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ABSTRACT

We investigate the construction of designs for misspecified generalized linear 

models. Possible misspecification of generalized linear models includes linear predictor 

misspecification, use of an incorrect link function and an inadequate variance function. 

In this work we assume a finite design space and our interest is in the construction 

of integer-valued designs over the finite design space. The advantage of our integer

valued construction over the approximate design approach is that our designs are 

exact and thus readily implement able.

We begin with the problem of designing for models with a misspecified linear 

predictor. We adopt the average mean squared error of predictions over the design 

design space as the loss function. The complicated dependence of the loss function on 

the unknown contamination function renders the problem of designing for generalized 

linear models with misspecified linear predictor not easily amenable to the minimax 

treatment which has been successful in the context of linear models. We propose a 

new criterion for robust designs termed “minave” designs. Using the average (over 

the design space) mean squared error of predictions as the loss function, the minave 

design is the design that minimizes the average mean squared error of predictions over 

the specified contamination neighbourhood. This averaging was carried out using a 

procedure based on a singular value decomposition of the design matrix.
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We give a holistic treatment to  the problem of designing for misspecified general

ized linear models by using the same approach for constructing designs when the link 

function is possibly misspecified and when there is overdispersion. The general ap

proach is to derive the mean squared error of predictions-based criterion in each case 

of model misspecification. Having established the design criterion based on relevant 

statistical consideration we obtain the integer-valued designs such that the criterion 

is minimized. In all cases the problem is a nonlinear integer optimization problem. 

We employ the simulated annealing algorithm to solve the resulting optimization 

problem.
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CHAPTER I

INTRODUCTION

This dissertation is on the construction of optimal designs for generalized linear mod

els when there is the possibility that the assumed form of the fitted model does not 

accurately represent the true model.

1.1 Generalized Linear Models

Generalized linear models are a body of regression-like models encompassing data 

from binomial, Poisson, gamma, and inverse Gaussian distributions in addition to the 

classical normal distribution. Generalized linear models are extensions of the ordinary 

regression models to non-normal responses (see McCullagh and Nelder, 1989). The 

response Y  is assumed to have a distribution in the exponential family of distributions, 

taking a probability density/mass function of the form

h  (y, 6,4>) = exp {(y9 -  b (6)) ja  (4>) +  c (y, <p)} (1.1)

for some functions a (•), b (•) and c (•). The parameter 9 is the canonical parameter. 

A generalized linear model has three components:

1. Random component: The random component of a generalized linear model 

specifies the distribution of the response variable Y.  The distribution has the 

form (1.1) and for any distribution of this form the mean and variance of the

1
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response variable Y  are given by

E ( Y )  = g = b'(9)

and

var (Y ) =  a ((f)) b" (9),

where primes denote differentiation with respect to the canonical parameter 9. 

Thus the variance of the response is prescribed by the assumed distribution.

2. Systematic component: The systematic component defines a non-stochastic lin

ear model

r] = z T (x) (3

where zT (x) is the regressor vector corresponding to the vector of explanatory 

variables x  and (3 is the vector of model parameters. This linear combination of 

regressors is called the linear predictor in the generalized linear model literature.

3. Link component: The third component of a generalized linear model specifies 

a monotonic differentiable function g (•) termed the link function. The link 

function connects the random and systematic components. This connection is 

done by equating the mean response /i to the linear predictor r; by r] =  g (//), 

that is

g (g) =  z T (x) (3.

The link function g(g) = g is the identity link function which equates the 

mean response to the linear predictor. Thus, the link function for the ordinary 

regression with normally distributed response variable Y  is the identity link.

2
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The link function which equates the linear predictor to the canonical parameter 

is the canonical link. That is, 7? =  zT (x) f3 = g (p) =  9.

Usually model fitting for generalized linear models is by maximum likelihood es

timation. The likelihood equations are usually nonlinear in the model parameters /3. 

These equations are solved using iterative methods, in particular, Newton-Raphson 

method or Fisher scoring method. Details of the model fitting procedures can be 

found in the classical book by McCullagh and Nelder (1989) on generalized linear 

models.

This introductory chapter presents a literature review of regression design prob

lems for linear and nonlinear models and the particular case of generalized linear 

models. Section 1.2 presents the classical regression design problem and the under

lying assumptions. It includes a brief review of the various optimality criteria in the 

experimental design literature. Section 1.3 describes an extension of the regression 

design problem to nonlinear regression models and generalized linear models. It high

lights the problem of parameter dependency of design criteria. This happens to  be a 

major difficulty to be overcome when designing for nonlinear models and generalized 

linear models. Section 1.4 introduces the subject of model-robust designs. It includes 

a review of the pioneering work of Box and Draper (1959) in model-robust designs 

and the development of robust approaches sequel to Box and Draper’s work. The 

section concludes with a case for the work done in this dissertation on the need for 

model-robust designs procedures in generalized linear models. Finally, we discuss the 

robustness issues around designs for generalized linear models and a summary of the

3
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chapters in this dissertation addressing these robustness issues.

1.2 Classical Linear Regression Designs

Regression is a statistical tool used for obtaining information on a response variable Y  

tha t depends on a (possibly vector valued) variable x. When the variable x  is under 

the control of an experimenter, he may like to know the values of x  where it is "best" 

to observe the response Y.  Usually, the experimenter is constrained by resources such 

as money, time and the number of observations he can take. The optimal regression 

design problem is about choosing levels of x  and allocating observations at x  so as 

to optimize specified criteria related to various constraints. There is a vast number 

of criteria in the experimental design literature. The choice of criteria would depend 

on the object of experimentation.

In the linear regression setting, the experimenter observes a response given a 

vector of predictors Xj for a subject i, i = 1, 2,..., n, assuming a model of the form

Y  =  zT (xj) f3 +  €j, (1.2)

where /3 is the vector of unknown parameters and e, are random errors such tha t they 

are uncorrelated and have constant variance a 2. The least squares estimate of the 

vector of model parameters is given by

3  =  M “1ZY,

where Y  =  (Yi, Y2, ..., Yn)T, Z =  (z ( x i ) , z (x2) ,..., z (xn))T and M  =  ZTZ, the infor

mation matrix. The information matrix depends on the design vector x  through the 

matrix Z. The matrix Z is called the design matrix.

4
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Suppose an experimenter would like to conduct an experiment whose response Y  

satisfies (1.2). When the total number of observations to be taken is n, the object 

of the optimal regression designs is to choose optimal values of x i, x 2, x „ ,  not nec

essarily distinct, from a design space S  such that certain criteria are satisfied. An 

n —tuple of points x i,X 2 , ...,xn from the design space S  is an exact design. Thus the 

exact design corresponds to a discrete probability measure £ on S  with masses which 

are integral multiples of n~l . Denote the information matrix of (3 corresponding to 

the design £ as M (£). Finding exact designs is an integer optimization problem - 

optimization in a discrete domain - which is, in general, analytically intractable. The 

intractability of the exact problem led to the development of Kiefer’s “approximate 

theory.” In the approximate theory the restriction of the design measures to  dis

crete probability measures is removed and a design measure could be any probability 

distribution £ in a suitable class E of distributions. The information matrix M  (£) 

corresponding to a probability distribution £ can be written as,

The matrix M  (£) is nonnegative definite and is assumed here to be positive definite. 

Optimal designs are usually obtained by optimizing functions of the information ma

trix, M  (£), say (M  (£)).

The most intensively studied design criterion is the D-optimality criterion (Silvey 

1980) and it is the design that maximizes the determinant of the information matrix.

5
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That is

£ =  argmaxdet {M  (£)}.

This design minimizes the determinant of the variance-covariance matrix of the esti

mates of the model parameters. Other criteria tha t have been studied in the literature 

include the G-optimality criterion, the design minimizing the maximum (over the de

sign space) variance of the predicted response (Kiefer and Wolfowitz, 1960). That

is,

£ =  minmax jz T (x) M -1 (£) z (x)) . xes 1 J

The Q-optimality criterion, also known as I-optimal criterion seeks the design mini

mizing the integrated (or average) variance of the estimated response over the design 

space;

£ =  min f  zT (x) M -1 (£) z (x) dx.
J s

The A-optimality criterion seeks the design minimizing the trace of the variance- 

covariance matrix;

£ =  argmin trace {M T1 (£)} . 
ten

The E-optimality criterion seeks the design minimizing the maximum eigenvalue of 

the variance-covariance matrix of model estimates (Kiefer, 1974);

£ =  argmin Amax {M _1 (£)} .

The c-optimality criterion seeks the design minimizing the variance of a given linear 

combination of parameter estimates. For a fixed vector a, the c-optimal design is

6
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given by

£ =  argmin | a TM _1 (£) a} .

Kiefer and Wolfowitz (1960) present extensive results on D- and G-optimality, in

cluding the celebrated Equivalence Theorem. The Equivalence Theorem established 

tha t a design is D-optimal if and only if it is G-optimal. This means that the design 

tha t maximizes det {M  (£)} minimizes the maximum value of zT (x) M -1 (£) z (x) 

over the design space S.  W ith approximate theory comes mathematical convenience 

such that the various optimizations which are otherwise unwieldy in the exact the

ory become tractable through convex theory. However, the resulting designs from 

approximate theory are not directly implementable. They need to be approximated 

by exact designs. The books by Fedorov (1972), Silvey (1980) and Pukelsheim (1993) 

are classical references on this subject.

1.3 Designs for Nonlinear Regression Models and 
Generalized Linear Models

A nonlinear regression model has a mean response of the form E  (y)  = h  (x,/3), with 

the function h  a nonlinear function in at least one of the p  model parameters. A 

constant variance is usually assumed. The information matrix for the vector of model 

parameters, (3 is given by

M  (x > /3) =  z (Xi’ 0 ) zT 0 ) =  zT 09) Z 09 ) ’

where the vector,

z(x;,/3) =  d h  (xj,/3) /d/3 

7
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and

Z(/3) =  (z (xx,/3) , z (x2,/3) , z (xn,/3))T .

In the context of the approximate theory, the information matrix is given by

M  ( f , (3) = J  z (x, (3) zT (x, /3)

for a continuous design £. As it is with linear models, designing for a nonlinear model 

requires optimizing a certain function, say (M  (£,/3)), of the information matrix.

Nonlinear experimental design poses a major challenge because of the dependency 

of design criteria on the unknown parameter, /3, through the information matrix. 

Thus, designing an experiment for the estimation of the model parameters, /3, requires 

that these parameters be known! Various strategies have been proposed and used for 

dealing with the dependency of the design criteria on model parameters. The easiest 

and earliest approach is to adopt a best guess of the parameter values, say /3°. Given 

best guesses for parameter values, the nonlinear design problem becomes amenable 

to the theory of optimal design for linear models. Chernoff (1953) dubbed this design 

locally optimal design. Locally optimal design can be very sensitive to the choice of 

the best guesses for the parameters. An approach that has been used to remedy the 

non-robustness of the locally optimal design is a Bayesian paradigm. In the Bayesian 

approach a prior distribution, say 7r (/3), is assumed on the unknown parameters. The 

Bayesian optimal design is the design optimizing the expectation of the criterion of 

interest, where expectation is taken with respect to the assumed prior distribution. 

That is,

^ ( M ( G / 3 ) )  = y*(M(£,/3))7r(/3)d/3.
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The prior distribution is usually interpreted as the experimenter’s prior belief in the 

adequacy of the model over a specified range of parameter values. Chaloner and 

Larntz (1989), Chaloner and Verdinelli (1995) and Dette and Wong (1996), among 

others, have studied Bayesian designs.

An alternative to the Bayesian paradigm is the minimax (or maximin) approach 

used by Sitter (1992). The approach assumed that there is range of plausible values 

for unknown parameters. That is, (3 E 0 ,  where © is a range of specific (not repre

sented by distribution) parameter values the experimenter beliefs are plausible. The 

minimax optimal design is the design minimizing the maximum (over the range of 

the parameters) of the criterion, that is,

m inm ax^  (M  (£, (3)).
i  /3e©

This approach is robust in the sense that it produces the design corresponding 

to the worst possible parameter values within the range 0 .  King and Wong (2000), 

Dette, Haines and Imhof (2003) and Biedermann, Dette and Pepelyvshev (2004) have 

also studied the minimax (or maximin) approach to address parameter-dependency 

of design criteria.

Sequential design is another strategy that has been used in dealing with parameter- 

dependency of design criteria. In sequential design, the experiment is done in stages. 

Parameter estimates from a previous stage are used as best guesses for the current 

design. Sequential design can be described as progressive locally optimal design. 

Abdelbasit and Plackett (1983) and Sinha and Wiens (2002) are among authors that 

have taken this approach to nonlinear design.

9
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This thesis is focussed on designing for generalized linear models, a body of 

regression-like models with the response assuming a distribution from the exponential 

family of distributions (McCullagh and Nelder, 1989). Models from this class of mod

els are mostly, but not exclusively, nonlinear models. This is so in the sense that the 

mean response, E  (Y) — p, is usually a nonlinear function of the model parameters 

through a linear predictor, rj = z (x) (3. The variance of the response, var  (T|.x), is 

also a function of the linear predictor. The information matrix of (3 from a design 

comprising the points, Xj, i = 1, is given by

n

y ;  w(xj, /3)z (Xi) zT (xj) =  Zr W Z
i—1

where

Z =  (z ( x i ) , z ( x 2) , . . . , z (x n))T , 

t a\ 1 ( dV i \ 2
w(Xi,P) =  7VTE n -  >var (T|Xj) \ d r ] J

and

W  =  diag(w(x.ifi),w(x.2fi) ,  . . .,w(xnf l ) ) .

Thus, as with nonlinear experiments the information matrix depends on the unknown 

parameters, (3, through w(xh (3) and the same treatment given to nonlinear regression 

models is applicable.

Of the nonlinear models belonging to this class of generalized linear models, after 

nonlinear model with normally distributed error, the binary models have received 

more attention in the experimental design literature. Abdelbasit and Plackett (1983), 

Khan and Yazdi (1988), Minkin (1987), Biedermann, Dette and Pepelyshev (2004),

10

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



among others, have considered designs for binary models. Nevertheless, a handful 

of others have investigated designs for Poisson regression model (Minkin, 1993) and 

designs for the inverse Gaussian regression model (Fries and Bhattacharyya, 1986).

1.4 Model Robust Designs

As described in the previous sections, the objective in regression design is to take 

observations so as to fit a particular model. However, in most applications, the 

assumed model is, at best, only a reasonable approximation to the true model. The 

work of Box and Draper (1959) was the first to highlight, in a systematic way, the 

inherent dangers of designing a regression experiment on the basis tha t the assumed 

model is exactly correct. The disturbing feature of classical regression designs is that 

they are dependent on the assumed model such that the optimal designs provide no 

opportunity to check the adequacy of the assumed model. Box and Draper studied 

the case where the experimenter fits a simple linear regression model whereas the true 

response has a quadratic term included. They assume th a t the true mean response is

E[Y(x)]  = (30 +  fi-yX +  f32x 2, 

with x  € <S =  [—1,1]

but the simple linear model,

Y  (x) =  +

11

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



is fitted instead. Box and Draper used the integrated mean squared error of the fitted 

response as the design criterion. The integrated mean squared error is given by

I  =

c 2 Js

Y { x ) - E  [Y (x)} 

1

dx

var Y {x ) +
<72 JS

E Y (x )

=  V  + B,

E dx

where V  is the variance error due to sampling variation and B  the squared bias error 

engendered by the model misspecification. Letting rn, denote the zth moment of the 

design, V  and B  can be expressed as follows:

V

B

=  1 +
1

3 m2
N f 5 \
o“

m l
2 m 2 m

3m |

The design minimizing I  is the design with m 3 =  0 regardless of the values of m 2 and

/V—xr. On setting m 3 =  0, I  can be written as

1 = 1 +
3 m2

N/3l
a

m 2
_4
45

The optimal design then depends on a term Box and Draper called “a measure

of the ratio of the quadratic curvature to the sampling error” . When this ratio 

is small, the true model is essentially a straight line up to sampling error and the 

corresponding design is about the classical optimal design which puts all its mass on 

-1 and +1. When this ratio is very large, it connotes tha t the straight line is a very 

poor approximation to the true model and the corresponding design is the design 

minimizing the bias B  alone; this is what Box and Draper termed "all-bias design".
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Box and Draper conclude tha t the designs minimizing the bias alone are closer to 

minimizing both the bias and variance than the designs minimizing variance alone.

Huber (1975) criticized the approach of Box and Draper (1959) th a t it only 

safeguards against arbitrarily selected polynomial alternatives but fails to safeguard 

against all potentially dangerous small deviations from the fitted model. Huber (1975) 

then proposed an alternative approach to robust design: suppose the true model is 

defined as

E  [Y (x)] =  zT (x) f3 + f  ( x ) ,

where the vector of regressor z (x) =  (1, x ) T , x  e S  =  [—1/2,1/2] and the contami

nation function /  belong to an infinite dimensional space of functions E ,

E  =  j/  : J  f  (sc) dx < V 2, J  z 0 )  /  0 )  dx =  0

Thus, the true mean regression response is the simple linear regression function plus

some unknown contamination function /  (x). Under this setting, the bias of the least 

squares estimate of model parameters is given by

bias =  £  ( £ ) - ^ B ^ b  ( / , £) ,

where b (/, ()  =  (x,-) /  (xt) = f s  z  (x) f  (x ) d£. Thus, the mean squared error of

the estimate /3, is given by

M S E ( f , 0  = E ^ P - ( 3 )  ( p - /3 )r } ,

=  cov ( /̂3j +  bias ■ biasT,
2

=  ^ M - 1 (£) +  MT1 (0  b (/, 0  bT (/, 0  M -1 (0  ■
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Huber used the integrated mean squared error

dx,

as the design criterion. He obtained the design tha t minimizes the maximum inte

grated mean squared error over the class T  of contamination functions, tha t is which 

solves

minmaxIM SE (£, / ) .

The resulting design has a density given by

m 0 (x) — (ax2 +  b) + , (1.3)

where (•) + =  max (0, •) and the constants a and b depend on the design parameter 

v = (a2/nr]2). Huber’s design, which he termed minimax design, is the design which 

is optimal for the worst possible contamination function f e d 7. Thus the design 

is reasonable for all /  G T , meaning that it is a robust design. As v —> oo, the 

resulting design approaches the classical Q-optimal design which places equal mass 

on the two extremes of S  and as v —► 0 the resulting design approaches the uni

form design. Wiens (1990) generalized Huber’s work from simple linear regression 

to multiple linear regression where the vector of regressors is z (x) =  (1, X y , ..., x p)T. 

In a particular example on two interacting regressors with z (x) =  (1, Xy ,  ;X2, x y X 2 ) T , 

S  = [—1/2,1/2] x [—1/2,1/2], Wiens (1990) obtained the optimal minimax design 

density as

m0 (xy,x2) =  (a +  b (xf +  x f)  +  cxjxl) + , 

where a, b and c depends on v = (cr2/nr]2).

14
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The drawback of this approach is that it does not result in implementable designs 

but to “designs” tha t are rather arbitrary and possibly continuous probability func

tions with densities of the form m0 (x). Hossain (2002) investigated strategies for 

implementing designs for simple linear regression from the design density (1.3). Heo, 

Schmuland and Wiens (2001) and Xu (2006) also discussed implementation strategies 

for multiple regression design problems.

Fang and Wiens (2000) while still using the Huber-type contamination class were 

able to obtain minimax designs tha t are integer-valued - implementable designs. Thus, 

they eliminated the drawback of the earlier minimax approach of Huber (1975) and 

Wiens (1990) which usually result in non-implementable designs. Fang and Wiens 

considered a finite design space S  of points x; (i = 1,..., N ). So their design problem 

was to  allocate non-negative integers n* observations to x,: such that Y liL in* =  n > 

the total number of observations. They use the average mean squared error, I  of 

Y  (x) = z T (x ) /3 as the loss function

f  =  ( /  (xa) , . . . , /  ( x j v ) )  . The singular value decomposition of Z, Z =  U NxpA pxpV j xp 

say, with U TU  =  V TV  = Ip and A diagonal and invertible, is obtained. The N  x p

N

After relevant calculations, the loss function was expressed in the form

;  =  1  tr  ( z c z q  +  i  f r Q (Z, P ) f + - t  f Tf , (1.4)

where Z is the matrix with rows z T (x i) ,..., z T (x.N) , P  is a diagonal matrix with 

entries {pi = ni/n } ^ 1 , Q is a matrix which depends on Z and P , C =  cov (3 and
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matrix U is augmented by Uatx(tv-p) such th a t U:U is orthogonal. Then
L J N x N

by the conditions defining the contamination class T ,  they have that there is an 

N  — p x  1 vector c, with ||c|| < 1, satisfying f = t \ /N U c .  W ith this they obtained 

the maximization of (1.4) over /  using simple matrix algebra. The results depend 

on rj2 and a 2 through v  = a2/  (n rf) just like in the earlier approach which results in 

design densities. A simulated annealing algorithm is used to obtain the allocation of 

the non-negative integers n t observations to x 4 such that minimum of the maximum 

loss function is obtained. We adopt this approach to obtained integer-valued designs 

in this dissertation.

The criticism against the class of contamination functions used by Huber (1975) 

and Wiens (1990, 1992, 1998) is that the class is too broad because only designs 

which are absolutely continuous on S  have a finite loss. Authors such as Marcus and 

Sacks (1976), Sacks and Ylvisaker (1978), Pesotchinsky (1982), Li and Notz (1982), Li 

(1984), and Liu and Wiens (1997) consider a different class of contamination functions:

J 7 =  { / : | / ( x ) |  < ( / > ( x ) ,  for all x G S }  ,

with various assumptions about 4>. The resulting designs from this class of contami

nation are generally supported on a small number of points and thus suffer the same 

fate has the classical optimal designs in that they often do not allow for test of lack 

of fit or the possibility of fitting more complex models.

Yue and Hickernell (1999) recently introduced a new contamination neighbour

hood T  which they assumed to be a Hilbert space of functions defined on the design 

space S. Associated with the space is a symmetric function K  ( x ,  w ) ,  reproducing
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kernel, defined on S  x S , which has an inner product (•, ■)Tk . They also used the 

integrated mean squared error as the design criterion. Taking advantage of the prop

erties of this reproducing kernel Hilbert space Yue and Hickernell place a sharp upper 

bound on the integrated mean squared error and then obtain the design minimizing 

this upper bound. Their approach to model-robust design protects against a broad 

class of alternatives like those using the Huber-type class of contamination and also 

allows the experimenter to obtain designs ranging from the all-variance design to the 

all-bias design by varying the design parameter. The approach overcomes the draw

back of the Huber-type contamination in that it does not leave the experimenter with 

design densities but results in exact designs.

Given the preponderance of proposals and in fact substantial contributions to 

model-robust designs for linear models, it is surprising that very scant attention has 

been paid to model-robust designs for nonlinear models. It is not a far stretch to 

opine that the findings of Box and Draper (1959) in the linear models would be 

equally true for nonlinear models as well - designs constructed on the basis that 

the assumed model is exact portends an inherent danger. Ford, Titterington and 

Kitsos (1989) presented an expository work on designs for nonlinear models wherein 

they asserted that “indeed, if the model is seriously in doubt, the forms of design 

that we have considered may be completely inappropriate.” Sinha and Wiens (2002) 

have explored some designs for nonlinear models when the assumed model is possibly 

misspecified. More recently, Wiens and Xu (2006) presented an article titled “Robust 

Prediction and Extrapolation Designs for Misspecified Generalized Linear Regression 

Models.” They employed the minimax approach to robust designs with the notion that
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the true but unknown mean response is a nonlinear function (of model parameters) 

with an additive contamination function /  which belongs to the Huber-type class of 

contamination functions discussed above. This thesis is on the construction of robust 

designs for generalized linear models with emphasis on binomial models although the 

methodologies presented are applicable to any generalized linear model.

1.5 D issertation Summary

In this dissertation, we investigate the construction of robust designs for generalized 

linear models with due consideration for possible misspecification in the assumed 

model. Prom the experimenter’s point of view, the design for generalized linear models 

involves the following procedure:

(a) choosing an appropriate error distribution,

(b) determining which variables to include in the systematic component, and

(c) defining the link function, g (p).

Issues for robustness arise in any of these specifications. For the most part, the na

ture of the response does suggest which error distribution is reasonable. For instance, 

if the response is a proportion, the default error distribution would be the binomial 

distribution; for count data, the Poisson distribution would be the distribution of 

interest and for nonnegative-valued continuous data, the gamma or inverse Gaussian 

distributions would be of interest. Having specified the distribution, the form of the 

variance which is usually a function of the mean response, except for the normal dis

tribution, is invariably specified. The need for robustness would arise when there is a
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chance that the data might exhibit more (or less) variability than tha t prescribed by 

the assumed distribution - a phenomenon called overdispersion (or underdispersion). 

Other than this, the specification of the distribution is usually not an issue from a 

design perspective. The systematic component is the linear predictor through which 

the mean response is connected to the design variables. The systematic component 

is subject to misspecification just as discussed in the context of linear models above. 

For example, the systematic component is misspecified when it does not reflect the 

influence of the design variables correctly. Usually there are many possibilities for the 

choice of a link function but the canonical link is commonly used - the identity link for 

normal models, logistic link for binomial models, the log link for Poisson models, and 

so on. An issue for robustness relating to the link function arises when the canonical 

link or any other choice is made when in fact a different link is more appropriate. 

For example, using the symmetric logistic link when the complementary log-log link 

is more appropriate.

In this work we present a holistic approach to designing for a generalized linear 

model when the specification of the model is possibly misspecified in any of the three 

components tha t defines the model. We start the pursuit of the objective of the 

dissertation - constructing robust designs for misspecified generalized linear models - 

with designs for logistic models with misspecified linear predictor. We seek for exact 

designs - implementable integer-valued designs - using the strategy proposed by Fang 

and Wiens (2000) within a finite design space, S  = { x J ^ j  , framework. The basis 

of the design criteria used is the mean squared error of predicted response. The 

problem invariably becomes an integer optimization problem for which we employ
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the simulated annealing algorithm. Given that the problem of robustness for the

systematic component of a generalized linear model is akin to the many contributions 

on model-robust designs for linear models, we are comfortable starting out with this 

problem.

Suppose an experimenter fits a generalized linear model with the log-likelihood 

function

It turns out that under this specification the asymptotic bias and variance of the 

maximum likelihood estimate of the model parameter f3 depends on the contamination 

function /  ( x )  through the true mean response ji (r/+ / ( x ) ) .  Thus, the mean squared 

error of the estimate of model parameter (3 depends on the contamination function 

/  ( x )  in a complicated manner through both the bias term and the variance term. 

Hence, the maximization over the class of contamination functions, T  required in 

the minimax approach to robust design seems hopeless in this context despite its 

successful implementation in linear models. See Huber (1975) and Wiens (1990, 1992, 

2000). This problem motivated the development of new criteria for robust design.

k{(3) =  / a (^) +  c (w  </>)}, * =  i, - .w ,

with the mean response

h i  =  b' (9i) =  n (Vi) (1.5)

for rji =  z T (xj) (3 when in fact the true mean response is represented by

(1.6 )

with
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In Chapter 2, we start by investigating these new criteria in the context of lin

ear models. One of these new criteria is the “minave” approach to  model-robust 

design. This approach is based on a notion of averaging of the loss function over 

the contamination neighbourhood T .  We found that this approach was very suc

cessful in constructing robust designs for linear models. The resulting designs have 

characteristics tha t are similar to the those of Wiens and others tha t have used the 

minimax approach. In addition to the “minave” approach we investigated constrained 

D-optimal design where the optimization is based on the classical D-optimal design 

criterion but subject to some bias-related constraints.

We present an article titled “Robust Designs for Misspecified Logistic Models” in 

Chapter 3. We consider the problem of designing when the linear predictor of the 

fitted logistic model is possibly misspecified. The design problem here is not readily 

amenable to the minimax approach to robust designs which has been successfully 

employed in linear models (Huber, 1975 and Wiens, 1990, 1992). The main challenge 

is the dependency of the variance and bias part of the design criterion on the unknown 

contamination function in a nonlinear manner. However, the minave tool developed 

for linear models in Chapter 2 is successfully adapted to proffer solution for designing 

for logistic models with misspecified linear predictors. Examples of robust designs for 

logistic models are presented, including a case-study implementing the methodologies 

using beetle mortality data.

Chapter 4 deals with other kinds of misspecifications in binomial models. In 

particular, we propose approaches for designing for binomial models when there is 

possible link function misspecification and overdispersion. Our framework assumes
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that the experimenter fits a canonical model when in fact the true model could be 

different either because it has a different link function other than the canonical link 

function or because the variance prescribed by the assumed generalized linear model 

does not accurately describe the variability in the anticipated data. The logistic 

model, which corresponds to the canonical link for the binomial distribution, is often 

used for modelling binomial data for various reasons such as simplicity of interpre

tation in terms of odds-ratios. We note tha t misspecified link function can engender 

biased prediction in binomial models and propose a robust approach to design which 

contemplates tha t the true unknown link function belongs to a generalized family 

of links. Using an approach akin to that proposed by Pregibon (1980) on goodness 

of link tests for generalized linear models, the problem of designing when there is 

link function misspecification is recast as a linear predictor misspecification problem 

similar to tha t considered in Chapter 3. In order to construct design for binomial 

models with overdispersion, we extend the linear predictor of the true model to have 

a random contamination. That is,

Vi  =  z T (x) /30 +

where E  (v) =  0 and var (v) =  1. The true model is now somewhat a mixed-model in 

the spirit of the articles of Pierce and Sand (1975) and Williams (1982) on modelling 

for extra-binomial variation.

Chapter 5 concludes the dissertation work by putting the results of Chapters 3 and 

4 in the framework of generalized linear models. In particular we consider applications 

in Poisson data.
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Chapters 2, 3 and 4 are three independent articles which have been prepared for 

publication.

1.6 Highlights of Contributions

This thesis extends the concept of robustness in regression designs to  designs for 

generalized linear models. It addresses three key robustness issues on misspecification 

of generalized linear models. The first of these deals with constructing designs for 

generalized linear models with a possibly misspecified linear predictor. The true 

linear predictor is assumed to differ from the fitted linear predictor by an additive 

contamination function belonging to the contamination neighbourhood defined by 

(1.7). As a loss function, the average mean squared error of predicted response 

is employed. This corresponds to the classical notion of I-optimality ( “integrated 

variance”), which is also known as Q-optimality (Fedorov, 1972). The dependence 

of the average mean squared error of the predicted response on the contamination 

function in a complicated manner precludes the problem from been easily amenable 

to the minimax treatment which has been useful in linear models. This challenge 

stimulated the development of the “minave” approach to robust designs and also 

biased-constrained D-optimality criteria. We first develop these criteria in the context 

of linear models. The minave design is the design minimizing the average loss function 

over the contamination neighbourhood (1.7).

The second contribution of the thesis is the application of the minave design 

approach to designing for generalized linear models with misspecified link functions, 

in particular, designing for binomial models when the assumed logit link is possibly
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misspecified. The framework employed is tha t the true but unknown link function as 

well as the fitted logit link belong to the generalized family of link functions

link parameter that might be different from that which corresponds to the logistic 

model. The design problem in this circumstance is addressed by casting the problem 

as a linear predictor misspecification problem using a first order Taylor’s approxi

mation to the true link function about the parameter corresponding to the fitted 

canonical link function. This renders the problem somewhat similar to the origi

nal linear predictor misspecification problem but with the form of the contamination 

known up to an unknown link parameter. In applying the minave approach we assume 

a range of plausible parameter values for the link parameter. The averaging of the 

loss function, which is again the average mean squared error of predicted response, is 

over this range of plausible parameter values.

Lastly, the problem of overdispersion is addressed using the minave approach 

in a manner similar to the treatment of the link misspecification problem. Again, 

the overdispersion problem is cast as a linear predictor misspecification problem. 

However, here the contamination is random with known first and second moments. 

The averaging in the minave approach is again achieved via averaging over a range 

of plausible values of the overdispersion parameter.

(A > 0)

parameterized by A. The true link function corresponds to  an unknown value of the
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CHAPTER II

NEW  CRITERIA FOR ROBUST 

INTEGER-VALUED DESIGNS IN LINEAR

MODELS

A bstract We investigate the problem of designing for linear regression models, when 

the assumed model form is only an approximation to an unknown true model, us

ing two novel approaches. The first is based on a notion of averaging of the mean 

squared error of predictions over a neighbourhood of contaminating functions. The 

other is based on the usual D-optimal criterion but subject to bias-related constraints 

in order to ensure robustness to model misspecification. Both approaches are integer

valued constructions in the spirit of Fang and Wiens (2000). Our results are similar 

to those that have been reported using a minimax approach even though the ratio

nale for the designs presented here are based on the notion of averaging, rather than 

maximizing, the loss over the contamination space. We also demonstrate the supe

riority of an integer-valued construction over the continuous designs using specific 

examples. The designs which protect against model misspecification are clusters of 

observations about the points that would have been the design points for classical

1 Co-authored with Professor Douglas P. Wiens. To appear in Computational Statistics and Data 
Analysis.
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variance-minimizing designs.

2.1 Statistical model

We consider the general regression model with additive errors: Y  = E  (Y  |x) +  e. 

Suppose an experimenter is faced with a set S  =  {x ,;}^  of possible design points 

from which he is interested in choosing n, not necessarily distinct, points at which to 

observe Y. The experimenter makes nt > 0 observations at x t such tha t n, = n. 

The design problem is to choose n\, in an optimal manner. Equivalently, the

objective is to find an optimal probability distribution {p i} f=1 , with pi — r i i /n ,  on 

the design space S  = {xl} ^ 1 . The resulting design is said to be integer valued.

The experimenter believes tha t the mean response E  (T |x) may be approximated, 

but not perfectly described, by a linear combination zT (x) (3 of p regressors z(x) =  

(z i(x ) ,..., zp(x ) )T . Since E  ( Y |x) =  zT (x) (3 is just an approximation to the true 

model, the “best” /30 for predicting the mean response is defined to be the minimizer 

of the average squared error of the approximation:

1 N
/30 =  argm in — (£[T|xi] -  zT (xj) t ) 2 . (2.1)

i—1

Define /  (x) =  E[T|x] — zr  (x)/30, so that the model becomes

Yij = zT (xj)/30 +  /  (xi) +  Eij, i = 1,..., N, j  = 1,..., m, (2.2)

where is the random error associated with the j t/l observation chosen at the \th 

design point and var (e^) =  a 2.

Prom (2.1), we have

1 N
— z (xi)/(Xj) =  0, (2.3)

i= 1
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and in order to ensure that the bias in the least squares estimate /3 remains within

bounds, we place a bound on the misspecification, that is

(2.4)
i= 1

Let the class of contamination functions /  (x) satisfying (2.3) and (2.4) be denoted T .

In §2.2 of this article we develop our design criteria. An algorithm to obtain designs 

minimizing the corresponding loss functions is described in §2.3, with examples and 

applications in Sections 2.4 and 2.5.

2.2 Loss functions

Fang and Wiens (2000) used a minimax approach to construct integer-valued designs. 

The optimal design in the minimax sense is the design that minimizes the maximum, 

over the misspecification neighbourhood J7, value of the loss. The minimax approach 

aims to obtain the best design for the worst possible case of model misspecification. 

Here we introduce new criteria for robust designs which may have more intuitively 

appeal to practitioners. Rather than minimizing the maximum loss we instead choose 

the design which minimizes the average value of the loss over the misspecification

We define the loss I  as the average mean squared error (AMSE) of Y  (x) =  zT (x)/3 

as an estimate of .E^Ylx]:

(2.5)
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neighbourhood. The averaging requires a parameterization of T  which is carried out 

in §2.2.1 below. This approach can be seen as a generalization of Lauter’s (1974, 

1976) approach. Lauter accommodated model uncertainty in the choice of design by 

averaging design criterion functions over a finite set of plausible models. Here we have 

an infinite set of plausible models defined by (2.2), (2.3) and (2.4). While Lauter’s 

criterion is based on variance only, in the spirit of Box and Draper (1959) we base 

our design criteria on possible bias engendered by the model misspecification as well 

as on variance.

2.2.1 "Minave" M ean Squared Error m odel-robust design criteria

Given the misspecification neighbourhood, we seek integer-valued designs that mini

mize the average (over T )  value of the loss. Let {pi = riijn}f=l be an integer-valued 

design on S , P  the N  x IV diagonal matrix with diagonal elements {p ,} , Z the 

N  x p matrix, assumed to be of full rank, with rows z T ( x i ) , ...,zr  (xjv). Define 

f  =  ( /(x x ) , ..../(xA?))r . In this notation, the average mean squared error defined in

(2.5) can be written as

Note that we are assuming that the design is feasible for the full parameter vector 

(3, or equivalently that it has a minimum of p distinct support points Xj in S  such 

that the vectors z(xj) are linearly independent. This implies the non-singularity of

We obtain the singular value decomposition of Z, Z — U N XpA pxpVp.xp say, with

— t r \ ( ZTPZ) 1 ZTZ] +  f TPZ (ZTPZ) 1ZTZ ( Z TPZ)  l ZTP f  + f Tf

ZrPZ.

U TU  =  V TV  =  Ip and A diagonal and invertible. The N  x p  matrix U is augmented
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by U n x (n - p) such that u:u is orthogonal. Then by (2.3) and (2.4), we have
N x N

th a t there is an N  — p x 1 vector c, with ||c|| < 1, satisfying f  =t \ /N Uc, and then

1 ( a 2
I  =  — < — tr N  I n

(U TP U )_ +  t  N tr U TP U ( U TPU ) 2 U TP U cc +  t 2N c t c  )• .

For details of this development see Fang and Wiens (2000). We define our design 

criterion as I, with f  integrated over c:

a
J =   tv±ave    T v r b 'nN

Theorem  2.1 Define

(U TPU ) 1] + r 2 [  (tr  [u r PU  (U TPU ) 2U TP U ccT +  c c ) dc.

7T( N - p ) / 2

•P ( N - p
( V  +  i J i W )  y , c < i

- s
J  ilc

c cdc.

The average of I, the Average Mean Squared Error over the misspecification neigh

bourhood E , is given by Iave = ( ^  +  t2k Cave, where

tr
£ ave P

(U TPU)~

N +  ( 1 - P )  1 +
tr (U TPU ) 2 (u tp 2u ) V

N - p
(2 .6)

for p — £ /  ( ^  +  t 2kJv,p) .

Proof: Note that c c Td c  = p- We then calculate that

a
t-ave —  ]v f t rn N

o
=  ——tr 

nN

(U r PU )

(U TPU )

-1

-1

+  r 2tr U TP U ( U r PU ) 2U TP U  I c c Tdc
C < 1

+  T Kn ,p

2 K N,p ,T '—tr 
N  — p

P U (U TPU ) 2U rP  (ijv — U U T) +  T KN,p,

which reduces to (2.6).

Since ( +  t 2kn,p ) does not depend on the design, we use the loss Cave for the

( I V P U )-1] and 1 +  d ( urpu) ; _ f pa" )]-- thedesign construction. We call fi tr
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variance and bias discrepancies respectively; Cave is a weighted average of them. The 

term p may be interpreted as the relative contribution of variance to mean squared 

error. Values of p near 1 mean tha t variance is considered much more important 

than bias in the mind of the experimenter, while values of 1 — p near 1 indicate a 

correspondingly large concern with bias. Thus p can be understood as the prior belief 

of the experimenter as to  the nature of the true response function. Our “minave” 

design is the design th a t minimizes Cave for a given value of p.

2.2.2 B ias-C onstrained D -optim al m odel-robust design criteria

The design criteria we consider here are motivated by a problem we encountered 

in the context of robust designs for generalized linear models. In the presence of 

model misspecification, the asymptotic covariance matrix of estimated model para

meters in generalized linear models does not in general simply equal the inverse of 

the information matrix. The asymptotic covariance matrix is rather a function of the 

information matrix and the variance of the response Y  under the true model. Thus 

robust designs for generalized linear models would seem to require not only knowl

edge of the model parameters as in classical designs for generalized linear models but 

also knowledge of the variance of the response under the true but unknown model. 

The approach reported here is motivated by a requirement to generate robust designs 

without assuming this latter knowledge.

Here we develop and apply this approach in the context of linear models; consid

erations for generalized linear models are reported in Adewale and Wiens (2005). We
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explore designs based on constrained maximization of the determinant of the informa

tion matrix of the fitted model parameters. Robustness is achieved via the constraint 

which represents some bound on a measure of the bias engendered by the model mis- 

specification. Montepiedra and Fedorov (1995) proposed similar criteria using convex 

design theory when the true model is known specifically but the fitted model is, for 

the sake of parsimony, a simplified version of the true model. Their consideration is 

in the same setting as that of Box and Draper (1959) but instead of using a function 

of the mean squared error as loss function they worked with constrained variance or 

bias, this in order to keep the mathematics within the context of convex theory where 

the criteria would be amenable to  Kiefer’s Equivalence Theorem. Our construction 

differs in three senses: the true model is assumed unknown, we focus on finite design 

space and our designs are integer-valued. We investigate two kinds of constraints:

1. bounding the norm of the bias in the estimated regression parameter vector; 

and

2. bounding the average (over T )  of the average norm (over S) of the bias in the 

predicted response.

This first constraint might be suitable when the focus of the design is on parameter 

estimation while the second would be recommended when the interest is in prediction.

The bias in 0  is calculated as

bias ( f ) = E  (3 ~ / 30 = (ZTP Z )_1 ZTP f.

A development similar to that preceding Theorem 2.1 yields tha t the average squared
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norm of the bias in (3 is

aver? bias (*) =  aver? ( f TP Z (Z TPZ) 2 ZTP f

and the average squared norm of the bias in the predicted response is

/  1 N

averT  ( n  \ biaS X̂ i^ )  V i= i

jjaverT ■| f TP Z (Z TPZ) 1ZTZ ( Z TP Z ) XZTP f  

+  fTf}

In each case we average over T  through the vector c and obtain the following results.

Theorem  2.2 The average squared norm of the bias in /3 over the misspecification 

neighbourhood T  is given by

a v e r j r bias (*)
V,pT2iV

N - p
tr  |  (U rP U ) 1 (U TP 2U) (U TP U ) 1 -  I A"2} .

Theorem  2.3 The average squared norm of bias in predicted response over T  and S  

is given by

aver?
(  1 ^ i i
( N ^ 2 \\bias ( zTV i=1

tr
=  K N , p T  1

(U TP U )~ 2 (U TP 2U) - P
N - p

The classical D-optimal design is the design that maximizes the determinant of 

the information matrix of the model parameters or, equivalently, the design that 

minimizes the determinant of the covariance matrix of the model parameters. Here, 

our robust design is the design that maximizes the determinant of the information 

matrix (divided by det (A2), which does not depend on the design) subject to either 

of the two bias-related constraints. That is:
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Criterion 1: R obust Estim ation. Choose P  so as to maximize det {U TP U }

subject to

tr |  [(U TPU)"^1 (U TP 2U) (U r P U )_1 -  i] A -2 1 <  a. (2.7)

Criterion 2: R obust Prediction . Choose P  so as to maximize det {U TP U }

subject to

tr |  (U rP U ) “2 (U TP 2U ) }  <  /3. (2.8)

The resulting design from the estimation criterion depends on a , while that of the 

prediction criterion depends on (3. For values of a  and [3 exceeding those attained by 

the classical D-optimal design, the ‘robust’ and classical designs coincide.

2.3 Numerical algorithms
2.3.1 Sim ulated annealing algorithm  for M inave designs

The optimization problem for Minave designs is an unconstrained nonlinear integer 

optimization problem. We consider models with p regressors (z i (x) , ..., zp{x))T where 

x  <G [—1,1]. Given the desired number of observations (n) to be taken and the number 

of points in the design space (N ), we seek designs tha t minimize the Minave loss func

tion (2.6). Our algorithm accommodates all (n ,N ) combinations. If the problem of 

interest demands a design which is symmetric about the origin, (n, N ) must be chosen 

such that symmetry is possible. For instance, symmetric designs would not be ob-
C -v jy

tamable when N  is even and n  is odd. We take S  to be the set =  — 1 +  j

of equally spaced points in [—1,1].

Simulated annealing is employed to search for optimal designs. The simulated 

annealing algorithm seeks to assign integers 7q >  0 to each of the design points
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Xi in such a way tha t Cave is a minimum. Simulated annealing is a direct search 

optimization algorithm which has been quite successful at finding the global extremum 

of a function, possibly non-smooth, tha t has many local extrema. The algorithm is a 

biased random walk consisting of three steps. The first step is a specification of the 

initial state, n 0, of the process based on which the corresponding initial value of the 

objective function Cave (n0) is calculated. The second step is the random choice of the 

next state of the process from the optimization space. The last step is a prescription 

of the basis of acceptance or rejection of the new state.

For the algorithm to be successful, each step has to be empirically tailored to 

the context of the problem at hand. We randomly choose p points in S  and the n 

observations are randomly allocated to these p locations. This constitutes the initial 

state of the simulated annealing process. When the interest is in symmetric designs 

we randomly pick [p/2] points of the points of S  in [—1,0) and randomly allocate 

\n /2] observations to these points. If n  is odd then N  has to be odd for symmetry, 

in this case replace [n/2] by \n /2] and assign one observation to the point {0}. 

A symmetric initial design is obtained by assigning the number of observations for 

locations in [—1,0) to their corresponding mirror image about the origin. Fang and 

Wiens (2000) assumed that one of (n, N ) is a multiple of the other and then chose the 

initial design to be as uniform as possible. In the examples presented, we considered 

this approach to choosing the initial design as well. W ith either choice of initial design 

the algorithm converges to the same design.

To generate a new design, we perturb the current state as described in Fang and
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Wiens (2000). Define v  to be the N  x 1 current allocation vector. For symmet

ric designs redefine v  to  be the [JV/2] x 1 vector consisting of the initial segment 

(ni, ...,ri[jv/2 ]) of the current allocation vector. Let J+ =  {i\vi > 0} , J0 =  {i\v, = 0} 

with cardinalities j + > 1 and j 0. If j+ > 2, generate a Bernoulli random variable

{1 with probability j 0/  (j0 + j + ) ,

0 with probability j +/  ( jQ +  j + ) , 

choose two indices ( t i , *2 ) from J+, at random without replacement, choose an index 

t0 from J 0, at random and modify the selected components of v as follows:

vt0 =  vto +  B, vtl = v t l - l  and vt2 = v t2 + l  -  B . (2.9)

If j + = 1, choose to from Jo at random, let t\ be the index in the singleton set J +, 

and then replace (2.9) by

Vto =  v to +  1) v t i  =  Vt i  ~  1-

This completes the perturbation scheme for general designs. For symmetric designs, 

we complete the scheme as follows. If N  is even, then let n =  ( r i i , n_,v) =  

( v i , ..., v N j 2 , wjv/2 , •••, Wi) . If N  is odd, then generate a uniform random variable u. 

If u < 1 / N, with probability 1/2 increase n[,v/ 2 ]+i by 2 then randomly and sym

metrically reduce the remaining rij by 2; with probability 1/2 reduce n[jv/2 ]+i by 2 

then randomly and symmetrically increase the remaining rij. This step is omitted if 

n [N/ 2 ]+i < 2. We then construct n as described above, with the inclusion of the new 

frequency n [N/2]+i.

The value of the loss Cave =  Cave (n) is evaluated at the new state n and the state
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is accepted w ith  probab ility  7r, defined as

exp ( - A £ a v e / T )  if A C  ave ^  0?

1 if A Cave <  0

where AC ave = £ave (n) — C ave (n ) . Thus a favourable state (AC ave < 0) is accepted 

with certainty and an unfavourable state is accepted according to a separate Bernoulli 

experiment with success probability exp (—A C aVe / T ) .  We choose T  such that initially 

the inequality .5 < exp ( - A C ave/ T )  < .9 is satisfied; this follows a suggestion from 

Bohachevsky, Johnson and Stein (1986). As long as exp (—AC ave/ T )  > 0 an un

favourable state could be accepted, thus providing the possibility of the path leading 

out of local minima. To ensure that the process settles at a global minimum we pro

gressively decrease T .  Fang and Wiens (2000) decrease T  by a factor of .9 after each 

100 iterations. We found that it is better to adapt the change of T  to the specific 

problem of interest. In some cases we were able to decrease T  by a factor of .95 after 

every 20th iteration.

In Figure 1 we present the simulated annealing trajectory, for one of the examples 

of the next section, to illustrate our algorithm. As seen in this plot the simulated 

annealing process walks from one design to the next irrespective of whether the step 

taken is progressive (when it moves to a design with a lesser loss) or detrimental 

(when it moves to a design with a higher loss). The ability to accept detrimental 

steps prevents the process from being trapped in local extrema. After a large number 

of iterations, in this case 1500, it is expected that the algorithm has settled at a 

design with (near) minimum loss. In the examples below we satisfied ourselves of the 

convergence to a minimum by varying the number of iterations, the factor by which
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Figure 1: Simulated annealing trajectory for cubic regression design with N  =  40, 
n =  20 and p =  1.

the temperature parameter is decreased and by running the algorithm many times.

2.3.2 Sim ulated annealing algorithm  for B ias-C onstrained D -optim al de
signs

Designing using our bias-constrained criteria is an integer optimization problem with 

a nonlinear constraint. The approach taken is to convert the problem into an uncon

strained integer optimization problem such that the preceding algorithm for uncon

strained designs becomes applicable. We achieved this by adding a penalty function 

to the objective function. Since the optimal design of interest is that which maxi

mizes the objective function, we choose a negative-valued penalty function. Thus the 

constrained optimization problems (2.7) and (2.8) are converted to

Maximize det {U TP U } +  g (x) I[x>a\, 

where x = tr  j (U rP U ) _1 (U TP 2U) ( l^ P U )”1 -  I A “2}

(2 .10)
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Figure 2: Integer-valued designs for cubic regression with N  
p =  1, (b) p =  .75, (c) p =  .25 and (d) p = 0.

40 and n = 20 for (a)

and

Maximize det {U rP U } +  g (x) I[x>@\, (2-11)

where x = tr  j (U TP U ) “2 (U TP 2U ) }

respectively, where g (•) is a negative-valued penalty function and /[.] is an indicator 

function. Given g (■), the optimization problems become amenable to the algorithm 

we used in the preceding section for unconstrained integer optimization. We found 

that the algorithm was generally unsuccessful when the penalty function is chosen to 

be a constant, that is when g (x) — —c, where c is a positive real number. The choice 

of g (•) that we have found useful for solving (2.10) and (2.11) is instead g (x ) =  — c-x, 

c > 0. In the examples we reported we chose c = 1; other values of c worked equally 

well.
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p = 0 loss= 1

CO
£01U)
o 0.5

-1 -0.5 0.5 1
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-0.5 0 0.5
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(d )

Figure 3: Integer-valued designs for cubic regression with N  =  40 and n = 40 for (a) 
p =  1, (b) p =  .75, (c) p =  .25 and (d) p =  0.

2.4 Examples: Polynomial regression

Example 1. For the purpose of comparison with the minimax designs of Fang and 

Wiens (2000), we consider approximate cubic regression. For p = 1 (so that Covc 

coincides with the average variance of the predicted values), n — 20 and N  = 40 

we obtain the design placing 3 of the 20 observations at each of ±1 and 7 at each 

of ±.436. This agrees with the result of Fang and Wiens (2000) when the value of 

their design parameter v, measuring the importance of variance relative to bias, is 

taken to be very large. See Figure 2 for this and other obtained designs, all for 

iV =  40. In contrast, when p =  0 the designs are as uniform as is allowed by the 

(n, N ) combination.

In Figure 3 and 4, we present designs for n = 40 and n  =  60, respectively, for values 

of p ranging from 1 (all-variance design) to 0 (all-bias design). A comparison of the
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p = 1 loss = 3.08
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(a)
p = 0.25 loss = 1.611

-0.5 0 0.5
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Design space 
(b)

p = 0 loss= 1.005
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Figure 4: Integer-valued designs for cubic regression with N  
p = 1, (b) p = .75, (c) p = .25 and (d) p =  0.

40 and n  =  60 for (a)

7

6

o
.1 3 o
W 2

0
0 0.2 0.4 0.6 0.8

P

Figure 5: Plot of efficiency loss (versus p) due to mere replications of the design 
points for n =  20 as opposed to an explicit construction of the designs for n ~  60.
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-1 -0.5 0 0.5 1
Design space

(a)
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-1 -0.5 0 0.5
Design space

(b)
p = 10 Info Det(x 1m) = 2.102
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-1 -0.5 0 0.5
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-1 -0.5 0 0.5
Design space 

(d)

Figure 6: Robust designs for parameter estimation with (a) a = 0.0924, (b) a — 0.5 
and prediction with (c) /3 =  4.2068 and (d) [3 =  10.

results for cases when n < N, n = N  and n > N  underscores the advantage of an 

exact integer-valued design over an approximate continuous design. Having obtained 

the design: ±1 (3), ±.436 (7) for n  =  20 and p = 1, without an explicit investigation 

of the case when n =  40 and p =  1, one would have been tempted to suggest the 

design: ±1(6), ±.436(14) which would have been 99.8% efficient still because the 

design points are the same in this case. In the same vein, having obtained the design 

for n =  20 and p = .2 to obtain the design for n = 60 and p = .2 one would probably 

multiply the number of observations taken at each of the design points obtained for 

n =  20 by 3. However, an explicit construction of the design for n = 60 and p =  .2 

resulted in a different design. We found that a naive replication would have resulted 

in about 2% loss in efficiency. The efficiency loss is much more here because the design 

for n  =  60 and p — .2 includes other points that are not included in the design for

46

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



n = 20 and p =  .2. Figure 5 is a plot of efficiency loss due to  a naive replication of the 

design points for n = 20 as opposed to an explicit construction of design for n = 60 

for varying values of our design parameter, p. The highest loss of efficiency occurs 

when p =  0 (so tha t £ ave coincides with the average bias of the predicted values). 

This comparison emphasizes the need to be cautious in implementing approximate 

continuous designs and the superiority of an integer-valued (exact) construction for 

specific applications.

The resulting designs from the two bias-constrained criteria coincide with the 

classical D-optimal design, tha t is, the design that maximizes the determinant of 

the information matrix, for sufficiently large values of a  or /I. The classical D- 

optimal design is the design th a t takes the assumed model to be exact. Gaffke (1987), 

Huang (1987), Haines (1987) and Chen and Huang (2000) have constructed exact D- 

optimal designs, with ‘optimality’ holding when the fitted model is exactly correct. 

In contrast, the constraints imposed here protects against misspecifications in the 

assumed model within a finite design space framework. The least attainable a  (resp., 

/?), say o 0 (bo)’ corresponds to the value of the constraint for an all-bias design. When 

n is a multiple of N. a 0 (bo) corresponds to the bias of the, minimum bias, uniform 

design. For the estimation criterion it follows from (2.3) that a 0 =  0 and for the 

prediction criterion bo =  IP the number of parameters in the model. When n is not a 

multiple of N, the design with minimum bias has a 0 > 0 for the estimation criterion 

and bo > P f°r the prediction criterion.

Example 2: Bias-Constrained D-optimal Designs. We again use the cubic regres

sion model to illustrate these criteria. Guest (1958) and Hoel (1958) independently
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reported an approach based on zeros of derivatives of Legendre polynomials for ob

taining the D-optimal support points for polynomials regression. Using this approach, 

Pukelsheim (1993, p. 218) presented the D-optimal design over the interval [—1,1] 

for cubic regression as the design placing equal mass at each of ±.447, ±1. For large a  

or /3, whichever is appropriate, our simulated annealing algorithm results in a design 

taking an equal number of observations at each of ±.436, ±1. Our algorithm attains 

the closest approximation to tha t given above since the points ±.436 are the nearest, 

in our design space, to ±.447. In panel (a) of Figure 6 we present robust parameter 

estimation design when N  = 40, n = 60 with a  set to a value (a = .0924) just slightly 

greater than the least admissible a  (no =  0.0923), for this setting. A corresponding 

design for the robust prediction design criterion is presented in Figure 6(c), for this 

f30 =  4.2067 and j3 =  4.2068. Design for another value of a  (parameter estimation 

design) and (3 (prediction design) are presented in panels (b) and (d) respectively. 

Notable is the fact that each constraint shapes the designs differently.

2.5 Designs for multiple regression

The algebra of Sections 2.1 and 2.2 applies to general regression models. However, 

the simulated annealing algorithm described in §2.3 may not be readily useful in sit

uations where there are 2 or more independent variables. This is because the design 

space is then multidimensional, raising the usual problems related to the curse of 

dimensionality. Here we consider first and second order multiple regression models.
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Figure 7: Minave designs for partial second-order model (a) p = 1, (b) p =  .75, (c)
p = .5, (d) p = 0.
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Figure 8: Minave designs for full second-order model (a) p = 1, (b) p = .75, (c) 
p = .5, (d) p = 0.
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Table 1: Minave Designs for Partial Second-order Model.
p (Design points; frequencies) in half-quadrant 0 < a q < x 2 < l / 2  Loss
1 (.0263, .0263; 9), (.2368, .2368; 5), (.2895, .2895; 6), 2.2621

(.5, .0263; 11), (.5, .5; 9)

.75 (.0263, .0263; 8), (.1842, .1842; 1), (.2368, .2368; 5), 2.0542
(.2895, .2895; 5), (.3421, .3421; 1), (.4474, .0263; 1),
(.5, .0263; 9), (.5, .0789; 2), (.5, .5; 8)

.5 (.0263, .0263; 6), (.0789, .0263; 2), (.1842, .1842; 2), 1.7827
(.2368, .2368; 4), (.2895, .2895; 4), (.3421, .3421; 2),
(.4474, .0263; 3), (.5, .0263; 6), (.5, .0789; 3),
(.5, .4474; 2), (0.5, .5; 6)

0 (.0263, .0263; 1), (.0789, .0263; 1), (.0789, .0789; 1), 1.0120
(.1316, .0263; 1), (.1316, .0789; 1), (0.1316, .1316; 1),
(.1842, .0263; 1), (.1842, .0789; 1), (.1842, .1316; 1),
(.1842, .1842; 1), (.2368, .0263; 1), (.2368, .2368; 1),
(.2895, .0263; 1), (.2895, .1842; 1), (.2895, .2368; 1),
(.2895, .2895; 1), (.3421, .2895; 1), (.3421, .3421; 1),
(.3947, .0263; 1), (.3947, .0789; 1) (.3947, .3421; 1),
(.3947, .3947; 1), (.4474, .0263; 1), (.4474, .0789; 1)
(.4474, .1316; 1), (.4474, .3421; 1), (.4474, .4474; 1),
(.5, .0263; 1), (.5, .0789; 1), (.5, .1316; 1),

________________________(.5, .1842;!), (.5, .5;!)__________________________

Table 2: Minave Designs for Full Second-order Model.
(Design points; frequencies) in half-quadrant 0 < <  x2 < 1/2 Loss

.0263, .0263; 6), (.2368, .0263; 6),(.2368, .2368; 6), 3.9320

.2895, .0263; 6),(.2895, .2895; 6),(.3421, .1842; 1),

.5, .0263; 6), (.5, .2368; 6),(.5, .2895; 6), (.5, .5; 6)

.75 (.0263, .0263; 7), (.2368, .0263; 5), (.2368, .2368; 5), 3.2863
.2895, .0263; 6),(.2895, .2895; 6), (.3421, .1842; 3),
.5, .0263; 6), (.5, .2368; 6), (.5, .2895; 5),(.5, .5; 6)

.5 (.0263, .0263; 6), (.1842,.0263; 1), (.1842,.1842; 1), 2.6173
.2368, .0263; 5),(.2368, .2368; 5), (.2895, .0263; 4),
.2895, .0789; 1), (.2895, .2368; 1),(.2895, .2895; 4),
.3421, .0263; 1),(.3421, .1842; 1), (.3421,3421; 1),
.4474, .2368; 2),(.5, .0263; 6), (.5, .1842; 1),
.5, .2368; 4), (.5, .2895; 4),(.5, .3421; 1), (.5, .5; 6)

0 {all points on the design space with one observation taken at point} 1.0000
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Suppose x  =  (xi, ...,x q)T and z (x) has elements l , x i , ....x q and possibly second or

der terms XiXj (1 <  i < j  < q ) . We define the design space as the q—fold Cartesian 

product S  =  Si x • • • x S q, where each S3 has N0 equally spaced points in [— |]  .

Thus, the design space consists of N  — Nq points. If, for instance, N 0 =  40 as in 

the examples for polynomial regression, then for q — 2, the design space consists of 

402 =  1600 points and for q = 3, the number of points increases to 403 =  64,000. 

The computational complexity would thus increase with the dimensionality and thus 

the algorithm of §2.3 may not produce the optimal design in any reasonable amount 

of time. However, since S  is symmetric about 0 and invariant under permutations 

of the coordinate axes, Fang and Wiens (2000) proposed tha t the designs in S  can 

be generated by symmetrically choosing n0 points in the Xi—axis and then forming 

the q—fold Cartesian product of these points with themselves, whence n = nqQ. The 

algorithm of §2.3 then becomes applicable in choosing the n 0 points. Here, we pro

pose to adopt an alternative approach, previously employed by Heo, Schmuland and 

Wiens (2001). In this approach we continue to assume symmetry of designs about 0 

and exchangeability of the coordinate axes. (We can often arrange symmetry through 

an affine transformation of the independent variables, in which case we do not lose 

generality.) Invariance under permutations of the axes would be reasonable when 

there is no a priori reason to prefer one coordinate over another. To describe the ap

proach, suppose the problem of interest requires n  design points. We choose n 0 = n /8  

points (x i ,x 2) in (0 < x 2 < .i'i < 1 /2 }  and then obtained the remaining 7no points 

by symmetry and exchangeability. Given the finite design space with N  = Nfi points 

generated by the 2—fold Cartesian product of equally spaced N0 points in {—\ - 1] ,
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this requires a search over the N 0 (N0 +  1) /8  points satisfying {0 < x2 < x x <  1/2} . 

We again employ simulated annealing.

Example 3. Partial second order model with two interacting regressors. We consider 

the model

Y  = P0 +  Pxx\ +  P2x 2 +  P12xxx 2 +  /  ( x )  +  e  

on S  — [— | ] x  [— | , | ]  , x  =  (xi, x 2)t  with two interacting regressors, tha t is z ( x )  =  

(1, x i, x 2, xiX2)t  . This model is exchangeable in x x and x2. For N 0 = 20 and n 0 =  40, 

we obtain designs corresponding to p =  1 (minimizing variance only), .75, .5 and 0 

(minimizing bias only). The variance minimizing design has five support points. The 

number of support points increases with increasing bias in the model. In general, 

the pattern of results agree with previous work in the literature. The designs are 

clusters of observations about the points that would have been the design points for 

the variance-minimizing design and the spread of the clusters increases with increasing 

bias, (see Figure 7 and Table 2).

Example 4■ Full second-order model with q = 2. Here we consider the model

Y  = P0 + fixx i +  /32x 2 + p u x j +  /dl2XiX2 +  P22x j + f  ( x )  +  e

on S  = [—| ,  }] x [—| ,  1] , x  =  (xi, x2)T and z (x )  =  (1, x x, x 2, x xx 2. x x, x%)T . This 

model is an extension of that considered in the last example. It is also exchangeable 

in x i and x 2. Given No = 20 and no =  55, we obtained designs corresponding to 

p = 1 (minimizing variance only), .75, .5 and 0 (minimizing bias only). The pattern 

of results is again similar to those in the previous example. The number of distinct 

design points for each value of p is greater than that for the corresponding design for
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partial second-order model since we have more parameters here. See the design plots 

in Figure 8.

2.6 Concluding remarks

We have investigated new criteria for the construction of robust integer-valued re

gression designs. These designs are robust against misspecifications in the assumed 

model form. We recommend the use of the minave and robust prediction constrained 

criteria when the focus of the design is prediction while the robust estimation cri

terion is recommended when the design interest is estimation. Simulated annealing 

has been used successfully to seek integer designs both for unconstrained and con

strained optimizations. The results obtained from the use of the three criteria follow 

a consistent pattern.

The patterns of the results are still similar to those obtained using a minimax 

approach even though the rationale for the designs presented here are based on the 

notion of averaging, rather than maximizing, the loss over the contamination space. 

The key message remains that the designs that protect against the general forms 

of model misspecification may be approximated by taking clusters of observations 

about those points that would have otherwise serve as the design points for variance- 

minimizing designs. We have also demonstrated the superiority of an integer-valued 

construction over the approximate continuous method in that as the desired number 

of observations increase our design does not merely produce replicates at the points 

that have been included in the design when fewer observations were taken; it instead 

incorporates additional design points.
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CHAPTER III

ROBUST DESIGNS FOR MISSPECIFIED  

LOGISTIC MODELS

A b stra c t We develop criteria that generate robust designs and use such criteria for 

the construction of designs that insure against possible misspecifications in logistic 

regression models. The design criteria we propose are different from the classical in 

tha t we do not focus on sampling error alone. Instead we use design criteria that 

account as well for error due to bias engendered by the model misspecification.

Our robust designs optimize the average of a function of the sampling error and 

bias error over a specified misspecification neighbourhood. Examples of robust designs 

for logistic models are presented, including a case-study implementing the method

ologies using beetle mortality data.

3.1 Introduction

Experimental designs have been treated extensively in the statistical literature, start

ing with designs for linear models and extending to non-linear models. A large volume 

of literature is devoted to designs assuming the exact correctness of the relationship 

between the response variable and the design (explanatory) variables. Box and Draper 

(1959) added another dimension to the theory by investigating the impact of model 

2 Co-authored with Professor Douglas P. Wiens. Submitted for publication.
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misspecification. Following the work of Box and Draper the literature has since been 

replete with regression designs which are robust against violations of various model 

assumptions - linearity of the response, independence and homoscedasticity of the 

errors, etc. Authors who have considered designs with an eye on the approximate 

nature of the assumed linear models include Marcus and Sacks (1976), Li and Notz 

(1982), Wiens (1992), Wiens and Zhou (1999), to mention but a few.

For nonlinear designs, Fedorov (1972), Ford and Silvey (1980), Chaloner and 

Larntz (1989) and Chaudhuri and Mykland (1993) have explored the construction 

of optimal designs while assuming that the nonlinear model of interest is correctly 

specified. Still others have investigated designs for generalized linear models, a class 

of possibly nonlinear models in which the response follows a distribution from the ex

ponential family such as normal, binomial, Poisson or gamma (McCullagh and Nelder 

1989). The expository article Ford, Titterington and Kitsos (1989) hinted that in the 

context of nonlinear models, as in the case of linear model, the misspecification of 

the model itself is of serious concern. They asserted that “indeed, if the model is 

seriously in doubt, the forms of design that we have considered may be completely 

inappropriate.” Sinha and Wiens (2002) have explored some designs for nonlinear 

models with due consideration for the approximate nature of the assumed model. In 

this work we consider designs for misspecified logistic regression models.

For the logistic model, the mean response E (Y ) =  /x depends on the parameters, 

/3, and the vector of explanatory variables, x ,  through the nonlinear function fi = 

e7*/ (1 +  en), where rj = z T ( x )  (3. The function r] is termed the linear predictor, with 

regressors z\ ( x ) , . . . ,  zp ( x )  depending on the g-dimensional independent variable x .
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The variance of the response, written var (F  |x), is a nonlinear function of the linear 

predictor. Abdelbasit and Plackett (1983), Minkin (1987), Ford, Torsney and Wu 

(1992), Chaudhuri and Mykland (1993), Burridge and Sebastiani (1994), Atkinson 

and Haines (1996) and King and Wong (2000) have investigated designs for binary 

data, and in particular for logistic regression. As illustrated in these papers, the 

general approach to optimal design is to seek a design th a t optimizes certain functions 

of the information matrix of the model parameters. The information matrix for (3 

from a design consisting of the points xi..., x n is given by

n

y j w (xit (3)z (x,) zT (X j)  =  ZTW Z, (3.1)
i=1

where Z =  (z ( x i ) , z (X2 ) ,..., z (xn))T and W  =  diag (w (x.ift),w (x.2y{3), ...,w(x.n}(3)) for 

weights w{x.i, (3) = (d/r/dr/j)2 / var (F |x j). Thus, as with nonlinear experiments the 

information m atrix depends on the unknown parameters (3. Designing an experiment 

for the estimation of these parameters would then seem to require that these para

meters be known! The following are some of the approaches that have been explored 

in the literature for handling the dependency of the information matrix on f3.

1. Locally optimal designs: A traditional approach in designing a nonlinear ex

periment is to aim for maximum efficiency at a best guess (initial estimate) 

of the parameter values (Chernoff 1953). Designs that are optimal for given 

parameter values are dubbed locally optimal designs. These designs may be 

stable over a range of parameter values. However, if unstable, a design which 

is optimal for a best guess may not be efficient for parameter values in even a 

small neighbourhood of this guess.
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2. Bayesian optimal designs: A natural generalization of locally optimal designs is 

to use a prior distribution on the unknown parameters rather than a single guess. 

The approach which assumes such a prior and incorporates this distribution into 

the appropriate design criteria is termed Bayesian optimal design - see Chaloner 

and Larntz (1989) and Dette and Wong (1996).

3. Minimax optimal designs: Rather than assume a prior distribution, this ap

proach assumes a range of plausible values for the parameters. The minimax 

optimal design is the design with the least loss when the parameters take the 

worst possible value within their respective ranges. These least favourable pa

rameter values are those that maximize the loss (King and Wong 2000; Dette, 

Haines and Imhof 2003).

4. Sequential designs: In sequential designs, the experiment is done in stages. Pa

rameter estimates from a previous stage are used as initial estimates in the 

current stage. The process continues until optimal designs are obtained (Ab- 

delbasit and Plackett 1983; Sinha and Wiens 2002).

Suppose an experimenter is faced with a set S  = {x,;}^1 of possible design points 

from which he is interested in choosing n, not necessarily distinct, points at which 

to observe a binary response Y . The experimenter makes nt > 0 observations at x, 

such that ni =  n - The design problem is to choose rq ,..., «.;y in an optimal 

manner. The objective then is to choose a probability distribution {pi}f=1, with 

Pi = n j n ,  on the design space S. The commonalities in the work of the authors 

who have considered logistic design is the salient assumption that the assumed model
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form is exactly correct. In this work, we propose the construction of robust designs 

for logistic models with due consideration for possible misspecification in the assumed 

form of the systematic component - the linear predictor. The linear predictor could 

be said to be misspecified when it does not reflect the influence of the covariates 

correctly, possibly due to omitted covariates or to  omission of some transformation 

of existing covariates in the model. In this section we formalize our notion of model 

misspecification.

We suppose that the experimenter fits a logistic model with the mean response

»i = V-irii), i = (3.2)

for rjj — zT (xj) /30 when in fact the true mean response is represented by

Mt,* =  M (Vi+f (xi)) • (3.3)

The target parameter /30 is defined by

1 N
@0 = arS minT7 i E  !W  “  ^ (zT (Xi) 0) }2 '

Thus the target parameter is that which guarantees the least sum of squares of dis

crepancies, over all points in the design space, between the assumed mean response 

and the true mean response. The contamination function /  (x) may or may not be 

known. It would be known, for example, when an experimenter decides to fit the 

more parsimonious model (3.2) despite the knowledge of a more appropriate model

(3.3) with a specified / ( x ) .  For instance, the simplified model might be required if 

the number of support points is not sufficient to handle a more complicated but more 

appropriate model. Knowing that the parsimonious model might result in an inferior
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analysis, the experimenter may seek a design that remedies the anticipated model 

inadequacy.

The contamination function would be unknown in a situation where the experi

menter is aware of the possible uncertainties in the assumed model form and might 

have clues about the properties of the possible misspecification, but not know its exact 

structure. When /  (x) is unknown, some knowledge about its properties or conditions 

it satisfies would be required to construct any appropriate design. This is so because 

no single design which takes a finite number of observations can protect against all 

possible forms of bias. Thus, we must impose some conditions on the contamination 

function when its precise form is unknown.

To bound the bias of an estimator /?, we assume that

f 2 (Xi) - r2 (3-4)
i=1

with t 2 = O (n-1). This latter requirement is analogous to the notion of contiguity 

in the asymptotic theory of hypothesis testing, and is justified in the same manner. 

The choice of r  is discussed following Theorem 3.2 in the next section. In order to 

ensure identifiability of the model parameters (3 and the contamination function /  (x) 

we require tha t the vector of regressors and the contamination be orthogonal. That 

is,

1 N
— ^ z (Xi) / ( Xi) =  0. (3.5)

2 = 1

Let T  denote the class of contamination functions /  (x) satisfying (3.4) and (3.5).

61

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



S. 2 Loss Functions: Estimated and Averaged Mean 
Squared Errors of Prediction

The basis for the construction of classical designs for logistic regression models has 

typically been the minimization of (a function of) the inverse of Fisher’s informa

tion matrix (3.1) - see Atkinson and Haines (1996). However, in the face of model 

misspecification the asymptotic covariance, cov ( j f j , of the maximum likelihood es

tim ator of the model parameters no longer equals the inverse of Fisher information - 

see White (1982) and also Fahrmeir (1990), who discusses the asymptotic properties 

of MLEs under a misspecified likelihood.

Suppose that data {x i,yi}  are given, where the x* are the design points chosen 

from S  with nt observations at x t such that J^iLi n i =  n > and Vi is the proportion 

of successes at location x*. The asymptotic bias and covariance of the MLE (3 are 

given in Theorem 3.1 below; see the Appendix for details of this and other proofs. 

The expressions for the asymptotic bias and covariance of the MLE /3 is used in the 

derivation of the loss function in Corollary 3.1.

Theorem  3.1 Define

dTi n \ 1 f zT(xi)Po\wi = —  =  ^  (i -  /q) = -sech  ( ------   1 , (3.6)

and let Z be the N  x p  matrix with rows z T (x,). Recall (3 .2) and (3.3); let 7  and -yT 

be the N  x 1 vectors with elements /q and i respectively. Let P, W  and W t  be the 

N  x N  diagonal matrices with diagonal elements n i/n , and wt,% =  (l — p-T,i) 

respectively. Finally, define b =  ZTP (-y T — 7 ) , H„ =  ZrPW Z, H„ =  ZTP W r Z. 

The asymptotic bias and asymptotic covariance matrix of the maximum likelihood
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estimator 3  of the model parameter vector (3 from the misspecified model are

bias ( 3 )  =  E  ( 3  -  0 O) =  H “ xb +  o (n "1/2) , 

coo (y fr  ( 3  -  0 o ) )  =  +  o (1),

respectively.

Since the typical focus of logistic designs is prediction, we take as loss function the 

normalized average mean squared error (AMSE) I  of the response prediction 

with f)i =  zT (x,;) 3- This is given by

1 ~  77 5 Z  E  m C7?. +  /  (x 3 )} 2] ■

2 = 1

C oro lla ry  3.1 The AM SE has the asymptotic approximation I  = Ci (P ,f)  +  o(l), 

where

C, (P , f) =  1  { tr  | W Z H ;1H „H ^1Zt W +  n  ||W  (Z H “1b — f) ||2} (3.7)

By using the expressions for asymptotic bias and covariance given in Theorem 

3.1, Corollary 3.1 expresses the average mean squared error (AMSE) as an explicit 

function of the design matrix Z and contamination vector f . The first term in the 

loss function £ /  corresponds to the average variance of the predictions and it depends 

on the contamination function /  (x) through the matrix H n. The second term in the 

expression for £ /  is the average squared bias of the predictions, which depends on the 

contamination /  (x) through the contamination vector f  and implicitly through the
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vector b. Thus a design cannot minimize (3.7) directly without certain assumptions 

about the contamination /  (x).

Fang and Wiens (2000) constructed integer-valued designs for linear models, in 

the case of an unknown / ,  using a minimax approach. Their minimax criterion 

minimizes the maximum value of the loss function over / .  They solve the design 

problem by minimizing the loss when the misspecification is the worst possible in the 

neighbourhood of interest.

Here, we take one of two approaches depending on whether or not there are initial 

data. If we have initial data we represent the discrepancy between the true response 

and the assumed response, at a sampled location x, by

d  (x) = n  ( z T (x) /3o + /  (x)) -  fi ( z T (x) /30) ,

and estimate this by the residual d (x) =  y (x) — // (Vr  (x) /3 ĵ. A first order approxi

mation is d (x) ^  (dfi/dr]) f  (x), leading to /  (x) =  d (x) /  { d / i /d r ] ^ =^ j . We smooth 

this estimated contamination over the entire design space - see Example 3 of §3.3.2 for 

an illustration. The resulting estimate f , together with (3, is then substituted into the 

terms in (3.7), and we compute a design minimizing Ci (V, f  j  using the techniques 

outlined in §3.3.1.

If there are no initial data we propose to instead average Cj over T  defined by

(3.4) and (3.5). Our optimal design minimizes this average value. This criterion is in 

the spirit of Lauter (1974, 1976). Lauter’s criterion optimizes the weighted average of 

the loss of a finite set of plausible models. Here we are instead faced with an infinite 

set of models indexed by /  e  T .
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To carry out the averaging we begin as in Fang and Wiens (2000), with the singular 

value decomposition

Z =  UjvxpApxpVjxp, (3.8)

with U r U  =  V TV  =  Ip and A diagonal and invertible. We augment U  by Ujvx(v-p)

such that U :U  is orthogonal. Then by (3.4) and (3.5), we have tha t there is
J NxN

an (N  — p) x 1 vector t, with ||t|| < 1, satisfying

f  (=  ft ) =  rV iV U t. (3.9)

The average loss is taken to be the expected value of (3.7), as a function of t, with 

respect to the uniform measure on the unit sphere and its interior in M.N~P. This 

measure has density p (t) =  /  (||t|| < 1), where katiP =  tt(n ~~pF2/T  +  l)  is the

volume of the unit sphere. Theorem 3.2 handles the averaging of £ /. The importance 

of this theorem is in its elimination of the dependency of our design criterion on the 

unknown contamination function.

T h eo rem  3.2 The average loss over the misspecification neighbourhood T  is, apart 

from terms which are o(l), given by

£i,ave (P , p ) -  J  £ / (P 1 ft)p  (t) dt

N  — p +  2
1 ■ r(U TP W U ) 1 (U TW 2U)1 +  9 tr [W  (R  -  I* ) (R t  -  I N) W ]

=  N tV

(3.10)

where p = n r 2 and R NxN = U  (U r P W U )_1 U TP W . For numerical work it i  

more efficient to compute the second trace in (3.10) as

is

N
tr  [W (R  — Ijv) (R r  — I jv)  W ] =  w2 ||r "2l\\ 5

i=1
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where i f  is the ith row o /R  — In-

The dependency of the design criterion on the unknown contamination has now 

been represented by a design parameter p , which can be chosen by the experimenter. 

This parameter can be interpreted as a measure of departure of the true model from 

the fitted model. In other words, it is a measure of the experimenter’s lack of confi

dence in the validity of the model that he fits. If he believes tha t this assumed model 

is exactly correct, he chooses p = 0  corresponding to the classical /-optim al design. 

On the other hand, if the experimenter believes that the assumed model is highly 

uncertain, he chooses a large value of p for his design. Designs corresponding to a 

large value of p are dominated by the bias component of the loss.

Our design criterion (3.10) remains dependent on the model parameter vector f30, 

as is the case in the general nonlinear design problems, through the weights, as at 

(3.6). In the examples of the next section we handle this dependency by either taking 

a guess (locally optimal designs) or assuming a prior distribution, say it (/30), on /30 

(Bayesian designs). The loss function Cpave is modified as /  £f.ave (P) n (/3) dp in 

the case of a Bayesian construction.

3.3 Designs - Algorithm and Examples
3.3.1 Sim ulated Annealing

We consider problems with polynomial predictors, viz. p = z T (x ) P with z  (x) = 

( l , x , x 2, ...,xp~1)T. We take equally spaced design points {xi}f=1 in the interval S.  

Our design minimizes the relevant loss function through the matrix

P  =  diag (ni/n,  ■ ■ •, n ^ / n ) .
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This is a nonlinear integer optimization problem for which there is no analytic solu

tion, and for which we employ simulated annealing to search for the optimal design.

The simulated annealing algorithm is a direct search random walk optimization 

algorithm which has been quite successful at finding global extrema of non-smooth 

functions and/or functions with many local extrema. The algorithm consists of three 

steps, each of which must be well adapted to the problem of interest for the algorithm 

to be successful. The first step is a specification of the initial state of the process. In 

this step an initial design has to be specified, say Po- The second is a specification 

of a scheme by which a new design P i  is chosen from the optimization space. The 

last step is a prescription of the basis of acceptance or rejection: an acceptance 

with probability 1  if Cj , ave ( P i )  < £>i,ave ( P o ) )  otherwise acceptance with probability 

exp{— (£ /,a„e (Px) — d[ ave ( P o ) )  / T} ,  where T  is a tuning parameter. The tuning 

parameter is usually decreased as the iterations proceed. After a large number of 

iterations between the second and third steps the loss function is expected to converge 

to its (near) minimum value. Simulated annealing has been used for design problems 

by, among others, Meyer and Nachtsheim (1988), Fang and Wiens (2000) and Adewale 

and Wiens (2006).

A very simple and general approach that we considered for choosing the initial 

design is to randomly select p points from and randomly allocate the observa

tions to these points such that the total number of observations is n. Fang and Wiens 

(2000) used a different approach which assumes that one of (n, N)  is a multiple of 

the other. For any (n, N)  combination they chose the initial design to be as uniform 

as possible. We applied this approach as well but found that the two approaches are
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Figure 9: Simulated Annealing Trajectory for Logistic Design with rj — 1 +  3 .7;, 
x  G S  — [—1,1], p = 0 and (N  — 40, n = 200).

equally efficient. For generating a new design we adopted the perturbation scheme of 

Fang and Wiens (2000). The turning parameter in the third step was chosen initially 

such that the acceptance rate is in the range 70% and 95%. We decrease T  by a factor 

of .95 after each 20 iterations. In the examples below we run the algorithm several 

times with varying turning parameter specification and reduction rate in order to 

satisfy ourselves that the resulting design has the least loss possible under the rele

vant circumstances of each example. In Figure 9 we present the simulated annealing 

trajectory for one of the cases presented in Example 1. It took 82.69 seconds for the 

algorithm to complete the preset maximum number of iterations (1 2 0 0 0 , for this case) 

and the minimum loss was attained just before the 9000t/l iteration.

3.3.2 Exam ples

Example 1: No contamination. As a benchmark we first consider the logistic regres

sion model with a single predictor: p = 2, z (x) — ( l , x )T , x  € S  = [—1,1] ,/3 =

6 8
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Figure 10: Locally optimal designs minimizing £ / ,a„e when p = 0 (no contamination) 
with (a) N  = 20, n = 20; (b) N  = 20, n = 200; (c) iV =  40,n =  20; (d) N  = 40, n  =  
200 .

(1 ,3)r , and no contamination: p =  0. We initially took n  =  20, N  — 40 and consid

ered designs minimizing Cj. The annealing algorithm converged to the design placing 

10 of the 20 observations at each of the points —.744 and .128. This design is therefore 

the classical I —optimal design minimizing the averaged variance of the predictions 

over S.  There is evidently no previous theory tha t applies to this case. However, 

using a model tha t is a reparameterization of ours, and a continuous design space 

[—1,1], King and Wong (2000) showed the locally D —optimal design to be the design 

that is equally supported at —.848 and .181. For the sake of comparison, we sought 

an equivalent design using our finite design space and the algorithm described above. 

The resulting design places 10 of 20 observations at each of —.846 and .180. Thus, 

our algorithm attains the closest approximation to King and Wong’s solution in that 

the points —.846 and .180 are nearest, in our design space, to —.848 and .181. Unlike 

designs for linear models, the optimal designs in this case do not necessarily place 

observations at the extreme points of the design space. This phenomenon is due to 

the curvature introduced by the link function and the resulting nonlinear relationship 

between the mean response and x.
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Table 3: Comparing Restricted Designs with Unrestricted Design; p =  0.
(IV, n) Restricted Design (Two -point) Unrestricted Design

Design Points1 Loss Design Points Loss
(2 0 , 2 0 ) -.789(9), .053(11) .250 -.789(7), -.684(3), .250

.0526(2), .158(8)
(2 0 , 2 0 0 ) -.789(94), .053(106) .250 -.789(95), .0526(63), .158(42) .249
(40,20) -.744(10), .128(10) .2527 -.744(10), .128(10) .2527
(40,200) -.744(97), .128(103) .2525 -.795(49), -.744(47), .2524

.0769(39), .128(65)
1 Number of observations in parentheses

Our numerical results further revealed that the designs depend on the number of 

points in the design space and the number of observations the experimenter want to 

take. For this “no-contamination” case, we investigated designs for various combina

tions of N  and n. Some of these designs are presented in Figure 10. The number 

of distinct design points varies from 2 to 4. We found this somewhat surprising, in 

light of the fact that all D —optimum designs for the two parameter logistic model in 

the literature are two-point designs. Presumably this is explained through our use 

of a finite design space, and/or our use of average loss rather than that based on the 

determinant of the information matrix.

To check that this phenomenon was not merely an artifact due to a lack of con

vergence, we modified our algorithm to obtain ‘restricted’ designs - restricted to two 

support points only. The results for the same values of N  and n as in Figure 10 are 

presented in Table 3. The loss for the unrestricted design is less than or equal to  that 

for the corresponding restricted design in all cases considered.

In the examples that follow we limit discussion to the case N  = 40, n  =  200. 

Example 2: Example 1 continued. In this example, which we include largely for
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illustrative purposes, the form of the contamination is known. Suppose that the 

experimenter anticipates fitting a simple logistic model, while wishing protection 

against a range of logistic models with quadratic predictor: 77 (x) =  z T (x) (3 +  f  (x), 

where z T (x ) and /3 are as in Example 1, and /  (x) =  [j2 (x2 — /i2) /  v  br -  A  f°r 

fik — N ^ J 2 x i (=  0 if k is odd). The contaminant /  (x) is an omitted quadratic 

term, translated and scaled to ensure the orthogonality condition (3.5); (3.4) becomes 

I/S2 I < t .  We obtained optimal designs for various values of the quadratic coefficient 

/32. The resulting designs and corresponding values of the loss function are presented 

in Table 4. In the range of values of (52 considered, we found th a t the number of 

distinct points varied from 3 to 6 . The spread of the design over the design space 

tended to increase as the magnitude of the omitted quadratic term increases. We 

computed the premium paid for robustness and the gain due to robustness for each 

design presented as

Premium =  (  ^  . -  1̂ ) x 100%, (3.11)
\ L j  [ r c l a s s i c a l ,  t  — UJ J

and

Gajn = ( l ~  £ /  (Popt,f) )  x 100%. (3.12)
\  *- I  f v classical,  * )  /

The gain measure is the percentage reduction in loss due to the use of a robust 

design as opposed to a (non-robust) classical design which assumes the fitted model to 

be exactly correct. The premium measure is the percentage increase in loss as a result 

of not using the classical design if in actual fact the assumed model is correct. The 

application of the premium and/or gain measure depends on the amount of confidence
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Table 4: Designs for simple logistic model when the true model has a quadratic term.
@2 Design Points (Number of Observations) £ / ( P , f ) Premium Gain

— 1 0 -1 (4 2 ) , -.180(42), -.128 (96 ), 3.500 35.0% 34.8%
-.077(12 ), - .0 2 6 (2 ), .077(6)

—3 - 1  (48), -.282  (26), -.231 (64), .282 (62) .5020 10.9% 17.0%
- 1 -.949  (42), -.590  (34), -.539 (29), .128 (95) .2756 2 .1 % .5%

0 -.795  (49), -.744  (47), .077 (39), .128 (65) .2524 0 0

1 -.641 (100), .128(22),.180 (78) .3080 1.9% 4.0%
3 -.692  (57), -.641 (29), - .077  (39), .6073 11.9% 19.9%

-.026(44), .795(31)
1 0 -1 (1 1 ) , -.590(51), -.539 (27 ), 3.679 39.0% 42.9%

-.231 (30), -.180(40),.949(41)

the experimenter has in his knowledge of the true model. In this example, since the 

assumption is tha t the experimenter knows that the model with a linear predictor 

involving the quadratic term is a more appropriate model, the relevant measure would 

be the gain. Nevertheless, both measures are reported in Table 4. The value of a 

design from our robust procedure increases with increasing magnitude of the quadratic 

parameter. On the other hand, the experimenter has to be aware of the increasing 

premium when his knowledge of the true model is not accurate. The premium paid 

for robustness also increases with the magnitude of the quadratic parameter.

Example 3: Designing when there are initial data to estimate contamination. Table 

5 shows simulated data (“#  of successes”) from a logistic regression model with the 

predictor r}(x) =  1  +  3x + f  (x), the model of the previous example; the quadratic 

parameter was / ? 2  =  3. The data were simulated using a uniform design over equally 

spaced points in [—1,1]. Given the simulated data, we suppose the contamination 

function f  (x) to be unknown. We proceed using the procedure described in §3.2 for 

estimation and eventual smoothing of the contamination. A plot of the estimated
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Table 5: Experimental design and response values.
Design point —1 - 7 / 9 - 5 /9 - 3 /9 - 1 /9 1/9 3/9 5/9 7/9 1

#  of observations 20 20 20 20 20 20 20 20 20 20
#  of successes 8 6 7 13 17 18 18 19 20 20

Estim ated Contamination with its Loess Smooth Superim posed

b  -1.0 -0.5 0.0 0.5 1.0

x [Design Space]

Figure 11: Estimated contamination plot for Example 3. True (but unknown) form 
of contamination is quadratic.

contamination with its loess smooth f ( x ) over the design space is presented in Figure 

11 .

We plugged the smoothed contamination values into the loss function (3.7), and 

used simulated annealing to obtain the design. Our design places 34, 82, and 84 of the 

200 observations at —.641, —.590, and .180 respectively. For this design the premium 

for robustness is 5.0% and the gain is 60.0%. This example indicates that when there 

are initial data, it is expedient to incorporate the information from the data into 

the design procedure. The resulting design can lead to substantial gain at a reduced 

premium.

Example 4■' Unknown contamination. Consider the logistic model with predictor

rj(x) = P 0 + (4xx + f { x ) .  (3.13)
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In this example - as in Example 3 - we assume that /  is an unknown member of the 

class T  defined by (3.4) and (3.5). In Figure 12 we exhibit designs minimizing the 

averaged loss (3.10) for various values of p, /30 and j31. We observed a progression 

of the dispersion of the design points over the design space with increasing p. The 

pattern of the dispersion is, however, modified by the curvature indexed by 30 and 

j3x through the nonlinear mean response. For small p our robust designs can be 

described as taking clusters of observations at neighbouring locations rather than 

replications at only a few distinct sites; this was noticed for linear models by Fang and 

Wiens (2000). However, here there is always a pattern to the clusters of observation 

to be taken depending on the values of the model parameters. Large values of p 

connote large departures from the assumed model and an extremely large p value 

corresponds to the all-bias design. Even though the all-bias design is spread over the 

entire design space the frequencies of observations are different and these frequencies 

are prescribed by the curvature of the mean response as determined by the model 

parameters. In Table 6  we present the values of the premium paid and the gain in 

robustness for designs corresponding to different values of p for the particular case of 

(/3q, Pi) = (1,3). The gain in robustness, measured by (3.12), exceeds the premium 

paid, as measured by (3.11), for each design. Increasing robustness, however, comes 

with increasing premium; the experimenter would thus have to  choose his level of 

comfort.

Thus far, the examples we have presented have been locally optimal, hence have 

assumed good parameter guesses for unknown model parameters. In the absence of
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Figure 12: Locally optimal designs in Example 4; (a) - (d): (/3n>/3i) =  (1,1); (e)-(h): 
{ f i M  =  (1,3); (i)-(l): (d 0 ,/?i) =  (3,1); (m)-(p): =  (3,3).

a reliable best guess for model parameters, Sitter (1992) and King and Wong (2000) 

considered minimax D-optimality, a procedure which assumes the knowledge of a 

prior range for each of the parameters. We consider a Bayesian paradigm to be in 

the same spirit as averaging the contamination function over the specified misspec

ification neighbourhood, and take independent uniform prior distributions over the 

range of each model parameter. Our design criteria then becomes the expected loss, 

E (Ci,ave (P , p))i with the expectation taken with respect to the prior distribution. 

The dependency of our design criteria on the model parameters is through the weights 

Wi, and we do not have analytic expressions for the resulting integrals. In the ex

amples that follow we employ number-theoretic methods for numerical evaluation of 

multiple integrals as discussed in Fang and Wang (1994). This approach is based
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Table 6 : Design for unknown contamination with f30 =  1, (3X =  3.
p ave  ( P j  P) Premium Gain
0 .2524 0 0

1 .2809 .62% 2 .0 1 %
1 0 .5090 3.06% 14.33%

1 0 0 2.7204 7.44% 25.87%
1 0 0 0 24.7294 11.29% 28.16%

1 0 0 0 0 244.7545 11.97% 28.43%

on generating quasi-random points in the domain of definition of the integrand, and 

averaging the values of the loss over the sample of points.

Example 5: Robust Bayesian Design. In this example we consider the following ranges 

of parameter values: (a) [.5,1.5] x [2.5,3.5], (b) [.5,1.5] x [1,5], (c) [—1,3] x [2.5,3.5], 

(d) [—1,3] x [1,5], all with centre point (1,3) but with coverage areas 1, 4, 4, and 

16 respectively. As described above, the robust design for each range of parameters 

values is the design that minimizes the expected average loss with respect to uniform 

distributions on the specified ranges of parameters values. For each of the designs - 

see Figure 13 - we take p =  .25. We observed an increasing spread over the design 

space with increasing uncertainty in model parameters, as measured by the coverage 

area of the priors. This is consistent with previous work in optimal Bayesian design - 

see, for example, Chaloner and Larntz (1989) - which suggests increasing number of 

distinct design points with increasing uncertainty in the specified prior distributions. 

Comparing the design plots in panels (b) and (c) of Figure 13, we see tha t there is 

more sensitivity to uncertainty in the intercept parameter than the slope parameter.
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Figure 13: Robust Bayesian optimal design in Example 5 with p =  .25 and para
meters Bo and /31 having independent uniform priors over (a) [.5,1.5] x [2.5,3.5], (b) 
[.5,1.5] x [1,5], (c) [-1,3] x [2.5,3.5], (d) [-1,3] x [1,5].

Table 7 : Beetle mortality data.
Dose, Xi i}ogw C S2mgl~1) 1.69 1.72 1.75 1.78 1.81 1.84 1 . 8 6 1 . 8 8

Number of beetles, nt 59 60 62 56 63 59 62 60
Number killed, n,i/j 6 13 18 28 52 53 61 60

3.4 Case Study: Beetle Mortality Data

Bliss (1935) reported the numbers of beetles dead after five hours exposure to gaseous 

carbon disulphide at various concentrations. The doses are given in Table 7; to 

facilitate our discussion we have linearly transformed these to the range [0,1]. Note 

that the original design is then very nearly uniform on the 8  equally spaced points 

0 (1/7)1.

We first fitted the logistic model with the linear predictor r f1'1 — 3 ^  +  and 

obtained the estimates Bo  ̂ = ~ 2.777 and Bi ) ~  6.621 with the estimated variance-

covariance matrix
/

£ (1) =
\

V

.082 -.144

-.144 .317

and deviance =  11.232 (df  =  6 ). The corresponding estimates for the logistic model 

with the linear predictor 77 =  Bo^ +  f i ^ x  + B ^ x 2 are = - 2 .0 0 , — 1-60,
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-  (2)
P2 — 5.84 and

( \ 
.124 -.522  .489

x;(2) = -.522  3.252 -3.690

y .489 -3.690 4.665 j

with deviance =  3.195 (df = 5). The deviances and a plot (not presented here) 

of proportions of beetles killed against dose levels with the estimated proportions 

from each model superimposed suggest that the model with the quadratic term  is a 

significantly better fit for these data. Suppose the experimenter is inclined to use the 

simple logistic fit for future data for ease of interpretation and model simplicity or that 

the adequacy of the model with the quadratic term  is itself in doubt. We proceed by 

estimating the contamination and then smoothing over the design space as discussed 

in §2. The resulting design, obtained using the parameter estimates Po  ̂ and b\   ̂ as 

initial guesses, with total number of observations n  =  481 over an equally spaced grid 

of N  — 40 points in [0,1] is presented in panel (a) of Figure 14. This would be the 

design of choice if the experimenter were interested in prediction but contemplated the 

superiority of the model with quadratic term. However, the experimenter can ensure 

robustness against a broader set of alternatives by taking the contamination to belong 

to the class T  while assuming an initial multivariate normal prior on the parameter, 

with mean vector ^  and variance-covariance matrix ST), and then using

the Bayesian paradigm as in Example 5. The loss function becomes the expected value 

of (3.10), with expectation taken with respect to the multivariate normal prior. The 

numerical implementation of expectation is done using a quasi-Monte Carlo sampling 

approach. The design plot is given in Figure 14(b).
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Figure 14: (a) Prediction design when contamination is estimated from initial data, 
(b) Robust Bayesian prediction design with multivariate normal prior and p = 5.

3.5 Conclusions

We have investigated integer-valued designs for logistic regression models, using poly

nomial predictors as specific examples. Our designs are robust against misspecifica

tion in the predictor. We have addressed both known and unknown contamination. 

Previous robustness work done for logistic models has concentrated on the uncer

tainty of model parameters; in this contribution we have gone further to investigate 

specific violations in the form of the assumed linear (in the parameters) predictor.

Designs for a specific alternative, for example quadratic versus linear in the inde

pendent variable, are quite different from those for broad classes of alternatives. The 

number of distinct design points is usually not as large in the former case as in the 

latter. In fact, when the magnitude of the misspecification is minimal the resulting 

robust design could have about the same number of distinct observation points as its 

classical counterpart. Nevertheless, the gain in robustness often exceeds the premium 

paid for robustness - see Table 4.

Designs for a very specific alternative may, however, suffer the same fate as designs
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assuming the exactness of the fitted model when the alternative itself is not valid. 

Both take replicates of observations at only a few distinct points, especially when the 

magnitude of the departure is small. However, when there is a higher degree of cer

tainty in the alternative, these designs could result in substantial gain in robustness. 

An example of this would be when the experimenter is aware of a more appropriate 

model but seeks a design that allows for the fitting of a more parsimonious model. 

Also, designs when there are data to estimate model contamination are quite similar 

to designs when the exact form of the contamination is known (single alternative). 

When the information in the initial data is incorporated into the design procedure, 

as seen in Example 3 above, the robustness of the resulting design could come at a 

very reduced premium.

In general, we have found there to be increasing numbers of distinct observation 

sites with increasing model uncertainty. The overall message is consistent with that 

reported in the model robust design literature for linear models - robust designs can 

be approximated by placing clusters of observations about the support points for 

classical designs. However, the nonlinearity of the mean response in logistic design 

adds a slight twist to the overall message, in that the clusters of observation come with 

patterns that are determined by the curvature prescribed by the model parameters. 

More striking is the fact that the all-bias design is non-uniform in logistic regression 

models - even though the recommended design points are spread over the entire design 

space, the frequencies of observations vary due to the curvature.

Overall, the design that protects against uncertainty in model parameters (via a 

Bayesian paradigm) and that which protects against uncertainty in assumed model
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form could be described as taking observations in clusters. These clusters often come 

in interesting patterns of curvature prescribed by the nonlinearity of the model - see 

examples in the previous section. Further work would be required to obtain analytic 

descriptions of the effect of curvature in this robust approach, or even for the all-bias 

designs for logistic models. While the focus of the model misspecification reported 

here is exclusively on linear predictor misspecification, we are currently investigating 

other forms of misspecification in designing for the broader class of generalized linear 

models, of which the logistic model is but a special case.

3.6 Appendix: Derivations

P ro o f  o f T h eo rem  3.1: Under conditions as in Fahrmeir (1990) the maximum

likelihood estimate /3 exists and is consistent, and dl (j3j jd fi  is op (n-1/2). The 

log-likelihood I, the score function and — 1  times the second derivative according to 

the assumed model are

1 = £  { " •  [»• log ( i z y ; )  + 10« a  -  *> ] + ><* }  •

dl {(3) /  \  ( \ d 2l ((3) ( \ T ( \
—Q p ~ =  2 ^  Ui  w  -  * 0  z  > ~ d p d p T  =  2 _ >  niWiZ w  z  •

An expansion of dl (/3) /d(3j around /30  gives

dl { (3)  =  d l ( P 0) , _  v d 2l ( /30) l y y / ,  w ,  _ 6  x dH ( 0 m)

dPj  d/33 Y  °'k) dPjd/3k 2 ^ ^  P w v * 1 P°'l> d P j d f a d P i

where j3j and l30 j are the j th terms of the vectors (3 and (30 respectively and /3* is a 

point on the line segment connecting (3 and /30. If we replace (3 by /3 in this expansion,
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we obtain

V™E ( P k ~ P o , k
1  d2l Q30) 
ndfijdPk ' 2

OH Q9.) 
d p jd p kdp l

1 dl (/30) 
n dp a

For the logistic likelihood the are bounded, and so, using the consistency of

j3, we have that

1  d2l (P0) 1
P o  ,i

d3l 09,)
jfc)n dPjdpk 2 n ^  V"‘ " u’7  d p ^ P M  J

where H]k is the (j, k)th element of the matrix H n =  — ̂ | — ZTP W Z . Thus the

limit distribution of y/n (j3 — /30j  is tha t of the solution of the equations

i.e. is the limit distribution of Using the central limit theorem for

independent not identically distributed random variables we have that 9l̂  has

a multivariate normal limit distribution with asymptotic mean

N

4 =  V  riiE [yi  -  Hi  (/30)] z ( X j )  =  v ^ b
VnV 7=1

and asymptotic covariance matrix H„ =  ZtP W t Z. From this it follows that

y/n (j3 — is A N  ^ H ^ b ,  , as required.

P ro o f  o f C oro lla ry  3.1: First write

1  N 1  N 
I = J j ^ 2 var W np(rii)\ + N ^ 2 i E  Wnv(f l i )]  -  Vnfi(rii + f  (*i))Y

7=1 7=1

By the (5-method, the first sum is, up to terms which are o(l),

[ y / n f l i ]  =  ^  E  ( J j ~ )  z T  ( x ») ( X i )

□

' dfMj
n  t ru E *  ^ 1 var

i  
~~ N tV
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Also, on expanding p (r),:) and fi (r^ +  /  (x* )) around rp, we have

E  fo)] =  v V  (hi) +  E ( V i - V i )  +  o ( v ^  ( h i - h i ) )

and

V n p  (hi +  /  (xi)) =  \ f np  fa )  +  (xi) +  o (V n / (xi)).

Using an argument similar to that in the proof of Theorem 3.1, we have

£  [ v V  (hi)] =  \ f np  (hi) +  (h i-h i) +  o(l).

Thus, the second sum in the expression of I  is, up to terms which are o(l),

iE _ + /  (x;))}2
i— 1

^ Y1 ( (p~) {n'biasTip)z z T (Xi ) bias(p) +  ra^ 2 (Xi) }N  j r t  \ dViJ

= p { n -  b TH “ 1 ZTW 2 Z H “1b -  2nfr W 2 Z H ^ b  +  n ■ f TW 2 f } 

reducing to §  ||W  (Z H ^ b  -  f) ||2. □

P ro o f  o f T h eo rem  3.2: Here and elsewhere, in the averaging we will use the

identity f  t Ttp  (t) dt = (N — p ) / ( N  — p +  2), which implies that

/ t t r p (t) dt
N  — p + 2 ■- N - p -

First use (3.8) and (3.9) to write (3.7) explicitly in terms of t:

£/ (P, f )  = N

tr

+n

[(Ur PW U) 1 (UTP W r (t) U) (UTPW U) _1 UTW 2U 

W  ( u  (Ur PW U ) _1 Ur P  (7 r  (t) -  7) -  rViVUt) ||'
(A.l)
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Using (3.9) again we have W x (t) =  W  +  WrV^/VUt +  0 ( r 2), where W  

diag (w' (rjf) , • • -w’ (rjN)). Since r 2  =  O (n-1) we obtain f  W T ( t )p( t )  dt — W  

0  (nT1), and so

tr [(UTPW U ) _1 (Ur P W T(t) U) (UTPW U ) _1 U r W 2u |  p (t) dt 

= tr (UTPW U ) _1 (UTW 2U)

Similarly, we have 7 T (t) — 7  =  r\/7V W U t +  0  ( r2), and so

n W  (U  (U r P W U ) 1 U TP (7 t  (t) -  7 ) -  rx^VUt) I

W  (R — I) U t 2  +  0  (n“1/2) ,=  n r N

with

J n  W ( U ( U TPW U ) 1U r P ( 7r (t) - 7 ) -  r '/iV U t) ||% (t) dt

n r 2N  ■ tr
~ ~ T

W  (R -  I) UU (R -  Iy w

N  — p +  2

~ —T
The result follows upon noting that U U  =  I — U U  and (R — I) U  =  0, and then

substituting these integrals into (A.l) and simplifying. □
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CHAPTER IV

ROBUST DESIGNS FOR BINOMIAL MODELS 
WITH OVERDISPERSION AND  

MISSPECIFIED LINK FUNCTIONS

A b stra c t We have developed criteria that generate robust designs which insure 

against possible misspecifications in logistic models. We construct designs that pro

tect against overdispersion and misspecified link functions. The problem of overdis

persion is addressed by incorporating the variance function prescribed by a superior 

model similar to a logistic mixed model. The logistic model corresponds to the canon

ical link for the binomial distribution. Our robust approach to design deals with the 

problem of link misspecification by adopting a parameterized generalized family of 

link functions encompassing the logistic link and other alternatives. The design crite

rion is the average mean squared error of predictions over a finite design space which 

depends on unknown model coefficients, overdispersion and link parameters. We 

use the “minave” approach, which requires the specification of ranges for unknown 

parameters, to construct robust designs. Examples of minave optimal designs are 

presented, including an example on the toxicity of ethylene oxide to grain beetles.

4.1 Introduction

In this article we present robust designs for binomial models. The literature is replete 

with works on model-robust designs for linear models but there is little work done 

3 Submitted for publication.
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on model-robust designs in the context of binomial models. A possible reason for 

the dearth of work in this area is explained by the complexity of the design problem 

even when the assumed model is exactly correct. Contributions to the experimental 

design literature with the notion that the assumed logistic model is exactly correct 

include those of Abdelbasit and Plackett (1983), Minkin (1987), Ford, Torsney and 

Wu (1992), Chaudhuri and Mykland (1993), Burridge and Sebastiani (1994), and 

Atkinson and Haines (1996) but to name a few. The general approach to design is 

to optimize criteria which are real-valued functions of the information matrix of the 

model parameters. One main difficulty is the dependency of design criteria on un

known model parameters. A traditional approach around this difficulty is to use best 

guesses for parameter values. This was termed locally optimal designs by Chernoff 

(1953). Authors such as Chaloner and Larntz (1989) and Dette and Wong (1996), 

have used a Bayesian paradigm - assuming a prior distribution on the unknown pa

rameters. There have also been minimax (or maximin) proposals for robustification 

of the uncertainties in model parameters (see Sitter, 1992, King and Wong, 2000 and 

Biedermann, Dette and Pepelyshev, 2004).

In an article by Ford, Titterington and Kitsos (1989) on nonlinear designs, it was 

stated that when the assumed model is seriously in doubt, designs based on such 

model may be grossly inappropriate. Ford et al. are probably just alluding to what 

is known in the context of linear models through the pioneering work of Box and 

Draper (1959) and subsequent work by Huber (1975), Marcus and Sacks (1976), Li 

and Notz (1982) and Wiens (1990,1992, 1998).

There are three ways a binomial model can be potentially misspecified when
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viewed as a generalized linear model. First, the covariates included in the system

atic component of the model, the linear predictor, may not reflect the influence of 

covariates correctly. This may be due to the use of a wrongly specified functional 

form of the covariates in the model or an omission of essential covariates. Second, 

the link function might not be accurate. For example, the use of the logit link which 

is the canonical link for the binomial distribution when in fact the complementary 

log-log link or the probit link is more appropriate. A third source of misspecification 

in binomial model is extra-binomial variation. Extra-binomial variation is a situa

tion whereby the nominal variance prescribed by the binomial distribution does not 

correctly account for observed variability in the data. Overdispersion is the most 

common form of extra-binomial variation, it occurs when the data exhibit variability 

that exceeds tha t prescribed by the binomial distribution. Underdispersion is the 

opposite, but it is not as common as overdispersion (see Dean, 1992).

Adewale and Wiens (2005) considered designs for logistic models with an eye on 

possible misspecification in the fixed effects specified through the linear predictor. 

Their work addressed the problem of designing for logistic models when the linear 

predictor is possibly misspecified. This article extends the work of Adewale and 

Wiens (2005) to designing for logistic models when there is overdispersion and when 

the logit link is possibly inadequate. Our approach to robust design is to  regard the 

true model as belonging to a broad class of models accommodating overdispersion 

and several link functions other than the logit link. We compute the mean squared 

error of predictions as a composition of variance error as well as bias due to model 

misspecification. Our robust designs optimize certain functions of this mean squared
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T able  8 : Toxicity of Ethylene Oxide to the Calandra Granaria.
Dose

Xi (log1 0  C2 Z/4 O m g / 1 0 0  ml)
#  of observations

rii
#  dead

riiVi
.394 30 23
.391 30 30
.362 31 29
.322 30 2 2

.314 26 23

.260 27 7

.225 31 1 2

.199 30 17

.167 31 1 0

.033 24 0

Table 9: Bliss’s Beetle mortality data.
Dose, Xi (m gl”1) 49.06 52.99 56.91 60.84 64.76 68.69 72.61 76.54

Number of beetles, n, 59 60 62 56 63 59 62 60
Number killed, 6 13 18 28 52 53 61 60

error of predictions.

Example 1.1 (Overdispersion illustrated): Busvine (1938) presented a data set for 

the mortality of grain beetle (Calandra Granaria) after exposure to ethylene oxide 

(C2H4O). A total of 290 grain beetles were exposed to 10 different levels of con

centrations of C2 U4 O and the proportion killed at each concentration after a 1 -hour 

period was recorded (Table 8 ). When the logistic linear model was fitted to the data 

we obtained the parameter estimates j30 = —3.443 and b, =  14.440 and the deviance 

statistic is 33.24 ( 8  d.f.). The deviance statistic suggests lack of fit. The binomial 

model with other link functions offers no improved fit. A plot of proportion of mor

tality versus dosage with the fitted logistic model superimposed suggests tha t the 

lack of fit is possibly due to extra variation around the fitted mean response line (see 

Figure 15).
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Figure 15: Mortality of Calandra Granaria on exposure to ethylene oxide
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Figure 16: Deviance versus A for the beetle mortality data
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Figure 17: Proportion of dead beetles versus dose with logit link and A =  .1861-link 
superimposed

Example 1.2 (Link misspecification illustrated): Table 9 presents Bliss’s (1935) 

data on the numbers of dead beetles after five hours exposure to gaseous carbon 

disulphide at various concentrations. We fit the binomial model corresponding to 

a range of values of A for a generalized link function (defined by 4.5 in §4.2.2). In 

particular, we fit the model for a grid of A values in [0,2]. A plot of deviance versus 

A values is presented in Figure 16. Using the deviance as the model fit criterion, 

A =  0.1861 corresponds to the model with the minimum deviance. Figure 17 shows 

that the model with the link parameter A =  0.1861 provides an improved fit to the 

data than the logistic model with A =  1. The parameter estimates for the logistic 

model are $ 0 =  —14.808 and Bx = 0.249 and the corresponding estimates for the 

model with A =  0.1861 are $ 0 =  —10.782 and B1 =  0.174. In an investigation of 

designs for nonlinear models, Sinha and Wiens (2002) asserted that “Although the
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theoretical response functions are very similar in shape, and possibly indistinguishable 

if noisy data must be relied upon, the appropriate designs can be quite dissimilar.” 

Similarly, since the link function determines the response function in a generalized 

linear model, the misspecification of the link function could be consequential on the 

designs.

4- 2 Statistical Models

We consider the case of an experimenter with a finite set S  =  {x i} f=1 of possible 

design points whose interest is to choose n, not necessarily distinct, points at which 

to observe binomial proportions, say Y . The experimenter makes rq > 0 observations 

at Xi such that ni =  n - The design problem is to choose n 1:..., nN in an optimal 

manner and with an eye on possible model misspecification. The objective then is 

to choose a probability distribution {p i}f=1, with p t =  rq/n, on the design space 

S  =  {x i } ^ 1 , in some robust and optimal manner.

The experimenter intends to fit the logistic model with the mean response

, exp (7 7)
V =  V(V) =  T ~  7~V (4>1)1  +  exp (7 7 )

for the linear predictor 77 =  z T (x) (3 with z (x) as a vector of predictors. However, the 

experimenter seeks protection against possible misspecifications in the assumed model 

form. As highlighted in the introduction, the following are the kinds of departure from 

the assumed model that the experimenter is worried about:

1. The true linear predictor is 77 =  z T (x) (3 +  /  (x) where the function /  (x) is 

some contamination function accounting for additional effects of covariates.
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2. The binomial variance, var (T^Xi) =  HizZiMLJftoi)); assumed by the logistic model 

(4.1) do not correctly reflect the variability in the anticipated data.

3. The true link function is different from the logit link function, r]i = log > 

assumed by the logistic model (4.1).

The subject of designing for logistic models with possible misspecification in the 

linear predictor has been treated in Adewale and Wiens (2005). Adewale and Wiens 

assumed that the contamination function /  (x) belongs to a contamination neigh

bourhood J7,

They noted that the first condition in J7 ensures identifiability of the linear predictor 

and the second condition ensures tha t the bias engendered by the misspecified linear 

predictor remains bounded. The average (over the design space S') mean squared 

error in predicting the mean response, jj, (r/) was adopted as loss function. This loss 

function depends on the unknown contamination function /  (x). In order to eliminate 

this dependency of the loss function on the unknown contamination function /  (x), 

they used the average of the loss function over the contamination neighbourhood T  

as the design criterion. The focus of this article is to treat the problem of designing 

for logistic models when the concern is about possible misspecification of the second 

and third kinds.
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4.2.1 O verdispersion M odel

Overdispersion is a very common phenomenon in data involving proportions but most 

of the attention it has received in the literature has been in the context of data analy

sis. Modelling overdispersion has been considered by, among others, Pierce and Sands 

(1975), Crowder (1978) and Williams (1982). However, this subject has received very 

scant attention in the regression design literature. Minkin (1993) considers overdis

persion when constructing designs for Poisson data. In order to  construct robust 

designs tha t give protection for overdispersion we assume a superior model tha t ac

commodates overdispersion as the true model. In addition, the assumed true model 

is also required to have the fitted logistic model as a special case. Here we adopt a 

model like the logistic-mixed model which accommodates overdispersion by incorpo

rating an additive random component to the linear predictor. Thus the problem of 

designing for logistic models with overdispersion is somewhat a problem of designing 

for logistic models with misspecified linear predictors. The true linear predictor has 

two parts - the fixed part representing the effects of covariates and a random part 

capturing overdispersion. Formally, the true but unknown model belongs to a class 

of alternative models defined as follows:

E (vi) =  0 and var (u*) =  1.

Thus, the true model has Yi\vi ~  binomial (n*, fi (r^)), rji = zr (x,) /30 +  4>Vi, with

% = z T (xj) /30 +  <j>Vi, with (4.2)

E  (v^ — 0 and var (vi) =  1, so that, E  (Yi\vi) — fi (77J  , var (Yi\vi) = EMvMl -Ej Yi M)
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We take the following Taylor’s expansion:

E  (!><) =  1 + V  K  (x i) P) Pvi + »" K  (x *) P) P2yi + •

=  /i (zT (xj) 0 )  +  / /  (zT (xj) 0 ) 4>Vi +  O (4>2) .

Let w (zT ( x ^  /3) =  / /  (zT (x*) /3) (which is, =  /i (zT (x*) /3) ( l — /x (zr  (x*) 0 )) )

u; ( z T ( x j )  /3 ) +  ( l  -  n ( z r  ( x j)  0 ) )  w (zT (x*) /3) 4>Vi 

1 |  - / i  ( z r  ( x j )  /3) iw ( z r  ( x j )  0 )  -  w2 ( z T (x*) /3 ) </>2v? +  O  (</>2) 

Therefore,

£  {var  (T;|nj)} =  — {w ( z T (x*) 0 ) [ l - w  ( z T (xj) /3 ) 02] } +  O (02) , and
Tii

var {E  (Tiluj)} =  w2 (z T (x*) (3) ( f  +  O (03) .

Using the identities

=  £ { £ ( * « } .

and

war (y )  =  var {E  (Yi\vi)} + E  {var (L) K )} , 

the true mean response and true variance are given by

E (Y i) = n  ( z T (xj) 0 )  + 0  ((f)2) , (4.3)

var (Yi) =  —w { z T (xi) 0 ) { l  + (ni - l ) w [ z T (y:i) 0 ( j ) 2} +O( ( f ) 2) (4.4)
Tli

4.2.2 True Link M odel

Ponce de Leon and Atkinson (1993) investigated designing optimal experiments for 

the choice of link function for a binary data model. They assumed a framework where
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interest is in the estimation of the link function as well as the model coefficients 

when the link function belongs to the same parameterized generalized link family of 

interest in this article. Thus their approach fits into the context of classical approach 

to regression design in which the experimenter takes the assumed model to be exact. 

The difference is tha t the link function is rather added as an extra-parameter to be 

estimated from the data. Biedermann, Dette and Pepelyshev (2004) introduced a 

robust approach in which the experimenter is considering a finite set of plausible 

link functions with the uncertainties in the suitability of each of them quantified 

with known probabilities. The probabilities reflect the preferences the experimenter 

attaches to each link function. The resulting robust criterion is a weighted average 

of the respective criterion corresponding to each link function. We take a different 

approach here. Given that the experimenter intends to fit the logistic model, binomial 

model with the logit link, we propose designs that protect against the possibility tha t 

the logit link is not exactly correct.

The framework for the robust design in this work is that the true but unknown 

link function as well as the fitted logit link belong to the generalized family of link 

functions

9 Ob x ) =  log 1 ' n / A , (A > 0 ) , (4.5)

parameterized by A. The true link function corresponds to  an unknown value of the 

link parameter that might be different from that which corresponds to the logistic 

model. This generalized family of links encompasses the logit and the complemen

tary log-log links as special cases. The logit link corresponds to A =  1 while the
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complementary log-log corresponds to lim ^o- We proceed by casting the problem

rather as a linear predictor misspecification problem. Adewale and Wiens (2005)

In generalized linear modelling the link function connects the systematic compo

nent (the linear predictor) of the model to the mean response via

where rj is the linear predictor representing the effects of covariates in the model on 

a linear scale. The link function determines the distribution of the mean response, 

for example if g (//, A) is the logit function, the mean response takes the logistic 

distribution function and if g (fi, A) is the complementary log-log link it takes the 

extreme value distribution. We considered the following Taylor’s expansion of (4.5) 

about the parameter value, A =  1 corresponding to the logit link that the experimenter 

contemplates fitting. That is,

Thus the link misspecification problem is again cast as a linear predictor misspecifica

tion problem. The true mean response, fiTi is given by (4.1) with the linear predictor 

given by

have investigated robust designs for logistic model with possibly misspecified linear

predictor.

77 = g{fi, A)

(4.6)

with ji given by (4.1) and

(4.7)

Vi =  zT (xi)/30 +  / (x i ,  A), (4.8)
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where the contamination function is given by

/  (x, A) =  - h  (x, A). (4.9)

Pregibon (1980) in his work on goodness of link tests for generalized linear models 

introduced this concept of casting a misspecified link function as an additive contam

ination in the linear predictor. To this approach he commented that “The fact that 

the difference in link functions appears on the right side of the link defining equation 

should not be disturbing-indeed, this corresponds to the fact that the wrong link 

function is a systematic mis-specification of the model.”

4' 3 Loss Function and Algorithm
4.3.1 D esign  Criterion

We use the normalized average mean squared error (AMSE) I  of the response pre

diction [i (fjj), with f/,: =  zT (x,) f3, as the design criterion,

In order to express (4.10), in terms of average variance of predictions and average bias 

of predictions we employed the following Theorem 1 and Corollary 1 from Adewale 

and Wiens (2005).

Theorem  4.1 (Adewale and W iens, 2005) Define

N

(4.10)
4=1

(4.12)

(4.11)
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and let Z be the N  x p matrix with rows zT (xj). Let 7  and *yT be the N  x 1

vectors with elements and pTi respectively. Let P, W  and W t  be the N  x N

tively. Finally, define b =  Zr P  (7 r — 7 ) , H n =  ZTPW Z, H n =  ZTP W r Z, and 

G„ =  ZTW r P  (nP -  I) W TZ. The asymptotic bias and asymptotic covariance ma-

respectively.

Proof: Theorem 1 of Adewale and Wiens (2005) with the expressions for the true 

mean and true variance modified according to the derivations in §4.2.1 and §4.2.2.

Corollary 4.1 (Adewale and W iens, 2005) The AM SE has the asymptotic ap

proximation I  = Ci (P; A, (j>,(3)+0 ( f 2) +  o(l), where

for f  =  ( /  (xi; A), . . . , /  (xjv; A))T where f  (x*; A) is given by (f.9).

Proof: Corollary 1 of Adewale and Wiens (2005).

The loss function (4.15) depends on the unknown model parameter vector (3, 

the overdispersion parameter f>, and the link parameter A. Our approach to dealing

diagonal matrices with diagonal elements n ^ n ,  wt and Wx,i = IF\i ( l  — Mr,i) respec-

trix of the maximum likelihood estimator 0  of the model parameter vector /3 from the

misspecified model are

bias ( 3 )  =  E ( p - f 3 0) =  H ^ b  +  o (n -1/2) , (4.13)

con (V ^  ( 3 - A , ) )  =  H ^ H ^  +  H - 'G n H - ' +  o a ) ,  (4.14)

tr  W Z H ^ i b . H n ^ W  

+(f2tr  [W ZH~1GnH^1ZTW] +  n  || W  (Z H ^ b -  f) |f
(4.15)
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with this parameter dependency requires parameter spaces 0 , <&, and A of plausible 

values. Letting =  [0 x $  x A], the design criterion is then the average of the loss 

function over the given joint parameter space fh The averaging was carried out over 

a uniformly scattered set of points obtained on using number-theoretic method or 

quasi-Monte Carlo method (Fang and Wang, 1994). Given the parameter space Q, 

we seek designs that minimize the average (over the space Q) of the loss function:

Cave ( P )  =  aver^Ci ( P ;  A, 0, /3 ), (4.16)

through the matrix P  =  diag (n i/n , ■ ■ •, n jv/n) . The minimization of (4.16) with 

respect to P  is undertaken using a modification of the simulated annealing algorithm. 

It suffices to note here tha t the averaging in (4.16) is implemented as an integral part 

of the simulated annealing process - for every new design generated the value of loss 

Ci ( P ;  A, 0 . (3) is calculated for every point (A, d>, (3) in fb The value of Cave ( P )  is 

the average of Ci ( P ;  A, <p, (3) over the points in the parameter space Q. The resulting 

designs are termed minave designs.

4.3.2 Algorithm: M odified Sim ulated A nnealing

We consider models with p regressors (z i(x ) . ..., zp(x))T where x  6 [a, b\. The design

( 1 jV
space is the set S  =  =  a +  ^ j  of equally spaced points in [a,b]. Given

the desired number of observations (n) to be taken and the number of points in 

the design space (N ), we seek designs that minimize the loss function (4.16). Our 

approach gives the experimenter the flexibility to request a symmetric design about 

the point (a + b) /2 or an asymmetric design.
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A modification, of the simulated annealing algorithm is employed to search for 

optimal designs. The simulated annealing algorithm seeks to assign integers >  0

to each of the design points Xi in such a way tha t £ ave is a minimum. Simulated

annealing is a direct search optimization algorithm which has been quite successful 

at finding the global extremum of a function, possibly non-smooth, that has many 

local extrema. The unmodified version of the algorithm consists of the following three 

steps:

1. A specification of an initial design, say Po,

2. the second step is the random choice of a new design, say P new, from the opti

mization space, and lastly,

3. a prescription of the basis of acceptance or rejection of the new design: accept 

new design with probability 7r, defined as

1 if A Cave <  0,

exp ( - A C a v e / T )  if AC ave > 0,

where A C ave =  C ave (PneuO — C,aVe (Po) and T  is a tuning parameter. In our 

implementation we modify step 3 as discussed below.

If n  < N , then the initial design is chosen to be the design assigning one obser

vation to each of n  randomly chosen points. If n > N , we randomly distribute n 

observations to all N  points. If interest is in symmetric designs we randomly assign 

one observation to each of |_fj randomly chosen points in [a, (a +  b) /2) when n < N  

and randomly distribute |_f J observations to the [y j points in [a, (a +  b) /2) when
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n > N . If n is odd then N  has to be odd for symmetry, in this case we assign 

the extra observation to the point {^ }. A symmetric initial design is obtained by 

assigning the number of observations for locations in [a, (a + b) /2) to their corre

sponding mirror image about the point {fyr}- This completes the first step of the 

simulated annealing algorithm.

To generate a new design, we use the perturbation scheme presented by Fang 

and Wiens (2000). Define v  to be the N  x 1 current allocation vector. For sym

metric designs redefine v  to be the [N/2] x 1 vector consisting of the initial segment 

(ni, ...,ri[N/2 ]) of the current allocation vector. Define

J+ =  {i\vi > 0} , J 0 =  {i\vi = 0}

with cardinalities j + > 1 and j 0. If j+ > 2, generate a Bernoulli random variable 

with success probability jo / (jo +  j+)> choose two indices ( t i , t2) from J +, at random 

without replacement, choose an index t0 from J 0, at random and modify the selected 

components of v  as follows:

Vt0 =  Vt0 + B, vtl = v t l - l  and vt2 = v t2 + l  -  B. (4.17)

If j+  =  1, choose t0 from J 0 at random, let t\ be the index in the singleton set J+, 

and then replace (4.17) by

Vto = Vto + 1, vtl =  vtl -  1.

This completes the second step for general designs. For symmetric designs, we com

plete the modify the scheme as follows. If N  is even, then let n =  (n i , . . . ,% )  =  

(r>i,..., vn/2, vn/2, v\) . If N  is odd, then generate a uniform random variable u.
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If u < l /N ,  with probability 1/2 increase n[jv/2]+i by 2 then randomly and sym

metrically reduce the remaining n* by 2; with probability 1/2 reduce n[;V/2] f i by 2 

then randomly and symmetrically increase the remaining n,. This step is omitted if 

n[N/2]+i < 2. We then construct n  as described above, with the inclusion of the new 

frequency n[N/2}+i-

The third step is modified as follows. Denote the maximum number of iterations 

by maxit and current iteration by iter. Accept the new design with probability tt, 

defined as

1 if A C ave < 0,

u n ifo rm  (.5, .9) if ACave > 0 and iter < maxit/16

71 =  u n ifo rm  (.25, .5) if A £ ave > 0 and maxit/16 < iter < maxit/8 ■ 

u n ifo rm  (0, .1) if A Cave > 0 and m axit/8  < iter < maxit*3/4 

0 if A £ ave > 0 and maxit*3 /f  < iter < maxit

Thus a favourable new design (A£ ave <  0) is accepted with certainty and an un

favourable new design is accepted according to a separate Bernoulli experiment with 

success probability chosen such tha t initially such an unfavourable design is accepted 

with probability satisfying the inequality .5 < 7r < .9. This follows a suggestion from 

Bohachevsky, Johnson and Stein (1986), that the tuning parameter T  in step 3 of 

the original simulated annealing be chosen such that .5 < exp (—A Cave/T )  < .9. The 

probability of acceptance of a detrimental new design is progressively decreased to 

ensure that the process settles at a global minimum. In an implementation of the 

original simulated annealing algorithm Fang and Wiens (2000) decrease T  by a fac

tor of .9 after each 100 iterations and Adewale and Wiens (2006) decrease T  by a
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factor of .95 after every 20th iteration in some other implementation. In the imple

mentations we considered in section §4.4 and §4.5, we found th a t various choice of 

parameter space f1 requires different scheme for decreasing T. We thus adopted this 

fairly generic scheme which still imitates the characteristics of the original algorithm 

but obviates the demand to seek a perfect T  for different parameter spaces 12.

4.4 Examples

First, we suppose an experimenter has confidence in the adequacy of the logistic 

model and the specification of the linear predictor for fixed effects but wants protec

tion against overdispersion. The design space is taken to be equally spaced points

f 2 r -n  1 JV=41=  — 1 +  p j  in [—1,1] and the number of observations to be taken is

n = 200. We take the range of the model parameters to be 0  — [.5,1.5] x [2.5,3.5]

and construct minave designs for various range of the overdispersion parameter, <f>.

The design for the overdispersion parameter space [0, .005] place 46, 50, 66 and 38 of

200 observations at the points —.80, —.75, .10 and .15 respectively. This and other

designs corresponding to other ranges of the overdispersion parameter are presented

in Figure 18. The range, 0  =  [.5,1.5] x [2.5,3.5] of the model parameters was fixed

so as to study the effect of increasing width of the overdispersion parameter space on

the resulting designs. The support of the designs broadens over the design space with

increasing overdispersion. Similar effects were observed when we considered other

model parameter values. In general, the designs protecting against overdispersion are

similar to those protecting against systematic misspecification of fixed effects. See

Adewale and Wiens (2005). We observed a gradual spread of the design points such
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that the points that are otherwise the design points for the non-robust design which 

assumes no misspecification are the foci of the spread of the robust designs.
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Figure 18: Minave designs when (a) $  =  [0, .005], (b) <f> — [0, .05], (c) $  =  [0, .25] 
and (d) $  =  [0, .5] with 0  =  [.5,1.5] x [2.5,3.5] and A =  {1}.

To evaluate these designs we define efficiency and payoff as,

TTirr* • /  averQCl (Pnon-robust'i A =  1, (j) =  0, /3) \  inno/
Efficiency — ^ aveT̂ cI (Prohust; A — 1 , 0  — 0, >3) )  * 10° %'

Robustness payoff = ( l -  aver«c ‘ * ’f ' f M  x 100%
\  a v e r ^ L i  ( P non-robust', A, (p, p )  /  

where P non-ro b u st  is the design constructed on the assumption tha t the fitted model 

is correct ( 0  =  0, A =  1) and P robust is the robust design constructed by minimizing

(4.16). The cost of the robustness of our designs is the lost efficiency. The payoff

is the percentage reduction in loss due to the use of a robust design as opposed 

to a non-robust design which assumes the fitted model to be exactly correct. The 

efficiencies for the four designs are 100%, 98.5%, 98.3% and 96.9% while the payoffs 

are 0%, 0.21%, 11.5% and 35.3%, respectively. Thus the cost of robustness increases 

with the increasing width of the overdispersion parameter further away from zero 

which corresponds to no overdispersion. However, robustness is inexpensive here, the
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highest cost being 3.1% at the widest range $  =  [0, .5] and a corresponding payoff of 

35.3%.

Now we fix the overdispersion parameter 0 at zero and seek designs for four 

different range A of link parameter values with the range of model parameters kept 

at 0  — [.5,1.5] x [2.5,3.5] as above. For all ranges of the link parameter considered 

the number of support points is two or three. These designs are presented in Figure 

19. The robust designs protecting against misspecification are not characterized by a
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Figure 19: Minave designs when (a) A =  [.75,1], (b) A =  [.25,1], (c) A =  [0,1], and 
(d) A =  [0,2] with 0  =  [.5,1.5] x [2.5,3.5] and $  =  {0}.

spreading of the support points over the design space as is the case of robust designs 

protecting against overdispersion. Rather these designs have fewer support points. 

The robustness is provided by redistribution and shifting of the location of these few 

design sites. The efficiencies of these robust designs are 99.4%, 94.9%, 95.9% and 

97.6% for the range of link parameters [.75,1], [.25,1], [0,1], and [0, 2] with payoffs
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of .48%, 4.3%, 3.97% and 5.47%.

4-5 Application: Calandra Granaria Data

We return to Busvine’s data on the mortality of grain beetle ( Calandra Granaria) 

presented in Table 8. Using iterated reweighted least squares as discussed in Williams 

(1982), we fitted the overdispersion model (4.2). The parameter estimates are 4> = 

0.946, /30 =  —3.835 and j3± =  15.754. Using the range 0  =  [—2, —4] x [8,16] of para

meter values, $  =  {0} and A =  {1} we construct the design minimizing (4.16). This 

is the design which assumes tha t there is no overdispersion nor link misspecification 

but still offers some robustness by incorporating a range of model parameter values. 

In Table 10 we labelled this the Regular Optimal Design. The model-robust design 

tha t protects against overdispersion as well as link misspecification is constructed by 

taking 0  =  [—2, —4] x [8,16], 4> =  [.75,1] and A =  [0,1]. The regular optimal design 

is a 4-point design with support at dose levels .033, .167, .362 and .391. The model- 

robust design has support at all 10 dose levels in the design space. For comparison, 

we present two other designs in Table 10. The original design in the data for which 

there is no rationale given and the design with equal number of observation at all dose 

levels which we labeled “naive” design, being the design tha t a naive experimenter 

would consider. The results indicated that both the original design and the “naive” 

design are preferable to the regular optimal design since they have good robustness 

payoff with small efficiency loss. The robustness payoff is 63.7%, 63.9% and 66.8% 

for the original design, the “naive” design and the model-robust design, respectively. 

The model-robust design is superior of all four designs, it has the highest payoff at
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Table 10: Comparing Designs for the Toxicity of Ethylene Oxide on Calandra Gra- 
narifc___________________________________________________________________

Dose Level Number of observations (Total: 290)
Original “Naive” Model-Robust Regular Optimal 
Design Design Design Design

.033 24 29 62 5

.167 31 29 22 132

.199 30 29 19 —

.225 31 29 18 —

.260 27 29 18 —

.314 26 29 23 —

.322 30 29 24 —

.362 31 29 30 65

.391 30 29 37 88

.394 30 29 37 —

Lost Efficiency 6.5% 
Robustness Payoff 63.7%

6.9%
63.9%

4.8%
66.8%

0%
0%

the least efficiency loss.

4 - 6  Concluding Remarks

The design criteria proposed in this work provide viable options to classical optimal 

design when there is the possibility of model misspecification. The numerical exam

ples presented show that our designs offer some robustness against misspecification 

of the link function as well as overdispersion in binomial models. Adewale and Wiens 

(2005) reported increasing numbers of distinct observation sites with increasing model 

uncertainty in the linear predictor. They described the design that protects against 

uncertainty in the assumed form of the linear predictor as taking observations in 

clusters around the sites that would have been the design points for a classical de

sign. Our findings in this work shows that the same is true for designs protecting

111

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



against overdispersion. Generally, we found tha t the usual recommendation from 

classically optimal design would be inadequate in the presence of link misspecifica

tion and overdispersion. Our approach recommends a  well spread out design over 

the design space would protect against over dispersion. However, there is a marked 

difference between the characteristics of designs protecting against overdispersion and 

those protecting against misspecification of link functions despite the fact that the 

same approach has been used for their construction. The recommendation from our 

procedure for robust design against misspecified link is a relocation of the few distinct 

design points from the design assuming correct model specification and possibly some 

redistribution of the number of observations at each of these sites.

While there have been many proposals for modelling extra-binomial variation, the 

approach we adopted is very attractive in tha t it accommodates both the random 

variation and the fixed effects on the same logistic scale - somewhat akin to a gener

alized linear mixed modelling approach. Another viable alternative tha t we consider 

is to specify the distribution of the true model as

Yi\vi ~  —binomial (nh /i ( ^ ) ) , r]i =  z r  (xj) /30 +  /  (x*)

E  (vi) = (i fa )  and var (^ ) =  02/i fo ) (1 -  /i f o ) ) .

The mean response from this specification is exactly the approximate true mean 

response (4.3) used in this work but the variance is

var (Yi) =  — w (zT (x*) f3) { l +  (n* -  1) 4>2}
Tli

which is slightly different from (4.4) given by the specification used in this work. 

Another way to obtain the same true mean response and variance prescribed by this
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alternative specification is to use a correlated binomial model:

Yi = — y 'Y i j ,  with
n ' U

Yij ~  Bernoulli and

cov^j.Yifc) =  0 / i ( 7 7 i ) ( l - / i ( » 7 i ) ) , J ^ fc-

An advantage that comes with the correlated binomial model is tha t it can accom

modate underdispersion by allowing negative correlation between the Bernoulli trials. 

Under dispersion, however, is a rare phenomenon in practice compared to overdisper

sion. Designs protecting against this form of alternative specification when 0 > 0 

behave the same as our specification - a spread of the design points of the design 

space. Interestingly, when <f> < 0 under this specification, the resulting optimal design 

is similar to the classical optimal design recommendation - choosing a few distinct 

points to observe the response.

We note that the payoff for the robust design protecting against link misspecifi

cation may not always be impressive, as in the case of the example presented in this 

article. In the context of data analysis where this approach of treating a misspecified 

link as a systematic misspecification of the linear predictor was first proposed, Pregi- 

bon (1980) indicates “that the method is likely to be most useful for determining if a 

reasonable fit can be improved, rather than for the somewhat more optimistic goal of 

correcting a hopeless situation.” Similarly, in a design context, the approach is meant 

to afford the experimenter some robustness when there is slight departure from the 

logit link. Further improvements might be obtained by using a second order Taylor’s
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expansion

h ( \ \  dgMx-,A ) = Tx (A — l ) 2 +  o ([A -  l]2) ,
A = 1

instead of (4.7).

While we have adopted the averaging of the loss function over uniformly scattered 

points from the parameter space in dealing with dependency of design criterion on 

unknown parameter, other possibilities remain. A proper Bayesian paradigm can be 

used which requires the specification of prior distribution on the parameters rather 

than the specification of a range of parameter values. It is our opinion that it might be 

easier to elicit information about plausible values of parameters from the experimenter 

than information leading to prior distribution assumptions. Another approach when 

an initial range of parameter values are available is the minimax approach. That 

is, an approach that seeks the design corresponding to the least loss for the worst 

possible parameter values in the specified range. Our experience is tha t the designs 

we presented here behave very similar to the minimax design (see Adewale and Wiens, 

2006).
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CHAPTER V

CONCLUSIONS AND APPLICATIONS TO

POISSON DATA

5.1 Model-dependency of Optimal Designs

This chapter discusses the results obtained for logistic models in Chapters 3 and 4 in 

the broader context of generalized linear models. For illustration of how the results 

apply to generalized linear models we again put the results in the framework of 

Poisson models. An Ames Salmonella reverse mutagenicity assay is used to illustrate 

various designs using the theories proposed in the previous chapters. The Poisson 

model is used for modelling responses involving counts. Designing for Poisson models 

has received only scant attention compare to the problem of designing for logistic 

regression models. Minkin (1993) and Behnken and W atts (1972) are among the few 

authors tha t have investigated designs for Poisson models.

We consider the data set compiled by Margolin et al. (1981) from an Ames 

Salmonella reverse mutagenicity assay. The number of revertant colonies was observed 

at six dose levels of quinoline. Three replicate plates were used at each dose level. 

The data are presented in Table 11.
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Table 11: Number of revertant colonies of salmonella (Y).

Obs.
Y

* II O 10 33 100 333 1000
1 15 16 16 27 33 20
2 21 18 26 41 38 27
3 29 21 33 60 41 42

*Dose of quinoline (fimg/plate)

CO ~

Model i 
Model IIo _

0)W
cO
Q_
CO

8.

0 200 400 600 800 1000

dose

Figure 20: Number of revertant colonies of salmonella against dose level with Model 
I  and I I  superimposed
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A fit of the Poisson models with mean response 

Model I  : (xi) = exp {/30 +

Model I I  : /i2 {%i) =  exp {/30 +  /^Xj +  /32 log (x* +  10)}

produce the following estimates: ;30 =  3.322, = 0.0002 (deviance =  75.81, df =  16)

and P0 = 2.173, =  —0.001, j32 — 0.320 (deviance=43.72, df =  15), respectively.

The deviance and corresponding degrees of freedom for each of the two fitted models 

indicate lack of fit. A plot of the data with the fitted models superimposed is presented 

in Figure 20. Figure 20 shows tha t the model with the term log (xi +  10) in the 

linear predictor is an improved fit over the first model. However, the data presented 

variability tha t exceeds that prescribed by the Poisson distribution. There are many 

proposals in the literature for modelling overdispersed data. In order to accommodate 

overdispersion in Margolin’s data, Lawless (1987) fitted the negative binomial model 

Yj ~  N B  (//,, k) with mean response

Model I I I : /r (x;) =  exp {/30 +  ( 3 ^  + log (x, +  10)}

and variance /i (.x,) +  Zc_V 2 (x,;). The estimates obtained using the weighted least 

squares - method of moments are j30 = 2.203, = —0.001, $ 2 = 0.311. A like

lihood ratio test rejects the hypothesis H  : Ar1 =  0 and thus provides evidence of 

overdispersion in the data.

Consider an experimenter who intends to design an experiment to observe the 

number of revertant colonies of salmonella. For the sake of illustration, suppose 

subject m atter knowledge restricts plausible dose levels to the six distinct dose levels
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Table 12: Optimal Designs Minimizing Average Variance of Predictions.
Dose 0 10 33 100 333 1000

Number of Observations
Model I 12 -  -  -  -  6
Model II 5 -  -  4 4 5
Model III 5 -  -  4 5 4

presented in Table 11 and that the experimenter knows the parameters corresponding 

to models I, I I  and I I I .  The designs presented in Table 12 are the designs minimizing 

the average variance of predictions over the six dose levels for each model. The design 

corresponding to Model I put two-third of the total observations at the control (x =  0) 

and the other one-third at the highest possible dose level (x =  1000). There is little 

difference between the designs corresponding to Model II and Model III. We note 

tha t each of these designs has been constructed with the salient assumption tha t the 

respective models are correct and that the experimenter has knowledge of the true 

parameters. In practice, there is always uncertainty or some form of misspecification 

in the assumed model. Thus the classical optimal designs taking the assumed model to 

be exactly correct could be inadequate since they do not protect against the possibility 

of alternative models. Simply put, the “optimal” design depends strongly on the 

assumed model.

5.2 Applications in Poisson Models
5.2.1 Poisson M odels to  be F itted

Important applications of designs for Poisson regression models exist in toxicity stud

ies, studies on the growth of algae over a time period in liquid samples and studies 

on penetration of materials by particles from a radioactive source. Minkin (1993)
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investigated design for Poisson regression models when the response is the number of 

colonies formed over different concentrations of an anticancer drug.

Suppose the experimental considers fitting a Poisson model with mean count

E  (F,) =  var (Fj) =  /q =  eVi, with ^  =  z T (x;) /3, (5.1)

where z (x^) =  ( l , X j ) T  is the vector of regressors. In a dose-response study, for 

example, Xi would denote a dose level. The experimenter needs to choose the dose 

levels at which to observe the response from a set of dose levels S  = and the

number of observations to be taken at each dose level. We assume that the set S  is 

finite. Given the total number of observations n  desired, the classical design problem 

is then to choose the number of observations n \ , ..., njv in some optimal manner with 

respect to the model (5.1).

Knowing that in practice the model (5.1) is at best an approximation to the true 

unknown model, in what follows we consider three forms of misspecifications and 

construct robust designs that protect against these forms of misspecification.

5.2.2 Departures from th e A ssum ptions and D esign  Criteria for P rotec
tion  A gainst Departures

Model misspecifications have implications for both the asymptotic bias and asymp

totic covariance matrix of the model parameter estimates. In the spirit of the pio

neering work of Box and Draper (1959) on model-robust designs, we employ the mean 

squared error of predictions averaged over the design space as our design criterion. We 

use the normalized average mean squared error (AMSE) I  of the response prediction

124

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



fj, (f/t), with rp =  z T (xj) 3 , as the design criterion,

jV  r

Z=1 *-
(5.2)

5.2.2.1 Linear Predictor Misspecification in Poisson Models

Now, suppose the true model has the mean response

E t  (hi) =  pTti = ezT(xi)^+^(x<),

with z  ( x j )  =  ( l , X j ) T  and tha t /  belongs to a contamination neighbourhood T .

T  = { ^ z f  ^ = 0 ’ ^ E ^ 2 (Xi) - r2) withr2 =  0 (n  x) }  ■ (5-3)
V. i = 1 i = 1 )

Thus the model (5.1) has a misspecified linear predictor. In Chapter 2 we show 

that the asymptotic mean squared error depends on the unknown contamination 

/ .  The dependency of the design criterion on unknown contamination was resolved 

by averaging the loss over the contamination neighbourhood (5.3). The averaging is 

carried out using a procedure based on the singular value decomposition of the design 

m atrix Z (see also Chapter 1 and Fang and Wiens, 2000). The average loss over the 

misspecification neighbourhood T  is given by

£ l , a v e ( P , p )  =  J j t r (UrPWU) x(u rw 2u)

tr  [W (R — Ijv) (Rr - I N ) W] ,N  — p +  2
(5.4)

where p = n r 2, U is obtained from the singular value decomposition of the design 

matrix Z =  V NxpA pxpV ^xp and R NxN = U (UTPW U)_1 UTPW.
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Thus for any given value of the misspecification parameter, p, designs protect

ing against linear predictor misspecification are obtained by choosing the matrix of 

allocations P  such tha t (5.4) is minimized.

5.2.2.2 Overdispersion in Poisson Models

Minkin (1993) consider overdispersion when constructing design for Poisson data. He 

accommodates overdispersion using a multiplicative random effect. That is, by taking 

the true model as Y*\v ~  Poisson(r'/y j ,  where the random variable v has mean 1 and 

variance qi2. Thus the unconditional distribution of Yi has the mean response is /q 

and variance /q +  d2p^. In this work we rather accommodate overdispersion by an 

additive random contamination to the linear predictor such that the true model has 

the conditional distribution Yi\v ~  Poisson(/ir i  =  Pk) with rp =  z T (x,,) (3+d>v where 

v is a random variable with mean 0 and variance 1. Thus, the true model has mean

E  (Yi) =  pT i ~  Pi =  ezT(^)/3

and variance

varT (Yi) «  P i +

The resulting mean response is therefore approximately equal to the mean response 

and variance of the multiplicative random effect approach. This approach was adopted 

just to keep misspecification to the linear predictor and thus unify our results for all 

kinds of misspecification considered. Similar approach is used to tend to overdis

persion when designing for binomial models with overdispersion in Chapter 4. The
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average asymptotic mean squared error of predictions, which is the same as the aver

age variance of predictions here, is given by

C, (P) =  i  { tr  [ w Z H y fc .H i'Z ’ w ] }  (5.5)

For the model with E  (Yi) — \i,Tl rs /q and varr (hi) ~  /q +  </>2p f , we have wr,i =  

Wi + 4>2u)i so tha t (5.5) simplifies to

(P, fi) =  1  { tr  [W ZH ”1Zt W ] +  fiHr [ W Z H ^ G ^ ^ W ]  } , (5.6)

where Gn = ZTW PW Z. Given a range $ of plausible values for the overdispersion 

parameter 0, our design criterion is the average of Cj (P, (j)) over <f>, that is,

Ci,ave (P) =  aver^Ci (P, 0 ). (5.7)

5.2.2.3 Link Misspecification in Poisson Models

In designing for a Poisson model with possibly misspecified link function we employ 

the same framework as in Chapter 4 where the true link function and the fitted 

canonical link belong to a generalized family of link functions. Here consider the 

parameterized family of link functions defined by

j VX, A ^  0 
9 (/b A) =  < , (5.8)

log/i, A =  0

where A is the link parameter. The log link corresponds to A =  0. The strategy is 

to linearize this generalized link function by expanding it in a Taylor series about a 

fixed value A =  0 and taking only the linear term. We then approximate the true 

linear predictor by

9i =  zr (xi)/30 +  / ( x i,A), (5.9)
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with the contamination function /  ( x ,  A) given by

/  (x >A) =  -
dg (x, A)

dX
A =  —Alog/r. (5.10)

A=0

This approach follows the work of Pregibon (1980) on goodness of link tests for 

generalized linear models.

Our criterion for designs protecting against link misspecification is given by

Cl  (P;A) =  J j { tr
r-lryT^ +  n | |W ( Z H ; 1b - f ) | | 2} (5.11)

for f  =  (—Alog/r^ ..., — A log fiN) (see Corollary 3.1). Given a range A of plausible 

values of the link parameter A we seek designs that minimize the average of £ /  (P; A) 

over A, tha t is,

£ i ,a v e  (P) =  averACT (P; A). (5.12)

5.2.3 Sum m ary o f Im plications o f M odel M isspecifications

The maximum likelihood estimates of the model parameters are no longer asymptoti

cally unbiased when there is model misspecification. In the same vein, the asymptotic 

covariance matrix of the maximum likelihood estimates of the model parameters is 

no longer equal to the inverse of the Fisher’s information matrix. This position is 

congruent with the work of White, H. (1982) and Fahrmeir, L. (1990) on maximum 

likelihood estimation of misspecified models.

The approximations for the mean response and variance of the true model has 

implications for the terms involved in the components of the average mean squared 

error loss function (5.2). When there is linear predictor misspecification (misspecifica

tion of fixed effects), the true mean response depends on the contamination function
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/  (•) through the linear predictor. Since the variance of the response is a function of 

the mean in generalized linear models, the covariance matrix of the maximum like

lihood estimates of model parameters also depends on the unknown contamination 

function /  (•) through the mean. When the true model is an overdispersed model 

(of the form assumed in this dissertation), the true mean response is approximately 

the same as the fitted mean response. The maximum likelihood estimates of model 

parameters remains asymptotically unbiased for small value of the overdispersion pa

rameter. Asymptotically, the overdispersion will only affect the covariance matrix of 

the maximum likelihood estimates of model parameters. For the case of misspecified 

link function, the linearization of the generalized family of links has the implication 

that the linear predictor is contaminated with a function which is the derivative of 

the true link function evaluated at the link parameter value for the canonical link 

function. Thus the true mean response (and the variance function) depends on this 

contamination function.

Therefore the misspecification of the fixed effects and the link function affects the 

asymptotic bias and covariance matrix of the maximum likelihood estimates of model 

parameters since both kinds of misspecifications are invariably considered as system

atic misspecification of the linear predictor via the contamination function /  (•). The 

difference between these two forms of misspecifications, however, is that the contami

nation function emanating from fixed effects misspecification is an unknown member 

of the contamination neighbourhood T  defined by (5.3) while the contamination func

tion due to link misspecification is a known function of the fitted mean response. It 

is conceptually reasonable to assume that the problem of link misspecification and
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fixed effect misspecification are mutually exclusive. That is, the experimenter should 

seek protection against link misspecification only if there is assurance that the linear 

combination of regressors (the fixed effects) have been adequately taken care of.

5.3 Computational Issues

As in the general problem of design for nonlinear models, the design criteria in this 

dissertation also depend on unknown model parameters. In dealing with the parame

ter dependencies we have employed approaches such as assuming best guess values 

(see Chapter 3), assuming a prior distribution on the parameter and then optimize an 

expectation (with respect to the assumed prior distribution) of the design criterion 

(see Chapter 3) and assuming a range of plausible parameter values and then opti

mizing an average value of the criterion over the assumed range (see Chapter 4). The 

evaluation of expectation (when there is prior distribution of parameter) and averag

ing (when there is a range of plausible parameter values) is carried out numerically 

using quasi-Monte Carlo procedures (see Fang and Wang, 1994). The quasi-Monte 

Carlo method (or Number-Theoretic method) is based on the notion of choosing a 

set of points which are uniformly scattered in the s-dimensional unit cube Cs. It 

should be noted that “uniformly scattered” set is not in the usual statistical sense of 

uniformly distributed points, rather it is in the sense that for any neighbourhood V q 

of the parameter range Q the discrepancy defined by

# { % }  vo l(V n)discrepancy = sup
VqCQ, #  {11} vol (fl)

is small, where #{•}  denotes the cardinality of {■} and vol (•) denotes its volume. 

There are many proposals in the number-theoretic method literature for generating
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these uniformly scattered set of points over various domains. See Fang and Wang 

(1994) for relevant theory and discussion on the applications of quasi-Monte Carlo 

method in statistics. The main attraction for their use in this work is that they over

come the inefficiency of the Monte Carlo method when the number of random sample 

being taken is small. Also, quasi-Monte Carlo method is somewhat deterministic 

(nonrandom) and thus guarantees reproducibility of designs even when the sample 

size of uniformly scattered set is small.

In addition to  the dependency of the design criteria on unknown model parameters, 

the criteria developed in this dissertation also requires the specification of the design 

parameters. Designing for misspecified linear predictor using the minave approach 

developed in this dissertation requires the specification of the parameter p. The 

averaging over the contamination neighbourhood is handled analytically through a 

characterization of the neighbourhood which cast the average loss as an expected 

value of the loss function with respect to the uniform measure on a unit sphere 

and its interior. See chapter 3 for the details of this development. On the other 

hand, designing for generalized linear models with overdispersion and possible link 

misspecification using the minave approach requires the specification of a range of 

plausible parameter values. In this case, the averaging is done using the quasi-Monte 

Carlo method described earlier. It should be recalled that the design parameters are 

measures of the experimenter’s belief on the departure of the true but unknown model 

from the model he intends to fit. Some guides for choosing these design parameters 

are presented in §5.5.
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The minimization of the losses (5.4), (5.7) and (5.12) are nonlinear integer opti

mization problems. In this dissertation we have employed the simulated annealing 

algorithm for the resulting optimization problems. The simulated annealing algorithm 

had been used in optimal design problems by, among others, Haines (1987), Meyer 

and Nachtsheim (1988) and Fang and Wiens (2000). Even though the implementa

tion of the algorithm varies from author to author and application to application, the 

general principle remains three simple steps: (i) specify an initial design, (ii) develop 

a basis of generation of new design by a small perturbation of the current design, 

and (iii) specify a probabilistic criterion to determine if a new design is accepted or 

rejected. The details of our implementation is described in Chapters 2, 3 and 4. All 

examples in this dissertation work are coded in matlab.

5.4 Application to Ames Salmonella Assay

The design in the Ames Salmonella assay presented in Table 11 has six dose levels 

and 3 replicates observations at each dose level. There is no rationale given for this 

design. In this section we consider designing for this assay when the interest is to take 

a total of 18 observations and the design space consists of 50 equally spaced points 

between 0 and 1000 fimg (including the points 0 and 1000).

Suppose the experimenter intends to fit the Poisson model with mean response

fi = exp (rii) , (5.13)

with the linear predictor

Vi =  (30  +  +  P2 log {xi + 10) (5.14)
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and that he desires to have some protection against possible misspecification of this 

linear predictor. The ranges of plausible parameter values are taken to be [2.0,3.5], 

[—.002, .001], and [.30, .35] for /%, /3x and /32, respectively. Note th a t these ranges of 

parameter values cover the estimates from the fit of Model II and Model III using the 

data in Table 11. The designs presented in Table 13 minimizes the average of (5.4) 

over uniformly scattered set of points from 0  =  [2.0,3.5] x [—.002, .001] x [.30, .35] 

for given values of the design parameter p. The design parameter p = 0 corresponds 

to the assumption tha t the model defined by (5.13) and (5.14) is exactly correct. We 

evaluate our designs using their efficiencies. The efficiency of a design represented by 

the allocation matrix P  is given by:

where the allocation matrix P n o n - r o b u s t  corresponds to the design constructed assum

ing that there is no misspecification which the experimenter hopes to protect against. 

The efficiency of the designs for p =  .05, .25 and .5 relative to p — 0 are 98%, 95.8%, 

and 88.4%, respectively.

As with logistic models with misspecified linear predictors, the robust designs for 

Poisson models with misspecified linear predictor are designs with clusters of support 

points around the support points of a design that assumes the fitted model is exactly 

correct.

Now suppose the experimenter still intends to fit the Poisson model with the 

mean response (5.13) and the linear predictor (5.14) but seeks protection against 

overdispersion. The designs protecting against overdispersion for various ranges $
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Table 13: Designs for a Poisson Model with Misspecified Linear Predictor.
p Support points (Number of observations) Loss Efficiency
0 0 (2), 306.12 (4), 326.53 (5), 1000 (7) 219.15 100

.005 0 (2), 224.49 (1), 244.9 (1), 265.31 (1), 285.71 (1) 
306.12 (1), 326.53 (1), 346.94 (1), 367.35 (1) 
387.76 (1), 918.37 (1), 938.78 (1), 959.18 (1) 
979.59 (2), 1000 (2)

335.42 98

.05 0 (2), 204.08 (1), 244.9 (1), 265.31 (1), 285.71 (1) 
306.12 (1), 326.53 (1), 346.94 (1), 367.35 (1) 
387.76 (1), 877.55 (1), 897.96 (1), 918.37 (1), 
938.78 (1), 959.18 (1), 979.59 (1), 1000 (1)

1314.69 95.9

.5 0 (1), 224.49 (1), 265.31 (1), 285.71 (1) 
306.12 (1), 326.53 (1), 346.94 (1), 367.35 (1) 
387.76 (1), 408.16 (1), 857.14 (1), 877.55 (1), 
897.96 (1), 918.37 (1), 938.78 (1), 959.18 (1), 
979.59 (1), 1000 (1)

11035.78 88.4

These designs are computed with the range © =  [2.0,3.5] x [-.002, .001] x [.30, .35]
assumed for the model parameters /30, j31 and 6 2-

of the overdispersion parameter are presented in Table 14. These designs have few 

distinct support points and the number of support points is not increasing with the 

increasing departure of the overdispersion parameter from the value corresponding to 

no overdispersion. The corresponding designs protecting against link misspecification 

are presented in Table 15 for various ranges A of the link parameter.

The lost efficiency increases as the design parameter moves away from the value 

which implies that the assumed model is exactly correct.

5.5 Choosing Design Parameters using Efficiency

The design parameter p in the criterion (5.4) is a measure of the extent of linear pre

dictor misspecification. In the Ames Salmonella assay application of §5.4, we present
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Table 14: Designs for a Poisson Model with Protection Against Overdispersion.
$  Support points (Number of observations) Loss Efficiency
{0} 0 (2), 306.12 (4), 326.53 (5), 1000 (7) 223.63 100

[.05, .1] 0 (2), 285.71 (1), 306.12 (7), 1000 (8) 462.55 98.0

[.25, .28] 0 (1), 285.71 (8), 1000 (9) 2939.41 88.1

[.5,1.0] 0 (1), 285.71 (8), 1000 (9) 23137.45 88
These designs are computed with the range © =  [2.0,3.5] x [—. 
x [.30, .35] assumed for the model parameters /30, B\ and (32-

,002, .001]

Table 15: Designs for a Poisson Model with Misspecified Link Function.
A Support points (Number of observations) Loss Efficiency
{0} 0 (2), 306.12 (4), 326.53 (5), 1000 (7) 223.63 100

[.5,.15] 0 (2), 244.9 (5), 265.31 (3), 530.61 (1), 
734.69 (1), 1000 (6)

18351.1 97.7

[.25, .5] (7), 20.41 (9), 1000 (2) 725986.03 10.6

[.5,1.0] 0 (8), 20.41 (8), 1000 (2) 6367114.79 10.5
These designs are computed with the range 0  =  [2.0, 3.5] x [—.002, .001] 
x [.30, .35] assumed for the model parameters f30 , By and B 2 ■
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designs corresponding to various values of p. In practice this parameter would be 

assigned a value th a t represent the belief of the experimenter about the departure of 

the true linear predictor from that which the experimenter intends to fit. In the same 

vein the parameters <fi and A in (5.6) and (5.11), respectively, are measures of the

extent of the over dispersion and link misspecification. In the examples we assumed

Efficiency Plot 
100 . . . 1---------

0 20 40 60 80 100
P

Figure 21: Efficiency of robust designs for a Poisson model with misspecified linear 
predictor over a grid of values of p in the interval [0,100]

the experimenter knows the value of p in the case of designing for misspecified linear 

predictor and a range of plausible values for the overdispersion and link parameters. 

This knowledge can be based on prior data or just similar experiments reported in the

Efficiency Plot

100

>(Jc0)'o
LU

40 2 6 8 10

*

Figure 22: Efficiency of robust designs Poisson model with overdispersion
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Efficiency Plot

100

UJ

51

Figure 23: Efficiency of robust designs for a Poisson model with misspecified link 
function over a grid of values of A in the interval [0,1]

literature. Here we propose an alternative approach based on efficiency to choosing 

these design parameters (linear predictor misspecification parameter, p, overdisper

sion parameter, p and link misspecification parameter, A).

Given the finite design space S , the number of observations desired, the contem

plated model (to be fitted) and the range of model parameter values, the experimenter 

employs the criterion corresponding to the kind of departure he needs protection 

against to construct designs over a grid of values of the corresponding design para

meter (p, <p, or A). The experimenter can then choose a robust design corresponding 

to the level of efficiency desired while noting that robustness is at the expense of 

efficiency. The design corresponding to the assumption that the contemplated model 

is exactly correct is 100% efficient. He then construct designs for various values of 

relevant design parameter and evaluate the efficiencies of the designs corresponding 

to these design parameter values. The recommended value(s) of the design parame

ter is that which corresponds to the level of efficiency the experimenter is willing to 

sacrifice for robustness.
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As an illustrative example, using the relevant design criterion under the setting of 

the Ames Salmonella assay of §5.4 we plot the efficiencies of the designs corresponding 

to grids of design parameters p (Figure 21), 4> (Figure 22), and A (Figure 23). For all 

the three cases the efficiency plot tails-off after some value of the design parameter. 

This means that the designs stay constant after some value of the design parameter. 

The least efficiency from the robust design for misspecified linear predictor is 87.6%, 

88.1% for the robust design for overdispersion and 10.7% for the robust design for link 

misspecification. The procedure for the link misspecification case is only efficient at 

values of the link parameter A near the canonical link value A =  0 intended to be fitted. 

Thus if the experimenter thinks tha t the canonical link may be grossly inadequate 

designs using a more plausible link function should be sought. This observation 

corroborates the position of Pregibon (1980) tha t the link linearization procedure is 

not meant for an optimistic goal of correcting a seemingly hopeless situation.
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Appendix - Theorem 3.1 stated for Generalized 
Linear Models

Prelim inaries:

Consider a finite design space S  = {xl}^L1 of possible design points from which an 

experimenter is interested in choosing n, not necessarily distinct, points at which to 

observe a response Y . The experimenter makes n, > 0 observations at x l such that 

X A i n i =  n - The design problem is to choose rii, in an optimal manner. The

objective then is to choose a probability distribution {pi}f=1, with Pi = rii/n, on the 

design space <S. The log-likelihood I, according to the possibly misspecified model is

N  N

1(13) =  £ >  =  ^ l o g / p S ; ! ^ )
i= 1 i=1
N

i=1

We employed the chain rule to obtain the first derivative of the log-likelihood I,

dl i/3) _  dk  _  dli d0i 5/ij dpi
d P  d P  d 6 i  d'rjl d (3  ’

where =  [Y* -  b' (0j)] ja  (</)). Using =  b' (#*) and var (Yj) =  a (0) b" ((9*) we have

d l
^  =  [ Y - ^ / a ^ ) ,

^  =  b" (Oi) = var (Y)  / a (4>), and

^  =  z (xj) since ^  =  zT (xj) /3.

Thus

m m
d/3 var (Yj) dpt Z X*
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and

a21(3) v  â i/drk , ' 9 n .  — M,} I (Y , , ' 8 f ) '
4 -  m r(F.) '  '  a/3T ( ' ft) W 9/3T I w f y , ) / ]d(3d(3 i = 1

Claim 1:

d { Y i - H i }  d » i j r („ s  
jT — Vx d •3/3t  drii

Claim 2: For a canonical model (which is the fitted model)

d f  d fijdrii |  =  
?/3t  \  var (Yi) Jd p 1

Thus, -1 times the second derivative of second derivative of the possibly misspecified 

canonical model is

d H  ( f f )  =  V  (x .) Z T  / x 0

3/3<9/3T ^  flW  ( 0 (

The preceding arguments cumulate into Theorem 5.1 which gives the expressions for

the asymptotic bias and asymptotic covariance of the maximum likelihood estimate

of the model parameters.

T h eo rem  5.1 Let 7  and 7 T be the N  x 1 vectors with elements p, and p Ti respec

tively, where is the fitted mean response and pTi is the true mean response and let 

Z be the N  x  p matrix with rows z T (xj). Let varx (Yt) be the true variance. Define

d p i / d r j i  varT (Yi)
w i = -t - — , and w T ,i =  —  . (5.15)

a ( f)  a2 (<j>)

Let P , W , W b and W t  be the N  x N  diagonal matrices with diagonal elements n i/n ,

Wi, Widpi/dpi and wx,i respectively. Finally, define

b = Zr P W 6(7 r - 7 )

H  n = ZTPW Z ,

Hn = Zr P W TZ.
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The asymptotic bias and asymptotic covariance matrix of the maximum likelihood 

estimate j3 of the model parameter vector (3 from the misspecified model are

b i a s f y  = E ( p - 0 o)  = H ^ 1b +  o ( n - 1/2) ,  

c o v ^ ^ - P o ) )  = H - 'H n H ^  + oa),

respectively.

P roof: This is a generalization of Theorem 3.1 to generalized linear models. See 

Chapter 3 for a proof specific to logistic model.
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