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Life is ”trying things to see if  they work”

-  Ray Bradbury
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Abstract

Adversarial planning in complex decision domains, such as modem video games, 

has not yet received much attention from AI researchers.

This thesis presents a planning framework (RTSplan) that uses simulation com­

bined with Nash-equilibrium strategy approximation to choose the best policy from 

a given policy set. We apply this framework to an army deployment problem in 

an abstract real-time strategy game setting. Experimental results indicate a perfor­

mance gain over individual policies in our policy set. Furthermore, we show that 

adding basic opponent modelling drastically increases the performance of RTSplan 

against these policies, and that RTSplan can also play well against unknown poli­

cies.

We also present a method for the fast-forwarding of simulations which greatly 

reduces computation times.

RTSplan is an automated way of increasing the decision quality of scripted AI 

systems in real-time. It is suited for complex systems that have real-time con­

straints, simultaneous moves, and currently rely on scripted solutions.
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Chapter 1 

Introduction

1.1 Real-time Strategy Games

A popular genre of computer games on the market today is real-time strategy (RTS) 

games. In a typical “deathmatch” RTS game, players gather resources and build 

structures and units with the ultimate goal of using those units to destroy the units 

and structures of the enemy. Other game types include Capture the Flag (CTF), 

Siege (no attacks are allowed for a specified starting time period), Conquest (capture 

of strategic points), Team Play, and many others. Most RTS game types involve 

starting out with limited resources, a few workers, and a town centre. Players begin 

by collecting resources, developing their base using the acquired resources, and 

building a military force. Use of resources is commonly divided between building 

defensive structures to protect the base from enemy attacks, building units to scout 

the surrounding areas for additional resources and the locations of enemy bases, 

creating a military force for defense or offense, researching technology, and creating 

structures that allow the creation of more advanced units. Examples of popular 

commercial RTS games are Starcraft [3], Age of Empires [12] and Red Alert [38].

In several respects RTS games are different from classic games such as Chess, 

Checkers and Go. They feature dozens of unit types, several types of resources and 

buildings, and potentially hundreds of controllable units. Furthermore, unlike most 

classic games, all players make their moves simultaneously and in real-time. In 

general, RTS games are fast-paced; any delay in decision-making can lead to defeat. 

Adding to these difficulties is a high degree of uncertainty caused by restricted

1
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Figure 1.1: A typical Starcraft situation, where a base is attacked by enemy forces.

player vision which is usually limited only to areas within the sight range of allied

units and buildings (see Figure 1.1).

1.2 RTS Game Strategic Areas

Playing RTS games well requires skill in the following areas:

1. Resource and Town Management. Decisions must be made about how 

many resources to collect, where to search for them, and when to look for ad­

ditional resources. Players must also decide when and where to build which 

structures and when to train which units. Furthermore, in most commercial 

RTS games, players have the option to upgrade their units’ capabilities at the 

cost of time and resources.

2. Combat Tactics. When opposing armies meet, individual units must be given 

orders on who to attack, where to move, and which special ability to execute. 

Better execution of special skills and focusing of firepower can lead an army 

with material inferiority to still achieve victory.

2
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3. Army Deployment. Once a player has built several units, these units need to 

be assigned to groups and be issued orders on what to do, e.g. defend a base, 

attack enemy encampment, and/or move to a location.

Each one of these areas can be treated as a separate planning task, with its 

own level of abstraction. Humans do a good job of dealing with these tasks, either 

separately, or in combination. The challenge of artificial intelligence (AI) systems 

in this domain is to do as well, or better than their human counterparts. They also 

need to address a few other lower level planning issues, such as pathfinding for 

example.

1.3 Commercial RTS Game AI

AI systems in today’s commercial RTS games are for the most part scripted [29], 

with the common exception being pathfinding, which usually uses A* or a similar 

algorithm. For example, the AI player usually follows a precise set of instructions at 

the start of the game to develop its base. Once this script achieves its goal condition, 

the AI system will switch over to a new sequence of instructions (script), and start to 

follow them, etc. While this method gives the AI the ability to provide a challenge 

to a human player, it does have several limitations.

First, the AI has a limited set of scripts, and thus its behaviour can quickly 

become predictable. Second, because every script needs to be created by human 

experts and takes time to implement and test, developing a strong scripted AI system 

for an RTS game can become a major undertaking. Finally, scripts can be inflexible 

and any situation not foreseen by the script creators can lead to inferior game play.

To compensate for these shortcomings, current commercial RTS game AI sys­

tems are given extra advantages, usually in the form of more resources, extra knowl­

edge of the game state, or sometimes even by allowing the system to “cheat”.

While this approach is acceptable in campaign modes that teach human players
' f  **

the basic game mechanics, and to provide a challenge for casual players, it does not 

represent a solution to the RTS game AI problem of creating systems that play at 

an expert human level in a fair setting.

3
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1.4 Computationally Difficult Properties of RTS Games

There are several reasons why currently no strong RTS game AI players exist:

1. Complex Unit Types and Actions. Unlike Chess, which has only 6 unit 

types, RTS games can have dozens of unit types, each with several unique 

abilities. Furthermore, units in RTS games have several attributes such as 

hit points, move speed, attack power, and range. In contrast, Chess units 

each only have one attribute: their move ability. This leads to a much larger 

state space, and thus the performance of traditional search techniques such as 

alpha-beta will suffer.

2. Real-Time Constraint. Tactical decisions in RTS games must be made 

quickly. Any delay could render a decision meaningless because the world 

state may have changed in the meantime. This real-time constraint compli­

cates action planning further because planning and action execution need to 

be interleaved.

3. Large Game Maps and Number of Units. Maps in RTS games are larger 

than any classical game board. Checkers has 32 possible positions for pieces, 

Chess has 64, Go has 361. By contrast, even if the RTS game does not happen 

to be in a continuous space, there are hundreds to thousands of possible po­

sitions a unit could occupy. Thus, reaching a goal could involve hundreds of 

individual steps instead of the usual ten or twenty, thereby greatly increasing 

the search depth of a traditional algorithm. Furthermore, the number of units 

in an RTS game can reach hundreds. Because the branching factor grows ex­

ponentially with the number of units, applying traditional search techniques 

quickly becomes infeasible.

4. Simultaneous Moves. Units in RTS games can act simultaneously. This 

presents a problem for traditional search techniques, because the action space 

becomes exponentially larger.
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5. Several Opponents and Allies. Typical RTS game scenarios feature more 

than one opponent and/or ally. This presents yet another challenge to tradi­

tional AI techniques. Though some work exists on AI for turn-based n-player 

games [31], there are currently no solutions able to run well in real-time.

6. Imperfect Information. RTS games are played with imperfect information. 

Enemy base and unit locations are initially unknown, and decisions must be 

made without this knowledge until scouting units reveal it. Furthermore, be­

cause moves are simultaneous, the next micro-move made by the opponents’ 

units is always unknown. Currently, there are no AI systems that can deal 

with the general incomplete information problem in the RTS game domain. 

However, some recent work on inferring agent motion patterns from partial 

trajectory observations has been presented [30], There have also been some 

promising results obtained for the classic imperfect information domains of 

bridge [16] and poker [2] which may be applicable to RTS game AI.

Due to these properties, creating a strong AI system for playing RTS games is 

difficult. A promising approach is to implement a set of expert modules for sub­

problems such as efficient resource gathering, scouting, and effective targeting, and 

then to combine them. For example, there could be a module that solely deals 

with scouting the map. The information gathered by the scouting expert could then 

be used by an army deployment AI, or the resource manager AI. The advantage 

of this approach is that the complexity of each sub-problem that each individual 

expert deals with is much smaller than if the problem was dealt with all at once. 

This thesis will concentrate on the sub-problem of army deployment. The system 

for this task will not have to worry about resource gathering, building, scouting, 

or even small-scale combat. Instead, it will make decisions on a grander scale, 

like how to split up forces and where to send them. This work builds on ideas 

presented in [7], where Monte Carlo simulation was used to estimate the merit
•* A r,

of simple parameterized plans in a CTF game. Here, we approach this problem 

slightly differently, by combining high-level policy (strategy) simulation with ideas 

from game theory.

' 5
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1.5 Thesis Contributions

The contributions of this thesis are:

1. Design and implementation of a simplified RTS game engine that operates on 

an abstract model of common RTS games.

2. Design and implementation of a simulation-based planning framework used 

for planning in domains with stochasticity, simultaneous moves, multiple unit 

types and real-time constraints.

3. Introduction of “fast-forwarding”, a concept that greatly reduces the compu­

tational overhead of simulations. This concept has been implemented in the 

aforementioned RTS game engine.

4. Design, implementation, and analysis of the performance of the RTSplan al­

gorithm, which is used for real-time decision making in simplified RTS game 

scenarios.

5. Design, implementation, and analysis of the performance of an opponent 

modelling extension to RTSplan.

6. Characterization of parameters affecting the performance and execution time 

of RTSplan and RTSplan with opponent modelling.

1.6 Thesis Organization

An overview of related research and current state-of-the-art in AI for RTS games 

is discussed in Chapter 2. The RTSplan planning algorithm and its opponent mod­

elling extension is discussed in Chapter 3. Experimental results, along with details 

of the implementation of RTSplan in an abstract RTS game world simulator are 

presented in Chapter 4. Conclusions and discussion of future work is presented in
'* f  ^

Chapter 5.

6
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Chapter 2 

Planning in RTS Games

This chapter is an overview of the various planning issues that are routinely part 

of RTS games. We describe the current state-of-the-art algorithms for various RTS 

game AI issues and discuss simulation-based planning (SBP) [21], which is an 

alternative method for planning that can be used for abstract planning purposes in 

RTS games.

2.1 Planning Overview

Classical planning problems have traditionally been single agent problems. They 

usually deal with finding an action sequence that will take an agent from its start 

state to a designated end state. A common example of classical planning is pathfind­

ing, which focuses on providing a path, often the shortest path, from one location 

to another.

Classical planners make the assumption that if there are other agents in the 

world, they are working cooperatively with them in trying to achieve the same goals. 

Little provision is made for having to deal with an agent who is trying to prevent 

them from accomplishing their goals, while trying to achieve its own separate goals 

at the same time.

Adversarial planning deals precisely with this issue. Most adversarial planning 

tasks occur in the area of games, such as Chess, Go, Poker, etc. However, it(isoused 

in other planning areas as well. For example, it can be used in situations where 

non-determinism is caused by known, but uncontrollable actions of the environ- ,

7
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ment [17].

A widely used adversarial planning algorithm for turn-based games in discrete 

space with perfect information, is the minimax algorithm (and its alpha-beta en­

hancement). It has been used successfully in Chess and Checkers, producing super­

human strength programs [28].

However, unlike Chess and Checkers, minimax has not been used successfully 

in the game of Go, mainly due to the large search space presented by the game. 

There has been some progress made in this area through the use of HTNs [39], 

which has had some limited success. In this implementation, two opposing agents 

are assumed to be competing by trying to complete their goals while preventing the 

opponent from completing theirs. A search of the interacting plans of the agents is 

then performed, and if a goal state is reached by either agent, backtracking is per­

formed and the next branch of the plan search tree is examined. Although this ap­

proach was fairly successful in solving many beginner-level life and death problems 

in Go, it and minimax do not translate well into RTS games for several reasons:

• RTS games feature simultaneous moves, while the above-mentioned approaches 

assume an environment where the players alternate moves.

• Adversarial planners assume a perfect information environment, which is 

rarely the case in RTS games.

•  RTS games require decisions to be made on the fly, and thus there is no time 

to stop and wait while expensive planning is performed.

Real-time planning is concerned with the last point on the preceeding list. A 

common application of real-time planning is real-time scheduling. A process sched­

uler in a computer’s operating system is an example of a common real-time planning 

algorithm. However, RTS games require adversarial real-time planning, and that is 

a more difficult problem due to the increased complexity of dealing with a hostile 

agent.

8
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2.2 Planning Methods Relevant to RTS Games

Classical planners are not designed to deal with imperfect information, real-time 

constraints and simultaneous moves. However, there are several newer planning 

methods which have been used, or have potential to be used in the domain of RTS 

games. Some of these are described below.

2.2.1 Hierarchical Task Networks

Classical planning frameworks such as STRIPS [14] have been around for a long 

time and have matured significantly over the past decades. However, classical plan­

ning algorithms make the assumption that the world remains static during the plan­

ning and execution of plans. This assumption does not hold in RTS games, where 

the world state is constantly changing, and there is no opportunity to “pause” while 

an expensive planning calculation is performed.

The lack of suitability of classical planners has resulted in most traditional RTS 

game agents to be mainly reactive. Many of the agent’s responses are hard-coded by 

the developer, and perform no planning at all. These hard-coded responses tend to 

be simple, such as a worker unit automatically running away if attacked, or a soldier 

returning fire when an enemy comes within range. Although this approach has the 

advantage of being computationally inexpensive, it has several problematic issues. 

First, it puts a burden on the developers, as they have to implement a response 

for every possible situation that can occur during a game. This becomes more 

problematic as the RTS game genre evolves and worlds become more complex. 

Furthermore, this approach makes it difficult to achieve any degree of reasonable 

cooperation between the various reactive agents because they have little knowledge 

of the motives and orders of other agents [37].

To adapt classical planning algorithms for real-time games, game developers 

have begun to use an approach that abstracts various planning tasks, and creates 

a hierarchy of tasks. This approach is called a hierarchical task network (HTN). 

Unlike computationally expensive algorithms that use limited abstraction, or highly 

abstract plans which have trouble controlling the individual units in an RTS game,

9
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HTN planners create several levels of abstraction, with each level having its own 

separate plan. For example, an “attack base” task at the highest level could be 

decomposed into two subtasks, “gather army”, and “move army to enemy base”. 

Each of these subtasks could have its own subtasks, with a different set of opera­

tors for each one [37]. Examples of HTN planning systems include UMCP [13], 

SHOP2 [25] (used for playing brige) and O-Plan [8].

For dynamic environments, HTN planners are more effective than classical 

planners (best case is linear complexity, instead of exponential when planning in 

dynamic worlds [37]) performance-wise. Furthermore, because plans are composed 

of several different subtasks, partial replanning is possible because only a few sub­

tasks may be causing the invalidation of a plan, and thus only they would need to 

be replanned. HTN planners also allow for some degree of cooperation between 

agents or groups, if the right abstraction level is used. This is usually accomplished 

through the creation of special actions which allow the different agents or groups to 

synchronize with each other, for example, if two different groups want to attack an 

enemy base at the same time from different directions.

HTNs are becoming more common in commercial real-time games recently. 

For example, the game Full Spectrum Command uses a task system which has two 

types of tasks [11]: composite tasks, which can be composed of other composite 

tasks or simple tasks, and simple tasks, which are composed only of actual actions 

given to the agent. This allows for an arbitrary hierarchy of tasks to be created.

2.2.2 Monte Carlo Approach

One promising method for dealing with difficult or complex domains such as RTS 

games is Monte Carlo sampling. This generally involves playing a large number of 

randomized games from the current position, and then evaluating which moves lead 

to the highest score on average. One classic example of where this has been suc­

cessful is with the introduction of rollouts (Monte Carlo sampling runs) in backgam-
■' t

mon [40] (e.g.,TD-Gammon [32]).

10
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Monte Carlo Go

The Monte Carlo sampling approach has been successfully used in recent computer 

Go programs such as OLGA [5] and MoGo [15]. In these programs, moves from a 

given position are evaluated based on how well they performed over a large num­

ber of random games played from that position and beginning with the move being 

evaluated. Moves are generally selected at random from all available moves, al­

though obviously inferior moves are not included. This process continues until the 

game is played out in its entirety, and then the moves are scored. The evaluation of 

the move at the starting position is the mean value of all the scores of games played 

with that starting move.

The Monte Carlo approach is highly dependent on processing power, because 

having a faster processor means more games can be played out, leading to more 

accurate move evaluations. Furthermore, Monte Carlo sampling also lends itself 

nicely to parallelization, because it is easy to offload different random games to 

multiple processors and to recombine the results. This is becoming a more signifi­

cant advantage with the introduction of multi-core architectures.

MCPlan

Although Monte Carlo sampling has been used with success in turn-based games 

such as Go, it still remains to be seen if the same approach can be applied to RTS 

games. Recently, Monte Carlo planning was applied to RTS games by Chung et al. 

using their MCPlan algorithm [7]. MCPlan uses the same ideas which are some­

times used in Go with Monte Carlo sampling. To apply it to the RTS game domain, 

low level unit actions are abstracted into plans.

Abstraction is necessary in the domain of RTS games, as working with atomic 

moves, such as “move left” or “move up”, is infeasible due to the large state space 

present in RTS game maps. Essentially, instead of generating random moves like

in Go, random plans composed of low level abstract actions such as “attack base”
■* t *

or “explore” are formed and then simulated versus the randomly generated plans of 

the opponent [7].

Furthermore, unlike in OLGA and MoGo, MCPlan does not randomly simulate

11
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until the end of the game. Instead, it simulates to a specified maximum length of 

action sequences, and then uses an evaluation function to judge the game state. 

This is possible because, unlike in Go where creating a good evaluation function is 

difficult, the value of a state in RTS games is significantly influenced by the material 

difference.

MCPlan has shown some promising results, although its performance has yet to 

be tested against highly-tuned scripted AIs or humans [7].

2.2.3 Simulation-Based Planning

The basic idea of Simulation-Based Planning (SBP) [20] is to take a series of given 

plans, use a simulator to execute each one of them, and then evaluate the result of 

using that plan. Based on these results, the agent can then choose the plan that leads 

- to the best outcome. If the domain has uncertainty or randomness, plan simulations 

can be repeated to get more statistically significant results [19]. It has successfully 

been used in route planning, controlling a truck depot [19] and even some military 

planning [22], This suggests that it lends itself well to adversarial environments 

and environments with uncertainty and randomness. This also means that it could 

be applied to RTS game planning as well.

However, one of the drawbacks of SBP is that it underestimates the actions of 

the opponent. Adversaries are assumed to be simple for efficiency purposes when 

run in thfe simulation [20], and this does not properly represent what the “real” op­

ponent is likely to do. For example, Lee describes an air interdiction scenario where 

an allied airplane must avoid enemy SAMs and fighters while attempting to reach a 

specified bomb target [22]. However, no real intelligence is given to the opponents. 

Their ability to move/detect is represented simply by creating a radius based on the 

object speed and/or detection area around each object (plane or SAM) and assuming 

that they project their influence within that radius. While this approach works for 

short-term scenarios such as going from point A to point B while avoiding certain
'»  >T

areas of the map, it does not work in longer term situations. With this assumption of 

a simplistic opponent, any long-term scenario would effectively yield a radius that 

covered the entire operational map because any mobile opponent could have moved

12
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to any location in the long term. This suggests that SBP could be used successfully 

in RTS games for situations that require short-term planning, such as assaulting an 

enemy base while avoiding immobile defensive towers, but would likely struggle in 

planning a long-term campaign against a highly mobile opponent.

Furthermore, without a proper abstract model of the world, SBP is computa­

tionally expensive. Planning simulations must run significantly faster than the ac­

tual real world simulation to be used in a real-time setting, otherwise data used in 

the SBP will be out of date. Thus, for SBP to work in RTS games, a well designed 

abstract model is needed, as is the case in our approach as well.

Overall, SBP fits fairly well into the RTS game planning domain. Like our 

approach, it uses an abstract view of the world, combined with forward simulations 

in its decision making. However, the lack of an advanced opponent model in SBP 

suggests that successful planning is limited to short-term objectives. Conversely, 

due to the simplistic opponents, SBP is likely to perform faster than our approach. 

Thus, perhaps an ideal approach would use a combination of the two, with SBP 

dealing with short-term planning and planning against stationary enemies, while our 

approach being used for the long-term situation. This combination is not explored 

in this thesis, but could be the subject of future work.

2.3 AI in RTS Games

Planning is already being used in domains similar to RTS games. For example, it 

has been used in Robocup [1], a popular robotic soccer challenge, and F.E.A.R [26], 

a first person shooter game. Existing RTS games currently do not use high-level 

planning, however, they employ the following techniques to aid their AI.

2.3.1 Map Analysis

Terrain analysis is a useful tool in RTS game AI. It provides the AI with an abstract 

view of the world which aids it in decision making. Multiple systems in an, RTS 

game will make use of this information, whether it be for deciding where to build a 

base, or where the enemy forces are most concentrated, or any other matter. There
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are different methods of terrain analysis, two of which are described below.

Analysis Through Pathfinding

Some terrain analysis is accomplished simply through using the game’s pathfinding 

system [9]. For example, the pathfinder could be used for determining which parts 

of the terrain are currently reachable, or determining the desirability of resource 

patches based on the distance they are from the player’s base. This approach has 

the advantage of being highly accurate, however it is computationally expensive [9].

Influence Maps

Influence maps are commonly used in RTS games as a way to perform spatial rea­

soning. They are essentially two dimensional arrays which are an abstraction of the 

world map. Each entry in the 2D array corresponds to a specific section of the map, 

and stores a numerical value. The numerical value can indicate many things, for ex­

ample the strength and location of enemy or friendly forces, location of resources 

for gathering, potential chokepoints, etc. [33].

The reason this technique is called influence mapping is because each cell in­

fluences its surrounding cells. The influence decreases as the distance from the cell 

increases, usually with some sort of falloff rule. Cells exert an influence to better 

reflect that enemy units are usually not stationary, and thus could move to a nearby 

location. Due to this, the falloff rule depends at least partially on the speed of the 

unit.

An extension of the basic influence map, spatial databases are essentially a col­

lection of influence maps layered over each other on the world map [35]. For ex­

ample, one layer could consist of an influence map that keeps track of only enemy 

units, while another layer could keep track of areas of the map that have not been 

explored recently. These layers can then be queried by various AI systems to help 

with reasoning. For example, the scouting AI could query the exploration influ­

ence map to see where to explore next, while the attack AI would query the’ eftemy 

strength map to determine if attacking at a particular location would be a good idea. 

Multiple layers are also combined to create a “desirability” layer, which can then
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be used for various other reasoning tasks. For example, the expansion AI will com­

bine the enemy location map with the resource map to make sure it does not try to 

expand to an area that has a strong hostile presence.

2.3.2 Dependency Graphs

Dependency graphs are a useful aid for strategic AI in RTS games. Essentially, they 

are graphs which represent the various dependencies in an RTS game. For example, 

prior to building an infantry unit we may be required to build a barracks, while a 

barracks is dependent on having sufficient resources and having a town center [34], 

Dependency graphs allow the AI to make various inferences about the game. 

For example, if a scout spots an airport at an enemy base, it can then infer that the 

enemy also likely has air units. Conversely, if we see air units attacking us, we 

know that the enemy has at least one airport.

Identifying weak nodes in a dependency graph is also useful for planning strate­

gic actions. For example, if the enemy is known to have several units and plenty 

of resources but not many farms (which are required for creating more units), the 

farms would show up as a weak node in the graph. This is because they have many 

units dependent on them, and thus the AI may decide to focus on destroying the 

farms.

2.3.3 Multi-Tiered AI

Designing effective algorithms in RTS games that form cooperative or complicated 

strategies while considering individual units is difficult. To develop large-scale and 

complex plans, the complexity that comes with considering large numbers of in­

dividual units must be reduced. An excellent way of reducing this complexity is 

to collect individual units into squads [18]. For example, by grouping units into 

squads of eight, the complexity can be reduced considerably. Due to the reduced 

complexity, and thus reduced burden on the developers, squad tactics have recently 

become more common in many RTS games [18].

The idea of squads can be further expanded to include the creation of platoons, 

companies, armies, and so on. In fact, to deal with the large complexity of thou-
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sands of individuals, real world armies have been using this hierarchical approach 

for thousands of years [18].

One of the main advantages of having a tiered AI system is that each tier only 

has to concern itself with information relevant to its decision making. The highest 

level commander AI does not deal with pathfinding or formation issues, while sim­

ilarly the lowest level AI for a soldier does not care about the current position of 

the enemy army. Tiers can also communicate with each other, with the lower-level 

tiers generally providing information to the higher-level tiers, while the higher-level 

tiers pass down orders to the lower-levels [18].

Several different AIs can exist on the same tier as well. For example, separate 

high tier AI systems could exist for scouting, resource gathering, war waging, base 

building, etc. In general, tiered AI systems make the creation of complex strategies 

much easier on the developers, and thus they are becoming more commonplace in 

strategic games today.

2.4 Conclusions

The RTS game domain is difficult from an AI perspective. It features imperfect 

information, simultaneous moves, adversaries, hundreds of complex units, dozens 

of units types, and real-time constraints. Any one of these properties is problematic 

to deal with when trying to create an AI system. Thus, it is not surprising that there 

is a distinct lack of high-performance AI solutions in the RTS game domain.

Currently, the state-of-the-art AI in RTS games is hand-coded or scripted rules 

for that particular game. While this approach can yield challenging computer oppo­

nents, it can make the AI appear repetitive, or too predictable to provide a challenge 

to an experienced human player; scripts can only go so far. Developers can end up 

giving the AI unfair advantages, such as extra resources or full world knowledge to 

make the AI more competitive.

Unfortunately, classical planning techniques do not scale well to all of die vari­

ous issues inherent in the RTS game domain. A powerful approach would be to take 

a given set of scripted policies, and choose the most appropriate policy based on the
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strategic situation at the time. This can be achieved through forward simulation of 

these policies, and is the main focus of this thesis.
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Chapter 3 

Simulation-Based Adversarial 
Planning

Creating a search or simulation-based planning algorithm for RTS games is dif­

ficult. Much of this difficulty stems from the large complexity of the RTS game 

domain and the real-time constraints present in RTS games. Traditional state space 

search techniques cannot deal with RTS game domains. This has led commercial 

AI game developers to invest time and effort into producing script-based computer 

players which are essentially just complex finite state machines.

Our approach takes the idea of using scripted policies which, as discussed ear­

lier, can be effective in RTS games, and add a layer of planning on top. Essentially, 

we try to improve the performance of a computer controlled player by adding a 

mechanism (RTSplan) for choosing a script (policy) from a given set of available 

scripts. This is achieved by determining the merit of each script. The merit of a 

script is determined by simulating it some time into the future and evaluating the 

result of using that script. Then the script that is most likely to yield the best result 

is chosen as the one to execute until we perform another planning cycle.

3.1 Action Abstraction

Abstractions are required before state-space search algorithms can be applied to
■ /  t

complex decision spaces such the ones faced in RTS games. Not only is the do­

main complex, with micro-moves and many units, but our approach also performs 

multiple lookaheads (simulations), and is under real-time constraints as well. This
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means that each simulation must ran significantly faster than “real” world time, be­

cause several need to be performed before planning is complete. A natural way 

to increase the speed of simulations is to reduce the complexity of the domain by 

means of abstraction, and that is the approach we take.

Some types of abstractions are commonly used today. For example, the use 

of spatial abstractions can speed up pathfinding considerably while still producing 

high-quality solutions [4]. Likewise, temporal abstractions, such as time discretiza­

tions, can help further reduce the search effort.

Here, we explore the abstraction mechanism of replacing a potentially large set 

of low-level action options by a smaller set of high-level policies from which the 

AI can choose. Policies are considered decision modules, functions of state to ac­

tion. Policies can range from complex maneuvers that involve all of a player’s units 

(such as “use all units to attack the least defended base while avoiding combat”), 

to simple commands (such as “move to position X”). Policies can even be created 

by randomization, such as creating a policy which is composed of two consecutive 

move commands to random locations.

Consider the various ways of playing RTS games. One typical policy is “rush­

ing”, where a player produces a small fighting force as quickly as possible to sur­

prise the opponent. Another example of a typical policy is “turtling”, in which 

players create a large force at their home base and wait for others to attack.

It is relatively easy to implement such policies which, for the purpose of high- 

level planning, can be considered black-boxes, i.e., components whose specific im­

plementation is irrelevant to the planning process. We implement policies as scripts, 

with a script being a sequence of actions, triggered by events, not unlike scripts used 

in RTS games today.

3.2 Planning Based on Policy Simulation

The task of the high-level planner then is to choose a policy to follow until thq next 

decision point is reached, at which point the strategic choice is reconsidered.

The aim of this scheme is to create a system that can rapidly adapt to state
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changes and is able exploit opponents’ mistakes in highly complex adversarial de­

cision domains.

Game Cycle

while (game not finished){ 
if (planning finished).

chosen policy set as current policy 
begin planning next policy 

else
// planning is time constrained, and will 
// return even"if planning is not finished 
continue planning

continue executing current policy
}

Figure 3.1: Top level planning cycle

The cycle shown in Figure 3.1 allows planning and execution to be interleaved. 

While we are planning what our next policy should be, we continue to execute our 

current policy. Thus, the planning process can run in real-time because we plan 

and execute at the same time. It also shows that we continuously replan, trying to 

determine the best policy for the current world state which is continually changing.

3.2.1 The RTSplan Algorithm

With the game cycle established, the question now becomes: Having written or 

been provided a number of policies, how do we pick the appropriate one in a given 

situation? Assuming we have written or have been provided with the set of policies 

the opponent can choose from, we can learn about the merit of our policies by 

simulating policy pairs, i.e. pitting our policy i against their policy j  for all pairs 

( i,j)  and storing the result in a payoff matrix R, at location rl} (Figure 3.2a).

Because planning and execution are interleaved, with computation spresa<J over 

several cycles, payoff matrix R  is filled entry by entry. One or more entries in 

R  are computed, based on available CPU time, each cycle, and the new policy 

is not chosen until the entire matrix has been fully populated. Once the matrix
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a) strategy pair simulation b) “maxmin” player

max mm

c) “minmax” player

max

mm

time end
result Tij

max

mm

Figure 3.2: a) Simulating pairs of policies b) maxmin player chooses move i which 
leads to the maximum value c) minmax player chooses the best counter move i

minmax, or maxmin, etc. or alternatively, a linear program (LP) to choose the best 

policy.

In the minimax rules, one player (max) maximizes its payoff value while the 

other player (min) tries to minimize max’s payoff. The two variants with either 

player max or min to play first are depicted in Figure 3.2 b) and c). In these exam­

ples, player max plays move i, which leads to the best minimax value. Only in case 

where there are pure Nash equilibrium policies do the payoffs coincide.

In a zero-sum two-player setting with simultaneous moves, the natural move- 

selection choice then would be to determine a Nash equilibrium policy [24] by 

mapping the payoff matrix R  into a linear programming problem whose solution is 

a probability distribution over our policies. In the Nash equilibrium case, neither 

player has an incentive to deviate. Nash-optimal policies can be mixed, i.e. for 

optimal results, policies have to be randomized — a fact which is nicely illustrated 

by the popular Rock-Paper-Scissors (RPS) game.

In RPS, players select a move simultaneously between three possible ttfoves: 

Rock, Paper, or Scissors. Scissors wins versus Paper, Rock wins versus Scis­

sors, and Paper wins versus Rock. The payoff matrix for Player A in a game

is populated, the appropriate policy can be chosen in several ways. We can use
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Figure 3.3: On the left, a simple payoff matrix for the game of Rock-Paper-Scissors. 
On the right, a sketch of the payoff matrix used in the RTS game simulations. St 
represents policy i .

of RPS is shown in Figure 3.3. The Nash-optimal strategy is to choose each ac­

tion uniformly at random; in particular P(Choose Rock) =  PfChoose Paper) =  

P(Choose Scissors) =  | .

In the case of our RTS game planner, the actions are instead policies and the 

payoff values are obtained via results of simulations into the future. In the simplest 

version, policies are simulated to completion or until they time-out, in which case a 

heuristic evaluation function is necessary to estimate who is ahead.

Informing the opponent about the move choice can be detrimental, like in Rock- 

Paper-Scissors, and the Nash-optimal strategy may have advantages over maxmin, 

or minmax, or both. For example, if we revealed to our opponent that our policy 

was to attack all their bases at once, they could respond with an appropriate counter 

policy, such as massing their army and killing our attack forces off one by one. This 

is the reason why we model RTSplan as a simultaneous move game instead of an 

alternating move game.

The following describes the simulation approach to selecting an appropriate 

policy from a given set of policies (RTSplan Algorithm):

•  Consider a set of policies P  of size n  and compute each entry of the payoff 

matrix R  (with dimensions of n  x n) by assigning policy p., to the simulation- 

based AI, and policy pj to its opponent, and executing these policies until
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either there is a winner, or a timeout condition is reached. Once the simulation 

is completed, the terminal game value or a heuristic evaluation is assigned to 

payoff matrix entry rtJ.

• Calculate a Nash-optimal policy with respect to our player using the standard 

Linear Programming (LP) based method, with the LP formulation given be­

low, or alternatively a minmax or maxmin move. The same method was used 

to solve the Oshi-Zumo game [6 ],

•  In case of the Nash-optimal player, assign a policy randomly to our player, 

using the probability distribution returned by the LP solver. For the minmax 

or maxmin players, play the minmax or maxmin move directly.

•  Repeat from step 1 as often as is desired while executing the chosen policies.

Step 2 in the RTSplan algorithm requires the solving of a LP in order to calcu­

late the Nash-optimal policy for the given payoff matrix R. This formulation is also 

valid for the opponent modelling extension discussed in the next section, and imple­

ments von Neuman’s Minimax theorem [36]: maxT miny x 'R y  =  miny maxj. x/Ry = 

Z, which states that there exist mixed equilibrium strategies x  and y with maximum 

payoff Z  for player 1 and — Z  for player 2.

An LP characterizing such Nash-optimal mixed policies for the maximizing 

player is the following:
Maximize Z such that

n

for all 1  < j  < m  : Z  < ^2  ri,jx u
i=1 

n

for all 1  < i < n  : Xj > 0 , £j =  1

i=1

In our application, rhJ is the simulation result when we choose policy i and the 

opponent chooses policy j .  Xi is the probability of respective policy i for our player. 

Z  is the expected payoff for our player. Our player (max) has policies 1,..., n  to 

choose from, while the opposing player (min) has policies 1, ...,m . In this case,s f  *
n = m  since our opponent uses the same policies as our player. This is not the case 

in the opponent modelling extension presented in the next section. To solve this LP, 

we used an LP solver based on the implementation in [27].
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3.3 Opponent Modelling

One problem with the Nash equilibrium strategy is that it does not exploit our op­

ponent’s mistakes. For example, in Rock-Paper-Scissors, the Nash-optimal play is 

to randomly select one of the three moves with equal probability. Although this 

guarantees that our opponent cannot exploit our play, it also means that we cannot 

exploit theirs. For example, a Nash-optimal player would only be able to break even 

against a player that played Rock all the time; an exploitative player would learn 

this behaviour and exploit it in order to win.

To exploit an opponent’s policy, we first require some idea of what their policy 

may be (a model of our opponent). Once we have an idea of what our opponent is 

doing, we can respond with an appropriate counter-policy. In our case, opponent 

modelling involves observing the opponent for a specified period of time, followed 

by choosing a subset of policies from our player’s policy set that the opponent 

appears to be executing. Then the next step is to find the best-response policy to 

this subset. Opponent modelling requires changing the game cycle, and the updated 

game cycle can be seen in Figure 3.4.

while (game not finished){ 
if (planning finished)

chosen policy set as current policy

// update opponent's subset periodically 
if (sufficient time has passed) 

update opponent's policy subset

begin planning next policy 
else

// planning is time constrained, and will 
// return even if planning is not finished 
continue planning

continue executing current policy
}

Figure 3.4: Updated game cycle
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Parameters

There are three parameters that will affect the performance of opponent modelling:

1. Prediction cutoff ratio (/) : A real number in [0,1] used to calculate the 

cutoff point for a policy’s comparison value to determine whether it will be 

added to P'.

2. Time Period (£): The interval in game seconds between recalculation of ac­

tive policy set P'.

3. Distance Measure (D ): Measure used for calculating the difference between 

two states. We discuss the specific implementation for our domain in greater 

detail later in this section.

These parameters are domain dependent, and thus should be determined after 

some experimentation has been performed on the domain to which this algorithm 

is applied.

While the original payoff matrix R  has dimensions of n x n, the matrix of the 

opponent modelling extension (R ') has dimensions n  x m, where m  is the size of 

the active policy set P' of the opponent.

The active policy set P' is composed of policies from policy set P. A policy p is 

considered active if the current world state resembles a state that would be reached 

from a state time period t earlier, with our opponent using policy p for that specified 

time period t . Essentially, if we run a simulation over the past time period t with the 

assumption that our opponent is executing policy p, and it turns out that the reality 

is similar to our assumption, we add p  to P '.

This approach works well at detecting if the opponent is executing a policy in 

our policy set and for policies similar to that policy as well. It can also adapt if 

the opponent changes policies because P' is recalculated periodically. However, it 

does not keep a history of previous policies, nor does it keep a table of weights, or 

an artificial neural network, to keep track of the opponent’s previous tendencies, as 

is done sometimes in Poker [10]. The effectiveness of these alternative methods of 

opponent modelling have not been explored in this thesis.
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The active policy set P' is determined by the following process:

The RTSplan-O Algorithm

• Save the current game state as state sa. This includes storing the positions 

of all the objects in the game world, the current policies employed by both 

players, and any other relevant information.

•  After time period t has elapsed, the current game state is once again saved, 

this time as state s&. Let A  be the policy that was used by our player over time 

period t. ■

• For each policy in P, simulate for time period t  from starting state sa, with 

our policy A  and policy pt for the opponent to yield state st.

•  For each state compare st to using a distance measure D between the 

two states and store the result as dt. Let d be the average over all of dt. Let 

c = d- f ,  where /  is a specified ratio value. In essence, c represents the range 

that the difference between two states can be within in order to be considered 

“active”.

• For each state sh if dt < c then pt is added to the active policy set P 1.

•  If the previous steps resulted in \P'\ =  0 then set P' =  P.

The new payoff matrix R' for the RTSplan algorithm has |P | rows and \P'\ 

columns. Essentially, policies in P' are those which closely match what we expect 

the opponent to do if they were performing one of the policies in our policy set P. If 

we cannot determine which policy our opponent is likely executing (their policy is 

significantly different from anything in P) then we revert back to the pure RTSplan 

algorithm using the original payoff matrix R.

Distance Measure D  ■» r ,

The distance measure used to compare two different states is fairly straightforward, 

but not without complications. If both states have the same number of objects then
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we just tally up the sum of all the distances between corresponding objects in their

respective states and return this sum.
1*1 ---------------------------------

Thus, D(s, s') =  Y ,  \j(x i -  x ’i f  +  (yi -  y t f  if |s| =  |s'| where ( x y t) and
i=0

(x-, y[) represent the positions of objects i in states s and s' respectively.

If there is a difference in the number of objects, meaning that one state had 

engaged in more combat than the other, and lost or killed units, then we mark that 

state with a flag. Once all the distance measures are completed, all the D  values 

of the flagged states are set to the maximum non-flagged value. This eliminates 

the need for an arbitrary “penalty” value given to states with different numbers of 

objects, thus maintaining a proper average value not skewed by the penalties of the 

flagged states. If all states were marked as flagged then we skip to the last step of 

the active policy set determination algorithm.

Complications with this approach can occur if objects cannot be uniquely iden­

tified. For example, if the only information we are given about an opponent’s army 

is the number and types of units, two armies with identical compositions would be 

indistinguishable using the above approach. Furthermore, if objects merge to cre­

ate less objects, or split apart to create more objects, the method described above 

would not be sufficient. However, the advantage of our approach is that it is easy to 

implement and is not computationally expensive.

Our implementation can currently uniquely identify all objects in each state, 

and does not allow for merging or splitting of objects, and thus does not suffer the 

problems discussed above. However, creating a general solution that can deal with 

with the above-mentioned problems should be the study of further work. For exam­

ple, one possible solution is to create a strategic-based distance measure, instead of 

the location-based measure we use here. However, this alternative is not explored 

in this thesis.

Discussion

■' t  *
Opponent modelling has several advantages. First, it reduces the number of simu­

lations needed to be done because \R!\ <  |/?.|. Reducing the number of simulations 

has a significant impact on performance as the simulations are the most computa-
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tionally intensive part of the RTSplan algorithm. Second, assuming the opponent 

does not deviate from the predicted policies, opponent modelling also leads to better 

play by RTSplan overall because it does not have to give the “benefit of the doubt” 

to the opponent by considering all of their available policies in the Nash equilibrium 

calculation.

However, excluding certain policies from the Nash equilibrium calculations also 

carries some risk. Including only policies that resemble what the opponent is doing 

is usually a good idea, but if the opponent is executing a policy that just happens to 

be similar for time period t  does not automatically mean that they are performing 

the policy we think they are. By concentrating only on how to counter the policy 

we think they are following, it effectively blinds us to other actions they could take, 

perhaps leading to a loss for us. Also, with our method we are essentially always 

one step behind our opponent because we are using their past policy as a predictor 

for their future policy.

Choosing a good value for t and /  is particularly important when playing against 

unpredictable opponents, such as humans. Lower t or higher /  values will result 

in less exclusions, but lead to reduced benefits of opponent modelling. Finding 

balanced values is essential. Since the effectiveness of these parameters is domain 

dependent, finding good values will likely require separate experimentation for each 

different domain. Furthermore, the success of our opponent modelling approach is 

dependent on the size and variability of our policy set P, with a larger and more 

variable P  leading to better modelling of our opponent because we have more poli­

cies for comparison with the opponent’s behaviour, and thus a higher chance of 

obtaining a more accurate opponent model.
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Chapter 4 

Implementation and Experiments

To test the performance of RTSplan, we implemented a simulator for an abstract 

model of a typical RTS game. Because RTSplan only considers group management 

and deployment in the abstract model we use, our experimental setup does not in­

clude the handling of resource collection and the creation of units and buildings. 

This means that we create an abstract model of only a part of a full RTS game. 

However, its reduced complexity allows us to better concentrate on the army de­

ployment problem. Although RTSplan is designed to work in any abstract model 

of RTS games, there are some implementation issues specific to the abstraction we 

use that warrant further discussion.

We conducted several experiments to determine the effectiveness of RTSplan 

in our abstract model. Similar experiments were performed to test the effective­

ness of the opponent modelling extension and to test parameters that affect these 

algorithms. Finally, the execution times of RTSplan in our abstract model were 

examined.

4.1 Implementation Details

We have made several assumptions and simplifications when designing our ab­

stract model of RTS games. In particular, combat and pathfinding are simplified to 

speed up simulations and to concentrate more on the higher-level issues, instead of 

low-level implementation issues. We also introduce the concept of fast-forwarding 

which greatly speeds up forward simulation.
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Simulation Process

currTime = 0;

while (!isGameOver()) {

for (int i=0; i < players.size (); ++i) {
Policy bestPol = calcBestPolicy(players[i] ) ; 
players[i].updateOrders(bestPol);

}

// time increment is based on how much time has
// elapsed between subsequent calls to this code
currTime += timelncrement;

if(isTimeToUpdateActivePolicies ()) { 
recalculateActivePolicies();

}

updateWorld(currTime);
}

determineWinner();

Figure 4.1: Simulator main loop pseudo-code

calcBestPolicy () in Figure 4.1 computes the result matrix and returns 

the best policy, time permitting. If the allowed computation time expires before the 

matrix is fully computed, it will return null, and the orders for the player will not 

be updated. For non-simulation based player types, we call the responding hard­

coded code block in calcBestPolicy (). Regardless of whether a policy was 

changed in the function, the world advances forward in time by the specified time 

increment. However, because calculating the best policy may be time consuming, 

we may have to spread out computations over several world update intervals. This 

means that the world will continue to advance, even while policy calculations are 

going on (see Figure 4.2). ' 4

For example, in our abstract RTS game, which runs at 8  simulation frames a 

second when not in real-time mode, the simulator only has l/ 8 th of a second to
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Figure 4.2: The simulation timeline

perform simulation computations before the world advances. This is enough time to 

compute a few entries of the payoff matrix, but usually not enough time to compute 

all entries. Thus, all the work done up to that point is saved, and resumed as soon 

as the real world advances. Once the entire matrix is completed, we can finally 

determine a policy. It is at this point that actions are being updated. This method 

allows for the world simulation to run in real-time, because expensive planning 

is interleaved with world execution. A separate real-time mode exists for non- 

experimental use, which does not use a constant time increment, but instead uses 

the length of time elapsed between subsequent calls to the function. We do not 

use this method in our experiments, since results in that mode are not processor 

independent.

The method isTimeToUpdateActivePolicies () is only used for the 

opponent modelling extension of RTSplan, and returns true only if the specified 

time period has elapsed, the entire payoff matrix has just been computed, and the 

new policy calculated. Resizing the payoff matrix before it is completely filled 

is possible, however, it is not explored in thesis, though observing its effects on 

performance could be the subject of future work.

Selection of Best Policy t  „

The best policy for our Nash player is calculated in a fairly straightforward manner. 

First, we need to compute the payoff matrix. Each entry in the matrix represents
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the result of a forward simulation between competing policies in which a winner 

is found or the time limit has been reached. The basic algorithm is shown in Fig­

ure 4.3.

for (int i=0; i < ourPolicies.size(); ++i) {
for (int j=0; j < activeOppPolicies.size(); ++j) {

// this method checks if we have time to compute 
// another forward simulation before real world 
// must be allowed to advance 
if (!nextSimulationAllowed()){ 
return null;

}
// simulate the competing policies
r [i ][j]=simulate(ourPolicies[i],activeOppPolicies[j]);

}
}
return pickPolicy(r);

Figure 4.3: Pseudo-code for part of calcBestPolicyO function.

There is a check between each simulation to see if there is time to run another 

simulation without violating time constraints. This can result in the effect that our 

player is a bit behind the action, because the world is changing while the algorithm 

is still trying to compute the payoff matrix to determine the next policy. However, 

for our player to be able to play in a real-time setting, time constraints are necessary, 

because computing the entire matrix can take too long.

Combat Simulation

RTSplan requires a combat simulator as part of its forward simulation process in 

order to resolve combat between opposing units within range of each other. Its 

complexity can be variable, however since RTSplan performs many forward simu­

lations, a very complex combat simulator could adversely affect performance.

In our implementation, we abstract individual units into groups with because 

we are dealing only with army deployment. Not only does this reduce the number 

of objects that need to be dealt with, but it also more closely matches the way a 

human thinks when playing an RTS game. A human player usually sends out groups
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of units, and deals with individual units only in combat situations. Our combat 

simulator does not deal with combat tactics. Instead it has a simple combat model 

that generally favours numerical advantage and is computationally inexpensive.

Pathfinding

RTSplan requires a pathfinding system that returns a path as a series of waypoints 

composed of locations. The specific pathfinder implementation is not important, 

only the format in which the paths are returned.

Our test scenarios did not contain any obstacles, so we did not include any 

pathfinding system in our implementation. However, RTSplan would work in ex­

actly the same manner if the scenarios had obstacles and we had an appropriate 

pathfinder.

Victory Conditions

In our scenarios there are two sets of victory conditions. One for the actual game, 

and another for the forward simulations. In our implementation, they are identical. 

However, this need not be the case, and having a different set of victory conditions 

for forward simulations from the real game could prove beneficial. This aspect is 

not explored in this thesis however.

Victory in a scenario is achieved by either destroying all of the enemy’s bases 

or units, or by having more bases/units when the game/simulation runs past a pre­

determined time limit. The time at which to stop the game/simulation is 1000 game 

seconds, and the method used to break ties is the following: the winner is the one 

who has more bases. If the number of bases is equal then the winner is the player 

with the higher number of remaining groups. If either all the bases or groups were 

killed at the same time, or the material is identical when time runs out, the result of 

the scenario is declared a tie. The time limit of 1000 seconds was chosen in order 

to allow the majority of games to play to completion, while still detecting stalemate 

situations before too much computation time is wasted in simulation. An 'exaTnple 

of a typical map and scenario progression can be seen in Figure 4.4.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A ttack  b a se

\  A ttack  b a se

A ttack ing  b a se

All g ro u p s  a tta c k  
e n e m y  h e re  >

A ttack ing  b a se

(a) All groups first form local groups of three (b) Opponent attacks bases while black gathers

H unt dow n 
rem ain in g  e n e m y

A ttack  n e x t  b a se  o n ce  
c u rre n t o n e  d e s tro y e d

(c) Black eliminates part of the enemy force

A ttack ing  n ew  b a se

V,
C h a se  dow n 
rem a in in g  g roup

f>,.

(d) Black eliminates the rest of the enemy

Figure 4.4: Snapshots of a typical map and the progression of a game. Light gray 
is a static player playing the Spread Attack policy, black is the RTSplan player.
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Policies

All of our initial simulations involved the following 8  policies, chosen mainly based 

on their diversity and their use by human players in commercial RTS games:

1. Null. This is more like a lack of policy. All groups stop what they are doing, 

and do not move. They do however still attack and defend against any groups 

or bases within their defined weapon range.

2. Join up and Defend Nearest Base. This policy gathers all the groups into 

one big group, with groups joining at their combined center of mass in order 

to speed up joining time, and then moves this large group to defend the base 

that is closest to an enemy group.

3. Mass Attack. In this policy, all groups form one large group in the same 

manner as in the Join policy, which then goes to attack the nearest enemy 

base until no enemy bases remain. There are two versions of this policy. 

Given the choice of attacking a base and group within range, one chooses to 

attack the base first and the other chooses to attack the group first.

4. Spread Attack. In this policy, all groups attack the nearest enemy base to 

them, and this repeats until all enemy bases are destroyed. There are two 

versions of this policy; the versions are analogous to those of the Mass Attack 

policy.

5. Half Base Defense Mass Attack. This is a split policy. Groups are divided 

into two halves. One half defends their respective nearest bases, while the 

other executes the Mass Attack policy.

6. Hunter. In this policy, all groups join with their nearest allied group in or­

der to create a larger combined hunting group. After the joining, all of these

newly formed groups join into one large group which attacks the nearest en-
■' t  ”

emy group until no enemy groups remain. The initial joining is performed to 

minimize losses during the secondary join phase.
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Policies which require examination of the game state, for example to determine 

nearest enemy group or base, do so periodically. In our case, the examination is 

done every 5 game seconds. This periodic examination is due to the fact that we 

are fast-forwarding via simulation and thus cannot examine the game state contin­

uously. The value of 5 seconds aims to balance the effectiveness of fast-forwarding 

and the frequency at which policies examine the world state. Fast-forwarding is 

described in the next section.

4.1.1 Fast-Forwarding of Policies

In our implementation, each forward simulation simulates all the way until the end 

of the game or to some point in the far future (e.g., 1000 world seconds). Therefore, 

it is crucial that the simulations of future states are computed quickly. However, 

these simulations can be expensive, especially if we were to simulate every single 

time step into the future. To reduce this high cost, we instead calculate the next time 

o f interest, and advance directly to this time. This calculated time is derived in such 

a way that there is no need to simulate any time step in between our start time and 

the derived time, because nothing interesting will happen during that time interval. 

Details on what we consider “interesting” are discussed later in this section. The 

derivation of the time o f interest is implementation and policy specific, although we 

expect that many factors in its determination would likely be common among other 

implementations and policies as well.

Here we introduce the concept of fast-forwarding. The idea of fast-forwarding is 

to advance simulations from one time o f interest to the next, instead of game tick by 

game tick, thus greatly reducing simulation cost. The algorithm for finding the next 

time of interest in our RTS game simulation environment is shown in Figure 4.5.

1. nextCollideTime () is calculated by solving a quadratic equation with 

input being the direction vectors of the two groups in question. The quadratic 

equation may not be solvable (no collision) or it may produce a time ©Tcelli- 

sion. This is similar to what is used for collision calculations in ORTS [23], 

another continuous-space RTS game environment. Two groups are consid­

ered to be colliding if either one of them is within attack range of the other.
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double nextTimeOfInterest(){
// start with maximum value of a double 
double minTime = DOUBLE_MAX;

// next time opposing groups are in shooting range 
double collideTime = getNextCollideTime(); 
if(collideTime < minTime) minTime=collideTime;

// next time a group's order is completed 
double orderDoneTime = getNextOrderDoneTime(); 
if(orderDoneTime < minTime) minTime=orderDoneTime;

// if units in range, earliest time they can shoot 
double shootingTime = getNextShootingTime(); 
if(shootingTime < minTime) minTime=shootingTime;

// next time policy gets to re-evaluate game state 
double timeoutTime = getNextPolicyTimeoutTime(); 
if(timeoutTime < minTime) minTime=timeoutTime;

return minTime; // time to advance simulation to

Figure 4.5: Function for determining the next time of interest.

2. getNextOrderDoneTime () is a simple calculation. Because all units 

travel in straight lines from waypoint to waypoint (in our implementation, 

they travel directly from start to goal due to lack of obstacles), we can just 

divide the distance to the goal for a group by its maximum velocity. We do 

this for every group, and return the time at which the first group reaches its 

goal.

3. getNextShootingTime () applies to groups that are already within range 

of an enemy group and are recharging their weapons. This function returns 

the next time at which one of these groups can fire again.

4. getNextPolicyTimeoutTime () returns the next time that any/one of 

the policies in question is allowed to re-evaluate the game state to give out 

new orders if necessary.
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Fast-forwarding allows forward simulations to safely skip all time steps during 

which nothing but movement of groups occurs (we consider these times to be 

unimportant). Essentially, fast-forwarding advances from one interesting time to 

the next, greatly improving simulation speed. As mentioned earlier, this method 

would also work with a separate implementation of any pathfinder, as long as that 

pathfinder provides a series of waypoints as orders to our groups. In a more complex 

domain with obstacles, more frequent re-examinations of the game state, and less 

abstraction, fast-forwarding is likely to be less effective since times of interest will 

occur closer to each other. Thus, to keep fast-forwarding effective, the abstraction 

model should be kept as abstract as possible.

4.2 Experimental Setup

There are several different RTS games on the market today. Each game has different 

units, different abilities, different resources, and other variations. Because we are 

creating an algorithm that should work in general, i.e., for all types of RTS games, 

our scenarios will only have elements that are common among all of them.

Scenario

A scenario is an experimental run involving a description of the initial setup of the 

map paired with two particular AI players controlling each side. All of our scenarios 

consist of bases and groups of units. Bases only have two attributes: position and 

hitpoints. These are abstractions of actual RTS game bases, which are typically 

composed of multiple buildings. Groups are composed of several units of possibly 

varying types. Units have the following properties: speed, attack power, armor, 

attack rate, position, attack range and hitpoints. Units are treated as individuals 

inside a group in all respects except for move speed. In this case, groups move at 

the speed of the slowest of its units.

Each scenario we create is symmetric geometrically, and unit-wise, givipg no 

advantage to any player. Although this symmetry does not accurately represent 

real world RTS games, it does decrease result variance, which is useful for our 

experimentation.
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Every map used has a continuous coordinate system with infinite size. There 

are two reasons for this choice: to avoid unnecessary collision-checking and to 

encourage the development of policies that are independent of the map size. How­

ever, bases and groups from the same player start fairly near each other to better 

approximate real world scenarios.

4.3 Initial Experiments

This section explores the effectiveness of our simulation-based planning algorithm 

(RTSplan) when applied to the abstract RTS game previously described.

We ran several tournaments to first determine the best evaluation function to use 

and then to compare the simulation-based policy to single static policies. Games 

were run concurrently on several computers.

To make the experimental results independent of specific hardware configura­

tions, the simulator used an internal clock. Thus, processor speed did not affect our 

experimental results. However, to do this we had to slightly modify our main exe­

cution loop, because we could no longer use an execution time limit for interleaving 

world execution and planning. Instead, we use parameter p a i r s  _pe r _ in t  e  r  v a  1, 

which specifies how many entries in the payoff matrix are calculated before allow­

ing the world to move forward. As mentioned earlier, we include a flag in our 

simulator which allows the choice between “true” real-time mode, and the above- 

mentioned mode which allows for reproducible and hardware independent results 

for our experimental testing.

All references to seconds in this section are to the simulator’s internal clock. 

Seconds in our case are not related in any way to real-world seconds. We use them 

merely because the speed of the groups and other attributes are specified in this time 

reference.

Parameters
•» f  >7

All of our experiments have the following parameters in common, with some ex­

periments having additional parameters that will be discussed when they are appli­

cable:
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1. simulation_length: This parameter sets how many simulator seconds 

we fast-forward into the future before evaluating the given state. When set 

to a large value, simulations are likely to end early when the game is finished 

due to a victory by either side. In the reported experiments this value is set to 

1000 seconds, thus effectively allowing all simulations to run until the game 

ends.

2. max_simulation_t ime : This parameter sets the amount of real simula­

tor seconds that are allowed to pass before we determine a winner based on 

the tiebreaker criterion. The value is set to 1000 seconds as well, meaning that 

it is likely that only true stalemates will be subject to the tiebreak procedure.

3. pairs_per_interval: This parameter determines how many pairs of 

competing policies we run before the world time advances.

4. time_increraent: This value determines by how much time the world 

advances during every interval (time between each tick in Figure 4.2). This 

parameter is set to 0.1 seconds which means that time in our simulation ad­

vances by 0.1 seconds for every number of policy pairs we simulate. This is 

specified by pairs_per_interval).

In our initial experiments, we use either sets of 50 or 100 maps which are similar 

to the map in Figure 4.4. The map in Figure 4.4 is a snapshot of only a part of the 

total scenario in the middle of the game. All of our initial experiments use scenarios 

of 4 bases per player, with each base being defended by one group of 20 tanks. We 

use the large numbers of tanks in order to try and make sure our results generalize 

to regular RTS games which often have similar numbers of units.

Evaluation Functions

The evaluation function is traditionally something that is designed by experts. Our 

algorithm simulates all the way to the end of the game, or at least significantly 

far into the future in the case where both policies end up in a stalemate situation. 

Thus, the evaluation function of the game state can be fairly simple, because we are 

simulating to the end of the game in the majority of cases.
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The game state evaluation function used in our experiments was chosen by 

testing several candidates and determining the function that was most suitable. 

Each candidate function ran against static opponents that used the policies de­

scribed earlier. Thus, each candidate evaluation function was run vs. every pol­

icy, for every one of the 50 randomly generated symmetrical maps. Because we 

had 8 predefined policies, there were a total of 400 separate games played by 

each candidate. Each evaluation function used a basic RTSplan player, and the 

p a i r s _ p e r _ i n t e r v a l  was set to 8. This meant that the RTSplan player experi­

enced a 0.8 (64/8* t im e .in c r e m e n t)  second delay in its reaction time, because 

we had a total of 64 entries to compute the payoff matrix. In this experiment, we 

, awarded 2 points for a win, 1 point for a tie, and 0 for a loss. The win rate is based 

on the total number of possible points obtained.

The first candidate evaluation function was just a simple function that returned 

either 100 for a win, -100 for a loss, and 0 for a tie. Its win rate against the static 

policies was 70.4%. Our second candidate evaluation function added a time param­

eter, which gave a slight bonus to quick wins, and to slow losses. Thus, it prefers 

to win quickly, and if losing, to prolong the game as long as possible. Its win rate 

was 75.2%. Finally, our last evaluation function added a material difference bonus. 

This means that preserving our units and destroying enemy units leads to a higher 

score. This modified evaluation function obtained a win rate of 80.7%. Due to the 

significant improvement, it is the one used in all of our further experiments.

4.3.1 RTSplan Experimental Results

After we had obtained an evaluation function by comparing the performance of 

several candidates in conjuction with RTSplan against the static policies, we ran 

RTSplan against different opponents, with varying parameters, in several further 

experiments in order to judge its performance.

RTSplan vs. Other Policies ■> /  ■>

First, we tested the performance of our basic RTSplan player without opponent 

modelling vs. our individual static policies, and also against a “random” player
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(Random) that switched randomly between policies every 5 game seconds. This 

was run over a set of 100 randomly generated symmetrical maps, with the basic 

RTSplan player and the Random player competing against all 8 policies one at a 

time for every map. Thus, there were 800 games played for every player match-up. 

Although the Random player did not stick to one static policy, we still played it 8 

times for every map, just like for the static player. The only difference was which 

policy the Random player played in the first 5 seconds, before it randomly switched.

Due to this fact, the results in Table 4.1 are expressed in terms of win, loss and 

tie percentages. They show that overall, our basic RTSplan player beats individual 

static policies. This is despite the fact that it operates at the same 0.8 second delay 

as we have seen in the evaluation function experiments. However, a closer exami­

nation of the results show that while RTSplan performs well against most opposing 

policies, it performs poorly against a few others. This will be explored later in this 

chapter.

The results for the Random player are interesting as well. It gets beaten fairly 

handily by both the static policies and the RTSplan player, which is not surprising, 

because it essentially switches policies blindly, while even the static player at least 

has a policy which knows how to play out the entire game. However, it still defeats 

the RTSplan player 15% of the time.

Because it switches policies every 5 seconds, the final policy for the Random 

player is a mix of our 8 defined policies, which is similar to what the RTSplan 

player does. Our forward simulations do not currently allow for the switching of 

policies in the middle of simulations, and thus they cannot foresee some of the 

erratic movements of the Random player. This means that the Random player can

Table 4.1: Different Player Comparison

Row vs. Col (W-L-T) % Random Static RTSplan
Random - 22.0 - 77.8 - 0.2 15.0 -84XK 1.0
Static 77.8 - 22.0 - 0.2 - 21.9-78.1 -0.0
RTSplan 84.0-15.0- 1.0 78 .1 -21 .9-0 .0 -
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get “lucky” and catch our RTSplan player off guard with an unforeseen move.

RTSplan vs. Individual Policies

Although we have shown that the basic RTSplan player can beat the individual 

policies overall, it is also useful to know its performance against each static policy 

specifically. These results are shown in Table 4.2.

From these results, it is clear that RTSplan player soundly defeats every policy 

with the exception of the policies that are aggressive, especially the Hunter policy. 

Thus, we need to determine how well Hunter performs against all the other policies 

to determine if Hunter is the dominant policy. These results can be seen in Table 4.3.

The results show that Hunter is soundly beaten by any policy that forms one 

large mass of units at the outset. This means that it is not the dominant policy and 

that some other factor is causing the RTSplan player to lose to Hunter because the 

RTSplan player performs much better overall, yet loses to Hunter.

At first, it appears likely that the delay that our RTSplan player experiences 

due to its staggered payoff matrix computation process could be the cause. We 

performed an experiment to test this, where we gave the RTSplan player no delay. 

However, Table 4.4 shows that although the delay does hamper the performance of 

the RTSplan player, it is not the only cause. Even in this ideal scenario, RTSplan 

still loses to Hunter. This result will be explored later in this chapter.

It may also seem like we are double-counting the results for Mass Attack and 

Spread Attack in Tables 4.2, 4.3 and 4.4. However, this is not the case. The policies 

with base and unit preferences are in reality similar, yet still very different. In our 

particular scenarios however, they end up yielding the same results. It is likely they 

would yield different results in a different scenario setup.

RTSplan vs. MinMax and MaxMin

Our RTSplan simulation player generally defeats single policies. To address the 

question of how important policy randomization is in our game, we crehted two 

other players. These players use simulation but treat the games as alternating move 

games, in which moves of the first player are made public and the second player t
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Table 4.2: RTSplan Player vs. Specific Policies

Policy Wins Losses Ties
Null 100 0 0
Join Defense 98 2 0
Mass Attack (base) 98 2 0
Mass Attack (units) 98 2 0
Spread Attack (base) 51 49 0
Spread Attack (units) 51 49 0
Half Defense-Mass Attack 98 2 0
Hunter 31 69 0

Table 4.3: Hunter vs. Specific Policies

Policy Wins Losses Ties
Null 100 0 0
Join Defence 7 93 0
Mass Attack (base) 7 93 0
Mass Attack (units) 7 93 0
Spread Attack (base) 69 31 0
Spread Attack (units) 69 31 0
Half Defense-Mass Attack 7 93 0

Table 4.4: RTSplan Player (no delay) vs. Specific Policies

Policy Wins Losses Ties
Null 99 1 0
Join Defense 97 3 0
Mass Attack (base) 97 3 0
Mass Attack (units) 97 3 0
Spread Attack (base) 55 44 1
Spread Attack (units) 55 44 1
Half Defense-Mass Attack 97 3 0
Hunter 45 55 0
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can respond to them. We call these players MinMax and MaxMin.

Naturally, we expected the RTSplan player to defeat both the MinMax and 

MaxMin players, because the game we consider is a simultaneous move game. To 

see this, consider Rock-Paper-Scissors. In an alternating and public move setting 

the second player can always win. We ran the MinMax and MaxMin players against 

each other on 100 randomly generated symmetric maps. p a i r s _ p e r _ i n t e r v a l  

was set to 64, allowing the full payoff matrix to be computed before advancing time 

in the simulation. The results can be seen in Table 4.5.

As expected, the MinMax and MaxMin players were almost equivalent, while 

it is clear that the RTSplan player is the better player by a small margin. The large 

number of ties is expected as well, because when both players reach the Nash- 

equilibrium point, neither player will have incentive to deviate from their current 

policy. In reality, this means that the game ends in a stalemate, where the groups of 

both players are stationary or in a state of oscillation.

4.3.2 Results of RTSplan with Additional Policies

The previous experimental results showed that the RTSplan player was better over­

all versus individual static policies, however, they also showed that it performs 

fairly poorly against the more aggressive policies such as Hunter and SpreadAt- 

tack.

As discussed earlier, the strength of RTSplan is highly dependent on the number 

and diversity of policies available to it, and thus we introduce the following two 

policies to improve the RTSplan player.

• Attack Least Defended Base. This policy first creates one large army in the

Table 4.5: Simulation Players Comparison

Row vs. Col (W-L-T) MinMax MaxMin RTSplan
MinMax - . 6-8-86 0-21-79
MaxMin 8-6-86 - 6-19-75
RTSplan 21-0-79 19-6-75 -
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same manner as Mass Attack, and then this army looks for the least defended 

base, which is the base that is furthest away from its friendly forces, and 

attacks that base. The least defended base is reconsidered periodically, in 

case the opponent shifts forces to defend the target base.

•  Harass. This policy harasses the enemy, but never engages in direct combat 

unless forced to do so. First, armies of two nearby groups are formed, and 

each army is sent to attack the nearest enemy base. However, if an enemy 

army gets near any of our harassing armies, that army retreats in the direction 

of the nearest friendly base. Once it is sufficiently far enough (in this imple­

mentation, about twice the range of the enemy’s weapons) from the enemy 

however, it proceeds to attack the nearest base once again.

Results presented in Tables 4.6 and 4.7 show that the addition of these two 

policies does not introduce any dominant policy. Instead it creates a better mix of 

policies, where every policy can be countered by at' least one other. This could 

benefit the RTSplan player, since it can find a counter to every policy.

In theory, the RTSplan player should perform better overall if it has more poli­

cies to choose from. Having a set of policies that each have a way to be countered 

benefits the RTSplan player, because it has the opportunity to use the appropriate 

countering policy.

Table 4.8 shows that the RTSplan player does improve over the original, how­

ever, only slightly. The original 8 policy player wins 78.1% of the time, while the 

new RTSplan with 10 policies wins only 78.3% of the time, although game logs 

show that when it loses, it’s a closer contest.

Further examination from game logs where the RTSplan player lost made it 

clear what was happening. Essentially, the root of the problem is that the RTSplan 

player gives too much credit to its opponents. Because it has no knowledge about 

the opponent, it must give it the benefit of the doubt and assume that they will use 

the policy most detrimental to the RTSplan player.

Unfortunately, this sometimes leads to the situation where RTSplan sees that 

if the opponent executes a particular policy at that specific time, there is nothing
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Table 4.6: Harass vs. Specific Policies

Policy Wins Losses Ties
Null 2 0 98
Join Defence 100 0 0
Mass Attack (base) 100 0 0
Mass Attack (units) 100 0 0
Spread Attack (base) 38 59 3
Spread Attack (units) 38 59 3
Half Defense-Mass Attack 100 0 0
Hunter 49 51 0
Attack Least Defended 100 0 0

Table 4.7: Attack Least Defended vs. Specific Policies

Policy Wins Losses Ties
Null 100 0 0
Join Defence 13 8 79
Mass Attack (base) 6 94 0
Mass Attack (units) 6 94 0
Spread Attack (base) 0 100 0
Spread Attack (units) 0 100 0
Half Defense-Mass Attack 6 94 0
Hunter 93 7 0
Harass 0 100 0

Table 4.8: RTSplan vs. New Policy Set

Policy Wins Losses Ties
Null 100 0 0
Join Defence 96 4 0
Mass Attack (base) 99 1 0
Mass Attack (units) 99 1 0
Spread Attack (base) 38 62 0
Spread Attack (units) 38 62 0
Half Defense-Mass Attack 99 1 0
Hunter 46 54 0
Attack Least Defended 99 1 0
Harass 70 28 2
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that the RTSplan player can do to prevent a loss. Game logs show that this oc­

curs only sporadically, however, the defeatist attitude from this calculation leads to 

indecision-like behaviour, where RTSplan is essentially frozen in place, trying to 

decide whether it can get out of a sure loss or not. This delay usually means that 

the situation only gets worse, which eventually leads to defeat.

A way to deal with this problem is to limit the policy set we use for our opponent 

by only considering policies that the opponent appears to be playing. Opponent 

modelling is a natural way to limit this policy set.

4.3.3 RTSplan-O Experimental Results

The previous section showed that although RTSplan plays well in general, it does 

have a weakness in that it gives too much credit to its opponents. This section shows 

that the addition of opponent modelling can remedy this problem, at least for when 

dealing with known policies.

RTSplan-O vs. Individual Policies

Once opponent modellihg was added to the RTSplan player, the exact same map set 

was run once again with the RTSplan-O player versus the entire policy set.

Table 4.9 shows that the RTSplan-O player is superior to the original RTSplan 

player. The aggressive policies still perform fairly well, however, RTSplan-O now 

clearly beats every static policy. These results show that the problem discussed 

in the previous section can be overcome with opponent modelling. This result is 

unsurprising, since the opponents are static and are already present in our policy 

set. The few losses that still do occur are due to the delay that the RTSplan player 

still experiences.

As mentioned in Chapter 3, there are two parameters that affect the performance 

of opponent modelling: prediction cutoff ratio ( /)  and prediction interval (t).

Experiments on 1000 maps were performed to get an idea of what values were
4 17

appropriate for the specified scenario setup. Table 4.10 shows that for /  =  0.1, 

t = 2.0 yields the best results. Table 4.11 shows that for t =  2.0, the results are best 

with /  =  0.5. Thus, Table 4.9 was run with t = 2.0 and /  =  0.5. However, because
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Table 4.9: RTSplan-O vs. Policy Set (t =  2.0,f  =  0.5)

Policy Wins Losses Ties
Null 100 0 0
Join Defence 97 1 2
Mass Attack (base) 99 1 0
Mass Attack (units) 99 1 0
Spread Attack (base) 92 8 0
Spread Attack (units) 92 8 0
Half Defense-Mass Attack 99 1 0
Hunter 95 4 1
Attack Least Defended 100 0 0
Harass 83 8 9

Table 4.10: RTSplan-O vs. Policy Set ( /  =  0.1)

t Wins Losses Ties
1.0 917 79 4
2.0 891 100 9
5.0 863 130 7
10.0 870 126 4

Table 4.11: RTSplan-O vs. Policy Set (t  =  2.0)

/ Wins Losses Ties
0.1 935 63 2
0.2 954 36 10
0.5 956 32 12
0.75 945 48 7
1.0 933 63 4
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the /  and t parameters are not independent, the values used are merely educated 

guesses. Finding the optimal values for both is time consuming and not explored in 

this thesis. One possible solution is to learn the values in an automated way, similar 

to what is done in many common learning algorithms.

RTSplan-O vs. RTSplan

Now we turn to the question of whether our new RTSplan-O player is better than the 

original RTSplan player. Theoretically, it should not be any better because the RTS­

plan player is theoretically unexploitable. 1000 maps were used in this experiment, 

and as expected, the difference between the two players was not statistically signifi­

cant (one sided binomial, p=0.964293, n=1000, a  = 0.05), with the new RTSplan-O 

player winning 527 games, losing 471 and tieing 2.

RTSplan and RTSplan-O vs. Unknown Policies

Dealing with an opponent that is limited to our policy set is not the best way of 

evaluating the strength of RTSplan. In real game scenarios, it is unlikely that the 

opponent will be following a policy in our policy set.

Because it is not feasible to design an experimental setup with a human op­

ponent, we instead use one of the policies in our policy set for our opponent, but 

we make RTSplan blind to its existence. Essentially, the policy our opponent uses 

is never added to the active policies vector, effectively preventing RTSplan from 

reasoning about it.

We examined the performance of RTSplan and RTSplan-O when blinded to 

each policy. The results are shown in Table 4.12 and Table 4.13. These results 

show that without opponent modelling, RTSplan’s performance does not change 

significantly, even when dealing with an unknown policy. In fact, due to the “giving 

too much credit” problem discussed earlier, the performance even increases a little 

bit against some policies. This is because RTSplan can’t give the benefit of the 

doubt to our opponent about a policy we know nothing about. This shows that 

RTSplan can deal with unknown policies, and perform acceptably. However, it is 

also clear that the performance of RTSplan-O suffers significantly when dealing
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Table 4.12: RTSplan vs. Unknown Policy

Unknown Policy Wins Losses Ties
Null 95 5 0
Join Defence 97 3 0
Mass Attack (base) 98 2 0
Mass Attack (units) 98 2 0
Spread Attack (base) 61 39 0
Spread Attack (units) 61 39 0
Half Defense-Mass Attack 100 0 0
Hunter 41 59 0
Attack Least Defended 100 0 0
Harass 45 53 2

Table 4.13: RTSplan-O vs. Unknown Policy (t — 2.0, /  =  0.5)

Unknown Policy Wins Losses Ties
Null 95 5 0
Join Defence 99 0 1
Mass Attack (base) 100 0 0
Mass Attack (units) 100 0 0
Spread Attack (base) 92 8 0
Spread Attack (units) 92 8 0
Half Defense-Mass Attack 100 0 0
Hunter 37 63 0
Attack Least Defended 100 0 0
Harass 49 47 4
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with unknown policies. This result is not surprising because RTSplan-O cannot 

exploit a policy it does not recognize. Ideally, RTSplan-O would have a larger set 

of policies, and unknown policies could be fitted better to the nearest known policy 

and exploited accordingly. Essentially, the performance RTSplan-O depends on the 

unknown policy and how “similar” it is to the remaining policies in the policy set.

Currently, because the policy set is fairly small, no policy closely resembles the 

unknown policy, and thus no exploitation can be performed. The only exceptions 

are the MassAttack and SpreadAttack policies which have nearly identical similar 

policies. This reflects the significant improvement in performance of SpreadAttack 

in Table 4.13. However, when both of the SpreadAttack policies are removed from 

the active policies vector, the result is significantly worse, with 43 wins, 55 losses, 

and 2 ties, because there is no similar policy the opponent modelling can recognize 

and exploit.

RTSplan-O Policy Set Reduction

One result that needs to be examined is the effectivess of RTSplan-O at reducing the 

size of the opponent’s policy set. In other words, how accurately we can model our 

opponent. The results of this are shown in Table 4.14. The first column represents 

the percentage of the opponent’s original policy set that remains after we apply 

opponent modelling against the given policy. The second column shows the same 

percentage, however, in this case, the opponent’s policy is treated as an unknown 

policy in the same way as was done for Table 4.13.

The results show that in almost all cases we get a significant reduction in the

opponent’s policy set (“active” policies is small). The only exception is where 

our opponent does nothing, and we are blind to that option being available to our 

opponent. This is because no other policy resembles the n u l l  policy, and thus, our 

opponent modelling process is forced to add all available policies to the “active” 

policy set. Conversely, if we know of the n u l l  policy, then our opponent modelling
>  >7

is perfect, and reduces the opponent’s policy set by the maximum value (10% of the 

normal is perfect in this case, since we reduce the policy set from 10 to 1).

Unsurprisingly, the results also show that the more different a policy is from
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the other policies in the policy set, the better our opponent modelling will do if we 

know about that policy, since it can be more easily identified. However, that same 

attribute of the policy also makes opponent modelling less effective if we don’t have 

it in our policy set, since no other policy closely matches the missing policy. This 

suggests that the best way to deal with modelling unknown policies is to have a large 

and diverse policy set in the hopes that one of the known policies will resemble the 

policy being played by the opponent.

4.3.4 Execution Times 
Simulation Execution Time

For our algorithm to be useful in a real RTS game setting, our computations must be 

able to conclude in a reasonable amount of time. Table 4.15 shows the executions 

times, with various percentiles, for the time it takes to perform one single forward 

simulation. Different scenarios sizes, numbers of policies, and the effects of oppo­

nent modelling are shown. All results were executed on a dual-processor Athlon 

MP 2000+ CPU, with memory ranging from 2GB to 3GB, although < 100KB of 

memory is used by our program.

Even though some slight spikes in performance are exhibited, as can be seen 

in the max value, generally the execution time of a simulation is fairly low. These 

results show that even while computing several forward simulations every frame, 

we can still run at a real-time frequency, with the number of simulations run per 

frame determined by available CPU time. These numbers are dependent on the 

s im u la t io n _ t im e o u t  parameter, as well as the p a i r s _ p e r _ i n t e r v a l  pa­

rameter. Lowering these two parameters will result in faster execution times, al­

though at the cost of some performance. Also, if the execution times are not ac­

ceptably low for an RTS game, it is always possible to simulate a shorter time into 

the future. Currently, we simulate the entire game, and lowering this threshold 

should increase execution time significantly.
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Fast-forwarding Computational Savings

We mentioned earlier that fast-forwarding greatly speeds up forward simulation 

time. Table 4.16 shows the comparison between the average length of time it takes 

to play out one pair of policies using fast-forwarding, and the average length of time 

it takes to play out the same policies as a normal simulation with t  im e_i n c re m e n t 

set to 0.1. In order to ensure that both the fast-forwarding and the normal simula­

tions yielded the same game result, we only examined policies that do not peri­

odically look at the game state since the frequency at which the the game state is 

examined would differ between the two methods.

We ran each policy against all the other policies in our test policy set, and then 

calculated the average length of time for both simulation methods. This is done in 

order to examine whether the choice of the policy has any effect on the results.

The results in Table 4.16 show that fast-forwarding is significantly faster than if 

the simulation were advanced normally, 0.1 game seconds at a time. In fact, fast- 

forwarding is on average over 800 times faster than regular simulations. This is 

mainly because we drastically reduce the number of game state recalculations, thus 

reducing the total computation time used for collision checking, object movement, 

etc., all of which must be performed every game state update.

The results show that fast-forwarding is essential for allowing RTSplan to run 

effectively and in real-time. The only downside of fast-forwarding is that it does 

not allow policies to re-examine the state continuously, but rather periodically, as 

specified by the policy itself. However, in this case the advantage of being able to 

run forward simulations at a very high speed clearly outweighs the disadvantages, 

as long as fast-forwarding can be kept effective by keeping the abstraction level 

fairly simple.
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Table 4.14: Opponent Modelling Policy Set Reduction (t =  2.0, /  =  0.5, 50 maps)

Policy Known (% of normal) Unknown (% of normal)
Null 10.0 100.0
Join Defence 29.11 32.95
Mass Attack (base) 55.90 55.13
Mass Attack (units) 55.90 55.13
Spread Attack (base) 42.17 34.31
Spread Attack (units) 42.17 34.31
Half Defense-Mass Attack 55.90 58.66
Hunter 21.66 81.24
Attack Least Defended 40.27 69.03
Harass 25.88 54.34

Table 4.15: Execution Times (milliseconds) Percentiles and Max Time

Map Size (# of policies) 10th 25th 50th 75th 90th Max
3 bases(8) 1.13 2.08 3.34 5.42 9.16 71.39
5 bases (8) 2.26 4.72 7.83 21.93 38.92 194.85
4 bases(10) 18.62 38.30 67.01 102.12 132.22 225.57
4 bases (10) (modelling) 5.19 11.50 28.21 50.15 95.4 220.3

Table 4.16: Fast-forwarding time comparison (seconds)(50 maps)

Policy Fast-forwarding Time Normal Simulation Time
Null 0.033 25.20
Mass Attack (base) 0.040 20.65
Mass Attack (units) 0.016 20.13
Spread Attack (base) 0.022 11.55
Spread Attack (units) 0.015 11.31
Half Defense-Mass Attack 0.019 22.64
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Chapter 5 

Conclusions and Future Work

5.1 Conclusions

This thesis represents preliminary work in the area of simulation-based planning in 

RTS games. First, we introduced an abstraction model for RTS games that makes 

simulation-based planning in the domain feasible. The algorithm RTSplan, which 

is based on a combination of forward simulations and Linear Programming to ob­

tain a Nash-optimal solution is presented. Furthermore, we introduced the concept 

of fast-forwarding, which significantly increased the speed of forward simulation, a 

necessity for the RTSplan algorithm. In fact, fast-forwarding has so far eliminated 

the need for a sophisticated evaluation function because we can simulate to the end 

of the game (although this may only be due to the simplicity of the scenarios). 

Finally, we introduced an opponent modelling extension to the RTSplan algorithm 

(RTSplan-O) that strives to exploit predictable players and greatly increases the per­

formance of the basic RTSplan algorithm when used against the individual policies 

in our policy set.

Initial results are promising. Based on the current world state, RTSplan chooses 

between available policies to defeat its opponents, and even plays well against op­

ponents that execute unknown policies. RTSplan is fairly computationally inten­

sive, however, it can be made to work seamlessly in real-time, albeit at some cost to 

performance. A strength of RTSplan is that its performance is closely related to the 

variety of actions available to it. The more diverse the policies, and the more action 

space that is covered, the better the performance will be.
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5.2 Future Work

There are several potential areas of improvements and extensions for RTSplan and 

RTSplan-O. First, RTSplan needs to be tested in a true RTS game environment such 

as ORTS [23]. This requires the development of an interface that allows for com­

munication between the game’s pathfinder and RTSplan, as well as an abstraction 

scheme that can convert real RTS game world data into the abstract form used by 

RTSplan. Furthermore, a more sophisticated, and game dependent combat model 

should be developed, as the one currently used by RTSplan is quite simplistic.

More policies should also be developed, as the current set is still fairly limited 

in scope and is not representative of all the common policies used in RTS games 

today. This could lead to a more computationally intensive process, so a distributed 

computing approach should be explored, especially because RTSplan lends itself 

nicely to parallelization.

Developing more complex scenarios that use different bases and unit types 

should be developed and tested, along with creating new policies that take advan­

tage of these new unit types. This would be a step towards better representing actual 

RTS game abstractions.

Further testing needs to be done on the performance of RTSplan. Specifically, 

RTSplan should be tested against a finely-tuned AI script. Unfortunately, none 

was available at the time of writing. RTSplan should also be tested against human 

opponents. Some preliminary work has been done on this using a built-in human 

interface, however, no rigorous experimental setup has been set up.

Some speed optimizations could also be made to the underlying simulator. For 

example, currently, the simulator uses a naive approach to collision detection be­

tween objects which does not scale well with size. The execution times should be 

lowered in general to work better in true RTS games where a lot of the CPU time is 

used for other tasks such as pathfinding, combat simulation and graphics.

As discussed earlier, finding optimal values for the various parameters qsed in 

this thesis could lead to better results. The current parameters are merely educated 

guesses based on some simple experimentation.
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Allowing forward simulations to change the policy in the middle of simulation 

based on either a time limit or other condition should also be explored. We have 

an implementation of this, however, execution time is increased exponentially be­

cause we are doing an additional full payoff matrix computation for every entry in 

the original payoff matrix. This results in drastically more forward simulations that 

need to be performed. Because execution times are currently much too slow to be 

considered for a real-time setting, researching methods into increasing the execu­

tion speed and/or pruning the number of simulations to be done could allow this to 

become feasible in the future.

Finally, further exploration into the adaptation of RTSplan to work in an imper­

fect information setting, apart from simultaneous moves, needs to be performed. 

Currently, RTSplan works only with perfect information, and assumes that a sep­

arate “scout AI” deals with incomplete information and provides information to 

RTSplan in the form of known and predicted enemy locations. The validity of this 

assumption should be tested in an RTS game setting, requiring the development 

of a separate scout AI, and if it is found to be unacceptable, modification of our 

algorithms to allow them to deal with an imperfect information environment may 

become necessary.
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