (Wetherley et al., 2017) are 

often confronted with the challenge of discriminating targets with very similar spectral 

characteristics. Two such examples are covered in this study. First in a mining exploration context 

set in lithologies hosting Ni-Cu-PGE mineral deposits (Rogge et al., 2014), mafic and ultramafic 

rocks endmembers present almost identical spectral shapes while other classes in the scene, namely 
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vegetation, snow and water are more distinctive. As a result, the mapping process required the 

careful selection of a subclass of rock endmembers analyzed separately in order for them to be 

differentiated while the broader classes could be distinguished readily. A second example is 

provided for the spectral discrimination of tree species using the longwave infrared region (8-

12um) where leaf spectra at the species-level can present great similarity. Thus species-level 

discrimination can be obscured by the relative high contrast of species group-level spectra 

(Harrison et al., 2018).  

In such cases, the reduction of data dimensionality must proceed using an effective band 

selection and consider intra- and inter- class variability. Here we report on a hierarchical band 

selection resting on the N-dimensional Solid Spectral Angle (NSSA) method (Tian et al., 2016). 

The NSSA method is a band selector based on a spectral similarity measurement that extends the 

spectral angle into n-dimensions. Unlike conventional spectral angle measurements that are 

calculated between two spectra, NSSA measures the similarity among multiple spectra and selects 

wavelength band regions with high contrast (maximum difference) for improved separation (Tian 

et al., 2016). NSSA’s capability in capturing the most distinctive feature from similar targets makes 

it advantageous in coping with the situation described above. This method is also superior to many 

other supervised methods because it can be applied to a spectral library collected from a limited 

number of measurements (i.e. from rocks, leaves). Details on the algorithm and its use are available 

in (Tian et al., 2016).  

To address the challenge of band selection presented by the spectral variability issues 

introduced above (i.e. large contrast for some classes and low contrast for others), band selection 

with NSSA should be conducted separately for categorized endmembers of higher hierarchy (inter-

class) and lower hierarchy (intra-class). Thus this paper focuses on the hierarchical strategy of 
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band selection (here termed HBS-NSSA) in two case studies of geology and vegetation. The first 

study involves mafic and ultramafic rocks where little spectral variation is observed among these 

and other geologic endmembers. The second study deals with leaf spectra of tree species in a 

Tropical Dry Forest (TDF), Spectra were collected in the longwave spectral range (8-12 um) and 

display low contrast and were sorted into eight spectral groups based on plant physiology. Three 

main objectives are pursued: 1) to identify key spectral features for geological and ecological 

applications using HBS-NSSA; 2) to assess the effectiveness of the method; and 3) to investigate 

the applicability of the method and its potential use in mapping techniques (Somers et al., 2011) 

for future needs. 

 

3.2 Hyperspectral Data 

3.2.1 Mafic and ultramafic rocks 

The first data is a set of 18 endmembers previously generated from an airborne 

hyperspectral image of the Cape Smith Belt in northern Canada (Rogge et al., 2014). The airborne 

image was acquired using the Specim AisaDUAL Imaging Spectroscopy System (AISA) spanning 

a spectral region between 0.4-2.5 µm and containing 128 bands. Endmembers were generated from 

the image using an automatic endmember extraction tool and have been validated through 

comparison with field spectra as well as field mapping (Rogge et al., 2014). These include 

endmembers for 9 geological units, 6 vegetation covers, 2 types of snow packs and 1 for water. 

The geo-endmembers are dominated by mafic and ultramafic rock, the focus of mining exploration 

efforts (Rogge et al., 2014).   

 

3.2.2 TDF tree species 
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The second data is a set of average leaf spectra for 26 tree species that were collected from 

a typical TDF in the Santa Rosa National Park-Environmental Monitoring Supersite, Guanacaste 

(SRNP-EMSG), Costa Rica. The leaf samples were collected in-situ during the dry season in 2013 

and 2014 (Harrison et al., 2018) using an Agilent 4100 ExoScan FTIR (Fourier Transform Thermal 

Infrared) spectrometer with a range of 2.5 to 16 µm and a spectral resolution of 4cm-1. In a prior 

study, the spectra of the 26 species were grouped into 8 spectral classes based on spectral features 

attributed to major leaf compounds that include cutin, cellulose, and xylan (Harrison et al., 2018). 

The features in the longwave infrared region (8-11 µm) that could potentially discriminate tree 

species were focused. 

 

3.3 Method 

This section describes the principle of the NSSA method for band selection and then the 

hierarchical strategy using the NSSA method, followed by the description of its utilization and 

evaluation in the rock and tree species datasets. 

 

3.3.1 NSSA method 

NSSA refers to the N-dimensional solid angle in the spectral domain. Similar to the spectral 

angle (SA) describing similarity between two spectra, NSSA measures the similarity among 

multiple (more than three) spectra (Tian et al., 2016). According to the geometric definition of 

NSSA, the angle is only measured within a square matrix where the number of spectra should be 

equal to the number of bands. As a result, a sliding window with varying band intervals (denoted 

by “K”) is moved across the available spectral range (Tian et al., 2016), generating a continuous 
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profile of NSSA values as a function of band wavelength position that is used as an indicator of 

band importance. Bands of lower NSSA values are less important because they reflect great 

similarity among the spectra for the given spectral regions. A fixed number of bands can be 

selected once a “Threshold” of NSSA values is determined. 

 

3.3.2 Hierarchical band selection with NSSA 

A direct application of NSSA without taking account the spectral variability within and 

between classes would negatively impact band selection if different hierarchies exist amongst the 

targets of interest. The geological case contains four main classes that have high contrast and the 

related band selection likely would obscure the subtle difference among materials within the 

geological class that includes gossan-encrusted rock, mafic and ultramafic rocks. Accordingly, it 

is desirable to separate the materials in different hierarchies and apply NSSA individually for each 

level of the hierarchies.  

In the examples of this study, the hierarchical selection starts with the categorization of all 

spectra into two levels of classes, each class being represented by an averaged spectrum. The upper 

level examines classes with high spectral contrast. The lower level examines classes with low 

spectral contrast. The NSSA tool was run on each level for band selection and the last step 

integrates all bands selected from these two steps. 

 

3.3.3 Utilization and evaluation of the method 

Subsequently, the approach of HBS-NSSA was applied to the given datasets in this paper. 

Both datasets have been well categorized based on a priori knowledge described in prior geologic 

mapping (Rogge et al., 2014) and tree species discrimination (Harrison et al., 2018) studies. In the 
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geology study, the upper hierarchical level consisted of rock, vegetation, water and snow and was 

represented by 7 selected endmembers (out of 18 available) and the lower hierarchical level 

consisted of geo-class represented by 8 endmember spectra. For the tree species, the 8 spectral 

groups of tree species were regarded as the upper hierarchical level; and the first spectral group, 

which contains the largest number of tree species at 10, was selected as the low hierarchical level. 

The HBS-NSSA was conducted on the categorized spectral data based on the procedure described 

in the above section. To assess the accuracy of the band selection, both case studies used a 

comparison between obtained bands and spectral features identified by expert knowledge. The 

fidelity of the expert selected features is supported by extensive literature and for the geological 

study, by field validation of mapping efforts. 

 

3.4 Results 

Below is a brief summary of the results obtained by applying the HBS-NSSA method to 

the two hyperspectral datasets. Selected bands are shown in Figure 3.1 and 3.2 (vertical lines) and 

wavelength regions encompassing these bands are listed in Table 3.1. 

 

3.4.1 Band selection on endmembers for geologic mapping 

Figure 3.1 displays the bands selected (shown as dotted vertical lines) when HSB-NSSA 

is applied at an upper level to 7 endmembers representing 4 broad classes of surface materials (1a) 

and at a lower level to 8 geologic endmembers (1b). As seen in Figure 3.1, the spectral features 

identified from the two hierarchical levels partially overlap. The selected bands in Figure 3.1a 

largely reflect the inter-class differences between vegetation, snow and water. Diagnostic bands 

for vegetation (0.45, 0.5, 0.6, 1.1 µm), water (0.5 µm) and snow (0.7, 1.4 µm) are identified by the 
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band selection. These would be readily captured by many band selection methods. The intra-class 

variability amongst geologic materials is largely captured by bands concentrated in the shortwave 

infrared region (2.2-2.5 µm), consistent with known hydroxyl features that discriminate mafic and 

ultramafic rocks. 

 

3.4.2 Band selection on longwave spectra for tree species discrimination 

Figure 3.2 displays the bands selected at an upper level for the 8 groups encompassing all 

tree species (2a) and at a lower level for the spectral group (group 1) containing the most species 

(2b). For the 8 groups, major features attributable to cellulose, silica, cutin and oleanolic acid have 

been identified in a prior study from a comparison to spectra of driving compounds (Harrison et 

al., 2018).  Our bands selected fall into 3 spectral regions (Figure 3.2a) consistent with cellulose 

feature around 9 µm, silica features at 9.40-9.70 µm, and ocleanolic acid features around 8.6, 9.00, 

9.70 µm.  

For the species-level analysis based on the spectral group spectra (Figure 3.2b), the selected 

features fall primarily into 4 spectral regions that are not obvious from a visual inspection.  These 

are consistent with known features at 8.62, 9.01, and 9.44 µm related to asymmetric C-O-C bridge 

stretching, anhydroglucose ring asymmetric stretching, and C-O stretching of cellulose. In general, 

the HBS-NSSA method highlights the importance of bands around 9 µm to capture the intra-class 

variability in this group. 

 

3.5 Conclusion 

This paper presents a hierarchical strategy for band selection based on the NSSA method. 

The bands selected aim to maximize the spectral difference among multiple targets and the method 
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addressed inter- and intra- class variability in rock and leaf spectral classes for band selection. The 

results illustrate that it is feasible to select meaningful bands for the given datasets and that the 

hierarchical process results in different band sets for different levels. These can be combined to 

ensure that the discrimination of spectrally similar targets can also be addressed. A particular 

benefit of this band selection method compared to its peers is that it can be applied to a small 

number of labeled samples that is of practical value for field-based studies. The proposed band 

selection captured the variability between high-contrast materials in an upper hierarchy level as 

well as the variability within low-contrast materials in the low hierarchy level. The combined band 

sets for each of the two examples captured the same spectral regions identified by expert users in 

their efforts to capture the most significant bands to drive mapping efforts as reported in Rogge et 

al. (2014) and Harrison et al. (2018). The proposed method does seem promising for the 

automation of this band selection process resulting in substantial time savings in data analysis.  
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Table 3.1 Bands used to evaluate the NSSA band selection for the rock datasets. 

Figure Wavelength regions (µm) of selected bands 

1a 0.43-0.76, 1.08-1.13, 1.31-1.37, 1.77-1.79, 2.01-2.02, 2.3-2.43 

1b 0.47-0.62, 0.85-1.09, 1.29, 1.80-2.05, 2.12-2.38 

2a 8.55-8.87, 8.93-9.17, 9.53-10.13 

2b 8.48-8.63, 8.84-9.11, 9.19-9.42, 9.64-9.69 
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(a) 

 
(b) 

Figure 3.1 Bands (dotted vertical lines) selected by HBS-NSSA for (a) broad classes of all 

mapping materials; (b) geological materials. 
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(a) 

 
(b) 

Figure 3.2 Bands (dotted vertical lines) selected by HBS-NSSA for (a) 8 groups of leaf spectra; 

(b) 10 species in group 

 

 

  



69 
 

References 

Goetz, A.F., Vane, G., Solomon, J.E., and Rock, B.N., 1985. Imaging spectrometry for earth 

remote sensing. Science 228(4704): 1147-1153. 

Harrison, D., Rivard, B., and Sanchez-Azofeifa, A., 2018. Classification of tree species based on 

longwave hyperspectral data from leaves, a case study for a tropical dry forest. International 

Journal of Applied Earth Observation and Geoinformation 66: 93-105. 

Kruse, F.A. and Fairbarn, K.G., 2013, May. Spectral variability constraints on multispectral and 

hyperspectral mapping performance. In Algorithms and Technologies for Multispectral, 

Hyperspectral, and Ultraspectral Imagery XIX (Vol. 8743, p. 87431O). International Society 

for Optics and Photonics. 

Rogge, D., Rivard, B., Segl, K., Grant, B., and Feng, J., 2014. Mapping of NiCu–PGE ore hosting 

ultramafic rocks using airborne and simulated EnMAP hyperspectral imagery, Nunavik, 

Canada. Remote Sensing of Environment 152: 302-317. 

Somers, B., Asner, G.P., Tits, L., and Coppin, P., 2011. Endmember variability in spectral mixture 

analysis: A review. Remote Sensing of Environment 115(7): 1603-1616. 

Tian, M., Feng, J., Rivard, B., and Zhao, C., 2016. A method to compute the n-dimensional solid 

spectral angle between vectors and its use for band selection in hyperspectral data. 

International Journal of Applied Earth Observation and Geoinformation 50: 141-149. 

Van der Meer, F.D., and Jia, X., 2012. Collinearity and orthogonality of endmembers in linear 

spectral unmixing. International Journal of Applied Earth Observation and Geoinformation 

18: 491-503. 

Wetherley, E.B., Roberts, D.A., and McFadden, J.P., 2017. Mapping spectrally similar urban 

materials at sub-pixel scales. Remote Sensing of Environment 195: 170-183. 



70 
 

Zhang, J., Rivard, B., Sánchez-Azofeifa, A., and Castro-Esau, K., 2006. Intra-and inter-class 

spectral variability of tropical tree species at La Selva, Costa Rica: Implications for species 

identification using HYDICE imagery. Remote Sensing of Environment 105(2): 129-141. 

 

 

  



71 
 

Chapter 4 Identification of Spectral Features in the Longwave 

Infrared (LWIR) Spectra of Leaves for the Discrimination of 

Tropical Dry Forest Tree Species 

4.1 Introduction 

Hyperspectral remote sensing has been widely used for classifying plant species (Adam & 

Mutanga, 2009; Belluco et al., 2006; Pu, 2009; Ustin & Xiao, 2001). Compared to conventional 

floristic research, which require specialized knowledge and extensive field work, the hyperspectral 

technique shows advantages in reducing time, cost and labor (Ribeiro da Luz, 2006; Ullah 2012). 

Hyperspectral sensors acquire reflectance measurements across numerous and contiguous bands 

of the electromagnetic spectrum, providing a fine spectral resolution for the detection of diagnostic 

spectral features across different tree species. 

In the hyperspectral discrimination of tree species, one essential step is to clarify the 

relations between spectral information and leaf traits (Clark et al., 2005; Chan & Paelinckx, D, 

2008). Spectral features of leaves in the Visible to Shortwave Infrared (VIS-SWIR; 0.4-2.5 µm) 

have been well identified and understood (Asner,1998; Govender et al., 2007; Ustin and Gamon, 

2010). For example, the green peak at 0.45-0.55 µm is due to light interactions with the chlorophyll 

in the leaf cell, and the Near-Infrared (NIR) plateau (strong reflectance) between 0.8 and 1 µm is 

caused by volume scattering in the leaf mesophyll. These features and water absorptions in the 

SWIR are frequently exploited to discern species (Clark et al., 2005; Fassnacht et al., 2014). 

To date, however, spectral features of leaves in the Thermal Infrared (TIR; 3-14 µm) 

wavelength region have been seldom studied for the following reasons. First, the TIR domain has 

been perceived as featureless (Fassnacht et al., 2016). The reflectance of leaves in this region is 
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comparatively low; moreover, the spectral characteristics are subtle and harder to detect. The lack 

of attention may reflect a lesser understanding of plant physiology and organic chemistry by the 

remote sensing community. The key reason is the relative scarcity of hyperspectral TIR data for 

vegetation. Field, space-borne, and airborne thermal spectrometers are not prevalent, so the data 

is not easily accessible. Nevertheless, a few studies from the 1980’s, have shown the applicability 

and potential of TIR technology for species discrimination. Salisbury (1986) was the first to 

suggest that TIR features are possibly dominated by the chemical compounds of the leaf surface 

such as wax in the upper epidermis (Salisbury 1986; Salisbury & Milton, 1988). More recent 

research has demonstrated that leaves show distinctive spectral features in the thermal infrared 

region, and it is possible to discriminate vegetation types at the species level (Acevedo et al., 2017; 

da Luz & Crowly, 2007; Gilles et al., 2016; Buitrago et al., 2018; Meerdink et al., 2016; Ullah et 

al., 2012). A recent study used longwave infrared spectral data of leaves for the classification of 

liana and tree species and achieved a higher accuracy than the classification based on visible-near 

infrared reflectance data (Guzman et al., 2018). Therefore, the need to identify diagnostic 

vegetation spectral features in the TIR region becomes clear.  

The detailed detection of spectral features in leaf spectra can be achieved manually, or 

automatically using statistical approaches. For example Luz et al. (2006, 2007) identified 

characteristic absorption features in leaf spectra collected from a diversity of tree species and 

agricultural plant species. In their studies, leaves displayed spectral variations in absorption band 

position and intensity or depth, and similar features were displayed in spectra of leaf chemical 

compounds (e.g., cellulose, cutin, xylan, silica and oleanolic acid). Thus, they reported that 

chemical bonds including hydroxyl (OH), carbonyl (C=0), methyl (CH3) and methylene (CH2) 

involved in those compounds were the driving factor of leaf spectral features.  This fundamental 
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study of leaf and compound spectroscopy established foundations for the statistical band analysis, 

which was later explored (Clark et al., 2005; Zhang et al., 2006). Recently, a series of statistical 

methods, such as distance measure, Quadratic Discriminant Analysis (QDA), and Partial Least 

Square Regression (PLSR) models have been exploited to measure the importance of bands or 

select a subset of bands for the classification of broadleaf, herbaceous to wood species (Gilles et 

al., 2016; Meerdink et al., 2016; Ullah et al., 2012). These band analyses used a broad spectral 

range, which includes SWIR, Mid-wave Infrared (MWIR; 3-5 µm) and Long-wave Infrared 

(LWIR; 7-14 µm), in their classification models. 

As features in these three spectral regions are driven by different factors, a recent study on 

the species classification of 19 broadleaf herbaceous and woody species (Buitrago et al. 2018) 

conducted band selection separately for each region and reported good classification in the SWIR 

and LWIR using as little as 5 bands. Prior studies have revealed that the MWIR is more sensitive 

to leaf water content and is suitable to detect plant stress (Acevedo et al., 2017), and LWIR features 

are mainly driven by chemical compounds in the cell wall or the cuticle from the leaf surface. 

Using all bands from the SWIR to the LWIR can make the spectral analysis biased, because the 

compound-driven features of relatively low contrast can be obscured by the overwhelming water 

features (Ullah et al., 2014). In addition, the evaluation of band selection should be focusing on 

the interpretation of selected features, rather than relying exclusively on the classification 

accuracy. As indicated in Salisbury (1986), it is important to examine the possible origins or 

contributing factors of the TIR features (i.e., spectroscopic interpretation).  

Tree species in certain ecosystems such as in Tropical Dry Forests (TDF) can present great 

spectral similarity (low Spectral contrast), presenting a challenge for band selection and 

stimulating the need for more advanced methods (Harrison et al., 2018). Thus, this study employs 
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a variety of band selection methods to identify key features from the long-wave infrared spectra 

of tree leaves from a TDF, and compares the selected bands with known spectral features 

(vibrational bonds) associated with leaf constitutional compounds. Three methods named Variable 

Selection with Random Forest (VSRF), minimum Redundancy Maximum Relevance (mRMR) 

and N-dimensional Solid Spectral Angle (NSSA) and an ensemble of them are applied to the 

classification of LWIR spectral data collected from twenty-six tree species in a tropical dry forest 

ecosystem. The results of the band selection are evaluated based on agreement with known features 

and classification accuracy. Three questions are explored in this study: Within the LWIR, what are 

the key spectral regions or bands that best discern the selected tree species? Which method captures 

the most discriminating and important features for species discrimination? How is the species 

classification impacted by the selected features? 

 

4.2 Study site and data 

4.2.1 Study site and tree species 

Leaves used in this study were collected from a typical Tropical Dry Forest (TDF) located 

in the Santa Rosa Reservation National Park-Environmental Monitoring Supersite, Guanacaste 

(SRNP-EMSG) in northwestern Costa Rica (Figure 4.1). TDF is a vegetation type typically 

dominated by deciduous trees with over 50% of trees being drought deciduous, where the mean 

annual temperature is ≥25 °C and the total annual precipitation ranges between 700 and 2000 

mm, and where there are three or more dry months when the precipitation is scarce (<100 

mm/month) (Sanchez-Azofeifa, 2005). The study site spans an area of approximately 108 km2 (85

°34′40″-85°43′08″E, 10°44′05″-10°54′10″N) and consists of relatively flat 

terrain (at around 600 m). The TDF at the SRNP-EMSG suffered from human disturbances until 
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the 1970s. Now the SRNP-EMSG presents a landscape composed of pasture and secondary forest, 

the later featuring diversity in tree species. A series of ecological and remote sensing investigations 

have been conducted in this area for the past twenty years (Arroyo-Mora et al., 2005; Castillo et 

al., 2011& 2012; Guzman et al., 2018; Harrison et al., 2018; Kalacska et al., 2004 & 2007).   

Over 159 tree species are known to exist in this area (Kalacska et al., 2004), and this study 

focused on 26 species abundant in this TDF. The botanical names and families of these species are 

listed in Table 4.1. Trees of these 26 species have an average age of 50-60 years (Harrison et al., 

2018) and encompass 19 families with most species belonging to a different family. However some 

species, including Albizia adinocephala (AA) and Ateleia herbert-smithii (AH); Astronium 

graveolens (AG) and Spondias mombin (SMO); Casearia argute (CAR), Casearia sylvestris (CS) 

and Zuelania Guidonia (ZG); Lonchocarpus minimiflorus (LM) and Machaerium biovulatum 

(MB); and Luehea candida (LC) and Luehea speciose (LS) belong to the same family potentially 

increasing the difficulty in discriminating them based on spectral observations. 

 

4.2.2 Spectral data 

4.2.2.1 Leaf spectra 

The leaf samples and spectral data were collected as part of a study by Harrison et al. 

(2018). Leaf samples were acquired and measured in-situ during the wet season (May) in 2013 

and 2014. For each species, leaf samples were collected from different canopy layers (sun, mid-

canopy and shade leaves) of 2-3 individual trees. The spectra of the samples were measured using 

an Agilent 4100 ExoScan FTIR (Fourier Transform Thermal Infrared) spectrometer with a spectral 

range of 2.5 to 16 µm and a spectral resolution of 4 cm-1. Attenuated Total Reflectance (ATR) was 

measured using a probe enabling photons to penetrate into leaf samples at a small depth (around 
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20-50 µm) so that the inner leaf structure could be probed. The ATR probe views a leaf footprint 

of approximately 1.5 cm. A spectral region from 8 to 11 µm was selected for analysis to exclude 

lower signal to noise beyond this region (Harrison et al., 2018). A total of 656 leaf spectra were 

obtained, which included approximately 20-30 spectra per species. Each leaf sample and related 

spectrum was labeled by its species name.  

Harrison et al. (2018) assigned the leaf spectra of 21 species (Figure 4.2; Table 4.1) to five 

Spectral Types (ST), while species of the Tiliaceae family (LC and LS) were assigned a unique 

spectral type and three single species (AH, LM and RT) were unassigned. The definition of the 

spectral types was based mainly on the similarity of spectral features amongst species that were 

then attributed to major leaf compounds, as described in the next section. Harrison et al. (2018) 

manually identified a set of key features from the leaf spectra and documented their location as 

listed in the first column of Table 4.2. Each feature can be linked to a corresponding feature 

observed in compound spectra, but the exact position of features may not be a match. The positions 

of the features were used as a reference band set to assist in the evaluation of the band selection 

results of this study. The organization of the species in spectral types highlights commonality in 

features within a type and contrasts differences amongst spectral types. Here we chose to display 

the spectra of species in reflectance without any pre-processing. However, as shown by Harrison 

et al. (2018), similarities and differences in spectra of species are enhanced when viewed in the 

wavelet representation. 

4.2.2.2 Compound spectra and links to species spectral types  

An online spectral library of leaf constitutional compounds compiled by da Luz & Crowley 

(2007) was used in this study and that of Harrison et al. (2018). The library includes spectra of 

cellulose, xylan, cutin, and oleanolic acid that were collected from vegetative materials such as 
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tomatoes and wool pulp as well as spectra of silica (da Luz & Crowley, 2007; 2010). The 

Directional Hemisphere Reflectance (DHR) was measured from the compounds using a Nexus 

670 spectrometer and an integrating sphere coated internally with InfragoldTM. The spectral range 

of the data is 2.5-14 µm and the spectral resolution is 4 cm-1. This study used a range of 7-12 µm 

for analysis. Each compound contains multiple (4-20) spectra (Figure 4.3), and the averaged 

spectrum per type was obtained (da Luz & Crowley, 2007; 2010).  

The location and possible origin of the features observed in spectra of the five compounds 

were described by Harrison et al. (2018) and are summarized in Table 4.2. Here we briefly 

highlight compound features and some of the driving compounds influencing the leaf spectral 

types (ST). Cellulose, mainly found in the external wall of epidermal plant cells, is the most 

abundant leaf constitutional compound. Cellulose shows features at a number of locations (8.18, 

8.58, 8.62, 8.84, 9.01, 9.3, 9.44, 9.63 µm in Figure 4.3). Some of these features are attributed to 

C-O or C-O-C stretching (Table 4.2), while others remain unknown. At least three cellulose 

features are pronounced (8.62, 9.01, 9.44 µm) and diagnostic to the identification of tree species 

from ST1 and ST2 (Figure 4.2) as the strength and detailed position of the features is variable 

across species.  The specific location and depth of cellulose features vary across species, possibly 

reflecting the amount and thickness of cellulose near the leaf surface (Luz et al., 2007). Xylan, 

also found in cell wall, is a type of hemicellulose. The spectra of xylan are characterized by a 

prominent increase in reflectance at 9.40-9.70 µm that is attributed to C-OH bending. This feature 

is present in leaf spectra of species from ST3 (e.g., MT, CAM, BS). CAM is a species reported to 

have near-surface silica (Bjorn et al. 2011; Siegel and Paguaga, 1991) and Harrison et al. (2018) 

has suggested that silica, with a broad feature centered at 9.08 µm, may be contributing to the 

spectra of this species. Cutin comes from the cuticle which is the waterproof outer layer covering 
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the epidermal cells of leaves. Spectra of cutin show two diagnostic features at 8.65 and 9.14 µm 

identified as C-O-C stretching. These features are observed in leaf spectra from ST5 (species CS, 

PG, AA and SG). Oleanolic acid, a type of terpene, is known to exist in cuticular waxes.  The 

spectra display features at  8.67, 9.00, 9.27, 9.7, 10.36, and 10.75 µm. The band at 9.00 µm is 

assigned to carbonyl (C=O) stretching in acids. Features of this compound are seen in spectra of 

the RT species. 

 

4.3 Method  

This section describes three methodological aspects of this study. First, a band selection 

was conducted on the spectra of constitutional compounds. Then, bands were selected from leaf 

spectra for discriminating the tree species. Lastly, the selection results were evaluated. 

 

4.3.1 Band analysis on constitutional compounds 

The NSSA band selection method, described in Tian et al. (2016), was used to select bands 

that discriminate the spectra of the leaf compounds. The NSSA method is a band selector based 

on the geometric difference in spectral shape amongst a suite of spectra. It uses the spectral angle 

in n-dimensional space to reflect the similarity among multiple targets; the greater the contrast 

amongst spectra, the more important the band (Tian et al., 2016).  NSSA is one of the few methods 

that can be applied to a limited number of spectra (e.g. average spectrum for each of the 5 

compounds). To properly exploit this method, we adjusted two parameters inherent to the NSSA 

method. K defines the band interval from which the NSSA values are calculated to capture features 

of different widths. The threshold defines the minimum NSSA value above which bands are 

selected and thus defines the number of bands selected from a profile of NSSA values as a function 
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of wavelength.  Based on the guidelines on parameter definition defined in Long et al. (2019), 

discrete values of k (0-9) were considered. The threshold for each k was estimated based on a 

graph of ranked NSSA values (Long et al., 2019). An individual band set was therefore derived 

for each k and these were combined in a single band repository. This final band set was compared 

with features that discriminate the compounds as identified in a prior study (Harrison et al., 2018) 

to assess the validity of the selected features. 

 

4.3.2 Band analysis on spectra of leaves 

To identify spectral features for the discrimination of the 26 species, bands were selected 

from the leaf spectra using three separate methods and also an ensemble of these methods. The 

method of Variable Selection with Random Forest (VSRF), minimum Redundancy Maximum 

Relevance (mRMR) and NSSA were chosen, as they are based on different principles and show 

distinct advantages (Belgiu & Dragut, 2016; Chan & Paelinckx, 2008; Ding & Peng, 2005; Tian 

et al., 2016). The VSRF method, which is based on classification accuracy, is applicable to the 

given dataset (625 spectra) in which a considerable number of labeled samples were provided for 

each species (20-30). This method also shows robust performance in processing the visible and 

near-infrared spectral data of vegetation (Chan & Paelinckx, 2008; Feilhauer et al., 2015).  The 

mRMR method, which is based on information theory, has demonstrated excellent performances 

in a variety of data exploitation applications including in the fields of biology and computing 

science and thus was adopted in hyperspectral analysis (Ding & Peng, 2005; Peng et al., 2005; 

Jiang & Li, 2015). The NSSA method, which was used in the analysis of the compound spectra, 

has advantages in detecting subtle features from spectrally similar materials. Each method 
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generated a set of bands and a profile of band importance that were combined in a model to form 

the ensemble selection. Therefore, four sets of bands in total were produced in this analysis.   

4.3.2.1 Band selection using a single method 

(1) Variable Selection with Random Forest (VSRF) 

The first band set was obtained by applying the VSRF method to the 625 spectral samples 

that were labeled by species names. The band selection process is imbedded in the Random Forest 

(RF) classification, which builds many binary decision trees using bootstrap training samples and 

randomly chooses a subset of variables at each node of the tree. The RF contains two key 

parameters that control the selection process. The parameters of “mtry” and “ntree” represent the 

number of randomly selected variables and the total number of trees for the RF model. We adjusted 

these parameters to achieve the highest classification accuracy. The accuracy is calculated by the 

built-in RF model that automatically splits the data into training and testing subsets. All processes 

were implemented using the package “VarSelRF” in the R software (Diaz-Uriarte, 2007) 

The VSRF method generated two profiles of band importance. The importance is either 

measured by the increased misclassification error when one variable is randomly permuted in the 

out of bag (OOB) samples, or by the Gini index based on the average loss of entropy for growing 

classification trees (Genuer et al., 2010). This study chose the OOB error as the measuring criterion 

of band importance because previous studies showed that the Gini-importance was not very 

suitable for predictor variables with many categories while the data in this study encompassed 26 

categories (species classes) (Belgiu & Drăguţ, 2016).  

(2) minimum Redundancy Maximum Relevance (mRMR)  

The second band set was obtained by applying the mRMR method to the same labeled 

spectral data as used in VSRF. The band selection by mRMR attempts to maximize the dependency 
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between variables and classes while minimizing the redundancy between contiguous variables 

(Peng et al., 2005). This method requires that the number of selected bands be defined before 

selection. For an equivalent comparison, we defined this number to equal the one derived from the 

VSRF method. All these processes were implemented using a “mRMRe” package in the R 

environment. 

This method also generated band importance that was measured by building the correlation 

between predictors and target classes. The band importance can be calculated based on two criteria: 

a classic model (Ding & Peng, 2005) that is proposed by the developer of the method and an 

ensemble model that modifies the model by adding more evaluation criteria such as variable 

complementarity. The complementary between two random features Xi and Xj and the output Y is 

the gain obtained from using the joint mutual information (I) of the two variables. This criterion 

can be calculated by I(Xi,j; Y)-(I(Xi;Y)+I(Xj;Y)).The ensemble model was chosen because it is 

more effective for a large number of variables (184 bands) with a few samples (20-30 spectra per 

species) (Meyer et al., 2008).  

(3) N-dimensional Spectral Solid Angle (NSSA) 

The third band set was derived by applying the NSSA method to the data set comprising 

the average spectrum of each of the 26 tree species. Similar to the band analysis of the compounds 

described in section 4.3.1, we adjusted the k parameter to capture features of varying width and 

the threshold parameter to determine a fixed number of bands, the latter defined from graphical 

analysis. 

4.3.2.2 Band selection using an ensemble of three methods 

Based on each of the profile of band importance obtained from the three methods, a fourth 

band set was generated utilizing an ensemble approach as described by Feilhauer et al. (2015). The 
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ensemble selection of multiple methods has been found to achieve more reliable results than single 

methods because of reduced bias (Feilhauer et al., 2015; Neumann et al. 2017). The ensemble 

approach compiled measures of band importance from the three methods and aggregated the 

normalized values multiplied by weights. The weights were defined based on how much the 

variance is explained by each method (Feilhauer et al., 2015). Then, a threshold was applied to the 

compiled importance profile using a value of mean plus one standard deviation. The process of 

ensemble selection was implemented in the R software. 

 

4.3.3 Classification with selected bands 

        The band selection results were evaluated by classifying the leaf spectra using the four band 

sets derived above. For classification, the method of Logistic Regression (LR) was selected 

because it does not include a variable selection within the model. The LR is a straightforward 

method and more importantly, it is applicable to the balanced input data (similar number of 

samples for each species) in this study. The method builds a linear function between input variables 

(or bands) and the outcome (species class for this study) based on the posterior probability, and it 

commonly uses a maximum likelihood to fit the model (Friedman et al., 2001). To reduce the 

strong correlation between adjacent variables in the given spectral data, we imposed regularized 

coefficients to the LR model.  

          To avoid over fitting, we conducted a leave-one-out Cross Validation (CV) in the 

classification process. Other indicators, in addition to classification accuracy, were calculated to 

evaluate the performance such as Kappa statistic, Mean Absolute Error (MAE), and Relative 

Absolute Error (RAE). The kappa statistic measures the agreement of prediction with the true 

class. The MAE measures the average magnitude of the errors in a set of predictions. It is the 
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average based on the testing samples of the absolute values of the differences between prediction 

and observation. RAE is the total absolute error relative to a simple predictor. The value is 

normalized by dividing by the total absolute error of the simple predictor (bin Othman & Yau, 

2007; Viera & Garrett, 2005). To further evaluate the classification performance of the ensemble 

band set, a confusion matrix was generated that enables the analysis of species-level accuracy and 

relations between species.   

 

4.4 Results  

4.4.1 Selected bands 

4.4.1.1 Bands selected from compounds’ spectra  

Figure 4.4 shows four NSSA profiles that depict band importance as a function of 

wavelength for varying feature widths (i.e., different k values). As revealed by the profiles, peaks, 

which represent bands of greater importance (i.e., high NSSA value), are mostly present in the 

region between 8.45 and 9.97 µm.  This observation is consistent with the findings of Harrison et 

al. (2018) and features listed in Table 4.2. Based on the results shown on Figure 4.4, the profiles 

for the first three k values (k=0, 1, 3) were used, and profiles for k greater than 3 (k=7) were 

omitted, because they offer largely redundant information to that of the first three k values. For the 

three selected k values, a threshold value was defined (Figure 4.4, horizontal dotted line) to derive 

a number of bands; then, the three band sets obtained were combined in a single band repository 

listed in Table 4.3. 

4.4.1.2 Bands selected for leaves 

(1) Using single methods 
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Each band selection method (VSRF, mRMR and NSSA) generates a profile of band 

importance, as depicted in Figure 4.5. The three profiles show distinctive patterns. In the case of 

VSRF, the mean decrease of accuracy was chosen to measure band importance with bands with a 

higher value of mean decrease of accuracy deemed most important. The wavelength profile of this 

variable presents the most fluctuations of all three profiles as seen in Figure 4.5a and the most 

important region is located between 8-9 µm. In the case of mRMR, the score of causality was used 

to measure band importance (Figure 4.5b). This importance profile is unique in that a number of 

bands at 8.0-8.3 µm show high importance values, and a few singlet and doublet bands are 

highlighted and dispersed at longer wavelengths (e.g. peaks).  In the case of NSSA, the profile for 

k=0 is selected to measure the band importance, since it captures features at various locations. As 

was seen in the profile generated by mRMR, several prominent peaks in NSSA value are observed 

at discrete wavelength regions with a predominance from 8.5-9.2 µm and 9.5-10.2 µm.  

Each method generates a band set as represented by the dotted vertical lines in Figure 4.6. 

These can be examined next to the average leaf spectra of each of the 26 tree species.  The band 

distributions seen in Figure 4.6 reveal disparities across the three band selection methods. The 

NSSA method selects two main regions (8.5-9.2, 9.5-10.2 µm). Only six of the 57 bands (10%) 

selected are identified at wavelengths shorter than 8.2 µm and no bands are selected beyond 10.2 

µm. The VSRF method selects a few bands short of 8.5 µm and five discrete clusters of bands 

between 8.61-9.65 µm followed by a group of bands between 10.30-10.42 µm.  The mRMR 

method selects most of its bands (34 out of 47) short of 8.51 µm with the remaining bands defining 

8 narrow regions (8.62, 8.70, 8.94, 9.35, 9.80, 10.10, 10.50, 11.02µm).  Although different regions 

are highlighted by the three methods, consistent regions can be observed. For example, bands 
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identified by RFVS partially overlap with those selected by NSSA at specific regions. All three 

methods also select bands at 8.6-9.2 µm. 

(2) Using the ensemble method 

A set of 43 bands (Table 4.4), generated by the ensemble selection, is shown in Figure 4.7. 

This set captures the spectral regions that were selected by the aforementioned three single 

methods. A large percentage of bands (79%, 34/43) are located between 8.5 µm and 9.67 µm. The 

remaining bands are distributed in narrow regions near 8.2 µm, 10 µm and 10.5 µm. 

4.4.2 Classification accuracy 

4.4.2.1 Overall Accuracy 

A series of criteria including overall accuracy, kappa statistic and errors, that evaluate the 

classification of tree species based on bands selected by the different methods, are listed in Table 

4.5. The classification was conducted using the regularized Logistic Regression (LR) method and 

the first observation based on the results listed in Table 4.5 is that a high overall classification 

accuracy (>0.86) is generally achieved regardless of the input band set. Other classification 

methods were examined, such as Random Forest and Multiclass classifier but the accuracy was 

lower. Upon closer examination amongst the three individual methods, VSRF performed more 

poorly with mRMR and NSSA showing similar accuracies.  The bands by the ensemble selection 

achieve the highest accuracy (0.94), greatest kappa statistic (0.94) and smallest errors (e.g., 

RAE=0.06). The increase in accuracy by the ensemble model is 4-8 %, and is an improvement to 

an already high overall accuracy obtained from band sets from individual methods.   

4.4.2.2 Species accuracy: confusion matrix  

A confusion matrix shown in Table 4.6 enables the analysis of the species-level 

classification performance and the relation between species. The numerous off diagonal zero 
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values reveal that very few samples were misclassified, in accordance with the high overall 

classification accuracy. The maximum number of misclassified samples is four (LS); LC and CS 

have three misclassified samples while AH, PG, and SG have 2. Twelve species have only one 

sample misclassified (e.g., AA, BQ, CV); and eight species have none misclassified (CAR, SMO, 

ZG, ES, SME). The misclassification could be ascribed to the spectral similarity of species. 

Species from different Spectral Types (ST) tend to be less confused or misclassified, while species 

from the same spectral type are more easily confused, for example, CS and PG that belong to ST5, 

and LC and LS that belong to the Luchea sp. ST (these are also from the same family). 

 

4.4.3 Comparison of selected bands with known features 

The bands selected from leaf spectra using the ensemble approach were compared with 

bands selected by Harrison et al. (2018) (Figure 4.7), the later having been compared to features 

documented in the literature as described in section 4.2.2.1 and shown in Table 4.2. Overall the 

spectral regions selected by the ensemble approach (Figure 4.7a dotted line) show consistency with 

the bands identified by experts (solid line) though the band set of the ensemble approach 

encompasses more contiguous bands as expected, because the bands selected by “the expert” only 

report the band center of features observed from leaf spectra. Most bands selected lie between 8.5-

9.6 µm, a region encompassing spectral features of cellulose. This observation also applies to 

bands selected for compounds, as reflected by dotted lines in Figure 4.7b. Cellulose is the most 

influencing driver in the spectral signatures for a third of the species (Harrison et al., 2018). For 

leaves few bands are selected near 10 µm and at 10.5 µm (Figure 4.7a), though two features 

attributed to oleanolic acid are located at 10.24 µm and 10.75 µm (Table 4.2, Figure 4.7a). 
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However, oleanolic acid only exerts a control on the spectra of a single species (RT), thus the band 

selection based on 26 species cannot be expected to capture these two features. 

 

4.5 Discussion 

4.5.1 LWIR features for the discrimination of TDF tree species 

The band analysis in this study reveals that a spectral region near 9 µm, specifically 

spanning 8.5-9.6 µm, is important in every means of feature identification, manually by experts or 

automatically using statistical band selection tools, based on either compounds or leaf data. In the 

band selection results (Table 4.4 and Figure 4.7), features that best discern the TDF tree species 

are mainly located at or near discrete spectral regions seen for the compounds and centered at 8.2, 

8.6, 9, and 9.6. These features are very consistent with the carbonyl bond in the cellulose 

compound, which is reasonable given the large number of species that have spectra with cellulose 

features. Ten species in ST1 and two species from ST2, twelve in total, are driven by a readily 

visible triplet feature (near 8.78 µm, 9.12 µm, 9.55 µm) of cellulose. The two prominent features 

at 8.6 and 9.2 can also be ascribed to the existence of cutin. However, reported features of oleanolic 

acid (Table 4.2) are not all identified during feature selection, likely because a single species (RT) 

is driven by this compound as reported by Harrison et al. (2018).  

The spectral regions or bands selected in this study are consistent with findings in other 

studies for species found outside of tropical environments. Ullah et al. (2012) addressed the 

importance of the spectral ranges 9.27-9.48 and 9.74-10.00 µm whose central wavelengths are 

9.36 and 9.87 µm. Rock et al. (2016) included several bands (8.19, 8.4, 8.49, 9.7, 10.19, 10.51 and 

10.81 µm) in their classification models. These studies relied solely on statistical models for band 

selection and did not offer an interpretation on the origins of the features. However, in a recent 
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study, Buitrago et al. (2018) identified diagnostic LWIR features at 8.54 and 9.79 µm related to 

cellulose and lignin for woody and herbaceous plant species. The LWIR is proving to be a spectral 

region rich in discriminating features despite the low spectral contrast displayed by most 

vegetation species. In this study the maximum reflectance is approximately 15% for all but three 

species. Because of this low spectral contrast, band analysis should be conducted separately for 

the LWIR range versus the SWIR and MWIR in order to specifically select features associated 

with leaf chemical compounds. Focusing on the LWIR also minimizes the impact of leaf water 

content. 

 

4.5.2 Choice of method for band selection 

 Classification accuracy of the 26 TDF species without band selection was 91%, nominally 

the same as that achieved by two of the three single band selection methods, VRSF performing 

worst with 87%. A noticeable improvement of 3% in classification accuracy was obtained using 

the ensemble band selection method as compared to the accuracy obtained without band selection. 

The 3% increase was achieved using a small proportion of the total available bands (23% or 

43/187). In this strategy, a band is considered important by aggregating band importance values of 

multiple methods, the low values in a single method being omitted. A single strong method can 

cancel out a weak method so that the influence from different methods is balanced (Feilhauer et 

al., 2015).  The difference in the band selection principles among the three methods provides an 

understanding of the selection results and of the merit in merging their results in the ensemble 

method. The NSSA method is based on the contrast in spectral shape, thus the band selection result 

is dependent on the differences amongst the average spectrum of each species. The highest contrast 

observed in this study occurs near 9 µm, where some species (not all of them) show significant 
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spectral differences. In the VSRF method, the band selection is highly dependent on the 

classification accuracy of all samples, and a minimum classification error is obtained by 

maximizing the separation of each two species. Thus, multiple regions (discrete clusters of bands) 

that best differentiate two classes of species are selected by this method. While, in the mRMR 

method, the correlation between bands is critical, and one attempts to minimize the redundancy in 

the data, therefore, the bands selected are dispersed across the whole spectral region. 

 

4.5.3 Implications for future image mapping 

 The feature identification based on field spectra of leaves is significant to the mapping of 

plant types at a large scale, with the access to airborne imaging spectrometers (e.g., HyTES, 

SEBASS, Hyper-Cam, OWL). The band analysis in this study can be used to analyze thermal 

hyperspectral imaging data. For example, as this study highlights the importance of a spectral 

region near 9 um, one might expect such diagnostic features to be seen in image endmembers. In 

a preliminary analysis of an airborne HyTES (Hook et al., 2013) image collected for the 

Huntington Botanical Gardens in California, different vegetation types presented detectable 

spectral variations at bands between 8.5-9.5 µm.  

The band selection and classification in this study provide some insights to derive spectral 

classes from airborne imaging in future research. Species that present features driven by different 

compounds are more likely to be discriminated using image data. Species that are more readily 

confused (e.g. LC and LS) may then be combined into one spectral class for image mapping. 

Furthermore, the relation between species clarified by the confusion matrix support the plausibility 

of Spectral Types (ST) as suggested by Harrison et al. (2018). Generally, species from different 

spectral types are more easily distinguished and classified than the ones from the same spectral 
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type. This indicates that the spectral variability between spectral types is greater than the variability 

within spectral types.  

This study identifies feature for species classification at the leaf level and the classification 

accuracy was high. However, mapping at the canopy or crown level will have to take account 

several additional factors including leaf angle and shading that may further decrease spectral 

contrast. In addition, the analysis of airborne imagery requires pre-processing steps such as 

atmospheric correction, shadow masking and spatial filtering (Laybros et al., 2019) that will 

further impact the classification.  

 

4.6 Conclusions 

This study applied statistical approaches of band selection to longwave infrared spectral 

data of leaves collected in a tropical dry forest for the discrimination of twenty-six tree species. 

The bands selected using an ensemble of multiple methods improved the Logistic Regression 

classification performance by 3% in comparison to a result without band selection.  The ensemble 

method encompassed the random forest, minimum redundancy maximum relevance and n-

dimensional spectral solid angle methods. Results of this study corroborate previous findings for 

studies in other ecosystems that LWIR spectral features of tree species are driven by leaf 

constitutional compounds. Since spectral features in the LWIR range have not been extensively 

exploited for large scale remote sensing mapping, the identified bands or features in this study 

provide valuable information to guide the future mapping of tree species with the emergence of 

longwave hyperspectral imaging systems. The ensemble-based band selection method combines 

multiple methods and can be adapted to such applications for the robust discrimination of 

spectrally similar tree species.  
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Table 4.1 Lists of tree species and their botanical family, and spectral types as classified on the 

basis of dominating features by Harrison et al. (2018). 

Species Abbreviation Family Spectral type 

Albizia adinocephala 
AA 

Leguminosae 
5 

Astronium graveolens 
AG 

Anacardiaceae 
1 

Ateleia herbert-smithii 
AH 

Leguminosae 
Single species 

Bombacopsis quinate 
BQ 

Bombacaceae 
1 

Bursera simaruba 
BS 

Burseraceae 
3 

Byrsonima crassifolia 
BC 

Malpighiaceae 
2 

Calycophyllum candidissimum 
CC 

Rubiaceae 
1 

Casearia argute 
CAR 

Fagaceae-

Flacourtiaceae 1 

Casearia sylvestris 
CS 

Fagaceae-

Flacourtiaceae 5 

Cedrela odorata 
CO 

Meliaceae 
4 

Cochlospermum vitifolium 
CV 

Cochlospermaceae 
1 

Curatella Americana 
CAM 

Dilleniaceae 
3 

Eugenia solanensis 
ES 

Myrtaceae 
2 

Guazuma ulmifolia 
GU 

Sterculiaceae 
1 

Lonchocarpus minimiflorus 
LM 

Fabaceae-

Papolionoideae Single species 

Luehea candida 
LC 

Tiliaceae 
Luehea sp. ST 

Luehea speciose 
LS 

Tiliaceae 
Luehea sp. ST 

Machaerium biovulatum 
MB 

Fabaceae-

Papolionoideae 1 

Maclura tinctorial 
MT 

Moraceae 
3 
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Psidium guajava 
PG 

Myrtaceae 
5 

Rehdera trinervis 
RT 

Verbenaceae 
Single species 

Semialarium mexicanum 
SME 

Hippocrateaceae 
4 

Simarouba glauca 
SG 

Simaroubaceae 
5 

Spondias mombin 
SMO 

Anacardiaceae 
1 

Tabebuia ochracea 
TO 

Bignoniaceae 
1 

Zuelania Guidonia 
ZG 

Fagaceae-

Flacourtiaceae 1 
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Table 4.2 Lists of spectral features reported in the literature for leaf compounds and corresponding 

locations of leaf spectral features reported by Harrison et al. (2018). The wavelengths listed in the 

first and second column correspond to the center of absorption features seen in leaf and compound 

spectra respectively. 

Band of 

Leaf 

(μm) 

Band of 

Compounds 

(μm) 

Probably origin 

8.19 
8.18 

(Cellulose) 
Unknown (Poletto et al., 2013) 

8.74 
8.62 

(Cellulose) 
asymmetric COC bridge stretching (Poletto et al., 2013) 

9.12 
9.01 

(Cellulose) 

anhydroglucose ring asymmetric stretching (Poletto et al., 

2013) 

9.55 
9.44 

(Cellulose) 

the CO stretching of primary alcohol functional groups 

(Ribeiro da Luz and Crowley, 2007)/CO stretching (Poletto et 

al., 2013) 

8.19 
8.58 

(Cellulose) 
Unknown (Poletto et al., 2013) 

8.74 
8.84 

(Cellulose) 
asymmetric COC bridge stretching (Poletto et al., 2013) 

9.12 9.3 (Cellulose) 
anhydroglucose ring asymmetric stretching (Poletto et al., 

2013) 

9.55 
9.63 

(Cellulose) 

the CO stretching of primary alcohol functional groups 

(Ribeiro da Luz and Crowley, 2007)/CO stretching (Poletto et 

al., 2013) 

9.17−9.40 
9.40−9.70 

(xylan?) 

COH bending (Ribeiro da Luz and Crowley, 2007); (most 

likely: Xyloglucan, present in many matrix glycan very strong 

band; Kacuráková 2000) 

9.17-9.40 
9.08 band max 

(silica) 

Si-O bond identified from fumed silica (Luz & Crowley, 2007) 

or opaline silica (Bjorn and Li, 2011) 

8.61 8.65 (Cutin) 
asymmetrical stretching modes of ester COC bonds (Ribeiro 

da Luz and Crowley, 2007) 

9.25 9.14 (Cutin) 
symmetrical stretching modes of ester COC bonds (Ribeiro da 

Luz and Crowley, 2007) 

8.61 8.67 (Acid) Unknown 

8.93 9 (Acid) 
Stretching vibrations of CO group of carbonic acid (Vyas and 

Argal 2014) 

9.31 9.27 (Acid) Unknown 

9.65 9.7 (Acid) Unknown 

10.24 10.36 (Acid) Unknown 

10.75 10.75 (Acid) Unknown 
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Table 4.3 Bands obtained using the NSSA method applied to the compound spectra. 

 

  

Dataset Selected bands (µm) using NSSA method 

Compounds 

spectra 

8.19, 8.2, 8.24, 8.26, 8.27, 8.28, 8.3, 8.45, 8.46, 8.47, 8.49, 8.51, 8.57, 8.61, 

8.83, 8.85, 8.86, 8.88, 8.89, 8.91, 8.93, 8.96, 8.97, 8.99, 9.03, 9.05, 9.08, 9.1, 

9.11, 9.26, 9.28, 9.34, 9.36, 9.38, 9.39, 9.41, 9.43, 9.45, 9.46, 9.48, 9.5, 9.51, 

9.53, 9.55, 9.57, 9.58, 9.6, 9.62, 9.67, 9.69, 9.97, 10.39, 10.41, 10.43, 10.45, 

10.48, 10.5, 10.52, 10.54, 10.56 
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Table 4.4 Bands selected from the leaf spectra by the ensemble method. 

 

  

Dataset Selected bands (µm) using ensemble approach 

Leaf 

spectra 

8.19, 8.21, 8.23, 8.26, 8.62, 8.63, 8.64, 8.66, 8.68, 8.70, 8.71, 8.73, 8.74, 8.76, 

8.77, 8.89, 8.90, 8.92, 8.93, 8.95, 8.96, 9.07, 9.08, 9.24, 9.25, 9.27, 9.29, 9.30, 

9.32, 9.33, 9.35, 9.53, 9.55, 9.58, 9.60, 9.62, 9.64, 9.65, 9.98, 9.99, 10.01, 

10.03, 10.50 
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Table 4.5 Classification evaluation for bands selected by single methods and the ensemble model. 

Evaluation criteria (Cross-

Validation) 

bands by 

VSRF 

bands by 

mRMR 

bands by 

NSSA 

bands by 

ensemble 

Overall accuracy 0.87 0.90 0.90 0.94 

Kappa statistic 0.86 0.90 0.90 0.94 

Mean absolute error 0.01 0.01 0.01 0.00 

Relative absolute error 0.14 0.10 0.10 0.06 
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Table 4.6 The confusion matrix of the classification based on the ensemble band set. 

AA PG SG AG BQ CAR CC CV GU LC LS SMO TO ZG BS CAM BC CS ES MB LM CO MT AH SME RT  

15 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AA 

0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 PG 

0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SG 

0 0 0 19 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AG 

0 0 0 0 17 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BQ 

0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CAR 

0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CC 

0 0 0 0 0 0 0 14 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CV 

0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 GU 

1 0 0 0 0 0 0 0 0 22 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LC 

0 0 0 0 0 0 0 0 0 2 13 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 LS 

0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SMO 

0 0 0 0 0 0 0 0 0 0 0 0 29 0 0 0 0 0 0 0 0 0 0 0 0 0 TO 

0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 ZG 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 BS 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 18 1 0 0 0 0 0 1 0 0 0 CAM 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 BC 

0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 CS 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 ES 

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 21 0 0 0 0 0 0 MB 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 14 0 0 0 0 0 LM 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 27 0 0 0 0 CO 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 2 0 0 MT 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 1 0 AH 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 SME 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 RT 
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Figure 4.1 Location of the Santa Rosa National Park in Costa Rica. 
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Figure 4.2 Average spectrum of each of 21 tree species assigned to five Spectral Types (ST) by 

Harrison et al. (2018) based on the similarity of spectral features observed in their leaf spectra. 

Also shown in separate plots are species LC and LS, part of the Luehea spectral type, and two 

single species (AH, RT and LM). 
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Figure 4.3 Reflectance spectra of constitutional compounds: cellulose, xylan, silica, cutin, and 

oleanolic acid. Vertical lines denote the location of features in compound spectra identified by 

Harrison et al. (2018) based on comparison with features reported in the literature (labeled in Table 

4.2 as band of compounds). 
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Figure 4.4 Band selected from the average spectra of the five compounds using NSSA profiles of 

the NSSA values as a function of wavelength for discrete k values (0, 1, 3, and 7) thus capturing 

narrow and broad spectral features. The horizontal dotted line in each profile marks the threshold 

value above which the bands are retained. 
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Figure 4.5 Band importance for leaf spectra generated by the Variable Selection with Random 

Forest (VSRF) (a), minimum Redundancy Maximum Relevance (mRMR) (b), and N-dimensional 

Spectral Solid Angle (NSSA) (c) methods. 
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Figure 4.6 Average spectrum of each tree species and bands selected by the VSRF, mRMR and 

NSSA methods shown as vertical lines. 
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Figure 4.7 Comparison of the bands selected in this study with those selected by Harrison et al. 

(2018) and here labeled “by expert”.  Bands selected for the 26 tree species by the ensemble 

method and by Harrison et al. (a), and for the compounds using the NSSA method and by Harrison 

et al. (b). 
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Chapter 5 Incorporating Band Selection in the Spatial Selection of 

Spectral Endmembers 

5.1 Introduction 

5.1.1 Spectral Mixture Analysis 

Hyperspectral remote sensing has been used for regional mapping in a range of studies 

including land cover, biophysical, water, agricultural, urban and geologic investigations (Adams, 

1993; Powell et al., 2007; Van der Meer & Jia, 2012). Collecting data in narrow and continuous 

bands, hyperspectral sensors enable the detailed detection of constituent materials in a scene. 

While common mapping techniques classify each pixel, Spectral Mixture Analysis (SMA) aims to 

address the per-pixel mixture of pure spectral signatures (i.e. endmembers) due to the presence of 

multiple targets in each pixel. With knowledge of the endmember spectra in the scene, one can 

retrieve the fractional abundance of each endmember in each pixel through linear or nonlinear 

modeling, a process known as “Spectral Unmixing (SU)” (Keshava & Mustard, 2002).  

The accuracy of the predicted fractional abundances is greatly impacted by the quality and 

contrast of endmembers detected from the scene. For endmembers with low contrast it is important 

to highlight the specific bands that best discriminate them. A variety of methods have been 

proposed to extract representative and realistic endmembers, for example, the Pixel Purity Index 

(PPI), N-finder and the Iterative Error Analysis (IEA) (Zortea & Plaza, 2009). However, these 

prevailing methods focus exclusively on the spectral nature of the data and neglect the spatial 

context that exists in the image data (Plaza et al., 2002). They consider all adjacent pixels as 

random individuals; however, the pixels are in fact spatially correlated, and this correlation is an 

important information source that can guide the exploitation of spectral information (Zortea & 
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Plaza, 2009). To date, few attempts have been made to include spatial information in endmember 

determination. Plaza et al. (2002) first proposed a spectral/spatial approach for endmember 

extraction using multidimensional morphological operations. Later, they implemented a spatial 

preprocessing for endmember extraction based on a predefined set of spatially representative 

image regions (Martin & Plaza, 2011). Earlier Rogge et al. (2007) proposed the Spatial-Spectral 

Endmember Extraction (SSEE) approach that involved dividing the image into equal and non-

overlapping spatial subsets to select more endmembers that are spectrally similar but spatially 

independent. 

 

5.1.2 Band selection and SMA 

Selecting a subset of available bands can improve the selection of endmembers and the 

estimation of abundance for the selected endmembers (Rogge et al., 2014). Spectral unmixing 

approaches, such as singular value decomposition, that are used to solve the linear equations 

predicting endmember abundances using an endmember matrix, assume the orthogonality of input 

endmembers (perpendicular vectors). However, the endmember matrix is mathematically non-

orthogonal as endmembers can be highly correlated (defined as ‘collinearity’ in SU). The 

collinearity makes the abundance estimation sensitive to random errors (Van der Meer & Jia, 

2012). An effective band selection can decorrelate endmembers or increase their decorrelation by 

focusing on the most discriminating spectral features (Somers et al., 2011). Thus, the collinearity 

is reduced, and spectral unmixing becomes more accurate with these uncorrelated and spectrally 

distinct endmembers. 
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Band selection has been effectively used to improve spectral mixture analysis in a series of 

practical studies. A majority of these studies rely on expert knowledge of ground materials and 

their spectral properties to select bands. Asner and Lobel (2000) proposed the AutoSWIR 

technique for spectral unmixing of plant cover through a careful selection of bands. Their work 

focused on the SWIR region of 2.05-2.50 m to highlight important features linked to the optical 

properties of leaves, litter, and soils. In a geologic study, Rogge et al. (2014) manually selected a 

subset of thirty-seven bands from hyperspectral imagery to optimize endmember extraction and 

spectral unmixing. More bands were selected in the SWIR region to cover key absorption features 

that discriminate mafic and ultramafic rocks that have low spectral contrast. Without band 

selection, the discrimination of these rocks was biased toward differences in the broad continuum 

of endmember spectra that, in their study, was largely controlled by extensive lichen cover on rock 

surfaces (Rogge et al., 2014). The above studies showed improvements in SMA results when 

expert knowledge was used to select bands that were applied to the entire scene. Studies that have 

reported the use of a statistical approach to select bands for unmixing include that of Miao et al. 

(2006) that applied band selection unconstrained linear spectral mixture models to assess the 

abundance of an invasive weed species in California. Somers et al. (2010) automatically selected 

spectral features for SMA that are least sensitive to spectral variability based on a criterion 

examining the within and between endmember class variability. 

In most applications, band selection is applied as a preprocessing step that is independent 

of the endmember selection process. In such instance researchers select bands associated with 

spectral features that have been identified from visual analysis of spectral libraries or obtained 

from statistical methods that ignore the correlation of endmembers. The impact of band selection 

on endmember selection is seldom explored (Iordache et al, 2015; Tane et al., 2018).  In one such 
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study, Iordache et al. (2015) examined band selection before scene-based endmember selection as 

compared to band selection following endmember selection. Improvements in unmixing results 

were obtained when band selection was performed after finalizing the endmember selection. We 

know of no studies that have examined band selection conducted simultaneously with the 

endmember selection process. 

 

5.1.3 The incorporation of band selection in endmember extraction 

This study integrates band selection in the extraction of endmembers and examines the 

impact of band selection on the final selection of endmembers as well as on unmixing results. 

Thus, the processes of band selection and endmember extraction are simultaneously rather than 

sequentially employed as explored by Iordache et al. (2015), for example. We integrate two 

established methods to accomplish this task namely the N-dimensional Spectral Solid Angle 

(NSSA) band selection method and the above mentioned Spatial-Spectral Endmember Selection 

method (SSEE).  

The NSSA band selection method was proposed by Tian et al. (2016) to select the most 

dissimilar spectral regions amongst endmembers. Using both synthetic and real data, it was shown 

to capture subtle spectral features that improve the separation of similar spectra (Tian et al., 2016; 

Long et al., 2019). The NSSA method requires a spectral library of endmembers as input from 

which bands are selected. The SSEE method determines candidate endmembers for spatial subsets 

of the image prior to determining a global endmember set. Thus, it is feasible to integrate band 

selection directly into the first stage of SSEE. Such integration implies that the spatial information 

at the local scale (e.g. the local targets and their mixtures) drives the band selection, an approach 
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to band selection that is distinct from traditional methods of band selection that solely use spectral 

information.  

The premise of this study is that the incorporation of band selection in the spatial and 

spectral endmember selection process will result in a band set that enhances the differentiation 

among endmembers that are spectrally similar but spatially independent. In turn, this will impact 

the nature of the final endmember set used for unmixing and the unmixing results. Therefore the 

objectives of this paper are to describe a new methodology to conduct band selection by integrating 

the NSSA method within the SSEE process (defined as “NSSA-SSEE) and examine the impact of 

band selection on endmember selection and spectral unmixing. The paper is organized as follows: 

Section 5.2 describes the study site and the hyperspectral data collected to address the objectives 

and for the evaluation of the results. Section 5.3 describes the method in two aspects: the 

conceptual framework to integrate NSSA in the SSEE process and the utilization of this tool for 

analysis of hyperspectral imagery. The results address the bands selected, and their impact on 

endmember selection and on abundances obtained from unmixing. Particular attention is paid to 

determine if the method aids in the detection of geologic spectral subclasses with low spectral 

contrast as these are challenging to retrieve in spectral analysis. 

 

5.2 Study site and hyperspectral data 

5.2.1 Study site 

The study area is located in the eastern part of the 1.9 Ga Proterozoic Cape Smith Belt in 

Nunavik, northeast Canada (nominally 62 latitude, -73 longitude) (Parrish 1989; Machado et al. 

1993). The Cape Belt is one of the largest magmatic Ni-Cu resource in Canada (Lydon, 2007). 
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Here deposits occur in ultramafic sills and intrusions (dunite, peridotite, olivine-pyroxenite, 

pyroxenite, gabbro) (50-200m thick) exposed discontinuously and these have been 

metamorphosed at lower greenschist facies (Barnes and Lightfoot, 2005; Lesher 2007). These 

rocks can also include gossans, oxidized surfaces formed from the weathering of sulfides. 

Vegetation in the study area is sparse comprising grasses, mosses, and shrubs, and rock-encrusting 

lichens are predominant on bedrock surfaces (Laakso et al., 2016). The presence of rock encrusting 

lichens and the similarity of the mineralogy for the rock types relevant to mineral exploration 

(mafic to ultramafic rocks) presents a challenge for detection and mapping using remote sensing 

data. Though early exploration in the belt dates to 1898 (Lesher, 2007), exploration and 

development remain at an early stage in many parts of the belt. This led to the deployment in 2008 

of an expansive hyperspectral survey, part of which is used in this study. 

Rogge et al. (2014) analyzed an area of 10x20 km comprising 20 flight lines of this survey 

and encompassing the specific study area of our investigation. Their investigation targeted the use 

of image-derived spectral endmembers validated using spectral measurements from samples 

collected during a field mapping campaign. This information supported their spectral unmixing 

analysis of the airborne data for regional mapping. In a complementary study, Laakso et al. (2016) 

reported on the spectroscopy and mapping of gossans in the area. Our band selection investigation 

builds on the work of Rogge et al. (2014) making use of data described in the next section. 

 

5.2.2 Hyperspectral data 

5.2.2.1 Spectra of rock samples 
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The spectral characteristics of the predominant rock types in the study area were reported 

in a prior study (Rogge et al. 2014) using reflectance spectra collected from 77 rock samples 

obtained during the 2009 and 2010 summer field campaigns. These include samples of ultramafic 

rocks namely dunite (6), peridotite (25), olivine-pyroxenite (9), and pyroxenite (11), and mafic 

rocks namely gabbro (16) and basalt (10). As shown in Figure 5.1a, these samples display variable 

and typically extensive lichen cover.  

Rogge et al. (2014)  reported that these metamorphosed rocks are comprised of similar 

mineralogy but differ in the relative abundance of three dominant minerals namely antigorite 

[(Mg,Fe)3(Si2O5)(OH)4],  actinolite [(Ca2(Mg,Fe)5Si8O22)(OH)2], and clinochlore 

[(Mg6(Mg4Al2)[Si6Al2O22](OH)16] (refer to Table 5.2 in Rogge et al. 2014). Plagioclase is also 

present in gabbro and basalt.  The most mafic rocks, dunite and peridotite, have the highest 

abundance of antigorite. Olivine-pyroxenite and pyroxenite contain a mixture of antigorite, 

actinolite, and clinochlore. The least mafic rocks, basalt and gabbro, have actinolite and 

clinochlore. The presence of lichen on the weathered rock surfaces implies that band selection 

must not only consider the mineralogy of the samples but the presence of lichen coatings (Rogge 

et al., 2014). Features seen in the spectra of the rock samples (Figure 5.1b) at wavelengths shorter 

than 2.0 μm are commonly controlled by lichen (Bechtel et al. 2002).  At longer wavelengths, the 

spectra of the six rock types can be discerned on the basis of their detailed shape that is controlled 

by the presence of three minerals as discussed in detail by Rogge et al. (2014) (see Figure 5.7 

herein). Antigorite, actinolite, and clinochlore present diagnostic features at [2.285, 2.325], [2.245, 

2.315, 2.386] and 2.345 μm, respectively caused by overtone and combination tones of the OH 

stretch (Clark et al. 1990; Clark, 1999).  The discrimination of the four ultramafic rock types is 

mainly based on the subtle shift from 2.315 to 2.325 μm in the absorption feature observed as a 
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function of the change in the abundance of antigorite as well as the progressive increase of an 

absorption at 2.386 μm. The mafic rocks contain more clinochlore and can be distinguished from 

ultramafic rocks based on a relatively broad absorption extending from 2.285-2.345 μm. 

5.2.2.2 Airborne imagery 

This study makes use of airborne imagery covering an area of 3.3 x 5.3 km (Figure 5.2) 

that represents a subset of a larger mosaic of airborne hyperspectral data assembled by Rogge et 

al. (2014). The reader is referred to that publication for detail on the preprocessing procedures used 

to generate the georeferenced at-surface reflectance data including across-track and along-track 

radiometric corrections to assemble the mosaic. The airborne imagery was acquired at a ground 

sampling distance of 2m with the Specim AisaDUAL imaging system that comprises 178 bands 

(0.4-2.45 μm). From this band set, a number of wavelength regions were removed due to poor 

signal quality including bands short of 0.45 and long of 2.4 μm, bands from 0.87-1.08 μm, and 

bands within water absorption features from 1.37-1.52 μm and 1.8-2.0 μm. The remaining band 

set encompassed 128 bands. The specific image subset of this study shown in Figure 5.2 was 

selected because it encompasses bedrock exposures of the six dominant rocks mentioned above 

within a single large fold structure and because fieldwork conducted in the area can be part of the 

basis to assess mapping results obtained from the spectral analysis. 

In their analysis of the larger mosaic, Rogge et al. (2014) extracted a suite of image 

endmembers that were used for spectral unmixing. The resulting abundance maps were then 

compared with the regional geological survey of Canada (GSC) 1: 50,000 geological map.  Of 

relevance to this study, Rogge et al. (2014) recognized the need for band selection to capture the 

mineralogical information required to discriminate rock types. Based on the study of image and 

sample spectra, bands were selected throughout the available spectral range to discriminate broad 
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classes such as vegetation, snow, and water, and to capture spectral features of lichens. Then all 

bands from 2.238-2.427 μm were selected to cover key mineral features for the discrimination of 

the six dominant rock types. The resulting band set encompassed 37 bands defined by expert 

knowledge on the basis of field investigations and X-ray diffraction analysis (Table 5.1) that are 

used for comparison with band selection results of this study.  The image endmembers they 

obtained spanned four broad classes including vegetation, snow, water, and rock types. Several 

geologic endmembers were associated with the mafic and ultramafic lithologies, and each broad 

class contained a number of subclasses that described the variability of such materials. 

 

5.3 Method  

This section describes three methodological aspects of this study. The first involves the 

description of the conceptual framework to incorporate the process of band selection into the 

process of spatial and spectral endmember selection. This is followed by a description of the 

experimental design enabling the comparison of two datasets, one resulting in unmixing results 

generated from endmembers without band selection, the other with endmembers using a spectral 

subset. For the last aspect, the process of band selection is evaluated at three levels via i) an 

examination of the bands selected, ii) their impact on the endmembers used for unmixing, and iii) 

on the abundance maps resulting from unmixing. 

 

5.3.1 Conceptual framework to incorporate band selection in the endmember selection process 

5.3.1.1 Description of the Spatial-Spectral Endmember Extraction algorithm (SSEE)  
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The SSEE algorithm described in Rogge et al. (2007, 2012) was one of the first endmember 

extraction tool taking advantage of both spectral and spatial information for the search of 

endmembers in a hyperspectral scene.  It was selected for this study because it was designed 

specifically to utilize spatial information and extract endmembers of low spectral contrast.  

The SSEE process comprises three steps. In the first step, the hyperspectral image is 

divided into equal-sized non-overlapping subset regions (here 25 pixels to the side), and a set of 

eigenvectors that explains the majority of the spectral variance in each subset is determined. In the 

second step, local candidate endmembers are selected based on projecting the pixels within the 

given subset onto the local eigenvectors. Then the local candidate pixels are projected on the 

eigenvectors compiled from all subsets and pixels lying at either end of the eigenvectors are 

selected as global candidate endmembers. In the third step global candidate pixels that are similar 

based on a spectral angle tolerance and that occur with a defined spatial window are averaged. 

SSEE typically finds a large number of endmembers compared to methods that are only spectrally 

based (e.g., PPI), but its advantage is that it retains endmembers that are spectrally similar but 

spatially distinct and that otherwise would typically be averaged. 

5.3.1.2 Description of the N-dimensional Solid Spectral Angle (NSSA) band selection 

algorithm 

Tian et al. (2016) proposed a band selection method using the N-dimensional Solid Spectral 

Angle (NSSA) that can be used to select the most dissimilar spectral regions amongst target 

endmembers. This band selection method was chosen for this study for two reasons. It is suitable 

for selecting bands from a small number of endmembers (e.g. local candidate SSEE endmembers), 

and it can enhance the separation of spectrally similar materials.  
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The NSSA method measures the solid angle between two or more spectra for a given 

spectral region encompassing a number of bands equal to the number of spectra under comparison. 

Since this number is typically small, the NSSA is computed by moving a sliding window with 

varying band intervals (denoted by “k”) over the available spectral range. At each position of the 

sliding window, bands with the highest NSSA values indicate a high contrast between the spectra. 

Varying the band interval “k” enables the sliding window to encompass spectral features of 

varying widths. With this method, a continuous profile of NSSA values as a function of wavelength 

can be obtained and thresholded to define a selected band set. The reader is referred to Tian et al. 

(2016) for a graphical representation of the method. 

5.3.1.3 Band selection using NSSA incorporated in SSEE 

The NSSA band selection process can be incorporated in the SSEE process. As illustrated 

schematically in Figure 5.3, the NSSA band selection is conducted in each image subset after 

completion of the second step of the SSEE process when a small number (usually 3-6) of locally 

distinctive candidate endmembers are generated. An examination for the NSSA values as a 

function of wavelength for a number of subsets led us to select a threshold of 50 bands to be 

selected in each subset, where these bands corresponding to the highest NSSA values. Then, a 

record of the bands selected for all subset is assembled to generate a frequency histogram of the 

bands and this histogram can be thresholded to obtain a final set of selected bands (Figure 5.3). 

With the incorporation of the NSSA method into the SSEE process, bands are selected to contrast 

the materials in each subset. 

 

5.3.2 Description of the experimental design 
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This section describes the experimental design, illustrated as a flowchart in Figure 5.4, to 

produce three sets of results namely: 1) selected bands from the integration of NSSA into the SSEE 

process, 2) ensuing endmember clusters, and 3) abundance maps following unmixing. The 

methods of evaluation of these datasets are described in section 5.3.3.   

5.3.2.1 Endmember extraction and band selection  

Using the AISA imagery shown in Figure 5.2 as input, an endmember set was obtained 

with SSEE using all bands available. Then two different processing paths were followed, labeled 

by A and B on the flowchart (Figure 5.4), for endmember clustering to define a final endmember 

set that is used for unmixing. Path A retains all bands during these steps but in path B, NSSA is 

integrated into the SSEE process to generate a band set. This band set is used to spectrally resample 

the endmembers which influences the clustering results, the definition of the final endmembers set 

and the unmixing results obtained from this spectral subset. 

5.3.2.2 Endmember clustering and spectral unmixing  

The endmember set derived from SSEE was clustered and labeled to derive final 

endmember sets for unmixing (Path A and B, Figure 5.4b).  For clustering, we used a tree cluster 

(de Hoon et al., 2003) that recursively merges a pair of clusters based on a similarity measurement. 

To start, each endmember was treated as an individual cluster; endmembers that are most similar 

were successively merged. In this study, the Spectral Angle (SA) between two endmembers was 

the measure of similarity.  A threshold of minimum SA was defined to stop the merging process 

that took place when all pairwise clusters had a similarity greater than the threshold. To address 

the spectral variability of the extracted endmembers, the tree cluster tool was applied twice on the 

given data. The first time using all endmembers and a SA threshold of 0.2 (radians) producing 

clusters that capture the broad material classes, namely vegetation snow, rocks and water (Figure 



123 
 

5.4c).  The next level of clustering focused on the geological class to capture subclasses and define 

multiple geological endmember clusters (Figure 5.4c). In this case, a smaller value of the SA 

threshold (0.07 in radians) was used because these endmembers are more spectrally similar.  

Clustered endmembers were then averaged to obtain an individual endmember representing a 

given class contributing to the final endmember set used for unmixing. The clustering process was 

generally data-driven, though some endmember classes were removed or integrated with others 

based on expert knowledge. 

Unmixing was conducted using the Iterative Spectral Mixture Analysis (ISMA) method of 

Rogge et al. (2006). The ISMA, often combined with the SSEE, has been used in several geologic 

investigations (Rogge et al., 2014; Laakso et al., 2016; Feng et al., 2018). The ISMA was designed 

to define an optimal per-pixel endmember set that is then used during unmixing.The ISMA can 

make use of a large input endmember set including endmembers that are spectrally similar as is 

the case in this study. The optimal per-pixel endmember set is obtained through an iterative 

unmixing process, is an unconstrained method, and importantly, it can address the per-pixel 

variability in the type and number of endmembers across the scene. 

 

5.3.3 Evaluation of selected bands and impacts on endmember selection and unmixing results 

5.3.3.1 Evaluation of selected bands 

The bands selected by NSSA-SSEE were compared to three other band sets. The first set 

reported by Rogge et al. (2014), and shown in Table 5.1, relied on an expert interpretation of 

endmember spectra obtained from their AISA image mosaic. The second set consists of bands 

selected by the Maximum Variance Principal Component Analysis (MVPCA) (Chang et al. 1999) 
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for the AISA airborne mosaic of this study. This method is selected for comparison because, it is 

based solely on spectral information and it is unsupervised, meaning that there is no need for 

collecting labeled samples. It is also easily implemented (Chang & Wang, 2006; Jia et al., 2012; 

Torbick & Becker, 2009). In MVPCA, bands are ranked by the loadings of eigenvectors calculated 

from the principal component analysis. The last band set was reported by Long et al. (2019) and 

obtained by applying the NSSA band selection method to the average spectra obtained from field 

samples of the six mafic and ultramafic rock types presented in section 5.2.2.1. Of the 2151 bands 

available with the field spectrometer, 2001 bands had been retained spanning the spectral range of 

0.426-2.426 μm, the rest excluded due to poorer system responsivity. From this number, a set of 

265 bands encompassing three primary spectral regions were selected to best discriminate these 

rocks (Long et al., 2019): 0.436-0.493, 0.586-0.677, 0.700-0.713; 1.391-1.404; 2.256-2.386, 

2.405-2.411 μm. Due to the high spectral resolution of the data, we only list the selected regions. 

The selected bands encompass the spectral features of the key rock-forming minerals described in 

section 5.2.2.1. Note that these bands were selected from data with a 1 nm band sampling interval, 

a resolution considerably higher than that of the AISA airborne imagery, therefore disparities in 

the fine detail of band selection results can be expected. The three band sets were compared for 

agreement with an expectation that they would capture features that discriminate key materials 

prevailing in the scene, including the key rock types. 

5.3.3.2 Comparison of endmember clusters  

To evaluate the impact of band selection on endmember clustering, differences in broad 

classes and subclasses of the two clustered endmember sets (with and without band selection) were 

compared. As the band selection attempts to enhance the discrimination of spectrally similar 

targets, particular attention is given to the changes in endmember clusters representing rock types. 
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5.3.3.3 Comparison of unmixing results  

To assess the impact of band selection on spectral unmixing, differences in abundance 

maps were examined. A priori geologic knowledge on the spatial distribution of key rock types 

was used to assist the interpretation of these abundance maps. This knowledge came in the form 

of an existing geological map (Figure 5.2), exploration maps not available for publication, and 

observations collected in the field during two field campaigns. 

 

5.4 Results  

5.4.1 Bands selected by NSSA-SSEE 

Figure 5.5 displays the frequency histograms of the tabulated bands selected using the 

NSSA-SSEE process for k values of 0 and 1. The patterns displayed by both histograms are similar, 

and thus they highlight similar spectral regions though differences are apparent in the specific 

spectral range of regions. Note that similar patterns were observed but not used for histograms of 

higher k values examined namely values of 3 and 7.  A final band set of 67 bands (Table 5.2) for 

the AISA data was obtained by combining all bands above the threshold in each histogram. The 

threshold was defined as the mean value of selected times plus 50% of the standard deviation of 

the mean. Bands above the threshold, which is represented by a dotted line on Figure 5.5 (4089 for 

k=0 and 2687 for k=1), were retained. 

Figure 5.6 was assembled to aid in the evaluation of the selected bands. The top portion of 

the figure incorporates type spectra of the dominant surface types in the AISA imagery including 

water, vegetation, and rock to which was added a spectrum of gossan. Below these are the band 

sets selected from the AISA imagery by Rogge et al. (2014) (Table 5.1), by MVPCA, and by the 
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NSSA SSEE method. Also shown in the lower portion of Figure 5.6 are the average spectra of the 

six dominant rock types determined from rock samples (Figure 5.1) and the corresponding band 

sets determined using the NSSA method.  

As seen in Figure 5.6, the bands selected by NSSA-SSEE occur primarily from 0.4-0.65 

μm in the VNIR and 2.0-2.4 μm in the SWIR. The regions encompass almost all of the bands 

selected from the average spectra of lichen covered rock samples by NSSA. This indicates that 

absorption features and variations of the continuum, associated with pigments in lichen and key 

rock-forming minerals are captured by the NSSA-SSEE band set. The VNIR NSSA-SSEE band 

set is more extensive than that of the field samples also capturing diagnostic features of non-

geological materials in the AISA imagery such as vegetation (0.4, 0.5, 0.6, 1.1 μm) and water (0.5 

μm). This band set also includes a few contiguous bands near 1.3 and 1.7 μm. Overall there is good 

concordance between the NSSA-SSEE band set and that selected by Rogge et al. (2014) with the 

intent to differentiate broad cover classes and distinguish the main rock units in the presence of 

lichen. Note the expanded set of NSSA-SSEE SWIR bands towards shorter wavelengths in 

comparison with the band set obtained from rock samples. This likely reflects the variability in 

lichen abundance in the scene and the need to capture the broad feature of lichens centered near 

2.1 μm as well as variability in water content in vegetation that would influence the slope of the 

continuum.  

Lastly the band set selected by MVPCA encompasses four spectral regions: 0.42-0.60, 

0.71-0.74, 1.52-1.79, 2.18-2.30 μm. It misses three important spectral features of key minerals 

beyond 2.30 μm, the selection process being biased by the presence of lichen and an associated 

broad feature short of 2.3 μm. However, most of the bands selected by MVPCA occupy the region 

of 1.52-1.79 μm. This specific result stands out and is not consistent with the band sets obtained 
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from other methods where only a few bands in this region are selected to capture the continuum 

of spectra. In the context of geology, an extensive suite of bands here is difficult to explain and to 

assign value since there are no spectral features related to mineralogy in this wavelength region. 

 

5.4.2 Endmember clusters with and without band selection 

Two endmember sets, each with 221 endmembers, one without band selection (Path A, 

Figure 5.4a) and the other with NSSA-SSEE band selection (Path B), were clustered and labeled 

to obtain final endmember sets. Clustering of the endmembers without band selection resulted in 

18 clusters including 12 labeled as geological and 6 for non-geological materials. Clustering of 

endmembers with band selection resulted in 21 clusters including 14 manually labeled as 

geological and 7 for non-geological materials. 

5.4.2.1 Clusters of non-geological materials 

Clusters for snow and water remained unchanged following band selection. Clustering for 

the vegetation class varied slightly after band selection resulting in one additional vegetation 

cluster. Thus, more spectral variability was captured for vegetation endmembers using band 

selection. 

5.4.2.2 Clusters of geological materials  

In the subsequent re-clustering of geological endmembers, eight clusters were not impacted 

by band selection (e.g., identical clusters, Figure 5.7). These clusters represent rock types for 

ultramafic (2), mafic (3), and gossan (3). Figure 5.8 provides example endmember spectra to 

illustrate the labeling of geological clusters. Gossan endmembers (e.g., C1 and C3) were 
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characterized by a rapid increase in visible reflectance to approximately 0.8 μm (Figure 5.8a) 

followed by relatively uniform reflectance to about 2 μm. The removal of bands in AISA data from 

0.87-1.08 μm due to poor signal quality precludes the clear detection of a broad feature due to the 

presence of iron oxides although the beginning of a feature can be seen short of 0.87 μm.  However, 

these gossans are also characterized by the lack of spectral features in the SWIR in comparison to 

mafic and ultramafic rocks (e.g., C7 and C8 Figure 5.8b), which also indicates that they are thick 

gossans and not simply iron oxide coatings on a rock substrate. The abundance maps show that C1 

and C4 highlight exposures along drainage or along cliffs while that of C3 marks the location of 

known gossans that occur in the area. 

Endmembers for mafic (C5, C8, C9) and ultramafic (C2, C7) rocks were labeled on the 

basis of their distinct spectral shapes that can be linked to their primary mineralogy (cf, section 

5.2.2.1). Specifically, an observed singlet absorption, nominally centered near 2.31 μm for 

ultramafics, and a doublet absorption nominally centered at 2.28 and 2.33 μm for mafic rocks, 

resulting in flatter spectra in this region (Figure 5.8b and 5.8c). The exact position of the features 

is constrained by the spectral resolution of the data as seen from the comparison of ultramafic and 

mafic rock spectra C7 and C8 on Figure 5.8b with laboratory spectra of samples for a full range of 

mafic and ultramafic rock compositions (Figure 5.8c). For the latter, a subtle absorption shift from 

2.325 μm to 2.315 μm can be observed as one proceeds systematically from dunite, peridotite, 

olivine-pyroxenite and pyroxenite reflecting the progressive increase in the abundance of actinolite 

at the expense of antigorite. In contrast, mafic rocks (basalt and gabbro) show additional 

absorptions at 2.285-2.345 μm reflecting the presence of actinolite and clinochlore.  

The remaining clusters (C6, C10, C11, C12) were altered by band selection in two ways as 

detailed in the next section: 1) a cluster was split into two clusters (e.g., split clusters, Figure 5.7) 
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or, 2) a re-arrangement of endmembers took place between two clusters (e.g. re-arranged clusters, 

Figure 5.7). 

 

5.4.3 Characteristics of clusters altered by band selection and related abundance maps 

5.4.3.1 Split clusters and their abundance maps  

Figure 5.9 presents the first of two cases where a cluster is split into two clusters following 

band selection, namely the separation of two endmembers from cluster C10 into clusters C’5 and 

C’7. These represent ultramafic rocks with spectra showcasing a displacement of their primary 

SWIR feature from 2.325 for C’5 to 2.315 μm for C’7 (inset in Figure 5.9). This is consistent with 

the range of band position displacement observed for a range of ultramafic rock composition 

(Figure 5.8c) and is significant for the detailed distinction of such rocks during mapping. Figure 

5.10 displays the abundance maps for the three cluster endmembers and two detailed inset images. 

These show that the two endmembers obtained after band selection result in abundances that define 

continuous patterns that are spatially complementary. This is consistent with the observation in the 

field of compositional variability often consisting of layering or the formation of border zones in 

ultramafic sills. 

For the second case, the four endmembers of cluster C11 were split into clusters C’8 and 

C’9, each containing two endmembers (Figure 5.11).  These represent mafic gossans showcasing 

typically flat spectra beyond 0.8 um attributable to iron oxides in gossans. Band selection captures 

a key distinction shown in the SWIR inset of Figure 5.11 whereby endmembers of cluster C’8 are 

typical of mafic rocks (see Figure 5.8b) whereas endmembers of C’9 likely signify mafic rocks 

with deeper gossan weathering. Figure 5.12 displays the abundance maps for the three cluster 
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endmembers and two detailed inset images. The insets illustrate that the two clusters obtained after 

band selection result in abundances that define continuous patterns and likely reflects the variable 

development of gossan surfaces. In most instances, the distribution of these mafic gossans is along 

drainage and is thus of lesser significance for geological exploration. 

5.4.3.2 Rearranged endmember clusters and their abundance maps  

Figure 5.13 presents a re-arrangement of endmembers between two clusters after band 

selection. All endmembers belonging to cluster C6 (no band selection) are assigned to cluster C’13 

after band selection and are supplemented by a number of endmembers from cluster C12 while the 

remaining endmembers of C12 are assigned to C’11.  

Prior to band selection, the differing spectral characteristic of the two clusters (C6 and C12) 

is primarily the slope of the spectra between 0.4-0.7 μm and to some extent to 1μm best explained 

by variability in the species composition of the lichen community (e.g., color) and lichen cover on 

the ultramafic rock substrate. In this respect, spectra in C12 have lower reflectance, however, the 

SWIR inset for C12 spectra shows a mixed population consisting of two groups that are better 

differentiated by clusters after band selection (Figure 5.13). Spectra for C’11 all display a singlet 

absorption characteristic of the most ultramafic rocks while several spectra of C’13 display two 

absorptions and band centers at shorter wavelengths indicative of a less ultramafic character (refer 

to Figure 5.8c for a continuum of examples). Together these capture ultramafic map units in 

regions where we have no field observations and thus the significance of the observed map patterns 

cannot be assessed. 

 

5.4.4 Compilation of mafic and ultramafic rock endmembers following band selection 
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Following the band selection with NSSA-SSEE, a final set of five mafic and five ultramafic 

geologic endmembers was compiled, among a total of twenty-one endmembers. Figure 5.14 

displays the absorption features observed in the SWIR region of 2.2-2.4 μm (with continuum 

removal) for the two sets of endmembers. Mafic rocks, as they contain clinochlore, have an overall 

flat and broad feature with common absorptions centered at 2.288 μm and 2.326 μm (Figure 5.14a). 

Ultramafic rocks, however, are characterized by a deep and narrower absorption with a center that 

shifts from 2.309, 2.314 to 2.326 μm (Figure 5.14b). Similar displacements are observed for 

spectra of field samples (2.315-2.325 μm) (Figure 5.14c) indicating that the compositional 

variability seen in rock samples is also captured by image endmembers after band selection. These 

subtle spectral differences relate to changes in the modal abundance of antigorite and actinolite 

and were detected via band selection that enables the fine discrimination of the various ultramafic 

rocks.  

The results are significant for mapping and capture lithologies that have spatial continuity 

as one would expect from the prior mapping of differentiated ultramafic sills in the area. This can 

be seen in Figure 5.15 showing a composite of abundance maps for C’5-C’7-C10 (RGB) that 

represents the most ultramafic composition (C’5) to progressively less ultramafic compositions as 

inferred from spectra shown in Figure 5.14b. The detailed discrimination of mafic and ultramafic 

rocks is an outcome of the automated band selection and endmember extraction using the NSSA-

SSEE method. Note that C’7 delineates the largest abundance of ultramafics reported in prior maps 

(c.f. Figure 5.2) and C’5 adds detail to this map. However C’5 does not exclusively highlight 

ultramafic rocks and also highlights some drainage, as seen in the eastern portion of the map 

(Figure 5.15). This is perhaps not surprising given the more complex spectral character of this 

endmember that encompasses a wider spectral region as seen on Figure 5.14b. 
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5.5 Discussion 

5.5.1 The incorporation of NSSA into SSEE 

This study presents a conceptual framework and then demonstrates the use of a band 

selection tool incorporated into the process of spatial and spectral endmember selection. The 

incorporation aims to define a band set that improves the spectral contrast between endmembers 

at each step of the spatial-spectral endmember search and ultimately captures key features for 

discriminating spectrally similar materials. Most band selection methods in the literature are 

designed for classification purposes, and they are often based on classification accuracy or 

similarity measures. The NSSA-SSEE is a unique band selection method that is specifically 

designed to improve the detailed determination of endmembers and thus spectral mixture analysis.  

The incorporation has resulted in an improvement in the selection of detailed endmembers 

that are similar and significant for mapping. This can be because: (1) bands are selected during the 

successive analysis of spatial subsets and thus reflect many endmember sets across the scene; and 

(2) bands are selected from endmembers that are locally distinctive, and thus bands can be selected 

that contrast similar endmembers. The incorporation of NSSA into SSEE is feasible because both 

methods are well suited for this process. NSSA is one of the few methods of band selection that is 

suitable for the analysis of a small number of endmembers. SSEE provides such endmember sets 

via spatial subsetting. While the incorporation of other methods into the approach given here is 

possible, NSSA and SSEE are particularly suited for this task. 
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5.5.2 Guidelines for the use of the NSSA-SSEE method 

From the experiences in this study, we provide some recommendations for defining the 

three key parameters that are inherited from the NSSA and SSEE methods namely: the band 

interval (k), which captures features of varying width; the number of selected bands (n) from each 

spatial subset; and the size of the spatial subset window (w). Limits on the range of the first two 

parameters can be established by testing several band selections using NSSA on randomly 

collected endmember sets (e.g., a sample of spatial subsets). Also, our prior work with NSSA has 

shown that the k value can be constrained based on the maximum width of spectral features of 

interest in the data analyzed, and intervals with doubling window size (0,1,3,7,15…) are 

recommended to start the selection process (Long et al. 2019). The n value can be determined by 

analyzing the NSSA profiles as a function of wavelength for the sample of spatial subsets. The w 

parameter is inherited from the SSEE method of Rogge et al. (2007), and the author notes that the 

number of pixels (width) for a given subset must be greater than the square root of the number of 

bands. The maximum size is optional and can be chosen based on the spatial distribution of 

materials in the scene.  

The final band set selected using the NSSA-SSEE method is accomplished from the 

analysis of the band frequency histogram. Understanding the output of the band frequency 

histogram can help the users to better exploit this method in that the appearance of the histogram 

reveals the spectral and spatial information of the hyperspectral image. The selected bands (high-

frequency values) from the histogram relate to the material make-up and their abundance in the 

image. For instance, the image in this study encompasses many pixels dominated by rock and 

vegetation, thus more bands were selected that capture spectral features of these two materials. 

However, if targets of interest are sparsely distributed in the image, for example, if they constitute 
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less than 5% of the total pixels, the band selection is unlikely to capture their key spectral features. 

This is simply because the decision process for the selection of the final band set rests on a 

threshold applied to the band frequency histogram. A simple threshold may not work for objects 

with minimal spatial distribution and this is a problem that needs to be considered when using the 

method. 

Another key aspect for users also relates to the spectral characteristics of their input image 

data. The method is of lesser value for scenes that encompasses high-contrast targets since the 

NSSA-SSEE was designed with the intent to capture bands that enhance the differentiation among 

spectrally similar endmembers. In this study, the impact of band selection by NSSA-SSEE on the 

clustering of broad classes and geologic subclasses is evidence of such a capability. The band 

selection had a minor effect on the clustering of vegetation, snow, and water but impacted the 

clustering of the geologic targets. 

 

5.6 Conclusions 

This study incorporates the N-dimensional Spectral Solid Angle (NSSA) band selection 

tool into the Spatial-Spectral Endmember Extraction (SSEE) tool to define a band set that can be 

used to better define endmembers classes used in Spectral Mixture Analysis (SMA). The proposed 

method (NSSA-SSEE) was evaluated for lithological mapping using a hyperspectral image 

encompassing a range of spectrally similar mafic and ultramafic rock units. The band selected by 

NSSA-SSEE showed a good agreement with known features of scene components identified by 

experts, and it improved the selection of detailed geological endmembers and thus the estimation 

of their abundance maps. These results demonstrated the feasibility, effectiveness of NSSA-SSEE 
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and its advantages over a band selection method that does not use the spatial context and 

endmember variability in hyperspectral imagery. The method is particularly useful for the 

discrimination of spectrally similar materials. With the NSSA-SSEE method, the band selection 

process becomes automatic which makes the spectral mixture analysis less dependent on expert 

knowledge for feature identification. This is significant for applications that lack field-based 

information and prior knowledge of the study area. 
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Table 5.1 Bands selected in Rogge et al. (2014) 

Range Band location (μm) 

VNIR 0.454, 0.500, 0.546, 0.603, 0.651, 0.698, 0.746 

SWIR 

1.659, 1.710, 1.735, 1.772, 2.112, 2.150, 2.188, 2.200, 2.213, 2.225, 2.238, 2.251, 

2.263, 2.276, 2.288, 2.301, 2.314, 2.326, 2.339, 2.351, 2.364, 2.376 2.389, 2.402, 

2.414, 2.427 
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Table 5.2 The final band set obtained from the NSSA-SSEE (combined band sets for k=0 and 1). 

Range Bands (μm) selected by NSSA-SSEE 

VNIR 

0.445, 0.454, 0.463, 0.472, 0.482, 0.491, 0.5, 0.509, 0.518, 0.528, 0.537, 0.546, 

0.555, 0.565, 0.574, 0.584, 0.594, 0.603, 0.613, 0.622, 0.632, 0.641, 0.651, 0.66, 

0.814, 0.824, 0.834, 0.853, 1.081, 1.093, 1.106, 1.118, 1.131, 1.307, 1.332 

SWIR 

1.772, 1.785, 1.798, 2.012, 2.024, 2.037, 2.049, 2.062, 2.074, 2.087, 2.1, 2.112, 

2.125, 2.137, 2.15, 2.163, 2.175, 2.188, 2.2, 2.213, 2.225, 2.238, 2.251, 2.263, 2.276, 

2.288, 2.301, 2.314, 2.326, 2.339, 2.351, 2.364 
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Figure 5.1 Photographs of rock samples for four of the six dominant rock types (note the extensive 

lichen cover) (a), and average spectrum derived from point spectra for each of the six rock type 

(b). Modified from Rogge et al. (2014). 
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Figure 5.2 Geologic map from the Geological Survey of Canada (St-Onge and Lucas, 1993) (left), 

and AISA imagery true color RGB (b). Modified from Rogge et al. (2014). 
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Figure 5.3 The conceptual framework of NSSA incorporated in SSEE. (a) The image is spatially 

divided into equal size non-overlapping subsets (1 to n), and a small number of local candidate 

endmembers are generated for each subset. (b) A band selection using the NSSA method is applied 

to the endmembers in each subset to obtain a fixed number of bands (from subset1 to subsetn). (c) 

The bands selected from all subset are recorded in a table where the x marks selected bands. (d) A 

frequency histogram of bands is thresholded to obtain a final set of bands.
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Figure 5.4 Flowchart of the experimental design. With the AISA imagery as input two processing 

paths are followed (A and B) involving the extraction of the same endmember set with SSEE using 

all bands available (part a), followed by endmember clustering to define a final endmember set 

that is then used for unmixing (part b). However, in path B, NSSA is integrated into the SSEE 

process to generate a band set. This band set is used to resample the endmembers thus influencing 

the clustering results, the definition of the final endmembers set and the unmixing results. A 

hierarchical clustering process is used to define the broad classes and geological subclasses (part 

c). 
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Figure 5.5 Frequency histogram of bands obtained from the NSSA SSEE process for all spatial 

subsets for k=0 and 1. These k values capture spectral features of different widths from the 

endmembers. The horizontal dotted line in each graph marks the threshold value for band selection 

that was defined as the mean value of selected times plus 50% of the standard deviation of the 

mean. Bands above the threshold (4089 for k=0 and 2687 for k=1) were retained. 
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Figure 5.6 Comparison of the AISA imagery band set selected by the NSSA-SSEE method with 

those selected by Rogge et al. (2014) (expert knowledge) and the MVPCA method. Spectra shown 

at the top are image endmembers for typical surfaces including gossan (C3 cluster spectra), a 

geological substrate (C6 ultramafic cluster spectra), the spectrum of one vegetation class and water. 

Spectra shown in the lower part are the average spectra of the six dominant rock types determined 

from rock samples (cf Figure 5.1), and the corresponding band sets determined using the NSSA 

method. 
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Figure 5.7 Clustering of candidate geological endmembers before and after band selection. About 

half of the geological clusters are identical in that they contain the same endmembers and are thus 

unaffected by band selection. Two clusters are split into subclasses, and two clusters undergo a 

rearrangement into two new clusters. Clusters obtained after band selection are labeled as C’. 
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Figure 5.8 Endmember spectra for clusters (Figure 5.7, first row, C1, C3, C7, and C8) obtained 

from path A (without band selection) and unchanged by band selection (a); enlargement for 2.2-

2.4 um showing SWIR features that discriminate mafic and ultramafic endmembers (b); 

enlargement for type spectra shown in Figure 5.1 obtained from mafic and ultramafic rock samples 

(c).
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Figure 5.9 Splitting of ultramafic gossan endmembers from Cluster C10 into clusters C5 and C7 

after band selection. Grey and black lines are used to facilitate visualization of spectra into their 

separate clusters.  



147 
 

 

Figure 5.10 Abundance maps for the endmember resulting from cluster C10 and corresponding 

endmembers resulting from its splitting into clusters C’5 and C’7 following band selection. A true 

color image in the upper left provides spatial context. The location of insets a and b are shown on 

the abundance map of cluster C10. The insets illustrate that the two endmembers obtained after 

band selection result in abundances that define continuous patterns that are spatially 

complementary consistent with the observation in the field of layering or border zones in 

ultramafic sills. The black box in the upper left RGB image defines the area covered by Figure 

5.12.
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Figure 5.11 Splitting of mafic gossan endmembers from Cluster C11 into clusters C8 and C9 after 

band selection. Grey and black lines are used to facilitate visualization of spectra into their separate 

clusters.
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Figure 5.12 Abundance maps for the endmember resulting from cluster C11 and corresponding 

endmembers resulting from its splitting into clusters C’8 and C’9 following band selection. A true 

color image in the upper left provides spatial context. The location of insets a and b are shown on 

the abundance map of cluster C11. The insets illustrate that the two endmembers obtained after 

band selection result in abundances that define continuous patterns and likely reflects the variable 

development of gossan surfaces. In most instances, the distribution of these mafic gossans is along 

drainage and is thus of lesser significance for exploration. 
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Figure 5.13 Endmembers of rearranged clusters (c.f. Figure 5.7). Clusters C6 and C12 were 

obtained without band selection, and their endmembers are rearranged into clusters C11 and C13 

after band selection. In each case, grey and black lines are used to facilitate the visualization of 

spectra into their separate clusters. 
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Figure 5.14 Compilation of cluster spectra for mafic (a) and ultramafic (b) lithologies and their 

key absorption features. Spectra of mafic rocks show features centered at 2.288 μm and 2.326 μm 

while those of ultramafic rocks show a relatively narrow absorption shifting from 2.309 to 2.326 

μm.  The latter compares well with the absorption displacement observed from spectra of field 

samples (2.315-2.325 μm) indicating that the compositional variability seen in rock samples is also 

captured by image endmembers after band selection (c). The vertical lines label the center of the 

absorption. Thicker lines represent clusters obtained after band selection.  CRR = continuum 

removed reflectance. 
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Figure 5.15 Composite of abundance maps for C’5-C’7-C’10 (RGB) representing the most 

ultramafic composition (C’5) to progressively less ultramafic compositions as inferred from 

spectra shown in Figure 5.14b. 
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Chapter 6 Conclusions and Future Work 

6.1 Summary and key contributions 

This research explores the use of band selection for improving the discrimination of 

spectrally similar targets, in applications of increasing degrees of complexities from chapter 2 to 

5. A band selection method named the N-dimensional Spectral Solid Angle (NSSA) was first 

applied to identify features from real datasets of geologic relevance; through the experiments, the 

performance of the method was evaluated, and guidelines for the use of the method were defined 

(chapter 2). Following the guidelines, the NSSA band selection method was used in a hierarchical 

fashion to address the endmember variability among geologic and vegetation materials (chapter 

3), then compared and combined with other band selection methods to form an ensemble selection 

strategy (chapter 4), and lastly incorporated in the process of endmember extraction so that it could 

be applied to hyperspectral imagery for improved mapping of ground targets (chapter 5).  The four 

chapters all highlight the significance of band selection but from different data analysis and 

application perspectives.  

Chapter 2 titled “Hyperspectral band selection using the N-dimensional Spectral Solid 

Angle method for the improved discrimination of spectrally similar targets” emphasized the 

utilization of the NSSA band selection method for realistic applications. It filled a research gap in 

that few band selection methods were specifically designed for spectrally similar targets and for 

dataset encompassing a limited number of labeled spectra. A key outcome of this paper was the 

guidelines that constrain the selection of two key parameters in the NSSA method, which allows 

non-expert users to exploit this novel band selection tool. Another main result was to demonstrate 

the effectiveness of the method in detecting subtle features from mineral and rock hyperspectral 
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datasets. Based on the results, I concluded that the NSSA method is a valuable tool to assist experts 

in feature identification and can be used to analyze spectral libraries built from the collection of 

spectra in the field or endmembers from imagery.  

Based on the outcomes of chapter 2, chapter 3 titled “Hierarchical band selection using the 

n-dimensional solid spectral angle method to address inter- and intra-class spectral variability” 

applied the NSSA method in a hierarchical manner to select bands from targets that showed 

spectral variability. The hierarchical strategy was proposed because materials of broad classes 

(e.g., vegetation vs. water) in the upper hierarchy level showed greater spectral contrast than the 

materials (e.g., different lithologies) in the low hierarchy level. The hierarchical band selection 

combined the bands selected from the two levels thus capturing meaningful features for the 

discrimination of all materials. This study encourages peers to pay attention to the characteristics 

of targets for band selection. 

Then, chapter 4 titled “Identification of spectral features in the Longwave Infrared (LWIR) 

spectra of leaves for the discrimination of tropical dry forest tree species” used an ensemble band 

selection strategy, which combined the NSSA method with the random forest and mRMR methods, 

to identify spectral features in LWIR spectra of leaves. This is one of the few studies that applied 

statistical approaches to select and characterize LWIR features for species-level classification. The 

method captured leaf features related to constitutional compounds and improved the discrimination 

of twenty-six tree species in terms of classification accuracy. With the development of longwave 

hyperspectral imaging systems, the selected features can guide the future mapping of tree species 

on regional scales.  The ensemble strategy for band selection can be adapted to other vegetation 

studies (e.g., liana and tree species in the tropical dry forest, plant species other ecosystems) for 

the robust discrimination of spectrally similar species. 
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Lastly, chapter 5 titled “Incorporating band selection in the spatial selection of spectral 

endmembers” investigated how band selection could be incorporated at the pixel level in spectral 

mixture analysis. The NSSA method was incorporated into the endmember extraction tool SSEE 

to define a band set that improved the selection of detailed endmembers thus improving the 

lithological detail offered by maps generated from spectral unmixing. The main innovation of this 

paper was to include the spatial context in band selection while considering the endmember 

variability in hyperspectral imagery. The NSSA-SSEE method contributes to the automation of 

the band selection process in spectral mixture analysis. This is a particular benefit for applications 

of SSEE and ISMA that are highly dependent on expert knowledge for feature identification. 

 

6.2 Future Work 

6.2.1 Expand the application scope of NSSA and NSSA-SSEE 

This research has demonstrated the effectiveness of the NSSA method for the 

discrimination of geologic (minerals and rocks) and vegetation (tree species) materials. Future 

work shall test the method in other fields such as urban and agricultural environments. 

Furthermore, I would argue that any study involving spectrally similar targets can benefit from 

this band selection method, as indicated in the discussion of chapter 2. My undergoing tests on two 

other datasets showed promising results. One is from Faba beans scanned in the laboratory using 

the SisuROCK hyperspectral imaging system for the purpose of detecting Lygus bug damage. 

Through feature identification using the NSSA method, the damaged beans were easily 

differentiated from the healthy beans (Smith et al.). The other is for oil sands samples, whose 

spectral variations are barely detectable by the human eyes due to their strong spectral similarity 

(Entezari et al., 2017). The NSSA method showed the potential capability of capturing subtle 
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features, but the noise in the data must first be minimized which means intervention is required as 

a preprocessing step. The robustness of the NSSA method for a broad range of applications still 

requires further evaluations, but thus far all tests have yielded useful results. 

    The use of the NSSA-SSEE method, which is proposed for band selection from imagery, 

can also be expanded into fields outside of geology. The NSSA-SSEE has only been evaluated 

using the hyperspectral imagery from a geologic study with prospects for mineral exploration and 

regional mapping. Imagery from a diversity of earth surface materials should be used to test the 

functionality of the method. This is important because the results of the NSSA-SSEE method can 

be impacted by the material make-up and their abundance in the image, as deduced in chapter 5. 

The free high-resolution imaging data provided by the National Ecological Observatory Network 

(NEON) project (Kampe et al., 2010) could be a good candidate for evaluating NSSA-SSEE in 

ecologic applications. 

 

6.2.2 NSSA method integrated with the spectral unmixing method 

Future research can involve the integration of band selection with spectral unmixing to 

further improve the spectral mixture analysis. The accuracy of the predicted fractional abundances 

may be improved with the use of the NSSA band selection during the per-pixel selection of 

endmembers.  Therefore, I will examine the Iterative Spectral Mixture Analysis (ISMA) tool 

(Rogge et al. 2006) that optimizes the endmember sets on a per-pixel basis and reduces the 

fractional abundance errors. The NSSA band selection can be incorporated into the ISMA process, 

allowing for endmembers and their bands varying from pixel to pixel for unmixing. This is distinct 

from the work conducted in this thesis that only addressed the per pixel band selection and 

ultimately a scene-based band set for the selection of endmembers. Since both the NSSA and the 
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ISMA methods address the spectral variability among endmembers, their integration can 

potentially achieve great improvements in the accuracy of spectral unmixing predictions. To test 

the performance of the integrated tool, the airborne AISA imagery described in chapter 5 can be 

used. Hyperspectral imagery from a variety of application in agriculture, urban, hydrology and 

ecology may also take advantage of this integrated tool. To quantitatively evaluate the results of 

spectral unmixing by the NSSA-ISMA method, an Abundance Map Reference Data (Williams et 

al., 2017), that offers per-pixel abundance values of each component endmembers, would ideally 

be available.  
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Appendix: Description of the NSSA method 

1. Definition and calculation of NSSA 

 The mathematical background described below can be found in Tian et al. (2016). The N-

dimensional Solid Spectral Angle (NSSA) is an extension of the traditional Spectral Angle (SA) 

to the n-dimensional space. The SA measures the similarity between two spectra, a reference 

spectrum (x) and a target spectrum (y) by using the following formula: 

SA(x, y) = cos−1
< 𝑥, 𝑦 >

||𝑥||||𝑦||
 

The NSSA measures the solid angle or the similarity among n (more than two) spectra. The solid 

angle measures the intersection of a polygonal cone Cn and the corresponding unit sphere surface 

Sn-1. Figure A1 describes the solid angle in 2, 3 and n (>3) dimensions.  

 

Figure A.1 Illustration of the solid angle in 2, 3, and n(>3) dimensions. 

The mathematical definition of the N-dimensional solid angle is: 

NSSA(ϑ𝑛) = |det⁡(E)|∫ ||𝐸𝑉||−𝑛𝑑𝑠
𝑠
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where E={e1, e2, e3, · · · , en} is a vector matrix of given spectra, and this matrix is normalized. ||∙|| 

represents the Euclidean norm. V=[v1, v2, v3, · · ·, vi, · · ·, vn]
T is the vector of a unit sphere and 

specifically defined as: 

{
 
 

 
 
𝑣1 = 𝑐𝑜𝑠𝜃1, 0 ≤ 𝜃1 ≤ 𝜋 2⁄

𝑣2 = 𝑠𝑖𝑛𝜃1𝑐𝑜𝑠𝜃2, 0 ≤ 𝜃2 ≤ 𝜋 2⁄

𝑣3 = 𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2𝑐𝑜𝑠𝜃3, 0 ≤ 𝜃3 ≤ 𝜋 2⁄

……
𝑣𝑛−1 = 𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2…𝑠𝑖𝑛𝜃𝑛−2𝑐𝑜𝑠𝜃𝑛−1, 0 ≤ 𝜃𝑛−1 ≤ 𝜋 2⁄

𝑣𝑛 = 𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2…𝑠𝑖𝑛𝜃𝑛−2𝑠𝑖𝑛𝜃𝑛−1, 0 ≤ 𝜃𝑛−1 ≤ 𝜋 2⁄

 

The ds refers to the surface area of Sn-1 and can be expressed as: 

ds = sin𝑛−2(𝜃1)𝑠𝑖𝑛
𝑛−3(𝜃2),… , sin(𝜃𝑛−2) 𝑑𝜃1𝑑𝜃2…𝑑𝜃𝑛−1 

The simplified equation for calculating the NSSA is: 

NSSA(ϑ𝑛) = |det⁡(E)|∫ (||𝐸𝑉||
2
)
−𝑛 2⁄

𝑑𝑠
𝑠

= |det⁡(E)|∫ (1 + 2∑ < 𝑒𝑖, 𝑒𝑗 > 𝑣𝑖𝑣𝑗
𝑖<𝑗

)

−𝑛 2⁄

𝑑𝑠
𝑠

= |det⁡(E)|∫ …
𝜋 2⁄

0

∫ (1 + 2∑ < 𝑒𝑖, 𝑒𝑗 > 𝑣𝑖𝑣𝑗
𝑖<𝑗

)

−𝑛 2⁄

𝐽(𝜃)𝑑𝜃1𝑑𝜃2…𝑑𝜃𝑛−1

𝜋 2⁄

0

 

        where  𝐽(𝜃) = sin𝑛−2(𝜃1)𝑠𝑖𝑛
𝑛−3(𝜃2), … , sin(𝜃𝑛−2) 

 

2. NSSA for band selection 

 The calculation of the NSSA requires that the data matrix E be square, thus the number of 

spectra should be equal to the number of bands. To depict the similarity among multiple targets as 

a function of wavelength, a sliding window with a flexible band interval (represented by the 
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parameter ‘k’) was designed for band selection (fig. A2). The NSSA value calculated within the 

window is assigned to the middle band of the sliding window.  

 

Figure A.2 Data matrix and design of the sliding window for different band interval k=0 (A) and 

k=1 (B). Bands included in the sliding window for the NSSA computation are shown as shaded. L 

is the number of bands, and n is the number of spectra. 

 The spectral regions or bands with the largest NSSA are deemed the most important 

because they reflect greater differences in spectral shapes amongst the suite of spectra investigated. 

For a fixed k value, a user-defined parameter ‘threshold’ was also designed to determine the 

number of selected bands. Bands with NSSA values above the threshold are retained (fig. A3). 

 

Figure A.3 Example profile of NSSA value as a function of wavelength or band for a given k 

value. Bands above the threshold (dotted horizontal line) are retained. 
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