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Abstract

Top kill damage on jack pine (Pinus banksiana Lamb.) resulting from severe jack
pine budworm (Choristoneura pinus pinus Freeman) defoliation impairs future growth,
and causes impacts that are generally unknown. This study describes and evaluates
procedures for quantifying and mapping top kill, and reports on associations between
spatial patterns of top kill and stand attributes.

A method to estimate the volumes of tree top kill was developed using large-scale
photo measurements and a jack pine taper model. Photo measures of the length of top kill
were highly correlated with their actual lengths, and volume estimates compared favorably
to ground measurements. If combined with forest sampling procedures, the use of
techniques developed in this study could aid in assessing the impact of top kill on timber
supply at the stand and forest level.

A system to classify severity of top kill was develeped and used with 1:5000 color
infrared aerial photographs to map the study area. This map was used to evaluate satellite
data for mapping top kill, and assess spatial associations of top kill with stand
characteristics.

Spectral differences that may be attributed to top kill using multidate, LANDSAT
Thematic Mapper data were small, and classification mainly mapped the spatial extent of
Jack pine since discrimination among damage severity levels of top kill were poor. The
influence of spectral reflectance from understory and ground vegetation partially explains
this result, since mature jack pine stands tend to be relatively open.

Two novel methods of integrating spatial data from a Geographic Information

System with digital image data were explored. One method used map poiygons of top kill



as "training" data to explore spectral separabilitics. The second method used a contingency
table between top kill and spectral classes from an unsupervised classification, and this
greatly aided the process of describing and labelling spectral classes.

Although the general characteristics of vulnerable stands to budworm damage have
been reported, their empirical limits have not been identified. A spatial approach towards
defining these relationships using digital map data, resulted in physiographic and stand
characteristics that, in part, more specifically define vuinerable stands than had previously

been reported.
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Chapter 1

Introduction

Jack pine budworm (Choristoneura pinus pinus Freeman) is among the important
insect pests in Canada (MacLean 1990), and is a major defoliator of jack pine (Pinus
banksiana Lamb.) forests in Ontario, Manitoba, Saskatchewan, and the adjacent United
States Great Lakes States (Moody 1989; Mallett and Volney 1990). Budworm defoliation
may be extensive, and persist in an area for many years (Volney 1988). Examples of the
extent of defoliated areas reported include 3.7 million ha in Ontario in 1985 (Kondo and
Taylor 1986), 2.0 million ha in Manitoba in 1985, and 176 000 ha in Saskatchewan in
1986 (Brandt and Amirault 1994). In addition, a trend towards increasing areal size of
jack pine budworm outbreaks has been reported for the Prairie Provinces (Volney 1988).
With defoliated areas of these magnitudes, efforts to incorporate protection strategies into
forest management, by producing less susceptible forests and/or measuring the effects on
forest resource production goals, are necessary (Alfaro 1988).

Damage from severe defoliation on jack pine includes growth reduction (Kulman
et al., 1963), top kill (i.e., dead tree tops) (Prebble 1975), and tree mortality (Howse
1984). Surviving trees usually produce lower yields than healthy trees (Alfaro 1988;
Moody and Amirault 1992), particularly if height growth has been permanently impaired
by top kill (Alfaro 1991). Although significant reductions in radial growth and average
volume increments have been reported after severe defoliation (Kulman et al. 1963,

Cerezke 1986; Gross 1992), relatively less is known about the characteristics and impacts



2
associated with top kill. Trees with top kill, however, have experienced considerably more
defoliation than those with surviving tree tops (Gross 1992). In a recent study, Gross
(1992) suggested the actual ve'ume in a dead top is insignificant, and that loss of growth
potential is of greater concern. In a previous study, however, Cerezke (1986), reported
outbreaks lasting two to five years with severe defoliation often results in extensive top
kill. The unknown parameter that influences these conclusions is the degree and duration
of defoliation that a given stand may have sustained, and perhaps the bigger impact is the
loss of future growth. Regardless, if growth reductions and top kill are combined, these
types of losses have an impact that is generally unknown (Voiney 1988). Thus, an
improved understanding of the impacts resulting from jack pine budworm outbreaks, is
essential to reduce uncertainties about future timber supply (MacLean 1990). To address
this need, research to quantify the effects of forest pests at the stand level is required
(MacLean 16.0).

Damage assessment to address the effects of budworm defoliation associated with
top kill, may be viewed from three perspectives. These perspectives are: measurement of
top kill to quantify its volume, the mapping of severity of top kill at the stand level, and
the association between physiographic and stand characteristics with top kill to enable the
identification of potentially vulnerable stands. The objective of this thesis was to address
these three aspects of top kill for an area in Saskatchewan, Canada, where a jack pine
budworm outbreak was reported to have occurred (Moody and Cerezke 1986). The thesis
objective was achieved by answering three research questions: 1) To what extent can a

method based on large-scale photo measurements and a jack pine taper model be used to
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estimate the volume of tree top kill?; 2) To what extent can multidate LANDSAT TM
data be used to classify and map the severity of top kill?; and 3) Are selected
physiographic and stand characteristics associated with top kill? The characteristics
selected include soil texture, drainage, site quality, stand origin, stand height. and crown
closure.

Three studies were undertaken with each directed towards one of the research
questions. To determine the impact of top kill requires quantifying its volume on
individual trees. Field measurements of the lengths of top kill, however, are tedious. time
consuming and difficult. An alternate method based on photo mensuration using large-
scale aerial photographs was evaluated, and its limitations were determined.

To address both the second and third questions, a map outlining severity levels of
top kill was required. A classification system was devised for mapping :p kill, and
interpretation of top kill for the study area was completed on 1:5000 color infrared acrial
photographs. The map of top kill was used to analyze the spectral responses using
LANDSAT TM data from three dates. This map was also overlaid with selected site
quality and stand attributes to determine spatial associations. These associations were then
analyzed to make inferences on characteristics of vulnerable stands.

This thesis is written in a manuscript format with each Chapter describing a
separate but integrated part of the research. Relevant literature and background for the
research questions is summarized as part of each Chapter. Chapter 2 provides a review
of the jack pine budworm life history, followed by stand and environmental influences on

budworm populations. A brief discussion on the impact of severe defoliation and survey



4
methods to assess defoliation concludes the chapter. Chapter 3 presents a description of
the study area including physiography, climate, soils, vegetation and site quality. Chapter
4 addresses the first research question by evaluating the use of large-scale aerial
photographs and a jack pine taper model for estimating volumes of tree top kill. Chapter
5 addresses the second research question by evaluating a satellite remote sensing approach
based on multidate LANDSAT TM data for mapping top kill. Some issues in remote
sensing - Geographic Information System integration and change detection are also
identified. Chapter 6 addresses the third question by determining spatial associations
between site quality and stand attributes with top-kill severity to ascertain characteristics
of vulnerable stands. The background material in Chapter 2 is used to help make these
inferences. Chapter 7 synthesizes the results of the three studies and includes
recommendations for additional research. The reader should note that the description of
the study area (ie., Chapters 4, S5, and 6), and the mapping of top kill sections (ie.,

Chapters 5 and 6), are repeated to maintain consistency for the manuscript format.
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Chapter 2
A Review of Jack Pine Budworm Life History, Factors Influencing

Insect Populations and Damage Impact

2.1 Introduction

This chapter presents a review of the jack pine budworm (Choristoneura pinus
pinus Freeman) (Plate 2-1) life history, and of forest stand characteristics and
environmental factors that influence insect populations. A review of host-pest interactions
and impacts of defoliation on forest stands and trees, provides a perspective on the
influence of jack pine budworm defoliation on the forest ecosystem. An overview of aerial
survey classifications for defoliation severity and their limitations, provides the
background for subsequent chapters that study the relationships between spatial patterns

of jack pine top kill and stand characteristics.

2.2 Jack pine budworm life history

The life history of the jack pine budworm (Figure 2-1) is similar to the spruce
budworm (Choristoneura fumiferana Clem. and Choristoneura occidentalis Freeman)
(Prebble 1975). In both cases, moulting occurs once in the late summer and newly
emerged larvae overwinter as second instars (Nealis 1987), but the two budworms differ
by their preference for host tree species. Jack pine (Pinus banksiana Lamb.) is the
principal host for jack pine budworm but scots pine (Pinus resinosa Ait.), eastern white

pine (Pinus strobus L.), red pine (Pinus sylvestris L.), lodgepole pine {Pinus contorta
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Dougl.), white spruce (Picea glauca (Mcench) Voss). black spruce (Picea mariana (Mill.)
B.S.P.), and tamarack (Larix laricina (Du Roi) K. Koch.) have also been attacked (Ives
and Wong 1988), especially when near susceptible jack pine stands (De Boo and Hildah!
1968). Jack pine budworm overwinters as a second-instar larva within a silken shelter
(hibernaculum) (Kulman et al. 1963) in protected locations under bark scales. between
needles, or in old staminate flower buds (De Boo and Hildahl 1968). Larval emergence
oegins in late May soon after male cones open and new, young needles emerge (Clancy
et al. 1980). The budworm larvae migrate to the tops of trees and outer crown due to their
preference for male flower clusters and young foliage (Howse 1984). Defoliation spreads
from the top of the tree Jownwards (Moody 1986). Budworm larvae establish suitable
feeding sites and feed for six or more weeks while progressing through 7 instars (Cerezke
1978; Nealis 1987). The larvae are mature by mid July depending on weather conditions.

The jack pine budworm is considered a wasteful feeder (Prebble 1975) since
needles are cut at the base with only the basal portion being eaten (Kulman et al. 1963).
The rest of the needle is entangled in a mass of silk and frass that forms a feeding shelter
along the axis of the shoots (Prebble 1975). As this material desiccates, it changes to a
distinctive reddish brown color (Plate 2-2) (Martineau 1984), which is a visual indicator
of defoliation severity used during aerial surveys (Moody 1986). Forest Insect and Disease
Survey rangers with Forestry Canada use the intensity of red-color of the needles to rate
stands as severely, moderately, lightly or not defoliated (Volney 1988).

The mature larvae pupate within the feeding shelters (Prebble 1975) and emerge
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as adult moths in about a week, during late July or early August (Howse 1984). After
mating, they deposit eggs on needles in clusters of about 40 (Howse 1984) that hatch 10
to 14 days later (De Boo and Hiidahl 1968). The first-instar larvae do not feed but instead
irigrate to protective locations such as crevices within the bark (Martineau 1984). The
larvae then spin hibernacula and molt to over-winter as second-instar larvae (De Boo and
Hildahl 1968).

The jack pine budworm is a mobile defoliator and during the adult moth stage,
may disperse over long distances with the assistance of air currents (De Boo and Hildahl
1968). Emerging larvae in the spring also may disperse on silken strands (Prebble 1975).
There may be mortality losses during dispersal because of exposure to adverse
environments, the difficulty in finding suitable hosts, and predation by spiders and insects.
(Foltz et al. 1972). The weather during larval and adult dispersal also influences
populatien fluctuations, and either favors outbreaks or contributes to their collapse (Foltz
et al. 1972). The structure of the forest stand and weather conditions during an infestation

therefore play important roles in budworm population dynamics.

23 Influence of stand characteristics on jack pine budworm populations

A stand 1s a contiguous group of trees sufficiently uniform in species composition,
structure (e.g., density and levels within a stand such as single  .or.ed, multistoried), and
age class (Alfaro 1988). A stand is also considered a dynamic entity (Alfaro 1991) that
continually changes in composition and structure within the process of ecological

succession (Kimmins 1987). Insects affect the speed of succession by either reducing
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growth rates or Kkilling trees, and therefore alter species mixtures and size distributions
(Alfaro 1988). Sonme undersiznding of insect responses to stand characteristics provides
an indication of stand susceptibilities. Three characteristics of stands are important in
influencing budworm populations: age, density and structure. Jack pine become
established as extensive, pure, even-aged stands (Morris and Parker 1992), typically
originating after forest fires (Rudolph and Laidly 1990), and are susceptible to insect
defoliation when old enough to start flowering. Although previous studies have reported
that jack pine budworm dynamics are influenced by the frequency and amount of
staminate flowers (Hodson and Zehngraff 1946; Batzer and Jennings 1980), this
assumption has been questioned (Nealis 1990). It is not clear whether the association
between jack pine budworm and staminate flowers favors survival of jack pine budworm
(Nealis 1990), and there are no reported nutritional or phenological advantages to feeding
on staminate flowers (Lejeune 1950). The association between outbreaks and staminate
flowers is most significant for the early feeding stages of the budworm, since older larvae
are often established in the vegetative shoots, and this may be beneficial to budworm
survival when population densities are low (Nealis 1990).

Based on a study to correlate fire history with budworm outbreaks for the Prairie
provinces of Canada, a trend was demonstrated towards increasing outbreak size once jack
pine stands reach abundant flower production (Volney 1988). In addition, as forest fire
control measures are improved, a larger portion of jack pine stands will move into
susceptible age-classes (Vclney 1988). Stands are susceptible to outbreaks when flower

production is abundant, and this is increased when responding to stress such as fire.
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Sparse open stands with large-crowned trees, and dense, overstocked stands with
trees of poor vigor are most susceptible to defoliation outbreaks (Dixon and Benjamin
1962; Kulman et al. 1963). Stand density also influences larval dispersal and the survival
rate of small larvaec (Batzer and Jennings 1980). That is, higher density stands of
suppressed, male cone producing trees support larger larval populations because of
available food, and lower density stands encourage dispersal losses (Batzer and Jennings
1980). This is similar for spruce budworm defoliation since dense stands are generally
considered more susceptible than open stands (Wulf and Cates 1987). Defoliation may be
greater in open stands, however, due to open stands being warmer and drier relative to
denser stands (Wulf and Cates 1987). Open stands therefore support larger insect
populations despite the higher probability of dispersal losses. The influence of stand
density on insect populations depends in part, on weather and environmental site
conditions.

In terms of stand structure, jack pine budworm prefers a single host tree species
that occurs in even-aged and single storied stands. Jack pine budworm’s host base is
narrow relative to the spruce budworm for example, which can also attack trees in single
and multistoried stands (Martineau 1984).

The relationship between areal extent of pure, susceptible host stands and incidence
of jack pine budworm attack is unknown. In a study of spruce budworm defoliation, van
Raalte (1972) suggested host stands of less than 40 ha are not susceptible to insect attack,
and this may be attributable to the amount of food available to sustain an insect

population. If this is applicable to jack pine budworm, then there may be a minimum
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stand size required before susceptibility to attack becomes a management concern. Jack
pine stands that are less than 65 ha, with shapes that minimize the amount of edge have
been recommended (Weber 1986). Jack pine trees along the edge of cuts often respond
with crops of male flowers, and budworms tend to concentrate along these stand edges.
Stand shapes that are circles, squares, and broad ovals may therefore be preferred (Weber
1986), although this may be operationally difficult to achieve. This suggests a
management and ecological alternative to create smaller stands of certain shapes. and to
incorporate species diversity instead of allowing large, pure jack pine stands to become
established. Because jack pine often occurs on sites that are unsuitable for other tree
species (Kabzems et al. 1986; Rudolph and Laidly 1990), incorporating species diversity

may be difficult to achieve.

2.4  Environmental influences on jack pine budworm populations

The environment has an important influence on the abundance, activity and
distribution of insects, both directly and through the host plants (Wellington 1954). Hot
weather from May through July (i.e., during larval development) followed by warm
weather from August through October provides favorable conditions for jack pine
budworm (Ives 1981). These weather conditions contribute to outbreaks, whereas
unfavorable weather such as high humidities and below-normal temperatures, contribute
to population collapse (Foltz et al. 1972; Batzer and Jennings 1980). Although the
association between weather parameters and the production of staminate flower crops is

somewhat tenuous (Volney 1988), earlier research efforts suggest that certain weather
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patterns cause vegetation stress, flowering response, and predisposition to outbreaks
(Hodson and Zehngraff 1946; Batzer and Jennings 1980; Ives 1981). Warm and dry
weather patterns for example, result in moisture stress and encourage staminate flower
production (Riemenschneider 1985) prior to outbreaks. Fire scorching also results in tree
stress, and flower production (Furniss and Carolin 1977). The dependence of budworm
survival on flower production was suggested by the association between a 4-year sequence
of fire followed by flowering and budworm outbreaks (Volney 1988).

Moisture stress reduces tree vigor and growth rate, and increases suspectibility to
insect attack (Furniss and Carolin 1977). MacAloney (1944) observed that moisture
deficient sites or low rainfall, combined with severe drought, resulted in mortality of live
roots, and decline in tree vigor. Since jack pine may not recuperate after it has begun to
stagnate (MacAloney 1944), this decline contributes to the physiological weakening of the
host tree (Kozlowski et al. 1991). The cause-and-effect relations are complex and
attributable to many possible host-pest interactions involving stand structure, weather and
insect.

Few papers describe the effects of physiographic site characteristics on jack pine
budworm populations. Though jack pine occurs on a wide variety of sites, it often
predominates on sandy, well-drained sites that have relatively poor moisture holding
capacities and low site productivity (Rudolph and Laidly 1990; Sims et al. 1990). Stands
growing on these locations are more likely to experience moisture stress and low tree
vigor. This suggests site productivity and soil type are factors that may influence stand

susceptibility and predisposition to insect attack (Clancey et al. 1980), and a higher



freqency of outbreaks have been associated with drier sites (Volney and McCullough
1994).

Another factor that influences jack pine budworm populations is their natural-
enemy complex that includes parasites, predators and pathogens. Foltz et al. (1972)
suggested neither parasites nor predators respond proportionately to budworm populations.
Bird predation is also not a major mortality factor during insect outbreaks since jack pine
stands do not support large bird populations (Ives 1981). Parasites and predators have
limited roles in jack pine budworm dynamics, and are dependent on alternative hosts for
survival during other parts of the year (Foltz et al. 1972; Ives 1981). In a Wisconsin
study, forty-six parasites were identified, and those parasites that affected the egg,
overwintering larvae, and pupal stages had the greatest influence on budworm populations
(Dixon and Benjamin 1963). Foltz et al. (1972) reported factors such as predation by
spiders and failure to spin hibernacula, affect egg-to-second-instar age survival and cause
fluctuations in budworm populations. Natural enemies of the jack pine budworm
contribute to population fluctuations, and help to control populatiors at endemic levels,

but their effects appear to be minimal during outbreaks.

25 Tree response to defoliation

A complete understanding of stand and tree responses to insect defoliation is
difficult due to the complex interrelations between varying compositions of stands and
environmental and site characteristics that lead to variable defoliation intensities. Severe

defoliation does, however, modify the forest ecosystem by disrupting the rate of normal
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successional processes and nutrient cycling (Kimmins 1987). A recognition of these
processes that underlie forest-insect relationships is considered essential to sound forest
and pest management (Stoszek 1988). An ecological approach io forest protection has
been suggested, whereby ecosystem stability is increased by enhancing the physiological
status of trees to establish resistance (Vasechko 1983). Implementing appropriate forest
and silvicultural practises and encouraging a species diversity in coexistence with natural
pest enemies are approaches toward achieving a healthy physiological status (Vasechko
1983). The premise is that in healthy organisms, all processes proceed normally, and a
deviation from the optimum results in physiologica! weakening and reduced ability to
resist pests.

The main tree physiological effects of defoliation include reduced changes in tree
vigor, a decrease in host resistance to other mortality agents, and a reduction in
photosynthetic capacity (Kulman 1971; Coulson and Witter 1984; Moody and Amirault
1992). Host tree physiologic responses to defoliation also influence food quantity and
quality for future insect generations, and contribute to the collapse of an infestation. The
quantity of suitable foliage is often considered a density-dependent factor since the size
of an insect population is in part limited by the kind and quality of food the insects can
use (Knight and Heikkenen 1980). Repeated severe defoliation inhibits male flower and
new foliage production, which, when combined with terminal shoot and bud damage,
constitute the important contributing factors to population declines (Prebble 1975; Cerezke
1978; Howse 1984).

A host-insect interaction often resulting from severe defoliation is the physiological
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weakuning and predisposition of the host to attack by secondary insects and pathogens.
The host tree is therefore more susceptible to other mortality agents due to stress imposed
by defoliation (DeBoo and Hildahl 1968). Armillaria spp. root rot (Mallett and Volney
1990) and several species of flatheaded wood borers Chrysobothris spp., have been
associated with jack pine following defoliation (Howse 1984). Mallett and Volney (1988)
attempted to ascertain whether infection by root pathogens determine the extent to which
trees are damaged following budworm defoliation, or conversely, whether repeated
defoliation predisposed trees to root pathogen attack. Two scenarios were presented:
1) Armillaria root rot may have been in the soil prior to defoliation and could

have imposed sufficient stress for the tree to produce a male flower crop.

If there were sufficient flowers for a budworm population to build, then

budworms are attracted to trees with root rot. These trees would have

insufficient starch reserves to recover from defoliation, and the fungus

could consequently spread up from the root and kill the tree.

2) The stress imposed by the defoliation may have weakened the tree and

predisposed it to attack by the root pathogen.
Although both scenarios can be rationalized, a full understanding of the mechanisms,
factors and interactions that explain why trees die is not complete (Waring 1987; Mallett
and Volney 1990). Much of the literature, however, has suggested the influence of
secondary host infection on tree mortality (Kulman 1971; Knight and Heikkenen 1980;

Moody and Amariault 1992).
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2.6 Impact of jack pine budworm defoliation

Pest impact is often considered as any change brought about in the forest by an
insect population (Coulson and Witter 1984). Reduced growth is a common impact of
repeated defoliation (Myers 1988). Significant annual volume growth losses of up to 61%
(Kulman 1971), 91% (Cerezke 1986), and 75% (Gross 1992) have been reported.
Reduced yields are a result of top kill and reduced vigor caused by reductions in root
absorption, transpiration and photosynthesis (Moody and Amirault 1992). Growth
reductions have been correlated with the quantity of foliage loss. For example, trees with
light defoliation exhibit greater growth rates than trees more severely defoliated (Kulman
1971). Although the effects of severe defoliation on the reduction in jack pine yield are
not generally known (Volney 1988), an overestimation of future timber supply will likely
result without adjustments to the growing stock that experiences defoliation (Maclean
1990).

In addition to reduced growth, impacts include morphological changes from a
reduction in foliage, tree mortality, branch mortality, top kill (Plate 2-3) and crown
deformity. Howse (1986) reported severe jack pine budworm defoliation repeated for two
or more consecutive years may result in tree mortality, but top kill, and decreases in radial
increment, are more frequent. Kulman et al. (1963) reported mortality figures from 29 to
44% for trees that were almost completely defoliated. Brandt and McDowell (1968) and
Gross (1992) reported mortality was greater for intermediate and suppressed trees than for
dominant trees. Tree mortality was not attributed to defoliation alone and other causal

factors such as secondary agents were suggested. Since defoliation typically spreads from
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the top of the tree downwards, top kill occurs frequently (Cerezke 1978) and these trees

become permanently impaired in merchantable height growth (Alfaro 1991).

2.7 Acrial survey to assess jack pine budworm defoliation

Aerial surveys are used to determine the extent and severity of defoliation over a
forest region (Volney 1992). Such surveys generally involve sketch mapping, which
entails the transfer of infestation boundaries as seen from an aircraft onto maps (Moody
1982). This process is facilitated if terrain features and landmarks viewed from an aircraft
can be easily related to the geographic features on the map (Jano 1982). Aerial surveys
are quick and timely (Harris and Dawson 1979), and are useful for planning more detailed
damage appraisal surveys, planning egg mass surveys, planning salvage operations, and
assessing insect spread rates (Moody 1982). The Forest Insect Disease Survey (FIDS) of
the Canadian Forest Service has been undertaking these surveys for many years (Cerezke
and Gates 1992; Moody 1992) and the long-term record this data represents is invaluable
(Volney 1988). The accuracies of these aerial surveys are difficult to assess, however, and
are impaired by a lack of time to record details, which often result in overestimates
through inclusion of unaffected areas (Harris and Dawson 1979). Although t .e are many
factors such as timing of surveys, weather conditions, and topography that influence
survey accuracy (Kettela 1982), accuracy is largely dependent on the knowledge, skill, and
experience of survey personnel (Waters et al. 1958; Twardus 1985). Though this problem
can be mitigated by observer training (Sippell 1983; Innes 1988), a characteristic of the

information gathered from these surveys is that it is subjective (Volney 1992). There also
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has been no standardized infestation severity classification system as evidenced by the
variety of schemes found in several previous surveys for jack pine budworm and spruce
budworm defoliation (Table 2-1). Comparisons among surveys are therefore difficult, and
relationships between sketch maps and stand characteristics have not been reported in the
literature. Since forest inventory maps for commercial forest zones are generally available,
computing the relations between mapped stand attributes and maps of insect damage may

be useful to explore.

2.8 Summary

This review chapter consisted of: the jack pine budworm life history; stand and
environmental factors that influence population dynamics; and impacts from severe
defoliation. Top kill is one impact associated with severe defoliation that has not been
extensively studied. Quantifying the volume of top kill on individual trees will help to
determine the magnitude of volume loss and its contribution to defoliation impact, and is
the subject of Chapter 4. A standardardized system for classifying and mapping the
severity of jack pine budworm defoliation is not available, nor has one been reported for
top kill. A need therefore arose to devise such a system for top kill, and this is reported
in Chapter 5 and Appendix 1. The map of top kill resulting from this system was required
before evaluations of satellite data (ie. Chapter 5) and determinations of spatial association

measures (ie. Chapter 6) were undertaken as outlined in Chapter 1.
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Figure 2-1. Life history of the jack pine budworm:.



Plate 2-1. Mature jack pine budworm larva. Reprinted with permission from Canadian

Forestry Service (Ives and Wong 1988).

Plate 2-2 Reddish brown needles caused by larval feeding. Reprinted with permission

from Canadian Forestry Service (Ives and Wong 1688).



Plate 2-3.

A stand of jack pine showing trees with top kill.
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Chapter 3

Description of Study Area

3.1 Introduction

The study area encompasses the Torch River Provincial Forest of Saskatchewan
(Figure 3-1), and was selected because moderate to severe defoliation was reported for
this area between 1985-1987 (Moody and Cerezke 1986; Cerezke and Emond 1989). The
purpose of this chapter is to describe the location, physiography, climate, soils and
drainage, forests and vegetation of the chosen study area.

3.2  Location and physiography

Torch River Provincial Forest is located within Universal Transverse Mercator
(UTM) Zone 13, and is bounded by 550,000 mE and 5,920,000 mN on the southwest to
570,000 mE and 5,940,000 mN on the northeast. It is referenced on the southeast corner
of National Topographic System (NTS) 1:50,000 map sheet 73H/9. The study area
occupies approximately 4,000 ha in Townships 52 and 53, Ranges 14 and 15 west of the
2nd meridian (Anderson and Ellis 1976), and is included in the Carrot River Lowland
physiographic section of the Manitoba-Saskatchewan Lowlands (Kabzems et al. 1986).
The Carrot River Lowland is a gently to roughly undulating plain composed primarily of
sandy fluvial-lacustrine sediments (Anderson and Ellis 1976). Based on interpretation of
the 73H/9 NTS map sheet, the study area lies at elevations ranging from 330 to 380 m

above sea level.



3.3 Climate and recent weather trends

The climate of the study area is described as cold, sub-humid continental (Richards
and Fung 1969), characterized by relatively cool, short summers, long cold winters, and
low annual precipitation. The closest meteorological station to the study area for which
temperature and precipitation records have been collected is at Nipawin, Saskatchewan'.
Published figures based on 30-year averages are available for Nipawin (Atmospheric
Environment Service 1982), and these were compared with figures for the years
corresponding to the most recent jack pine budworm outbreak (Figure 3-2). The average
annual temperature for the study area is 0.8° C (standard deviation 0.9° C). The average
May to September growing season temperatures from 1975 to 1990 were below the
Canadian Climate Normal based on a 30-year average (Atmospheric Environment Service
1982) of 14.5° C (Figure 3-2). From 1985 to 1988, there was a trend toward increasing
average annual growing season temperatures that coincidentally occurred during the most
recent jack pine budworm outbreak.

The total annual precipitation for the area based on the Canadian Climate Normal
for a 30-year average is 40.4 cm (standard deviation 9.3 cm) (Atmospheric Environment
Service 1982). From 1975 to 1990, annual precipitation generally exceeded this value,
including the years 1984, 1985, and 1987 during the most recent jack pine budworm
outbreak (Figure 3-3). In 1986, however, the largest areal extent of defoliation (Cerezke
and Emond 198%5) corresponded with a drier year, and this was also the second driest year

between 1975 and 1990 (Figure 3-3).

' Personal Communications. Atmospheric Environment Service, Winnipeg, Manitoba. March 1993.
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34 Soils and drainage
Soils of the study area are a result of glaciation and related lacustrine and fluvial
processes (Anderson and Ellis 1976), with surficial deposits that are predominately fluvial-
lacustrine in origin and overlay silty glaciolacustrine materials. Fluvial implies sediments
consisting of gravel and sand that were deposited by flowing water such as streams and
rivers (Agriculture Canada, 1976; Agriculture Canada Expert Committee on Soil Survey
1987). Lacustrine implies sediments consisting of stratified fine sand, silt, and clay
deposited in lake water and later exposed either by lowering of the water level or by
uplifting of the land (Agriculture Canada, 1976; Agriculture Canada Expert Committee
on Soil Survey 1987). Fluvial-lacustrine sands consist predominately of coarse-textured
quartz and feldspar minerals, and weakly to noncalcareous (i.e., little or no presence of
calcium carbonate) materials (Anderson and Ellis 1976). These sediments were deposited
under alternating or overlapping glaciolacustrine and glaciofluvial conditions.
The study area has been mapped at a scale of 1: 126,720 to three soil associations.
The dominant association includes rapidly to well drained Eluviated Eutric Brunisols and
Orthic Regosols of the Pine Association (PN-2, Anderson and Ellis 1976; red polygons,
Figure 3-4). Orthic Regosols have weakly developed horizonation and may have a thin
LFH, Ah and C horizon sequence with no significant B horizon development. Eluviated
Eutric Brunisols have sufficient development to include a B horizon (e.g., Bm), an eluvial
horizon (i.e., Ae) from which mostly clay material has been removed, and a horizon
sequence such as LFH, Ae, Bm or Btj, and C (Agriculture Canada Expert Committee on

Soil Survey 1987). Although the more acidic Dystric Brunisols also occur in soils of the
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Pine Association, they were not identified because of the small map scale and difficulty
in separation from less acid and more prevalent Eutric Brunisols (Anderson and Ellis
1976). These soils therefore range from moderately acidic to strongly acidic. are of low
fertility, and low moisture holding capacity. Along the Torch River valley are Regosolic.
Brunisolic, and Luvisolic soils of the Hillwash Association (HW, Anderson and Ellis
1976; green polygons, Figure 3-4). Hillwash encompasses areas of several parent materials
on steep, eroded valley slopes along the Torch River (Anderson and Ellis 1976) that could
not be separated cartographically at this map scale. A small area in the northeast end of
the Torch River Forest consists of well-drained Orthic Gray Luvisols of the Garrick
Association developed from medium to moderately fine-textured, moderately to strongly
calcareous resorted glacial till (GA2, Anderson and Ellis 1976; yellow polygon, Figure
3-4). Resorted glacial till contains greater amounts of silt and clay, and therefore has
greater moisture holding capacities than soils of the Pine Association as evidenced by the
relatively slower drainage and finer textures within the study area (Figures 3-4, 3-5).
The area is drained by the Torch and White Fox rivers, which subsequently drains
into the Saskatchewan river system. These rivers are post-glacial in origin and tend to

meander.

35 Forest and vegetation
Forests of the study area fall within the Mixedwood Section (B.18a) of the Boreal
Forest Region described by Rowe (1972), and the Mixedwood Section of the Southern

Boreal Ecoregion described by Harris et al. (1983). Much of the rapidly to well drained
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areas (Figure 3-4) are described as the Pinus-Cladonia/Arctostaphylos Ecosystem that
consists mostly of jack pine and understory lichens (reindeer lichen) (Cladonia spp.) and
bearberry (Arctostaphylos uva-ursi (L.) Spreng.) (Kabzems et al. 1986). The density of
the tree canopy and the dryness of the site determine the understory species. A very
rapidly drained site will have an open canopy with lichens whereas a rapidly drained site
will have a denser canopy with lichens and bearberry for ground vegetation (Kabzems et
al. 1986). Jack pine grows on a variety of sites ranging from very rapidly drained to
imperfectly drained, but dominates in the very rapidly drained areas where other tree
species cannot grow (Kabzems et al. 1986; Rudolph and Laidly 1990). This is readily
apparent when the soil drainage map (Figure 3-4) is compared to the primary species map
for jack pine distribution (Figure 3-6). Forest stands of trembling aspen (Populus
tremuloides Michx.), white spruce (Picea glauca (Moench) Voss), and black spruce (Picea
mariana (Mill.) B.S.P.) also occur along the Torch River floodplain and on some rapidly
drained and well-drained sites (Figures 3-5 and 3-6).

Jack pine sites are relatively dry since rapidly well drained and well drained areas
on coarse textured Brunisols have little water holding capacity. The dry ecoclimate on
these sites result in frequent forest fires, with deep and multiple fire scars indicative of
short fire frequencies (Kabzems et al. 1986). This was verified by observing fire scars un
Jack pine bark during field visits to the study area. Fire also removes organic matter
(Kimmins 1987), and this explains in part, the occurrence of charcoal (Anderson and Ellis

1976) and the thin LFH layer in soils of the study area.
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3.6  Site classification

A site quality map was produced for the area (Allan 1993) (Figure 3-7). This map
was produced by interpreting landform and vegetative patterns on 1:5000 color infrared
aerial photographs. Twenty-nine field plots were located throughout the study area based
on available resources, and soil profiles, vegetative descriptions, plot location. drainage.
and general physiography (i.e., slope gradient and aspect, topographic position, relief
shape and landform) were recorded onto field sheets. Soils were described according to
the Canadian System of Soil Classification (Agriculture Canada Expert Committee on Soil
Survey 1987). Vegetation data were subsequently analyzed using the Comell Ecology
Program TWINSPAN, to classify the vegetation into communities as a basis for
classifying site quality. The jack pine/Cladonia and jack pine/Arctostaphlos/Cladonia
communities correspond to the Pinus-Cladonia/Arctostaphylos ecosystem described by
Kabzems et al. (1986) for example, and typify poor sites. The jack pine/bog
cranberry/moss vegetation community is closely related to the Pinus-Vaccinium-vitis-
idaea/Pleurozium ecosystem described by Kabzems et al. (1986), and represents a medium

site since it supports a greater diversity of undersiory vegetation.

3.7 Summary

The study area is located near the town of Nipawin, Saskatchewan. Its landscape
is the result of glaciation and related lacustrine and fluvial processes. Soils of the TRPF
are relatively homogeneous with much of the forest consisting of Eluviated Eutric

Brunisols and Orthic Regosols of the Pine Associaticn. These soils are relatively poor to
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moderate in site quality due to its coarse texture and rapid drainage and mainly support

jack pine stands.
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Scale ~ 1: 12 million

Figure 3-1. Sketch map of Saskatchewan depicting location of study area.
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Chapter 4
Estimating Top-Kill Volumes with Large-Scale Photos on Trees Defoliated

by the Jack Pine Budworm®

4.1 Introduction

Jack pine budworm (Choristoneura pinus pinus Freeman) is a major pest of jack
pine (Pinus banksiana Lamb.) forests in Ontario, Manitoba, Saskatchewan, and the
adjacent United States Great Lakes States (Moody 1989). Damage from severe defoliation
on jack pine includes growth reduction (Kulman et al., 1963), top kill (i.e., dead tree tops)
(Prebble 1975), and tree mortality (Howse 1984). Surviving trees usually produce lower
yields than healthy trees (Alfarao 1988; Moody and Amirault 1992), particularly if height
growth has been permanently impaired by top kill (Alfarao 1991). Although the jack pine
budworm is considered among the major insect pests in Canada (MacLean 1990), its
effects on reduction in yield are not generally known (Volney 1988). Overestimation of
future timber supply can therefore result from failure to allow for catastrophic mortality
or continual reductions in growth, caused by biotic agents such as insect defoliation
(MacLean 1990).

Damage impacts have seldom been quantified except in very general terms (Howse
1986). Reports of insect damage have largely been areal estimates of defoliation extent

and severities based on aerial surveys and egg mass counts (Cerezke 1986; Moody 1989).

* A version of this chapter has been published in the Canadian Journal of Forest Research: Hall, R.J., Titus,
S.J., and Volney, W.J.A. 1993. Estimating top-kill volumes with large-scale photos on trees defoliated by the jack
pine budworm. Can. J. For. Res. 23: 1337-1346.
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Aerial surveys are widely used to assess and monitor the status of insect defoliators
(MacLean 1990), and are quick and timely for monitoring current conditions (Harris and
Dawson 1979). They are usually used to stratify the landscape but this is only the first
step in obtaining volume estimates for input to timber supply calculations and harvest
scheduling.

Previous studies oriented towards quantifying defoliation impacts have largely been
research efforts to acquire fundamental information on its effects (Dixon and Benjamin
1962; Kulman et al. 1963; Rose 1974; Nyrop et al. 1983; Cerezke 1986; Volney 1988).
Although these studies are important in their contribution, they have not focused on
quantifying volumes of top kill on individual trees. The projection of top-kill volumes
to the stand and forest level is a prerequisite to estimating potential defoliation impact on
the jack pine timber supply. In addition, since jack pine usually does not fully recover
from major stress, (MacAloney 1944), time may be a factor affecting the quality and
quantity of future harvests. A trend towards increasing jack pine budworm outbreak size
has recently been demonstrated (Volney 1988), and this suggests the need for estimates
of volume losses (Little 1984) may also be increasing.

Measurements of length and the diameter of the main stem above the highest point
of live crown to the tree top are required to estimate top-kill volume. Field measurements
of both are tedious, time consuming and difficult. Large-scale photo (LSP) mensuration
is a tool that may reduce the need for field evaluation of top kill. It is not known,
however, whether large-scale aerial photo measurements are an accurate alternative to

field measurements. The conventional photo approach to estimating individual tree
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volumes is to use an equation based on measured tree height and crown area (Spencer and
Hall 1988). The applicability of LSP for estimating the volume of top kill is questionable,
however, due to the difficulty in measuring crown area at the point between dead and live
crown on the tree.

An alternative method for estimating the volume of tree top kill is to use large-
scale photo measurements and a taper function. Taper functions are often used to estimate
total tree volume as well as the volume for any portion of the main stem (Munro and
Demaerschalk 1974; Avery and Burkhart 1983; Kozak 1988). Any suitable tree taper
function can be used to estimate top-kill volume if top-kill length, tree height, and
diameter are known. Height has long been measured photogrammetrically on LSP
(Spencer and Hall 1988), and diameter has been predicted from LSP measurements of
height and crown area (Aldred and Lowe 1978; Hall et al. 1989). If top-kill length
measured on photos is strongly related to actual top-kill length, then tree height, top-kill
length, and predicted diameter can be used with a taper function to estimate top-kill
volume.

Estimates of top-kill volume in a stand can be estimated from sample plots
measured on photos if all trees with top kill are visible on the photos. Trees with small
amounts of top kill, however, may be missed during measurement on the photos. Since
jack pine has a characteristic conical crown (Hosie 1973) with small diameter tree tops,
missed trees will have a small influence on current volumes. This influence or bias can
be estimated and adjusted by using ratio estimation procedures. The magnitude of this

proportion was determined in this study.
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The study objective was to determine to what extent can a method based on large-
scale photo measurements and a jack pine taper model be used to estimate the volume of
tree top kill? To achieve the study objective, the following 4 questions were addressed:
1) Are the lengths of top kill measured from large-scale photographs related to actual
lengths of top kill?; 2) What is the relationship between tree diameter outside bark at
breast height and photo measures of tree height and crown area for the study area?; 3)
Are the volumes of top kill estimated using photo measurements and a taper model,
related to their actual volumes?; and 4) What proportion of trees with top kill were missed

on the large-scale photos and what proportion of volume of top kill did this represent?

4.2  Materials and methods

The study area encompasses the Torch River Provincial Forest of Saskatchewan,
and is in the mixed wood section (B.18a) of the Boreal Forest Region of Canada, where
jack pine predominates on sandy areas (Rowe 1972). It is located within the Universal
Transverse Mercator (UTM) Zone 13 and is bounded by 550,000 mE and 5,920,000 mN
on the southwest to 570,000 mE and 5,940,000 mN on the northeast. Moderate to severe
defoliation was reported for the Torch River Provincial Forest between 1985-1987

(Moody and Cerezke 1986; Cerezke and Emond 1989).

4.2.1 Data collection
The Northern Forestry Centre computer-controlled, dual-Vinten, 70mm aerial

ca:nera system with radar altimeter was used to acquire the large-scale sampling photos
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(Chapter 5 Plate 5-1) at an average scale of 1:900 with a 70% nominal overlap, on July
31, 1988 (Hall 1984; Spencer and Hall, 1988), the summer following the collapse of
defoliation. Panchromatic (black & white) photos were acquired with Kodak Double-X
2405 film over nine random flight lines distributed throughout the Torch River Provincial
Forest, and selected photos were printed onto transparency film. Three of the nine flight
lines were also flown with normal color Kodak 2448 diapositive film as a subsample to
permit a comparison between panchromatic and color films. This was logistically difficult
due to the large scale of the photos, and the small areal coverage of each photo (~ 51 m
x 51 m). The color photos were therefore treated as an independent sample. Photo scale
control was facilitated by the placement of strategically located targets along flight lines,
and by employing a radar calibration procedure (Hall 1984). All stereopairs were
interpreted from film diapositives. The higher spatial resolution of a film compared to a
paper medium, and the use of a high contrast duplicating film product facilitated the
interpretability of dead tree tops. This has operational implications since visible top kill
can be subtle, and is therefore more easily discerned on diapositive photos than on paper
prints.

A random selection of twenty-seven large-scale photo plots (1 photo plot = 1
stereopair of which a plot ~ 270 m’ is established) based on available resources was made
from the acquired panchromatic (19 photo plots) and color photos (8 photo plots) to create
the double sample (i.e., plot trees measured on both the photo and in the field). Although
the original intent was to survey the entire Torch River Provincial Forest, only the double

sample data were used in this study. Of the 378 sample trees over the 27 plots, 213 trees
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exhibited top kill. For each sample plot, two trees exhibiting top kill were randomly
selected for stem analysis to achieve an approximate uniform distribution of the number
of trees per plot. For plots having a single tree with top kill, an additional tree was chosen
from another plot. This resulted in 55 trees being selected for stem analysis. These trees
were cut into one metre sections, and measurement followed procedures described by the
Forestry Division of the Saskatchewan Department of Natural Resources (Lindenas 1985).
All section volumes were computed using Smalian’s formula (Clutter et al. 1983).
Photo tree measurements of total height, crown area, and live height were obtained
using a Zeiss Stereocord analytical plotter (Aldred and Lowe 1978; Spencer and Hall
1988). The length of top kill was computed as the difference between total and live
height. Following standard photo-mensurational procedures, an independent data set from
a previous project was first used to develop a simple linear regression calibration equation

to account for possible combined photo interpreter measurement and instrumentation bias.

4.2.2 Relation between phote and actual lengths of top kill

Fitting separate linear models should adequately describe the individual relations
between panchromatic and co:or photo measurements of top kill with their actual values.
Inferences would not be possible, however, on whether panchromatic and color
measurements were statistically different in their predictions of actual top kill. Indicator
(or dummy) variable regression (Neter et al. 1990) based on the combined data set would

provide these inferences if the data were equally varied. A preliminary F-test® of the error

3 This and all subsequent statistical tests were performed at the 95% probability level.
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variances from fitting the panchromatic and color photo regressions of top kill separately,
showed them to be approximately equal (F = 1.13; F-table = 2.25). An indicator variable
model was therefore appropriate to test whether panchromatic and color photo measures

of top kill were related to their actual values (Neter et al. 1990):

Y=o+ By Xiy + B2 Xio + B3 Xy X2 + &
where:
Y, = Actual length of top kill (m)
Xi; = Photo-measured length of top kill (m)
Xi; = 0 if Color photo

= 1 if Panchromatic photo
& = random error;

1=1ton, number of samples

Tests and inferences for comparing the regression functions for panchromatic and color
photo top kill are equivalent to tests of significance of the indicator variable regression
coefficients. Thus, if B, = 0 then B, is the common intercept, otherwise B, is the intercept
for color and B, + B, is the intercept for panchromatic. If B, = 0, then B, is the common
slope, otherwise B, is the slope for color and B, + B, is the slope for panchromatic.
Beyond the tests on the regression coefficients, the indicator variable model was evaluated
by examining the adjusted R* (Verbyla 1986) and standard error of estimate. Plots of the

standardized residuals and normal probability were also employed to ensure
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appropriateness of the linear regression model.

4.2.3 Relation between DBH and photo-measured tree height and crown area

Previous studies to develop linear model forms of DBH as a function of tree height
and/or crown area have been utilized either directly or through simple transformations
such as their squares or square roots (Spencer and Hall 1988; Hall et al. 1989). Ten linear
model forms were fitted using multiple linear regression techniques for the photo-ground
double sample data set (Table 4-1). These models were based on the literature (Hall et al.
1989), and on the strengths of their simple correlations with DBH. The models in Table
4-1 are all intrinsically linear in mode! form. Although logarithmic models have also been
employed in DBH estimation (Hall et al. 1989), the relatively small data set and the
objective of developing a procedure for quantifying volumes of top kill did not warrant
consideration of more complex models. However, once the procedures have been
developed, more complex model forms could be substituted if warranted.

A random selection of 100 trees constituting one-third of the double sample was
removed to create an independent data set for testing the selected model form. One or
both of the following hypotheses were evaluated depending on whether tree height or
crown area was in the tested model (Table 4-1):

I. Photo-measured tree height does not contribute to the prediction of tree DBH.
2. Photo-measured crown area does not contribute to the prediction of tree DBH.
These hypotheses were evaluated by the significance of their respective regression

coefficients in the linear models tested. Beyond comparing statistical measures (adjusted
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R?, standard error of estimate, significance of predictor variables, standardized residual
and normal probability plots) to assess model performance, the objective was to select the
simplest model in terms of model form and number of predictor variables.

From the selected regression model, the test data set was used to compute average
bias (i.e., the arithmetic difference between actual and predicted values) and its standard

error to test the prediction abilities of the fitted model.

4.2.4 Estimating the volumes of top kill

Using a taper model, volumes of top kill may be computed as either the difference
between total and live volume, or directly as the volume of the top kill portion (Figure
4-1; see variable definitions below). The latter approach was taken in this study. Hilt’s
taper model (Hilt 1980) as fitted to jack pine data (Bella and Somogyi 1992) was used

to estimate volume:

V=DBH**(HT-13)*k*@*04*Y, +b*04*Y, *HT-b*025*Y,* HT
+[(c*04*Y,) *DBH * HT] - [(c * 0.25 * Y,) * DBH * HT +
[(d*04*Y,)*DBH]-[d* (l/31) * Y, * DBH] +
fe*04 *Y,) * DBH * HT] - [e * (1/31) * Y; * DBH * HTJ]);

where:

DBH = estimated tree diameter at 1.3 m from the ground (cm)
HT = photo tree height (m)

— 52 52 .
Yl - XU = XL .



Y, =X - X4

Y, =X - X

Xy = upper integral limit; relative length from tip to lower limit of top kill
= predicted length of top kill / (HT - 1.3)

X, = 0; lower integral limit and represents tip of the tree in this study

k = 1/4/10000 = 0.00007854; constant for metric units

a=1.062772, b = 0.032379, ¢ = -0.001028

d = 0.000231, e = - 0.00006015

The variables needed for estimating volumes of top kill using Hilt’s taper model included
tree DBH and photo measures of total tree height and top kill. Tree DBH was estimated
from the fitted regression model (equation [2] below; Table 4-1). This approach can be
conceptualized as estimating volumes from a set of three equations:
[1] Actual top kill = f, [photo top kill]
[2] DBH = f, [HT, CA]
[3]  volume of top kill = f; [V']
where: HT = photo tree height (m)

CA = photo crown area (m?)

DBH = estimated tree diameter at 1.3 m from the ground (cm)

V' = £, [Predicted DBH, HT, Predicted top kill}, Hilt’s taper model
The model forms and respective parameters for equations [1] and [2] were based on

results of the first two parts of this study. Hilt’s volume estimates were first computed and
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then related to actual volumes using ordinary least squares (OLS) regression in equation
[3]

Alternative parameter fitting approaches were also explored to determine if greater
statistical efficiency could be obtained by solving for the parameters simultaneously. Since
the dependent variables in equations [1] and [2] are used as independent variables in the
taper model to compute volumes in equation [3], they exhibit a sequential relationship to
[3], and are considered a recursive system of equations (Borders 1989). If the errors
between equations [1] and [2] are correlated, then it is appropriate to estimate equation
parameters jointly using seemingly unrelated regression (SUR) (Judge et al. 1988). SUR
was used for equations [1] and [2] but efficiency gains were not obtained and significant
correlation did not exist between respective error teims based on the Lagrange Multiplier
statistic (Breusch and Pagan 1980). Equations [1] and [2] if treated as a block, are similar
to a simple recursive system in which econometricians suggest statistically, can be
consistently estimated by OLS (i.e., large sample equivalent of minimum mean square
error) (Fomby et al. 1984). The OLS method yields parameter estimates that are the best
linear unbiased estimates for linear equations if the error terms within an equation are
independent, equally varied (homoscedastic), and the error terms between equations are
not correlated (Kennedy 1985; LeMay 1988). OLS was therefore considered the most

appropriate fitting technique for the set of equations presented.

4.2.5 Proportion of trees missed

The appropriateness of the study assumption that top kill only occurs if it was
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visible on the aerial photos, and missed trees would be small in magnitude required
testing. To determine the proportion of trees with top kill that were missed on the LSP.
a ratio was computed of missed trees to total trees with top kill. The volumes of these
trees were then computed with Hilt’s taper model. These volumes were then summed to

calculate the proportion of volume for missed trees relative to all trees with top kill.

4.3  Results and discussion
4.3.1 Relation between photo and actual lengths of top kill

On average, panchromatic and color photo measurements of top kill were smaller
in comparison to actual lengths measured during stem analysis (Table 4-2). Those from
color film also had smaller average deviations. Photo measurements of top kill may have
been underestimated because lengths of top kill are usually small, and discerning the
boundary between live and dead crown is difficult. This discrimination was more obvious
on the color photos but on average, the accuracy of measuremems from either film were
similar (Table 4-2). Photo-measured lengths were also highly correlated with actual values
(Panchromatic r = 0.75; Color r = 0.88), and these associations appeared linear (note the
scatter of data in Figure 4-2). This suggested simple linear models would be reasonable
to describe the relationship between photo and actual lengths of top kill.

Based on tests of the regression coefficients, there were no differences between
panchromatic and color photo top kill in their relations with actual values (Table 4-3).
This result was reasonable considering the relatively high standard deviations of top-kill

deviations relative to their means (Table 4-3; Panchromatic 0.88m, Color 0.76m). A larger
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sample size is therefore necessary to ascertain differences between film types. The final
model based on data for this study was photo-measured top kill as a predictor of actual
lengths, with an adjusted R? of 0.62 and a standard error of estimate of 0.83 m (Table 4-
3). Further evaluation of this model showed the standardized residuals to be equally varied
and normally distributed (Figure 4-3a, 4-3b). The correlation coefficient between the
standardized residuals and normal scores was 0.997, and this exceeded the critical value
for the test of normality. Large-scale photo measurements of top kill are related to their

actual lengths, and are adequately described with a linear equation.

4.3.2 Relation between DBH and photo-measured tree height and crown area

A comparison of the means and standard deviations for the regression and test data
sets showed they were reasonable subsets of the full data set (Table 4-4). The regression
data set was used to fit the DBH models, and the test data set was used to compute
average bias and its variability for the selected DBH model. Correlation coefficients

between the independent variables (Table 4-1) and DBH were all statistically significant,

but HT yCA was most strongly associated with DBH (Table 4-5). The parameters for

the 10 regression models listed in Table 4-1 were therefore estimated. All 10 models were
statistically significant (P < 0.0001), but variations in model performance were largely
attributable to correlation among the predictor variables (Table 4-5), as evident by the
large P-values for some regression coefficients (Table 4-6). There was only marginal
improvement in predictive performance with more than 2 independent variables in the

models. Models with photo measures of tree height and crown area were better predictors
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of DBH than models using either alone. This was expected since tree height and crown
area were not highly correlated (» = 0.12), while crown area was more highly correlated
with DBH (r = 0.59) (Table 4-5). Model 6 was selected for predicting DBH as it was the
simplest model form with a high adjusted R’, and all independent variables were
statistically significant. In addition, the standardized residuals for model 6 appeared
equally varied (Figure 4-4a), and were normally distributed (Figure 4-4b). The correlation
coefficient between the standardized residuals and normal scores was 0.989, and this
exceeded the critical value for the test of normality (Neter et al. 1990). There were no
apparent departures from regression assumptions. Both tree height and crown area were
concluded to contribute to the prediction of DBH for jack pine.

Based on the test data set, the average DBH from the field was 18.76 cm and the
average predicted DBH using photo measured tree height and crown area was 19.24 cm.
The average bias between predicted and actual DBH was 0.47 cm. Therefore on average,
the regression function with photo measurements overestimated the actual DBH by
approximately 0.5 cm and its standard error was 0.23 cm. For the data from the Torch

River Provincial Forest, model 6 was considered a reasonable predictor of tree DBH.

4.3.3 Estimating the volumes of top kill

The high correlation of 0.93 between taper estimates and actual volumes of top kill
suggested a linear model may be adequate. The intercept for this model was not
significantly different from zero, however (P = 0.98), and a regression without an

intercept was fit instead. The resuiting model was a proportional adjustment between
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Hilt’s estimated volumes and actual volumes:
Predicted top-kill volume = 1.216 * Hilt’s taper volume
Adjusted R’ = 0.90 Standard error of estimate = 0.0023 m®
A comparison of the taper-adjusted volumes with actual volumes of top kill suggest they
are reasonable estimates given Hilt’s taper model employed in this study (Table 4-7). An
examination of the plot of standardized residuals showed them to be random and

approximately equally varied with no bias evident.

4.3.4 Proportion of trees missed

Of the 19 photo plots on panchromatic film, 140 trees were surveyed with top kill
in the field. Of the 140 trees, 126 were similarly interpreted from the LSP and 14 were
not interpreted and therefore missed. By proportion, 10% of the trees with top kill were
missed during interpretation on the LSP. In terms of its volume, the total volume for the
126 trees with top kill was 0.328 m’, and for the 14 missed trees was 0.003 m’. The
proportion of trees with top kill not measured on the LSP was 0.9% by volume.
Interestingly, there were only 2 missed trees with top kill of 73 over the 8 photo plots
with color film. By proportion, this represented 2.7% or approximately 3% of all trees
with top kill interpreted on the color film. Though measurement results from either film
in this study were reported similar, this observation and results in Table 4-3 suggest color
aerial film is preferable due to the increased visual discrimination of tree top kill.

Skilled interpreters can usually detect and measure parallax differences of 0.03 to

0.05 mm (Moffitt 1967; Avery 1977). If this is accepted as the minimum measurement
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unit for a scale of 1:900, then a length of 0.4 m long constitutes the limit of measurement

precision. Top kill less than 0.4 m are therefore difficult to consistently measure.

4.4 Conclusions

A 3-step method was developed to estimate the volumes of top kill based on large-
scale photo measurements. This method may also be suitable for other insect pests whose
damage includes top kill and is based on 1) the measurement of top-kill length and tree
height, 2) the estimation of DBH, and 3) a ratio adjustment to volume estimates obtained
from a taper model. A comparison between panchromatic and color aerial photo measures
was undertaken because top kill was perceived easier to measure on color film. Even
though there were no statistical differences, it is preferable from a photo interpreter’s
perspective to use color film because of the greater image contrast between dead and live
crown. Photo measurements were consistently conservative, however, and were adjusted
to predict the actual lengths of top kill with a linear equation. DBH was estimated from
a linear model based on photo tree height and square root of crown area. Based on tests
with an independent data set, the linear model with photo measurements was a reasonable
predictor of tree DBH with an average bias of 0.5 cm and a standard error of 0.2 cm.

The input of photo tree height, length of top kill, and predicted DBH into Hilt’s
taper model resulted in volumes of top kill which were on average, equivalent to actual
volumes. The advantage of this method is that it is not contingent on a particular taper
model form. Any taper function in volume terms can be used. Since taper models are

often computed for specific species over relatively large areas, the relation between
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predicted volumes from the taper model to its actual volumes should be computed with
a sample over the study area. This will determine if an adjustment to taper volumes is
needed to reflect local conditions.

Although 10% of the trees with top kill were not visible on the panchromatic
photos, this represented only 0.9% of total top-kill volume. This level of omission was
considered acceptable; however, if required, an adjustment could be made to more
accurately estimate defoliation impact on tree volumes. Color film, however, is preferred
to panchromatic film since visible top kill on trees can be subtle, and are more easily
interpreted and measured on color photos. By integrating this method with forest sampling
procedures, volume estimates of top kill can be projected to the stand or forest level to
obtain an estimate of defoliation impact on jack pine timber supply, or for studying stand

changes following defoliation.
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Table 4-1. Multiple linear models for DBH estimation using photo tree height and/or crown area.

Equation Regression model form
1 DBH:po+plliT‘+e
2 DBH = f§, + B, CA® + ¢
3 DBH = B, + B, /CA + ¢
4 DBH = B, + p, HT /CA + ¢
5 DBH = f, + B, HT + B, HT? + ¢
6 DBH = B, + B, HT + B, /CA + ¢
7 DBH = B, + p, HT + B, HT /CA + ¢
8 DBH = B, + p, HT + B, HT /CA + B, /CA + ¢
2 DBH = B, + p, HT + B, HT? + B, /CA + B, CA + B, HT /CA
10 DBH = B, + B, HT + B, /CA + B, CA + ¢

® HT = photo tree height

®CA = photo crown area



Table 4-2. Descriptive statistics for top-kill length (m).
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Statistics
Source N Mean Standard Standard Min, Max
deviation error of the
mean

Actual (felled) 55 2.25 1.35 0.18 0, 6.5
Panchromatic photo 39 1.72 1.24 0.20 0, 56
Color photo 16 1.79 1.38 0.34 0, 48
Deviations:
Panchromatic - Actual 39 - 0.60 0.88 0.14 -21, 15
Color - Actual 16 - 029 0.76 0.19 -2.1, 0.7




Table 4-3. Indicator variable regression analysis results for top-kill length.

Model: Y =B, +B, X, +B, X, + B, X, X, +¢

Run # Statistic® Parameter values Fit
Statistics’
Bo B, B. B,
1. B, is not n
significant, B 0.262 1.016 0.758 -0.258
remove and fit Adj R*= 0.63
model without t 0.76 6.61 1.84 -1.38
intera<tion term SEE=0.82m
P 0.449 0.000 0.071 0.174
2. B, is not B 0.574 0.842 0301
significant, Adj R*= 0.62
remove and fit I 2.20 9.50 1.23
as simple linear SEE= 0.83 m
model P 0.032 0.000 0.226
3. Final model B 0.793 0.839
Adj R*= 0.62
t 4.15 942
SEE=0.83 m
P 0.000 0.000

a

b

Adj R?, adjusted R*; SEE, standard error of estimate

A
B, estimated regression coefficient; ¢, t-value; P, P-value



Table 4-4. Means and standard deviations for DBH regression data sets.
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Data set Variable Mean Standard
deviation
Full Standing DBH (cm) 18.9 5.3
(N = 378) Photo tree height (m) 13.9 3.0
Photo crown area (m?) 7.8 5.8
Regression Standing DBH (cm) 18.8 5.3
(N = 278) Photo tree height (m) 13.8 2.9
Photo crown area (m?) 7.7 5.6
Test Standing DBH (cm) 19.0 5.3
(N = 100) Photo tree height (m) 14.3 3.0
Photo crown area (m?) 8.2 6.4
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Table 4-7.  Descriptive statistics for actual and top-kill volume estimates.
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Variable (m®) Mean Standard Standard
deviation error
Actual volume 0.003999 0.006453 0.000895

OLS volume 0.003993 0.006025 0.000835
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Figure 4-1. Schematic of a tree profile depicting top kill.



Actual top-kill (m)
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Figure 4-2. Scatterplot of felled and photo measured top kill.
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Figure 4-3a. Standardized residual plot for photo top-kill regression model.
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Figure 4-3b. Normal probability plot for photo top-kill regression model.



Standardized Residual

72

10 15 20 25 30

Predicted PBH (cm)

Figure 4-4a. Standardized residual plot for DBH regression model.
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Standardized residual
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Normal score

Figure 4-4b. Normal probability plot for DBH regression model.
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Chapter §

Evaluation of LANDSAT Thematic Mapper Data for Mapping Top

kill caused by Severe Jack Pine Budworm Defoliation

51 Introduction

In Canada, although remote sensing research has been conducted on detecting and
mapping defoliation from forest insects such as the eastern spruce budworm
[Choristoneura fumiferana (Clem.)] (Ahern et al. 1986; Leckie and Ostaff 1988; Leckie
et al. 1989; Beaubien and Pilon 1990; Franklin and Raske 1994), forest tent caterpillar
(Malacosoma disstria Hubner) (Hall et al. 1983; 1984), eastern hemlock looper [Lambdina
fiscellaria (Guen.)] (Franklin 1989; Luther et al. 1991), and blackheaded budworm
[Acleris variana (Fern.)] (Luther et al. 1991), there has been relatively little work directed
towards the jack pine budworm (Choristoneura pinus pinus Freeman) (Dixon 1987 in
Manitoba; Hopkins et al. 1988 in the Lake States, USA). Jack pine budworm is a major
defoliator of jack pine (Pinus banksiuna Lamb.) forests in Ontario, Manitoba,
Saskatchewan, and the adjacent United States Great Lakes States (Moody 1989). Damage
from severe defoliation on jack pine includes top kill (i.e., dead tree tops) (Prebble 1975),
and tree mortality (Howse 1984). The jack pine budworm is considered among the major
insect pests in Canada (MacLean 1990), and methods to detect and map its spatial
distribution are needed ior programs directed at monitoring and assessing its damage
impact.

Jack pine budworm overwinters as a second-instar larva and emerges in late May
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soon after male cones open and new, young needles emerge (Clancy et al. 1980). The
budworm larvae migrate to the tops and outer crown of trees due to their preference for
male flower clusters and young foliage (Howse 1984). Defoliation spreads from the top
of the tree downwards (Moody 1986). Only the basal portion of the needle is eaten while
the rest becomes entangled in a mass of silk and larval excrement that changes to a
distinctive reddish brown color as this material desiccates (Kulman et al. 1963; Martineau
1984). The red discoloration is a visible indicator of defoliation severity used during aerial
surveys (Moody 1986), with stands being rated as severely, moderately, lightly, or not
defoliated (Volney 1988).

The basis for using digital LANDSAT Thematic Mapper (TM) data to detect
defoliation damage lies in observing changes to spectral reflectance of forest canopies
between two points in time (Ahern and Leckie 1987). The red discoloration is likely the
stage at which the greatest spectral change occurs relative to the normal pattern, and this
explains the timing selected for most studies of defoliation damage (Leckie and Ostaff
1988; Ahern et al. 1991; Franklin and Raske 1994). The timing for the mapping of
defoliation is therefore critical because peak coloration occurs during a short period from
late June to early July (Howse 1984). Wind and rain removes the red needles resulting
in exposed branches and top kill if severe defoliation was sustained (Plate 5-1). The short
period, during which the red discoloration is visible on trees, results in a very narrow
window for acquiring cloud-free satellite images, and has been a major limitation to the
usefulness of satellite data for this application (Leckie 1986).

Defoliation imposes changes to the morphological and physiological characteristics
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of trees that are interrelated. Foliage loss and top kill reduces the photosynthetic capacity
of the trec. and this will reduce growth, tree vigor, and may predispose the tree to attack
by other desiructive agents (Kulman et al. 1963; Howse 1984; Mallett and Volney 1990:
Gross 1992; Moody and Amirault 1992). These combined morphological and
physiological changes, can result in changes to spectral reflectance cheracteristics relative
to the normal pattern (Murtha 1982). The question is whether or not these changes in
reflectance characteristics are large enough to be detected with image data acquired from
a satellite platform, such as the LANDSAT TM. Data from this satellite provide a wide
range of spectral information that might be used as an indicator of damaged forests (Koch
et al. 1986). If these spectral changes can be detected after the red needle coloration stage
has passed, then there is a potentially larger window for acquisition of cloud-free satellite
data. A larger time window also enhances the potential use of these data for routine
damage assessment of jack pine budworm defoliation.

The study objective was to determine the extent to which multidate LANDSAT
TM digital data could be used to classify and map the severity of top kill over jack pine
stands. This objective was met by answering the following questions: 1) What are the
spectral characteristics of top kill?; 2) Is severity of top kill spectrally separable?; and 3)
Are spectral classes resulting from an unsupervised image classification related to severity

of top kill?

5.2 Materials and methods

The study area encompasses the approximate 47 km’ area of the Torch River
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Provincial Forest in Saskatchewan. This area is in the Mixedwood section (B.18a) of the
Boreal Forest Region of Canada, where jack pine predominates on sandy areas (Rowe
1972). It is located within the Universal Transverse Mercator (UTM) Zone 13 and is
bounded by 550,000 mE and 5,920,000 mN on the southwest to 570,000 mE and
5,940,000 mN on the northeast, on a gently undulating plain at elevations ranging from
330 to 380 m above sea level. Soils are relatively homogeneous with much of the area
consisting of Eluviated Eutric Brunisols and Orthic Regosols of the Pine Association
(Anderson and Ellis 1976). These soils are poor to moderate in site quality due to their
coarse texture and rapid drainage, and mainly support jack pine stands (Kabzems et al.
1986; Rudoiph and Laidly 1990). Moderate to severe defoliation was reported for the
study area between 1984 and 1987 (Moody and Cerezke 1986; Cerezke and Emond 1989),

and various levels of top-kill damage were observed following defoliation.

S5.2.1 LANDSAT data acquisition

LANDSAT-5 Thematic Mapper (TM) digital data were acquired for three dates
corresponding to before, during and after the collapse of insect defoliation (July 20, 1984,
August 11, 1986, August 30, 1987, respectively). The data were ordered with corrections
for systematic errors in both along-line and along-track directions (Murphy and Fisher
1985), and were radiometrically corrected (i.e., CAL-2, linear) for normalization of the
sensor (Ahern et al. 1987). Although all seven bands of the LANDSAT TM image data
were acquired, the thermal infrared was not used in this study due to its low spatial

resolution (Stenback and Congalton 1990) and lack of contrast in forested areas (Hopkins



et al. 1988).

The July 20, 1984 image was assumed to represent the "before” outbreak period.
and the August 11, 1986 image represented the "during” defoliation period. Similar to the
difficulties in acquiring images encountered by Leckie (1986). cloud-free data during
active larval feeding, from June to early July, were not available from 1985 and 1986.
The August 30, 1987 image represented the "collapse” of defoliation period. With only
these image data available for less than the optimum time, this study focused on a study
of top kill for both the 1986 and 1987 images. All digital image processing was
undertaken on a PCI EASI/PACE* image processing system. A more detailed outline of

the methods is included in Appendix 1.

5.2.2 Atmospheric correction, geometric correction, image registration
Atmospheric effects in remote sensing images are primarily due to atmospheric
attenuation of radiation from the ground surface, and to scattering of solar radiation (Moik
1980). Atmospheric correction becomes important when temporal data are to be compared
since the atmosphere will be different on different image dates (Mather 1987). Previous
studies also suggest that removal of atmospheric effects result in remote sensing data that
are better related to ground cover characteristics, thus improving image classification
accuracies and detection of spectral changes (Kaufman and Sendra 1988; Kawata et al.
1988; Fraser et al. 1992). The image data were corrected for the atmosphere using the

reflectance method developed by Ahern and Sirois (1989).

* The mention of trade names is for information only and does not imply endorsement.
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A subset of each LANDSAT image encompassing the study area was geometrically
corrected to achieve two-date image registration, and facilitate integration with vector data
comprising the light, moderate and severe top kill from the SPANS Geographic
Information System (GIS). The spectral differences between images attributabie to top kill
were assumed to be subtle, and there were concerns that image preprocessing could aiter
these differences. Thus, resampling was undertaken using a nearest neighbour pixel
resampling algorithm (Shlien 1979) as radiometric values do not change “vhen the pixel
size is kept relatively constant (Derenyi and Saleh 1989; Duggin and Robinove 1990).
Twelve ground control points were identified on both the image and on 1:12,500
UTM-based forest cover maps, available from the Saskatchewan Foiestry Branch. The
UTM coordinates for the control points on the map were digitized in a Geographic
Information System to minimize the likelihood of manual measurement errors. Two image
databases were created, one for the 1984-1986 image data, and one for the 1984-1987
image data. Image-to image registration was not possible due to an artifact in the
EASI/PACE system employed when correcting images smaller than the 1024 pixel by
1024 line display size. Separate geometric corrections were therefore undertaken on each
image. To achieve accurate spatial registration of two images for digital change detection,
rectification from image to map should be within % to ¥; a pixel (Jensen 1986), and this
was achieved for this study (Appendix 2). The final image database size was 800 pixels
by 800 lines with a 25 m resampled pixel size that corresponded to the 20 km by 20 km

map extent on the SPANS GIS database.
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§.2.3 Mapypiag top kill
Color infrared aerial photographs at 1:5000 were acquired during the summer of
1988, one year fcllowing the reported collapse of a jack pine budworm infestation
(Cerezke and Emond 1989). Since there has been no standard infestation severity
classification system rzported in the literature (Chapter 2 Table 2-1), a classification
system specifically for mapping top kill was devised (Table 5-1). The classification system
was based on discrete levels that appeared separable, given that field survey data and
1:900 scale 70-mm, large-scale aerial photographs (Plate 5-1) were available from a
previous study (Hall et al., 1993). Both the occurrence ang apparent length of top kill on
individual trees were considered during interpretation, based on rules assigned to the
classification system (Table 5-1). The placement of polygon lines and assignment of
attribute labels (Table 5-1) were based on the cellective and cooperative interpretation
between two photo interpreters. Top kill in jack pine stands ranged from none along the
valley of the Torch River to moderate and severe within the provincial forest (Figure 5-1).
Since spectral differences between these classes may be too smali to discriminate with
LANDSAT TM data, several sets of aggregated damage severity classes of top kill were
produced to determine if spectral separabilities would change with a smaller number of

more broadly defined classes (Table 5-2).

5.2.4 Image analysis procedures
The image analysis procedures were conducted on both the 1984-86 and 1984-87

data sets. In addition to the six reflective TM image bands from each date, the normalized



85

differer.z. vegetation index (NDVI) was also computed. The NDVI is among those
vegetation indices frequently reported for forest damage applications (Nelson 1983;
Cliamignon and Maniére 1990; Clerke and Dull 1990; Volgelmann 1990; Ards 1992). It
is computed as the difference between near infrared (NIR) and red (R) spectral bands
normalized by their summation (Townshend and Justice 1989), and calculated by (NIR -
R)/(NIR + R). The NDVI calculation results in single values that indicate the relative
amount of living, green vegetation over a ground resolution cell that is rep:esented on an
image by a pixel. Differences in NDVI values between two dates have been used to show
change in the vegetative canopy (Singh 1989; Abednego and Collet 1992; Mouat et al.
1993).

Analyses employing the full set of image bands from each date may be inefficient
due to high correlation among adjacent bands. Some studies have also concluded that one
image band from each of the reflective regions (ie., red, near infrared, mid-infrared),
represent most of the spectral information for vegetation inherent in TM data (Horler and
Ahern 1986 Beaubien and Pilon 1990; Moore and Bauer 1990). An image band subset
was therefore selected from each date in which a visible and two reflected infrared bands
were used with the NDVI band. In total, four LANDSAT TM band data sets were
ass~mbled for analysis (Table 5-3).

The differences between respective bands from 1984 to 1986, and from 1984 to
1987 were computed. Of the many image channel transformations employed in change
detection studies (Nelson 1983), the differencing transformation is the most widely used

because of its simplicity (Singh 1989). Classification accuracies have also been reported



86

equal to those obtaine.! from more sophisticated approaches (Nelson 1983). Band
difference images have been used to monitor gypsy moth (Lymantria dispar L.)
defoliation (Williams and Stauffer 1978), and forest decline associated with mortality
(Vogelmann 1988). If top kill could be detected with im:age band differences, then more
sophisticated approaches such as principle component analyses (Eklundh and Singh 1993:
Gong 1993) and forest defoliation models (Brcckhaus et al. 1993) could be explored to
determine if alternative methods would be more appropriate for damage assessment.

To determine the spectral characteristics of top kill, the boundary and polygons of
top kill as mapped for the Torch River Provincial Forest was imported from the SPANS
GIS. General trends were first determined on changes in average LANDSAT TM band
values between 1984, 1986 and 1987. These values were compared to average LANDSAT
TM band values for nil, light, moderate and severe top kili. Changes in band values
attributable to top kill could then be observed for the 1986 and 1987 images.

To determine if mapped top-kill classes were spectrally separable, Bhattacharyya
Distance (B-distance) was used as a measure of statistical separability between pairs of
probability distributions (Mather 1987; Richards 1993). A comparison of calculated B-
distance values is one means of discriminating between a set of classes based on a given
set of features (spectral bands) (Leckie and Ostaff 1988; Joria et al. 1991). B-distance
is asymptotically 2.0 with the value 0 indicating complete overlap between signatures of
two classes, and 2.0 indicating complete separation (PCI Inc. 1993; Richards 1993).
Average B-distance values were compared for the six top-kill class sets (Table 5-2) with

four Band sets (Table 5-3). If separabilities were high, statistics of the top-kill classes
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could be used as training areas for supervised maximum likelihood classifications in
similar areas. In this study, the B-distance was used only to determine which of the six
top-kill classification systems and four Band sets were most separable. The Band sets
resulting in the highest separabilities were used in a subsequent image classification.
An unsupervised classification approach was also completed to determine if
spectral classes were related to severity of top kill. This was followed by the creation of
contingency tables to evaluate associations between the spectral classes and top-kill class
set 1 (nil, light, moderate, severe, unclassified) (Table 5-1). A preliminary evaluation was
undertaken of the different methods of unsupervised classification available on the PCI
EASI/PACE system. These included the K-Means (Tou and Gonzalez 1974), ISODATA
(Tou and Gonzalez 1974, Richards 1993), and non-parametric clustering (Narendra and
Goldberg 1977) routines. The ISODATA algorithm was selected because the spectral
classes produced most resembled land cover types in the study area. This algorithm
generates a user specified number of clusters in one pass through the image data, and then
iteratively goes through the image to modify cluster characteristics until results converge
with stable cluster characteristics (McGwire 1992). A total of 4 unsupervised
classifications were conducted for the 1984-86 and 1984-87 data sets (ie., Band data set
1 or 3 [Table 5-3] and its associated subset). Input parameters necessary to drive the
ISODATA classification included: a minimum (3) and maximum (10) number of clusters
to be generated; starting clusters located diagonally along the n-dimensional histogram;
a maximum number of iterations (99) to allow convergence; a minimum number of pixels

in a cluster (5); and a cluster standard deviation (3) (PCI Inc. 1993).
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Unsupervised classification is generally considered a two-step process consisting
of spectral class generation followed by assignment of information labels (Jensen 1986.
Richards 1993). A one-to-one relationship between spectral classes and information
classes, however, doesn’t usually exist (Hoffer 1986). Instead, several spectral classes may
relate to a single land cover class, or a spectral class may relate to several land cover
classes (Hoffer 1986). Spectral classes that corresponded to a top-kill class with 10% or
more of the pixels were merged and assessed using measures based on average accuracy
(ie., sum of major diagonal divided by total of table in percent accuracies), and Kappa
Coefficient of Agreement (Hudson and Ramm 1987; Congalion 1991). The 10% threshold
appeared to be a reasonable breakpoint when contingency tables were created between the

spectral classes and top-kill map.

53 Results and discussion
5.3.1 Spectral characteristics of top kill

The differences in spectral response patterns of top kill on LANDSAT TM data
before the outbreak (1984), were expected to be only slightly different from those during
(1986) and after (1987). Although an affected tree has less foliage and is physiologically
weak, its appearance is still predominately green (Plate 5-1; Chapter 2 Plate 2-3). For
each top-kill severity class, their respective average band values and standard deviations
were considered reasonable descriptors of their frequency distribution since they were
relatively unimodal. Comparisons of average TM band values over the study area for the

three years, exhibit a small reduction in values across all bands (Table 5-4). NDVI values,
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however, increase in each year from 1984 (Table 5-4). This increase may be attributable
to effects of reflectance from ground vegetation since much of the area consists of jack
pine in relatively open stands. Vegetation indices such as NDVI are based on the principle
that as the presence and amount of healthy green vegetation increases, the reflectance of
near infrared radiation increases, and the absorption of red radiation increases (Rutstein
1992). The interpretation of NDVI, howev -, may only apply to high canopy closure
conditions. Under open stands, the effect of ground vegetation and soil can mask the
effect of tree foliage (Guyot et al. 1989). In the study area, ground vegetation consisted
primarily of bearberry (Arctostaphylos uva-ursi (L.) Spreng.), reindeer lichen (Cladonia
spp.), and spreading dogbane (4pocynum androsaemifolium L.). Bearberry was most
extensive and along with dogbane, is red in color and due to high reflection in the near
infrared on 1.5000 color infrared aerial photographs. Reindeer lichen is yellowish white
in the field, and appears greyish white on color infrared aerial photos. This may explain
the result of higher NDVI (Table 5-4) values for open canopies, and is supported by
results of previous studies (Spanner et al. 1990; Rutstein 1992). The trend of increasing
NDVI by damage class from 1984 to 1987 (Figure 5-2 and Appendix 3) was consistent
with those reported for the study area (Table 5-4).

Changes in spectral characteristics were also evaluated for each severity class.
Greater changes were observed over the two-year period from 1984 to 1986, than from
1986 to 1987 (Figure 5-2 and Appendix 3). LANDSAT TM band values following
budworm attack and top kill, are decreasing and consistent with the trend reported for the

entire study area (Table 5-4). The largest difference occurred in TM Band 5 from 1986
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to 1987 for the light, moderate and severe top-kill severity class (Figure 5-2). TM band
5 is in the mid-infrared region that is sensitive in part. to leaf moisture content. and as
leaf moisture content decreases, reflectance will increase (Hoffer 1978). This observation
was not explained by the weather during the 1984 to 1986 outbreak since, relative to 3v-
year averages (Chapter 3 Figures 3-2, 3-3). 1986 was below average for both temperature
and moisture. The trend may instead be attributable to reduced foliage and loss of needle
moisture content because of reduced photosynthetic capacity and physiologic activity
caused by the stress of defoliation (Joria et al. 1991). Other possible explanations for the
small decreasing trends include the shadow effect from using August images in 1986 and
1987 relative to the July 1984 image, and the residual errors associated with the

atmospheric correction process.

5.3.2 Spectral separability of top-kill classes

Spectral separabilities using B-Distance were expected to be low because spectral
reflectance differences among classes of top kill for all TM bands from 1984 to 1987
were small. Discrimination among top-kill categories was higher with all TM bands than
with band differences {Table 5-5). B-distance values using band subsets (Band set 2 and
4, Table 5-3) were smaller but similar in pattern across top-kill classification systems 1
to 6. Caution is warranted in interpreting this observation since, as the number of image
bands increases, separability increases (Kim and Landgrebe 1990). Although Band set 1
was selected for image classification, Band set 2 was also used to test the effect of using

the smaller number of selected bands on classification accuracy. Separabilities using band
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differences were small and likely attributed to the small spectral reflectance differences
observed in each TM band over the 3 dates (Figure 5-2).

B-distance values were smaller for the 1984-87 data set than for the 1984-86 data
set (Table 5-5). This was unexpected since jack pine typically does not recover from
major stress, but will instead continue to degrade (MacAloney 1944). Spectral differences
were therefore expected to be larger for the 1984-87 data set than for the 1984-86 data
set. A possible explanation is that the effect of ground vegetation is increasing, and this
is masking more of the effects of the overstory. This is supported by the trend to
increasing rather than decreasing NDVI values (Table 5-4, Figure 5-2).

In comparing B-distances for each of the 6 top-kill severity classification systems
(Table 5-2) over the 4 Band sets, top-kill class set 6 had the highest values (Table 5-5).
The highest average separability obtained was 1.45 with Band set 1 (14 image bands) and
top-kill class set 6 (nil, light-severe top kill, unclassified). This implies that discrirination
is poor among top-kill categories. The separabilities obtained are considered very poor to
poor (PCI Inc. 1993), and insufficient to justify use of these data in a supervised

maximum likelihood classification.

5.3.3 Spectral classes and top-kill severity

Unsupervised classification methods usually result in spectral classes that must be
assigned information labels to describe their content (Richards 1993). It has been difficult
to assign these labels, and to determine the extent to which spectral classes correlate to

land cover classes of interest as portrayed on a map (Robinove 1981). An advantage of
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the remote sensing - GIS integration approach in this study is the use of a contingency
table to link an image classification result to the map of top kill. The ISODATA
unsupervised classification is an iterative process that based on the input parameters
specified, resulted in nine spectral classes (Table 5-6). Band sets 1 (14 channel) and 2 (8
channel) for the 1984-86, and 1984-87 data sets (Table 5-3) each had 3 spectral classes
that contained approximately % of their pixels in each of the light, moderate, and severe
top-kill categories (Table 5-6 a,b,c,d). For example, spectral class S of Table 5-6a
consisted of approximately Vs of the light top-kill class pixels, and the same proportions
of pixels in the moderate and severe top-kill classes. This pattern of 3 spectral classes is
consistent for the 1984-86 and 1984-87 data sets.

Absence of top kill corresponded to spectral classes located mainly in the Torch
River valley, an area of trembling aspen (Populus tremuloides Michx.), jack pine, black
spruce (Picea mariana (Mill.) B.S.P.) and white spruce (Picea glauca (Moench) Voss)
as defined by the primary species map (Figure 3-6). Areas unrelated to top kill that was
labelled "Unclassified" was more variable because it included water, forest regeneration
in a previously burned area, and exposed areas with ground vegetation consisting of
bearberry, reindeer lichen and dogbane as determined from the color infrared aerial
photographs and ground information of the study area.

From the contingency table of the merged top-kill classes verses merged spectral
classes (Table 5-7), average classification accuracies ranged from 70.5 percent to 73.2
percent, and Kappa classification accuracies ranged from 50.9 percent to 58.7 percent

(Table 5-8). The Kappa accuracies were lower due to the omissions and commissions that
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occurred, particularly in the "nil" and "unclassified" classes and their variable composition.
Presenting the contingency tables in terms of pixel numbers similar to most papers
(Karteris 1990; Joria et al. 1991; Fiorella and Ripple 1993) can result in a biased
representation when there are unequal cell sizes. The large number of pixels in the light-
severe top-kill class relative to nil and unclassified classes (Table 5-6) results in a
weighting that can give an inflated estimate of accuracy (Schowengerdt 1983). Its
presentation in terms of percentages relative to the reference map (top-kill map set 1: nil,
light, moderate, severe top kill, unclassified) provides a more representative measure of
accuracy for the purposes of this project. This is often labelled the "producer’s accuracy”
because the producer of the classification is interested in how well a certain area can be
classified (Congalton 1991). The accuracy figures in Table 5-8 are only moderately high,
and are based on just three categories: nil, light-severe top kill, and unclassified.
Classification accuracies between the 14 channel (Band set 1) and 8 channel (Band set 2)
data sets were similar (Table 5-8). Interestingly, classification accuracy with the 1984-87

image data is slightly greater for the 8 channel data set than with the 14 channel data set.

S.4  Conclusions

The reflectance spectra of stands are a combination of reflectance spectra of trees,
soil and ground vegetation (Guyot et al. 1989). Stand reflectance depends on the relative
amounts of these components within a ground resolution cell. A factor contributing to
difficulties in classification of medium and high damage sites is the influence of

understory and ground vegetation (Guyot et al. 1989). This was likely the most significant



94

factor that influenced the results obtained with this study. Bearberry and reindeer lichen
in open stands are highly reflective in the near infrared and visible portions of the
spectrum, respectively, and this may have masked the spectral response from trees with
top kill. Although changes in spectral response patterns from 1984 to 1987 were evident
and may be attributable to defoliation, they were small corapared with changes typically
observed by red trees as a symptom of strain (Murtha 1993) by a forest pest (L.eckic and
Ostaff 1988; Franklin 1989; Ahern et al. 1991; Franklin and Raske 1994). This may also
explain the trend of increasing NDVI values from 1984 to 1987.

Beyond evaluating the spectral separabilities among nil, light, moderate and scvere
top kill, 5 additional classification systems were created that comprised a smaller number
of more broadly defined classes. Based on comparisons with 4 spectral band data sets,
spectral separabilities among classes of top kill were low. The separabilities were highest
when light, moderate, and severe levels of top kill were grouped. A spectral basis for
classification of top kill could not be identified with the band combinations and
aggregations of mapped top-kill severity classes evaluated.

Spectral classes resulting from an ISODATA unsupervised classification were
associated with nil, light, moderate and severe top-kill classes in a contingency table. The
integration of remote sensing and GIS technologies when appropriate, offers a useful
approach towards characterizing and labelling spectral classes by allowing the use of
contingency tables to associate initial spectral classes with mapped classes. Although the
unsupervised classifications did result in spectral classes that were associated with top kill,

it did so with only one class because of poor discrimination among severity classes. These
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results agree with those from the spectral separability analysis. An average classification
accuracy of 70% was achieved when spectral and top-kill severity classes were aggregated
to a 3-class system (nil, light-to-severe top kill, unclassified). This result confirms that
severity of top kill was not separable with the LANDSAT TM data available for this
study. The differences in classification performance between the 14 and 8 band data sets
for the 1984-86 and 1984-87 images were small. This result confirms previous studies
(Horler and Ahern 1986; Beaubien and Pilon 1990) that suggest most of the spectral
information for vegetation, can be obtained from an image band in the red, near infrared,
and mid-infrared regions. Thus, these results define the extent by which multidate
LANDSAT TM data can be used to classify and map patterns of top kill caused by
budworm defoliation.

Although accuracy results were relatively low given the LANDSAT TM spatial
resolution and the timing of image data available, a consideration is whether or not there
is a spectral basis for classes to be mapped. A fundamental assumption in image analysis
is that the radiance properties of an image represent properties of ground attributes, and
that spectral classes bear some relation to specific ground cover classes (Duggin and
Robinove 1990). Although the map of top kill produced with 1:5000 scale aerial
photographs may have adequately represented the spatial distribution of patterns of top
kill at that scale, it may have been inappropriate for comparison with satellite data. This
is because conceptually, the system to interpret photos and map top kill may not be
equivalent to their spectral responses recorded on the image.

Because top kill occurs predominately in stands of jack pine, and the spectral
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changes attributed to top kill were small, the classified image mainly mapped the
occurrence of this species. This result suggests change detection is better suited when
spectral changes are large since, as spectral changes become more subtle, the ability to
detect changes will become more difficult. Image data of greater spatial resolution, or
better timed to coincide with maximum spectral changes when the foliage is red, is

therefore, more appropriate for mapping damage caused by severe defoliation.
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Table 5-5. Comparison of average spectral separabilities (B-distance) by top-kill

classification systems.

B-distance
1984-86 1984-87
Band set 1%
Top-kill class set” 1 1.20 0.85
2 1.36 0.96
3 1.19 0.55
4 1.34 0.68
5 1.27 0.88
6 1.45 0.96
Band set 2:
Top-kill class set: 1 1.06 0.74
2 1.21 0.83
3 0.99 0.44
4 1.18 0.55
5 1.09 0.77
6 1.23 0.82
Band set 3:
Top-kill class set: 1 0.64 0.39
2 0.74 0.45
3 0.64 0.18
4 0.73 0.27
5 0.68 0.39
6 0.77 0.43
Band set 4:
Top-kill class set: 1 0.57 0.35
2 0.65 0.40
3 0.56 0.16
4 0.64 0.24
S 0.60 0.40
6 0.67 0.38

* LANDSAT TM band sets defined in Table 5-6.
® Top-kill class sets defined in Table 5-2.
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Table 5-7. Contingency tables with merged top-kill classes.

a) 1984-86 Band set 1, 14 channel classification

Percent of pixels classified into top-kill class

Top-kill class # pixels 1 2 3
1 Nil 4870 77.5 154 7.1
2 Light-Severe top-kill 50191 8.1 874 44
3 Unclassified 15413 232 22.1 54.7

b) 1984-86 Band set 2, 8 channel classification

Percent of pixels classified into top-kill class

Top-kill class # pixels 1 2 3
1 Nil 4870 834 10.3 6.3
2 Light-Severe top-kill 50191 11.7 83.3 5.0
3 Unclassified 15413 25.7 244 499

c) 1984-87 Band set 1, 14 channel classification

Percent of pixels classified into top-kill class

Top-kill class # pixels 1 2 3
1 Nil 4870 61.9 285 9.6
2 Light-Severe top-kill 50191 37 88.7 7.6
3 Unclassified 15413 13.2 25.8 60.9

d) 1984-87 Band set 2, 8 channel classification

Percent of pixels classified into top-kill class

Top-kill class # pixels 1 2 3
1 Nil 4870 62.4 283 92
2 Light-Severe top-kill 50191 37 89.2 7.1

3 Unclassified 15413 14.7 23.0 62.3
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Table 5-8.  Classification accuracies in percent for merged classes in 1984-86 and

1984-87.
e 3
LANDSAT dataset® Year of dataset Average Kappa
accuracy
Band set 1: 14 channels 1984-86 73.2 56.5
Band set 2: 8 channels 1984-86 72.2 50.9
Band set 1: 14 channels 1984-87 70.5 56.9
Band set 2: 8 channels 1984-87 71.3 58.7

? Refer to Table 5-6 for definition of datasets.
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Figure 5-2. Mean spectral band reflectance for light, moderate and severe top-kill areas
in 1984, 1986, and 1987. (Error bars are + 1 standard deviation)
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Plate 5-1. 70-mm large-scale photo stereopair depicting jack pine trees with
top kill.
Note: annotations on the photographs indicate:

1: jack pine with top kill

2: healthy jack pine

3: reindeer lichen
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Chapter 6

Characterizing Vulnerability of Stands to Damage from

Jack Pine Budworm Defoliation

6.1 Introduction

Jack pine budworm (Choristoneura pinus pinus Freeman) is among the important insect
pests in Canada (MacLean 1990), and is a major defoliator of jack pine (Pinus banksiana
Lamb.) forests in Ontario, Manitoba, Saskatchewan, and the adjacent United States Great
Lakes States (Moody 1989; Mallett and Volney 1990). Bndworm: defoliation may be
extensive, and persist in an area for many years (Volney 1988). Severe defoliation reduces
tree growth and vigor, and may cause top kill (i.e., dead tree tops), mortality, and
predispose trees for attack by other destructive agents (Kulman et al. 1963; Howse 1984;
Mallett and Volney 1990; Gross 1992; Moody and Amirault 1992; Volney 1994).
Significant reductions in radial growth and average volume increments have been reported
(Kulman et al. 1963; Cerezke 1986; Gross 1992), and these types of losses could have
significant impacts on jack pine timber supply (Volney 1988) in their respective regions.
An approach to minimize such losses is to schedule harvests based on information about
stand vulnerability and projected yield reductions (Maclean 1990). Such information has
considerable potential as a management tool when integrated into a forest management
system that combines harvest scheduling, vulnerability rating, and protection planning
(Erdle et al. 1984; Erdle 1989).

Vulnerability is the likelihood of damage to a stand once budworm attack occurs
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(Witter 1985), and vulnerability ratings have been based on stand characteristics (MacLean
1985). Stands vary in their species composition, age structure, site, etc., and these factors
influence the degree of growth losses and tree mortality caused by budworm defoliation
(MacLean 1985). Thus, fundamental to the development of vulnerability ratings, is the
determination of relationships between damage severity and stand characteristics. Previous
studies have suggested growth losses and mortality are greatest for stands that are growing
on poor sites, are open-grown with large-crowned trees, over-mature, of poor vigor,
and/or are suppressed (Dixon and Benjamin 1962; Kulman et al. 1963; Cerezke 1978).
Although variations in budworm population densities have been related to differences in
stand attributes (Clancy et al. 1980), their empirical limits have not been available.

A source of stand structure information is forest inveritory maps that often describe
cover types by a nominal (eg., species composition) and ordinal (eg., age, height, crown
closure, site quality) forest classification system (Gillis and Leckie 1993). If a map of
damage severity is produced and compared to the forest inventory map. then spatial
associations between damage severity class and stand attributes can be tested based on
contingency table analyses. If strong associations are found, the location of those stands
most susceptible to jack pine budworm damage can be identified.

Surveys to map budworm defoliation are often undertaken when the desiccation
of accumulated feeding debris and frass imparts a reddish color, since this color is used
for defoliation assessment (Volney 1988). For the jack pine budworm, this occurs during
a relatively short period from late June to early July (Howse 1984). If damage surveys

follow the collapse of an outbreak, then the extent of top kill indicates severity of
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defoliation in the area. A map of top kill may still be appropriate for comparison with a

forest inventory map since trees with top kill may be indicative of stands vulnerable to
damage (Volney 1994).

The objective of this study was to answer the question: Are selected physiographic

and stand characteristics associated with top kill? The characteristics selected include soil

texture, drainage, site quality, stand origin, stand height, and crown closure.

6.2  Materials and methods

The study area encompasses the approximate 47 km? of the Torch River Provincial
Forest in Saskatchewan. This area is in the Mixedwood section (B.18a) of the Boreal
Forest Region of Canada, where jack pine predominates on sandy areas (Rowe 1972). It
is located within the Universal Transverse Mercator (UTM) Zone 13 and is bounded by
550,000 mE and 5,920,000 mN on the southwest to 570,000 mE and 5,940,000 mN on
the northeast, on a gently undulating plain at elevations ranging from 330 to 380 m above
sea level. Soils are relatively homogeneous with much of the area consisting of Eluviated
Eutric Brunisols and Orthic Regosols of the Pine Association (Anderson and Ellis 1976).
These soils are poor to moderate in site quality due to their coarse texture and rapid
drainage, and mainly support jack pine stands (Kabzems et al. 1986; Rudolph and Laidly
1990). Moderate to severe defoliation was reported for the study area between 1984 and
1987 (Moody and Cerezke 1986; Cerezke and Emond 1989), and various levels of top kill

damage were observed following defoliation.
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6.2.1 Mapping top kill
Color infrared aerial photographs at 1:5000 were acquired during the summer of
1988, one year following the reported collapse of a jack pine budworm infestation
(Cerezke and Emond 1989). Since there has been no standard infestation severity
classification system reported in the literature (Table 2-1), a classification system was
devised specifically for mapping top kill (Chapter 5 Table 5-1). The classification system
was based on discrete levels that appeared separable, given that field survey data and
1:900 scale 70-mm large-scale aerial photographs (Chapter S Plate 5-1) were available
from a previous study (Hall et al. 1993). Both the occurrence and apparent length of top
kill on individual trees were considered during interpretation, based on rules assigned to
the classification system (Chapter 5 Table 5-1). Top kill in jack pine stands ranged from
nil along the Torch River to moderate and severe within the provincial forest (Chapter 5

Figure 5-1).

6.2.2 Forest inventory map database

A series of four contiguous, 1: 12,500 scale forest inventory maps were obtained
for the study area. The inventory maps were originally acquired from the Forestry Branch
of Saskatchewan Parks and Renewable Resources as ESRI Arc/Info’ coverages. Soil
texture, drainage, primary species, stand origin, stand height, and crown closure (Table
6-1) were recoded from map code (Gillis and Leckie 1993) to an ordinal rank (map class

#) to prepare the data for calculations of associations. These maps were imported to the

* The mention of trade names is for information only and does not imply endorsement.
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SPANS Geographic Information System, and joined together to form a single map of
forest cover polygons that represents the entire study area. In a Geographic Information
System data layer, a polygon is represented by a unique numeric identifier that links the
graphic information to the attribute database (Burrough 1926). The forest cover polygons
were subsequently reclassified to produce a separate map for each attribute (Chapter 3
Figures 3-4, 3-S5, 3-6 and Figures 6-1, 6-2, 6-3) based on its ordinal map class number
(Table 6-1). The initial soil texture and drainage attributes were derived from the soil
survey (Anderson and Ellis 1976), and revised by the Forestry Branch during photo
interpretation and ground surveys, when the forest cover map was being produced.

A site quality map was also produced by interpreting landform and vegetative
patterns on 1:5000 color infrared aerial photographs. Following the photo interpretation,
twenty-nine field plots were established, and soil profiles, vegetative descriptions, plot
location, drainage, and general physiography (i.e., slope gradient and aspect, topgraphic
position, relief shape and landform) were recorded. Vegetation data were analyzed using
the Cornell Ecology Program TWINSPAN, to classify the vegetation into communities
as a basis for classifying site quality. A map of four levels of site quality ranging from

poor to moderate - good was produced (Table 6-1 and Chapter 3, Figure 3-7).

6.2.3 Measures of association
Measures of association, or degree of dependence can be evaluated with a
contingency table, which is a two-way cross tabulation of two variables (Conover 1980;

Clark and Hosking 1986). Although the X? statistic can be computed from the contingency
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table to test for dependence between two variables, it does not provide a measure of its
magnitude (Clark and Hosking 1986). Of the several procedures that do provide measures
for the strength of the relation, Cramer’s V was used because calculated coefficients range
from O to 1, and it corrects for deficiencies observed with similar measures such as the
Contingency Coefficient (Bishop et al. 1975; Reynolds 1977). In addition, Foody (1994)
rationalized it was the preferred means of assessing associations when analyzing ordinal

level data. Cramer’s V is calculated by (Clark and Hosking 1986):

2 2
V- _X
Nminfr-1,c-1]
where: V = Cramer’s V coefficient

X? = calculated chi square from contingency table

N = overall sample size

r = number of rows

¢ = number of columns
When interpreting Cramer’s V, its value is not directly comparable to the more familiar
Pearson’s product-moment correlation coefficient, or, to Spearman’s rank correlation
coefficient (Siegel 1956; Reynolds 1977). As such, a small value may seem to suggest
poor association, but there is no standard for judging its magnitude.

Cramer’s V was calculated between the top-kill classes and each of soil texture,

drainage, site quality, stand origin, stand height and crown closure classes. A test of the
significance of association was computed at the 95% probability level. Although one can

test the significance and determine confidence intervals for the sampling distribution of
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Cramer’s V by calculating its asymptotic variance (Bishop et al. 1975), the distribution
is mathematically complex (Siegel 1956; Reynolds 1977). Since the properties of
Cramer’s V is asymptotic, its significance can be computed from the X? statistic as an
approximate test of significance when sample size is "sufficiently” large (Reynolds 1977;
Clark and Hosking 1986). The sampling units for the contingency table was based on the
number of cells between corresponding regions (eg., rapid drainage and severe top kill)
from a grid as produced from the SPANS Geographic Information System. A concern
with this approach is the possible influence of spatial autocorrelation with map data that
is not sampled randomly (Dale et al. 1991). This is attributed to observed and expected
frequencies that may not be compared in a standard X? test when the observed counts are
not independent (Cliff and Ord 1981, p. 195). Too many apparently significant results can
occur if spatial autocorrelation exists in the data (Dale et al. 1991). Due to the logistical
difficulties in procuring large random samples, the influence of spatial autocorrelation was
avoided by adopting a conservative approach that represent the data as a summation of
cells in square kilometer units (Appendix 4). An illustration of how conservative this
approach is for crown closure as an example, is presented in Appendix 5.

Since the distribution of observed top-kill areas was highly variable among the
attributes, the values in the contingency table were normalized by transforming them to
percentages (Bishop et al. 1975, p. 383). The expected values used in calculation of X?
were based on row and column totals of the percent cell frequencies. This approach was
conducted so that several contingency tables could be compared.

Minnick’s Coefficient of Areal Correspondence (Minnick 1964) was employed to
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determine the association between the map attribute class levels and the top-kill severity
classes. Minnick’s procedure is a measure of areal correspondence that determines the
degree to which two regions overlap. Its index is an indicator of spatial association, if one
assumes that a relation exists between two spatially distributed phenomena that overlap.
For example, if severe top kill is observed on stands of certain age classes, then those
types of stands may be vulnerable to severe top kill. Since there is no probability
distribution for Minnick’s coefficients, values that generally exceeded 0.10 were
considered to be indicative of meaningful associations. Minnick’s Coefficient is computed

using algebra of sets (Minnick 1964):

c - ANB
= AUB-(ANB)

where: C,. = Minnick’s Coefficient
A = Map A (eg., top-kill severity class)
B = Map B (eg., stand origin class)
A N B = A intersect B; ie. the area common to A and B
A U B = A union B; ie. the areas belonging to either A or B,

or to both A and B.

Coefficients were computed for each pair of classes between top kill and individual stand
attributes. For example, the 9 stand origin and 4 top-kill classes resulted in 36 Coefficients

being computed (Table 6-3d).
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6.3  Results and discussion
6.3.1 Tests of independence and Cramer’s V measure of association

The contingency tables produced and used for calculating X? and Cramer’s V are
presented in Appendix 4. To determine if soil, site and forest cover type attributes were
significantly associated with top kill, X? tests of independence were first undertaken. At
a probability level of 0.05, soil texture, drainage and site quality were associated with top-
kill severity (Table 6.2). Crown closure, stand origin and stand height classes, as
represented on the forest cover map, were statistically independent of top kill. This latter
result was unexpected since low density mature and overmature stands have been reported
as those most susceptible to budworm damage (Dixon and Benjamin 1962). A possible
explanation is that although a probability value of 0.05 is frequently used, the choice of
the value is often arbitrary (Warren 1986). Also, the X? test of independence for this
application is only considered an approximation (Siegel 1956) to the sampling distribution
of Cramer’s V.

Another possible explanation is that the polygons from mapping top kiil may not
coincide with those of the forest inventory map due to the criteria used for mapping, or,
to map inaccuracies. For example, stands tend to be defined by management
considerations (Bauer et al. 1994), whereas polygons of top kill were based on relatively
homogeneous patterns of stands with dead tree tops. Accuracy statements for either map
were also not available, and variations in accuracy across either map (Duggin and
Robinove 1990) could explain why strong associations were not found.

The values of Cramer’s V is interpreted as a measure of the relative strength of
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the relationship between pairings of individual attributes with top kill. Of these. soil
texture and drainage were the attributes most highly associated with top kill (Table 6.2).
Stand origin, site quality and stand height are intermediate, and crown closure was the
least associated with top kill. This demonstrates that for this study, dryness of a site has
a greater influence on vulnerability than other stand characteristics. This result is
consistent with the observation by others that frequent outbreaks and higher budworm
numbers are associated with drier sites (Volney and McCullough 1994).

Stand origin is often mentioned before crown closure as being related to stand
vuinerability (Gagnon and Chabot 1990). Stand origin in this study was more highly
associated with top kill than crown closure (Table 6-2). The relationship between stand
height and top kill was expected to be similar to that for stand origin since older, mature
stands that sustain top kill are the taller stands. Much of the study area was in the Pinus-
Cladonia/Arctostaphylos ecosystem where pure, open, understocked (crown closure less
than 45%) jack pine stands occur (Kabzems et al. 1986). Thus, crown closure classes A
and B (Tablz 6-1) are dominant in the study area (Figure 6-3), but crown closure (4
classes) is more broadly defined than stand origin (10 classes). In addition, the system
defined for mapping top kill was based strictly on proportions of trees with dead tops
(Chapter 5 Table 5-1), and perhaps some consideration should have been given to stand
structure as influenced by crown closure. Although this consideration may improve
associations with top kill, the»few, broad crown closure classes would still limit the

amount of improvements, if any.
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6.3.2 Characterizing vulnerable stands

Processes affecting jack pine budworm population behavior may operate at very
local levels (Volney and McCullough 1994). The physiological state of trees, conditioned
by site (eg. soil texture, drainage) and stand (eg. age, crown closure) characteristics,
influences their vulnerability to budworm damage (Gagnon and Chabot 1990). Thus,
association of these characteristics with top kill may help to identify vulnerable stands.
A tabulation of Minnick’s Coefficient of Areal Correspondence for each attribute provides
the basis for inferences on the vulnerability of these stands (Table 6-3 a,b,c,d.e.f,g).

Coefficients for soil texture and drainage were equivalent among light, moderate
and severe top kill (Table 6-3 a,b). This was expected since coarse textured soils are
associated with rapid drainage, and typical of dry sites. Absence of top kill was associated
with moderately-coarse texture and moderately-well drained areas that are indicative of
better sites (Table 6-3 a,b). The largest coefficient of 0.57 occurred between light top kill
and coarse texture or rapid drainage. This result is consistent with studies citing high risk
to jack pine budworm on dry sites (Jones and Campbell 1986), and frequent outbreaks
being associated with drier sites (Volney and McCullough 1994). This result is also
similar for spruce budworm (Choristoneura fumiferana Clem.) damage (Gagnon and
Chabot 1990).

Poor and moderate site quality were associated with light, moderate and severe top
kill (Table 6-3¢). The largest coefficient of 0.54 occurred between poor site quality and
light top kill. Poor sites in the study area are nutrient poor and characterized by low tree

productivity (Kabzems et al. 1986). The association between poor cites and top kill is
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similar to the reported tendency for frequent outbreaks to occur on nutricnt-poor soils
(Volney and McCullough 1994). This implies that poor site quality is a component of
stand vulnerability to jack pine budworm damage.

There were differences in stand origin associations with top kill. Light top kill was
associated with stands at age-class mid-points of 95, 55, and 45 years, whereas, moderate
and severe top kill were associated with stands at age-class mid-points of 95 and 85 years
(Table 6-3d). The association of the older stands with moderate and severe top kill
appears consistent with long standing reports that mature jack pine stands are more
vulnerable to severe damage than younger stands (Dixon and Benjamin 1962). Much of
the jack pine in ine study area is managed on an 80 year rotation (Kabzems et al. 1986),
and the stands associated with moderate and severe top kill exceed this age. Since jack
pine stands may begin to "disintegrate" after 60 years on the poorest sites (Rudolph and
Laidly 1990), it may be desireable to reduce the occurrence of vulnerable stands by
reducing rotation age (Jones and Campbell 1986; Gross 1992).

The trends exhibited for stand origin are somewhat similar to those for height,
since older stands are also the taller stands. Light top kill was associated with stands in
the 5, 10, and 15 m height classes (Table 6-3e). Moderate top kill was associated with
taller stands of 20 m, and severe top kill was associated with stands in both the 15 and
20 m height classes (Table 6-3¢). Thus, trends of more severe damage on the taller stands
were observed, with a greater range of heights for "severe" than for "moderate” top kill.

Jack pine budworm populations have been associated with open-grown jack pine

that occur in stands with low crown closures (Kulman et al. 1963). In the study area, light
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top kill occurred throughout all crown closures whereas, moderate and severe top kill was
dominant in the more open stands of 10-55% crown closures (Table 6-3f). Moderate and
severe top kill is associated with the more open stands, and may be more vulnerable than

denser stands.

6.4  Conclusions

A stand’s vulnerability may be considered as the sum of characteristics, including
stand structure and environment, which predispose it to damage during an attack of a
given serverity (Gagnon and Chabot 1990). A requisite to vulnerability rating systems that
are based entirely on characteristics of the forest (MacLean 1985), is the understanding
of relationships between these characteristics and damage severity sustained from severe
defoliation. A unique spatial approach using a Geographic Information System was
implemented, and the association of site quality and forest inventory maps to the map of
top kill was evaluated. The only similar approach identified in the literature was that for
spruce budworm vulnerability by Wickware and Sims (1990). Their approach did not
attempt evaluation of associations but instead, was based on application of a vulnerability
index defined by Gagnon and Chabot (1990).

A summary of stand characteristics with the highest associations with top kill may
aid in identifying vulnerable stands. Stands that sustained moderate to severe top kill
occupied poor-to-moderate sites that were on coarse-textured, rapidly-drained soils. These
stands were of age-class mid-points ranging from 85 to 95 years, had crown closures that

ranged from 10 to 55%, and were 15 to 20 m tall. These results appear to agree in general
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with previous studies that mention these attributes (Dixon and Benjamin 1962; Kulman
et al. 1963; Cerezke 1978; Volney and McCullough 1994).

Applying these results to unaffected jack pine stands require assumptions of the
relationships between site and stand attributes, and damage that may occur as a result of
outbreaks (Wulf and Cates 1987). Some caution must be exercised when applying the
results because jack pine budworm dynamics are far more intricate than simple
associations. This is attributed to complex interactions between the environment,
physiography, and stand structure on budworm population dynamics. For example,
weather may influence budworm populations directly, or indirectly by host tree response
that affects the food quality of jack pine needles (Clancy et al. 1980; Volney and
McCullough 1994). Similar work that was conducted on spruce budworm outbreaks has
suggested attempts to deduce underlying causes of stand susceptibility from observations
of defoliation alone can be misleading (Campbell 1993).

The unknown accuracies of the physiographic and stand attribute maps may have
influenced the strengths of associations obtained. Although such information is seldom
reported (Lunetta et al. 1991), efforts are needed to procure accuracy statements of source
maps so that their influence on analysis, particularly through error propagation (Walsh et
al. 1987; Thapa and Bossler 1992) can be assessed.

This study confirms that vulnerability to jack pine budworm damage may be
explained, in part, by soil, site quality and stand attributes. These associations may be
valuable in producing hazard maps, and in helping managers to define planning options

that reduce losses to future timber supply.



Table 6-1. Classification system used for Saskatchewan forest inventory maps.
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= e
Attribute Map Map Attribute Map Map
code class # code class #
Crown closure Stand height
10% - 30% A 1 25-75m S 1
30% - 55% B 2 75-125m 10 2
55% - 80% C 3 125-175m 15 3
80 % + D 4 175-225m 20 4
225+ m 25 5
Stand origin
1856-1865 (125+) 86 1 Soil texture
1866-1875 (115+) 87 2 Coarse - Mod. CMC 1
Coarse
1876-1885 (105+) 88 3 Mod. Coarse - MCMF 2
Mod. Fine
1886-1895 (95+) 89 4 Organic 0] 3
1896-1905 (85+) 90 5
1916-1925 (65+) 92 6 Drainage
1926-1935 (55+) 93 7 Rapid-Well RW 1
drained
1936-1945 (45+) 94 8 Well-drained w 2
1946-1955 (35+) 95 9 Well-Mod. well WMW 3
drained
1956-1965 (25+) 96 10
Species
Site quality Jack pine jP 1
Poor P 1 Aspen tA 2
Poor - Moderate P-M 2 White spruce wS 3
Moderate M 3 Black spruce bS 4
Moderate - Good M-G 4
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Table 6-2 Tests of independence and Cramer’s V associations for site quality and stand
characteristics with top-kill severity.

Attribute Calculated  Degrees of Table x° Cramer's V
X? Freedom
Soil texture 36.2° 3 7.82 0.60
Drainage 38.3° 6 12.59 0.44
Site quality 18.5° 9 16.92 0.25
Stand origin 25.8 24 36.42 0.29
Stand height 15.5 12 21.03 0.23
Crown closure 6.29 9 16.92 0.14

? indicates significant association at a = 0.05.
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Table 6-3. Minnick’s Coefficient of Areal Corresrondence for site quality and stand characteristics with
top-kill severity. (Table values in bold indicate Coefficients considered significant.)

a) Soil texture
Top kill Coarse Moderately - coarse
Nil 0.06 0.44
Light 0.587 0.02
Moderate 0.16 0.01
Severe 0.20 0.00
b) Drainage
Top kill Rapid Well Moderate - well
Nil 0.06 0.01 0.45
Light 0.57 0.01 0.01
Moderate 0.16 0.00 0.01
Severe 0.20 0.00 0.00
¢) Site quality
Top kill Poor Poor - Moderate Moderate Moderate - Good
Nil 0.01 0.02 0.11 0.24
Light 0.54 0.08 0.10 0.03
Moderate 0.13 0.08 0.13 0.03
Good 0.19 0.08 0.11 0.01




Table 6-3  continued.

d) Stand origin (median of class in years, Table 6-1)
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Top kill 115 105 95 85 65 SS 45 35 25
Nil 0.00 0.04 0.02 0.09 0.11 0.07 0.13 0.01 0.02
Light 0.00 0.00 0.12 0.08 0.03 0.41 0.18 0.04 0.00
Moderate 0.00 0.00 0.11 0.18 0.03 0.07 0.04 0.07 0.01
Severe 0.00 0.00 0.13 0.28 0.05 0.06 0.02 0.05 0.00
e) Stand height
Top kill S5m 10 m iSm 20m 25m
Nil 0.04 0.10 0.13 0.01 0.00
Light 0.17 0.41 0.15 0.10 6.00
Moderate 0.05 0.09 0.10 0.16 0.00
Severe 0.05 0.07 0.21 0.20 0.00
f) Crown closure
Top kill 10 - 30 % 30-55% 55 -80 % > 80 %
Nil 0.03 0.07 0.12 0.09
Light 0.13 0.24 0.28 0.17
Moderate 0.15 0.12 0.10 0.03
Severe 0.16 0.16 0.13 0.02
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Chapter 7

General Discussions and Conclusions

This Ph.D. thesis describes a study of top kill on jack pine from three perspectives:
1) developing a photo-mensurational procedure for estimating the volume of tree top kill
to assess impact; 2) evaluating a multidate, satellite remote sensing approach for mapping
the areal extent and severity of top kill; and 3) exploring spatial associations between trees
with varying degrees of top kill and stand environmental characteristics that may function
as vulnerat ility indicators. The background for the study included a literature review of
the jack pine budworm life history, and the forest stand attributes and environmental
factors that influence insect populations.

Relatively little attontion has previously been focused on the impact of top kill and
its associations with stand characteristics. This may be attributed in part, to the difficulty
of measuring top kill in the field, its perceived minor contribution to impacts on
merchantable tree volumes, and its difficulty in mapping damage patterns. Nevertheless,
trees with severe defoliation may sustain significant amounts of top kill that impairs future
growth, and mature trees exhibit poor capabilities to recover. Thus, an approach based on
measurements from large-scale photographs and a jack pine taper model, was developed
to quantify top kill. Photo measurements of the lengths of top kill were highly correlated
and linearly associated with their actual lengths. In addition, estimates of volume derived
using taper models compared favorably with actual volumes. An advantage of using taper

models that is not available with photo-derived volume models, is the ability to determine
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impacts in terms of merchantable volumes. The photogrammetric limitations for this
method were also determined. The method of using photo measurements in a taper model
represents a new contribution to photo mensuration. This approach also results in a
potential application to forest inventory, and may solve a recurring problem that limits
large-scale photo use for volume estimation. This problem has been the high cost of
destructive tree sampling to derive volume models.

The background review confirmed that there is no standardized infestation severity
classification system for mapping outbreaks. In addition, although aerial surveys are
widely used to assess defoliation, they are not accurate enough to be used in relating
damage such as volume and growth losses to severity of defoliation. Since this study
concentrated on impacts associated with top kill, a classification scheme was devised to
map top kill using relatively lary  ile 1:5000 color infrared aerial photographs. This
map was used to represent the actual extent of damage so that a remote sensing mapping
approach using multidate, LANDSAT Thematic Mapper satellite images could be
evaluated. This approach employed a remote sensing - Geographic Information System
integration method (see Chapter 5, p. 91), whereby the digital map of top kill was used
as training data to explore spectral separabilities.

LANDSAT Thematic Mapper images corresponding to before (1984), during
(1986), and after (1987) the outbreak were obtained to create two image data sets (1984-
86 and 1984-87) for assessiné spectral changes that may relate to damage. Because the
anticipated changes were small, an important prerequisite was image preprocessing that

consisted of atmospheric and geometric corrections. The images were calibrated to
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reflectance units, and then geometrically corrected and resampled prior to the image
analysis. The images were also acquired during a relatively narrow time frame to
minimize phenological changes to jack pine trees. Spectral differences among light,
moderate, and severe top kill were small. The differences were attributed in part, to
effects of reflectance from ground vegetation in relatively open jack pine stands, since the
reflectance spectra of stands depend on the proportion of trees and ground vegetation
within a pixel. Spectral separabilities were higher for the 1984-86 data set than for the
1984-87 data set. The spectral separabilities were also smaller when simple band
differences were used as image bands, relative to the LANDSAT TM bands from each
date. Other possible reasons for why top-kill damage was difficult to detect include the
timing and spatial resolution of LANDSAT TM data, the shadow differences between July
and August images, and residual errors that may have resulted from the atmospheric
correction process. Based on these results, further attempts to distinguish damage classes
using other change detection algorithms such as principle component analysis and
defoliation models was not warranted.

A contingency table was used to compare the nine spectral classes from the
unsupervised classification with the nil, light, moderate, severe and unclassified classes
on the map of top kill. Because of difficulties usually encountered in assigning
information labels to spectral classes from an unsupervised classification, this approach
is a potentially new means of identifying these classes. Spectral classes can be described
and signatures developed for application to other similar areas. The integration of

polygonal information from a Geographic Information System, can greatly assist remote
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sensing analyses.

Based on the image data of the study area, and the fact that top-kill damage is
confined to jack pine, the classified image mainly mapped the occurrence of this species.
Areas of light, moderate and severe top kill could not be discriminated. Change detection
approaches using LANDSAT TM data were not appropriate for detecting top-kill severity,
and is therefore more suitable when the spectral differences are larger.

Although the background review outlined the characteristics of stands considered
vulnerable to budworm damage, empirical estimates for these have not been available. A
spatial approach was used to obtain associations whereby stand structure and site quality
maps were overlaid with the map of top kill. Jack pine stands on coarse-textured, rapid-
drained soils of poor site quality appear most vulnerable to budworm damage. For the
study area, these stands are 85 to 95 years of age with heights of 15 to 20 m, and crown
closures that range from 10 to 55% Although these attributes may help forest managers
to locate high risk stands, budworm populations and resulting damage are influenced by
complex interactions with the environment. The results are therefore insufficient for
predicting damage in themselves, and should be combined with research that outlines
other determinants of budworm population behavior. Thus, the results are a first
approximation towards characterizing vulnerable stands, and contribute to efforts that
define planning options to reduce risk of damage, and losses to future timber supply.

The use of Cramer’s V and Minnick’s Coefficient of Areal Correspondence is
novel in evaluating spatial associations within forest ecosystems. Although procedures are

needed for sample selection to avoid possible influences of spatial autocorrelation (see
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Appendix 5), the inferences made with these measures are remarkably consistent with

published studies. This may attest to the potential utility of forest inventory and site

quality map data in describing the characteristics of stands vulnerable to jack pine
budworm damage.
Several recommendations are presented for future work:

1. A stratified random sampling scheme is recommended if the methods developed
for quantifying top kill are to be implemented. Although the procedures for and
limits of measuring the lengths of top kill, and quantifying their volumes were
determined, an efficient means of allocating sample plots is needed. The
classification system for mapping top kill may be useful for stratifying stands.
Randomly located photo plots within stratified units could then be established to
quantify damage from top kill, and to determine its influence on merchantable
volumes.

2. Higher resolution image data such as from the airborne MEIS (Multi-detector
Electro-optical Imaging Scanner) may be required for digital detection and
mapping of stands with top kill. Image data at 5, 10, and 15 m spatial resolutions
should be explored to determine the feasibility of mapping stands with top kill or
defoliation. The coarsest spatial resolution that still detects damaged stands would
be the most cost-effective for application due to its larger areal coverage.
Alternatively, the proposed constellation of Worldview Imaging Corporation’s

satellites, that will offer green, red and near infrared coverage at 15 m resolution
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for 30- by 30-km areas®, should be ~valuated when available. In addition, research
in hyperspectral imaging and analysis with high spectral resolution data will in the
future, provide the tools to help define the spectral characteristics of damaged
stands. Thus, as improvements in the data resolution of future remote sensing
sensor systems and analysis capabilities become available, the ability to undertake
pest damage studies should improve.

The ability to detect areas of infestation may be enhanced if satellite data
acquisition is better timed to coincide with the red color stage during a budworm
outbreak. Spectral differences as a result of severe defoliation should be larger
than that observed for top kill. A classification system for mapping levels of
defoliation severity is needed, however, and may be adapted from the system used
in this study or from other investigations. In designing a classification system,
consideration should be given to objects such as ground vegetation and stand
density that may influence the spectral responses from defoliated stands. Ideally,
future clascifications systems will be compatible for both air photo interpretation
and digital image analysis.

In addition to the future availability of high resolution digital images, research in
subpixel analysis algorithms, and neural networks for image classification may
help to address the difficulties encountered in analyzing mixed pixels.
Investigations into these methods for potential application to damaged stands are

therefore recommended.

SForrest, D. 1994. Innovation watch. GIS World 7(1): 58.



152

Fire scars were observed on many trees during field work in the study area, and
the sketchy information available for previous fires suggested some areas may
have been burned more than once. Since results from published research suggest
tree response to stress from fire influences pest outbreaks, a detailed map of fire
occurrence may help to identify stands vulnerable to budworm damage. Future
studies that are similar to that undertaken for this thesis, should endeavour to
include detailed fire history maps, if available.

Values of association between stand attributes and defoliation severity may be
larger than with those obtained using top kill. Replicating this study during an
insect outbreak may therefore help to better define the ability to map damage
severity, and to identify the characteristics of vulnerable stands.

It is not known whether a spatial autocorrelation coefficient would help to explain
spatial relationships between stand attributes and budworm damage. The research
strategy in spatial statistics i; to assume no pattern exists in a map. A hypothesis
test therefore assists in determining whether observed patterns are significantly
different from a random pattern, and this may be a useful approach to test specific
hypotheses of spatial relationships. For example, a map overlay between a stand
attribute such as stand origin and defoliation severity could be used to produce a
residual map, and a test could be undertaken for significance of residual patterns.
To meet increasing demands for information in forest management, inventory
classification systems are changing by requiring existing attributes to be mapped

to a larger number of more specific classes. For example, instead of 5 or 6 m
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height classes used in Alberta and Saskatchewan, the trend is to specify actual
stand height. Crown closure is also being expanded from 4 relatively broad classes
to 10 classes that range from 0 to 100 percent. Forest cover maps that are based
on these detailed specifications may help to more specifically characterize stand

vulnerability, and this will warrant future investigations.

These recommendations provide several possibilities for extensions to this study. The
objectives for this study of top kill were met, and the findings should contribute to an
improved understanding of its impacts and characteristics relative to what has previously
been reported. These results should also help to encourage incorporation of pest
management options in resource planning, and this will lead to better management of the

jack pine forest resource.
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Appendices

Appendix 1. Elaboration of preprocessing methods for Chapter 5.

Appendix 2. Residual mean square (RMS) errors in pixel and line directions for
the three image dates.

Appendix 3. Descriptive statistics for light, moderate, and severe top-kill areas
in 1984, 1986, and 1987.

Appendix 4. Contingency tables used for calculation of ¥’ and Cramer’s V for
soil, site quality and stand attributes with severity of top kill.

Appendix 5. Influence of spatial autocorrelation on the X? statistic and sampling

procedures for rectification.
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Appendix 1. Elaboration of preprocessing methods for Chapter §.
Atmospheric correction, geometric correction, image registration

Atmospheric effects in remote sensing images are primarily due to atmospheric
attenuation of radiation from the ground surface, and to Rayleigh and Mie (i.e., caused
by water vapor and dust) scattering of solar radiation (Moik 1980). Because Rayleigh and
Mie scattering and attenuation are wavelength dependent, the effects of the atmosphere
are different among the spectral bands (Richards 1993). Atmospheric correction becomes
important when temporal data are to be compared since the atmosphere will be different
on different image dates (Mather 1987). It is also important when band ratioing is to be
applied since the effects of scattering (i.e., scattering varies inversely with wavelength)
results in a biased estimate of the band ratio (Mather 1987; Kaufman 1988). Radiometric
corrections therefore ensure that spatial or temporal changes in green vegetation are real
differences and not artifacts from atmospheric and illumination differences (Ahern et al.
1987). Previous studies also suggest that removal of atmospheric effects from remote
sensing data results in remote sensing data that are better related to ground cover
characteristics, thus improving image classification accuracies and detection of spectral
changes (Kaufman and Sendra 1988; Kawata et al. 1988; Fraser et al. 1992).

Although there are several methods for atmospheric correction (Richards 1993;
Kaufman and Sendra 1988; Chavez 1989; Richter 1990; Fraser at al. 1992), the
reflectance method developed by Ahern and Sirois (1989) was applied to each image date
because of computer programs that were available from the Canada Centre for Remote

Sensing (CCRS). In addition, atmospheric and illumination corrections with this method
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are conveniently derived from the image scene content alone, and the corrected image is
transformed to reflectance units on an 8-bit (0 to 255) digital number scale that is suited
for subsequent digital processing. For each band, the mean scene radiance provides an
estimate of average scene albedo, and the minimum value on the histogram is an estimate
of path radiance (Jenson 1986; Mather 1987). The histogram minimum value of the
visible bands is based on the full image or image area that also contains areas of low
reflectance such as from clear water (Ahern and Sirois 1989). Together with geometrical
factors derived from the latitude, longitude, date, and time, these estimates are used with
a radiative transfer model (Ahern et al. 1982) to provide an estimate of total downwelling
irradiance (Ahern and Sirois 1989). The algorithms for the computation of solar azimuth,
solar elevation and a look-up table for the image correction have been implemented in
SUNELEV (Teillet 1987) and ENHPAR (Fedosejevs 1988) respectively, on the Landsat
Digital Image Analysis System (LDIAS) at CCRS. Calibrated reflectances from this
method are considered good to within 10 percent of their true value, and this is the best
that can be expected from combined uncertainties of the absolute sensor calibration, and
the atmospheric correction methodology’.

A subset of each LANDSAT image encompassing the study area was geometrically
corrected, to facilitate two-date image registration, and subsequent integration with vector
data comprising the light, moderate, and severe top-kill severity polygons from the
SPANS geographic information system (GIS). The geometric rectification process

included establishing ground control points between the image and a reference map that

? Ahemn, F.J. Canada Centre for Remote Sensing. Personal communications. August 10, 1992,
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are related geometrically by a least squares, first order affine transformation to correct for
rotation, displacement, scaling and skew (Jensen 1986). This approach was considered
reasonable since systematic distortions due to for example, earth rotation, earth curvature,
mirror scan velocity, and satellite orientation (ie., altitude, attitude), were already
corrected during preprocessing at the satellite receiving station®. The spectral differences
between multidate images attributable to top kill were assumed to be subtle, and there was
concern that image preprocessing procedures could alter these differences. Thus, nearest
neighbour pixel resampling was undertaken to determine the pixel brightness values in the
corrected image (Shlien 1979), because radiometric values do not change when the pixel
size is kept relatively constant (Derenyi and Saleh 1989; Duggin and Robinove 1990).
Other resampling algorithms, such as cubic convolution, can significantly alter pixel
values which degrade radiometric accuracy (Ahern et al. 1987; Derenyi and Saleh 1989).

Based on the well-defined road network, 12 ground control points were identified
on both the image and on 1:12 500 UTM-based forest cover maps, available from the
Saskatchewan Forestry Branch. The UTM coordinates for the control points on the map
were digitized in a Geographic Information System to minimize the likelihood of manual
measurement errors. Two image databases were created, one for the 1984-1986 image
data, and one for the 1984-1987 image data. The standard process of geometrically
correcting one image as the master (eg., 1984) and performing image-to-image registration
for the other dates was not possible due to an artifact in the EASI/PACE system when

correcting images smaller than the 1024 by 1024 display size. Separate geometric

® Radarsat International. 1994. Canadian LANDSAT and SPOT products and services. Richmond, B.C.
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corrections were therefore undertaken on each image while attempting to maintain residual
errors within one half pixel. This error is consistent with the nominal thickness of a I mm
plotted line which at the 1:12 500 forest cover map scale represents 12.5 m on the
SPANS GIS database. For accurate spatial registration of two images to a standard map
projection for digital change detection, rectification from image to map should be within
Ye to Y2 a pixel (Jensen 1986), and this was achieved for this study (Appendix 2). The
final image database size was 800 pixels by 800 lines with a 25 m resampled pixel size

that corresponded to the 20 km by 20 km map extent on the SPANS GIS database.

Mapping top kill

Color infrared aerial photographs at 1:5000 were acquired during the summer of
1988, one year following the reported collapse of a jack pine budworm infestation
(Cerezke and Emond 1989). Since there has been no standard infestation severity
classification system reported in the literature (Chapter 2 Table 2-1), a classification
system specifically for mapping top-kill was devised for this study (Chapter 5 Table 5-1).
The classification system was based on discrete levels that appeared separable, given that
field survey data and 1:900 scale 70-mm large-scale aerial photographs (Chapter 5 Plate
5-1) were available from a previous study (Hall et al., 1993). Both the occurrence and
apparent length of top kill on individual trees were considered during interpretation, based
on rules assigned to the classification system (Chapter 5 Table 5-1).

Visual interpretation of aerial photographs is accomplished by the detection and

identification of objects of interest by employing the six basic elements (i.e., tone or
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color, size, shape, texture, shadow, pattern) supplemented by height, forest site and
ecological association (Howard 1991). Variations in knowledge and skill of the interpreter
(Hilborn 1981; Paine 1981), and in how they employ the interpretive elements, result in
unavoidable differences in interpreted products. To reduce the magnitude of this subjective
variation, the placement of polygon lines and assignment of attribute labels (Chapter 5
Table 5-1) were based on the collective and cooperative interpretation between two photo
interpreters in this study. Top-kill damage to jack pine stands from the jack pine budworm
ranged from nil along the Torch River to moderate and severe within the provincial forest
(Chapter S Figure 5-1). Since spectral differences between these classes may be too small
to discriminate with LANDSAT TM data, several sets of aggregated top-kill map classes
were also produced to determine if spectral separabilities would change with a smaller

number of more broadly defined classes (Chapter 5 Table 5-2).

Change detection background

The objective of change detection is to identify differences in the state of an object
by observing it at different times (Singh 1989). The use of LANDSAT TM data for
change detection involves the manipulations of digital numbers, recorded at two or more
moments in time, over six wavelength bands, for pixels that represent prior to resampling,
approximately 30 m by 30 m on the ground. Digital change detection approaches are
characterized by the image channel transformation and analysis techniques used to
delineate areas of significant alterations (Singh 1989).

Of the image channel transformations that have been employed in change detection
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studies (Nelson 1983), spectral channel differencing and vegetative index differencing

were employed in this study. The calculation of a channel difference is (Singh 1989):

Difference = Band, - Band, + 128

A constant is added to avoid negative values. The differencing transformation is the most
widely used because of its simplicity, and various authors have reported classification
accuracies equal to those obtained from more sophisticated approaches (Nelson 1983).
Image differencing involves subtracting the imagery of one date from that of another
(Jenson 1986). The difference produces a residual image that indicates the relative change
in reflectance between two dates (Singh 1989). This technique is appropriate when the
objective is to quantify the amount and direction of change rather than to quantify specific
cover types (Sader and Winne 1992). Although image differencing is the most widely
used technique for change detection, a critical requirement is deciding where to place the
threshold boundaries between change and no cirange pixels displayed in the histogram
(Jensen 1986). Simple differences can be confusing, however, since the same magnitude
can be computed from different band values between two dates unless standardized
differences are employed (Coppin and Bauer 1992). Band difference images have been
used to monitor gypsy moth (Lymantria dispar 1.) defoliation (Williams and Stauffer
1978), and forest decline associated with mortality (Vogelmann 1988).

Vegetation indices are linear or ratio combinations of spectral reflectance
measurements in the green or red and near infrared parts of the spectrum (Bouman 1992).
The normalized difference vegetation index (NDVI) is among those vegetation indices

frequently reported for forest damage applications (Nelson 1983; Chamignon and Maniére
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1990; Clerke and Dull 1990; Volgelmann 1990; Ardé 1992). It is computed as the

difference between near infrared (NIR) and red (R) spectral Fands standardized by their
summation (Townshend and Justice 1989). Theoretically, the NDVI results in a new
image channel whose value can range from -1 to +1. By adding 1 to the ratio to avoid
negative values, and multiplying the result by 128, the value range extends from 0 to 256

to make more effective use of an 8-bit dynamic range (Dagorne et al. 1990):

NDVI=[M+1]><128
(NIR + R)

The NDVT produces single values that are interpreted to indicate the relative amount of
living, green vegetation within an area on the ground represented by a pixel, with high
values assumed to indicate ground areas covered by substantial proportions of healthy
green vegetation (Campbell 1987). Differences in NDVI values between two dates have
been used as an indicator of change in the vegetative canopy (Singh 1989; Abednego and

Collet 1992).
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Appendix 2. Residual mean square (RMS) errors in the pixel and line

directions for the three image dates.

Image direction

(RMS as proportion of 30 m LANDSAT TM cell)

Image date Pixel (easting) Line (riorthing)
July 20, 1984 0.32 0.37
August 11, 1986 0.25 0.52

August 30, 1987 0.34 0.31
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Appendix 4.
Contingency tables used for calculating X* and Cramer’s V for soil, site quality and

stand attributes with severity of top kill.

Tables are presented for: Soil texture, Drainage, Site quality, Stand origin, Stand height,

and Crown closure.
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Appendix §. Influence of spatial autocorrelation on the X? statistic and
sampling procedures for rectification.

A possible problem in tests of significance for contingency tables is the occurrence
of spatial autocorrelation, when sampling units are from a grid instead of being randomly
selected (Dale et al. 1991). Spatial autocorrelation causes staiistical tests to be too liberal.
and results are often more signiricant than are justified (Dale =t al. 1991). This effect can
be observed with the extremely large value of the X° statistic (14145.65) in che
contingency table that was compiled as an example for top kill with crown closure
(Appendix 5 Table 1). The size of the study area is approximately 34 km® with the
unclassified areas removed. In the SPANS Geographic Information System, the area was
gridded at quad level 12 which resulted in a 12.3 m cell size. The map scale was
1:12,500, and this cell size is commensurate with a nominal 1 mm positional error often
associated with digitizing, and represents the precision a map can generally be represented
under (Burrough 1987). Thus. between top kill and crown closure, there was ¢ :otal of
225,000 cells. Sampiing all cells resulted in spatial autocorrelation effects thai highly
inflated the X? statistic. This value was substantially larger than the overly conservative
approach implemented in this study that presented the contingency table as summations
of cells (Appendix 4). This approach resulted in a X* value of 6.29 (Chapter 6 Table 6-2)
that was not statistically significant when compared to the ¥’ table vo’

The extremely large X value suggests that significant associauons would stifl
occur if procedures were implemented for removal of spatial autocorrelation effects by

random sampling. The following methodology presents one possible set of procedures:



D

2)

3)

4)
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In the SPANS Geographic Information System, generate a systematic grid of
points with the model procedure:

E Samgrid Generate sample grid of points
{ Num if class(map name) > 0}

"Num" is a suitable value that will generate a high density of points if the class
value of a map exceeds zero. For example, using an area of 44.17 km”, a value of
0.00293 will generate a grid with approximately 15,000 points. This procedure
will generate a point table file with Morton number, longitude, and latitude but no
attributes.

Also, in SPANS, run the following procedure iteratively for each map layer to
append map attributes to the point table file created in 1):

Model Points / Append Class

Note the column number and the name of the attribute that is being appended t~
the table file. When this process is completed, export the database to produce an
ASCII file that may be imported to a text editor.

Import the table file to a text editor and strip off the header and geographic
reference coordinates. Check the file to ensure unclassified cells whose value is
0 are not present in the file. Save this data file for import into a database program.

Using a program such as Dbase IV, create a database structure that matches the
columns in the ASCII data file. The labels for the fields in the database should be
available from the process undertaken in 2). Import the data to create a database
file. Once this is done, add another field to contain the random numbers. For
example, to create a field of random numbers in Dbase IV, a short program such
as the following is required:

use cramer.dbf
* Compute random #’s from 1 to 15000
Do while .not. eof()’
num = rand()*15000
replace random_num with num
skip
Enddo
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5) With the database file complete with random numbers, extract out a random
sample (eg. ¥5) into a new database file (eg. Sample.dbf):

Copy to Sample.dbf fields topkill, origin, site for random_num <= 5000

In this Sample.dbf file, run successive Count commands for each pair of attribute
values to derive values for building the contingency tables:

eg. Count for topkill = 1 .and. origin = 1 (repeat for all attribuie values)

6) With these numbers recorded, open a spreadsheet program such as Quattro Pro and
input these values. Then compute Expected values, X*> (Huntsberger and
Billingsley 1989) and Cramer’s V (Clark and Hosking 1986).

These procedures were tested by creating a small systematic sample of 1251
points. Approximately 25% of these points were randomly selected using the procedure
outlined in step 4) to select points between 1 and 350. A contingency table was created
and both the X? statistic and Cramer’s V was computed for the 304 resulting points
(Appendix 5, rable 2). Even with this small sample, the X statistic was significant
(Chapter 6, Table 6-2) when compared to the y* table value (Table 6-2), and the
difference in Cramer’s V is small (0.16 [Appendix 5, Table 2] vs. 0.14 [Table 6-21).
These results imply that significant associations would still occur with a higher intensity

of random sampling.
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