University of Alberta

Shared Memory Computing on SP2:
JIAJIA Approach

by

M. Rasit Eskicioglu and T. Anthony Marsland

Technical Report TR 98-10
July 1998

DEPARTMENT OF COMPUTING SCIENCE
University of Alberta
Edmonton, Alberta, Canada

Submitted to the 1998 IBM Centre for Advanced Studies Conference (CASCON’98), November 1998.

Shared Memory Computing on SP2: JIAJIA Approach!

M. Rasit Eskicioglu and T. Anthony Marsland
Department of Computing Science
University of Alberta
Edmonton, AB T6G 2H1
{rasit,tony}@cs.ualberta.ca

Abstract

Distributed shared memory (DSM) is a useful abstraction both for deploying net-
works of workstations as a parallel multicomputer and for increasing the usability of
non-uniform memory access multicomputers. It provides an alternative programming
model for distributed memory computers. In this paper, we present empirical evalua-
tion of JIAJIA, a software DSM system, on an IBM SP2 cluster. We also discuss the
performance of a suite of six widely different applications running under this software
and compare them with CVM, another software DSM system. We show that these
applications achieve moderate to good speedups and argue that shared memory com-
puting is an attractive alternative to message passing on high performance computer
systems, such as SP2 clusters.

1 Introduction

Shared memory is a simple programming model to develop parallel applications. Rapidly
improving performance of uniprocessors and increasing availability of high-speed intercon-
nection media make networks of workstations (NOWs), as well as distributed memory com-
puters, an attractive alternative to shared memory multiprocessors. The abstraction of
shared memory on a distributed computing system, referred to as “Distributed Shared
Memory”, provides an illusion of a large shared memory not available physically. This
global memory spans the private memories of individual computers extending across ma-
chine boundaries. It allows processes executing on different computers interconnected by
a network to share memory by hiding the physical location(s) of data and making the
memory location transparent to the entire system. During the execution of an application,
the runtime system detects all (shared) memory accesses and fetches the data from remote
memories, if necessary. The DSM approach provides both ease of programming of shared
memory multiprocessors and the scalability of distributed memory computers. We argue
that software DSM systems can be efficiently used with high performance computer sys-
tems for a variety of applications with similar performance achievements to those of shared
memory multiprocessors.

"This work is supported in part by NSERC grant OGP7902.

Software DSM can be build on stock hardware and generally only requires some common
features (such as virtual memory support) found in today’s modern processors. For this
and other reasons, it has been an active research area over the last decade, and systems
like Munin [3], Midway [2], TreadMarks [8], CVM [6], and JIAJIA [4] were designed and
implemented.

This paper describes the port of the JIAJIA software DSM system to an IBM SP2
cluster. It also evaluates the impact of high performance, wide bandwidth interconnection
medium, such as the SP2’s switch, on the performance of a suite of six widely different
applications. The results of our experiments show that programming with an “all-software”
shared memory approach such as JTAJIA is an attractive alternative to message passing on
high performance computer systems. In the following sections, we give an overview of the
JTAJIA software DSM system, emphasizing its distinguishing characteristics, summarize the
applications in our test suite, and analyze the results of our experiments. We also compare
the performance of the same applications with CVM [6], another software DSM system.

Application

JIAJIA API

iy L B

UN I X Kernel

Interconnection Network

JIAJIA Runtime
weiboid

Figure 1: JTAJIA Runtime Architecture

2 JIAJIA DSM System

JTAJTA is a software DSM system designed to run at user level on a network of stand-
alone Sun Sparc workstations. As Figure 1 shows, it is built onto UNIX as a runtime library
and uses standard libraries for remote program invocation, interprocess communication, and
memory management. JIAJTA implements scope consistency [5] with a lock-based protocol
and uses a write-invalidation scheme to handle dirty data. Also, its coherence protocol
allows multiple writers to alleviate false sharing.

2.1 Coherence Protocol

Based on the observation that the overhead of a complex software DSM system may
easily offset its benefits, the coherence protocol of JTAJTA, as summarized in Figure 2, is
designed to be as simple as possible.

The shared pages in an application can either be “local” or “cached” on a given processor.
In the former case, the processor is the home of the page. During the execution, these pages
can be in one of three states: Invalid(INV), Read-Only(R0), and Read-Write (RW). The
initial state of the pages at their home processors is R0. Since multiple writers are allowed,
a page may be in different states after several processors cache it.

rd, wt rd, acq, rel

rel (wint, diff), acq

wt (twin)

Initial State

acq, rel

Notes
rd, wt : read, write
acq, rel : acquire, release
acqinv : invalidate the page on acquire
getp : get the page from its home
wtnt : send write-notices to lock
diffs : send page diffs to home(s)
twin : create a twin of the page

Figure 2: JTAJIA’s Coherence Protocol

Ordinary read and write accesses to a RW page, or read access to a RO page, or acquire
and release on an INV or a RO page do not cause any change in the page’s state. Like the
shared pages, each lock has a home processor which is assigned in a round-robin fashion
during system initialization.

On a release, the processor generates “diffs” (run-length encoding of the changes made
to a page) for all modified pages and eagerly sends them to their respective homes. Also,
the processor sends a release request to the lock’s home processor along with the write-
notices (basically, a list of modified pages) for the associated critical section. Similarly,
the acquiring processor sends a request to the lock’s owner and waits until it receives a
lock-grant message. Multiple acquire requests for a lock are queued at the lock’s home
processor. When the lock becomes (or is) available, a lock-grant message is sent to the
first processor in the queue, piggy-backed with the current existing write-notices. After
receiving the lock-grant message, the acquiring processor invalidates the pages listed in the
write-notices and continues with its normal execution.

On reaching at a barrier, processors send write-notices along with diffs to the homes
of the modified pages. Home processors, in turn, apply the diffs to the original copy of
the pages. Thus, each processor resumes execution with an up-to-date view of the shared
memory after a barrier.

In summary, the protocol propagates all the modifications (as diffs) to the home proces-
sor of a page on a release and to the next processor on the following acquire. This approach
keeps the diffs only for a short period of time, hence reducing (local) diff keeping overhead.

Unlike other DSM systems, JIAJTA does not keep a separate global directory structure,
instead, only a lock structure keeps the necessary information, such as ownership, for the
relevant pages. This approach further reduces the overall space overhead of the system.

Currently, JIAJIA provides two synchronization operations (though, others can easily
be added): lock-unlock and barrier. FEither one of these operations can be used in an

application to control a critical section. A barrier can be viewed as a combination of
a lock—unlock pair, but in reverse order: arriving at a barrier exits from the “previous”
critical section and leaving a barrier enters the “next” (new) critical section. Since two
barriers are needed to enclose a critical section, the start of an application is considered an
implicit entry to the first critical section.

Cached Cached
Cached

Home

Home

Cached

Cached

Home

Cached

Cached

Home

Interconnection Network

Figure 3: Shared Memory Organization

2.2 Shared Memory Organization

As Figure 3 shows, JIAJIA organizes the shared memory in a different and unconven-
tional way. The global shared memory is distributed across the processors. Each processor
acts as the home of a portion of the shared memory. Users can specify home size of each
processor in a configuration file and hence control initial distribution of shared data. A page
is accessed ordinarily when referenced by its home processor. A remote page, on the other
hand, is first fetched from its home processor and cached locally for subsequent accesses.
A page is always kept at the same user space address, in other words, the logical address
of a page is identical on all processors, whether it is a home page or has been cached by
the processor. This approach eliminates any address translation upon a remote access and
provides a uniform view of the shared memory across the processors. Furthermore, each
processor uses a local page table to keep information only about its “cached” pages. It
contains the address, current state and a twin (if in RW state) for each cached page.

With the above memory organization, JIAJTA is able to support shared memory that
is much larger than the physical memory of any single processor in the system. Hence, the
total size of the shared memory is not limited by the physical memory of a single processor,
but only by the virtual memory settings (e.g., maximum allowable user-mappable address
range) of the underlying hardware and operating system.

2.3 Programming Interface

JIAJIA implements the SPMD programming model, in which each processor runs the
same program on different parts of the shared data. It provides functions for system ini-
tialization, shared memory allocation, and synchronization with the following programming
interface:

e jia init(argc,argv) —initializes JIAJIA DSM runtime system. It must be called from
every shared memory application.

e jia_alloc(int size) —allocates shared memory. The parameter size indicates the
number of bytes allocated.

e jia lock(int lockid) —acquires a global lock specified by lockid.

e jia unlock(int lockid) —releases a global lock. jia_-lock() and jia_unlock() should
appear in pairs for obvious reasons.

e jia barrier()—performs a global barrier by preventing any process from proceeding
until all processes reach the barrier.

e jiawait () —similar to jia_barrier() except that jia_wait() does not enforce any
coherence operations across processors.

e jia clock()—returns elapsed time since the start of application in seconds.
e jia error(char *str)—prints out the error string str and terminates the application.

e jia exit()-—prints statistics (optional) and terminates the application.

Additionally, two variables, jiapid and jiahosts, specify the host identification number
and the total number of hosts of a parallel program, respectively. This simple interface is
defined in a header file, which must be included by the application.

The SP2 port of JIAJTA also fully supports the M4 macros commonly used in many
shared memory applications.

3 Performance

3.1 Experimental Environment

We tested JTAJTA software DSM system on an IBM SP2 cluster at the Center for High
Performance Computing at the University of Utah. The cluster consists of 64 nodes, with
slightly different characteristics. The results reported here were collected on 16 identical thin
nodes, each equipped with 120 MHz POWER?2 Superchip processor and 128 MB physical
memory. The nodes are interconnected with a high performance multi-stage crossbar switch
which provides a minimum of four simultaneous paths (with a bandwidth of 80 megabits
each) between any pair of nodes. The nodes are also connected to the outside world by
both Ethernet and FDDI links. A full version of the AIX 4.1.5 operating system runs on
each node. Our experiments ran on the 1, 2, 4, 8, and 16 node configurations in dedicated
mode. Since there were no other user processes, the applications used the full capacity of
each node.

Our test suite includes six applications, namely, Water, LU, Barnes, EP, TSP, and Mat-
mul, covering a broad range of problem domains with varying behaviors. Water, LU, and
Barnes are from the SPLASH parallel benchmark suite [10]. The applications in this suite
were developed for use in the design of shared-memory multiprocessors, as well as in the
study of centralized and distributed share memory multiprocessors. Consequently, these
applications are tailored for hardware (sequential) cache-coherent systems with cache line

granularity. EP is from the NAS Parallel Benchmarks [1]. NAS benchmarks are devel-
oped for evaluating the performance of highly parallel supercomputers. TSP is developed
at Rice University in conjunction with their commercial TreadMarks software DSM system
[8]. Our last application Matmul is a simple matrix multiplication program. Table 1 lists
relevant characteristics of the applications in the test suite. Note that for simplicity JTAJIA
allocates a new page for each jia_alloc() call, thus the page count in the last column of
the table does not necessarily reflect the actual size of the shared data, except for LU and
Matmul, which share large and contiguous amounts of data. Below, we briefly summarize

Appl. | Sync. Dataset Sh Mem
Sm/Md/Lg | (4K pgs)

343 mols 27
Water B, L 1,000 mols 71
1,728 mols 121
1K x 1K 2,059
LU B 2K x 2K 8,205
3K x 3K 18,447

8,192 bodies 498
Barnes B 16,384 bodies 994
32,768 bodies 1,986

224 numbers 1
EP B 226 numbers 1
228 numbers 1
18 cities 197
TSP L 20 cities 197
19 cities 197
1K x 1K 3,075
Matmul B 2K x 2K 12,294
3K x 3K 27,657

B=barriers, L=Ilocks

Table 1: Characteristics of Applications

the applications used in this work.

3.2 Applications

Water is an N-body simulation program that evaluates forces and potentials in a system
of water molecules in the liquid state using an O(n?) brute force method with a cutoff radius.
Water does a step by step simulation of the molecular states. Both intra- and inter-molecular
potentials are computed in each step. The most computation- and communication-intensive
part of the program is the inter-molecular force computation phase, where each processor
computes and updates the forces between each of its molecules and each of the n/2 following
molecules in a wrap-around fashion. We used the slightly revised TreadMarks version [9] of
Water in our experiments.

Appl. Size ‘ SEQ ‘ 1-proc | 2-proc | 4-proc | 8-proc | 16-proc
343 mols 42.96 43.02 30.98 15.93 14.74 26.07

Water 1,000 mols 370.41 369.93 | 195.13 | 102.52 60.91 55.09
1,728 mols 1114.74 | 1115.76 | 575.32 | 294.60 | 158.53 110.99

1K x 1K 44.16 44.19 25.93 14.66 9.11 6.23

LU 2K x 2K 353.64 358.58 | 195.27 | 102.91 59.59 36.58
3K x 3K 1193.90 | 1192.55 | 647.45 | 333.51 | 184.66 103.92

8,192 particles 51.2/ 51.60 28.36 19.65 19.62 29.33

Barnes | 16,384 particles 115.89 118.86 65.04 43.53 40.20 59.78
32,768 particles | 255.06 270.56 | 148.28 98.15 86.15 120.61

224 numbers 74.69 74.72 37.58 19.27 9.37 4.37

EP 226 pumbers 300.41 | 300.46 | 151.24 75.05 37.51 19.27
228 numbers 1205.67 | 1203.83 | 607.34 | 301.15 | 150.66 75.62

18 cities 42.82 42.80 22.74 12.44 7.34 4.92

TSP 20 cities 277.20 277.07 | 149.61 80.22 47.03 34.08
19 cities 4835.17 | 434.92 | 22641 | 118.75 59.38 33.56

1K x 1K 45.68 48.58 24.63 13.61 8.19 11.31

Matmul 2K x 2K 367.13 447.87 | 193.50 | 104.00 58.65 47.37
3K x 3K 1251.18 | 1748.95 | 773.78 | 351.35 | 190.35 120.02

Table 2: Performance of Applications with JIAJIA (in seconds)

LU is a matrix decomposition kernel that factors a dense matrix into the product of lower
and upper triangular matrices. The dense n x n matrix is divided into an N x N array of
B x B blocks (n = NB) to exploit temporal locality of sub-matrix elements. This version
of the kernel (LU-Contiguous) factors the matrix as an array of blocks, allowing blocks to
be allocated contiguously and entirely at the processors that own them, even though these
blocks are not contiguous in the original array. The algorithm factors the matrix in several
steps separated by barriers.

16

14

Speedup
IS

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
No. of Procs No. of Procs No. of Procs

(a) Water (b) LU (c) Barnes

Speedup
=

Speedup
=

1 2 4 8 16 1 2 4 8 16 1 2 4 8 1
No. of Procs No. of Procs No. of Procs
(d) EP (e) TSP (f) Matmul
Legend

e Small data set
m Medium data set

4 Large data set

Figure 4: Application Speedups with JTAJTA

Barnes is the implementation of Barnes-Hut hierarchical N-body algorithm which sim-
ulates the interaction of a system of particles in 3-dimensions over a number of time steps.
The particles are represented as the leaves of an octree. Each processor computes the forces
for the particles it holds by partially traversing the octree, which is rebuilt at each time

step, based on the current particle positions. At the end of each time step, the properties
of the particles are updated. This version was slightly modified by the Rice University
TreadMarks group. The single lock used to protect global cell structures was removed and
local structures were defined.

EP (embarrassingly parallel) kernel benchmark accumulates two-dimensional statistics
from a large number of Gaussian pseudo-random numbers, which are generated according
to a particular scheme that is well-suited for parallel computation. EP requires almost no
communication, thus in some sense it provides an estimate of the upper achievable limit for
floating-point performance on a particular system.

TSP solves the classical traveling salesman problem using a branch-and-bound algorithm
to find the shortest path (tour). The cities are represented as the nodes of a directed graph
in the program. Each processor performs the algorithm on a different branch and updates
shared data. The program starts with an initial partial path and recursively permutes over
the remaining nodes, updating the partial path if and when necessary, until it finds the
shortest path between two cities.

Matmul is a simple implementation of the inner product algorithm used to multiply
two N x N matrices. Both multiplicand matrices and the product matrix are shared by
the processors. The work is divided among processors, where each processor computes the
result for a certain number of rows. The partial results are then merged at a barrier after
the computations.

3.3 Analysis of Results

We used the GNU gcc compiler with =02 option to compile both JIAJIA and CVM
versions of the test suite. The statistics collection code adds negligible overhead (less than
1%) to the execution times of applications. Table 2 summarizes the results of our ex-
periments. Because some of the applications do not have sequential versions, we created
pseudo-sequential executables by linking them with a special (NULL) library, in which all
the API functions except jia-alloc(), return immediately. This dummy function calls
malloc (), whereas the actual one uses mmap() to allocate (shared) memory, even on a sin-
gle processor. The SEQ column shows the execution times of the pseudo-sequential runs.
In fact, JTAJIA runtime reduces the system overhead to a bare minimum for most of the
applications when the number of hosts is one. Thus, the values in the columns SEQ and
1-proc are comparable, with the exception of Matmul. The slight variation between the
results of sequential and 1-processor versions can be attributed to the malloc () system call,
which is cheaper than mmap () on an SP2 node and most other architectures. The sequential
version of Matmul performs increasingly faster with larger matrices. This anomaly is likely
caused by caching, as well as paging, effects due to the large amounts of memory mapped
data. Note that although one row of a 1K x 1K matrix fits into a single 4096-byte page,
each row of a 3K x 3K matrix needs 3 pages. Thus, the overhead of this anomaly between
sequential and 1-processor versions is only 6% for a 1K x 1K matrix, whereas it increases
to almost 40% for a 3K x 3K matrix. Additionally, we ran each application with three dif-
ferent datasets—small, medium, and large—to see the effect of problem size on application
performance. Also, we ran the same set of applications using CVM version 0.2 to allow a
fair comparison with JTAJTA. In the following sections, we discuss the performance of each

application under JIAJTA and compare these results with CVM.

al6 ol
2 CUIAJIA 32 CJIAJIA
QU I | mmcvm T QU | mmcvm 1
o o
wni2 g w2+ g
10 - 1
8 |- -
6 |- -
4 F 4
2 |- -
0 2P 16P 2P 16P 2P 16P 2P 16P 2P 16P 2P 16P 0 2P 16P 2P 16P 2P 16P 2P 16P 2P 16P 2P 16P
Water LU Barnes EP TSP Matmul Water LU Barnes EP TSP Matmul
(a) Small dataset (b) Medium dataset

2 CJIAJIA
S | mmcvm
o
w

2P 16P 2P 16P 2P 16P 2P 16P 2P 16P 2P 16P
Water LU Barnes EP TSP Matmul

(c) Large dataset

Figure 5: Comparative Speedups on 2 and 16 processors

Table 2 summarizes the performance of our test suite. The detailed analysis of the
applications is as follows:

Water: We simulated 343, 1000, and 1728 molecules, each for 25 steps. The amount
of shared data in the revised Water code is smaller because the molecule data is split into
shared and non-shared parts in this version. As shown in Figure 4 (a), with fewer molecules,
the speedup is not good, in fact, the performance degrades after eight processors. The major
cause of this problem, which is usually more detrimental with fewer number of molecules,
is extensive fine-grain sharing, because the algorithm requires that each processor fetches
modified data from half of the other processors. Moreover, the program to some degree
suffers from false sharing [10]. On the other hand, with larger number of molecules, this
overhead is compensated by higher computation rate, and therefore better speedups are
achieved. In our test runs, we obtained speedups 1.65, 6.72, and 10.05 on 16 nodes for 343,
1000, and 1728 molecules, respectively.

LU: Figure 4 (b) shows the speedups obtained ranging from 7.09 for a 1K x 1K matrix

10

to 11.48 for a 3K x 3K matrix. The results confirmed our expectations that higher speedups
and better performance can be achieved with larger problem sizes. We used a block size
of 64 bytes, because after performing some additional tests, we observed that this size (as
opposed to 16 recommended by the developers of the application) yields the best performance
on our experimental platform. Based on this observation, we conclude that with page based
software DSM systems, it is more important that the blocks fit into the coherence unit of
the software (i.e., a physical page) rather than the cache lines of the underlying hardware.

Barnes: The performance of Barnes is not very good, despite the elimination of the
critical and only lock from the code. This application suffers from not only excessive but
also irregular fine-grain sharing, which causes invalidation and re-fetching of whole pages.
Thus, Barnes only achieved speedups 1.76, 1.99, and 2.24 on 16 processors for 8192, 16384,
and 32768 particles, respectively.

EP: This application achieves an excellent performance as expected and scales well. As
shown in Figure 4 (c), the speedups are near linear (for example, 15.92 on 16 processors
with 22 random numbers), because the only communication among the processors, which
is compensated by the high computation rate, occurs at the end of the number generation
phase to accumulate the tabulated results.

TSP: This application uses only locks for synchronization while executing the branch-
and-bound algorithm. There are also two barriers in the application, before and after
the recursive evaluation of the tours. We tested TSP with 18, 19, and 20 cities with
recursion levels (-r option) of 14, 14, and 15, respectively. Incidentally, the program finds
the minimum tour length for 20 cities faster than for 19 cities due to the setup of the input
data. The speedup for all three datasets up to four processors is near linear. However, as the
number of processors increases beyond four, the larger datasets are penalized by our lock-
based coherence protocol. JTAJIA transfers mostly whole pages because the accumulation
of lock releases unnecessarily invalidate more pages on acquire. Figure 4 (d) shows the
speedups achieved, despite the above deficiency. The reason for such good speedups is the
high computation to communication ratio of this application.

Matmul: Our locally developed simple matrix multiplication program also achieved
good speedups, especially for larger datasets as shown in Figure 4 (e). The speedup on 16
processors is low (4.30) for 1K x 1K matrices, whereas it is near linear (14.57) for 3K x 3K
matrices. As a matter of fact, for 2-processor configurations, the speedups are super linear.
Matmul clearly benefits from initial distribution of shared data among processors. Hence,
each processor works only on the data assigned to it. As a result, extensive communication
occurs only at the end of the computation when processors merge the partial results at the
barrier.

Overall, the applications in the test suite achieved speedups from 1.39 (Water, small
dataset) to 2.31 (Matmul, small dataset) on 2 processors and from 1.65 (Water, small
dataset) to 15.92 (EP, large dataset) on 16 processors. Possibly, the major causes for
the variance between speedups are irregular shared data access patterns, low computation
to communication ratio and, to some extent, to our unoptimized software DSM system.

11

3.4 JIAJIA-CVM Comparison

We ran the same applications with CVM software DSM. CVM is based on lazy release
consistency model [7]. Also, JTAJIA and CVM uses totally different allocation schemes
for shared memory. JTAJIA distributes the shared pages among processors, whereas CVM
replicates them on each and every processor. Although static data distribution through
home processors improves performance of certain applications, the positive effect of this
approach is not always possible.

Figure 5 summarizes the comparison of speedups achieved by three different datasets
with JTAJIA and CVM. The above figure also shows that most applications achieve higher
speedups with JIAJIA as the dataset size increases and that JIAJIA outperforms CVM in
all applications with larger datasets, except Barnes.

Unfortunately, not all applications ran successfully under CVM. We were unable to run
LU with a 2K x 2K matrix on more than 4 processors and a 3K X 3K matrix on more than
a single processor. On the other hand, this application ran successfully on 1-16 processors
with smaller (up to 1K x 1K) matrices. Similarly, for reasons unknown to us, Barnes did
not run to its completion with 32768 particles on 2 processors. We linearly extrapolated
the speedup of this case.

Finally, the applications ran faster with JIAJIA than CVM, mainly because of the
simpler coherence protocol of our software DSM system.

4 Conclusions

We described the implementation of a new software DSM system called JTAJIA and its
performance on high performance computing environments, such as an IBM SP2 cluster.
We also demonstrated that many applications can take advantage of the shared memory
programming model on distributed memory computers using the software DSM approach.
Generally, the difference between the efforts of programming simple applications, such as
EP or Matmul with either models is negligible. However, the code size increases with the
complexity of the algorithm, hence writing programs using the message passing model
becomes non-trivial. Further, algorithms that have irregular data access patterns and use
indirect methods (such as pointers) to access complex data structures make programming
with explicit message passing an even more difficult and error-prone task.

The applications described above achieved moderate to good speedups with JIAJTA. The
main reason for this is the simplicity of the coherence protocol and the memory organization
scheme. We measured the performance of applications with JTAJIA on up to 16 nodes of the
SP2 cluster. The implications of larger number of nodes is yet to be investigated. We believe
that as the speed of the interconnection media increases, the overhead of extensive message
exchange will be less important and coherence protocols with less space and computation
overhead will be the winner. On the other hand, faster processors would reduce slightly the
speedup from the high bandwidth interconnects.

Currently, JTAJIA uses the UDP protocol with BSD sockets over the high performance
switch for the inter-node communication. Our simple communication protocol provides
guaranteed message delivery, since UDP is unreliable. We are conducting more detailed
timing measurements which hopefully will allow us identify the major bottlenecks in the

12

system. We are also porting new applications to study possible benefits of JIAJIA on a
variety of other application domains.

Acknowledgments

We gratefully acknowledge the Center for High Performance Computing (CHPC) at the
University of Utah for the allocation of computer time to run our experiments. CHPC’s
IBM SP system is funded in part by NSF Grant #CDA9601580 and IBM’s SUR grant to
the University of Utah.

About the Authors

M. Rasit Eskicioglu received his B.Sc. in Chemical Engineering from Istanbul Technical
University (Turkey) and M.Sc. in Computer Engineering from Middle East Technical Uni-
versity (Turkey). He is currently finishing his long overdue PhD thesis. He has been in
academia, teaching and doing research and development mainly in systems area for nearly
20 years. His research interests include operating systems, parallel and distributed systems,
computer architecture, and computer networks. His recent work involves investigating ways
to make software DSM systems more efficient and scalable. He is a member of ACM, IEEE
Computer Society, and USENIX.

T. Anthony (Tony) Marsland received his B.Sc. in Honours Mathematics from the Univer-
sity of Nottingham (UK) and M.S.E(E) and Ph.D. degrees in Electrical Engineering from
the University of Washington, Seattle (USA). After working one year as an assistant profes-
sor he went to AT&T Bell Laboratories in New Jersey for two years as a research scientist,
before joining the Computing Science Department at the University of Alberta, where he
is currently a professor. He was an ACM National Lecturer during 1979-81 and a McCalla
Research Professor in 1985-86. His current teaching and research interests are in the area
of distributed computing systems design.

References

[1] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS parallel benchmarks.
Technical Report RNR-94-007, NASA Ames Research Center, March 1994.

[2] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon. The Midway distributed
shared memory system. In Proc. of the 38th IEEE Int’l Computer Conf. (COMP-
CON Spring’93), pages 528-537, February 1993.

[3] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation and performance of
Munin. In Proc. of the 13th ACM Symp. on Operating Systems Principles (SOSP-13),
pages 152-164, October 1991.

[4] W. Hu, W. Shi, and Z. Tang. A lock-based cache coherence protocol for scope consis-
tency. Journal of Computer Science and Technology, 13(2):97-109, March 1998.

13

[5]

[10]

L. Iftode, J. P. Singh, and K. Li. Scope consistency: A bridge between release con-
sistency and entry consistency. In Proc. of the 8th ACM Annual Symp. on Parallel
Algorithms and Architectures (SPAA’96), pages 277-287, June 1996.

P. Keleher. The relative importance of concurrent writers and weak consistency models.
In Proc. of the 16th Int’l Conf. on Distributed Computing Systems (ICDCS-16), pages
91-98, May 1996.

P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy release consistency for software
distributed shared memory. In Proc. of the 19th Annual Int’l Symp. on Computer
Architecture (ISCA’92), pages 13-21, May 1992.

P. Keleher, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. Treadmarks: Distributed
shared memory on standard workstations and operating systems. In Proc. of the Winter
1994 USENIX Conference, pages 115-131, January 1994.

H. Lu, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. Message-passing vs. distributed
shared memory on networks of workstations. In Proc. of Supercomputing’95, December
1995.

J. P. Singh, W-D. Weber, and A. Gupta. SPLASH: Stanford parallel applications for
shared memory. Computer Architecture News, 20(1):5-44, March 1992.

14

