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Abstract 

Subclinical mastitis (SCM) remains one of the most important infectious diseases 

of dairy cows as it is associated with considerable losses in milk production and financial 

revenue. Currently, most SCM research and practices focus on diagnosing this 

intramammary infection (IMI) by counting somatic cells (SCC) in milk throughout 

lactation. Therefore, this study aimed to identify metabolic alterations in the serum and 

urine of pre-SCM cows during the dry period, along with developing panels of screening 

biomarkers for lab-based and pen-side tests. Early identification of susceptible cows will 

enable better preventative and management strategies for SCM.  

A combination of flow injection and liquid chromatography coupled with tandem 

mass spectrometry (FIA/LC-MS/MS) analysis were used to characterize 580 blood and 

urine samples collected from 145 Holstein cows at –8 and –4 wks before the expected date 

of calving. Cows enrolled in this nested-case control study were then monitored for the 

development of postpartum diseases. Fifteen cows were free of any condition (CON), and 

just 10 cows presented with only SCM (characterized by high SCC) after calving and were 

free of other diseases. Metabolomics identified 126 serum metabolites from which 59 at –

8 wks and 47 at –4 wks were found altered (P ≤ 0.05) in pre-SCM cows compared to CON 

cows. Using FDR adjusted P values, 32 metabolites at –8 wks and 17 at –4 wks were in 

the range of q < 0.005. The main metabolite classes that were altered were related to lipid 

metabolism, such as acylcarnitines (ACs), lysophosphatidylcholines (LPCs), 

phosphatidylcholines (PCs) and sphingomyelins (SMs). Others were amino acids (AAs), 

methyl donor compounds, organic acids (OAs), and several carbohydrate species. 

Univariate, multivariate, and machine learning analysis indicated that a panel of 4 serum 

metabolites including alanine, leucine, betaine, and ornithine (AUC = 0.92; P < 0.001) at 
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–8 wks and alanine, pyruvate, methylmalonate, and lactate (AUC = 0.92, P < 0.01) at –4 

wks before parturition might serve as the best predictive serum biomarkers for SCM for a 

pen-side test. On the other hand, a total of 82 metabolites were found in the urine samples, 

and only 27 compounds (P ≤ 0.05) were different at each sampling period. At q < 0.005 

only 4 metabolites were altered from each week. The most discriminating metabolites were 

ACs, several AAs and their derivatives, glucose, and OAs. Further regression analysis 

showed that four metabolites: ADMA, proline, leucine, and homovanillate (AUC=0.88; P 

= 0.02) at –8 wks and another four metabolites: ADMA, spermidine, methylmalonic acid 

and citrate (AUC = 0.88, P = 0.03) at –4 wks as specific urinary biomarkers for SCM.  

Overall, these data indicated systemic metabolic alterations occur in pre-SCM 

cows. They also showed that differentiation of pre-SCM cows against CON cows is 

possible and the data provided more information on the pathobiology of SCM. These 

predictive biomarkers also offer the potential to develop lab-based and pen-side tests to 

identify cows at risk of SCM during the dry period. The health status dataset for all the 

cows enrolled in this study demonstrated that several other cows were positive for SCM 

and at least one or more other diseases, including ketosis, leukosis, retained placenta, 

lameness, and milk fever. This complicates the development of lab and pen-side tests and 

warrants more research to explore the possibility of identifying specific metabolites for 

SCM alone that can separate SCM cows from the other diseases.  
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Chapter 1. Literature Review 

 

1.1 Introduction 

1.1.1 The importance of mastitis in dairy cows 

Mastitis is a multifactorial inflammatory disease of the mammary gland. This 

intramammary infections (IMI) is most commonly caused by bacteria such as Escherichia 

coli, Staphylococcus aureus, and Streptococcus spp. Mastitis is of particular concern to 

dairy cattle and dairy farmers. It is typically seen in dairy herds between the dry-off and 

early lactation period (Thompson-Crispi et al., 2013). Other rare causative agents for 

mastitis can be trauma or toxic chemicals (Reyher and Dohoo, 2011). Mastitis presents 

chemical and physical alterations to the milk and abnormal mammary gland appearance. 

Depending on the signs, symptoms and severity, mastitis can be classified as clinical 

mastitis (CM) or subclinical mastitis (SCM). Mastitis is monitored by measuring the 

somatic cell count (SCC) in milk, which, if the number of somatic cells exceed 200,000 

cells/mL, the mammary gland is inflamed and this highly suggests infection (Dohoo and 

Leslie, 1991), as presented in Figure 1.1. 

  This disease can significantly impact the health of dairy cattle and dairy farm 

profitability (Ruegg and Petersson-Wolfe, 2018). Indeed, mastitis' financial impact is 

considerable, as it is estimated to cost a Canadian dairy farmer $662/year per cow 

(Aghamohammadi et al., 2018). In fact, reproductive disorders and mastitis are the most 

common reasons why dairy cows are prematurely culled from the herd (CDIC, 2020). The 

median incidence of CM was estimated to be 19 cases per 100 cows/year 

(Aghamohammadi et al., 2018), whereas the incidence of SCM is estimated to be up to 50 

cases per 100 cows/year (Busanello et al., 2017). Farm management is a significant factor 
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in the occurrence of IMI; thus, different farms will have different levels of CM or SCM 

(Verbeke et al., 2014). Given the excessive costs and impact on dairy production, 

profitability and herd health, there is a strong global effort to lower mastitis incidence, 

reduce the negative impact and improve milk quality, production and farmer finances.  

 

1.1.2 Etiology 

In 1988, Watts listed 137 microorganisms as being causative for mastitis (Watts, 

1988). Later Zadoks and colleagues reported more than 200 pathogens are associated with 

this pathology (Zadoks et al., 2011). The vast majority of mastitis cases in dairy cattle are 

thought to derive from contagious, environmental pathogens or opportunistic microbes 

such as non-aureus Staphylococci (NAS) (Moroni et al., 2018). Following is a more 

detailed list of some of the most important agents causing IMI, presented on Table 1.1 

 

Staphylococcus aureus 

Staphylococcus aureus is currently one of the most problematic mastitis pathogens. 

It is more predominant in chronic or subclinical forms of the disease, causing mild, 

moderate and severe infections that can cause sudden death (Schukken et al., 2011). It 

invades the mammary tissues and causes necrosis through the release of lipoteichoic acid 

(LTA) into the interstitial tissue of the mammary gland (MG) (Dego et al., 2002). 

Staphylococcus aureus can also produce biofilms as a barrier against the host immune 

response. These infections are more common during early lactation and are associated with 

continuous losses in milk production (Persson Waller et al., 2009; Heikkilä et al., 2018). 

LTA of Gram-positive bacteria such as S. aureus tend to elicit a weaker immune response. 
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This is because S. aureus can dampen the activation of the NF-kB signalling pathway, not 

eliciting a strong proinflammatory cytokine expression (Lara-Zárate et al., 2011; 

Giovannini et al., 2017). The antimicrobial treatment has generally not shown much 

efficacy against S. aureus infections, making this pathogen persistent in many dairy herds 

(Barkema et al., 2006).  

 

Escherichia coli 

Escherichia coli is the primary pathogen that causes clinical signs of mastitis 

(described in more detail in section 1.1.4). This Gram-negative bacterium is found in the 

environment and causes acute to peracute infections resulting in a rapid, sometimes fatal 

immune response (Pyörälä et al., 2011). Due to the systemic inflammation that follows E. 

coli infection, much more damage to the mammary gland and a substantial reduction in 

milk yield can occur compared to infections by other pathogens (Heikkilä et al., 2018). The 

mammary gland operates under low oxygen pressures, making it a suitable environment 

for this coliform bacterium to thrive and flourish (Hogan and Smith, 2003). E. coli can be 

found in a non-pathogenic form in the udder, gastrointestinal and reproductive tract. Under 

non-favourable conditions, lipopolysaccharide (LPS) produced by Gram-negative bacteria 

such as E. coli can translocate into the systemic circulation and cause endotoxemia (Eckel 

and Ametaj, 2016).  

 

Streptococcus uberis 

Streptococcus uberis, a common environmental pathogen that causes moderate 

clinical signs, which manifests as abnormal and visible changes in the mammary glands 
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with CM (Leigh, 1999). It is a Gram-positive microorganism present in pasture and free-

stall systems, and because of its ubiquity in the environment, it can become a persistent 

causative agent of mastitis (Leigh, 1999; Bradley et al., 2007; Rato et al., 2011).  

 

Klebsiella spp 

Klebsiella spp. are Gram-negative, environmental pathogens that cause 2-9% of 

clinical mastitis cases (Oliveira et al., 2013; Levison et al., 2016). The importance of 

Klebsiella spp. is related to economic losses as these infections lower milk yield and 

increase veterinary bills. Furthermore, most cows that are positive for Klebsiella spp. are 

predisposed to life-threating mastitis and not a positive prognosis (Gröhn et al., 2004). The 

pathogenicity of Klebsiella spp. infection is proposed to be mediated by many virulence 

genes and biofilm formation. Furthermore, 42% of all mastitis samples with Klebsiella spp. 

demonstrate antimicrobial resistance (AMR) (Schönborn et al., 2017; Massé et al., 2020).  

 

Opportunistic pathogens 

Most opportunistic pathogens causing mastitis fall into the category of non-aureus 

staphylococci (NAS). These microbes are common residents of the teat skin. There are 48 

known NAS, but few of them cause IMI. The best known of the causative NAS is 

Staphylococci chromogens. This microbe causes SCM but with only slight change to milk 

quality. An increase in NAS can occur because of poor hygiene, teat skin injuries and 

inadequate milking procedures. A NAS infection does not often demonstrate any clinical 

signs. As a result, it can only be discovered from a positive bacteriological culture. 
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Measures such as post milking teat dipping with iodine along with improved milking 

hygiene, minimizing teat damages, and dry cow therapy can keep NAS infections under 

control (Moroni et al., 2018). NAS pathogens are becoming the predominant mastitis 

bacteria in many countries, and these microbes are often associated with recurrent 

infections due to their ability to form biofilms (Tremblay et al., 2013).   

Mastitis-causing pathogens can be categorized into two groups: major or minor, 

based on their pathogenicity. The major pathogens comprise S. aureus, S. dysgalactiae, S. 

agalactiae, S. uberis and the Enterobacteriaceae. Cows infected with these pathogens 

require intensive care, and these bacteria are not easily eliminated. The minor pathogens 

include Corynebacterium spp. and the NAS spp. Minor pathogens do not cause visible 

changes to the udder and can be kept under control, however, they trigger an elevated SCC 

in the milk, leading to IMI and sudden death (Reyher et al., 2012).  

In Canada, most CM cases are caused by Escherichia coli and Staphylococcus 

aureus (Sargeant et al., 1998; Thompson-Crispi et al., 2013). In the Netherlands and the 

US, E. coli was found to be predominant over all other microbes (Barkema et al., 1998; 

Roberson et al., 2004). S. aureus, S. dysgalactiae, and E. coli are most frequently isolated 

in Norway and Sweden (Reksen et al., 2006). In New Zealand, S. uberis is the leading 

cause of CM and SCM (McDougall, 1999), whereas, in Albania, S. aureus and S. 

agalactiae were found to be the main cause of SCM (McDougall, 1999; Kopali et al., 

2011). In China, Enterobacteriaceae were the most common pathogens leading to CM and 

SCM (He et al., 2020). 
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1.1.3 Pathogenesis 

No matter the pathogen, whether it is environmental or contagious, the main route 

of mammary gland infection in mastitis is through the teat canal. The first anatomical 

structure that bacteria deal with is the teat end and teat canal. A sphincter muscle surrounds 

it and helps to maintain a tight closure not to let milk escape. Keratin, a waxy material 

derived from the epithelial lining, also lines the teat canal. This serves as a physical 

obstruction usually present during the non-lactating period when the teat end is completely 

closed with this substance. Keratin contains antibacterial fatty acids with bacteriostatic and 

bactericidal activities. Their activity is more intense towards some bacteria than others. 

(Breen et al., 2006; Sordillo, 2018). When mastitis-causing pathogens pass this barrier, an 

innate immune response (IIR) is initiated.  

This immune response is mediated at the beginning by innate immunity. It includes 

both cellular (e.g., polymorphonuclear neutrophils (PMN), macrophages, natural killer 

(NK) cells, dendritic cells and mammary epithelial cells (MEC)) and humoral defences 

(complement system, cytokines, lactoferrin, transferrin, lysozyme, acute phase proteins 

(APPs) as well as reactive oxygen species (ROS) and antimicrobial peptides (Rainard and 

Riollet, 2006). Local mammary cell populations such as macrophages, dendritic cells, and 

epithelial cells have pathogen recognition receptors (PRRs) that interact with pathogen-

associated molecular patterns (PAMPs). The latter are motifs or distinctive protein 

sequences on the surface of microbes (e.g., LPS or LTA) released by microorganisms when 

they replicate or degrade. Toll-like receptors (TLR) and nucleotide-binding and 

oligomerization domain-like receptors (NLR) are the two prominent families of PRRs 

(Wiersinga et al., 2014). LPS is recognized by TLR-4, whereas TLR-2 recognizes LTA. In 
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case of a Gram-negative infection, LPS will stimulate innate immunity, being recognized 

by TLR-4. Other proteins, including cluster of differentiation 14 (CD14), myeloid 

differential protein 2 (MD2), and lipopolysaccharide-binding protein (LBP), help activate 

the nuclear factor kappa light chain enhancer of activated B cells (NF-κB) signalling 

pathway (Miyake, 2007; Mani et al., 2012). This activation triggers the production of pro-

inflammatory cytokines and the acute phase response (APR), which initiates a ubiquitous 

and rapid innate immune response (Brenaut et al., 2014).       

Peripheral neutrophils contacted by IL-8 rapidly migrate to the infected area to 

phagocytose and destroy the intruding bacteria. The high concentration of SCCs found in 

cows' milk with CM or SCM is mostly made of neutrophils, indicating "a cellular battle" 

inside the mammary gland (Zhao and Lacasse, 2008). If microbes are eliminated, the host 

returns to a healthy, homeostatic state. If not, the adaptive immune system is activated. 

This response is mediated by T and B lymphocytes. T-cells are activated by encountering 

an antigen-presenting cell (APC), MHC II, plus various cytokines. Once activated, T-cells 

can exert their cytotoxic activity or activate B-cells, which produce antibodies to eliminate 

the bacterial intruder and create a memory of its specific antigen (Sordillo and Streicher, 

2002; Ezzat Alnakip et al., 2014). Depending on the type and scale of pathogen invasion, 

this infection is presented either in a clinical or subclinical form. This process is presented 

schematically in Figure 1.2.  

 

1.1.4 Clinical mastitis (CM) 

Clinical mastitis is one of the most important diseases affecting dairy cows. Clinical 

mastitis manifests with clear visible external signs such as swelling, redness and/or pain in 
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the udder, and systemic fever. There are also detectable changes to the milk and its 

components (Leslie and Petersson-Wolfe, 2012). Variations in colour, consistency, the 

presence of clots, blood, and chemical changes can occur in milk (Zhao and Lacasse, 2008; 

Roberson, 2012). Other milk modifications may include increased conductivity, increased 

pH and changed water content.  

Clinical mastitis is categorized based on its duration (subacute, acute, peracute) and 

severity (mild, moderate, severe) (Adkins and Middleton, 2018). With mild/subacute CM, 

most changes are found in the milk's colour and consistency. Moderate/acute CM is 

characterized by changes in the milk and mammary gland, including redness, swelling, 

heat and pain. Severe/peracute CM is characterized by abnormal milk and mammary gland 

along with systemic signs such as fever, loss of appetite, and an inability or unwillingness 

to move (Ruegg, 2011; Suojala et al., 2013). 

 

1.1.5 Subclinical mastitis  

Subclinical mastitis is another form of mastitis but doesn’t present with any 

noticeable symptoms or signs such as external changes in the udder or milk (Forsbäck et 

al., 2009). As the milk does not show any SCM changes, farmers unintentionally decrease 

the bulk-tank milk quality while mixing this milk with milk from healthy cows (Leitner et 

al., 2008). Adding SCM milk contributes to an increase in somatic cells, decreases milk 

quality, and introduces pathogens into the normal milk. Since there are no visible signs of 

the disease with SCM, it can continue to persist. The only way to discover it is by doing 

bacterial cultures and weekly tests to measure the presence of SCC in the milk throughout 

the lactation period (Schukken et al., 2011).  
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Subclinical mastitis can be highly significant to a dairy farm as it can affect up to 

50% of the herd (Pitkälä et al., 2004; Busanello et al., 2017). This has made SCM detection 

and management an enormous challenge for the past, present, and future dairy industry. 

Currently, SCM and IMI are monitored through continuous measurements of SCC in the 

milk. If the SCC is lower than the threshold of 200,000 cells/mL, a quarter of the udder can 

be considered non-infected. Therefore, the optimal value of SCC for a herd should be no 

more than 100,000 SCC/mL of milk as this would guarantee that most of the herd is not 

infected (Schukken et al., 2003; Rhoda and Pantoja, 2012). 

 

1.2 Role of the dry period in the life of cows 

1.2.1 Anatomical and physiological changes of the mammary gland 

The dry or the nonlactating period is when metabolic and nutritional changes 

happen to the cow and the mammary gland (Dingwell et al., 2003a). This period prepares 

cows for the next calving and lactation cycle (Jones, 2009). The dry period helps the udder 

tissue involute and regenerate to provide better milk yields after calving (Capuco et al., 

1997; Kuhn et al., 2005). This period should be at least 40 – 60 days long; most farmers 

practice a 6 – 8 week (42 – 56 days) dry period. It has been shown that cows dried less than 

40 days typically produce less milk than the previous lactation (Jones, 2009). 

Involution, steady-state, and colostrogenesis are the three phases that the mammary 

gland goes through during the dry-off period. Involution that starts with milk cessation is 

proceeded by dry cow therapy (DCT), where the farmers routinely administer antibiotics, 

teat sealants, and vaccines as measures to eliminate current infections and prevent new 

ones from developing during late gestation. Colostrogenesis prepares the udder and the 
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host for milk secretion while the mammary gland grows and repairs for the upcoming 

lactation. Intramammary infections that occur during the dry period damage the mammary 

tissue turning it into a non-functional gland that produces less milk. Another physiological 

system that is affected during the dry-off period is the gastrointestinal tract and its 

microflora. These systems must adapt to dietary changes introduced during the dry-off 

period (Dingwell et al., 2004; Akers et al., 2014).  

The critical period for a cow's health is three weeks before and three weeks after 

calving. This is called the transition period. During this period, cows go through significant 

nutritional, metabolic, immune, and hormonal changes, making them more susceptible to 

periparturient diseases (Ingvartsen and Moyes, 2015). The periparturient period is when 

the fetus grows the most (Dingwell et al., 2004). It requires several major metabolic 

adaptions (e.g., mobilization of energy and proteins from maternal body reserves) for the 

cow to support this high growth and milk production level. The transition period from 

gestation to lactation is linked with increased nutritional demands but at the same time with 

appetite depression, which puts the cow in a negative energy balance (NEB) and under 

metabolic stress (Butler and Smith, 1989; Bell, 1995). To support their postpartum 

physiological requirements, cows typically experience lipolysis and ketogenesis, making 

them more prone to other metabolic diseases (Ametaj, 2005; von Keyserlingk et al., 2009).  

During the periparturient period, alterations in hormone levels can cause changes 

in energy balance metabolites, specifically with non-esterified fatty acids (NEFAs). 

Hormonal profiles related to parturition and lactation are also altered. For instance, 

estrogen begins to increase while progesterone declines just 1-2 days before calving. 

Furthermore, as lactation is initiated, serum levels of growth hormone (GH) and 
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glucocorticoids increase while at the same time, they inhibit insulin and IGF-1 production, 

triggering mobilization of NEFAs (Lucy et al., 2001). Overproduction of the NEFAs leads 

to incomplete oxidation and accumulation in the liver due to the lack of re-esterification of 

the NEFAs back to triacylglycerides (TAGs). This, predisposes cows to ketosis or fatty 

liver disease (Ingvartsen, 2006). 

On the other hand, a high concentration of NEFAs initiates a pro-inflammatory 

response, which can benefit placental detachment during calving. This helps fight 

infections or it can lead to self-harming if inflammation persists for a long time. Negative 

energy balance has been widely accepted as a failure to supply the energy requirements 

and sufficient dry matter intake (DMI) (Ingvartsen, 2006). In contrast, a growing body of 

evidence conducted on dairy cows during the periparturient period affirms that the energy 

deficiency comes from the host's response to systemic inflammation. Defining the origin 

of this systemic inflammation during the transition period is a work in progress. 

 

1.2.2 Susceptibility to intramammary infections during the dry period 

Many factors participate in the etiology of mastitis. Disease severity and extent 

depend on the balance between the host, the farm, and the pathogens (De Vliegher et al., 

2018). A high incidence of IMI is strongly correlated with the immunosuppression that 

cows go through around parturition (Sordillo, 2005). Pathogens then use this opportunity 

to attack and establish an infection (Contreras and Rodríguez, 2011). The origin of these 

pathogens can be from the environment, the udder or an existing infection (Breen et al., 

2009). Cows having dirty udders and farms with improper hygiene are more likely to 

develop clinical mastitis (Hogan et al., 1989). Sand bedding is preferred over organic 
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material as sand doesn't predispose cattle to environmental mastitis (Hogan et al., 1999). 

Thompson-Crispi et al. (2013) estimated that the incidence of CM in conventional dairy 

farms to be 26.3 cases per 100 cows. 

In contrast, organic dairy farms tend to have fewer cases of mastitis (Levison et al., 

2016). It is interesting to note that different studies report different SCC values between 

these two systems, with some stating that organic farms have higher SCC values (Levison 

et al., 2016). This may be due to the fact that organic farms have different standards and 

feeding ratios than conventional farms (Ruegg, 2009). Also, SCC levels are affected by 

breed, stage of lactation, parity and season (Verbeke et al., 2014). Holstein cows are more 

likely to be culled when they present with high SCCs than Jersey cows (Bannerman et al., 

2008). Also, pure Holstein cows are more predisposed to become infected and to have a 

shorter lifespan than crossbreeds (Dezetter et al., 2017). A dairy farmer's financial interest 

is to make a profit by selecting cows that produce considerable amounts of milk. For many 

years, the dairy industry has focused on selecting cows for their production traits, but 

unintentionally, this has led to a negative impact on cow health and welfare. In particular, 

this has increased the average somatic cell count in milk and the number of mastitis cases 

while generating less milk yield and increased culling rates (Heringstad et al., 2005; 

Negussie et al., 2008).  

As far back as in the 1950s, it was first noticed that cows could be genetically 

selected for mastitis resistance and general health optimization (Lush, 1950; Shook, 1989). 

Several studies have shown that susceptibility to IMI can be inherited. Subclinical mastitis 

has a low heritability from 0.03 to 0.17 (De Haas et al., 2008; Urioste et al., 2012; Narayana 

et al., 2018), as does CM, with a heritability of 0.07 to 0.1 (Heringstad et al., 2005; Hinrichs 
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et al., 2011). On the other hand, Svendsen and Heringstad reported that SCM cows with an 

SCC threshold between 50,000 - 200,000 SCC/mL shared a high genetic correlation (range 

= 0.89 - 0.92) (Svendsen and Heringstad, 2006).  

Cows are susceptible to mastitis throughout lactation. However, they are most at 

risk two weeks postpartum, and as they grow older (Barkema et al., 1998; Riekerink et al., 

2008). There is supporting evidence that many metabolic and immune alterations occur 

long before presenting CM or SCM after parturition. Indeed, many researchers have 

reported that the infection is typically acquired during the dry-off period. It has been 

demonstrated that mastitis-positive cows identified within 30-100 days in lactation likely 

had the infection since the dry period (Green et al., 2002; Bradley et al., 2008). This was 

later endorsed by Dervishi et al. (2015), who found activation of innate immunity and other 

metabolic changes in cows that went on to develop SCM after calving. Furthermore, these 

cases increase IMI persistence and recurrence in the herd (Jamali et al., 2018). 

 

1.3 Impact of mammary gland infections on dairy herds 

1.3.1 Mastitis – a threat to the dairy industry profitability  

Mastitis costs the dairy industry dearly. In 1972, Foley and colleagues reported that 

the average cost to treat a mastitic cow was $30-$50 per year (Foley et al., 1972). They 

estimated that the total cost to the United States economy was a loss of between $300 

million and $600 million per year. Since then, inflation has added to the estimated cost and 

the economic impact of mastitis. Aghamohammadi et al. (2018) reported that a Canadian 

dairy farmer would spend CAD $662 per cow in a year to treat or prevent mastitis. These 
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costs included the losses due to reduced milk production from SCM, treatment of CM, and 

prevention programs. 

It is well known that one of the first consequences of an IMI infection is milk 

reduction (Hertl et al., 2014). On the other hand, even subclinical mastitis cases are 

accompanied by yield losses. While not as high as CM, SCM is longer in duration (Halasa 

et al., 2009). The reduction in yield comes from mammary tissue destruction, so the MEC 

can no longer synthesize or secrete milk. Most SCM cases caused by S. aureus turn into a 

significant concern as the secretory tissue transforms into useless fibrotic tissue (Botaro et 

al., 2014). Knowing that almost 50% of a dairy herd can be affected by SCM and that 20-

50% of the cows will experience more than one disorder around parturition, the scale of 

these losses is disturbing (Leblanc, 2010). Older cows produce less milk than those in the 

first lactation. At the limit of 200,000 SCC/mL, primiparous cows can lose 0.31 kg/d, while 

multiparous cows lose 0.58 kg/d (Halasa et al., 2009). Due to yield reductions, milk 

composition changes, especially the loss of nutrient value, the milk from SCM or CM cows 

become unconsumable, so it must be discarded. Another reason milk (quarter level or bulk 

tank) from SCM or CM-affected herds is often discarded is due to the presence of high 

levels of antibiotics, making it a concern for public safety (Ruegg, 2003). A better solution 

for farmers is to remove or cull the infected cows and replace them with new ones. This 

further adds to the farm's profitability (Hogeveen et al., 2011). Other costs due to CM or 

SCM are related to veterinary assistance, extra labour, and preventive measurements 

(Halasa et al., 2007; Aghamohammadi et al., 2018).  

A growing concern for the dairy industry, veterinary medicine, and the public is the 

antibiotic presence, usage of antimicrobial growth promoters (AGP) and antibiotic 
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resistance in livestock (Oliver and Murinda, 2012; Brown et al., 2017). Antibiotic 

resistance and antibiotic presence are a burden not only for the farmer's pocket and for the 

cow's welfare but also for global health and economic issues. Most farmers use systemic 

or intramammary antibiotics after confirming the presence of elevated SCC. Non-specific 

and extensive antibiotic use has led to the global problem of antimicrobial resistance 

(AMR) (Aga et al., 2016). Treatment of mastitis accounts for almost 80% of antibiotics 

used in dairy cows (Pol and Ruegg, 2007). Antimicrobial resistance presents a significant 

concern because some bacterial populations develop resistance genes and can pass this 

resistance to other bacterial communities. 

Furthermore, the presence of antibiotic residues in milk means that this milk cannot 

enter the human food chain or be fed to calves (Maynou et al., 2017). Resistant bacteria 

can pass onto humans. For example, through the consumption of unpasteurized milk, there 

have been a number of disease outbreaks (Piddock, 1996; Oliver et al., 2005). The concept 

of One Health is becoming a central part of the agenda of health and veterinary discussions 

in the US, the European Union, and Canada (Martins et al., 2019). For example, the 

establishment of Animal Antimicrobial Stewardship (AMS) Canada (Otto et al., 2018) and 

other national or international cohorts will help develop policies to prevent AMR while at 

the same time finding more effective treatments for farm animals and the environment.  

 

1.3.2 Mastitis in relation to other diseases 

Cows are at a higher risk of developing one or more periparturient diseases after 

calving. As discussed in section 1.2, the most susceptible time to develop these diseases is 

during the dry period. Many of these diseases are then presented or manifested after 
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calving. Eckel and Ametaj (2016) suggested that bacterial endotoxin (LPS or LTA) might 

be implicated in the periparturient disease pathogenesis, proposing that the endotoxin 

produced by bacteria can translocate from the rumen, uterus, or mammary gland. Indeed, 

several papers have shown a good correlation between increased SCC and other metabolic 

diseases diagnosed simultaneously (Zhang et al., 2015, 2016; Dervishi et al., 2016b; a). 

Transition diseases are interlinked between one another (Mulligan and Doherty, 2008). For 

example, hypocalcaemia makes a cow more predisposed to most periparturient diseases, 

while acidotic cows are more susceptible to mastitis, laminitis, milk fever, and left 

displaced abomasum (LDA). Retained placenta (RP) leads to metritis, milk fever, and LDA 

(Gröhn et al., 1989). Ketotic cows have an increased concentration of NEFA. Beta-hydroxy 

butyrate (BHBA), in addition to being a diagnostic tool for ketosis, helps identify uterine 

infections and LDA.  

Elevated levels of NEFA before parturition depresses feed intake, which impacts 

immune function and can lead to subclinical ketosis and metritis development. Metabolic 

changes and adaptations occurring during the transition period can be metaphorically 

compared to the domino effect – one falls over the other. Thus, incomplete oxidation of 

NEFA results in fatty liver and ketosis, which in ketotic cows with a high body condition 

score (BCS) increases the incidence of displaced abomasum (DA) (Ingvartsen, 2006). The 

increased lipolysis and BHBA impair immune functions, consequently making cows prone 

to infectious diseases like mastitis and metritis. This immunosuppression, combined with 

hypocalcaemia, leads to retention of fetal membranes or retained placenta (Mulligan and 

Doherty, 2008).  
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Another initiator of this cascade can be the ruminal environment. As the diet 

changes, so do the bacterial population in the gut, favouring the release and translocation 

of the Gram-negative bacteria endotoxin, LPS, to enter the bloodstream, initiating an 

immune response (Emmanuel et al., 2007; Zebeli et al., 2011; Saleem et al., 2012). To 

combat this, the host requires more energy, leading to a postpartum NEB. Recent studies 

have established that a decrease in feed intake in SCM cows begins to appear at least four 

weeks before parturition and decreases after calving. This corresponds to a drop in milk 

production. These fluctuations are linked to the increased presence of TNF, which as a pro-

inflammatory mediator, decreases appetite and inhibits prolactin, therefore, reducing milk 

yield (Dervishi et al., 2015). Ketosis and fatty liver disease are the two most frequent 

disorders found simultaneously in dairy cows (Gröhn et al., 1989).  

Dervishi and colleagues (2015) reported that subclinical mastitis was preceded by 

the systemic presence of an inflammatory insult during the dry-off period, which may make 

cows more susceptible to other diseases. The origin of the inflammation may be attributed 

to the translocation of LPS or pro-inflammatory cytokines into the systemic circulation 

(Eckel and Ametaj, 2016; Zwierzchowski et al., 2020a). In general, any metabolic disease, 

once it has occurred, presents a higher likelihood to develop again (Roche, 2006). 

Moreover, cows that suffered once from CM are more predisposed to present it again 

throughout lactation (Lam et al., 1997; Zadoks et al., 2001). These health disorders, 

including mastitis, poor reproductive performance and metabolic perturbations, increase 

dairy farmers' culling decisions (De Vries, 2017). 

           Mastitis also impacts the reproductive health of dairy cows (Ahmadzadeh et al., 

2009). No matter when it happens during lactation, mastitis lowers a cow’s future 
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reproductive performance and conception rates. In particular, cows experience more days 

open and more days to first service, more abortions, and higher culling rates (Barker et al., 

1998; Schrick et al., 2001). Several meta-analyses have studied the relation between udder 

and uterus health. Fourichon et al. (2000) initially concluded that reproductive performance 

was not affected by IMI. However, the latest study, which used far more data, proved that 

mastitis incidence was related to the incidence of uterine tract disorders (Dolecheck et al., 

2019). 

Prepartum augmentation of NEFA increases the odds that a cow can develop 

mastitis, RP, ketosis, and DA after calving (Cameron et al., 1998). Clinically mastitic cows 

continue to have high levels of NEFA and BHBA and lowered glucose at the beginning of 

lactation (Moyes et al., 2009). These authors connected the susceptibility of mastitis to 

immune suppression through hyperketonemia on neutrophil recruitment (Zarrin et al., 

2014). Administration of LPS to the udder or naturally-occurring IMI causes local and 

generalized immune alterations (Wellnitz and Bruckmaier, 2012). Most artificial-mastitis 

cases are induced at the beginning of lactation, while not many are assessed during the dry-

off period. Zebeli et al. (2011) applied LPS intravenously several times during the 

transition period in cows. They noticed increased levels of β-hydroxybutyric acid almost 

two weeks before parturition. Later, the elevation of BHBA was found together with higher 

numbers of SCC at dry-off. This implies that endotoxin could initiate the elevation in 

BHBA (Zhang et al., 2016). After an LPS challenge post-calving, a few authors noted 

plasma changes characterized by increased insulin levels (Waldron et al., 2006; Vernay et 

al., 2012). Another consistent finding is elevated plasma cortisol. This impacts insulin 

resistance, induced by pro-inflammatory cytokines such as IL-1, IL-6, and TNF (Waldron 
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et al., 2003; Huszenicza et al., 2004). These immune mediators are released upon exposure 

of host cells (leukocytes; MEC) to the pathogen and alert peripheral WBCs and the liver to 

initiate an acute phase response (APR) (Ezzat Alnakip et al., 2014). The acute phase 

proteins (APP) released from the liver include SAA, Hp, CGRP, serum albumin and LBP. 

As reported by Dervishi et al. (2015), these proteins were found to be elevated in cows two 

months before being diagnosed as mastitis positive. High-density lipoprotein-SAA 

complexes make endotoxin neutralization possible and safe removal of endotoxin from the 

circulation. This rapid removal of endotoxin shifted out from the liver makes it possible 

for a higher-than-average amount of lipids to pass through the liver, contributing to the 

deposition of fat to the liver or fatty liver disease (Ametaj, 2005; Ametaj et al., 2010b; 

Eckel and Ametaj, 2016).  

 

1.4       Current diagnostic approaches  

The inflammatory response seen in a cow’s udder can indicate the presence of 

mastitis, whereas the identification of the bacterial pathogen causing the disease confirms 

the intramammary infection (Adkins and Middleton, 2018). As described in section 1.1.4, 

CM can be diagnosed via an abnormal appearance of the udder. Redness, swelling, and 

warm when touched due to inflammation are examples of common symptoms. Also, the 

milk changes its appearance from white to yellow and its consistency.  

Subclinical diseases present a significant problem for monitoring the health of dairy 

herds. SCM cases are quite common in many conventional dairy farms. Two of the most 

routinely used methods to identify SCM cows are the California Mastitis Test (CMT) and 

Somatic Cell Count (SCC) test (Viguier et al., 2009). Estimation of SCCs is a traditional 
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approach to diagnose mastitis. In addition to SCC measurements, several other methods 

are being used. The count of somatic cells or CM biomarkers, such as N-acetyl-beta-D 

glycosaminidase and lactate dehydrogenase enzymes have shown positive outcomes. But 

scientists are always working to find better, faster, and cheaper methods. Immunoassays, 

hand-held biosensors, nucleic acid tests, and enzymatic assays as well as advances in 

genomics, proteomics, and metabolomics sciences has made it easier to detect mastitis at a 

much earlier time (Viguier et al., 2009). 

 

1.4.1 Laboratory techniques 

Somatic cell count 

The somatic cell count or SCC indicates an IMI and gives an overview of a cow’s 

udder health (Dohoo and Leslie, 1991). Data suggests that clean udders or quarters have 

approximately 70,000 cells/mL, and SCC measurements equal to or greater than 200,000 

cells/mL indicate an SCM cow (Koeck et al., 2012). According to the Dairy Farmers of 

Canada website, last updated August 2017, it is required that a sample of raw milk must 

contain less than 400,000 cells/mL. In the United States, as of August 2018, the allowed 

amount of SCC is 750,000 cells/mL. In Albania and the European Union, the limit is 

400,000 cells/mL (Berry and Hillerton, 2002; Beli, 2016). Normally, milk shouldn't have 

more than 150,000 cells/mL, and if the SCC is greater than 200,000 cells/mL, it shows 

some level of abnormality and that the immune system is activated (Vissio et al., 2014). 

There is a chance that high SCCs sometimes can be caused by factors other than an 

infection. High levels of animal stress, for example, can produce high SCCs, thus giving 

false-positive results (Schukken et al., 2003; Ruegg and Pantoja, 2013).   
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Under normal health conditions, the somatic cells found in the mammary gland are 

the macrophages, which make up 66-68% of detected cells. Other somatic cells may 

include neutrophils, mononuclear, and epithelial cells. The local concentration of 

neutrophils increases as the IMI progresses. The only cells that demonstrate the presence 

of high SCCs are leukocytes, specifically high numbers of neutrophils, seen in almost 90% 

of SCM cases (Pilla et al., 2012).  

A random sampling procedure is typically followed by farmers when collecting 

milk samples for laboratory SCC evaluation. Somatic cells in milk can be analyzed in 

several ways, but most labs use flow cytometry or combine flow cytometry and 

fluorescence (Gunasekera et al., 2003). In Alberta, milk samples are processed by CanWest 

DHI, which has a standardized protocol. Samples can be taken from herd average of 

individual cows (HSCC) or bulk tank (BTSCC) (Dufour et al., 2011). Analyzing bulk tank 

milk is a convenient and inexpensive method to control milk quality and test for pathogen 

presence (Bauman et al., 2018). Measurement of BTSCC can help the farm evaluate its 

management policies, but the most accurate SCM detection in a cow is through quarter 

samples (Hernández-Castellano et al., 2017). 

 

Bacterial culturing  

After confirmation of contamination, the causative agent should be identified for 

treatment purposes and good management practices (Hope, 2000). The National Mastitis 

Council (2017) has described various methods for working with bacterial cultures. The 

most common method is still the standard plate count (SPC) with a healthy target of less 
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than 5,000 colony-forming units (CFUs)/mL. If the number of CFUs is over 20,000 per 

mL, then financial fees are levied on the farms (Murphy et al., 2016).  

Pathogen identification by plate culture focuses on discovering Staphylococcus 

aureus, Streptococcus agalactia, Escherichia coli, Mycoplasma spp., Corynebacterium 

spp. and NAS (Klaas and Zadoks, 2018). When taking milk samples for culture, attention 

must be paid to avoiding contamination. Factors such as a dirty stall or a contaminated 

environment, poor udder preparation, or incorrectly performing the procedure may lead to 

milk contamination and the presence of a remarkably high number of bacteria on the plate, 

leading to false-positive results (Constable et al., 2017; Ashraf and Imran, 2018).  

 

PCR – based methods 

 Although culture plate identification of bacteria is considered the gold standard for 

CM and SCM, it is not necessarily the best method. Compared to the polymerase chain 

reaction (PCR), culture plate methods were able to identify mastitis pathogens on only 47% 

of the no-growth milk samples (Bexiga et al., 2011). Nucleic acid-based detection or PCR 

has facilitated the detection of those pathogens that cannot be identified using standard 

bacterial culture plates. The superior sensitivity of PCR enables better farm management, 

too (Lui et al., 2009).  

Electrospray ionization mass spectrometry ESI-MS is another common diagnostic 

method that can detect other microorganisms such as parasites, yeasts, and viruses, but 

PCR is still the preferred sequencing technique for bacterial identification (Perreten et al., 

2013; Lange et al., 2015). Polymerase chain reaction methods are more rapid, but several 

times more expensive than conventional bacterial plate culture methods. However, it 
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should be kept in mind that PCR methods can detect only the species included in the PCR 

kit (Cantekin et al., 2015).  

Other molecular techniques include real-time quantitative PCR (qPCR), loop-

mediated isothermal amplification (LAMP), and next-generation sequencing (NGS) 

methods (Graber et al., 2007; Li et al., 2017; Anis et al., 2018). As a secondary 

confirmatory test, matrix-assisted laser desorption/ionization time-of-flight (MALDI – 

TOF) mass spectrometry can be applied as a diagnostic technique for bacterial species 

identification in mastitis studies (Gonçalves et al., 2014; Cameron et al., 2017). But the 

cost of analysis, the required sample pre-treatment and the frequency of false-negative 

results mean that this approach is not readily adaptable for commercial use (Barreiro et al., 

2017). 

 

1.4.2 Cow-side tests 

California Mastitis Test  

The California Mastitis Test (CMT) is one of the oldest and easiest tests to use as a 

cow-side test. It evaluates the milk's alkalinity using a detergent (alkyl aryl sulfonate) 

combined with a pH indicator, bromocresol purple (Schalm and Noorlander, 1957). If 

mastitis is present, this results in the formation of a purple viscous mass due to the nucleic 

acids and other constituents released from the lysis of somatic cells. The interpretation of 

the CMT might be subjective as it gives variable results to identify IMI. The CMT kit is 

composed of a plastic paddle and four cups to put the milk from each quarter of the udder. 

The reagent is added, then the milk in the cup is stirred until a mixture is formed. The test 
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is most useful when a very high number of somatic cell counts, with an average of 500,000 

cells/mL (Sargeant et al., 2001). The result of the CMT is read as negative (N) or trace (T) 

and then depending on the viscosity of the gel, with a grade from 1 to 3 to indicate the 

number of somatic cells, with three being the highest (>5 million SCC/mL) (Gordon et al., 

1980). The CMT cannot identify whether the infection is from major or minor pathogens 

(Viguier et al., 2009).  

 

Electrical Conductivity test (EC) 

During inflammation, concentrations of many ions change. Increases in the 

concentration of ions such as potassium, magnesium, sodium, and calcium can increase the 

electrical conductivity (EC) in milk (Viguier et al., 2009). A high EC is based on high 

sodium and chloride concentrations in the milk and a loss of lactose and potassium. But 

the concentration of ions in milk can be influenced by factors other than mastitis. 

Conductivity is also affected by the cow's age and lactation stage (Pyörälä, 2003). 

Many dairy farmers use automatic milking systems (AMS), which helps them 

increase milk production and minimize labour costs (Hovinen and Pyörälä, 2011; John et 

al., 2017). Automatic milking systems are equipped with sensors that measure EC to detect 

mastitis (Khatun et al., 2017). One drawback of this process is that just a part of the milk 

is measured. Sensors that identify mastitis in AMS farms do not consider the measurement 

of foremilk (Bruckmaier and Blum, 1998; Lehmann et al., 2015). Foremilk is the milk 

obtained in the first part of milking. This initial milk is discarded, whereas alveolar ejection 

is preceded by teat cleaning and stimulation. The time difference between cisternal and 

alveolar milk is between 50-100 seconds, and this can correlate negatively with EC and 
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SCC (Bruckmaier et al., 2004; Bansal et al., 2005; Lehmann et al., 2015). It has been shown 

that milk sampled before ejection improves mastitis detection (Khatun et al., 2019). 

 

On-farm culture 

Biplates and triplates are the main cow-side testing methods to confirm the presence 

of bacteria. The biplate contains two types of agars, one for Gram-negative and another 

one for Gram-positive bacteria. In contrast, the triplate type comprises three types of agars, 

which can differentiate Gram-negatives from Gram-positives and Gram-positive 

staphylococci from Gram-positive streptococci. The results of biplate or triplate tests are 

not as promising as one would hope. However, they can be used to discover whether the 

pathogen can grow in culture (Royster et al., 2014). 

A milk sample is considered contaminated when three or more colonies are present. 

One quarter may be regarded as cured when the bacteria found present at the beginning of 

the plate test are no longer isolated from the milk sample. On the other hand, there are cases 

where cows with clinical mastitis have a bacteriologically negative sample. These results 

are present even when all the necessary protocols for collecting and performing the sample 

analysis were followed. The reasons might be due to a low concentration of the pathogen 

in the milk, presence of intracellular bacteria, or of growth-inhibitory substances in the 

milk. In cases where no pathogen can be detected, enzyme-linked immunosorbent assays 

(ELISA) methods can help identify S. aureus, E. coli, S. dysgalactiae, and S. 

agalactiae (Royster et al., 2014; Constable et al., 2017). However, it is essential to realize 

that in some cases, microorganisms in quarters of milk are due to microbiological 
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contamination during sampling rather than IMI, particularly in milk samples with low 

colony counts, <100 CFU/mL (Dohoo et al., 2011).  

Different farms apply different on-farm techniques to monitor udder health. This 

includes measuring enzymes (N-acetyl-D glucosaminidase; lactate dehydrogenase), pH 

indicators, strip plates or portable SCC measurements (PortaCheck; BacSomatic; DeLaval 

Cell Counter) (Viguier et al., 2009; Moroni et al., 2018; Kandeel et al., 2019). These 

conventional methods are focused on discovering mastitis at the time of occurrence.  

The need to detect and prevent mastitis or IMI as soon as possible is important for 

disease mitigation and spread control. Emerging innovations using a combination of 

biotechnology and nanotechnology are making this possible. Thanks to the invention of 

nanotechnology-based biosensors and lab-on-a-chip technologies, high-throughput 

analysis using proteomics and metabolomics is now possible (Boyd-Moss et al., 2016). 

These systems will offer farmers an all-in-one method – from processing the sample to 

analyzing the sample and giving an accurate result right on the farm (Sang et al., 2013). 

Most of the studies done with biosensor and biomarkers in the field of mastitis have been 

performed in milk. Martins et al. (2019) noted that milk samples negatively influenced 

biosensor detection performance and suggested that other biological fluids should be used. 

My focus in this thesis is on identifying and trying to validate new kinds of mastitis 

biomarkers using more user-friendly sample types such as blood and urine. This opens the 

door to detecting mastitis at its earliest stages, before milking even begins.  
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1.5       Prevention of mastitis  

Eradicating mastitis infections is almost impossible. Much effort is still focused on 

eliminating existing infections and preventing new ones. The National Institute for 

Research in Dairying in 1970 created a 10-point control program (Constable et al., 2017). 

According to this program, to have profitable udders, better dairy cow health and welfare 

and positive treatment outcomes, the detection of udder infection should be done as early 

as possible (Halasa et al., 2007; Ruegg, 2017). Monitoring and preventive measurements 

require reliable and affordable prognostic and diagnostic methods. As discussed above, 

most of the diagnostic techniques are widely used, but many lack the necessary accuracy. 

Some are prohibitive in time and cost, while others are limited to detecting mastitis only 

when the cow is already severely infected.       

 For example, CMT has been used for a very long time as a cow side test (Luedecke 

et al., 1967). Still, its performance is questionable due to the variability in the execution of 

the test and the user's ability to read it correctly (Lam et al., 2009). Generally, CMT detects 

the presence of IMI 4 days after calving and isn't able to work for subclinical mastitis 

detection (Sargeant et al., 2001; Dingwell et al., 2003b). Compared to other diagnostic 

tests, the CMT has been proven less accurate (87.4-90 .8%) and more time-consuming for 

a large herd (Rossi et al., 2018). On the other hand, with better sensitivity and specificity, 

counting somatic cells in milk can be more successful. The drawback to this approach is 

that it requires laboratory analysis, which limits its use as a real-time detection method and 

is associated with higher costs per test (Labohm et al., 1998; Hillerton, 2000). Portable 

devices, such as the DeLaval cell counter, Porta SCC and Fossomatic are useful for on-

farm SCM evaluation (Leslie et al., 2011; Ferronatto et al., 2018). Even though these 
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portable systems are easy to use and fast, they lack sensitivity at low SCC (Viguier et al., 

2009).  

Errors can occur while interpreting SCC data since this is influenced by several 

factors such as the presence of bacteria, diurnal variation, age, stage of lactation, and milk 

sample (Olde Riekerink et al., 2007). Petzer et al. (2017) determined that the accuracy of 

SCC should be higher than 85% to identify the bacterial species associated with IMI. They 

also showed how SCC levels fluctuated between various mastitis microorganisms. Out of 

all quarters or composite milk samples that exceeded 200,000 SCC/mL, over one third 

were culture negative (Petzer et al., 2017). Furthermore, they found out that if the threshold 

to detect S. aureus is 150,000-200,000 cells/mL, 30.8% of all cows will remain undetected 

as they had lower SCC but were bacteriologically positive. By not identifying truly-

infected samples, SCC methods unintentionally create adverse outcomes for both the cow 

and the farm. The two most frequently used diagnostic methods, CMT & SCC, can detect 

abnormalities in the udder but cannot specify the causative agent. The inability to identify 

the pathogens leads to inappropriate treatments that increase antibiotic resistance leading 

to the spread of antibiotic-resistant strains (Martins et al., 2019). Other methods to fight 

bacterial resistance to antibiotics or toxic compounds (RATC) and inflammation can be 

considered, such as probiotics, prebiotics and proteobiotics (Deng et al., 2016; Jiminez et 

al., 2017; Tarsillo and Priefer, 2020). 

There are many diagnostic approaches for mastitis detection, including SCC, CMT 

and EC. Other techniques such as sensor-based systems, immunoassays, and specific 

biomarkers from PCR, nucleotide sequencing, proteomics or metabolomics are just being 

introduced (Adkins and Middleton, 2018). Higher diagnostic accuracy can often be 
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achieved if we combine multiple methods (Chakraborty et al., 2019). A comparison 

between two of the most common used tests is summarized in Figure 1.3. Future pen-side 

mastitis tests should take into consideration the need to detect cows susceptible for new or 

existing IMIs before calving, while at the same time being economical and user friendly. 

The development of better, faster, cheaper and more convenient tests will encourage 

appropriate interventions to prevent transmission, reduce antimicrobial resistance and 

minimize financial losses.  

 

1.6 Omics investigations of mastitis 

1.6.1 Application of metabolomics in periparturient diseases 

The dairy farmers and milk industry's primary goal is to breed cows for high milk 

production and quality. However, this goal is associated with a drawback – increased 

incidence of periparturient diseases (Dobson et al., 2007; Sundrum, 2015). Holstein cows, 

which make up 93% of Canadian herds produce about 10,753 L/milk for 305 days in milk 

(DIM) (CDIC, 2020). During the dry period and early lactation period, cows go through 

physiological, immunological, metabolic, nutritional changes and adaptions that prepare 

them for calving and the next lactation (Drackley, 1999; Sordillo and Raphael, 2013). As 

mentioned, our lab has observed such changes up to 8 weeks before calving and these 

continue until 8 weeks postpartum. Cows that do not adapt to these changes likely present 

either clinical or subclinical forms of diseases (ketosis, milk fever, retained placenta, 

displaced abomasum, fatty liver, metritis, mastitis, or laminitis). On average, almost 50% 

of the dairy cows in a Canadian dairy herd present with more than one disease during this 

transition period (Ametaj et al., 2010; Leblanc, 2010; Eckel and Ametaj, 2016).  
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Many diseases in humans and cattle can be detected or diagnosed by the 

perturbation of just one metabolite. For example, subclinical ketosis is still defined as an 

increased level of ketone bodies in the blood, especially BHBA. Ketosis occurs due to 

deficiencies in energy intake, and it is not detectable via visible physiological changes 

(David Baird, 1982; Brunner et al., 2019). With the advancements in omics technologies, 

other kinds of chemical or protein biomarkers are being discovered that potentially offer 

greater sensitivity and specificity than traditional cell-based or gross property 

measurements (Serkova and Niemann, 2006). For example, studies from our lab have 

identified that inflammatory mediators such as IL-1, IL-6, IL-8, SAA & Hp are elevated at 

the beginning of the dry period, up to 8 weeks before calving in several periparturient 

diseases (Dervishi et al., 2015, 2016b; Zhang et al., 2015, 2016, 2018). These systemic 

findings of inflammation present another point of view regarding pathomechanisms of such 

diseases. In particular, these results show that post-calving disease is preceded by a 

systemic inflammatory insult weeks before presenting any symptoms or physiological 

changes. There is mounting evidence that can attribute the origin of this insult to the 

presence of endotoxin in the circulation that can be translocated from the rumen, 

reproductive tract or mammary gland, thereby initiating an immune response (Ametaj et 

al., 2010; Eckel and Ametaj, 2016). Furthermore, immunosuppression during the transition 

period can be caused by these pathogenic bacteria (i.e., Staphylococcus aureus; 

Escherichia coli). As proven on humans, this kind of immunosuppression can slow or even 

prevent an immune response (Thammavongsa et al., 2015; do Vale et al., 2016). One of 

those mechanisms causing immunosuppression is the impairment of neutrophil functions 

and extravasation (Loughman and Hunstad, 2011; Lau et al., 2012).  
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Metabolomics, which offers a route to measure an animal’s chemical phenotype, is 

being used to understand the underlying metabolic changes associated with the transition 

period in dairy cattle and how it relates to disease manifestation. Metabolomics can identify 

potential metabolite biomarkers to find animals susceptible to several periparturient 

diseases. In blood, three metabolites carnitine (C0), propionyl carnitine (C3), and 

lysophosphatidylcholine acyl C14:0 (LPC a C14:0) were found to be able to predict which 

cows would be susceptible to develop one or more diseases (retained placenta, mastitis, 

metritis, or laminitis) up to 4 weeks before calving (Hailemariam et al., 2014). Another 

study showed that up to 67 metabolites were expressed differently 21 days prepartum than 

the day of calving (Luo et al., 2019). Many other metabolites (amino acids (AA), 

acylcarnitine's (AC), phosphatidylcholines (PC), LPC, and metal ions) each specific to a 

given disease have been identified and measured with high predictive accuracy for a 

number of conditions using blood (Li et al., 2014; Sun et al., 2014; Xu et al., 2015; Zhang 

et al., 2017b), milk (Klein et al., 2010, 2012) or urine (Zhang et al., 2017a). Biomarkers 

for animals at risk for developing ketosis were identified in urine (Dervishi et al., 2018a) 

and blood (Zhang et al., 2017a; (Hailemariam et al., 2018)). Likewise, biomarkers for those 

at risk to develop metritis, retained placenta or lameness were found in serum (Zheng et 

al., 2016; Dervishi et al., 2020), urine (Zhang et al., 2020) or milk (Zwierzchowski et al., 

2020b). 

 

1.6.2 Application of metabolomics for mastitis biomarker discovery  

One of the first metabolomic studies to look at mastitis was conducted in 2005 

(Eriksson et al., 2005). Using GC-MS, Eriksson et al. (2005) demonstrated that it was 
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possible to differentiate milk from healthy or mastitic samples chemically with what is now 

called an electronic nose. Other studies led by Hettinga et al. (2008, 2009) concluded that 

if the concentrations of specific volatile metabolites were high in milk, it meant that they 

were infected, and the volatiles corresponded to metabolic by-products from bacterial 

pathogens. NMR studies conducted by Sundekilde et al. (2013) in milk found that lactate, 

acetate, BHBA, butyrate, and isoleucine were in a greater concentration in high SCC 

samples. On the other hand, for the same samples, lactose, hippurate, and fumarate were at 

lower levels than in milk with low SCC levels (Sundekilde et al., 2013). A mastitis-induced 

experiment studied how oxylipin profiles in milk and mammary tissues changed and 

influenced the disease (Ryman et al., 2015). Hydroxy octadecadienoic acid (HODE) and 

oxo octadecadienoic acid derived from arachidonic acid and linoleic acid were higher in S. 

uberis mastitis. These results show that oxylipids are implicated in the inflammatory state 

within the mammary gland. Several authors have noted the increased milk concentrations 

of prostaglandins and thromboxane in mastitis samples (Giri et al., 1984; Atroshi et al., 

1987). These pro- and anti-inflammatory oxylipids may affect the host's ability to eliminate 

the pathogen (Aitken et al., 2011). In another study with skimmed milk, using untargeted 

LC-MS, Thomas et al. (2016) identified 690 metabolites. They challenged the cows with 

an S. uberis strain and collected milk samples 0, 36, 42, 57, 81, and 312 hours after infusion. 

The bacterial load peak was noted at 36h, whereas most of the metabolite changes in milk 

occurred after 81h. They noticed increased levels of bile acids (taurochenodeoxycholic acid 

(C26H45NO6S), taurocholic acid (C26H45NO7S), glycocholate (C26H43NO6), 

glycodeoxycholate (C26H43NO5), and cholate (C24H40O5). These bile acids support 

antimicrobial (Hofmann and Eckmann, 2006) and anti-inflammatory activities, facilitated 
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through the farnesoid X receptor pathway (Calmus and Poupon, 2014), which inhibits the 

activation of the NF-kB signalling pathway (Zhang et al., 2008; Sipka and Bruckner, 2014). 

Thomas and colleagues' results revealed that high levels of bile acids in milk decreased the 

levels of pro-inflammatory cytokines (Thomas et al., 2016). Other authors have noticed 

alterations in metabolic pathways pre-and/or postpartum in SCM and CM cows compared 

to healthy cows. These results show extensive evidence of bacterial activities. 

Several other studies have demonstrated that mastitis is preceded by alterations of 

metabolic pathways in the blood corresponding to inflammatory insults in the prenatal 

period (Dervishi et al., 2015, 2017; Zandkarimi et al., 2018). Several serum metabolites 

were used to distinguish SCM cows from healthy cows up to 8 weeks before their due date 

using targeted GC-MS. Alterations in amino acid metabolism continued up to 8 weeks 

postpartum. The best indicators between the two groups were valine, serine, tyrosine, and 

phenylalanine (Dervishi et al., 2017). Besides, distinguishing between CM cows and 

healthy cows could be achieved by quantifying about a half dozen metabolites, including 

N-methyl ethanolamine phosphate, choline, phosphorylcholine, free carnitine, trimethyl 

lysine, tyrosine, and proline. The most significant discriminator was 3′-sialyl lactose in 

serum (Zandkarimi et al., 2018). This particular saccharide was more elevated than the 

control group at -21 days, probably to boost innate immunity (Ten Bruggencate et al., 

2014). This compound is known to protect calves against infections (Nakamura et al., 

2003). Lactate was also increased in this study, which agrees with what was found by other 

authors (Hamann and Krömker, 1997; Davis et al., 2004; Dervishi et al., 2015). The shift 

in metabolite levels can be due to acute inflammation, as shown by the increased APPs 

(Hailemariam et al., 2014; Dervishi et al., 2015, 2017; Zandkarimi et al., 2018). Detecting 
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urine changes confirmed the hypothesis that SCM cows were preceded, associated and 

followed by alterations of urinary metabolites (Zwierzchowski et al., 2020b).  

Further validation of these findings over a larger number of cows and more diverse 

farm management settings can help us develop a better view of the pathology of mastitis. 

It might also help develop more robust pen-side tests to facilitate the identification and 

treatment of susceptible cows to improve overall dairy herd health. 

 
 
 
1.6.3    Analytical techniques in metabolomics  

The metabolome is the set of small-molecule metabolites equal to or less than 1500 

Da found within a cell or body fluid (Oliver et al., 1998). Metabolites can be either 

endogenous or exogenous and correspond to any “chemical that a plant or animal can 

produce, synthesize, ingest, absorb or to which it can be exposed” (Wishart et al., 2007, 

2020). While metabolites are well known for their roles as the building materials of cells, 

metabolites have also been described as the “canaries” of the genome (Pearson, 2007). 

They can alert cells about changes in the actual genome, but at the same time, they are 

sensitive to the environment, too. As an omics technique, metabolomics is often regarded 

as “the lesser-known cousin of genomics and proteomics.” Metabolomics uses analytical 

chemistry instruments such as MS spectrometers or NMR spectrometers to separate, 

identify and quantify hundreds of these small molecules at a time. Metabolomics often 

must be combined with advanced software to read, interpret, annotate and integrate the 

results with various online databases (Wishart et al., 2018). The communication between 

genes and the environment means that metabolomics is ideal for measuring the phenotype 

(Fiehn, 2002). The metabolic phenotype is often called the metabotype. Metabotyping or 
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phenotyping via metabolomics has many advantages over phenotyping with other omics 

methods. Rather than telling us what might happen in a cell or tissue (as genomics does), 

metabolomics tells us what is happening inside the cell or tissue (Powers and Riekeberg, 

2017). This has allowed metabolomics to become an ideal platform in biomedical studies 

for biomarker discovery.  

Metabolomics is a relatively young science. The term metabolome was used for the 

first time by Oliver et al. (1998), while the first metabolomics study on cattle was 

conducted in 2005. This was a study, which analyzed urine to monitor the use of steroids 

and improve control strategies (Dumas et al., 2005). To conduct a proper metabolomics 

study, both a suitable biological sample and a suitable analytical platform are needed. Most 

commonly used biological samples are biofluids such as serum, plasma, urine or milk. This 

is because analytical chemistry instruments handle fluids more easily than solids. The 

platforms used in metabolomics include a wide range of analytical instruments, including 

nuclear magnetic resonance (NMR) spectrometers and mass spectrometers (MS) coupled 

with liquid (LC), gas chromatography (GC) or capillary electrophoresis (CE). These are 

used to separate, identify and quantify the metabolites. The results from these chemical 

analyses must be combined with software programs and electronic databases to visualize, 

analyze and interpret the generated information (Dunn et al., 2005; Wishart et al., 2007, 

2020). Metabolite analysis can be run using either targeted (known metabolites) or 

untargeted (neither known nor identified metabolites) approaches (Dunn et al., 2011). As 

reviewed by Goldansaz et al. (2017), Sun et al. (2019) and Singh et al. (2019), there are 

many studies conducted in the field of animal science using metabolomics. The 

collaboration between Drs. Ametaj and Wishart has contributed significantly to bovine 
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metabolomics and has revealed a great deal about metabolic changes to cattle, especially 

for periparturient diseases (Dervishi et al., 2017, 2020; Zhang et al., 2017b, a; c; 

Hailemariam et al., 2018; Zwierzchowski et al., 2020c). This has led to the implementation 

of their findings into freely accessible metabolome databases such as the bovine 

metabolome database (BMDB) (Foroutan et al., 2020) and the milk composition database 

(MCDB) (Foroutan et al., 2019).  

Liquid chromatography-mass spectrometry (LC-MS) is an integrated analytical 

technique that combines compound separation via LC with the sensitive detection of 

compounds by MS. MS measurements allow one to measure the mass-to-charge ratio (m/z) 

of ions. LC-MS is considered the most powerful among current metabolomics techniques 

as it is able to detect a larger portion of metabolome in a shorter period of time (Kennedy 

et al., 2018). LC-MS instruments have shown superior sensitivity and higher throughput 

than NMR or GC-MS, making LC-MS the most frequently used platform for metabolomics 

(Kennedy et al., 2018; Wishart et al., 2020). In particular, LC-MS, compared to NMR 

spectroscopy or even GC-MS, is 10-100 times more sensitive with detection limits down 

to the low nanomolar level (nM) (Emwas et al., 2019). Liquid chromatography can be used 

with single or tandem MS instruments (Emwas et al., 2019). The separation of analytes is 

mediated by a stationary phase (a chromatography column, usually made up of specially 

modified small-diameter silica materials to allow separation based on hydrophobicity) and 

mobile phase solvents. Modern LC uses high pressure/high performance (HPLC) or ultra-

high pressure/performance (UPLC) for better separation and reproducibility. Different 

types of metabolites are best separated using distinct types of columns or stationary phases. 

Polar compounds such as organic acids or amino acids are best separated using a 
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hydrophilic interaction liquid type of chromatography (HILIC), whereas non-polar 

molecules such as lipids, fatty acids, and sterols are best separated with reversed-phase 

liquid chromatography (RPLC) (Masson et al., 2010; Wishart et al., 2020). The most 

common separation technique for LC-MS is RPLC (Theodoridis et al., 2012). RPLC is run 

using a non-polar stationary phase and aqueous, semi-polar mobile phase, a mixture of 

water with acetonitrile (ACN) or methanol (MeOH) and formic acid or ammonium acetate 

(Wishart et al., 2020). For maximal metabolite coverage, a combination of RP with HILIC 

is preferred (Spagou et al., 2011), but even with this combination, it is possible that some 

metabolites (in urine, for example) cannot be detected (Theodoridis et al., 2008). LC-MS 

often combined with other ionization techniques such as positive and negative ion 

electrospray ionization (ESI) or atmospheric-pressure chemical ionization (APCI) provides 

a more comprehensive view of the compounds in various biological samples (Sana et al., 

2008). In Figure 1.4 is demonstrated a combination of LC-MS instruments at The 

Metabolomics Innovation Centre (Edmonton, AB) that were used in this experiment. 

In addition to varying the type of ionization method for LC-MS, it is also possible 

to vary the type of a mass analyzer. Several types of mass analyzers are used in modern 

mass spectrometers (Dunn et al., 2005). These include low-resolution mass analyzers such 

as triple quadrupole (QqQ) or quadrupole-iron trap (QIT) systems as well as high-

resolution mass analyzers like quadrupole-time of flight (Q-TOF), Orbitrap (Orbitrap) and 

Fourier transform ion cyclotron resonance (FT-ICR) mass analyzers (Zhou and Yin, 2016). 

TOF mass analyzers determine an ion’s mass by measuring how long it takes ions to pass 

a defined distance. The mass-to-charge ratio of ions produced via Orbitrap is calculated by 

trapping the ions in a spindle-like electrode, creating an electrostatic field that orbits ions 
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axially and radially along the central electrode (Zubarev and Makarov, 2013). Then, the 

m/z ratio of ions is caused by the frequency of these oscillations. This is somewhat similar 

to how the FT-ICR instrument determines an ion’s mass and explains why both OrbiTrap 

and FT-ICR instruments provide the highest mass resolution. In Orbitraps, the image 

current of axial motion helps in ion detection, which improves the sensitivity and cycle 

time of Orbitraps over FT-ICR instruments (Wood, 2019).  

Triple quadrupole (QqQ) mass analyzers are essentially three single quadrupole 

mass spectrometers connected together. QqQ MS instruments are also called tandem mass 

spectrometers (MS/MS). Combining two or more mass analyzers allows one to obtain more 

information about a given metabolite’s structure (Wishart et al., 2020). QqQ instruments 

are not high-resolution instruments, but they are more sensitive, more robust, and they 

allow one to quantify metabolites more accurately than Q-TOF or Orbitrap MS 

instruments. This means better specificity and a more remarkable ability to conduct 

targeted metabolomics. The Q1 quadrupole in a QqQ mass analyzer is used to select the 

parent ion since it represents the original mass-to-charge (m/z) ratio of the compound. The 

central, Q2, is for colliding ions with a noble gas (nitrogen, helium, or argon) in the 

presence of radiofrequency voltage to fragment the parent ions into low molecular weight 

fragment ions or product ions. In Q3, these product ions are selected based on their m/z 

ratio (Saitman, 2019). If a chosen ion comes from Q1, Q2 or Q3, it is called select ion 

monitoring (SIM). But it is possible that, at the same time, many product ions can be 

filtered from a precursor ion (parent ion), known as multiple reaction monitoring (MRM) 

operation mode. The experimental approach I chose for doing metabolomics uses LC-

MS/MS (tandem mass spectrometry via a QqQ) for targeted quantitative metabolomics.  
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Gas chromatography-mass spectrometry (GC-MS) is another analytical technique 

widely used in metabolomics research (Emwas et al., 2019). As the name implies, 

compounds are first separated by gas chromatography and then ionized, fragmented, and 

identified using a single quadrupole MS analyzer according to their m/z ratio (Allen et al., 

2016). GC-MS offers reliable performance focusing on separation, sensitivity, and 

reproducibility for volatile and thermal-stable compounds. Ketones, aldehydes, and 

alcohols are examples of natural volatile compounds that can be easily separated and 

detected by GC-MS. On the other hand, sugars, amino acids, lipids, and organic acids must 

be derivatized with TMS (trimethylsilane) and converted into volatile  derivatives before 

they can be separated and detected by GC-MS (Trivedi and Iles, 2014).  

One of the drawbacks of GC-MS is that the compounds to be analyzed need to be 

of exceptionally low molecular weight (~800 Da). Another disadvantage is that many 

compounds of interest in metabolomics (such as amino acids, fatty acids, organic, acids 

and sugars) need to be specially prepared and derivatized before running them through the 

GC-MS. This takes time and effort, limiting the ability to perform compound identification 

and quantification on low volume samples or achieve high throughput. Derivatization with 

an oximation reagent and trimethylsilylation (TMS), or just silylation, is done to lower the 

hydrogen bond formation between molecules and to volatilize compounds so that they can 

be converted into gas phase metabolites. This step may be disadvantageous most of the 

time due to the extra preparation time and the possibility of creating artifacts and errors 

(Little, 1999). Analytes have to be vaporized and endure column temperature from as low 

as 2°C to as high as 400 °C (Dunn et al., 2011). Not all compounds are stable to these 

temperatures. Most GC-MS studies are conducted with electron ionization (EI), but some 
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also use chemical ionization (CI) if the compounds are particularly delicate (Beale et al., 

2018). A single quadrupole or one combined with the time of flight (QTOF) mass analyzer 

is usually used for GC-MS (Dunn et al., 2011).  

Unlike LC, which uses a liquid as a mobile phase, GC uses a gas as the mobile 

phase and a solid, stationary phase that lines the capillary GC column. Depending on the 

interaction between compounds and the column surface as well as the column temperature, 

different molecules will be slowed down differently as they move through the column to 

the mass analyzer. This leads to a retention time or elution time that is often unique for 

each compound (Saitman, 2019). In most GC-MS analyses, helium is used as the mobile 

phase to separate the compounds in the column. Once the compounds are eluted from the 

column, they pass through the MS, where they are fragmented into ions using an electron 

beam with standard energy of 70 electron volts (Emwas, 2015; Wishart et al., 2020). The 

sensitivity and comprehensiveness of GC-MS can be increased if a second GC separation 

is applied. This is called GC x GC-MS, and it can be used to detect those metabolites that 

a normal GC instrument cannot (Pierce et al., 2008).  

Another MS instrument used in metabolomics and proteomics is capillary 

electrophoresis MS (CE-MS). It is not as popular as LC-MS or GC-MS (Dunn et al., 2011). 

In CE-MS, an electrophoretic buffer in the liquid phase is used to separate via an electro-

osmotic flow (Wishart et al., 2020). Unlike LC and GC, CE separates electrically 

charged/polar compounds like nucleic acids, amino acids, carboxylic acids, or peptides 

(Ramautar et al., 2012; Hirayama et al., 2014). CE-MS functions on a similar basis as LC-

MS. Both techniques can use the MRM operating mode, both can use a combination of 

single quadrupole, QqQ, QTOF mass analyzers, and both can use electrospray ionization 
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(ESI). Unlike LC or GC, electrophoresis can separate and detect metal ions. It also requires 

a much smaller sample size and can measure positively charged molecules that LC or GC 

cannot separate. Despite these benefits, CE-MS is not as reliable as LC-MS or GC-MS and 

so it is not as widely used for large-scale metabolomic studies. There are currently very 

few CE-MS instrument providers due to their lack of sensitivity and reproducibility 

(Wishart et al., 2020).  

Nuclear magnetic resonance (NMR) spectroscopy is another analytical platform 

used in metabolomics. NMR was the first tool used in metabolomics and is considered as 

the pioneering technology for characterizing metabolic profiles (Wishart, 2019). The first 

NMR metabolomics study dates back to the 1980s (Bock, 1982; Bales et al., 1984). In 

NMR, chemical information is obtained by putting molecules under a strong magnetic field 

and measuring how the spinning nuclei change while exposed to this static magnetic field 

and to a time varying magnetic field (a radio-frequency (RF) pulse). The RF pulse is tuned 

and matched to one of the NMR probes coils. Based on sample properties this tune changes 

from sample to sample (Bainbridge and Lindon, 2019). NMR spectra provide information 

on chemical shifts and coupling constants, not mass or charge (which MS instruments do). 

A significant advantage of NMR over MS is that it is non-destructive. The same sample 

can be used over and over. Furthermore, NMR does not require LC, GC or CE separation 

or derivatization, so sample preparation is simpler and faster (Takis et al., 2019). 

Furthermore, NMR can analyze a much more comprehensive selection of samples 

including liquids and solids through solid-state NMR (ssNMR), magic-angle sample 

spinning (MAS-NMR) or living samples with magnetic resonance spectroscopy (MRS) 

and magnetic resonance imaging (MRI) techniques (Blondel et al., 2016; Yoon et al., 
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2016). Compared to LC-MS and GC-MS, NMR can also identify inorganic metabolites 

and lipoprotein fragments. However, as mentioned above, the “Achilles’ heel” to NMR is 

its lack of sensitivity. In addition, the high instrument purchase and high maintenance costs 

make NMR spectroscopy less appealing to many than mass spectrometers (Emwas et al., 

2019). The advantages and disadvantages of MS and NMR are also summarized in Table 

1.2.  

The NMR phenomenon is quite complicated. It is known that odd number atomic 

nuclei (1H, 13C, 15N, 31P) while spinning create a local nuclear magnetic field, which under 

radiofrequency electromagnetic radiation will cause those spinning nuclei to line up with 

or opposed to the external magnetic field (Wishart, 2013). Radiofrequency (RF) waves are 

used to “probe” what the nuclei are doing. In particular, different nuclei will absorb those 

radio frequency pulses and re-emit them at different frequencies depending on their 

chemical environment. The emitted radio frequency signals follow well-understood rules 

that allow NMR spectroscopists to figure out the structure and orientation of atoms within 

molecules. Most NMR-based metabolomic studies are performed using one-dimensional 

(1D) proton (1H) NMR, called 1D 1H NMR, because almost every organic molecule 

consists of one more 1H atoms. 1D 1H NMR is beneficial in metabolomics as it takes only 

a few minutes to collect a 1D NMR spectrum. This is made easier with ready access to 

public NMR databases and free or inexpensive software tools. 1D NMR is limiting if the 

sample is complex and has many overlapping peaks, leading to misidentification and 

incorrect quantification (Emwas et al., 2019). This overlap problem can be solved with 

multidimensional NMR experiments, such as two-dimensional (2D NMR). 2D NMR can 

improve spectral resolution and allow one to identify more metabolites than 1D NMR 
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(Emwas et al., 2013). Unfortunately, 2D NMR is slow, and it often takes hours to collect a 

single spectrum. As a result, 2D NMR does not permit high-throughput work and does not 

offer the time and cost-efficiency of 1D NMR (Emwas et al., 2019).  

 

1.6.4    Use of statistical analysis protocols in metabolomics datasets  

Metabolomics generates a lot of data. Typically, dozens of samples with hundreds 

to thousands of metabolite concentrations are generated in a standard metabolomics 

experiment. The resulting data tables are large and complex. These complex data sets can 

be interpreted more easily using multivariate statistical techniques such as dimensional 

reduction. That allows one to identify significant changes between groups and maximize 

the extracted information from sample analysis (Trygg et al., 2007; Wishart, 2010). These 

statistical techniques include 1) exploratory analysis, 2) classification and discrimination 

techniques, 3) regression analysis, and 4) prediction. These approaches often require a 

combination of computing, statistical, and machine learning methods (Yi et al., 2016).  

For most kinds of exploratory analysis, multivariate statistical techniques are 

generally used, such as unsupervised clustering. One method in particular - principal 

component analysis (PCA), is considered the “workhorse in metabolomics” (Trygg et al., 

2007). PCA extracts from a metabolomics data set the most important variables and 

simplifies them into groups or components. In short, the essence of the original data is 

clustered into groups along particular axes of a graph, called principal components. The 

first principal component (PC1) contains the most significant variables, the second most 

significant variables are arranged in the second principal component (PC2) and so on for 

each subsequent orthogonal component. This graphical arrangement helps researchers gain 
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a more detailed view of the variations between groups (Issaq et al., 2009). PCA also 

identifies which variables are contributing most strongly to distinguish between samples. 

In most cases, just two principal components, PC1 and PC2, embody almost all of 

the study’s variation. However, when PCA cannot identify significant clusters, other 

clustering or classification techniques need to be considered (Wishart, 2010). Visually PCA 

data can be presented as score plots or loading plots (Wu and Wang, 2015). Sample patterns 

that show the maximal variance or covariance are summarized into 2D or 3D scores plots, 

whereas the loading plot demonstrates which variables are most responsible for the 

separations (Xia et al., 2015). One disadvantage of PCA is its orthogonality and the fact 

that does not generate a very clear separation of natural phenomena (Liland, 2011).  

PCA is often performed before using other techniques such as hierarchical 

clustering or discriminant analysis (Jolliffe, 2002). If PCA cannot distinguish between 

samples, another multivariate but supervised classification approach called partial least 

square – discriminant analysis (PLS-DA) is used (Trygg et al., 2007). Unlike unsupervised 

clustering techniques that try to find and correlate underlying changes and components 

without having a measured outcome, supervised classification techniques like PLS-DA 

predict an outcome based on labels (Jiang et al., 2020). In short, the result of PLS-DA is 

based on a predefined model (Bartel et al., 2013). PLS-DA is an extension of PLS 

regression that links the predictors (X) with a response (Y) (Barker and Rayens, 2003). 

User-assigned information or class labels gives PLS-DA the ability to understand which 

variables should be selected to distinguish the most between groups. In other words, PLS-

DA maximizes the linear covariance between independent (X) and dependent variables (Y) 

(Barker and Rayens, 2003). PLS-DA is widely used in metabolomics studies as it can deal 
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with large variables and noisy data. PLS-DA often allows statistical discrimination 

between two or more classes (controls and cases) and presents it in a clear, low 

dimensional, and quickly interpretable scores plot (Szymańska et al., 2012; Worley et al., 

2013). PLS-DA takes advantage of the fact that separation is better when classes are 

known.  

When conducting a PLS-DA, two factors should be kept in mind: model 

optimization and model quality assessment should be carried out in a double cross-

validation and unbiased manner (Smit et al., 2007; Westerhuis et al., 2008). Cross-

validation helps researchers to eliminate overfitted data and overly optimistic results (Xi et 

al., 2014). Several parameters can be used to evaluate PLS-DA performance. In particular, 

R2, the correlation index and Q2, the quality of prediction, are quite useful. Thus, the closer 

R2 and Q2 are to 1, the more likely the PLS-DA classification is not over-fit or overly 

biased. In contrast to R2, Q2 evaluates the predictive ability of the model and looks for 

non-real clusters. Wishart (2010) suggests that a good fit PLS-DA model should not differ 

between Q2 and R2 more than 0.2-0.3.  

PLS-DA is not perfect and has shown some limitations, as reviewed by Gromski et 

al. (2015). PLS-DA may include variables that are not of interest to the study of other 

factors that influence the chemical and thermal noise of the metabolic fingerprint. As a 

result, orthogonal signal correction (OSC) may be used as a filtering technique. OSC is a  

modification of PLS and has been named orthogonal-PLS or OPLS-DA (Trygg and Wold, 

2002). OPLS-DA simplifies separating and interpreting variation related to Y and 

uncorrelated/orthogonal one, at the same time providing greater confidence for variable 

selection (Kim et al., 2009).  
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Values collected from PLS-DA can be run and selected using a technique called 

variable importance in projection (VIP) (Mehmood et al., 2012). Ideally, these should all 

be close to 1 (Yi et al., 2016). VIP analysis shows or quantifies the importance a particular 

variable makes to a PLS-DA model (Favilla et al., 2013). VIP scores correlate with the top 

predictors (X) to the (orthogonal) variance (Y). The VIP approach can also be used with 

OPLS-DA to improve interpretability (Galindo-Prieto et al., 2014). VIP values greater than 

1.0 have a significant influence on the response, but values smaller than 1.0 can still provide 

some information, too (Gorrochategui et al., 2016).  

To consider a variable, a metabolite or a combination of metabolites as a 

statistically valid biomarker, a receiver operating characteristic (ROC) curve should be 

generated and analyzed (Xia et al., 2015). ROC curves are useful for evaluating two-state 

categorical classifications (such as sick vs. healthy or diseased vs. control). ROC curves 

compare the true positive rates (sensitivity) against/versus false positive rates (1-

specificity), plotted on a diagram. The area under the ROC curve or AUC can be used to 

assess the performance of a biomarker or a set of biomarkers. Based on the ROC curve's 

shape, an optimal cut-off point can be determined that maximizes the discrimination 

between two classes (Metz, 2008). The AUC is a performance measurement that 

graphically discriminates between types. It helps to choose the critical value at which a 

predictor/biomarker best distinguishes between choices. The AUC can take any value from 

0.5 to 1.0. The closer to 1.0, the better the test or classifier (Šimundić, 2009; Pencina et al., 

2012). To choose between two ROC curves, the p-value (probability) is often taken into 

consideration. As these are approximate estimations, confidence intervals (CIs) should be 

described for ROC curve measurements. ROC analyses are usually quoted with a 95% 
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confidence interval (CI) (Xia et al., 2013). More practical information will be explained 

under “Materials and Methods” of each chapter using the MetaboAnalyst suite 

(metaboanalyst.ca).  

 

1.7  Predictive biomarkers: opportunity for the dairy industry 

Given that not all dairy cows are equally susceptible to mastitis (Ruegg, 2017; 

Welderufael et al., 2018), there is a need to develop a pen-side test with a panel of 

metabolites that can distinguish between cows that are more susceptible to developing 

mastitis from healthy cows. MS-based metabolomics approaches are highly sensitive and 

high-throughput instruments that allow identification and validation of biomarkers from 

biological biofluids. Current challenges for the dairy industry lay on high culling rates, 

treatment costs and tests that only screen for mastitis in milk during lactation. Considering 

the existing literature and approaches, we speculate that this new experiment, focused on 

finding predictive biomarkers during the dry-off period for the development of SCM will 

bring many advantages on cow’s health, dairy industry and food safety.  

 

 

 

 

 

 

 

https://www.metaboanalyst.ca/
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1.8 Hypotheses 

1. Cows affected postpartum by SCM show blood metabolic changes at beginning of 

dry off (–8 wks prepartum) as well as at –4 wks prior to parturition that can be 

detected by MS-based metabolomics. 

2. Cows affected postpartum by SCM show urinary metabolic changes at –8 and –4 

wks prior to parturition that can be detected by MS-based metabolomics. 

3. Both blood and urine metabotypes show specific biomarkers for dairy cows at risk 

of mastitis during the dry-off period. 

 

1.9 Objectives 

1. To identify serum metabotype fingerprints starting from –8 and –4 wks prepartum 

that can differentiate healthy vs. pre-SCM during the dry-off period.   

2. To discover a panel of urinary metabolites starting at –8 and –4 wks prior to 

parturition to identify cows susceptible to SCM.  

3. To identify metabolite panels of blood and urine as early potential predictive 

biomarkers for the risk of mastitis in dairy cows (CM or SCM). 

 

 

 

 

 

 

 

 



49 
 

1.10 References  

Adkins, P.R.F., and J.R. Middleton. 2018. Methods for diagnosing mastitis. Vet. Clin. 
North Am. Food Anim. Pract. doi:10.1016/j.cvfa.2018.07.003. 

Aga, D.S., M. Lenczewski, D. Snow, J. Muurinen, J.B. Sallach, and J.S. Wallace. 2016. 
Challenges in the measurement of antibiotics and in evaluating their impacts in 
agroecosystems: A critical review. J. Environ. Qual. doi:10.2134/jeq2015.07.0393. 

Aghamohammadi, M., D. Haine, D.F. Kelton, H.W. Barkema, H. Hogeveen, G.P. Keefe, 
and S. Dufour. 2018. Herd-level mastitis-associated costs on Canadian dairy farms. 
Front. Vet. Sci. doi:10.3389/fvets.2018.00100. 

Ahmadzadeh, A., F. Frago, B. Shafii, J.C. Dalton, W.J. Price, and M.A. McGuire. 2009. 
Effect of clinical mastitis and other diseases on reproductive performance of Holstein 
cows. Anim. Reprod. Sci. doi:10.1016/j.anireprosci.2008.04.024. 

Aitken, S.L., C.M. Corl, and L.M. Sordillo. 2011. Immunopathology of mastitis: Insights 
into disease recognition and resolution. J. Mammary Gland Biol. Neoplasia. 
doi:10.1007/s10911-011-9230-4. 

Akers, R.M., A. V. Capuco, and S.C. Nickerson. 2014. Bovine mammary anatomy and 
function. 

Allen, F., A. Pon, R. Greiner, and D. Wishart. 2016. Computational prediction of electron 
ionization mass spectra to assist in GC/MS compound identification. Anal. Chem. 
doi:10.1021/acs.analchem.6b01622. 

Ametaj, B.N. 2005. A new understanding of the causes of fatty liver in dairy cows. Adv. 
Dairy Technol. 

Ametaj, B.N., Q. Zebeli, and S. Iqbal. 2010. Nutrition, microbiota, and endotoxin-related 
diseases in dairy cows | Nutrição, microbiota e doenças relacionadas á endotoxina em 
vacas leiteiras. Rev. Bras. Zootec. doi:10.1590/S1516-35982010001300048. 

Anis, E., I.K. Hawkins, M.R.S. Ilha, M.W. Woldemeskel, J.T. Saliki, and R.P. Wilkes. 
2018. Evaluation of targeted next-generation sequencing for detection of bovine 
pathogens in clinical samples. J. Clin. Microbiol. doi:10.1128/JCM.00399-18. 

Ashraf, A., and M. Imran. 2018. Diagnosis of bovine mastitis: from laboratory to farm. 
Trop. Anim. Health Prod. doi:10.1007/s11250-018-1629-0. 

Atroshi, F., J. Työppönen, S. Sankari, R. Kangasniemi, and J. Parantainen. 1987. Possible 
roles of vitamin E and glutathione metabolism in bovine mastitis. Int. J. Vitam. Nutr. 
Res. 

Bainbridge, A., and J.C. Lindon. 2019. Nuclear magnetic resonance spectroscopy | 
overview. Academic Press. 

Bales, J.R., D.P. Higham, I. Howe, J.K. Nicholson, and P.J. Sadler. 1984. Use of high-
resolution proton nuclear magnetic resonance spectroscopy for rapid multi-



50 
 

component analysis of urine. Clin. Chem. doi:10.1093/clinchem/30.3.426. 

Bannerman, D.D., A.C.W. Kauf, M.J. Paape, H.R. Springer, and J.P. Goff. 2008. 
Comparison of Holstein and Jersey innate immune responses to Escherichia coli 
intramammary infection. J. Dairy Sci. doi:10.3168/jds.2008-1013. 

Bansal, B.K., J. Hamann, N.T. Grabowski, and K.B. Singh. 2005. Variation in the 
composition of selected milk fraction samples from healthy and mastitic quarters, and 
its significance for mastitis diagnosis. J. Dairy Res. 
doi:10.1017/S0022029905000798. 

Barkema, H.W., Y.H. Schukken, T.J.G.M. Lam, M.L. Beiboer, H. Wilmink, G. 
Benedictus, and A. Brand. 1998. Incidence of clinical mastitis in dairy herds grouped 
in three categories by bulk milk somatic cell counts. J. Dairy Sci. 81:411–419. 
doi:10.3168/jds.S0022-0302(98)75591-2. 

Barkema, H.W., Y.H. Schukken, and R.N. Zadoks. 2006. Invited review: The role of cow, 
pathogen, and treatment regimen in the therapeutic success of bovine Staphylococcus 
aureus mastitis. J. Dairy Sci. doi:10.3168/jds.S0022-0302(06)72256-1. 

Barker, A.R., F.N. Schrick, M.J. Lewis, H.H. Dowlen, and S.P. Oliver. 1998. Influence of 
clinical mastitis during early lactation on reproductive performance of Jersey cows. J. 
Dairy Sci. doi:10.3168/jds.S0022-0302(98)75690-5. 

Barker, M., and W. Rayens. 2003. Partial least squares for discrimination. J. Chemom. 
doi:10.1002/cem.785. 

Barreiro, J.R., J.L. Gonçalves, P.A.C. Braga, A.G. Dibbern, M.N. Eberlin, and M. Veiga 
dos Santos. 2017. Non-culture-based identification of mastitis-causing bacteria by 
MALDI-TOF mass spectrometry. J. Dairy Sci. doi:10.3168/jds.2016-11741. 

Bartel, J., J. Krumsiek, and F.J. Theis. 2013. Statistical methods for the analysis of high-
throughput metabolomics data. Comput. Struct. Biotechnol. J. 
doi:10.5936/csbj.201301009. 

Bauman, C.A., H.W. Barkema, J. Dubuc, G.P. Keefe, and D.F. Kelton. 2018. Canadian 
national dairy study: Herd-level milk quality. J. Dairy Sci. doi:10.3168/jds.2017-
13336. 

Beale, D.J., F.R. Pinu, K.A. Kouremenos, M.M. Poojary, V.K. Narayana, B.A. Boughton, 
K. Kanojia, S. Dayalan, O.A.H. Jones, and D.A. Dias. 2018. Review of recent 
developments in GC–MS approaches to metabolomics-based research. 
Metabolomics. doi:10.1007/s11306-018-1449-2. 

Beli, E. 2016. Evaluation Of Albanian raw milk quality situation by using somatic cell 
counts. J. Multidiscip. Eng. Sci. Technol. 3:5971–5974. 

Bell, A.W. 1995. Regulation of organic nutrient metabolism during transition from late 
pregnancy to early lactation. J. Anim. Sci. doi:10.2527/1995.7392804x. 

Berry, E.A., and J.E. Hillerton. 2002. The effect of selective dry cow treatment on new 
intramammary infections. J. Dairy Sci. doi:10.3168/jds.S0022-0302(02)74059-9. 



51 
 

Bexiga, R., M.T. Koskinen, J. Holopainen, C. Carneiro, H. Pereira, K.A. Ellis, and C.L. 
Vilela. 2011. Diagnosis of intramammary infection in samples yielding negative 
results or minor pathogens in conventional bacterial culturing. J. Dairy Res. 
doi:10.1017/S0022029910000725. 

Blondel, C., F. Khelalfa, S. Reynaud, F. Fauvelle, and M. Raveton. 2016. Effect of 
organochlorine pesticides exposure on the maize root metabolome assessed using 
high-resolution magic-angle spinning 1H NMR spectroscopy. Environ. Pollut. 
doi:10.1016/j.envpol.2016.04.057. 

Bock, J.L. 1982. Analysis of serum by high-field proton nuclear magnetic resonance. Clin. 
Chem. doi:10.1093/clinchem/28.9.1873. 

Botaro, B.G., C.S. Cortinhas, A.G. Dibbern, L.F.P. e. Silva, N.R. Benites,  and M.V. dos 
Santos. 2014. Staphylococcus aureus intramammary infection affects milk yield and 
SCC of dairy cows. Trop. Anim. Health Prod. doi:10.1007/s11250-014-0683-5. 

Boyd-Moss, M., S. Baratchi, M. Di Venere, and K. Khoshmanesh. 2016. Self-contained 
microfluidic systems: A review. Lab Chip. doi:10.1039/c6lc00712k. 

Bradley, A., J. Breen, and M. Green. 2008. Management: Mastitis pattern analysis - a fresh 
look at the analysis of bovine mastitis: Part 2 - Clinical mastitis data. Livestock. 
doi:10.1111/j.2044-3870.2008.tb00144.x. 

Bradley, A.J., K.A. Leach, J.E. Breen, L.E. Green, and M.J. Green. 2007. Survey of the 
incidence and aetiology of mastitis on diary farms in England and Wales. Vet. Rec. 
doi:10.1136/vr.160.8.253. 

Breen, E.C., S. Fatahi, M. Epeldegui, W.J. Boscardin, R. Detels, and O. Martínez-Maza. 
2006. Elevated serum soluble CD30 precedes the development of AIDS-associated 
non-Hodgkin’s B cell lymphoma. Tumor Biol. doi:10.1159/000093022. 

Breen, J.E., M.J. Green, and A.J. Bradley. 2009. Quarter and cow risk factors associated 
with the occurrence of clinical mastitis in dairy cows in the United Kingdom. J. Dairy 
Sci. doi:10.3168/jds.2008-1369. 

Brenaut, P., L. Lefèvre, A. Rau, D. Laloë, G. Pisoni, P. Moroni, C. Bevilacqua, and P. 
Martin. 2014. Contribution of mammary epithelial cells to the immune response 
during early stages of a bacterial infection to Staphylococcus aureus. Vet. Res. 
doi:10.1186/1297-9716-45-16. 

Brown, K., R.R.E. Uwiera, M.L. Kalmokoff, S.P.J. Brooks, and G.D. Inglis. 2017. 
Antimicrobial growth promoter use in livestock: a requirement to understand their 
modes of action to develop effective alternatives. Int. J. Antimicrob. Agents 49:12–
24. doi:10.1016/j.ijantimicag.2016.08.006. 

Bruckmaier, R.M., and J.W. Blum. 1998. Oxytocin release and milk removal in ruminants. 
J. Dairy Sci. doi:10.3168/jds.S0022-0302(98)75654-1. 

Bruckmaier, R.M., D. Weiss, M. Wiedemann, S. Schmitz, and G. Wendl. 2004. Changes 
of physicochemical indicators during mastitis and the effects of milk ejection on their 
sensitivity. J. Dairy Res. doi:10.1017/S0022029904000366. 



52 
 

Ten Bruggencate, S.J., I.M. Bovee-Oudenhoven, A.L. Feitsma, E. van Hoffen, and M.H. 
Schoterman. 2014. Functional role and mechanisms of sialyllactose and other 
sialylated milk oligosaccharides. Nutr. Rev. doi:10.1111/nure.12106. 

Brunner, N., S. Groeger, J. Canelas Raposo, R.M. Bruckmaier, and J.J. Gross. 2019. 
Prevalence of subclinical ketosis and production diseases in dairy cows in Central and 
South America, Africa, Asia, Australia, New Zealand, and Eastern Europe. Transl. 
Anim. Sci. doi:10.1093/tas/txy102. 

Busanello, M., R.S. Rossi, L.D. Cassoli, J.C.F. Pantoja, and P.F. Machado. 2017. 
Estimation of prevalence and incidence of subclinical mastitis in a large population of 
Brazilian dairy herds. J. Dairy Sci. doi:10.3168/jds.2016-12042. 

Butler, W.R., and R.D. Smith. 1989. Interrelationships between energy balance and 
postpartum reproductive function in dairy cattle. J. Dairy Sci. doi:10.3168/jds.S0022-
0302(89)79169-4. 

Calmus, Y., and R. Poupon. 2014. Shaping macrophages function and innate immunity by 
bile acids: Mechanisms and implication in cholestatic liver diseases. Clin. Res. 
Hepatol. Gastroenterol. doi:10.1016/j.clinre.2014.07.007. 

Cameron, M., H.W. Barkema, J. De Buck, S. De Vliegher, M. Chaffer, J. Lewis, and G.P. 
Keefe. 2017. Identification of bovine-associated coagulase-negative staphylococci by 
matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a 
direct transfer protocol. J. Dairy Sci. doi:10.3168/jds.2016-12020. 

Cameron, R.E.B., P.B. Dyk, T.H. Herdt, J.B. Kaneene, R. Miller, H.F. Bucholtz, J.S. 
Liesman, M.J. Vandehaar, and R.S. Emery. 1998. Dry cow diet, management, and 
energy balance as risk factors for displaced abomasum in high producing dairy herds. 
J. Dairy Sci. doi:10.3168/jds.S0022-0302(98)75560-2. 

Cantekin, Z., Y. Ergün, G. Doğruer, M.K. Saribay, and H. Solmaz. 2015. Comparison of 
PCR and culture methods for diagnosis of subclinical mastitis in dairy cattle. Kafkas 
Univ. Vet. Fak. Derg. doi:10.9775/kvfd.2014.12309. 

Capuco, A. V., R.M. Akers, and J.J. Smith. 1997. Mammary growth in Holstein cows 
during the dry period: Quantification of nucleic acids and histology. J. Dairy Sci. 
doi:10.3168/jds.S0022-0302(97)75960-5. 

CDIC. 2020. Culling and replacement rates in dairy herds in Canada. 

Chakraborty, S., K. Dhama, R. Tiwari, M. Iqbal Yatoo, S.K. Khurana, R. Khandia, A. 
Munjal, P. Munuswamy, M.A. Kumar, M. Singh, R. Singh, V.K. Gupta, and W. 
Chaicumpa. 2019. Technological interventions and advances in the diagnosis of 
intramammary infections in animals with emphasis on bovine population—a review. 
Vet. Q. doi:10.1080/01652176.2019.1642546. 

Constable, P., Hinchcliff, K., Done, S., Grünberg, W., & Radostits, O. 2017. Diseases of 
the mammary gland. 

Contreras, G.A., and J.M. Rodríguez. 2011. Mastitis: Comparative etiology and 
epidemiology. J. Mammary Gland Biol. Neoplasia. doi:10.1007/s10911-011-9234-0. 



53 
 

David Baird, G. 1982. Primary Ketosis in the high-producing dairy cow: Clinical and 
subclinical disorders, treatment, prevention, and outlook. J. Dairy Sci. 
doi:10.3168/jds.S0022-0302(82)82146-2. 

Dego, O.K., J.E. van Dijk, and H. Nederbragt. 2002. Factors involved in the early 
pathogenesis of bovine Staphylococcus aureus mastitis with emphasis on bacterial 
adhesion and invasion. A review. Vet. Q. doi:10.1080/01652176.2002.9695135. 

Deng, Q., J.F. Odhiambo, U. Farooq, T. Lam, S.M. Dunn, and B.N. Ametaj. 2016. 
Intravaginal probiotics modulated metabolic status and improved milk production and 
composition of transition dairy cows. J. Anim. Sci. 94:760–770. 
doi:10.2527/jas.2015-9650. 

Dervishi, E., G. Zhang, S.M. Dunn, R. Mandal, D.S. Wishart, and B.N. Ametaj. 2017. GC-
MS Metabolomics identifies metabolite alterations that precede subclinical mastitis in 
the blood of transition dairy cows. J. Proteome Res. 16:433–446. 
doi:10.1021/acs.jproteome.6b00538. 

Dervishi, E., G. Zhang, D. Hailemariam, S.M. Dunn, and B.N. Ametaj. 2015. Innate 
immunity and carbohydrate metabolism alterations precede occurrence of subclinical 
mastitis in transition dairy cows. J. Anim. Sci. Technol. doi:10.1186/s40781-015-
0079-8. 

Dervishi, E., G. Zhang, D. Hailemariam, S.M. Dunn, and B.N. Ametaj. 2016a. Occurrence 
of retained placenta is preceded by an inflammatory state and alterations of energy 
metabolism in transition dairy cows. J. Anim. Sci. Biotechnol. doi:10.1186/s40104-
016-0085-9. 

Dervishi, E., G. Zhang, D. Hailemariam, S.A. Goldansaz, Q. Deng, S.M. Dunn, and B.N. 
Ametaj. 2016b. Alterations in innate immunity reactants and carbohydrate and lipid 
metabolism precede occurrence of metritis in transition dairy cows. Res. Vet. Sci. 
doi:10.1016/j.rvsc.2015.11.004. 

Dervishi, E., G. Zhang, G. Zwierzchowski, R. Mandal, D.S. Wishart, and B.N. Ametaj. 
2020. Serum metabolic fingerprinting of pre-lameness dairy cows by GC–MS reveals 
typical profiles that can identify susceptible cows. J. Proteomics. 
doi:10.1016/j.jprot.2019.103620. 

Dezetter, C., N. Bareille, D. Billon, C. Côrtes, C. Lechartier, and H. Seegers. 2017. 
Changes in animal performance and profitability of Holstein dairy operations after 
introduction of crossbreeding with Montbéliarde, Normande, and Scandinavian Red. 
J. Dairy Sci. doi:10.3168/jds.2016-11436. 

Dingwell, R.T., D.F. Kelton, and K.E. Leslie. 2003a. Management of the dry cow in control 
of peripartum disease and mastitis. Vet. Clin. North Am. - Food Anim. Pract. 
doi:10.1016/S0749-0720(02)00072-5. 

Dingwell, R.T., K.E. Leslie, Y.H. Schukken, J.M. Sargeant, and L.L. Timms. 2003b. 
Evaluation of the California mastitis test to detect an intramammary infection with a 
major pathogen in early lactation dairy cows. Can. Vet. J. 



54 
 

Dingwell, R.T., K.E. Leslie, Y.H. Schukken, J.M. Sargeant, L.L. Timms, T.F. Duffield, 
G.P. Keefe, D.F. Kelton, and K. Lissemore. 2004. Association of cow and quarter-
level factors at drying-off with new intramammary infections during the dry period. 
Prev. Vet. Med. 

Dobson, H., R.F. Smith, M.D. Royal, C.H. Knight, and I.M. Sheldon. 2007. The high-
producing dairy cow and its reproductive performance. Reprod. Domest. Anim. 
doi:10.1111/j.1439-0531.2007.00906.x. 

Dohoo, I.R., and K.E. Leslie. 1991. Evaluation of changes in somatic cell counts as 
indicators of new intramammary infections. Prev. Vet. Med. doi:10.1016/0167-
5877(91)90006-N. 

Dohoo, I.R., J. Smith, S. Andersen, D.F. Kelton, and S. Godden. 2011. Diagnosing 
intramammary infections: Evaluation of definitions based on a single milk sample. J. 
Dairy Sci. doi:10.3168/jds.2010-3559. 

Dolecheck, K.A., A. García-Guerra, and L.E. Moraes. 2019. Quantifying the effects of 
mastitis on the reproductive performance of dairy cows: A meta-analysis. J. Dairy Sci. 
doi:10.3168/jds.2018-15127. 

Drackley, J.K. 1999. ADSA foundation scholar award: Biology of dairy cows during the 
transition period: The final frontier? J. Dairy Sci. doi:10.3168/jds.s0022-
0302(99)75474-3. 

Dufour, S., A. Fréchette, H.W. Barkema, A. Mussell, and D.T. Scholl. 2011. Invited 
review: Effect of udder health management practices on herd somatic cell count. J. 
Dairy Sci. 94:563–579. doi:10.3168/jds.2010-3715. 

Dumas, M.E., C. Canlet, J. Vercauteren, F. André, and A. Paris. 2005. Homeostatic 
signature of anabolic steroids in cattle using 1H-13C HMBC NMR metabonomics. J. 
Proteome Res. doi:10.1021/pr0500556. 

Dunn, W.B., N.J.C. Bailey, and H.E. Johnson. 2005. Measuring the metabolome: Current 
analytical technologies. Analyst. doi:10.1039/b418288j. 

Dunn, W.B., D.I. Broadhurst, H.J. Atherton, R. Goodacre, and J.L. Griffin. 2011. Systems 
level studies of mammalian metabolomes: The roles of mass spectrometry and nuclear 
magnetic resonance spectroscopy. Chem. Soc. Rev. doi:10.1039/b906712b. 

Eckel, E.F., and B.N. Ametaj. 2016. Invited review: Role of bacterial endotoxins in the 
etiopathogenesis of periparturient diseases of transition dairy cows. J. Dairy Sci. 
doi:10.3168/jds.2015-10727. 

Emmanuel, D.G.V., K.L. Madsen, T.A. Churchill, S.M. Dunn, and B.N. Ametaj. 2007. 
Acidosis and lipopolysaccharide from Escherichia coli B:055 cause 
hyperpermeability of rumen and colon tissues. J. Dairy Sci. doi:10.3168/jds.2007-
0257. 

Emwas, A.H., R. Roy, R.T. McKay, L. Tenori, E. Saccenti, G.A. Nagana Gowda, D. 
Raftery, F. Alahmari, L. Jaremko, M. Jaremko, and D.S. Wishart. 2019. NMR 
spectroscopy for metabolomics research. Metabolites. doi:10.3390/metabo9070123. 



55 
 

Emwas, A.H.M., Z.A. Al-Talla, X. Guo, S. Al-Ghamdi, and H.T. Al-Masri. 2013. Utilizing 
NMR and EPR spectroscopy to probe the role of copper in prion diseases. Magn. 
Reson. Chem. doi:10.1002/mrc.3936. 

Eriksson, Å., K.P. Waller, K. Svennersten-Sjaunja, J.E. Haugen, F. Lundby, and O. Lind. 
2005. Detection of mastitic milk using a gas-sensor array system (electronic nose). 
Int. Dairy J. doi:10.1016/j.idairyj.2004.12.012. 

Ezzat Alnakip, M., M. Quintela-Baluja, K. Böhme, I. Fernández-No, S. Caamaño-Antelo, 
P. Calo-Mata, and J. Barros-Velázquez. 2014. The immunology of mammary gland 
of dairy ruminants between healthy and inflammatory conditions. J. Vet. Med. 
doi:10.1155/2014/659801. 

Favilla, S., C. Durante, M.L. Vigni, and M. Cocchi. 2013. Assessing feature relevance in 
NPLS models by VIP. Chemom. Intell. Lab. Syst. 
doi:10.1016/j.chemolab.2013.05.013. 

Ferronatto, J.A., T.C. Ferronatto, M. Schneider, L.F. Pessoa, M.G. Blagitz, M.B. 
Heinemann, A.M.M.P. Della Libera, and F.N. Souza. 2018. Diagnosing mastitis in 
early lactation: use of Somaticell®, California Mastitis Test and somatic cell count. 
Ital. J. Anim. Sci. doi:10.1080/1828051X.2018.1426394. 

Fiehn, O. 2002. Metabolomics - The link between genotypes and phenotypes. Plant Mol. 
Biol. doi:10.1023/A:1013713905833. 

Foley, R.C., D.L. Bath, F.N. Dickinson, and H.A. Tucker. 1972. Dairy cattle: principles, 
practices, problems, profits. Dairy cattle Princ. Pract. Probl. profits. 

Foroutan, A., C. Fitzsimmons, R. Mandal, H. Piri‐moghadam, J. Zheng, A. Guo, C. Li, 
L.L. Guan, and D.S. Wishart. 2020. The bovine metabolome. Metabolites 10:1–26. 
doi:10.3390/metabo10060233. 

Foroutan, A., A.C. Guo, R. Vazquez-Fresno, M. Lipfert, L. Zhang, J. Zheng, H. Badran, 
Z. Budinski, R. Mandal, B.N. Ametaj, and D.S. Wishart. 2019. Chemical composition 
of commercial cow’s milk. J. Agric. Food Chem. doi:10.1021/acs.jafc.9b00204. 

Forsbäck, L., H. Lindmark-Månsson, A. Åndrén, M. Kerstedt, and K. Svennersten-Sjaunja. 
2009. Udder quarter milk composition at different levels of somatic cell count in cow 
composite milk. Animal. doi:10.1017/S1751731109004042. 

Fourichon, C., H. Seegers, and X. Malher. 2000. Effect of disease on reproduction in the 
dairy cow: A meta-analysis. Theriogenology. doi:10.1016/S0093-691X(00)00311-3. 

Galindo-Prieto, B., L. Eriksson, and J. Trygg. 2014. Variable influence on projection (VIP) 
for orthogonal projections to latent structures (OPLS). J. Chemom. 
doi:10.1002/cem.2627. 

Giovannini, A.E.J., B.H.P. van den Borne, S.K. Wall, O. Wellnitz, R.M. Bruckmaier, and 
C. Spadavecchia. 2017. Experimentally induced subclinical mastitis: Are 
lipopolysaccharide and lipoteichoic acid eliciting similar pain responses? Acta Vet. 
Scand. doi:10.1186/s13028-017-0306-z. 



56 
 

Giri, S.N., Z. Chen, E.J. Carroll, R. Mueller, M.J. Schiedt, and L. Panico. 1984. Role of 
prostaglandins in pathogenesis of bovine mastitis induced by Escherichia coli 
endotoxin. Am. J. Vet. Res. 

Goldansaz, S.A., A.C. Guo, T. Sajed, M.A. Steele, G.S. Plastow, and D.S. Wishart. 2017. 
Livestock metabolomics and the livestock metabolome: A systematic review. PLoS 
One. doi:10.1371/journal.pone.0177675. 

Gonçalves, J.L., T. Tomazi, J.R. Barreiro, P.A. de C. Braga, C.R. Ferreira, J.P. Araújo 
Junior, M.N. Eberlin, and M.V. dos Santos. 2014. Identification of Corynebacterium 
spp. isolated from bovine intramammary infections by matrix-assisted laser 
desorption ionization-time of flight mass spectrometry. Vet. Microbiol. 
doi:10.1016/j.vetmic.2014.06.028. 

Gordon, W.A., H.A. Morris, and V. Packard. 1980. Methods to detect abnormal milk – A 
review. J. Food Prot. doi:10.4315/0362-028x-43.1.58. 

Gorrochategui, E., J. Jaumot, S. Lacorte, and R. Tauler. 2016. Data analysis strategies for 
targeted and untargeted LC-MS metabolomic studies: Overview and workflow. TrAC 
- Trends Anal. Chem. doi:10.1016/j.trac.2016.07.004. 

Graber, H.U., M.G. Casey, J. Naskova, A. Stelner, and W. Schaeren. 2007. Development 
of a highly sensitive and specific assay to detect Staphylococcus aureus in bovine 
mastitic milk. J. Dairy Sci. doi:10.3168/jds.2006-902. 

Green, M.J., L.E. Green, G.F. Medley, Y.H. Schukken, and A.J. Bradley. 2002. Influence 
of dry period bacterial intramammary infection on clinical mastitis in dairy cows. J. 
Dairy Sci. doi:10.3168/jds.S0022-0302(02)74343-9. 

Gröhn, Y.T., H.N. Erb, C.E. McCulloch, and H.S. Saloniemi. 1989. Epidemiology of 
metabolic disorders in dairy cattle: Association among host characteristics, disease, 
and production. J. Dairy Sci. doi:10.3168/jds.S0022-0302(89)79306-1.  

Gröhn, Y.T., D.J. Wilson, R.N. González, J.A. Hertl, H. Schulte, G. Bennett, and Y.H. 
Schukken. 2004. Effect of pathogen-specific clinical mastitis on milk yield in dairy 
cows. J. Dairy Sci. 87:3358–3374. doi:10.3168/jds.S0022-0302(04)73472-4. 

 
Gromski, P.S., H. Muhamadali, D.I. Ellis, Y. Xu, E. Correa, M.L. Turner, and R. Goodacre. 

2015. A tutorial review: Metabolomics and partial least squares-discriminant analysis 
- a marriage of convenience or a shotgun wedding. Anal. Chim. Acta. 
doi:10.1016/j.aca.2015.02.012. 

Gunasekera, T.S., D.A. Veal, and P. V. Attfield. 2003. Potential for broad applications of 
flow cytometry and fluorescence techniques in microbiological and somatic cell 
analyses of milk. Int. J. Food Microbiol. doi:10.1016/S0168-1605(02)00546-9. 

De Haas, Y., W. Ouweltjes, J. Ten Napel, J.J. Windig, and G. De Jong. 2008. Alternative 
somatic cell count traits as mastitis indicators for genetic selection. J. Dairy Sci. 
doi:10.3168/jds.2007-0459. 

Hailemariam, D., R. Mandal, F. Saleem, S.M. Dunn, D.S. Wishart, and B.N. Ametaj. 2014. 



57 
 

Identification of predictive biomarkers of disease state in transition dairy cows. J. 
Dairy Sci. doi:10.3168/jds.2013-6803. 

Hailemariam, D., G. Zhang, R. Mandal, D.S. Wishart, and B.N. Ametaj. 2018. 
Identification of serum metabolites associated with the risk of metritis in transition 
dairy cows. Can. J. Anim. Sci. doi:10.1139/cjas-2017-0069. 

Halasa, T., K. Huijps, O. Østerås, and H. Hogeveen. 2007. Economic effects of bovine 
mastitis and mastitis management: A review. Vet. Q. 
doi:10.1080/01652176.2007.9695224. 

Halasa, T., M. Nielen, A.P.W. De Roos, R. Van Hoorne, G. De Jong, T.J.G.M. Lam, T. 
Van Werven, and H. Hogeveen. 2009. Production loss due to new subclinical mastitis 
in Dutch dairy cows estimated with a test-day model. J. Dairy Sci. 
doi:10.3168/jds.2008-1564. 

He, W., S. Ma, L. Lei, J. He, X. Li, J. Tao, X. Wang, S. Song, Y. Wang, Y. Wang, J. Shen, 
C. Cai, and C. Wu. 2020. Prevalence, etiology, and economic impact of clinical 
mastitis on large dairy farms in China. Vet. Microbiol. 
doi:10.1016/j.vetmic.2019.108570. 

Heikkilä, A.M., E. Liski, S. Pyörälä, and S. Taponen. 2018. Pathogen-specific production 
losses in bovine mastitis. J. Dairy Sci. doi:10.3168/jds.2018-14824. 

Heringstad, B., Y.M. Chang, D. Gianola, and G. Klemetsdal. 2005. Genetic analysis of 
clinical mastitis, milk fever, ketosis, and retained placenta in three lactations of 
Norwegian red cows. J. Dairy Sci. doi:10.3168/jds.S0022-0302(05)73010-1. 

Hernández-Castellano, L.E., S.K. Wall, R. Stephan, S. Corti, and R.M. Bruckmaier. 2017. 
Milk somatic cell count, lactate dehydrogenase activity, and immunoglobulin G 
concentration associated with mastitis caused by different pathogens: A field study. 
Schweiz. Arch. Tierheilkd. doi:10.17236/sat00115. 

Hertl, J.A., Y.H. Schukken, F.L. Welcome, L.W. Tauer, and Y.T. Gröhn. 2014. Effects of 
pathogen-specific clinical mastitis on probability of conception in Holstein dairy 
cows. J. Dairy Sci. doi:10.3168/jds.2014-8203. 

Hettinga, K.A., H.J.F. van Valenberg, T.J.G.M. Lam, and A.C.M. van Hooijdonk. 2009. 
The origin of the volatile metabolites found in mastitis milk. Vet. Microbiol. 
doi:10.1016/j.vetmic.2009.01.016. 

Hettinga, K.A., H.J.F. Van Valenberg, T.J.G.M. Lam, and A.C.M. Van Hooijdonk. 2008. 
Detection of mastitis pathogens by analysis of volatile bacterial metabolites. J. Dairy 
Sci. doi:10.3168/jds.2007-0941. 

Hillerton, E. 2000. Detecting mastitis cow-sided. 

Hinrichs, D., J. Bennewitz, E. Stamer, W. Junge, E. Kalm, and G. Thaller. 2011. Genetic 
analysis of mastitis data with different models. J. Dairy Sci. doi:10.3168/jds.2010-
3374. 

Hirayama, A., M. Wakayama, and T. Soga. 2014. Metabolome analysis based on capillary 



58 
 

electrophoresis-mass spectrometry. TrAC - Trends Anal. Chem. 
doi:10.1016/j.trac.2014.05.005. 

Hofmann, A.F., and L. Eckmann. 2006. How bile acids confer gut mucosal protection 
against bacteria. Proc. Natl. Acad. Sci. U. S. A. doi:10.1073/pnas.0600780103. 

Hogan, J., and K.L. Smith. 2003. Coliform mastitis. Vet. Res. 34 507–519. 
doi:10.1051/vetres:2003022. 

Hogan, J.S., V.L. Bogacz, L.M. Thompson, S. Romig, P.S. Schoenberger, W.P. Weiss, and 
K.L. Smith. 1999. Bacterial counts associated with sawdust and recycled manure 
bedding treated with commercial conditioners. J. Dairy Sci. doi:10.3168/jds.S0022-
0302(99)75398-1. 

Hogan, J.S., K.L. Smith, K.H. Hoblet, D.A. Todhunter, P.S. Schoenberger, W.D. Hueston, 
D.E. Pritchard, G.L. Bowman, L.E. Heider, B.L. Brockett, and H.R. Conrad. 1989. 
Bacterial counts in bedding materials used on nine commercial dairies. J. Dairy Sci. 
doi:10.3168/jds.S0022-0302(89)79103-7. 

Hogeveen, H., K. Huijps, and T.J.G.M. Lam. 2011. Economic aspects of mastitis: New 
developments. N. Z. Vet. J. doi:10.1080/00480169.2011.547165. 

Hope, A. 2000. Laboratory handbook on bovine mastitis. Aust. Vet. J. doi:10.1111/j.1751-
0813.2000.tb11869.x. 

Hovinen, M., and S. Pyörälä. 2011. Invited review: Udder health of dairy cows in automatic 
milking. J. Dairy Sci. doi:10.3168/jds.2010-3556. 

Ingvartsen, K.L. 2006. Feeding- and management-related diseases in the transition cow: 
Physiological adaptations around calving and strategies to reduce feeding-related 
diseases. Anim. Feed Sci. Technol. doi:10.1016/j.anifeedsci.2005.08.003. 

Ingvartsen, K.L., and K.M. Moyes. 2015. Factors contributing to immunosuppression in 
the dairy cow during the periparturient period. Jpn. J. Vet. Res. 
doi:10.14943/jjvr.63.suppl.s15. 

Issaq, H.J., Q.N. Van, T.J. Waybright, G.M. Muschik, and T.D. Veenstra. 2009. Analytical 
and statistical approaches to metabolomics research. J. Sep. Sci. 
doi:10.1002/jssc.200900152. 

Jamali, H., H.W. Barkema, M. Jacques, E.M. Lavallée-Bourget, F. Malouin, V. Saini, H. 
Stryhn, and S. Dufour. 2018. Invited review: Incidence, risk factors, and effects of 
clinical mastitis recurrence in dairy cows. J. Dairy Sci. doi:10.3168/jds.2017-13730. 

Jiang, T., J.L. Gradus, and A.J. Rosellini. 2020. Supervised machine learning: A brief 
primer. Behav. Ther. doi:https://doi.org/10.1016/j.beth.2020.05.002. 

Jiminez, J.A., T.C. Uwiera, D.W. Abbott, R.R.E. Uwiera, and G.D. Inglis. 2017. Butyrate 
supplementation at high concentrations alters enteric bacterial communities and 
reduces intestinal inflammation in mice infected with Citrobacter rodentium. 
mSphere 2. doi:10.1128/msphere.00243-17. 



59 
 

John, A.J., S.C. Garcia, K.L. Kerrisk, M.J. Freeman, M.R. Islam, and C.E.F. Clark. 2017. 
Short communication: The diurnal intake and behavior of dairy cows when access to 
a feed of consistent nutritive value is restricted. J. Dairy Sci. doi:10.3168/jds.2016-
12245. 

Jolliffe, I.T. 2002. Principal Component Analysis, Second Edition. Encycl. Stat. Behav. 
Sci. doi:10.2307/1270093. 

Jones, G.M. 2009. Proper dry cow management critical for mastitis control drying-off. 
Virginia Tech 404–212:1–6. 

Kandeel, S.A., A.A. Megahed, M.H. Ebeid, and P.D. Constable. 2019. Ability of milk pH 
to predict subclinical mastitis and intramammary infection in quarters from lactating 
dairy cattle. J. Dairy Sci. doi:10.3168/jds.2018-14993. 

Kennedy, A.D., B.M. Wittmann, A.M. Evans, L.A.D. Miller, D.R. Toal, S. Lonergan, S.H. 
Elsea, and K.L. Pappan. 2018. Metabolomics in the clinic: A review of the shared and 
unique features of untargeted metabolomics for clinical research and clinical testing. 
J. Mass Spectrom. doi:10.1002/jms.4292. 

von Keyserlingk, M.A.G., J. Rushen, A.M. de Passillé, and D.M. Weary. 2009. Invited 
review: The welfare of dairy cattle-key concepts and the role of science. J. Dairy Sci. 
doi:10.3168/jds.2009-2326. 

Khatun, M., R.M. Bruckmaier, P.C. Thomson, J. House, and S.C. García. 2019. Suitability 
of somatic cell count, electrical conductivity, and lactate dehydrogenase activity in 
foremilk before versus after alveolar milk ejection for mastitis detection. J. Dairy Sci. 
doi:10.3168/jds.2018-15752. 

Khatun, M., C.E.F. Clark, N.A. Lyons, P.C. Thomson, K.L. Kerrisk, and S.C. Garciá. 2017. 
Early detection of clinical mastitis from electrical conductivity data in an automatic 
milking system. Anim. Prod. Sci. doi:10.1071/AN16707. 

Kim, K., P. Aronov, S.O. Zakharkin, D. Anderson, B. Perroud, I.M. Thompson, and R.H. 
Weiss. 2009. Urine metabolomics analysis for kidney cancer detection and biomarker 
discovery. Mol. Cell. Proteomics. doi:10.1074/mcp.M800165-MCP200. 

Klaas, I.C., and R.N. Zadoks. 2018. An update on environmental mastitis: Challenging 
perceptions. Transbound. Emerg. Dis. doi:10.1111/tbed.12704. 

Klein, M.S., M.F. Almstetter, G. Schlamberger, N. Nürnberger, K. Dettmer, P.J. Oefner, 
H.H.D. Meyer, S. Wiedemann, and W. Gronwald. 2010. Nuclear magnetic resonance 
and mass spectrometry-based milk metabolomics in dairy cows during early and late 
lactation. J. Dairy Sci. doi:10.3168/jds.2009-2563. 

Klein, M.S., N. Buttchereit, S.P. Miemczyk, A.K. Immervoll, C. Louis, S. Wiedemann, W. 
Junge, G. Thaller, P.J. Oefner, and W. Gronwald. 2012. NMR metabolomic analysis 
of dairy cows reveals milk glycerophosphocholine to phosphocholine ratio as 
prognostic biomarker for risk of ketosis. J. Proteome Res. doi:10.1021/pr201017n. 

Koeck, A., F. Miglior, D.F. Kelton, and F.S. Schenkel. 2012. Alternative somatic cell count 
traits to improve mastitis resistance in Canadian Holsteins. J. Dairy Sci. 



60 
 

doi:10.3168/jds.2011-4731. 

Kopali, A., N. Shoshi, and X. Koleci. 2011. Prevalence of subclinical mastitis in dairy 
cows: a case study of the livestock complex, Tirana (Albania). Res. Opin. Anim. Vet. 
Sci. PRINT: ISS:593–596. 

Kuhn, M.T., J.L. Hutchison, and H.D. Norman. 2005. Minimum days dry to maximize milk 
yield in subsequent lactation. Anim. Res. doi:10.1051/animres:2005031. 

Labohm, R., E. Götz, G. Luhofer, R.G. Hess, and H. Bostedt. 1998. Factors influencing 
the somatic milk-cell-count in dairy cows. 1. Influence of bacteriological findings, 
stage and number of lactation. Milchwissenschaft. 

Lam, T.J.G.M., R.G.M. Olde Riekerink, O.C. Sampimon, and H. Smith. 2009. Mastitis 
diagnostics and performance monitoring: A practical approach. Ir. Vet. J. 
doi:10.1186/2046-0481-62-S4-S34. 

Lam, T.J.G.M., Y.H. Schukken, J.H. Van Vliet, F.J. Grommers, M.J.M. Tielen, and A. 
Brand. 1997. Effect of natural infection with minor pathogens on susceptibility to 
natural infection with major pathogens in the bovine mammary gland. Am. J. Vet. 
Res. 

Lange, C.C., M.A.V.P. Brito, D.R.L. Reis, M.A. Machado, A.S. Guimarães, A.L.S. 
Azevedo, É.B. Salles, M.C.T. Alvim, F.S. Silva, and I.R. Meurer. 2015. Species-level 
identification of staphylococci isolated from bovine mastitis in Brazil using partial 
16S rRNA sequencing. Vet. Microbiol. doi:10.1016/j.vetmic.2015.01.024. 

Lara-Zárate, L., J.E. López-Meza, and A. Ochoa-Zarzosa. 2011. Staphylococcus aureus 
inhibits nuclear factor kappa B activation mediated by prolactin in bovine mammary 
epithelial cells. Microb. Pathog. doi:10.1016/j.micpath.2011.07.010. 

Lau, M.E., J.A. Loughman, and D.A. Hunstada. 2012. Ybcl of uropathogenic Escherichia 
coli suppresses transepithelial neutrophil migration. Infect. Immun. 
doi:10.1128/IAI.00801-12. 

Leblanc, S. 2010. Monitoring metabolic health of dairy cattle in the transition period. J. 
Reprod. Dev. doi:10.1262/jrd.1056S29. 

Lehmann, M., S.K. Wall, O. Wellnitz, and R.M. Bruckmaier. 2015. Changes in milk L-
lactate, lactate dehydrogenase, serum albumin, and IgG during milk ejection and their 
association with somatic cell count. J. Dairy Res. doi:10.1017/S002202991400065X. 

Leigh, J.A. 1999. Streptococcus uberis: A permanent barrier to the control of bovine 
mastitis? Vet. J. doi:10.1053/tvjl.1998.0298. 

Leitner, G., N. Silanikove, and U. Merin. 2008. Estimate of milk and curd yield loss of 
sheep and goats with intrammamary infection and its relation to somatic cell count. 
Small Rumin. Res. doi:10.1016/j.smallrumres.2007.02.009. 

Leslie, K., K. Barratt, C. Petersson, and A. Bashiri. 2011. An evaluation of the Portascc ® 
test as a measure of udder health status dairy cows ( An excerpt from a technical report 
)* 60–61. 



61 
 

Leslie, K.E., and C.S. Petersson-Wolfe. 2012. Assessment and management of pain in 
dairy cows with clinical mastitis. Vet. Clin. North Am. - Food Anim. Pract. 
doi:10.1016/j.cvfa.2012.04.002. 

Levison, L.J., E.K. Miller-Cushon, A.L. Tucker, R. Bergeron, K.E. Leslie, H.W. Barkema, 
and T.J. DeVries. 2016. Incidence rate of pathogen-specific clinical mastitis on 
conventional and organic Canadian dairy farms. J. Dairy Sci. doi:10.3168/jds.2015-
9809. 

Li, Y., P. Fan, S. Zhou, and L. Zhang. 2017. Loop-mediated isothermal amplification 
(LAMP): A novel rapid detection platform for pathogens. Microb. Pathog. 
doi:10.1016/j.micpath.2017.03.016. 

Li, Y., C. Xu, C. Xia, H. Zhang, L. Sun, and Y. Gao. 2014. Plasma metabolic profiling of 
dairy cows affected with clinical ketosis using LC/MS technology. Vet. Q. 
doi:10.1080/01652176.2014.962116. 

Liland, K.H. 2011. Multivariate methods in metabolomics - from pre-processing to 
dimension reduction and statistical analysis. TrAC - Trends Anal. Chem. 
doi:10.1016/j.trac.2011.02.007. 

Little, J.L. 1999. Artifacts in trimethylsilyl derivatization reactions and ways to avoid them. 
J. Chromatogr. A. doi:10.1016/S0021-9673(99)00267-8. 

Loughman, J.A., and D.A. Hunstad. 2011. Attenuation of human neutrophil migration and 
function by uropathogenic bacteria. Microbes Infect. 
doi:10.1016/j.micinf.2011.01.017. 

Lucy, M.C., H. Jiang, and Y. Kobayashi. 2001. Changes in the somatotrophic axis 
associated with the initiation of lactation. J. Dairy Sci. 84:E113–E119. 
doi:10.3168/jds.s0022-0302(01)70205-6. 

Luedecke, L.O., T.L. Forster, and U.S. Ashworth. 1967. Relationship between California 
Mastitis Test reaction and leucocyte count, catalase activity, and A-esterase activity 
of milk from opposite quarters. J. Dairy Sci. doi:10.3168/jds.S0022-0302(67)87678-
1. 

Lui, C., N.C. Cady, and C.A. Batt. 2009. Nucleic acid-based detection of bacterial 
pathogens using integrated microfluidic platform systems. Sensors. 
doi:10.3390/s90503713. 

Luo, Z.Z., L.H. Shen, J. Jiang, Y.X. Huang, L.P. Bai, S.M. Yu, X.P. Yao, Z.H. Ren, Y.X. 
Yang, and S.Z. Cao. 2019. Plasma metabolite changes in dairy cows during parturition 
identified using untargeted metabolomics. J. Dairy Sci. doi:10.3168/jds.2018-15601. 

Lush, J.L. 1950. Inheritance of susceptibility to mastitis. J. Dairy Sci. 
doi:10.3168/jds.S0022-0302(50)91876-5. 

Mani, V., T.E. Weber, L.H. Baumgard, and N.K. Gabler. 2012. Growth and development 
symposium: Endotoxin, inflammation, and intestinal function in livestock. J. Anim. 
Sci. doi:10.2527/jas.2011-4627. 



62 
 

Martins, S.A.M., V.C. Martins, F.A. Cardoso, J. Germano, M. Rodrigues, C. Duarte, R. 
Bexiga, S. Cardoso, and P.P. Freitas. 2019. Biosensors for on-farm diagnosis of 
mastitis. Front. Bioeng. Biotechnol. doi:10.3389/fbioe.2019.00186. 

Massé, J., S. Dufour, and M. Archambault. 2020. Characterization of Klebsiella isolates 
obtained from clinical mastitis cases in dairy cattle. J. Dairy Sci. 
doi:10.3168/jds.2019-17324. 

Masson, P., A.C. Alves, T.M.D. Ebbels, J.K. Nicholson, and E.J. Want. 2010. Optimization 
and evaluation of metabolite extraction protocols for untargeted metabolic profiling 
of liver samples by UPLC-MS. Anal. Chem. doi:10.1021/ac101722e. 

Maynou, G., L. Migura-Garcia, H. Chester-Jones, D. Ziegler, A. Bach, and M. Terré. 2017. 
Effects of feeding pasteurized waste milk to dairy calves on phenotypes and genotypes 
of antimicrobial resistance in fecal Escherichia coli isolates before and after weaning. 
J. Dairy Sci. doi:10.3168/jds.2017-13040. 

McDougall, S. 1999. Prevalence of clinical mastitis in 38 waikato dairy herds in early 
lactation. N. Z. Vet. J. doi:10.1080/00480169.1999.36131. 

Mehmood, T., K.H. Liland, L. Snipen, and S. Sæbø. 2012. A review of variable selection 
methods in Partial Least Squares Regression. Chemom. Intell. Lab. Syst. 
doi:10.1016/j.chemolab.2012.07.010. 

Metz, C.E. 2008. ROC analysis in medical imaging: a tutorial review of the literature. 
Radiol. Phys. Technol. doi:10.1007/s12194-007-0002-1. 

Miyake, K. 2007. Innate immune sensing of pathogens and danger signals by cell surface 
Toll-like receptors. Semin. Immunol. doi:10.1016/j.smim.2006.12.002. 

Moroni, P., D. V. Nydam, P.A. Ospina, J.C. Scillieri-Smith, P.D. Virkler, R.D. Watters, 
F.L. Welcome, M.J. Zurakowski, N.G. Ducharme, and A.E. Yeager. 2018. Diseases 
of the teats and udder. 

Moyes, K.M., T. Larsen, N.C. Friggens, J.K. Drackley, and K.L. Ingvartsen. 2009. 
Identification of potential markers in blood for the development of subclinical and 
clinical mastitis in dairy cattle at parturition and during early lactation. J. Dairy Sci. 
doi:10.3168/jds.2009-2088. 

Mulligan, F.J., and M.L. Doherty. 2008. Production diseases of the transition cow. Vet. J. 
doi:10.1016/j.tvjl.2007.12.018. 

Murphy, S.C., N.H. Martin, D.M. Barbano, and M. Wiedmann. 2016. Influence of raw 
milk quality on processed dairy products: How do raw milk quality test results relate 
to product quality and yield? J. Dairy Sci. doi:10.3168/jds.2016-11172. 

Nakamura, T., H. Kawase, K. Kimura, Y. Watanabe, M. Ohtani, I. Arai, and T. Urashima. 
2003. Concentrations of sialyloligosaccharides in bovine colostrum and milk during 
the prepartum and early lactation. J. Dairy Sci. doi:10.3168/jds.S0022-
0302(03)73715-1. 

Narayana, S.G., F. Miglior, S.A. Naqvi, F. Malchiodi, P. Martin, and H.W. Barkema. 2018. 



63 
 

Genetic analysis of subclinical mastitis in early lactation of heifers using both linear 
and threshold models. J. Dairy Sci. doi:10.3168/jds.2018-15126. 

Negussie, E., I. Stranden, and E.A. Mäntysaari. 2008. Genetic association of clinical 
mastitis with test-day somatic cell score and milk yield during first lactation of finnish 
ayrshire cows. J. Dairy Sci. doi:10.3168/jds.2007-0510. 

Olde Riekerink, R.G.M., H.W. Barkema, W. Veenstra, F.E. Berg, H. Stryhn, and R.N. 
Zadoks. 2007. Somatic cell count during and between milkings. J. Dairy Sci. 
doi:10.3168/jds.2007-0001. 

Oliveira, L., C. Hulland, and P.L. Ruegg. 2013. Characterization of clinical mastitis 
occurring in cows on 50 large dairy herds in Wisconsin. J. Dairy Sci. 
doi:10.3168/jds.2012-6078. 

Oliver, S.G., M.K. Winson, D.B. Kell, and F. Baganz. 1998. Systematic functional analysis 
of the yeast genome. Trends Biotechnol. doi:10.1016/S0167-7799(98)01214-1. 

Oliver, S.P., B.M. Jayarao, and R.A. Almeida. 2005. Foodborne pathogens in milk and the 
dairy farm environment: Food safety and public health implications. Foodborne 
Pathog. Dis. doi:10.1089/fpd.2005.2.115. 

Oliver, S.P., and S.E. Murinda. 2012. Antimicrobial resistance of mastitis pathogens. Vet. 
Clin. North Am. - Food Anim. Pract. doi:10.1016/j.cvfa.2012.03.005. 

Otto, S.J.G., J. Szkotnicki, C. McElwain, I. So, J.S. Weese, and J.F. Prescott. 2018. 
Building the antimicrobial stewardship leadership plan for animal health in Canada 
(workshop, Ottawa, October 3-4, 2017). Can. Vet. J. 

Pearson, H. 2007. Meet the human metabolome. Nature. doi:10.1038/446008a. 

Pencina, M.J., R.B. D’Agostino, and O. V. Demler. 2012. Novel metrics for evaluating 
improvement in discrimination: Net reclassification and integrated discrimination 
improvement for normal variables and nested models. Stat. Med. 
doi:10.1002/sim.4348. 

Perreten, V., A. Endimiani, A. Thomann, J.R.K. Wipf, A. Rossano, M. Bodmer, A. Raemy, 
K.A. Sannes-Lowery, D.J. Ecker, R. Sampath, and R.A. Bonomo. 2013. Evaluation 
of PCR electrospray-ionization mass spectrometry for rapid molecular diagnosis of 
bovine mastitis. J. Dairy Sci. doi:10.3168/jds.2012-6124. 

Persson Waller, K., B. Bengtsson, A. Lindberg, A. Nyman, and H. Ericsson Unnerstad. 
2009. Incidence of mastitis and bacterial findings at clinical mastitis in Swedish 
primiparous cows-Influence of breed and stage of lactation. Vet. Microbiol. 
doi:10.1016/j.vetmic.2008.09.004. 

Petzer, I.M., J. Karzis, E.F. Donkin, E.C. Webb, and E.M.C. Etter. 2017. Somatic cell count 
thresholds in composite and quarter milk samples as indicator of bovine 
intramammary infection status. Onderstepoort J. Vet. Res. 
doi:10.4102/ojvr.v84i1.1269. 

Piddock, L.J. 1996. Does the use of antimicrobial agents in veterinary medicine and animal 



64 
 

husbandry select antibiotic-resistant bacteria that infect man and compromise 
antimicrobial chemotherapy? J. Antimicrob. Chemother. doi:10.1093/jac/38.1.1. 

Pierce, K.M., J.C. Hoggard, R.E. Mohler, and R.E. Synovec. 2008. Recent advancements 
in comprehensive two-dimensional separations with chemometrics. J. Chromatogr. A. 
doi:10.1016/j.chroma.2007.07.059. 

Pilla, R., D. Schwarz, S. König, and R. Piccinini. 2012. Microscopic differential cell 
counting to identify inflammatory reactions in dairy cow quarter milk samples. J. 
Dairy Sci. doi:10.3168/jds.2012-5331. 

Pitkälä, A., M. Haveri, S. Pyörälä, V. Myllys, and T. Honkanen-Buzalski. 2004. Bovine 
mastitis in Finland 2001 - Prevalence, distribution of bacteria, and antimicrobial 
resistance. J. Dairy Sci. doi:10.3168/jds.S0022-0302(04)73366-4. 

Pol, M., and P.L. Ruegg. 2007. Treatment practices and quantification of antimicrobial 
drug usage in conventional and organic dairy farms in Wisconsin. J. Dairy Sci. 
doi:10.3168/jds.S0022-0302(07)72626-7. 

Powers, R., and E. Riekeberg. 2017. New frontiers in metabolomics: From measurement 
to insight. F1000Research. doi:10.12688/f1000research.11495.1. 

Pyörälä, S. 2003. Indicators of inflammation in the diagnosis of mastitis. Vet. Res. 
doi:10.1051/vetres:2003026. 

Pyörälä, S., M. Hovinen, H. Simojoki, J. Fitzpatrick, P.D. Eckersall, and T. Orro. 2011. 
Acute phase proteins in milk in naturally acquired bovine mastitis caused by different 
pathogens. Vet. Rec. doi:10.1136/vr.d1120. 

Rainard, P., and C. Riollet. 2006. Innate immunity of the bovine mammary gland. Vet. Res. 
doi:10.1051/vetres:2006007. 

Ramautar, R., A.A.M. Heemskerk, P.J. Hensbergen, A.M. Deelder, J.M. Busnel, and O.A. 
Mayboroda. 2012. CE-MS for proteomics: Advances in interface development and 
application. J. Proteomics. doi:10.1016/j.jprot.2012.04.050. 

Rato, M.G., A. Nerlich, R. Bergmann, R. Bexiga, S.F. Nunes, C.L. Vilela, I. Santos-
Sanches, and G.S. Chhatwal. 2011. Virulence gene pool detected in bovine group C 
Streptococcus dysgalactiae subsp. dysgalactiae isolates by use of a group A S. 
pyogenes virulence microarray. J. Clin. Microbiol. doi:10.1128/JCM.00008-11. 

Reksen, O., L. Sølverød, A.J. Branscum, and O. Østerås. 2006. Relationships between milk 
culture results and treatment for clinical mastitis or culling in Norwegian dairy cattle. 
J. Dairy Sci. doi:10.3168/jds.S0022-0302(06)72565-6. 

Reyher, K.K., and I.R. Dohoo. 2011. Diagnosing intramammary infections: Evaluation of 
composite milk samples to detect intramammary infections. J. Dairy Sci. 
doi:10.3168/jds.2010-3907. 

Reyher, K.K., I.R. Dohoo, D.T. Scholl, and G.P. Keefe. 2012. Evaluation of minor 
pathogen intramammary infection, susceptibility parameters, and somatic cell counts 
on the development of new intramammary infections with major mastitis pathogens. 



65 
 

J. Dairy Sci. doi:10.3168/jds.2011-5148. 

Rhoda, D.A., and J.C.F. Pantoja. 2012. Using mastitis records and somatic cell count data. 
Vet. Clin. North Am. - Food Anim. Pract. doi:10.1016/j.cvfa.2012.03.012. 

Riekerink, R.G.M.O., H.W. Barkema, D.F. Kelton, and D.T. Scholl. 2008. Incidence rate 
of clinical mastitis on Canadian dairy farms. J. Dairy Sci. doi:10.3168/jds.2007-0757. 

Roberson, J.R. 2012. Treatment of clinical mastitis. Vet. Clin. North Am. - Food Anim. 
Pract. doi:10.1016/j.cvfa.2012.03.011. 

Roberson, J.R., L.D. Warnick, and G. Moore. 2004. Mild to moderate clinical mastitis: 
Efficacy of intramammary amoxicillin, frequent milk-out, a combined intramammary 
amoxicillin, and frequent milk-out treatment versus no treatment. J. Dairy Sci. 
doi:10.3168/jds.S0022-0302(04)73200-2. 

Roche, J.F. 2006. The effect of nutritional management of the dairy cow on reproductive 
efficiency. Anim. Reprod. Sci. doi:10.1016/j.anireprosci.2006.08.007. 

Rossi, R.S., A.F. Amarante, L.B.N. Correia, S.T. Guerra, D.B. Nobrega, G.S. Latosinski, 
B.F. Rossi, V.L.M. Rall, and J.C.F. Pantoja. 2018. Diagnostic accuracy of Somaticell, 
California Mastitis Test, and microbiological examination of composite milk to detect 
Streptococcus agalactiae intramammary infections. J. Dairy Sci. 
doi:10.3168/jds.2018-14753. 

Royster, E., S. Godden, D. Goulart, A. Dahlke, P. Rapnicki, and J. Timmerman. 2014. 
Evaluation of the Minnesota Easy Culture System II Bi-Plate and Tri-Plate for 
identification of common mastitis pathogens in milk. J. Dairy Sci. 
doi:10.3168/jds.2013-7748. 

Ruegg, P.L. 2003. Investigation of mastitis problems on farms. Vet. Clin. North Am. - 
Food Anim. Pract. doi:10.1016/S0749-0720(02)00078-6. 

Ruegg, P.L. 2009. Management of mastitis on organic and conventional dairy farms. J. 
Anim. Sci. doi:10.2527/jas.2008-1217. 

Ruegg, P.L. 2011. Managing mastitis and producing quality milk. P.R.M. C.A. Risco, ed. 
John Wiley & Sons, West Sussex (Shire). 

Ruegg, P.L. 2017. A 100-Year Review: Mastitis detection, management, and prevention. 
J. Dairy Sci. doi:10.3168/jds.2017-13023. 

Ruegg, P.L., and C.S. Petersson-Wolfe. 2018. Mastitis in dairy cows. Vet. Clin. North Am. 
- Food Anim. Pract. doi:10.1016/j.cvfa.2018.08.001. 

Ryman, V.E., G.M. Pighetti, J.D. Lippolis, J.C. Gandy, C.M. Applegate, and L.M. Sordillo. 
2015. Quantification of bovine oxylipids during intramammary Streptococcus uberis 
infection. Prostaglandins Other Lipid Mediat. 
doi:10.1016/j.prostaglandins.2015.09.006. 

Saitman, A. 2019. Chapter 13 - Overview of analytical methods in drugs of abuse analysis: 
Gas chromatography/mass spectrometry, liquid chromatography combined with 



66 
 

tandem mass spectrometry and related methods. A.B.T.-C.I. in A. and D. of A.T. 
(Second E. Dasgupta, ed. Academic Press. 

Saleem, F., B.N. Ametaj, S. Bouatra, R. Mandal, Q. Zebeli, S.M. Dunn, and D.S. Wishart. 
2012. A metabolomics approach to uncover the effects of grain diets on rumen health 
in dairy cows. J. Dairy Sci. doi:10.3168/jds.2012-5403. 

Sana, T.R., K. Waddell, and S.M. Fischer. 2008. A sample extraction and chromatographic 
strategy for increasing LC/MS detection coverage of the erythrocyte metabolome. J. 
Chromatogr. B Anal. Technol. Biomed. Life Sci. doi:10.1016/j.jchromb.2008.04.030. 

Sang, S., W. Zhang, and Y. Zhao. 2013. Review on the design Art of biosensors. 

Sargeant, J.M., K.E. Leslie, J.E. Shirley, B.J. Pulkrabek, and G.H. Lim. 2001. Sensitivity 
and specificity of somatic cell count and California Mastitis Test for identifying 
intramammary infection in early lactation. J. Dairy Sci. doi:10.3168/jds.S0022-
0302(01)74645-0. 

Sargeant, J.M., H.M. Scott, K.E. Leslie, M.J. Ireland, and A. Bashiri. 1998. Clinical 
mastitis in dairy cattle in Ontario: Frequency of occurrence and bacteriological 
isolates. Can. Vet. J. 

Schalm, O.W., and D.O. Noorlander. 1957. Experiments and observations leading to 
development of the California Mastitis Test. J. Am. Vet. Med. Assoc. 

Schönborn, S., N. Wente, J.H. Paduch, and V. Krömker. 2017. In vitro ability of mastitis 
causing pathogens to form biofilms. J. Dairy Res. doi:10.1017/S0022029917000218. 

Schrick, F.N., M.E. Hockett, A.M. Saxton, M.J. Lewis, H.H. Dowlen, and S.P. Oliver. 
2001. Influence of subclinical mastitis during early lactation on reproductive 
parameters. J. Dairy Sci. 58:371–83. doi:10.3168/jds.S0022-0302(01)70172-5. 

Schukken, Y.H., J. Günther, J. Fitzpatrick, M.C. Fontaine, L. Goetze, O. Holst, J. Leigh, 
W. Petzl, H.J. Schuberth, A. Sipka, D.G.E. Smith, R. Quesnell, J. Watts, R. Yancey, 
H. Zerbe, A. Gurjar, R.N. Zadoks, and H.M. Seyfert. 2011. Host-response patterns of 
intramammary infections in dairy cows. Vet. Immunol. Immunopathol. 
doi:10.1016/j.vetimm.2011.08.022. 

Schukken, Y.H., D.J. Wilson, F. Welcome, L. Garrison-Tikofsky, and R.N. Gonzalez. 
2003. Monitoring udder health and milk quality using somatic cell counts. Vet. Res. 
doi:10.1051/vetres:2003028. 

Serkova, N.J., and C.U. Niemann. 2006. Pattern recognition and biomarker validation 
using quantitative 1H-NMR-based metabolomics. Expert Rev. Mol. Diagn. 
doi:10.1586/14737159.6.5.717. 

Shook, G.E. 1989. Selection for disease resistance. J. Dairy Sci. doi:10.3168/jds.S0022-
0302(89)79242-0. 

Šimundić, A.-M. 2009. Measures of diagnostic accuracy: Basic Definitions. EJIFCC. 

Singh, B., G. Mal, S.K. Gautam, M. Mukesh, B. Singh, G. Mal, S.K. Gautam, and M. 



67 
 

Mukesh. 2019. Metabolomics in livestock sciences. 

Sipka, S., and G. Bruckner. 2014. The immunomodulatory role of bile acids. Int. Arch. 
Allergy Immunol. doi:10.1159/000366100. 

Smit, S., M.J. van Breemen, H.C.J. Hoefsloot, A.K. Smilde, J.M.F.G. Aerts, and C.G. de 
Koster. 2007. Assessing the statistical validity of proteomics based biomarkers. Anal. 
Chim. Acta. doi:10.1016/j.aca.2007.04.043. 

Sordillo, L.M. 2005. Factors affecting mammary gland immunity and mastitis 
susceptibility. Page in Livestock Production Science. 

Sordillo, L.M. 2018. Mammary Gland Immunobiology and Resistance to Mastitis. Vet. 
Clin. North Am. - Food Anim. Pract. doi:10.1016/j.cvfa.2018.07.005. 

Sordillo, L.M., and W. Raphael. 2013. Significance of metabolic stress, lipid mobilization, 
and inflammation on transition cow disorders. Vet. Clin. North Am. - Food Anim. 
Pract. doi:10.1016/j.cvfa.2013.03.002. 

Sordillo, L.M., and K.L. Streicher. 2002. Mammary gland immunity and mastitis 
susceptibility. J. Mammary Gland Biol. Neoplasia. doi:10.1023/A:1020347818725. 

Spagou, K., I.D. Wilson, P. Masson, G. Theodoridis, N. Raikos, M. Coen, E. Holmes, J.C. 
Lindon, R.S. Plumb, J.K. Nicholson, and E.J. Want. 2011. HILIC-UPLC-MS for 
exploratory urinary metabolic profiling in toxicological studies. Anal. Chem. 
doi:10.1021/ac102523q. 

Sun, H.Z., G. Plastow, and L.L. Guan. 2019. Invited review: Advances and challenges in 
application of feedomics to improve dairy cow production and health. J. Dairy Sci. 
doi:10.3168/jds.2018-16126. 

Sun, L.W., H.Y. Zhang, L. Wu, S. Shu, C. Xia, C. Xu, and J.S. Zheng. 2014. 1H-Nuclear 
magnetic resonance-based plasma metabolic profiling of dairy cows with clinical and 
subclinical ketosis. J. Dairy Sci. doi:10.3168/jds.2013-6757. 

Sundekilde, U.K., N.A. Poulsen, L.B. Larsen, and H.C. Bertram. 2013. Nuclear magnetic 
resonance metabonomics reveals strong association between milk metabolites and 
somatic cell count in bovine milk. J. Dairy Sci. doi:10.3168/jds.2012-5819. 

Sundrum, A. 2015. Metabolic disorders in the transition period indicate that the dairy cows’ 
ability to adapt is overstressed. Animals. doi:10.3390/ani5040395. 

Suojala, L., L. Kaartinen, and S. Pyörälä. 2013. Treatment for bovine Escherichia coli 
mastitis - an evidence-based approach. J. Vet. Pharmacol. Ther. 
doi:10.1111/jvp.12057. 

Svendsen, M., and B. Heringstad. 2006. Somatic cell count as an indicator of sub-clinical 
mastitis. Genetic parameters and correlations with clinical mastitis. Interbull Bull. 

Szymańska, E., E. Saccenti, A.K. Smilde, and J.A. Westerhuis. 2012. Double-check: 
Validation of diagnostic statistics for PLS-DA models in metabolomics studies. 
Metabolomics. doi:10.1007/s11306-011-0330-3. 



68 
 

Takis, P.G., V. Ghini, L. Tenori, P. Turano, and C. Luchinat. 2019. Uniqueness of the 
NMR approach to metabolomics. TrAC - Trends Anal. Chem. 
doi:10.1016/j.trac.2018.10.036. 

Tarsillo, B., and R. Priefer. 2020. Proteobiotics as a new antimicrobial therapy. Microb. 
Pathog. doi:10.1016/j.micpath.2020.104093. 

Thammavongsa, V., H.K. Kim, D. Missiakas, and O. Schneewind. 2015. Staphylococcal 
manipulation of host immune responses. Nat. Rev. Microbiol. 
doi:10.1038/nrmicro3521. 

Theodoridis, G.A., H.G. Gika, E.J. Want, and I.D. Wilson. 2012. Liquid chromatography-
mass spectrometry based global metabolite profiling: A review. Anal. Chim. Acta. 
doi:10.1016/j.aca.2011.09.042. 

Thomas, F.C., M. Mudaliar, R. Tassi, T.N. McNeilly, R. Burchmore, K. Burgess, P. 
Herzyk, R.N. Zadoks, and P.D. Eckersall. 2016. Mastitomics, the integrated omics of 
bovine milk in an experimental model of: Streptococcus uberis mastitis: 3. Untargeted 
metabolomics. Mol. Biosyst. doi:10.1039/c6mb00289g. 

Thompson-Crispi, K.A., F. Miglior, and B.A. Mallard. 2013. Incidence rates of clinical 
mastitis among Canadian holsteins classified as high, average, or low immune 
responders. Clin. Vaccine Immunol. doi:10.1128/CVI.00494-12. 

Tremblay, Y.D.N., D. Lamarche, P. Chever, D. Haine, S. Messier, and M. Jacques. 2013. 
Characterization of the ability of coagulase-negative staphylococci isolated from the 
milk of Canadian farms to form biofilms. J. Dairy Sci. doi:10.3168/jds.2012-5795. 

Trivedi, D.K., and R.K. Iles. 2014. Do not just do it, do it right: Urinary metabolomics -
establishing clinically relevant baselines. Biomed. Chromatogr. 
doi:10.1002/bmc.3219. 

Trygg, J., E. Holmes, and T. Lundstedt. 2007. Chemometrics in metabonomics. J. 
Proteome Res. doi:10.1021/pr060594q. 

Trygg, J., and S. Wold. 2002. Orthogonal projections to latent structures (O-PLS). J. 
Chemom. doi:10.1002/cem.695. 

Urioste, J.I., J. Franzén, J.J. Windig, and E. Strandberg. 2012. Genetic relationships among 
mastitis and alternative somatic cell count traits in the first 3 lactations of Swedish 
Holsteins. J. Dairy Sci. doi:10.3168/jds.2011-4739. 

do Vale, A., D. Cabanes, and S. Sousa. 2016. Bacterial toxins as pathogen weapons against 
phagocytes. Front. Microbiol. doi:10.3389/fmicb.2016.00042. 

Verbeke, J., S. Piepers, K. Supré, and S. De Vliegher. 2014. Pathogen-specific incidence 
rate of clinical mastitis in Flemish dairy herds, severity, and association with herd 
hygiene. J. Dairy Sci. doi:10.3168/jds.2014-8173. 

Viguier, C., S. Arora, N. Gilmartin, K. Welbeck, and R. O’Kennedy. 2009. Mastitis 
detection: current trends and future perspectives. Trends Biotechnol. 
doi:10.1016/j.tibtech.2009.05.004. 



69 
 

Vissio, C., S.A. Dieser, H.L. Agnelli, L.M. Odierno, and A.J. Larriestra. 2014. Accuracy 
of the composite somatic cell count to detect intra-mammary infection in dairy cows 
using latent class analysis. Prev. Vet. Med. doi:10.1016/j.prevetmed.2013.11.016. 

De Vliegher, S., I. Ohnstad, and S. Piepers. 2018. Management and prevention of mastitis: 
A multifactorial approach with a focus on milking, bedding and data-management. J. 
Integr. Agric. doi:10.1016/S2095-3119(17)61893-8. 

De Vries, A. 2017. Economic trade-offs between genetic improvement and longevity in 
dairy cattle. J. Dairy Sci. doi:10.3168/jds.2016-11847. 

Watts, J.L. 1988. Etiological agents of bovine mastitis. Vet. Microbiol. 16:41–66. 
doi:10.1016/0378-1135(88)90126-5. 

Welderufael, B.G., P. Løvendahl, D.J. de Koning, L.L.G. Janss, and W.F. Fikse. 2018. 
Genome-wide association study for susceptibility to and recoverability from mastitis 
in Danish Holstein cows. Front. Genet. doi:10.3389/fgene.2018.00141. 

Wellnitz, O., and R.M. Bruckmaier. 2012. The innate immune response of the bovine 
mammary gland to bacterial infection. Vet. J. doi:10.1016/j.tvjl.2011.09.013. 

Westerhuis, J.A., H.C.J. Hoefsloot, S. Smit, D.J. Vis, A.K. Smilde, E.J.J. Velzen, J.P.M. 
Duijnhoven, and F.A. Dorsten. 2008. Assessment of PLSDA cross validation. 
Metabolomics. doi:10.1007/s11306-007-0099-6. 

Wiersinga, W.J., S.J. Leopold, D.R. Cranendonk, and T. van der Poll. 2014. Host innate 
immune responses to sepsis. Virulence. doi:10.4161/viru.25436. 

Wishart, D.S. 2010. Computational approaches to metabolomics. Methods Mol. Biol. 
doi:10.1007/978-1-60327-194-3_14. 

Wishart, D.S. 2013. Characterization of biopharmaceuticals by NMR spectroscopy. TrAC 
- Trends Anal. Chem. doi:10.1016/j.trac.2013.03.009. 

Wishart, D.S. 2019. NMR metabolomics: A look ahead. J. Magn. Reson. 
doi:10.1016/j.jmr.2019.07.013. 

Wishart, D.S., Y.D. Feunang, A. Marcu, A.C. Guo, K. Liang, R. Vázquez-Fresno, T. Sajed, 
D. Johnson, C. Li, N. Karu, Z. Sayeeda, E. Lo, N. Assempour, M. Berjanskii, S. 
Singhal, D. Arndt, Y. Liang, H. Badran, J. Grant, A. Serra-Cayuela, Y. Liu, R. 
Mandal, V. Neveu, A. Pon, C. Knox, M. Wilson, C. Manach, and A. Scalbert. 2018. 
HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 
doi:10.1093/nar/gkx1089. 

Wishart, D.S., J. Godzien, A. Gil-de-la-Fuente, R. Mandal, R. Rajabzadeh, H. 
Pirimoghadam, C. Ladner-Keay, A. Otero, and C. Barbas. 2020. Chapter 3. 
Metabolomics. R. Winkler, ed. The Royal Society of Chemistry. 

Wishart, D.S., D. Tzur, C. Knox, R. Eisner, A.C. Guo, N. Young, D. Cheng, K. Jewell, D. 
Arndt, S. Sawhney, C. Fung, L. Nikolai, M. Lewis, M.A. Coutouly, I. Forsythe, P. 
Tang, S. Shrivastava, K. Jeroncic, P. Stothard, G. Amegbey, D. Block, D.D. Hau, J. 
Wagner, J. Miniaci, M. Clements, M. Gebremedhin, N. Guo, Y. Zhang, G.E. Duggan, 



70 
 

G.D. MacInnis, A.M. Weljie, R. Dowlatabadi, F. Bamforth, D. Clive, R. Greiner, L. 
Li, T. Marrie, B.D. Sykes, H.J. Vogel, and L. Querengesser. 2007. HMDB: The 
human metabolome database. Nucleic Acids Res. doi:10.1093/nar/gkl923. 

Wood, M. 2019. High-resolution mass spectrometry: An emerging analytical method for 
drug testing. 

Worley, B., S. Halouska, and R. Powers. 2013. Utilities for quantifying separation in 
PCA/PLS-DA scores plots. Anal. Biochem. doi:10.1016/j.ab.2012.10.011. 

Xi, B., H. Gu, H. Baniasadi, and D. Raftery. 2014. Statistical analysis and modeling of 
mass spectrometry-based metabolomics data. Methods Mol. Biol. doi:10.1007/978-1-
4939-1258-2_22. 

Xia, J., D.I. Broadhurst, M. Wilson, and D.S. Wishart. 2013. Translational biomarker 
discovery in clinical metabolomics: An introductory tutorial. Metabolomics. 
doi:10.1007/s11306-012-0482-9. 

Xia, J., I. V. Sinelnikov, B. Han, and D.S. Wishart. 2015. MetaboAnalyst 3.0-making 
metabolomics more meaningful. Nucleic Acids Res. 43:W251–W257. 
doi:10.1093/nar/gkv380. 

Xu, C., S. Shu, C. Xia, P. Wang, Y. Sun, C. Xu, and C. Li. 2015. Mass spectral analysis of 
urine proteomic profiles of dairy cows suffering from clinical ketosis. Vet. Q. 
doi:10.1080/01652176.2015.1055352. 

Yi, L., N. Dong, Y. Yun, B. Deng, D. Ren, S. Liu, and Y. Liang. 2016. Chemometric 
methods in data processing of mass spectrometry-based metabolomics: A review. 
Anal. Chim. Acta. doi:10.1016/j.aca.2016.02.001. 

Yoon, H., D. Yoon, M. Yun, J.S. Choi, V.Y. Park, E.K. Kim, J. Jeong, J.S. Koo, J.H. Yoon, 
H.J. Moon, S. Kim, and M.J. Kim. 2016. Metabolomics of breast cancer using high-
resolution magic angle spinning magnetic resonance spectroscopy: Correlations with 
18f-fdg positron emission tomography-computed tomography, dynamic contrast-
enhanced and diffusion-weighted imaging mri. PLoS One. 
doi:10.1371/journal.pone.0159949. 

Zadoks, R.N., H.G. Allore, H.W. Barkema, O.C. Sampimon, G.J. Wellenberg, Y.T. Gröhn, 
and Y.H. Schukken. 2001. Cow- and quarter-level risk factors for Streptococcus 
uberis and Staphylococcus aureus mastitis. J. Dairy Sci. doi:10.3168/jds.S0022-
0302(01)74719-4. 

Zadoks, R.N., J.R. Middleton, S. McDougall, J. Katholm, and Y.H. Schukken. 2011. 
Molecular epidemiology of mastitis pathogens of dairy cattle and comparative 
relevance to humans. J. Mammary Gland Biol. Neoplasia. doi:10.1007/s10911-011-
9236-y. 

Zandkarimi, F., J. Vanegas, X. Fern, C.S. Maier, and G. Bobe. 2018. Metabotypes with 
elevated protein and lipid catabolism and inflammation precede clinical mastitis in 
prepartal transition dairy cows. J. Dairy Sci. doi:10.3168/jds.2017-13977. 

Zarrin, M., O. Wellnitz, H.A. van Dorland, and R.M. Bruckmaier. 2014. Induced 



71 
 

hyperketonemia affects the mammary immune response during lipopolysaccharide 
challenge in dairy cows. J. Dairy Sci. doi:10.3168/jds.2013-7222. 

Zebeli, Q., S.M. Dunn, and B.N. Ametaj. 2011. Perturbations of plasma metabolites 
correlated with the rise of rumen endotoxin in dairy cows fed diets rich in easily 
degradable carbohydrates. J. Dairy Sci. doi:10.3168/jds.2010-3860. 

Zhang, B., W. Xie, and M.D. Krasowski. 2008. PXR: A xenobiotic receptor of diverse 
function implicated in pharmacogenetics. Pharmacogenomics. 
doi:10.2217/14622416.9.11.1695. 

Zhang, G., Q. Deng, R. Mandal, D.S. Wishart, and B.N. Ametaj. 2017a. DI/LC-MS/MS-
based metabolic profiling for identification of early predictive serum biomarkers of 
metritis in transition dairy cows. J. Agric. Food Chem. 65:8510–8521. 
doi:10.1021/acs.jafc.7b02000. 

Zhang, G., E. Dervishi, and B.N. Ametaj. 2018. Milk fever in dairy cows is preceded by 
activation of innate immunity and alterations in carbohydrate metabolism prior to 
disease occurrence. Res. Vet. Sci. doi:10.1016/j.rvsc.2017.12.008. 

Zhang, G., E. Dervishi, S.M. Dunn, R. Mandal, P. Liu, B. Han, D.S. Wishart, and B.N. 
Ametaj. 2017b. Metabotyping reveals distinct metabolic alterations in ketotic cows 
and identifies early predictive serum biomarkers for the risk of disease. Metabolomics. 
doi:10.1007/s11306-017-1180-4. 

Zhang, G., E. Dervishi, G. Zwierzchowski, R. Mandal, D.S. Wishart, and B.N. Ametaj. 
2020. Urinary metabolomics around parturition identifies metabolite alterations in 
dairy cows affected postpartum by lameness: Preliminary study. Dairy. 
doi:10.3390/dairy1010002. 

Zhang, G., D. Hailemariam, E. Dervishi, Q. Deng, S.A. Goldansaz, S.M. Dunn, and B.N. 
Ametaj. 2015. Alterations of innate immunity reactants in transition dairy cows before 
clinical signs of lameness. Animals. doi:10.3390/ani5030381. 

Zhang, G., D. Hailemariam, E. Dervishi, S.A. Goldansaz, Q. Deng, S.M. Dunn, and B.N. 
Ametaj. 2016. Dairy cows affected by ketosis show alterations in innate immunity 
and lipid and carbohydrate metabolism during the dry off period and postpartum. Res. 
Vet. Sci. doi:10.1016/j.rvsc.2016.06.012. 

Zhao, X., and P. Lacasse. 2008. Mammary tissue damage during bovine mastitis: causes 
and control. J. Anim. Sci. doi:10.2527/jas.2007-0302. 

Zheng, J., L. Sun, S. Shu, K. Zhu, C. Xu, J. Wang, and H. Wang. 2016. Nuclear magnetic 
resonance-based serum metabolic profiling of dairy cows with footrot. J. Vet. Med. 
Sci. doi:10.1292/jvms.15-0720. 

Zhou, J., and Y. Yin. 2016. Strategies for large-scale targeted metabolomics quantification 
by liquid chromatography-mass spectrometry. Analyst. doi:10.1039/c6an01753c. 

Zubarev, R.A., and A. Makarov. 2013. Orbitrap mass spectrometry. Anal. Chem. 
doi:10.1021/ac4001223. 



72 
 

Zwierzchowski, G., G. Zhang, R. Mandal, D.S. Wishart, and B.N. Ametaj. 2020a. Mass-
spec-based urinary metabotyping around parturition identifies screening biomarkers 
for subclinical mastitis in dairy cows. Res. Vet. Sci. doi:10.1016/j.rvsc.2020.01.001. 

Zwierzchowski, G., G. Zhang, R. Mandal, D.S. Wishart, and B.N. Ametaj. 2020b. Milk 
metabotyping identifies metabolite alterations in the whole raw milk of dairy cows 
with lameness. J. Agric. Food Chem. doi:10.1021/acs.jafc.9b08312. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



73 
 

Table 1.1. Classification of mastitis pathogens Adapted from Constable et al. (2017). 

Contagious  Environmental Opportunistic 
Staphylococcus aureus Escherichia coli Non-aureus Staphylococci: 
Streptococcus agalactiae  Streptococcus uberis Staphylococcus simulans 
Corynebacterium bovis Streptococcus dysgalactiae Staphylococcus chromogens 
Mycoplasma spp Klebsiella spp  

Corynebacterium pyogenes 
 

 
Table 1.2. A comparison between NMR and MS instruments (Adapted from Wishart, 
2019). 
 NMR MS 

Advantages 
 
 
 

Non-destructive; highly 
reproducible; simple sample 
preparation; no chemical 
derivatization; inherently 
quantitative; robust 
instrument 

High sensitivity (nM); huge 
metabolite coverage; 
moderately expensive 
instrument and care; many 
software resources 

Disadvantages 

Low sensitivity (μM); 
moderate metabolite 
coverage; expensive 
instrument and maintenance; 
few software resources 

Sample destruction; moderate 
reproducibility; complex sample 
preparation; frequent chemical 
derivatization; not inherently 
quantitative; delicate instrument 
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Figure 1.1 Schematic presentation of mastitis pathogenesis.    
Typically, (1) once bacteria invade the teat canal and penetrate into the udder, a local 
immune response starts mounting from the host; (2) Bacterial by products like outer 
membrane vesicles (OMV) of Gram-negative pathogens act as pathogen-associated 
molecular patterns (PAMP), which are recognized by host pathogen recognition receptors 
(PRR), specifically toll-like receptor 4 (TLR4) on macrophage type 1 (M1). After this 
contact, (3) proinflammatory cytokines (i.e., IL1, IL6, TNF) and chemokines (IL8) are 
released that alert or attract other immune cells, mainly polymorphonuclear (PMN) 
leuckocytes, to move to the site of infection. (4) Once PMN extravasate from blood vessels 
have entered in the infected area through mammary epithelila cells (MEC), (5) they 
encounter, engulf, and kill pathogenic bacteria (i.e., Escherichia coli or Staphylococccus 
aureus) through phagoctysis. If inflammation persists, (6) then adaptive immunity is 
activated via the interaction of macrophages and lymphocytes, like T-cells.  
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Figure 1.2 Presence of somatic cells in healthy and infected quarters of a dairy cow.   
A milk sample drawn from the healthy [<200,000 somatic cell count (SCC)/mL of milk] 
left side of the gland cistern (or sinus) of the mammary gland shows a mixture of immune 
cells (plus epithelail cells) dominated by macrophages and followed by a small proportion 
of lymphocytes, neutrophils, and epithelial cells. Whereas, a similar sample from the 
infected (>200,000 SCC/mL of milk) right quarter (clinical or subclinical mastitis) shows 
presence of pathogenic Staphyloccoccus aureus and immune cells dominated by with 
neutrophils as well as a few macrophages, lymphocytes, and epithilail cells.  
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Figure 1.3 Comparison of the two most used tests to detect presence of infection in the 
udder of dairy cows. CMT (California Mastitis Test) kit [image courtesy of ImmuCell 
(U.S.A)] is a diagnostic tool that helps to quickly diagnose subclinical mastitis in dairy 
cows. The reagents of this test trigger a visible reaction (gel formation) when SCC is 
400,000 SCC/mL of milk. The degree of gel creation indicates the severity of mastitis. 
Fossomatic 7 [image courtesy of FOSS (Denmark)] is used by central labs to measure 
somatic cells in raw milk in a few seconds. The principle of work is based on detection of 
fluorescence signals from milk cells through sensitive sensors and an incubation unit that 
are able to detect differential somatic cell count (DSCC) and SCC. DSCC is a new variable 
for mastitis monitoring that represents proportion of two cell populations (neutrophils and 
lymphocytes) in percentage. 

 

 

 

 

https://immucell.com/wp-content/uploads/2016/03/ICCC-CMT-Test-Kit2.jpg
https://www.fossanalytics.com/en/products/fossomatic-7
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Figure 1.4 Original photograph of LC and MS instruments used to perform the FIA/LC-
MS/MS analyses at The Metabolomics Innovation Centre (Edmonton, AB, Canada).  
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Chapter 2. Blood Metabolomic Phenotyping of Dry Cows Reveals Predictive 

Biomarkers for Susceptibility to Subclinical Mastitis 

 

2.1 Abstract 

Subclinical mastitis (SCM) is a very common pathology in postpartum dairy cows 

that negatively impacts milk yield and is associated with a high culling rate of affected 

cows. Early identification of susceptible cows can enable development of better preventive 

measurements ahead of disease occurrence. Currently, SCM is diagnosed through the 

measurement of somatic cell counts (SCC) in milk after calving. No screening tests are 

available to predict which cows may develop SCM during the dry-off period. Therefore, 

the objectives of this study were to identify metabolic alterations in the serum of pre-SCM 

cows during the dry-off period, at –8 and –4 wks before calving, through a targeted mass 

spectrometry (MS-based metabolomics assay). A total of 145 multiparous dairy cows were 

randomly selected for this nested case-control study during the drying-off period and were 

sampled and monitored for periparturient disease occurrence, both prepartum and 

postpartum. Fifteen cows, free of any disease, and 10 cows affected only by SCM 

postpartum served as controls (CON) and the SCM group, respectively. Cows affected by 

other diseases or SCM and at least one other disease were excluded from further evaluation. 

Results showed multiple metabolite alterations in the serum of pre-SCM cows, including 

several amino acids, lipids, acylcarnitines, organic acids, and glucose. Metabolic profiling 

of cows revealed a total of 59 and 47 metabolites that differentiated (P ≤ 0.05) CON and 

pre-SCM cows at –8 and –4 wks prior to the expected date of parturition, respectively. 

FDR adjusted P values showed 32 and 17 metabolites (q < 0.005) different at both weeks. 
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Regression analysis indicated that a panel of 4 serum metabolites including alanine, 

leucine, betaine, and ornithine (AUC = 0.92; P < 0.001) at –8 wks as well as alanine, 

pyruvate, methylmalonate, and lactate (AUC = 0.92, P < 0.01) at –4 wks prior to parturition 

might serve as predictive biomarkers for SCM. More research is needed to validate these 

two panels of metabolite biomarkers and the development of potential pen-side tests. 

 

2.2 Introduction   

Subclinical mastitis is the most common intramammary infection (IMI) of dairy 

cows. It poses a significant challenge for cow’s health and profitability of dairy farms 

(Thompson-Crispi et al., 2013; Ruegg and Petersson-Wolfe, 2018). Contagious bacteria 

such as Staphylococcus aureus, Streptococcus agalactiae, and environmental pathogens 

such as Escherichia coli are the primary cause of mammary gland infections (Zadoks et 

al., 2011; Dufour et al., 2019). Depending on the severity of the disease, this infection is 

classified as either clinical (CM) or subclinical mastitis (SCM) (Pinzón-Sánchez and 

Ruegg, 2011). As the name suggests, CM is the inflammation of the udder, associated with 

swelling, redness, and pain of the udder. Clinical mastitis also is associated with changes 

in milk yield and milk quality, while at the same time, cows experience systemic symptoms 

of the disease (Wilson et al., 1997; Kulkarni and Kaliwal, 2013). On the other hand, SCM 

is an asymptomatic infection mainly characterized by an influx of neutrophils in the 

mammary gland. Subclinical mastitis is detected only when somatic cell count (SCC) 

exceeds 200,000 cells per mL of milk (Schukken et al., 2003; Adkins and Middleton, 

2018).  
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Routinely, the most frequently used methods to identify SCM cows are the 

California Mastitis Test (CMT), Somatic Cell Count (SCC), and electrical conductivity 

(EC) tests which are normally attached to milking systems in the barn (Viguier et al., 2009; 

Khatun et al., 2017). According to most farmers, SCC is a good indicator of udder health 

control strategies (Dufour et al., 2011). Counting somatic cells in milk has been more 

successful because it shows better sensitivity and specificity than the other SCM diagnostic 

tests (Rossi et al., 2018). Counting somatic cells requires laboratory analysis, limiting its 

use as a real-time detection method. Furthermore, it is associated with higher costs per test 

(Labohm et al., 1998; Hillerton, 2000). It should be noted that there are no SCM tests 

available during the nonlactating (dry-off) period (Hurley and Theil, 2011).  

It is important to mention that in a previous study conducted by our lab, dry-off 

cows were found to be in a state of low-grade chronic inflammation during both –8 and –

4 wks prepartum (Dervishi et al., 2015; Rollin et al., 2015). The potential reason for the 

chronic low-grade inflammatory state might be translocation of pathogenic bacteria, 

presence of bacterial endotoxins, or transport of proinflammatory cytokines from the sub-

clinically infected udder to the systemic circulation (Eckel and Ametaj, 2016). Thus, the 

need to monitor cows during the dry-off period to identify cows at risk of SCM, is critical 

in developing preventative measures and better farm management strategies.  

The need for new pen-side tests for SCM becomes even more important given that 

higher value of SCC (>200,000/mL of milk) are generally related to development of CM 

postpartum, but also low SCC levels have been associated with severe cases of CM 

(Barkema et al., 1998; Djabri et al., 2002; Rainard et al., 2018). 
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Recent research conducted by our lab has provided considerable information about 

the metabolic events around calving, particularly during the dry-off period. Previous 

experiments have also identified panels of metabolites in blood, urine, and milk that can 

be used as predictive biomarkers for the risk of developing several periparturient diseases 

(Hailemariam et al., 2014b, 2018; Dervishi et al., 2017, 2018b; a, 2020; Zhang et al., 2017b; 

c; a, 2020b; Zwierzchowski et al., 2020a). Moreover, other studies have reported data 

relating several milk metabolites including acetate, lactate, hippurate, butyrate or 

isoleucine with high SCC (Melzer et al., 2013; Sundekilde et al., 2013). However, the scope 

of the later study has been to identify more diagnostic biomarkers rather than predictive 

biomarkers of SCM. In contrast, Martins et al. (2019) indicated that milk samples 

negatively influence SCM detection techniques, so they suggested using other biological 

fluids instead. Indeed, Dervishi et al. (2017) and Zandkarimi et al. (2018) identified altered 

metabolic pathways in the serum of multiparous dairy cows during the dry off period. 

According to Dervishi et al. (2017), the best metabolites for differentiating between healthy 

and pre-SCM cows were valine, serine, tyrosine, and phenylalanine. Those metabolites 

were higher in SCM cows at both –8 and –4 wks prior to parturition (Dervishi et al., 2017). 

Those data suggest that a serum metabolomics test could be used to predict cows at risk of 

developing SCM, prior to developing subclinical or clinical mastitis postpartum.  

Given that not all dairy cows are equally susceptible to mastitis (Ruegg, 2017; 

Welderufael et al., 2018), there is a need to develop a pen-side test with a panel of 

metabolites that can distinguish between cows that are more susceptible to developing 

mastitis from healthy controls. Our hypothesis is that serum metabolic changes might occur 

at the beginning (–8 wks) and in the middle (–4 wks) of the dry period in pre-subclinical 
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mastitis cows. We also hypothesized that a panel of screening biomarkers with high 

accuracy (high specificity and sensitivity) could be identified that that can be used in the 

future to develop reliable pen-side tests for predicting SCM. Therefore, the objectives of 

this study were to identify panels of serum metabolites in dairy cows, one at –8 wks and 

the other one at –4 wks prior to parturition that can determine, with high accuracy, the risk 

of cows to develop SCM postpartum during the dry-off period.  

 

2.3 Materials and Methods  

2.3.1    Animals, diets, and blood samples  

In this nested case-control study, a total of 145 multiparous cows were selected 

from which blood samples were collected from the coccygeal vein. Cows were selected 

from a commercial dairy farm in the province of Alberta, Canada. All experimental 

procedures were approved by the University of Alberta Animal Care and Use Committee 

for Livestock and conducted following the Canadian Council's guidelines on Animal Care 

(CCAC, 2009).  

           Cows were selected based on their expected date of calving. Sampling occurred at 

the beginning of the dry-off period and in the middle, respectively, at –8 wks (55-58 days) 

and –4 wks (27-30 days) before parturition. Blood samples were collected before the 

morning feed, between 07:00-08:00, using 10 mL vacutainer tubes (clot activator and 

serum separator tube; Becton Dickinson, Franklin Lakes, NJ). The blood samples were 

allowed to clot in ice. All metabolomic analyses were conducted at The Metabolomics 

Innovation Centre (University of Alberta, Edmonton, AB, Canada). Blood samples were 

centrifuged at 4,000 rpm for 15 minutes (Rotanta 460 R centrifuge, Hettich Zentrifugan, 
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Tuttlingen, Germany) to collect serum samples. The separated serum was aspirated into 

sterile tubes using a transfer pipette (Fisher Scientific, Toronto, ON, Canada). Two hundred 

μL of serum were transferred into aliquots and stored at –80 ̊C to be run later on LC-

MS/MS.  

Cows sampled prepartum presented various disease conditions including mastitis, 

metritis, retained placenta, laminitis, displaced abomasum, milk fever, and ketosis 

postpartum. Health records for the periparturient diseases were gathered from the farm’s 

database. Data was collected for the number of culled cows or those that were removed by 

the veterinarian's decision. Positive SCM cases were considered only for those cows having 

two or more consecutive weeks with milk SCC equal to or higher than 200,000 cells/mL. 

By this judgement, 15 dairy cows were considered healthy (CON), whereas only 10 cows 

were free of other diseases and had SCC levels classified as pre-SCM. Body condition 

score (BCS) was measured for both groups during the sampling weeks. The feed 

ingredients, on a dry matter basis, offered to cows pre- and post-partum is presented in 

Table 2.1 and 2.2.  

 

2.3.2 FIA/LC - MS/MS compound identification and quantification  

2.3.2.1 Sample preparation  

Samples were thawed on ice and vortexed before analysis. For the analysis of 

biogenic amines, amino acids, lipids, acylcarnitines, and glucose, 10 μL each of flow 

injection analysis (FIA) running buffer and LC internal standards (ISTD) were loaded into 

a 96-well filter plate, except for the first well, which acted as a double blank. From the 2nd 

to the 14th well of the filter plate, three phosphate-buffer saline (PBS) "zero-point" control 
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samples, seven calibration curve standards and three quality control samples (QC) were 

added. Thawed serum samples were then added to the remaining wells. For samples and 

standards, a total of 10 μL was added to the respective wells. The plate was then incubated 

and dried under a flow of nitrogen [Zanntek Analytical Evaporator (Glas-Col, Terre Haute, 

IN, USA)] for 30 min. After being dried, 50 μL of 5 % phenylisothiocyanate (PITC) 

solution was added to each well, and the plate was incubated at room temperature for 20 

min. The plate was then dried again for 90 minutes under a flow of nitrogen. Extraction of 

the metabolites was accomplished by adding 300 μL methanol, containing 5 mM 

ammonium acetate. The plate was then placed on a shaker, shaking at 330 rpm for 30 min 

and then centrifuged for 5 min at 500 rpm (50 x g), [Sorvall Evolution RC Superspeed 

Centrifuge (Fisher Scientific, Toronto, ON, Canada)], into the lower 96 deep-well plate. 

For the analysis of amino acids and biogenic amines, the extract was diluted with water 

1:1, and 10 μL was injected into the column. For the analysis of acylcarnitines, lipids, and 

glucose, 150 μL of the extract was diluted with 400 μL of FIA running buffer, and 20 μL 

was injected in the column.  

Protein precipitation was first conducted for the analysis of organic acids. In 1.5 

mL Eppendorf tubes, 10 μL of an internal standard (ISTD) mixture solution, 50 μL of the 

samples (three phosphate-buffered saline [PBS] blank samples, seven calibration 

standards, three quality control samples and serum samples) and 150 μL ice-cold methanol 

were added. 3:1 methanol: water was used in place of methanol for the blanks, calibration 

standards, and quality control (QC) samples. Tubes then were vortexed and placed at -20 ̊C 

overnight. Samples were centrifuged at 13,000 rpm for 15 min before use. Following 

centrifugation, 50 μL of the samples were pipetted into the 96-deep well plate's wells. 
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Twenty-five microliters of each of the following three solutions: 1) 3-nitrophenylhydrazine 

(250 mM in 50 % aqueous methanol), 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide 

(150 mM in methanol) and pyridine (7.5% in 75% aqueous methanol) were added to each 

well. The whole plate was then shaken at 450 rpm (41 x g) for 2 h at room temperature to 

complete the derivatization reaction. After the reaction, 350 μL of water and 50 μL MeOH 

were added to each well to dilute and stabilize the solution for LC-MS/MS analysis. 

 

2.3.2.2 FIA/LC – MS/MS method 

Identification of metabolites in serum samples was done through a targeted 

metabolomics approach using a TMIC Prime kit in Agilent 1100 series liquid 

chromatographic system (LC) (Agilent, Palo Alto, CA, USA) equipped with an Agilent 

reversed-phase Zorbax Eclipse XDB C18 column (3.0 mm × 100 mm, 3.5 μM particle size, 

80 Å pore size) with a Phenomenex (Torrance, CA, USA) SecurityGuard C18 pre-column 

(4.0 mm × 3.0 mm) coupled with AB SCIEX QTRAP® 4000 mass spectrometer (Sciex 

Canada, Concord, ON, Canada). LC/MS grade formic acid and HPLC grade water were 

purchased from Fisher Scientific (Ottawa, ON, Canada). Ammonium acetate, 

phenylisothiocyanate (PITC) and HPLC grade acetonitrile (ACN) were purchased from 

Sigma-Aldrich (St. Louis, MO, USA). The LC-MS assay workflow was controlled through 

the Analyst® 1.6.2 software (Sciex Canada, Concord, ON, Canada). 

The LC parameters used to analyze amino acids and biogenic amines were as 

follows: mobile phase A 0.2% (v/v) formic acid in water, and mobile phase B 0.2% (v/v) 

formic acid in acetonitrile. The gradient profile was as follows: t = 0 min, 0% B; t = 0.5 
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min, 0% B; t = 5.5 min, 95% B; t = 6.5 min, 95% B; t = 7.0 min, 0% B; and t = 9.5 min, 

0% B. The column oven was set at 50 °C. The flow rate was 500 μL/min, and the sample 

injection volume was 10 μL. 

For the analysis of organic acids by LC-MS/MS, the solvents used were (A) 0.01% 

(v/v) formic acid in water and (B) 0.01% (v/v) formic acid in methanol. The column oven 

temperature was set to 40 °C. The flow rate was 300 μL/min, and the sample injection 

volume was 10 μL. The mass spectrometer was assigned to a negative electrospray 

ionization mode with scheduled MRM scanning. 

 

2.3.3.   Statistical analysis 

Univariate analyses were conducted using Wilcoxon rank-sum test from the 

emmeans package in R (v4.0.2) with a significance level of P ≤ 0.05. The adjusted P values 

were performed using the false discovery rate (FDR) method and a value of q < 0.005. 

Multivariate statistical and biomarker analyses were run using MetaboAnalyst (v4.0) 

following specific guidelines described in reference protocols (Xia et al., 2009; Chong et 

al., 2019). Data normalization of all metabolite concentrations was done using data 

transformation and scaling options to create a Gaussian distribution (a bell-shaped curve). 

Metabolites with >50% of missing values were removed from further analysis. Half of the 

minimum concentration value was imputed in those with <50% of missing values.  

To perform a standard cross-sectional 2-group analysis, we compared healthy cows 

(CON) and the pre-SCM group at each time point, –8 wks and –4 wks prepartum. 

Multivariate statistical analyses, such as principal component analysis (PCA) and partial 

least-squares–discriminant analysis (PLS-DA) were conducted via MetaboAnalyst (v4.0). 
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Metabolic pathway analysis and identification of biomarker profiles were also performed 

following Chong et al.'s (2019) guidelines with MetaboAnalyst. PCA and PLS-DA were 

used to distinguish the CON and SCM cows using Score plots. Model validation was 

carried out using a cross-validation test, and a 2000 set permutation test was implemented 

to validate the reliability of the model (Xia and Wishart, 2011). In addition, the most 

influential compounds were ranked using Variable Importance in Projection (VIP) 

plots. Metabolites with P < 0.05 and VIP scores > 1 were the most discriminatory between 

the groups. 

Metabolite set enrichment analysis (MSEA) was used to identify perturbed 

metabolic pathways, as implemented in MetaboAnalyst (v4.0). Metabolite sets obtained 

from quantitative enrichment pathway analysis were considered statistically significant if 

the Holm corrected P value was < 0.05. The quality of the biomarker sets was determined 

using the receiver-operating characteristic (ROC) curve as generated by Monte-Carlo 

cross-validation (MCCV). ROC curves are often assessed using a single metric known as 

the area under the ROC curve (AUROC), which indicates a test's accuracy for correctly 

distinguishing one group from another, such as pre-SCM cows from CON cows. A general 

guide for assessing the utility of a biomarker set based on its AUROC is: 0.9~1.0 = 

excellent; 0.8~0.9 = good; 0.7~0.8 = fair; 0.6~0.7 = poor; 0.5~0.6 = fail (Xia et al., 2015). 

Supervised classification method, such as Support Vector Machine (SVM) and logistic 

regression analyses for several significant metabolites were also performed to train the 

model.  
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2.4 Results  

Cows were selected based on the development of SCM postpartum. The distinction 

between pre-SCM and CON was made possible by measuring SCC postpartum in the milk.  

We grouped cows into those that presented SCM against the CON group (Tables 2.3, 2.4). 

A cut-off value of > 200,000 SCC/mL of milk is a good indicator of an infected udder and 

for the diagnosis of SCM (Sargeant et al., 2001; Schukken et al., 2003). Of the recorded 

data, just 10 cows were diagnosed to be affected by subclinical mastitis only (SCM, n=10); 

free of other diseases, and 15 cows that were ascertained to be completely free of 

periparturient diseases (CON, n=15). Control and pre-SCM cows had an average BCS of 

3.78 and 3.95 and 3.70 and 3.92 at –8 and –4 wks, respectively. In this study, a total of 126 

metabolites were identified and quantified by FIA/LC-MS/MS from the samples collected 

prior to disease diagnosis. From this set, we found 59 metabolites at –8 wks and 47 

metabolites at 4 wks prepartum that were different between the two groups (P ≤ 0.05). On 

the other hand, FDR adjusted P values (q < 0.005) showed 36 metabolites to be different 

at –8 wks and 17 compounds at –4 wks. 

The univariate mean ± SEM concentration values, P values, and direction of change 

of these metabolites are provided in respective tables (Tables 2.3, 2.4), for both –8 and at 

–4 wks prepartum. Multivariate analysis, using both PCA and PLS-DA, showed a clear 

separation between pre-SCM (n=10) vs CON (n=15) with respect to serum metabolites, at 

–8 wks prior to calving (Figures 2.1a, 2.1b). The VIP plot (Figure 2.1.c), for the PLS-DA, 

ranks the top metabolites responsible for the differentiation between the two groups of 

cows, highlighting several glycerophospholipids and one sphingomyelin (SM), which were 

lower in the pre-SCM group than the CON group. At the same time, 4 metabolites, namely 
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leucine, phenylalanine, ornithine, and choline were found to be higher in pre-SCM cows. 

Permutation testing with 2000 repetitions yielded a P = 0.0075, which shows that the PLS-

DA separation was statistically significant.  

The top 5 metabolites found from the PLS-DA VIP plot showed an excellent 

performance in their respective ROC curve model (Figure 2.2a; AUC=1; 95% CI: 1-1; P = 

0.002). While overall, the multivariate exploratory analysis presented the best AUROC for 

the first 10 most important features with zero samples classified to the wrong group (Figure 

2b). In support of building a significant panel of biomarkers, we selected specific variables 

from the univariate analysis (Table 2.3, 2.4), the VIP plot (Figure 2.1c) and the metabolic 

pathways (Table 2.5) to build a default linear Support Vector Machine (SVM) model (AUC 

= 0.92; P = 0.001; Figure 2.2c) and a logistic regression model (AUC = 0.81; P = 0.05; 

Figure 2.2d). To prevent optimistic and over-fitting results, 10-fold cross-validation (CV) 

was used to evaluate performance of each model.  

Unsupervised multivariate analysis such as PCA managed to satisfactorily separate 

the two groups of cows at –4 wks before calving, whereas PLS-DA yielded excellent 

separation (Figure 2.3a; 2.3b). Figure 2.3c and 2.3d show those metabolites that had the 

most impact in separating these two groups. Among these, methylmalonate, 

trimethylamine N-oxide, lactate, pyruvate, and eight ACs were higher in the serum of those 

cows that eventually developed SCM. This time, we selected the top 25 important features 

from VIP to display other variables apart from several glycerophospholipids similar to –8 

wks group. Indeed, these new metabolites were able to differentiate between both classes, 

even during pathway analysis. For example, as seen on the VIP plot (Figure 2.3c), pyruvate 

and lactate were found to be higher in pre-SCM cows than CON cows at –4 weeks.  
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The top scoring metabolites from the PLS-DA contributed the most to the 

separation of clusters. In particular, PC aa 38:0, PC aa 40:0, C9, PC aa 36:0, and PC aa 

32:2 (Figure 2.3c), demonstrated excellent cluster separation between the –4 wks pre-SCM 

group and the CON group (Figure 2.4a; P = 0.001). In general, the best multivariate ROC 

curves, based on the cross-validation performance, were achieved from a model with 10 

features, which generated a zero-confusion matrix (Figure 2.4b). Specific metabolites 

(methylmalonate, lactate, pyruvate, and alanine) that showed outstanding performance 

throughout the analysis, produced two AUCs using two different algorithms, respectively, 

the default linear SVM model (AUC = 0.92; P = 0.01; Figure 2.4c) and logistic regression 

model (AUC = 0.81; P = 0.04; Figure 2.4c). 

Figure 2.5 displays the results of the quantitative enrichment analysis performed 

via MetaboAnalyst using various summary plots. At the same time, Table 2.5 presents the 

significant components of the metabolic pathways involved in the onset and progression of 

subclinical mastitis (Holm P ≤ 0.05). Metabolites involved in betaine, methionine, glycine, 

and serine metabolism were significantly higher in pre-SCM at –8 wks before parturition. 

Pathway analysis also indicated that up to 4 wks before parturition, other perturbed 

metabolic sets, such as Glucose-Alanine cycle and Seleno-Amino Acid metabolism were 

affected in cows susceptible to SCM.  

The most discriminatory metabolites between pre-SCM and CON at –8 wks (Figure 

2.1c) and at –4 wks (Figure 2.3c) were PCs and LPCs, which have small concentration 

compared to other metabolites in serum. The rationale for selecting the specific metabolites 

(Figure 2.2c,d; Figure 2.4c,d) for our predictive biomarker model is due to the fact that 
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these are more abundant and easily measured in a convenient pen-side test. However, a 

lab-based test could look at PCs and LPCs for high-throughput blood analysis.  

 

2.5 Discussion  

We hypothesized that cows affected postpartum by subclinical mastitis (SCM) 

might show serum metabolic changes starting from –8 and –4 wks prior to calving. If this 

is proved, a panel of serum biomarkers could be constructed for predicting SCM. Indeed, 

the results of this study indicated that multiple serum metabolites were altered between 

pre-SCM and CON cows during the two dry-off time-points measured. As a result, two 

specific metabolite panels were constructed. Given that cows were in a state of pre-SCM, 

it is assumed that systemic metabolite-changes were triggered from local immune 

responses in the mammary gland, to support the host in the fight against mammary 

infection. Our data showed that in pre-SCM cows, at –8 wks prepartum, there was a total 

of 10 PCs, 10 LPCs, 10 SMs, 6 ACs, 17 AAs, and 6 OAs that differentiated pre-SCM from 

the CON cows. At –4 wks prepartum, there was a total of 12 AAs, 3 OAs, 1 glucose/hexose, 

2 LPCs, 10 PCs, 6 SMs, and 13 ACs that differentiated healthy cows from the pre-SCM 

ones. Identifying and understanding these metabolic changes is essential to predict the risk 

of cows developing SCM at the earliest, prior to diagnosis of SCM infection.  

 

2.5.1    Serum lipid alterations and related metabolites in pre-SCM cows 

An important finding of the present study was the large number of PC species (10 

out of 10 identified and measured) that differentiated the pre-SCM cows from the healthy 
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ones. All serum PCs were lowered in pre-SCM versus CON cows. These PCs were mostly 

long-chain fatty acid species with C:32-C:40 carbon atoms. Most of the PCs found in the 

blood are produced in the liver and secreted as part of lipoprotein fractions. It should be 

noted that PCs, triacylglycerols (TAGs), and cholesterol are required for the assembly of 

the lipoprotein particles in the liver (Feingold and Grunfeld, 2000). If any of these three 

lipid components is suppressed, then lipoprotein synthesis is downregulated. Suppression 

of lipid secretion from the liver is associated with an accumulation of lipids in hepatocytes 

and the development of hepatic steatosis. Indeed, in a study conducted by Minuti et al. 

(2015), intramammary infusion of LPS was accompanied with systemic inflammation and 

accumulation of TAGs in the liver. Previously, we demonstrated that pre-SCM cows, 

starting from –8 wks and –4 wks prepartum, were in a state of chronic low-grade systemic 

inflammation (Dervishi et al., 2015). Phosphatidylcholines have been proven to have anti-

inflammatory activities, too (Jung et al., 2013). Given that concentrations of PCs in the 

blood were lowered in pre-SCM cows, this might support mounting of a low-grade 

inflammatory response in those cows and potentially predispose them to fatty liver.  

Alterations in ACs were found at both time points in the study. Many of the short 

and mid-chain ACs were increased both at –8 wks and –4 wks prepartum in pre-SCM cows, 

whereas several of the long-chain ACs were lowered in the serum of pre-SCM cows. 

Acylcarnitines function as carriers of fatty acyl-CoA from the cytosol into the mitochondria 

(McFadden, 2020). Incomplete fatty acid oxidation leads to the accumulation of ACs in 

the cytosol. Acylcarnitines are considered biomarkers of lipid-induced mitochondrial 

dysfunction (Schooneman et al., 2013). Altered AC levels have been reported in several 

human pathologies including obesity, diabetes, and cardiovascular disease (Li et al., 2019). 
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Moreover, high ACs are correlated with the increased presence of pro-inflammatory 

mediators such as TLR (toll-like receptor), TNF, and IL-8 (Interleukin) (Rutkowsky et al., 

2014). This is in line with our previously reported findings of increased blood ACs in pre-

ketotic and pre-metritic cows and the fact that those cows were in a state of chronic low-

grade inflammatory status, during the pre-calving period (Hailemariam et al., 2014a; Zhang 

et al., 2017a; b). These data suggest malfunctioning of mitochondrial β-oxidation 

associated with accumulation of ACs in the blood, which commonly are excreted from the 

kidneys out of the host.  

Multiple serum SM species were found downregulated at both –8 wks and –4 wks 

prepartum in pre-SCM cows. Sphingomyelins belong to a large class of bioactive lipids 

known as sphingolipids. They are essential and critical regulators of cell membrane and 

multiple activities including immunity, inflammation, cellular growth, proliferation, 

apoptosis, metabolism, and related pathologies (Hannun and Obeid, 2008). Sphingomyelin 

synthase is the enzyme that converts ceramide to sphingomyelin and a phosphocholine 

headgroup (Carroll et al., 2015). Most importantly, SMs have been shown to regulate 

neutrophil migration toward the infection site as well as the phagocytosis process. 

Sphingolipids have been associated with enhanced oxidative burst in neutrophils 

(Nakamura et al., 1994). Also, SM degradation to ceramide regulates neutrophil 

chemotaxis as well as superoxide generation and degranulation in the phagosome necessary 

for killing of pathogenic bacteria (Feldhaus et al., 2002; Sitrin et al., 2010). Ceramides also 

are precursors to sphingosine-1-phosphatase (S1P) which promotes neutrophil recruitment 

to the pro-inflammatory site. The higher chemotaxis of neutrophils is triggered by 

increasing concentrations of IL-8 and ICAM-1 expression in epithelial cells (MacEyka and 
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Spiegel, 2014). Considering that SMs were lower in pre-SCM cows in our study, it suggests 

that neutrophil migration and their killing capacity were impaired, increasing host 

susceptibility to infections.  

A total of 8 LPCs at –8 wks and 2 other LPCs at –4 wks were all downregulated in 

pre-SCM cows. The length of fatty acid attached to the LPC that were downregulated in 

pre-SCM cows included 14:0, 16:0, 16:1, 18:0, 18:1, 18:2, 26:0, 26:1, 28:0 and 28:1 at –8 

wks prepartum and 20:3 and 28:1 at –4 wks prepartum. The length of fatty acid attached to 

the LPC is very important for physiological functions of the LPC molecule as will be 

discussed below. It should be noted that plasma LPCs are catabolites of PC, which are 

produced by the action of secretory phospholipase A2 (sPLA2), after removal of a fatty 

acid (Fuchs and Schiller, 2012). Lysophosphatidylcholines in plasma are bound mainly to 

albumin and to a lesser extent to lipoproteins (Switzer and Eder, 1965). Yan et al. (2004), 

in a series of experiments with mice aiming at using LPC species as therapeutic 

intervention against sepsis induced by E. coli or cecal ligation and puncture (CLP), showed 

that 18:0 LPC only (authors tested several other species of LPC) was able to markedly 

enhance in vivo elimination of bacteria introduced by CLP or E. coli injection. 

Lysophosphatidylcholine also increased the in vitro bactericidal activity of neutrophils, 

which correlated with increased production of H2O2 in neutrophils that had ingested E. coli. 

Moreover, the same authors showed that 18:0 LPC effectively inhibited LPS-induced 

lethality and the release of TNF from neutrophils in response to LPS. Overall, it is obvious 

that LPCs play important roles in host protection against bacterial infection. Therefore, 

decreased concentrations of various species of LPCs might have negatively affected the 

mounting of an efficient host response to udder infection during the dry off period.  
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2.5.2    Serum amino acid changes in pre-SCM cows 

Branched-chain amino acids (BCAA; Leu, Ile, Val) were higher in the serum of 

pre-SCM vs CON ones. These data are in line with a previous study from our lab that 

showed elevated serum concentrations of these AAs prior to and during the occurrence of 

SCM (Dervishi et al., 2017). As reviewed by Calder (2006), BCAAs are essential for 

protein synthesis in immune cells. These amino acids support the production of cytokines, 

immunoglobulins, and acute phase proteins. They also help in the synthesis of Glu, an 

essential metabolite for the function of immune cells. Recently, it was reported that a high 

concentration of BCAAs contributes to the development of pro-inflammatory responses 

(Zhenyukh et al., 2017). High plasma BCAAs were shown to activate NF-kB and mTOR, 

oxidative stress, and aided in the migration of peripheral blood mononuclear cells (PBMC) 

(Zhenyukh et al., 2017). These authors reported a higher expression of CD40L and ICAM-

1 receptors, expressed on PBMCs that trigger their activation and migration into systemic 

circulation. This might explain the increased presence of somatic cells in the udder in pre-

SCM cows which are necessary to mount an immune response. Neutrophils were proven 

to have better phagocytic activity under supplementation with BCAA in both animal and 

human subjects (Nakamura et al., 2004). Adding dietary Leu or its metabolic by-product, 

beta-hydroxy-beta-methyl butyrate (HMB), to calves increased the killing capabilities of 

granulocytes and monocytes (Wójcik et al., 2020). Therefore, increased serum BCAAs 

might be beneficial to the host to mount a pro-inflammatory response.  

Arginine was increased at –8 wks in pre-SCM cows; however, there was no 

difference between the two groups of cows regarding the arginine level at –4 wks 

prepartum. Additionally, ornithine a by-product of arginine was elevated in the serum of 
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pre-SCM cows at both –8 and –4 wks prepartum. Arginine, besides its role in protein 

synthesis, is also the precursor for synthesis of urea, ornithine, nitric oxide (NO), 

polyamines, proline, creatine, glutamate, and agmatine (Reviewed by Satriano, 2004). 

Arginine is also involved in the process of inflammation. Two pathways of arginine 

metabolism related to inflammation have been described including its conversion to NO 

and its catabolism to urea and ornithine. Conversion of arginine to large amounts of NO is 

the early phase response to inflammatory insult. Nitric oxide is known for its antimicrobial 

activities towards certain pathogens (Stuehr and Nathan, 1989; De Groote and Fang, 1995). 

Additionally, conversion of arginine to ornithine and urea starts in a later phase of the 

inflammatory response that involves healing and repair activities (Satriano, 2004). Results 

of our study showed that ornithine was higher in pre-SCM cows at both –8 wks and –4 wks 

prepartum. It is known that ornithine is converted to polyamines (putrescine, spermidine, 

and spermine), which have proliferative activities and to proline, an important component 

of extracellular matrix. Putrescine, spermidine, and spermine are cationic molecules 

required for cell growth and homeostasis (Tabor and Tabor, 1983; Pegg et al., 2003). As 

we have already pointed out in our discussion, pre-SCM cows at –8 wks and –4 wks 

prepartum were found to be in a chronic low-grade inflammatory state (Dervishi et al., 

2015). The data from the current study are in line with that study showing increased 

arginine and ornithine, both playing roles during inflammatory conditions as 

proinflammatory compounds.   

 The concentration of alanine in the serum of pre-SCM cows was lowered at both 

time points in this study (at –8 wks and –4 wks) prepartum. Alanine is the second most 

abundant amino acid in the systemic circulation, after glutamine, which makes it very 
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accessible to immune cells (Matheson et al., 2015). Given that alanine is a glucogenic 

amino acid and given that pre-SCM cows potentially were in a state of chronic low-grade 

inflammatory state (Dervishi et al., 2015), it is possible that most of alanine in the systemic 

circulation is taken up by the liver and used to mount an acute phase response (Druml et 

al., 2001). In addition, alanine serves as a glucose precursor and provides the necessary 

energy for immune cells (Newsholme and Newsholme, 1989; Li et al., 2007). In dairy 

cows, it was reported the alanine release was enhanced in blood neutrophils (Garcia et al., 

2016). These PMN (polymorphonuclear) cells were isolated from early and mid-lactation 

cows and supplemented in vitro with amino acids. The authors observed changes in the 

expression of genes related to nutrient metabolism and lowered TNF in the media. Studies 

conducted by Ron-Harel et al. (2019) showed a large increase in the alanine transporters in 

naïve CD4+ T cells, during their activation process. The same authors also found that 

alanine is essential for protein synthesis during the first 24 h of T cell activation. Alanine 

also is very important for restimulation of memory CD8+ T cells and for dueling protein 

synthesis. Therefore, lowered concentrations of alanine in the systemic circulation might 

reflect extensive utilization of alanine by the liver and immune cells.  

 Besides the already discussed AAs, there were also several other metabolites 

including glycine, trans-hydroxyproline, aspartate and methionine-sulfoxide that were 

lowered at –8 wks prepartum in pre-SCM cows. Additionally, several other AAs and their 

catabolites were lowered in pre-SCM cows at –4 wks prepartum including isoleucine, 

aspartate, serine, proline, methionine, histidine, ornithine, lysine, methionine-sulfoxide, 

and acetyl-ornithine. The question is what would be the reason that these 12 serum AAs 

decreased in the systemic circulation in pre-SCM cows? In a review, Lang et al. (2007) 
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indicates that during chronic inflammatory conditions as, for example, during LPS-induced 

inflammation or sepsis there is a significant decrease in the synthesis of proteins in the 

muscle and decreased muscle mass. Besides, there is a decrease in the plasma concentration 

of most AAs as well as a reduction of AAs from the systemic circulation (Druml et al., 

2001). Hasselgren and Fischer, (1999) in their review article indicated that inflammatory 

mediators and particularly TNF increase proteolysis of skeletal muscle and stimulate the 

uptake of AAs by the liver. Overall, the lower serum AAs in pre-SCM cows might be 

related to presence of chronic low-grade inflammatory state in those cows and the potential 

negative impact of proinflammatory cytokines on muscle protein synthesis and their use 

for mounting of an acute phase response.  

 

2.5.3    Alterations in blood methyl-donor compounds 

The concentration of choline in the serum of pre-SCM cows was higher than the 

CON counterparts at –8 wks prepartum only. There were no differences between the pre-

SCM cows and CON cows with regard to choline concentrations at –4 wks prepartum. 

Choline is an essential nutrient that is obtained mainly from the diet but can be synthesized 

also by the liver via the phosphatidylethanolamine N-methyltransferase (PEMT) pathway 

(Zeisel and Blusztajn, 1994; Reo et al., 2002). Choline has multiple functions including 

serving as a methyl donor in the one-carbon metabolism important in methylation of DNA, 

RNA, and proteins (Finkelstein, 1990). There is mounting evidence pinpointing an 

important role of choline in regulation of immune functions. Indeed, a study conducted by 

Garcia et al., (2018) reported that the phagocytic and killing capacity of neutrophils in vitro 

decreased with rising doses of choline. On the other hand, the proliferation of lymphocytes 
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was increased linearly with the increased dose of choline in the medium. The same authors 

also reported that, increasing doses of choline in the medium increased expression of genes 

involved in the synthesis of choline metabolites including betaine, phosphatidylcholine, 

and acetylcholine. Another study by Vailati-Riboni et al. (2017) proved that feeding rumen 

protected choline to peripartal dairy cows enhanced the killing capability of monocytes but 

not neutrophils. Choline has shown, in vitro, to improve the antioxidant balance and lower 

inflammation by targeting and downregulating various genes related to the inflammatory 

response in neonatal Holstein neutrophils (Abdelmegeid et al., 2017). Increased choline in 

the serum of pre-SCM cows might serve the host to keep the inflammation under control.  

Serum betaine was found to be higher in pre-SCM cows versus CON cows. Betaine 

is a by-product of choline metabolism that provides one-carbon units in the conversion of 

homocysteine (Hcy) to methionine and production of the methyl donor S-

adenosylmethionine (Zeisel, 1981). Earlier studies have shown that betaine treatment 

inhibits NLRP3 inflammasome-related proteins including NLRP3 and caspase-1 and the 

pro-inflammatory cytokine IL-1 in elderly people (Go et al., 2007). Additionally, betaine 

was shown to decrease the activation of NF-kB, in elderly people (Go et al., 2005). By 

suppressing NF-kB, betaine also blocks the expression of genes involved in inflammation, 

such as IL-1, COX-2, and iNOS (Monaco et al., 2004; Go et al., 2005). It is obvious that 

production and release of betaine in large quantities in the blood serves the host to keep the 

inflammatory response under control.  

Two other methyl donor metabolites measured and quantified in the serum were 

glycine and serine. Both of them were lowered in pre-SCM cows at different time points 

prepartum with glycine lowered only at –8 wks and serine at –4 wks. Glycine is a non-
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essential AA with multiple physiological functions. Moreover, glycine is a bioactive AA 

that contributes in the regulation of gene expression (Luka et al., 2002), protein 

configuration and activity (Martínez-Chantar et al., 2008), and glutathione synthesis 

(Durkin and Friedberg, 1952). Besides its physiological functions, mounting evidence 

indicates that glycine plays significant roles in regulation of immune responses. For 

example, glycine has been shown to suppress ROS formation by inhibiting the activation 

of macrophages (Zhong et al., 1999). This lowers the activation of transcription factors 

inhibiting the production of proinflammatory cytokines. Glycine also has been proved to 

inhibit activation of NF-kB in various disease models in rats (Mauriz et al., 2001). Another 

study found that glycine decreases TNF and expression of IL-1 but at the same time 

increases IL-10 in monocytes (Spittler et al., 1999). 

A recent study conducted by He et al. (2019) demonstrated that mice infected with 

the Gram-negative bacterium Pasteurella multocida had lower blood serine levels. 

Moreover, supplementation with serine increased the survival rate among infected mice 

and decreased colonization of P. multocida in the lungs of infected mice. The most 

interesting finding was that the intranasal supplementation of serine decreased both 

macrophage and neutrophil-mediated inflammatory responses by decreasing the secretion 

of IL-1, IL-17, IFN-γ, and TNF. It is obvious that lowered glycine and serine in the serum 

of pre-SCM cows might support a proinflammatory response of the host during this pre-

clinical mastitis conditions. 
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2.5.4    Changes in carbohydrate and organic acids in the blood of pre-SCM cows 

The concentration of glucose in the serum of pre-SCM cows was higher at both 

time points measured in this study. Besides its major role as an energy provider for various 

cells in the body, there is mounting evidence that glucose plays significant roles in immune 

cell functions. It has been shown that neutrophils use large amounts of glucose through 

glycolysis (Mowat and Baum, 1971). They also store glucose in the form of glycogen and 

use it during the process of phagocytosis by releasing glucose (Scott, 1968; Borregaard and 

Herlin, 1982). Additionally, more recent research has shown that glucose uptake and a 

metabolic shift from oxidative phosphorylation to glycolysis is crucial for neutrophils and 

M1 macrophages during bacterial infections and the production of lactate (Loftus and 

Finlay, 2016; Faas and de Vos, 2020). Neutrophils are the most predominant cells in the 

mammary gland during both subclinical and clinical mastitis. They are mostly glycolytic 

cells that produce ROS through the cytosolic enzyme NOX (nicotinamide adenine 

dinucleotide phosphate-oxidase). This process is essential for pathogen killing and the 

regulation of inflammation. A recent study reported that induction of inflammation by 

administration of LPS is associated with increased glucose uptake by neutrophils, higher 

production of ROS, and downregulation of genes related to the TCA cycle (Khatib-

Massalha et al., 2020). Therefore, increased blood glucose in pre-SCM cows might reflect 

the host response to support the activity of immune cells during the dry off period.  

In the pre-SCM cohort of cows, the concentration of lactate exhibited a similar 

trend seen for glucose, being higher in pre-SCM cows compared to CON at –4 wks 

prepartum. This finding is in line with a previous report from our lab of higher 

concentrations of lactate in pre-SCM cows, at both –8 and –4 wks prepartum (Dervishi et 
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al., 2015). Lactate has been shown to support phagocytic activity and as an extracellular 

trap for the formation of neutrophils (Borregaard and Herlin, 1982; Awasthi et al., 2019). 

Higher blood lactate levels have also been reported in mice treated intraperitoneally with 

LPS, deriving mainly from neutrophils expediting glycolysis and producing more lactate 

(Khatib-Massalha et al., 2020). Interestingly, exogenous administration of lactate in mice 

was reported to stimulate extravasation of neutrophils from the bone marrow into the blood 

circulation as well as to increase vascular permeability by decreasing the expression of VE-

cadherin receptors (Khatib-Massalha et al., 2020). In dairy cows, D-lactate was reported to 

increase neutrophil adhesion to the endothelial cells through increased expression of 

neutrophil extracellular traps (NET) and CD11b/ICAM-1 (Alarcón et al., 2017). The latter 

proteins are cell surface receptors that facilitate migration of neutrophils to the site of 

inflammation. These data suggest that elevated blood glucose and lactate might be a host 

response to support activities of immune cells during the dry off period.  

  Another altered metabolite related to metabolism of carbohydrates and aerobic 

glycolysis was pyruvate. Pyruvate was found elevated in pre-SCM cows at both time 

periods studied. Pyruvate participates in several metabolic pathways including glycolysis, 

intracellular and mitochondrial amino acid turnover, and the TCA cycle. It has also been 

shown to play a role in neutrophil functions (Mathioudakis et al., 2011). This intermediate 

of glucose metabolism has been shown to have anti-inflammatory and antioxidant 

properties, by inhibiting TNF and NF-κB expression in animal models of endotoxemia 

(Das, 2006). Similar findings were reported from LPS-stimulated canine PBMCs. In this 

study, authors observed downregulation of mRNA expression for IL-6 and TNF, with 

enhanced expression of IL-10 (Yu et al., 2010). In a recent study, Zwaag et al. (2020) 
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demonstrated mitigation of the inflammation induced by LPS treatment by increasing 

concentrations of both pyruvate and lactate in the blood. Both metabolites induced 

production of anti-inflammatory IL-10 in PBMCs and diminished secretion of 

proinflammatory cytokines IL-1 and IL-6 (Zwaag et al., 2020). These results suggest that 

pyruvate might be one of the metabolites that lowers the anti-inflammatory response to 

keep down the over-response of the host to inflammatory stimuli.  

Another important finding of this study was higher blood trimethylamine-N-oxide 

(TMAO), which differentiated the pre-SCM cows from healthy cows. This is a molecule 

that derives from trimethylamine (TMA), produced when gut microbiota metabolizes 

choline, and choline-containing compounds, such as betaine, and carnitine (Zeisel and 

Warrier, 2017). Once in the liver, TMA is converted to TMAO. TMAO has been shown to 

induce pathological changes to endothelial cells that increase the adhesion of monocytes 

and leukocytes to blood vessels (Seldin et al., 2016; Ma et al., 2017). A growing body of 

evidence has shown that human subjects with high blood TMAO are in a state of systemic 

inflammation (Missailidis et al., 2016; Rohrmann et al., 2016). On the other hand, Chan et 

al. (2019) suggested TMAO to be a danger-associated molecular pattern (DAMP) that 

interacts with the host’s PRR (pattern-recognition receptors), activating the innate immune 

response (Chan et al., 2019). It seems that TMAO is a metabolite that supports the 

mounting of an inflammatory response and supports migration of immune cells to the site 

of infection.  
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2.6 Conclusions 

In summary, the results from this study indicate that pre-SCM cows are undergoing 

alterations in the serum metabolites during the dry-off period, more particularly at –8 and 

–4 wks prior to diagnosis of SCM. Many of the differences between pre-SCM and CON 

cows were related to lipid, amino acid, carbohydrate, and organic acid metabolism. 

Specifically, multiple species of PCs, LPCs, and SMs were lowered in pre-SCM cows, 

whereas ACs were higher. Essential AAs, such as BCAA and nutrients such as choline and 

betaine were higher in the blood of pre-SCM cows, whereas glycine, serine, and alanine 

were lower. Several metabolites linked in the carbohydrate metabolism including glucose, 

lactate, and pyruvate were elevated. Overall, these changes might be related to the presence 

of chronic low-grade inflammatory state in pre-SCM cows. We speculate that alterations 

in metabolites with pro-inflammatory properties, such as BCAA, alanine, glucose and 

lactate, among others, are happening to support the inflammatory response and fight those 

stimuli. On the other hand, compounds such as PCs, glycine, serine, choline, and betaine 

might play a role in keeping the inflammatory response under control or resolving it. 

Multivariate analysis (PCA, PLS-DA) demonstrated two clearly separated clusters of 

healthy and pre-SCM cows. These analyses allowed the development of two panels of 

metabolites with high accuracy to serve as potential predictive biomarkers for identifying 

cows at risk of SCM during the dry-off period. Finally, all the panels of biomarkers 

identified need to be validated in a larger cohort of dairy cows prior to developing pen-side 

tests. 
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Table 2.1. Ingredients of the prepartum diet for the dry off cows. 
Ingredient Weight/cow (kg) DM (%) Final DMI (kg)1 
Hay 5.50 85.14% 4.68 
Oats 5.75 36.20% 2.08 
Corn 8.84 30.30% 2.68 
Protein 2.00 93.00% 1.86 
Ground Barley 0.75 97.26% 0.66 
Minerals 0.42 97.26% 0.41 
Total 23.36 53.17% 12.37 

1Dry Matter Intake (DMI) is calculated based on the DM% over the offered amount (kg) 
of feed. Daily DMI is formulated to 2% of cow’s body weight.   

 

 

Table 2.2. Feed ingredients of cows during early lactation.  

Ingredient Weight/cow (kg) DM (%) Final DMI (kg) 

Hay dairy  2.50 88.50 2.21 
Grass silage  10.75 31.80 3.42 
Oats  5.99 36.20 2.17 
Barley-Dakota 11.50 40.00 4.80 
Corn  13.52 31.50 4.26 
Whey  2.75 17.00 0.47 
Protein 4.75 93.30 4.43 
Energy dairy 4.25 88.00 3.74 
Ground Barley 1.75 88.00 1.54 
Mineral & Fat 1.26 97.26 1.23 
Total 59.02 47.56 28.07 
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Table 2.3. Concentration of serum metabolites (MEAN ± SEM) in pre-subclinical mastitis 
cows only (pre-SCM, n=10) and healthy controls (CON, n=15) cows at –8 wks before 
parturition, as identified by LC-MS/MS. 

Metabolites (µM) 

MEAN ± SEM 

P value 
Fold 

change 
SCM/
CON 

Pre-SCM1 
(n=10) CON2 (n=15) 

Creatinine 72.2 ± 4.65 74.4 ± 4.09 0.1 0.97 down 
Glycine 317 ± 22.8 372 ± 20 0.005 0.85 down 
Alanine 215 ± 15.7 266 ± 13.8 0.004 0.81 down 
Serine 76.2 ± 7.76 86.8 ± 6.83 0.09 0.88 down 
Proline 98.7 ± 9.07 111.1 ± 8.42 0.2 0.89 down 
Valine 250 ± 26.3 202 ± 23.2 0.03 1.24 up 
Threonine 108.2 ± 8.94 93.6 ± 7.87 0.15 1.16 up 
Taurine 82.3 ± 9.43 71.7 ± 8.3 0.5 1.15 up 
trans-Hydroxyproline 10.9 ± 0.671 12 ± 0.591 0.03 0.91 down 
Leucine 248 ± 21.2 183 ± 18.7 0.002 1.36 up 
Isoleucine 137 ± 11.24 111 ± 9.89 0.03 1.23 up 
Asparagine 27.4 ± 2.67 32.1 ± 2.35 0.04 0.85 down 
Aspartic acid 7.57 ± 0.951 7.74 ± 0.836 0.7 0.98 down 
Glutamine 281 ± 15.4 263 ± 13.6 0.3 1.07 up 
Glutamic acid 70 ± 5.43 65.3 ± 4.78 0.4 1.07 up 
Methionine 22.6 ± 1.75 20.5 ± 1.54 0.2 1.10 up 
Histidine 56.8 ± 4.13 51.7 ± 3.63 0.1 1.10 up 
alpha-Aminoadipic 
acid 2.79 ± 0.387 1.74 ± 0.34 0.02 1.60 up 
Phenylalanine 56.5 ± 3.36 46.8 ± 2.95 0.01 1.21 up 
Methionine-sulfoxide 1.8 ± 0.241 2.35 ± 0.212 0.02 0.77 down 
Arginine 149 ± 9.19 123 ± 8.09 0.05 1.21 up 
Acetyl-ornithine 4.58 ± 0.609 4.17 ± 0.535 0.4 1.10 up 
Citrulline 91.1 ± 8.57 87.6 ± 7.53 0.6 1.04 up 
Serotonin 12.01 ± 2.32 7.44 ± 2.04 0.1 1.61 up 
Tyrosine 69.8 ± 6.39 66.1 ± 5.62 0.4 1.06 up 
Asymmetric dimethyl
arginine 

0.875 ± 
0.0686 0.647 ± 0.0603 0.002 1.35 up 

Total dimethylarginin
e 1.89 ± 0.174 1.85 ± 0.153 0.9 1.02 up 
Tryptophan 42.4 ± 2.86 44.8 ± 2.52 0.2 0.95 down 
Kynurenine 7.21 ± 1.108 7.79 ± 0.974 0.2 0.93 down 
Carnosine 14 ± 2.27 24.3 ± 1.99 0.001 0.58 down 
Ornithine 62.6 ± 6.02 49.2 ± 5.58 0.001 1.27 up 
Lysine 88.5 ± 8.09 72.1 ± 7.12 0.01 1.23 up 

Spermidine 
0.354 ± 
0.0514 0.325 ± 0.0452 0.6 1.09 up 

Creatine 228 ± 12.1 241 ± 10.6 0.08 0.95 down 
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Betaine 154.1 ± 20.6 76.6 ± 19.1 <0.001 2.01 up 
Choline 15.3 ± 1.85 10.3 ± 1.63 0.01 1.49 up 
Trimethylamine N-
oxide 47.3 ± 15.7 38.7 ± 13.8 0.9 1.22 up 
Methyl histidine 8.33 ± 0.892 11.32 ± 0.784 0.06 0.74 down 
Lactic acid 2270 ± 330 1895 ± 290 0.1 1.20 up 
beta-Hydroxybutyric 
acid 730 ± 148 781 ± 131 0.3 0.93 down 
alpha-Ketoglutaric 
acid 25.3 ± 3.91 24.6 ± 3.44 0.7 1.03 up 
Citric acid 218 ± 26.5 267 ± 23.3 0.02 0.82 down 
Butyric acid 7.07 ± 3.45 13.92 ± 3.03 0.01 0.51 down 
Propionic acid 16.2 ± 7.29 29.6 ± 6.41 0.05 0.55 down 
Succinic acid 1.58 ± 0.148 1.62 ± 0.13 0.4 0.98 down 
Fumaric acid 1.23 ± 0.36 1.84 ± 0.316 0.04 0.67 down 
Pyruvic acid 77.3 ± 7.9 62.9 ± 6.95 0.03 1.23 up 
Isobutyric acid 3.41 ± 0.89 4.72 ± 0.782 0.1 0.72 down 
Hippuric acid 57.5 ± 4.79 64.4 ± 4.21 0.05 0.89 down 

Methylmalonic acid 
0.569 ± 
0.0736 0.547 ± 0.0647 0.9 1.04 up 

Indole acetic acid 
0.455 ± 
0.0988 0.555 ± 0.0869 0.1 0.82 down 

Uric acid 30 ± 5.21 37.9 ± 4.58 0.1 0.79 down 
Glucose 3602 ± 144 3462 ± 127 0.8 1.04 up 

LYSOC14:0 
0.994 ± 
0.1045 1.327 ± 0.0919 <0.001 0.75 down 

LYSOC16:1 1.37 ± 0.153 1.71 ± 0.135 0.004 0.80 down 
LYSOC16:0 27 ± 2.93 29.5 ± 2.58 0.05 0.92 down 
LYSOC17:0 1.58 ± 0.172 1.65 ± 0.151 0.1 0.96 down 
LYSOC18:2 30.2 ± 3.65 41.9 ± 3.21 <0.001 0.72 down 
LYSOC18:1 13.4 ± 1.67 18.3 ± 1.47 <0.001 0.73 down 
LYSOC18:0 17 ± 1.92 19.6 ± 1.68 0.01 0.87 down 
LYSOC20:4 2.33 ± 0.262 2.6 ± 0.231 0.1 0.90 down 
LYSOC20:3 3.23 ± 0.376 3.66 ± 0.331 0.1 0.88 down 

LYSOC24:0 
0.0979 ± 
0.01118 

0.1123 ± 
0.00983 0.1 0.87 down 

LYSOC26:1 
0.0462 ± 
0.0078 

0.0628 ± 
0.00686 0.003 0.74 down 

LYSOC26:0 0.12 ± 0.0323 0.161 ± 0.0284 0.02 0.75 down 

LYSOC28:1 
0.298 ± 
0.0445 0.519 ± 0.0391 <0.001 0.57 down 

LYSOC28:0 
0.234 ± 
0.0346 0.373 ± 0.0305 <0.001 0.63 down 

PC32:2AA 8.69 ± 1.25 14.93 ± 1.1 <0.001 0.58 down 
PC36:0AE 2.24 ± 0.27 4.03 ± 0.237 <0.001 0.56 down 
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PC36:6AA 3.08 ± 0.336 4.08 ± 0.295 <0.001 0.75 down 
PC36:0AA 11.5 ± 1.79 25.4 ± 1.57 <0.001 0.45 down 
PC38:6AA 2.95 ± 0.291 4.82 ± 0.256 <0.001 0.61 down 
PC38:0AA 1.82 ± 0.287 4.02 ± 0.252 <0.001 0.45 down 
PC40:6AE 1.89 ± 0.191 2.61 ± 0.168 <0.001 0.72 down 
PC40:6AA 1.89 ± 0.191 2.61 ± 0.168 <0.001 0.72 down 
PC40:2AA 0.918 ± 0.14 2.062 ± 0.123 <0.001 0.45 down 

PC40:1AA 
0.312 ± 
0.0317 0.495 ± 0.0279 <0.001 0.63 down 

16:1SM 14.5 ± 1.2 17.8 ± 1.06 <0.001 0.81 down 
16:0SM 128 ± 12.2 160 ± 10.8 <0.001 0.80 down 
18:1SM 22.6 ± 1.91 29.3 ± 1.68 <0.001 0.77 down 
18:0SM 20.6 ± 1.88 27.7 ± 1.66 <0.001 0.74 down 
20:2SM 2.46 ± 0.258 3.52 ± 0.227 <0.001 0.70 down 
14:1SMOH 11.6 ± 1.18 14.2 ± 1.04 0.002 0.82 down 
16:1SMOH 13.7 ± 1.26 17.4 ± 1.11 <0.001 0.79 down 
22:2SMOH 10.9 ± 1.042 14.7 ± 0.917 <0.001 0.74 down 
22:1SMOH 21.4 ± 2.56 30.8 ± 2.26 <0.001 0.69 down 
24:1SMOH 2.54 ± 0.204 3.35 ± 0.179 <0.001 0.76 down 
C0 4.23 ± 0.443 3.04 ± 0.389 0.1 1.39 up 
C2 1.74 ± 0.15 1.46 ± 0.132 0.8 1.19 up 

C3 
0.191 ± 
0.0175 0.178 ± 0.0154 0.2 1.07 up 

C3OH 
0.0184 ± 
0.00159 

0.0178 ± 
0.0014 0.5 1.03 up 

C3:1 
0.0292 ± 
0.00278 

0.0301 ± 
0.00245 0.6 0.97 down 

C4 
0.093 ± 
0.00793 

0.0796 ± 
0.00697 0.2 1.17 up 

C4OH 
0.0219 ± 
0.00315 

0.0328 ± 
0.00277 0.001 0.67 down 

C4:1 
0.0155 ± 
0.00153 

0.0164 ± 
0.00134 0.4 0.95 down 

C5 
0.0617 ± 
0.00617 

0.0648 ± 
0.00542 0.5 0.95 down 

C5OH 
0.065 ± 
0.00942 

0.0629 ± 
0.00828 0.6 1.03 up 

C5:1 
0.0159 ± 
0.00131 

0.0172 ± 
0.00115 0.08 0.92 down 

C5:1DC 
0.0159 ± 
0.00186 

0.0189 ± 
0.00164 0.01 0.84 down 

C5MDC 
0.0189 ± 
0.000967 

0.0203 ± 
0.000851 0.09 0.93 down 

C6 
0.0411 ± 
0.00578 

0.0516 ± 
0.00509 0.3 0.80 down 
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C5DC/C6OH 
0.0106 ± 
0.001101 

0.0118 ± 
0.000968 0.05 0.90 down 

C6:1 
0.0239 ± 
0.00224 

0.0296 ± 
0.00197 0.006 0.81 down 

C8 
0.0184 ± 
0.00192 

0.0114 ± 
0.00169 0.009 1.61 up 

C9 
0.00766 ± 
0.000669 

0.00777 ± 
0.000589 0.2 0.99 down 

C10 
0.0481 ± 
0.00471 

0.0467 ± 
0.00414 0.4 1.03 up 

C10:1 
0.093 ± 
0.00774 

0.0989 ± 
0.0068 0.4 0.94 down 

C10:2 
0.0246 ± 
0.00258 

0.0236 ± 
0.00227 0.9 1.04 up 

C12 
0.027 ± 
0.00204 

0.0216 ± 
0.0018 0.1 1.25 up 

C12:1 
0.0476 ± 

0.003 
0.053 ± 
0.00264 0.3 0.90 down 

C12DC 
0.018 ± 
0.00181 

0.0182 ± 
0.00159 0.4 0.99 down 

C14 
0.0252 ± 
0.00314 

0.0182 ± 
0.00276 0.2 1.38 up 

C14:1 
0.0448 ± 
0.00883 

0.0677 ± 
0.00777 0.1 0.66 down 

C14:1OH 
0.00859 ± 
0.000792 

0.00985 ± 
0.000697 0.01 0.87 down 

C14:2 
0.00996 ± 
0.000707 

0.00856 ± 
0.000622 0.4 1.16 up 

C14:2OH 
0.01086 ± 
0.00103 

0.00964 ± 
0.00091 0.7 1.13 up 

C16 
0.0188 ± 
0.00183 

0.0168 ± 
0.00161 0.7 1.12 up 

C16OH 
0.00798 ± 
0.000888 

0.0075 ± 
0.000781 0.6 1.06 up 

C16:1 
0.0188 ± 
0.000993 

0.0184 ± 
0.000873 0.7 1.02 up 

C16:1OH 
0.0134 ± 
0.0012 

0.0141 ± 
0.00105 0.3 0.95 down 

C16:2 
0.00732 ± 
0.000679 

0.00698 ± 
0.000597 0.9 1.05 up 

C16:2OH 
0.00668 ± 
0.000728 

0.00731 ± 
0.00064 0.1 0.91 down 

C18 
0.0408 ± 
0.00456 

0.0343 ± 
0.00401 0.7 1.19 up 

C18:1 
0.0151 ± 
0.00139 

0.0146 ± 
0.00122 0.8 1.03 up 
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C18:1OH 
0.00863 ± 
0.000569 

0.00774 ± 
0.0005 0.4 1.11 up 

C18:2 
0.00685 ± 
0.000629 

0.00694 ± 
0.000554 0.6 0.99 down 

1pre-SCM = SCM = cows that were sampled before being classified as SCM 
2CON = healthy cows  
 
 
 
Table 2.4. Concentration of serum metabolites (MEAN ± SEM) in pre-subclinical mastitis 
cows only (pre-SCM, n=10) and healthy controls (CON, n=15) cows at –4 wks before 
parturition, as identified by LC-MS/MS. 

Metabolites (µM) 

MEAN ± SEM 

P value 
Fold 

change 
SCM/ 
CON 

Pre-SCM1 
(n=10) CON2 (n=15) 

Creatinine 80.3 ± 5.1 88.8 ± 4.6 0.1 0.90 down 
Glycine 267 ± 11.6 287 ± 10.5 0.1 0.93 down 
Alanine 201 ± 11.6 249 ± 10.5 <0.001 0.81 down 
Serine 75 ± 4.17 81.8 ± 3.77 0.03 0.92 down 
Proline 82.6 ± 5.4 99.4 ± 4.88 0.002 0.83 down 
Valine 275 ± 12.9 311 ± 11.6 0.001 0.88 down 
Threonine 103 ± 7.42 102 ± 6.7 0.8 1.01 up 
Taurine 66.2 ± 7.6 75 ± 6.86 0.08 0.88 down 
trans-Hydroxyproline 12.5 ± 1.33 14.4 ± 1.2 0.06 0.87 down 
Leucine 241 ± 16.5 250 ± 14.9 0.1 0.96 down 
Isoleucine 137 ± 5.73 151 ± 5.17 0.005 0.91 down 
Asparagine 27.3 ± 1.88 31.9 ± 1.7 0.01 0.86 down 
Aspartic acid 7.05 ± 1.22 7.95 ± 1.1 0.3 0.89 down 
Glutamine 324 ± 14.9 341 ± 13.5 0.1 0.95 down 
Glutamic acid 63.3 ± 6.55 67.6 ± 5.91 0.5 0.94 down 
Methionine 27.2 ± 1.38 31.3 ± 1.25 <0.001 0.87 down 
Histidine 67.5 ± 2.76 73.9 ± 2.5 0.005 0.91 down 
alpha-Aminoadipic 
acid 2.83 ± 0.505 2.2 ± 0.456 0.4 1.29 up 
Phenylalanine 65.4 ± 2.33 66.7 ± 2.1 0.06 0.98 down 
Methionine-sulfoxide 2.39 ± 0.222 2.99 ± 0.2 <0.001 0.80 down 
Arginine 154 ± 7.42 157 ± 6.7 0.1 0.98 down 
Acetyl-ornithine 2.86 ± 0.463 4.05 ± 0.418 0.01 0.71 down 
Citrulline 84.6 ± 6.83 89.7 ± 6.17 0.3 0.94 down 
Serotonin 5.94 ± 3.21 5.95 ± 2.9 0.5 1.00 down 
Tyrosine 67 ± 5.13 66.1 ± 4.64 0.4 1.01 up 
Asymmetric dimethyla
rginine 0.962 ± 0.076 

1.092 ± 
0.0686 0.1 0.88 down 

Total dimethylarginine 1.97 ± 0.17 2.23 ± 0.154 0.3 0.88 down 
Tryptophan 45.7 ± 2.24 47.1 ± 2.03 0.1 0.97 down 



122 
 

Kynurenine 7.16 ± 0.759 6.51 ± 0.686 0.5 1.10 up 
Carnosine 10.4 ± 1.7 13.5 ± 1.53 0.08 0.77 down 
Ornithine 59.9 ± 3.44 65.6 ± 3.1 0.03 0.91 down 
Lysine 91.2 ± 8.47 107.2 ± 7.65 0.04 0.85 down 

Spermidine 
0.419 ± 
0.0553 0.351 ± 0.05 0.7 1.19 up 

Creatine 233 ± 12.2 244 ± 11 0.2 0.95 down 
Betaine 155 ± 14.3 162 ± 13 0.2 0.96 down 
Choline 10.6 ± 1.93 13.1 ± 1.74 0.1 0.81 down 
Trimethylamine N-
oxide 49.8 ± 14.8 19.3 ± 13.4 0.1 2.58 up 
Methyl histidine 11.1 ± 1.7 14.2 ± 1.53 0.07 0.78 down 
Lactic acid 2107 ± 409 1166 ± 370 0.03 1.81 up 
beta-Hydroxybutyric 
acid 630 ± 100.3 618 ± 90.6 0.7 1.02 up 
alpha-Ketoglutaric 
acid 19.5 ± 1.9 16.3 ± 1.72 0.2 1.20 up 
Citric acid 310 ± 40.2 289 ± 36.3 0.7 1.07 up 
Butyric acid 5.42 ± 0.986 6.76 ± 0.891 0.06 0.80 down 
Propionic acid 19.4 ± 3.11 18.1 ± 2.81 0.8 1.07 up 
Succinic acid 1.33 ± 0.0757 1.09 ± 0.0684 0.1 1.22 up 
Fumaric acid 1.137 ± 0.188 0.912 ± 0.17 0.4 1.25 up 
Pyruvic acid 82.7 ± 7.58 71.7 ± 6.85 0.03 1.15 up 
Isobutyric acid 4.49 ± 0.642 4.84 ± 0.58 0.4 0.93 down 
Hippuric acid 67.7 ± 6.24 70 ± 5.64 0.6 0.97 down 

Methylmalonic acid 
0.545 ± 
0.0762 

0.285 ± 
0.0688 0.01 1.91 up 

Indole acetic acid 0.39 ± 0.0578 
0.382 ± 
0.0522 0.6 1.02 up 

Uric acid 26.8 ± 9.88 35.2 ± 8.93 0.3 0.76 down 
Glucose 4928 ± 99.5 4045 ± 89.9 0.03 1.22 up 

LYSOC14:0 
0.794 ± 
0.0798 

0.854 ± 
0.0721 0.2 0.93 down 

LYSOC16:1 1.08 ± 0.14 1.11 ± 0.126 0.5 0.97 down 
LYSOC16:0 16.4 ± 1.74 17.5 ± 1.57 0.1 0.94 down 
LYSOC17:0 1.4 ± 0.127 1.29 ± 0.115 0.9 1.09 up 
LYSOC18:2 19.1 ± 2.17 20.5 ± 1.96 0.2 0.93 down 
LYSOC18:1 9.62 ± 1.29 10.98 ± 1.16 0.1 0.88 down 
LYSOC18:0 15.8 ± 1.43 16.1 ± 1.29 0.2 0.98 down 
LYSOC20:4 1.93 ± 0.262 1.75 ± 0.237 0.8 1.10 up 
LYSOC20:3 2.97 ± 0.28 3.41 ± 0.253 0.03 0.87 down 

LYSOC24:0 
0.111 ± 
0.00934 

0.12 ± 
0.00843 0.4 0.93 down 

LYSOC26:1 
0.0387 ± 
0.00579 

0.0369 ± 
0.00523 0.9 1.05 up 
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LYSOC26:0 
0.1028 ± 
0.0113 

0.0938 ± 
0.0102 0.5 1.10 up 

LYSOC28:1 
0.243 ± 
0.0312 0.35 ± 0.0282 0.001 0.69 down 

LYSOC28:0 
0.246 ± 
0.0213 

0.251 ± 
0.0192 0.3 0.98 down 

PC32:2AA 7.63 ± 0.844 12.45 ± 0.762 <0.001 0.61 down 
PC36:0AE 2.22 ± 0.219 3.48 ± 0.198 <0.001 0.64 down 
PC36:6AA 2.53 ± 0.265 3.87 ± 0.24 <0.001 0.65 down 
PC36:0AA 7.65 ± 0.807 14.3 ± 0.729 <0.001 0.53 down 
PC38:6AA 2.21 ± 0.217 3.55 ± 0.196 <0.001 0.62 down 
PC38:0AA 0.985 ± 0.106 1.944 ± 0.096 <0.001 0.51 down 

PC40:6AE 
0.719 ± 
0.0704 

1.147 ± 
0.0636 <0.001 0.63 down 

PC40:6AA 1.46 ± 0.194 2.43 ± 0.175 <0.001 0.60 down 

PC40:2AA 
0.543 ± 
0.0602 1.02 ± 0.0544 <0.001 0.53 down 

PC40:1AA 
0.256 ± 
0.0278 

0.415 ± 
0.0251 <0.001 0.62 down 

16:1SM 10.2 ± 1.073 11.5 ± 0.969 0.1 0.89 down 
16:0SM 88 ± 9.99 104 ± 9.02 0.06 0.85 down 
18:1SM 17 ± 1.39 19.1 ± 1.25 0.02 0.89 down 
18:0SM 14.4 ± 1.51 18.1 ± 1.36 0.01 0.80 down 
20:2SM 2.41 ± 0.196 2.81 ± 0.177 0.006 0.86 down 
14:1SMOH 8.67 ± 1.042 9.55 ± 0.941 0.2 0.91 down 
16:1SMOH 9.1 ± 0.963 10.5 ± 0.87 0.08 0.87 down 
22:2SMOH 7.5 ± 0.881 10.2 ± 0.795 0.007 0.74 down 
22:1SMOH 13.1 ± 1.76 18.3 ± 1.59 0.008 0.72 down 
24:1SMOH 1.93 ± 0.22 2.44 ± 0.199 0.03 0.79 down 
C0 5.1 ± 0.541 4.88 ± 0.488 0.5 1.05 up 
C2 1.7 ± 0.223 1.99 ± 0.202 0.1 0.85 down 

C3 
0.203 ± 
0.0173 

0.191 ± 
0.0157 0.6 1.06 up 

C3OH 
0.0254 ± 
0.0026 

0.0215 ± 
0.00235 0.6 1.18 up 

C3:1 
0.0233 ± 
0.0023 

0.0217 ± 
0.00208 0.4 1.07 up 

C4 
0.123 ± 
0.00729 

0.116 ± 
0.00658 0.4 1.06 up 

C4OH 
0.0317 ± 
0.00354 

0.0266 ± 
0.0032 0.3 1.19 up 

C4:1 
0.0198 ± 
0.00229 

0.0138 ± 
0.00206 0.02 1.43 up 

C5 
0.074 ± 
0.00673 

0.0756 ± 
0.00608 0.4 0.98 down 
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C5OH 
0.0664 ± 
0.0117 

0.0518 ± 
0.0105 0.2 1.28 up 

C5:1 
0.0217 ± 
0.00205 

0.0134 ± 
0.00185 0.01 1.62 up 

C5:1DC 
0.0156 ± 
0.00167 

0.0114 ± 
0.00151 0.03 1.37 up 

C5MDC 
0.017 ± 
0.00159 

0.0153 ± 
0.00143 0.2 1.11 up 

C6 
0.0342 ± 
0.00413 

0.0328 ± 
0.00373 0.6 1.04 up 

C5DC/C6OH 
0.01717 ± 
0.00351 

0.00681 ± 
0.00317 0.04 2.52 up 

C6:1 
0.0214 ± 
0.00297 

0.0212 ± 
0.00268 0.8 1.01 up 

C8 
0.0133 ± 
0.00118 

0.0111 ± 
0.00106 0.1 1.20 up 

C9 
0.0222 ± 
0.00547 

0.0047 ± 
0.00494 0.02 4.72 up 

C10 
0.0448 ± 
0.00465 

0.035 ± 
0.0042 0.2 1.28 up 

C10:1 
0.129 ± 
0.0184 

0.117 ± 
0.0166 0.6 1.10 up 

C10:2 
0.0255 ± 
0.00302 

0.0178 ± 
0.00273 0.05 1.43 up 

C12 
0.0271 ± 
0.00252 

0.0199 ± 
0.00228 0.02 1.36 up 

C12:1 
0.057 ± 
0.00723 

0.054 ± 
0.00653 0.9 1.06 up 

C12DC 
0.0103 ± 
0.000992 

0.0095 ± 
0.000896 0.5 1.08 up 

C14 
0.0129 ± 
0.00117 

0.0139 ± 
0.00106 0.3 0.93 down 

C14:1 
0.0363 ± 
0.00652 

0.0532 ± 
0.00589 0.008 0.68 down 

C14:1OH 
0.00776 ± 
0.000576 

0.00738 ± 
0.00052 0.4 1.05 up 

C14:2 
0.00849 ± 
0.001064 

0.0083 ± 
0.000961 0.7 1.02 up 

C14:2OH 
0.00867 ± 
0.000547 

0.00693 ± 
0.000494 0.04 1.25 up 

C16 
0.0207 ± 
0.00159 

0.0254 ± 
0.00144 0.01 0.81 down 

C16OH 
0.00538 ± 
0.000716 

0.00662 ± 
0.000647 0.1 0.81 down 

C16:1 
0.0161 ± 
0.00118 

0.017 ± 
0.00106 0.2 0.95 down 
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C16:1OH 
0.00883 ± 
0.000583 

0.01033 ± 
0.00052 0.01 0.85 down 

C16:2 
0.00611 ± 
0.000575 

0.00583 ± 
0.00052 0.7 1.05 down 

C16:2OH 
0.00709 ± 
0.000683 

0.007 ± 
0.000617 0.5 1.01 up 

C18 
0.0222 ± 
0.00324 

0.0303 ± 
0.00293 0.02 0.73 down 

C18:1 
0.0113 ± 
0.00207 

0.0179 ± 
0.00187 0.008 0.63 down 

C18:1OH 
0.01052 ± 
0.00142 

0.00982 ± 
0.00128 0.8 1.07 up 

C18:2 
0.00602 ± 
0.000733 

0.00548 ± 
0.000662 0.8 1.10 up 

1pre-SCM = SCM = cows that were sampled before being classified as SCM 
2CON = healthy cows  
 

 

Table 2.5. Significant metabolic pathways identified from quantitative enrichment analysis 
and involved prior to occurrence of subclinical mastitis at –8 and –4 wks before calving. 
Metabolic 
pathways 

Total 
compounds 

Hits Significant metabolites Holm 
p-value 

Glycine and 
Serine 
metabolisma 

59 12 Betaine; Ornithine; Glycine; L-Alanine; 
Pyruvic acid; Creatine; L-Serine; L-Arginine; 
L-Threonine; L-Methionine; L-Glutamic acid; 

Oxoglutaric acid 

0.004 

Methionine 
metabolisma 

43 7 Betaine; Choline; Glycine; Methionine 
sulfoxide; L-Serine; L-Methionine; Spermidine 

0.01 

Betaine 
metabolisma 

21 3 Betaine; Choline; Methionine 0.02 

Glucose-
Alanine 
Cycleb 

13 5 D-Glucose; L-Glutamic acid; L-
Alanine; Oxoglutaric acid; Pyruvic acid 

0.03 

Selenoamino 
Acid 
metabolismb 

28 2 L-Alanine; L-Serine 0.05 

aSignificant metabolic pathway at –8 weeks before parturition  
bSignificant metabolic pathway at –4 weeks before parturition 
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Figure 2.1. a) Principal Component Analysis (PCA) and b) Partial Least Square – 
Discriminant Analysis (PLS-DA; permutation test: P < 0.05) showing two separate clusters 
for CON and pre-SCM cows at –8 weeks before parturition; c) Metabolites ranked by 
Variable Importance in Projection (VIP) and d) Heatmap of both, samples and features 
based on PLS-DA, to further investigate the identified variables.   
 

 

 

 

a) b) 

c) d) 
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Figure 2.2. a) AUC of the top 5 VIP PLS-DA metabolites (PC aaC38:0, PC aa C36:0, PC 
ae C36:0, PC aa C40:2, PC aa C38:6); b) AUC of model’s classification; c) default linear 
SVM AUC of Leu, Betaine, Ala and Orn (AUC = 0.92; P = 0.001) and d) ROC plot with 
10-fold CV for logistic regression of these 4 amino acids (AUC = 0.81; P = 0.05).  
 
 
 

a) b) 

c) d) 
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Figure 2.3. a) Principal Component Analysis (PCA) and b) PLS-DA (permutation test: P 
< 0.05) of 15 CON and 10 pre-SCM cows; c) VIP plot of top 25 important features and d) 
Heatmap of both, samples and features based on PLS-DA to further investigate the 
identified variables.  
 

 

 

 

 

a) b) 

c) d) 
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Figure 2.4. a) AUC of the top 5 VIP PLS-DA metabolites and b) AUC of model’s 
classification; c) default linear SVM AUC model (AUC = 0.92; P = 0.01); d) ROC plot 
with 10-fold CV for logistic regression algorithm (AUC = 0.81, P = 0.04).  

 

 

 

 

a) b) 

c) d) 



130 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.5. Summary plots for quantitative enrichment analysis at a) –8 weeks and b) –4 
weeks before calving. 
 

a) 

b) 
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Chapter 3. Urinary Metabotyping Identifies Predictive Biomarkers of Subclinical 

Mastitis in Dairy Cows 

 

3.1 Abstract 

 
Mastitis is one of the most important infectious diseases of dairy cows. It is 

associated with a considerable loss regarding milk yield and the culling of dairy cows. 

Early identification of cows at risk of mastitis can enable the development of better 

preventive measures prior to disease occurrence. Subclinical mastitis is currently 

diagnosed through measurement of somatic cell count in the milk after calving. Currently, 

there are no predictive tests available. Therefore, the objective of this study was to identify 

metabolic alterations in the urine of pre-SCM cows at –8 wks and –4 wks before calving, 

through a LC-MS based targeted metabolomic assay. A total of 145 multiparous dairy cows 

were included in this nested case-control study at the beginning of dry off period and were 

sampled and monitored for periparturient disease occurrence both prepartum and 

postpartum. Only 15 cows were free of disease and served as healthy controls, and ten cows 

were affected only by SCM. Cows affected by other conditions or SCM with at least one 

other disease were excluded from further evaluation. Results showed multiple metabolite 

alterations in the urine of pre-SCM cows including changes in acylcarnitines, amino acids, 

and organic acids. Metabotyping of cows revealed 27 metabolites that differentiated pre-

SCM from healthy CON cows at both –8 wks and –4 wks prior to the expected day of 

parturition. At q < 0.005 only 4 metabolites were altered from each week. Biomarker 

analysis indicated that a panel of 4 serum metabolites including asymmetric 

dimethylarginine (ADMA), proline, leucine, and homovanillate (AUC = 0.88; P = 0.02) at 
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–8 wks and ADMA, methylmalonate, citrate, and spermidine (AUC = 0.88, P = 0.03) at –

4 wks before parturition might serve as predictive urinary biomarkers for the risk of SCM. 

Overall, our data showed that starting from –8 wks and –4 wks prepartum cows susceptible 

to SCM can be identified by metabolite testing. More research is needed to validate the two 

panels of metabolites identified.  

 
 
3.2 Introduction  
 

Bovine mastitis, which is characterized by the inflammation of the udder, is a 

significant concern for the dairy industry. Mastitis is a multifactorial disease. A 

combination of bacterial prevalence and poor management practices related to farm 

hygiene, dry cow therapy or automated milking machines contribute to the udder's 

inflammation (Ferrero et al., 2014; Adkins and Middleton, 2018). It is estimated that farm 

losses associated with mastitis in Canada are $660 per case, and in North America, it causes 

around US$2.5 billion annually (Viguier et al., 2009; Aghamohammadi et al., 2018). 

Inflammation of the mammary gland is presented either as clinical or subclinical mastitis. 

Subclinical mastitis (SCM) is an asymptomatic inflammation of the udder characterized by 

the influx of cellular elements, mostly polymorphonuclear neutrophils into the mammary 

gland. In contrast, clinical mastitis (CM) is distinguished by external changes of the udder 

(swollen, hot) and appearance of milk (discoloration, thickness), accompanied by systemic 

signs in the cow (fever, reduced feed intake) (Adkins and Middleton, 2018). Udder 

infections are associated with lower milk production in both current and following 

lactations, and lower future reproductive performance and conception rates, which leads to 
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the early culling of dairy cows (Ahmadzadeh et al., 2009; Ruegg, 2017). Indeed, mastitis 

is the second most common reason for dairy cows being culled in Canada (CDIC, 2020).  

The traditional method to diagnose subclinical mastitis is counting of immune cells 

(mainly neutrophils) in the milk, known as the somatic cell count (SCC) test. This test is 

conducted shortly after calving and for the entire duration of the milking period. However, 

high incidence of new intramammary infections (IMI) during the dry period have been 

recently observed (De Prado-Taranilla et al., 2020). The presence of subclinical IMI during 

dry off may persist as such or present itself as an acute or subclinical case of mastitis after 

calving (Bradley and Green, 2004). Our lab has reported that cows diagnosed as infected 

after parturition were in a systemic chronic inflammatory state during the dry-off period 

(Dervishi et al., 2015). In another study, we also reported that SCM cows had multiple 

alterations in their serum and urinary metabolic signatures that differentiated them from 

healthy dairy cows (Dervishi et al., 2017; Zwierzchowski et al., 2020a).  

The application of metabolomics and microbiomics approaches to the study of the 

pathobiology of periparturient diseases of dairy cows has increased during the last decade 

(Ametaj, 2015). Most of the studies conducted have used postpartum biofluids such as milk 

or blood for diagnostic purposes (Martins et al., 2019). There is very little data available 

concerning metabolite fingerprinting of the urine in dairy cows for the purpose of 

identifying biomarkers for mastitis or for predicting cows that would be susceptible to 

mastitis. In a previous study conducted by our lab, we used urine samples to determine 

metabolic profiles around calving cows that were later affected by SCM postpartum. Our 

data showed presence of urinary alterations of a variety of metabolites including 
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acylcarnitines (ACs), phosphatidylcholines (PCs), biogenic amines (BAs), and amino acids 

(AAs) starting from –8 wks until +8 wks around calving (Zwierzchowski et al., 2020a).  

Recently, Donadeu et al. (2020) reported that UK farmers preferred test results for 

their cows within 24 hours from sampling time. At the same time, the demand and the 

necessity for lab-on-chip or pen-side tests are increasing. Consequently, our lab has been 

working on identifying metabolites that distinguish healthy cows from pre-SCM cows. In 

this study, we used a metabolomics approach to study urine samples from one dairy farm 

in Alberta to verify and validate previously identified metabolites and whether we can use 

those metabolites for screening purposes during the non-lactating period as a pen-side test 

to predict the risk of SCM. We hypothesized that starting from –8 wks and –4 wks 

prepartum those cows susceptible to SCM would show detectable urinary metabolite 

alterations that can be used to identify cows that are susceptible to SCM prior to its 

diagnosis postpartum. Therefore, the objective of this study was to identify a panel of 

urinary metabolites that would predict at-risk SCM cows as early as –8 wks and –4 wks 

prepartum.   

 
 

3.3 Materials and Methods  

3.3.1 Animals, diets and urine samples 

 In this nested case-control study, a total of 145 multiparous cows were selected to 

collect urine samples. Cows were chosen from a commercial dairy farm in the province of 

Alberta, Canada. All experimental procedures were approved by the University of Alberta 

Animal Care and Use Committee for Livestock and conducted following the Canadian 

Council's guidelines on Animal Care (CCAC, 2009).  
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           Cows were selected based on their expected date of calving. They were sampled at 

the beginning of the dry off period and in the middle, respectively, at –8 wks (55 – 58 days) 

and –4 wks (27 – 30 days) before parturition. Urine samples were collected before the 

morning feed, between 07:00 – 08:00, using 50 mL sterile specimen tubes (Fisher 

Scientific, Toronto, ON, Canada). All urinary metabolite analyses were conducted at The 

Metabolomics Innovation Centre (University of Alberta, Edmonton, AB, Canada). All 

samples were stored at –80 ̊C until the analysis was performed.  

The cows sampled prepartum presented with many different conditions including 

mastitis, metritis, retained placenta, laminitis, displaced abomasum, milk fever, and ketosis 

postpartum. Health records for the periparturient diseases were gathered from the farm’s 

database. All diseases were diagnosed by a herd veterinarian that visited the herd on a 

weekly basis. For SCM, positive cases were defined as those cows that had two or more 

consecutive weeks with milk SCCs equal to or higher than 200,000 cells/mL of milk. 

Healthy or control (CON) cows were considered only those that did not present any health 

issues throughout the dry period and after calving (up to 4 wks postpartum) and which had 

SCCs lower than 200,000 cells/mL of milk. By this judgement, 15 dairy cows out of 145 

were considered healthy (CON), whereas only 10 cows had SCC levels classified as 

subclinical mastitis and were free of other diseases. The body condition score (BCS) was 

measured for both groups during the two sampling weeks (–8 wks and –4 wks prepartum). 

Feed ingredients, on a dry matter basis, are presented in Tables 3.1 & 3.2. 
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3.3.2 FIA/LC – MS/MS compound identification and quantification  

3.3.2.1 Sample preparation 

Urinary samples were thawed on ice and vortexed before analysis. For the analysis 

of biogenic amines, amino acids, lipids, acylcarnitines, and hexose (mainly glucose), 10 

μL of urine each of flow injection analysis (FIA) running buffer and LC internal standards 

(ISTD) were loaded in a 96-well filter plate. The first 14 wells were used for quality control 

and standardization. Specifically, one blank, three zero samples, seven standards and three 

quality control (QC) samples were placed in those 14 wells. Thawed samples were then 

added to the remaining 82 wells. For samples and standards, a total of 10 μL was added to 

each of the respective wells. The 96-well plate was then incubated and dried under a flow 

of nitrogen [Zanntek Analytical Evaporator (Glas-Col, Terre Haute, IN, USA)], for 30 min. 

After being dried, 50 μL of 5% phenylisothiocyanate (PITC) solution was added to each 

well, and the plate was incubated at room temperature for 20 min. The plate was then dried 

again for 90 min under a flow of nitrogen. Extraction of the metabolites was accomplished 

by adding 300 μL methanol, containing 5 mM ammonium acetate. The plate was placed 

for shaking at 330 rpm for 30 min and then centrifuged for 5 min at 500 rpm, [Sorvall 

Evolution RC Superspeed Centrifuge (Fisher Scientific, Toronto, ON, Canada)], into the 

lower 96 deep-well plate. For the analysis of amino acids and biogenic amines, the extract 

was diluted with water 1:1, and 10 μL was injected into the LC column. For the analysis 

of acylcarnitines, lipids, and hexose compounds, 150 μL of the extract was diluted with 

400 μL of FIA running buffer, and 20 μL was injected in the LC column.  

Twenty-five microliters of each of the following three solutions: 3-

nitrophenylhydrazine (3-NPH) (250 mM in 50 % aqueous methanol), 1-Ethyl-3-(3-



137 
 

dimethyl aminopropyl) carbodiimide (150 mM in methanol), and pyridine (7.5% in 75% 

aqueous methanol) were added to each well. The whole plate was then shaken on a shaker 

at 450 rpm for 2 h at room temperature to complete the derivatization reaction. After the 

reaction, 350 μL of HPLC water and 50 mL of 2 mg/mL butylated hydroxytoluene (BHT) 

were added to each sample well to dilute and stabilize the solution for LC-MS/MS analyses. 

 

 3.3.2.2 FIA/LC – MS/MS method 

Identification of urine metabolites was done through a targeted metabolomics 

approach using the TMIC Prime assay (in-house developed) using an Agilent 1100 series 

liquid chromatographic system (LC) (Agilent, Palo Alto, CA, USA) equipped with an 

Agilent reversed-phase Zorbax Eclipse XDB C18 column (3.0 mm × 100 mm, 3.5 μM 

particle size, 80 Å pore size) with a Phenomenex (Torrance, CA, USA) SecurityGuard C18 

pre-column (4.0 mm × 3.0 mm), coupled with AB SCIEX QTRAP® 4000 mass 

spectrometer (Sciex Canada, ON, Canada). LC/MS grade formic acid and HPLC grade 

water were purchased from Fisher Scientific (Ottawa, ON, Canada). Ammonium acetate, 

phenylisothiocyanate (PITC) and HPLC grade acetonitrile (ACN) were purchased from 

Sigma-Aldrich (St. Louis, MO, USA). The LC-MS assay workflow was controlled through 

the Analyst® 1.6.2 software (Sciex Canada, ON, Canada). 

The HPLC parameters used to analyze amino acids and biogenic amines were as 

follows: mobile phase A 0.2% (v/v) formic acid in HPLC grade water, and mobile phase 

B 0.2% (v/v) formic acid in acetonitrile. The gradient profile for this HPLC solvent run 

was as follows: t = 0 min, 0% B; t = 0.5 min, 0% B; t = 5.5 min, 95% B; t = 6.5 min, 95% 

B; t = 7.0 min, 0% B; and t = 9.5 min, 0% B. The column oven temperature was set at 50 
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°C. The flow rate was 500 μL/min, and the sample injection volume was 10 μL. The mass 

spectrometer was set to positive electrospray ionization (ESI) mode with a scheduled 

multiple reaction monitoring (MRM) scan.  

For FIA-MS/MS analysis, the HPLC autosampler was connected directly to the MS 

ion source by red PEEK tubing. The FIA running buffer was used as the mobile phase. The 

flow rate was programmed as: t=0 min, 30 µL/min; t=1.6 min, 30 µL/min; t=2.4 min, 200 

µL/min; t=2.8 min, 200 µL/min; t=3.0 min, 30 µL/min. The sample injection volume was 

20 µL. The mass spectrometer was set to the positive ESI mode with MRM scanning to 

analyze lipids and acylcarnitines and the negative ESI mode to detect glucose/hexose.  

For the analysis of organic acids by LC-MS/MS, the solvents used were (A) 0.01% 

(v/v) formic acid in water and (B) 0.01% (v/v) formic acid in methanol. The gradient profile 

was as follows: t=0 min, 30% B; t=2.0 min, 50% B; t=12.5 min, 95% B; t=12.51 min, 

100% B; t=13.5 min, 100% B; t=13.6 min, 30% B, and maintained at 30% B for 4.4 min. 

The column oven temperature was set to 40 °C. The flow rate was 300 μL/min, and the 

sample injection volume was 10 μL. The mass spectrometer was set to the negative ESI 

mode with scheduled MRM scanning. 

 

3.3.3 Statistical analysis 

 Univariate analyses were performed using Wilcoxon rank-sum test from the 

emmeans package in R (v4.0.2) with a significance level of P ≤ 0.05. The adjusted P values 

were performed using the false discovery rate (FDR) method and a value of q < 0.005. 

Metabolomic data, such as multivariate statistical analysis and biomarker analysis, were 

performed using MetaboAnalyst (v4.0), following published guidelines (Xia et al., 2009; 
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Chong et al., 2019). The data were normalized using creatinine and transformed and scaled 

to create a Gaussian distribution. Multivariate statistical analyses between the two groups 

of cows, SCM and CON, were conducted via unsupervised and supervised methods such 

as principal component analysis (PCA) and partial least squared discriminant analysis 

(PLS-DA). The most influential compounds from the PLS-DA were ranked using variable 

importance in projection (VIP) plots. Typically, metabolites with P < 0.05 and VIP scores 

> 1 are the strongest discriminators between the groups. Model validation was carried out 

using a cross-validation test, and a permutation test with 2000 repetitions was implemented 

to assess the reliability of the PLS-DA model (Xia and Wishart, 2011).  

           Identification of biomarker profiles and metabolite set enrichment analyses (MSEA) 

were performed using MetaboAnalyst (v4.0). Perturbed metabolic pathways identified 

from MSEA were considered statistically significant if the Holm corrected P value was < 

0.05. The quality of the biomarker sets was determined using receiver-operating 

characteristic (ROC) curves generated by Monte-Carlo cross-validation (MCCV). A 

permutation test with 1000 repetitions was performed for the validation of these ROC 

curves. We picked the top metabolites for biomarker analysis and calculated the area under 

the curves (AUCs) for those biomarker panels for both prepartum time points. Supervised 

classification method, such as Support Vector Machine (SVM) and logistic regression 

analyses for several significant metabolites were also performed to train the model.  
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3.4 Results 

  Results of this study showed that urinary metabolites of pre-SCM cows were 

different from healthy ones starting from –8 wks and –4 wks before parturition. A total of 

82 urinary metabolites were identified and measured in the urine of dairy cows in this 

study. Results showed that 27 metabolites differentiated the only pre-SCM and CON 

groups at each week, –8 and –4 wks prepartum (Table 3.3, 3.4). FDR adjusted P values 

presented only 4 metabolites from each week within the threshold of q < 0.005. Control 

cows had a BCS of 3.78 at –8 wks and 3.95 at –4 wks and pre-SCM cows had BCS values 

of 3.70 and 3.92 at –8 wks and –4 wks, respectively.  

           Multivariate statistical methods including PCA and PLS-DA were performed to 

cluster and discriminate the two groups of cows. PCA analysis did not show a clear 

separation between CON and pre-SCM cows at –8 wks prior to parturition; however, a 

clear separation of the two groups of cows was shown by the PLS-DA analysis (Figures 

3.1a, 3.1b). To measure the importance of the variables from the PLS-DA, we considered 

the VIP scores. The top 15 most important metabolites that distinguished cows that 

developed SCM from the healthy ones at parturition are presented in the VIP plot (Figure 

3.1c). Asymmetric dimethylarginine (ADMA) was the top metabolite with the highest VIP 

score, at 2.2. Homovanillic acid (HVA) is the second most important metabolite and 

reported here for the first time to be associated with pre-SCM. Both ADMA and HVA were 

consistently increased in the urine at both –8 wks and –4 wks prepartum.  

           Figure 3.2 shows the performance of urinary metabolites identified as potential 

biomarkers for SCM. The top 5 metabolites from the VIP plot showed good performance 

parameters with an AUC = 0.88, P = 0.02 (Figure 3.2a). Overall, the multivariate 
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exploratory analysis presented the best area under the ROC (AUROC) curve for the top ten 

prominent features (Figure 3.2b). To build top performing panel of predictive biomarkers, 

we selected specific metabolites easily accessible to be validated. A default linear support 

vector machine (SVM) model and a logistic regression algorithm were constructed for each 

prepartum sampling period. Both presented a permutation test value of P ≤ 0.05 out of 

1000 repeats (Figures 3.2c, 3.2d).  

           On the other hand, at –4 wks before calving, our multivariate analysis showed better 

separation of pre-SCM from CON cows (Figures 3.3a, 3.3b). Figure 3.3c and 3.3d show 

the metabolites that had the most impact in separating these two groups. According to the 

VIP plot, 6 acylcarnitines (ACs) were lower in pre-SCM cows at –4 weeks, whereas 2 

organic acids (OAs), including alpha-ketoglutaric and citric acid had high VIP score of > 

1.5 in pre-SCM. The first five metabolites of the VIP plot generated an AUC = 0.95 (P = 

0.009), and again the model with the best classification was that which included all 10 high 

scoring metabolites, based on cross-validation (Figures 3.4a, 3.4b). For linear SVM and 

regression analysis, we selected 4 metabolites that produced the best results throughout the 

model validation analysis (Figures 3.4c, 3.4d). The linear SVM model produced a highly 

significant result (P = 0.03), whereas the logistic regression model gave a sufficiently 

significant result (P = 0.05).   

Figure 3.5 displays the results from the quantitative enrichment analysis (QEA), 

done using MSEA in MetaboAnalyst 4.0. No significantly perturbed metabolic pathways 

were found at week –8 prior to parturition with a Holm value of P < 0.05. Whereas, at –4 

wks prior to calving, only one pathway was statistically significant (Holm's P < 0.05), 

which was the pathway associated with spermidine and spermine biosynthesis. Urinary 
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metabolites such as spermine, methionine, spermidine, ornithine, and putrescine were 

found to be significantly different between the two groups of cows (Holm P = 0.02) at –4 

wks, whereas no significant metabolic pathways were found at –8 wks before calving. 

 

 

3.5 Discussion 

 This study evaluated the hypothesis that dairy cows susceptible to SCM will show 

urinary metabotypes that are different from healthy CON cows, both at –8 wks and –4 wks 

prepartum, prior to diagnosis of SCM postpartum. Indeed, the data showed that pre-SCM 

cows displayed urinary metabotypes that differentiated them from the healthy cows starting 

from –8 wks and –4 wks prepartum. The distinction between pre-SCM and healthy CON 

cows was made based on the SCC in the milk collected pre- and post-partum. A cut-off 

value of > 200,000 SCC/mL of milk was selected for diagnosing SCM cows and a SCC 

value of < 200,000 for diagnosing healthy cows (Adkins and Middleton, 2018). 

 

3.5.1 Urinary lipid alterations in pre-SCM cows 

           The main species of lipid metabolites that differentiated the pre-SCM cows from 

CON cows were urinary ACs, more specifically, short chain ACs (C3-C5 carbons). 

Acylcarnitines serve as carriers of long-chain fatty acids into the mitochondria for -

oxidation (Tarasenko et al., 2018). Similar findings were reported previously in the urine 

of pre-SCM and pre-ketotic cows by our lab (Zwierzchowski et al., 2020a; Zhang et al., 

2021). Elevated ACs have been considered as biomarkers for the activation of the immune 

system (Rutkowsky et al., 2014). They are produced as remnants of incomplete 
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mitochondrial fatty acid oxidation and given that they are toxic compounds they need to 

be excreted from the body (Mirzoyan et al., 2017). A study conducted by Minuti et al. 

(2015) demonstrated increased blood ACs in dairy cows infused with intramammary 

lipopolysaccharide (LPS). The same authors reported that administration of LPS was 

associated with suppression of apolipoprotein B genes, acetyl-CoA acyltransferase-2 

(ACAA2), and hydroxymethylglutaryl-CoA synthase (HMGCS2), which are related to β-

oxidation in hepatocytes, leading to the accumulation of ACs in the systemic circulation. 

Indeed, our lab has previously reported that pre-SCM cows were experiencing a chronic 

low-grade inflammatory state during the dry off period and the week the disease was first 

detected (Dervishi et al., 2015). 

Intriguingly, human subjects with high urinary ACs were reported to have been in 

a state of methylmalonic acidemia (MMAemia) (Chalmers et al., 1984). The pre-SCM 

cows in our study were found to have increased levels of methylmalonate in the urine as 

well as in the blood circulation, especially at –4 wks prior to parturition. Typically, 

MMAemia is a condition related to genetic errors or due to vitamin B12 deficiency in 

humans and cattle (Barton and Elliot, 1977; Baumgartner et al., 2014). Methylmalonate is 

a by-product of BCAA catabolism. It may be related to defects in the methylmalonyl-CoA 

mutase (MUT) or in the synthesis of vitamin B12 that prevents it from entering the Krebs 

cycle. Under this condition, the body cannot metabolise amino acids, such as valine, 

isoleucine, threonine, methionine or fatty acids and accumulates methylmalonic acid in the 

systemic circulation (Fowler et al., 2008).  
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3.5.2. Changes in urinary amino acids in pre-SCM cows 

 Urinary BCAAs including valine, leucine, and isoleucine were found to be greater 

in pre-SCM group compared with healthy cows, at both prepartum time points in our study. 

Our lab has reported similar findings in a previous study involving pre-SCM and pre-lame 

cows (Zhang et al., 2020a; Zwierzchowski et al., 2020a). Of note, BCAAs were higher in 

the serum of the same cows at –8 wks prior to parturition. This suggests that for some 

unknown reason BCAAs are not fully utilized by the host but excreted in the urine. A 

similar pathogenesis with that of diabetic kidney disease (DKD) in humans may be 

speculated (Hinden et al., 2021). Zhenyukh et al. (2017) demonstrated that BCAAs 

increase the production of ROS through both activation of NADPH oxidase and from 

mitochondria, and activation of Akt-mTOR signal in cultured PBMCs. BCAAs also 

stimulate the NF-kB pathway in those cells, which results in release of proinflammatory 

cytokines including IL-6, TNF, intracellular adhesion molecule-1 (ICAM-1) (or CD40L), 

and the migration of PBMCs. These authors suggested that high concentration of BCAA 

might contribute to the proinflammatory and oxidative stress in various diseases. We 

suspect that high BCAA in the blood and urine of pre-SCM cows in our study, might have 

contributed to a systemic inflammatory status, as previously reported by our lab in pre-

SCM cows (Dervishi et al., 2015). 

A potential reason why BCAA and several other AA species were excreted in the 

urine and not reabsorbed back into the systemic circulation could be due to increased 

proteocatabolism in the skeletal muscles to support the inflammatory response (Dervishi 

et al., 2018a). This may have led to an over abundance of BCAA that were too high for 

resorptive capacity or due to low presence of electrolytes that could pair with BCAA. 
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During chronic inflammatory states the release of proinflammatory cytokines like TNF or 

translocation of LPS into the systemic circulation trigger a loss of skeletal muscle protein 

as a result of increased muscle proteolysis and decreased muscle protein synthesis 

(Svanberg et al., 2000; Nystrom et al., 2009). In support of this speculation is our finding 

that two urinary AAs, including His and methyl-His, were increased in pre-SCM cows at 

–4 wks prior to parturition. Those two AAs have been linked to increased muscle protein 

proteolysis (Zhou et al., 2017b; Koshikawa et al., 2020). Humans with increased 

proteolysis and urinary excretion of His have been found to have higher concentrations of 

IL-6, C-reactive protein (CRP), and reactive oxygen species (ROS) (Koshikawa et al., 

2020). A similar finding was reported also in rodents (Zhang et al., 2009). Histidine has 

anti-inflammatory effects in response to LPS challenge, including the scavenging of ROS, 

and the inhibition of the secretion of IL-8 and NF-κB (Wade and Tucker, 1998; Son et al., 

2005). However, high urinary excretion of His and methyl-His might be a host response to 

favor an inflammatory response to a potential subclinical bacterial infection of the udder 

during the dry off period.  

Another important finding included elevated urinary concentrations of arginine (at 

–8 wks prepartum) and two of its close functional components ADMA and TDMA (total 

dimethylarginine) (at both –8 and –4 wks prepartum), in the urine of pre-SCM cows. These 

results align with our previously reported findings in pre-SCM and pre-lameness cows 

(Eckel et al., 2020; Zwierzchowski et al., 2020). Elevated concentration of arginine was 

also found in the serum of our pre-SCM cows, at –4 wks prepartum. Arginine is an essential 

AA, important for production of nitric oxide (NO), polyamines, proline, and the stimulation 

of the immune system (Satriano, 2004). Catabolism of arginine has been shown to increase 
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during inflammatory conditions (Flynn et al., 2002). Interestingly, LPS-induced 

inflammation of the mammary epithelial cells is lowered by arginine, reducing the release 

of IL-1β, IL-6, TNF and enhancing mTOR signaling (Wu et al., 2016). Additionally, blood 

infusion of arginine in cows during early lactation is associated with decreased TNF and 

Hp and increased levels of IgM and total protein concentration as well as improved 

antioxidant capacity (Zhao et al., 2018; Ding et al., 2020). In a sheep study, LPS-induced 

inflammation was shown to be associated with elevated removal of arginine from the liver 

and spleen (McNeil et al., 2016; Coleman et al., 2020). Increased urinary excretion of 

arginine might support a proinflammatory status to counteract potential subclinical mastitis 

in the pre-SCM cows.  

Importantly, ADMA has received particular attention recently because it inhibits 

the activity of nitric oxide synthase (NOS) (Tsikas, 2017; Tsikas et al., 2018). The latter is 

the enzyme that converts arginine to NO and L-citrulline. ADMA is produced during the 

process of asymmetric demethylation of guanidine group of arginine residues in selected 

proteins and is released by proteolysis. Elevated concentrations of free ADMA in the 

systemic circulation are considered a risk factor for morbidity and mortality in humans 

(Zhou et al., 2017a). The risk has been related to inhibition of NO secretion, which is a 

crucial mediator in host defense and one of the major killing mechanisms for macrophages 

(Zhao et al., 1997). Excretion of ADMA and TDMA in the urine might be a host response 

to eliminate this compound that inhibits the killing activity of immune cells.  

Our results showed that choline and betaine were increased in the urine of pre-SCM 

cows at –8 wks prepartum. However, only urinary choline was higher in those cows at –4 

wks prior to parturition. Choline is an amine and an essential nutrient that participates in 
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acetylcholine synthesis and methyl group donor (in the liver and kidneys) when 

metabolized to betaine (Aoyama et al., 2004). Choline also is used for synthesis of 

phosphatidylcholine (Fullerton et al., 2006). Snider et al. (2018) looked at the role of 

choline on murine macrophages and demonstrated that polarization of primary bone 

marrow macrophages with LPS was associated with an increased rate of choline uptake. 

Choline uptake also has been shown to contribute to macrophage-mediated IL-1β-

dependent inflammation (Sanchez-Lopez et al., 2019). Both choline and betaine has been 

shown to have anti-inflammatory activity. For example, Parrish et al. (2008) reported that 

intraperitoneal treatment with choline (at 50 mg/kg), prior to LPS administration in mice 

lowered circulatory concentrations of systemic TNF. Moreover, the same authors 

demonstrated that choline suppressed TNF release from human macrophages.  

Betaine is part of the one carbon metabolism pathway and serves as a methyl group 

donor (Williams and Schalinske, 2007). Betaine also has been shown to suppress the NF-

kB pathway and the associated genes including TNF, vascular cell adhesion molecule-1, 

intracellular cell adhesion molecule-1, inducible nitric oxide synthase, and 

cyclooxygenase-2 (Go et al., 2005). It seems odd that the host is excreting in the urine anti-

inflammatory compounds; although it should be noted that both choline and betaine are in 

higher concentrations in the serum of the same cows at –8 wks prepartum. These results 

support our previously stated hypothesis that the host metabolic response (i.e., urinary 

excretion of choline and betaine) is supporting a proinflammatory response against 

presence of a potential subclinical infection in the udder. 
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3.5.3. Changes in the urinary carbohydrate and organic acid species in pre-SCM cows 

           At the beginning of the dry off period (–8 wks prepartum), there was a higher 

concentration of glucose in the urine of pre- SCM cows than at –4 wks prepartum. There 

was also a tendency for serum glucose to be higher in the pre-SCM cows at –8 wks 

prepartum. Although glucose plays important functions as energy substrate for the host, it 

has been reported that high concentrations of glucose have been associated with impaired 

immune functions and, consequently, higher susceptibility to bacterial infections. In a 

study conducted by Kim et al. (2019) the authors reported impaired functions of NK cell 

activity in type 2 diabetes patients compared to healthy controls and prediabetic patience. 

In a recent study, Kuwabara et al. (2018) demonstrated a deficiency (impairment) of 

neutrophil migration to the site of inflammation (lungs) in diabetic (hyperglycemic) rats. 

Moreover, Saito et al. (2013) showed that chronic hyperglycemia caused an increase in 

basal ROS production of neutrophils and increased susceptibility to infection related to 

lowered neutrophil reactions. Overall, given that high blood glucose might impair immune 

responses, and more particularly neutrophil and NK functions, the host seems to increase 

urinary excretion to prevent glucose-related impairment of immune responses. 

To the best of our knowledge this is the first time that urinary homovanillic acid 

(HVA) is reported to be higher in pre-SCM cows. Homovanillic acid is a downstream 

metabolite of tyrosine. This acid was increased at both sampling timepoints but presented 

higher forecasting abilities at –8 wks. Elevated HVA is an established urine biomarker for 

several tumours, metabolic, and neurological disorders in humans (Hrdlička et al., 2021). 

It is a catecholamine-derived metabolite, especially of dopamine. These are considered 

coping hormones in stressful situations and significant activators of lipolysis and 
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glycogenolysis for energy support (O’Neill, 2019). Homovanillic acid in humans has been 

found to activate the immune system and its low levels correlate with survival of the host 

(Bonifačić et al., 2017). The reason why HVA is increased in the urine of pre-SCM cows 

is not understood presently, which is an indication of the broad scope of mastitis 

pathomechanisms.  

An important finding from this study was a major difference in the urinary 

concentration of citrate between the pre-SCM cows (21-fold higher) and CON cows, at –4 

wks prepartum. Citrate is a key metabolite of the Krebs cycle. Citrate is produced in 

mitochondria and then moves from the mitochondria to the macrophages' cytosol, which is 

essential for the pro-inflammatory response (Infantino et al., 2014). Cytosolic citrate under 

normal conditions is converted into acetyl-CoA and oxaloacetate. Acetyl-CoA is used for 

fatty acid synthesis, whereas oxaloacetate helps generate ROS, important in fighting 

pathogenic bacteria. There is growing research pinpointing the importance of citrate in 

regulating immune cell response. Citrate has been linked to the production of several 

important proinflammatory mediators in macrophages including NO, ROS, and 

prostaglandin E2 (PGE2) (Infantino et al., 2013). Indeed, inhibition of the citrate carrier 

protein (CIC) leads to a marked decrease in production of NO, ROS, and PGE2 (Infantino 

et al., 2011). Moreover, treatment of macrophages with LPS has been shown to increase 

mitochondrial CIC in LPS-induced macrophages (Infantino et al., 2011). An important 

question for our study is why the host (pre-SCM cow) is excreting extremely high amounts 

of citrate in the urine? The answer to this is not known yet. However, this finding is in line 

with our hypothesis that pre-SCM cows are trying to mount an inflammatory response and 

given that citrate has inhibitory effects on proinflammatory mediators, then, it is excreted 
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in very significant amounts in the urine to maintain the inflammatory response under 

limited ranges.  

           Noticeable changes between the two groups of cows also occurred in the 

concentrations of urinary polyamines. For example, spermidine and putrescine were higher 

in pre-SCM versus CON cows at –8 wks prepartum. Additionally, urinary spermine was 

higher in the urine of pre-SCM cows at –4 wks prior to parturition. The polyamines 

spermidine, putrescine, and spermine are polycations derived from ornithine and play 

essential physiological roles (Løvaas and Carlin, 1991). They engage in the synthesis of 

DNA and proteins. Moreover, they participate in proliferation and differentiation of cells 

(Igarashi and Kashiwagi, 2000). They also act as scavengers of ROS and protect DNA, 

proteins, and lipids from oxidative injury (Chattopadhyay et al., 2003). Polyamines have 

been postulated to have anti-inflammatory and anti-oxidant properties (Løvaas and Carlin, 

1991). It has been suggested that they exert anti-inflammatory effects by their direct action 

on lymphocytes (Theoharides, 1980). Lagishetty and Naik (2008), assessed the in vivo 

effects of polyamines on acute, subacute, and chronic inflammation. They reported 

significant anti-inflammatory activity in acute, sub-acute, and chronic models of 

inflammation. It can be concluded that polyamines, which also have anti-inflammatory 

activities are excreted in the urine in higher amounts in the pre-SCM cows than CON cows. 

These data suggest that the host is excreting multiple metabolites in the urine with anti-

inflammatory activity. This supports our postulate that pre-SCM cows are trying to mount 

an inflammatory response; however, they are excreting multiple metabolites that 

potentially have been released into the systemic circulation to also keep the inflammatory 

response under control.  
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3.6 Conclusions  

In conclusion, pre-SCM cows experienced altered concentration of urinary 

metabolites related to lipid, amino acid, carbohydrate, and organic acid metabolism. Of 

interest was the higher excretion of ACs and urinary clearance of several AAs, such as 

valine, leucine, isoleucine, histidine, methyl-histidine as well as arginine, choline and 

betaine might have contributed to a systemic inflammatory response from the presence of 

a subclinical infection in the udder. Other metabolites including ADMA, TDMA, glucose, 

and citrate are removed from the host due to their inhibitory effect on immune cells that 

limit the cow’s response against the disease agent(s). Overall, our data suggest that several 

metabolites are excreted in the urine to decrease the inflammatory response, whereas other 

metabolites are maintained to support it. Multivariate analysis showed a clear separation 

of the two groups at –4 wks prior to parturition but not at –8 wks prepartum. Two potential 

panels of urinary metabolites, specific for predicting SCM, were constructed with very 

good accuracy. These metabolites included ADMA, MMA, spermidine, and citrate at –8 

wks and ADMA, leucine, proline, and HVA at –4 wks to predict the risk of occurrence of 

SCM starting from the dry off period.  
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Table 3.1. Ingredients of the prepartum diet for the dry off cows. 

Ingredient Weight/cow (kg) DM (%) Final DMI (kg)1 
Hay 5.50 85.14% 4.68 
Oats 5.75 36.20% 2.08 
Corn 8.84 30.30% 2.68 
Protein 2.00 93.00% 1.86 
Ground Barley 0.75 97.26% 0.66 
Minerals 0.42 97.26% 0.41 
Total 23.36 53.17% 12.37 

1Dry Matter Intake (DMI) is calculated based on the DM% over the offered amount (kg) 
of feed. Daily DMI is formulated to 2% of cow’s body weight   

 

 

Table 3.2. Feed ingredients on a dry-mater basis for cows during early lactation.  

Ingredient Weight/cow (kg) DM (%) Final DMI (kg) 

Hay dairy  2.50 88.50 2.21 
Grass silage  10.75 31.80 3.42 
Oats  5.99 36.20 2.17 
Barley-Dakota 11.50 40.00 4.80 
Corn  13.52 31.50 4.26 
Whey  2.75 17.00 0.47 
Protein 4.75 93.30 4.43 
Energy dairy 4.25 88.00 3.74 
Ground Barley 1.75 88.00 1.54 
Mineral & Fat 1.26 97.26 1.23 
Total 59.02 47.56 28.07 
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Table 3.3. Concentration of urinary metabolites (MEAN ± SEM) in pre-subclinical 
mastitis cows (pre-SCM, n=10) and healthy controls (CON, n=15) at –8 weeks prior to 
parturition as identified by LC-MS/MS. 

Metabolites (µM) 

MEAN ± SEM 

P value 
Fold 

change 
SCM/ 
CON 

Pre-SCM1 
(n=10) CON2 (n=15) 

Creatinine 13903 ± 1679 8732 ± 1477 0.01 1.59 up 
Glycine 302 ± 169 196 ± 149 0.78 1.54 up 
Alanine 265 ± 60 171 ± 52.8 0.48 1.55 up 
Serine 103 ± 17.3 56 ± 15.2 0.11 1.84 up 

Histamine 
0.1315 ± 
0.0244 

0.0915 ± 
0.0214 0.28 1.44 up 

Proline 6.14 ± 1.56 5.54 ± 1.37 0.42 1.11 up 
Valine 18.48 ± 3.41 8.04 ± 3 0.02 2.30 up 
Threonine 84.4 ± 18.3 46.4 ± 16.1 0.2 1.82 up 
Taurine 655 ± 211 420 ± 186 0.55 1.56 up 
Putrescine 0.724 ± 0.144 0.299 ± 0.127 0.01 2.42 up 
trans-Hydroxyproline 1.69 ± 0.598 1 ± 0.526 0.86 1.69 up 
Leucine 12.4 ± 1.94 6.3 ± 1.7 0.01 1.97 up 
Isoleucine 19.34 ± 6.6 7.83 ± 5.8 0.28 2.47 up 
Asparagine 13.1 ± 1.79 8.47 ± 1.57 0.05 1.55 up 
Aspartic acid 174 ± 36.8 127 ± 32.4 0.43 1.37 up 
Glutamine 347 ± 75.1 154 ± 66 0.15 2.25 up 
Glutamic acid 107 ± 31.2 80 ± 27.5 0.64 1.34 up 
Methionine 3.33 ± 0.29 2.7 ± 0.255 0.06 1.23 up 
Histidine 108.2 ± 24.6 53.1 ± 21.6 0.17 2.04 up 
alpha-Aminoadipic 
acid 135 ± 26.6 72 ± 23.4 0.25 1.88 up 
Phenylalanine 16.38 ± 2.72 9.87 ± 2.4 0.09 1.66 up 
Methionine-sulfoxide 3.81 ± 0.948 1.86 ± 0.834 0.17 2.05 up 
Arginine 15.46 ± 2.05 8.15 ± 1.8 0.01 1.90 up 
Acetyl-ornithine 76.1 ± 12.5 44 ± 11 0.08 1.73 up 
Citrulline 8.54 ± 2.36 3.5 ± 2.07 0.07 2.44 up 
Serotonin 1.79 ± 0.297 1.37 ± 0.262 0.44 1.31 up 
Tyrosine 27.4 ± 5 16.4 ± 4.4 0.11 1.67 up 
Asymmetric dimethyla
rginine 9.48 ± 1.21 2.61 ± 1.07 <0.001 3.63 up 
Total dimethylarginine 33.8 ± 4.03 18.3 ± 3.55 0.007 1.85 up 
Tryptophan 36 ± 8.65 19.3 ± 7.61 0.28 1.87 up 
Kynurenine 1.585 ± 0.449 0.967 ± 0.395 0.71 1.64 up 
Carnosine 21.7 ± 4.39 15.5 ± 3.86 0.4 1.40 up 
Ornithine 25.8 ± 4.44 14 ± 3.91 0.07 1.84 up 
Lysine 82.1 ± 14.1 43.4 ± 12.4 0.08 1.89 up 

Spermidine 
0.2248 ± 
0.0871 

0.0746 ± 
0.0766 0.05 3.01 up 
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Spermine 
0.0868 ± 
0.0171 

0.0791 ± 
0.015 0.43 1.10 up 

Sarcosine 4.69 ± 1.17 1.27 ± 1.03 0.17 3.69 up 

Tyramine  0.183 ± 0.042 
0.111 ± 
0.0501 0.26 1.65 up 

Creatine 5098 ± 663 2354 ± 583 0.001 2.17 up 
Betaine 265.2 ± 67.6 74.9 ± 59.4 0.02 3.54 up 
Choline 92.8 ± 21.5 32.1 ± 18.9 0.007 2.89 up 
Trimethylamine N-
oxide 6150 ± 1895 3677 ± 1667 0.38 1.67 up 
Methylhistidine 198 ± 52.3 370 ± 59.4 0.05 0.54 down 
Lactic acid 125 ± 53.9 112 ± 47.4 0.93 1.12 up 
beta-Hydroxybutyric 
acid 400 ± 471 416 ± 415 0.47 0.96 down 
alpha-Ketoglutaric acid 25.7 ± 45.1 34.8 ± 39.7 0.47 0.74 down 
Citric acid 856 ± 801 778 ± 684 0.84 1.10 up 
Butyric acid 28.4 ± 14.7 29.5 ± 12.9 0.35 0.96 down 
p-hydroxyhippuric acid  36.7 ± 14.1 37.9 ± 12.4 0.93 0.97 down 
Succinic acid 30.3 ± 9.86 20.6 ± 8.67 0.69 1.47 up 
Pyruvic acid 8.71 ± 1.79 6.33 ± 1.58 0.16 1.38 up 
Isobutyric acid 7.23 ± 1.66 5.56 ± 1.46 0.59 1.30 up 
Hippuric acid 14438 ± 2073 13225 ± 1823 0.65 1.09 up 
Methylmalonic acid 29.4 ± 6.68 17.9 ± 5.87 0.31 1.64 up 
Homovanillic acid 14.67 ± 1.46 8.83 ± 1.28 <0.001 1.66 up 
Indole acetic acid 67.5 ± 20.7 51.3 ± 18.2 0.96 1.32 up 
Uric acid 5014 ± 883 4279 ± 776 0.44 1.17 up 
Glucose 3369 ± 462 1955 ± 406 0.002 1.72 up 
C0 2.516 ± 0.386 0.893 ± 0.339 0.01 2.82 up 

C2 
0.714 ± 
0.0915 

0.305 ± 
0.0805 0.001 2.34 up 

C3:1 
0.0319 ± 
0.00428 

0.0258 ± 
0.00376 0.02 1.24 up 

C3 
0.0402 ± 
0.00722 

0.037 ± 
0.00635 0.33 1.09 up 

C4:1 
0.0871 ± 
0.00819 

0.0631 ± 
0.00721 0.04 1.38 up 

C4 0.58 ± 0.1096 
0.129 ± 
0.0964 0.002 4.50 up 

C3OH 
0.0855 ± 
0.0092 

0.0642 ± 
0.00809 0.11 1.33 up 

C5:1 
0.251 ± 
0.0226 

0.147 ± 
0.0199 0.001 1.71 up 

C5 
0.1598 ± 
0.0273 

0.0929 ± 
0.024 0.18 1.72 up 
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C4OH 
0.0898 ± 
0.00984 

0.0653 ± 
0.00865 0.05 1.38 up 

C6:1 
0.057 ± 
0.0122 

0.0817 ± 
0.0108 0.27 0.70 down 

C6 
0.072 ± 
0.0134 

0.0872 ± 
0.0118 0.77 0.83 down 

C5OH 
0.1372 ± 
0.0131 

0.0849 ± 
0.0115 0.002 1.62 up 

C5:1DC 
0.0438 ± 
0.00413 

0.0377 ± 
0.00363 0.23 1.16 up 

C5DC 
0.0469 ± 
0.00595 

0.0323 ± 
0.00523 0.03 1.45 up 

C8 
0.0556 ± 
0.00556 

0.0356 ± 
0.00489 0.003 1.56 up 

C5MDC 
0.0514 ± 
0.00366 

0.0466 ± 
0.00322 0.02 1.10 up 

C9 0.147 ± 0.023 
0.106 ± 
0.0203 0.21 1.39 up 

C7DC 
0.0437 ± 
0.00899 

0.0385 ± 
0.00791 0.5 1.14 up 

C10:2 
0.0578 ± 
0.00732 

0.0437 ± 
0.00644 0.19 1.32 up 

C10:1 
0.171 ± 
0.0177 0.15 ± 0.0156 0.15 1.14 up 

C10 
0.135 ± 
0.0125 0.104 ± 0.011 0.01 1.30 up 

C12:1 0.14 ± 0.0387 0.127 ± 0.034 0.43 1.10 up 

C12 
0.1037 ± 
0.00933 

0.0943 ± 
0.0082 0.01 1.10 up 

1pre-SCM = SCM = cows that were sampled before being classified as SCM 
2CON = healthy cows  
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Table 3.4. Metabolite concentration of urine metabolites MEAN ± SEM in pre-subclinical 
mastitis (pre-SCM, n=10) and healthy controls (CON, n=15) at –4 weeks prior to 
parturition as identified by LC-MS/MS. 

Metabolites (µM) 

MEAN ± SEM 
P 

value 
Fold 

change 
SCM/ 
CON 

Pre-SCM1 
(n=10) CON2 (n=15) 

Creatinine 14300 ± 1521 10569 ± 1140 0.01 1.35 up 
Glycine 105 ± 28.3 67.5 ± 21.2 0.1 1.56 up 
Alanine 97.5 ± 11.7 82.5 ± 8.8 0.23 1.18 up 
Serine 77 ± 10.39 69 ± 7.79 0.1 1.12 up 

Histamine 
0.0994 ± 
0.0154 

0.0642 ± 
0.0116 0.12 1.55 up 

Proline 3.63 ± 0.531 3.94 ± 0.398 0.44 0.92 down 
Valine 11.1 ± 1.185 10.3 ± 0.888 0.28 1.08 up 
Threonine 70.7 ± 10.08 50.9 ± 7.56 0.01 1.39 up 
Taurine 439 ± 136 395 ± 102 0.71 1.11 up 
Putrescine 0.915 ± 0.503 1.167 ± 0.377 0.84 0.78 down 
trans-Hydroxyproline 1.22 ± 0.425 1.92 ± 0.318 0.3 0.64 down 
Leucine 9.1 ± 0.99 9.13 ± 0.742 0.38 1.00 up 
Isoleucine 7.72 ± 0.745 5.98 ± 0.558 0.007 1.29 up 
Asparagine 13.46 ± 1.48 9.67 ± 1.11 0.01 1.39 up 
Aspartic acid 190 ± 31.7 131 ± 23.7 0.17 1.45 up 
Glutamine 285 ± 46.8 206 ± 35.1 0.04 1.38 up 
Glutamic acid 78.6 ± 11.7 53.6 ± 8.8 0.09 1.47 up 
Methionine 3.34 ± 0.252 3.25 ± 0.189 0.4 1.03 up 
Histidine 76.6 ± 9.85 60.4 ± 7.38 0.05 1.27 up 
alpha-Aminoadipic 
acid 79.9 ± 14.5 72.9 ± 10.8 0.31 1.10 up 
Phenylalanine 13.1 ± 1.08 10.4 ± 0.81 0.03 1.26 up 
Methionine-sulfoxide 3.12 ± 0.478 3.13 ± 0.358 0.83 1.00 up 
Arginine 11.3 ± 1.316 10.1 ± 0.986 0.48 1.12 up 
Acetyl-ornithine 57 ± 6.82 47.4 ± 5.11 0.08 1.20 up 
Citrulline 3.47 ± 1.265 6.94 ± 0.948 0.17 0.50 down 
Serotonin 1.66 ± 0.202 1.33 ± 0.151 0.13 1.25 up 
Tyrosine 19.4 ± 2.38 20 ± 1.78 0.8 0.97 down 
Asymmetric dimethyla
rginine 8.39 ± 1.024 6.26 ± 0.768 0.02 1.34 up 
Total dimethylarginine 36.2 ± 3.36 26.4 ± 2.52 0.008 1.37 up 
Tryptophan 19.8 ± 3.17 17.8 ± 2.38 0.58 1.11 up 

Kynurenine 
0.735 ± 
0.0835 

0.696 ± 
0.0625 0.94 1.06 up 

Carnosine 14.7 ± 1.61 11.1 ± 1.21 0.03 1.32 up 
Ornithine 16.7 ± 2.1 15.5 ± 1.58 0.6 1.08 up 
Lysine 59.7 ± 5.68 48.5 ± 4.26 0.07 1.23 up 



164 
 

Spermidine 
0.0772 ± 
0.0256 

0.1113 ± 
0.0192 0.36 0.69 down 

Spermine 
0.1219 ± 
0.0113 

0.0596 ± 
0.015 0.008 2.05 up 

Sarcosine 3.04 ± 2.02 6.92 ± 1.51 0.04 0.44 down 

Tyramine  
0.133 ± 
0.0237 

0.113 ± 
0.0188 0.82 1.18 up 

Creatine 5737 ± 1558 6460 ± 1168 0.69 0.89 down 
Betaine 134 ± 95.7 364 ± 71.7 0.06 0.37 down 
Choline 18 ± 12.98 56.9 ± 9.73 0.05 0.32 down 
Trimethylamine N-
oxide 5083 ± 1353 1338 ± 1014 0.03 3.80 up 
Methylhistidine 373 ± 33.7 246 ± 25.2 0.001 1.52 up 
Lactic acid 256 ± 83.6 107 ± 62.6 0.13 2.39 up 
beta-Hydroxybutyric 
acid 116 ± 60.2 135 ± 45.1 0.6 0.86 down 
alpha-Ketoglutaric acid 129 ± 66.6 17.8 ± 49.9 0.07 7.27 up 
Citric acid 1911 ± 723 91 ± 542 0.04 21.00 up 
Butyric acid 11.59 ± 2.18 7.43 ± 1.63 0.09 1.56 up 
p-hydroxyhippuric acid  44.9 ± 17.2 53.9 ± 12.9 0.96 0.83 down 
Succinic acid 42.3 ± 14.7 17.9 ± 11 0.22 2.36 up 
Pyruvic acid 21.87 ± 6.85 7.63 ± 5.13 0.08 2.87 up 
Isobutyric acid 5.14 ± 0.753 2.71 ± 0.564 0.009 1.90 up 
Hippuric acid 20896 ± 3944 17503 ± 2955 0.32 1.19 up 
Methylmalonic acid 25.2 ± 4.18 10.5 ± 3.13 0.001 2.40 up 
Homovanillic acid 13.55 ± 1.88 8.01 ± 1.41 0.03 1.69 up 
Indole acetic acid 58.5 ± 9.75 36.4 ± 7.3 0.06 1.61 up 
Uric acid 4707 ± 748 3036 ± 561 0.05 1.55 up 
Glucose 387 ± 555 973 ± 416 0.35 0.40 down 
C0 1.77 ± 0.167 1.15 ± 0.125 0.01 1.54 up 

C2 
0.685 ± 
0.1239 

0.685 ± 
0.0928 0.75 1.00 up 

C3:1 
0.0501 ± 
0.00367 

0.047 ± 
0.00275 0.9 1.07 up 

C3 
0.0492 ± 
0.00432 

0.0573 ± 
0.00324 0.17 0.86 down 

C4:1 
0.0729 ± 
0.0089 

0.0767 ± 
0.00667 0.86 0.95 down 

C4 
0.484 ± 
0.0904 

0.423 ± 
0.0677 0.24 1.14 up 

C3OH 
0.0695 ± 
0.00729 

0.0714 ± 
0.00546 0.83 0.97 down 

C5:1 
0.259 ± 
0.0338 

0.152 ± 
0.0253 0.005 1.70 up 
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C5 0.155 ± 0.025 
0.154 ± 
0.0187 0.88 1.01 up 

C4OH 
0.0785 ± 
0.00747 

0.0739 ± 
0.0056 0.52 1.06 down 

C6:1 
0.0691 ± 
0.0081 

0.0841 ± 
0.00607 0.28 0.82 down 

C6 
0.0857 ± 
0.0145 

0.1026 ± 
0.0108 0.61 0.84 down 

C5OH 0.14 ± 0.0152 
0.109 ± 
0.0114 0.02 1.28 up 

C5:1DC 
0.0453 ± 
0.00418 

0.0349 ± 
0.00313 0.07 1.30 up 

C5DC 
0.048 ± 
0.00412 

0.0282 ± 
0.00309 

<0.00
1 1.70 up 

C8 
0.0483 ± 
0.00476 

0.0428 ± 
0.00357 0.33 1.13 up 

C5MDC 
0.0483 ± 
0.0046 

0.0482 ± 
0.00345 0.79 1.00 up 

C9 
0.152 ± 
0.0188 0.11 ± 0.0141 0.04 1.38 up 

C7DC 
0.0488 ± 
0.00611 

0.0281 ± 
0.00458 0.005 1.74 up 

C10:2 
0.0466 ± 
0.00574 

0.0514 ± 
0.0043 0.96 0.91 down 

C10:1 
0.204 ± 
0.0213 0.176 ± 0.016 0.23 1.16 up 

C10 0.12 ± 0.0151 
0.136 ± 
0.0113 0.84 0.88 down 

C12:1 
0.083 ± 
0.0315 

0.229 ± 
0.0236 0.002 0.36 down 

C12 
0.0444 ± 
0.0184 

0.091 ± 
0.0138 0.04 0.49 up 

1pre-SCM = SCM = cows that were sampled before being classified as SCM 
2CON = healthy cows  
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Figure 3.1. a) Principal Component Analysis (PCA) and b) Partial Least Square – 
discriminant analysis (PLS-DA, P > 0.05), showing the classification for CON and pre-
SCM metabolites at –8 weeks before parturition; c) Metabolites ranked by variable 
importance in projection (VIP), and d) Heatmap of both, samples and features based on 
PLS-DA, to further investigate the identified variables. 
 
 
 
 
 
 
 

a) b) 

c) d) 
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Figure 3.2. a) AUC of the top 5 metabolites identified from the VIP plot; b) AUC of the 
best biomarker model through automated important feature identification, 10 in this case; 
c) The linear SVM model of a specific panel of biomarkers, ADMA, Pro, Leu, HVA (AUC 
= 0.88, P = 0.02), and d) ROC plot with 10-fold CV for logistic regression model of these 
4 amino acids (AUC = 0.71, P = 0.04). 
 

 

 

 

a) b) 

c) d) 
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Figure 3.3. a) PCA and b) clear separation of PLS-DA (P > 0.05) of 15 CON and 10 SCM; 
c) VIP plot of top 15 important features (metabolites), and d) Heatmap of both, samples 
and features based on PLS-DA to further investigate the classification of the variables. 
 

 

 

 

 

 

 

a) b) 

c) b) 
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Figure 3.4. a) AUC of the top 5 VIP PLS-DA metabolites; b) AUC of the best biomarker 
model’s classification; c) default linear SVM AUC model (AUC = 0.88, P = 0.03), and d) 
AUC of logistic regression model (AUC = 0.83, P = 0.05). 

 
 
 
 
 
 
 
 
 
 

a) b) 

c) d) 
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Figure 3.5. Summary plots for quantitative enrichment analysis (QEA) from the MSEA at 
a) –8 wks, and b) –4 wks. 
 

a) 

b) 
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Chapter 4 – Overall Discussion and Conclusions 

 

4.1 Alterations of blood and urinary metabolites precede the occurrence of subclinical 

mastitis in dairy cows 

A metabolomics approach was used to investigate serum and urinary metabolic 

signatures of pre-SCM cows at –8 and –4 weeks prior to parturition and after been 

diagnosed with SCM after calving. Our primary hypotheses were that: 1) Cows affected 

postpartum by SCM might show blood metabolic changes at the beginning of dry off (–8 

wks prepartum) as well as at –4 wks prior to parturition that can be detected by MS-based 

metabolomics; 2) Cows affected postpartum by SCM might show urinary metabolic 

changes at –8 and –4 wks prior to parturition that can be detected by MS-based 

metabolomics; 3) Both blood and urinary metabotypes show specific biomarkers for dairy 

cows at risk of mastitis during the dry-off period. 

 This study contributes new data on the metabolic response of dairy cows to 

subclinical mastitis as related to various metabolite classes and species during the dry-off 

period when cows look healthy from the clinical point of view. Additionally, these data 

revealed a number of metabolic pathways involved in the host response to subclinical 

mastitis. These results throw some light on how the various metabolites might support or 

oppose the host response to the subclinical condition. 

Indeed, our results demonstrated that by using an MS-based metabolomics 

approach we could identify metabolic fingerprints in the serum of pre-SCM cows that 

differentiated them from the healthy controls, at both –8 wks and –4 wks prior to the 

expected date of parturition. Specifically, around 36.5% of the metabolites measured in the 
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serum were altered in the pre-SCM cows compared to healthy ones from the beginning of 

the dry off period. The reason for these changes is not clear yet; however, it is speculated 

that they might be related to the subclinical infection of the udder during the dry off period 

(Eckel and Ametaj, 2016; Zwierzchowski et al., 2020). The metabolites identified as being 

significantly altered belong to five chemical groups including lipids, AAs, methyl donors 

as well as organic acids and carbohydrates. We were also able to identify and build several 

serum panels of biomarkers that could be used to monitor dairy cows for the risk of being 

affected by SCM, well in advance of occurrence of the disease. The top 4 metabolites were 

selected and fitted with logistic regression model for each time point (–8 and –4 wks 

prepartum). Our data also showed that urinary metabotyping of pre-SCM cows, at both –8 

and –4 wks prepartum, can be used to distinguish pre-SCM cows from healthy controls 

through a number of metabolite species that were identified as being significantly altered. 

Two urinary panels of potential biomarkers were also identified that could be used to 

predict the risk of SCM starting from –8 and –4 wks prepartum. The details of these 

findings will be discussed below. 

 

4.2 Identification of monitoring biomarkers in the serum of pre-subclinical mastitis 

dairy cows 

 In chapter 2 we identified that 36.5% of all metabolites measured in the serum could 

be used to differentiate pre-SCM cows from the healthy controls at –8 and –4 wks 

prepartum. Most of the metabolites identified as significantly changed were related to lipid 

metabolism, AA metabolism, methyl-donor metabolism as well as organic acids and 

glucose. Four metabolites, from each period, were selected to construct a panel of 
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biomarkers with predictive potential for cows predisposed to SCM at the beginning and 

the middle of the dry off period. More specifically, at the beginning of the dry off period 

(–8 wks from the expected date of parturition) 4 metabolites were used to construct a panel 

of biomarkers with excellent predictive accuracy. These metabolites included alanine, 

leucine, betaine, and ornithine (AUC = 0.92). Another panel of biomarkers was constructed 

for the other time point studied (–4 wks prior to parturition) that can also be used to screen 

cows for the risk of developing subclinical or clinical mastitis. Alanine appeared again as 

an important metabolite that can differentiate pre-SCM cows from the healthy controls, 

together with 3 organic acid species including lactate, pyruvate, and methylmalonate (AUC 

= 0.92). These two panels of biomarkers were validated using a permutation test of 1000 

random models to assess this support vector machine (SVM) accuracy. The predictive 

accuracy of the logistic regression model was assessed with a 10-fold cross validation. The 

area under the curve (AUC) for both biomarker models and both types of analysis 

was significant (P ≤ 0.05). The logistic regression model revealed an AUC = 0.81 and P = 

0.05. Whereas for the –4 wks prepartum time point, the logistic regression analysis showed 

an AUC = 0.81, P = 0.04. These results show that the panels of biomarkers identified can 

provide a “good” accuracy test. The guide for assessing the utility of a biomarker panel is 

based on its AUC as follows: 0.9~1.0 = excellent; 0.8~0.9 = good; 0.7~0.8 = fair; 0.6~0.7 

= poor; 0.5~0.6 = fail. 

 

4.3 Identification of predictive biomarkers in the urine of pre-subclinical mastitis 
cows 

As already explained throughout this thesis, the current diagnostic approach for 

subclinical or clinical mastitis is counting of somatic cells in the milk, which is performed 
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during the lactation period, starting after parturition. There are no predictive or monitoring 

tests available to foresee the risk of dairy cows developing SCM or CM during the dry off 

period. In chapter 3, data showed that it is possible to use the two panels of urinary 

biomarkers identified in this study to screen cows during the dry-off period for the risk of 

being affected by SCM. More specifically, at –8 wks a logistic regression model that used 

a combination of asymmetric dimethylarginine (ADMA), leucine, proline, and 

homovanillic acid was constructed to forecast SCM (AUC = 0.71, P = 0.04). Another 4-

metabolite biomarker profile was constructed at –4 wks prior to calving that included 

ADMA, methylmalonate, spermidine, and citrate. The predictive accuracy of this logistic 

regression model was AUC = 0.83, P = 0.05. It should be noted that these panels of 

metabolites need to be further validated in another larger study. Our urine metabolomics 

study found that these 4 metabolites as well as another 23 metabolites (not part of the panel) 

were significantly different at –8 and –4 wks, respectively. These compounds belonged to 

the classes of ACs, organic acids as well as AAs and their derivatives.  

 

4.4 Identification of perturbed pathways involved in pre-subclinical mastitis cows 

 Metabolite set enrichment analyses (MSEA) indicated several perturbed metabolic 

pathways at –8 wks prior to the diagnosis of subclinical mastitis. Most significant pathways 

were discovered in the serum samples. At the beginning of the dry off period, glycine and 

serine, methionine, and betaine metabolisms played key roles in the separation of pre-SCM 

and CON cows. These are all important pathways related to the one-carbon metabolism. 

At –4 wks before calving, the glucose-alanine cycle and seleno-amino acid metabolism 

were identified as important pathways, due to their role as energy providers. With regard 
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to the results from our urine studies, spermidine and spermine biosynthesis was the only 

perturbed pathway detected at –4 wks prior to calving.  

 

4.5 Host metabolite responses suggest that some of the serum and urinary metabolites 

support host proinflammatory responses and others contribute to keeping 

inflammatory responses under control 

Based on our previous research and research conducted by other labs along with 

the detailed discussion of the data in chapters 2 and 3, it can be concluded that most of the 

metabolites that differentiated the pre-SCM cows from healthy controls in both serum and 

urine might be grouped into: 1) those that support the proinflammatory response of the host 

to the potential bacterial by-products or cytokines generated in the mammary gland in cows 

affected by subclinical mastitic, and 2) those that contribute to keep the host inflammatory 

response under control. Overall, these metabolite responses in both serum and urine seem 

to be related to the presence of chronic low-grade inflammatory state in pre-SCM cows at 

–8 and –4 wks prepartum, as identified and reported in a similar study conducted by our 

lab (Dervishi et al., 2015). 

In support of this hypothesis are the identified alterations in the lipid classes and 

lipid species in the serum of pre-SCM cows. For example, lowered concentrations of PCs 

in the blood in pre-SCM cows might support a chronic low-grade inflammatory state in 

those cows and unfortunately predispose them to developing fatty liver (Dervishi et al., 

2015). Considering that multiple species of SMs also were lowered in pre-SCM cows and 

given their reported positive effects on neutrophil migration and their killing capacity 
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(Nakamura et al., 1994; Feldhaus et al., 2002; Sitrin et al., 2010) the lack of SMs in the 

circulation might increase the host susceptibility to infections. Beside the lowered 

concentration of multiple metabolite species of PCs and SMs, our data also showed 

lowered concentration of several serum LPCs. The latter have been shown to support the 

mounting of an inflammatory response. Again, lowered LPC metabolites during the dry off 

period are supportive of the idea that the host is trying to keep the inflammatory response 

under control.  

As already discussed in chapter 2, serum BCAA (valine, leucine, and isoleucine) 

were increased in pre-SCM cows. These metabolites have been reported to support 

mounting of an efficient proinflammatory response (Zhenyukh et al., 2017). These three 

AAs are essential for protein synthesis, stimulation of secretion of proinflammatory 

cytokines, and migration of neutrophils to the site of infection (Calder, 2006; Zhenyukh et 

al., 2017). Besides BCAA, several other serum metabolites with proinflammatory activities 

were increased in the serum including arginine and ornithine. Additionally, two other 

proinflammatory AAs including glycine and serine were lowered potentially to keep the 

inflammatory response within acceptable limits.  

In order for the immune cells to grow, proliferate, and respond properly to the 

inflammatory stimuli, they require energy. A potential source of energy for immune cells 

is alanine, which was lowered in the circulation of pre-SCM. This could reflect the 

extensive utilization of alanine by the immune cells but also by the liver for mounting of 

an acute phase response (Druml et al., 2001; Li et al., 2007; Garcia et al., 2016). Two other 

metabolite species that were elevated in the serum of pre-SCM cows were choline and 
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betaine. Both these metabolites have been shown to lower the proinflammatory response 

(Go et al., 2005, 2007; Abdelmegeid et al., 2017; Garcia et al., 2018).  

Overall, our results for the serum findings suggest that it is possible that cows under 

a subclinical state of mastitis mobilize or lower their metabolic responses based on whether 

those metabolites support or oppose the inflammatory response of the immune cells to the 

inflammatory stimuli. Most of the identified metabolites support the mounting of an 

immune response; however, several others either suppress the immune responses or are 

lowered to not provide more fuel to the immune cells. This is an interesting finding that 

certainly needs to be pursued in the future. 

Regarding the urinary metabolite species identified as altered in the pre-SCM cows, 

it should be noted that ACs were excreted in much higher quantities in the urine of pre-

SCM cows than in the CON ones. Urinary data align with the serum findings that showed 

increased concentrations of multiple species of ACs. It is obvious that high concentration 

of ACs in the serum are associated with increased excretion of these compounds in the 

urine. There is mounting evidence that during inflammatory states there is some 

malfunctioning of β-oxidation of fatty acids in the mitochondria, leaving large amounts of 

unoxidized AC species in the cytoplasm and then moving those into the systemic 

circulation (Minuti et al., 2015). 

Results showed that there was higher excretion of histidine and methyl-histidine in 

the urine of pre-SCM cows. Moreover, BCAA and arginine also were excreted in higher 

amounts in the pre-SCM cows versus healthy cows. It is possible that these metabolic 

responses might allow the host to elicit a proportional immune response (Wu et al., 2016). 

Disproportional immune responses might sicken the host instead of contributing to 
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resolving the inflammatory status. Data also showed that the host responded with higher 

excretion of anti-inflammatory compounds such as choline, betaine, ADMA, and TDMA, 

which can be considered as a metabolic host response to suppress the proinflammatory 

reaction against the presence of a potential subclinical infection in the udder (Go et al., 

2005; Parrish et al., 2008; Tsikas, 2017; Tsikas et al., 2018). Beside the host urinary 

responses to lower the metabolomic proinflammatory load in the systemic circulation and 

body fluids, cows responded to subclinical mastitis through urinary excretion of several 

other metabolites that could impair the immune response itself. For example, higher 

glucose in the blood has been reported to impair functions of neutrophils and NK cells 

(Kim et al., 2019). Therefore, higher excretion of glucose in the urine might diminish its 

negative effects on immune cells and host immune responses. On the other hand, higher 

excretion of urinary citrate in pre-SCM cows is another example of a host response that 

lowers the metabolic anti-inflammatory load (Infatino et al., 2013).  

Overall, the excretion of the anti-inflammatory compounds through the urine seems 

to be a response from the pre-SCM cows trying to support an inflammatory response. 

However, at the same time, some of those metabolites build up into the systemic circulation 

to keep the inflammatory response under control.  

 

4.6 Shared and specific metabolite species in cows affected by pre-SCM and those 

affected by pre-SCM and another disease 

We have thoroughly discussed serum and urinary metabolite differences and 

alterations between pre-SCM cows and the healthy controls in chapters 2 and 3. 
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Considering that 34 cows (out of a total of 44 affected by SCM) in our study were affected 

by SCM and another disease (SCM-P) this is an important issue with respect to our final 

goal of developing pen-side tests for predicting SCM in dairy cows. Given the presence of 

concurrent diseases in cows affected by SCM, this might complicate the development of 

pen-side tests specific for SCM. We will discuss these data briefly in order to identify 

shared and specific metabolites for cows affected by SCM only (SCM-O) and those that 

were affected by SCM and another disease (SCM-P).   

It should be noted that there was a total of 44 cows that were diagnosed postpartum 

with SCM (SCM-T); however, only 10 cows were affected by SCM-O. There were also 20 

cows affected by SCM and leukosis, 9 cows affected by SCM and ketosis, 2 cows affected 

by SCM and milk fever, and 2 cows affected by SCM, ketosis, and retained placenta, and 

1 cow affected by SCM and lameness. All the cows affected by SCM and one or more 

diseases are identified as SCM plus (SCM-P). It should be noted that detailed discussion 

of these data is beyond the objective of this thesis; however, we will discuss them briefly 

as a particularly important finding of this study.  

Results obtained from the serum analyses at –8 wks prepartum demonstrated that 

there was a total of 52 metabolites (P ≤ 0.05) that differentiated SCM-O and SCM-P from 

the CON (healthy) cows (Table 4.1). Out of those, only 8 metabolite species were shared 

by SCM-O and SCM-P including Gly, Val, carnosine, alpha-aminoadipate, LPC-C18:1, 

LPC-C18:2, C5DC, and C14:1OH. The 8 shared metabolites were not different between 

SCM-O and SCM-P; however, those metabolites differentiated both groups from the 

healthy controls. Five of the metabolites were lowered in all cows affected by SCM-T (T 

for total) vs healthy controls and 3 others were higher in SCM-T, at –8 wks prepartum. 
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Given that these metabolites differentiated all cows affected by SCM (SCM-T), 

independently whether they were affected by SCM-O or by SCM-P, then, these metabolites 

might serve as potential screening biomarkers for SCM.  

Another 27 serum metabolites (at –8 wks) were specific only to SCM-O cows. 

There were only 2 metabolites (hippurate and LPC-C20:4) that resulted to be specific for 

SCM-P cows. Another 15 metabolites were not specific to any of the SCM conditions. 

They included lipid species such as 3 LPC- (C26:1, C28:0; and C28:1), 3 PCs (PC ae 

C36:0, PC aa C36:6, and PC aa C38:0), 4 SMs (14:1-SMOH, 16:1SMOH, 18OSM, and 

22:1SMOH), and 5 ACs (C0, C5:1DC, C6:1, C8, and C12:1).  

At –4 wks prepartum there was a total of 40 metabolite species (P ≤ 0.05) that 

differentiated SCM-O and SCM-P from the healthy control cows (Table 4.2). Only 3 

metabolites were common to both SCM-O and SCM-P (alanine, proline, and methionine-

sulfoxide). Another 15 metabolites were specific only for the SCM-O cows (ornithine, 

choline, methylmalonate, lactate, LPC-C28:1, PC aa C36:6, PC aa C40:1, PC aa C40:6, 

18:OSM, 22:2SMOH, C5:1, C5DC, C9, C10:2, and C14:1). The group of cows affected 

by SCM-P had 4 metabolite species that were specific for this group only and these 

included betaine, LPC-C18:0, LPC-C18:2, and C3OH. The other 17 metabolites including 

1 AA (methionine), 2 LPCs, 7 PCs, 2 SMs, and 5 ACs were not shared between the two 

SCM groups and were not specific for either SCM-O or SCM-P.   

Regarding urinary data it is interesting to note that there were no significant 

differences between the SCM-P and healthy cows. All 21 metabolites (P ≤ 0.05) identified 

as altered at –8 wks (Table 4.3) belonged to SCM-O cows; they differentiated this group 
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from the healthy controls and were higher than both SCM-P and CON cows. These 

metabolites can be considered as specific for SCM-O cows.  

There was a total of 14 urinary metabolites at –4 wks prepartum for both SCM-O 

and SCM-P cows (Table 4.4). Our data showed that there were no shared or common 

metabolites between SCM-O and SCM-P cows at this sampling date. However, there were 

12 metabolites (isoleucine, glutamine, threonine, carnosine, methylhistidine, 

methylmalonate, pyruvate, citrate, lactate, urate, C5DC, and C12:1) that were specific for 

SCM-O cows. Two metabolites (homovanillic acid and C5:1DC) were found to 

differentiate the two SCM groups but there were no differences between the two SCM 

groups and healthy control cows. 

Overall, it can be concluded that there is a potential to identify cows that are 

affected by SCM independently of whether they are free of other diseases (SCM-O) or 

whether they are affected by SCM and one or more other diseases (SCM-P) based on 8 

identified shared serum metabolites. Additionally, the same can be said for the 3 shared 

serum metabolites between SCM-O and SCM-P, at –4 wks prepartum. 

Regarding our urinary results it appears that there are no shared metabolites 

identified between SCM-O and SCM-P. This means that, at this time, no SCM-T test can 

be developed for urine. The only metabolites identified as important in the urine for both 

–8 and –4 wks prepartum are those that are specific for SCM-O and not for the SCM-P 

group. 
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4.7 Panels of common selected biomarkers between SCM-O and SCM-P at –8 and –4 

weeks compared with healthy controls 

 The last question for this study was whether we could identify panels of biomarkers 

that could be used under a central lab conditions or as a pen-side test to monitor cows for 

the risk of being affected by SCM. Considering that there were only 8 serum metabolites 

commonly shared between SCM-O and SCM-P cows at –8 wks prepartum, we evaluated 

various combinations of metabolites to generate the highest accuracy test possible. Indeed, 

the combination of alpha-aminoadipate, C14:1OH, and C5DC yielded the best logistic 

regression curve with the highest accuracy for a potential lab test (Figures 4.1.a; 4.1.b). 

Cows affected by SCM-O demonstrated an AUC of 0.81 for a potential test (with those 3 

metabolites (P = 0.05), whereas cows affected by SCM-P presented an AUC of 0.86 for a 

test with the same 3 metabolites (P = 0.001). On the other hand, glycine and carnosine 

showed considerable utility for potential pen-side tests to detect SCM-T. Logistic 

regressions of glycine and carnosine for SCM-O cows showed an AUC of 0.79 for the test 

(P = 0.05) (Figure 4.2.a), whereas the AUC for SCM-P was 0.71 (P = 0.05) (Figure 4.2.b). 

These data show that it should be possible to develop both a central lab test and a pen-side 

test for all cows at risk of SCM even though they might be affected by only SCM or have 

one or more concurrent periparturient diseases, at –8 wks prepartum. On the other hand, 

cows at –4 wks prior to parturition (both SCM-O and SCM-P cows) had only 3 shared 

serum metabolites. Biomarker analysis showed that alanine and methionine-sulfoxide 

displayed an AUC of 0.88, for a potential test for identifying dairy cows at risk of SCM-O 

(P=0.03) (Figure 4.3.a). The same model for SCM-P had an AUC of 0.72, for a potential 

test, although the test was only marginally significant (P = 0.06) (Figure 4.3.b).  
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Finally, since no shared metabolites were found in the urine of both SCM-O and 

SCM-P cows, it appears that it is not yet possible to develop a test to detect cows at risk of 

SCM at –8 or –4 wks prepartum by using the metabolites from the current data.  

 

4.8 Future Implications 

Results of this study have shown that there is a possibility to develop both a central 

lab test and a pen-side test for identifying dairy cows at risk of being affected by SCM 

postpartum. In a cohort of 145 dairy cows included in the study, at the beginning and the 

middle of the dry-off period (–8 and –4 wks prepartum), 44 cows were diagnosed with 

SCM postpartum. Analysis of the MS-based metabolomics data, for both serum and urine, 

were complicated by the fact that just 10 dairy cows were affected by SCM only. 

Meanwhile, there was a total of 34 cows that were diagnosed with SCM and one or more 

other disease. This finding challenges the aim of developing a pen-side or a lab test to 

identify cows at risk of being affected by SCM because another concurrent disease might 

affect the metabolic responses and metabolite species released into systemic circulation 

and excreted in the urine from the host. However, a thorough analysis of all the data 

generated showed that a potential test for identifying dairy cows at risk of SCM, both at –

8 and –4 wks prepartum, independently whether they are affected only by SCM or SCM 

and another disease(s), could be developed.  

Interestingly the data from this study showed that the serum and urinary metabolites 

identified in a previous similar study, conducted at DRTC dairy farm, were different from 

the panels of metabolites identified in this study (Dervishi et al., 2017, Zwierzchowski et 

al., 2020). In our previous study the most important metabolites that were selected for a 
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potential monitoring test for the risk of SCM at –8 wks prior to parturition were trans-

aconitate, hypoxanthine, leucine, and xylose. The AUC was 0.95, or 95% sensitivity and 

specificity of the test for identifying cows at risk of SCM only. The precise reason for this 

discrepancy it is not known. However, some of the reasons for the differences in metabolite 

species might be that the cohorts of dairy cows were selected from two different farms. 

Currently, we do not know whether feeding or the ration composition might affect each 

cows’ metabolite responses to the development of SCM. Another more important reason 

for the discrepancy might be the different instruments used for identifying and quantifying 

the potential serum biomarkers. In our previous study NMR (Nuclear Magnetic Resonance) 

was used to analyze the serum samples. In the current study we used a LC-MS to identify 

and measure serum metabolites. In particular, the LC-MS platform we used could not 

measure three of the four NMR-detected metabolites: xylose, trans-aconitate or 

hypoxanthine.  

Another question to consider is whether we will use specific metabolites to screen 

cows for each disease separately or construct panels of metabolites that can identify cows 

that will be affected by a serial or concurrent periparturient diseases that might be 

considered as part of a general sickness syndrome. Given that the identified metabolite 

panels in Chapters 2 and 3 show high accuracy for the detection of SCM only, such a test 

would leave out cows that were affected by SCM and another disease. Additionally, given 

that only 10 cows were diagnosed with SCM only, out of a total of 44 affected by SCM, 

there were 34 cows affected by SCM and another disease(s). Searching for high sensitivity 

and specificity biomarkers for only one disease (e.g., SCM), we can identify only 7% of 

cows affected by SCM-O in a herd where the prevalence of SCM is 33% of all the dairy 
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cows in a farm. The question is whether we should move to reductionist approach to 

identify one disease at a time with one or two specific metabolites or whether we should 

expand our approach and apply systems biology to better understand periparturient diseases 

and identify them at the very earliest stage in disease development. This suggests that to 

move forward we will need to develop very sophisticated pen-side tests with a multitude 

of metabolites in order to increase the accuracy, the sensitivity and the specificity of the 

tests for predicting the risk of all cows affected by SCM, independently of concurrent 

diseases.   
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Table 4.1. Serum metabolites at –8 wks before calving between the three groups of cows 
and their respective P values for multiple comparison groups.  

Metabolites 
(µM) 

MEAN ± SEM1 
P 

value 

P value2 

SCM-O3 SCM-P4 CON 
SCM-O 
vs CON 

SCM-P 
vs CON 

SCM-O vs 
SCM-P 

Glycine 319 ± 23.8 335 ± 12.9 389 ± 19.5 0.03 0.03 0.03 0.62 
Isoleucine 142 ± 7.85 120 ± 4.26 117 ± 6.41 0.03 0.04 0.9 0.03 

Leucine 255 ± 14.8 182 ± 8.03 
181 ± 
12.08 <0.001 <0.001 0.9 <0.001 

Lysine 95.4 ± 7.35 75.6 ± 3.98 73.7 ± 6 <0.001 0.03 0.8 0.02 

Valine 264 ± 16.42 217 ± 8.91 
205 ± 
13.41 0.01 0.01 0.75 0.03 

Carnosine 12.9 ± 2.18 16.4 ± 1.18 21.5 ± 1.78 <0.01 0.01 0.05 0.3 
Ornithine 65.2 ± 3.58 48.2 ± 1.94 47.9 ± 2.92 <0.001 <0.001 0.9 <0.001 

Betaine 152.8 ± 14.31 93.2 ± 7.76 
82.5 ± 
11.68 <0.001 <0.001 0.7 <0.001 

Choline 15.3 ± 1.148 11 ± 0.623 
10.4 ± 
0.938 <0.01 <0.01 0.8 <0.01 

alpha-
Aminoadipi
c acid 2.89 ± 0.318 

2.69 ± 
0.173 1.95 ± 0.26 0.03 0.02 0.02 0.7 

Asymmetric 
dimethylargi
nine 

0.883 ± 
0.0542 

0.737 ± 
0.0294 

0.653 ± 
0.0442 <0.01 <0.01 0.2 0.05 

Citric acid 220 ± 20.3 286 ± 11 282 ± 16.6 0.01 0.05 0.9 0.01 
Fumaric 
acid 1.15 ± 0.235 

1.71 ± 
0.128 

1.92 ± 
0.192 0.04 0.03 0.6 0.1 

Hippuric 
acid 55.6 ± 4.08 67.9 ± 2.21 65.3 ± 3.33 0.03 0.1 0.7 0.02 

LYSOC14:0 
0.942 ± 
0.0874 

1.234 ± 
0.0474 

1.432 ± 
0.0713 <0.001 <0.001 0.06 0.01 

LYSOC16:1 26.3 ± 2.05 27.4 ± 1.11 32.1 ± 1.67 0.03 0.02 0.2 0.2 

LYSOC18:0 16.9 ± 1.612 
20.7 ± 
0.874 

22.1 ± 
1.316 0.04 0.04 0.6 0.1 

LYSOC18:1 13.5 ± 1.33 
16.7 ± 
0.721 20 ± 1.086 <0.001 <0.001 0.03 0.1 

LYSOC18:2 29.8 ± 2.86 35.7 ± 1.55 45.2 ± 2.34 <0.001 <0.001 <0.01 0.1 

LYSOC20:4 2.32 ± 0.1793 
2.23 ± 
0.0973 

2.66 ± 
0.1464 0.05 0.3 0.04 0.8 

LYSOC26:0 
0.118 ± 
0.0232 

0.151 ± 
0.0126 

0.196 ± 
0.0189 0.03 0.03 0.1 0.4 

LYSOC26:1 
0.0402 ± 
0.0057 

0.0568 ± 
0.00309 

0.0661 ± 
0.00466 <0.01 <0.01 0.2 0.03 

LYSOC28:0 
0.228 ± 
0.0263 

0.322 ± 
0.0143 

0.408 ± 
0.0215 <0.001 <0.001 <0.01 <0.01 

LYSOC28:1 
0.278 ± 
0.0383 

0.466 ± 
0.0208 

0.559 ± 
0.0313 <0.001 <0.001 0.04 <0.001 

PC32:2AA 8.43 ± 0.973 
13.38 ± 
0.528 

15.55 ± 
0.795 <0.001 <0.001 0.06 <0.001 

PC36:0AA 12.3 ± 2.01 22.2 ± 1.09 26.6 ± 1.64 <0.001 <0.001 0.07 <0.001 

PC36:0AE 2.3 ± 0.27 
3.68 ± 
0.146 4.29 ± 0.22 <0.001 <0.001 0.06 <0.01 
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PC36:6AA 2.77 ± 0.284 
3.79 ± 
0.154 

4.09 ± 
0.232 <0.001 <0.001 0.5 <0.001 

PC38:0AA 1.83 ± 0.282 3.3 ± 0.153 4.08 ± 0.23 <0.001 <0.001 0.01 <0.001 
PC38:6AA 2.93 ± 0.368 4.46 ± 0.2 4.96 ± 0.3 <0.001 <0.001 0.3 <0.001 

PC40:1AA 
0.299 ± 
0.0277 

0.45 ± 
0.015 

0.505 ± 
0.0226 <0.001 <0.001 0.1 <0.001 

PC40:2AA 0.912 ± 0.153 
1.705 ± 
0.083 

2.053 ± 
0.125 <0.001 <0.001 0.06 <0.001 

PC40:6AA 1.93 ± 0.287 
2.76 ± 
0.155 

2.83 ± 
0.234 0.03 0.04 0.9 0.03 

PC40:6AE 1.02 ± 0.1041 
1.43 ± 
0.0565 

1.57 ± 
0.085 <0.001 <0.001 0.3 <0.01 

14:1SMOH 2 ± 1.03 
4.08 ± 
1.169 

2.08 ± 
0.888 <0.01 <0.01 0.05 0.1 

16:0SM 123 ± 10.51 151 ± 5.7 170 ± 8.58 <0.01 <0.01 0.1 0.05 

16:1SM 13.9 ± 1.135 
16.6 ± 
0.616 

18.9 ± 
0.927 <0.01 <0.01 0.09 0.1 

16:1SMOH 12.6 ± 1.067 
15.7 ± 
0.579 

18.1 ± 
0.871 <0.001 <0.001 0.05 0.04 

18:0SM 19.3 ± 1.478 
24.3 ± 
0.801 

28.4 ± 
1.206 <0.001 <0.001 0.01 0.01 

18:1SM 20.2 ± 1.805 
26.1 ± 
0.979 30 ± 1.474 <0.001 <0.001 0.07 0.01 

20:2SM 2.26 ± 0.231 
3.18 ± 
0.125 

3.62 ± 
0.189 <0.001 <0.001 0.1 <0.01 

22:1SMOH 20.4 ± 1.822 
27.1 ± 
0.988 

31.5 ± 
1.488 <0.001 <0.001 0.04 <0.01 

22:2SMOH 10.6 ± 0.784 
13.7 ± 
0.425 15.1 ± 0.64 <0.001 <0.001 0.1 <0.01 

24:1SMOH 2.39 ± 0.173 
3.06 ± 
0.094 

3.38 ± 
0.141 <0.001 <0.001 0.1 <0.01 

C0 4.11 ± 0.327 
3.12 ± 
0.177 

3.43 ± 
0.267 0.03 0.2 0.5 0.02 

C4OH 
0.0234 ± 
0.00192 

0.0313 ± 
0.00104 

0.0348 ± 
0.00157 <0.001 <0.001 0.1 <0.001 

C5:1DC 
0.0138 ± 
0.001213 

0.0166 ± 
0.000658 

0.0184 ± 
0.00099 <0.01 0.01 0.2 0.1 

C5DC 
0.01021 ± 
0.000723 

0.00974 ± 
0.000392 

0.01242 ± 
0.00059 <0.001 0.05 <0.001 0.8 

C6:1 
0.0238 ± 
0.001611 

0.028 ± 
0.000874 

0.0305 ± 
0.001315 <0.001 <0.01 0.2 0.05 

C8 
0.0174 ± 
0.001359 

0.0123 ± 
0.000737 

0.0119 ± 
0.00111 <0.01 <0.01 0.9 <0.01 

C12:1 
0.0444 ± 
0.00309 

0.0401 ± 
0.00168 

0.0473 ± 
0.00252 0.05 0.7 0.05 0.4 

C14:1OH 
0.00789 ± 
0.000553 

0.00872 ± 
0.0003 

0.01005 ± 
0.000452 <0.01 0.01 0.04 0.3 

1ANOVA three group comparison  
2Tukey test for multiple group comparison 
3SCM-O = subclinical mastitis only (cows affected by SCM only) 
4SCM-P = subclinical mastitis plus (all cows affected by SCM and another disease) 
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Table 4.2. Serum metabolites at –4 wks before calving between the three groups of cows 
and their respective P values for multiple comparison groups.  

Metabolites 
(µM) 

MEAN ± SEM1 
P 

value 

P value2 

SCM-O3 SCM-P4 CON 
SCM-O 
vs CON 

SCM-P 
vs CON 

SCM-O vs 
SCM-P 

Alanine 188 ± 11.94 213 ± 6.48 240 ± 9.75 <0.01 <0.01 0.05 0.1 
Proline 77.9 ± 5.5 85.1 ±2.98 97.8 ± 4.49 0.01 <0.01 0.05 0.4 
Valine 244 ± 15.7 250 ± 8.5 294 ± 12.8 0.01 0.04 0.01 0.9 
Methionine 23.6 ± 1.617 27 ± 0.877 29.5 ± 1.32 0.02 0.01 0.2 0.1 
Methionine-
sulfoxide 1.91 ± 0.238 

2.16 ± 
0.129 

2.82 ± 
0.194 <0.01 0.01 0.01 0.6 

Ornithine 159.5 ± 5.1 57.2 ± 2.77 63.8 ± 4.17 <0.001 <0.001 0.3 <0.001 

Betaine 156 ± 12.57 136 ± 6.81 
165 ± 
10.26 0.05 0.8 0.05 0.3 

Choline 19 ± 1.071 12 ± 0.581 
11.7 ± 
0.874 <0.001 <0.001 0.9 <0.001 

Methylmalo
nic acid 

0.562 ± 
0.0525 

0.387 ± 
0.0285 

0.349 ± 
0.0429 <0.001 <0.01 0.7 0.01 

Lactic acid 2242 ± 270 1330 ± 147 1421 ± 221 0.01 0.05 0.9 0.01 

LYSOC18:0 14.2 ± 1.083 
12.5 ± 
0.587 

15.9 ± 
0.884 <0.01 0.4 <0.01 0.3 

LYSOC18:1 9.3 ± 1.098 
8.56 ± 
0.595 

11.18 ± 
0.896 0.05 0.3 0.04 0.8 

LYSOC18:2 17.4 ± 2.02 15 ± 1.1 20 ± 1.65 0.04 0.5 0.03 0.5 

LYSOC20:3 2.68 ± 0.328 
2.45 ± 
0.178 

3.32 ± 
0.267 0.03 0.2 0.02 0.8 

LYSOC28:1 
0.196 ± 
0.0327 

0.256 ± 
0.0177 

0.313 ± 
0.0267 0.02 0.01 0.1 0.2 

PC32:2AA 6.3 ± 0.85 
9.46 ± 
0.461 

11.85 ± 
0.694 <0.001 <0.001 0.01 <0.01 

PC36:0AA 7.5 ± 0.897 12 ± 0.486 
14.5 ± 
0.732 <0.001 <0.001 0.01 <0.001 

PC36:0AE 1.95 ± 0.209 2.8 ± 0.113 
3.38 ± 
0.171 <0.001 <0.001 0.01 <0.01 

PC36:6AA 1.99 ± 0.298 
2.97 ± 
0.161 

3.59 ± 
0.243 <0.001 <0.001 0.09 0.01 

PC38:0AA 
0.899 ± 
0.1471 

1.574 ± 
0.0798 

1.925 ± 
0.1201 <0.001 <0.001 0.04 <0.001 

PC38:6AA 1.89 ± 0.223 
2.89 ± 
0.121 

3.45 ± 
0.182 <0.001 <0.001 0.03 <0.001 

PC40:1AA 
0.399 ± 
0.0204 

0.347 ± 
0.0136 

0.225 ± 
0.025 <0.001 <0.001 0.09 <0.001 

PC40:2AA 
0.479 ± 
0.0671 

0.789 ± 
0.0364 

0.988 ± 
0.0548 <0.001 <0.001 0.01 <0.001 

PC40:6AA 1.48 ± 0.2 2.3 ± 0.109 
2.54 ± 
0.164 <0.001 <0.001 0.4 <0.001 

PC40:6AE 
0.687 ± 
0.0712 

0.968 ± 
0.0386 

1.152 ± 
0.0581 <0.001 <0.001 0.02 <0.01 

18:0SM 13.3 ± 1.191 
16.6 ± 
0.646 

17.2 ± 
0.973 0.02 0.03 0.8 0.04 

22:1SMOH 12.8 ± 1.414 
17.7 ± 
0.767 

18.1 ± 
1.155 <0.001 0.01 0.9 0.01 
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22:2SMOH 7.32 ± 0.661 
9.62 ± 
0.358 

10.01 ± 
0.539 <0.001 <0.01 0.8 <0.01 

24:1SMOH 
1.76 ± 
0.1783 

2.38 ± 
0.0967 

2.27 ± 
0.1456 0.01 0.07 0.8 <0.01 

C3OH 
0.0251 ± 
0.00192 

0.0193 ± 
0.00104 

0.0239 ± 
0.00157 <0.01 0.8 0.04 0.02 

C4.1 
0.021 ± 
0.00145 

0.0152 ± 
0.000786 

0.0154 ± 
0.001184 <0.01 0.01 0.9 <0.01 

C5:1 
0.0204 ± 
0.001469 

0.0137 ± 
0.000797 

0.0145 ± 
0.0012 <0.001 <0.01 0.8 <0.001 

C5:1DC 
0.0167 ± 
0.001261 

0.0113 ± 
0.000684 

0.0129 ± 
0.00103 <0.001 0.05 0.4 <0.001 

C5DC 
0.0169 ± 
0.001792 

0.00884 ± 
0.000972 

0.00921 ± 
0.001463 <0.001 <0.01 0.9 <0.001 

C9 
0.02195 ± 
0.00272 

0.00789 ± 
0.00147 

0.00798 ± 
0.00222 <0.001 <0.001 0.9 <0.001 

C10 
0.0433 ± 
0.00377 

0.0331 ± 
0.00205 

0.0375 ± 
0.00308 0.05 0.4 0.4 0.05 

C10:2 
0.0243 ± 
0.00185 

0.0182 ± 
0.00101 

0.018 ± 
0.00151 0.01 0.02 0.9 0.01 

C14:1 
0.0337 ± 
0.00529 

0.053 ± 
0.00287 

0.0532 ± 
0.00432 <0.01 0.01 0.9 <0.01 

C14:2OH 
0.00798 ± 
0.000509 

0.00645 ± 
0.000276 

0.00676 ± 
0.000416 0.03 0.1 0.8 0.02 

C18:1 
0.0126 ± 
0.001631 

0.0167 ± 
0.000884 

0.0188 ± 
0.001332 0.01 0.1 0.3 0.07 

1ANOVA three group comparison  
2Tukey test for multiple group comparison 
3SCM-O = subclinical mastitis only (cows affected by SCM only) 
4SCM-P = subclinical mastitis plus (all cows affected by SCM and another disease) 
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Table 4.3. Urinary metabolites at –8 wks before calving between the three groups of cows 
and their respective P values for multiple comparison groups.  

Metabolites 
(µM) 

MEAN ± SEM1 

P value 

P value2 

SCM-O3 SCM-P4 CON 
SCM-O 
vs CON 

SCM-P 
vs CON 

SCM-O vs 
SCM-P 

Putrescine 0.813 ± 0.105 
0.354 ± 
0.0574 

0.42 ± 
0.0864 <0.001 0.01 0.8 <0.001 

Leucine 12.11 ± 1.534 7.4 ± 0.832 
6.79 ± 
1.252 0.01 0.02 0.9 0.02 

Valine 18.6 ± 2.38 10.8 ± 1.29 10.5 ± 1.95 0.01 0.02 0.9 0.01 
Tyrosine 29.5 ± 3.12 20.4 ± 1.69 21.4 ± 2.55 0.04 0.01 0.9 0.03 
Threonine 89.9 ± 10.93 57.8 ± 5.93 67.1 ± 8.92 0.04 0.2 0.6 0.03 
Methionine-
sulfoxide 3.94 ± 0.556 

2.15 ± 
0.306 

2.65 ± 
0.454 0.02 0.1 0.6 0.01 

Acetyl-
ornithine 74 ± 9.22 48.4 ± 5 51.9 ± 7.52 0.05 0.1 0.9 0.04 

Choline 90.2 ± 17.58 33 ± 9.53 
26.8 ± 
14.35 0.01 0.01 0.9 0.01 

Betaine 275 ± 44.1 132 ± 23.9 113 ± 36 0.01 0.01 0.9 0.01 
Creatine 5643 ± 576 3380 ± 313 3141 ± 471 <0.01 <0.01 0.9 <0.01 
Total dimeth
ylarginine 32.2 ± 3.78 19.8 ± 2.05 20.4 ± 3.09 0.01 0.04 0.9 0.01 
Asymmetric 
dimethylargi
nine 8.89 ± 1.173 

3.79 ± 
0.636 3.07 ± 0.95 <0.001 <0.001 0.8 <0.001 

Homovanilli
c acid 12.85 ± 1.593 

7.34 ± 
0.864 

6.59 ± 
1.301 <0.01 <0.01 0.8 0.01 

C0 2.17 ± 0.261 
1.14 ± 
0.141 

1.12 ± 
0.213 <0.01 <0.01 0.9 <0.01 

C2 
0.662 ± 
0.0613 

0.388 ± 
0.0332 

0.338 ± 
0.05 <0.001 <0.001 0.6 <0.001 

C3:1 
0.0305 ± 
0.00304 

0.022 ± 
0.00165 

0.0205 ± 
0.00248 0.03 0.03 0.8 0.04 

C4 
0.572 ± 
0.0679 

0.24 ± 
0.0368 

0.191 ± 
0.0554 <0.001 <0.001 0.7 <0.001 

C4OH 
0.0895 ± 
0.00696 

0.0679 ± 
0.00378 

0.0696 ± 
0.00569 0.02 0.7 0.9 0.02 

C5OH 
0.1266 ± 
0.01083 

0.0814 ± 
0.00587 

0.0828 ± 
0.00884 <0.001 <0.01 0.9 <0.001 

C5:1 
0.226 ± 
0.0229 

0.138 ± 
0.0124 

0.141 ± 
0.0187 <0.01 0.01 0.9 <0.01 

C8 
0.0503 ± 
0.00553 

0.0329 ± 
0.003 

0.032 ± 
0.00452 0.01 0.03 0.9 0.02 

1ANOVA three group comparison  
2Tukey test for multiple group comparison 
3SCM-O = subclinical mastitis only (cows affected by SCM only) 
4SCM-P = subclinical mastitis plus (all cows affected by SCM and another disease) 
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Table 4.4. Urinary metabolites at –4 wks before calving between the three groups of cows 
and their respective P values for multiple comparison groups.  

Metabolites 
(µM) 

MEAN ± SEM1 
P 

value 

P value2 

SCM-O3 SCM-P4 CON 
SCM-O 
vs CON 

SCM-P 
vs CON 

SCM-O vs 
SCM-P 

Isoleucine 8.3 ± 0.653 
6.86 ± 
0.354 

6.07 ± 
0.533 0.03 0.02 0.4 0.1 

Glutamine 318 ± 32.9 277 ± 17.8 216 ± 26.9 0.05 0.05 0.1 0.5 
Threonine 77.3 ± 6.57 57.9 ± 3.56 51.4 ± 5.36 0.01 <0.01 0.5 0.03 

Carnosine 14.68 ± 1.177 
9.46 ± 
0.639 11 ± 0.961 <0.001 0.04 0.3 <0.001 

Methylhistid
ine 378 ± 28.2 307 ± 15.3 249 ± 23 <0.01 <0.01 0.09 0.07 
Homovanilli
c acid 13.11 ± 1.479 

8.85 ± 
0.802 

8.93 ± 
1.208 0.04 0.08 0.9 0.03 

Methylmalo
nic acid 26.2 ± 2.6 14.1 ± 1.41 10.8 ± 2.13 <0.001 <0.001 0.4 <0.001 

Pyruvic acid 18.7 ± 3.62 
10.29 ± 

1.96 6.27 ± 2.95 0.03 0.02 0.4 0.1 
Citric acid 1875 ± 414 666 ± 225 321 ± 338 0.01 0.01 0.6 0.03 

Lactic acid 214.6 ± 42.7 
103.2 ± 

23.1 85.6 ± 34.8 0.04 0.05 0.9 0.06 
Uric acid 4682 ± 482 4011 ± 261 3133 ± 393 0.04 0.04 0.1 0.4 

C5DC 
0.0495 ± 
0.00447 

0.0392 ± 
0.00243 

0.0311 ± 
0.00365 <0.01 <0.01 0.1 0.1 

C5:1DC 
0.0437 ± 
0.00307 

0.0342 ± 
0.00166 

0.036 ± 
0.0025 0.03 0.1 0.8 0.02 

C12:1 
0.103 ± 
0.0333 

0.163 ± 
0.018 

0.214 ± 
0.0272 0.04 0.03 0.2 0.2 

1ANOVA three group comparison  
2Tukey test for multiple group comparison 
3SCM-O = subclinical mastitis only (cows affected by SCM only) 
4SCM-P = subclinical mastitis plus (all cows affected by SCM and another disease) 
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Figure 4.1. AUC of the logistic regression for α-aminoadipic acid, C5DC and C14:1OH at 
–8 wks in serum of a) SCM-O vs CON, and b) SCM-P vs CON.  
 

  

 

Figure 4.2. AUC of the logistic regression for glycine and carnosine at –8 wks in the serum 
of a) SCM-O vs CON, and b) SCM-P vs CON. 
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Figure 4.3. Area under the curve of the logistic regression for alanine and methionine-
sulfoxide at –4 wks in the serum of a) SCM-O vs CON, and b) SCM-P vs CON.  
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