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ABSTRACT

Highwall failures in open pit mines can be dangerous and
costly. Their prediction and prevention by limit equilibrium
analyses rely on estimates of pore pressures and strength.
Since, both of these factors can be affected by rebound of
the highwall upon excavation, proper stability assessment can
only be done when the impanct of rebound on these parameters
is known. Such is the goal of this thesis: to determine how
deformations of the highwall influence structure, pore
pressures, and strength in the strata behind it.

The study was conducted in Pit 03 at the Highvale Mine,
west of Edmonton, Alberta, where the highwall was cut in weak
sandstone and mudstone overlying the economic coal deposit.
A field program combined inclinometers and surveying to
measure movements and piezometers were installed to monitor
pore pressures. Laboratory testing on core samples from the
field provided estimates of strengths for stability analyses.

Movements of the highwall and rock/soil beyond it were
converted to lateral strains which were then used as a
measure of how much the material "stretched" due to rebound.
It was found that the stretching caused joints to spread
slightly, loosening the mass and significant.y altering the
groundwater flow regime,

A iiighwall failure in the spring of 1988 was back

analysed in detail and concluded that two mechanisms



progressively reduced the strength of the sandstone and
mudstone. Firstly, progressive loosering of the sandstone
occurred as the Jjoints spread and reduced the shear
resistance along them. Secondly, progressive softening
developed in the underlving mudstone as it stretched ind
permitted water to infiltrate. Increased lateral straining
accelerated these processes.

Clarification of the mechanism of strength reduction as
well as additional observations from this study directly

impact highwall design and field monitoring.
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1 HIGHWALL STABILITY IN OPEN PIT MINING

Highwall failures can be dangerous and costly. Their
prevention and/or prediction requires an understanding of the
potential failure mechanism, and more importantly, how it is
affected by rebound due to excavation. This author studied a
highwall at the Highvale Mine, west of Edmonton, Alberta, to

answer this question.

1.1 Thesis Goal and Objectives
The potential failure mechanism has several components
including (i) the failure mode, (ii) pore pressures, and
(iii) the strength of the rock and soil that make.up the
highwall. The goal of this thesis was to determine how these
components are affected by excavation of a highwall.
To achieve this goal, five objectives were specified:
l. To determine =zones of movement that could
ultimately become slip planes during a failure;
2. To measure deformations and determine strains in
the rock behind the highwall;
3. To measure the porewater pressures from beyond the
zone of rebound to beneath the highwall crest;
4, To assess the rock strength before and after it
had been disturbed by rebound;

5. To determine the mechanism of highwall failures.



To meet the fourth objective, large scale field test
could have been performed, but these are costly and
difficult, The best means of determining the in-situ
strength was by analysing a failure that‘occurred. This was
the key element of the thesis and not only provided
information on the material strength after it had been
disturbed by rebound, but also illuminated the failure
mechanism, Consequently, the title of this thesis reflects
the importance of a failure in the the mine highwall to the
success of this study.

The Hiéhvale Coal Mine, west of Edmonton, Alberta, was
selected as the research site because of substantial work
conducted previously at the mine and its proximity to the
University of Alberta. Field work, laboratory testing, and
stability analyses were performed to meet the objectives.

It is hoped that in achieving the goal described above,
then highwall designers may better attain economical and safe
highwalls.

Highwalls are not the only slopes that can benefit from
the findings of this thesis. In fact, the goal stated above
may be extended to any excavated slope. From a research
point of view, two reasons make the highwall an ideal for
exploring the effects of excavation:

1. Highwalls are designed with a low factor of safety
and a relatively greater probability of failure,

in comparison with other excavated slopes, such as



a highway cut, This 1is acceptable since the
highwall is a temporary structure.

2. New highwalls are cut on a routine basis in the
same area, thus permitting an investigator to gain
a wealth of information on the behaviour of an

excavated slope.

1.2 8ignificance of TFailure Mechanism

Open pit mining is often most economical and efficient
when the highwall is high and near vertical. However, high,
steep highwalls can result in failures that cover the
deposit, endanger equipment, threaten workers, disrupt
schedules, and cost a great deal to cleanup. Furthermore,
considerable expense may be incurred in failure prevention.
At the extreme case, failures could destroy mining equipment,
such as the multi-million dollar dragline.

Without accurately knowing the failure mechanism and its
associated components, planned and economical solutions to
improve stability may not be realized. For example, a
variety of techniques could be implemented to increase
stability, such as reducing the highwall height and angle,
improving drainage, breaking up shear zones, anchoring the
rock face, or implementing monitoring schemes capable of
predicting failures and then limiting the damage. But, only
with an understanding of the failure mechanism can the best

possible design or prevention measures be selected.



As stated at the outset of this thesis, the failure
mechanism consists of several components (failure mode, pore
pressures, and strength), Past studies have greatly
contributed to understanding the potential modes of failure,
but more detailed research is required into the effect of
excavation on the pore water pressures and soil or rock
strength. Without this, then the accuracy of the entire
failure mechanism is cast in doubt.

Inadequate knowledge of the failure mechanism has
troubled highwall designers for some time. Examples of these

problems are outlined in the case histories below.

1.3 Case Histories

Highwall failures can occur in any open pit mine that
extracts coal, oilsand, or other mineral resource but this
thesis focuses on a specific class of highwalls, those cut in
horizontally bedded soft rock in open pit coal mines in
Western North America. Several mines on the Prairies of
Western North America fall into this class, including
Centralia in Washington State, and Vesta and Highvale 1in
Alberta.

Most open pit coal mines on the Prairies are susceptible
to highwall problems because of the soft and deformable
bedrock near the surface. 1In addition, thin seams of highly
plastic and very weak bentonite are often found just above or

below the ore body and even within it. The result is a



highwall that can not only fail, but can deform a great deal

before ultimately collapsing.

1.3.1 Pilot Nine for Centralia Mine (Miller and uilti,
1969)

An open pit coal strip mine was planned near Centralia,
Washington that required 75 metre high slopes. The
sandstone and siltstone overburden above the coal was highly
fractured, jointed, and faulted. Classical approaches to
stability indicated that slopes cut in the mine would be
stable. To confirm this, an experimental Pilot Mine was
created to provide firsthand knowledge of cut slope
behaviour.

The Pilot Mine was excavated in the coal field in 1968
and was 70 metres deep and 130 metres long. The first 20
metres was cut at a 45° slope with a 7 metre wide bench at
its base., The remainder consisted of two intermediate slopes
at 1H:0.5V with a 7 metre bench separating them, In this
instance, the entire 70 metre high rock slope above the coal
was termed the highwall. Below the highwall, fifteen metres
of coal was excavated at a 1H:0.5V slope.

The highwall was instrumented with inclinometers and
extensometers to measure movements at and beyond the slope
face. Excavation of the overburden resulted in movements of
the highwall face from 3 mm to 28 mm. No movements were

detected 60 metres behind the wall,



As‘the coal was removed, a slickensided mudstone was .
exposed near the base of coal and movements of 30 mm
developed along it.

During excavation of the Pilot Mine, six slides and
rockfalls occurred in the cut slopes,. All six failures
occurred after the slickensided mudstone was exposed. Three
of them were contained in the highwall while the others slid
along the slickensided mudstone.

For the first three, it was believed that movements at
the base of the coal stretched the overburden and opened
existing cracks and weak planes,. This permitted water to
penetrate the openings and possibly soften the sandstone and
siltstone overburden, reducing the strength, Moreover,
cracks opening at the surface allowed ingress'of surface
water which exerted additional pressures to induce failure.

The Pilot Mine satisfied its purpose of highlighting
deficiencies in the stébility calculations., The analyses
were based on strengths measured in the laboratory and did
not take into account the effect of excavation. Based on
these findings, Miiler and Hilts (1969) attributed the
reduction in strength to the presence of faults, joints, and
fractures in the rock that opened wider on excavation. From
this work, the Centralia Mine was successfully developed in

1870.



1.3.2 Centralia MNine (Lisslat;, 19835

In 1988, the Centralia Mine in Washington State had 80
metres of sand- and siltstones overlying a coal deposit. The
average dip of the bedrock was about 6° and considered close
to horizontal. After the 80 metres of overburden was
removed, 10 metres of coal was mined out before additional
stripping of waste rock continued for another 30 metres to
access another coal body. The resulting rock slope was 120
metres high and was benched to provide an average slope of
less than ZH:1V. The highwall stood at the toe'of the slope
and was 15 metres high at 45°.

In response to excavation, the highwall moved over 10
metres into the pit, creeping as much as one metre/day,
without collapsing. Fortunately, the pit was designed so
that these movements were up-dip (consider the consequences
if the pit was reversed). Even with these large movements,
the stability of the highwall was considered acceptable by
mine engineers, that is, relative to the problems encountered
prior to 1988,

Before 1988, the highwall experienced several
instabilities that were classified as massive multiple block,
creep failures, They damaged over a kilometre of the
highwall and extended 600 metres back into the native
bedrock. The basal shear plane for these immense failures
was a 150 mm seam of bentonite, 89 metres below the surface

and squeezed between layers of the upper coal deposit, about



-a metre abéve its base. It had an undrained shear‘st;ength
less than 6 kPa and was the same seam encountered at the
Pilot Mine that was responsible for the failureé in 1968.

To achieve some measure of stability, tension cracks
between the blocks were filled with soil to prevent the entry
of water but were not effective, An alternative was to
predict the onset of failure and sound a warning to minimize
damage to equipment and men. Survey prisms attached to the
highwall face were monitored daily, but this frequency was
still not high enough for effective warnings.

As the failures continued, ongoing field observation and
monitoring programs provided additional details on the
mechanism.. The highwall was then redesigned using stability
analyses conducted in terms of total stresses, with ¢ =0° and
cohesion equal to the undrained shear strength obtained from
laboratory testing, and lower bound strengths,

As a result, the driving forces from the wedges beyond
the highwall face were reduced by stripping overburden as far
as 600 metres behind the face, and the limited toé block
resistance was increased by steepening the highwall, With
these measures implemented, the movements were restricted
(from 15 to 10 metres), tension cracks were not as frequent,
and the frequency of failures reduced,

The stability analyses did not directly consider the of
highwall rebound on strength, pore pressures, and so on, but,

by using the lower bound strength parameters, the analyses



indirectly included this effect as evidenced by the stable

highwall.

1.3.3 Vezta Mine (Jenkins, 1988)

The Vesta Mine in eastern Alberta is more than 60 years
old and was developed for commercial coal production in the
early 1960's. The sandstones and clay shales in certain
areas had been damaged, shoved, and sheared by glacial action
(Section 2.4), later causing failures of the highwall. These
féilures began when a portion of the open pit mine
intercepted the shear zones and reactivated them. They were
limited to small areas where the pit was adversely oriented.
The rest of the highwall experienced significant rebound due
to excavation without colleapse. The basal slip plane
throughout the mine was a seam of bentonite found just above
the coal which often underwent movements of 30 cm into the
pit.

Stability analyses to assess the potential of failure
were conducted with effective stress parameters. The
laboratory strengths were not reduced to account for
excavation and a safe highwall angle was calculated. This
was then decreased in accordance with judgement and past
experience gathered from the brevious performance of the
highwalls. In effect, the designers empirically included the

influence of excavation on the failure mechanism. No back
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analyses of failures were conducted to better determine the

rock strength at the highwall.

1.3.4 Highvale Mine

The Highvale Coal Mine, in west Central Alberta, has
experienced highwall problems since 1983 when failures
greatly disrupted mining operations. A number of authors
have investigated the geology and failure mechanisms at
Highvale, including: Moell et al (1984), Fenton et al (1986),
Barron et al (1986), Wade and Peterson (1986), and Tsui
(1988) .

The upper layers of the bedrock were sandstone and
mudstone (the term used for a clay shale by workers at
Highvale) with much of it displaced by glacial action. The
underlying coal seams were less than 30 metres from the
surface.

Overburden stripping created a benched slope with the
upper part as high as 15 metres and at an angle of 45°. The
lower slope, or highwall, stood 15 to 18 metres above the
coal deposit also at a 45° slope. Failures during 1983 and
1984 extended over 100 metres behind the highwall crest
(Barron et al, 1986) and severely damaged the bench on which
the dragline operated. The failures were slow to develop and
gave enough warning for the dragline to operate safely

without the need for remedial measures.
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In 1985, the frequency of failures tapered off, and
those that did occur did not jeopardize the operating bench.
In 1987, this author noted remedial measures were necessary
as the highwall height had increased to 20 metres and the
failures began to pose a risk to the dragline. One method to
stabilize the failed area was to construct an "extended
bench" or buttress by dumping spoil (waste material) against
a potentially dangerous highwall, Then, as the dragline
proceeded through the area and continued stripping the
overburden, it had to re-excavate the spoil buttress,
incurring extra costs due to rehandling.

Field investigations and laboratory testing from 1984 to
1986 (Moell et al 1984, Fenton et al 1986, Barron et al 1986,
Wade and Peterson 1986) concluded that the failures were
composite block type movements along a horizontal slip
surface with a steep backscarp. The horizontal slip surface
was either in the upper part of the mudstone above the coal
or a seam of bentonite at the base of the mudstone.

Stability analyses performed by Wade and Peterson (1986)
used effective stresses and made assumptions about the water
pressures. The water pressures at the highwall were
extrapolated from piezometers located well behind the
highwall crest and did not reflect any changes due to
rebound. Furthermore, laboratory strengths were applied in

the analyses and did not consider the effects of excavation.



Residual strength parameters wefe assumed along the basal
slip surface,

With the above assumptions, the failures were
successfully back analysed, however, later findings by this
author found lower pore pressures and rock strengths than
those assumed which, in turn, could also adequately explain
the failures.

Barron et al (1986) noted numerous tension cracks as a
result of the large failures that extended well back from the
highwall crest and developed a multiple-block, plane shear
mechanism to model them. This model used effective stresses,
assumed the bentonite to be the rupture surface, a water
table perched on the failure plane, and vertical tension
cracks extending to the slip surface,.

The effect of excavation was modelled by the development
of tension cracks. During the analysis, a tensile strength
could be applied over the potential crack and adjusted to
simulate field conditions. The multiple block model
developed by Barron et al (1986) was used to match the
location of tension cracks that opened in the field during a
failure. The model was found to be sensitive to variations
in the assumed water table and the authors concluded that to
improve highwall design the most logical method would be to
lower the water table. The amount of reduction required to

significantly improve stability was never field tested,
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The Highvale Coal Mine was the site for this
investigation that began in 1987, The contributions made by
the above authors are discussed in greater detail throughout

this thesis,

1.4 Current S8tability Techniques

Current practice applies two-dimensional, limit
equilibrium techniques that utilize effective stresses to
assess the stability of a highwall,. Coates (1981) and
Fredlund (1984) provide a detailed review of these methods.
Given the proper failure mechanism, pore pressures, and
strengths adjusted for excavation rebound, then these methods
are effective. However, limit equilibrium techniques cannot
account for the deformation characteristics of the materials.

A superb example of this was at the Centralia Mine
(section 1.3.2) where several metres of slip developed along
a weak bentonite, yet the slope had not collapsed. Since the
slope had not completely failed, then the Factor of Safety
would have been greater than unity from limit equilibrium
analyses, but these analyses could not predict the amount of
deformation. At the Centralia Mine, an adequate Factor of
Safety was the only criterion necessary for the operation of
the mine. If a deformation criterion was required, i.e. that
the movements had to be less than a few metres, then the

limit equilibrium method would not be applicable.



More advanced methods of stress analysis, particularly
the finite element method (FEM), can satisfy both the
stability and deformation criteria, The finite element
method can model the actual behaviour of a slope and indicate

the stresses and displacements at any point within it, The

the Highvale Coal Mine,

1.5 Distinguishing Features of this Thesis

The combination of field observation, instrumentation,
and laboratory testing has been Successfully used by others
in assessing highwall performance. Six features distinguish
this thesis from other, similar investigations at Highvale
and other open Pit coal mines:

l. The field instrumentation was designed to detect
the first effects of stress relijef due to
excavation. Most studies implemented monitoring
schemes after substantial movement had previously
taken place (i.e. Surveying the highwall face) .

2. The field work was concentrated in a small area so
that similar data could be gathered after each cut
to improve the quality of information.

3. Instrumentation was maintained until it was

immediately at the highwall crest. Previously,



the closest that any instrument had been
maintained was 100 metres away from the highwall,

4. Global, or absolute, movements were found. That
is, the total displacement of an individual point
was measured from its state of rest to when it was
excavated out, It is common to measure local
displacements relative to a certain point that has
previously undergone some displacement.

5. The absolute displacements were converted to a
strain field in the rock beyond the highwall face
which was then used as a measure of how much the.
rock/soil stretched. Local displacements found
along one or more shear zones do not clearly
demonstrate this.

6. A relationship between the strength of the rock

mass and strains due to excavation was attempted,

1.6 Thesis Organization

Chapter 2 introduces the Highvale Mine and mining method
while the field work is outlined in Chapter 3. The results
of the field program are outlined in Chapter 4 where the
zones of movement, deformations, and pore pressures are
presented. Chapter 5 reviews the laboratory testing program
that provided guidelines on the rock strength unaffected by
excavation. Chapter 6 describes a failure in the highwall

that was analysed to explore the mechanism of strength
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reduction. Chapter 7 discusses how the fihdings of this

thesis may be applied to future highwall design, monitoring,

and remedial measures.



2 DESCRIPTION OF STUDY AREA - PIT 03, ‘RIGMLB MINE

2.1 Location

The Highvale Mine, shown in Figure 2.1, is located 80 km
west of Edmonton, Alberta on the south shore of Wabamun Lake,
TransAlta Utilities Corporation (TAU) operates Highvale, one
of the largest strip mining operations in Canada, and
producing one fifth of Canada's coal (Canadian Mining
Handbook, 1987),

Presently, three pits (Pit 02 to 04) are active at
Highvale, providing enough coal to generate half of Alberta's
power (TransAlta Utilities, 1986) from the nearby Sundance
and Keephills power plants.

TAU has kindly permitted the University of Alberta to
perform the field investigation program in Pit 03 at the

Highvale Mine,

2.2 Physiography

The Highvale Coal Mine is found on the Alberta Plains, a
subdivision of the Interior Plains Physiographic Province.
Bedrock is typically flatlying with surface elevations about
750 metres,. South of the mine, rolling hills rise to

elevations over 800 metres.
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2.3 Bodzéck Goplo§§

Coal is found at depths of 20 to 40 metres, ove#laih by -
sand-, silt-, and mudstones of the Paskapoo Formation,
Tertiary to Upper Cretaceous in age (Moell et al 1984 and
Fenton et al 1986) . The rock is cemented to uncemented with
traces of montmorillonite found in the sandstone but
predominating the silt- and mudstones. A 100 mm seam of
bentonite rests 3just above the coal and is continuous
throughout the study area. This thin seam is a major factor
affecting the sﬁability of the highwall, often acting as the
basal shear plane for potential failures,

The coal is a non-marine, Upper Cretaceous and Paleocene
rock, part of the Ardley Coal Zone. Several distinct and
continuous seams of coal are separated by silt- and mudstone
partings. In general, the dip of the coal and overburden is
less than 10 metres per kilometre in a westerly to

southwesterly direction.

2.4 Glacial Tectonics

Glaciers advancing over Western Canada and Northern
United States exerted tremendous forces on the soft bedrock,
shifting, crushing, and shearing it. This damage to the
bedrock by glaciers is termed glacial tectonics, 1ice
thrusting, or glaciotectonic deformation. Extreme cases of
glacial tectonism occurred when the continental ice shset

pushed against a sloping face. Then, like a bulldozer, it



pushed against akslqping face. Then, like a‘bulldozé}, it
thrusted the rock ahead of it, fractu;idg_the bedrock and
inducing shear zones at the base of the thrust block.

Tsui (1988) and Fenton et al (1986) discuss
glaciotectonic deformation and its effect on the bedrock,
with particular emphasis on the Highvale Mine, where glacial
tectonism is a major factor in highwall stability. The
fractures and shear zones created by ice thrusting have
impaired the stability of potential slide masses by reducing
the strength along the backscarp and creating shear zones
that can be reactivated.

Tsui (1988) and Fenton et al (1986) noted thruét blocks
displaced 280 to 860 metres from their original position and
over 400 metres by 1200 metres in size. During this study,
spectacular evidence of glacial tectonism was uncovered Dby
mining in Pit 04, 2.5 kilometres from the study area in Pit
03, Figure 2.2(a). Overburden stripping and subsequent coal
mining afforded an excellent opportunity to view the
stratigraphy on a large scale.

As shown in Figure 2.2(b), the surface ¢till was
underlain by a layer of coal and a siltstone. Beneath this
was another layer of glacial till, an unusual occurrence but
evidence that the coal and siltstone above had been displaced
during glacial times. This was confirmed by a shear plane

that was found at the contact between this till and the

siltstone above it.



The lower till was underlain by the Paskaboo Formatiqn'
and Ardley Coal Zone. Further investigation revealed that
the coal near the surface was similar to the lower seams of
the Ardley 2one, except that it was 40 metres higher., The
pre-glacial valley now occupied by Wabamun hake offered an
opportunity for the glaciers to-shove a block of bedrock
approximately 4 kilometres south.

Much of the thrust block had been mined before this
study began, however it was estimated to be over 500 metres
long and 200 metres wide, One question remained unanswered:
could the exposure in Pit 04 be the bottom of a much larger
thrust block with the upper seams of coal and overburden
possibly carried further southward? Future coring programs
and mining will shed light on this question.

Mining had to be restricted in the vicinity of the
thrust block in Pit 04 because failures of the highwall and
slope above the bench had so destroyed the area, that it was
impassable by the dragline.

Glacial tectonics may explain the intense jointing and
pre-sheared zones encountered at Highvale, however,
depositional processes, past regional tectonic events,
permafrost, and weathering could also be responsible. All of
these factors previously contributed to a change in
structure, groundwater flows, and strength but this study
looks at how these components were further altered by the

next process: excavation.



2.5 l‘uninq“ NMethod

Figuré}2.3 is a schemagic of the strip mining procedure
used at Highvale. Fifteen to 40 metres of till, sandstone
and mudstone overburden, were removed by a dragline sidecast
operation in strips 50 metres wide and hundreds of metres
long. The dragline took 70 cubic metres of overburden in a
single scoop and dumped it on the spoil piles,

Figqure 2.3 shows the dragline sitting on a bench that
was created during the previous cut. The overburden below
the bench and above the coal was removed by "facecutting"
that exposed the highwall. Excavation of overburden above
the bench is called "chopcutting", At the study site, the
highwall was 20 to 23 metres high at an angle of 40° to 50°.
The chopcut, or slope above the bench, was 7 to 10 metres
high at a 1H:1V slope. Chopcutting had two roles: firstly to
create a competent bench for the dragline to walk back on
after it completed a strip, and seééndly, to control the
height of the highwall.

With the overburden removed, electric shovels mined the
six horizontally bedded seams of coal. Each seam was from
0.50 to three metres thick, separated by thin partings of
silt- and mudstone, resulting in a coal deposit 15 metres
thick. The coal was mined so that the exposed face was
nearly vertical, referred to in this thesis as a coalwall,
and when combined with the highwall, resulted in a rock slope

35 metres high at an average angle of 55° to 60°.



‘2;6 Intlugﬁéo- of Coalwall

The 15 metre high coalwall also experienced instability.
Howéver, the failures were small and generally occurred after
all the coal had been mined out and did not pose a threat to
mining equipment or men nor having little influence on the
bench. For these reasons, coalwall stability was not
directly investigated, but instead considered integral to

highwall stabiliﬁy since significant deformations in the coal

reduced the strength of the overburden bedrock.
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3 TIELD INVESTIGATION PROGRAM

The field investigation in Pit 03 at the Highvale Mine
began in June, 1987, Thirteen boreholes boreholes were
drilled, with sampling 4done in four of them, and five of the
holes logged with downhole geophysics, Each hole had
instrumentation  installed to monitor the response of the
overburden to successive excavations,

Chapter 3 describes the study site in Pit 03 and
outlines the techniques used in the field investigation
program, beginning with the drilling and sampling and
cohcluding with the instrument installation. The results are

brought together in Chapter 4.

3.1 Study S8ite
Figure 3.1 shows a plan view of the study site as it
appeared in June, 1987 after six inclinometers, S1 to $6, and
fourteen piezometers, P7 to P13, were installed. Figures 3.2
and 3.3 present cross sections through each of the instrument
lines. This site in Pit 03 was selected for the following
reasons:
l. The highwall in Pit 03 had a history of
instability with numerous past studies conducted;
2. These studies showed that glacial tectonics had

moderately affected the bedrock in the vicinity of

26
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the study site and that futuie failures were
likely;

3. The geology at the study area was expected to be
typical of several other parts of the mine, such
that results from this thesis might be extended
elsewhere at Highvale;

4. Mining would be active in Pit 03, with three new
strips excavated during the study program;

5. The highwall and surface geometry were not
complex. That is, the highwall angle would be
reasonably constant from one cut to the next, the
chopcut was not very high, and the original ground
surface was almost flat.

6. Site access was possible year round.

3.2 Drilling and Sampling Program

Mobile Augers and Research Limited performad the
drilling and sampling under the author's supervision. A
drill rig capable of supporting wet rotary and auger drilling
was brought on site for three weeks in June, 1987. The
instrumentation scheme called for 13 holes (section 3.6) and
since monitoring the overburden behaviour was of prime
importance, then the amount of sampling was sacrificed in
favour of total length drilled. Only three of the holes, S3,
S4, and S6, were continuously sampled from the surface. A

fourth, S5, was sampled below a depth of 25 metres. The
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remaining nine holes were drilled blind with a solid stem
auger.

Sampling was performed with four continuous coring
systems: wireline CHD 76 Double Tube; conventional NHR Double
Tube; conventional HW double tube; and the wireline NQ-3
triple tube. These were chosen to obtain the best quality
and largest possible core diameter. The CHD 76 system worked
best, providing good quality core at rapid drilling rates.

The Pitcher Sampler was also used, but met with limited
success, In theory, the Pitcher Sampler combined the best of
sampling techniques by incorporating a shelby tube into a
core barrel. It worked well for three samples in the
sandstone until the shelby tube became seized inside the core
barrel and rotated with the barrel, destroying the sample.
This was probably the result of an improper bit and lack of
drilling mud in the circulating water. The bit was designed
for mudstone and wore too rapidly in the sandstone, creating
a "tight" hole that restricted the flow of circulating water
carrying cuttings to the surface. The problem was compounded
when pure water was used without a polymer additive (drilling
mud) to help retain the cuttings in the water. This led to a
build up at the bit and the cuttings forcing their way back
inside the Pitcher Sampler between the sample tube and core
barrel, locking the two together.

The key to the success of the blind drilling program was

the "DP Rock Bit" attached to the end of a six inch (150 mm)
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diameter solid stem auger. In a matter of minutes, the drill
rig could be converted from wet rotary to auger drilling and
with this bit, 35 metre deep holes were drilled from the
surface to three metres into the coal in a few hours. Other
auger drilling in the area had failed to reach the top of the
mudstone because they were only outfitted with a standard
wing bit. The "DP Rock Bit" had replaceable carbide teeth
tha: easily cut through the soft sandstone and mudstone
creating holes ideal for the installation of piezometers and
inclinometers. Continuous coring of every hole would have
resulted in a severe cutback in the total number of holes
drilled and the amount of instrumentation installed..

The borehole logs are presented in Appendix A and

summarized by the lithology shown in section 4.1.

3.3 Downhole Geophysical Logging
As discussed in section 3.2, not all of the holes could

be sampled and therefore to confirm the geology at low cost,
downhole geophysical logging was used. Moreover, the
geophysics located strata for instrument placement when
sampling was omitted. BPB Geophysics provided the following
suite of geophysical tools:

- Gamma Ray, Bulk Density, and Borehole Caliper;

- Focussed Electric;

= Multichannel Sonic;

- Neutron Porosity.
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The dipmeter was considered, however it's expense did
not warrant use. The theory and mechanics of each tool are
beyond the scope of this thesis and only the relative trends
from the logs were used in the development of the lithology.
The set of geophysical logs for hole S3 and $S4 is shown in
figures 3.4 and 3.5 with the remainder presented in Appendix
B, The till, sandstone, shale, and coal seams are clear on

these logs.

3.4 Geological Mapping

After each cut was made, the author mapped the highwall
face to locate discontinuities, confirm lithology, and detail
shear zones. Two vertical traverse lines were established
along the highwall face, 50 metres apart, directly in front
of the study site. The bentonite and lower part of the
mudstone unit could be examined from the top of the exposed
coal (top of seam 1). The upper mudstone and lower sandstone
were examined by ascending the highwall face in a "cherry
picker".

Since Tsui (1988) had extensively mapped discontinuities
in the sandstone at a location near the study site, the joint
mapping was limited to ensuring that Tsui's findings could
also be applied at the study site. Hence, the focus of the
geological mapping was on the lithology and identification of
shear planes and zones. These results are summarized in

section 4.1.
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3.5 Deformation uonitozinq

The most important factor controlling the layout and

depth of the boreholes was the instrumentation to monitor

deformations of the highwall. In designing the monitoring

scheme, seven points were recognized:

1'

In any excavation, the exposed face would move out
from a few millimetres to metres without ultimate
failure, depending on the material strength and
deformation properties and the size of cut. Based
on experience from other excavations made in
Central Alberta (Vesta Mine, Jenkins 1988),

horizontal movements before failure were

anticipated to be of the order of centimetres. 1In
addition, vertical movements dependent on the
mechanism, were also expected to reach

centimetres.

Potential modes of movements came from the past
studies by Tsui (1988), Barron et al (1986),

Fenton et al (1986), and Wade and Peterson (1986),
andeoell et al (1984). They indicated that the
primary mode would be a translational block or
planar shear action, as shown in Figure 3.6, with
secondary rotational failures near the highwall
crest. In addition, exfoliation from the nighwall

face was expected to be commonplace.
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3. The deformation monitoring program had to detect
when movements began and their extent., For a 35
metre high rock slope (the highwall and coalwall
combined) movements were estimated to extend
approximately two to three times this distance
beyond the highwall, or 70 to 100 metres.
Therefore, the instruments had to be located at
least this far back from the highwall. (In fact,
the movements extended 300 metres from the crest.)

4. With successive excavations, then the effect of
each cut at different distances from the highwall
was tracked by a series of instrumen;s.

5. Although the bedrock was generally flatlying and
uniform in the vertical dimension, extreme
variations in the geology could be found over a
short horizontal distance, possibly as a result of
glacial tectonism. Hence, to obtain high quality
information, the instrument spacing was not large.

6. Instrument failures were anticipated and therefore
redundancy was incorporated into the design.

7. The focus of the study was on highwall stability,
As such, the emphasis of the monitoring program
was on the overburden above tbe coal with
movements within the coal secondary. |

Based on these <considerations, six wvertical

inclinometers (S1 to S6 in Figure 3.1) were installed on two
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lines, 50 metres apart, perpendicular to the’highwall crest,
with a pair of inclinometers on each of three strips. - Five
of the inclinometers penetrated 3 metres into the coal with
the sixth 12 metres below the top of coal. The target depth
for the sixth inclinometer was originally 6 metres deeper so
that it would be 3 metres below the base of the coal but it
failed to achieve this depth, ‘

Survey support was implemented from two control
reference points well behind the highwall face (BM 1 and BM 2
in Figure 3.1) to provide for redundancy and to track
movements of the inclinometers. Additional details of the
monitoring pProgram are described by Small and Peterson (1988)

and reviewed below.

3.5.1 Inclinometers

Six vertical inclinometers were installed to monitor
horizontal displacements in the sandstone, shale, bentonite,
and upper coal seams (figure 3.1). 81, s2, s3, 85, and S§
were SINCO (Slope Indicator Company) brand measuring
horizontal movements while the sixth (S4) was TRI-VEC
manufactured by SOLEXPERTS and measured vertical
displacements as well.

The SINCO inclinometers consisted of 70 mm diameter
continuous ABS casing with two sets of orthogonal grooves
that guided a probe. Two Servo-accelerometers in the probe

measured its angle from vertical and given the length of the
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probe, the location of its top with respect to its bottom
could be found. Guiding the probe along the casing length
yielded the casing shape and any changes in the shape over
time were attributed to movements. Further details on the
principle of the SINCO inclinometer are provided by
Dunnicliff (1988) and Small and Peterson (1988).

The TRI-VEC also utilized a casing that guided a probe
containing a servo-accelerometer but similarities with the
SINCO end there. Koppel et al (1983) detail the operation of
the TRI-VEC system. The casing was 60 mm in diameter without
any grooves and came in one metre lengths joined together by
sliding couplings. The probe was one metre long and attached
to aluminum rods that gquided it into the casing and between
two couplings. The ends of the probe and insides of the
couplings were designed to mate such that the probe could be
locked into place between the couplings. This gquaranteed
that the probe would return to the same location each time a
reading was taken. A single servo-accelerometer measured the
vertical angle, defining the location of the probe top
relative to its bottom (similar to the SINCO system).

The inclinometer casing for both systems was grouted
into the boreholes by pumping grout from the bottom of the
borehole upward. This attempted to prevent voids from
developing between the casing and borehole wall. In one
installation, S2, groundwater probably washed away some of

the grout after it was placed, allowing the casing to bend
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within the hole and change its shape. The change in shape
was first attributed to movements, however further

investigation indicated a flexing of the casing.

3.5.2 Maintenance of Inclinomotizs

The use of inclinometers was ideal from a logistics
point of view when several cuts were made over the course of
the study and the instrumentation had to be maintained
throughout., New cuts were made in June, 1987, September,
1987, December, 1987, March, 1988, May, 1988, and .September,
1988, Figures 3.7 to 3.10 show the locations of the
inclinometers along line S2-S4-S6 after each cut was made.
The situation was similar along S1-83-S5.

As the dragline passed by the site on a new strip, some
of the inclinometers had to be buried or lowered or both,
Before a cut was made in December, 1987, 81, S2, and the
accompanying piezometers had to be buried beneath the bench
so that they would not be destroyed as the dragline passed
by. After the new highwall was created in December, then S1
and S2 (now at the highwall crest) were recovered, brought
back to the new bench level, and reactivated. A short time
later, S3 and S4 were lowered from the original ground
elevation to the new bench level.

In March, 1988 the process was repeated and this time Sl
and S2 were destroyed, S3 and S4 were buried and then

recovered (Figures 3.9 and 3.10). S5 and S6 were not lowered



to the new bepch'level until May, 1988, just before the
dragline made another‘pass. At that time, the inclinometers
were lowered to beneath the expected level of the new bench
and buried, After the dragline passed the site, then these
were reactivated. S6 was damaged in this procedure and
became inoperative, It was the only one of six to be
destroyed before the dragline excavated them out.

The inclinometer results are presented in section 4.2 in
conjunction with the survey findings, In this manner, the

total displacement of a point was obtained.

3.5.3 Surveying

Surveys were performed to find the horizontal
coordinates of the tops of the inclinometers as outlined by
Small and Peterson (1988). Position accuracies of five
millimetres or less were attained by using a one second
theodolite, an electronic distance measuring device, numerous
redundant readings, and least squares adjustment techniques.
Two concrete monuments, BM 1 and BM 2, were installed 200
metres behind the inclinometers (fiqure 3.1) and located in
the TransAlta Utilities (TAU) coordinate system in July,
1987,

Initially, the monuments were assumed fixed throughout
the monitoring program. But as a check, a nail on a power
pole one kilometre west of the site and 700 metres south of

mining activities was set as a reference point, As the



37

monitoring program neared completion and the successive
highwalls moved closer to the two monuments, the sights to
the nail indicated that the initial assumption was incorrect
and that the monuments had in fact moved about 50 mm toward
the highwall. This was confirmed in May, 1988 by a second
traverse that again tied BM's 1 and 2 into TAU's system, and
hence tracked their absolute position.

Since the monuments were located absolutely, then so
were any other points referred to them, Therefore, the
absolute movement of the tops of the:inclinometers could be
tracked and one of the primary concerns of the monitoring
program was ach. -ed: obtaining the global movements.

Furthermore, given the shape of the casing from the
probe readings, any point along the casing length could be
tracked similarly. O0f particular importance was the
displacement of the inclinometer base, since all six
experienced large movements at their bottoms. The locations
of the zones of movements could not be confirmed but it was
suspected that much of it occurred in the mudstone between
seams 4 and 5 of the coal.

The survey support provided an additional bonus when an
inclinometer was rendered inoperative by excessive movement
along a shear plane. When this occurred then the
inclinometer casing would be pinched, preventing the probe
from passing below this point and therefore losing the base

as a reference point. The surveys enabled a continuous
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record of movements to be maintained by tracking the
displacement of a point just above the shear plane.

The results from the surveys are presented in section
4.2 coupled with the inclinometers to provide the global

deformation pattern,

3.5.4 Alternative Methods to Monitor Highwall
Deformations

Other monitoring techniques were evaluated such as
surveying to the highwall face, horizontal extensometers
installed in the highwall, and wireline extensometers strung
over the slope. But, each method suffered a common drawback:
the highwall face acted as the reference point and all
movements were relative to the position of the face
immediately after excavation. By the time these schemes were
mplemented, a substantial portion of the total movement may
have already developed.

This study found that a point in the bedrock began to
feel the effects of excavation approximately 300 metres
behind the highwall face and gradually shifted toward the pit
with each successive cut. Any monitoring methods that used
the highwall as a reference point would not be able to track
the extent of movements. Furthermore, such techniques would
have to await the excavation of the highwall. By the time
the highwall was exposed, this study found that as much as

50% of the total movements had already developed. These
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would go undected by measurements to the highwall face and
50% of the movements recnrd would be lost. While this may be
acceptable in some circumstances, this thesis required that
the total deformations be found so that the strains may be
determined,

Furthermore, installation and maintenance of the other
schemes would %e difficult: surveys would have to be
conducted from the spoil piles which were unstable reference
points; the highwall face was not safe for installing
horizontal extensometers; and wires on the ground could be
easily destroyed by mine equipment.

On the other hand, vertical inclinometers could be
installed far ahead of mining to provide a continuous
deformation record. Their maintenance was simple and, when
combined with survey support from two safe control points
well Dbehind the highwall face, they provided an absolute

record of movements.

3.6 Piogzometers

Two types of piezometers were used: pneumatic
piezometers installed in the low permeability mudstone and
sealed open standpipes placed in the sandstone.

The pneumatic piezometer, or pneumatic-pressure
transducer, was supplied by Slope Indicator Company (SINCO).
The general operation of the pneumatic piezometer is outlined

by Dunnicliff (1988).
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The sealed tip standpipe was a 50 mm (two inch) PVC pipe
with a slotted screen at the bottom. To measure water
pressure at a point, the borehole was sealed immediately
above and below the screen so that the water level in the
pipe represented the total head of water at the slotted
screen,

The piezometers were installed in seven boreholes
drilled with a solid stem auger adjacent to the inclinometer
holes as shown in Figure 3.1. Figures 3.2 and 3.3 show the
two piezometers in each hole, one at the bottom and the other
at least two metres above it. Four holes had two pneumatics,
while the remaining three had one pneumatic at the bottom and
a sealed tip standpipe above. The holes were numbered P7 to
P13 with the lower piezometer further qualified with a "B"
and the upper one with a "T".

At least two piezometers were installed in every zone of
interest ii.e. sandstone, mudstone, and coal) to provide
redundancy and to act as a backup when one was inoperative.
The piezometer holes were drilled near the inclinometer holes
in order to monitor pore pressures along potential shear
planes detected by the inclinometer.

The piezometers were maintained in conjunction with the
inclinometers (Section 3.5.2 and Figures 3.7 tp 3.10) so that
they were kept in operation until they were excavated out.

For both types of piezometers, the tips were encased in

sand to allow water easy access to the tip. Bentonite seals
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over one metre long were placed above and below the tips to
isolate them from the strata on either side. Sand was also
used to separate the two piezometers in a hole and grout was
pumped in above the uppermost seal,. Care was taken during
installation to ensure that the target depth was attained and
that the sand, bentonite seal, and grout were properly
placed. This arrangement appeared to work well, with only
one of the seals around a standpipe showing signs of leaking.,
After installation was complete, one pneumatic piezometer did
not work (P8-B) and a second one failed in October, 1987 when
water penetrated the hose and froze, plugging it.

The hydrogeology of the study site as obtained from the

piezometers is presented in section 4.3,



NORTHING (metres)

42

1400 N

1200 N

1000 N

CHOPCUT

ASAARARAAARAMARA, AAMMARAAAAMSNAAMARAARASAS

600 N | ISR S l

-4600 E

N I L !

-4200 E -3800 E -3400 E 3000 E
EASTING (metres)

AR e
HIGHWALL cuT 20

COAL

cur 19

BM 1

§6, P12,P13

CuT 23

BM 2 @

= SLOPE INDICATOR AND
PIEZOMETER INSTALLATION

@ MONUMENT

Figure 3.1

Plan view of

study site, June, 1987



(metres)

ELEVATION

43

19 | 18
T ’
| weunoneTER

¢ PNEU. PIEZOMETER
X STANDPIPE

750

745

740
7358
\ ry s
730 o . UNWEATHERED
T “SANDSTONE

728

1R BENTONITE % MUDSTONE |

1240
NORTHING (metres)
] MUDSTONE

COAL
BENTONITE

COAL
8 MUDSTONE
COAL, SEAM ONE

Figure 3.2 Cross section at study site, Station
3835, Line S2-S4-S6, June, 1987



ELEVATION (metres)

44

19 I 18

. T -
| weunoveTer

* PNEU. FIEZOMETER

X STANDPIPE

(1)
[ =
-
4
a
«
-
[ ]
[ -
——

750
745
740
73§

730

728
720

718

l MUDSTOA

706

NORTHING (metres)

720
¥ MUDSTONE
7190.8 COAL
BENTONITE
719 COAL
MUDSTONE
718.58 COAL, SEAM ONE

Figure 3.3 Cross section at study site, Station
3885, Line S1-S3-S5, June, 1987



GAUMA RAY -] BULK DENSITY CALIPER

1.9 gm/ece. g..l ’

184 , l l

— -
.

8l
{ : %j

a -
W
£
2l ,

\f’

=

Figure 3.4 Gamma, Density, and Caliper

geophysical logs for hole S3



o

SANDSYONE NEUTRON POROSITY

‘ FOCUSTED SLECTRIE |

o |14 0%
AT onw weraes
? P 200 2.000 .
10 - ]
’ %) ] :
20 . s :
o ‘,i ; -
T N
: § - =
T" . S z
$
s -
==
—1 f i
E ]
o T
H— ]

Figure 3.4 (cont'd)

Neutron Porosity, and Focussed

Electric Re: .stivity geophysical logs for hole S3

46



Figure 3.4 (cont'd) Multichannel Sonic geophysical
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4 RESULTS OF FIELD INVESTIGATION PROGRAM

The aim of the field investigation program was to
determine the lithology at the study site and measure pore
pressure and deformation response due to excavation. The

results of this program are presented below.

4.1 Lithology

The lithology was determined from geotechnical drilling
and sampling, downhole geophysics, and geological mapping of
the highwall face. Appendix A contains the borehole 1logs,
and Appendix B the geophysical logs. Figure 4.1 summarizes
this information.

The two to five metres of till over the sandstone was
expected to have little influence on the stability of the

highwall, and therefore was paid little regard.

4.1.1 Sandstone

The sandstone was fine to medium grained with a number
of hard cemented layers, the most prominent at elevation 740
metres, Some coal stringers and thin mudstone layers were
also recognized. Geophysical logging detected a second layer
of high density at elevation 727 metres.

Bedding was near horizontal, and although parts ~f the
sandstone were massive, most were heavily jointed. Three
predominant Jjoint sets were noted trending 16:37/%2° (dip

direction/ dip), 65°/80, and 180°/84. Alternatively these

56
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joints were described as near vertical, striking East
Northeast, North Northwest, and East-West.

Joint spacing was 10 to 30 centimetres for each se" and
created sandstone blocks, Some were separated with a clay
infilling, 5 to 10 mm thick, while wider joints had a sand
residue in them. More detailed joint surveys were not
attempted since the blocks were small relative to the
potential sliding masses. in addition it was difficult to
discern which joints werec the result of bench blasting and

which ones were natural.

4.1.2 Sandstone/Mudstone Contact

The base of the sandstone was a distinct erosional
surface cut into mudstone with an irreqular shape over 50
metres., This surface is referred herein as the sandstone/
mudstone contact. The location and shape of the contact is
shown in Figure 4.1.

On line S1-S3-S5 the contact was at elevation 725.5
metres while along line S2-S4-S6, the contact was at 723
metres. The mud- and siltstone sequence was the same for
both 1lines between elevation 723 metres and the coal,
indicating that the upper mudstone found along line S1-S3-SS
may have been eroded along S2-S4-S6 before the sand was laid
down.

This difference was found to be associated with

variations in the deformation behaviour of the highwall.
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Movements were observed a;ong the contact on line S1-S3-S5,
however none were measured along the contact on line S2-S4-
S6.

Extending back from the highwall face, the mudstone/
sandstone contact along both lines was almost flat, dipping
about 0.5°,

After excavation of the highwall, this contact acted as
the lower boundary for groundwater discharge from the
sandstone,

Evidence of glacial tectonic action was apparent along
the contact on line S1-S3-S5 where geophysical logs (Figure
3.4 and Appendix B) showed a marked drop in the density and
the sonic logs indicated a crushed =zone. This correlated
well with the Alberta Research Council Findings (Moell et al,
1984) and it was conjectured that the contact may have been
the basal shear plane of the ice thrust block. However, a
similar trend was not found in holes S2-S4-S6 and casts this

hypothesis in doubt.

4.1.3 Mudstone

Core samples and highwall mapping showed the mnudstone
had been crushed with jointing in numerous directions. Other
terms used to describe the mudstone were shattered,
brecciated, and broken (Moell et al, 1984). Short,
discontinuous slickensides were detected along many joint

contacts. The mudstone had several layers within it, varying
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in colours from blue-grey to brown with interbeds of carbon,
clay clasts, siltstones, and coal. The mudstone was highly

bentonitic,

4.1.4 Bentonite

A bentonite layer, 100 mm thick, was located just above
the main coal sequence (Fiqures 3.2, 3.3, and 4.1). The
bentonite was squeezed between two minor coal seams, 100 mm
thick above and 300 mm thick below. The contact between
these seams and the bentonite was wavy with amplitudes of
less than one centimetre. Beneath the lower seam, lay 400 mm
of mudstone, as shown in Figures 3.2, 3.3, and 4.1. At the
highwall face, distinct shear planes were evident within the
bentonite and at the contact with the upper coal layer.

A core of the bentonite taken in June, 1987 from hole S6
showed two slickensided surfaces as shown in Figure 4.2. One
appeared as an undulating hairline crack within the sample
and the other wus at the contact with the upper coal layer.
If the bentonite was pre-sheared, it would directly affect
the stability analysis, controlling whether or not the peak
or residual strength parameters could be used.

At the time of sampling, borehole S6 was over 200 metres
from the highwall crest. As shown in Section 4.2.1, the
monitoring clearly indicated that there was no movement in
the bentonite until the highwall crest was 100 metres away.

Therefore, any shear planes found in the bentonite were there
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before excavation began. Hence, it was concluded that the
bentonite was presheared and that residual strength

parameters should apply.

4.1.5 Coal Segquence

One borehole, S3, was cored to beneath the coal sequence
for lator installation of a deep inclinometer. The core from
the coal seams and partings was not logged in detail, instead
the coalwall was examined. The partings separating the
economical coal seams typically consisted of siltstone and
mudstone, The parting between seams 4 and 5 was of
particular concern because it was highly bentonitic. Face
mapping detected three shear planes within it, 2 to 5 cm
apart, that formed a shear zone.

Siltstone lay beneath the coal sequence.

4.2 Deformations

As described in Section 3.5 six inclinometers were
combined with survey support to provide an effective means of
monitoring highwall deformations. The surveys enabled
absolute movements to be determined, not Jjust movements
relative to an arbitrary point, such as the inclinometer

base.

4.2.1 Results of Deformation Monitoring Program
The locations of the inclinometers are shown in Figure

3.1 and the complete data and survey results contained in
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Appendix C. That Appendix details how the two techniques
were combined to yield the global deformation patterns which
are summarized in Figures 4.3 to 4.8 for each inclinometer.
Movements into the pit were in the in the northward direction
and are those reported in Figures 4.3 to 4.8. Eastward
movements, parallel to the highwall, were less than 15
millimeters and were small enough to be neglected. A record
of important dates related to the deformation monitoring

program is provided in Appendix C,.

Pattern and Magnitude of Movement

Inclinometers S1 to S5 were tracked until they were
destroyed, while S6 was monitored until it was 50 metres from
the highwall crest. Of interest is the amount of movement
that developed beneath inclinometers S1 to S6. Figures 4.3
to 4.7 indicate that when the inclinometers had reached the
‘highwall crest, their bases had moved 140 to 300 mm into the
pit. Movements were likely along shear planes located
beneath the inclinometers. As discussed in Section 4.1.5,
the majority of movement was likely in a shear zone between
coal seams 4 and 5.

Inclinometer S1 was pinched off just above the
sandstone/mudstone contact probably due to a shear plane,

Figure 4.3. Its new base at elevation 726.2 metres could

still be tracked by the survey support.
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Inclinometer S2, Figure 4.4, was assumed to have buckled
in the borehole beéause movements into the slope were not
likely. It pinched off just below elevation 719.0 metres,
coincident with the bentonite seam. Before it was pinched,
the inclinometer recorded movements of 50 millimeters within
the bentonite,

Inclinometer S3 provided information along its entire
length until three weeks after the final highwall was cut.
Figure 4.5 shows two shear planes were activated at S3, one
at the sandstone/mudstone contact and the second in the
bentonite,

Inclinometer S4 was the TRI-VEC system (Section 3.5.1)
which used a probe that was 30 cm longer than the SINCO probe
and was slightly larger in diameter. As a result, this probe
could not pass beyond bends in the inclinometer casing that
the SINCO probe could. As a result, S4 became pinched at the
bentonite seam when it was still 50 metres from the highwall
crest, Figure 4.6. In addition, S4 experienced the largest
amount of movements: more than 400 mm of deformation when it
was at the highwall crest.

Inclinometer S5 moved as a rigid unit until it was at
the highwall crest on May 18, 1988, At that time, slip
planes were activated at the sandstone/mudstone contact and

within the bentonite seam, Figure 4.7.
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Inclinometer S6, Figure 4.8, measured substantial'
movements in the bentonite when the slope indicator was 50
metres away from the highwall crest.

Figures 4,9 to 4.14 show the movement of the
inclinometers over time at elevation 730 metres, within the
sandstone. The reader will note that at Day Zero, June 23,
1987, the inclinometers have all been assigned an initial
value for movement, This reflects the amount of movement
that likely developed before the inclinometers were installed
on June 23, 1987. The assumed magnitudes are discussed
further in Appendix C and were found to be reasonable.

Figures 4.9 to 4.14 indicate thet when the inclinometer
was more than 50 metres from the highwall face, then the
movements stabilized in a matter of days after a highwall was
cut. The same conclusion could be drawn with respect to the
excavation of the coalwall, however the data was not as
plentiful. Hence, it may be concluded that for points 50
metres and further from the crest, then the movements were
instantaneous.

When the inclinometer was within 50 metres of the
highwall crest, Figures 4.9 to 4.14 show that movements
continued for some time after excavation of the highwall and
coalwall, Beneath the highwall crest, the movements tended
to creep at rates of 1 to 3.5 mm/day, often until when the

next highwall was cut, 50 to 70 days later.
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As Figures 4.3 to 4.14 show, the majority of movements
- were detected by surveying and not by the inclinometers. It
became apparent that the inclinometers were best suited for
determining the mode of movements (i.e. slip plane
development). Hence, it is recommended that the combination
of monitoring techniques described above shouid De applied in
all subsequent deformation monitoring schemes at the Highvale

Mine,

4.2.2 Deformation NMechanism

Figures 4.3 to 4.8 show that slip developed along
discrete planes at the sandstone/mudstone contact and/or
within the bentonite seam, Additional movements occurred
beneath the inclinometers, possibly also along discrete
planes. Figures 4.9 to 4.14 indicated that beyond 50 metres
from the highwall crést, the movements were instantaneous and
within 50 metres, creep was evident.

As the highwall rebounded into the pit, the overburden
and coal experienced a stretching, as can be seen by
comparing the inclinometers along line S1-S3-S5 or S2-S4-S6.
For example, én February 15, 1988, Inclinometer S1 showed a
movement of 360 mm in the sandstone, Fiqure 4.3, while S3
moved 110 mm at the same elevation, _.gure 4.5. Hence, over
the 50 metre interval between the two, the sandstone had

stretched 250 mm by February 15, 1988.
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The stretching could be accounted for by (i) an
expansion of the sandstone, blocks or (ii) a spreading of the
vertical Jjoints between the blocks. The majority of
mévements were likely taken up by spreading of the joints.
Movements associated with expansion of the sandstone blocks
would only develop upon stress relief when the sandstone was
excavated. As the lower strata were removed, slip planes
were activated and induced movement above them. Since there
was no additional stress relief in the sandstone, then the
movements could only be accounted for by a joint spreading.

The mechanism of joint spreading also occurred in the
mudstone, bentonite, coal, aund partings within the coal.

Within 50 metres of the highwall crest, creep continued
along the slip planes for some time and caused a further

widening of the joints.

4.2.3 Deformation Field

The deformation field is defined here as the variation
in deformations, or movement, in the bedrock behind the
excavated face. Determining the deformation field may be
simplified by recognizing that the sand- and mudstone moved
in a uniform manner, Figures 4.3 to 4.8, hence a single
elevation, 730 metres, may be chosen in the sandstone to
represent the deformation field for the entire sandstone
unit., Similarly, elevation 721 metres was assumed to

represent the deformation field in the mudstone. Since this
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study focussed on the highwall, the deformation field below
the mudstone was not determined.

Figure 4.15 presents the deformation field at elevation
730 metres for the sandstone. It was found by selecting a
specific day, say 238, February 15, 1988 and noting the
deformations that occurred in each inclinometer at elevation
730 metres on February 15, 1988. These were then plotted
against the horizontal distance from the highwall crest to
obtain the deformation field, Figure 4.15.

The arithmetic plot in Figure 4.15 was converted to a
semi-log graph, Figure 4.16 which showed a striking semi-log
relationship. The intercept and slope of the line to satisfy

the semi-log equation was found, where:

Logm=Log B+hM ........0..u.... (4.1)

With:
m = Movement into the pit (northward movement) ;
B = Intercept of straight line on semi-lcg plot

(movement at the highwall crest);
h = Horizontal distance behind highwall crest;
M = Slope of semi-log line.

On Figure 4.16, a distinction was made between line S1-
§3-585 and line S2-54-S6 because the deformation modes were
not the same in the overburden. Figure 4.17 presents similar
results for elevation 721 metres, in the mudstone, on day

238, February 15, 1988. Appendix D contains the complete
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results at elevations 730 and 721 metres for all 15 dates
that a survey was conducted. The semi-log plots showed

slight differences from day to day.

4.2.4 Movement Trend

A correlation was sought between the magnitude of
movement and the time of excavation of the highwall and
coalwall. Considering elevation 730 metres on day 238, and
only line S2-S4-56, the values of B and M at this time were
400 mm and -0.0070 respectively., Day 238 was 70 days after a
new highwall was cut. By finding B and M and relating these
parameters to when a highwall or coalwall was cut, Table 4.1
and Figures 4.18 and 4.19 were generated.

Aside from one data point, 4 days after the highwall was
cut, Figure 4.18 shows B increasing from 175 mm and then
stabilizing at 350 to 400 mm. The intercept M shows a
similar trend, beginning at -0.0055 and then stabilizing at
-0.0070. Figure 4.19 presents the movements measured after
the coal was excavated from in front of the site. B
increased from 310 to 400 mm immediately after excavation and
then levelled off at 400 mm within two weeks. The slope, M
stabilized at a value of ~0.0064 in less than five days.

Figures 4.18 and 4.19 were used to investigate the creep
characteristics of the bedrock. Both B and M stabilized
within two to three weeks after either the highwall or

coalwall were cut. From this, it was concluded that most



Table 4.1
Variations in the Semi-log Equation

Day Days after| B M Days after| B M
| Number H/W cut | (mm) C/W _cut {(mm)

10 8 300 |-0.0064

36 4 310 | -0.0064
44 12 350 | -0.0064
57 25 400 | -0.0064
71 40 400 | -0.0064
92 0 175 |-0.0055

118 25 375 |-0.0070

150 8 400 | -0.0064
155 13 400 | -0.0064
173 4 375 |-0.0090

211 42 350 |-0.0070

238 70 400 |-0.0070

268 10 300 [-0.0070

295 37 350 |-0.0070

309 2 425 | -0.0070

B = Intercept of

highwall crest.

semi-log line = movement at

M = Slope of semi-log line.

'68‘
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movement due to excavation was instantaneous or elastic
rebound and that very little Creep occurred. However, these
figures reflected the general patterns over a distance of 300
metres behind the highwall crest and tended to mask the creep
behaviour within 50 metres of the highwall crest, as noted in
Figures 4.9 to 4.12,.

By combining the results of Figures 4.18 and 4.19 the
range of deformations observed at elevation 730 metres were
summarized in Fiqure 4.20. This range of movements was then

converted to a range of strains.

4.2.5 Strain Tield

Given that the deformation field could be expressed as a
function of horizontal distance from the highwall crest (Eqn.
4.1), then converting this field to a strain field was
greatly simplified. Instead of discretizing the
displacements and finding the average strain over a
particular interval, a continuous function can be obtained
for the strains by differentiating the deformation field,

The strain field is defined here as the variation in
horizontal, or lateral strains, in the bedrock behind the
excavated face. Differentiating the deformation field will

result in an expression for the lateral strain field:

where



70

€, = lateral strain, in this case it would be the

axial strain experienced by the material in

response to unloading and oriented toward

the pit;

m = deformation into the pit;

h = horizontal distance beyond the crest of the
highwall.

The differential becomes:
€, = -1nl0-B-M-10MD ... (4.3)

The negative sign is included so that the lateral strains may
be positive for presentation.

Figure 4.21 presents the range of strains in the
sandstone behind the highwall by using equation 4.3 to
convert Figure 4.20, All 6f the deformation field plots
presented in Appendix D were likewise converted to strain

filed plots.

4.3 Hydrogeology

Figures 3.1 to 3.3 present the locations of the 14
piezometers installed in the overburden and upper coal to
measure pore pressures and their response due to excavation.
Appendix F reports the variations in total hexd over time
experienced by each piezometer, noting the dates of

excavation and distance to the highwall crest. Figure 4.22
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presents typical outputs from two of the piezometer: located

at the back of the study site.

4.3.1 Pore Pressure Response

As shown in Figure 4.22,.pneumatic piezometers P13-T and
P12-B were installed 200 metres from the highwall crest, and
with successive highwall cuts moved 50 metres closer at a
time. Pore pressures at P13~T, in the sandstone, appecared to
be solely a function of drainage. Piezometer P12-B, in the
mudstone, also showed only a drainage response until the
highwall was 100 metres away. Then the trends became more
interesting. When the highwall was cut 50 metres from the
piezometer, pore pressures in the overconsolidated mudstone
behaved in a classical fashion: dropping sharply in response
to the stress relief and then recovering as steady state
seepage was reestablished. A similar trend developed when

the highwall was cut right in front of the piezometer,

4.3.2 Piezometric Model

To explore the impact of highwall rebound on the pore
pressures, a piezometric model was prepared that summarized
the pore pressure conditions throughout the overburdern. The
ultimate aim of this model was to see if the the groundwate:
flow regime was altered by the joints in the sandstone and
mudstone spreading apart.

Development of the model began by considering the

piezometric heads 200 metres from the crest and estabiishing
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the fiow conditions at that location. For example,Figure
4.22 shows that when P13-T was 200 metres from the crest, the
pressure head was 5.9 metres and when P12-B was 200 metres
away, the pressure head in the mudstone was 10 metres. Th~.se
results were plotted on Figure 4.23. In addition, the
results from the other piezometers along line S2-S4-S6 when
they were 200 metres away from the crest were plotted.

At 200 metres from the crest, the pressure heads in the
sandétone satisfied a hydrostatic flow condition, indicating
that there was no head loss in the vertical direction. The
lower part of the mudstone and upper coal also seemed to fall
along a hydrostatic trend, however, the pressures wére lower
than in the sandstone. It is probable that an impervious
layer existed at the top of the mudstone that perched the
water in the sandstone and confined the water below it.

Figure 4.24 was prepared in a similar manner for 150
metres from the crest and also shows a perched water table in
the sandstone and a confined aquifer in the lower mudstone
and upper coal. Comparing Figures 4.23 and 4.24, the
pressure heads decreased with proximity to the highwall
indicating horizontal flow to the face.

Figure 4.25 shows the pressure head distribution at 100
metres from the highwall and further illustrates the perched
findings above. However, in the lower sandstone, a deviation

developed from the hydrostatic condition.
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At 50 metres frdm the highwall, the deviation noted in
Figure 4.25 becomes extreme as shown in Figure 4.26. 1In the
lower sandstone, flow has apparently changed from horizontal
to vertical and the once impervious layer at the upper
mudstone has breached.

The trends in Figure 4.26 are reinforced in Figure 4,27
as the predominant flow direction appears to be vertical as
water from the sandstone flows through the mudstone into the
coal.

Figures 4.27 to 4.29 present the pressure head beneath
the highwall crest at different times after the highwall was
cut., In Figure 4.27, at one to two weeks arter the cut was
made, the pore pressures in the sandstone and mudstone were
low due to stress relief and vertical flow. As steady state
seepage developed over the next two weeks, the pore pressuren
recovered as shown in Figures 4.28 and 4.29.

The observations in Figures 4.23 to 4.29 led tns the
development of the piezometric model, Flgure 4,30, a
schematic of the groundwater flow pattern in Lhe overbuyrden.
Between 100 and S50 metres from the highwall crest, *he
groundwater flow changed from horizonisa! in the sandstone and
mudstone to vertical from the sandstone into Lhe mudstone and
coal. The change in flow direction «an be attributed Lo a
breaching of an impervious layer at the upper mudstane s
this layer stretched upon rebound, ca 5409 gnce tight joints

to spread apart and allow water to flow through them,
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4.4 Field !nvcstiéation ,onééim coﬁciﬁiioal
The following conclusions were drawn from the field
investigation program:

l. Bedding in the sandstone was near horizontal with
near vertical joints trending Northeast, North
North Northwest, and East-West. The joints were
moderately spaced and for the most part free of
clay infilling.

2. The sandstone/mudstone contact fingered over a
distance of 10 metres and was higher along line
$1-$3-S5 than line S2-S4-S6. |

3. The mudstone was brecciated and highly bentonitic.

4. The 100 mm thick seam of bentonite at the base of
the mudstone was presheared.

5. The combination of inclinometers and survey
support were an effective means of monitoring
absolute deformations in the bedrock.

6. The primary purpose of the inclinometers changed
from tracking magnitudes of movement to
determining modes of movement. The survevs took
on the role of monitoring magnitudes.

7. The deformation pattern and magnitudes were

different between lines S1-S3-S5 and S2-S4-S6.
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As the highwall rebounded into the pit, vertical
joints in the sandstone jand mudstone spread
slightly.

The deformation field in the sandstone and
mudstone could be represented by the deformations
at elevation 730 metres and 72! ietres

respectively. This was due to the extension of
the materials.

Beyond a distance of 50 metres from the highwall
crest, the movements after a highwall was cut were
instantaneous. Within a distance of %0 metreas,
some creep did occur of the order of a few
millimetres per day.

The deformation fieid could be easily convertod ta
3 field of lateral strains which was a measure of
how much the overburden stretched and jeynta
spread.,

The hydrogeolady at the atudy site wan COmplox

involving at least one water tabie frerrched atove

the mudstone. Beyond 100 metres fram the Highwa)l
Crest, the groundwater tended 1o 0w herirontalgy
toward the highwa!l fane Within a distance nf

100 metren, ‘he mudatcone bLegan to Lear Ay Al lowe:d

waler Vo {low through ' and inte the ecog Az a
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vertical until at the highwall it was
predominantly vertical into the coal.

Apparently, the major impact of highwall rebound
is felt between 50 and 100 metres from the
highwall. Creep was observed at 50 metres and the
groundwater flow was changed between 50 and 100
metres. |
This mohitoring program succeeded in obtaining
information, for the first time, in the critical

zone within 100 metres of the highwall crest.
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Figure 4.2 Location of slickensides observed in
core taken from hole S6, June, 1987
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5 GEOTECHNICAL PROPERTIES OF OVERBURDEN

Samples obtained from the June, 1987 drilling program
were tested in the summer of 1988, This chapter presents the
results of the laboratory testing that estimated the
geotechnical properties of the overburden sandstone,
mudstone, and bentonite. These properties were then applied

to stability analyses discussed in Chapter 6.

5.1 Index Testing

Index, or classification testing, included 80 moisture
contents, 14 grain size analyses, and seven Atterberg Limits.
A.S5.T.M. procedures (A.S.T.M,, 1986) were used throuéhout the
lab testing program. The complete results are contained in
Appendix F and summarized in Table 5.1 and Figﬁres 5.1 to
5.5.

Figure 5.1 presents the grain size curves for seven
samples of unweathered sandstone, two of which were taken
from the highwall face after a failure in April, 1988
(discussed in Chapter o). The remaining five samples were
taken from boreholes S3, S4, and S6 at different depths.
Even with the variety of sample locations, the unweathered
sandstone had a consistent grain size distribution with 70 to
90 % sand and 10 to 30 % fines. Tsui (1988) stated that the
fines are highly bentonitic and may account for the low
permeabilities experienced during triaxial testing discussed

below.
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Figure 5.2 presents the results of five grain size
analyses on the bentonitic mudstone. As with the unweathered
sandstone, the results for a variety of samples were similar
with typically less than 5% sand, 50% silt, and 45% clay.
Tsui (1988) noted that most of the silt size particles would
probably be clay platelets, even after attempting to break
down these particles by 10 minutes of blenderizing. The clay
fraction was determined by Tsui (1988) to be of
montmorillonite, kaolinite, and illite.

The grain size distribution for a single sample of
siltstone is shown in Figure 5.3. This sample had over 30%
sand and 40% silt. It was dry, hard, and crumbly upon
sampling.

Figure 5.4 presents the grain size for the bentonite and
indicates 40% silt and 60% clay. As with the bentonitic
mudstone, the silt fraction was probably dominated by clay
platelets.

Table 5.1 summarizes the moisture contents, densities,
and Atterberg Limits on samples of sandstone, mudstone,
siltstone, and bentonite. The weathered sandstone was found
to have lower water contents and densities than the
unweathered sandstone, in 1line with the effects of
weathering.

The mudstone unit beneath the sandstone consisted of

interbedded mudstone and siltstone. From the Unified Soil
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Table 5.1
Moisture Contents, Densities, and Limits
—eGae. | Avg. | Avg.
Lithology | El.| zg. | avg. Yp A PL LL IP IL CF A
m % $ kn/m3 kn/m3 % % E %
745 ] 20.9
Till to to 23.9}118.6 ]15.0
752 ] 27.9
Weathered §|738 9
Sandstone to to 11.1118.9]16.8
745 13
Unweathered| 723 ] 12.8
Sandstone | to to 15.5120.4]17.7
738 ] 25.5
719] 16.9 21 S8 34 |-0.42] 55 0.58
Mudstone to to 19.6119.8|16.6} to | to | to to to to
7251 23.0 38 | 74 | 43 |-0.03]| 65 0.70
17 147 | 29 |-0.36] 31 0.62
Siltstone |721]14.6 |114.6]21.7]18.8 to {to | to to to to
25 S4 30 |-0.08] 47 0.97
Bentonite |719]50.9[50.9]116.8 |11.1] 51 146} 95 |0.00 ] 78 1.22

rg.=range

LL=Liquid Limit

avg.=average

IL=Liquidity Index

Yp=total density

P;=Plastic Limit
CF=Clay Fraction

Yq=dry density

IP=Plasticity Index

A=Activity
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Classification (USC), the siltsone, mudstone, and bentonite
were all described as CH: a highly plastic inorganic clay.
Figure 5.5 presents the results of the Atterberg Limits that
lead to this classification and shows that the different
samples of mudstone and siltsone had very similar limits,
The results presented here are in agreement with the findings
of Tsui (1988) and other workers in the area (Barron et al
1986, Wade and Peterson 1986).

The Liquidity Indices, Ie for the mud- and siltstone
were between -0.4 and zero, indicating that the mudstone unit
was overconsolidated. Activities for the unit ranged from
0.58 to 0.97, confirming the presence of montmorillonite.
Tsui (1988) found that half of the clay minerals in the
mudstone were montmorillonite, a third illite, and the
remaining sixth kaolinite.

The bentonite layer had a plasticity index of 95 &, I
of zero, and an activity of over 1.2. These characteristics

pointed to an overconsolidated clay rich in montmorillonite.

5.1.1 Clarification of Terms

The terms sandstone and mudstone are used frequently in
this thesis. Sandstone is used to describe the cemented
sands underlying the till. To be considered a rock, this
strata should have an unconfined compressive strength over
one megapascal (Coates, 1981). 1In fact, the actual strength

is less than this and this unit should be referred to as
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cemented sand, However, it does possess several
characteristics of rock, for example jointing, and for this
thesis is considered to be a very soft rock.

The term mudstone in this thesis collectively applies to
the interbedded silty clays, clays, and in some instances
coal that make up the unit beneath the sandstone and above
the coal, To be precise, the mudstone should have an
undrained shear strength greater than 1.8 MPa (¢,=250 psi,
Morgenstern,1979). However, Tsui (1988) noted that the
undrained shear strength of the materials at Highvale ranged
from 65 to 107 kPa, far less than the 1800 kPa boundary.
This strata would therefore be properly described as a stiff
clay or clay shale (Morgenstern, 1979). Nevertheless, for
simplicity and to maintain consistency with the terminology

used by other workers in the mine, the term mudstone is used.

5.2 Triaxial Testing

Consolidated Undrained (CU) tests were performed on four
samples of unweathered sandstone and three samples of
mudstone. Three- Consolidated Drained (CD) tests were
conducted on the unweathered sandstone. Initially, all of
the sandstone samples were to be tested in a CU manner,
However, the permeability of this material was so low that
the tests had to be run over several days. Moreover, during
shear, the pore pressures passed below atmospheric pressure

and beyond the capacity of the measurement system.
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Consequently, after four CU tests, the testing prégram was
revised to include three CD tests.

The low permeability mudstones were sheared in an
undrained manner at a strain rate that required over a week

to reach failure.

§.2.1 Unweathered Sandstone

Five of the seven triaxial samples on unweathered
sandstone were 37 mm in diameter while the other two were 100
mm. The larger samples were taken by the Pitcher sampler
(Section 3.2). Each sample was twice as long as it was wide
to satisfy end constraint conditions. Details of the sample
preparation were in accordance with the procedures outline by
Bishop and Henkel (1962).

The four CU tests on the sandstone were all performed
under a confining stress of 200 kPa to compare different
samples.‘ The three CD tests were run at stress levels of
100, 200, and 500 kPa. The samples tested at 100 and 500 kPa
were the 100 mm diameter Pitcher samples.

Figures 5.6 and 5.7 present the stress-strain curves for
the sandstone from the CU and CD tests. Each of the tests
showed strain softening. The peak stresses are plotted in a
pP-q stress space in Figure 5.8, resulting in an angle of
internal friction, ¢,of 44° and a cohesion intercept of 100
kPa. It was anticipated that the results from the 100 mm

samples would lie below the failure envelope as a result of a
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greater number of fractures. The sample under a cgnfining
stress of 100 kPa did fall well below the envelope, however
the sample at 500 kPa confining stress did not. A conclusion
regarding the effect of sample size on shear strength could
not be drawn in this instance.

Residual strength values for the seven tests are plotted
in Figure 5.9 and indicate ¢ = 40° and ¢ = 0 kPa,

Wade and Peterson (1986) selected values of 45° and 100
kPa for the friction angle and cohesion in their stability

analyses while Tsui (1988) used § = 40° and ¢ = 0 kPa in his

work.

5.2.2 Mudstone

Three CU tests were conducted on the mudstone at stress
levels of 200, 300, and 450 kPa with the results presented in
Figures 5.10 and 5.11. A peak friction angle of 28° and
cohesion of zero was obtained from these tests.

The undrained triaxial shearing did not show strain
softening characteristics, leading to coincidental peak and

residual strength parameters.

Monenco (1983) used § = 25° and ¢ = 0 kPa for stability

calculations. Tsui (1988) found @ = 22.5° and ¢ = 0 kPa at

peak from CU testing. Tsui (1988) plotted test results on
the bentonitic mudstone from a number of diffe;ent sources,

This plot is summarized in Figure 5.12. The test results
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showed a maximum peak friction angle of 37.5° and a maximum
cohesion of 135 kPa,

Figure 5.12 also presents the range of residual strength
values measured by several workers at the Highvale Mine and
shows a band of residual friction angles from 6.5° to 22.5°.

A mean value of 11.5° was determined.

Softening of Mudstone

CU tests conducted on the bentonitic mudstone in this
study may have subjected the sample to premature softening.
This is evidenced by a peak cohesion intercept of zero for an
obviously overconsolidated soil or soft rock.

In general, the softening process requires the presence
of micro-fractures and joints to permit free water to enter
the material. When water comes into contact with surfaces
that had previously not been soaked, then the strength along
these surfaces is reduced and, so is the strength of the
material. The process is accelerated if the confining
stresses are reduced and the fractures are allowed to spread
apart, exposing new surfaces to the water.

In a triaxial test, the sample should first be subjected
to a confining stress that returns the sample to its original
in-situ stress state in order to return the fractures and
joints to their original closure. Then, when water 1is
introduced to the sample, as during back pressure saturation,

it will come into contact with those surfaces that had



previously been softened and no further réduction in strength
will take place., However, if the confining stress in the
laboratory is less than the in-situ stress state, then
additional softening can develop,

In this study, during the consolidation stage of the CU
tests, the samples were subjeqted to effective confining
stresses of 15 to 100 kPa, approximately 300 kPa less than
the original vertical in-situ stress (the horizontal in-situ
stresses may have been even larger). This procedure no doubt
led to softening of the mudstone before the final confining
stresses of 200, 300, and 450 kPa were applied. The small
confining stresses were used during back pressure saturation
to ensure that the confining stress did not exceed the
proposed final stress condition. Consequently, the strength
of 0 = 28°, ¢ = 0 kPa obtained from these tests may be more
representative of a softened strength for the mudstone.

Additional CU triaxial tests on this material must
recognize the potential for softening. To minimize the
effect, the following pProcedure is recommended:

l. Firstly, select an effective confining stress that
is greater than the in-situ stress state and will
be applied during back pressure saturation. In
this instance, a value of 400 kPa may be chosen,
The final effective confining stress just before

shear will be greater than this value.
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Apply the selected stress to the sample,
preventing the entry of any water by closing the
back pressure lines.

Increment the cell pressure by approximately 50
kPa. The sample will now have been subjected to a
maximum confining stress of the selected pressure
plus 50 kPa (450 kPa in this instance).

Perform a B-bar test for this increment.
Increment the back pressure 50 kPa and
consolidate,

Repeat steps 3 to 5 until saturation is achieved.
Increase the cell pressure to the final effective
confining stress. Ensure that this value 1is
greater than the confining stress exerted on the
sample at any time during saturation,

Shear the sample.

The potential for softening in the CU test was not

recognized in this study until the triaxial testing program

was completed. An effort was then made to obtain an

"unsoftened strength" in the direct shear test by not adding

water to the shear boxes.
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5.3 Direct Shear Testing

5.3.1 Mudstone

Two samples were tested under direct shear with the
results reported in Figures 5.13 and 5.14. The direct shear
boxes were not filled with water in order to restrict the
potenﬁial for softening. In addition, the boxes were
enclosed in cellophane tc minimize evaporation. Horizontal
displacement rates of 0.0006 mm/min were applied to ensure
complete drainage. Normal stresses of 200 and 500 kPa were
used and resulted in a Mohr~Coulomb failure envelope with a ¢
of 35° and cohesion of 125 kPa. This is shown in Figure 5.14
and, for comparison, the triaxial test results on the same
material are shown. The peak strength for the mudstone
approached the upper limit shown in Ficure 5.12.

The tests were run with the shear boxes dry in an
attempt to minimize the effect of softening, however an
alternative problem developed. The initial saturation of
these samples was 90% and 95%, and by preventing water from
entering the samples, then they remained unsaturated
throughout the test. Consequently, the pore water pressures
were unknown and the effective stresses could not be
determined. Therefore, the failure envelope through the
direct shear data points in Figqure 5.14 is in terms of total

stresses and not effective stresses.
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In unsaturated soils, the porewater pressures are
typically negative, hence the effegtive stress envelope for
the direct shear results would lie to the right of the total
stress envelope. It is not known where the effective stress
envelope would be found, however it is interesting to note
that the total stress envelope compares favourably with the
maximum results from Figure 5.12. For this study, the total
stress envelope may represent an upper bound of the shear
strength of the mudstone.

After peak was reached in the direct shear test, then
the shear box was hand cycled four to six times in an effort
to achieve residual conditions. Total displacement at the
start of residual shear was about 40 mm, The samples were
sheared and the results plotted in Figure 5.15 (for normal
Stresses of 200 and 500 kPa) . Then the samples were
unloaded, from 200 to 120 kPa and from 500 to 300 kPa, and
allowed to swell. Shearing was repeated and the results also
plotted on Figure 5.15. A crude residual envelope may be fit
through these points, considering that residual may not have
been fully reached during the first stage on the sample at
200 kPa. The total stress residual friction angle of 22°
found from the direct shear tests falls within the range
stated above,

Examination of the samples after the tests showed flat

shiny surfaces believed to be at residual conditions.
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5.3.2 Bentonite

Only one sample of bentonite was competent enough for
direct shear testing. The sample was tesﬁed in an identical
fashion as the mudstone direct shear tests, where additional
water was not allowed to enter the sample. An initial normal
stress of 100 kPa was applied and the sample sheared at a
rate of 0.,0006 mm/min with the stress-displacement curve
shown in Figufe 5.17. Difficulties with the data logging
system resulted in a gap in the data between a horizontal
displacement of 1.8 and 3.8 mm. Some information was
obtained to indicate that the trend shown over this gap is
reliable,

After the initial shear, the shear box was hand cycled
to attain an additional displacement of about 40 mm before
shear was restafted. After consolidation, shearing was
continued for 4 mm as shown in Figure 5.17, The shear box
was then re-aligned, an additional 100 kPa stress applied,

consolidation allowed under the 200 kPa, and then shearing

restarted. A third stage was also performed under a normal
stress of 500 kPa. These results are shown in Figure §5.17
and 5.18, It is possible that residual conditions were not

attained during the first stage under 100 kPa because the
horizontal displacement of 40 mm may not have been enough to
reach residual. Examination of the sample after the third
stage of testing showed two flat and shiny surfaces, no doubt

at residual.



The direct shear test results for the bentonite suffered
the same fate as the results for the mudstone: that the
strength envelope in Figure 5.18 is in terms of total
stresses and not effective stresses. Interestingly, the lone
peak strenéth value plots closely to the curve obtained by
Tsui (1988) while some scatter exists about a residual
envelope, Furthermore, the total stress residual friction
angle of 12° was in line with Tsui (1988) who found ¢, =
11.5°. Tsui also reports that a minimum value of 8.5° is

possible for bentonite in the Upper Cretaceous Edmonton

Formation,

5.4 Conclusions from Laboratory Testing

Index tests showed that the materials over the study
site were uniform in the horizontal dimension. This allows
the investigator to compare the findings at one location to
another.

Even though the advanced testing program was limited in
its scope, and it had some difficulties, the results
corresponded well with previous work on similar materials.
Furthermore, the requirements of providing strength estimates
for the stability analyses in Chapter 6 were met. Table 5.2
summarizes the strengths that were considered for the

stability calculations.
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Table 5.2
Summary of Strengths
MATERIAL REAK_STRENGTH RESIDUAL STRENGTH
¢ c ¢r c

Sandstone 44° 100 kPa 40° 0 kPa

Mudstone
-total stresses 35° 125 kPa 22° 0 kPa
-effective stresses 37.5° 135 kPa 6.5° 0 kPa

to 22°

Softened Mudstone 28° 0 kPa

Bentonite
-total stresses 12° 0 kPa
-effective stresses 21° 47 kPa 11.5° 0 kPa
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6 ANALYSIS OF FAILURE

One of the objectives of this thesis was to evaluate how
the strength of the sandstone and mudstone were influenced by
excavation in soft rock. The best way to meet this objective
was by a failure of the highwall, Fortunately,one occurred
in the highwall, north of the study site in the spring of
1988 that was large enoﬁgh to show the strengths mobilized at
the highwall, yet small enough not to hamper mining
activities.,

An additional benefit from such a failure was
illuminating the processes that lead to instability, This

factor is of importance when considering remedial or

monitoring programs.

6.1 Failure Description

The highwall failed in front of inclinometer S4, Figure
6.1, on Cut 21 in late March and early April, 1988. On March
12, 1988, the dragline had completed overburden stripping at
this location and the failure occurred one to four weeks
after that time. It was contained in the highwall and did
not extend into the bench.

The failure initiated in front of S4 and progressed over
100 metres eastward along the highwall. Figures 6.2 and 6.3
show cross sections through the failed area and indicate the

geometry and stratigraphy before failure and the post failure

topography.
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At the western end of the failure, two grabens had
developed indicating two distinct slips had occurred. On the
eastern half, no grabens were present and it was inferred

that a single failure took place there.

6.1.1 8lip Surface Geomatry

It was likely that the base of the failures was in the
100 mm thick bentonite seam located just above the coal
sequencé. Significant movements had been measured in this
seam before failure (Section 4.2) and its location satisfied
the post failure geometry.

The backscarp for the failures, Figures 6.2 and 6.3,
were visible in the sandstone inclined 80° to 85° to the
horizontal. With the basal slip plane and a portion of the
backscarp known, then the likely location of the complete
slip surface was estimated as shown in Figures 6.2 and 6.3.

Based on the above observations, the failure was best
described as an "earth block slide" in accordance with the
classification put forth by Varnes (1978). Other workers at
the Highvale Mine have termed this to be a composite failure
combining a steep rotational slip plane at the backscarp with
a near horizontal basal plane (Wade and Peterson 1986, Fenton
et al 1986, and Tsui 1988).

Section A-A' in Figure 6.2, was considered for back
analyses of the failure, since two distinct slides had

developed at that location. The failure closest to the toe
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was referred to as the "toe failure" with the second one

called the "rear failure".

6.1.2 Time of Failure
The timing of the failures was not precisely known,
however, the highwall was intact on March 18, 1988 with the
failure first observed by this author on April 7, 1988, 32
days after the highwall was cut in front of S4. At that
time, both failures had taken place at Section A-A' and the
rear failure had progressed beyond Section B-B'. In the week
after April 7, 1988, the rear failure continued eastward for
approximately another 20 metres before tﬁe highwall finally
stabilized.
To establish the timing of the failures, the surface
features were examined and the following observations noted:
1. On April 7, 1988, much debris had collected on the
graben of the toe failure, Fiqure 6.2, while the
graben for the rear failure was not littered to
the same extent. The rear graben still possessed
the surface features of the slope face.
2. The backscarp of the rear graben was damp and had
not yet dried like the toe block.
It was concluded from these observations that the rear
failure probably occurred shortly before April 7, 1988 and
that the toe failure preceded this by two to three weeks.

Hence, for the back analyses, it was assumed that the toe
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failure took place one to three weeks after the highwall was
cut (between March 18 and April 2, 1988) and the rear failure
occurred three to four weeks after the cut (on approximately
April 4, 1988).

Figures 6.4 to 6,6 illustrate how the failure probably
progressed over time at Section A-A', Figure 6.4 represents
the highwall immediately after it was cut on March 12, 1988
and before the failure commenced. Between March 18 and April
2, 1988, the first slip took place at the toe, as shown in
Figure 6.5. On about April 4, 1988 the rear slide developed
at Section A-A' as shown in Figure 6.6. It is likely that

the slide at Section B-B' followed the failure at A-A'.

6.1.3 Water Pressures

It was fortunate that the failure occurred in front of
the most instrumented section of the study site. The
hydrogeological results presented in Section 4.3 (Figures
4.22 to 4.30) could then be utilized in the failure back
analyses. The pore pressure trends presented in that section
were extrapolated to the rear and toe failures by assuming a
parabolic decrease in pressure head toward the toe. Recall
that the groundwater flow near the highwall face changed from
horizontal to vertical from the sandstone through the
mudstone and bentonite. The piezometric records indicated
that negative pore pressures were unlikely on the slip plane

in the mudstone.
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Figures 6.7 and 6.8 show the assumed water §ressu;e
distributions one to two weeks and two to three weeks after
the highwall was cut. These were used in the analyses for
the toe failure, Figure 6.9 presents the piezometric head
three to four weeks after the cut was made, applicable to the

rear failure,

6.1.4 S8trength Estimates
In the back analysis of the failures, meaningful

estimates of the sandstone, mudstone, and bentonite strengths
were necessary. The laboratory strengths reported in Table
5.2 provided guidelines for these estimates, but, it was
recognized that the effect of discontinuities in the rock
mass and rebound due to excavation would prevent these
laboratory values from adequately explaining the failure. It
was expected that cohesion in the sandstone and mudstone
would have a dominant role in the analysis, and therefore,
estimates of the friction angle were made and the cohesion
left unassigned. The magnitude of cohesion mobilized at

failure was then determined through back analysis.

Sandstone

Failure in the sandstone was assumed to be partly
controlled by the near vertical joint set that trended East-
West, parallel to the highwall crest (Section 4.1.1).
Exposures of the near vertical slip planes at the backscarp,

Figures 6.2 and 6.3, were free of any clay and it was
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therefore assumed that the upper part of the slip plane
travelled along a clean joint. Beneath the visible poftion
of the slip surface, it was assumed that failure took place
along other joints and through blocks of intact sandstone.

For the analyses, the part of the slip surface exposed
after the failure was assigned residual strength parameters
to model the presence of a joint, ¢ = 40° c = 0 kPa. The
remainder of the slip surface in the sandstone was expected
to have a friction angle ranging from the residual value of
40° to a peak of 44°., The cohesion along the lower part of

the slip surface in the sandstone was found by back analysis.

Mudstone

For the mudstone, the scale of the failures was large
compared to the small joint spacing. Consequently, it was
assumed that the mudstone would behave in a homogeneous
fashion. The peak friction angle of 37.5° obtained from
intact samples in the laboratory was initially considered as
an upper bound for the frictional strength at failure.
However, it was believed that the fissured nature of the
mudstone would discount this value and, furthermore, water
was available to generate softening.

Alternatively, if the slip planes had been along pre-
existing discontinuities in the mudstone, then the residual

strength of the material, ¢, = 6.5° to 22° would have been a

minimum for the strength at failure.
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It was assumed that the slip plane through the mudstone
was a combination of shear along joints and through intact
lumps, both of which probably experienced a degree of
softening., Therefore, for the analyses, an intermediate
friction angle of 22° was selected to reflect the combined
effects. This was close to the value used by Tsui (1988),
and in addition, it was recognized that the mudstone unit was
not thick enough for variations in the friction angle to make
a large difference. The cohesion mobilized in conjunction

with this friction angle was found by back analyses.

Bentonite

In Section 4.1, it was concluded that the bentonite was
presheared and residual strength parameters should be applied
in stability analyses. A residual angle of 12° was measured
in the laboratory on samples near the presheared plane,
however, e#perience with this material has found that the in-
situ slip plane may have a lower strength. As a result, an
angle of 10° was chosen as a lower bound of the strength
along the basal slip plane. Since the bentonite was
presheared, then the cohesion was set to zero throughout the
analyses,

Table 6.1 summarizes the estimates of material strengths

that were used in the failure analyses.
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Table 6.1
Estimates of Strength Mobilized at Failure

MATERIAL FAILURE STRENGTH
o c

Upper Part of Sandstone (joint) 40° 0
Lower Part of Sandstone 40° to 44° BA
Peak Strength of Mudstone 37.5° ?
Intermediate value for Mudstone 22° BA
Lower bound for Mudstone 6,5° 0
Bentonite 10° 0 kPa
8° 0 kPa

BA - To be determined by back analysis

6.2 Failure Back Analysis

6.2.1 Limit Equilibrium Method

Two dimensional, limit equilibrium methods of stability
analysis were used to determine the strength parameters
nobilized at failure. The slip planes, water pressures, and

frictional strengths described in Section 6.1 were input and
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the sandstone and mudstone cohesions varied until a Factor of
Safety of unity was achieved.

Computations were performed with the aid of a personal
computer and the slope stability program PC-SLOPE (Fredlund,
1985) ., PC-SLOPE determined a Factor of Safety (FOS) based on
General Limit Equilibrium; calculating a FOS that satisfied
moment and force equilibrium. The distribution of interslice
shear forces could be selected and, by varying their
magnitude, then a single Factor of Safety was obtained that
simultaneously satisfied all equilibrium. The results of the
computer program were extensively checked by hand
caiculations using the Janbu Simplified Method of slope
stability which satisfied only force equilibrium.

Drained conditions were assumed throughout the analyses.
This wés expected because of the fissured nature of the
materials to adequately dissipate excess pore pressures.

The interslice shear force distribution used for these
analyses was based on a finite element formulation (Fredlund,
1984) and the magnitude of the interslice shear forces was
apportioned by the variable, A. For further information on
the details of limit equilibrium methods of stability

analysis, the reader is referred to (Fredlund, 1984).

6.2.2 Example of Results
For each analysis, the problem geometry, water

pressures, and friction angle of the sandstone, mudstone, and
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bentonite were held constant. A value of cohesion was
assigned to the sandstone (i.e. 0, 5, 10, 15 kPa, etc) and a
value for mudstone cohesion assumed. PC-SLOPE was then used
to determine the FOS that satisfied force and moment
equilibrium over a range of A's,

As an example, the stability of a potential slip surface
at the toe, Figure 6.10(a), was considered with the
parameters shown in Table 6.2. Note in Figure 6.10(a) that
the upper part of the slip surface was assigned zero cohesion
to model the presence of a joint, The results from the
analysis are presented in Table 6.2 while Figure 6.10(b)
plots the force and moment equilibrium FOS against A to
determine the value of FOS that satisfied all equilibrium.
In this instance the FOS at all equilibrium was found to be
1.06,

A second value of mudstone cohesion, 20 kPa, was then
assumed and a FOS of 0.84 calculated. Table 6.3 and Figure
6.11 present the results from three trials that varied the
mudstone cohesion and bracketed a FOS of unity. This
procedure then determined that a mudstone cohesion of 35 kPa
would have been mobilized at failure, assuming that the other
assumptions were correct.

The analysis was continued by assigning additional
values of sandstone cohesion and determining the
corresponding mudstone cohesion at failure, These results

are discussed below.



Table 6.2

Example of Stability Analysis for Toe Failure

loput _Parameters:

Geometry in Figure 6.11(a)

Water Pressures at one-two

weeks after highwall was cut.
Bentonite ¢ = 10°

Sandstone ¢ = 40°

Sandstone ¢ = 10 kPa, below joint
Mudstone @ = 22°

Mudstone ¢ = 40 kPa

= O O o ©

2
4
.6
8

.0
Factor of Safety at all Equilibrium from Figure
6.11(b) is 1.06

R lts of Stability Analysis:
A

Factor of Safety

Eoxce Moment
0.97 1.12
0.99 1.10
1.01 1.09
1.03 1.08
1.05 1.07
1.06 1.06

RS KT



surface and determined the FOS along it.

exposure of the backscarp,

Table 6.3
FOS for Toe Failure Determined at

Selected Values of Mudstone Cohesion

{nput Pagzameters:
- Geometry in Figure 6,11 (a)
- Water Pressures at one-two
weeks after highwall was cut.
- Bentonite 0 = 10°
-~ Sandstone ¢ = 40°

- Sandstone ¢ = 10 kPa, below joint
- Mudstone @ = 22°

Mud cohesi (XPa) FOS at all Equilibri

40 1.06

30 0.95

20 0.84
From Figure 6.11, Mudstone Cohesion = 35 kPa
at FOS = 1.

6.3 Analysis of Toe Failure
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The above example assumed the location of the slip

Since the actual

location of the slip surface was unknown below the visible

then it was necessary to assume
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several slip surfaces and determine the most critical one.
The geometries assumed for this search are shown in Figure
6.12. Utilizing the same water pressures and strength
parameters as in Table 6.2, the FOS for each slip surface was
determined and reported in Figure 6.12. The slip surface
with the lowest FOS was assumed to be most representative of
the actual slip surface,

With the 1likely actual slip surface geometry
established, then the stability analyses were continued by
assuming a new valué for the cohesion in the sandstone and
determining a corresponding cohesion mobilized in the
mudstone at failure. The results of this work are presented
in Figure 6.13.

During the analyses, when a sandstone cohesion greater
than 20 kPa was used, then the force and moment equilibrium
FOS would not converge and a solution was not possible.
Hence, extrapolations beyond this level of sandstone cohesion

are tentative, as shown in Figure 6.13.

6.4 Analysis of Rear Failure

As in the analysis of the toe failure, several slip
surface combinations were explored to determine the critical
one. Figure 6.14 shows three of the potential slip planes
and the calculated FOS. The slip surface with the minimum
FOS was then assumed to be the likely location of the actual

failure plane.
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Values of sandstone cohesion were varied and the
corresponding mudstone cohesions at failure back calculated
in the same manner as in Section 6.3 with the results shown

in Figure 6.15.

6.5 Influence of Pore Pressure Assumptions

The above analysis of the toe failure used the water
pressure distribution at one to two weeks after the highwall
was cut. Since it was possible that the toe may have failed
two to three weeks after the cut was made, then the pere
pressure distribution (Figure 6.8) was adjusted to reflect
this. The resulting combination of mudstone and sandstone
cohesions is shown on Figure 6.14, Although the water
pressures were increased twofold, their absolute magnitude
was so low to begin with that there was not a significant
impact on the results.

At the rear failure, the assumed pore pressure
distribution at three to four weeks after the highwall was
cut (Figure 6.9) was considered realistic and did not require
adjustment,

As shown in Figures 6.7 to 6.8, the pore pressures
experienced a recovery from the effects of stress relief to a
steady state flow condition. This took approximately four
weeks to develop and could partly explain why the failures

did not occur immediately after the highwall was excavated.
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6.6 Combined Results

Figure 6.16 combines the results from the back analyses
of the toe and rear failures and illustrates a dramatic
difference between the strengths mobilized at the two
failures. The effect of increasing the bentonite friction
angle from 10° to 12° is also presented and was found to have
a slight impact on the results. Because of the sensitivity
of these findings to the bentonite strength, it is
recommended that field shear box tests be performed to
accurately establish this variable.

Additional parametric analyses were performed that
varied the sandstone friction angle from 40° to 44°land the
mudstone friction angle from 12° to 37.5°. The findings of
these analyses are not reported here since they changed by
less than 5%,

Figure 6.16 shows that for any value of sandstone
cohesicn, then the mudstone cohesion decreased from the rear
failure to the toe failure. The same can be said about the
sandstone cohesion for any value of mudstone cohesion. It is
possible that both the sandstone and mudstone cohesion
simultaneously decreased from the rear to the toe. Hence, it
can be concluded that the sandstone and mudstone strengths

decreased with proximity to the highwall toe.
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6.7 Effect of Lateral Straining on Strength Reduction

Several processes were no doubt involved in decreasing
the rock strength from the rear to the toe failures, such as
local variations in structure and so on. But, the most
dominant difference between these two locations was how they
were affected by overburden excavation. In Section 4.2.2, it
was concluded that rebound due to excavation caused the
sandstone and mudstone to undergo significant lateral
straining with the magnitude of strain increasing toward the
highwall toe. It is conjectured here that the material
stréngth may be inversely related to this lateral straining.
That is, with more strain, then less strength might have been

available.

6.7.1 Conceptual Model of Strength Reduction

Figure 6.17 illustrates conceptually, how the strength
of the sandstone and mudstone might have decreased with
proximity to the highwall toe due to lateral straining.
Beyond the zone of influence of excavation, where the lateral
strains were effectively zero (i.e. beyond a distance of 300
metres from the highwall crest, as found in Section 4.2.2),
then it is likely that the material, or rock mass strength
was a maximum, At some point within the zone of influence,
the lateral strains probably led to a reduction in strength,

reaching a minimum at the highwall toe.
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The actual extent and rate of strength decrease is
unknown, but, the failure at Section A-A' (Figure 6.2) has
provided valuable insight into how the strength decreased in

the region between the highwall crest and toe.

6.7.2 Estimate of Lateral Strains at TFailure

Deformation measurements were taken on March 17, 1988
and April 13, 1988, before and after the failures had
developed. The lateral strain field at these dates is shown
in Figure 6.18 while Table 6.4 summarizes the strain data at
the location of the toe and rear failures. The data in Table
6.4 must be treated with caution, since it was obtained by
extending the known strain field beyond the highwall crest to
the toe, Figure 6.28, where strain measurements were not
possible.

The variation in strain over time at the toe and rear
failure locations is shown in Figures 6.19 and 6.20 with the
results for March 17 and April 13, 1988 shown as clear
symbols. Additional strain data was plotted as dark symbols
for similar positions in the highwall after the three
previous cuts on June 25, 1987, September 23, 1987, and
December 9, 1987. Interestingly, the strains were similar
after each cut was made.

Curves fit through the points on Figures 6.19 and 6.20

(ignoring the anomalous strain at December 13, 1987) were
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Table 6.4
Lateral Strains on March 17, 1988
and April 13, 1988
Number of Lateral
Date Days After Location Strain
Highwall Cut (%)
Mar. 17, 5 Toe Failure 0.62
1988 Rear Failure 0.54
April 13, 30 Toe Failure 0.70
1988 Rear Failure 0.62
transferred to Figures 6.21 and 6.22. These figures were

then used to estimate the strains at the time of failure.
When the toe failed, one to three weeks after the
highwall was cut, the lateral strains at the time of failure
were estimated to be between 0.65% to 0.72%. When the rear
failure occurred, the strains were approximately 0.64% to
0.66%. Although the difference in strains was subtle, the
increase might have been large enough to trigger a decrease
in strength. It is also possible that the extension of the
strain field beyond the highwall crest was not accurate and

that strains near the toe were greater than estimated.
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Because the lateral strains apparentiy affected the rock
mass strength, then it is recommended that a method be
developed that would measure the strains immediately at and

behind the highwall face.

6.7.3 Consider Stable Highwall in Front of 83
In the previous section, it was tentatively concluded
that the higher strains resulted in a lower rock mass
strength. The trend was subtle and subject to potential
problems with extending the strain data beyond the highwall
crest. But, this conclusion received support when the
highwall in front of S3 was considered. As shown in Figure
6.1, the highwall remained stable and implied that the rock
strength was greater than in front of S$4.
Two differences existed between these locations:
1. The sandstone/mudstone contact was two metres
higher in front of S3 than in front of S4;
2. The deformation and strain fields were different
between the two locations (Section 4.2).
Could the two metres of additional mudstone in front of
S3 have been so strong to account for the increase in overall
strength? Examination of the borehole and geophysical
records did not indicate that the extra two metres of
mudstone was remarkably strong and could make an impact on

stability. Therefore, the strain field was examined to
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explain the apparent difference in strengths between line S3-
S5 and S4-S6.

Figure 6.23 presents the strain field on March 17, 1988
along lines S4-S6 and S3-S5. It shows that five days after
the highwall was cut, the lateral strains along line §4-S6
were greater than along line S3-S5. As listed in Table 6.4,
the lateral strains at the toe and rear failure along line
S§4-S6 were 0.62% and 0.54%, respectively. Along line S3-85,
where the highwall was stable, the'lateral strains were found
to be 0.20% less.

This observation supported the conclusion that greater

lateral strains resulted in lower strengths.

6.8 Progressive Loosening and Softening

The above discussion concluded that as the highwall
rebounded into the pit, there was a reduction in strength of
the sandstone and mudstone due to lateral straining. Two
mechanisms were likely at work: progressive loosening and

progressive softening.

6.8.1 Progressive Loosening

In Sections 4.2.2 and 4.3.1, it was determined that the
lateral straining caused joints to spread. Figure 6.24
illustrates schematically this phenomenon andAis the basis
for the mechanism of "Progressive Loosening", where the

strength decreased as the material loosenea. It is believed



that loosening reduced the strength of the sandstone and
mudstone in two ways:

l. As the jcints opened wider, then the normal
stresses and dilatancy reduced. This caused a
decrease in shearing resistance along the joints.

2. The intact blocks of sandstone and mudstone
likely slid over one another and reduced the
contact area between them. The contact stress
vetween the blocks would have increased and might
have led to local shearing through the blocks
themselves,

Loosening is termed progressive since it was a function
of lateral straining, It is probable that progressive
loosening damaged the sandstone moie than the mudstone

because of the former's block-like and brittle nature.

6.8.2 Progressive Softening

Although progressive loosening might have developed in
the mudstone, it was more likely that "Progressive Softening"
was at work as the opened joints permitted water to
infiltrate the mudstone and soften it. As shown in Figure
4.28, the lateral straining caused the ground water flow
regime to alter direction and allow water to seep from the
sandstone through the mudstone into the coal below. Not only
were fresh surfaces exposed by joint widening, but the amount

of water to contact these surfaces also increased. The
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result would have been an acceleration of the softening
process in response to lateral strain, i.e. progressive
softening. Figure 6.25 presents a schematic of the
progressive softening mechanism that may have developed with
increasing water content,

Clay shales (mudstone at Highvale Mine) are renowned for
their susceptibility to softening. In fact, a failure in
Cretaceous clay shale near Devon, Alberta, 60 km east of the
Highvale Mine, was adequately explained by assuming softened
parameters for the clay shale (Eigenbrod and Morgenstern,
1972).

Progressive softening may have also developed in the
sandstone because it contained a significant amount of
montmorillonite.

Together, the progressive loosening and softening
mechanisms satisfactorily explained the overall progressive

reduction in strength.

6.9 Concept of Critical Strain

In Section 6.4.3, it was stated that the toe failed when
the lateral strains reached 0.65% to 0.72% and that the rear
failure occurred at lateral strains of 0.64% to 0.66%. The
reader may have concluded that when the lateral strains
exceeded approximately 0.65%, then failure was imminent.
This was not necessa:r.ly the case and the statement of a

"critical strain of 0.65%" could be misleading.
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Over the duration of the monitoring program, several
sections of the highwall experienced lateral strains greater
than 0.65% and did not fail, Figures 6.19 to 6.22 showed how
the strains developed after four different highwalls were
cut. All four had lateral strains above 0.65% but only one
of them failed,.

More evidence is available to caution use of the concept
of a critical strain. Figure 6.26 presents the strains along
line S2-54-S6 after the coalwall was cut. These strains were
found at a distance of 15 metres beyond the highwall crest,
coincident with the location of the toe failure on Cut 21.
Figure 6.26 shows lateral strains of 0.73% were mobilized
after the coalwall was cut, yet three of the four highwalls
monitored during this program continued to stand.

Furthermore, the lateral strains along line S1-S3-S5
tended to exceed 0.65% after the coalwall was cut and the
highwall remained intact throughout. Figure 6.27 shows the
general development of strains 15 metres beyond the crest
from the time when the highwall was cut to after the coal had
been excavated and indicates that lateral strains developed
in excess of 0.65%.

While a variation in pore pressures may partly explain
the absence of failures at some locations, there must have
been an additional feature that separated the failed section
from the others. This feature was probably an unfavourable

joint orientation in the sandstone that was not encountered
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elsewhere, Structure in the mudstone was likely limited
because of its brecciated nature.

More strain information |is required to develop a
database of strains that lead to failure, This study

provides a starting point for such a database.

6.10 Failure Mechanism
The above discussion put forth several concepts and
ideas that satisfactorily explained the failure on Cuﬁ 21 in
March and April, 1988, The key features of the failure
mechanism were the progressive reduction in strength as a
result of lateral straining and the sandstone structure,
Secondary contributors to the failure were the presheared
bentonite and recovery of water pressures after excavation.
Succinctly, the failure mechanism may be described as
follows:
Excavation rebound resulted in a progressive
loosening and softening of the sandstone and mudstone.
This decreased their strengths to unstable levels and,
when combined with unfavourable jointing in the
sandstone, resulted in a failure of the highwall.
Lt is speculated that if the toe block had not failed,
then the rear block might have remained stable. This
particular aspect is ventured without proof, but is worthy of

consideration when designing remedial measures (section 7.2).
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6.11 CQ;njaazison vith other sc;ﬁility Investigations at
Righvale

As discussed in Section 1.2.5, several workers have
previously performed stability investigations at Highvale.
The stability models prepared by these authors and their

estimates of strength are detailed below.

6.11.1 Wade and Peterson (1986)

Wade and Peterson (1986) investigated the stability of
the highwall in Pit 03 by assuming a composite slip surface
similar to the ones presented in Figures 6.13 and 6.15. The
slip surface geometry assumed by these authors is shown in
Figure 6.28. A slip indicator installed in 1984 indicated
that the base of the slip plane was located at the
sandstone/mudstone contact instead of in the bentonite.

The strength parameters used by Wade and Peterson are
presented in Table 6.5. These values were obtained from back
analyses of previous failures. The frictional strengths in
Table 6.5 compared favourably with the values used in this
study. The cohesions were based on the degree of disturbance
from glacial tectonism (Section 2.4).

An important difference between the analysis by this
author and those by Wade and Peterson (1986) was in the
assumption of pore water pressures. As indicated in Section
6.1.3, the vertical flow of water resulted in 1low pore

pressures acting on the potential sliding mass. Wade and



Peterson (1986) assumeéahorizontal flow to the highwall face,
and consequently used hydrostatic pore pressures below a
groundwater elevation. Such an assumption could lead to an
overestimation of the pore pressures by an order of
magnitude, As a result, back analyses of failures would
result in higher mobilized cohesions and stability analyses
of future cuts would require higher cohesions to provide

stability.

6.11.2 Barron et al (1986)

Barron et al (1986) assumed a plane shear mechanism, as
shown in Figure 6.29, to model a failure in Pit 03 in the
spring of 1984. Several tension cracks were located in the
failure area and were assumed to penetrate to the basal slip
plane, assumed to be the bentonite seam above the coal. The
strength parameters for the bentonite used by these authors
are shown in Table 6.5. The sandstone and mudstone strength
above the bentonite were assumed to be zero because of a
tension crack. Water pressures were obtained from 20
pilezometers in the area and it was concluded that a phreatic
surface was located 7 to 8 metres above the failure plane,
The planar shear model developed by Barron et al (1986)
accurately simulated the development of the tension cracks.

Two important findings from ﬁhis study affected the
model prepared by Barron et al (1986): (i) the bentonite was

presheared and (ii) the water pressures were not hydrostatic
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Table 6.5

Other Stability Investigations

at Highvale Mine

Wade and Barron Tsui Tsui
Peterson et al (1988) (1988)
(1986) (1986) Slide 1 Slide 2
Failure Mode Composite Planar Composite Planar
Rotational Shear Rotational Shear
Base of Slip SS/MS Bentonite SS/Ms SS/MS
Plane Contact Contact Contact
Sandstone ¢ = 45° In 40° In
Sandstone ¢ = 100 kPa Tension 0 kPa Tension
Mudstone ¢ = 25° (Note 1) In 11.5° 23.6°
Mudstone ¢ = 10 kPa Tension 0 0
Bentonite - 24.6° - -
Bentonite ¢ = - 9.3 kPa - -
Water Pressure Hydrostatic | Hydrostatic | Hydrostatic | Hydrostatic
in Tension |in Sandstone | in Tension
Crack Zero in Crack, 2ero
Mudstone in Mudstone

Note 1:

glacial thrusting.

The mudstone was assumed to be displaced by
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below a phreatic surface. This‘author believes that the
strength estimate and water pressufes were over estimated by
Barron et al (1986). Since these two factors counter one
another, it is possible, that if the findings from this study
were applied to the planar shear model, then the development

of the tension cracks may still be successfully simulated.

6.11.3 Tsui (1988)

Two slides had occurred in Pit 03 in July, 1984 and were
analysed by Tsui (1988). Tension cracks were observed Jjust
before the slides started and were assumed to mark the top of
a steep back scarp that followed vertical joints, as shown in
Figure 6.30(a) and (b). The base of slips was assumed to be
located at the sandstone/mudstone contact, which was a shear
zone created by ice thrusting (Section 2.4).

As with the studies discussed above, a groundwater table
was assumed in the sandstone with hydrostatic pore pressures
below this level. The water table was assumed to be perched
in the sandstone and underlain by an unsaturated zone in the
upper portion of the mudstone. These assumptions were based
on piezometers installed in the sandstone and coal sequences.
None had been placed in the mudstone and, consequently, no
information was available on the potential for vertical flow
through the mudstone.

Slide 1 was treated as a composite rotational failure

and assumed zero cohesion for the sandstone. Tsui adequately
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explained the failure by assigning ¢ = 0 kPa, ¢ = 11.5° to
the mudstone. Slide 2 was analyzed as a plane failure with a
vertical tension crack extending to the sandstone/mudstone
contact. A mudstone strength of zero cohesion and a friction
angle of 23.6° was back calculated, The difference between
mudstone strengths was attributed to the presence of coal
chips in the latter slide.

The sandstone and mudstone strengths obtained by Tsui
(1988) were lower than those found by this study. This may
partly be explained by the differing water pressure
distributions, but, by applying hydrostatic pore pressures on
the backscarp and no pore pressures on the basal slip plane,
the net effect may be similar to utilizing the pressure
distributions described in this report.

Considering the state of the highwall in 1984, the fact
that Tsui found lower strengths than this author is not
unexpected. The highwall in 1984 had been extensively
disrupted by glacial tectonism (Section 2.4) which, in turn,
would have reduced the deformation modulus of the sandstone
and mudstone. Excavation would have resulted in substantial
movements and instabilities, as evidenced by the number of
tension cracks observed by the above authors. It is probable
that if deformation monitoring had been performed at that
time, it would have found lateral strains far greater than
those measured at the study site described in this report.

Hence, the findings by Tsui (1988) support the hypothesis
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offered by this author that greater lateral straining caused

a reduction in strength,

6.12 Conclusions from Failure Analysis

The

objective of determining the strength after

excavation was met by the findings from the highwall failure

described above. Several conclusions were drawn from back

analyses of this failure:

1.

Highwall failures did not occur immediately after
excavation and required one to four weeks to
develop. Time was required for the pore pressures
to recover and progressive loosening and softening
to develop.

The failure mode was a retrogressive composite
rotational failure, described as an earth block
slide by Varnes (1978)

Water pressures at the time of failure were low
due to the vertical flow through the overburden.
The basal slip plane was a presheared surface
within the bentonite seam, just above the top of
the coal.

Variations in the friction angle of the bentonite
had an impact on stability

Variations in the friction angle of the sandstone
and mudstone had a minor influence on the

stability,
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11,

12.

13.
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Highwall stability was very sensitive to cohesions
in the sandstone and mudstone.

The role of lab testing was relegated to providing
an estimate of the range of friction angles for
the analyses. The cohesions obtained in the lab
could not be used to satisfactorily explain the
condition of stability in the field,

The strength of the sandstone and mudstone
decreased closer to the highwall toe.

Rock mass strength was inversely related to
lateral strains caused by rebound.

Lateral straining resulted in a progressive
loosening and softening of the sandstone and
mudstone.

Failure occurred when the lateral strains exceeded
0.65%, however this value of strain cannot be
viewed as a boundary number above which failure
always occurred. Lateral strains as high as 0.73%
were measured without any instabilities.

Lateral strains of approximately 0.65% may be
considered as necessary to lead to failure, but
additional factors, such as unfavourably oriented
joints, also play a role.

Other stability investigations conducted at

Highvale in the past might benefit from the
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findings described above. In most cases, the
water pressures were over estimated and resulted
in an over estimation of the strengths of
sandstone, mudstone, and bentonite.

The work by Tsui (1988) tentatively supports the
inverse relation between strength and lateral

strains found by this author.
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7 APPLICATION TO HIGHWALL DESIGN

AND REMEDIAL NEASURES

Chapters 4 to 6 presented several aspects of highwall
stability that directly impact highwall design and, i{f

necessary, remedial measures.

7.1 Highwall Design

Design Factors
The conclusions drawn from the failure analysis in
Chapter 6 need to be -onsidered when designing a highwall at
the Highvale Mine. Six factors have important bearing on
stability analyses:
1. The presheared bentonite may be the basal siip
plane.
2. The water pressures are low near the highwall
face.
3. PRefinement of the values of friction angles for

the sandstone and mudstone is not warranteed,

4. Cohesions in the zandstone and mudstone are low.

5. Sandstone structure may determine whet ber $he
highwall standz or fallis.

6. Strength of averburden [rragreasively rodyced with

degree nf rebound.
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Field Program

To assess Stability, a field investigation program
should be undertaken to accurately determine three
parameters:

l. Friction angle of the presheared surface in the
bentonite. This may be done by field shear box
testing or carefuyl sampling of the shear zZone for
laboratory tests,

2. Pore pressures at the highwall crest and close to
the highwall toce. a bank of inclined piezometers
could be installed from the highwall crest and
located at several locations in the sandstone,
mudstone, and coal,

3. Orientation and Characteristics of the joint sets
in the sandstone.

The main feature of these parameters jis that they are
obtainable for minimal cost and effort. Such a field program
would be modest and could provide valuable information. This
author recommends that the program be implemented in areas
that have experienced substantial instability in the past or
are predicted to do so from analyses.

A fourth parameter should be included in a field
program: determining lateral strains, however this requires

substantial cost and commitment .
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Geotechnical Database

A database of geotechnical parameters should be
maintained of observed pore pressures, lateral strains, and
measured laboratory and field strengths. In addition, it
would also include key parameters from geophysical logging
and the results of field joint surveys.

The value of such a database would be improved by back
analysing selected failures and incorporating their results.
Even small fajilures can provide valueble information about
mobilized strength parameters and pore pressures.

With a database, then correlations may be established,
for example, between strains and certain geophysical
parameters that may allow the designer to predict the strains
at future locations. It may also be possible to improve the
tentative correlation between lateral strains and rock
strength. With this information, then the rock mass strengtlh

may be estimated and the stability analyses improved.

7.2 Remedisl Measures
When highwall designers are confronted with atabilfvy
problems, two techniques are typically implementeod to
mitigate the hazard:
1. PReduce the pore presaures at the unatable section
Ly {nstalliing weilas or drains:

2. Buttress the siope.
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The finding that the groundwater in the overburden tends
to flow vertically into the coal must be considered for a
depressurization scheme to be effective.

The worst time that the highwall could fail is when the
dragline is strippring overburden and creating the new
highwall. As the dragline makes the new cut, it sits above
the old highwall that has been exposed for one to three
months. The coal has been excavated below the old highwall
and the lateral strains have reached a maximum. Progressive
loosening and softening has reduced the strength of the
overburden to a minimum. The highwall's Factor of Safety is
at its lowest when the dragline revisists the area.

It is at this time that buttressing would be eifective
by increasing the resisting forces at the toe. However,
buttressing, or building an extended bench, severely affects
the economics of mininc, Improved design techniques may
assist in determining a viable buttress design. In the
failure described in Chapter 6, it is possible that the
failure of the toe block triggered the much larger céllapse
of the highwall. If this can be proven, then the extent of
the buttress may be significantly reduced to just supporting
the lower portion of the highwall.

Other schemes may be attempted such as rock anchors but
the rock strength is too low. Even if anchors were installed

to control the strains, they could not be installed in time

to significantly impact the strain development.
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Remedial programs are often costly and are reactive
insteéd of proactive. 1In a mining environment, this approach
is not always economical. Monitoring programs that provide
warning of failures have been found to be successful at other
strip mining operations (Fair and Lord, 1984). Deformation
monitoring schemes should be considered an integral part of

highwall engineering.

7.3 Deformation Monitoring Program

A deformation monitoring program will permit better
understanding of the behaviour of the rock behind the
highwall. 1If necessary, such a program could be developed to

provide warning of an imminent failure.

7.3.1 Objective

A deformation monitoring program should satisfy two main
objectives: first, to establish the potential failure mode
and, second, to determine the lateral strains. To achieve
these goals, instruments must be located on a line

perpendicular to the highwall crest.

7.3.2 Methodology

Numerous methods exist to monitor highwall deformagions,
but this study proved the effectiveness and reliability of
the survey/inclinometer combination. This technique was
ideally suited for the strip mining environment at Highvale.

Surveying from fixed control points well behind active mining
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provided surface deformations and, by tying the inclinometers
into the survey network, a reasonably complete picture of the
deformation field was obtained. ‘

Ideally, in future programs, the survey control points
would be located 500 metres from the highwall to ensure that
they do rot move. However, this distance may be too large
for accurate measurements and secondary control points could
be established closer to the study site. These points would
then be referenced to the primary ones.

Inclinometers provide valuable information on the modes
of deformation and potential failure. By positioning them at
projected future crest locations, they stand a good chance of
remaining in operation during successive cuts.

Inclinometers are ideal survey targets since they can be
tracked from their position on the original ground surface to
when they are brought down onto the bench.

An important consideration when designing a monitoring
program is the reliability of the reference points. For
example, one could establish a point on the highwall face
immediately after excavation and then track its movement by
regular surveys. In this instance, the highwall becomes the
reference point and the measured deformations will be
relative to its location at the time the point was
established. In Chapter 4, it was found that by the time any
such point could be affixed to the highwall, the highwall has

already moved 50% of its total movement. In other words,
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measurements relétive to the highwall will miss 50% of the
movement and extending this information to strains becomes

impossible,

7.4 Pore Pressure Monitoring

This study found that the pore pressures changed
significantly within 100 metres from the crest and
extrapolating pore pressures from piezometers beyond this
limit is dangerous. In addition, the possibility of vertical
flow must be evaluated throughout the mine. Hence, a network
of piezometers should be installed in the sandstone,
mudstone, and coal at strategic locations that might ensure
their longevity. If piézometers are destroyed before nearing
the highwall, then additional ones should be installed near
the highwall crest. The difficulty with doing this on a
regular basis is that the piezometers need time to stabilize
and the global groundwater flow pattern will not be

determined.

7.5 Use of Computer Modelling

Computer models, utilizing the Finite Element Technique,
can simulate the natural geology and effect of excavations.
Given the appropriate stress-strain and failure properties of
the materials as well as the correct deformation modes, then
the model can accurately estimate the stresses and strains

that will develop after a highwall is excavated.
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The major conuribution of the Finite Element Method 1is
to assist in understanding the effect of excavation on the
rock mass. This is achieved by matching the behaviour of the
model to the observed field performancé: often referred to as
historical matching. By gaining more insight into the
processes and mechanisms of highwall deformations at one
location, the design approaches can be improved.

With limited modifications to the model, it may be
extrapolated to nearby or similar parts of the mine and,
while the results must be treated with caution, they may be
~used to support limit equilibrium stability analyses. It may
be possible to estimate the lateral strains at é future
location and via the correlations established from the
database described in section 7.1, the rock mass strength may
be empirically estimated. The stresses at each element may
then be compared to these strengths to see if the element is
stable or has failed. In this manner, the stability of the

highwall can be determined.



8 CONCLUSIONS

This study of highwall stability at the Highvale Mine

has provided valuable insight into how deformations of the

highwall impact pore water pressures, material strengths, and

the failure mechanism,

8.1 Conclusions

Detailed conclusions were drawn in Chapters 4 to 6, with

the most important ones listed below:

1.

Deformations of the highwall were effectively
monitored with slope indicators and surveying.
Excavation rebound induced lateral strains at the
highwall of 0.60% to 0.73%.

Lateral straining caused once impervious layers to
open and permit groundwater flow through them.
This significantly alterred the flow regime and,
in turn, the pore water pressures.

Lateral straining led to a reduction in rock mass
strength.

Mechanisms of strength reduction involved a
progressive loosening and softening of the rock
mass.

Highwall failures were controlled by the amount of
strength reduction and the orientation of weak

planes in the sandstone.

180
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Incorporating these findings into current stability

evaluations will improve their accuracy and applicability.

8.2 Recommendations for Future Research

In Section 7.1, recommendations were made to highwall
designers to implement a field investigation program and
develop a database of geotechnical information. On a broader
scale, the following areas require additional research:

1. Evaluation of the progressive loosening mechanism.
2. Computer modelling with the Finite Element Method.

The loosening mechanism could be further explored by
making more detailed measurements of strains. This would be
done with instruments that would compliment the surveys and
inclinometers, such as surface strain guages and possibly
extensometers. Ideally, these instruments would detect the
blocks of sandstone spreading apart, or loosening.

An alternative method to investigate the presence of
loosening is the use of geophysics. Surface geophysics could
be performed along test lines parallel to the highwall crest
at 25 to 50 metres intervals. Crosshole geophysics could
also be run between inclinometers. The loosening mechanism
would be evident by a variation in the material's shear
modulus obtained from these methods.

At the time of writing, the University of Alberta

geotechnical group was developing a computer model to



182

simulate highwall behaviour. Historical deformation data for

that work is provided in this thesis.
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APPENDIX A - BOREHOLE LOGS

Figures A.l1 to A.6 present the borehole logs for holes
S1 to S6 from the field investigation program. Table A.,1l

presents the hole locations and the corresponding TAU hole

numbers.
Table A.1
Location of Boreholes

U of A T.A.U, GROUND
HOLE HOLE _ NORTHING EASTING ELEVATION

NUMBER NUMBRER (metres) (metres) (metres)
S1 HV87-411 1131.2 -3885.3 750.47
S2 HV87-412 1133.2 -3833.9 751.15%
S3 HV87-413 1080.4 -3887.3 749.89
S4 HV87-414 1085.4 ~-3837.2 751.37
S5 HV87-415 1028.5 -3884.6 748,77
S6 HV87-416 1036.1 -3836.2 750.51
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APPENDIX B - DUWNHOLE GEOPHYSICAL LOGS

Figures B.l1 to B.5 present the geophysical logs for
holes S1, S2, and S6. The geophysical logs for S3 and S4 are
shown in Figures 3.4 and 3.5. Hole S5 was not logged
geophysically.

Hole locations are presented in Table A.1l.
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APPENDIX C - RESULTS OF DEFORMATION MONITORING

Six inclinometers, S1 to S6, were installed on 50 metres
centres to measure subsurface movements. Their locations are
shown in Table A.l1. Surveys were conducted from two control
points, BMl and BM2, to the inclinometers to track their
total movément. Table C.1 below describes the locations of
the control points, Tables C.2 and C.3 at the end of the
Appendix provide details on the locations of the highwall and

important dates related to the deformation monitoring

program.

Table C.1

Location of Control Points

Control NORTHING EASTING

Point {(metres) (metres)
BM 1 926.5 ~-3786.6
BM 2 934.8 -4107.1

C.1 1Inclinometers
Figures C.1 to C.12 present the Northward (into the pit)
and Eastward (parallel to the crest) movements measured at

the six inclinometers. These movements were relative to the
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base of the inclinometers and do not take into account basal
displacements.

Distinct shear planes were observed in the bentonite and
along the sandstone/mudstone contact.

Inclinometer S2 showed an odd deformation pattern.
Because movements into the highwall were unreasonable, this
pattern was attributed to the casing buckling within the
borehole. Although the hole was grouted, the grout may have
been washed away by groundwater before it had a chance to

harden.

C.2 Surveys

Figqures C.13 and C.14 illustrate the contribution made
by the surveys. 1In these fiqures, the movement of the top of
inclinometer S6 was tracked by the inclinometer itself and
the surveys. In Figure C.13, the lower plot shows the
northward movements of the top referenced to the inclinometer
base while the upper one shows the absolute movement of the
top referenced to the Transalta Utilities survey network.
The difference between these two plots is attributed to
movements of the inclinometer base. Figure C.13 indicates
that the base moved a significant distance into the pit.

Figures C.14 shows that the basal movements had a minor

component parallel to the highwall.
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This exercise demonstrates how the surveys and
inclinometers were combined to obtain the deformation

patterns in the overburden,

C.3 Combined Inclinometer and Survey Results

Figures C.15 to C.26 show the Northward and Eastward
global movements of the base of inclinometers S1 to S6 as
obtained by the previous exercise. The Eastward component of
the basal movements was found to be minor, and was therefore
neglected in further discussion.

Upon reviewing Figures C.15 to C.26, it was expected
that substantial movements had developed in the overburden
before the inclinometers and survey control points were
installed. To account for this, the magnitude of previous
movement was estimated at each inclinometer location. This
was established by making a key assumption: that the trends
of movement tended to be similar at each location after each
highwall was cut. Then, by trial and error, the initial
movements were estimated and the trends compared to the other
inclinometers., The estimated magnitudes were found to be
reasonable.

Figures C.27 to C.32 show the revised movement over time

plots that include the estimates of initial movements,
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TABLE C.2
HIGHVALE MINE

EAST END OF PIT 03,
HIGHWALL POSITION FROM JUNE 1987 TO MAY 1988

cuT —CREST OF HIGHWALL —1IOE QF HIGHWALL
NUMBER ELEV. NORTHING ELFV, NORTHING
(metres) (metres) (metres) (metres)
18 742 1228 721 1247
19 741.5 1182 720 1202
20 743 1131 719 1155
21 745 1090 719 1116
22 745 +/- 1040 +/- 719 +/- 1076 +/-
23 745 +/- 990 +/~- 719 +/- 1030 +/-

EASTINGS ARE IRRELEVANT SINCE HIGHWALL WAS ORIENTED EAST-WEST
FOR EACH CUT.

DATA FOR CUTS 21 AND 22 CAN BE OBTAINED FROM MANALTA COAL AT
THE HIGHVALE MINE,
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TABLE C.3

IMPORTANT DATES RELATED TO DEFORMATION MONITORING

DATE DAY COMMENT
NUMBER

June 23, 1987 0 Install S1 and S2.

June 25, 1987 2 Install S3, sS4, S5, and S6.

June 26, 1987 3 Cut 17 passed in front of
site,

Sept. 22, 1987 91 Cut 18 passed in front of S2,

Sept. 24, 1987 93 Cut 18 passed in front of S1.

Sept. 28, 1987 97 S1 and S2 lowered to new

bench level.

S1 and S2 now 50 metres from
highwall crest.

Nov. 30, 1987 160 Blast bench in front of S1
and S2.

Dec. 8, 1987 168 Cut 19 passed in front of S2.

Dec. 9, 1987 169 Cut 19 passed in front of S1.
S1 and S2 now at highwall
crest.

Dec. 11, 1987 171 S3 and S4 lowered to new
bench level.
S3 and S4 now 50 metres from
highwall crest.

March 1 to 3, 1988 251 Blast bench in front of S3

and S4. Destroy S1 and S2.
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TABLE C.3(cont'd)

DATE DAY COMMENT
NUMBER
March 8 to 11, 1988 258 Cut 20 passed in front of S3
and S4,

S3 and S4 now 10 metres from
highwall crest,

S5 and S6 were not yet
lowered to the new bench.
They are now 60 m from the
highwall crest,

April 27, 1988 308 Blast bench east of S4.

April 29, 1988 310 Blast bench east of S3 and
west of S4. Destroy S4.

May 2, 1988 312 Blast bench west of S3.
Destroy S3.

May 13, 1988 323 Cut 21 passed in front of S5

and S6, S5 and S6 were
lowered to the new bench, but
S6 was accidentally

destroyed,

S5 now 10 m from highwall

crest.
August 29, 1988 431 Take last readings of S5.
Sept., 1988 Blasti..g destroyed S5 and S6.
Fall, 1988 S5 and S6 removed by dragline

as it made cut 22,
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APPENDIX D - DISPLACEMENT FIELD

Section 4.2.2 describes how the deformation field was
obtained. Figures D.1 to D.15 present the deformation field

at elevation 730 metres for each day that a survey was made.
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APPENDIX E - STRAIN FIELD

Section 4.2.3 details how the strain field was
determined. Figures E.1 to E.15 present the lateral strain

field at elevation 730 metres at each survey date.
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APPENDIX F - DIEZOMETER RESULTS

Section 3.6 describes the instrumentation used to
measure pore water pressures. Their results are presented in
Figures F.1 to F.13 and show the variation of Total Head over
time. The times of the highwall and coalwall excavatlons are

also included.

Table F.1

Location of Piezometers

U of A T.A.U, TIP

HOLE HOLE NORTHING EASTING ELEVATION
NUMBER NUMBER (metres) (metres) (metres)

P7 HV87-417 1132.4 -3835.4 T = 721.62

B = 718.11

P8 HV87-418 1079.4 -3889.4 T =726.20

P9 HV87-419 1086.7 -3838.6 T = 732.90

B = 724.60

P10 HV87-420 1085.1 -3839.0 T = 721.28

B = 716.70

P11 HV87-421 1031.4 ~3882.1 T = 721.85

B = 719.10

P12 HV87-422 1039.2 -3831.5 T = 725.80

B = 720.98

P13 HV87-423 1040.2 -3832.2 T = 734.90

B = 726.01
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APPENDIX G - INDEX TESTING RESULTS

Chapter 5 describes and summarizes the index testing

program. Tables G.l1 to G.5 provide complete results of all

of the index tests that were performed.
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Table G.1

Results of Moisture Content Testing

Depth Elev, m.c. Yr Y4
Lithology |Hole |(metres) |(metres) (%) (kn/m3) (kn/m3)
S6 1.0 749.5 20.9 - -
S4 2.8 748.5 21.8 19.2 15.7
S4 2.8 748.5 24.6 18.0 14.4
Till S4 2.8 748.5 27.9 - -
S4 3.2 748.0 24.2 - -
AVERAGE 23,9 18.¢6 15,0
S4 5 746 9.0 - -
Weathered S6é 8.0 742 .6 9.8 - -
Sandstone S4 9 742 12.4 18.9 16.8
S4 9 - 142 13.2 = -
AVERAGE 11.1 18.9 16.8
S6 14.0 736.4 15.3 .~ -
S4 19.0 732.4 15.3 19.9 17.3
S4 20.0 731.3 15.1 20.3 17.6
Unweathered| S4 20.3 731.1 17.6 18.7 15.9
Sandstone S4 20 731 25.5 - -
S3 19.1 730.8 15.7 20.4 17.6
S3 19.2 730.7 16.0 20.3 17.5
S6 20.7 729.8 13.5 21.6 19.0
(Cont 'd) S3 20.5 729.4 15.0 20.0 17.4
S3 21.4 728,95 14.8 20,9 18.2
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Table G.1 (continued)
Results of Moisture Content Testing

Depth Elev, m.c. Yr A
Lithology |Hole |(metres) |(metres) (%) (kn/m3) (kn/m3)
S6 23.4 727.1 13.3 21.7 19.2
S3 22.9 727.0 15.5 20.0 17.3
Unweathered| S3 23.2 726.7 16,2 20.3 17.5
Sandstone S3 23.5 726.4 16.4 21.0 18.0
S4 27.5 724 13.5 - -
S4 27 724 12.7 20.3 18.0
sS4 28.5 723 12.8 20.1 17.8
AVERAGE 15.9 20.4 17.7
S3 24.9 725.0 16.2 18.7 16.1
S4 29.0 722 .4 16.9 20.6 17.8
S4 29.5 722 17.2 19.7 16.8
Mudstone sS4 29.5 722 18.5 - -
S4 30.0 721.4 19.8 19.6 16.4
sS4 30 721 23.0 - -
S4 30.5 720.9 17.6 - -
Sé6 30.3 720.2 22.6 19.9 16.2
AVERAGE 19.6 19.8 16,6
Siltstone | S6 29.9 720.6 14.6 22.0 19.1
sS4 30.9 720.5 14.6 21.3 18.6
AVERAGE 14.6 21.7 18.8
Bentonite S4 31.8 719.6 50.9 16.8 11.1
m.c. = moisture content

Yp = total wet density, Y4 = dry density
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Table G.2
Results of Grain Size Analyses

Percent Passing
(Sieve Opepning, mm)

Lithology Holel .Depth | Elev,. #4. #200

(metres)|(metres) (4.76) | (0.074) | (0.002)

Till S6 1.0 749.5 99 90 -

Weathered | S6 8.0 742.6 100 38 -

andstone

Sé 14.0 736.4 100 34 -

S4 19 732.4 100 28 -

S4 19 732.4 100 20 -

[Inweatherefl S3 20 729.9 100 10 -

Sandstone S6 23.5 727.0 100 40 -

S3 23.5 726.4 100 10 -

FROM FAILURE AREA 99 19 -

FROM FAILURE AREA 100 12 -

S3 24.9 725.0 100 100 60

Mudstone sS4 29 722.4 100 100 55

sS4 30 721.4 100 100 50

Se 30.3 720.2 100 92 62

AVERAGE 100 98 87

Siltstone S6 29.8 720.7 100 100 47

S4 30.9 720.5 100 68 31

AVERAGE 100 84 39

Bentonite sS4 31.9 719.5 100 100 78
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Table G.3
Results of Atterberg Limits

Depth Elev, P, L, I,

Lithology [Hole |(metres) |(metres) (%) (%) (%)
S3 24.9 725.0 31 66 35

Mudstone S4 29.0 722 .4 24 58 34
S4 30.0 721.4 21 56 35

Sé 30.3 120.2 31 74.. 43

AVERAGE 27 63 37

Siltstone | S6 29.8 720.7 25 54 29
S4 30.9 720.5 17 47 30

AVERAGE 21 20 29

Bentonite S4 31.9 719.5 51 146 95
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Table G.4
Liquidity Indices

Depth Elev, m,c, P, IP Ip

Lithology [Hecle |(metres) |(metres) (%) (%) | (%) (%)
S3 24.9? 725.0? 16.2 31 35 | -0.42
S4 29.0 722.4 16.9 | 24 34 | -0.21
Mudstone | S4 30.0 721.4 | 19.8 | 21 | 35 | -0.03
S6 30.3 720.2 22.6 31 43.1.=0.20
VERAGE =0.22
Siltstone S6 29.8 720.7 14.6 25 29 -0.36
S4 30.9 720.5 14.96 17 30 -0.08
VERAG -Q0.22

Bentonite S4 31.9 719.5 51 51 95 0.00
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Table G.5
Activity
Depth Elev. Iy C.F. A
Lithology |Hole |(metres) |(metres) (%) (%) (%)
S3 24.9 725.0 35 60 0.58
Mudstone S4 29.0 722 .4 34 55 0.62
S4 30.0 721.4 35 50 0.70
1) 30.3 720.2 43 63 0.66
AVERAGE 37 57 Q.64
Siltstone S6 29.8 720.7 29 47 0.62
sS4 30.9 720.5 30 31 0.97
AVERAGE 29 39 Q.80
Bentonite S4 31.9 719.5 95 78 1.22
C.F. = Clay Fraction (less than 2 microns)

A = Activity




