CANADIAN THESES ON MICROFICHE

. 1.S:B.N.
THESES CANADIENNES SUR MICROFICHE . 7
3) . ~ ‘
- ‘
l* National Library of Canada Bibliothéque nahonale du Canada

Collections Deveibpment Branch

Canadian Theses on

Microfiche Séfvice sur microfiche

' Ottawa, Canada
K1AQN4

NOTIGE

The quality of this microfic

”
is heavily dependent

upon the quality of the original thesis submutted fo‘}

,;mgrofllmmg Every effort has been made to ensure
~ the Righest quality of reproduction possible.

-

If .pages are missing, contact the umverstty which
granted the degreq ‘
. .
Some pages may have indistinct print especially
if the original pages were typed with a poor typewriter
ribbon or if the university sent us a poor photocopy.

! 4

-Previously copyrighted materials (journal articles,
published tests, etc.) are not filmed.

Reproduction in full or in part of this film is gov-
erned by the Canadian Copyright Act, R.S.C. 1970,
c. C-30. Please read the authorization forms which
accompany this thesis.

THIS DISSERTATION
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

NL-339 (r. 82/08)

Direction du développement des collections

Serwce des théses camdvennes

S AVIS

La qualité de cette microfiche dépend grandement de
la qualité de la thése sournise au microfilmage. Nous
avons tout fait pour assurer une qualité supérieurs
de reproduction.

S'il ‘manque des pages, veuillez communiquer -
avec |'université quifa conféré e grade.

La qualité d'ympression de certaines pages peut
laisser a ghsirer, Surtout si les pages originales ont été
dactylogfaphiées a {‘aide d'un ruban usé ou si ‘univer-
sité nous, a fait parvenir une photocopie de mauvaise
qualité. A\

Les—documents qui font déja I'objet d'un droit
d’auteur. (articles de revue, examens publiés, etc.) ne
sont pas microfilmeés.

La reproduction, -méme partielle, de ce microfilm
est soumise a la Loi canadienne sur le droit d'auteur,
SRC 1970, c. C-30. Veuillez prendre connaissance des
formules d’autorisation qui accompagnent cette thése,

LA THESE A ETE
MICROFILMEE TELLE QUE
NOUS L'AVONS RECUE

Canad"'

O-3(S-08953-9

l* National Library Elbhatheque nationale

of Canada ’ du Canada :
/o~ Canadian Theses Division Division des theses canadiennes) .
;- »

Ottawa, Canada

K1A ON4 56870) ,

PERMISSION TO MICROFILM — AUTORISATION DE MICROFILMER ' : ;
e Please print or type — Ecnire en fettres moulées ou d,it;tyl@gf;aphuéf' : .

Full Narhe of Author — Nom complet de | auteur - .

[pwaud SAC H'\\LL\\‘{ . . . f
Date of Birth — Date de naissance T Country of Birth — Lieu de naissance = _,
TAN ’\O)\(ﬁ48 - E’Er\‘:) QZ.A

Permanent Address — Reésidence fixe

L ex04d - 106 Avuamt i\EEg{Mu&*’Dﬂ)A\\bLNS\;x TLALRY T

Titie of Thesis — Titre de.ia these

C;) (l(txy Q. Pq AL ‘“'\ C Ot KRINNaNS \\“L‘»S f‘—deé\l i\kf:\\,*«‘ "\,'\f (a*!\ﬁk\

Unlversny——Umverslté <’ — 7 T o . ’ I 7)
T N - - |

Degree for which thesis was presantad — Grade pour quual cefte thése tut préseﬁtée

L\C\ \\, U‘g (i}f:\[w\-\,!. i\r—».i C\“ WD e \\ c) Q?\Iytl

Year this degree conferred ~— Annéa d'obtention de ce G?ade Name of Sur}amsar - Nam du dlrectgur da these

3% |) B ! L. \«'}«’; *S(}_c\e{.gmx | ’

#

Permission i1s hereby granted to the NATIONAL LIBRARY OF L'autorisation est, par la présente, accordée a la BIBLIOTHE-

CANADA to microfilm this thesis and to lend or sell copies of QUE NATIONALE DU CANADA de microfilmer cette thase et de

the fitm. . préter ou de vendre des exemplaires du film.

The author reserves other publication nghts, and neither the Lsauteur se réserve les autres droits de publication; ni la thése

thesis nor extensive extracts from it may be printed or other- - ni de longs extraits de cele-ci ne doivent dtre imprirmin ou
- wise reproduced without the author's written permission. autrement repsoduits sans |'autorisation écrite de I'auteur.

Pate R Signature - i

™ 0¢ 7] Y Q\ | - i 'L($ Q"‘%Mt&‘ LLL\i ¢

NL-91 (4/77)

¢ »

“THE UNIVERSITY OF ALBERTA

]

SECURE PERSONAL COMMUNICATIONS AND AUTHENTICATION.
t : ,)

<:::> EDWARD SQFHARUK' ' .

4 -

4

fa)

A .
A THESIS

SUBMITTED TO THE FACULTY OF «GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILLMENT OF THE REQUIREMENfS FOR THE DEGREE

N

OF MASTER OF SCIENCE

- DEPARTMENT OF COMPUTING SCIENCE

’

- . EDMONTON ALBERTA CANADA

AN e - SPRING 1982

THE UNIVERSITY OF ALBERTA

” S o
RELEASE FORM - -
Name of Authqr: EDWARD SACHARUK . Co.,

. 3 V
Thesis Title: SECURE PERSONAL COMMUNICATIONS
AND AUTHENTICATION
F

Degree: MASTER OF SCIENCE

A
Year Granted: 1982 " - .):

\

;ermissicn is hereby granted to the UNIVERSITY'OF
ALBERTA LIBRARY to fepfaéuseisingle copies of this
thesi¢ and to lend or sell such copies for private,
scholarly, or scientific purpeseé only.

The aﬁthaf'reserves other publication fightS; and
neither thé thesis nor extensive extracts from it may .
be printed or otherwise reproduced without the

author's permission, ' o

Permanent Address:

- T 6804-106 Avenle
yd Edmonton, Albertg
{ Canada T6A 1G9

w. 4,198

Date.‘ ...'Il.)ié;iiiié!téii‘i‘ -

-~

. - O
THE UNIVERSITY OF ALBERTA
7 14
.. FACULTY OF GRADUATE STUDIES AND RESEARCH
h - £

The undersigned certify .that they have read, and .

recommend to the Faculty of Graduate Studies and Research,

for agégptanée, a thesis entitled "SECURE PERSONAL
LS i 1

COMMUNTCATIONS AND AUTHENTICATION", *submitted by Edward

Sacharuk in partial fulfillment of the requirements for' tﬁe

degree of Master of Science.

k\ﬂ ¥

Abstract

is L F
/ An inexpensive and portable secure comm and
authentication network might find some ap~ 0

date the designs propesed have been ‘expe

-
festfiéted inetheir locatability. Pro}
implementing either private- or public- ns,
require.a large securely located, centr: key
ggnerati?n, initiation of :ammunicagiﬁ and .
auEhe;ticatian. ' '

This thesis examines the problem < °= - 1g a secure
network that uses only small computers e

communications devices and the central mechanism. It is
shown that such a network can be ca§stfucted if 4 public-key
cryptosystem is implemepted with kejpair genmeration
distributed to the communications devices themselves.
Besides reducing tﬂg workload 5f the central computer,
distributed keypair generation is shown to have the
side-effect that a protocol can be designed’ that makes it
very difficult for an intruder to énéetectably use a lost or

stolen secret key. .
The thesis also examines the feasibiliéy cfiimplémenting

a publicikey cryptosystem, in its entirety, on |

microcomputers. It is shown tﬁ?t one public-key algafiihmp

the RSA cryptosystem, has potential for such application but
o

‘that in a straightforward implementation encryption speed

and keypair generation speed will be too slow for a useful

.

iv

. . 3 = L }

network to be constructed. A method for increasing these
speeds is presented that involves the use of a new algorithm
for finding the remainder of a division; the,improved - '

performance is shown to be sufficient to make practical the

construction of a microprocessor-based secure communications

and authentiication’ network suitable for interpersonal

B i
%

applications.

- - B b‘ = | E g
L3 B B % =
r ’ A) '
= - 3
3 ; -
\ .
T S : N i _ i

A
, R
i
i N
L\\ +
X .
E .
! [
!
e
’ _ -
. -
.
- .
. " p— - e e N - s

" Acknowledgements

_. LR, A N L] - R
i = L \\ g i

'};hfses are not written in a vacuum, This one is to a
large degree a byproduct of the help given me in many ways
by my fellow students and the faculty of the Department of
Comput ing-~Science during the past three years. It has been

a vonderful and excitihg three years. Thank you,
This%£hesis would not have been cané?ived vithout a
particularly fruitful éiscqssi@ﬁ with Tony Olekshy in thei
summer of 1980. It would not have reaéheﬂ its present form

., J , . i 5 C .
without the many helpful, ajM always correct, criticisms and
suggestions by my supervisor, Professor Wayne Jackson.

"

vi

=]
[]

\Ii'-‘
n

<
Yo

ot

[
]
-1

»~

W

I .
Table of Contents
) \
Introduction .
Chapter One -.A Cryptography Primer
¥ !
1.1 Introduction
1.2 Basics ; ' o N

1.3 DES | o ‘ - N

1.4 Public-Key Cryptography
1.5 The RSA Cryptosystem

1.6 Electronic Signatures with the RSA Cryptosystem’
Chapter Two - An Improved Secure Communications Network

2.1 Introduction ;
2.2 Some Secure Communications Network Concepts

2.3 Historical Perspective

2.4 A Secure Communications and Authentication Network 3

2.4.1 A Trivial Public-Key SCD
2.4.2 An Improved KDC and Protocol

2.4.3 Further Céhside:aticns

2.5 Applications — !
2.6 Summary and Conclusions
Chapter Three - RSACRYPT: An Implementation

3.1 Introduction

3.2 Thg.Ptcgram

19
14
16

.20

24

26

of

3.3 Difficulties S s8
3.3.1 Quas;-Ranagm Number Generation | v.» 58
3.3.2 Prime Humbef Generati®dh . . 60

3.4 Analysis of Results _ 163
3.4.1 RSACRYPT Results , 63
3.4.2 Hichelmag‘s Results 66
3 4.3 Prajected Encryption Speed on the MC68000 67

374 .4 Prcje:ted Key Generation Speed on the HCEEODQ 68

s

3.4.5 Projected Rates With Impraveé Algorithms 70

3.4.6 Projected Network Rates 71

3.5 Conclusions ' P 72
Chapter Four - Towards Faster Modular Expenentlatlﬂn 73
4.1 Introduction ’ , 73
4.2 The Modular Expoff#tiation Problem * 74
4.3 Apprcaches that are Inf=351ble In Practlce 76
4.4 Approaches that Imprgve Timing ° 83

4.4.1 Multiplication using the Karatsuba Algorithm 83

4.4.2 The Preconditioned Fast Remainder Algorithm 87

4.5 conclusion : | 95
Summary and Conclusions | : :':, o 98
References » , . 100
‘Append;x ' - An Example of DES ' " 104

ix

-

Private—xeygstﬂ‘s

The Proposed KDC .
Operation of RSACRYPT,
The e-table

The s=tagles
Encryption with DES

Decryption with DES

31
40
+ 55
106"

107

110

112

. - »

[}
‘List of Tables

1.1 Time to Factor n,) h - 7 23
3.1 Encripﬁion Speed_of RSACRYPT —) | _ 64
3.2 Key Generation Timé of RSACRYPT .~ * . | “65
3.3 Michelman‘s Results - , » 66

3.4 Projected Encfyption-Spéeds on the MC68000 67

S
= . -
¢ .
-~
- -
L]
’ - €
.
F ;
-9
-
N -
.. E - 5
. = .
L& = =
e
- P ¥
o
F
L]
{
L] -
-
=
»
‘ ¥
-
L4
A » .
Y -
P +
- #
LN L
£
o
. . . ‘e -
L . ' . _ j Sy e A e g e R e
4 e e Kl et e e b Tenigiiie e g gy R X o et TR R T e U
-
. L. F
-
.o
g
N
xi ‘

[]

- 1bi
L1c.

.1d.

. IS

mhote
collapse

pfra

List of Algorithms

xii

93
93
94

94

e s, wFa E TR T

Introduction

Efforts have been made throughout history to build a
sé:ufe communications network, but only recently has it
become possible to build a network that is inexpensive and
gartaﬁle as well as secure. Further, it is now pﬁssible to
provide network users with convenient and unforgeable means
of message authentication or 'electronic signatures’'. Aﬂr
inexpensive secure communications and authentication
ﬁétﬁéfk; if constructed, would have numerous applications.

This thesis examines theAprcblem of éeéigning a secure
personal communications and authentication network that

implements a 'public-key' cryptosystem on microcomputers in

software. Indiviéual microcomputers would be linked
together as a network having at its center a central trusted
mechanism or 'key distribution center'’ implemented in
software on a small computer or microcomputer. Since the
rates of encipherment, decipherment, and message signing are
expected to be low using small computers the network will be
useful only for personal communications and authentication
and not in areas involving the rapid transfer of large
qﬁantities of information.

7 The prabiem of designing a secure microprocessor-based
network is approached on four levels in Chapters One to

Four, summarized as follows:

i

Chapter One. To attain the desired goals it is first.
necessary to understand something about cryptégrgphy irr
general and éubli:—key cryptosystems (there is more than
oﬁe) in particular. Thisikncwlgége will aié‘in éeciééng
which publié*key algorithm to implement, an important
consideration since publi:akey-algcfithms are not all of
eguivalent éuaiity! | |
ChaFter‘Gne is aigeview of :ryétagraphy in which
parti:ula} emphasis is placed on DES (the 'Data En:ryptign
Standard'), a conventional zryétcsfstgm, and on Eﬁe Rivest-
Shamir-Adleman (RSA) public-key c:rypﬁésys‘!; ng believe
these two algcritﬁms,tﬁ be tﬁe’highest€iualityi‘é
representatives of their classes; both find appiicaticn in

the software désignedi

Chapter Two. Designing a secure communications network

"involves more than simply implementing an algorithm on

~—

computers: a network must be designed also, and this

"y

requires the designwf a central mechanism fo
authentication, ke; distribution, and initiation of
communications channels, as well as a protocol for its use,
These ecnsideratians? among others, are stqdied in Chagter
Two; a key distribution centér’ané a-protocol are-designed
that in some ways appear to be novel and whiéh make an
inexpensive secure network possible. The ‘desighs in;qivE“
distributing the ieypaif generation p:aﬁeés to the network

i

nodes, which is done for three reasons:

(1) Distribution of keypair generation allows keys to be

changed.more frequently than in a network with

centralized generation, making éryptanalysis harder. .

(2) The central mechanism asn be simplified thereby making
it mere trustworthy. Also, it will be easier to
"implement<a simple central mechanism on a small

computer,

(3) Detection of security breaches is md}é rapid than in
previous designs, a consideratipn that is of paftiéular
importance {n preventing the forgery o?usignaturesi

The design of an inexpensive secure communications
network is‘interestigg from a purely theoretical standpoint),
but there is also a practical side. This chapter concludes

with a list of some possible applications of the proposed

design. 2

Chapter Three. This chapter is a discussion of an’
implementation of the RSA cryptosystem that we constructed
at the University of Alberta, the difficulties faced and
overcome in implementation, and an analysis of the results
obtained by rﬁnning the program.

One important difficulty that was faced arises from 1he
%équisite complexity of ;he program: all public-key
cryptQsystems are complex so there are problems in
implehenting one on a large computer, let alone a

microcomputer. An implementation must be trustworthy: the

uéef must have confidence in his software and it Shéu;é work

correctly every time. Further, some difficulties occur ’

because of the necessity of generating large gquasi-random

numbers and prime numbers. Despite the requirement of

trustworthiness and the difficulties to be overcome we show

that with appropriate structuring the software can be
implemented relatively easily.

It is also shavn in Chapter Three that vitﬁ é-simple
‘trick' it is pa551ble to generate keypa;rs 5 times faster
than by using a straightforward appfaach Pand that it is
:easenable for the RSA cryptosystem to be implemented in
software on a powerful microcomputer such as the MCE8000,
Keypairs will be generated rapidly enough, using the
MC68000, to implement the network designed in Chapter Two
and encryption speed will be fast enough to satisfy a better
than average typist.

Although the software described implements the RSA
_cryptosystem, which may be found to be insecure or
superceded by better, faster, algorithms, our program should
be of some help in imélementing anethe: public-key
algorithm; the design principles and much of the scftvaﬁe

will be easily adapted to construction of future software.

Chapter Four. Since public-key algorithms enciphef-

information slowly, the major difficulty with a software

thrcughput on communications channels if microcomputers are

used. Each of the known public-key cryptosystems require
th;t a time-consuming computation be repeatedly done to
encipher or decipher information. The RSA algorithm uses a
technique called the 'finite exponential' or ‘modular
exponentiation' to encrypt messages; the best algorithm
known for modular exponentiation (the method of repeated
squaring and multiplication) has a time camplexlty of 0(n?)
if the standard algorithms for multlpllcatlcn and division
are used.'s

.Chapter Four is a discussion cf approaches taken towards
coﬁputing the finite exponential as Quickly as pessiﬁlg in
practice, with the goal of enabling network users to
encipher information at typ;ng speed, using a hlghigualitg
cryptographic key, on a microcomputer. It is shown that it
is possible to carry aut modular exponentiation almost three
times faster in practi:é than with use of the standard
algorithms. Part of this gain in speed is achieved through
the use of an algorithm for finding the remainder of a

”
division that is, as far as we know, original.

! The stanéard algorithms are the ones commonly used for
manua]* mﬁlt1pl1catlan and division., They are detailed
in algorithms 'M' and 'D' by Knuth{29].

? Throughout the thesis we use 'n' in two different ways:

in the 'O-notation’, as in 0(n®), to 'indicate %he time

complexity of algorithms, and as the modulus used in the

RSA public-key cryptosystem. The usage will be clear

from the context.

Chapter Four also includes a description of a parallel
algorithm for multiplication that can be easily implemented
in hardware, to provide a very large rate of encryption.

Despite fhe relatively low encryption speeds that are
possible inzscftéare, even with improved algorithms, it will

be seen in this thesis that it is not entirely correct to

ay:

n
]

"A necessary component of such a public-key system
implementation ... is a hardware device for rapid
modular exponentiation."[51]
In fact, an entire spectrum of netwafks‘implementing the RSA
crgpt@system can be built, with varying rates of operation
depending on whether microprocessors, minicomputers,
mainframes, or special hardware devices are used. Each type
" of implementation may find appli:atianE depending .upon the

requirements of network users and their resources.

[+a]

Chapter One

A Cryptography Primer
. 1.1 Introduction

Cryptography is a collection of methods for concealing
information. A’Iégi&ai channel[40) is created whenever two
or more parties, separated in timéﬁér space or both,
communicate by én:ipheriﬁg data using a crypt@systgm;
Parties that communicate using avcryptasyséem can ‘have "a
secure conversation but hot a secret one, since a third
party can determine ﬁhat a-conversation is taking place but
not the contents of the message.' Depending on the method
used (the cryptosystem) and its means of implementation the
rate of communication between parties may be large or small;
that is, the logical channel may be fést or slow.

Since mgdern communications traffic requires large,
amounts of confidential {ﬁfafmaEién to be handled daily, the
utility of a cryptosystem is partly measured iﬁ terms of the
chanhe] capacity, which is the maximum amount of information
. that can be enciphered and transmitted in a unit of time on

a particular logical channel. Research continues for fast

cure information traffic, since it is detectable, is.
subject to. traffic analysis which is discussed by
Chaum[6]). Secret information traffic requires the use
of steganography[26] to conceal the existence of private
communications channels.

-

\m\

.
means of carrying out encryption([24,51] as well as for
cryptosystems that are highly (p@gsib1YKEVEﬁ!pfévably)
secure.

The ideals of large channel capacity and high
cryptosecurity seem to be somewhat intamgatibie. however.

The conventional, symmetric[46] or private-key cryptosystems

(systems in which both communicating parties use the same

éfyétegraphic key) can be implemented to have large channel

’ Cs L , ; : C e s oen
capacities, but recently doubts have been raised about the
[4 .

long-term cryptosecurity of the best of these, DES. Sqme of
the new asymmetric[46] or public-key cryptosystems (systems

in which the communicating parties use inverse keys to

cipher and dEElphEEinfDrmatlén) seem to have mathematical
Es , .
reasons for believing them secure but they encipher

information relatively7slavlyi‘

1] ’,, _ . LY

! The wide disparity between the channel capacities é§
privatE’ and public-key 1mp1gmentatlcns has been noted
in the literature:

1. Chip implementations of DES, and at least one
software implementation, operate at 10‘ to 10’ bits
per second (bps) (Williams and Hindin[50]).

2. The RSA public-key algorithm has been implemented in
software on a large computer to encipher - at
approximately 500 bps‘(Hi?ﬁglman[Bél) and a 5000 bps
hardware version may eventually be constructed
(Denning[9]).

Simmons[46]) has observed that public-key algorithms
encipher at rates not greater than C+1/2 where C is the
encryption speed of private-key implementations.

~

-/

. hl'/

"Despite the small channel capacifies possible with
public-key algorithms, however,’the}&have éome advantages.
One of the two inverse keys (the qu]i;:key) caft be
transmitted openly over an insecure channel, to be used for
encipherment of messages to the key owner; the owner
deciphers using his secret key. Tﬁe use of inverse keys
allows unforgeable electronic signatures to be easily
implemented.

Kahn[26] and other researchers([7,31] have
comprehensively surveyed private-key cryptosystems and their
evolution, Exténsive treatments of the theory[1§,21,27E45]
and implementation([32] of p;ivate-key systems has been
published, as well as proposals for standardization([38].
Much discussion of public-key cryptography has been
published since their conception by Merkle in the late
1970's, including surveys[a,12,i7,22,23;31,46], theory and
presentations of new systems[34,35,42)], a discussion of
implementation[36], and a,discussion of some directions that
could be taken in the futuresin desigﬁing improved
public-key algorithms{[18]. The merits of DES and public-key
systems have been argued by their proponent§[48].

The remainder of this chapter briefly feviews the state
ofiknowledge in cryptography with particular emphasis plaéed
on concepts and algorithms }eferred to throughout the |

théS;s.

10

=
L%
[+«
™
(7.1
ot
[z
L]

Perhaps the simplest private-key cryptosystem is the
Caesar cipher, attributed to Julius Caesar. In this system

the alphabet is written twice, in two rows, the second row
below and shifted with respect to the firét_ To éncrypt a
message, characters in the message are looked up in the
first row and the corresponding characters in the second row
are written out, The Caesar cipher is the simpieﬁg shift
cipher.

The shift cipher is the basis of polyalphabetic ciphers
of a message. These have led to the one-time pad, a
provably unbreakable cryptosystem that reQuires the use of
an encryption key as long as the message to be enéfypted:

. although the one-time pad is an wunconditionally secure
cryptosystem, i;fiuse is c@mpgtati@nallyiinFéasicié for mast
appliiaticns[12].i :

Polyalphabetic ciphers are members of a broader class of
cryptosystems known as substitufién ciphers that replace
symbols in the plaintext message with other symbols, with no
change i% efég%féméigheés;;hat do permute the order of
symbols are called transposition ciphers.

Product ciphers are combinations of substitution and
tfaﬂspesitiéﬁ'cipths su¢h that if S is a substitution
cipher with C, « S(M) where M is the message to be

encrypted, and if T is a transposition cipher such that

C, = T{M) then P, the pf@éu:t cipher of S and T, is defined

by ,
C, «'P(M) = S(T(M)) = T&S(H))
vhere C,, C,, and C, are ciphertext. Product ciphers }\7

generally involve numerous cycles of substitgtian and
transposition.)

All cryptosystems require at least one key to control
the encryption process. For all cryptosystems it is true
that:

; C « E(M,K,)
M - D(C,K,)
fihEEQ‘C and M are the ciphertext and plaintext res;ectivgiy,(
E and Dﬁare the encryption and decryption fun:tiags
respectively, and K, and K, are the encryption and
deery@tien keys; respectively.

In private-key Systems K, and K, are the same and

control, the. substitutions, transpositions, or both, that -
take pl%ee during énzfypticn or decryption. Both the sender
and>fec£ivgr must therefore have access to the same key,
which may be transmitted from ané to the other by private

courier, for example. The functions E and D are not the

same, but act as inverses in that a message block that is _ _

encrypted using either function and a particular key is
-restored to |its original state when decrypted using the

other functiqn and the same key.

1"

12

sé%iiéﬁ the other hand, in public-key cfyptesystems'E and D
are preéisely equivalent but the keys are different, acting
as inverses of each other. One of the keys can;be revealed
with no loss of security but with the possibility that the
key owner ﬁay receive unwanted messages from unknown

parties.

-Shénnanf4§] laid the foundation for maﬁhemati:al !
analysis of cryptography, particularly private-key
cryptography, by introducing the concepts of confusion and
diffusion. Confusion is an easily quantifiable concept that ,
is provided by all substitution ciphers .to varying degéees_
disquising the statistical characteristics (statist/cs)
possessed Ey all spoken lanéuages; statistics are related in
a complex way to the redundancy inherent fifépaxen languages
and a precise measure of redundancy is difficult to
.Eefmula;ei Statistical information can be obtained from
analysis @ﬁlthe frequency of occurrence of single letters ér
groups of letters (digram, trigram, and n-gram statistics).
Transposition ciphefs attempt to conceal statistics by .
diffusing them into a featureless 'background noise'.
Cryptanalysis involves the use of n-gram statistics or
other side information to decipher a cryptogram without
knowledge of the key used. Side information can come from
sources other than statiétical aﬁalysisi For example,
probable word analysis involves searching for expected words

in a cryptogram; a corporate cryptogram might be expected to

use the words "profit" and "loss" for instance.

The best source of side information is the plaintext
message itself. The strongest possible attack against a
cfyptasysteﬁ, known as the chosen plaintéxtlsttaﬂk, occurs
when a cryptanalyst can engfypt a ﬁessage of his choosing.

. Weaker methods of attack are the Known plaintext attack (in
wvhich the cryptanalyst is given a quantity of ciphertext and
its corresponding plaintext) and the cjiphertext only attack.
These attacks are used f@r the testing of private-key
systems, with public-key cryptosystems depending on
mathematical reasoning tcgsngw them secure. Regardless of
of enciphered messages is

the attack used the guantit

important; modern cryptosystems cannat be cryptanalysed with
only a small amount of plaintexteand ciphertext.

All cryptosystems can be Ehafacéeri:ed as gither block
or -stream §i§h§r5. Stream ciphers encipher characters
ipdividually as they are passed into the implementation
{2feas block ciphers ehcrypt entire blocks of characters at

‘a t1me, causing each bit in the enc1phered’!lack to be .
interrelated with all other bits.- Modern private-key block
ciphers work with blocks cf 4, 8, or 16 characters, while,
public-key systems generally use variable-length blocks
whose length depends upon the key length, also a vafiable;

c;phers. . C
\ L

13

Finally, it is possible to use feedback to cémﬁine the
encrypted output with the input in some fashion (usually the
'exclusive or'). Feedback is called block chaining when
used in conjunction uiggﬁiésya:k cipher and causes an
encrypted block. to be relateéet@ ali previously encrypted
blocks as well as the key. More than one cycle of chaining

wa

of the blocks of a message creates a complex

interrelationship among all bits in a cryptogram.

e

Recognizing the need for an industry standard for
cryptography, the American National Bureau of Standards
(NBS) conducted a competition among private companies to
arrive at such a standard. IBM, appérently in-consultation
with the National Security Agéncy, won the competition with
a derivative of a block cipher called Lucifer (developed by
Tuchman) that used a key of 128 bits on blocks of 16
characters. Lucifer's derivative was tegﬁgd by the NBS,
found satisfactory, and promulgated as DES. DES uses a
56-bit key that is aftificially expanded to be 64 bits in
length before use for encryption; it is a block, product,

vﬁgfivate=key cipher.

For an implementation to be advertised as conforming to
ﬁhe étaﬁdard the NBS requires that it be in hardware,
presumably for testing purposes. Since DES uses some

tables, the s-tables and e—table,rfcf non-1 inear

5

\gﬁjqiSUDStlfUtlén (in which a group of bits in a message is
replaced by fewer, or more, bits) the tables are
unmodifiable in a standard implementation.

argely through the efforts of Hellman of gtanfe:d_

i

\t""

, A i o
University, a controversy has arisen surrounding DES calling

into question its ability to adequately safequarad
information, particularly in the long term. At least thfeel

reas in which DES may be suspect have been noted:

1]

(1) The Short Key. Hellman feels that it ié possible to
build a $20,000,000 parallel computer, using available
.technology, that would allow its owner to éfygfanalyse
DES-enciphered messages quickly. Consequerftly, he |

believes that the NBS should have stayed with the

m
D"

12 it key used in Lucifer. ' .

(2) The Tables. 1t is conceivable that a "trapdoor' was
built into the fixed tables to allow the NSA to easily
decipher encrypted éaté without knowledge of the key
used. The principles underlying the construction of

the tables have never been revealed by IBM.

(3) The Testing. Although DES was attacked for many

man-hours by the NBS the weaker knawn—plaintex% attack

vas us ad .

W

T .t o L C
"' (For further information consult Lempel[31) and Sugarman([48]

vho discuss the DES controversy fully.)

15

In spite of its possible flaws, DES is the best publicly
x'avéilable pfivate-kéy cryptosystem.' Appendixlﬂ provides a
brief example of the operaﬁion of a simplifigd version of

- DES that;may aid in understanding the algorithm, at least on

an intuitive level. The example is derived from

explanations by Lempel[31] and Hindin(24).
1.4 Pubiic-xey Cryptography

Pubiic—key cryptography~is fouqded upoh the use of
0utstandingly diffikcult mathematical problems, which are
.inverted in some sense and used as bases for cryptgsystems.
Whether the cryptosystems themselves are as difficult to
solve as.thei; underlying base problems is still unclear‘in
most cases', but there are reasons for believing that at
least one of the algorithms (the RSA system) has the same -
coﬁplexity as its base problem.

The paradigm for public-key cryptograﬁhy can be
bxpreséed as ‘ . o

C « F(M,K,)’ |

M « F(C,Kz)

‘where M is-the'plaintext, C is the ciphertext, K, is the

éncryption key and K, is the décryptiaﬂ key. The paradigm

' For. exéﬁple, Lempel[31] outlines a public-key
cryptosystem that is based on an NP-complete problem,
yet is relatively easy to cryptanalyse,

16

requires the use of two difficult problems for its

re on. To show why this is so, we define a one-way

f

on and a trapdoor one-way function:

(1) A function f is said to be one-way if it is invertible
and easy to compute, but for almost all x it is
computationally infeasible to solve y=f(x) for x, given
Y. That is, f is a one-way functian if its inverse is

very difficult to compute.

(2) It is sometimes possible to arrange that the inverse of
a one-way function is easy to compute given some

additional information. 1In this case there is a

‘trapdoor- between f and its inverse and f is a trapdoor

onq;way function.,

From these definitions it can be séen that K, and K, in
the public-key paradigm must be related by a trapdoor
one-way function so that it is difficult to compute one from
the other. Additionally, knqwledgé of F and either M or C
without the eorresponding key must be insufficient to
" compute C or M, respectively.

The literature describes six public-key schemes, with
some feference made to unpublished proprietary schgmesf Thg
Rivest-Shamir-Adléman (RSA) cryptosystem, seemingly thé best
of the six, i3'discussed later in this chapter. The other
five public-key cryptosystems are;bfiefly EUEEEEi?Eé-bElQﬁ;

vith emphasis on their flaws:

17 -

(2)

Merkle CﬁyptaSyStémir This aléafithm (devised by
Merkle([34]) requires the 'enpuzzlement' of n puzzles,
each of which requires O(n) time to solve, by the
tfansmitﬁer of a message. The receiver solves one of
the puzzles and sends its number and solution. The
transmitter knows the solutions to his awnvpuzziestand
so is able!tc use the one solved by the réceive: to
derive a key for encryption of a message. An
because he mustzfirst solve n/2 puzzles, on average,
The Merkle cryptosystem is unuseable because ig
requires Qﬁly thdt a cryptanalyst do O(n?) work while

the transmitter do O(n), which is too low a ratio of

= :]
work factors. Hellman[22] states that it might be used

in the future with fiberoptic technology, but this
seems doubtful. He also pa;nts out that the method is
the "simplest and least likely to yield to
cryptanalysis”.

Diff.ie-Hel Iman Cryptosystem. This scheme employs the

use of the 'discrete exponential' (i.e., modular ;

exponentiation) for key exchange. It seems an N

/}figgds

excellent method but according to Hellman{22] i%

~study". Signatures don't seem possible because each

-user has the same key after the exchange of some

*

‘numbers; that is, the method reduces to a sort of

private-key method.-

£

18

(3)

(4)

(5)

{ 19,

|
MePkle;HeIlman Cryptosystem. 'Trapdoor Knapsacks' form
the basis of this cryptosystem deviéed by Merkle and
Hellman[35}. Lempell[31] notes two flaws:
- Simple digital signatures seem impossible.

- Although theJral knapsack problem is NP-complete,
o)

there is no f that the trapdoor knapsack problem

is also NP-complete."

Graham-Shamir Cryptosystem. This algorithm'ﬁas hot yet
been published and the only available account (by
Lempel[31)) is sketchy. It involves a variation on the
Merkle-Hellman trapdoor knapsack concept. At least one
very large tapleqpéems to be required per user and A
" signatures seem as difficult to implement as in the

Merkle-Hellman method.

MCE] iece CPypfosystem. ~This algorithm.is based on the
'general decoding problem for error-detecting
codes'[31) which.Nas been shown to be NP-comblete.

That is, it uses algebraic voding theory ahd"scrambiedv
Goppa er%or*detecting codes'[22] to define keys. At
present no easily implemented éignature scheme is
possible[31] and a large space requirement, 500

kilobits, is needed for a 'generator matrix'[22].

\§

1]

Problems 1lying in the class called NP are believed to
have time complexities that are not expressible as a
polynomial, if implementéd on a deterministic computer. .

4

1.5 The RSA Cryptosystem

The RSA cryptosystem is distinguished from the other
public-key algorithms in two important ways. First, only
the RSA method has an easily-implemented messageidepenéent
signature facility. Althcu%h on the %prface all public-key
-cryptosystems seem to be equivalent, in practice the other
public-key systems do not permit the consecutive use of two
different keys on the same message, which must be possible
to sign messages without special measures being needed (such
as authenticating messages by sending them to a central
computer, for example). |

. Second, and more important, the RSA method has withstood
concerted attack for some time. Simmons and Norris([47] had’
a possiblé attack on the system refuted by Rivest[41].
Lempel[31]) cites an unpublished proof by Rabin that places
the RSA method in a "safe position as long as factorization
réﬁains hard". Factorization has not been proved hard
hovever, so it»vouldzbe:gnwise to place complete trust in
the system until a proof is found. Cabay[5) has observed
that some probabilistic attacks presently under development
may eventually allow rapid factorization in many céses,

thereby permitting the easy solution of some cryptograms.

20

By then it may be hoped that another good cryptosystem will

be found.

H

- The RSA cryptosystem has been clearly described(42].
What follows is a suﬁmary;
RSA keypairs are triples (e,d,n) where the public key is
‘the pair (e,ﬁ) and the secret key is (d,n). d is a large
prime number, e is the multiplicative inverse of 4, and n is
the product of two large primes p and q. Therefore, in
‘terms of the publﬁcékey paradigm the RSA meﬁhad can bgs
expressed as: |
C « F(M,(e,n))
M+ P(C,(d,n)).
Since 'F' in the RSA method is modular exponentiation,
encryption and decryption can be expressed more preciSely o

by:'

Modular exponentiation provides a trapdoor one-way

function since it is easy to obtain C from M, using (e,n),
but the receiver must have the additional information (d,n)
‘to obtain M from.C.

As shown earlier, public and secret keys in all.
cryptosystems must also be related by a trapdoor one-way
function. In the RSA algorithm, e and 4 are multipliégtive'

inverses modulo the Euler totient of n. The Euler totient,

' Throughout the thesis 't' indicates exponentiation.

21

t(n), is the quaﬁtity of numbers 1255 than n and relatively
prime to n and in its simplest form is (p%1)i(q!13i Without
knowledge of t(n) it is an enormously difficult problem to
~obtain d from e because this requires factoring n to obtain
p and q.'

In other words, one of the tvgitragdaer functions in the -
RSﬁwggyptasystem utilizes the éifficulty of inverting the
computation of modular exponentiation without knowing the
secret key d, and the other function utilizes the difficulty
of ifiverting the computation of the multiplicative inverse,
to obtain d, without knowing the factors of n.

Rivest, Shamir, and Adleman[43] report that the best
algorithm for factoring n is by Schroeppel (un@uﬁlisheé)
which takes the times listed in Table 1.1 (duplicated from
Rivest, et al.[42]). Rivest, et al., recommend that n be
200 decimal digits, although a smaller n will still be very
difficult to factor.

Computing an RSA keypair is straightforward:

(1) Obtain 3 quasi-randoln numbers d', p', and q'. Find the

primes d, p, and q greater than or equal to 4d°', p', and .

q'. d must lie in the range

' Invfact, the common factors of p-1 and gq-1 should be

- extracted from t(n); this is easy to do using the

Extended Euclid's Algorithm (see Knuth[29)). Extraction

of common factors reduces the size of e that is derived

. from d using t(n). Reduction of the size of e speeds up
encryption afd is therefore important in practice.

n length ~ [Number of Operations|Time to Factor n
(decimal digits) to Factor n (61 operation/
microsecond)
50 1.4x10'"* 3.9 hours
75 9.0x10'? 104 days
160 2.3x10"?* 74 years
200 1.2x107%° 3.8x10° years
300 1.5x10%° - | 4.9%x10'"' years
500 ' 1.3x10*° 4.2x10%* years
Table 1.1, Time to Factor n A

(from Rivest, Shamir, and Adleman)

max{p,q} < d < Pxq.

Compute nzéxq, (d,n) is the desired secret key.'

(2) Compute (p-1)x(g-1) and extract the common factors of
p-1 and g-1 to reduce the size of e computed later.

This is the Euler totient of n, t(n).

(3) Compute e from exd = 1 (modulo t(n)) using Euclid's

algorithm,?* !

Although it seems that the RSA method can be broken only
by facterizaticn}gp;fe is another pé. of a%tack: the
required quasi-random number generator. If the guasi-random

numbers generated are insufficiently random then it might be

. ¥
— = — ‘,, — S *

L &

! More precisely, d need cnlf be relatively prime to (p-1)
x (g-1). , .

: '=' indicates congruency throughout the thesis.

It is the fact that e x d = 1 (modulo t(n)) andf not
e x d = 1 (modulo n) that makes it difficult to decipher
a cryptogram; otherwise the secret key d could be easily
derived from d = n/e.

23

possible, given e, n, the random number generator's mode of.

operation, and a clever cryptanalyst, to somehow compute d.
1.6 Electronic Signatures with the RSA Cryptosystem

Electronic message signing is described in detail in
[B8,41]. The gentfallidéas underlying the concept are
briefly indicated here, with reference to the RSA
cryptosystem.

Let S be some function éf the me%sage M and, pethap§,
the keypair-owner's name and other desired information.' For
the owner A to send a signed message to B he cempuﬁes'

CS « S+d, (mod n,) F
where CS is the encrypted signature and (d,,n,) is A's
secret key. |

Let H*Cs'be the messagevéen:atenateé Hith the encrypted
signature and (e,,n,) be B's publicly available key. A
sends B the cryptogram | »

C « (M*CS)+e, (mod n,).

! The "function of the message M" referred- to can be
either the entire message or, if desired, a hash
function of M, h(M), which allows a 'compressed
signature'(8]. It must be remembered that more than one
message will hash to the same signature so that, with .a
knowledge of the hash function, an unscrupulous user of

,the cryptosystem could make it appear that a second user
Signed a document that the second user did not sign.
Throughaut this thesis it is assumed that the entire
message M is included in the signature.

24

Receivefrs obtains M+CS by computing
M+CS +~ C+d, (mod n,). - e

Since CS will still be unreadable and M readable. the tva
parts can eas1ly be separated.

B can obtain S for verification by computing:

S « CSte, (mod n,)

That is, B obtains the message-dependent signature by using
A's public key. It is easy to check whether S is a function

of M; if so, then only A could have formulated CS since only

he has the correct secret key.

25

Chapter Two
. \ .
An Improved Secure Communications Network

¥
=

2.1 Introduction

-In this chapter ve design a secure public-key
communications and authenticatjon network. Our design has

three advantages over existing public-key designs by Needham

and Schroeder[39], Denning[9], and Michelman[36]:

(1) The entire network, including the central mechanism or
directory, can be implgmenéed on small sémputefé,,(

making it inexpensive and pcrtébleg

(2) The network has built-in safeguards to provide a
measure of protection against zfyptanélysis or theft of
a user's secret key. Even with a stolen secret key it
is difficult for an intruder to sign meséagesi’cf

otherwise actively use the key, without detection.

(3) Network security breaches are detected more rapidly

than in previous designs.
The advantages claimed afe!:éalized by distributing the
key generation function to the network nodes (thereby

decreasing the workload of the central mechanism) and My

26

27

One of the défgcts of the proposed network is 'icw%
opgratién. The time to initiate logical channels will be
relatively large because double gncrypiicﬁ of some messages
is required and channel capacities will be small because a
' publiéﬁkey system must be useéi 1t is shown in Chapter
Three that operation will be fast enough for some

applications if the RSA cryptosystem is implemented.

-Before developing the proposed network in Section 2.4 we

first review some secure network concepts in Section 2.2

that will aid in the discussion to follow. Section 2.3 is a

summary of the state of the art, as we know it, in secure

communications network design, where we define some of the

problems inherent to existing networks. Section 2.5
outlines some applicaﬁians for the proposed secure
communications network. Since the network can be
implemented at low cost using only software and existing
(inexpensiég) hardware, numerous applications are. evident.
This chapter is partly intended to hélp dissipate the
misconception that:)
: "In a public-key cryptosystem, it is necessary
-only for a c;ntfal controller to distribute a
privaté key to each user of the system."[51]

We shall show that it is reasonable that the. controller

never distribute private keys at all.

2.2 Some Secure Communications Network Concepts

A secure communications device (SCD) is an apparatus
that allows individuals té communicate more securely than by
c¢ommon carrier alone. SCD's form the nodes in any secure
ccmmuniéatigns network (SCN), which must have a central
trusted mechanism which is either a central facility (CF)[9]
for generation and distribution of user keys, or a key
distribution center (KDC)[40] for key distribution alone.
Since it is generally undesirable that user keys (even
public keys) be tfansmitted openly, any CF or KDC must
periodically generate its own kéy or keypair to encipher
user keys before transmission. SCN's use cryptography to
create secure logical channels superimposed on ﬁhysical 7
channelsr(thg common carrier); information can travel on a
logical channel at a rate not exceeding the channel
capacity.

The requirement for a central trusted mechanism arises
from the need for authentication or the unambiguéus
identification of neticrk user5; There are two types of
authentication[12]:

(1) In user authentication, network users identify

themselvgs:tc each other to establish communications,

USEr'authenti:aticn can be either indfrect (in which

the fact tha; 8 user possesses a kéy or keypair is used

as evidence of his*leg;timacy) or direct (in which

28

users are identified by personal characteristics such

[]

as their voices on telephone lines, their fingerprints,

or their handwritten signatures).

(2) In message authentication, network users exchange
electronic signatures to provide future proof, to an
authority, of their acceptance of terms stated in a

document. ' <

Since there are no convenient and foolproof methods of
: providing direct user authentication ele:traﬂiéally, direct
authentication ig used only when a user joins an SCN; at
that time an ‘individual furnishes side information that

- proves his identity, such as a driver's license.?

If the authentication mechanism of a network fails for
some reason, a network user may repudiate his signature on a
décument‘af his presence on the network at a particular
time. Furthermore, if a network user can ggég that an

=

Intruder (or unauthorized party) can penetrate the network

S S =

! The necessity for user authentication has béen noted by
Simmons[46] who relates a protocol devised by Rivest,
Shamir, and Adleman for playing 'mental poker'. The
implication of the protocol 1is that persons having
cryptographic keys can communicate securely without

knowledge of each other's identities. Secure

communications without user authentication is
unacceptable for most applications. s

: Side information is also required to join other networks
such as credit networks, with means of future indirect
authentication (a credit card) being given to the person
joining the network,

under some combination of circumstances, then repudiation
becomes possible. The best safequard against repudiation is
complete network security.

An intruder may try to gain access to an SCN to obtain
informatfon or to alter signed documents and may be active
or passive[13). A passive intruder eavesdrops on
conver ions and obtains information through crfptsnalysis,
whereas an active intruder imitates authorized users or
undetectably alters cryptograms. The active intruder
therefore requires a legitiméte user's key which may be
obtained through cryptanalysis or theft. Key theft cane
occur at the central mechanism or at a phgsically insecure .
SCD.

- The necessity for a central mechanism 13355 to a key
distribution phoblemg keys must be recorded, transmitted
upon request to users Gishing to ésmmunicate; aﬁé'feplaceé
in records when they beeame'éﬁéclete. Public-key
cryptosystems were éesigned to alleviate the key
d}stributibn problem and simplify the establishment of a
secure network. | |

The central mechanism in a public-key SCN must be
extremely reliable for two reasons. >Fif$t, the safety of
the public key scheme depends particularly on the selection
~of tﬂZicorrect public key for encryption. Also, the
maintenance of the direétary of public keys is éritical
because in any SCN design a user's pubiic key will be

changed from time to time and this must be done correctly.

30

Popek and Kline[40] have summarized much of the theory

of SCN design. Some of their conclusions are:

(1)

Three basic types of SCN-a}e possible, regardless of
whether the network uses a public-key or private-key
cryptosystem; these are the fully distributed,
hierarchical, and centraiized-SCN's, diagrammed for the
private-kéy case in Figure 2.1. (Public-key SCN's are
not diagrammed because their only difference at this
level is that they provide two communications paths
between any bair of nodes whereas private-key networks
have only one path.) Popek and Kline observe that the
fully distributed SCN is a variant of the hierarchical

SCN°and that the centralized SCN is a degénera;e

version of the hierarchical SCN. When designing an SCN

it is therefore 'necessary only to design a centralized

SCN. -

Distributed Hierarchical Centralized

L Global l] I]

O

B Focal I;o-l I_o_l I_o_l I_-al .

(2)

Figure 2.1. Private-Key SCN's (eo=CF, ®=SCD)

Key distribution can be either simple or complex

depending on the type of SCN:. The hierarchical SCN is

useful for very large networks since each CF need only
retain a few keys. On the other hand, in the

fuliyédisﬁfibuted SCN, nx(n-1)/2 matching keys must be
arfangéd among n CF's, with each CF retaining n-1 keys.

The CF%in a centralized SCN must retain n keys,

(3) " Message authentication is possible in any SCN with an
appropriately designed central mechanism. Protocols
for estabiishing secure channels are outlined by Popek
and Kline thif allow signatures in both publizirand

. S
private-key SCN's.

(4) The central mechanism should be minimized to make it
reliable and trustworthy. That is, the fewest possible
number of persons should have access to the central
mechanism, its saféiare should be very reliable, and it
should be securely located, perhaps at a computer
center supporting a secure operating system. i
Popek and Kline place little emphasis én public-key SCN

designs!iﬁ which key geheration is done at the SCN nodes.

We will show that distributed key generation allows

minimization of the trusted mechanism, simplificatton of key

distribution pEQQEdUTES; and increased SCN security.

33
2.3 Historical Perspective

SCN's have been constructed or proposed but no design to
date has been perfects jsting designs are flawed by such

things as their low channel capacities, their expense, their

requirement for a very special location for the central

- mechanism, and their requirement of special unavailable

hardware. This section outli;:l some of the Eeagurés and
drawbacks of existing SCN designs.

Kahn[26] has fully covered the subject of pfivateikey
SCN's using mechanical SCD's. The channel capacities of
SCN's described by Kahn were very small, but the advent of
solid-state electronics and modern teleﬂheng_%ines has
permitted the constfhction of private-kéy SéN's with large
channel capacities, using cryptosystems based on the same
principles as those described by Kahn. For example, chip
implementatioﬁs of DES permit inexpensive private-key SCD‘é

to be built, leading to the very high-speed electronic

'private-key SCD's and SCN's that are occasionally described

in Crzgtologia. Electronic Funds fransfef Systems

(EFTS)[2,20] are a type of SCN; to date EFTS networks use

either private-key cryptosystems or no cryptosystem at all.
Despite their potential for large channel :apacities,.

private-key SCN's are flawed in two vays:

(1) Increasing comphter power and improved cryétaﬁalytical
A J

techniques may make private-key cryptosystems insecure

(2)

in the near future.

The central mechanism must generate keys for use by

communicating parties. Key

are generated with a key
stream generator, which is a complex program that must
run continually on a large computer to generate the

many keys needed by users of the SCN.' The requirement

=

or a large computer and the attendant reguirement for
a large staff makes private-key SCN's expensive and
places canstraints on their locatability, since
locations with a completely trustworthy staff are

it

uncommon.

There are three proposals that we know of for:

implementing public-key SCN's:

(1)

“(2)

Needham and Schroeder(39] design a public-key SCN in
vhich all user keys are generated by a CF. A directory

of public keys is maintained by the CF.

Denning[9)] proposes the conversion of personal
computers into SCD's by attaching hardware
encryption/decryption units. The Denning SCN requires

a CF capable of generating hardware keys to be used in

Key stream generation involves the generation of an

ideally non-repeating quasi-random sequence of bits,
portions. of which may be extracteq, and used as keys for
private- key cryptosystems or as seeds for generatlgn of
keypairs in public-key systems.

34

\

s

conjunction with the encryption/decryption units. Key

distribution is done by a KDC separate from the CF,

(3) Michelman[36] defines a network requiring the central
mechanism to generate its own keys but not necessarily
keys for SCD's. The.cgnt:al mechanism communicates

-with SCN users using its secret key to enciphef
messages. SCD keys, and those of the central

mechanism, are changed only at very specific times.

- There are flaws in each of the public-key SCN's
enumerated above. One common flaw, of course, is that all
three SCN's (i;sluéing Denning's) hgv; small channel
capacities compared to private-key SCN's,

Each system has further fiavsi The Needham and
Schroeder proposal has a bottleneck created by the
requirement that thé CF generate all network keys. -
Centralized key generation for all nodes in a public-key SCN
requires a relatively large computer to act as CF (with all:
the attendant cost, location, and personnel canéidergtians)
for even a small network. Furthermore, the key generation
program must be a memoryless subsystem[16] that does not
retain user secret keys aftgf they have been generated and
distributed, adding to the difficulty of CF certification.

Dénhing's proposal is flawed by a bottleneck as in
Needham and Schroeder's prapésal, as well as two other

problems:

35

(1) Frequent key change is impossible. Because keys are in
hardware, an SCN user must physically obtain new keys
from the CF. It may be necessary, however, to change
keys often: analysis and duplication of microcircuitry
is technologictally feasible, so a user's key céulé be

‘ SEQLEE, duplicated, and returned surreétitiéuslf.

(2) Hardware public-key encrypgian/éegryptiap units have
been in development for some time, but are not yet
available. Whether such units will ever become cheap

enough to be generally available is debatable.

Michelman has observed that a flaw with his deéign is
that it is slow in the detection and correction of security
breaches; this }lav is common to the other proposals as
well, Slow.correction of breaches leads to extended access
for an intruder vho acquires a user's private key, by theft
from an SCD or through cryptanalysis. If the SCD's are
physically unsecured then it is impossible to guarantee the

validity of signatures,.

'™]
o

¢

2.4 A Secure Communications and Authentication Network

In the following discussion we design a simple
public-key SCD and an SCN showing resistance to key theft
and having rapid detection of security breaches. The
discussion rests on two assumﬁtiaﬁsj both justified in

Chapters Three and Four: 7 - -

(1) The channel capacity of a public~key S5CN can be made

large enough to be acceptable for some applications,

- (2) It is possible to distribute the function of keypair
generation to the nodes of a public-key SCN, with
keypair generation fast enough that users can generate

one keypair for each conversation.

2.4.1 A Trivial Public-Key SCD

Under these assumptions the design of argublic-key SCD
becomes trivial. The only requirements, besides key
generation software, are for transmission error recovery
softiare, a modem, and a printer to keep permanent records
of signed documents. Such an SCD is completely useless
unless it is part of an SCN vi%h a central mechanism, since
it is impossible for users to authenticate each other.

It is possible to give some usefulness to SCD's
unconnected to a central mechanism by incerpafating an

ordinary telephone into each SCD to provide some measure of

37

direct user authentication., Although it is impossible to
guarantee the security of communications using SCD's
connected only by a telephaﬁe line and no central mechanism,
it should be remembered that speech synthesis and
recognition by‘éoméuter are difficult, uﬁsalQed,
problems{33] and that mimickry of human voices bykhunans is
difficult. |

‘The following protocol illustrates how two SCD users, A
and B, can initiate a (somewhat) secure logical channel,

communication is entirely dependent on the reliability of

voice recognition over a telephone line..

(1) A and B authenticate each other by voice, using the

telébhoneg

(2) A sends his public key to B. B sends his public key to

A,

(3) A generates a random number and concatenates this
number with a short message. The resultant text is
then encrypted using B's public key gné the resulting
cryptogram is transmitted to B, User B carries ouf the.
‘same sequence of actions as A. That is, B generates a

random number, concatenates it with a short message,

gncrypts the result with A's public key; and sehds the -

‘resulting cryptogram to A.

!

38

39
(4) After A and B have deciphered the cr§§tcgramsg the
resulting plafntext messages are relayed back to the

original senders via the telephone voice links.

(5) 1f both A and B feel confident that they have received
each other's keys, then they subsequently use these

keys for enciphering messages.

?
(6) As an additional precaution, all messages sent from A
to B are tagged with the random number generated by B.

Furthermore, all messages sent from B to A are tagged
with the random number generated by A.
C

i
2.4.2 An Improved KDC and Protocol

a. The KDC
: ¢
The proposed KDC is diagrammed in Figure 2.2, Scmé:
memory is required for the history buffer which is dividea
into columns, one column for each network user. Each column
can record N user keys, where n is the maximum nﬁmber of
keys allowed any user in a particular period of time; it
might be decided, for example, that users are permitted 20.
cenvgfsatiens gaﬁé therefore keys) in one day. The
limitation on the history buffer size depends on available
memory, number of network users, and frequency of network

use desired by the users.

— Software | +—————— |Moden | +——r
— ~ to
v oot ’ SCD's
Printer
y— ABCDETF
— -+ T —+— Active Keys
KDC Secret — 4l
Key ejeje oo 0ld Keys
— sleje sjnie (History "
elo|sjojeie Buffer)

Figure 2.2. The Proposed KDC (6 Users)

The KDC software includes software for key genéfatian,
encryption/decryption, command interpretation and key
distribution, and transmission error recovery. The sgftﬁate
is certified[10].

In any SCN design the central mechanism must be able to
unambiguously iéentify itself ta SCD's. Our KDC iéenéifies
itself in the !ame way as in previous SCN designs: it
gene:ates a keypair and encrypts all outgoing messages v;th
its secret key. Its public key is available to everyone.
Let (KDC,P) be the KDC's public key, which may be openly
published, and let (KDC,S) be the KDC's secret key, which is
known only to the KDC. We set no specific time canstfaint
on Rﬁé kéy changes; it‘may change keypairs as often as

convenient.

40

b. User Initiation

To join our SCN, an individual first identifies himself
to a trusted KDC operator (direct user authentication) and
gives the operator a public key generated at the ;
individual's SCD, perhaps written on & piece of paper. The
operator enters the ké? at the RDC console and gives the new
user the KDC public key (or tells him where the KDC key is
published). The KDC may havafsimpie software to Eest that
the key submitted does not match any chebggser's key in
memory; the possibility of a match is very remote. fThe

user’'s key is placed on top of his histery buffer column.
€. The Commands

Each user has just two commands that he can send to the

KDC, "REQUEST" and "RELEASE":'
(1) REQUEST. For Y to obtain x'sipublic ke?, Y must
REQUEST it by sending ‘
Y+F{'REQUEST X', (Y,S)} L, .
to the RDC. 'Y' is a pliiﬂtex% identifier indicating
to the KDC the public key that must be looked up to

decipher the command; that is, (Y,P). Although anyone

' The notation 'F{M,(Y,S)}' in what follows means: "Using
the public key cryptosystem implemented, use encryption
function F to encipher message M using Y's Secret key."
"+' in what follows means string concatenation.

- 41

-having Y's puhlic‘key can decipher the command, no
security breach occurs if this ﬁapggns; vhat is

important is that the KDC knows that only Y could have

w

sentéthe message.

(2) RELEASE. Before the KDC can transmit X's public key to

Y, X must RELEASE the key by transmitting
X+F{F{'RELEASE X'+(X,P[new]), (X,S[present])}, (KDC,P)}

to the KDC. The RELEASE command.requires that X

generate a new keypair to be used for his ‘next

_conversation; the present key, is used for the present
conversation @ély! The command requires double
encryption because only the KDC is to know X's new key
(hence the use of (KDC,P)) and the KDC must he~sure
that X £§ the transmitter (hence the use of

] .
(X,S[present])).

d. The Pg@tacel

Two SCD users, A and B, establish a secure logical

channel using the following pretocal§

(1) A REQUEST's B's public key from the KDC. The KDC
prints the encrypted and decrypted versions of the . :
B . . : [‘ i . B e
REQUEST for future proof that the request was made.
(2) The KDC transmits

KDC+F{'RELEASE TO A?',(KDC,S)]}

(3)

(4)

(5)

&

to B. Although anyone can decipher the KDC's

transmission, no security breach is involved. B can be

» cegiain the transm@ssioﬁ originated with the KDC.

I1f B decides that communication with A is desirable, he

generates a new keypair and transmits a RELEASE command

to the KDC. The KDC decrypts with (KDC,S), prints the
result, decrypts again with (B,P[present]), and prints
the plaintext result. If (B,P[new]) matches any other
key in B's column of the history buffer, the KDC

signals 'SECURITY THREAT' and terminates operation.

-

The KDC obtains (B,P[present]) from the top of B's

column of the history buffer and transmits
KDC+F{F{'B's KEY:'+(B,P[present]),(A,P)}, (KDC,S)}

to A. Double éncryption is needed to assure A that the
KDC transmitted the message and to ensure that oniy A
can decipher the message. The KDC places (B,P[new]) on
toé of B's column of the history buffer, pushing
(B,P[present])'to the second position, and-all other

0ld keys down one position.

Steps (1) to (4) above are repeated with 'A' and 'B'
interchanged for B to receive A's public key. A and B
now have each other's keys and can communicate |

securely.

43

44

e. Discussion .

The network's security deﬁends on the trust that can be .
placed in the KDC's ke?paif, which is used to encipher
numerous small messages; the keypair should therefore be of
High quality. 1If desired, time and date stamps can be added
Ato messages sent by the RDC for additional security. ;

Aithough the keys in KDC memory are called 'public' keys
they are not handed out freely to anyone who wants them, in
accord with Michelman's dictum that thqgf is no security in
a network in which keys are given out without restraints.-

Since user keys are changed freqguently they may be made
relatively short and still provide excellent sgcufity. The
printed record of all key changes provides a log that:

pimpoints the time of each conversation or signature and the -

public keys used, thus localizing security breaches. The .

handwritten signatures.

The histoﬂy bufier is used to protect network user
"against key loss or theft in the following way Assume that
a user leaves his SCD signed on and unguarded for a short
time and an intruder copies the user's secret key from SCD
memory. .If the intruder attempts to use the key at his awﬁ
SCD he must replace it on top of the hiétcfy buffeerhen
"RELEASE'ing it. When the legitimate user a}tempts to use

his key, he will find that it is no longer valjd because it

/-

45

patches an old (i.e., pushed-down) key in the buffer: the
KDC will signal 'SECURITY THREAT' and not allow the
legitimate usé: to cemmunicéte, The intruder may attempt to
cycle the history buffer to return the key on top to its
original value by having n conversations with network users;
hcwever, if n is made large and the time constraint on the
buffer is long, it is unlikely that the intruder can cycle
the buffer before the legxtlﬁate user attempts to use his
key.

of éaufse, an intruder can éSVESdFQE on one end of a
conversation with a stolen key; the @istéry buffer only
prevents active use of a stolen key_ Note, however, that
eavesdropping can only be done for one conversation and that
a stolen key is of no value in determining the user's next
secret key. | ;

The proposed SCN is vulnerable to the threat of tﬁéft
and replacement; that is, it is passible fcr'gn intruder to
copy a user's key, replace it with another in the user's ﬁ
SCD's memory, use the stolen key at his own SCD, and replace
. it on top of the hxstcry buffer with a key matching the one
placed in the legitimate user's SCD. The only defence
against this threat is that the user either memorize hls
secret tey or wr1tg it down. Even memorization of part of

the key should sufflce to keep it from being replaced

undetectably, but the respon¥ibility is the user's.

/

2.4.3 Purther Considerations

There are two broad areas in which the proposed SCN
could be improved: (1) Additional Security, and (2) -

Versatility and Dependability.

a. Additional Security Measures

(1) i?g have shown that it is possible to automatically

(2)

guard against short-term loss of control of the SCD.

Ié is the user's responsibility, however, to prevent an
intruder from gaining access to the SCD or its software
for an extended period. An extended period of intruder
access may allow the introduction of a Trojan
Horse[30]; that is, modification of the SCD's software
and possibly hardware so that information is
transmitted in the clear or, perhaps, 5g.that weék
keypai%s are generated. There are a number of measures
that can be taken to guard againsé the introduction of
a Trojan Horse, including sgcu:é storage of the disk

and SCD after use, occasional visual verification of

the source code and recompilation, and perhaps

construction of software to provide a checksum of both

the old and new object decks to force an intruder to be

" extremely Subtle in introduycing modifications,

There are measures in the broad area of data

security[10,11,19,44f to aid in safequarding keys and

46

(3)

(4)

47

software. Some of these are implementable on a small
computer; for instance, a strong password!scheme could
be implemehted involving the use of a rapidly changing

value such as the time of day.

A precautionary measure entailing some expense involves

the use of a-'vater marked' magnetic card and a

magnetic card reader/printer. Such a device and card
vould be used to split a secret key into two parts at
signoff, with one part left in secondary storage and
the other on the card. w1th pk}vate key cryptcsystems
this splitting of a key requires the generation of a

quési-random number that is stored on the card and

 subtracted from the key in memory(7]. Public-key

schemes allov some simplification of this procedure;

for instance, if the RSA cryptosystem were implemented

the secret key 4 could be stored on the card with n

left in memory.

Even if the key at each SCD cannot be made perfectly
secure, an additional mechanism, called a

(k,n)-threshold scheme, can be placed on the KDC to

guard against forgeries. In such a scheme k users must

cooperate to sign a _document. Shamir[43} describes a
(k,n) scheme requiring the use of passwords. A (k,n)
5¢heme could be easily imblemented on the proposed SCE
by simply requiring k REQUEST's and k RELEASE's before

authentication could proceed. 1Individual users might

b!

5€&cCu

48

be given more signature authority than others by
storing a weight factor along with their kéyé at the

Versatility and Dependability

A number of improvements distinct from increased

rity can be built into the SCN to make it more

convenient, more applicable, or more reliable. Some

possible improvements are:

(1)

(2)

(3)

Throughout this chapter half duplex operation has been

. assuymed for simplicity, in that only one end of a

logical channel was expected to be transmitting at -any
time. Additional mechanism in the SCD's and KDC would
be needed to provide full duplex operation, but

implementation should be straightforward.

It has been gséumea that packet switching(40] is not v
required; that is, a direct physical channel is assumed
to exist between communicating users and messages do
not have to be switched from one KDC to another. A
packet switching mechanism would be needed tc allow
SCN's to communicate, necessitating an extra layer of
mechanism in the KDC's. Messages would need

identifying labels and special formats[7]. o o

A mail system could be implemented with additional

L

" mechanism in the KDC and SCD's. Some complications are

(4)

(5)

(6)

'S
¥

apparent because of the requirement for active RELEASE
of public keys by their owners. A third command,
'"MAIL', might be added that would not require active
key release; alternatively, users might generate
special mail keys which would not be protected by the
history buffer.

For additional channel capacity, a hybrid system[12]
could be implemented; that is, one in ;hich users can

encrypt material using a fast private-key cryptosystem

such as DES, with the public-key algorithm used to pass

DES keys. Generation and storage of DES keys would
a large central computer, so élthcugh some
modifications to'the SCD's would be required the KDC

would need none.

Redundancy of the KDC and printer is required to
prevent partial or complete communications failure in
case of a breakdown[40]; additional software would be
needgd in the multiple KDC's to simultaneously update
multipleihisécfy buffers and handle multiple printers,
Redundant KDC's would allow faster network operation,

of course, while they were operational.

1f the RSA cryptosystem is implemented faulty keypairs
will occasionally be generated which may not be easily

detected by user testing. It is easy to design a

protocol for replacement of faulty key if each SCD
always retains the two secret keys most recently

generated.

2.5 Applications

xsince the proposed SCN can be:implemented entirely on
small computers, ié vill have more applications than
previous more expensive designs. Some possible applic;;jﬁﬁ?\
include internal business communications, transmissionfof |
prescriptions from doctors to pharmacists, electronic voting
and census (decryption kéys vould be obtained by
 enumerators), eleetfanic notarization (including recording
of patents and copyrights), invoicing (i.e., business to
business or KDC/KDC cammﬁnicatiéns), electronic funds
. transfer, transfer of securities by brakerége houses, and
ordinary interpersonal use, eventually possibly the most
important application of all.

Since the keypairs act as capabilfties[14] or tickets
conferring privileges on.the key holders, the system might
be used for interprocess communication and synchrgnizatiéﬁ
if implemented on large zamputei._ If a logical channel is
thought of as a resource that is shared by prceésses then it
can be seen that praéess déadlock on a resource is ti;

impossible using our protocol and security in a distributed

system is guaranteed. Damage to a resource can be traced

/

back to the process that did the damage.

An example by Whiteside[49] emphasizes the necessity tor
an SCN féf'internallbusiness communications in at least some
industries. Whiteside absegves that a large oil company
lost many millions of dollars by being underbid by a

competitor for tracts. in Alaska. Information belonging to

wvhile enroute between Alaska and New York. The proposed SCN
would have minimized the possibility of such interception at
a cost of only a few thousand dollars for software, small

computers, and modems.
2.6 Summary and Conclusions

It has been shown that a secure communications network
can be constructed at low cost, if it may be assumed that a
public-key cryptosystem can be implemented on small
computers. The network is highly resistant to penetration
by outsiders and repudiation by legitimate users. The
network departs from previous proposals in that only small
computers are needed, users generate their own k;gs for each
conversation, and a history bufiéf is included in the

central mechanism to make it difficult for an intruder to

actively use a stolen secret key. : : et e

In part, this chapter has been meant to aid in
discussion of the interesting question, "How secure and
impenetréﬁle can we make a communications and authentigétign
network, giv&n the probably secure public-key cryptosystems
now available?"” After all; it seems futile to design a
cryptosystem reéuifing an intruder to do thousands of years
of cryptanalysis‘ta obtain a key, if he can simply steal the
key from an unsecured communications deviée. The proposed

We do not claim that the proposed network is impervious
to all threats by a resourceful and knowledgeable intruder,
nor that repudiation is completely impossible. Some
forgeries may still occur. It should be kept in mind,

however, that even handwritten signatures can be, and

Y
occasionally are, forged. -

52

Chapter Three

RSACRYPT: An Implementation

3.1 Introduction
RSACRYPT implements the RSA cryptosystem on an AMDAHL
470V/8 computer at the University of Alberta. The program

was constructed for two.reasons:

(1) To determine the difficulties, if any, that must be
overcome before the RSA cryptosystem can be implemented

on microcomputers, and

(2) To predict the speed of RSA keypair generation

attainable on a microcomputer. ' h

~In this chapter we first briefly describe the program in

Section 3.2. The difficulties faced and overcome in

implementation are then discussed in Section 3.3. Finally,

in Section 3.4 we relate the results obtained té those of
Michelman([36) to predict the performance of the RSA
‘cryptosystem on the MC68000 microcomputer and to reach some
conclusions about the practicality of the network propo;ed

in Chapter Two.

53

54

3.2 The Program

o

It seems that modularity has been discussed only in the
context of private-key cryptegraphf(&]i‘_Hevever, an ¢

implementation of the RSA public-key cryptosystem also
requires that very.distinct modules be implemented

separately.

modules §Efipﬁzzal to the RSA cryptosystem. Coded almost
entirely in ALGOL68, RSACRYPT is designed to be easy to
understand and use and to be user modifiable for additional
:§yptesecurity; its operation and modular nature are

depicted in Figure 3.1 (called modules are bracketed). The

follows. ' . B

Group 1: Global- Modules

(1) SERVICEPAK is a utility package that carries out |
functions such as the opening and closing of files for
interaction with the user, for key storage, and for

encryption and decryption of messages.

(2) MATHPAK is a multi-precision arithmetic package.

(3) DESPAK contains all the procedures and tables réquired
for a software implementation of DES. It is called

with a string, the first 8 characters of which are

¢ Character Input i
+
_ ; _ -
DESPAK
- - i
Randomized Input
+
S — 'KEYPAK
PRIMEPAK (DESPAK)
(MATHPAK) (PRIMEPAK)
— (KEYPAIRPAK)
‘ ‘ ' (MATHPAK)
— — — (SERVICEPAK)
P q d
+ + + .
KEYPAIRPAK
(MATHPAK) |
— : ;
- — (- —
e d KEYFILE
— :
—_— . CRYPTPAK A— —
INFILE - - (MATHPAK) 7 - OUTFILE
— L (SERVICEPAK) o
Figure 3.1. Operation of RSACRYPT °
Q.
treated as a 64-bit DES key, and returns a string that
can be used as a quasi-random number. It uses block
chaining for increased resistance to cryptanalysis. .

Group 2 Keypair Generation Modules

(4) PRIMEPAK returns,Ator any given'integérE the next prime
greater than or equal to the integer. The number
"returned is probabilistically prime; the probability
can be made arbitrarily close to unity through user

input of the amount of primality testipg desired.

(5) KEYPAIRPAK is passed 3 prime numbers and uses MATHPAK

to obtain an te,d,n) triple.

(6) KEYPAK interacts with the user and determines the
length (in bits) of the keypair to be QEﬁefated,
invokes DESPAK to scramble an input from tﬁe user, and
transforms the éuasi-random number thus obtained into a
keypair, with calls to PRIMEPAK and KEYPAIRPAEg The

-keypair is written to a user-specified file.

Group 3: Encrypt ion\/Decr'ypt ion Module
¥l
(7) CRYPTPAK encrypts or decrypts a message in a
user-specified file. It interacts with the user to

determine the key to be used.

The three peripheral packages mentioned above incluge

one to allow the user to choose between a key generation run '

and an encryption/decryption run, and two assembly language
routines to allow visual editing of files and reassignment

of logical I/0 units without unloéding the érogfa@i

"M" .

wn
—

Because of its médular nature RSACRYPT should readily
lend itself to future improvements. For instance, the
program owner could easily detach DESPAK:as used for
quasi-randam number generation and attach a quasi-random
number geperator of his own aesign, or if a faster prime
number geheration scheme is devised PRIMEPAK could bé
replaced. As well, RSACRYPT should serve as an excellent
basis for implementing other public=key‘§§hemes: any |
public-key cryptosystem may be expected tevrequire a
mathematical package, a random number generator, a keypair
generator, an encryption/decryption package, and perhaps a
prime number generakcr.

Since the program is large and complex some measures
‘were taken to permit verification by the user and possibly
certification. The data structures used were kept simple: a
few vectors, representing the integers p, g, n, e, d, and
the Euler totient, are manipulated and transformed as |
required. Procedures were written with emphasis on clarity
and documentation; most pfaceéufes_have test drivers
attached.

A knowledgeable user could be expected to gain some
understanding of the program in a.matte:fcf a few hours.,
Even a rudimentary understanding would allow him to at least
verify that the program does not write out a piaintext
version of his message other than to the file specified. At
a deeper level, he could Serify thatrthe program carries out

the RSA and DES specifications precisely, with no

58
deviations, or satisfy himself that the program is a
memoryless subsystem that does not retain the prime factors
p and q after a key generation run, for example.
_ sl
3.3 Difficulties Ay

3.3.1 Quasi-Random Number Generation

The generation of good quasi-random numbers is of
critical importance to an implementation of the RSA

. cryptosystem sinc

<k

if the seeds for generation of p and g

are insufficiently random a cryptanalyst might find a way to
factor even a very long n. There are many methods for
generating quasi-random numbers, ranging from trivial to

. highly complex; Knuth[29] discusses much of the theory. 1In
this application a method is needed which is compact enough

<
.~ computer, which still provides sufficient resistance to

to allow the code to be easilyeimplemented on a small

cryptanalysis.

Two extreme examples of generators considered and
rejected Ear this application are tPe mid-squares method
used by Von Neumann and mentioned by Knuth[29], and the
highly scphisticaéeé TLP generator designed by Bright and
Enison[3]). The mid-squares method involves the repeated
squaring of a seed and extraction of the result's middle
digits; the method is certainly compact but its simplicity

lead$ to doubts about its ability to resist concerted

59

cryptanalysis. On the other hand, the Bright and Enison
method is anything but compact: it generates large tables
and is suited to keystream generation on a large computer
but not to quasi-random number generation on a small
computer.

it was decided to use a software implementation of DES
to scramble a seed input by the user; this decision was made
‘because it has been observed that strong private-key.
cryptosysieMS are by definition excellent quasi-random
number generators[3,46]. The seed used is of the Sgme
length as the sum of the lengths of the three quasi-random
numbers requir;d (plus 64 bits for the DES key) and is
entefed as a string that, for practical keypairs, is at
least 100 characters long. A length of 100 characters or
more is probably enough to prevent the user from introducing
an unconscious bias into the seed that would permit ”
cryptanalysis. As an additional precaution, block chaining
is used to scramble the seed even more than is possible by
simple use of DES; the number of roundd of chaining is
user-specified. The quasi-random number generated is split
into three parts that are used as seeds to generate p, q,
and d for the RSA keypair. !
‘ WQ béi}eve that DESPAK overcomes the shortcomiﬁés of DES
Sécause this is a software implementation so the program
owner has access to the DES tables. Since changing even one

bit in any of the tables yill radically alter the ciphertext

obtained from a given message/key combination, the owner can

60

‘Additionally, in this application the quantity of
DES-processed text is small (a large quantity is necessary
for cryptanalysis) and unavailable to a cryptanalyst since
it is further disguised by transformation into an (e,d,n)
triple.

One shortcoming of DES that DESPAK does not resolve at
~present is the short key, but the key length could easily be
increased if deemed necessary. Even more security would be
provided by increasing the amount of input by the user and
discarding some of the scrambled output before use for
keypair generation. We believe that a 64-bit key is

probably ample, however, for the short 'messages' encrypted.
3.3.2 Prime Number Generation

The method used for prime generation is the
probabilistic method outlined by Rivest, Shamir and
Adleman[42]. This method involves the use of Fermat's
Theorem: for a prime number p and any integer a < p it is
always true that _

a+(p-1) = 1 (modulo p).
A number p is tested for pfimﬁlity by applying Fermat's
Theorem repeatedly with a number of different a's. If k
tests are péssed then piis‘ptime with probability o

1 - ifl?%k).

If p fails a test ‘then it is incremented by 2 and testing

begins anew. Rivest, et al. believe that on average

61

approximately 150 candidates will be tested to obtain primes
of the recommended sizes.

Obviously, the generation of primes using Fermat's
Theorem can be done with the same E@utine for modular
expcneﬁtiatian as used for encryption, with the only
difference being that in encryption the modulus is constant
for a number of message blocks whereas in prime generation p
changes freguently. Therefore, a hardware l
encryption/decryption unit, when one. is built, can be used
to rapidly generate keypairs as well as encipher messages,

Two questions occur when programming this algorithm:
(1) How should the values of a be chosen?

(2) Modular exponentiation is a time-consuming process. (gf;‘f
Can its use be avoided to some extent when generating

primes?

In answer to the second question, theiuse of modular
exponentiation has been reduced by approximately a factor of
5 in the fcllawzng fashion.

Given any odd positive integer, p, one easy test that
rejects 33% of all non-primes i§ to divide psby 3. This
idea can be extended to division by 5, 7, 11, and other
small primes. Division by the first 8 small primes rejects
approximately B0X of all odd numbers as possible primes,
(Extending the list beyond 8 primes will only increase

performance slightly.)

To avoid dividing every candidate for primality by all 8
prime divisors, a count is associated with each divisor that
is initialézeé to zero when the divisor is found to evenly
divide any candidate. A count that has been initialized is
simply incremented modulo its associated divisor for all
succeeding candidates. After only a few Egnéiéates have i
been tested in this fashion all counts are initialized and

division by prime divisors is entirely eliminated.

ot

Henceforth, all counts are iﬂcrgmenéed for succeeding
candidates and whenever all the counts are non-zero modular
exponentiation is used for further testing,.

Returning to the question of how the values of a should
be chosen, Rivest, et al_rsuggest that random values be
used. fhis suggestion need not be taken literally since all
that is required is an unbiased set of a's that gives each
practice, the generation of qQuasi-random numbers is far too
time-consuming to generate the ﬁany required valdes of a.

RSACRYPT generates a's rapidly and with very little
memory requirement in the following way. A short list of
digits is entered as randomly as possible by the programmer
before campilatiéng During a fﬁn, ais aléays initially set
to 3 as recommended by Knuth[29]. As successive values of a
are needed, digits from the short list are prepended to the
current value of a. If prepending alone were used, however,
a could grow larger than p, vhichris unacceptable because it

is unnecessary and slows down the generation of the primes;

therefore, when many tests of pfimaliﬁy are to be done an
increment is computed -and @ is sometimes incremented by the
computed amount without prepending. In this vay, the many
values of a are folded into a small amount of memory. Since
the user specifies the amount of testing to be done, which
determines the increment, the programmer has little control
over the a's that are generated; in a sense, they are

guasi-random,
3.4 Analysis of Results

Recall that modular exponentiation is used for both
encryption/decryptf®I and key generation in the RSA
cryptosystem. Modular exponentiation requires the repeated
use of multiplication and division (see Chapter Four) and is
O(n®) if the standard, O(n?), algorithms for multiplication
and division are used.

The results obtained from RSACRYPT, combined with
Hichelma? results[36], permit the prediction of the.
performance of the RSA éryptasystem on microcomputers. For
brevity we derive timing:estimates for only the MCé68000.

-

3.4.1 RSACRYPT Results

RSACRYPT encrypts, decrypts, and generates keypairs very

Slowly because of the use of ALGOL68 and a radix of 256 to

represent integers, as well as the use of the standard

63

algorithms for multiplication and division.' Table 3.1

illustrates the encryption speed of RSACRYPT for various

[]

sizes of the modulus n, with the key (e or d) the same
length as n.

n Size Bits Encrypted

(decimal digits) per second
20 0.0
37 71.8
51 -
73 v 5
155 (512 bits) 0.32 Nprojected)
%;0 (660 bits) 0.13 (projected)

TabYe 3.1. Encryption Speed of RSACRYPT

The first 4 values in Table 3.1 were obtained by actually

running the program, permitting the solution of 4 equations
in 4 unknowns to obtain a timing formula, which was used to
Z:;:in the last two (projected) table ent;ies_ The timing

:mula fOr encryption/decryption is (in seconds/character):

T = -0.805 + 0.173n - (1.927/255)n* + (0.034/194)n?

wvhere n is the number of radix 256 digits in the modulus.
(RSACRYPT uses a radix of 256; Table 3.1 is in decimal

digits for convenience. The conversion between the two

' If M(m,n) is the time required to multiply an m-digit
with an n-digit number (radix 256) and if D(m,n) is the
time required to divide an m-digit by an n-digit number,
ve have found that the timing formulas for
multiplication and division in RSACRYPT are:

H(ngn) = 27 + 36n + 62n° (microseconds)
D(2n,n) = 1230 + 532n + 56n? (microseconds)

Ay

radices is done by aésuming that 3.3 bits is needed to
represent a radix 10 digit and 8 'bits to represent a radix
256 digit.)

Since prime generation makes use of modular
exp@nentatian it too ig O(n?), pefmitﬁing the same technigue
té be used to obtain a ti;}ng formula. Table 3.2 shows the
times for key generation for various key sizes,.

n Size | Time to Generate
(radix 256 digits)| Keypair (seconds)

37 60
44 100
51 130

73 510
155 (512 bits) 6689 (projected)

Table 3.2. Key G:ni:;tion Time of RSACRYPT
(5 Tests of Primality; Ordinary Primes)
The first 4 entries allov the derivation of a timing formula

which is (in seconds):)
T = 53.1 - 4.05n - 0.256n* + (592/19342)n°?

vhere n is the number of radix 256 digits in the modulus.
The last!entry in Table 3.2 has bgeﬁ obtained using the \
above formula.
Two things must be noted about table 3.2:
(1) The primes generated to .form keypairs each had only 5
tests of primality (thatiis, S a's). Rivest, Shamir,

and Adleman recommend 100 tests of primality.

66

(2) The primes generated do not conform to the Rivest, et
al. recommendation that primes, p, be generated such
that p-1 has a large prime factor, u, and that u-1 also
has a large prime factor, v. The generation of such
primes p can easily be accomplished by first generating
‘a prime v, doubling it and adding 1, finding the next

prime u, doubling u and adding 1, and then finding p.

3.4.2 Michelman's Results

‘ Table 3.3 duplicates the relevant results obtained by
hﬂichelman.

‘ Key SiZe = n
Machine/n Size (bits encrypted
per second)

16-bit Machine Size(PDP11) -
200-decimal-digit n Size _ .

without cache(PDP11/45) ’ 13
with cache(PDP11/70) 30
100-decimal-digit n Size
without cache(PDP11/45) 47
with cache(PDP11/70) 106
32-bit Machine Size(370/168,cache).
200-decimal-digit n Size 542 P
100-decimal-digit n Size 1880

Table 3.3. Michelman's ﬁi:ulti

>
Michelman's implementation is 1.5 times faster than an
jmplementation using the standard'algpfithms doded in
assembly language would be, because he uses a variant of the
Karatsuba technique for multiplication that allows

~ -
multiplicatidn to be done gwice as fast as with the standard -

67

algorithm and he uses standard division to obtain
remainders. Michelman observes that his results are not the
best that could be obtained: no special coding tricks were

used.

Michelman's results for the PDP11/45 can be used to derive
Table 3.4, a table of expected encryption speeds on the
MC68000 assuming that the same algorithms as Michelman used

ame used for multiplication and division.

Key Size = n
Machine/n Size (bits encrypted
per second)
\ 16-bit ‘Machine Size(MC68000,n0o cache)
200-decimal-digit n Size . 5.2
100-decimal-digit n Size 18.8

Table 3.4. Projected Encryption Speeds on the MC68000
(Same Algorithms as Michelman)

Table 3.4 was derived using the following assumptions:

(1) The overhead of multiplication and division on the
MC68000 (i.e.; indexing, etc.) will be the same as on
the PDP 11/45, everything else being equal. That is,
if the MC68000 could do a 16-bit multiplication at the
same speed as the PDP 11/45, modular exponentiation
vould be done at exactly the same speed as on the PDP
11/45. Given the improved architecture of the MC68000

i X . : .
"this assumption is expected to be conservative.

(2) The PDP 11/45 used by Michelman took 3.5 microseconds
to' do a 16-51: unsigned integer multiplication. There
are various péssible.multiplicatidn spe;ds oé a PDP
11)45 depending on the type of memory used. 3.5

;é~ - microseconds is an intermediate value (PDP 11/45

+

Processor Handbook).

(3) The MC68000 with an 8Mhz clock takes 8.75 microseconds
to do a 16-bit unsigned integer multiplication (MC68000

User's Manual). .
3.4.4 Projected Key Generation Speed on the MC68000

We can now estimate the time needed to generate kéypairs
on the MC68000 with the same algorithms as used by
Michelman. Since a ngmber of assumptions have been made,
and since wve have not verified Michelman's results, the
estimate derived may be somevhat in error.

From Tables 3.1 and 3.2 we see that the time to generate
a 512-bit key using RSACRYPT is projected to be 6689 seconds
and the encryption rate using a 512-bit key is projected to
be 0.32 bits/second. The éncryption speed on the MC68000
using a 512-bit key is derived to be 12.8 Sps (by using
Table 3.t to compute the ratio of encryption speéhs using
200-digit keys and 155-digit keys, ana then usinglthis ratio
to c§mpu;e the rate £§r 155-digit keys on the MC68000 by
multiplicatién with the entry for 200-digit keys in Table

3.4). Therefore, we anticipate that generation of 512-bit

A

ot

keys an the MC68000, using the same algorithms as used by
Michelman, will take |

. .)]

T = (0.32 x 5689) / 12.8 = 167 secondsp= 2.8 minutes.

The generation of primes, p, with pP-1' having a large
prime factor as described previously, will take
appraxiﬁately 3 times as long as fhe generation of ordindry
primes. Only the ngtars of n fi,e@; P and q) need be
génerated in this fashion; d éan be an ordinary prime. = \
TEEfefsfe, the time to generate a keypair in'the recommended
fashion will increase by no more than a factor of 2,33, Ini
fact, the increase will be less than a factor of 2.3 since
the d's generated with RSAERYPT were .5 tlmés as long as p
and q and took a 13fger proportion of total key generation
time than p or q. Therefc:ei we conservatively estimate
that the generatién of keypaifsbin the recommended fashion
will take twice as long as derived chve, or 5.6 minutes on
an HCSéQDD,

1f each prime is tested 100 times for pfimélity as
recommended by Rivest, et al., it can be expected t;gt
generation of a 512-bit keypair will take (106/5)(5;6) = 112
minutes or 1.9 hours most of the time, since only 1 of 32 -
primes generatéé'using 5 tests will be rejected by further
testing; qgcasianally the time to generate a keypair will be

substantially greater than 1.9 hours,

69

3.4.5 Projected Rates With Improved Algorithms

In Chapter Four we show that for 512-bit keypairs it is
posgible to carry out modular exponentiation nearly twice as
fast as by using the algorithms used by Michelman. Using
-our improved algorithms on the MC68000, keypairs will be
generated in 2.8 minutes using 5 tests of primality, 56
minutes using 100 tests, and messages will be enciphered at
approximately 25 bps using 512-bit keys.

A fast typist types at 60 words per minute, which is 40
bps 'if a word is‘assu?eé to be 5 characters long (8
bits/character). Thus, if the improved algorithms described
fn Chapter Four are implemented it will be possible to
encrypt at a rate exceeding the speed of a better than
average typist, with 512-bit keys which will provide ample
cryptosecurity (see Table 1.1). -

A key generation time of 56 minutes is too slow for

application in the network proposed 'in Chapter Two. 1In

re

practice, hovever, we feel that it is unnecessary to test

each prime 100 times since users must begable to Easily
change faulty.kéypairs in any case. We. recommend that
"between 10 and 20 tests of primality be made for eéch prime.
Since 7 primes are generated for each keypair (3 each for p
and q), keypairs will have a probability of 1/146 of being
bad if 10 tests are used. Generation time will usually be
5.6 ﬁinuteszusing 10‘tests,ﬁenabling SCNEusersxta have a
maximum of 85 conversations every -8 hours, which is ample.

-

71

Every two or three 8-hour days users can expect to generate,

a faulty keypair.
3.4.6 Projected Network Rates

Recall that in the protocol designed in Chapter Two some
messages are enciphered once and some are enciphered twice.

\

Assume that keys are 512 bits long and that encryption speed
is 25 bbs. With these assumptions, single encryption of a
512-bit block takes 20.5 seconds and double encryption of
two blocks' takes 82 seconds. For A to receive B's key, A
eﬁciphers an outgoing message once and deciphers an incoming
message twice, for a total of 102.5 seconds. B also takes
102.5 seconds to transmit his key. The KDC does twice as
much work as eith;r A or B; thus the KDC takes 205 seconds. -
Equivalent amounté of time are needed for B to receive A's
key. Further, A and B must each take approximately 5.6
minutes to generate keypairs with 10 tests of primality.
Therefore, A and B each need 9 minutes of computation to
exchange keys and the KDC takes 7 minutes to effect the
exchange. 1In otﬁer vwords, network users are limifted to a
maximum of 60/9 conversations per hour -(null conversations),
or approximately 6.7, and the KDC can establish a maximum of

60/7 = 8.¥logical channels per hour. In 8 hours two users

' Two blocks of 512 bits are needed to encipher a 512-bit
key (e) and the other information transmitted with the
key. The modulus n can be openly transmitted since it
is useless without the key.

~J
[%]

will actually be able to have only 53 conversations, not the
85 estimated earlier, because of the limitations imposed by

the protocol.

3.5 Conclusions

It can be seen from study of Figure 3.1 that only
computer's main store at any time. Ié should therefore be
possible to imblement the RSA cryptosystem on a computer
with limited main memory.

The factor of 5 increase in speed of prime number
generation obtained by using a list of prime divisors for
preliminary testing is seen to be significant; otherwise,
keypair generation would not be practical in the SCN

designed in Chapter Two.
-

Chapter Four

Towards Faster Modular Exponentiation

A

4.1 Introduction
_Ajg;acticéfﬁiﬁgiementatfon of the SCN designed in
Chapt?r Two, using the RSA cryptosystem on microcomputers,
requires an algorithm for fast modular exponentiation, both
to permit a convenient channel capacity and to enable users
to generate keypairs frequently.

In this_éﬁapter we first show, in Section 4.2, how

modular exponentiation is done using only repeated
multiplication and division (to obtain remainders), implying
that one way of speeding up modular exponentiation is to use
fast algorithms for multiplication and division. Since the
aim is to develop a practical microprocessor-based SCN,
however, algorithms that are asymptotically fast may not be
suitable for improving the speed of modular expoﬁentiatian

in practice because of high timing constants or for other

practical reasons. Section 4.3 is a brief discussion of

several possible methods for improving the speed of modular
exponentiation that we have found infeasible without further
research.

! In Section 4.4 we develop methods for multiplication and

obtaining the remainder of a division that enable modular
exponentjation to be done 3 times faster than by using the

standard algorithms for multiplication and division. The

73

Ry v!‘..‘ :

method derived for multiplication is basicaily an extension
of previous ideas, involving nonrecursive use of the
Karatsuba technigue, and is a practical method that will
work in the range of numbers used by the RSA cryptosystem.
The algorithm designed for finding remainders, on the other
hand, is a general algorithm that can be used in Ecnjun:tian
with any fast multipli;atian algorithm to obtain remainders
with the same time complexity as the multiplication
algorithm used.

Although it appears that microcomputers exhibiting saée
degree of parallelism will not be available for some time, é
parallel algorithm that is evident from study of the

Karatsuba algorithm is also presented in Section 4.4.
4.2 The Modular Exponentiation Problem

Modul ar iexmnentiatiaﬁ is the computation of '
m+e (modulo Y

for m, e, n integers. In the RSA cryptosystem m (the
message) and e (the key)4afe less than n.

The procedure recommended by Rivest, Shamir, and
Adleman[42]) for carrying out modular exponentiation, called
exponent fat fon by repeated squaring and multipllsatiaﬁ, is
discussed by Knuth[29]. The basic algorithm is (from

Michelman[36])):

c = 1; 7
for i to log,(e)

do
¢ := rem((c*c),n); ,
if e(i) = 1 then c := rem((csm),n) else skip fi
od;

The rem operation is done to keep numbers in a manageable

range in practice. The result is congruent (modul

the result that would be obtained by simple exponenti
Note that, if m and n are d digits long, then after e
multiplication @r squaring ¢ will be 24 digits long anfd will
again be d digits long after the rem operation.

Exponentiation by repeated squaring and multiplication
18 essentially a method of evaluating powers by grouping
multiplications so that fewer multiplications are carried
out than by using a ;tfaightfafvard approach. For example,
to evaluate m'® vhere m is an arbitrary integer, we can
\computg

M xmxm xeeex
vhich requires 18 multjplications, or the multiplications
can be grouped as
(((m x m)*)*x m)ix @

vhich requires only 6 multiplications.

a

|
To perform the grouping automatically the exponent e is

treated as a program that causes squaring or multiplieatian

to be carried out in the correct sequence. The exponent is-

considered a bit string; in our example, 19,, is 10011,

The bit string:is read from left to right (right to left can

also be made to work) and if the bit read is '0' then only

76

squaring takes place; otherwise squaring fs folloved by
multiplication by m.
To illustrate, using 10011, as the program and with the

variable ¢ initially 1, the following sequence is obtained:

1. st bit = 1 a) ¢ :=c? = 1
. . b) c.i=mc = m
2, 2nd bit = 0 c :=c?! = m?
.. 3. 3rd bit = 0 c :=c! = m*
. 4. 4th bitl\= 1 a) ¢ := ¢* = m*
AN b) ¢ :=mc = m’
5. 5th bit = 1 a) ¢ :=c?* =m'*
b) ¢ :t= mc = m'"’
4.3 Approaches that are Infeasible in Practice
This section is a discussion of some ideas for improving
the speed of modular exponentiation that are inapplicable
for use with the RSA cryptosystem. In our discussion .
. 512-bit numbers are used as a basis for illustration, for
three reasons:
(1) 512 bits is approximately equivalent to 155 decimal
digits, which provides acceptable but somewhat less
- ;
security than the 200-digit key recommended by Rivest,
et al. Note that factorization of a 512-bit key would
still take many thousands of years. An SCN using keys
of 512 bits would be acceptably secure. |
(2) Some multiplication algorithms require that the
multiplicands have lengths that are powers of 2. If
p the lengths are not powers of 2 the multiplicands are -
/

~J
~J

[t

padded with 0's. For clarity it is preferable to avoid

discussion of the padding process and other trivial

details,

(3) A consistent basis for camea:isen of algorithms is

needed.
The infeasible approaches discussed below are
(1) Reducing the Number of Multiplications and Squarings,
é2) The Willoner Parallel Multiplier,
(3) Thg’Taem—Ceék Algorithm,
(4) The Chinese Remainder Algorithm, and

(5) The Schonhage-Strassen Algorithm.

(1) Reducing the Number of Multiplications and Squarings

The method of repeated squaring and multiplication does
not always provide the optimal grouping of squarings and
multiplications. Knuth[29, 'Evaluation of Powers'] analyses
the problem of finding an optimal grouping. He discusses
four related concepts but only one of these can bevapplied
to our problem. This concept ié that of forming an addition
chain in which the shortest possible sequence of additions
is generated that'having as its sum the exponent to be used;
the sequence of additions provides the program for squaring

and multiplicaticn, Unfortunately, finding a minimal

78

addition chain for an arbitrary large integer is extremely
difficult, so this idea is unuseable without further

research. «

(2) The Willoner Parallel Multiplier

Willoner[51) designed an O(n) pa#ﬁllel multiplier which
he suggests might find application in dryptography. 1If
built, it would certainly make encryption much faster. No
parallel divider would be required if the PFRA algorithm
developed later in this thesis were used. Unless there is
an unanticipated demand for the device’hoveve;, it is
likely to be expensive for the foreseeable future.

4

(3) The Toom-Cook Algorithm

¢

Knuth[29] discusses the Toom-Cook algorithm in detail:
it is a recursive, divide—and-conqu?;, generalization of the
Karatsuba algorithm. Unlike the Karatsuba algorithm, which
splits multiplicands each into two halves and usé§ a special
‘multiplication order to multiply halves, the Toom-Cook
algorithm splits multiplicands into r+1 portions with r
increasing with the lengths of the multiplicands: That is,
.the longer the multiplicands the mére parts they are broken
into. |

- Study of the algorithm shows thet it proceeds in

.'steps', in that it requires multiplicands of 32 bits or 80
bits or 320 bits or 1280 bits, etc. to be placed on a stack

initially. 1In other words, multiplicands must be padded to

these lengths, and only these, before the algorithm
proceeds. If the multiplicands were 320 bits in lengthvthg
multiplication might proceed efficiently, but multiplicaﬁds
of 512 bits require padding to 1280 bits. This amount of
padding would cause a great deal of extra work to be done,
so much so that we estimate that the algorithm would take 4
or 5 times longer than standard multiplication to muléiply
512-bit numbers, without considering other overhead. The

algorithm is therefore inapplicable without more study. -
(4) The Chinese Remainder Algorithm

The Chinese Remainder Theorem provides a technique for
converting from residue representation to the standard radix
representation. To convert from radix to residual
representation a number is éiviéeayby some relatively prime
numbers (moduli) ii? the remainder, or residue, of each
division is fetainédi Numbers in residue form can be added,
" subtracted, or multiplied in 0(n) time, but no efficient way
of carrying out éivisisn is known, After the desired /
operations are done the result is converted back to radix
form, , ‘

v Qﬁp, Hopcroft, and Ullman{[7] show that the time
éompﬁii#ty of converting between radix notation and residue
notgtion is D(H(bk);aggk) Qhefe b is the number of bits iﬁ
each of the relatively prime moduli, k is the number of
mg?uli, and M is the time to multiply two integers. Because

theprocess of cbnversion is so time-consumifg, a single

multiplication of two numbers cannot be done efficiently;
gains in speed are realized only when the CRA is used to do
a large number of consecutive multiplications.

Modular exponentiation requires that a remainder be
obtained after each multiplication or squaring. If this
requirement is strictly adhered to, use of the CRA does not
make sense because frequent conversion between notations
will be necessary to permit remainders to be taken.

7 There is ac ually no reason why a remainder muét be
obtained after each multiplication because, as prev1cusly
noted, the remainder is taken to keep the numbers "in a
manageable range". The range might be redefined so that
taking the remainder is deferred until a critical size is
reached. At that time the result would be converted into
standé:d notation, collapsed by taking the remainder,
converted back into residual form, and multiplication and

*

squaring could proceed as before.

al size/collapse approach has

[]
"1
‘”

Unfortunately, the
several Qeficieﬁciesi Representing numbers up to the
critical size requires either ggt:a prime moduli or larger
prime moduli. Conseqguently, the work done in conversion
between residue and standard representation increases. This
increased work factor cancels any gains obtained by

postponemént of division to obtain the remainder.

A} .
Also, the time required to obtain the remainder when the

critical size is reached is also significant. If the
critical size is set to a large value to defer:several
divisions, then the time r?quired to carry out division of a
number at the critical size will not be inconsequentia;,
even using a fast division algorithm.

It appears that more research is required before use of
the CRA becomes practical in this application.

(5) The Schonhage-Strassen Algorithm

.

This is a recursive divide-and-conquer algorithm
requiring that the multiplicands be represented bf their
Fourier Transform. Once the multiplicands are transformed,
pairs.of elements of the vectors obtained by transformation
are multiplied together to form a result vector. The
resulting vector is transformed to radix notation using the
Inverse Fourier Tranform and some further manipulation, ,

The Schonhage-Strassen Algorithm is asymptotically
faséer than any other multiplication algorithm, but it
appears to be unsuitable for the multiplication of 512-bit:
numbers. The algorithm is clearly described in Aho,
Hopcroft, and Ullman[7]); their notation_is used throughout
"the following discussion. B i

To obtain a 1024;bit r;sult the algorithm requires that
the 512-bit multiplicands be padded with 0's to make them

1024-bit numbers before they are transformed using the FPT.

No problems arise during the processes of transformation,

multiplication and inverse transformation until step 4c) in
Algorithm 7.3 is reached. At this point the numbers G and ¥
must be multiplied and each is 480 bits langpgﬁhi¢h is
.obviously not a significant improvement in comparison with
the original 512-bit numbers.

The problem lies in the derivation of and ¥, which is
done in step ¢b). O and ¥ are derived by stringing together
portions of numbers called u' gné v‘l along with some

intervening 0's. u and v' are each broken into b = 32

portions, each portion being log,b = 5 bits in length. fhel

portions when concatenated have intervening gaps of 0's,
each gaé 2log,b = 10 bits in length. Therefore, O and V¢
each become 3blog,b = 3(32)(5) = 480 bits long.

The algorithm is effective for very large multiplicands
because 3blog,b for large numbers is comparatively small.
For instance, with multiplicands of 64K bits, 3blog,b ; 6144
so that U and ¢ are each less than 1/10 of the length of the
initial multiplicands. 39: 512-bit mgltip}iiands this .
reduction faltor is still very small so the algorithm is
inefficient.

Research is required before the SchénhagegStrasién
algorithm will become useable in this application. Perhaps
a method might be devised to obtain the remainder without

converting into radix notation,

82

N . |) 83
4.4 Approaches that Improve Timing

4.4.1 lultipli::t’n using the Karatsuba Algorithm
' N
The Karatsuba Algorithm (see [1,3,4,7]), first published .
in 1962, uses a simple divide-and-conquer strategy. Two
integer multiplicands a and b, each consisting of n digits

(radix r), are written as

a = (r+n/2)a, + a, and, 7
b = (r+n/2)b, + b,.
The product c=ab is then camputed using the Karat suba
equat ion
c = (ren+rtn/2)a,b, * (r+n/2+1)a,b, + (ffﬁ/?)(a;ia.)(b.éb;)
vhich requires 3 multipl;catlaﬁs of n/2-digit numbers, alang
with some adding, subtfa:tlng, and sh1£t1ng. Using the *
~

standard multiplication technique 4 multiplications of
n/2-digit numbers would bgve to be done, sé the Karatsuba
technique saves appféxim;tely 1/4 of the work crdinariiy
done. The equation can bg reapplied recursively to eagh of

its

products, so if n is a powver of 2 then (3/4)tlog,n of
the 5in'1é%digit multiplications are done as ﬁ@uldibé done |
standard glgéﬂithm, if recursion is carried to the
wvhere only s}ﬂglc digits are being multiplied. The |
time complexity of the giijjithn is 0(ntlog,3) or

approximately O(n+1.,59).

. Since use of recursion addsg considerable overhead

Moengk[4] .suggests that standard multiplication be used when

numbers to be multip%?ed are 8 digits long. The

following algorithm fGEAfEEUESiVE Kafatsuba‘mpltipiieatign
~ uses standard multiplication when the multiplicapds are
. i

'minsize' digits long:

1. proc recursive karatsuba = (ref()int a,b,result)void:
2. begin .
3. int n := upb? (1 n/2)int al,b1,a0, bO-
4. -+ (1:2*n)int alb1,a0b0 hird term, 7
5. al := a(1:n/2); a0 := a(n/2+1:n); !)
6. b1 := b(1 n/2); b0 := b(n/2+1-ﬁ)‘
7. if n £ minsize then stanéard mult(a b,fesult)
8. else begin
9. recursive karatsuba(at.bi aﬁb1) . ; ‘
10. recursive karatsuba(p0 bﬁianD)
1h. . recursive karatsuba(a0 - aT,bl - bo, third term);
R - i
12. = shift and add(a?bi,é@bo,third term,result)
13. end ”
14, fi -
- 15, aﬁé'_& | ' .

Even the use cfgﬂgeask‘s_iéea for limiting recursien
will provide only marginal improvement in pfactice.
However, two ways of applying the Rar Suba technigue
suggest themselves that ‘'will provide significant gains in
multiplication speed: |
(1) In-line code and, , . LU

(2) Pa:alle%iimplementitieni

+

-

*r,

(1) In-line code. '

Michelman(36] refers to thelsplitting of iuitiplicanés
intch pieces each beféfe multiplication using the Karatsuba
technique and states that multiplication then proceeds twvice
as fast, .including avgrheadg as Héth use of standard.

multiplication. This idea is applicable only when the size

of the multiplicands is known in advance, as in application

to the RSA cryptosystem. \Thé idea is simply t% carry out
recu:sian‘manuéliQ to geﬁe:aée an equation that car be used
in a program. Depending on the size of the multiplicands
'anérﬁhe machine word size, more than one subréﬁtine may have
to be written andAa cascade of suﬁr;utine calls used.

Thus, on a computer gi}h a hardware 16-bit multiply, to

multiply two 512-bit numbers an equation is written to split

- the numbers into 32 one-digit pieces; with overhead,

multiplication speed is improved by a factor of

. approximately 4 compared to standard multiplicatigh because
PI pa)

3*=243 integer multiplications have to be done instead of

‘the 32’*1024'§Sltipli:aticns done using the standard

algorithm.

Alterﬁati%ely, the 512-bit multiplicands can first be

split into 8 pieces each, and multiplication of these pieces

multiplicands into 4 pieces each. The first approach, using

a single routine, provides somewhat faster multiplication

speed than the second approach, but it requires more bytes

d

e . - !i

of code to be written and retained fﬁﬂmemcfy.
A2) Pafallél.lﬁpieﬁentatiana 1 j .

Congider liﬂeé 9 vrt,e 11 of the recursive Karatsuba Q
algorithm éétailed Efeviausly; .On a parallel machine. the
’fgllawinglzeae cén;be used to feplé:e éhese tgfee iings:

9. - par begin’ : - | .
10, {»)EEED;SiVE tarats;ba(a1,biia1bf)p
B B PR recursive karatsuba{a0,b0,a0b0), ,
12, recursive karatsuba(a0 - al,bl - b0,third term)
113 ,, endy ‘ - . 1 » :] ’ -)
:H@Ee_that!the éempﬁtaticn'dane in each of the lines 10,
', and .12, is indeé@héEﬁé of the computation done in any
other iiné and .thatA“a-‘ll_ pfél’im’l_nafyrcemputatigns are ,
" completed in lines 1 ga 8. Clearly, 3+t processots can be
. use€d to 'do the computations in lines 9 to 13 Where t is the
depth ajcfe;ursicn desired. Py ‘
It shéu;d he p@séib;e to build a pafal}elrxaratsuba
" “multiplier on'a :hip; ' The time complexity of s¢ich an -
implementation is O((n+l0og,3)/(3+t)) which approximates O(n)
for small n or i;fgg t or both., The device may be easierita

construct than the Willoner Parallel Multiplier,

f: . . .)
1 . .
4.4.2 The Preconditioned Fast Remainder Algorithm
a. The Concept 7 e ‘ ;f?;;5

L]

From basic modular arithmetic, if h = gxi + jxk, h mod p

can be obtained by computing : . P
hmod p = (gx(i mod p) + jx(k mod p)) mod p. -~
That is, mod's can be taken at any time. T - R

The algaf1thm of this sectlen the Presaﬁditianéé Fast -

Rema;nder Algorithm or PFRA, explalts thls Ea%f The

dividend A, which is a digits long, is rewritten as

1
\ii

. A (r)) + A..

z is the interval selector. A ‘number of 1terat1@ns 15

required to compute A mod n and f is 5ét to a dlffefent
value for each itEfaEian During ea;h iteration

r+(a- z)g?@d n is looked up_ﬁgﬁﬁgbfecamputed table,
mu1t1pligd by A using a fast multlpllcaticn algef}thm,~and
added to A, to form a result cengruent to A mod n.
Iteratiaﬁ terminates when the result has the same number of"

digits as n.
b. Development

Let A and n be integers of length a and m digits
‘respectively. We want to find A mod n, Let a be greater
than m, and A(p:q) represent the p'th through g'th digits of

¢

A, A may be represented as the polynomial

87

A(113)(f+(a z)) + A(E*I‘EZ)Tf*(a 2:)) *; + 5*1

d— i

A(m-E;*1 Th- z%(r*(m*z)) + A(nﬁz+1 m)(f¥ﬁ) + A, L

_f e L ¥ >

!éiwhefé z 't the inteﬁvai selector,. r is the radlx anq-xg
-';: . _ {\
;rgpfesenf?*tig m 1@w=§fdéi d;gbtg cf A L

A iaﬁ ﬁican be thalned-as fallaws.

P
¥

_Ttx. That isf flnd-(r*(aiz)i pad A, gf¥fai2;%f:ig§ nL

=i_;, (r*(m*z)i -a& “‘n, (Eﬁﬁ) mod n.:

r, A i T . L : C .
- - N *!jia = N

(2) Hultlply each of ﬁbe resul;s ahnaiﬁed 1n step Iiﬂ by-f

it's carrespaﬁd1ng part;cn of A. That 15 ccmpute

A(1 z)(rf(a-z)) ned n, A(z*T-zz)(rfCQ EZ)i ﬁﬁd h' aﬂa o
;"{se fefth ;4 e, :é‘? e qi’{ %s-*‘:f
T - x . F B s.

(3) Add the praducts ebtained at step (2).. EEé,A.;@Q;Ehe.f‘*:
. TR e Y

(1) 'vag 2 fina;fné'maau;ﬁs’bf’éli the -terms of the form

88

f resalt 7. et
o] , St _ |y “
(4 1f.the result in step (3) hhs more digits than n do to
, . 2N ngo to

» :
step (1), otherwise stop.
éﬁentuallf the result will be m digits long. At that
point if the résult is still larger than the modulus.
standard d1v151§n by n can be carried out to obta1n the

Y
final result; the division will ‘take little time si
f . hL

dividend and the modulus will be the same length.

89 -

S * ‘_ v 1
J"/ ;’ ,. _ . A :‘ .

R rf bhg samg modulus;w 1?:953d repqatedly, as is- the case
J;‘-) 1gﬂenciphermenx Of § message by medular exponéﬁilatxop, the N
P \vaLaes required 1n (1) cén be precomputed plach in a |

table, ;%d'used as :equxred.' Each entry 1n ‘the table will
beaappr0thately o, d1§1ts ln length -
R _-\!‘ F‘or u*“mple,Jle: A - 36302856 m= 2357, a =8, m=4, °
a.nd z . z““‘ S o .. .
L (1) ‘Aodn--saz.m‘ nqdn-nsn A
o (21 Revtxte K“as (36)!10*‘4 FﬂO)nlO"ﬁ 2956. Computeé -
. , . "('3“,'(6,3:23 = 22352 “4130)&(542) £717160. . . - ‘
P -

(3)» Con\pute .\' = 22752 3 !7160* 2956 - 42358

_ 5 i
FRC \-~(4) 42868 has 5 dxgits and A has 4 so 1tefate.

. “ . - . . v
T v v hd = X % -t .
=~) c," o

é;t;.-(i) 30‘ mod n . 572 (aJpeaﬂg computed)

!

LT, Béw,m “g s u) ws+ 2868 Compute 4) x

T 2288, . .‘.‘_ v R
R PTG AE SNt :
T (3) Uom Eeﬁ,:‘:: b :.yuzgqy_; 2868 5156

o 'Y ;' ! :" (T
-(4«)\»}\5(? 'n»

.:w%rf,.&-a RLRE T - o |

Since A'' is greater than n, standard divisi
be used to obtain the fiﬁal answer, 442.

If A is a large number and z is chosen corre
multiplication algorithm can be used to xarry ou
muléiplicatiohs at step (2), reducing the time c
finding the remainder. The problem is to choose

vat step (4) of every iteration the result has fe

than at’ step (1) and to make the choice’ optimal

?572 .

o
-

Pl

h@ ‘ghg*“fh, aumber ef élq%t5’5°‘5t°? o

on.can now

ctly 'a fast

t the

omplexify of

z such that

#

=

7

N

X }:':_ri - = e

split as:

<
St ')
LI B

If z is :hcsen ta be - (a-! ﬁ)/z vhers a 15 the number eE;

dlgitE in A at the begann;ng of . each xteratlan a peiynam1al

fgr A canm be derlvea that 15 qulte gecd and perhaps thxmal

If A is ;n;t;ally 2m d:glﬁs as in _modular ']-,

expenentlatlen another way of exnné551ng z is as z =

-m/(Z*:) -at the ith” 1terat;cn Wlth Ehis chalce of 2,.3

;Hlll always be spl;t ;nte 3 parts at step (2) of every

1teratzan as fallawS'

{

"Qgsgtagz)(f;iafz)) + A¢z+1g§z)(§+m),*’A:: g

' ﬂcti!*hat in the Secand term feplacement QE '(r*m)' by a

table gntry is 5*ﬁg\y feplaCement of an m-d;g;t number by

»aﬁﬂthef ‘m= d;g;t number and is af‘§§*v§luefr Thergfafe, ve

s§
Gf each 1t¢rat{@ﬁ* BFE .

=
*

+ .

LY

N

s s

LT A AR (e (amz))

S

This split requifes just one table entry’ for each iteration.’

-
‘Now, consider what happens to a 2m-digit A 1f zds

~chosen as above. On the first iteration z = m/E, SO A is

'A(1=m/z)(f+(3m/§)a * A

After multiplication and add1t1@n we “get a 3m/2 -digit

result. On the second iteratjon A is split as:
A

k]

A(1:m/4) (¢ (5m/8)) + A,

r

ffeesmmendfthat A be Epllt inta just 2 parts at thegbegiﬁgéﬁg'

. - - 7. L
to obtain a 5m/4-digit result at step (4)=“F1n other .words,

at step (4) df every iteration we have an

’gi

m + (m/(Z*l)) digit result Since m/ 2*1 becomes small

%

pldly, only a few iterations are reguired to Ecllapse a

zm—dxgit number; in fact, the number Df iterations, and

=’ \\I

i

entries in the table, is log,m.

"Let P be some mu%;;pl;cablcn nlgar;thm which takes t;ne
-H(m m) «to multiply m-digit numbers. Let k ?e ;hg ratiop:
H(m,m)/ﬂ(m/z,mfz);‘ Let R(Zm;m) be the time taken to find
the remalnder of a 2m-digit number when d1v1ded by an

m=§1g;t number using the PFRA with a multlpllca§1an -

Zalgcrlﬁhm P used at step (2? Then,

JR(zmjm) - M(m,m){2/k + 4/k* + B/k i }a'ua LT

S M(m,m) + ¢ (if P = strqyard nlg&rlthm- k. 5 4)!

SZZH(m,m)g+ ¢ (if P_= Karatsuba alga thm: K ‘< 3)

€ goes to zero asymptotically, so in this applicatign it
will be small since m is large. Therefore, in application
to modular exponentiation, the PFRA will find remainders in

less than twice the time to multiply or square c, if the

Karatsuba algorithm is used to multiply at step (2),

! Actually k is not canstant for a particular algarithm PJ
but' rises asymptotically tod limit. Thus, k=4 in the—.':
limit for the standard multiplication algorithm but is ~
actually 3.96 if m=80 is substituted in the timing
formula for multiplication given in Chapter Three
(footnote, Section 3.4.1).

- . | ;J.K _»i .

c. The’Algorithﬁ‘ ' |
Algorithm 4.1 is thé‘PreégpditiSned Fast Béﬁéi;ﬂe:*-

Algd;ithm; de provide a small example to illustrate its

operation. o | N - ,
* Assume that 'a' is 16 digits in length and the modulus n iE’
.1s B digits long, »Assume a!pfecempuZEé'éable_af;terms er |
the form (r+x) iéd.p withfegch_tablé entry being 8 di;ics
long. Further ,,éssum;that 'a' is to be éqilapseé unt il it'
is 8 digits in length: that-is,-thé variéble;‘limit'
to 8. |

is set

- (1) 'pfr&Jis entered with 'a' and 'limit'. Since 16 > 8

LY

-

the loop is entéfgé_ ‘ e . -

(2) ‘'collapse’ 15 called w;th 'a' and a pginter to the

flrst table entry E;i(ﬁlg*éamputed as evan((1€ B)/E)

- is

4. (eved is a fuﬂttl& th (t returns the nea rest even

‘number to a given real; this is done for :cnd!n;e nce

since some fast multiplication algorithms, such as the

Raratsuba algorithm, require multiplicands with an even"!
number of digits.)
4
(3) ‘'collapse’ is entered. The low-order 12 aigiﬁg of 'a'

are placed in 'a0' temporarily (i.e., a0 = a(5:16)).

'mhote' is called with 'a(1:4)' and the fif%? table

~entry as pafamgt§§§.

‘ —f\

co :
* 'ms’ or"multlply and shift’ multxpl:es two integers

a and b, both the same length, using 'fast mult'.

. The result is shifted left by 'shift' digits and
returned in the result vector 'r', which must be
long enough. 'zero' is a routine that zeroes out a
vector, : ! '

‘€O

1. proc ms = (ref()int a,b,r,ref int shift)void:,
2. begin) .

o 3. zeto(r)
4, _r{upb’ £- shift- Zcupb a:upb r- sh1£t) := fastmult(a,b)

5. end:;

i /

Algorithm 4.1a. 'ms’

co S
'mhote’ or 'multiply high order and table entry
multiplies a z-digit number ('ho') with a table
entry indexed by 'te'. The table is assumed globally
available. 'get te group obtains the ith group of 2z
digits from the table entry. Table entrzes nust be
multiples of z digits in length

co

6. proc mhote = (ref()int ho,r,int te)void:
7. begin \
8.‘ int 2 := upb ho, shift 5= -1;°

(1:upb r)int r1; zero{r); zerol(r1);
10. {(1:z)int te group;)

11, for i from (upb table(te))/z by -1 to 1
12. do

13. get te groﬁp(te group, table(te),i,z);
14, ms(te group,ho,r1,shift +:= 1);

15. add(r,r1,r) . , -
16. od

17. end;

Algorithm 4.1b., 'mhote’

93

/

\]

co , .
'collapse' extracts the high-order 'z' Eigibs of 'a' .
the number to be colﬂapsed, and mult;plles them Hlth
@ table entry indexed by 'te’'. It adds ghe result
'a0', the low-order digits of a, and returns the
final collapged result in 'a’'.

- co

18. proc collapse = (ref()int a,ref int z,te)void:

19. begin ‘

1 20. (1:upb a)int a0, r; zero(al); zera(r)

21. al0(z+1:upb a) := a(z+1.upb a) . o

»

$22. mhote(a(1:z),rfte)’; ~

23, zero(a);

24, add(a0,r,a)

25, end;

. ']
Algorithm 4.1c. 'collapse’
-t —i -> —
co s
© 'pfra’ or the 'pretonditioned fgst remainder
— alggpithm' collapses the number 'a' until it is
;;)4!t' digits in length. 'get z' computes the
nterval selector 'z' by computing
EVEN((length(a)-m)/2), where EVEN returns the nearest
even number to a given real. 'length' “is a function—
that determines the numbey of significant digits in
'a' (1 e., not counting high-order zeroces). v
"te® ndexes into the precomputed table.
' ot '/ co
» . : .
26. proc pfra = (ref()int a,limit)void
27. begin T E /
- 28. int z, te := 0, m = uph, a; i N

29. while length(a) > limit

30. do

31. collapse(a,g_:= get z(a,m), te +:= 1)

‘32 -) Od' - L4 [7)

33. end;)

. f i

. Algorithm 4.1d. 'pfra‘’
v ; a

M

(4) 'mhote' is entered. ‘3(124)' is multiplied by the
table entry, requiring the loop to be iterated 41timesi

is used to carry cut’mhltipliéatiaﬂs; with

shifting as necéssary1 'mhote' returns with a 12- or

13-digit result, 'r'.
{ 1
(5) ‘'dollapse' adds 'r' to 'aD;, yielding a 12- or 13-digit
result which is placed in 'a'. |

(6) Since 'a' is still longer than 8 digits, stéps (1) to

(5) above are repeated with the nev ‘a’.

= . w . -
" Eventually the algorithm terminates with 'a' 8 digi#ggziig.

4\;¥i 4.5 Conclusion

L

:Usiﬁg'the.imp:aﬁed élgarithms developed, modular g ‘

&

expcnentiaﬁian can be done in tﬁe Eallawing way on a 16-bit
microprocessor. Assune that thgarcutines 'K32 digiﬁs', ‘K16
digits', 'K8 digits', 'K4 digits’', and 'K2 é‘giﬁs‘ are
available. »These routines multiply two numbers by first
bréaking them into 32, 16, 8, 4, or 2 pieces respectively,
depending on the lengths of the multiplicands. Assume a key

of 512 bits.

(1) The routine 'K32 digits' is used for multiplication,
The result of each multiplication is a 1024-bit, or
64-digit (radix 2'*), number. .Recall that this

requires 243 integer multiplications to be done,

- . » . A Y
(2) To obtain the remainder after ﬁultipiicatignfthe PEE%’
. :;ilsf‘R1E éig?ts‘ twice, 'KB digits'’ é'timesf"ﬁér

. digits‘ 8 times, and 'KZ digits' 16 times. The:iﬁteger
that is left ; er these calls is 34 digits ienﬁi A
4 standard division ié used: to redhce theaﬁezg}fgta 32

digits, or 512 bifs. Ccunting only the single- d1glt"
multlplicatlens that must be dcne to thain the
remainder and Aot considering avgrhead, ve see that’
standard division takes 32! = 162; integer
multipliéatians, wvhereas thg PFRA will use

approximately 450 if used in conjunction with standard

¥ = Ed

division when 'a' gets small.

B i ;

Therefore, the total work to do a multiplication and to

- obtain the remainder is!243*45G or apﬁfeximately 700 integer

-multiplications, which is about one~third of the number that
.must be done using the standéfd aigcfithmsi In atﬁzf words,
a factor of improvement of slightly less than 2 over
Michelman's ‘implementation can be expected (if overhead is
fncluded),:jﬂstifying our earlier assumptions in Chapter
Thteé.

Finally, recall (from Chapter‘Three) that the use of ,
modular expene%tiatien for prime generation §;EEEES from its
use for enefyptién’in that the modulus changes frequeﬁtiy_
Since theAEFRA reguires that a- table be éenstructed and used
for some time it would appear that prime number gene tio

cannot be done using the PFRA. It is possible, howeve?!, to

r

use a dynamic table for the purpose of prime generation in
“which the entries are decremented as the modulus is

incremented. This should be easily implemented. .

97

Summary aﬁd Conclusions

I't has been observed on humerous occasions that access
to information will gain importance in the society of the
future; if this is true then the converse i$ also true: that
non-access to information 5y unauthorized persons will
become increasingly important, Thergfcré, it may be
expected .that with the anticipated rapid increase in the use
of peréanal computers in the years to come that a secure
personal communications network will find wide application.
Peapie will vote, conduct business, and send unforgeable
mail ‘electronically in the privacy of their home or office.

This thesis has shown that it is now possible to build
an inexpensive, microprocessor-based, publié—key secure
camm&ﬁiéaticné and authentication network. A protocol has
been outlined wherein network users generate their own
keypairs and, bgcause of this distributed key generation,
they are protected against forgeries and active use of a
stolen or lost secret key. It has been shown that the
channel capacity and key generation speed of such a network
may be acceptable for some interpgfscnal applications if the
latest microprocessors are ‘used, incorporating algorithms
described in the thesis, '

The actual implementation of the proposed network will
"take some time and effort. Although some of the necessary
software has been implemented in a high-level language,
there is much work left to do in rewriting RSACRYPT into the

g

98

99

assembly language of the misrccchﬁter to be used,
implementation of the algorithms described in Chapter Four,
implementagfbn of the software needed by the key l
distributiion center, and_éesign and implementation of
software to allow mail facilities.

If it should be decided that the proposed network be
built we recommend that work proceed, in ga:allél with
software implementation, on the design of an impra%ed serzal
algorithm for even fasfer maéulaf exponentation. We expect
that thé afgorithms described in this thesis for
multiplication and finding the remainder of ardivisien are
not the l;st word in what could be done: it is not ;

far-fetched to believe that a truly.realétime
microprocessor-based network might be bui! in which people
would communicate at 60 words per minute or more.

Another interesting topic for further feségr:h is thw
construct1on of a parallelgzaratsuba multiplier. Such a ‘
device would have application in areas outside cryptography, .
‘ particularly .if it were inexpensive. It might be designed i
to permit the addition of components at any time, thus
allowing the user tp:%ft multiplicatian speed at the level

desired.

[1]
[2]

(3]

(4]

—
L
L

(6]

[8]
[9]
[10]

. [11]

[12]

(13)

Rézerencesx

Aho, A, V.; J.E. Hopcroft and J.D. Ullman, The Design
and Analysis of Computer Algorithms, Adéiscn -Wesley,

1974 el
Beker, H. J.; "Security in an Electronic Fund Transfer
System", Information Privacy, vol. 2, no. 5, Sept. 1980

(B Refs)

Bright, H.S. and R.L. Enison, "Quasi-Random Number
Sequences from a Long-Period TLP Generator with Remarks
on Applications to Cryptography", Computing

Surveys, Vol. 11, No. 4, Dec. 1979 (41 Refs)

Bright, H.S. and R.L. Enison, "Cryptography Usiﬁg
Modular Software Elements®™, Proc. AFIPS NCC, Vol. 45,
AFIPS Press, A:lingtan, Va., pp113-123, 1976

Cabay, S., Personal Communication, University of
Alberta, May 1981 ' :

Chaum, D.L., "Untraceable Electronic Mail, Return
Addresses and Digital Pseudonyms", Communications of
the ACM, Vol. 24, No. 2, Feb. 1981 (5 Refs)

Davies, D.W. and D.A. Bell, "Protection of Data by
Cryptography", Information Privacy, Vol. 2, No. 3, May
1980 (3 Refs) :

Davies, D.W., W.L. Price and G.I. Parkin, "Evaluation
of Public-Key Cryptosystems”, Information Privacy, Vol.
2, No. 4, July 1980 (17 Refs)

Denning, D., "Secure Personal Computing in an Insecure
Network"™, Communications of the ACM Vol. 20, No. 7,
July 1977 (31 Refs) :

Denning, D. and P. Denn;ng, "Certification of Programs
for Secure Information Flow", Communications of the
ACM, Vol. 20, No. 7, July 1977 (31 Refs)

Denning, D. and P. Denning, '"Data Security", C@mﬁutiﬁg»
Surveys, Vol. 11, No. 3, Sept. 1979 (101 Refs)

Diffie, W. and M.E, Hellman, "New Directions in
Cryptography", IEEE Transactions on Information
Theory, Vol. 1T-22, No. 6, Nov. 1976 (14 Refs)

Doler, D. and A.C. Yao, "On the Security of Public-Key
Protocols"” , Stanford University, STAN-CS-81-854, May

1981 (Abstract)

100

101

[14]) Fabry, R.S., ;Capability-Based Addressing”,
Communications of the ACM, Vols 1%, No. 1,
July 1974 (18 Refs)

{15] Feistel, H., "Cryptography indComputer Privacy",
Scientific American, Vol. 228, No.5, May 1973

[16] Fenton, J.S., "Memoryless Subsystems", The Computer
Journal, Vol. 17, No. 2, Jan. 1973 (3 Refs)

[(17) Gardner, M., "A New Kind of Cipher That Would Take
Millions of Years to Break", Scientific American, Vol.
236, No. 8, Aug. 1978

[18] Gordon, J., "Use of Intractable Problems in
Cryptography", Information Privacy, Vol. 2, No. 5,
Sept. 1980 (10 Refs)

[19] Graham, G.S. and P. Denning, "Protection - Principles
‘ and Practice", Proc. 1972 AFIPS Spring Jt. Computer
Conf., Vol. 40, AFIPS Press, Montvale, N.J. (20 Refs)

[20) Greguras, F., "Corporate EFT: Vulﬁerabilities and Other
Audit Considerations", Information Privacy, Vol. 3, No.
3, May 1981 (0 Refs) .

(21] Hellman, M.E., "An Extension of the Shannon Theory ¢}
Approach to Cryptography", IEEE Transactions on
Information Theory, Vol. 1T-23; No.3, May 1977 (15
Refs) ‘ ' :

[22]) Hellman, M.E., "Security in Communication Networks",
Nat ional Computer Conference, 1978 (18 Refs)

-[23] Hellman, M.E., "The Mathematics of Public-Key -k
Cryptography", Scientific American, Vol. 241, No. 2,
Aug. 1979 (4 Refs) . _ ‘

[24] Hindin, H.J., "LSI-Based Encryption Discoufages the
' Data Thief", Electronics, June 21, 1979 : ,

" [25) Horowitz, E., "Modular Arithmetic.and Finite Field
Theory: A Tutorial", Proceedings of the Second ~
Symposium on Symbolic and Algebraic Manipulation, Mar.
1971.(22 Refs) ‘

[26] KAhn, D., The Code Breakers: The Story of Secret
Writing, MacMillan, New York, 1967

f27) Kem, J.B. and G.I. Davida, "Structured Design of
Substitution-Permutation Encryption Networks", IEEE
Transact ions on Computers, Vol. c-28, No. 10, Oct. 1979

[28]

—
1
m‘
-]

[30]

[31]

Ip—
R
L8]
Nl

[33)

|
Kline, C.S. and G.J. Popek, "Public-Key vs.
Conventional-Key Encryption®™, AFIPS National Computer
Conference Proceedings, New York, N.Y., Vol. 48, June
4-7, 1979 (13 Refs)

Knuth, D.E., The Art of Computer Programming, Vol. 2:
Semi-Numer ical Algorithms, Addison-Wesley, 1971 ’

Lampson, B.W., "A Note on the Confinement Problem",
Communicat ions of the ACM, Vol. 16, No. 10,

Oct. 1973 -

Lempel, A., "Cryptology in Transitieﬁ“,'Cngufiﬂg
Surveys, Vol.11, No.4, Dec. 1979 (47 Refs) : ‘

Lennon, R.E., "Cryptography Architecture for
Information Security”, IBM Systems Journal,
Vo®., 17, No. 2, 1978 (9 Refs) ‘

Levinson, S.E. and M.Y. Liberman, "Speech Recognition
by Computer”, Scientific American, Vol. 244, No. 4,

~April *1981 (2 Refs)

[34]

[35]

[36]

[37]

[38]

[39]

{407}

(41]

Merkle, R.C., "Secure Communications Over Insecure
No. 4
¥ = - 1]

Channels”", Communications of the ACM, Vol. 21
April 1978 (7 Refs) .

Merkle, R.C. and M.E. Hellman, "Hiding Information and
Signatures in Trapdoor Knapsacks"™, IEEE Trans. Inf.
Theory, Vol. 1IT-24, No. 5, Sept. 1978 (14 Refs)

Michelman, E.H., "The Design and Operation of
Public-Key Cryptosystems”, AFIPS NCC Proceedings, New
York, N.Y., Vol. 48, June 4-7, 1979 (8 Refs)

Moenck, R.T., "Practical Fast Polynomial
Multiplication”, Proceedings of the 1976
Sympos ium on Symbolic and Algebraic Caomputation,
1976 (20 Refs)

Nelson, J., "The Development of Commercial Cryptosystem
Standards", Cryptologia, Vol. 4, No. 4, Oct. 1980 (5
Refs) . -

Needham, R. and M. Schroeder, "Security and .
Authentication in Large Networks of Computers",
Communicat ions of the ACM, Vol.21,

No.12, Dec. 1978 ,

Popek, G. and C, Kline, ”"Encryption and Secure
Computer Networks", Computing Surveys, Vol. 11,
Dec. 1979 (48 Refs)

No. 4,

Rivest, R.L., "Remarks on a Proposed Cryptanalytic

[42)

[43]
(44)

(45]

[46]

[48)
[49]
[50]

[51]

103

Attack tre EdbliCéKeg Cryptosystem

Cﬁypﬁelégta, Val. , No. 1, Jan. 1978

Riv Shamir and L. Adleman, "A Method for
Obthini g Dlgltal Signatures and Public- Rey

Cryptosyst T Technical Report, MIT/LCS/Tm-82,
April (197" 11 Béfs)

dw to Share a Secret”™, Communications of

Shamir, (
22, No. 11, Nov, 1979 (5 Refs)

the ACM,

Shankar, K.S., "The Total Computer Security Problem: An
Overview", COMPUTER, June 1977 :

Shannon, C.E., "Communication Theory of: Secrecy

Systems", Bell System Technical Journal,
Vol. 28, Oct. 1949, 656-715

Simmons, G.J., "Symmetric and Asymmetric Encryption®,
Ccmpufiﬁ? Surveys, Vol. 11, No. 4., Dec. 1979
(67 Refs

Simmons, G.J. and M.J. Norris, “Preliminary Comments
on the MIT Public- Key Cryptosystem™, Cryptologia, Vol.
1, No. 4, Oct. 1977, 406-414

Sugarman, R., "On Foiling Computer Crime", IEEE
Spectrum, July 1979

Whiteside, T., "Annals of Crime: Dead Souls in.the
Computer”™, New Yorker, Aug. 22, 1977

Williams, D. and H.J. Hindin, "Can Software Do

. Encryption Job?", Electronics, July 3, 1980

‘Willoner, R.G., "On the Design of a Parallel Arithmetic

Unit"™, Ph.D. Thesis, University of Alberta, Fall 1980
(59 Refs) :

Appendix 1 - An Example of DES

In what fallaus we show how DES (the 'Data Encryption
Standard') encryﬁts and decrypts information, to provide
some. intuitive unde:standi&g of the algorithm. Obviously,
since DES works with blecké of 8 characters or 64 bits at a
time and puts each block through 16 rounds of bit-shuffling,
it would be tedious to work an example of the full operation
;f thé algorithm. Therefore, this example will show the
operation of a condensed version of the algcfithm-bg working
with a reduced alphabet, by,ééfining a byte as being only 4
bits long, and by putting a block through only 2 rounds of
bit shuffling. ' |

A.1 Preliminaries

The alphabet that is used has only 16 characters, each
is a meaningless alphabet as defined by the felléwing

string: 'O123EYABCDUSHKRT'. The bit representations for the

'0" to 1111, for 'T'.

As it happens, it is possible to spell at least two
~words with the above alphabet: 'DATAKEY' and 'SACHARUK'.
"DATAKEY' consists of 7 Ehara:ters and therefore 28 bits and
will be used as the initiai encryption key in the example to
follow. °'SACHARUK' consists of 8 characters or 32 bits and

is the plaintext message that will be encrypted and

104

decrypted. Since the full version of DES uses a 56-bit
initial key and works with 64-bit message blocks, it is
apparent that the key and message inieur-example are exactly
half as long as in the full version; however, the key and
message consist of the same number of characters as in the
full version. B o A

The bit representation for 'DATAKEY' is therefore

1001 0110 1111 0110 1101 0100 0101
and the bit representation far 'SACHARUK' is
1011 0110 1000 1100 0110.1110 1010 ™ 101.

DES uses two procedures for permutation that transpose
characters in a biack of 8 characters that is passed as a
parameter. These are IP (Initial Permutation) and Ip
(Initial Permutation Wverse), defined as follows:

x<84725613> := 1P(x<12345678>)

x<74825631> := IP"'(x<12345678>)
vhere 'x<12345678>' represents the initial block cfiE bytes ! <i
to be permuted, and ' x<B84725613>" and 'x<74825631>' -
represerit the results of the pe:mutaticns_ The;permutgticns
above are afbitrafily defined and are not necessarily the
permutations used in an actual implementaticn of DES. A
block pe:muteéxby IP is restored to its original order when
permuted by IP" ', } |

A third permutation procedure called P-BOX shuffles 8
half=byte$,_ Inpthis eiéﬁple; P-BOX is passed 1S'§its: iti
shuffles 8 groups of 2 bits each. We define P-BOX

arbitrarily as: _ \

x<56324817> := P-BOX(x<12345678>).

DES also uses two procedures for QEquteé choice in
wvhich a group of characters is first permuted and then ané
. of the characters in the result is dfapéed or replaced by
» We define the procedures as:

x<4823675> := PC1(x<12345678>)

x<672135> := PC2(x<1234567>)
That is, 8 characters are passed to EC1E"they are shuffled,
and the character éeéignated as '1' is dropped, leaving 7
chafactersf PC2 is passed a block of 7 characters that are
shuffled; the byte designated és '4' is dropped leaving 6

characters in ;hg result.

(]

ES uses some tables, the e-table and s-tables, for
non-1inear substitution in which gtans_af bits are replaced
by EEier,far more, bits obtained from a table. (Part of the
reason for reducing the number of bits in a character in
this example is to reduce the 5izés of the tables, which are

\ . , . , . - o
fairly large in an actual implementation.) We define the

e-table, arbitrarily, in Figure A.1,

Input Output

00 | o000 o
-01 011 : .
10 100

11 11 .

106

EEPléEES-? bits by-zﬁ In a full implementation, 4 bits are
]

replaced by 6, making the table 4 times larger.
We define the s-fables, arbitrarily, in Figure A.2.

§1{ 1 0 s2(| 1 0 §3| 1 0 || S4) 1V | O

00| 11f 101| 00§ O} 11{]| 00 11} 00|| 00| 10| 0O
01| 00| 10{| ©1| 10| 11ff O1| 10} 10| O1[00| 01
10 01] 11 10| 00| 01 10] 01| 00| 10f{ 10| 11
111 00| 01 1 PQ 101} 111 01 11| 11} 11) 01

1 R S V- i _
ss{ 1 | o || se \1' ol s7] 1] o] sl 1|0

00| 11} 11 00} 10} 11 00| 01} 11 ool 11{ o1
E(D’l 01| 00 01| 00| 00 01] 11| 00 01} O0rf 10
10 10] O1 101 01| 10 101 10} 10 10] 10| 00
11 10| ool| 11] 11| 01 11 0o1] o0f| 11] t1| 00

Figure 3;2 - Tﬁ; é-tablcs

The s-tables are indexeé with three bits by using the
first two bits to determine the row and the third bit to
choose the column in a table. Therefaref 2 bits replace 3.

a full implementation, 4 bits replace 6; therefore each

tahle in a real implementation is 8 times larger than the

A.2 Key Series Generation

Before encryption is done a series of keys is generated
from the‘initial key, 'DATAKEY'. Key series‘geﬁera;ien is
done by aiprccédure called KS that, in a full

_ implémentaticn, generates 16 keys, each 48 bits long, from
the initial 56-bit key. In-this example only 2 keys are

generated, each 24 bits long, from the initial 2B-bit key..

o " |
First, 'DATAKEY' in bits form, or
1001 0110 1111 0110 1101 0100 0101
is expanded from 28 bits to 32 by adding 4 pariﬁy bits to
each of the.first 4 bftesi obtaining
1001 0011 0011 1100 1100 1101 0100 0101,
In an actual implementation parity bits for all 7 bytes are
added,. plus | more parity bit obtained by'taking the paritf
of the 56+7=63 bit result. '
The 32-bit expanded key is now passed to P&1 which drops
a byte (of 4 bits) yielding a 28-bit result
1100 0101 0011 0011 1101 0100 1100
that we call the key seed.
The key seed is split into two 14-bit halves and placed
in two registers C, and D,. Therefore
1100 0101 0011 00
is placed in C,, and _

E 11 ,”01 0100 1100 . ' :
is put into D,.’ The two registers are now rotated left with
gnd-around carry, yieldiné :

| 1000 1010 0110 01
in C,, and h
| 1110 1010 0110 01
in D,, The two registers are concatenated in a third
register (C, and D, are saved for later use) and the result

passed tqQ PC2., Since 28 bits are passed, 24 bits remain

L4

after shuffling and dropping a byte:
1001 1001 1000 1010 0111 1010.

!

F.o=

109

This result we call Key No. 1.

The contents of C, and D, are now rotgted left with
end-around carry one more ﬁimei The register results are
concatenated and passed to PC2 yielding Key No. 2:

0011 0011 0100 0001 1100 0101,
Key No. 1 and Key No.. 2 are now used to encipher the message
block as shown in Pigure A.3. We describe the process of

encryption with reference to Figure A.3.

5

A.3 Encryption i ‘)
(1) 'SACHARUK' is passed to IP yielding 'KHUAARSC'.

(2) The bit representation of 'KHUAARSC' is split into two

-

registers, L, and R,.

(3) The value in R, is expanded by taking two. bits at a
time and using'thém to index into the e-table. The
result after expansion-is 24 bits long, which is the

same length as Key No. 1.

" (4) Exclusive Or R, and Rey No. 1, to form the intermediate
result Q. é should be thought of as consisting of 8
blocks, each block 3 bits long,

(5) The 8 blocks in Q are used to index into the 8 s-tables’
and are each replaced by their corresponding 2-bit

table entry. The result is’ 16 bits long. ‘ N 7

¥
%

' SACHARUK '
+ . 7 IP
"KHUAARSC' ~ 4
) ‘ |
B — = mB
L, - o+ _ + R,
1101 1100 1010 0110 0110 1110 1011 1000
- + EXPAND
011100 111100 100111 100000
Key No. 1 . +
100110 011000 101001 111010 - @ »
’ + 0.
111010 100100 001110 011010
. + SUBSTITUTE
4 _ 0011 0011 1101 1110
. + PBOX
1101 0011 1110 0011
+
_ N : o
L, := R, + R,
0110 1110 1011 1000 0000 1111 0100 0101
' + EXPAND
_ . 000000 1111%+1 011000 011011
Key No. 2 +
001100 110100 000111 000101 - @
+ Q
001100 001011 011111 011110
+ SUBSTITUTE
1101 1100 0111 1100
+ P BOX
_ v 0111 1101 0000 1111
L, := R, + R,
0000 1111 0100 0101 0001 0011 -1011 0111
« . '
) L R
‘ + + o .
0000 1111 0106 0101 0001 GO11 1011 0111
v IP-!
1011 0101 0111 1111 0001 0011 0100 .00Q0 .
+
'SYBT13EQ' . Encrypted Output

Figure A.3. Encryption with DES
(& = exclusive or) .

A

»

110

(6) The 16 bit result is sent to P-BOX which permutes 8

groups of 2 bits each.

(7) The result of P-BOX is XOR'ed with L, and placed in

register R,. R, is now placed in register L,.

(8) The process described in steps 1 to 7 above is repeated
with registers L, and R, replacing L, and R,, and with

Key No. 2 replacing Key No. 1.

(9) R, is placed in register L,. The result at step 8
above is placed in register R,. L, and R, are

concatenated.

(10) The concatenated result at step 9 is passed to IP-'
yield&.i-ipe encrypted output 'SYBT13EO'.
\ ;

A.4 Decryption

Decryption works in a fashion extremely similar to
encryption, ‘but is not precisely the same. See Figuée A.4.

First, 'SYBT13E0' is passed into IP yielding '0TEY13SB'.
The result is then split into two halves and placed into
registers L, and R,. The decryption pra«;}hﬁs now works with
the Jeft register, L,, instead of the right register as in
_encryption. A second dissimilarity between encryption and
decryption is that Key No. 2 is used first in decryptién,
followed by Key No. 1. The final dissimilarity is that in

encryption the register L, forms the high-order bits of the
L

'SYBT13E0’
+ IP
'OTEY13SB’
v o REVERSE
'13SBOTEY'
R, ., I L,
0001 0011 1011 0111 0000 1111 0100 0101
\gdf“ : + EXPAND
. 000000 111111 011000 011011
Key No, 2 +
001100 110100 000111 000107 - @
, v ‘ Q
001100 001011 011111 011110
+ SUBSTITUTE
1101 1100 0111 1100
+ PBOX
0111 1101 0000 1111
+
— —— — ——— — & .
R] HE L: : T L|
0000 LARE 0100 0101 0110 1110 1011 1000
: + EXPAND
011100 111100 100117 100000
Key No., 1 ¥
100110 011000 101001 111010 -+ @
+ Q
111010 100100 001110 011010
: + SUBSTITUTE
0011 0011 1101 1110
+ P BOX
1101 0011 1110 0011
: » +
- — — - " — §
R, := L, + L,
1101 1100 1010 0110 0110 1110 1011 1000
= L 1 - —
+ +
110% 1100 1010 0110 0110 1110 1011 1000
+
' KHUAARSC'
+] CIPt
' SACHARUK' Decrypteé Output

!igurgi,ii; D crypt;cn with DES
. (® = exclusive Qf)

112

13

_concatenated final result; in decrypﬁién R.,, the right
register, has the high-order (i.e., leftmost) bits of the

result.

*

. After concatenation of R, and L, the result is passed to

ST

