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Abstract

Paraphrasing involves changing the expression of a sentence and rewording it to

inform the same information as the original sentence and can occur at word-

level, phrase-level, or sentence-level. Paraphrasing task has been attracting

attention in recent years as several natural language processing (NLP) applica-

tions such as question answering, information extraction, information retrieval,

and summarization benefit from the success of automatic paraphrase genera-

tion. Researchers have developed various paraphrase generation techniques, in-

cluding knowledge-based approaches, supervised data-driven approaches, and

unsupervised data-driven approaches. Knowledge-based approaches are labor

intensive and do not generalize well and supervised approaches require massive

parallel corpora of pairs of sentences and paraphrases.

In this work, we propose an unsupervised paraphrasing technique that

works in word-level as well as phrase-level for sentence-level paraphrase gen-

eration. Existing work either samples directly from sentence space or from a

variational latent space while our work combines them both. We show the

drawbacks and difficulties of techniques that work at word-level only and pro-

pose a technique consisting of three word-level operations (word replacement,

word deletion, and word insertion) and a novel phrase-level paraphrasing op-

eration (phrase replacement). The three word-level operations sample directly

from the sentence space while our phrase-level operation samples from the

latent space of a variational autoencoder (VAE) trained on phrases.

We perform paraphrase generation iteratively with the objective of gener-
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ating paraphrases that are 1) fluent, and 2) close in semantic information to

the input sentence. We use Metropolis–Hastings (MH) algorithm, a Markov

Chain Monte Carlo (MCMC) algorithm, to sample from sentence space and

latent space. In each iteration, we randomly select a word/phrase and an op-

eration to form a proposal and use MH to accept or reject the proposal and

generate a paraphrase.

We show the effectiveness of our approach with a series of experiments.

First, we train a VAE using Stanford Natural Language Inference (SNLI)

dataset [8] and Quora dataset1 for phrase replacement operation. Second, we

evaluate our approach on the Quora dataset including 139k pairs of questions

and paraphrases using iBLEU score as our main evaluation metric. The results

show that our novel phrase replacement operation improves the quality of

paraphrases when compared with techniques paraphrasing by direct word-

level sampling only. We show our phrase-level operation can effectively edit

multiple words at a time and generate high quality paraphrases. We also

discuss the difficulties of evaluation with iBLEU score and VAE training.

1https://www.kaggle.com/c/quora-question-pairs/data
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Chapter 1

Introduction

1.1 Motivation

Paraphrasing is the act of changing the expression of a sentence to inform the

same meaning in a different way. Automatic generation of paraphrases is an

important task in Natural Language Processing (NLP) as it can benefit many

applications such as question answering, information extraction, information

retrieval, summarization, and data augmentation [33]. Paraphrase generation

can occur at different levels [33]:

• Word-level: Lexical paraphrases occur in the word-level. This is also

commonly known as synonyms. For example <cold, cool> and <happy,

cheerful> are lexical paraphrases.

• Phrase-level: Phrases that share the same meaning are phrasal para-

phrases such as <development area, area of growth>.

• Sentence-level: Sentential paraphrases refer to two sentences with the

same semantic information such as <I completed the assignment, I fin-

ished the task>. In this example, the paraphrase is simply achieved by

applying multiple lexical paraphrases. More complicated paraphrases

can be constructed by changing the sentence syntax. For example <Can

we ever store energy produced in lightning?, Is it possible to store the

energy of lightning?> are two paraphrases that are made by more than

simple word replacement.
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In this work, we address the sentence-level paraphrase generation tasks

where we use word-level and phrase-level techniques in our approach.

Paraphrasing can improve the performance of Question answering (QA)

systems by providing different expressions of the same input information to

increase the chance of finding the correct answer [15], [44]. This ensures that

the system has correctly understood the user question. For example, all ques-

tions of <Who is the richest person in the world?, Who is the number 1 richest

person?, Who has the highest net worth?, Who has the most money > are look-

ing for the same answer while being very different syntactically. Dong et al.,

[15] shows the effectiveness of paraphrasing in QA task by proposing a neu-

ral scoring model to find the most likely text span that includes the answer

to user question. The model input is augmented with paraphrases achieved

from a combination of paraphrase generation techniques and evaluation results

demonstrate the effectiveness of paraphrase generation augmentation. Soni et

al., [51] address QA in electrical health records (EHRs) with deep variational

autoencoders (VAEs) and an LSTM encoder/decoder architecture. The model

improves the performance of QA systems and can be used to generate clinical

paraphrases with high quality.

Paraphrasing can also help the evaluation process of several NLP ap-

plications such as document summarization and machine translation (MT)

where the evaluation metric is the BLEU score. The BLEU score is an auto-

matic, language independent, and inexpensive evaluation metric which mea-

sures how many of the words (and/or n-grams) in machine generated sum-

mary/translation appear in the human reference summary/translation [42].

However, it is impossible for a single reference sentence to capture all the

variations which may result in a poor score for a high quality translation or

summary. Multiple reference sentences is a solution but is expensive. An al-

ternative solution is to use paraphrase generation to automatically generate

multiple reference sentences from a single one [24]. Owczarzak et al., [41]

present a method that generates domain-related paraphrases in word-level

and phrase-level without requiring external knowledge resources using only

the source and reference sentences and show that their paraphrasing method

2



Original new harry potter book release date
Variant 1 the most recent harry potter book data of release
Variant 2 publish date of new harry potter book

Table 1.1: Query expansion with paraphrase generation

improves BLEU evaluation scores.

The final example is on how paraphrasing can address the term mismatch

problem in information retrieval and information extraction systems. Para-

phrasing can automatically generate different variants of a query as shown in

table 1.1. A term that is missed in one variant may exist in the other which

increases the chance of extracting the correct information. Culicover et al., [13]

and Jones et al., [23] are among the earliest works that deal with paraphrase

generation for keyword expansion in document text searching. Wasim et al.,

[57] use lexical paraphrases to generate related queries by ranking paraphrases

with statistical information and selecting top n paraphrases. The results on a

custom defined benchmark shows that paraphrasing performance is 20% better

in mean average precision compared to a state-of-the-art retrieval technique

which is based on pseudo relevance feedback. Beeferman et al., [6] propose a

content-ignorant algorithm that clusters related queries and URLs for search

engines.

In short, paraphrasing task is an important task by itself, and it also im-

proves the performance of other areas of NLP.

1.2 Existing Techniques and Drawbacks

Researchers have developed various paraphrase generation techniques, includ-

ing knowledge-based approaches, supervised data-driven approaches, and un-

supervised data-driven approaches.

Knowledge-based paraphrasing systems can be categorized into approaches

that uses dictionaries [17], [55], rules [18], or formal grammars [16], [19], [20],

[36]. Knowledge-based paraphrasing is language dependent and labor inten-

sive; it requires much time and effort for humans to design rules. Moreover,

these methods may generate disfluent sentences, as manually specified rules

3



may not be suitable for all sentences.

Supervised machine learning techniques require large human-written para-

phrases that are labor intensive and expensive to obtain. Moreover, these

annotated datasets are domain specific. For example, the Quora dataset 1

includes only questions. A supervised paraphrase generation system trained

on the Quora dataset does not generalize well to a new domain.

Unsupervised paraphrase generation techniques do not require parallel cor-

pora. There have been several unsupervised paraphrase generation studies.

Techniques based on recurrent neural networks (RNNs) [53] generate text se-

quentially from left to right, but it is less controllable and makes it harder

to apply constraints during generation. Natural language generation usually

involves applying some constraints to control the output [39]. Miao et al., [39]

paraphrases directly by sampling in the word space that is able to consider

constraints such as keywords inclusion. However, it considers only one word

at a time and cannot paraphrase in phrase or sentence level.

1.3 Contributions of the Thesis

In this work, we propose a technique for unsupervised paraphrase generation

that combines word-level and phrase-level editing for sentence-level paraphrase

generation.

Unlike previous paraphrasing techniques that either sample directly from

the sentence space [39] or from the variational latent space [9], our technique

combines both. We adopt the word-space sampler from [39] and train a phrase-

level VAE for our latent space sampler. In total, we define four local edits for

paraphrase generation:

• word replacement

• word deletion

• word insertion

1https://www.kaggle.com/c/quora-question-pairs/data
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• phrase replacement

We use the Metropolis-Hastings (MH) algorithm, a Markov chain Monte

Carlo (MCMC) method, for sampling from sentence space and latent space.

During sampling, we randomly select a local edit and the candidate word or

phrase. We call the combination of the local edit and the candidate word/phrase

a proposal which is in fact a transition from the original sentence to a candi-

date paraphrase. The MH algorithm either accepts or rejects the transition

based on an acceptance rate. The acceptance rate is calculated by a heuristi-

cally defined objective, involving several constraints such as the fluency and

word embedding similarity of the candidate paraphrase.

The advantage of our approach over VAE is that 1) VAE applies editing on

the entire sentence while our approach can apply editing on a smaller chunk

of a sentence with word-level and phrase-level operations, and 2) it allows

controllability on the generated paraphrase. Compared with the word-level

CGMH provided in [39] that only work in word-level, our approach allows

larger edits as well through the phrase-level VAE.

To demonstrate the effectiveness of our approach, we evaluate paraphras-

ing performance on Quora dataset2 which includes around 139k pairs of para-

phrases. We evaluate the quality of the generated paraphrases with the BLEU

score [42] which is an automatic evaluation metric and basically calculates

the overlap between A generated paraphrase and the reference paraphrase in

Quora dataset noted as BLEUref. It has been discussed that BLEUref is not

an effective evaluation metric as simply copying the original sentence as a

paraphrase results in a high BLEUref score. To address this issue, we also

calculate BLEU score between the original sentence and the generated para-

phrase BLEUorig and choose iBLEU score (0.9×BLEUref−0.1×BLEUorig) [52]

which penalizes by similarity to the original sentence as our main evaluation

metric.

The results, provided in Section 4.3, show that our approach improves the

quality of the generated paraphrases by more than 2 points in iBLEU score.

2https://www.kaggle.com/c/quora-question-pairs/data
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In short, the main contributions of this thesis are:

• We propose a novel phrase-level VAE for paraphrase generation.

• We propose to combine word-level paraphrasing with phrase-level for a

sentence-level paraphrasing.

• We empirically show the effectiveness of the hybrid model through a

variety of experiments.

1.4 Thesis Structure

In this chapter, we have discussed the motivation behind our research study

and proposed our combined system of discrete word-level and continuous

phrase-level sentence editing as a possible solution to the challenging task

of paraphrase generation. The remainder of this thesis is organized as follows:

Chapter 2 provides background material to understand the process of training

a VAE as well as an experiment to visualize the effectiveness of a variational

latent space. We also provide a general overview of conventional and recent

data driven approaches of paraphrasing. In chapter 3, we discuss our novel

approach to paraphrasing task. We discuss the two components of word-level

discrete sampling and phrase-level continuous sampling. We demonstrate how

a phrase-level editing can address the drawbacks of word-level editing and pro-

vide our algorithm pseudo-code in details. Chapter 4 presents the datasets,

evaluation metrics and the results of paraphrasing and autoencoding. We com-

pare our technique with a word-level only technique and demonstrate how our

novel phrase-level technique can improve the quality of paraphrases. We also

provide an experiment on KL divergence loss in our VAE that shows its latent

space is in fact variational. Finally, Chapter 5 provides a summary of our key

contributions and findings and describes future directions.
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Chapter 2

Background and Related Work

2.1 Autoencoders

Autoencoders are a type of neural networks that are used to achieve a compact

representation of data in an efficient self-supervised manner. To this end, an

autoencoder tries to learn a compressed knowledge representation from which

the original input can be reconstructed. There are three main components in

a traditional autoencoder: encoder, code, decoder which is shown in Figure

2.1. Internally code is a hidden layer h modeling the compact representation,

encoder is a function h = f(x) that does the compression and decoder r =

g(h) reconstructs the input.

During the learning process, the model tries to minimize a loss function

that basically penalizes the model if output g(f(x)) is dissimilar from input

x. To be specific, let L(x(m), g(f(x(m)))) be the reconstruction loss for the mth

sample, then the total loss for training the autoencoder is:

J =
M∑
m=1

L(x(m), g(f(x(m))) (2.1)

2.1.1 Variational Autoencoders

Autoencoders ability to generate compact representation of the input is useful

in many applications such as dimensionality reduction, data denoising, feature

variation, etc. but not for generation. To have a model capable of generating

new samples, we do not want to replicate the input but to sample and generate

variations of the input.
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input output

code

Encoder Decoder

Figure 2.1: Autoencoder main components

To demonstrate the differences between traditional autoencoders and VAEs,

we conducted an experiment on MNIST [25] dataset which includes around

70k images of digits.

First, a traditional autoencoder with a 2D latent space is trained and op-

timized on MNIST data. Considering only reconstruction loss, the encoded

features in a traditional autoencoder may locate on a strange manifold as

shown in Figure 2.2. The square images show the visualization of image re-

construction of a point in the specified region. For example, two points have

been selected on Figure 2.2 where the reconstruction visualization shows num-

bers 6 and 1. The encoding visualization demonstrates separate clusters of

images which makes the life of the decoder easier to decode them. However,

sampling from the gaps (the square image with a question mark) results in an

unrealistic image as no encoded vectors were coming from that region during

the training process.

On the other hand, A VAE imposes probabilistic property to the encoding

8



Figure 2.2: Latent space of the traditional autoencoder trained on MNIST
optimized purely for reconstruction loss

network. The probabilistic property forces the encoder to generate a latent

space that follows a unit Gaussian distribution. Therefore, their latent space

is continuous which allows easy interpolation to generate new outputs.

VAEs achieve this property by computing two encoding vectors of size n in

the latent space: 1) Mean vector (µ), and 2) Standard deviations vector (σ).

The two vectors of mean and standard deviation for the encoding vector

consist of random variables where the ith element is a random variable Xi

that is sampled from a Gaussian distribution with σi and µi. A VAE model

structure is shown in Figure 2.3.

Note that due to sampling, VAE results in a stochastic generation rather

than deterministic. The mean vector shows the center of encoding and stan-

dard deviation indicates the area around it. Due to stochastic generation,

on every single pass even with the same input, a different output is likely.

Compared to a standard autoencoder, a decoder in a VAE is exposed to dif-

ferent variation of the same input. Therefore, VAE learns to decode not only

a specific encoding in the latent space, but also ones with slight variations.

9



input output

s ample

Encoder Decoder

Figure 2.3: VAE model structure

Introducing σ and µ allows interpolation between local similar samples in

the latent space. However, interpolating globally between dissimilar samples

which are further from one another is also necessary. Otherwise, the encoder

takes very different values for µ and σ to generate different classes as far as

possible in separate clusters as shown in Figure 2.4. This helps the decoder to

efficiently reconstruct the training data but is not plausible for interpolation.

Ideally, classes should form a continuous distribution on a global scale while

still being distinct as shown in Figure 2.5. This allows to smoothly interpolate

between classes and generate new samples.

To force this, VAE adds an extra regularization term to the cost function

that is Kullback-Leibler (KL) divergence between the true and approximate

posterior distributions. KL divergence for two probability distribution p and

q is defined as:

DKL(p||q) =
N∑
i=1

p(xi).(logp(xi))− logq(xi)) (2.2)

which is basically the expectation of the log difference between the two proba-

bilities of p and q and measures how much two probability distributions diverge

10
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Figure 2.4: Locally optimized VAE latent space
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Figure 2.5: Globally optimized VAE latent space
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Figure 2.6: VAE latent space trained on MNIST that is optimized purely for
KL loss

from each other.

Minimizing KL divergence in VAEs encourages the model to prefer µ and

σ parameters that generate an encoding distribution close to the target distri-

bution which is a standard normal Gaussian distribution. The model becomes

penalized if it tries to cluster classes apart into specific regions.

Training a VAE on MNIST purely with KL loss results in an encoding

latent space that is randomly placed at the origin. It is impossible for the de-

coder to decode anything meaningful as there really is not anything meaningful

encoded. A visualization on VAE latent space trained purely with KL loss on

MNIST dataset is shown in Figure 2.6. The square images are again recon-

struction visualization of a point in the specified region which demonstrates

that decoded images are fully distorted and noisy.

Optimizing VAE with both reconstruction and KL loss results in a latent

space that maintains the similarity of nearby encodings by cluster-forming

nature of reconstruction loss and packs different around the latent space ori-

gin by dense packing nature of the KL divergence loss. A VAE latent space

12



Figure 2.7: VAE latent space trained on MNIST that is optimized with both
reconstruction and KL loss

trained on MNIST with both reconstruction and KL loss is demonstrated in

Figure 2.7. Reconstruction visualization on Figure 2.7 shows successful image

reconstruction with clear images of numbers. Comparing the axes with Figure

2.2 shows how KL loss successfully forces a dense packed latent space at the

origin. Interpolation from this latent space results in meaningful outputs while

there are no sudden gaps between distinct clusters.

Therefore, in this thesis, we use VAE to perform experiments on para-

phrase generation and show its effectiveness in generating diverse while fluent

paraphrases. There is relatively little prior work in the literature using VAE

for sentence or paraphrase generation. In contrast to the unconditional sen-

tence generation model proposed by [9], our VAE is conditioned on the original

input sentence through fluency and word embedding similarity to generate a

paraphrase. Gupta et al., [21] proposes a conditioned VAE on the intermediate

representation of the input sentence to generate paraphrases. But their work

is supervised and not directly comparable to our approach.
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2.2 Paraphrase Generation

Paraphrase generation can be addressed with different approaches: knowledge-

based techniques such as rule-based methods, supervised learning, and unsu-

pervised learning. In the following sections, we describe these techniques with

more emphasis on unsupervised data driven approaches.

2.2.1 Knowledge-based Paraphrase Generation Techniques

Knowledge-based methods rely on different types of resources such as rules,

dictionaries, and formal grammars to propose a modification in the original

sentence.

Predefined rules are either hand-written [37], [61] or automatically collected

[5], [30], [60]. However, the coverage of these crafted rules and the complexity

of the generated paraphrase has been shown not to be high enough, specifically

in long complicated sentences [45]. Applying modifications on sentences with

a thesaurus is simple but limited to synonyms substitution to generate para-

phrases by word replacement in the original sentence. Bolshakov et al., [7] uses

WordNet synonym data and performs paraphrase generation in two phases:

1) synonym candidates extraction, and 2) paraphrase validation. Given a sen-

tence, it first searches for relevant synonyms in WordNet synonymy data to

generate substitution candidates. In the second phase, the optimal synonym

for each word is selected based upon the word context.

An interesting approach to identify similar words for synonym replacement

is to use a dictionary such as Longman Dictionary of Contemporary English

(LDOCE). Wallis et al., [55] uses the bag-of-words of word definitions as a

measure of synonymy. A cosine similarity is then used to identify synonyms

for word replacement in paraphrase generation.

However, these methods are usually labour intensive, expensive, and do

not generalize well on unseen data. To address the problems of conventional

paraphrasing techniques, many data-driven approaches have been proposed.

These approaches can be categorized into two categories of supervised and

unsupervised methods which are discussed in sections 2.2.2 and 2.2.3, respec-
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tively.

2.2.2 Supervised Paraphrase Generation

In recent years, data-driven machine learning techniques in particular deep

learning with Seq2Seq encoding decoding architecture have become the pre-

vailing adopted approach for paraphrase generation. Prakash et al., [43] uses

a stacked RNN model based on residual learning. Wang et al., [56] intro-

duces a simple semantic augmentation strategy that is then added to either

an LSTM or a transformer and improves their capability in paraphrase gener-

ation. There is always the issue of out of vocabulary words. Cao et al., [11]

proposes a Seq2Seq model allowing direct word copy from the source text that

improves the quality and diversity of the generated paraphrases.

Recently, generative deep neural network models that are widely popular

in computer vision have also been used for paraphrase generation. Gupta et

al., [21] was one of the first attempts that proposes a supervised variant of

VAE-LSTM where the encoder is fed with both input sentence and the refer-

ence paraphrase to generate a high quality latent space. Multiple paraphrases

are then generated by sampling from the continuous latent space. Attention

mechanism has recently become widely popular in NLP. Ma et al., [32] suggests

that to generate paraphrases, existing Seq2Seq models memorize the patterns

in sentences instead of capturing the words meaning. To tackle this problem,

it proposes an encoder decoder model that uses attention mechanism instead

of the simple linear soft-max operation. A paraphrase is then generated by

querying distributed word representations.

Over recent years, Deep Reinforcement Learning (DRL) has gained tremen-

dous popularity and success with a wide series of applications such as Atari

games [40] and alphaZero [50]. Reinforcement learning turned to be extremely

beneficial in the field of NLP. This is due to the fact that the loss function

optimization in NLP is different from output accuracy measurement. In NLP,

we tend to optimize the loss function by maximizing the likelihood estimation

metric while other metrics such as BLEU and ROUGE [29] are used for output

evaluation. We are not able to optimize the BLEU and ROUGE metrics di-
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rectly as they are non-differentiable metrics. Li et al., [28] trains a DRL model

consisting of a generator and an evaluator. The generator is a Seq2Seq model

that generates a paraphrase given an input sentence and is trained with deep

learning and fine-tuned by reinforcement learning. The evaluator, which can

be trained with either supervised learning or inverse reinforcement learning,

can determine if a sentence is a paraphrase for another one and calculates the

reward for the generator.

Controllable paraphrase generation has also been addressed. Iyyer et al.,

[22] proposes a model to generate paraphrases with a desired syntactic form.

The automated and human evaluations demonstrate that the model can gen-

erate high quality paraphrases that are comparable with the paraphrases gen-

erated by uncontrolled systems.

Given a massive dataset of pairs of paraphrases, supervised networks can

generate high quality paraphrases and achieve state of the art results. However,

it is extremely labour intensive and hard to collect such a corpus and in the end,

these models do not generalize well to a new domain Therefore, unsupervised

paraphrase generation has been investigated as a solution to the scarcity of

labeled data.

2.2.3 Unsupervised Paraphrase Generation

Our focus in this thesis is on unsupervised paraphrase generation techniques

that do not require a massive parallel dataset and still can generate high

quality paraphrases.

Machine translation (MT) for paraphrase generation as an unsupervised

method emerged to use non-parallel corpora in two languages [10], [34]. The

idea is that feeding the same input sentence to multiple machine translator

generates sentences that are syntactically different but semantically similar.

Neural machine translation (NMT) later emerged as a dominant approach [1].

Back-translation has also been used where two machine translation models

are trained. A single sentence is first translated to a different language and

the result is translated back again [34], [59]. However, this is in contrast

with humans. Monolingual people can still paraphrase sentences. Roy et al.,
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[48] investigates the necessity of data in two languages for paraphrasing and

proposes a residual variant of vector-quantized VAE for paraphrase generation

using only a monolingual corpus. The study shows that monolingual models

can achieve better results compared to bilingual ones. Nevertheless, their work

is mainly about paraphrase identification and data augmentation rather than

paraphrasing itself and is not directly comparable to our technique.

Siddique et al., [49] is the first work that proposes an unsupervised para-

phrasing technique with DRL and achieves state-of-the-art results. Their work

formulates the problem as training a DRL policy to maximize the reward which

is the quality of the generated paraphrases. To avoid starting from a random

policy, their work uses a pre-trained VAE as a warm-start and uses VAE’s

output to transition according to its policy.

Miao et al., [39] proposes a constrained sentence generation technique using

Metropolis-Hastings sampling (CGMH) [38] that has applications in sentence

generation with keywords, unsupervised paraphrase generation, and unsuper-

vised sentence error correction. The proposed work defines local operations

namely word replacement, deletion, and insertion and directly samples from

the sentence space. Liu et al., [31] proposes unsupervised paraphrasing with

simulated annealing (UPSA) which follows CGMH operations, but addresses

the paraphrasing problem as a stochastic searching problem and introduces

some modifications such as: 1) it modifies the searching objective by adding

expression diversity 2) introduces a copy mechanism to recover the deleted

words that are rare and have low language-model probability.

In this thesis, we adopted the word level editions in [39]. The main dif-

ferences between our work, CGMH, and UPSA is that we introduce a phrase

level operation that adds sampling from a continuous latent space while ben-

efiting from direct sampling from the sentence space. We also have a different

strategy in searching for the best paraphrase among the generated paraphrases

which is discussed in details in Section 4.4.1.
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Chapter 3

Our Approach

Unsupervised paraphrase generation techniques work either in variational la-

tent [9] or sentence space [39]. In this work, we propose a novel paraphrase

generation technique that employs the benefits of both.

3.1 Overview

In our approach we have two components: 1) Sentence space sampler, and 2)

VAE latent space sampler.

We perform paraphrase generation in an iterative manner where in each

iteration, we apply a local operation on a randomly selected word or phrase

with either the sentence space or VAE latent space sampler. The local opera-

tions are deletion, insertion, word replacement as in [39], as well as our novel

phrase replacement with variational latent-space sampling. The selected local

operation and random word or phrase form a proposal for transition from the

input sentence to several candidate paraphrases. We define a heuristic scoring

function that evaluates the quality of a candidate paraphrase. This involves

a few key aspects of paraphrasing such as fluency and semantic preservation.

Finally, a proposal may be rejected according to an acceptance ratio that is

calculated from a pre-specified stationary distribution that is discussed in more

detail in Section 3.2.

For the proposed phrase replacement with latent-space sampling, we first

perform phrase detection which is discussed in subsection 3.3.2 and select a

phrase randomly. To generate candidates for phrase replacement proposal,

18



we train a VAE that allows to sample from the latent-code and generate new

sentences that are semantically close to the input sentence. Sampling from the

latent space results in several candidates that, similar to sampling from word

space, will be accepted or rejected based on the quality evaluation.

3.2 Sampling with Metropolis-Hastings

The Metropolis-Hastings (MH) algorithm [38] is a Markov-Chain Monte Carlo

(MCMC) [12] stochastic sampler from a user-defined distribution p(·), which is

also known as the stationary distribution. In our paraphrase generation task,

the distribution is p(y|x) modeling probability of a paraphrase y given x.

The MH algorithm iteratively performs local edits modifying a current can-

didate paraphrase y to a new one y′ based on a proposal distribution. Then,

an acceptance rate is computed to either accept or reject the proposal. Theo-

retical results show that MH yields an unbiased sample when the number of

edits is large enough.

3.2.1 Proposal Distribution

We design a set of word-level and phrase-level proposals that are randomly

performed in each step with probabilities 0.25 for each word-level generator and

0.25 for phrase level modification. We set these probabilities empirically, and

they do not matter much because the proposal distribution will be corrected

in an ad hoc way to achieve the stationary distribution.

Word-level proposals include word-level deletion, insertion, replacement,

which we also follow from [39]. In each step a word is selected randomly and

an operation is performed. Operations have equal probability which is [0.25,

0.25, 0.25] for [pinsert, pdelete, preplace].

With word replacement, a new paraphrase is achieved by replacing a se-

lected word with another. Assume the current sentence (x) has n words

x = [w1, ..., wm−1, wm, wm+1, ..., wn]. The condition probability to replace the

mth word with a candidate word (wc) is as follows:
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greplace(y
′|x) = π(w∗m = wc|x−m) =

π(w1, ..., wm−1, w
c, wm+1, ..., wn)∑

w∈ν π(w1, ..., wm−1, w, wm+1, ..., wn)
(3.1)

where ν is the set of all vocabulary words and greplace(y
′|x) is the probability of

transition to y′ as the target sentence with word replacement action. However,

computation of π(w1, ..., wm−1, w, wm+1, ..., wn) for all wc ∈ ν is expensive as we

have to compute π(w1, ..., wm−1, w
c, wm+1, ..., wn) for each sentence candidate

separately. Therefore, we pre-select the words with a backward and forward

language model and only consider words that have a high fluency score:

Q(wc) = min(π(w1, ..., wm−1, w
∗
m = wc), π(w∗m = wc, wm+1, ..., wn)) (3.2)

We then sample a word for replacement following the the conditional proba-

bility of filtered words by Equation 3.1.

Insertion is similar to replacement. We first insert a special token (<PHD>)

in the selected position and then perform a replacement action by selecting a

word to replace with <PHD> token. Therefore, ginsert is similar to Equation

3.1. Similar to previous proposals, word deletion is where we randomly select

a word and simply delete it. Assuming x = [w1, ..., wm−1, wm, wm+1, ..., wn]

for deleting word wm, gdelete is equal to 1 if y′ = [w1, ..., wm−1, wm+1, ..., wn].

Similarly it is 0 for any other sentence.

By introducing deletion and insertion operations, the ergodicity of Markov

Chain is guaranteed. This is true because it is possible to reach from a sentence

to any other sentence by first deleting all words in the source sentence and then

inserting words of the target sentence one by one.

However, word-level operations are limited to the modification of one word

a time. There are cases where one has to apply a series of editing operations

to generate a coherent and meaningful paraphrase. While the intermediate

sentences may become worse in terms of quality, the final sentence has a high

chance to become accepted. For example, a transition from a long sentence

such as “how come people on quora ask questions here, when they can get them

on google and why is quora just a question/answer site, will it expand?” to
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“why do people ask questions on quora that can easily be answered by google?”

requires many successful word deletion operations which is unlikely. After a

few word deletions, the resulting sentence is very incoherent and has a very

low chance of acceptance.

To address the aforementioned issue, we propose phrase-level modifica-

tion in addition to word-level edits in [39] where we can directly propose to

substitute a phrase by sampling in a latent space. Details are described in

Section 3.3.

3.2.2 Stationary Distribution

In our framework, paraphrase generation task can be viewed as sampling from

a desired distribution p(y) where sentences are fluent and semantically close to

the input sentence x. The desired distribution is also known as the stationary

distribution of the Markov chain.

We follow [39] and define the (unnormalized) stationary distribution as:

p̃(y|x) ∝ p(x) · X 0
c (x)...X n

c (x)︸ ︷︷ ︸
constraints

(3.3)

where p(x) is the likelihood of a sentence in general and X 0
c (x)...X n

c (x) are

basically the requirements for the generated candidate sentence. Each con-

straint is implemented as a scoring function and a candidate sentence with a

higher score has a higher acceptance chance. Constraints can be categorized

into hard and soft. Hard constraints are binary indicators where the output is

1 if the constraint is satisfied and 0 otherwise. For example, paraphrases usu-

ally share the same keywords which can be applied as a hard constraint. Soft

constraints are “smoothed” indicator functions that generate a score between

0 and 1 indicating the degree of satisfaction. For example, word embedding

similarity between the original sentence and a candidate paraphrase is a soft

constraint. The higher the similarity, the higher the score.

Therefore, the stationary distribution for paraphrasing can be defined as

p̃(y|x) = pLM(y) · Xmatch(y|x) (3.4)
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where pLM(y) indicates the fluency of y (ffluency(y)) which is a probability

score given by a language model and Xmatch(y|x) is a score indicating the close-

ness of the original sentence and a paraphrase in meaning (fsemantic) in terms

of constraints. We have used several constraints namely keyword matching,

word embedding similarity, and skip-thoughts similarity [39].

We use RAKE [47] to extract keywords and put a hard constraint of key-

word matching on generated paraphrases. If the generated paraphrase include

the keywords then Xmatch(y|x) = 1, and 0 otherwise. Word embedding simi-

larity is a soft constraint. For every word in the input sentence, we find the

closest word in the paraphrase. Then the word embedding score is either the

minimum or the average of cosine similarities computed for all the words in

the input sentence. Finally, skip thought learns fixed length representation of

sentences and is a soft constraint computed between the original sentence and

its paraphrase as a matching score.

3.2.3 Acceptance Rate

Since both proposal and stationary distribution could be arbitrary in the MH

algorithm, there is no guarantee that we would obtain an unbiased sample of

the stationary distribution if we just follow the proposal distribution.

Thus, the MH algorithm also computes an acceptance rate to reject a few

proposals with a certain probability. The acceptance rate for word or phrase

replacement, insertion, and deletion is computed by:

P ∗replace(y
′|x) =

preplace.greplace(x|y′).π(y′)

preplace.greplace(y′|x).π(y′)
≈ π(wm|x−m).π(y′)

π(w′m|x−m).π(x)
= 1 (3.5)

P ∗insert(y
′|x) =

pdelete.gdelete(x|y′).π(y′)

pinsert.ginsert(y′|x).π(y′)
(3.6)

P ∗delete(y
′|x) =

pinsert.ginsert(x|y′).π(y′)

pdelete.gdelete(y′|x).π(y′)
(3.7)

Note that deletion and insertion operations are inverse operations to each

other. Therefore, 3.6 and 3.7 are reciprocal. When with probability P ∗, we
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accept the proposal, i.e., the current candidate becomes y′ and with the prob-

ability of 1−P ∗, we reject the proposal, and the current candidate remains y.

The procedure of propose-and-accept is repeated until convergence [39].

Candidates with high scores have a high acceptance rate and vice versa.

However, a candidate with a low score still has a chance to be accepted. This

mechanism helps to avoid local minima. In theory, if the number of edits

is large, the eventual sample will be an unbiased estimate of the stationary

distribution.

3.3 Latent-Space Sampling for Phrase Edits

The main contribution of this thesis is introducing phrase-level edit into edit-

based unsupervised paraphrase generation. In this section, we discuss the mo-

tivation behind our contribution and the process of phrase-level paraphrasing

with VAE latent-space sampling.

3.3.1 Drawback of Word-Level Edits

Word-level editing is specifically powerful for synonyms replacement but is

limited. There are cases that to achieve a high quality paraphrase, multiple

words should be replaced at once. Replacement of only one word at a time

may worsen the sentence quality, thereby reducing the proposal probability of

becoming accepted. Consider a paragraphing process where three words, w1,

w2, w3, have to be deleted and two words ,w4, w5, inserted to generate a high

quality paraphrase. During the total five steps of paraphrasing process, every

intermediate node may not be a fluent sentence and thus the acceptance rate

is low. This means that it is unlikely to have such paraphrase generation by

word-level edits in the MH framework. For example, paraphrasing from “How

to learn a computer language like Java?” to “How to learn Java programming

language?” requires Transition from “a computer language like Java” to “Java

programming language”. We need to delete the word Java at the end of the

sentence and then insert it before computer in the next step. The intermediate

step of deletion results in “How to learn a computer language like” which is
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not a coherent sentence and will have a low chance of being accepted.

Our observation is that if we can directly perform phrase-level editing, for

example, directly delete w1, w2 and w3 and insert w4 and w5 afterward, we

only need to evaluate the acceptance rate on the final sentence once, which

will yield a higher chance for large edits in paraphrasing. Phrase replacement

is capable to apply this transition in one step by sampling from latent-space

for a phrase like “a computer language like Java”. The generated candidates

likely include “Java programming language” as a candidate paraphrase which

results in a fluent sentence with a high probability of being accepted.

Therefore, we propose a phrase-level paraphrasing method by making use

of an external parser for phrase detection. Once a phrase is selected, we sample

from a VAE latent space for phrase-level paraphrasing as a proposal in MH

sampling.

3.3.2 Phrase Detection

A phrase is a group of words that express a particular meaning. For example,

in the sentence “J.K Rowling is publishing a new children’s book online”, “a

new children s’ book” is a more meaningful unit than “is publishing a new

children” even though both have 5 tokens. 1

To perform meaningful phrase-level paraphrasing, we first detect phrases

by constituency parsing with the CoreNLP toolkit [35]. Figure 3.1 shows an

example of the constituency tree on the sentence “J.K. Rowling is publishing

a new children’s book online.” where each node is known as a constituent of a

sentence, such as “J.K Rowling” being a noun phrase (NP) and “publishing a

new children’s book online” being a verb phrase (VP). We treat an intermediate

node in the parse tree as a phrase if the node has more than a certain number of

leaf words. This allows us to perform paraphrasing at different granularities of

the phrases like “publishing a new children’s book online” and “a new children’s

book online”.

It should be noted that to generate a candidate in each iteration of para-

phrasing, we perform phrase detection on the most recently generated para-

1“children’s” is tokenized into two parts: “children” and “’s”.
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Figure 3.1: Constituency parse tree of a sentence achieved with CoreNLP
toolkit.

phrase.

3.3.3 Autoencoding with VAE

Variational autoencoders are different than traditional autoencoders by im-

posing a prior distribution p(z) on the latent variable z [27]. Typically the

prior distribution is set to a standard normal distribution N (0, I). Given an

input sentence y, VAE encodes the data in a latent variable z and the de-

coder reconstructs y from z. For a generative model that is parametrized by

θ, pθ(Z,Y) = pθ(Z)pθ(Y|Z) and a dataset D = {y(n)}Nn=1, the likelihood of a

data point is as follows

logpθ(y
(n)) ≥ Ez∼qφ(z|y(n))

[
log

{
pθ(y

(n), z)

qφ(z|y(n))

}]
(3.8)

= Ez∼qφ(z|y(n))
[
logpθ(y

(n)|z)
]
−KL

(
qφ(z|y(n))||p(z)

)
(3.9)

, L(n)(θ, φ) (3.10)

where qφ(z|y) and pθ(y|z), parametrized by φ and θ, are modeled as neural

networks. The training objective of VAE is to minimize the lower bound of

the likelihood L(θ, φ):

J (n) = Jrec(θ, φ, y
n) +KL

(
qφ(z|y(n))||p(z)

)
(3.11)
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The first term, called the reconstruction loss, maximizes how well phrases are

expected to be decoded from the latent variable z. We also want the encoder

posterior qφ(z|yn) to be similar to the prior distribution (p(z)). The second

term, which can be thought of as a regularization term, is the KL-divergence

between z’s posterior and prior distributions.

3.3.4 Candidate Phrase Generation

To generate candidates for phrase replacement, we make use of a probabilistic

latent space model. We first train an autoencoder on phrases extracted from

training datasets and feed in a detected phrase by the parser, encode it, and

sample a new point in the neighborhood as a candidate paraphrase. Multiple

candidates are achieved by drawing multiple samples from the neighborhood

where each candidate is likely have a different expression while preserving

the input sentence semantic information. It should be noted that the phrase

detection and selection is performed in each iteration.

We sample a latent code by the posterior z∗ p(z|x∗). Our posterior sampling

enables us to encode the information on the input paraphrase, whereas varying

the expression by the learned distribution. Compared with adding random

noise to a deterministic autoencoder, the VAE is able to learn an adaptive

noise to each data sample, so that noise may vary based on the uncertainty

3.4 Objective Function

Our paraphrasing technique maximizes an objective function f(x) that consid-

ers different aspects of a generated candidate paraphrase that were previously

discussed in details in section 3.2.2. The objective function can be defined as

to maximize:

f(x) = ffluency(y′) · fsemantic(y
′, x) (3.12)

where ffluency(y′) is given by a language model and fsemantic(y
′, x) is a match-

ing score that represents semantic preservation with respect to the original

sentence.
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3.5 Summary of Our Algorithm

In summary, we propose an algorithm that combines a sentence space sampler

with a VAE latent space sampler. We present three word level operations as

well as a novel phrase level operation. Paraphrase generation happens in an

iterative manner where in each iteration, one operation along with one random

word or phrase forms a proposal. A proposal is either accepted or rejected with

a probability score related to the quality of the generated paraphrase and some

required constraints. If a proposal becomes accepted, a new paraphrase is

generated.

Procedure 1 Paraphrase Generation

Input: Original Sentence, x, and number of paraphrases to generate,
N

Output: Generated Paraphrase, xτ
y ← x
for t ∈ {1, ..., N} do

Randomly select a modification operation from word replacement, word
deletion, word insertion, and phrase replacement
if modification is a word level operation then

Randomly select a word
Generate a candidate, y′, with discrete word space sampling

else
Extract phrases in the input sentence by constituency parsing and ran-
domly select a phrase
Generate a candidate, y′, by sampling from VAE continuous latent
space

end if
Compute the acceptance probability (paccept) by Equations 3.5, 3.6, and
3.7.
With probability paccept, y ← y′

end for
return xτ s.t. τ = argmaxτ∈{1,...,N}f(xτ ) where f(xτ ) is defined by Equa-
tion 3.12
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Chapter 4

Experiments and Results

4.1 Datasets and Experimental Setup

For our experiments training and evaluation, we used two standard benchmark

datasets: 1) Stanford Natural Language Inference (SNLI) dataset [8], and 2)

Quora dataset1.

We use both SNLI and Quora datasets for training and evaluation of au-

toencoding sentences. For paraphrase generation experiments we only use

Quora dataset for training and evaluation which contains pairs of paraphrase

sentences.

4.1.1 Quora Dataset

Following the previous work on paraphrase generation task [21], [28], [43], we

use the standard benchmark Quora dataset, containing 149k pairs of para-

phrase sentences and 260k non-paraphrase sentences. We used the 149k pairs

of paraphrases as ground truth for our training and evaluation.

We follow the standard split with 3k and 30k samples for validation and

testing, respectively. The rest of the dataset is used for training the autoen-

coding and paraphrase generation models. Unfortunately, the exact split data

from the previous works is not available and we performed our own data split,

and our results are statistically comparable to previous work. It should also be

noted that the sentences in the Quora dataset are questions that are different

from the sentences in SNLI. Some samples are shown in Table 4.1.

1https://www.kaggle.com/c/quora-question-pairs/data
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Sentences
Do you believe there is life after death?
What Game of Thrones villain would be the most likely to give you mercy?
What are some examples of products that can be made from crude oil?
How do I read and find my YouTube comments?
How can I be a good geologist?
Paraphrases
Is it true that there is life after death?
What Game of Thrones villain would you most like to be at the mercy of?
What are some of the products made from crude oil?
How can I see all my Youtube comments?
What should I do to be a great geologist?

Table 4.1: Sample from Quora corpus.

Text
A smiling costumed woman is holding an umbrella.
A soccer game with multiple males playing.
An older and younger man smiling.
A man inspects the uniform of a figure in some East Asian country.
A black race car starts up in front of a crowd of people.

Table 4.2: Sample from SNLI corpus.

4.1.2 SNLI Dataset

The pairs of paraphrase sentences in Quora dataset are required for paraphrase

generation evaluation. However, to train an autoencoder, we do not need

labels and it is easy to collect unlabeled data. Therefore, for the purpose of

improvement in the quality of the VAE latent-space representation, we also

use the SNLI dataset for training VAE.

The SNLI dataset is a massive corpus of text that contains 570k com-

paratively simple sentences of premise and hypothesis pairs. Sentences are

manually annotated with Amazon Mechanical Turk with the labels entail-

ment, contradiction, and neutral. It is created through an image captioning

task and is widely used for sentence representation modeling. Some samples

from the dataset are shown in Table 4.2.

29



LSTM Hidden Dimension 100d, single layer
Word Embeddings 300d
Latent Dimension 100d
Epochs 20
Learning Rate Fixed rate of 0.001
Batch Size 128
Max Sequence Length 20
Vocab Size 30000

Table 4.3: Experimental settings for autoencoding.

4.1.3 Setup

Autoencoding

While our proposed model uses VAE for phrase-level paraphrasing, we also

compared VAE with Wasserstein autoencoders (WAE) [54]. VAEs require

that posterior distribution q(z|x) to be close to prior distribution p(z) for every

input sequence of words x. However, WAE imposes a different regularization

on posterior distribution through the aggregated posterior of z, i.e., q(z) =∑
x q(z|x)pD(x). It is much easier to train a WAE as it does not require

training tricks such as KL annealing and word dropout [3].

We used Adam optimizer [26] for all autoencoding models with β1 = 0.9

and β2 = 0.999. Compared to WAE, it is notoriously difficult to train a VAE

in the RNN settings and usually involves KL annealing and word dropout.

In our experiments, we followed the training practices in [2] that uses KL

annealing and adapted peaking annealing that anneals λV AE with a sigmoid

function and stops annealing λ.KL when it reaches its peak value. Word

dropout starts with no dropout, increasing up to a maximum value of 0.5 with

a rate of 0.05 in each epoch.

Experimental settings (for both VAE and WAE) are mentioned in Table

4.3 in details.

Paraphrase Generation

For unsupervised paraphrase generation, we require a language model to eval-

uate the likelihood of a question after each edition. We trained a language
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model using only the questions in the training set. Our language model is a

simple two-layer LSTM with a hidden size of 300 and a vocabulary size of the

top 30k most frequent words.

4.2 Evaluation Measures

BLEU score [42] against the ground truth is widely adapted as an evaluation

metric in text generation tasks.

For autoencoding evaluation, we use the BLEU score to evaluate recon-

struction performance by autoencoders. The fluency of the generated sentence

is measured with the loss value of the OpenAI GPT model proposed in [46].

To evaluate if the distribution of generated sentences by autoencoders is close

to the original sentence, we report the unigram-KL UniKL which evaluates

how close is the distribution of the generated sentences to the training corpus,

entropy of the word distribution, as well as the average length of the generated

sentences.

For paraphrase generation, the BLEU score against the ground truth alone

could not measure the diversity between the paraphrase and the original sen-

tence. Miao et al., [39] demonstrates that simply copying the input sentence as

a paraphrase results in a high BLEU score. Therefore, we follow [39] and also

include the BLEU score against the original sentence. We also include iBLUE

score [52] which is a variant of BLEU score penalized by similarity with the

original sentence.

4.3 Overall Results

4.3.1 Phrase Autoencoding

The evaluation performance of autoencoders in sentence generation is shown

in Table 4.4. Both WAE and VAE include penalties in addition to the recon-

struction loss. WAE has a higher BLEU score in reconstruction when trained

with appropriate hyperparameters. The UniKL is also lower for WAE which

means that the generated sentences are closer to the original sentences dis-
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BLEU↑ Fluency (OpenAI GPT Loss↓) UniKL↓ Entropy AvgLen
Corpus - - → 6.514 → 6.87

WAEλKL = 0 78.97 11.13 0.029 6.441 6.70
WAEλKL = 0.01 71.52 11.21 0.034 6.415 6.53
WAEλKL = 0.1 55.55 11.10 0.037 6.410 6.49
WAEλKL = 1.0 49.84 11.43 0.040 6.404 6.42
VAE (KL-annealed) 40.78 10.97 0.053 6.346 6.23

Table 4.4: Comparison of different phrase-level autoencoders. ↑/↓ means the
higher/lower, the better. It is preferable that the generated sentences be close
to corpus statistics in terms of Entropy and AvgLen (indicated by →).

tribution. In terms of entropy and average length of the sentences, WAE is

slightly better by generating sentences similar to the corpus in terms of statis-

tics. Overall, the WAE performs better in phrase reconstruction as expected,

but in paraphrase generation, we like the generated sentences to be different

than the original input which makes VAE a better choice. A perfect recon-

struction is impossible in VAE as each input’s posterior is encoded to be close

to the prior. The fluency of the generated sentences is better in VAE. This

means that the generated sentences in our VAE are more fluent than the ones

in WAE. Fluency of generated sentences reduces the rejection probability in

MH sampling during paraphrasing and results in better paraphrases. A com-

parison of paraphrasing performance is presented in the following section.

4.3.2 Paraphrasing

Table 4.5 presents the evaluation performance on test data. The results of

supervised methods with a variety of training sample sizes are also included

from [39] to demonstrate the effect of parallel data size in supervised setting.

Unfortunately, some of the supervised methods consider BLEUorig during eval-

uation, and therefore iBLEU score is missing.

We propose two variants of our PhraseVAE paraphrase generation system.

In one variant we do not include the word edition operations and in another,

we have all four operations of word replacement, deletion, and insertion as well

as the phrase level replacement operation. The results show that our phrase

replacement operation can achieve a performance close to the CGMH system

that paraphrases in word level only. This is due to the fact that a phrase
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Model iBLEU↑ BLEUref
↑ BLEUorig

↓

Origin Sentence - 30.49 100.0

VAE-SVG (100k) - 22.50 -
VAE-SVG-eq (100k) - 22.90 -

Supervised VAE-SVG (50k) - 17.10 -
VAE-SVG-eq (50k) - 17.40 -
Seq2seq (100k) 17.13 22.79 33.83
Seq2seq (50k) 15.4 20.18 27.59

Supervised Seq2seq (20k) 12.85 16.77 22.44
VAE 5.6 9.25 27.23
CGMH 11.29 17.97 48.82
PhraseVAE+MH (no word edition) 11.25 19.64 64.23

Unsupervised PhraseVAE+MH 13.31 20.22 48.86
PhraseWAE+MH (λKL = 0.1) 12.59 20.30 56.70

Table 4.5: Paraphrase generation performance on the Quora dataset. Perfor-
mance resutls for supervised methods are quoted from [39]. ↑/↓ means the
higher/lower, the better.

edition including multiple words can result in a word edition. For example

replacement of ”Donald Trump presidency” with ”Donald Trump election”

is equal to a word edition where ”presidency” is replaced with ”election”.

Similarly, a replacement with phrases ”Donald Trump 2016 presidency” and

”Trump presidency” is equal to a word insertion and deletion, respectively.

As expected, VAE performance in paraphrasing is slightly better than

WAE. Best performance for WAE achieved when λKL is set to 0.1 that had

the best fluency score in reconstruction as mentioned in Table 4.4.

4.4 Analysis

In this section, we discuss the paraphrasing performance in detail and provide

examples. We also discuss the evaluation and VAE training difficulties.

4.4.1 Best Paraphrase Search

Many paraphrases are generated by iterative phrase and word level editions.

To find the best paraphrase sentence among many, [39] selects the first gen-

erated paraphrase that has a BLEUref score lower than 55 to make sure a

significant difference between the generated paraphrase and the original sen-
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Figure 4.1: BLEUref distribution on Quora validation sentences.

tence. We find this incomplete by studying the BLEUref scores distribution

which is shown for Quora validation sentences in Figure 4.1. Around 15% of

the paraphrases in the validation set have a BLEUref higher than 55. If we

follow the [39] approach in final paraphrase selection, we are losing a relatively

large chunk of sentences that can be easily paraphrased with fewer editions

compared to the other sentences.

To overcome this problem, we use BERT [14] language model as a semantic

search engine to rank the generated paraphrases. We first encode the original

question as a vector and compute the dot product between the original question

and the encoded vector of each generated paraphrase. Finally, we select the

generated paraphrase with the highest score as the final paraphrase. To avoid

copying the exact input, we only consider the paraphrases that have a BLEUref

lower than 90. This value is a lot higher than the threshold set by [39] and only

1% of ground truth paraphrases in the validation set have a BLEUref higher

than 90.
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4.4.2 Paraphrasing Quality

Table 4.4 demonstrates that our method outperforms CGMH with higher

BLEUref and iBLEU scores. We generally have a higher BLEUorig score. This

is because phrase level edition compared to word level editions applies changes

on a bigger chunk of a sentence in each step. This makes it harder to become

accepted, thereby lower level of acceptance and higher BLEUref.

Table 4.6 and Table 4.7 show some paraphrases generated by our method

using VAE and WAE as autoencoding methods. We can see that the gen-

erated paraphrases have high quality and are close to the original sentence

semantically while different syntactically.

4.4.3 Paraphrasing Examples and Process

Table 4.8 and 4.9 provides a real example of the paraphrase generation process

with our system and paraphrasing system of [39], respectively. In the case of

our system, first a word replacement operation is performed following by a

phrase level. To replace a phrase, the constituency parsing tree of the original

sentence, what are your top 5 movies for 2016?, is generated which is shown

in Figure 4.2 and one random phrase is selected. Here are the top 5 movies

for 2016 is selected randomly. Sampling from our VAE latent space results in

the following candidate phrases:

• ”are your top ten movies of 2016”

• ”are your top 10 favourite movies”

• ”are your top ten favorite horror movies”

• ”are the best movie of 2016”

• ”are your top 5 favorite bollywood movies”

from which ”are the best movies of 2016” is successfully accepted by MH, re-

sulting in ”what are the best movies of 2016” as the final paraphrase. The

provided example shows how phrase replacement effectively reduces the num-

ber of editions during the process of paraphrase generation.
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# Type Examples
Original what are your top 5 movies for 2016?

1 Reference what are the best movies of 2016?
Generated what are some best movies of 2016?

Original what is ground?
2 Reference what is a ground?

Generated what is a ground?

Original how did donald trump got elected when there are so
many people against him?

3 Reference how did donald trump win the election?
Generated how did donald trump win the presidency?

Original which is the best smartphone i can buy under rs.6000?
4 Reference which is the best phone to buy under rs.6000?

Generated which is the best phone to buy under 15000

Original how do i really make money online?
5 Reference how can i earn money online?

Generated how can i make money online

Original how do i get my english better?
6 Reference how can i improve my english pronunciation?

Generated how can i improve my english?

Original how do I improve my communication skills?
7 Reference how can I improve my communication effectively?

Generated how can I improve my communication skill?

Original what is the best harry potter movie and why? is it also
your favorite? why or why not?

8 Reference which is the best harry potter movie?
Generated which is the best harry potter movie?

Original how come people on quora ask questions here, when they
can get them on google and why is quora just a
question/answer site, will it expand?

9 Reference why do people ask questions on quora that can easily be
answered by google?

Generated why do people ask questions on quora that can easily be
answered by google?

Original what are the best online short courses in digital
marketing?

8 Reference which is the best digital marketing course?
Generated which is the best digital marketing course?

Table 4.6: Paraphrase generation examples generated by VAE.
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# Type Examples
Original will there really be any war between india and pakistan

over the uri attack? what will be its effects?
1 Reference will there be a nuclear war between india and pakistan?

Generated will there be a nuclear war between india and pakistan?

Original which is the best course for digital marketing?
2 Reference what are the best online courses for digital marketing?

Generated what are the best online courses for digital marketing?

Original why did trump win the election?
3 Reference why did donald trump win the election?

Generated how did donald trump win the presidency?

Original how can i earn money using my quora profile?
4 Reference how can i earn money through quora?

Generated how can i earn money through youtube?

Original who will win upcoming usa election?
5 Reference who will win the us election?

Generated who will win the us election?

Original what are the most famous caves in the chhattisgarh?
6 Reference which are the famous caves in chhattisgarh?

Generated what are the famous caves in chhattisgarh?

Original who would win an all out war between pakistan and
india if no other country got involved?

7 Reference who will win in a war between india and pakistan?
Generated who would win in a war between india and pakistan?

Original how can i get rid of anxiety?
8 Reference how do i get rid of my anxiety?

Generated how do i get rid of my acne

Original how do i recover emails that i deleted forever in gmail?
9 Reference how do i recover deleted emails in my gmail account?

Generated how do i recover deleted emails in my gmail password?

Original what are the easiest ways for me to make money?
10 Reference what are the ways to earn money?

Generated what are the ways to earn money?

Original what causes obesity?
10 Reference what are the causes of obesity?

Generated what are the causes obesity?

Table 4.7: Paraphrase generation examples generated by WAE.
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Step State (Sentence) Proposal
Origin what are your top 5 movies for

2016?
replace word your with the

1 what are the top 5 movies for
2016?

replace phrase are the top 5
movies for 2016 with are the
best movies of 2016

output what are the best movies of
2016 ?

-

Table 4.8: Paraphrase generation process with phrase-level and word-level.

Step State (Sentence) Proposal
Origin what are your top 5 movies for 2016? replace word top with best
1 what are your best 5 movies for 2016? replace word 5 with comic
2 what are your best comic movies for 2016? replace word your with the
3 what are the best comic movies for 2016? delete word comic
output what are the best movies of 2016? -

Table 4.9: Paraphrase generation process in word-level.

Figure 4.2: Constituency parsing tree of an example sentence used for phrase
replacement operation of our system.
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Phrase replacement becomes more crucial in long sentences where it is nec-

essary to delete a large chunk of a sentence and make it shorter. Removing

words usually results in a sentence that is no longer coherent or close seman-

tically to the original sentence. Therefore, there is a high chance that a word

deletion becomes rejected. For example Table 4.10 shows an example of a real

paraphrase generation process where a long sentence is paraphrased in only

one iteration to a shorter sentence with phrase replacement action. Here the

entire sentence is treated as a phrase and in step 1, phrase-replacement action

paraphrased it successfully to a short sentence. The output is then followed

by some word-level replacement to generate the final paraphrase. To generate

such a paraphrase with word-level editions only, the ”and why? is it also your

favorite?” part consisting of seven words should be deleted in seven successful

word-deletion actions which are very unlikely. Another example where this

problem is solved with phrase level replacement is provided in Table 4.11.

Overall, there are three types of generated paraphrases:

1. Paraphrases that are fluent and semantically related. Below is a real

example generated by our system:

• Original: “What is the best way to lose weight fast?”

• Paraphrase: “What is the best way to lose weight fast?”

2. Paraphrases that are fluent, but semantic has changed. Below is a real

example generated by our system:

• Original: “What is the best thing you had done in your life until

now?”

• Paraphrase: “What is the most embarrassing moment in your life?”

3. Totally distorted sentences which are very rare.

4.4.4 Evaluation Difficulties

Unfortunately, the BLEU score does not consider meaning. Studying the gen-

erated paraphrases, we have observed that there are several cases that the
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Step State (Sentence) Proposal
Origin what is the best harry potter

movie and why? is it also your
favorite?

replace phrase (The entire
sentence is replaced with the
next sentence.)

1 what is the best harry potter
film

replace word film with book

2 what is the best harry potter
book?

replace word what with
which

3 which is the best harry potter
book?

replace word book with
movie

Output which is the best harry potter
movie?

-

Table 4.10: Paraphrase generation of a long sentence with phrase-level.

Step State (Sentence) Proposal
Origin how did donald trump got

elected when there are so many
people against him?

replace phrase (The entire
sentence is replaced with the
next sentence.)

1 how did donald trump win the
2016

replace word 2016 with
presidency

Output how did donald trump win the
presidency

-

Table 4.11: Paraphrase generation of a long sentence with phrase-level.
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generated paraphrase is semantically similar to the reference paraphrase but

expressed with different words which result in an unfair penalty for the system

performance. For example, the generated paraphrases number 1 and 3 in Ta-

ble 4.6 are valid paraphrases both semantically and syntactically but different

from the reference paraphrase. This example shows that including a single

paraphrase in paraphrase generation datasets as a reference is not enough.

A single sentence can have multiple valid paraphrases. As a solution, one

can provide multiple ground truth paraphrases for each sentence. However, it

results in a higher cost for data collection.

Another problem is the presence of extra information in the reference para-

phrase which is not predictable from the original sentence. For instance gener-

ated paraphrase number 6 in Table 4.6 is a totally valid paraphrase including

all the information in the original sentence. However, the reference sentence is

different by introducing extra information through the use of the word ”pro-

nunciation”.

4.4.5 Training Difficulties

As mentioned, two losses are involved in training a VAE: 1) reconstruction

loss and 2) KL divergence loss between the posterior and prior of the latent

space. Unlike images, it is extremely hard to train a VAE in NLP domain [27]

as the KL term tends to vanish to zero which results in an ineffective latent

space. To tackle this problem we follow the tricks from previous works which

involve KL annealing and word dropout [9].

We show that our VAE latent space is in fact variational by conducting

an experiment to compare the KL loss with and without applying the KL

annealing. KL loss is believed to demonstrate that the latent space is in fact

variational. Without KL divergence loss, the latent variable z is completely

ignored and VAE memorizes each input as a single latent point [58]. Figure

4.3 demonstrates the KL loss where it is weighted by different values of λV AE.

Fortunately, WAEs networks do not have training difficulties of VAEs and

still retain probabilistic properties. There is no need for KL annealing or word

dropout in training a WAE and it is robust to hyperparameters.
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Figure 4.3: VAE KL loss (λ ·KL) learning curve for different values of λ and
the training trick where λ is annealed.
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Chapter 5

Conclusion and Future Work

5.1 Summary of Contributions

Our main objective of this thesis is to develop a system that can generate high

quality paraphrases with no supervision. To this end, our system employs an

unsupervised approach that works in word level and phrase level. We proposed

a novel approach of phrase level paraphrasing through autoencoding that helps

with multiple words replacement. We used VAE for autoencoding the phrases

and our experiments demonstrated that our novel phrase level operation on

top of the word level operations can improve the quality of generated para-

phrases. The main contributions and findings of this thesis are summarized in

the following:

• We studied the drawbacks of word level modification for paraphrase gen-

eration and proposed a paraphrasing system that combines discrete word

level sampling with a continuous phrase level sampling. Therefore, our

system, while benefiting from word level modification, is able to address

the existing issues in techniques that operate at word level only.

• We showed that paraphrasing with only word level modifications does

not perform well for long sentences where multiple word modifications

are required to generate the ground truth paraphrase. As mentioned

before, the intermediate sentences are not fluent which results in a high

rejection probability.
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• Through the sample paraphrases generated by our system, we showed

that there are several issues with the BLEU evaluation metric. We pro-

vided examples of generated paraphrases that our paraphrase and the

ground truth paraphrase are semantically equal but expressed syntacti-

cally different, resulting in a heavy penalty by BLEU metric. This is due

to the fact that BLEU metric does not consider sentence meaning.

• We studied the similarity distribution between the original sentences

and the ground truth paraphrases. Our study showed that many of the

existing paraphrases in the Quora dataset are actually very close to the

original sentence in terms of the BLEU score. Therefore, to continue

paraphrasing until a significant literal difference is made can result in

a poor score. To address this problem, we suggested using a language

model to rank the generated paraphrases based on semantic score and

select the top one as the final paraphrase.

5.2 Limitations and Future Perspectives

The current approach for phrase level sampling from a continuous latent space

does not consider separating semantic information from syntactic information.

An interesting direction for our phrase level operation is to sample from a

disentangled syntactic and semantic (DSS) space. A DSS-VAE is proposed by

[4] that uses two separate latent space variables zsem and zsyn to model the

semantic and syntactic information of a sentence, respectively. This is useful

as a semantically similar phrase can be generated by fixing zsem and sampling

in zsyn space. As future work, we consider experiments with DSS-VAE to

generate better candidates for phrase level replacement.
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