
University of Alberta

A d v e r s a r ia l P l a n n in g in R T S G a m e s T h r o u g h S im u l a t io n

by

Frantisek Sailer

A thesis submitted to the Faculty of Graduate Studies and Research in partial ful­
fillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-33339-6
Our file Notre reference
ISBN: 978-0-494-33339-6

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Life is ”trying things to see if they work”

- Ray Bradbury

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Adversarial planning in complex decision domains, such as modem video games,

has not yet received much attention from AI researchers.

This thesis presents a planning framework (RTSplan) that uses simulation com­

bined with Nash-equilibrium strategy approximation to choose the best policy from

a given policy set. We apply this framework to an army deployment problem in

an abstract real-time strategy game setting. Experimental results indicate a perfor­

mance gain over individual policies in our policy set. Furthermore, we show that

adding basic opponent modelling drastically increases the performance of RTSplan

against these policies, and that RTSplan can also play well against unknown poli­

cies.

We also present a method for the fast-forwarding of simulations which greatly

reduces computation times.

RTSplan is an automated way of increasing the decision quality of scripted AI

systems in real-time. It is suited for complex systems that have real-time con­

straints, simultaneous moves, and currently rely on scripted solutions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

Thanks to my supervisor Michael Buro for his endless patience and words of wis­

dom throughout this endeavour, and to Marc Lanctot for his valuable feedback.

Financial support was provided by the Natural Sciences and Engineering Research

Council of Canada (NSERC) and Alberta’s Informatics Circle of Research Excel­

lence (iCORE).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction 1
1.1 Real-time Strategy Games .. 1
1.2 RTS Game Strategic A re a s .. 2
1.3 Commercial RTS Game A I ... 3
1.4 Computationally Difficult Properties of RTS G am es......................... 4
1.5 Thesis C ontributions.................. 6
1.6 Thesis Organization.. 6

2 Planning in RTS Games 7
2.1 Planning Overview . .. 7
2.2 Planning Methods Relevant to RTS G am es.. 9

2.2.1 Hierarchical Task N e tw o rk s .. 9
2.2.2 Monte Carlo A pproach... 10
2.2.3 Simulation-Based Planning.. 12

2.3 A lin RTS G am es.. . 13
2.3.1 Map Analysis . . . 13
2.3.2 Dependency Graphs ... 15
2.3.3 Multi-Tiered A I ... 15

2.4 Conclusions... 16

3 Simulation-Based Adversarial Planning 18
3.1 Action A bstraction ... 18
3.2 Planning Based on Policy Simulation.. 19

3.2.1 The RTSplan A lg o rith m ... 20
3.3 Opponent M o d ellin g ..24

4 Implementation and Experiments 29
4.1 Implementation D eta ils .. 29

4.1.1 Fast-Forwarding of P o lic ie s 36
4.2 Experimental S e tu p ... 38
4.3 Initial Experim ents... 39

4.3.1 RTSplan Experimental R esults..41
4.3.2 Results of RTSplan with Additional Policies..............................45
4.3.3 RTSplan-0 Experimental R e s u l ts ..48
4.3.4 Execution T im e s .. 53

5 Conclusions and Future Work » * * 56
5.1 Conclusions..56
5.2 Future W ork... 57

Bibliography 59 '

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

4.1 Different Player Com parison...42
4.2 RTSplan Player vs. Specific P o lic ie s ... 44
4.3 Hunter vs. Specific Policies... 44
4.4 RTSplan Player (no delay) vs. Specific P o lic ie s 44
4.5 Simulation Players Comparison ...45
4.6 Harass vs. Specific Policies ...47
4.7 Attack Least Defended vs. Specific P o lic ie s ..47
4.8 RTSplan vs. New Policy Set ... 47
4.9 RTSplan-0 vs. Policy Set (t = 2 .0 ,/ = 0 . 5) ...49
4.10 RTSplan-0 vs. Policy Set (/ = 0 . 1) 49
4.11 RTSplan-0 vs. Policy Set (t = 2 .0) 49
4.12 RTSplan vs. Unknown Policy... 51
4.13 RTSplan-0 vs. Unknown Policy (t = 2.0, / = 0.5) 51
4.14 Opponent Modelling Policy Set Reduction (t = 2.0, / = 0.5, 50

m a p s) ... 55
4.15 Execution Times (milliseconds) Percentiles and Max T im e55
4.16 Fast-forwarding time comparison (seconds)(50 m aps).......................... 55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 A typical Starcraft situation, where a base is attacked by enemy forces. 2

3.1 Top level planning cycle .. 20
3.2 a) Simulating pairs of policies b) maxmin player chooses move i

which leads to the maximum value c) minmax player chooses the
best counter move i ... 21

3.3 On the left, a simple payoff matrix for the game of Rock-Paper-
Scissors. On the right, a sketch of the payoff matrix used in the
RTS game simulations. Si represents policy i .. 22

3.4 Updated game cycle 24

4.1 Simulator main loop pseudo-code ...30
4.2 The simulation tim eline..31
4.3 Pseudo-code for part of calcBestPolicyO function.32
4.4 Snapshots of a typical map and the progression of a game. Light

gray is a static player playing the Spread Attack policy, black is the
RTSplan p layer.. 34

4.5 Function for determining the next time of interest.....................................37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Real-time Strategy Games

A popular genre of computer games on the market today is real-time strategy (RTS)

games. In a typical “deathmatch” RTS game, players gather resources and build

structures and units with the ultimate goal of using those units to destroy the units

and structures of the enemy. Other game types include Capture the Flag (CTF),

Siege (no attacks are allowed for a specified starting time period), Conquest (capture

of strategic points), Team Play, and many others. Most RTS game types involve

starting out with limited resources, a few workers, and a town centre. Players begin

by collecting resources, developing their base using the acquired resources, and

building a military force. Use of resources is commonly divided between building

defensive structures to protect the base from enemy attacks, building units to scout

the surrounding areas for additional resources and the locations of enemy bases,

creating a military force for defense or offense, researching technology, and creating

structures that allow the creation of more advanced units. Examples of popular

commercial RTS games are Starcraft [3], Age of Empires [12] and Red Alert [38].

In several respects RTS games are different from classic games such as Chess,

Checkers and Go. They feature dozens of unit types, several types of resources and

buildings, and potentially hundreds of controllable units. Furthermore, unlike most

classic games, all players make their moves simultaneously and in real-time. In

general, RTS games are fast-paced; any delay in decision-making can lead to defeat.

Adding to these difficulties is a high degree of uncertainty caused by restricted

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.1: A typical Starcraft situation, where a base is attacked by enemy forces.

player vision which is usually limited only to areas within the sight range of allied

units and buildings (see Figure 1.1).

1.2 RTS Game Strategic Areas

Playing RTS games well requires skill in the following areas:

1. Resource and Town Management. Decisions must be made about how

many resources to collect, where to search for them, and when to look for ad­

ditional resources. Players must also decide when and where to build which

structures and when to train which units. Furthermore, in most commercial

RTS games, players have the option to upgrade their units’ capabilities at the

cost of time and resources.

2. Combat Tactics. When opposing armies meet, individual units must be given

orders on who to attack, where to move, and which special ability to execute.

Better execution of special skills and focusing of firepower can lead an army

with material inferiority to still achieve victory.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Army Deployment. Once a player has built several units, these units need to

be assigned to groups and be issued orders on what to do, e.g. defend a base,

attack enemy encampment, and/or move to a location.

Each one of these areas can be treated as a separate planning task, with its

own level of abstraction. Humans do a good job of dealing with these tasks, either

separately, or in combination. The challenge of artificial intelligence (AI) systems

in this domain is to do as well, or better than their human counterparts. They also

need to address a few other lower level planning issues, such as pathfinding for

example.

1.3 Commercial RTS Game AI

AI systems in today’s commercial RTS games are for the most part scripted [29],

with the common exception being pathfinding, which usually uses A* or a similar

algorithm. For example, the AI player usually follows a precise set of instructions at

the start of the game to develop its base. Once this script achieves its goal condition,

the AI system will switch over to a new sequence of instructions (script), and start to

follow them, etc. While this method gives the AI the ability to provide a challenge

to a human player, it does have several limitations.

First, the AI has a limited set of scripts, and thus its behaviour can quickly

become predictable. Second, because every script needs to be created by human

experts and takes time to implement and test, developing a strong scripted AI system

for an RTS game can become a major undertaking. Finally, scripts can be inflexible

and any situation not foreseen by the script creators can lead to inferior game play.

To compensate for these shortcomings, current commercial RTS game AI sys­

tems are given extra advantages, usually in the form of more resources, extra knowl­

edge of the game state, or sometimes even by allowing the system to “cheat”.

While this approach is acceptable in campaign modes that teach human players
' f **

the basic game mechanics, and to provide a challenge for casual players, it does not

represent a solution to the RTS game AI problem of creating systems that play at

an expert human level in a fair setting.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.4 Computationally Difficult Properties of RTS Games

There are several reasons why currently no strong RTS game AI players exist:

1. Complex Unit Types and Actions. Unlike Chess, which has only 6 unit

types, RTS games can have dozens of unit types, each with several unique

abilities. Furthermore, units in RTS games have several attributes such as

hit points, move speed, attack power, and range. In contrast, Chess units

each only have one attribute: their move ability. This leads to a much larger

state space, and thus the performance of traditional search techniques such as

alpha-beta will suffer.

2. Real-Time Constraint. Tactical decisions in RTS games must be made

quickly. Any delay could render a decision meaningless because the world

state may have changed in the meantime. This real-time constraint compli­

cates action planning further because planning and action execution need to

be interleaved.

3. Large Game Maps and Number of Units. Maps in RTS games are larger

than any classical game board. Checkers has 32 possible positions for pieces,

Chess has 64, Go has 361. By contrast, even if the RTS game does not happen

to be in a continuous space, there are hundreds to thousands of possible po­

sitions a unit could occupy. Thus, reaching a goal could involve hundreds of

individual steps instead of the usual ten or twenty, thereby greatly increasing

the search depth of a traditional algorithm. Furthermore, the number of units

in an RTS game can reach hundreds. Because the branching factor grows ex­

ponentially with the number of units, applying traditional search techniques

quickly becomes infeasible.

4. Simultaneous Moves. Units in RTS games can act simultaneously. This

presents a problem for traditional search techniques, because the action space

becomes exponentially larger.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Several Opponents and Allies. Typical RTS game scenarios feature more

than one opponent and/or ally. This presents yet another challenge to tradi­

tional AI techniques. Though some work exists on AI for turn-based n-player

games [31], there are currently no solutions able to run well in real-time.

6. Imperfect Information. RTS games are played with imperfect information.

Enemy base and unit locations are initially unknown, and decisions must be

made without this knowledge until scouting units reveal it. Furthermore, be­

cause moves are simultaneous, the next micro-move made by the opponents’

units is always unknown. Currently, there are no AI systems that can deal

with the general incomplete information problem in the RTS game domain.

However, some recent work on inferring agent motion patterns from partial

trajectory observations has been presented [30], There have also been some

promising results obtained for the classic imperfect information domains of

bridge [16] and poker [2] which may be applicable to RTS game AI.

Due to these properties, creating a strong AI system for playing RTS games is

difficult. A promising approach is to implement a set of expert modules for sub­

problems such as efficient resource gathering, scouting, and effective targeting, and

then to combine them. For example, there could be a module that solely deals

with scouting the map. The information gathered by the scouting expert could then

be used by an army deployment AI, or the resource manager AI. The advantage

of this approach is that the complexity of each sub-problem that each individual

expert deals with is much smaller than if the problem was dealt with all at once.

This thesis will concentrate on the sub-problem of army deployment. The system

for this task will not have to worry about resource gathering, building, scouting,

or even small-scale combat. Instead, it will make decisions on a grander scale,

like how to split up forces and where to send them. This work builds on ideas

presented in [7], where Monte Carlo simulation was used to estimate the merit
•* A r,

of simple parameterized plans in a CTF game. Here, we approach this problem

slightly differently, by combining high-level policy (strategy) simulation with ideas

from game theory.

' 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.5 Thesis Contributions

The contributions of this thesis are:

1. Design and implementation of a simplified RTS game engine that operates on

an abstract model of common RTS games.

2. Design and implementation of a simulation-based planning framework used

for planning in domains with stochasticity, simultaneous moves, multiple unit

types and real-time constraints.

3. Introduction of “fast-forwarding”, a concept that greatly reduces the compu­

tational overhead of simulations. This concept has been implemented in the

aforementioned RTS game engine.

4. Design, implementation, and analysis of the performance of the RTSplan al­

gorithm, which is used for real-time decision making in simplified RTS game

scenarios.

5. Design, implementation, and analysis of the performance of an opponent

modelling extension to RTSplan.

6. Characterization of parameters affecting the performance and execution time

of RTSplan and RTSplan with opponent modelling.

1.6 Thesis Organization

An overview of related research and current state-of-the-art in AI for RTS games

is discussed in Chapter 2. The RTSplan planning algorithm and its opponent mod­

elling extension is discussed in Chapter 3. Experimental results, along with details

of the implementation of RTSplan in an abstract RTS game world simulator are

presented in Chapter 4. Conclusions and discussion of future work is presented in
'* f ^

Chapter 5.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Planning in RTS Games

This chapter is an overview of the various planning issues that are routinely part

of RTS games. We describe the current state-of-the-art algorithms for various RTS

game AI issues and discuss simulation-based planning (SBP) [21], which is an

alternative method for planning that can be used for abstract planning purposes in

RTS games.

2.1 Planning Overview

Classical planning problems have traditionally been single agent problems. They

usually deal with finding an action sequence that will take an agent from its start

state to a designated end state. A common example of classical planning is pathfind­

ing, which focuses on providing a path, often the shortest path, from one location

to another.

Classical planners make the assumption that if there are other agents in the

world, they are working cooperatively with them in trying to achieve the same goals.

Little provision is made for having to deal with an agent who is trying to prevent

them from accomplishing their goals, while trying to achieve its own separate goals

at the same time.

Adversarial planning deals precisely with this issue. Most adversarial planning

tasks occur in the area of games, such as Chess, Go, Poker, etc. However, it(isoused

in other planning areas as well. For example, it can be used in situations where

non-determinism is caused by known, but uncontrollable actions of the environ- ,

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ment [17].

A widely used adversarial planning algorithm for turn-based games in discrete

space with perfect information, is the minimax algorithm (and its alpha-beta en­

hancement). It has been used successfully in Chess and Checkers, producing super­

human strength programs [28].

However, unlike Chess and Checkers, minimax has not been used successfully

in the game of Go, mainly due to the large search space presented by the game.

There has been some progress made in this area through the use of HTNs [39],

which has had some limited success. In this implementation, two opposing agents

are assumed to be competing by trying to complete their goals while preventing the

opponent from completing theirs. A search of the interacting plans of the agents is

then performed, and if a goal state is reached by either agent, backtracking is per­

formed and the next branch of the plan search tree is examined. Although this ap­

proach was fairly successful in solving many beginner-level life and death problems

in Go, it and minimax do not translate well into RTS games for several reasons:

• RTS games feature simultaneous moves, while the above-mentioned approaches

assume an environment where the players alternate moves.

• Adversarial planners assume a perfect information environment, which is

rarely the case in RTS games.

• RTS games require decisions to be made on the fly, and thus there is no time

to stop and wait while expensive planning is performed.

Real-time planning is concerned with the last point on the preceeding list. A

common application of real-time planning is real-time scheduling. A process sched­

uler in a computer’s operating system is an example of a common real-time planning

algorithm. However, RTS games require adversarial real-time planning, and that is

a more difficult problem due to the increased complexity of dealing with a hostile

agent.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Planning Methods Relevant to RTS Games

Classical planners are not designed to deal with imperfect information, real-time

constraints and simultaneous moves. However, there are several newer planning

methods which have been used, or have potential to be used in the domain of RTS

games. Some of these are described below.

2.2.1 Hierarchical Task Networks

Classical planning frameworks such as STRIPS [14] have been around for a long

time and have matured significantly over the past decades. However, classical plan­

ning algorithms make the assumption that the world remains static during the plan­

ning and execution of plans. This assumption does not hold in RTS games, where

the world state is constantly changing, and there is no opportunity to “pause” while

an expensive planning calculation is performed.

The lack of suitability of classical planners has resulted in most traditional RTS

game agents to be mainly reactive. Many of the agent’s responses are hard-coded by

the developer, and perform no planning at all. These hard-coded responses tend to

be simple, such as a worker unit automatically running away if attacked, or a soldier

returning fire when an enemy comes within range. Although this approach has the

advantage of being computationally inexpensive, it has several problematic issues.

First, it puts a burden on the developers, as they have to implement a response

for every possible situation that can occur during a game. This becomes more

problematic as the RTS game genre evolves and worlds become more complex.

Furthermore, this approach makes it difficult to achieve any degree of reasonable

cooperation between the various reactive agents because they have little knowledge

of the motives and orders of other agents [37].

To adapt classical planning algorithms for real-time games, game developers

have begun to use an approach that abstracts various planning tasks, and creates

a hierarchy of tasks. This approach is called a hierarchical task network (HTN).

Unlike computationally expensive algorithms that use limited abstraction, or highly

abstract plans which have trouble controlling the individual units in an RTS game,

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

HTN planners create several levels of abstraction, with each level having its own

separate plan. For example, an “attack base” task at the highest level could be

decomposed into two subtasks, “gather army”, and “move army to enemy base”.

Each of these subtasks could have its own subtasks, with a different set of opera­

tors for each one [37]. Examples of HTN planning systems include UMCP [13],

SHOP2 [25] (used for playing brige) and O-Plan [8].

For dynamic environments, HTN planners are more effective than classical

planners (best case is linear complexity, instead of exponential when planning in

dynamic worlds [37]) performance-wise. Furthermore, because plans are composed

of several different subtasks, partial replanning is possible because only a few sub­

tasks may be causing the invalidation of a plan, and thus only they would need to

be replanned. HTN planners also allow for some degree of cooperation between

agents or groups, if the right abstraction level is used. This is usually accomplished

through the creation of special actions which allow the different agents or groups to

synchronize with each other, for example, if two different groups want to attack an

enemy base at the same time from different directions.

HTNs are becoming more common in commercial real-time games recently.

For example, the game Full Spectrum Command uses a task system which has two

types of tasks [11]: composite tasks, which can be composed of other composite

tasks or simple tasks, and simple tasks, which are composed only of actual actions

given to the agent. This allows for an arbitrary hierarchy of tasks to be created.

2.2.2 Monte Carlo Approach

One promising method for dealing with difficult or complex domains such as RTS

games is Monte Carlo sampling. This generally involves playing a large number of

randomized games from the current position, and then evaluating which moves lead

to the highest score on average. One classic example of where this has been suc­

cessful is with the introduction of rollouts (Monte Carlo sampling runs) in backgam-
■' t

mon [40] (e.g.,TD-Gammon [32]).

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Monte Carlo Go

The Monte Carlo sampling approach has been successfully used in recent computer

Go programs such as OLGA [5] and MoGo [15]. In these programs, moves from a

given position are evaluated based on how well they performed over a large num­

ber of random games played from that position and beginning with the move being

evaluated. Moves are generally selected at random from all available moves, al­

though obviously inferior moves are not included. This process continues until the

game is played out in its entirety, and then the moves are scored. The evaluation of

the move at the starting position is the mean value of all the scores of games played

with that starting move.

The Monte Carlo approach is highly dependent on processing power, because

having a faster processor means more games can be played out, leading to more

accurate move evaluations. Furthermore, Monte Carlo sampling also lends itself

nicely to parallelization, because it is easy to offload different random games to

multiple processors and to recombine the results. This is becoming a more signifi­

cant advantage with the introduction of multi-core architectures.

MCPlan

Although Monte Carlo sampling has been used with success in turn-based games

such as Go, it still remains to be seen if the same approach can be applied to RTS

games. Recently, Monte Carlo planning was applied to RTS games by Chung et al.

using their MCPlan algorithm [7]. MCPlan uses the same ideas which are some­

times used in Go with Monte Carlo sampling. To apply it to the RTS game domain,

low level unit actions are abstracted into plans.

Abstraction is necessary in the domain of RTS games, as working with atomic

moves, such as “move left” or “move up”, is infeasible due to the large state space

present in RTS game maps. Essentially, instead of generating random moves like

in Go, random plans composed of low level abstract actions such as “attack base”
■* t *

or “explore” are formed and then simulated versus the randomly generated plans of

the opponent [7].

Furthermore, unlike in OLGA and MoGo, MCPlan does not randomly simulate

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

until the end of the game. Instead, it simulates to a specified maximum length of

action sequences, and then uses an evaluation function to judge the game state.

This is possible because, unlike in Go where creating a good evaluation function is

difficult, the value of a state in RTS games is significantly influenced by the material

difference.

MCPlan has shown some promising results, although its performance has yet to

be tested against highly-tuned scripted AIs or humans [7].

2.2.3 Simulation-Based Planning

The basic idea of Simulation-Based Planning (SBP) [20] is to take a series of given

plans, use a simulator to execute each one of them, and then evaluate the result of

using that plan. Based on these results, the agent can then choose the plan that leads

- to the best outcome. If the domain has uncertainty or randomness, plan simulations

can be repeated to get more statistically significant results [19]. It has successfully

been used in route planning, controlling a truck depot [19] and even some military

planning [22], This suggests that it lends itself well to adversarial environments

and environments with uncertainty and randomness. This also means that it could

be applied to RTS game planning as well.

However, one of the drawbacks of SBP is that it underestimates the actions of

the opponent. Adversaries are assumed to be simple for efficiency purposes when

run in thfe simulation [20], and this does not properly represent what the “real” op­

ponent is likely to do. For example, Lee describes an air interdiction scenario where

an allied airplane must avoid enemy SAMs and fighters while attempting to reach a

specified bomb target [22]. However, no real intelligence is given to the opponents.

Their ability to move/detect is represented simply by creating a radius based on the

object speed and/or detection area around each object (plane or SAM) and assuming

that they project their influence within that radius. While this approach works for

short-term scenarios such as going from point A to point B while avoiding certain
'» >T

areas of the map, it does not work in longer term situations. With this assumption of

a simplistic opponent, any long-term scenario would effectively yield a radius that

covered the entire operational map because any mobile opponent could have moved

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to any location in the long term. This suggests that SBP could be used successfully

in RTS games for situations that require short-term planning, such as assaulting an

enemy base while avoiding immobile defensive towers, but would likely struggle in

planning a long-term campaign against a highly mobile opponent.

Furthermore, without a proper abstract model of the world, SBP is computa­

tionally expensive. Planning simulations must run significantly faster than the ac­

tual real world simulation to be used in a real-time setting, otherwise data used in

the SBP will be out of date. Thus, for SBP to work in RTS games, a well designed

abstract model is needed, as is the case in our approach as well.

Overall, SBP fits fairly well into the RTS game planning domain. Like our

approach, it uses an abstract view of the world, combined with forward simulations

in its decision making. However, the lack of an advanced opponent model in SBP

suggests that successful planning is limited to short-term objectives. Conversely,

due to the simplistic opponents, SBP is likely to perform faster than our approach.

Thus, perhaps an ideal approach would use a combination of the two, with SBP

dealing with short-term planning and planning against stationary enemies, while our

approach being used for the long-term situation. This combination is not explored

in this thesis, but could be the subject of future work.

2.3 AI in RTS Games

Planning is already being used in domains similar to RTS games. For example, it

has been used in Robocup [1], a popular robotic soccer challenge, and F.E.A.R [26],

a first person shooter game. Existing RTS games currently do not use high-level

planning, however, they employ the following techniques to aid their AI.

2.3.1 Map Analysis

Terrain analysis is a useful tool in RTS game AI. It provides the AI with an abstract

view of the world which aids it in decision making. Multiple systems in an, RTS

game will make use of this information, whether it be for deciding where to build a

base, or where the enemy forces are most concentrated, or any other matter. There

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are different methods of terrain analysis, two of which are described below.

Analysis Through Pathfinding

Some terrain analysis is accomplished simply through using the game’s pathfinding

system [9]. For example, the pathfinder could be used for determining which parts

of the terrain are currently reachable, or determining the desirability of resource

patches based on the distance they are from the player’s base. This approach has

the advantage of being highly accurate, however it is computationally expensive [9].

Influence Maps

Influence maps are commonly used in RTS games as a way to perform spatial rea­

soning. They are essentially two dimensional arrays which are an abstraction of the

world map. Each entry in the 2D array corresponds to a specific section of the map,

and stores a numerical value. The numerical value can indicate many things, for ex­

ample the strength and location of enemy or friendly forces, location of resources

for gathering, potential chokepoints, etc. [33].

The reason this technique is called influence mapping is because each cell in­

fluences its surrounding cells. The influence decreases as the distance from the cell

increases, usually with some sort of falloff rule. Cells exert an influence to better

reflect that enemy units are usually not stationary, and thus could move to a nearby

location. Due to this, the falloff rule depends at least partially on the speed of the

unit.

An extension of the basic influence map, spatial databases are essentially a col­

lection of influence maps layered over each other on the world map [35]. For ex­

ample, one layer could consist of an influence map that keeps track of only enemy

units, while another layer could keep track of areas of the map that have not been

explored recently. These layers can then be queried by various AI systems to help

with reasoning. For example, the scouting AI could query the exploration influ­

ence map to see where to explore next, while the attack AI would query the’ eftemy

strength map to determine if attacking at a particular location would be a good idea.

Multiple layers are also combined to create a “desirability” layer, which can then

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be used for various other reasoning tasks. For example, the expansion AI will com­

bine the enemy location map with the resource map to make sure it does not try to

expand to an area that has a strong hostile presence.

2.3.2 Dependency Graphs

Dependency graphs are a useful aid for strategic AI in RTS games. Essentially, they

are graphs which represent the various dependencies in an RTS game. For example,

prior to building an infantry unit we may be required to build a barracks, while a

barracks is dependent on having sufficient resources and having a town center [34],

Dependency graphs allow the AI to make various inferences about the game.

For example, if a scout spots an airport at an enemy base, it can then infer that the

enemy also likely has air units. Conversely, if we see air units attacking us, we

know that the enemy has at least one airport.

Identifying weak nodes in a dependency graph is also useful for planning strate­

gic actions. For example, if the enemy is known to have several units and plenty

of resources but not many farms (which are required for creating more units), the

farms would show up as a weak node in the graph. This is because they have many

units dependent on them, and thus the AI may decide to focus on destroying the

farms.

2.3.3 Multi-Tiered AI

Designing effective algorithms in RTS games that form cooperative or complicated

strategies while considering individual units is difficult. To develop large-scale and

complex plans, the complexity that comes with considering large numbers of in­

dividual units must be reduced. An excellent way of reducing this complexity is

to collect individual units into squads [18]. For example, by grouping units into

squads of eight, the complexity can be reduced considerably. Due to the reduced

complexity, and thus reduced burden on the developers, squad tactics have recently

become more common in many RTS games [18].

The idea of squads can be further expanded to include the creation of platoons,

companies, armies, and so on. In fact, to deal with the large complexity of thou-

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sands of individuals, real world armies have been using this hierarchical approach

for thousands of years [18].

One of the main advantages of having a tiered AI system is that each tier only

has to concern itself with information relevant to its decision making. The highest

level commander AI does not deal with pathfinding or formation issues, while sim­

ilarly the lowest level AI for a soldier does not care about the current position of

the enemy army. Tiers can also communicate with each other, with the lower-level

tiers generally providing information to the higher-level tiers, while the higher-level

tiers pass down orders to the lower-levels [18].

Several different AIs can exist on the same tier as well. For example, separate

high tier AI systems could exist for scouting, resource gathering, war waging, base

building, etc. In general, tiered AI systems make the creation of complex strategies

much easier on the developers, and thus they are becoming more commonplace in

strategic games today.

2.4 Conclusions

The RTS game domain is difficult from an AI perspective. It features imperfect

information, simultaneous moves, adversaries, hundreds of complex units, dozens

of units types, and real-time constraints. Any one of these properties is problematic

to deal with when trying to create an AI system. Thus, it is not surprising that there

is a distinct lack of high-performance AI solutions in the RTS game domain.

Currently, the state-of-the-art AI in RTS games is hand-coded or scripted rules

for that particular game. While this approach can yield challenging computer oppo­

nents, it can make the AI appear repetitive, or too predictable to provide a challenge

to an experienced human player; scripts can only go so far. Developers can end up

giving the AI unfair advantages, such as extra resources or full world knowledge to

make the AI more competitive.

Unfortunately, classical planning techniques do not scale well to all of die vari­

ous issues inherent in the RTS game domain. A powerful approach would be to take

a given set of scripted policies, and choose the most appropriate policy based on the

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

strategic situation at the time. This can be achieved through forward simulation of

these policies, and is the main focus of this thesis.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Simulation-Based Adversarial
Planning

Creating a search or simulation-based planning algorithm for RTS games is dif­

ficult. Much of this difficulty stems from the large complexity of the RTS game

domain and the real-time constraints present in RTS games. Traditional state space

search techniques cannot deal with RTS game domains. This has led commercial

AI game developers to invest time and effort into producing script-based computer

players which are essentially just complex finite state machines.

Our approach takes the idea of using scripted policies which, as discussed ear­

lier, can be effective in RTS games, and add a layer of planning on top. Essentially,

we try to improve the performance of a computer controlled player by adding a

mechanism (RTSplan) for choosing a script (policy) from a given set of available

scripts. This is achieved by determining the merit of each script. The merit of a

script is determined by simulating it some time into the future and evaluating the

result of using that script. Then the script that is most likely to yield the best result

is chosen as the one to execute until we perform another planning cycle.

3.1 Action Abstraction

Abstractions are required before state-space search algorithms can be applied to
■ / t

complex decision spaces such the ones faced in RTS games. Not only is the do­

main complex, with micro-moves and many units, but our approach also performs

multiple lookaheads (simulations), and is under real-time constraints as well. This

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

means that each simulation must ran significantly faster than “real” world time, be­

cause several need to be performed before planning is complete. A natural way

to increase the speed of simulations is to reduce the complexity of the domain by

means of abstraction, and that is the approach we take.

Some types of abstractions are commonly used today. For example, the use

of spatial abstractions can speed up pathfinding considerably while still producing

high-quality solutions [4]. Likewise, temporal abstractions, such as time discretiza­

tions, can help further reduce the search effort.

Here, we explore the abstraction mechanism of replacing a potentially large set

of low-level action options by a smaller set of high-level policies from which the

AI can choose. Policies are considered decision modules, functions of state to ac­

tion. Policies can range from complex maneuvers that involve all of a player’s units

(such as “use all units to attack the least defended base while avoiding combat”),

to simple commands (such as “move to position X”). Policies can even be created

by randomization, such as creating a policy which is composed of two consecutive

move commands to random locations.

Consider the various ways of playing RTS games. One typical policy is “rush­

ing”, where a player produces a small fighting force as quickly as possible to sur­

prise the opponent. Another example of a typical policy is “turtling”, in which

players create a large force at their home base and wait for others to attack.

It is relatively easy to implement such policies which, for the purpose of high-

level planning, can be considered black-boxes, i.e., components whose specific im­

plementation is irrelevant to the planning process. We implement policies as scripts,

with a script being a sequence of actions, triggered by events, not unlike scripts used

in RTS games today.

3.2 Planning Based on Policy Simulation

The task of the high-level planner then is to choose a policy to follow until thq next

decision point is reached, at which point the strategic choice is reconsidered.

The aim of this scheme is to create a system that can rapidly adapt to state

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

changes and is able exploit opponents’ mistakes in highly complex adversarial de­

cision domains.

Game Cycle

while (game not finished){
if (planning finished).

chosen policy set as current policy
begin planning next policy

else
// planning is time constrained, and will
// return even"if planning is not finished
continue planning

continue executing current policy
}

Figure 3.1: Top level planning cycle

The cycle shown in Figure 3.1 allows planning and execution to be interleaved.

While we are planning what our next policy should be, we continue to execute our

current policy. Thus, the planning process can run in real-time because we plan

and execute at the same time. It also shows that we continuously replan, trying to

determine the best policy for the current world state which is continually changing.

3.2.1 The RTSplan Algorithm

With the game cycle established, the question now becomes: Having written or

been provided a number of policies, how do we pick the appropriate one in a given

situation? Assuming we have written or have been provided with the set of policies

the opponent can choose from, we can learn about the merit of our policies by

simulating policy pairs, i.e. pitting our policy i against their policy j for all pairs

(i,j) and storing the result in a payoff matrix R, at location rl} (Figure 3.2a).

Because planning and execution are interleaved, with computation spresa<J over

several cycles, payoff matrix R is filled entry by entry. One or more entries in

R are computed, based on available CPU time, each cycle, and the new policy

is not chosen until the entire matrix has been fully populated. Once the matrix

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a) strategy pair simulation b) “maxmin” player

max mm

c) “minmax” player

max

mm

time end
result Tij

max

mm

Figure 3.2: a) Simulating pairs of policies b) maxmin player chooses move i which
leads to the maximum value c) minmax player chooses the best counter move i

minmax, or maxmin, etc. or alternatively, a linear program (LP) to choose the best

policy.

In the minimax rules, one player (max) maximizes its payoff value while the

other player (min) tries to minimize max’s payoff. The two variants with either

player max or min to play first are depicted in Figure 3.2 b) and c). In these exam­

ples, player max plays move i, which leads to the best minimax value. Only in case

where there are pure Nash equilibrium policies do the payoffs coincide.

In a zero-sum two-player setting with simultaneous moves, the natural move-

selection choice then would be to determine a Nash equilibrium policy [24] by

mapping the payoff matrix R into a linear programming problem whose solution is

a probability distribution over our policies. In the Nash equilibrium case, neither

player has an incentive to deviate. Nash-optimal policies can be mixed, i.e. for

optimal results, policies have to be randomized — a fact which is nicely illustrated

by the popular Rock-Paper-Scissors (RPS) game.

In RPS, players select a move simultaneously between three possible ttfoves:

Rock, Paper, or Scissors. Scissors wins versus Paper, Rock wins versus Scis­

sors, and Paper wins versus Rock. The payoff matrix for Player A in a game

is populated, the appropriate policy can be chosen in several ways. We can use

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Player B

R P S
R

Player p
A

S

0 -1 +1

+1 0 -1

-1 +1 0

Player
A

S,

52

53

Player B
S2 S3 S4 S5

Figure 3.3: On the left, a simple payoff matrix for the game of Rock-Paper-Scissors.
On the right, a sketch of the payoff matrix used in the RTS game simulations. St
represents policy i .

of RPS is shown in Figure 3.3. The Nash-optimal strategy is to choose each ac­

tion uniformly at random; in particular P(Choose Rock) = PfChoose Paper) =

P(Choose Scissors) = | .

In the case of our RTS game planner, the actions are instead policies and the

payoff values are obtained via results of simulations into the future. In the simplest

version, policies are simulated to completion or until they time-out, in which case a

heuristic evaluation function is necessary to estimate who is ahead.

Informing the opponent about the move choice can be detrimental, like in Rock-

Paper-Scissors, and the Nash-optimal strategy may have advantages over maxmin,

or minmax, or both. For example, if we revealed to our opponent that our policy

was to attack all their bases at once, they could respond with an appropriate counter

policy, such as massing their army and killing our attack forces off one by one. This

is the reason why we model RTSplan as a simultaneous move game instead of an

alternating move game.

The following describes the simulation approach to selecting an appropriate

policy from a given set of policies (RTSplan Algorithm):

• Consider a set of policies P of size n and compute each entry of the payoff

matrix R (with dimensions of n x n) by assigning policy p., to the simulation-

based AI, and policy pj to its opponent, and executing these policies until

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

either there is a winner, or a timeout condition is reached. Once the simulation

is completed, the terminal game value or a heuristic evaluation is assigned to

payoff matrix entry rtJ.

• Calculate a Nash-optimal policy with respect to our player using the standard

Linear Programming (LP) based method, with the LP formulation given be­

low, or alternatively a minmax or maxmin move. The same method was used

to solve the Oshi-Zumo game [6],

• In case of the Nash-optimal player, assign a policy randomly to our player,

using the probability distribution returned by the LP solver. For the minmax

or maxmin players, play the minmax or maxmin move directly.

• Repeat from step 1 as often as is desired while executing the chosen policies.

Step 2 in the RTSplan algorithm requires the solving of a LP in order to calcu­

late the Nash-optimal policy for the given payoff matrix R. This formulation is also

valid for the opponent modelling extension discussed in the next section, and imple­

ments von Neuman’s Minimax theorem [36]: maxT miny x 'R y = miny maxj. x/Ry =

Z, which states that there exist mixed equilibrium strategies x and y with maximum

payoff Z for player 1 and — Z for player 2.

An LP characterizing such Nash-optimal mixed policies for the maximizing

player is the following:
Maximize Z such that

n

for all 1 < j < m : Z < ^2 ri,jx u
i=1

n

for all 1 < i < n : Xj > 0 , £j = 1

i=1

In our application, rhJ is the simulation result when we choose policy i and the

opponent chooses policy j . Xi is the probability of respective policy i for our player.

Z is the expected payoff for our player. Our player (max) has policies 1,..., n to

choose from, while the opposing player (min) has policies 1, ...,m . In this case,s f *
n = m since our opponent uses the same policies as our player. This is not the case

in the opponent modelling extension presented in the next section. To solve this LP,

we used an LP solver based on the implementation in [27].

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Opponent Modelling

One problem with the Nash equilibrium strategy is that it does not exploit our op­

ponent’s mistakes. For example, in Rock-Paper-Scissors, the Nash-optimal play is

to randomly select one of the three moves with equal probability. Although this

guarantees that our opponent cannot exploit our play, it also means that we cannot

exploit theirs. For example, a Nash-optimal player would only be able to break even

against a player that played Rock all the time; an exploitative player would learn

this behaviour and exploit it in order to win.

To exploit an opponent’s policy, we first require some idea of what their policy

may be (a model of our opponent). Once we have an idea of what our opponent is

doing, we can respond with an appropriate counter-policy. In our case, opponent

modelling involves observing the opponent for a specified period of time, followed

by choosing a subset of policies from our player’s policy set that the opponent

appears to be executing. Then the next step is to find the best-response policy to

this subset. Opponent modelling requires changing the game cycle, and the updated

game cycle can be seen in Figure 3.4.

while (game not finished){
if (planning finished)

chosen policy set as current policy

// update opponent's subset periodically
if (sufficient time has passed)

update opponent's policy subset

begin planning next policy
else

// planning is time constrained, and will
// return even if planning is not finished
continue planning

continue executing current policy
}

Figure 3.4: Updated game cycle

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Parameters

There are three parameters that will affect the performance of opponent modelling:

1. Prediction cutoff ratio (/) : A real number in [0,1] used to calculate the

cutoff point for a policy’s comparison value to determine whether it will be

added to P'.

2. Time Period (£): The interval in game seconds between recalculation of ac­

tive policy set P'.

3. Distance Measure (D): Measure used for calculating the difference between

two states. We discuss the specific implementation for our domain in greater

detail later in this section.

These parameters are domain dependent, and thus should be determined after

some experimentation has been performed on the domain to which this algorithm

is applied.

While the original payoff matrix R has dimensions of n x n, the matrix of the

opponent modelling extension (R ') has dimensions n x m, where m is the size of

the active policy set P' of the opponent.

The active policy set P' is composed of policies from policy set P. A policy p is

considered active if the current world state resembles a state that would be reached

from a state time period t earlier, with our opponent using policy p for that specified

time period t . Essentially, if we run a simulation over the past time period t with the

assumption that our opponent is executing policy p, and it turns out that the reality

is similar to our assumption, we add p to P '.

This approach works well at detecting if the opponent is executing a policy in

our policy set and for policies similar to that policy as well. It can also adapt if

the opponent changes policies because P' is recalculated periodically. However, it

does not keep a history of previous policies, nor does it keep a table of weights, or

an artificial neural network, to keep track of the opponent’s previous tendencies, as

is done sometimes in Poker [10]. The effectiveness of these alternative methods of

opponent modelling have not been explored in this thesis.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The active policy set P' is determined by the following process:

The RTSplan-O Algorithm

• Save the current game state as state sa. This includes storing the positions

of all the objects in the game world, the current policies employed by both

players, and any other relevant information.

• After time period t has elapsed, the current game state is once again saved,

this time as state s&. Let A be the policy that was used by our player over time

period t. ■

• For each policy in P, simulate for time period t from starting state sa, with

our policy A and policy pt for the opponent to yield state st.

• For each state compare st to using a distance measure D between the

two states and store the result as dt. Let d be the average over all of dt. Let

c = d- f , where / is a specified ratio value. In essence, c represents the range

that the difference between two states can be within in order to be considered

“active”.

• For each state sh if dt < c then pt is added to the active policy set P 1.

• If the previous steps resulted in \P'\ = 0 then set P' = P.

The new payoff matrix R' for the RTSplan algorithm has |P | rows and \P'\

columns. Essentially, policies in P' are those which closely match what we expect

the opponent to do if they were performing one of the policies in our policy set P. If

we cannot determine which policy our opponent is likely executing (their policy is

significantly different from anything in P) then we revert back to the pure RTSplan

algorithm using the original payoff matrix R.

Distance Measure D ■» r ,

The distance measure used to compare two different states is fairly straightforward,

but not without complications. If both states have the same number of objects then

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

we just tally up the sum of all the distances between corresponding objects in their

respective states and return this sum.
1*1 ---------------------------------

Thus, D(s, s') = Y , \j(x i - x ’i f + (yi - y t f if |s| = |s'| where (x y t) and
i=0

(x-, y[) represent the positions of objects i in states s and s' respectively.

If there is a difference in the number of objects, meaning that one state had

engaged in more combat than the other, and lost or killed units, then we mark that

state with a flag. Once all the distance measures are completed, all the D values

of the flagged states are set to the maximum non-flagged value. This eliminates

the need for an arbitrary “penalty” value given to states with different numbers of

objects, thus maintaining a proper average value not skewed by the penalties of the

flagged states. If all states were marked as flagged then we skip to the last step of

the active policy set determination algorithm.

Complications with this approach can occur if objects cannot be uniquely iden­

tified. For example, if the only information we are given about an opponent’s army

is the number and types of units, two armies with identical compositions would be

indistinguishable using the above approach. Furthermore, if objects merge to cre­

ate less objects, or split apart to create more objects, the method described above

would not be sufficient. However, the advantage of our approach is that it is easy to

implement and is not computationally expensive.

Our implementation can currently uniquely identify all objects in each state,

and does not allow for merging or splitting of objects, and thus does not suffer the

problems discussed above. However, creating a general solution that can deal with

with the above-mentioned problems should be the study of further work. For exam­

ple, one possible solution is to create a strategic-based distance measure, instead of

the location-based measure we use here. However, this alternative is not explored

in this thesis.

Discussion

■' t *
Opponent modelling has several advantages. First, it reduces the number of simu­

lations needed to be done because \R!\ < |/?.|. Reducing the number of simulations

has a significant impact on performance as the simulations are the most computa-

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tionally intensive part of the RTSplan algorithm. Second, assuming the opponent

does not deviate from the predicted policies, opponent modelling also leads to better

play by RTSplan overall because it does not have to give the “benefit of the doubt”

to the opponent by considering all of their available policies in the Nash equilibrium

calculation.

However, excluding certain policies from the Nash equilibrium calculations also

carries some risk. Including only policies that resemble what the opponent is doing

is usually a good idea, but if the opponent is executing a policy that just happens to

be similar for time period t does not automatically mean that they are performing

the policy we think they are. By concentrating only on how to counter the policy

we think they are following, it effectively blinds us to other actions they could take,

perhaps leading to a loss for us. Also, with our method we are essentially always

one step behind our opponent because we are using their past policy as a predictor

for their future policy.

Choosing a good value for t and / is particularly important when playing against

unpredictable opponents, such as humans. Lower t or higher / values will result

in less exclusions, but lead to reduced benefits of opponent modelling. Finding

balanced values is essential. Since the effectiveness of these parameters is domain

dependent, finding good values will likely require separate experimentation for each

different domain. Furthermore, the success of our opponent modelling approach is

dependent on the size and variability of our policy set P, with a larger and more

variable P leading to better modelling of our opponent because we have more poli­

cies for comparison with the opponent’s behaviour, and thus a higher chance of

obtaining a more accurate opponent model.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Implementation and Experiments

To test the performance of RTSplan, we implemented a simulator for an abstract

model of a typical RTS game. Because RTSplan only considers group management

and deployment in the abstract model we use, our experimental setup does not in­

clude the handling of resource collection and the creation of units and buildings.

This means that we create an abstract model of only a part of a full RTS game.

However, its reduced complexity allows us to better concentrate on the army de­

ployment problem. Although RTSplan is designed to work in any abstract model

of RTS games, there are some implementation issues specific to the abstraction we

use that warrant further discussion.

We conducted several experiments to determine the effectiveness of RTSplan

in our abstract model. Similar experiments were performed to test the effective­

ness of the opponent modelling extension and to test parameters that affect these

algorithms. Finally, the execution times of RTSplan in our abstract model were

examined.

4.1 Implementation Details

We have made several assumptions and simplifications when designing our ab­

stract model of RTS games. In particular, combat and pathfinding are simplified to

speed up simulations and to concentrate more on the higher-level issues, instead of

low-level implementation issues. We also introduce the concept of fast-forwarding

which greatly speeds up forward simulation.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Simulation Process

currTime = 0;

while (!isGameOver()) {

for (int i=0; i < players.size (); ++i) {
Policy bestPol = calcBestPolicy(players[i]) ;
players[i].updateOrders(bestPol);

}

// time increment is based on how much time has
// elapsed between subsequent calls to this code
currTime += timelncrement;

if(isTimeToUpdateActivePolicies ()) {
recalculateActivePolicies();

}

updateWorld(currTime);
}

determineWinner();

Figure 4.1: Simulator main loop pseudo-code

calcBestPolicy () in Figure 4.1 computes the result matrix and returns

the best policy, time permitting. If the allowed computation time expires before the

matrix is fully computed, it will return null, and the orders for the player will not

be updated. For non-simulation based player types, we call the responding hard­

coded code block in calcBestPolicy (). Regardless of whether a policy was

changed in the function, the world advances forward in time by the specified time

increment. However, because calculating the best policy may be time consuming,

we may have to spread out computations over several world update intervals. This

means that the world will continue to advance, even while policy calculations are

going on (see Figure 4.2). ' 4

For example, in our abstract RTS game, which runs at 8 simulation frames a

second when not in real-time mode, the simulator only has l/ 8 th of a second to

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

New strategy calculation com pleted (units receive new orders)

Executing stra tegy Executing stra teg y 2 Executing s tra teg y 3

Time

World is updated (all units ex ecu te current orders)

Figure 4.2: The simulation timeline

perform simulation computations before the world advances. This is enough time to

compute a few entries of the payoff matrix, but usually not enough time to compute

all entries. Thus, all the work done up to that point is saved, and resumed as soon

as the real world advances. Once the entire matrix is completed, we can finally

determine a policy. It is at this point that actions are being updated. This method

allows for the world simulation to run in real-time, because expensive planning

is interleaved with world execution. A separate real-time mode exists for non-

experimental use, which does not use a constant time increment, but instead uses

the length of time elapsed between subsequent calls to the function. We do not

use this method in our experiments, since results in that mode are not processor

independent.

The method isTimeToUpdateActivePolicies () is only used for the

opponent modelling extension of RTSplan, and returns true only if the specified

time period has elapsed, the entire payoff matrix has just been computed, and the

new policy calculated. Resizing the payoff matrix before it is completely filled

is possible, however, it is not explored in thesis, though observing its effects on

performance could be the subject of future work.

Selection of Best Policy t „

The best policy for our Nash player is calculated in a fairly straightforward manner.

First, we need to compute the payoff matrix. Each entry in the matrix represents

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the result of a forward simulation between competing policies in which a winner

is found or the time limit has been reached. The basic algorithm is shown in Fig­

ure 4.3.

for (int i=0; i < ourPolicies.size(); ++i) {
for (int j=0; j < activeOppPolicies.size(); ++j) {

// this method checks if we have time to compute
// another forward simulation before real world
// must be allowed to advance
if (!nextSimulationAllowed()){
return null;

}
// simulate the competing policies
r [i][j]=simulate(ourPolicies[i],activeOppPolicies[j]);

}
}
return pickPolicy(r);

Figure 4.3: Pseudo-code for part of calcBestPolicyO function.

There is a check between each simulation to see if there is time to run another

simulation without violating time constraints. This can result in the effect that our

player is a bit behind the action, because the world is changing while the algorithm

is still trying to compute the payoff matrix to determine the next policy. However,

for our player to be able to play in a real-time setting, time constraints are necessary,

because computing the entire matrix can take too long.

Combat Simulation

RTSplan requires a combat simulator as part of its forward simulation process in

order to resolve combat between opposing units within range of each other. Its

complexity can be variable, however since RTSplan performs many forward simu­

lations, a very complex combat simulator could adversely affect performance.

In our implementation, we abstract individual units into groups with because

we are dealing only with army deployment. Not only does this reduce the number

of objects that need to be dealt with, but it also more closely matches the way a

human thinks when playing an RTS game. A human player usually sends out groups

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of units, and deals with individual units only in combat situations. Our combat

simulator does not deal with combat tactics. Instead it has a simple combat model

that generally favours numerical advantage and is computationally inexpensive.

Pathfinding

RTSplan requires a pathfinding system that returns a path as a series of waypoints

composed of locations. The specific pathfinder implementation is not important,

only the format in which the paths are returned.

Our test scenarios did not contain any obstacles, so we did not include any

pathfinding system in our implementation. However, RTSplan would work in ex­

actly the same manner if the scenarios had obstacles and we had an appropriate

pathfinder.

Victory Conditions

In our scenarios there are two sets of victory conditions. One for the actual game,

and another for the forward simulations. In our implementation, they are identical.

However, this need not be the case, and having a different set of victory conditions

for forward simulations from the real game could prove beneficial. This aspect is

not explored in this thesis however.

Victory in a scenario is achieved by either destroying all of the enemy’s bases

or units, or by having more bases/units when the game/simulation runs past a pre­

determined time limit. The time at which to stop the game/simulation is 1000 game

seconds, and the method used to break ties is the following: the winner is the one

who has more bases. If the number of bases is equal then the winner is the player

with the higher number of remaining groups. If either all the bases or groups were

killed at the same time, or the material is identical when time runs out, the result of

the scenario is declared a tie. The time limit of 1000 seconds was chosen in order

to allow the majority of games to play to completion, while still detecting stalemate

situations before too much computation time is wasted in simulation. An 'exaTnple

of a typical map and scenario progression can be seen in Figure 4.4.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ttack b a se

\ A ttack b a se

A ttack ing b a se

All g ro u p s a tta c k
e n e m y h e re >

A ttack ing b a se

(a) All groups first form local groups of three (b) Opponent attacks bases while black gathers

H unt dow n
rem ain in g e n e m y

A ttack n e x t b a se o n ce
c u rre n t o n e d e s tro y e d

(c) Black eliminates part of the enemy force

A ttack ing n ew b a se

V,
C h a se dow n
rem a in in g g roup

f>,.

(d) Black eliminates the rest of the enemy

Figure 4.4: Snapshots of a typical map and the progression of a game. Light gray
is a static player playing the Spread Attack policy, black is the RTSplan player.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Policies

All of our initial simulations involved the following 8 policies, chosen mainly based

on their diversity and their use by human players in commercial RTS games:

1. Null. This is more like a lack of policy. All groups stop what they are doing,

and do not move. They do however still attack and defend against any groups

or bases within their defined weapon range.

2. Join up and Defend Nearest Base. This policy gathers all the groups into

one big group, with groups joining at their combined center of mass in order

to speed up joining time, and then moves this large group to defend the base

that is closest to an enemy group.

3. Mass Attack. In this policy, all groups form one large group in the same

manner as in the Join policy, which then goes to attack the nearest enemy

base until no enemy bases remain. There are two versions of this policy.

Given the choice of attacking a base and group within range, one chooses to

attack the base first and the other chooses to attack the group first.

4. Spread Attack. In this policy, all groups attack the nearest enemy base to

them, and this repeats until all enemy bases are destroyed. There are two

versions of this policy; the versions are analogous to those of the Mass Attack

policy.

5. Half Base Defense Mass Attack. This is a split policy. Groups are divided

into two halves. One half defends their respective nearest bases, while the

other executes the Mass Attack policy.

6. Hunter. In this policy, all groups join with their nearest allied group in or­

der to create a larger combined hunting group. After the joining, all of these

newly formed groups join into one large group which attacks the nearest en-
■' t ”

emy group until no enemy groups remain. The initial joining is performed to

minimize losses during the secondary join phase.

35

with permission of the copyright owner. Further reproduction prohibited without permission.

Policies which require examination of the game state, for example to determine

nearest enemy group or base, do so periodically. In our case, the examination is

done every 5 game seconds. This periodic examination is due to the fact that we

are fast-forwarding via simulation and thus cannot examine the game state contin­

uously. The value of 5 seconds aims to balance the effectiveness of fast-forwarding

and the frequency at which policies examine the world state. Fast-forwarding is

described in the next section.

4.1.1 Fast-Forwarding of Policies

In our implementation, each forward simulation simulates all the way until the end

of the game or to some point in the far future (e.g., 1000 world seconds). Therefore,

it is crucial that the simulations of future states are computed quickly. However,

these simulations can be expensive, especially if we were to simulate every single

time step into the future. To reduce this high cost, we instead calculate the next time

o f interest, and advance directly to this time. This calculated time is derived in such

a way that there is no need to simulate any time step in between our start time and

the derived time, because nothing interesting will happen during that time interval.

Details on what we consider “interesting” are discussed later in this section. The

derivation of the time o f interest is implementation and policy specific, although we

expect that many factors in its determination would likely be common among other

implementations and policies as well.

Here we introduce the concept of fast-forwarding. The idea of fast-forwarding is

to advance simulations from one time o f interest to the next, instead of game tick by

game tick, thus greatly reducing simulation cost. The algorithm for finding the next

time of interest in our RTS game simulation environment is shown in Figure 4.5.

1. nextCollideTime () is calculated by solving a quadratic equation with

input being the direction vectors of the two groups in question. The quadratic

equation may not be solvable (no collision) or it may produce a time ©Tcelli-

sion. This is similar to what is used for collision calculations in ORTS [23],

another continuous-space RTS game environment. Two groups are consid­

ered to be colliding if either one of them is within attack range of the other.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

double nextTimeOfInterest(){
// start with maximum value of a double
double minTime = DOUBLE_MAX;

// next time opposing groups are in shooting range
double collideTime = getNextCollideTime();
if(collideTime < minTime) minTime=collideTime;

// next time a group's order is completed
double orderDoneTime = getNextOrderDoneTime();
if(orderDoneTime < minTime) minTime=orderDoneTime;

// if units in range, earliest time they can shoot
double shootingTime = getNextShootingTime();
if(shootingTime < minTime) minTime=shootingTime;

// next time policy gets to re-evaluate game state
double timeoutTime = getNextPolicyTimeoutTime();
if(timeoutTime < minTime) minTime=timeoutTime;

return minTime; // time to advance simulation to

Figure 4.5: Function for determining the next time of interest.

2. getNextOrderDoneTime () is a simple calculation. Because all units

travel in straight lines from waypoint to waypoint (in our implementation,

they travel directly from start to goal due to lack of obstacles), we can just

divide the distance to the goal for a group by its maximum velocity. We do

this for every group, and return the time at which the first group reaches its

goal.

3. getNextShootingTime () applies to groups that are already within range

of an enemy group and are recharging their weapons. This function returns

the next time at which one of these groups can fire again.

4. getNextPolicyTimeoutTime () returns the next time that any/one of

the policies in question is allowed to re-evaluate the game state to give out

new orders if necessary.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fast-forwarding allows forward simulations to safely skip all time steps during

which nothing but movement of groups occurs (we consider these times to be

unimportant). Essentially, fast-forwarding advances from one interesting time to

the next, greatly improving simulation speed. As mentioned earlier, this method

would also work with a separate implementation of any pathfinder, as long as that

pathfinder provides a series of waypoints as orders to our groups. In a more complex

domain with obstacles, more frequent re-examinations of the game state, and less

abstraction, fast-forwarding is likely to be less effective since times of interest will

occur closer to each other. Thus, to keep fast-forwarding effective, the abstraction

model should be kept as abstract as possible.

4.2 Experimental Setup

There are several different RTS games on the market today. Each game has different

units, different abilities, different resources, and other variations. Because we are

creating an algorithm that should work in general, i.e., for all types of RTS games,

our scenarios will only have elements that are common among all of them.

Scenario

A scenario is an experimental run involving a description of the initial setup of the

map paired with two particular AI players controlling each side. All of our scenarios

consist of bases and groups of units. Bases only have two attributes: position and

hitpoints. These are abstractions of actual RTS game bases, which are typically

composed of multiple buildings. Groups are composed of several units of possibly

varying types. Units have the following properties: speed, attack power, armor,

attack rate, position, attack range and hitpoints. Units are treated as individuals

inside a group in all respects except for move speed. In this case, groups move at

the speed of the slowest of its units.

Each scenario we create is symmetric geometrically, and unit-wise, givipg no

advantage to any player. Although this symmetry does not accurately represent

real world RTS games, it does decrease result variance, which is useful for our

experimentation.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Every map used has a continuous coordinate system with infinite size. There

are two reasons for this choice: to avoid unnecessary collision-checking and to

encourage the development of policies that are independent of the map size. How­

ever, bases and groups from the same player start fairly near each other to better

approximate real world scenarios.

4.3 Initial Experiments

This section explores the effectiveness of our simulation-based planning algorithm

(RTSplan) when applied to the abstract RTS game previously described.

We ran several tournaments to first determine the best evaluation function to use

and then to compare the simulation-based policy to single static policies. Games

were run concurrently on several computers.

To make the experimental results independent of specific hardware configura­

tions, the simulator used an internal clock. Thus, processor speed did not affect our

experimental results. However, to do this we had to slightly modify our main exe­

cution loop, because we could no longer use an execution time limit for interleaving

world execution and planning. Instead, we use parameter p a i r s _pe r _ in t e r v a 1,

which specifies how many entries in the payoff matrix are calculated before allow­

ing the world to move forward. As mentioned earlier, we include a flag in our

simulator which allows the choice between “true” real-time mode, and the above-

mentioned mode which allows for reproducible and hardware independent results

for our experimental testing.

All references to seconds in this section are to the simulator’s internal clock.

Seconds in our case are not related in any way to real-world seconds. We use them

merely because the speed of the groups and other attributes are specified in this time

reference.

Parameters
•» f >7

All of our experiments have the following parameters in common, with some ex­

periments having additional parameters that will be discussed when they are appli­

cable:

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. simulation_length: This parameter sets how many simulator seconds

we fast-forward into the future before evaluating the given state. When set

to a large value, simulations are likely to end early when the game is finished

due to a victory by either side. In the reported experiments this value is set to

1000 seconds, thus effectively allowing all simulations to run until the game

ends.

2. max_simulation_t ime : This parameter sets the amount of real simula­

tor seconds that are allowed to pass before we determine a winner based on

the tiebreaker criterion. The value is set to 1000 seconds as well, meaning that

it is likely that only true stalemates will be subject to the tiebreak procedure.

3. pairs_per_interval: This parameter determines how many pairs of

competing policies we run before the world time advances.

4. time_increraent: This value determines by how much time the world

advances during every interval (time between each tick in Figure 4.2). This

parameter is set to 0.1 seconds which means that time in our simulation ad­

vances by 0.1 seconds for every number of policy pairs we simulate. This is

specified by pairs_per_interval).

In our initial experiments, we use either sets of 50 or 100 maps which are similar

to the map in Figure 4.4. The map in Figure 4.4 is a snapshot of only a part of the

total scenario in the middle of the game. All of our initial experiments use scenarios

of 4 bases per player, with each base being defended by one group of 20 tanks. We

use the large numbers of tanks in order to try and make sure our results generalize

to regular RTS games which often have similar numbers of units.

Evaluation Functions

The evaluation function is traditionally something that is designed by experts. Our

algorithm simulates all the way to the end of the game, or at least significantly

far into the future in the case where both policies end up in a stalemate situation.

Thus, the evaluation function of the game state can be fairly simple, because we are

simulating to the end of the game in the majority of cases.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The game state evaluation function used in our experiments was chosen by

testing several candidates and determining the function that was most suitable.

Each candidate function ran against static opponents that used the policies de­

scribed earlier. Thus, each candidate evaluation function was run vs. every pol­

icy, for every one of the 50 randomly generated symmetrical maps. Because we

had 8 predefined policies, there were a total of 400 separate games played by

each candidate. Each evaluation function used a basic RTSplan player, and the

p a i r s _ p e r _ i n t e r v a l was set to 8. This meant that the RTSplan player experi­

enced a 0.8 (64/8* t im e .in c r e m e n t) second delay in its reaction time, because

we had a total of 64 entries to compute the payoff matrix. In this experiment, we

, awarded 2 points for a win, 1 point for a tie, and 0 for a loss. The win rate is based

on the total number of possible points obtained.

The first candidate evaluation function was just a simple function that returned

either 100 for a win, -100 for a loss, and 0 for a tie. Its win rate against the static

policies was 70.4%. Our second candidate evaluation function added a time param­

eter, which gave a slight bonus to quick wins, and to slow losses. Thus, it prefers

to win quickly, and if losing, to prolong the game as long as possible. Its win rate

was 75.2%. Finally, our last evaluation function added a material difference bonus.

This means that preserving our units and destroying enemy units leads to a higher

score. This modified evaluation function obtained a win rate of 80.7%. Due to the

significant improvement, it is the one used in all of our further experiments.

4.3.1 RTSplan Experimental Results

After we had obtained an evaluation function by comparing the performance of

several candidates in conjuction with RTSplan against the static policies, we ran

RTSplan against different opponents, with varying parameters, in several further

experiments in order to judge its performance.

RTSplan vs. Other Policies ■> / ■>

First, we tested the performance of our basic RTSplan player without opponent

modelling vs. our individual static policies, and also against a “random” player

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Random) that switched randomly between policies every 5 game seconds. This

was run over a set of 100 randomly generated symmetrical maps, with the basic

RTSplan player and the Random player competing against all 8 policies one at a

time for every map. Thus, there were 800 games played for every player match-up.

Although the Random player did not stick to one static policy, we still played it 8

times for every map, just like for the static player. The only difference was which

policy the Random player played in the first 5 seconds, before it randomly switched.

Due to this fact, the results in Table 4.1 are expressed in terms of win, loss and

tie percentages. They show that overall, our basic RTSplan player beats individual

static policies. This is despite the fact that it operates at the same 0.8 second delay

as we have seen in the evaluation function experiments. However, a closer exami­

nation of the results show that while RTSplan performs well against most opposing

policies, it performs poorly against a few others. This will be explored later in this

chapter.

The results for the Random player are interesting as well. It gets beaten fairly

handily by both the static policies and the RTSplan player, which is not surprising,

because it essentially switches policies blindly, while even the static player at least

has a policy which knows how to play out the entire game. However, it still defeats

the RTSplan player 15% of the time.

Because it switches policies every 5 seconds, the final policy for the Random

player is a mix of our 8 defined policies, which is similar to what the RTSplan

player does. Our forward simulations do not currently allow for the switching of

policies in the middle of simulations, and thus they cannot foresee some of the

erratic movements of the Random player. This means that the Random player can

Table 4.1: Different Player Comparison

Row vs. Col (W-L-T) % Random Static RTSplan
Random - 22.0 - 77.8 - 0.2 15.0 -84XK 1.0
Static 77.8 - 22.0 - 0.2 - 21.9-78.1 -0.0
RTSplan 84.0-15.0- 1.0 78 .1 -21 .9-0 .0 -

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

get “lucky” and catch our RTSplan player off guard with an unforeseen move.

RTSplan vs. Individual Policies

Although we have shown that the basic RTSplan player can beat the individual

policies overall, it is also useful to know its performance against each static policy

specifically. These results are shown in Table 4.2.

From these results, it is clear that RTSplan player soundly defeats every policy

with the exception of the policies that are aggressive, especially the Hunter policy.

Thus, we need to determine how well Hunter performs against all the other policies

to determine if Hunter is the dominant policy. These results can be seen in Table 4.3.

The results show that Hunter is soundly beaten by any policy that forms one

large mass of units at the outset. This means that it is not the dominant policy and

that some other factor is causing the RTSplan player to lose to Hunter because the

RTSplan player performs much better overall, yet loses to Hunter.

At first, it appears likely that the delay that our RTSplan player experiences

due to its staggered payoff matrix computation process could be the cause. We

performed an experiment to test this, where we gave the RTSplan player no delay.

However, Table 4.4 shows that although the delay does hamper the performance of

the RTSplan player, it is not the only cause. Even in this ideal scenario, RTSplan

still loses to Hunter. This result will be explored later in this chapter.

It may also seem like we are double-counting the results for Mass Attack and

Spread Attack in Tables 4.2, 4.3 and 4.4. However, this is not the case. The policies

with base and unit preferences are in reality similar, yet still very different. In our

particular scenarios however, they end up yielding the same results. It is likely they

would yield different results in a different scenario setup.

RTSplan vs. MinMax and MaxMin

Our RTSplan simulation player generally defeats single policies. To address the

question of how important policy randomization is in our game, we crehted two

other players. These players use simulation but treat the games as alternating move

games, in which moves of the first player are made public and the second player t

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.2: RTSplan Player vs. Specific Policies

Policy Wins Losses Ties
Null 100 0 0
Join Defense 98 2 0
Mass Attack (base) 98 2 0
Mass Attack (units) 98 2 0
Spread Attack (base) 51 49 0
Spread Attack (units) 51 49 0
Half Defense-Mass Attack 98 2 0
Hunter 31 69 0

Table 4.3: Hunter vs. Specific Policies

Policy Wins Losses Ties
Null 100 0 0
Join Defence 7 93 0
Mass Attack (base) 7 93 0
Mass Attack (units) 7 93 0
Spread Attack (base) 69 31 0
Spread Attack (units) 69 31 0
Half Defense-Mass Attack 7 93 0

Table 4.4: RTSplan Player (no delay) vs. Specific Policies

Policy Wins Losses Ties
Null 99 1 0
Join Defense 97 3 0
Mass Attack (base) 97 3 0
Mass Attack (units) 97 3 0
Spread Attack (base) 55 44 1
Spread Attack (units) 55 44 1
Half Defense-Mass Attack 97 3 0
Hunter 45 55 0

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can respond to them. We call these players MinMax and MaxMin.

Naturally, we expected the RTSplan player to defeat both the MinMax and

MaxMin players, because the game we consider is a simultaneous move game. To

see this, consider Rock-Paper-Scissors. In an alternating and public move setting

the second player can always win. We ran the MinMax and MaxMin players against

each other on 100 randomly generated symmetric maps. p a i r s _ p e r _ i n t e r v a l

was set to 64, allowing the full payoff matrix to be computed before advancing time

in the simulation. The results can be seen in Table 4.5.

As expected, the MinMax and MaxMin players were almost equivalent, while

it is clear that the RTSplan player is the better player by a small margin. The large

number of ties is expected as well, because when both players reach the Nash-

equilibrium point, neither player will have incentive to deviate from their current

policy. In reality, this means that the game ends in a stalemate, where the groups of

both players are stationary or in a state of oscillation.

4.3.2 Results of RTSplan with Additional Policies

The previous experimental results showed that the RTSplan player was better over­

all versus individual static policies, however, they also showed that it performs

fairly poorly against the more aggressive policies such as Hunter and SpreadAt-

tack.

As discussed earlier, the strength of RTSplan is highly dependent on the number

and diversity of policies available to it, and thus we introduce the following two

policies to improve the RTSplan player.

• Attack Least Defended Base. This policy first creates one large army in the

Table 4.5: Simulation Players Comparison

Row vs. Col (W-L-T) MinMax MaxMin RTSplan
MinMax - . 6-8-86 0-21-79
MaxMin 8-6-86 - 6-19-75
RTSplan 21-0-79 19-6-75 -

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

same manner as Mass Attack, and then this army looks for the least defended

base, which is the base that is furthest away from its friendly forces, and

attacks that base. The least defended base is reconsidered periodically, in

case the opponent shifts forces to defend the target base.

• Harass. This policy harasses the enemy, but never engages in direct combat

unless forced to do so. First, armies of two nearby groups are formed, and

each army is sent to attack the nearest enemy base. However, if an enemy

army gets near any of our harassing armies, that army retreats in the direction

of the nearest friendly base. Once it is sufficiently far enough (in this imple­

mentation, about twice the range of the enemy’s weapons) from the enemy

however, it proceeds to attack the nearest base once again.

Results presented in Tables 4.6 and 4.7 show that the addition of these two

policies does not introduce any dominant policy. Instead it creates a better mix of

policies, where every policy can be countered by at' least one other. This could

benefit the RTSplan player, since it can find a counter to every policy.

In theory, the RTSplan player should perform better overall if it has more poli­

cies to choose from. Having a set of policies that each have a way to be countered

benefits the RTSplan player, because it has the opportunity to use the appropriate

countering policy.

Table 4.8 shows that the RTSplan player does improve over the original, how­

ever, only slightly. The original 8 policy player wins 78.1% of the time, while the

new RTSplan with 10 policies wins only 78.3% of the time, although game logs

show that when it loses, it’s a closer contest.

Further examination from game logs where the RTSplan player lost made it

clear what was happening. Essentially, the root of the problem is that the RTSplan

player gives too much credit to its opponents. Because it has no knowledge about

the opponent, it must give it the benefit of the doubt and assume that they will use

the policy most detrimental to the RTSplan player.

Unfortunately, this sometimes leads to the situation where RTSplan sees that

if the opponent executes a particular policy at that specific time, there is nothing

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.6: Harass vs. Specific Policies

Policy Wins Losses Ties
Null 2 0 98
Join Defence 100 0 0
Mass Attack (base) 100 0 0
Mass Attack (units) 100 0 0
Spread Attack (base) 38 59 3
Spread Attack (units) 38 59 3
Half Defense-Mass Attack 100 0 0
Hunter 49 51 0
Attack Least Defended 100 0 0

Table 4.7: Attack Least Defended vs. Specific Policies

Policy Wins Losses Ties
Null 100 0 0
Join Defence 13 8 79
Mass Attack (base) 6 94 0
Mass Attack (units) 6 94 0
Spread Attack (base) 0 100 0
Spread Attack (units) 0 100 0
Half Defense-Mass Attack 6 94 0
Hunter 93 7 0
Harass 0 100 0

Table 4.8: RTSplan vs. New Policy Set

Policy Wins Losses Ties
Null 100 0 0
Join Defence 96 4 0
Mass Attack (base) 99 1 0
Mass Attack (units) 99 1 0
Spread Attack (base) 38 62 0
Spread Attack (units) 38 62 0
Half Defense-Mass Attack 99 1 0
Hunter 46 54 0
Attack Least Defended 99 1 0
Harass 70 28 2

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that the RTSplan player can do to prevent a loss. Game logs show that this oc­

curs only sporadically, however, the defeatist attitude from this calculation leads to

indecision-like behaviour, where RTSplan is essentially frozen in place, trying to

decide whether it can get out of a sure loss or not. This delay usually means that

the situation only gets worse, which eventually leads to defeat.

A way to deal with this problem is to limit the policy set we use for our opponent

by only considering policies that the opponent appears to be playing. Opponent

modelling is a natural way to limit this policy set.

4.3.3 RTSplan-O Experimental Results

The previous section showed that although RTSplan plays well in general, it does

have a weakness in that it gives too much credit to its opponents. This section shows

that the addition of opponent modelling can remedy this problem, at least for when

dealing with known policies.

RTSplan-O vs. Individual Policies

Once opponent modellihg was added to the RTSplan player, the exact same map set

was run once again with the RTSplan-O player versus the entire policy set.

Table 4.9 shows that the RTSplan-O player is superior to the original RTSplan

player. The aggressive policies still perform fairly well, however, RTSplan-O now

clearly beats every static policy. These results show that the problem discussed

in the previous section can be overcome with opponent modelling. This result is

unsurprising, since the opponents are static and are already present in our policy

set. The few losses that still do occur are due to the delay that the RTSplan player

still experiences.

As mentioned in Chapter 3, there are two parameters that affect the performance

of opponent modelling: prediction cutoff ratio (/) and prediction interval (t).

Experiments on 1000 maps were performed to get an idea of what values were
4 17

appropriate for the specified scenario setup. Table 4.10 shows that for / = 0.1,

t = 2.0 yields the best results. Table 4.11 shows that for t = 2.0, the results are best

with / = 0.5. Thus, Table 4.9 was run with t = 2.0 and / = 0.5. However, because

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.9: RTSplan-O vs. Policy Set (t = 2.0,f = 0.5)

Policy Wins Losses Ties
Null 100 0 0
Join Defence 97 1 2
Mass Attack (base) 99 1 0
Mass Attack (units) 99 1 0
Spread Attack (base) 92 8 0
Spread Attack (units) 92 8 0
Half Defense-Mass Attack 99 1 0
Hunter 95 4 1
Attack Least Defended 100 0 0
Harass 83 8 9

Table 4.10: RTSplan-O vs. Policy Set (/ = 0.1)

t Wins Losses Ties
1.0 917 79 4
2.0 891 100 9
5.0 863 130 7
10.0 870 126 4

Table 4.11: RTSplan-O vs. Policy Set (t = 2.0)

/ Wins Losses Ties
0.1 935 63 2
0.2 954 36 10
0.5 956 32 12
0.75 945 48 7
1.0 933 63 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the / and t parameters are not independent, the values used are merely educated

guesses. Finding the optimal values for both is time consuming and not explored in

this thesis. One possible solution is to learn the values in an automated way, similar

to what is done in many common learning algorithms.

RTSplan-O vs. RTSplan

Now we turn to the question of whether our new RTSplan-O player is better than the

original RTSplan player. Theoretically, it should not be any better because the RTS­

plan player is theoretically unexploitable. 1000 maps were used in this experiment,

and as expected, the difference between the two players was not statistically signifi­

cant (one sided binomial, p=0.964293, n=1000, a = 0.05), with the new RTSplan-O

player winning 527 games, losing 471 and tieing 2.

RTSplan and RTSplan-O vs. Unknown Policies

Dealing with an opponent that is limited to our policy set is not the best way of

evaluating the strength of RTSplan. In real game scenarios, it is unlikely that the

opponent will be following a policy in our policy set.

Because it is not feasible to design an experimental setup with a human op­

ponent, we instead use one of the policies in our policy set for our opponent, but

we make RTSplan blind to its existence. Essentially, the policy our opponent uses

is never added to the active policies vector, effectively preventing RTSplan from

reasoning about it.

We examined the performance of RTSplan and RTSplan-O when blinded to

each policy. The results are shown in Table 4.12 and Table 4.13. These results

show that without opponent modelling, RTSplan’s performance does not change

significantly, even when dealing with an unknown policy. In fact, due to the “giving

too much credit” problem discussed earlier, the performance even increases a little

bit against some policies. This is because RTSplan can’t give the benefit of the

doubt to our opponent about a policy we know nothing about. This shows that

RTSplan can deal with unknown policies, and perform acceptably. However, it is

also clear that the performance of RTSplan-O suffers significantly when dealing

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.12: RTSplan vs. Unknown Policy

Unknown Policy Wins Losses Ties
Null 95 5 0
Join Defence 97 3 0
Mass Attack (base) 98 2 0
Mass Attack (units) 98 2 0
Spread Attack (base) 61 39 0
Spread Attack (units) 61 39 0
Half Defense-Mass Attack 100 0 0
Hunter 41 59 0
Attack Least Defended 100 0 0
Harass 45 53 2

Table 4.13: RTSplan-O vs. Unknown Policy (t — 2.0, / = 0.5)

Unknown Policy Wins Losses Ties
Null 95 5 0
Join Defence 99 0 1
Mass Attack (base) 100 0 0
Mass Attack (units) 100 0 0
Spread Attack (base) 92 8 0
Spread Attack (units) 92 8 0
Half Defense-Mass Attack 100 0 0
Hunter 37 63 0
Attack Least Defended 100 0 0
Harass 49 47 4

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with unknown policies. This result is not surprising because RTSplan-O cannot

exploit a policy it does not recognize. Ideally, RTSplan-O would have a larger set

of policies, and unknown policies could be fitted better to the nearest known policy

and exploited accordingly. Essentially, the performance RTSplan-O depends on the

unknown policy and how “similar” it is to the remaining policies in the policy set.

Currently, because the policy set is fairly small, no policy closely resembles the

unknown policy, and thus no exploitation can be performed. The only exceptions

are the MassAttack and SpreadAttack policies which have nearly identical similar

policies. This reflects the significant improvement in performance of SpreadAttack

in Table 4.13. However, when both of the SpreadAttack policies are removed from

the active policies vector, the result is significantly worse, with 43 wins, 55 losses,

and 2 ties, because there is no similar policy the opponent modelling can recognize

and exploit.

RTSplan-O Policy Set Reduction

One result that needs to be examined is the effectivess of RTSplan-O at reducing the

size of the opponent’s policy set. In other words, how accurately we can model our

opponent. The results of this are shown in Table 4.14. The first column represents

the percentage of the opponent’s original policy set that remains after we apply

opponent modelling against the given policy. The second column shows the same

percentage, however, in this case, the opponent’s policy is treated as an unknown

policy in the same way as was done for Table 4.13.

The results show that in almost all cases we get a significant reduction in the

opponent’s policy set (“active” policies is small). The only exception is where

our opponent does nothing, and we are blind to that option being available to our

opponent. This is because no other policy resembles the n u l l policy, and thus, our

opponent modelling process is forced to add all available policies to the “active”

policy set. Conversely, if we know of the n u l l policy, then our opponent modelling
> >7

is perfect, and reduces the opponent’s policy set by the maximum value (10% of the

normal is perfect in this case, since we reduce the policy set from 10 to 1).

Unsurprisingly, the results also show that the more different a policy is from

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the other policies in the policy set, the better our opponent modelling will do if we

know about that policy, since it can be more easily identified. However, that same

attribute of the policy also makes opponent modelling less effective if we don’t have

it in our policy set, since no other policy closely matches the missing policy. This

suggests that the best way to deal with modelling unknown policies is to have a large

and diverse policy set in the hopes that one of the known policies will resemble the

policy being played by the opponent.

4.3.4 Execution Times
Simulation Execution Time

For our algorithm to be useful in a real RTS game setting, our computations must be

able to conclude in a reasonable amount of time. Table 4.15 shows the executions

times, with various percentiles, for the time it takes to perform one single forward

simulation. Different scenarios sizes, numbers of policies, and the effects of oppo­

nent modelling are shown. All results were executed on a dual-processor Athlon

MP 2000+ CPU, with memory ranging from 2GB to 3GB, although < 100KB of

memory is used by our program.

Even though some slight spikes in performance are exhibited, as can be seen

in the max value, generally the execution time of a simulation is fairly low. These

results show that even while computing several forward simulations every frame,

we can still run at a real-time frequency, with the number of simulations run per

frame determined by available CPU time. These numbers are dependent on the

s im u la t io n _ t im e o u t parameter, as well as the p a i r s _ p e r _ i n t e r v a l pa­

rameter. Lowering these two parameters will result in faster execution times, al­

though at the cost of some performance. Also, if the execution times are not ac­

ceptably low for an RTS game, it is always possible to simulate a shorter time into

the future. Currently, we simulate the entire game, and lowering this threshold

should increase execution time significantly.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fast-forwarding Computational Savings

We mentioned earlier that fast-forwarding greatly speeds up forward simulation

time. Table 4.16 shows the comparison between the average length of time it takes

to play out one pair of policies using fast-forwarding, and the average length of time

it takes to play out the same policies as a normal simulation with t im e_i n c re m e n t

set to 0.1. In order to ensure that both the fast-forwarding and the normal simula­

tions yielded the same game result, we only examined policies that do not peri­

odically look at the game state since the frequency at which the the game state is

examined would differ between the two methods.

We ran each policy against all the other policies in our test policy set, and then

calculated the average length of time for both simulation methods. This is done in

order to examine whether the choice of the policy has any effect on the results.

The results in Table 4.16 show that fast-forwarding is significantly faster than if

the simulation were advanced normally, 0.1 game seconds at a time. In fact, fast-

forwarding is on average over 800 times faster than regular simulations. This is

mainly because we drastically reduce the number of game state recalculations, thus

reducing the total computation time used for collision checking, object movement,

etc., all of which must be performed every game state update.

The results show that fast-forwarding is essential for allowing RTSplan to run

effectively and in real-time. The only downside of fast-forwarding is that it does

not allow policies to re-examine the state continuously, but rather periodically, as

specified by the policy itself. However, in this case the advantage of being able to

run forward simulations at a very high speed clearly outweighs the disadvantages,

as long as fast-forwarding can be kept effective by keeping the abstraction level

fairly simple.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.14: Opponent Modelling Policy Set Reduction (t = 2.0, / = 0.5, 50 maps)

Policy Known (% of normal) Unknown (% of normal)
Null 10.0 100.0
Join Defence 29.11 32.95
Mass Attack (base) 55.90 55.13
Mass Attack (units) 55.90 55.13
Spread Attack (base) 42.17 34.31
Spread Attack (units) 42.17 34.31
Half Defense-Mass Attack 55.90 58.66
Hunter 21.66 81.24
Attack Least Defended 40.27 69.03
Harass 25.88 54.34

Table 4.15: Execution Times (milliseconds) Percentiles and Max Time

Map Size (# of policies) 10th 25th 50th 75th 90th Max
3 bases(8) 1.13 2.08 3.34 5.42 9.16 71.39
5 bases (8) 2.26 4.72 7.83 21.93 38.92 194.85
4 bases(10) 18.62 38.30 67.01 102.12 132.22 225.57
4 bases (10) (modelling) 5.19 11.50 28.21 50.15 95.4 220.3

Table 4.16: Fast-forwarding time comparison (seconds)(50 maps)

Policy Fast-forwarding Time Normal Simulation Time
Null 0.033 25.20
Mass Attack (base) 0.040 20.65
Mass Attack (units) 0.016 20.13
Spread Attack (base) 0.022 11.55
Spread Attack (units) 0.015 11.31
Half Defense-Mass Attack 0.019 22.64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis represents preliminary work in the area of simulation-based planning in

RTS games. First, we introduced an abstraction model for RTS games that makes

simulation-based planning in the domain feasible. The algorithm RTSplan, which

is based on a combination of forward simulations and Linear Programming to ob­

tain a Nash-optimal solution is presented. Furthermore, we introduced the concept

of fast-forwarding, which significantly increased the speed of forward simulation, a

necessity for the RTSplan algorithm. In fact, fast-forwarding has so far eliminated

the need for a sophisticated evaluation function because we can simulate to the end

of the game (although this may only be due to the simplicity of the scenarios).

Finally, we introduced an opponent modelling extension to the RTSplan algorithm

(RTSplan-O) that strives to exploit predictable players and greatly increases the per­

formance of the basic RTSplan algorithm when used against the individual policies

in our policy set.

Initial results are promising. Based on the current world state, RTSplan chooses

between available policies to defeat its opponents, and even plays well against op­

ponents that execute unknown policies. RTSplan is fairly computationally inten­

sive, however, it can be made to work seamlessly in real-time, albeit at some cost to

performance. A strength of RTSplan is that its performance is closely related to the

variety of actions available to it. The more diverse the policies, and the more action

space that is covered, the better the performance will be.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Future Work

There are several potential areas of improvements and extensions for RTSplan and

RTSplan-O. First, RTSplan needs to be tested in a true RTS game environment such

as ORTS [23]. This requires the development of an interface that allows for com­

munication between the game’s pathfinder and RTSplan, as well as an abstraction

scheme that can convert real RTS game world data into the abstract form used by

RTSplan. Furthermore, a more sophisticated, and game dependent combat model

should be developed, as the one currently used by RTSplan is quite simplistic.

More policies should also be developed, as the current set is still fairly limited

in scope and is not representative of all the common policies used in RTS games

today. This could lead to a more computationally intensive process, so a distributed

computing approach should be explored, especially because RTSplan lends itself

nicely to parallelization.

Developing more complex scenarios that use different bases and unit types

should be developed and tested, along with creating new policies that take advan­

tage of these new unit types. This would be a step towards better representing actual

RTS game abstractions.

Further testing needs to be done on the performance of RTSplan. Specifically,

RTSplan should be tested against a finely-tuned AI script. Unfortunately, none

was available at the time of writing. RTSplan should also be tested against human

opponents. Some preliminary work has been done on this using a built-in human

interface, however, no rigorous experimental setup has been set up.

Some speed optimizations could also be made to the underlying simulator. For

example, currently, the simulator uses a naive approach to collision detection be­

tween objects which does not scale well with size. The execution times should be

lowered in general to work better in true RTS games where a lot of the CPU time is

used for other tasks such as pathfinding, combat simulation and graphics.

As discussed earlier, finding optimal values for the various parameters qsed in

this thesis could lead to better results. The current parameters are merely educated

guesses based on some simple experimentation.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Allowing forward simulations to change the policy in the middle of simulation

based on either a time limit or other condition should also be explored. We have

an implementation of this, however, execution time is increased exponentially be­

cause we are doing an additional full payoff matrix computation for every entry in

the original payoff matrix. This results in drastically more forward simulations that

need to be performed. Because execution times are currently much too slow to be

considered for a real-time setting, researching methods into increasing the execu­

tion speed and/or pruning the number of simulations to be done could allow this to

become feasible in the future.

Finally, further exploration into the adaptation of RTSplan to work in an imper­

fect information setting, apart from simultaneous moves, needs to be performed.

Currently, RTSplan works only with perfect information, and assumes that a sep­

arate “scout AI” deals with incomplete information and provides information to

RTSplan in the form of known and predicted enemy locations. The validity of this

assumption should be tested in an RTS game setting, requiring the development

of a separate scout AI, and if it is found to be unacceptable, modification of our

algorithms to allow them to deal with an imperfect information environment may

become necessary.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] T. Bersano-Begey. Multi-Agent Teamwork, Adaptive Learning, and Adver­
sarial Planning in Robocup Using a PRS Architecture, citeseer.ist.
psu. edu/538 9 6 . html.

[2] D. Billings, L. Pena, J. Schaeffer, and D. Szafron. Using Probabilistic Knowl­
edge and Simulation to Play Poker. In AAAI National Conference, pages 697-
703, 1999.

[3] Blizzard. Starcraft. http://www.blizzard.com/starcraft, 1998.

[4] A. Botea, M. Mueller, and J. Schaeffer. Near Optimal Hierarchical Path-
finding. In Journal o f Game Development 1, pages (1):7—28, 2004.

[5] B. Bouzy and B. Hemlstetter. Monte Carlo Go Developments. In Advances in
Computer Games 10, pages 159-174. Kluwer Academic Press, 2003.

[6] M. Buro. Solving the Oshi-Zumo Game. In Proceedings o f the Advances in
Computer Games Conference 10, pages 361-366. Graz, 2003.

[7] M. Chung, M. Buro, and J. Schaeffer. Monte Carlo Planning in RTS Games.
In Proceedings o f the 2005 IEEE Symposium on Computational Intelligence
in Games, pages 117-124, New York, 2005. IEEE Press.

[8] K. Currie and A. Tate. O-Plan: the Open Planning Architecture. Artificial
Intelligence, 52:49-86, 1991.

[9] D. C. Pottinger. Terrain Analysis in Realtime Strategy Games. In Game
Developers Conference Proceedings, 2000.

[10] A. Davidson, D. Billings, J. Schaeffer, and D. Szafron. Improved Opponent
Modeling in Poker. In Proceedings o f the 2000 International Conference on
Artificial Intelligence (ICAF2000), pages 1467-1473, 2000.

[11] E Dybsand. Goal Directed Behavior Using Composite Tasks. In A l Game
Programming Wisdom 2, pages 237-245. Charles River Media, 2003.

[12] Ensemble Studios. Age of Empires, http : //www.microsoft. com/
games/empires/default. htm, 1997.

[13] K. Erol, J. A. Hendler, and D. S. Nau. UMCP: A Sound and Complete Proce­
dure for Hierarchical Task-network Planning. In Artificial Intelligence Plan­
ning Systems, pages 249-254, 1994.

[14] R. Fikes and N. Nilsson. STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving. In Artificial Intelligence, pages 2:189-
208, 1971.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.blizzard.com/starcraft
http://www.microsoft

[15] S. Geliy and Y. Wang. Exploration Exploitation in Go: UCT for Monte-
Carlo Go. In NIPS-2006, Online trading between exploration and exploita­
tion, Whistler Canada, 2006.

[16] M. Ginsberg. GIB: Steps Toward an Expert-level Bridge-playing Program. In
International Joint Conference on Artifical Intelligence, pages 584-589, 1999.

[17] R. M. Jensen. Efficient BDD-Based Planning for Non-Deterministic, Fault-
Tolerant, and Adversarial Domains. PhD thesis, 2003.

[18] T. Kent. Multi-Tiered AI Layers and Terrain Analysis for RTS Games. In AI
Game Programming Wisdom 2, pages 448—455. Charles River Media, 2003.

[19] J. Lee. A Simulation-Based Approach for Decision Making and Route Plan­
ning. PhD thesis, 1996.

[20] J. Lee and P. A. Fishwick. Real-Time Simulation-Based Planning for Com­
puter Generated Force Simulation. Technical Report TR94-034, 1994.

[21] J. Lee and P. A. Fishwick. Simulation-based Real-time Decision Making for
Route Planning. In WSC ’95: Proceedings o f the 27th conference on Winter
Simulation, pages 1087-1095, 1995.

[22] J. Lee and P. A. Fishwick. Simulation-based Planning for Multi-Agent En­
vironments. In In Proceedings o f Winter Simulation Conference’1997, pages
405—412, 1997.

[23] M. Buro. ORTS: A Hack-Free RTS Game Environment. In Proceedings o f the
International Computers and Games Conference, Edmonton, Canada, pages
280-291,2002.

[24] J. Nash. Equilibrium Points in N-person Games. In Proceedings o f the Na­
tional Academy of the USA 36(1), pages 48—49, 1950.

[25] D. S. Nau, T. C. Au, O. Ilghami, U. Kuter, W. Murdock, D. Wu, and F. Ya-
man. SHOP2: An HTN Planning System. Journal o f Artificial Intelligence
Research, 20:379^-04, december 2003.

[26] J. Orkin. Three States and a Plan: The A.I. of F.E.A.R. In Game Developers
Conference 2006, 2006.

[27] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical
Recipes in C: The Art o f Scientific Computing. Cambridge University Press,
New York, NY, USA, 1992.

[28] J. Schaeffer, J. Culberson, N. Treloar, B. Knight, P. Lu, and D. Szafron. A
World Championship Caliber Checkers Program. Artificial Intelligence, 53(2-
3):273-289, 1992.

[29] E. Sidran. The Current State of Human-Level Artificial Intelli­
gence in Computer Simulations and Wargames. h t t p : /,/www.
g i l g a m e s h c o n t r i t e . co m /C o m p u te r_ A I/, 2003.

[30] F. Southey, W. Loh, and D. Wilkinson. Inferring Complex Agent Motions
from Partial Trajectory Observations. In Proceedings of IJCAI, pages 2631-
2637, 2007.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[31] N. Sturtevant, M. Zinkevich, and M. Bowling. ProbMaxn: Opponent Mod­
eling in N-player Games. In National Conference on Artificial Intelligence
(AAAI), pages 1057-1063, 2006.

[32] G. Tesauro. Temporal Difference Learning and TD-Gammon. Communica­
tions o f the ACM Archive, 38(3):58-68, 1995.

[33] P. Tozour. Influence Mapping. In Game Programming Gems 2, pages 287-
297. Charles River Media, 2001.

[34] P. Tozour. Strategic Assessment Techniques. In Game Programming Gems 2,
pages 298-306. Charles River Media, 2001.

[35] P. Tozour. Using a Spatial Database for Runtime Spatial Analysis. In AIGame
Programming Wisdom 2, pages 381-390. Charles River Media, 2004.

[36] J. von Neumann. Zur Theorie der Gesellschaftsspiele. Mathematische An-
nalen 100, pages 295-320, 1928.

[37] N. Wallace. Hierarchical Planning in Dynamic Worlds. In AI Game Program­
ming Wisdom 2, pages 382-390. Charles River Media, 2003.

[38] Westwood. Red Alert. http://www.ea.com/official/cc/
firstdecade/us/redalert. jsp, 1996.

[39] S. Willmott, J. Richardson, A. Bundy, and J. Levine. Applying Adversarial
Planning Techniques to Go. Theoretical Computer Science, 252(l-2):45-82,
2001.

[40] K. Woolsey. Computers and Rollouts, http: //www. gammonline . com/
members/JanOO/art icles/roll. htm, 2000.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ea.com/official/cc/

