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Abstract

Advance in biotechnologies has enabled genome-wide association studies (GWAS) that

scan the entire human genome for understanding genetic contributions to the risk of a

certain disease as well as to variation in treatment efficacy and side effects. In GWAS,

the association between each single-nucleotide polymorphism (SNP) and a phenotype

is assessed statistically, typically analyzing one single SNP at a time, ignoring poten-

tial SNP-SNP interactions. Such individual-SNP analysis approaches have extracted

small fractions of expected genetic contributions to disease risks: this has been recog-

nized as “the missing heritability problem” of GWAS. Biologically, it is highly unlikely

that a single SNP alone would determine disease risk, especially for complex chronic

diseases. We therefore tested whether biological interactions among multiple SNPs de-

termine disease risks and whether it can explain the missing heritability problem. The

methodologies proposed in this work take into account the interaction between selected

SNP-sets using two methods: (1) method based on logic regression that incorporates

two specific forms of interaction; and (2) method based on SNP-pair analysis which is

an exploration of genotypes that are only observed in cases with a sufficient frequency

and with no control having the same specific genotypes. Both methods could identify

many previously-found and novel susceptibility genes for the datasets we tested on,

although validation studies are required to avoid spurious findings. While our results

do not provide a satisfactory solution to the “missing heritability” problem, they show
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the importance of considering SNP interactions and their exploration in considering

genetic contributions of disease etiology, prevention and treatment.
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Preface

This thesis is an original work by Shomoita Alam. No part of this thesis has been

previously published.
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Chapter 1

Introduction

1.1 Genome-Wide Association Studies

A genome-wide association study (GWAS) is an approach that involves “markers”

across the whole genomes in a population to find genetic variations associated with

a particular disease or trait. Researchers usually use two groups of participants to

carry out a GWAS: people with the disease (cases) being studied and people from the

same population without the disease (controls). From each participant a DNA sample

is obtained, usually by drawing blood, rubbing a cotton swab along the inside of the

mouth to harvest cells or squish and spit. Those samples are then processed to extract

DNA and placed on tiny chips and scanned by an automated reader. Single nucleotide

polymorphisms (SNPs) are the markers measured by these chips. The genetic varia-

tions of SNP genotypes are said to be associated with the disease, if certain patterns of

SNP genotypes are found to be statistically significantly more frequent in people with
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the disease compared to people without disease1.

GWAS was enabled by the entire human genome sequencing which has allowed

for subsequent identification and cataloguing of human genetic variation. As a result,

a map of human genome including that of more than three million SNPs has been

generated2. It is considered that a large portion of the human variation can be surveyed

by genotyping a limited number of SNPs (tag SNPs) that are representative of all

human haplotypes. SNP genotypes tend to be correlated with genotypes of other SNPs

of nearby region; this means that genotyping only a few carefully chosen SNPs will

provide enough information about the remainder of the common SNPs in that region.

To evaluate human genetic variation genome-wide SNP arrays have been constructed

by simultaneously genotyping for millions of SNPs3.

Discovery of genetic markers that are associated with diseases and understanding

the mechanism of how these genetic variations contribute to disease etiologies will gain

insights into the prevention, diagnosis and treatment of human disease. GWAS are

considered to be particularly useful for studying genetic contributions to common and

complex diseases, such as cardiovascular disease, cancer, obesity, diabetes, psychiatric

illnesses and inflammatory diseases as they are caused by combination of multiple ge-

netic and environmental factors4.
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1.2 Advances in GWAS

In the past decade GWAS has become a major framework, often conducted as multi-

country collaborative projects and have seen many scientific and biological discoveries.

These studies were aimed at detecting associations between common SNPs and com-

mon diseases such as heart disease, diabetes, auto-immune diseases, and psychiatric

disorders5. Currently, over 1400 GWAS have uncovered more than 7,000 associations

between SNPs and more than 700 traits/diseases6. While case-control designs are the

most common, other study designs have been employed for GWAS, including cohort

studies, clinical trials and trio designs7,8.

The initial results of GWAS were reported in 20059 and 200610 in Science. The

GWAS conducted by the Wellcome Trust Case Control Consortium (WTCCC) that

was published in Nature11 in 2007 is considered a breakthrough study at the inception

of GWAS era. The reason for this is that the WTCCC study was the first large, well-

designed GWAS for complex diseases to employ a SNP chip that had good coverage of

the whole genome.

A vast majority of new loci have been identified after 2007, having association

with several diseases or complex traits. The number of loci identified per complex

trait varies substantially, from a handful for psychiatric diseases to a hundred or more

for inflammatory bowel disease (IBD) (including Crohn’s disease (CD)12 and ulcerative

colitis (UC)13) and stature. It has been observed that the number of discovered variants

is strongly correlated with study sample size, i.e., with an increasing sample size the
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number of discovered variants will generally increase5.

GWAS on auto-immune diseases such as ankylosing spondylitis (AS), rheumatoid

arthritis (RA), systemic lupus erythematosus (SLE), type 1 diabetes (T1D), multiple

sclerosis (MS), CD and UC have identified a large number of genes associated with

these diseases. According to the paper by Visscher et al. 5 who reviewed GWA studies

from 2007 to 2012, 19 loci were known prior to 2007 and more than 277 have been

discovered from 2007 onward across these diseases. GWAS have been successful not

only in terms of discovering the number of loci. It has also discovered shared loci

between diseases highlighting a number of pathways of their mechanistic continuum

and uncovering potential theraputic targets. Some of these pathways were previously

not suspected to be important for these diseases. For example, while CD and UC display

distinct clinical feature, it has been suggested through GWAS findings that these two

diseases share certain pathways. There are also strong overlaps between genes involved

in CD, UC, AS and psoriasis, suggesting shared aetiopathogenic mechanisms in these

conditions14.

In terms of metabolic diseases such as type 2 diabetes (T2D), GWAS have published

more than 50 genome-wide-significant hits involving individuals of European descent,

East Asians, South Asians, Hispanic and African Americans; not many of them were

known before the GWAS era. Prior to the GWAS era, the only compelling association

signal for fasting glucose levels which is a quantitative trait, was known at GCK (glu-

cokinase). GWAS in European samples have expanded that number to 1632. These

variants explain around 10% of the inherited variation in fasting glucose levels. Al-
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though the GWAS approach was designed for the detection of associations between

DNA markers and disease, as a by-product such studies have generated new biology

and scientific discoveries such as the discovery of genes affecting genetic recombina-

tion and their correlation with natural selection and new insight in human population

structure and evolution5.

1.3 Missing Heritability and GWAS

The GWAS approach represents an important step compared to the candidate gene

studies and family-based linkage studies. The underlying rationale for GWAS is the

‘common disease, common variant’ hypothesis, that states that a disease that is rela-

tively common results from the joint action of multiple common genetic variants15. The

commercial SNP chips intend to capture most, although certainly not all of the com-

mon variations in the genome. The candidate gene approach has been largely explored

to study complex diseases. This approach focuses on genes that are selected based on

a priori hypothesis about their etiological role in disease and usually conducted in a

population-based study. Therefore, candidate gene studies take the advantage of both

the increased statistical efficiency of association analysis and the biological understand-

ing of the phenotype, tissues, genes and proteins that are likely to be involved in the

disease. However, this approach has many criticisms because of non-replication of re-

sults and its limited ability to include all possible causative genes and polymorphisms16.

Family-based linkage studies are designed based on related individuals and has led to
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the discovery of many genes for Mendelian diseases and traits. This design, as opposed

to population based studies avoids problems of population heterogeneity and strati-

fication. However, features such as sensitivity to genotyping error make family-based

linkage studies less attractive to their population-based counterparts, as false inferences

can be drawn because the test distribution depends on the assumption that parental

genotypes are correct17,18,19.

GWAS is conducted often in multi-country collaborative projects, aiming to identify

regions of human genome whose variations across subjects are associated with risk of

various diseases. However, the known degree of genetic contribution to the risk of devel-

oping a particular disease, known as “heritability” has been explained rather poorly in

GWAS findings. Thus for only a small fraction of the known degree of the “heritability”

are attributed to hereditary components discovered by GWAS, leading to a phenomenon

called missing heritability. Specifically, GWAS is an epidemiological case-control study,

where the disease risk may be modified by SNP genotypes or environmental exposures

of interest. Typically in case-control studies the measures of association used is odds

ratio (OR) and this is estimated in GWAS. Departure from 1.0 in the ORs indicates

that corresponding genotypes of SNPs or the region in the genome tagged by them are

associated with the disease risk20. In the vast majority of GWAS conducted to-date,

however, most common variants individually or in combination confer relatively small

increments in ORs, usually OR < 1.5 and explain only a small proportion of heritability

known from family based studies21.

The potential causes of missing heritability have been widely debated and many ex-
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planations have been suggested. In early GWAS, limitations in the study designs such

as imprecise phenotyping, questionable control groups may have reduced the estimates

of the effect size. Other explanations of missing heritability include rarer variants pos-

sibly with larger effects that are poorly detected by available chips, structural variants

poorly captured by existing arrays, low power to detect gene–gene interactions and

inadequate accounting for environment exposures and their sharing relatives22,21.

1.4 Rationale and Objectives

Determining which variants are associated with a given phenotype out of the millions

of variants in an individual’s genome is a massive task, especially if the functional con-

sequences of the causal alleles are poorly known. It is critical to determine effective

approaches for combining the functional credibility and statistical support in the eval-

uation of such variants. Majority of the GWAS studies have tended to focus almost

exclusively on statistical evidence without much consideration of biological plausibility.

The challenge is to strategize a way to group the rare variants, separating them out of

the million variants and analysing them properly21.

The “missing heritability” problem may be tackled as elaborated in Yasui 20 , using

statistical reasoning by incorporating the concepts of redundancy and concurrence in the

functions of SNPs, especially within the set of genes on the same pathway in association

with a phenotype. Interaction of redundancy occurs when SNP is strongly associated

with the increased disease risk in the absence of another SNP, but the presence of that
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other SNP masks the SNP-disease association. Interaction of concurrence occurs when

SNP is strongly associated with the disease risk only in the presence of another SNP.

These specific forms of interactions have been largely unexplored in GWAS where the

standard data analysis examines each single SNP one at a time.

The underlying biology of complex diseases studied in GWAS, however, is expected

to involve multiple SNPs and non-genetic factors. Individual SNPs cannot represent

accurately the extent and mechanism of the underlying disease biology when multiple

causal factors are involved. Therefore, to make proper statistical evaluation of the

genetic contributions with the phenotype, these specific forms of interactions should

be fully explored, assuming that heritability information itself is not missing in GWAS

data. The broad objective of this thesis is to explore interactions among many genetic

variants with the intention to explain missing heritability.

In this thesis, we will discuss several approaches to explore interactions among the

genetic variants in GWAS settings. In Chapter 2, we will discuss how incorporating the

concepts of interaction is important compared to the single SNP analysis and explore

some existing methodologies of implementing them. In Chapter 3, we will explain the

methods we used to explore SNP-set interactions and establish the results of those

methods in different GWAS data. Chapter 4 will include the discussion and conclusion

of the methodologies explored in this thesis.
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Chapter 2

Importance of Interaction in GWAS

2.1 Approaches for Analysis of GWAS Data

2.1.1 Single SNP Analysis

The standard approach for analyzing GWAS in the discovery phase involves individual

SNP analysis. In this method the phenotype is regressed onto each individual SNP or

a test is performed for phenotype association (e.g., Chi square test or Fisher’s Exact

Test) for each SNP. The SNPs are ranked based on their individual p-values and the

p-values that are less than a threshold, which is set beforehand, are pushed forward for

validation. The threshold can be based on controlling the Type I error probability in

multiple testing of many SNPs by Bonferroni’s or other correction method. However,
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this threshold for genome wide significance can be very difficult to attain due to the

large number of considered hypotheses: for example, a GWAS examining the effects of

500,000 SNPs, each test is conducted at the threshold 10−7 level, which is very stringent.

Now, the newest chip contains millions of SNPs and genetic markers.

Analyzing individual SNP has certain limitations. First, the sample size of the

study is required to be very large (providing high power) so that statistical significance

of truly-positive SNPs will be retained after a multiple-testing correction of Type I

error probability. It increases the investigation cost and leaves many borderline sig-

nificant SNPs inconclusive. Second, individual-SNP analysis is often limited by poor

reproducibility as many of the highly-ranked SNPs cannot be validated due to false

positives. In particular, individual SNPs that are genotyped on GWAS platforms of-

ten show only small or modest effects. The explanation for this may be that the true

causal SNP is rarely genotyped, but there are typed SNPs which are in linkage dise-

quilibrium (LD) with the causal SNP. As the typed SNPs in LD serve as an imperfect

surrogate (tag) for the causal SNP, such individual SNPs will only show small effects.

Finally, epistasis interactions between SNPs are ignored when only the marginal effect

of individual SNP analysis is considered20. Interaction between SNPs can contribute

to disease susceptibility such that interaction between SNPs can have a larger effect

whereas single SNPs may show little individual effect. There is considerable biological

interaction present in the genomic pathway of a disease which is not possible to detect

with single SNP analysis23.
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2.1.2 Importance of Incorporating Interaction

Biologists and quantitative geneticists consider that a set of genes (SNPs) is respon-

sible for the association with a specific phenotype instead of a single gene (SNP). To

understand the extent and mechanism of the underlying biology of the complex diseases

studied in GWAS it is required to incorporate the idea of interaction among multiple

SNPs. We propose to incorporate interaction in the analysis of GWAS data to properly

evaluate the association between SNPs and phenotype statistically. Two important con-

cepts that are key to realize how the SNPs are interacting is interaction of redundancy

and interaction of concurrence.

Two or more SNPs may be associated with disease risk such that either is sufficient

to modify disease risk, but neither is necessary; this is an example of redundancy. For

example, for a certain biological function, interaction of redundancy of two SNPs A

and B is expressed mathematically as A ∪ B and it means that having either A or

B is sufficient and the presence of both does not result in the sum of the two effects.

The concept of concurrence can be explained with a scenario if modification of disease

risk requires multiple factors to take place concurrently. For example, interaction of

concurrence of two SNPs A and B, is expressed mathematically as A∩B and it means

that both A and B are required to activate a certain biological function20.
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2.2 Methods for Detection of SNP Interaction

There are several challenges to overcome to be able to successfully detect loci asso-

ciated with complex diseases in GWAS. One of the challenges is to incorporate the

specific forms of interaction, i.e., redundancy and concurrence. The traditional statis-

tical methods may be insufficient to capture the high dimensional interactions among

the GWAS data. Another challenge is that the nature of SNP data sets makes SNP

interaction identification a combinatorial search problem with huge amounts of SNP

information. The searching procedure becomes computationally intensive due to the

the massive number of possible combinations of SNP interaction. Various methods have

been proposed to either resolve any of the two challenges or finding a balance between

them24. Two existing methods will be described in the following sections: (1) logic re-

gression25, a method to incorporate two specific forms of interaction and to find a good

fitting model from a large search space of possible models; and (2) two stage testing

procedure26 that filters the SNPs based on marginal association and tests for interac-

tion only among the filtered SNPs so that the search space for the test of interaction is

smaller compared to search among all the SNPs.

2.2.1 Logic Regression

Logic regression25 is a generalized linear model designed to model an outcome (e.g.,

phenotype in case-control study) with various intersections and/or unions of potential

binary predictors that are associated with a phenotype, such as SNP genotypes (i.e.,

12



indicators of the minor-allele homozygous, indicators of the heterozygous and indica-

tors of the major-allele homozygous) as potential predictors. Combinations of SNP

intersections and unions can be expressed mathematically as Boolean combinations,

such as (X1 ∩X2) ∪ Xc
3, where ∩, ∪ and c represents intersection (AND), union (OR),

and complement (NOT), and X’s are indicators of SNP genotypes. The model can be

described as follows:

g(E(Y )) = β0 +
n∑

i=1

βiLi (2.1)

where g is a link function, Y is the response, Li represents a Boolean combination

of the binaries, also called logic trees, and βi’s denote the regression parameters. In

case-control GWASs, g is usually given by logit(x) = log( x
1−x

), where x ∈ (0, 1).

To estimate the regression coefficients, βs, the method tries to find the Boolean

expressions that minimize an optimization function (e.g., deviance function for logit

link) which indicates the “fit” of the model. Since the number of possible logic models

we can construct for a given set of SNPs is very large, a maximum number, n, of

Boolean predictors and a maximum “tree size” of Boolean predictors are prespecified.

Logic regression uses a Simulated Annealing algorithm to find the “best” model from

the large search space of possible models. To avoid over-fitting, logic regression could

use a K-fold cross-validation to determine the maximum tree size to search instead of

prespecifying it.

Logic regression is a method for incorporating the concepts of redundancy and

concurrence to analyze GWAS data as it uses Boolean expressions as predictors. This

13



method has been successfully applied to SNP data analysis with selected candidate

genes to explain the disease genetics of highly heritable diseases27,28,29,30. More recently,

our team has applied it to GWAS with a limited tree-size and a limited number of SNPs

within genes to form the logics.

2.2.2 Two Stage Testing Procedure

Advanced sequencing methods and high-throughput technologies have made it possible

to characterize millions of sequence variations on large numbers of study participants.

However, one of the challenges that investigators face while identifying a small number

of these genetic features that are associated with a disease trait is that large num-

ber of unrelated genetic features have to be examined together with the small number

of biologically relevant features. To tackle this challenge, two-stage multiple testing

procedures have been proposed where the idea is to filter out the majority of the ir-

relevant genetic variants initially and only test for interaction among the promising

variants31,32,26.

Dai et al. 26 has explained and proved theoretically how two stage procedure with in-

dependent filtering method can be justified to detect gene-gene and gene-environment

interactions. One type of filtering statistic is considered to be the marginal associa-

tion of the genetic variant31. The statistic used in the filtering stage is shown to be

asymptotically independent of the statistic in the testing stage where the interaction is

tested under the null hypothesis of no interaction, so that multiple testing correction

is only needed for the tests that actually pass the filtering, thereby potentially improv-
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ing power. The authors formulated their paper in the context of gene-environment

interactions only and the theorem is as follows.

Let Y be an outcome variable in a generalized linear model with a canonical link

function g, X be the genetic variable, Z be the environmental variable and W be the

additional covariates. Consider two nested generalized linear models:

g(E(Y |X,W )) = β0 + β1X + β2W, (2.2)

g(E(Y |X,Z,W )) = γ0 + γ1X + γ2Z + γ3XZ + γ4W. (2.3)

Then the maximum likelihood estimator β̂1 and γ̂3 are asymptotically independent.

The key idea is that dimensionality of multiple testing in genomics can be reduced

by screening features to be tested with an independent statistic in the same dataset,

thereby mitigating the multiple-testing problem and increasing power to detect effects.

This implies that the noise is reduced and it allows for relevant signals to be more easily

detected. The application of two stage procedure can be used as a data adaptive tool,

as opposed to candidate genes from prior studies, for discovering novel genes that affect

disease risk. This method is likely to gain importance as the high-throughput tech-

nologies continue to yield exponentially increasing amount of information per sample

in every research conducted.

The theoretical properties detailed by Dai et al. 26 apply not only to search for

gene-environment interaction, but also for gene-gene interaction, since both “gene”

and “environment” features are treated analogously as discrete or continuous variables

in models designed to identify associations with a disease trait in constructing these
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hypothesis tests33. Therefore, filtering SNPs by marginal association and testing for

SNP-SNP interaction among only the chosen set of SNPs would mitigate the dimen-

sionality problem.
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Chapter 3

Analysis and Results

Our hypothesis is that interaction is key to understand the disease genetics in GWAS

data. To explore interaction among the SNP sets in GWAS data, we propose three

methodologies described in the following sections.

3.1 Logic Regression across Whole Genome

3.1.1 Analysis

SNP-SNP interactions at the gene-level have been explored using logic regression by

Dinu et al. 27 in the CD GWAS data of the WTCCC11. In this study 195 genes have

been discovered to have strong evidence of CD-association including some previously

identified genes and novel susceptibility genes. However, we identified in a previous work

that 72 of these top genes are results of genotyping error by WTCCC. Genotyping errors

lead to false positive association34. The technology and calling algorithms of WTCCC
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have resulted in relatively high occurrences of suspected errors in genotype calling by

inspecting the intensity plots of genotype calling manually.

Proposal to Study SNP-SNP Interaction

Genotyping error can be checked visually by plotting the mean adjusted intensities for

each allele against each other where each color represents a different genotype in the

cluster plots. The x and y axes on the plots denote the intensity measurements for the

two alleles of the SNP. Each point represents the measurement for a single individual.

For both cases and controls, SNP genotype cluster intensity plots needs to be generated.

SNPs whose plots would indicate potential genotyping errors would be excluded.

For a high quality marker, clusters of different colors (genotypes) should be separated

from each other, indicating a high confidence in genotype calling. Figure 3.1 shows

an example of correct genotype calling for SNP rs6752107 as clear separation of the

genotype clusters can be observed which indicates a high quality marker. For a low

quality marker, clusters of different colors (genotypes) might not have clear boundaries

and overlap with each other indicating genotyping error. An example of such genotyping

error plot can be depicted in Figure 3.2 for SNP rs2314349. The intensity plots of cases

and controls show obvious overlaps of GG and GT indicating possible error in genotype

calls, which could result in false positive association.

We performed logic regression analysis as described in Subsection 2.2.1 with all the

top 123 genes (4066 SNPs) found from the gene-level analysis after removing the 72

genes with genotyping error from the WTCCC CD data. This logic regression consid-
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ered all the SNPs of the 123 genes together so that the SNPs from different chromosomes

can interact with each other, as opposed to the gene-level analysis where SNPs could

only interact with the SNPs within a gene. We used a 10-fold cross validation tech-

nique to select the optimum number of leaves and trees for the logic regression. For

the purpose of selecting the optimum number of trees and leaves, we explored a range

of the number of trees from 1 to 9 and a range of the number of leaves from 1 to 20.

The model for 10-fold cross validation was run independently 30 times varying the seed

of the random number generator at the beginning of the stochastic search of logic re-

gression. The logic behind varying the seeds is to be able to search more broadly into

the solution space and reduce the probability of converging to a local optimum. After

we selected the optimum number of leaves and trees we ran the logic regression model

with 30 different randomly generated starting points (seeds) to get the best fit to the

logic regression model of the given size selecting the model having the lowest deviance.

Checking genotyping error manually for all the SNPs of the 123 top genes for CD

would be computationally expensive. To make sure that the current model does not

have any SNP with genotyping error, we checked genotyping error for the SNPs appear-

ing in the logic regression model and repeated the following steps to get a final model

with no SNPs with genotyping error.

1. Genotyping error was checked for the current model of the size of the best fitted

model.

2. Manual examination of genotyping error as described above is done and erroneous
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SNPs were removed.

3. Logic regression was run again with the given size to get a new set of interacting

SNPs.

4. The latest best model was selected based on the minimum deviance criteria among

30 iterations with different seeds.

5. Step 1-4 was repeated until all the SNPs of the best fitted model of the given size

contain no SNP with genotyping error.

3.1.2 Results

The resulting optimum number for the trees and leaves combination was 9 trees and

17 leaves, which were selected based on the minimum of the minimum prediction score

produced from the 10-fold cross validation models generated using 30 different seeds.

The model of the given size was checked iteratively for genotyping error as explained

above and the final logic regression model was obtained after nine iterations of genotyp-

ing error check. We removed 37 erroneous SNPs. This model was obtained analyzing

4029 SNPs for 1748 CD cases and 2936 controls.

We found the 17 SNPs showed in Table 3.1 in the best logic regression model after

analyzing all the SNPs of the top 123 genes that had no indication of possible genotyp-

ing error. The table provides summary of each SNP along with the percentage of those

SNPs in cases and controls. The logic trees formed with these 17 SNPs are displayed

in Table 3.2 along with the associated odds ratios. From Table 3.2, we can observe
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that two SNPs, namely rs17221417 (NOD2 gene) and rs17234657 (PTGER4 gene) ap-

peared independently to be associated with the phenotype (CD) in the interaction model

with odds ratios 0.59 and 0.67 (OR=1.49 for the absence of this SNP), respectively.

Examples of interaction of redundancy appeared in few of the logic trees, for exam-

ple, “rs9858542 or rs6752107” shows that either SNP rs9858542 (BSN gene) or SNP

rs6752107 (ATG16L1 gene) is sufficient for the disease to occur with associated odds

ratio 1.75. Interaction of concurrence can be exemplified by the logic tree “(rs7515029

and (not rs7807268))”, which implies that presence of SNP rs7515029 (C1orf141 gene)

and absence of SNP rs7807268 (C7orf33 gene) concurrently is necessary for the disease

risk to be elevated and the associated odds ratio for this combination was estimated

to be 1.51. The odds ratios for 8 of the logic trees showing interactions of SNPs are

ranging from 1.49 to 1.75 and one logic tree, “((not rs888775) or (not rs6674713))”,

appears to have a high odds ratio (27.24). It can be observed from Table 3.1, that SNP

rs888775 (WWC1 gene) and SNP rs6674713 (PTCHD2 gene) have prevalence of 100%

(or close to it) in controls.

We have found 11 genes (12 SNPs), namely ZNF365, BSN, ATG16L1, MST150,

PTPN2, NKD1, IL23R, C1orf141, NOD2, PTGER4 (appearing twice with two differ-

ent SNPs) and NKX2-3 to be overlapping with the genes/SNPs/chromosomal loca-

tions showing strong evidence of association by the single-SNP analysis of WTCCC

data. One SNP (rs7807268, Chr 7q36.1) showing moderate association in the WTCCC

paper was also found in our analysis. We have found four genes (SNPs) that were

not reported in WTCCC single SNP analysis, namely, CERKL, NRXN1, WWC1 and
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PTCHD2. Thirteen (76%) genomic regions (7 genes, 2 chromosomal locations, 1 SNP

and 3 SNPs/genes) that were previously identified by the WTCCC single-SNP study

were included in the 17 genomic regions that we discovered. Moreover, fourteen (82%)

genomic region (5 chromosomal location and 9 gene) that we found overlaps with the

meta-analysis of single-SNP studies that involved over 22,000 cases and 29,000 con-

trols. Three genes, namely CERKL, C7orf33 and WWC1, were not identified in the

single-SNP analyses that were indicated in this meta-analysis. Table 3.3 compares our

results with the results of WTCCC single-SNP analysis and the meta-analysis based

on overlapping SNPs, genes and chromosomal locations for CD.

To check if the interaction model is performing better than a model that can be

formed with the main effects of 17 SNPs, we used Clarke’s non-nested model test35,36

to compare the two models. Two models are non-nested if one model cannot be reduced

to the other model by imposing a set of linear restrictions on the parameter vector or

they are non-nested in terms of their functional forms. The interaction model and

the 17 SNP main effects model will be non-nested as we cannot impose a set of linear

restriction on the parameter vector of one model to get another model. Usual tests

to discriminate between models such as the likelihood ratio test cannot compare two

models if they are not nested.

Our interaction model and the 17 SNP main effects model are partially non-nested.

Thus, we performed Clarke’s non-nested model test to discriminate between the two

models. The reason behind using Clarke’s non-nested model test is that it is a distri-

bution free test and it can differentiate between non-nested and partially non-nested
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models. This test applies a modified paired sign test to the differences in the individual

log-likelihoods from two nonnested models and determines whether or not the median

log-likelihood ratio is statistically significantly different from zero. The test statistic is

simply the number of positive differences in the individual log-likelihoods, which has

a Binomial distribution with parameter n (number of observations) and θ = 0.5. An

average correction to the individual log-likelihood ratios are applied in the test statistic

to adjust for the number of parameters.

From the test results, we found the log-likelihood of the 17-SNP model was -2869 and

the log-likelihood of the 9-logic tree interaction model was -2883 for 4684 observations.

The value of the test statistic is 2227 and we can conclude that the interaction model is

performing statistically significantly better than the 17-SNP main effects model (with

p value = 0.00082).

To see if the logic regression model can differentiate between the cases and the

controls graphically, we plotted the densities of the cross-validated log total odds ratios

(OR) for the cases and controls in Figure 3.3. The total OR for the ith person can be

defined by, ORi =
∏9

j=1
ORij, for the 9 logic trees. The cross-validated log total odds

ratios had been obtained using a 10-fold cross-validation technique explained as follows.

1. We split the dataset into 10 roughly equal parts (using a stratified random sam-

pling for cases and controls) and held out one part as the test set.

2. We fitted nine folds of data (training set) to the 9 tree-17 leaves logic regression

model involving a search for the best model (based on minimum deviance of 30
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logic regression model repeated with 30 different seeds) of the same size. Then

we estimated the odds ratios corresponding to each tree.

3. We used the odds ratios obtained in Step 2 to calculate the total odds ratios for

the test set data.

4. We repeated the process (Step 1-3) by treating each fold of data out of the 10

folds as a test set simultaneously. We obtained total odds ratios for the 10 sets

of test data.

5. We plotted the density of the log total odds ratios for the test set data for cases

and controls.

From the plot of the densities of log total OR for cases and controls we can observe that

the logic regression model cannot differentiate between the cases from the controls very

well. 28.7% of the cases have total log OR of more than 0 and 18.7% of the controls

have total log OR of more than 0.

3.2 Two Stage Procedure to Check Interaction across

Whole Genome

3.2.1 Analysis

The analysis discussed in this section was performed in a two stage procedure as de-

scribed in Subsection 2.2.2: first stage involved in selecting a subset of SNPs and the
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second stage involved in searching for SNP-interaction involving the set of SNPs using

logic regression. The dataset we used to test this method cannot be shown and we

have hidden all identifiable information such as the disease name. As this thesis is

methodological in nature, we emphasize on developing methods and use the datasets

to demonstrate their applications. For brevity, we call this dataset Dataset 1. The

analysis was tested on the data of 706 cases and 514 controls and the genotyping of

this dataset was carried out in Human610-Quad BeadChip (Illumina) platform.

First Stage

The first stage of the analysis involved filtering SNPs based on marginal association.

The logic behind using marginal association as a filter for SNP- SNP interaction is that

the SNP that interacts with other SNPs is likely to also display evidence of marginal

association with the phenotype26. We performed logistic regression for each SNP of the

22 chromosomes of the Dataset 1 where the genotypes were coded as binary predictors.

We compared each logistic regression model with a null model having no other predictors

using a likelihood ratio test. The SNPs that had statistically significant effect based

on marginal association (with p value less than 0.001) were selected to be the SNPs to

enter the second stage for the test of interaction. In total, out of the 497242 SNPs, 843

statistically significant SNPs were selected based on marginal association to enter the

next stage.
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Second Stage

In the second stage, we performed logic regression analysis on the 843 SNPs together

so that the SNPs from different chromosomes can interact with each other, as opposed

to the gene-level analysis. We used a 10-fold cross validation technique to select the

optimum number of leaves and trees for the logic regression. For the purpose of selecting

the optimum number of trees and leaves, we explored a range of the number of trees

from 1 to 9 and a range of the number of leaves from 1 to 25. The model for a 10-fold

cross validation was run independently 30 times varying the seed of the random number

generator at the beginning of the stochastic search of logic regression. The logic behind

varying the seeds is to be able to search more broadly into the solution space and reduce

the probability of converging to a local optimum. Since the search of the solution space

is done stochastically by means of a Simulated Annealing algorithm, we fit the logic

regression 30 times varying the initial random seed of the stochastic search. At the end

of the 30 fitting processes, we keep the model with the lowest deviance among them.

3.2.2 Results

The resulting optimum combination of the numbers for the trees and leaves was 5 trees

and 19 leaves, which were selected based on the minimum of the minimum prediction

score produced from the 10-fold cross validation models generated across 30 different

seeds. The 19 SNP shown in Table 3.4 are in the best logic regression model after an-

alyzing all the marginally significant SNPs of Dataset 1. The table provides summary
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of each SNP along with the percentage of those SNPs in cases and controls. The logic

trees formed with these 19 SNPs are displayed in Table 3.5 along with the associated

odds ratios. From this table 3.5, we can observe that the first logic tree is composed of

five SNPs (rs2213953, rs17708991, rs9284844, rs12633500 and rs1999670) and the asso-

ciated odds ratio of their interaction is 101.49. The second and fourth logic tree, which

are composed of 2 SNPs each, have associated odds ratios of 0.26 and 0.24, respec-

tively. The third logic tree composed of six SNPs with a complex form of interaction

has associated odds ratio of 0.04. The fifth logic tree is composed of four SNPs with

an associated odds ratio of 12.43.

We can observe from Table 3.4, that SNP rs1999670 (PPP1R14C gene) and SNP

rs12633500 (LOC730109 gene) is highly prevalent in cases and SNP rs9284844 (SATB1

gene) is very rare in both cases and controls. We have found four SNPs/genes, namely,

HLA-DRB1 (Chr 6p21.3), NOD2 (Chr 16q21), C13orf31 (Chr 13q14.11) and HLA-B

(Chr 6p21.3) to be overlapping with the genes found in the other GWASs done for the

disease related to Dataset 1. Therefore, 15 of the 19 SNPs that we found are potentially

novel susceptibility genes for the phenotype of interest in Dataset 1 GWAS.

To check if the interaction model is performing better than a model that can be

formed with the main effects of 19 SNPs, we used Clarke’s non-nested model test35,36

to compare the two models. Two models are non-nested if one model cannot be reduced

to the other model by imposing a set of linear restrictions on the parameter vector or

they are non-nested in terms of their functional forms. The interaction model and

the 19 SNP main effects model will be non-nested as we cannot impose a set of linear
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restriction on the parameter vector of one model to get another model. Usual tests

to discriminate between models such as the likelihood ratio test cannot compare two

models if they are not nested.

This test applies a modified paired sign test to the differences in the individual

log-likelihoods from two nonnested models and determines whether or not the median

log-likelihood ratio is statistically significantly different from zero. The test statistic is

simply the number of positive differences in the individual log-likelihoods, which has

a Binomial distribution with parameter n (number of observations) and θ = 0.5. An

average correction to the individual log-likelihood ratios are applied in the test statistic

to adjust for the number of parameters.

From the test result, we found the log-likelihood of the 19-SNP model was -523 and

the log-likelihood of the 5-logic tree interaction model was -526 for 1220 observations.

The value of the test statistic is 303 and we can conclude that the interaction model is

performing statistically significantly better than the 19-SNP main effects model (with

p value = 2 ×10−16).

To see if the logic regression model can differentiate between the cases and the

controls graphically, we plotted the densities of the cross-validated log total odds ratios

(OR) for the cases and controls in Figure 3.4. The total OR for the ith person can be

defined by, ORi =
∏5

j=1
ORij, for the 5 logic trees. The cross-validated log total odds

ratios had been obtained using a 10-fold cross-validation technique explained as follows.

1. We split the dataset into 10 roughly equal parts (using a stratified random sam-
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pling for cases and controls) and held out one part as the test set.

2. We fitted nine folds of data (training set) to the 5 tree-19 leaves logic regression

model involving a search for the best model (based on minimum deviance of 30

logic regression model repeated with 30 different seeds) of the same size. Then

we estimated the odds ratios corresponding to each tree.

3. We used the odds ratios obtained in Step 2 to calculate the total odds ratios for

the test set data.

4. We repeated the process (Step 1-3) by treating each fold of data out of the 10

folds as a test set simultaneously. We obtained total odds ratios for the 10 sets

of test data.

5. We plotted the density of the log total odds ratios for the test set data for cases

and controls.

From the plot of the densities of log total OR for cases and controls we can observe how

much the logic regression model can differentiate the cases from the controls. 87.0% of

the cases have total log OR of more than 0 and 52.1% of the controls have total log

OR of more than 0.
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3.3 Exploration of the SNP Pairs

3.3.1 A Proposed Analysis for SNP Pairs

We explored another approach to explore SNP-interaction in GWAS data which is based

on SNP pairs. The basic idea here is to explore the SNP pairs such that we consider a

pair of SNPs with genotype patterns that are only observed in cases with a sufficient

frequency and no control has the specific genotype patterns. To test this idea we used

the Dataset 1 explained in Subsection 3.2.1 with 706 cases and 514 controls. We only

used the data of 843 SNPs that we filtered based on statistically significant marginal

association as explained in the first stage of analysis in Subsection 3.2.1. In this data,

we searched for the SNP pairs which contain a genotype where at least 13 cases have

that genotype and none of the control does. Genotypes with at least 13 cases out of

706 cases versus 0 controls out of 514 controls would be fairly rare corresponding to

P-value equals to 0.001 based on Fisher’s exact test.

3.3.2 Results

The possible combination of SNP pairs using 843 SNPs yielded 354903 SNP pairs. We

looked for the SNP pairs among 354903 pairs that have genotypes such that at least

13 cases have that genotype and none of the control does. We found 8348 such SNP

pairs; 8268 SNP pairs having one such genotype pair where at least 13 cases have that

genotype pair and none of the control does and 80 SNP pairs having two such genotypes

pairs where at least 13 cases have those genotypes pairs and none of the control does.
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In total we found 8428 genotype pairs to analyze further. Among the 8428 SNP pairs,

we have analyzed the pattern among the cases’ being positive to any of these pairs.

To validate our findings, we have mapped the SNPs with another dataset of the same

phenotype of interest, namely, Dataset 2, and analyzed only the SNP pairs that are

evaluable both in Dataset 1 and Dataset 2.

From Tables 3.6 and 3.7 we can observe that chromosome 3 and 6 has the highest

number of SNPs and SNP-pairs among the SNPs selected based on the criteria explained

in Subsection 3.3.1. We analyzed the pattern of SNP pair positives among the cases

(706) of Dataset 1. By SNP pair positives we mean cases’ being positive for one or

more SNP pairs. Table 3.8 shows the distribution of the cases with one or more SNP

pairs being positive. From Table 3.8 we can see that at least three or more of these

SNP pairs are present in 93.77% of cases in Dataset 1. Only 24 (3.40%) of the 706 cases

do not have any of these SNP pairs. About 50% of the cases have at least 75 or more

of these SNP pairs.

Mapping the SNPs of Dataset 1 with Dataset 2

To validate the SNP pairs obtained from Dataset 1, we tested this method on Dataset

2. Both the data used different platform for genotyping and thus we had to map the

SNPs between both the data to see how many evaluable SNP pairs both data sets have

in common. A total of 1848 evaluable SNP pairs from Dataset 2 have been found which

is about 22% of the Dataset 1 SNP pairs. The equivalence of the genotypes was mapped

between the Dataset 1 and Dataset 2.
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The pattern of positives among the Dataset 2 cases and controls are explored and

displayed in Table 3.9 and Table 3.10. Total number of Dataset 2 cases and controls

are 285 and 124, respectively. We can see in Table 3.9 that none of these SNP-pairs are

present in 105 (36.84%) cases out of the 285 cases. At least three or more of these SNP

pairs are present in 53.33% of the cases in Dataset 2. We can see in Table 3.10 that

none of these SNP-pairs are present in 51 (41.13%) controls out of the 124 controls. At

least three or more of these SNP pairs are present in 51.61% of the controls.

In Dataset 2, the SNP pairs can be considered as “working well in Dataset 2” that

are present in: 8 cases and 0 controls (6 pairs); 9 cases and 0 controls (12 pairs); 12

cases and 0 controls (4 pairs); or 16 cases and 2 controls (2 pairs) with Fisher’s exact

test p-value less than 0.05, as presented in Table 3.11.

Factor Analysis of the SNP Pairs Being Positive in Dataset 1 Cases

The goal of this analysis was to check if the findings from Dataset 1 can predict the

SNP pairs that work well in Dataset 2. We performed factor analysis on the data of

the SNP pairs being positive in cases obtained from Dataset 1 that were also evaluable

in Dataset 2. The numbers of SNP pairs in Dataset 1 that are evaluable in Dataset

2 were 1848. There were SNPs in these 1848 SNP pairs that belonged to multiple

genes (because they are between genes) and therefore there were perfectly correlated

SNP pairs among the 1848 pairs. We removed those SNP pairs with perfect correlation

which resulted in 636 SNP pairs to be analysed.

We performed principal component factor analysis with varimax rotation to extract
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factors that may indicate specific clustering of SNP pairs in the cases of the Dataset

1. Thirteen (13) factors have been extracted with the reasoning that beyond factor

13, none of the factors explain individually more than 1% of the variation. In the 13

factors, the items with factor loadings greater than 0.4 are kept. Table 3.12 shows

the 13 factors extracted with eigen values, proportion of explained variation and the

number of items for each factor. Among the 13 factors, we checked how many of them

contain SNP pairs that worked in Dataset 2 and we found that only Factor 6 and 7

contain 5 SNP pairs that work well in Dataset 2 as well. The sixth column in this table

shows the number of SNP pairs that work well in Dataset 2 for each factor.

Identifying Good Factors from Bad Factors Based on Dataset 1

To distinguish good factors from the bad factors based on the Dataset 1 and without

the knowledge from the Dataset 2, we used the following methods. By good factor we

mean the factors that are composed of SNP pairs that would work in Dataset 2 as well

as Dataset 1 and by bad factor we mean the factors that are composed of SNP pairs

that would not work in Dataset 2.

(A) Simple Counting Method:

The idea here is to see if the good factors tend to be more positive for cases which

are positive for many SNP pairs. That is, cases that are positive for many SNP

pairs would be “definitely cases”. Factors that are positive for “definite cases”

may be the good factors. We performed the following steps and the results are
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presented in Table 3.13.

(a) We counted the number of SNP pairs being positive for each case of Dataset

1. We called this number as total positive count (TPC) of the case.

(b) For a given factor, we looked at the loadings of 636 SNP pairs and selected

the top 20% pairs to be the highly loaded pairs for each factor. For example,

Factor 1 had 136 pairs and we selected top 20% pairs of 136, i.e., the top 28

pairs.

(c) For a given factor, the sum of the TPCs of cases who are positive to at least

one of the highly loaded pairs of the factor is calculated. We called this the

STPC (sum of total positive count) of the factor.

(d) For a given factor, STPC is divided by the number of cases who are positive

to at least one of the highly loaded pairs of the factor. We called this the

MTPC (mean of total positive count) of the factor.

From the results of Table 3.13 we can see that the factors 1, 2, 4, 5, 7 and 10 have

higher STPC and MTPC. However, we cannot clearly distinguish between good

factors and bad factors. We have seen from Table 3.12 that Factors 6 and 7 are

working well in Dataset 2, but this technique could not clearly differentiate them

from the other factors.

(B) Double Factor Analysis:

We performed a double factor analysis to distinguish between good factors and
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bad factors. The idea here is that the factor analysis done that obtained 13 factors

from the pattern of cases’ being positive for the SNP pairs in Dataset 1 would

look at variations of “significant SNP pairs” in cases. That is, these SNP pairs

are the the variables that are supposed to be signals that separate the cases from

controls. However, many of these “signals” are not validated by Dataset 2 and

may not be real signals: i.e., they are just the natural variation among the people

(cases). We proposed performing step (a)-(c), as described below, where we check

the correlation among the factor scores of the 13 factors, with the factor scores of

the cases only, obtained from a second factor analysis of the “SNPs” of Dataset

1, by mixing the data of both the cases and controls. By performing step (a)-

(c), we would get the patterns of natural variation among all people. If a factor

from step (a) factor analysis correlates with a factor from step (c), then that is

likely to be a natural variation and it may indicate that the SNP pairs of the

13 factors are not providing us with any special knowledge of clustering among

the SNPs that separates cases from the controls. A factor from step (a) that has

less correlation with factors from step (c) may be a good factor that is able to

discriminate between cases and controls. Similar logic can be established for step

(a) and (d) where we check the correlation among the 13 factor scores obtained

from step (a) and the factor scores obtained from the factor analysis performed

on the“SNPs” of Dataset 1, for cases only.

(a) Factor scores of 13 factors are derived for the Dataset 1’s cases’ being positive
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for SNP pairs data (Table 3.12).

(b) From the 843 SNPs that we selected based on statistically significant marginal

association explained in Subsection 3.2.1, we removed the perfectly corre-

lated SNPs and obtained 516 SNPs for further analysis.

(c) A second factor analysis (Principal component factor analysis with varimax

rotation) was run mixing cases and controls of the 516 SNPs of the Dataset

1 and the factor scores are derived. In total 5 factors were extracted in this

analysis. Correlations of each factor score in (a) and each factor score in (c)

among cases are calculated and presented in Table 3.14.

(d) Factor analysis (Principal component factor analysis with varimax rotation)

is repeated with only the cases of the 516 SNPs of Dataset 1 and the factor

scores are derived. In total, 4 factors were extracted in this analysis. Corre-

lations of each factor score in (a) and each factor score in (d) among cases

are calculated and reported in Table 3.15.

From the correlation matrices in Table 3.14 and 3.15, we can observe that all the

factors in step (a) has very small correlation with the factors from step (c) and

(d). That is, according to the logic applied for this method, all the factors can be

considered as good factors. Therefore, this method could not differentiate Factor

6 and 7 from the rest of the factors, either.
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Analysis of the Shared Pathways

We have calculated the number of shared pathways between each SNP pair for the 636

SNP pairs using the methods developed in the work of Conrado Franco-Villalobos et

al. entitled “Logic Regression Visualization Analysis of GWAS Provides New Insights

into Shared Genetic Susceptibilities Among a Group of Diseases”. We analysed the 636

SNP pairs to see the distribution of the shared pathways among them. From Table

3.16, we can observe that there are 6 SNP pairs among the 636 pairs that work well

in Dataset 2 as well. We explored these 6 pairs in Dataset 2 and the number of being

positive for those SNP pairs among Dataset 2 cases and controls are presented in Table

3.17. We also checked the number of Dataset 2 cases and controls being positive to any

of the 6 pairs and the results are reported in Table 3.18 and 3.19. From these tables,

we can see that 34 Dataset 2 cases have at least one of these SNP pairs and only two

Dataset 2 controls have at least one of these SNP pairs.

We mapped these 6 pairs with the factors obtained from the factor analysis shown

in Table 3.12 and found that 4 of these pairs belong to Factor 6 and 1 of these factors

belong to Factor 7. The factor loadings corresponding to these pairs are displayed in

Table 3.20 and only the factor loadings greater than 0.4 are kept. Table 3.21 provides

the SNP, gene and chromosome information of the 6 pairs obtained from the shared

pathway analysis. To our knowledge, none of these genes or SNPs had been previously

identified to have any association with the phenotype of interest for Dataset 1 and

Dataset 2.
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Figure 3.1: Intensity plot for SNP-rs6752107 (high quality marker) in WTCCC CD

GWAS data.
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Figure 3.2: Intensity plot for SNP-rs2314349 (low quality marker) in WTCCC CD

GWAS data.
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Table 3.1: Genetic information of the 17 SNPs obtained from the Logic Re-

gression for CD GWAS data

SNP Gene Chromosome Case (%) Control (%)

rs10427270 CERKL 2q31.3 183 (10.47%) 271 (9.23%)

rs723713 NRXN1 2p16.3 1053 (60.24%) 1589 (54.12%)

rs10761659 ZNF365 10q21.2 293 (16.76%) 631 (21.49%)

rs9858542 BSN 3p21.31 217 (12.41%) 219 (7.46%)

rs6752107 ATG16L1 2q37.1 633 (36.21%) 760 (25.89%)

rs13361189 MST150 5q33.1 1410 (80.66%) 2537 (86.41%)

rs7234029 PTPN2 18p11.3-p11.2 1111 (63.56%) 2083 (70.95%)

rs6500315 NKD1 16q12.1 53 (3.03%) 161 (5.48%)

rs11805303 IL23R 1p31.3 1093 (62.53%) 1552 (52.86%)

rs7515029 C1orf141 1p31.3 1674 (95.77%) 2680 (91.28%)

rs7807268 C7orf33 7q36.1 397 (22.71%) 858 (29.22%)

rs888775 WWC1 5q34 1725 (98.68%) 2936 (100%)

rs6674713 PTCHD2 1p36.22 1736 (99.31%) 2934 (99.93%)

rs17221417 NOD2 16q21 1502 (85.93%) 2680 (91.28%)

rs11957215 PTGER4 5p13.1 972 (55.61%) 1340 (45.64%)

rs10883371 NKX2-3 10q24.2 1239 (70.88%) 2285 (77.83%)

rs17234657 PTGER4 5p13.1 1179 (67.45%) 2256 (76.84%)
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Table 3.2: Logic trees and the associated odds ratios of the 9 tree Logic

Regression model for CD

Logic Trees Odds Case (%) Control (%)

Ratios

((rs723713 and (not rs10761659)) 1.53 993 (56.81%) 1377 (46.9%)

or rs10427270)

(rs9858542 or rs6752107) 1.75 768 (43.94%) 918 (31.27%)

((not rs13361189) or (not rs7234029)) 1.52 851 (48.68%) 1121 (38.18%)

(rs6500315 or (not rs11805303)) 0.66 686 (39.24%) 1479 (50.37%)

(rs7515029 and (not rs7807268)) 1.51 1295 (74.08%) 1894 (64.51%)

((not rs888775) or (not rs6674713)) 27.24 34 (1.95%) 2 (0.07%)

rs17221417 0.59 1502 (85.93%) 2680 (91.28%)

(rs11957215 or (not rs10883371)) 1.49 1202 (68.76%) 1688 (57.49%)

(not rs17234657) 1.49 569 (32.55%) 680 (23.16%)
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Table 3.3: Comparison of our results with single-SNP WTCCC and meta-

analysis results based on overlapping SNP, gene or chromosomal location

for CD

SNP Gene Chromosomal Single-SNP Meta

location WTCCC11 Analysis12

(strength of

association)

rs10427270 CERKL 2q31.3 - -

rs723713 NRXN1 2p16.3 - Chromosomal

location

rs10761659 ZNF365 10q21.2 Gene (strong) SNP

rs9858542 BSN 3p21.31 Gene (strong) Gene

rs6752107 ATG16L1 2q37.1 Gene (strong) Gene

rs13361189 MST150 5q33.1 Gene (strong) Chromosomal

location

rs7234029 PTPN2 18p11.3 Gene (strong) Gene

-p11.2

rs6500315 NKD1 16q12.1 Gene (strong) Chromosomal

location

rs11805303 IL23R 1p31.3 SNP/Gene (strong) Gene

rs7515029 C1orf141 1p31.3 Chromosomal Chromosomal

location (strong) location

rs7807268 C7orf33 7q36.1 SNP (moderate) -

rs888775 WWC1 5q34 - -

rs6674713 PTCHD2 1p36.22 - Chromosomal

location

rs17221417 NOD2 16q21 SNP/Gene (strong) Gene

rs11957215 PTGER4 5p13.1 Chromosomal Gene

location (strong)

rs10883371 NKX2-3 10q24.2 Gene (strong) Gene

rs17234657 PTGER4 5p13.1 SNP/Gene (strong) Gene
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Table 3.4: Genetic information of the 19 SNPs obtained from the Logic Re-

gression of Dataset 1

SNP Gene Chromosome Case (%) Control (%)

rs1999670 PPP1R14C 6q24.3-q25.3 706 (100%) 464 (90.27%)

rs2213953 LOC100287927 22q11.22 704 (99.72%) 477 (92.8%)

rs17708991 LOC100129711 6q15 1 (0.14%) 12 (2.33%)

rs9284844 SATB1 3p23 0 (0%) 8 (1.56%)

rs12633500 LOC730109 3q25.33 706 (100%) 506 (98.44%)

rs9271348 HLA-DRB1 6p21.3 218 (30.88%) 269 (52.33%)

rs9302752 NOD2 16q21 485 (68.7%) 253 (49.22%)

rs13381553 LOC441806 18p11.32 698 (98.87%) 478 (93%)

rs7945327 TRPM5 11p15.5 705 (99.86%) 502 (97.67%)

rs2426714 RBM38 20q13.31 698 (98.87%) 470 (91.44%)

rs9551445 LOC100287114 13q12.11 705 (99.86%) 490 (95.33%)

rs6846231 LOC100288073 4q32.3 705 (99.86%) 488 (94.94%)

rs17132673 DTWD2 5q23.1 701 (99.29%) 482 (93.77%)

rs3764147 C13orf31 13q14.11 218 (30.88%) 253 (49.22%)

rs9264904 HLA-B 6p21.3 297 (42.07%) 154 (29.96%)

rs11752822 LOC100289273 6q27 650 (92.07%) 509 (99.03%)

rs9658807 BATF3 1q32.3 642 (90.93%) 507 (98.64%)

rs6556066 NKX2-5 5q34 663 (93.91%) 509 (99.03%)

rs2676870 C3orf21 3q29 628 (88.95%) 500 (97.28%)
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Table 3.5: Logic trees and the associated odds ratios of the 5-tree Logic

Regression model for Dataset 1

Logic Trees Odds Case (%) Control (%)

Ratios

(((rs2213953 and (not rs17708991)) 101.49 703 (99.58%) 407 (79.18%)

and ((not rs9284844) and rs12633500))

and rs1999670)

(rs9271348 or (not rs9302752)) 0.26 367 (51.98%) 401 (78.02%)

((((not rs2426714) or (not rs9551445)) 0.04 24 (3.4%) 163 (31.71%)

or ((not rs6846231) or (not rs17132673)))

or ((not rs13381553) or (not rs7945327)))

(rs3764147 and (not rs9264904)) 0.24 110 (15.58%) 176 (34.24%)

(((not rs11752822) or (not rs9658807)) 12.43 203 (28.75%) 28 (5.45%)

or ((not rs6556066) or (not rs2676870)))

Table 3.6: Frequencies of SNPs in the 8348 high risk SNP pairs from each

chromosome

Chromosome Number of SNPs within Chromosome Number of SNPs within

this chromosome (%) this chromosome (%)

1 1353 (8.1%) 12 685 (4.1%)

2 561 (3.4%) 13 675 (4%)

3 3100 (18.6%) 14 863 (5.2%)

4 472 (2.8%) 15 304 (1.8%)

5 968 (5.8%) 16 406 (2.4%)

6 2746 (16.4%) 17 257 (1.5%)

7 444 (2.7%) 18 451 (2.7%)

8 523 (3.1%) 19 62 (0.4%)

9 905 (5.4%) 20 330 (2%)

10 588 (3.5%) 21 146 (0.9%)

11 383 (2.3%) 22 474 (2.8%)
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Table 3.7: Top 20 most frequent chromosome pairs in the 8348 high risk SNP

pairs

Chromosome Frequency of Chromosome Frequency of

pair appearing among pair appearing among

8348 SNP pairs (%) 8348 SNP pairs (%)

(3, 6) 590 (7.1%) (3, 12) 145 (1.7%)

(1, 6) 254 (3%) (2, 3) 141 (1.7%)

(1, 3) 226 (2.7%) (3, 8) 134 (1.6%)

(6, 6) 217 (2.6%) (3, 13) 123 (1.5%)

(6, 9) 189 (2.3%) (3, 14) 114 (1.4%)

(3, 5) 183 (2.2%) (3, 10) 108 (1.3%)

(3, 9) 180 (2.2%) (3, 7) 108 (1.3%)

(6, 14) 177 (2.1%) (3, 4) 104 (1.2%)

(5, 6) 168 (2%) (3, 18) 98 (1.2%)

(3, 3) 149 (1.8%) (6, 12) 98 (1.2%)

Table 3.8: Frequency (%) of cases with one or more SNP pairs in Dataset 1

Number of SNP pairs Frequency (%)

0 24 (3.40%)

3 or more 662 (93.77%)

5 or more 644 (91.22%)

10 or more 606 (84.84%)

20 or more 533 (75.50%)

30 or more 480 (67.99%)

40 or more 435 (61.61%)

50 or more 408 (57.79%)

75 or more 351 (49.72%)

100 or more 301 (42.63%)

300 or more 135 (19.12%)

500 or more 73 (10.34%)

1000 or more 25 (3.54%)

1500 or more 6 (0.85%)
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Table 3.9: Frequency (%) of subjects with one or more SNP pairs in Dataset

2 cases

Number of SNP Pairs Frequency (%)

0 105 (36.84%)

3 or more 152 (53.33%)

5 or more 131 (45.96%)

10 or more 111 (38.95%)

20 or more 84 (29.47%)

30 or more 64 (22.46%)

40 or more 42 (14.74%)

50 or more 30 (10.53%)

75 or more 11 (3.86%)

100 or more 7 (2.46%)

300 or more 1 (0.35%)

Table 3.10: Frequency (%) of subjects with one or more SNP pairs in Dataset

2 controls

Number of SNP Pairs Frequency (%)

0 51 (41.13%)

3 or more 64 (51.61%)

5 or more 51 (41.13%)

10 or more 40 (32.26%)

20 or more 22 (17.74%)

30 or more 15 (12.10%)

40 or more 11 (8.87%)

50 or more 8 (6.45%)

75 or more 1 (0.81%)

100 or more 1 (0.81%)
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Table 3.11: Distribution of the SNP pairs in Dataset 2 among cases and

controls

SNP pair combination Frequency (%) SNP pair combination Frequency (%)
0 case, 0 control 165 (8.93%) 6 case, 2 control 12 (0.65%)
0 case, 1 control 57 (3.08%) 6 case, 3 control 2 (0.11%)
0 case, 2 control 40 (2.16%) 6 case, 4 control 8 (0.43%)
0 case, 3 control 7 (0.38%) 6 case, 5 control 2 (0.11%)
1 case, 0 control 220 (11.9%) 7 case, 0 control 6 (0.32%)
1 case, 1 control 101 (5.47%) 7 case, 1 control 5 (0.27%)
1 case, 2 control 56 (3.03%) 7 case, 2 control 14 (0.76%)
1 case, 3 control 14 (0.76%) 7 case, 3 control 4 (0.22%)
1 case, 4 control 4 (0.22%) 7 case, 4 control 10 (0.54%)
1 case, 5 control 4 (0.22%) 7 case, 5 control 8 (0.43%)
2 case, 0 control 218 (11.8%) 8 case, 0 control 6 (0.32%)
2 case, 1 control 102 (5.52%) 8 case, 1 control 8 (0.43%)
2 case, 2 control 90 (4.87%) 8 case, 2 control 4 (0.22%)
2 case, 3 control 14 (0.76%) 8 case, 3 control 5 (0.27%)
2 case, 4 control 10 (0.54%) 8 case, 4 control 9 (0.49%)
3 case, 0 control 64 (3.46%) 8 case, 5 control 3 (0.16%)
3 case, 1 control 73 (3.95%) 9 case, 0 control 12 (0.65%)
3 case, 2 control 80 (4.33%) 9 case, 1 control 4 (0.22%)
3 case, 3 control 10 (0.54%) 9 case, 2 control 6 (0.32%)
3 case, 4 control 4 (0.22%) 9 case, 3 control 8 (0.43%)
4 case, 0 control 68 (3.68%) 9 case, 4 control 7 (0.38%)
4 case, 1 control 69 (3.73%) 9 case, 7 control 2 (0.11%)
4 case, 2 control 54 (2.92%) 10 case, 2 control 11 (0.6%)
4 case, 3 control 7 (0.38%) 10 case, 3 control 14 (0.76%)
4 case, 4 control 2 (0.11%) 10 case, 5 control 7 (0.38%)
5 case, 0 control 9 (0.49%) 10 case, 7 control 2 (0.11%)
5 case, 1 control 33 (1.79%) 11 case, 1 control 4 (0.22%)
5 case, 2 control 17 (0.92%) 11 case, 2 control 2 (0.11%)
5 case, 3 control 8 (0.43%) 12 case, 0 control 4 (0.22%)
5 case, 4 control 16 (0.87%) 12 case, 2 control 5 (0.27%)
5 case, 5 control 4 (0.22%) 12 case, 3 control 5 (0.27%)
5 case, 7 control 1 (0.05%) 13 case, 2 control 4 (0.22%)
6 case, 0 control 6 (0.32%) 14 case, 3 control 2 (0.11%)
6 case, 1 control 14 (0.76%) 16 case, 2 control 2 (0.11%)
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Table 3.12: Eigen values, proportion of explained variation and the number

of items in each factor with items that work in Dataset 2

Factors Eigen Value Proportion Cumulative Number of Number of

Explained Proportion Items Pairs Working

Explained in Dataset 2

1 102.80 0.16 0.16 136 0

2 84.67 0.13 0.29 156 0

3 20.82 0.03 0.33 25 0

4 19.17 0.03 0.36 54 0

5 18.19 0.03 0.39 22 0

6 15.92 0.03 0.41 27 4

7 15.25 0.02 0.44 33 1

8 13.56 0.02 0.46 23 0

9 9.83 0.02 0.47 10 0

10 8.69 0.01 0.49 14 0

11 7.90 0.01 0.50 8 0

12 7.69 0.01 0.51 12 0

13 6.61 0.01 0.52 9 0
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Table 3.13: Sum and mean total positive count for 13 factors

Factor Number Number STPC (sum Number of cases MTPC (mean

of Items of highly of total being positive for of total

loaded positive at least one of the positive

pairs counts) highly loaded pairs counts)

1 136 28 2300 21 109.52

2 156 32 3289 33 99.67

3 25 5 565 19 29.74

4 54 11 2854 53 53.85

5 22 5 671 18 37.28

6 27 6 775 26 29.81

7 33 7 1277 33 38.70

8 23 5 712 24 29.67

9 10 2 365 14 26.07

10 14 3 881 22 40.05

11 8 2 516 15 34.40

12 12 3 681 31 21.97

13 9 2 444 30 14.80
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Table 3.14: Correlation between factor scores of the SNP pairs of Dataset 1

cases and original SNP data of Dataset 1 for cases (using case-control mix

data)

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Factor 1 -0.04 -0.05 0.06 -0.04 -0.01

Factor 2 -0.06 -0.00 0.11 -0.10 0.08

Factor 3 0.04 0.07 -0.04 0.04 0.01

Factor 4 0.04 0.04 0.06 -0.18 0.06

Factor 5 0.01 -0.00 -0.01 -0.02 0.00

Factor 6 -0.01 -0.02 0.03 0.01 0.10

Factor 7 -0.03 -0.02 0.02 -0.01 0.01

Factor 8 -0.02 0.10 0.04 0.00 0.00

Factor 9 -0.07 0.02 0.08 -0.01 -0.01

Factor 10 -0.06 0.01 0.07 -0.10 0.02

Factor 11 -0.00 0.06 0.04 -0.07 0.00

Factor 12 0.20 0.10 -0.03 -0.06 0.07

Factor 13 0.19 -0.03 -0.11 -0.06 0.04
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Table 3.15: Correlation between factor scores of the SNP pairs of Dataset 1

cases and original SNP data of Dataset 1 for cases (using only cases’ data)

Factor 1 Factor 2 Factor 3 Factor 4

Factor 1 -0.03 0.02 -0.08 -0.02

Factor 2 -0.06 -0.04 -0.16 -0.05

Factor 3 0.04 -0.05 0.08 0.02

Factor 4 0.03 -0.07 -0.15 -0.14

Factor 5 0.01 -0.00 -0.01 -0.01

Factor 6 -0.01 0.02 -0.01 0.04

Factor 7 -0.03 0.01 -0.02 0.00

Factor 8 -0.02 -0.11 -0.00 0.03

Factor 9 -0.07 -0.04 -0.07 0.03

Factor 10 -0.06 -0.04 -0.12 -0.09

Factor 11 -0.00 -0.08 -0.06 -0.03

Factor 12 0.20 -0.05 0.00 0.02

Factor 13 0.19 0.08 0.04 -0.04

Table 3.16: Distribution of the number of shared pathways by SNP pairs that

worked in Dataset 2

Number of shared SNP pairs that SNP pairs that

pathways do not work well work well in Dataset 2 (%)

in Dataset 2 (%)

0 408 (98.79%) 5 (1.21%)

1 86 (98.85%) 1 (1.15%)

2 and more 136 (100%) 0 (0%)
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Table 3.17: Number of being positive in Dataset 2 cases and controls for the

6 pairs that are working well

Pairs Working Number of Positives Number of Positives

Well in Dataset 2 in Dataset 2 Cases in Dataset 2 Controls

1 8 0

2 9 0

3 9 0

4 8 0

5 16 2

6 9 0

Table 3.18: Number of being positive to any of the 6 pairs among Dataset 2

cases

Number of being positive Frequency

to any of the 6 pairs

0 251

1 23

2 1

3 6

4 4

Total Dataset 2 case 285

Table 3.19: Number of being positive to any of the 6 pairs among Dataset 2

controls

Number of being positive Frequency

to any of the 6 pairs

0 122

1 2

Total Dataset 2 control 124
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Table 3.20: Factor loadings of the 6 pairs (loadings greater than 0.4 are kept)

Pairs F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

1 0.66

2 0.83

3 0.75

4 0.74

5

6 0.63

Table 3.21: Details of the SNP, gene and chromosome information of the 6

pairs)

Pairs SNP pair Chromosome Gene Number

pair pair of shared

pathways

1 (rs7595482, (2, 4) (FAM82A1, 0

rs1903524) LOC100288304)

2 (rs1903524, (4, 15) (LOC100288304, 1

rs2200370) ATP10A)

3 (rs1903524, (4, 20) (LOC100288304, 0

rs1109400) C20orf151)

4 (rs1903524, (4, 20) (LOC100288304, 0

rs16994111) ESF1)

5 (rs6877393, (5, 7) (MCTP1, 0

rs6953592) DKFZp564N2472)

6 (rs9347874, (6, 18) (LOC100289273, 0

rs12607401) FLJ44881)
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Chapter 4

Discussion and Conclusion

4.1 Review of the Objective and Methods

Analyses of GWAS in majority of the studies have tended to focus on single SNP

analysis without the consideration of interaction among the SNPs that has more bio-

logical plausibility. The major objective of this thesis was to explore interaction among

many genetic variants that may be associated with the disease phenotype. We have

used different approaches to analyse GWAS data that incorporates interaction with the

intention to explain missing heritability.

4.1.1 Methods Based on Logic Regression

In our first method where we performed logic regression across the whole genome,

as explained in Section 3.1, we used a selected set of the top genes27 to reduce the

dimension of the space to search for SNP interaction. False positive results are a
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common concern in GWAS due to the large number of tests performed. Our interaction

analysis was performed on the SNPs after removing the SNPs that were found likely

to be the results of genotyping error. One limitation of our approach was that we

performed the check for genotyping error after we fixed our final model size using 10-

fold cross validation to reduce the computational cost. We recognize that if we had

checked and removed all the SNPs with potential genotyping errors first, the model size

may have been changed.

Despite the limitation of our approach, we explored the possible interactions across

the whole genome and our results illustrate the power of the logic-regression-based

GWAS analysis to uncover new genetic susceptibilities and explain to a greater extent

the CD genetics. In view of the standard approach of assessing the marginal effects

of single SNPs one at a time, the method of logic regression proposed here provides

a clear advance over single-SNP analysis. It can search for more biologically-plausible

forms of SNP effects (incorporating interaction of redundancy and concurrence) with

greater degrees of association indicated by appreciably larger values of odds ratios. In

our analysis of CD GWAS data, we discovered 17 SNPs using this method and 15 of

those genes were previously identified in different studies11,12.

In the second method that we proposed, as explained in Section 3.2, we adopted

the filtering technique26 to select variants based on statistically significant marginal

association to reduce the dimension of the search space for the interaction phase. One

limitation of using SNPs filtered based on marginal association to test for interaction

is that it would yield limited power if the form of the interaction is qualitative, i.e.,
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the subgroup effects may cancel out when averaged26. We performed logic regression

analysis across the whole genome of Dataset 1 using the filtered SNPs only and ob-

tained a 19-SNP interaction model. We found four genes, namely HLA-DRB1, NOD2,

C13orf31 and HLA-B, that have been already found in other GWASs for the pheno-

type of interest in Dataset 1. To our knowledge, the other 15 SNPs/genes of the 19

SNPs that we found are potentially novel susceptibility genes for the GWAS of the phe-

notype of interest for Dataset 1 (PPP1R14C, LOC100287927, LOC100129711, SATB1,

LOC730109, LOC441806, TRPM5, RBM38, LOC100287114, LOC100288073, DTWD2,

LOC100289273, BATF3, NKX2-5, C3orf21). However, these findings should be vali-

dated in order to rule-out the possibility of spurious associations due to population

stratification or genotyping errors.

4.1.2 Method Based on SNP-Pair Analysis

The last method that we proposed is based on SNP pair analysis, as explained in

Section 3.3. We used the filtered SNPs explained in previous method for Dataset 1 and

explored the SNP pairs with genotypes that are only observed in cases with a sufficient

frequency and no control has the specific genotypes. We have analyzed the pattern of

being positive for any of those SNP pairs among the cases of Dataset 1 using factor

analysis. A validation analysis has been performed on the SNP-pairs of Dataset 2 that

were mapped with Dataset 1. Both the data have been generated through different

platforms and we only had to use the data that were matched between the two data

sets, which substantially reduced the number of available SNPs in the analysis. We
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found 2 factors containing 5 SNP pairs that are present in the cases only and also work

on Dataset 2.

We discussed two methods to distinguish the factors that would work in Dataset

2 and the ones that would not. They were unable to distinguish between factors that

would work and would not. We have found 6 SNP pairs that work both in Dataset 1 and

Dataset 2 based on the information of the number of shared pathways each SNP-pair

has. Five of these SNP pairs are contained in the 2 factors that work in both Dataset

1 and Dataset 2. To our knowledge, the genes obtained from this SNP pair analysis

(FAM82A1, LOC100288304, ATP10A, C20orf151, ESF1, MCTP1, DKFZp564N2472,

LOC100289273, FLJ44881) have not been previously found to be associated with the

disease of interest for these datasets.

4.2 Future Work

Further research goals can be established based on the work presented in this thesis

for more complex diseases. Additionally, the findings of this study should be validated

with other studies to eliminate the possibilities of spurious associations. Specifically,

some of the scopes of further research would be:

• To conduct validation studies on the methodologies presented in this paper.

• To develop methods of classification to distinguish factors that can clearly separate

the cases from the controls in GWAS.

58



• To examine each allele (or haplotype) for exploring the same interaction idea by

logic regression.

• To develop other methods of SNP set selection other than filtering based on

marginal association or candidate gene approach.

• To develop techniques for mapping GWASs of different diseases with different

genotyping platforms.

• To develop methodologies that would help to find more specific solution to the

“missing heritability” problem.

4.3 Conclusion

Increasing attention has been paid recently to interaction based analysis of GWAS. Such

SNP-SNP interaction analysis could provide further valuable insights to understand the

mechanism of the genetic variation which might modify the disease risks. The findings

of this thesis work might help uncover the mechanism of many diseases that have not yet

been found based on the patterns of the SNP interactions. We did not find a satisfactory

solution to the missing heritability problem through this thesis work; however, in this

work we showed the importance of considering SNP interactions and their exploration

in considering genetic contributions of disease etiology, prevention and treatment.

59



Appendix A

R Codes

A.1 Logic Regression across Whole Genome

###################################
#######CHECK FOR GENOTYPING ERROR ########
###################################

#FOR CASE

for (i in 3:3){
#Load list of SNPs to plot , first column should be

SNP, second column chromosome location
listToLook=read.table("ListToLook.txt",sep="\t",

header=FALSE)
#Get the SNPs corresponding to the ith Chromosome
ListToLook=listToLook[listToLook [ ,2]==i,1]

#Read the genotype file
infile=paste("Affx_20070205 fs1_gt_IBD_0",i,".txt",

sep="")
gene=read.table(infile ,header=FALSE)

#Get the genotype for each SNP
keep=which(as.character(gene [,1]) %in% as.character

(ListToLook))
genoCases=gene[keep ,c(1,3)]
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#Remove genotype file
rm(gene)

#Read the signal file
infile=paste("Affx_20070205f_signal_CD_0",i,".txt",

sep="")
gene=read.table(infile ,header=TRUE)

#Get the signal for each SNP
keep=which(as.character(gene [,2]) %in% as.character

(ListToLook))
allelesCases=gene[keep ,]

#Remove genotype file
rm(gene)
for (j in 1: length(ListToLook)){

#Get the Allele #1 and Allele #2 for each
SNP

allele1=allelesCases[allelesCases [ ,2]==as.
character(ListToLook[j]),seq(6,dim(
allelesCases)[2],by=2)]

allele2=allelesCases[allelesCases [ ,2]==as.
character(ListToLook[j]),seq(7,dim(
allelesCases)[2],by=2)]

#Get the genotype for each SNP
genotype=genoCases[genoCases [ ,1]==as.

character(ListToLook[j]) ,2]
genotypesort=sort(unique(genotype))
color <-c(’color1 ’,’color2 ’,’color3 ’)

if(length(unique(genotype))==1){

for(k in 1:1){
if(genotypesort[k]==’AA’){color[k]<-

"red"}
else if(genotypesort[k]==’TT’){color

[k]<-"green"}
else if(genotypesort[k]==’CC’){color

[k]<-"yellow"}
else if(genotypesort[k]==’GG’){color

[k]<-"blue"}
else if(genotypesort[k]==’AT’){color

[k]<-"orange"}
else if(genotypesort[k]==’AC’){color

[k]<-"grey"}
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else if(genotypesort[k]==’AG’){color
[k]<-"purple"}

else if(genotypesort[k]==’CT’){color
[k]<-"pink"}

else if(genotypesort[k]==’GT’){color
[k]<-"black"}

else if(genotypesort[k]==’CG’){color
[k]<-"brown"}

}
#Plot the Allele #1 vs Allele #2 signal

clustered by genotype
plot(1,type="n",xlim=c( -0.5 ,2.5),ylim=c

( -0.5 ,2.5),xlab=’Allele 1’,ylab=’Allele 2
’,main=as.character(ListToLook[j]))

points(allele1[1, genotype ==as.character(
genotypesort [1])],allele2[1,genotype ==as.
character(genotypesort [1])],col=color [1])

legend(2,2, c(as.character(genotypesort [1])
), cex=0.8, col=c(color [1]), pch =21:22 ,
lty =1:2)}

if(length(unique(genotype))==2){
for(k in 1:2){

if(genotypesort[k]==’AA’){color[k]<-
"red"}

else if(genotypesort[k]==’TT’){color
[k]<-"green"}

else if(genotypesort[k]==’CC’){color
[k]<-"yellow"}

else if(genotypesort[k]==’GG’){color
[k]<-"blue"}

else if(genotypesort[k]==’AT’){color
[k]<-"orange"}

else if(genotypesort[k]==’AC’){color
[k]<-"grey"}

else if(genotypesort[k]==’AG’){color
[k]<-"purple"}

else if(genotypesort[k]==’CT’){color
[k]<-"pink"}

else if(genotypesort[k]==’GT’){color
[k]<-"black"}

else if(genotypesort[k]==’CG’){color
[k]<-"brown"}

}
#Plot the Allele #1 vs Allele #2 signal

clustered by genotype
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plot(1,type="n",xlim=c( -0.5 ,2.5),ylim=c
( -0.5 ,2.5),xlab=’Allele 1’,ylab=’Allele 2
’,main=as.character(ListToLook[j]))

points(allele1[1, genotype ==as.character(
genotypesort [1])],allele2[1,genotype ==as.
character(genotypesort [1])],col=color [1])

points(allele1[1, genotype ==as.character(
genotypesort [2])],allele2[1,genotype ==as.
character(genotypesort [2])],col=color [2])

legend(2,2, c(as.character(genotypesort [1])
,as.character(genotypesort [2])), cex=0.8,
col=c(color [1], color [2]), pch =21:22 , lty

=1:2)}

if(length(unique(genotype))==3){
for(k in 1:3){

if(genotypesort[k]==’AA’){color[k]<-
"red"}

else if(genotypesort[k]==’TT’){color
[k]<-"green"}

else if(genotypesort[k]==’CC’){color
[k]<-"yellow"}

else if(genotypesort[k]==’GG’){color
[k]<-"blue"}

else if(genotypesort[k]==’AT’){color
[k]<-"orange"}

else if(genotypesort[k]==’AC’){color
[k]<-"grey"}

else if(genotypesort[k]==’AG’){color
[k]<-"purple"}

else if(genotypesort[k]==’CT’){color
[k]<-"pink"}

else if(genotypesort[k]==’GT’){color
[k]<-"black"}

else if(genotypesort[k]==’CG’){color
[k]<-"brown"}
}

plot(1,type="n",xlim=c( -0.5 ,2.5),ylim=c
( -0.5 ,2.5),xlab=’Allele 1’,ylab=’Allele 2
’,main=as.character(ListToLook[j]))

points(allele1[1, genotype ==as.character(
genotypesort [1])],allele2[1,genotype ==as.
character(genotypesort [1])],col=color [1])

points(allele1[1, genotype ==as.character(
genotypesort [2])],allele2[1,genotype ==as.
character(genotypesort [2])],col=color [2])
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points(allele1[1, genotype ==as.character(
genotypesort [3])],allele2[1,genotype ==as.
character(genotypesort [3])],col=color [3])

legend(2,2, c(as.character(genotypesort [1])
,as.character(genotypesort [2]),as.
character(genotypesort [3])), cex=0.8, col
=c(color [1], color [2], color [3]), pch
=21:22 , lty =1:2)}

#Save the plot as a PDF file
outfile=paste(as.character(ListToLook[j]),’

Cases.pdf’,sep="")
dev.copy(pdf ,outfile)
dev.off()

}
}

#FOR CONTROL

for (i in 3:3){
#Load list of SNPs to plot , first column should be

SNP, second column chromosome location
listToLook=read.table("ListToLook.txt",sep="\t",

header=FALSE)
#Get the SNPs corresponding to the ith Chromosome
ListToLook=listToLook[listToLook [ ,2]==i,1]

#Read the genotype file for the 58C group
infile=paste("Affx_20070205 fs1_gt_58C_0",i,".txt",

sep="")
gene=read.table(infile ,header=TRUE)

#Get the genotype for each SNP
keep=which(as.character(gene [,1]) %in% as.character

(ListToLook))
genoControls58C=gene[keep ,c(1,3)]

#Remove genotype file
rm(gene)

#Read the genotype file for the NBS group
infile=paste("Affx_20070205 fs1_gt_NBS_0",i,".txt",

sep="")
gene=read.table(infile ,header=TRUE)

#Get the genotype for each SNP
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keep=which(as.character(gene [,1]) %in% as.character
(ListToLook))

genoControlsNBS=gene[keep ,c(1,3)]

#Remove genotype file
rm(gene)

#Read the signal file for the 58C group
infile=paste("Affx_20070205f_signal_58C_0",i,".txt"

,sep="")
gene=read.table(infile ,header=TRUE)

#Get the signal for each SNP
keep=which(as.character(gene [,2]) %in% as.character

(ListToLook))
allelesControls58C=gene[keep ,]

#Remove genotype file
rm(gene)

#Read the signal file for the NBS group
infile=paste("Affx_20070205f_signal_NBS_0",i,".

txt",sep="")
gene=read.table(infile ,header=TRUE)

#Get the signal for each SNP
keep=which(as.character(gene [,2]) %in% as.character

(ListToLook))
allelesControlsNBS=gene[keep ,]

#Remove genotype file
rm(gene)

for (j in 1: length(ListToLook)){
#Get the Allele #1 and Allele #2 for each

SNP
allele1=allelesControls58C[

allelesControls58C [ ,2]==as.character(
ListToLook[j]),seq(6,dim(
allelesControls58C)[2],by=2)]

allele2=allelesControls58C[
allelesControls58C [ ,2]==as.character(
ListToLook[j]),seq(7,dim(
allelesControls58C)[2],by=2)]

allele3=allelesControlsNBS[
allelesControlsNBS [ ,2]==as.character(
ListToLook[j]),seq(6,dim(
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allelesControlsNBS)[2],by=2)]
allele4=allelesControlsNBS[

allelesControlsNBS [ ,2]==as.character(
ListToLook[j]),seq(7,dim(
allelesControlsNBS)[2],by=2)]

#Get the genotype for each SNP
genotype58C=genoControls58C[genoControls58C

[ ,1]==as.character(ListToLook[j]) ,2]
genotypeNBS=genoControlsNBS[genoControlsNBS

[ ,1]==as.character(ListToLook[j]) ,2]
genotypesort=sort(unique(genotype58C))
color <-c(’color1 ’,’color2 ’,’color3 ’)

if(length(unique(genotype58C))==1){
for(k in 1:1){

if(genotypesort[k]==’AA’){color[k]<-
"red"}

else if(genotypesort[k]==’TT’){color
[k]<-"green"}

else if(genotypesort[k]==’CC’){color
[k]<-"yellow"}

else if(genotypesort[k]==’GG’){color
[k]<-"blue"}

else if(genotypesort[k]==’AT’){color
[k]<-"orange"}

else if(genotypesort[k]==’AC’){color
[k]<-"grey"}

else if(genotypesort[k]==’AG’){color
[k]<-"purple"}

else if(genotypesort[k]==’CT’){color
[k]<-"pink"}

else if(genotypesort[k]==’GT’){color
[k]<-"black"}

else if(genotypesort[k]==’CG’){color
[k]<-"brown"}

}
#Plot the Allele #1 vs Allele #2 signal

clustered by genotype
plot(1,type="n",xlim=c( -0.5 ,2.5),ylim=c

( -0.5 ,2.5),xlab=’Allele 1’,ylab=’Allele 2
’,main=as.character(ListToLook[j]))

points(allele1[1, genotype58C ==as.character(
genotypesort [1])],allele2[1, genotype58C ==
as.character(genotypesort [1])],col=color
[1])
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points(allele3[1, genotypeNBS ==as.character(
genotypesort [1])],allele4[1, genotypeNBS ==
as.character(genotypesort [1])],col=color
[1])

legend(2,2, c(as.character(genotypesort [1])
), cex=0.8, col=c(color [1]), pch =21:22 ,
lty =1:2)}

if(length(unique(genotype58C))==2){
for(k in 1:2){

if(genotypesort[k]==’AA’){color[k]<-
"red"}

else if(genotypesort[k]==’TT’){color
[k]<-"green"}

else if(genotypesort[k]==’CC’){color
[k]<-"yellow"}

else if(genotypesort[k]==’GG’){color
[k]<-"blue"}

else if(genotypesort[k]==’AT’){color
[k]<-"orange"}

else if(genotypesort[k]==’AC’){color
[k]<-"grey"}

else if(genotypesort[k]==’AG’){color
[k]<-"purple"}

else if(genotypesort[k]==’CT’){color
[k]<-"pink"}

else if(genotypesort[k]==’GT’){color
[k]<-"black"}

else if(genotypesort[k]==’CG’){color
[k]<-"brown"}

}
#Plot the Allele #1 vs Allele #2 signal

clustered by genotype
plot(1,type="n",xlim=c( -0.5 ,2.5),ylim=c

( -0.5 ,2.5),xlab=’Allele 1’,ylab=’Allele 2
’,main=as.character(ListToLook[j]))

points(allele1[1, genotype58C ==as.character(
genotypesort [1])],allele2[1, genotype58C ==
as.character(genotypesort [1])],col=color
[1])

points(allele1[1, genotype58C ==as.character(
genotypesort [2])],allele2[1, genotype58C ==
as.character(genotypesort [2])],col=color
[2])

points(allele3[1, genotypeNBS ==as.character(
genotypesort [1])],allele4[1, genotypeNBS ==
as.character(genotypesort [1])],col=color
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[1])
points(allele3[1, genotypeNBS ==as.character(

genotypesort [2])],allele4[1, genotypeNBS ==
as.character(genotypesort [2])],col=color
[2])

legend(2,2, c(as.character(genotypesort [1])
,as.character(genotypesort [2])), cex=0.8,
col=c(color [1], color [2]), pch =21:22 , lty

=1:2)}

if(length(unique(genotype58C))==3){
for(k in 1:3){

if(genotypesort[k]==’AA’){color[k]<-
"red"}

else if(genotypesort[k]==’TT’){color
[k]<-"green"}

else if(genotypesort[k]==’CC’){color
[k]<-"yellow"}

else if(genotypesort[k]==’GG’){color
[k]<-"blue"}

else if(genotypesort[k]==’AT’){color
[k]<-"orange"}

else if(genotypesort[k]==’AC’){color
[k]<-"grey"}

else if(genotypesort[k]==’AG’){color
[k]<-"purple"}

else if(genotypesort[k]==’CT’){color
[k]<-"pink"}

else if(genotypesort[k]==’GT’){color
[k]<-"black"}

else if(genotypesort[k]==’CG’){color
[k]<-"brown"}

}
plot(1,type="n",xlim=c( -0.5 ,2.5),ylim=c

( -0.5 ,2.5),xlab=’Allele 1’,ylab=’Allele 2’,
main=as.character(ListToLook[j]))
points(allele1[1, genotype58C ==as.character(

genotypesort [1])],allele2[1, genotype58C ==
as.character(genotypesort [1])],col=color
[1])

points(allele1[1, genotype58C ==as.character(
genotypesort [2])],allele2[1, genotype58C ==
as.character(genotypesort [2])],col=color
[2])

points(allele1[1, genotype58C ==as.character(
genotypesort [3])],allele2[1, genotype58C ==
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as.character(genotypesort [3])],col=color
[3])

points(allele3[1, genotypeNBS ==as.character(
genotypesort [1])],allele4[1, genotypeNBS ==
as.character(genotypesort [1])],col=color
[1])

points(allele3[1, genotypeNBS ==as.character(
genotypesort [2])],allele4[1, genotypeNBS ==
as.character(genotypesort [2])],col=color
[2])

points(allele3[1, genotypeNBS ==as.character(
genotypesort [3])],allele4[1, genotypeNBS ==
as.character(genotypesort [3])],col=color
[3])

legend(2,2, c(as.character(genotypesort [1])
,as.character(genotypesort [2]),as.
character(genotypesort [3])), cex=0.8, col
=c(color [1], color [2], color [3]), pch
=21:22 , lty =1:2)}

#Save the plot as a PDF file
outfile=paste(as.character(ListToLook[j]),’

Controls.pdf’,sep="")
dev.copy(pdf ,outfile)
dev.off()

}
}

#######################################
######CROSS VALIDATION IN LOGIC REGRESSION ######
#######################################

rm(list=ls())

args=commandArgs ();
##use this to divide to different jobs to parallel run ##
start=as.numeric(args [4]);
end=as.numeric(args [5]);

library(LogicReg)

# Reading phenotype data
aa=read.table("pheno.txt",header=T,sep="\t")
resp=aa$pd
length(resp)
sum(resp)

69



path=NULL

# Reading the top 123 genes data
path = read.table("topgenedata.txt", header=T)
print(dim(path))

dev=NULL
for (i in start:end){

set.seed(i)
res=logreg(resp=resp ,bin=t(path[,-c(1:5) ]),type=3,

select=3,ntrees=c(1,9),nleaves=c(1 ,20))
dev=res$cvscores

}

devout=paste("Top_Gene_CV_1_9","_",start ,"_",end ,".txt",sep
="")

write.table(dev ,devout ,col.names=F,sep="\t")

################################
############ LOGIC REGRESSION ########
################################

rm(list=ls())

args=commandArgs ();
##use this to divide to different jobs to parallel run ##
start=as.numeric(args [4]);
end=as.numeric(args [5]);

library(LogicReg)

# Reading phenotype data
aa=read.table("pheno.txt",header=T,sep="\t")
resp=aa$pd
length(resp)
sum(resp)

path = read.table("topgenedata.txt", header=T)
print(dim(path))

dev=NULL
any1=NULL

for (i in start:end){
set.seed(i)

70



res=logreg(resp=resp ,bin=t(path[,-c(1:5) ]),type=3,
select=1,ntrees=9,nleaves =17)

any1=c(res$model$score , i, k)
dev= rbind(dev , any1)

}

devout=paste("Res","_",start ,"_",end ,".txt",sep="")
write.table(dev ,devout ,col.names=F,sep="\t")

####################################
###########NON-NESTED MODEL TEST#########
####################################

#Reading independent SNP data
snp17 = read.table("indSNPdata.txt", header=T)

#Reading logic tree data
tree9_data = read.table("tree9dataL.txt", header=T)

m_snp17 <- glm(snp17 [,18] ~ snp17 [,1]+ snp17 [,2]+ snp17 [,3]+
snp17 [,4]+ snp17 [,5]+ snp17 [,6]+ snp17 [,7]+ snp17 [,8]+ snp17
[,9]+ snp17 [ ,10]+ snp17 [ ,11]+ snp17 [ ,12]+ snp17 [ ,13]+ snp17
[ ,14]+ snp17 [ ,15]+ snp17 [ ,16]+ snp17 [,17], data = snp17 ,
family=binomial)

m_tree9 <- glm(tree9_data [,10] ~ tree9_data [,1]+ tree9_data
[,2]+ tree9_data [,3]+ tree9_data [,4]+ tree9_data [,5]+ tree9_
data [,6]+ tree9_data [,7]+ tree9_data [,8]+ tree9_data[,9],
data = tree9_data , family=binomial)

library(games)
clarke(m_snp17 , m_tree9)

###################################
###CROSS -VALIDATED LOG ODDS RATIO PLOT###
###################################

rm(list=ls())

args=commandArgs ();
####use this to divide to different jobs to parallel run

####
start=as.numeric(args [4]);
end=as.numeric(args [5]);

yourData <- read.table("CD_data.txt", header = F)
pheno <- read.table("pheno.txt", header = T)
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colnames(yourData)[1:6] <- c("sl", "snp", "chr", "position",
"gene", "etc")

#colnames(yourData)[7:4690] <- rownames(pheno)

rownames(pheno)<- colnames(yourData)[7:4690]

#### Partitioning case and control ####
dim(yourData)
dim(pheno)

myData <- t(yourData[,-c(1:6) ])
colnames(myData)<- as.character(yourData [,1])
myData_p<- cbind(myData , pheno$pd)
colnames(myData_p)[8059] <- "resp"

yourData_case <- myData_p[myData_p[ ,8059]==1 ,]
yourData_control <- myData_p[myData_p[ ,8059]==0 ,]

#### Shuffling ####
set.seed (2010)
yourData_case <-yourData_case[sample(nrow(yourData_case)) ,]
yourData_case [1:10 , 1:10]
set.seed (2020)
yourData_control <-yourData_control[sample(nrow(yourData_

control)) ,]
yourData_control [1:10 , 1:10]

#Create 10 equally size folds
folds_case <- cut(seq(1,nrow(yourData_case)),breaks =10,

labels=FALSE)
folds_control <- cut(seq(1,nrow(yourData_control)),breaks

=10, labels=FALSE)

#Perform 10 fold cross validation

test_set <- NULL
for(i in start:end){

#Segement your data by fold using the which() function
testIndexes_case <- which(folds_case==i,arr.ind=TRUE)
testIndexes_control <- which(folds_control ==i,arr.ind=

TRUE)

### Generating training and test set ###
# Case #

testData_case <- yourData_case[testIndexes_case , ]
trainData_case <- yourData_case[-testIndexes_case , ]

# Control #
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testData_control <- yourData_control[testIndexes_
control , ]

trainData_control <- yourData_control[-testIndexes_
control , ]

## Merging the case and control training dataset ##
training_data <- rbind(trainData_case , trainData_control)
resp <- training_data [ ,8059]
td1 <- t(training_data [ , -8059])
td2 <- cbind(yourData[,c(1:6)], td1)

## Merging the case and control training dataset ##
test_data <- rbind(testData_case , testData_control)

library(LogicReg)

set.seed (2010)
seed <- sample (1000:5000 , 30, replace=F)

score <- NULL
for (j in 1: length(seed)){
set.seed(seed[j])
y<- logreg(resp=resp ,bin=t(td2[,-c(1:6) ]),type=3,select=1,

ntrees=9,nleaves =17)
devi <- c(y$model$score , seed[j])
score <- rbind(score , devi)
}

min_score <- score[which(score [,1] %in% min(score [,1])) ,2]
print(min_score)

set.seed(min_score)
getY <- logreg(resp=resp ,bin=t(td2[,-c(1:6) ]),type=3,select

=1,ntrees=9,nleaves =17)
print(getY)

getY$model [[5]][[1]] ####tree 1 information
tree=as.character(getY$model [[5]][[1]][3])
xs1=( strsplit(tree ,"knot = c"))[[1]][2]
xs2=strsplit(xs1 ,"), neg")
x3=strsplit(xs2 [[1]][1] ,’\\(’) ####this contains the x

variable number , if not 0
tree1x=as.numeric(strsplit(x3[[1]][2] ,",")[[1]])

getY$model [[5]][[2]] ####tree 2 information
tree=as.character(getY$model [[5]][[2]][3])
xs1=( strsplit(tree ,"knot = c"))[[1]][2]
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xs2=strsplit(xs1 ,"), neg")
x3=strsplit(xs2 [[1]][1] ,’\\(’) ####this contains the x

variable number , if not 0
tree2x=as.numeric(strsplit(x3[[1]][2] ,",")[[1]])

getY$model [[5]][[3]] ####tree 3 information
tree=as.character(getY$model [[5]][[3]][3])
xs1=( strsplit(tree ,"knot = c"))[[1]][2]
xs2=strsplit(xs1 ,"), neg")
x3=strsplit(xs2 [[1]][1] ,’\\(’) ####this contains the x

variable number , if not 0
tree3x=as.numeric(strsplit(x3[[1]][2] ,",")[[1]])

getY$model [[5]][[4]] ####tree 4 information
tree=as.character(getY$model [[5]][[4]][3])
xs1=( strsplit(tree ,"knot = c"))[[1]][2]
xs2=strsplit(xs1 ,"), neg")
x3=strsplit(xs2 [[1]][1] ,’\\(’) ####this contains the x

variable number , if not 0
tree4x=as.numeric(strsplit(x3[[1]][2] ,",")[[1]])

getY$model [[5]][[5]] ####tree 5 information
tree=as.character(getY$model [[5]][[5]][3])
xs1=( strsplit(tree ,"knot = c"))[[1]][2]
xs2=strsplit(xs1 ,"), neg")
x3=strsplit(xs2 [[1]][1] ,’\\(’) ####this contains the x

variable number , if not 0
tree5x=as.numeric(strsplit(x3[[1]][2] ,",")[[1]])

getY$model [[5]][[6]] ####tree 6 information
tree=as.character(getY$model [[5]][[6]][3])
xs1=( strsplit(tree ,"knot = c"))[[1]][2]
xs2=strsplit(xs1 ,"), neg")
x3=strsplit(xs2 [[1]][1] ,’\\(’) ####this contains the x

variable number , if not 0
tree6x=as.numeric(strsplit(x3[[1]][2] ,",")[[1]])

getY$model [[5]][[7]] ####tree 7 information
tree=as.character(getY$model [[5]][[7]][3])
xs1=( strsplit(tree ,"knot = c"))[[1]][2]
xs2=strsplit(xs1 ,"), neg")
x3=strsplit(xs2 [[1]][1] ,’\\(’) ####this contains the x

variable number , if not 0
tree7x=as.numeric(strsplit(x3[[1]][2] ,",")[[1]])

getY$model [[5]][[8]] ####tree 8 information
tree=as.character(getY$model [[5]][[8]][3])
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xs1=( strsplit(tree ,"knot = c"))[[1]][2]
xs2=strsplit(xs1 ,"), neg")
x3=strsplit(xs2 [[1]][1] ,’\\(’) ####this contains the x

variable number , if not 0
tree8x=as.numeric(strsplit(x3[[1]][2] ,",")[[1]])

getY$model [[5]][[9]] ####tree 9 information
tree=as.character(getY$model [[5]][[9]][3])
xs1=( strsplit(tree ,"knot = c"))[[1]][2]
xs2=strsplit(xs1 ,"), neg")
x3=strsplit(xs2 [[1]][1] ,’\\(’) ####this contains the x

variable number , if not 0
tree9x=as.numeric(strsplit(x3[[1]][2] ,",")[[1]])

both=c(tree1x , tree2x , tree3x , tree4x , tree5x , tree6x ,
tree7x , tree8x , tree9x)

rows=both[both!=0]

leaf <- data.frame(rows , td2[rows ,1:6])
print(leaf)

OR_train <- exp(getY$model$coef [2:10])
print(OR_train)

test_set <- rbind(test_set , test_data)
}

devout=paste("Res","_",start ,"_",end ,".txt",sep="")
write.table(test_set ,devout ,col.names=T, row.names=T, sep="

\t")

##################################
#THE FOLLOWING CODE IS REPEATED FOR THE REMAINING 9-FOLD OF

CROSS -VALIDATION AS WELL

rm(list=ls())

#Fold 1

test_data <- read.table("Res_1_1.txt", header=T)

tree1 <- test_data$X9339
tree2 <- as.numeric(test_data$X5138 & (1- test_data$X2811))
tree3 <- as.numeric(test_data$X22301 & (1- test_data$X12005)

)
tree4 <- test_data$X3065
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tree5 <- as.numeric ((1- test_data$X14253) & (1- test_data$
X15307))

tree6 <- as.numeric(test_data$X8181 & (1- test_data$X17684))
tree7 <- as.numeric ((1- test_data$X2877) | test_data$X16029)
tree8 <- as.numeric(test_data$X588 | (1- test_data$X28009))
tree9 <- as.numeric (((1- test_data$X24507) | test_data$

X11980) & (1- test_data$X2179 ))

val_test <- data.frame(tree1 , tree2 , tree3 , tree4 , tree5 ,
tree6 , tree7 , tree8 , tree9 , resp=test_data [ ,8059])

OR_train <- exp(c(-0.349, +0.445 , -0.521, +0.477 ,
+0.486 , +0.368 , -0.439, +4.17 , -0.622))

val_test$or_t1<- rep(1, nrow(val_test))
val_test$or_t1[val_test$tree1 == 1]<- OR_train [1]
val_test$or_t2<- rep(1, nrow(val_test))
val_test$or_t2[val_test$tree2 == 1]<- OR_train [2]
val_test$or_t3<- rep(1, nrow(val_test))
val_test$or_t3[val_test$tree3 == 1]<- OR_train [3]
val_test$or_t4<- rep(1, nrow(val_test))
val_test$or_t4[val_test$tree4 == 1]<- OR_train [4]
val_test$or_t5<- rep(1, nrow(val_test))
val_test$or_t5[val_test$tree5 == 1]<- OR_train [5]
val_test$or_t6<- rep(1, nrow(val_test))
val_test$or_t6[val_test$tree6 == 1]<- OR_train [6]
val_test$or_t7<- rep(1, nrow(val_test))
val_test$or_t7[val_test$tree7 == 1]<- OR_train [7]
val_test$or_t8<- rep(1, nrow(val_test))
val_test$or_t8[val_test$tree8 == 1]<- OR_train [8]
val_test$or_t9<- rep(1, nrow(val_test))
val_test$or_t9[val_test$tree9 == 1]<- OR_train [9]

val_test$OR_total <- val_test$or_t1 * val_test$or_t2 * val_
test$or_t3* val_test$or_t4* val_test$or_t5 * val_test$or_
t6 * val_test$or_t7* val_test$or_t8* val_test$or_t9

rownames(val_test)<- rownames(test_data)

write.csv(val_test , "Test1.csv", row.names=T)

###########################################

rm(list=ls())

test1 <- read.csv("Test1.csv", header=T)
test2 <- read.csv("Test2.csv", header=T)
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test3 <- read.csv("Test3.csv", header=T)
test4 <- read.csv("Test4.csv", header=T)
test5 <- read.csv("Test5.csv", header=T)
test6 <- read.csv("Test6.csv", header=T)
test7 <- read.csv("Test7.csv", header=T)
test8 <- read.csv("Test8.csv", header=T)
test9 <- read.csv("Test9.csv", header=T)
test10 <- read.csv("Test10.csv", header=T)

test_data <- rbind(test1 , test2 , test3 , test4 , test5 , test6 ,
test7 , test8 , test9 , test10)

write.csv(test_data , "test_data.csv", row.names=T)

or_data <- test_data

#now make your lovely plot
library(ggplot2)

pdf("CV_OR_plot_CD.pdf", height=5, width =7)

RR_case <- log(or_data$OR_total[or_data$resp ==1])
RR_cont <- log(or_data$OR_total[or_data$resp ==0])

## calculate the density - don’t plot yet
densCase <- density(RR_case)
densControl <- density(RR_cont)
## calculate the range of the graph
xlim <- range(densControl$x,densCase$x)
ylim <- range(0, densControl$y, densCase$y)
#pick the colours
caseCol <- rgb(1,0,0,0.4)
contCol <- rgb(0,0,1,0.4)
## plot the carrots and set up most of the plot parameters
plot(densCase , xlim = xlim , ylim = ylim , xlab = ’log Total 

Odds Ratio ’,
main = ’Distribution of log Total Odds Ratio \nfor 

Cases and Controls ’,
panel.first = grid())

#put our density plots in
polygon(densCase , density = -1, col = caseCol)
polygon(densControl , density = -1, col = contCol)
## add a legend in the corner
legend(’topleft ’,c(’Cases ’,’Controls ’),

fill = c(caseCol , contCol), bty = ’n’,
border = NA)

dev.off()
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A.2 Two Stage Procedure to Check Interaction across

Whole Genome

############################################
###FILTERING BY MARGINAL ASSOCIATION IN DATASET 1###
############################################

rm(list=ls(all=TRUE))

args=commandArgs ();
##use this to divide to different jobs to parallel run ##
start=as.numeric(args [4]);
end=as.numeric(args [5]);

library(lmtest)

for (chr in start:end){

genodata <- read.table("A01Chr1.txt", header=T)
pheno <- read.table("pheno.txt", header=T)
res <- pheno$pd

dim(genodata)

odds <- seq(1,dim(genodata)[1] ,2)

me_all <- NULL
for (i in odds){

me<- glm(res~t(genodata[i,-c(1:4) ]) + t(genodata[i
+1,-c(1:4) ]), family=binomial)

or1 <- exp(me$coefficients [2])
or2 <- exp(me$coefficients [3])
pval1 <- summary(me)$coef[,"Pr(>|z|)"][2]
pval2 <- summary(me)$coef[,"Pr(>|z|)"][3]
menull <- glm(res~1, family=binomial)
lrt <- lrtest(me , menull)$"Pr(>Chisq)"[2]
me_sum <- data.frame(genodata[i,1], genodata[i,2],

genodata[i,4], or1 , or2 , pval1 , pval2 , lrt)
me_all <- rbind(me_all , me_sum)

}
}

dim(me_all)

devout=paste("Me_Chr1","_",start ,"_",end ,".txt",sep="")
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write.table(me_all ,devout ,col.names=F,row.names=F, sep="\t"
)

### THE PROCESS IS REPEATED FOR ALL 22 CHROMOSOMES OF
DATASET 1.

##########################################
##CROSS VALIDATION FOR LOGIC REGRESSION FOR DATASET 1##
#########################################

rm(list=ls())

args=commandArgs ();
####use this to divide to different jobs to parallel run

####
start=as.numeric(args [4]);
end=as.numeric(args [5]);

library(LogicReg)

# Reading phenotype data
aa=read.table("pheno.txt",header=T,sep="\t")
resp=aa$pd
length(resp)
sum(resp)

# Reading filtered SNPs that are marginally significant.
path = read.table("Marginal_Sig_SNP_data.txt", header=T)
print(dim(path))

set.seed (2014)
ran_seed <- sample (1000:5000 , 30, replace=FALSE)

dev=NULL
for (i in start:end){

set.seed(ran_seed[i])
res=logreg(resp=resp ,bin=t(path[,-c(1:4) ]),type=3,

select=3,ntrees=c(1,9),nleaves=c(1 ,25))
dev=res$cvscores

}

devout=paste("CV","_",start ,"_",end ,".txt",sep="")
write.table(dev ,devout ,col.names=F,sep="\t")

############################
###LOGIC REGRESSION IN DATASET 1###
###########################
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rm(list=ls())

args=commandArgs ();
####use this to divide to different jobs to parallel run

####
start=as.numeric(args [4]);
end=as.numeric(args [5]);

library(LogicReg)

# Reading outcome data
aa=read.table("pheno.txt",header=T,sep="\t")
resp=aa$pd
length(resp)
sum(resp)

path = read.table("Marginal_Sig_SNP_data.txt", header=T)
print(dim(path))

set.seed (2100)
ran_seed <- sample (2900:3000 , 30, replace=FALSE)

dev=NULL
any1=NULL

for (i in start:end){
set.seed(ran_seed[i])
res=logreg(resp=resp ,bin=t(path[,-c(1:4) ]),type=3,

select=1,ntrees=5,nleaves =19)
any1=cbind(res$model$score , ran_seed[i])
dev= rbind(dev , any1)

}

devout=paste("Res","_",start ,"_",end ,".txt",sep="")
write.table(dev ,devout ,col.names=F, row.names=F, sep="\t")

#########################################################
################NON -NESTED MODEL TEST ####################
#########################################################

#Reading independent SNP data

indSNP = read.table("indSNPdata.txt", header=T)
snp19 = indSNP

#Reading logic tree data
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tree5_data = read.table("tree5dataL.txt", header=T)

m_snp19 <- glm(snp19 [,20] ~ snp19 [,1]+ snp19 [,2]+ snp19 [,3]+
snp19 [,4]+ snp19 [,5]+ snp19 [,6]+ snp19 [,7]+ snp19 [,8]+ snp19
[,9]+ snp19 [ ,10]+ snp19 [ ,11]+ snp19 [ ,12]+ snp19 [ ,13]+ snp19
[ ,14]+ snp19 [ ,15]+ snp19 [ ,16]+ snp19 [ ,17]+ snp19 [ ,18]+ snp19
[,19], data = snp19 , family=binomial)

m_tree5 <- glm(tree5_data[,6] ~ tree5_data [,1]+ tree5_data
[,2]+ tree5_data [,3]+ tree5_data [,4]+ tree5_data[,5], data =
tree5_data , family=binomial)

library(games)

clarke(m_snp19 , m_tree5)

A.3 Exploration of the SNP Pairs

#################################################
###SEARCH FOR SIGNIFICANT SNP PAIRS IN CASES BUT NOT IN

CONTROL###
#################################################

rm(list=ls(all=TRUE))

args=commandArgs ();
####use this to divide to different jobs to parallel run

####
start=as.numeric(args [4]);
end=as.numeric(args [5]);

filtered <- read.table("Filtered_Data.txt", header=F)
pheno <- read.table("pheno.txt", header=T)
res <- pheno$pd

me_all <- NULL
for (i in start:end){
fil_loop <- filtered[-i,]

for (j in 1:dim(fil_loop)[1]){
pair_search <- table(t(filtered[i, -c(1:5) ])

, t(fil_loop[j, -c(1:5) ]), res)[,,2]>=13
& table(t(filtered[i, -c(1:5) ]), t(fil_
loop[j, -c(1:5) ]), res)[,,1]==0

geno_pos <- which(pair_search =="TRUE")
gen <- paste(geno_pos , collapse=’,’)
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int_sum <- data.frame(filtered[i,1],
filtered[i,2], filtered[i,3], filtered[i
,5], fil_loop[j,1], fil_loop[j,2], fil_
loop[j,3], fil_loop[j,5], gen)

me_all <- rbind(me_all , int_sum)
}

}

dim(me_all)

devout=paste("X-Z_Int","_",start ,"_",end ,".txt",sep="")
write.table(me_all ,devout ,col.names=F,row.names=F, sep="\t"

)

#
##############################################################

#GENERATING DATA WITH PATTERNS OF POSITIVES IN SIGNIFICANT
SNP PAIRS IN DATASET 1 CASES#

#
##############################################################

rm(list=ls(all=TRUE))

args=commandArgs ();
####use this to divide to different jobs to parallel run

####
start=as.numeric(args [4]);
end=as.numeric(args [5]);

# Reading the SNP data which has been filtered based on
marginal association

filtered <- read.table("Filtered_Data.txt", header=F)
phenotype <- read.table("pheno.txt", header=T)
res <- phenotype$pd

colnames(filtered)[6:1225] <- as.character(phenotype$id)

highriskpair <- read.csv("Pair_Analysis2x3.csv", header=T)

seq_num <- data.frame(start = seq(6,1225, 20), end = seq(25,
1225, 20))

samples=NULL
for (j in seq_num[start ,1]: seq_num[end ,2]){
riskpair=NULL
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for (i in 1:nrow(highriskpair)){
x<- sum(filtered[,j][ filtered [,2] %in%

highriskpair[i,1] & filtered [,5] %in%
highriskpair[i ,3]]== highriskpair[i,7] &
filtered[,j][ filtered [,2] %in%
highriskpair[i,4] & filtered [,5] %in%
highriskpair[i ,6]]== highriskpair[i,8])

riskpair <- cbind(riskpair ,x)
}
samples <- rbind(samples ,riskpair)

}

dim(samples)

devout=paste("Riskpair_percase","_",start ,"_",end ,".txt",
sep="")

write.table(samples ,devout ,col.names=F,row.names=F, sep="\t
")

##########################
##MAPPING DATASET 1 AND DATASET 2##
##########################

rm(list=ls(all=TRUE))

filtered <- read.table("FilteredRawD1.txt", header=F)

gene <- as.matrix(filtered[,-c(1:3) ])

#####MAKE THE GENOTYPES UNIFORM #####
gene[(gene==’0’)]=’00’
gene[(gene==’TA’)]=’AT’
gene[(gene==’CA’)]=’AC’
gene[(gene==’GA’)]=’AG’
gene[(gene==’TC’)]=’CT’
gene[(gene==’TG’)]=’GT’
gene[(gene==’GC’)]=’CG’

devout=paste("FilteredRawThaiUniform.txt",sep="")
write.table(gene ,devout ,col.names=F,row.names=F, sep="\t")

highriskpair <- read.csv("Pair_Analysis2x3.csv", header=T)

JJThai_filtered <- read.table("JJsnpThaiFiltered.txt",
header=F)

JJThai_filtered <- as.matrix(JJThai_filtered [,-1])
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ThaiMappedJJ=highriskpair[which (( highriskpair [,1] %in%
JJThai_filtered [,1]) & (highriskpair [,4] %in% JJThai_
filtered [,1])) ,]

UniformThaiGeno <- read.table("FinalGenoThai.txt", header=F)
UniformThaiGeno <- as.matrix(UniformThaiGeno [,-1])

ThaiMappedJJ$Rawgtsnp1 <- rep("NA", nrow(ThaiMappedJJ))
ThaiMappedJJ$Rawgtsnp2 <- rep("NA", nrow(ThaiMappedJJ))

for (i in 1:nrow(ThaiMappedJJ)){
if (ThaiMappedJJ[i ,7]==2){

ThaiMappedJJ[i,9]= UniformThaiGeno[
UniformThaiGeno [ ,1]== ThaiMappedJJ
[i,1] ,2]

} else {
if (ThaiMappedJJ[i ,7]==1){

ThaiMappedJJ[i,9]= UniformThaiGeno[
UniformThaiGeno [ ,1]== ThaiMappedJJ
[i,1] ,3]

} else {
if (ThaiMappedJJ[i ,7]==0){

ThaiMappedJJ[i,9]= UniformThaiGeno[
UniformThaiGeno [ ,1]== ThaiMappedJJ
[i,1] ,4]

}
}
}

}

for (i in 1:nrow(ThaiMappedJJ)){
if (ThaiMappedJJ[i ,8]==2){

ThaiMappedJJ[i ,10]= UniformThaiGeno[
UniformThaiGeno [ ,1]== ThaiMappedJJ
[i,4] ,2]

} else {
if (ThaiMappedJJ[i ,8]==1){

ThaiMappedJJ[i ,10]= UniformThaiGeno[
UniformThaiGeno [ ,1]== ThaiMappedJJ
[i,4] ,3]

} else {
if (ThaiMappedJJ[i ,8]==0){

ThaiMappedJJ[i ,10]= UniformThaiGeno[
UniformThaiGeno [ ,1]== ThaiMappedJJ
[i,4] ,4]

}
}
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}
}

TMJ=paste("Risk_Pairs_Thai.txt",sep="")
write.table(ThaiMappedJJ ,TMJ ,col.names=F,row.names=F, sep="

\t")

##############################
#####FACTOR ANALYSIS IN DATASET 1#####
##############################

rm(list=ls(all=TRUE))

JJpairs <- read.table("Uncor_data_JJ_Thai_Mapped.txt",
header=T)

# Determine Number of Factors to Extract
library(nFactors)
ev <- eigen(cor(JJpairs)) # get eigenvalues
eigenv <- ev$values

devout=paste("Eigen_val.txt",sep="")
write.table(eigenv ,devout ,col.names=T, row.names=T, sep="\t

")

# Varimax Rotated Principal Components
# Retaining 13 components
library(psych)
library(GPArotation)
fit <- principal(JJpairs , nfactors =13, rotate="varimax",

score=TRUE)
fit # print results

loads <- as.matrix(fit$loadings)

devout=paste("Factor_loadings.txt",sep="")
write.table(loads ,devout ,col.names=T, row.names=T, sep="\t"

)

loads0 <- loads
for (i in 1:636){

for (j in 1:13){
if (loads0[i,j]>=-0.4 & loads0[i,j] <=0.4){

loads0[i,j] = 0
}

}
}
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devout=paste("Factor_loadings_0_0.4. txt",sep="")
write.table(loads0 ,devout ,col.names=T, row.names=T, sep="\t

")

loads0 .4<- read.table("Factor_loadings_0_0.4. txt", header=T
)

loads4 <- loads0 .4

rc1 <- which(loads4 [,1]!=0)
rc2 <- which(loads4 [,2]!=0)
rc3 <- which(loads4 [,3]!=0)
rc4 <- which(loads4 [,4]!=0)
rc5 <- which(loads4 [,5]!=0)
rc6 <- which(loads4 [,6]!=0)
rc7 <- which(loads4 [,7]!=0)
rc8 <- which(loads4 [,8]!=0)
rc9 <- which(loads4 [,9]!=0)
rc10 <- which(loads4 [,10]!=0)
rc11 <- which(loads4 [,11]!=0)
rc12 <- which(loads4 [,12]!=0)
rc13 <- which(loads4 [,13]!=0)

save.image("Fact13.RData")
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