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Abstract

A finite amplitude theory is developed for the evolution of marginally unstable
modes of time-varying abyssal currents on a sloping bottom. The evolution of
this abyssal current is modeled by a geostrophic baroclinic theory of convective
destabilization which allows for large-amplitude isopycnal deflection and filters
out shear-based barotropic instabilities. Linear stability theory is used to gener-
ate a marginal stability curve. There are two different situations to be considered.
One is for marginally unstable modes not located at the minimum of the marginal
stability curve. An amplitude equation shows that the modes eventually equili-
brate with a new finite amplitude periodic solution. The other case corresponds

to the modes at the minimum of the marginal stability curve.
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Chapter 1

Introduction

When viewed globally, the vertical temperature structure of the ocean can be
separated into two distinct zones. The first is an upper, near the surface region,
roughly 1 km deep. that is characterized by the temperature sharply decreasing
with depth. This upper region is called the “thermocline zone™ and its lower
boundary is called sometimes simply the “thermocline.” Ocean currents in the
thermocline zone are principally driven by atmospheric winds and latitudinal
variations in solar heating. On the planectary scale, these currents are the domi-
nant mechanism by which the warm waters of the tropics are transported to the
polar regions.

Below the thermocline, and extending to the bottom, is the vast volume of
cold, dense ocean water (i.c.. between 0°C and 2°C and some 3 to 4 kmn thick),
that is called the abyssal zone or region. The abyssal region is characterized
by a relatively weak vertical temperature gradient. Abyssal currents tend to be
somewhat slower than near-surface currents and are principally driven by deep
convection and density contrasts with the surrounding ocean. These deep ocean

currents are the dominant mechanism by which cold polar water returns to the
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equator (and beyond).

It has long been recognized that the contribution from abyssal currents should
be included in the overall heat budget of the oceans (e.g., Wunsch, 1984). In
particular, the role of the abyssal ocean in setting the global average ocean tem-
perature is significant. Even though widespread areas of the ocean surface have
temperatures on the order of 20°C or so, it has been estimated by Worthington
(1981). for example, that the impact of the abyssal ocean is to dramatically lower
the global average temperature of the ocean to be only about 3.5°C. In addi-
tion, abyssal currents transport salt. and nutrients as well as other chemical and
biological components, over great distances.

The water masses of the abyss are created by the cooling of the ocean surface
by the atmosphere in the polar regions (Warren, 1981). As the surface waters
are cooled, they become more dense and, due to gravity. they sink toward the
bottom. The existence of such deep cold water at other latitudes means that
there must be a large scale deep circulation. the abyssal circulation, which carries
the water formed in the polar regions to the rest of the ocean (Warren, 1981; see,
also, Pedlosky, 1996).

The development of a theoretical understanding of the abyssal circulation, its
sources, pathways and interaction with the rest of the ocean, has been a challeng-
ing problem in physical oceanography. Clearly, there are enormous technological
problems associated with collecting oceanographic data, 4 to 5 km deep, from
ships located on a rapidly moving ocean surface. Irrespective of the fact that
the collection of oceanographic data from the abyss is difficult. the problem of
understanding the planetary scale dynamics of the abyssal circulation is one of
the central problems in physical oceanography. The abyssal circulation, taken
together with the surface circulation, is the means by which incoming solar heat-

ing is distributed latitudinally and vertically deep into the ocean. Besides being

o
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an interesting oceanographic problem in its own right, understanding the abyssal
circulation is obviously an important component in climate dynamics and vari-
ability.

Stommel and Arons (1960) provided the first dynamical explanation for the
deep circulation. They showed. based on the Sverdrup vorticity balance, that
source-driven abyssal currents on a J-plane must flow equatorward. However,
away from the source region, the Sverdrup vorticity balance does not determine
the flow direction. This raises the interesting question concerning determining
the dynamical balance(s) that is (are) responsible for maintaining basin scale
abyssal flow that is far removed from the source region.

When dense water is formed (e.g., because of atmospheric cooling) it may
reach the bottom. If the bottom is sloping, then the combined influences of the
Coriolis force and density contrasts may force the current to be transversely con-
strained and flow with the coastline to its right (left) in the northern (southern)
hemisphere. Examples include the Denmark Strait Overflow (DSO. Smith, 1976).
the formation and flow of Antarctic Bottom Water (Whitehead and Worthing-
ton, 1982), deep water formation in the Adriatic Sea (Zoccolotti and Salusti,
1987), and deep water replacement in the Strait of Georgia (LeBlond et al.. 1991
Karsten et al.. 1995, Masson, 2002). As shown by Nof (1983). a fully grounded
abyssal water mass lying over sloping topography flows, in the fully nonlinear but
reduced gravity dynamical limit, nondispersively and steadily in the along slope
direction, irrespective of the specific height or vorticity field within the abyssal
water mass.

These two dynamical limits (i.e., the Stommel-Arons and the Nof balances)
provide a theoretical scenario for the initiation and maintenance of source-driven
grounded abyssal flow. That is, in high latitude regions where the deep water is

produced (often over sloping topography), the Sverdrup vorticity balance initiates
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equatorward flow. Once produced, this water mass can become grounded (i.e.,
“attached” to the bottom) and geostrophically adjusted, maintaining a Nof-like
balance that permits sustained basin scale meridional quasi-steady and coher-
ent abyssal flow. Of course, this picture leaves out many important dynamical
processes such as diabatic and planetary effects, baroclinicity, instability, topo-
graphic separation and mixing. In addition, such a scenario cannot explain cross-
equatorial abyssal currents where the underlying assumptions of geostrophically
balanced grounded flow must necessarily break down (see, e.g., Choboter and
Swaters, 2003, 2004) or the super-inertial instability process associated with fric-
tional super-critical abyssal overflows (Swaters, 2003).

Swaters (1991) was the first paper to describe the linear baroclinic instability
of a grounded abyssal current on a sloping bottom. The instability mechanism
modeled by Swaters (1991) is the release of the available gravitational potential
energy (AGPE) associated with a relatively dense water mass sitting directly on
a sloping bottom surrounded by relatively lighter water. As the abvssal cur-
rent becomes unstable, down slope propagating plumes develop on the offshore
isopycnal incropping. The AGPE is transferred to perturbation potential energy
in the overlying water column that is organized into topographic Rossby waves.
Jiang and Garwood (1996). Jungclaus et al. (2001), Etling et al. (2000), and
others, have concluded that the instabilities observed in three-dimensional nu-
merical simulations of overflows on a continental slope arise due to the Swaters
(1991) instability mechanism.

Subsequently, Swaters (1993) showed that the Swaters (1991) model was an
infinite dimensional non-canonical Hamiltonian system and that it was possible
to derive Arnol'd-like nonlinear stability conditions. Karsten and Swaters (1996)
extended the Swaters (1993) analysis to allow for more realistic topographic con-

figurations.
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Notwithstanding the success of the linear instability theory, if the model is to
correctly describe the observed transition of an unstable abyssal current to a new
equilibrium configuration that continues to allow sustained basin scale abyssal
flow, it was necessary to understand the predictions of the theory in the nonlinear
regime. Mooney and Swaters (1996) developed a finite amplitude instability
theory for the Swaters (1991) model. They showed that it was possible for the
instabilities to saturate and for the unstable abyssal current to evolve toward a
new quasi-equilibrinm state or to form isolated coherent abyssal domes. Swaters
(1998) presented numerical simulations based on the Swaters (1991) model and
showed that predictions of the weakly nonlinear Mooney and Swaters (1996)
theory remained true even in the fully nonlinear regime.

Poulin and Swaters (1999a,b.c) extended the Swaters (1991) model to the
case where the overlying water column is continuously stratified. Subsequently.
Reszka, Swaters and Sutherland (2002) developed the linear instability theory for
this new model and presented numerical simulations for the nonlinear evolution
of source driven abyssal flows for parameter values characteristic of the DSO.
In addition to showing how this model could reproduce the spatial and temporal
characteristics of the mesoscale variability observed in the DSO, these simulations
were also able to reproduce the formation of surface intensified eddies that have
been observed in satellite imagery of the DSO (Bruce. 1995).

All of the above instability for abyssal currents has been based on assuming
the underlying flow is steady. However, recent work on the baroclinic instability of
time varying flow has suggested that time dependence can have a profound effect
on the stability properties of ocean currents. For example, Pedlosky and Thomson
(2003), in a study of the two-layer Phillips’ model of baroclinic instability of a
zonal flow on a 3-plane (Pedlosky, 1987), have shown that simple time variations

in the zonal current can destabilize the flow even if the time average of the
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current is itself stable (and vice-versa). Such time dependence occurs on many
different time scales and for many different reasons. Some of these reasons include
(daily) tidally-forced flow variations, (weekly) weather system induced variability,
seasonal variations or even longer time scale interannual variability. In the context
of source driven abyssal flow it is easy to imagine that there are seasonal variations
in the intensity of the atmospheric cooling which produces the deep convection
and this, in turn, will result in a time varying abyssal current.

The principal purpose of this thesis is to develop a weakly nonlinear theory
for a marginally unstable, time-varying abyssal current. We point out that Pavec,
Carton and Swaters (2004) have recently extended, following the ideas in Pedlosky
and Thomson (2003), the linear stability theory of Swaters (1991) to the case of a
marginally unstable unsteady abyssal flow having an oscillatory component. Our
contribution here is to extend the weakly nonlinear instability analysis of Mooney
and Swaters (1996) to marginally unstable, time-varying abyssal currents, using
the methods described by Pedlosky and Thomson (2003).

That is, we extend the work of Pavec et al. (2004) in two important ways.
First, we extend the work of Pavec et al. (2004) into the nonlinear regime. Second.
we develop the theory for the case of a marginally unstable unsteady abyssal flow
having an oscillatory component where the underlying corresponds to the “point
of marginal stability” (Drazin and Reid. 1981). As we will see the details of these
two calculations are dramatically different.

The model for this thesis is the Swaters (1991) equations for abyssal flow.
Briefly, this is a two-layer model that is stably stratified with variable bottom
topography on an f-plane. The model is not completely quasi-geostrophic and
the abyssal layer can have a height or thickness field that intersects the bottom
(see Fig. 1.1). However, because it is assumed that the thickness of the abyssal

layer is small compared to the mean thickness of the overlying water columu, the
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dynamics of the surrounding ocean is, in fact, quasi-geostrophic, with the poten-
tial vorticity (PV) containing relative vorticity, vortex stretching associated with
the interface between the abyssal current and the upper layer, and a background

PV gradient associated with a sloping bottoni.

Figure 1.1: Geometry of the model used in this thesis

The outline of this thesis is as follows. In Chapter 2, we derive the Swaters
(1991) model in two different ways. First, we derive the equations using the

asymptotic methods of Swaters (1991). In addition, we present a derivation
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of the model based on the relevant PV equations. Chapter 2 then goes on to
describe the general linear, nonlinear and normal mode stability theory for abyssal
currents based on the Swaters (1991) model. Several general stability properties
are presented including necessary conditions for instability, a semi-circle theorem
and a high wavenumber cutoff. Finally, in Chapter 2 the normal stability problem
for a constant, or un-sheared, abyssal flow on a sloping bottom is solved and
the stability characteristics are described. These properties are essential to the

building of the finite amplitude instability theory for time varying flows that is

developed in Chapters 3 and 4.

As shown by Mooney and Swaters (1996), and as is well known in the nonlin-
ear theory of baroclinic instability in the context of the Phillips” model (Pedlosky,
1970, 1972, 1982a.b, 1987), the mathematical details of the development of the
weakly nonlinear theory depend crucially on the underlying perturbation mode
being examined. Chapter 3 develops the weakly nonlinear instability theory for
a time varying abyssal flow. when the marginally unstable mode does not corre-
spond to the “point of marginal stability.” In this situation, at each stage of the
asymptotic expansion, the governing partial differential equations are linear so
that higher harmonics are generated only as a second order effect.

In Chapter 3. we derive and analyze the nonlinear governing equation for the
modal amplitude when the background flow is a time periodic function. The
Mooney and Swaters (1996) solution is reviewed. We show that in the finite
amplitude limit, the normal mode amplitude, when the abyssal flow is periodic
in time, must satisfy a nonlinear Mathieu equation. Two situations involving a
time periodic abyssal flow are considered in some detail in Chapter 3.

The first situation corresponds to when the normal mode is slightly unstable,
i.e., the abyssal current is slightly supercritical. We show that even when the

nonlinear terms are neglected in the (normal mode) amplitude equation there

(0.4]
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exist periodic, with respect to time, abyssal flow configurations that can stabi-
lize what is, in the time averaged sense, nevertheless an unstable abyssal flow.
However, this situation only occurs for a relatively small set of flow parameters.
Generically, when the underlying abyssal flow is already marginally unstable, we
show that periodic time variability is not a stabilizing influence. However, the
presence of the nonlinear terms in the amplitude equation ultimately always leads
to the amplitude oscillating in time.

We investigate the role of periodic time variability in a marginally unstable
abyssal flow by numerically integrating the amplitude equation. In particular,
we describe the evolution of the normal mode amplitude when the period of the
time varying part of the abyssal flow is short. comparable, and long, and when
the magnitude of the time varying part of the abyssal flow is small, comparable,
and large, respectively, compared to the solution of the amplitude equation when
time variability is not present (i.e., the Mooney and Swaters (1996) solution).
Generally speaking, for the low frequency variability, the normal mode ampli-
tude still evolves periodically although the temporal structure is complex. For
the higher frequency time variability. the normal mode amplitude continues to
oscillate in time, and appears to be globally bounded. but the oscillations are no
longer periodic at a single frequency.

The second situation corresponds to when the normal mode is slightly stable,
i.e., the abyssal current is slightly subcritical. We show that when the nonlin-
car terms are neglected in the (normal mode) amplitude equation there exist
time periodic abyssal flow configurations that can destabilize what is. in the time
averaged sense, nevertheless a stable abyssal flow and that this is the generic
situation. However, the presence of the nonlinear terms in the amplitude equa-
tion ultimately always leads to the amplitude oscillating in time. We present a

numerical simulation that illustrates this property.
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In Chapter 4, we develop the weakly nonlinear instability theory for time
varying abyssal flows when the marginally unstable mode does correspond to the
“point of marginal stability.” In many ways, this is the real nonlinear stability
problem. But this analysis is complicated by the fact that, even at lowest order,
the unstable mode is governed by a fully nonlinear partial differential equation
(this was first shown for the Phillips’ model for the baroclinic instability of a
steady zonal flow by Pedlosky. 1982a.b, and later was more completely discussed
by Warn and Gauthier, 1989).

This means that, even at lowest order, there are an infinity of harmonics
produced. Following the solution procedure of Mooney and Swaters (1996), we
introduce a spectral decomposition technique that leads to an infinite set of cou-
pled nonlinear partial differential equations that will describe the spatial and
temporal evolution of the modal amplitudes.

If the infinite set of modal amplitude equations is truncated, on a purely ad hoc
basis, to include only the fundamental mode and the mean flow it generates. then
the resulting set of equations can be shown to be equivalent to the sine-Gordon
equation with time-dependent forcing. This was first shown for the Phillips’
model for the baroclinic instability of a steady flow by Gibbon et al. {1979) and
for the abyssal flow problem by Mooney and Swaters (1996). Unfortunately, we
have not been able to find exact solutions to our truncated model equations for a
time varying mean flow. However, Mooney and Swaters (1996) have shown that,
without the forcing terms associated with the time dependent abyssal current.
the truncated model has a soliton solution that can be identified as a steadily-
travelling coherent abyssal dome. We derive transport equations, by introducing
a nonlinear WKB technique, describing the evolution of the soliton solution of
the truncated model assuming that the time variation of the underlying abyssal

current is slow compared to the advective time scale associated with the soliton.

10
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Finally, in Chapter 3, there is a discussion of the results, concluding remarks,

and suggestions for further research.

11
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Chapter 2

Derivation of the governing

equations

Geophysical fluids are characterized by a striking difference between the length
scale of the vertical motion compared to that of the horizontal motion. In the
_ atmosphere, for example. the vertical movement of air associated with typical
weather system takes place almost entirely in the region between the surface of
the earth and the tropopause. a distance of, on average, about 10 &m. Coherent
horizontal movement in the atmosphere occurs on a much vaster scale: a typical
wavelength for a series of disturbances organized as planetary Rosshy waves may
be 1000 to 2000 kmns, or more. In the ocean, the depth of the mid-ocean is
about 5 km, and the dynamical horizontal length scale is about 100 Am. We may
take advantage of these scale differences by developing a theory which, to leading
order, ignores vertical accelerations compared to horizontal accelerations. The
resulting equations are the shallow water equations. In this thesis, we use a two

layer system of shallow water equations (sce Fig. 1) as the starting point for the
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development of our baroclinic model for abyssal currents.

The outline of this Chapter is as follows. In Section 2.1, we derive the shallow
water equations for each layer in our model based on a scaling argument applied
to the inviscid. incompressible Navier-Stokes equations with constant density. In
Section 2.2, we develop scalings to highlight the dvnamics we expect to occur in
the specific physical situation studied here. In Section 2.3 we derive the Swaters
(1991) model as a systematic asymptotic reduction of the nondimensional two
layer shallow water equations derived in Section 2.2. In Section 2.4, we present
an alternative derivation of the model equations based on the potential vorticity
formulation of the two layer shallow water equations. In Section 2.5, we review,
based on the theory in Swaters (1991), the known linear stability characteris-
tics for general steady abyssal flow solutions to the model including necessary
conditions for instability, a high wave number cutoff and a semi-circle theorem.
In addition, the general form of the linear and nonlinear stability equations is
derived. In Section 2.6, we describe the steady abyssal current solutions that we
will use to develop the theory in this thesis and present some specific stability

results for this flow configuration.

2.1 The two-layer shallow water equations

We begin our derivation of the model equations by first deriving the shallow water
equations from the inviscid incompressible Navier-Stokes equations with constant
density for a single layer of fluid. Once this is done. it will be straightforward to
see how the two layer model can be obtained. We also remark that our derivation
will assume f-plane dynamics so that the latitudinal variation of the Coriolis
parameter is neglected.

The Navier-Stokes equations for an inviscid, incompressible fluid with constant

13
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density, in the presence of gravity, can be written in the form
~ 1 ~
u + (u-Viu+ f(€; xu) = —;Vp — g€s, (2.1.1)
V.ou=0, (2.1.2)

where u(x,y, z,t) = (u, v, w) where u, v, and w are the along slope. across slope,
and vertical velocities, respectively, p is the constant density, p(x,y.z,t) is the
total pressure, V = (0;,0,.0.), and f = 2Qsin(fy) where € is the magnitude of
the earth’s rotation vector (Q = 27 radians/day) and 6, is the reference latitude
for the f-plane approximation (Pedlosky. 1987). ¢ = 9.8 m/s? is the gravitational
constant. and €3 is the unit basis vector in the positive z-direction. Equations
(2.1.1) and (2.1.2) are in vector form. It is more convenient to write (2.1.1) and

(2.1.2) in the component form

1 ,
U + ulty + VUy + wu, — fv = —=ps. (2.1.3)
P
1
U UV F UV 0, + fu = —=py. (2.14)
P&
1 -
Wy + Uy + VWy + W, = ——p; — g, (2.1.3)
P
uy + vy +u; = 0. (2.1.6)

The derivation of the shallow water equations is facilitated by introducing
appropriate scalings for the various variables. Let H and L be the horizontal and

vertical length scales, respectively. The aspect ratio, denoted as A,. given by

A, =H/L<<1,

—~
o
—
=1

~

for the geophysical flows we are interested in.
If the horizontal velocities are scaled by U and the vertical velocity by W,

then the continuity equation, (2.1.6), scales like

uy + v, + w, = 0.
L L 1]
14
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Assuming that w, scales like u, and v,, implies that

UH
W= —— = A,U.
- {

When we scale the vertical momentum equation, (2.1.5), we obtain

. g 211940 — 1.

uy + uwy + vw, + ww, = —;p: -4g.
W UW Ui Wiy

T L L H

where we have introduced the time scale 7. If we use the so called advective time
scale assumption 7" = L/U and substitute in the above relation for 1V, we find
that all the terms on the left hand side of (2.1.5). i.e.. the vertical acceleration
terms, are O(A,U?/L). Now. typical mid ocean scales are about (LeBlond and

Mysak, 1978, Gill, 1982. Pedlosky, 1987. Mellor, 1996)
U=10""m/s, L=10°m, A, = 1072 (H ~ 5 km)

= A,U%/L ~ 0107 m/s?). (2.1.8)

Since g >~ 10 m/s?, clearly, the vertical acceleration terms are insignificant
compared to the gravitational term in the vertical momentum equation. It follows
that the only term that can balance g must be the pressure gradient term. which
implies that to a significant approximation. the vertical momentum equation
reduces to

1

;p; = —g. (2.1.9)

Integrating this equation with respect to = leads to
p(x,y, 2. 0) = —pgz + o[z, y. t), (2.1.10)

where ¢ is a “constant” of integration. Note that ¢ is independent of z. It follows
that p;, = ¢,, so that the pressure gradient terms in the horizontal momentum

equations are independent of z. Thus, if (u.v) are initially independent of z,

15
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it follows that it is consistent to suppose that they will remain so subsequently.
That is, we assume u, = v, =0 for all ¢t > 0.

We now consider a two layer configuration where each layer has a different
density. For convenience, we denote the upper layer (i.e.. the overlying ocean) as
layer one, and the lower layer (i.e.. the abyssal layer), as layer two and subscript,
where necessary, the various variables with a “17 or a “2” to denote the respective
layer.

Thus, the upper layer pressure will be of the form

plz.y.z.t) = —prgz + o1 (. y. 1) (2.1.11)

If we denote the position of the free surface associated with the upper laver to
be given by z = n(r.y.t) and that the pressure on the free surface is constant
(which we can take to be zero). it follows that the dynamic boundary condition
is given by

0=—prgy(x.y.t) + o, (x,y.1). (2.1.12)
which determines ¢,(z,y.t). Thus p, is determined by combining (2.1.11) and
(2.1.12). to give,

pi(T.y. 2 t) = =p1gz + pgn. (2.1.13)
To determine ps, it is convenient to write the analogue of (2.1.11) in the form
pax y, 2 t) = prgH — pag(z+ H) + 02z y. t). (2.1.14)

The dynamic boundary condition on the interface between the abyssal layer and
overlying fluid, located at z = — I/ — sy + h (see Fig. 1), is that the total pressure

must be continuous across the interface. i.e..
m(z,y,—H —sy+ ht) =pox,y.—H — sy + h.t). (2.1.15)
It follows from (2.1.15), (2.1.13) and (2.1.14) that,
plg('r)-i-. H+sy—h)=pgH — pag(—H — sy + h+ H) + ¢, (2.1.16)

16
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which can be re-arranged into the form

d2 = p1gn + pag'(h — sy). (2.1.17)

where ¢’ = g(pa — p1)/p2 > 0 is called the reduced gravity. Substituting (2.1.17)

into (2.1.14), we see that
p2=prg(H +n) = paz + H) + pag'(h = sy). (2.1.18)

We now develop the appropriate kinematic boundary conditions for the upper
layer. For notational convenience we delete the 17 subscript for the moment.
As mentioned above, the position of the ocean surface is given by z = 5 (x.y.t).
It follows that

D

7)7(: —-n)=0onz=n(x,y.t), (2.1.19)

where the total time derivative D/Dt is given by

( ) ( ¢ ¢
b_9 -V:(——.Lui—*.—'l,r,—d—:Lu"(—.

Dt~ ot tu ot Ox Ay dz

So, (2.1.19) can be expressed as
(O + udy + 10y +wd:)(z—7n) =0onz=n(r.y.t).

from which it follows that

D
w =1+ + vy = ——1—;2—] on z=n(x.y.t).

where Dy /Dt is the total “horizontal™ time derivative given by

Du_0 o 0, 9 9
Dt ot T 5 T ey T ey

where uy = (u,v) and Vy = (9;.9,).

It therefore follows, re-introducing the “17 subscript, that

wy =N+ une + 0y on =1 (x,y,t). (2.1.20)

17
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and, similarly, on the interface between the abyssal layer and overlying ocean,

located at z = —H — sy + h, that
wy = (0, +u 0y +v19y) (h —sy)on z = —H —sy+ h. (2.1.21)

We now turn to writing the continuity equation (2.1.6) in a more convenient
form for the upper layer. To begin, we integrate (2.1.6) vertically over the entire

upper layer water column, i.e.,

n
/ Uy + Uy . dz =

H-sy+h

This gives us
un(x,y.n.t) —wi(x.y, —H = sy+ht) = —(n+ H + sy — h)(uz +vyy). (2.1.22)

If (2.1.20) and (2.1.21) are substituted into (2.1.22). we obtain

Dy(m+H +sy—h)
Dt

+(n+ H+sy—h)(ur +vyy) =0, (2.1.23)
which can be re-arranged into
m+sy—=h)y+uy-Vyn+sy—h)+(m+H+sy—h)Vy-uy, (2.1.24)
and further into the form
m=h)e+Vy-lumn+ H+sy—h)] =0, (2.1.25)
where we have used the vector identity
V.(ba) =aV-b+b-Va, (2.1.26)

for an arbitrary scalar function a (x) and vector function b (x).
The development of the kinematic boundary couditions for the lower layer

follows in exactly the same manner. For the abyssal layer, the “upper boundary”

18
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is the interface between the abyssal layer and the overlying ocean (located at
z = —H — sy + h) and the “lower boundary” is the ocean bottom (located at

z = —H — sy). Thus, we find that

D
wy = F}tl(_ﬁ —sy+h)onz=—~H—sy+h, (2.1.27)
wo = —%{;(—H —sy)onz=—H —sy. (2.1.28)

Hence, if we vertically integrate the continuity equation (2.1.6) over the lower
layer thickness, i.e.,
—H-sy+h
/ Ung + Voy + Woy dz =0, (2.1.29)
~H-sy
it follows that

wa(r,y, —H — sy + hot) —wa(x.y.—H — sy, t) + (ua, +v9y)h = 0. (2.1.30)

If (2.1.27) and (2.1.28) are substituted into (2.1.30), we obtain

D D
T)’{-(—H —sy+h)— ITIZ(——H —sy) + (u2r + vay)h =0, (2.1.31)
which simplifies to
l.)”h,
-+ 27 v, Jh = 0, 2.1.32
T (a7 + vay)h (2.1.32)
or, equivalently,
hi + Vi - (uayh) = 0. (2.1.33)

We summarize our work so far. Because we need to nondimensionalize the
two layer shallow water cquations and then subsequently introduce an asymptotic
expansion we will now introduce asterisks into the equations so that variables with
asterisks are to be considered dimensional. Also, we will delete the H subscript
from the gradient and the velocity fields since henceforth we will only work with

the horizontal gradient and velocity fields, respectively.

19
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Thus, from (2.1.1) and (2.1.26), the upper layer equations are given by

Wi+ (05 V7 4 J(@ % u}) + gV =0, (2.134)
(" =h")e + V- ui(n"+ H+sy" = h7)] =0, (2.1.35)

where we recall that
1
—V'p =gV
I

The lower layer equations are given by

~ 1 .
Uy + (uy- Viu; + f(€3 x uj) + —p—V‘p.:, =0, (2.1.36)
hi+ V- [w3h'] =0, (2.1.37)

with pressure continuity across the interface given by

Py = pign” + p2g'(h” = s"y"). (2.1.38)

2.2 Scalings for the two layer shallow water equa-

tions

We now scale the two layer shallow water equations to obtain the Swaters (1991)
baroclinic abyssal current model. We will introduce variables without an asterisk
and these are henceforth all non-dimensional. The horizontal length is the internal
deformation associated with the overlying occan, not the abyssal layer. This is
the appropriate length scale if potential vorticity (PV) variations associated with
deformations of the interface between the two layers is to be the same order of

magnitude as the relative vorticity in the upper layer (Swaters, 1991). That is,

(@ y")=L"(z,y) = g 7 ‘ (z,y), (2.2.1)

20
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where L* = (¢’H)%/J is the internal radius of deformation of the upper layer
(Pedlosky. 1987). Note that (g’ H)% is the phase speed of a long internal gravity
wave unaffected by rotation (Pedlosky, 1987).

Second, we introduce the advective time scaling,

"= (fL"/s*g')t. (2.2.2)

We note that s*¢g’/f is the Nof speed, which is the speed at which an isolated
abyssal eddy travels along a bottom with constant slope s assuming that there
is no baroclinic interaction with the surrounding fluid (Nof, 1983). The Nof speed
will form the velocity scaling for the abyssal layer.

Third, the abyssal layer height is scaled as
h™=s"L*h. (2.2.3)

where s* is the slope of the bottom topography. More generally. s* can be regarded
as a typical value for the bottom slope and thus s”L* will be a characteristic
bottom variation in the height of the topography over an internal deformation
radius.

Fourth, the upper layer velocity and variations in the height of the ocean

surface are scaled as follows

* S'.(ll §
u, = -—f—ul. (224)
sg'L?
Nt = J 7. (2.2.5)
g

These scalings may seem a little unusual at first glance. Note that we have scaled
the upper layer velocity field by the Nof velocity. However, as shown by Swaters
(1991), this is the correct scaling to use if the relative vorticity is to scale similar

to the potential vorticity changes induced by the abyssal layer height, i.e.,
O(V'xu])~O(fh'/H)=>u]~0(s"q/[).

21
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The scaling for * is constructed so that uj and 7 are in geostrophic balance to
leading order. That is, to leading order, we assume that the horizontal pressure
gradient scales like the Coriolis terms.

Fifth, the velocity and pressure fields in the abyssal current are assumed to
be in geostrophic balance, to leading order, and as mentioned earlier, the abyssal

velocity is scaled by the Nof velocity. That is,

(},S‘
u) = —uy, (2.2.6)
f
Py = pL7g's" . (2.2.7)

These are the basic scalings for the dimensional model. We now substitute
these definitions, so to speak. into the dimensional shallow water equations and
obtain the nondimensional equations. When one does that, there will be a sin-
gle nondhmensional parameter, denoted as s. and related to the bottom slope

parameter s*, via the relation

s*L*
s = 2.2.8
i (2.2.8)
This relationship can be rewritten as
x !
S
s= S0l (2.2.9)

which allows us to interpret the parameter s as the ratio of the Nof speed to the
speed of long baroclinic gravity waves. A small s acts as a low band pass filter to
remove the long gravity waves and to focus attention on baroclinic sub-inertial
processes (Swaters and Flierl, 1991).

Finally, we comment on what typical values for the scalings would correspond
to abyssal currents. Typical values for the dimensional parameters appropriate
for a continental shelf (see Swaters and Flierl, 1991) are h* =~ 40 m, H = 250
m, L* =~ 15 km, t* = T days which implies a Nof velocity of about 3 ¢rn/s. For

deeper basin scale abyssal flows, such as the DSO, tvpical values would be about

SV
()
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h* = 100 m, H = 4000 m, L™ = 15 km, t* =~ 7 days which implies a Nof velocity,
again, of about 3 cm/s (see Reszka et al., 2002). Typical bottom slopes are on
the order of s* ~ 10~2 which suggests that s ~ 107! to 1072.

The dimensional momentum equation for the upper layer is given by (2.1.34).
If the above scalings are introduced into this equation, one gets the following

non-dimensional momentum equation

'H %
_(_}}_f%}__)___u“ + s(g’ll)%( {1)1 (uy- V)s(g’H)%u1
g'H)? g e
' (9_’1#17 g

af Vsﬁg’

+f(@& x (¢ H)2suy) + ;
f(esx (g'H) 1) (g’[-l)i g

n =0, (2.2.10)
which can be simplified to

.s(g'H)%fsu“ + .Sz(g'H)%f(ul -V)w,

La sHy
+f(g'H)?s(€3 x uy) + (f? -

and yet further to
suy + s(uy - Viu +€3 x uy + Vi = 0. (2.2.12)

Applying the above scalings to the dimensional continuity equation for the
upper layer, (2.1.35), yields the following non-dimensional continuity equation
for the upper layer

(i%q—’l) — sHh), f 1q'

. -V - {s(g'l'l)%ul(s g n+H
wm?_ ¢ (g'H)z

9 (gH)Efs

LgH)ssf (g'H)3
/
g

sy —sHW)] =0,

—~
[
|3V
P
W

~

which can be simplified to

sHg' sHy
Is(2 qg 0= sHh), + sV - [uy (2 gg N4+ H+Hsy—sHh)] =0, (2.2.14)
23
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The stratification characteristics of abyssal ocean currents has

0<g'/g=(p2—p1)/p2 << 1,

which allows us to neglect the free surface terms of order O (¢'/g) in the upper
layer continuity equation (Swaters and Flierl, 1991). This is equivalent to assum-
ing that the ocean surface is a rigid lid (Swaters, 1991). Making this assumption
implies that

—~Hfsh +sfV - [u(H + Hsy — sHh)] =0, (2.2.15)

which can be simplified to
shy+ V< Juy(sh —sy—1)] = 0. (2.2.16)

The non-dimensional equations for the lower layer are obtained using exactly

the same procedure starting from equations (2.1.36) and (2.1.37), vielding

suy + s(ug - V)us +€3 X ua + Vpa =0,

hy + V- (hua) = 0.

We see immediately that the abyssal layer continuity equation does not have the
parameter s in it. That is, all terms are O (1). This is a consequence of the fact
that the abyssal height has been scaled to allow finite height variations. It is this
property which implies that the lower layer dynamics are not quasigeostrophic.
If we apply the scaling assumptions to the pressure continuity condition

(2.1.38). we obtain

'1_[,‘3114%‘ /_% /,,‘5 sHd'
p2\g'H)2g'(g'H) fepzzm,(sﬁh_(g H)y:f (¢'H) sy)+ 290017y

/e d r 9
which simplifies to

p29'Hspa = pag'(sHh — Hsy) + prsHg'n, (2.2.18)

24
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and yet further to
p28p2 = pa(sh — sy) + prsn. (2.2.19)

If we use the definition of the reduced gravity

g=lmm oy o

I

p2 P2 g
and substitute into the pressure continuity condition and then neglect terms of
O (g'/g). we obtain simply

m=n+h-y. (2.2.20)

For completeness we obtain the appropriate nondimensional horizontal bound-
ary conditions. The stability theory to be developed will be done in the context
of a channel with parallel walls located at y = 0 and y = L, respectively. Because
the fluid is inviscid the appropriate boundary condition is that there is no flux
of fluid through the wall, which implies the normal velocity at the wall must be

zero. This is expressed mathematically as
v12(2,0,t) = vio(z, L. t) = 0. (2.2.21)

In summary, the nondimensional two layer shallow water equations are given
. o le]

by
e xu+Vy=—-s(d+u;-V)u, 2.2.22)
V-uy =shy — sV - (yuy) + sV - (huy), (2.2.23)
€ xuy—€+Vh+n)=-s(0+ur-V)uy, (2.2.24)
hy + V- (huy) =0, (2.2.25)
m=n+h-y. (2.2.26)

Note that the location of the small parameter s in the above equations pro-
duces the effect suggested in words earlier, which is that the overlying ocean will
follow quasigeostrophic dynamics but the abyssal layer will be geostrophic, but

not quasigeostrophic.
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2.3 Asymptotic reduction of the two layer shal-

low water equations

The Swaters (1991) model can be obtained by a regular asymptotic reduction of

we assume an asymptotic expansion of the form

(nyur, vz, p, A) ~ (n.owy, vz, p, YO + s(n g, e p )Y + - (2.3.1)

five equations, individually of the generic form
Lo ((n,ur,u2.p, 1)) + 5Ly (G, weuo p ), (neuuzp b)) +--- =0,

where the £, (n =10,1,2,---) are partial differential operators acting on their
arguments. Since the asymptotic expansion is assumed to hold for arbitrary
(but, of course, “small”) s, it follows (see Bender and Orszag, 1978), since there

is no explicit s dependence in each of the £,, “coefficients,” that
Lo ((nouy,ua, p, R) ) = Ly (noug, ua, p AL (g u p A)P) = -+ = 0.

We call the £, = 0 problem the “O(s") problem.” One can see how the
asymptotic solution is, in principle, constructed. From the O(s” = 1) problem
one determines, in principle, (1, uy,us,p, h,)(o) and from the O(s) problem one
determines (7, u;. uy, p, h)M, and so on, until as many terms in the asymptotic
expansion as are wanted are determined. Of course, in practice, the solution of
the individual problems is never entirely straightforward. For example, associated
with the “higher order” problems, i.e., the £,, = 0 problems when n = 1,2,.--,

will be certain mathematical solvability conditions.

26
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The O (1) equations are given by

& xul” = —vy©, (2.3.2)
v-ul® =0, (2.3.3)

& x u)) =8 — V(h(® + ), (2.34)
KO+ v () =0, (2.3.5)
])‘(20) = —y+79 +pO (2.3.6)

which implies that the velocities are geostrophically determined and can be writ-

ten in the form
0 0) (0) ~ Y -
uy” = (u(l ) ) =8 x V% = (=00 n{") . (2:3.7)

ul = (“.(20)_ z.uf,m) =8 x Vpi
0 0 ' g DI
= (—p.(z ), P'(zx)) =(1- USJO) - /J.LO). 79 + pOY (2.3.8)

The abyssal layer model equation is obtained by substituting (2.3.8) into
(2.3.5) to give
WO+ 0O+ J (9 29 = 0, (2.3.9)

where the Jacobian .J operator is defined as
J(A.B)= A By — A, B;. (2.3.10)

The model equations for the upper layer are somewhat more subtle to obtain.
If (2.3.7) is substituted into (2.3.3) one sees that (2.3.3) will be trivially satisfied
for all 7®, In other words, the O (1) problem for the upper layer is not closed
since there are an insufficient number of equations to determine the leading order
solution. In the context of the problem examined here, this is called “geostrophic

degeneracy.” To fully determine the O (1) solution, it is necessary to examine the

o
~I
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O (s) problem for the upper layer and derive a solvability condition on 7(?) that
will “close” the problem.

The O (s) equation for the upper layer is given by
€3 x u‘ll) + V'V = — (8, + u(lo) . V) u(lo), (2.3.11)
Vol =h¥ v (ul®) + v (hOu]?). (2.3.12)
If we form V x (2.3.11) and substitute in (2.3.7), we obtain
Anfo) +.J (,}(0)_ AR = -V . u(l”, (2.3.13)

where & = V? = 9,; + 0,y
Finally, if (2.3.12) is used to eliminate V - u(ll) in (2.3.13), with (2.3.7) being

used again, we get
(A +hO) + 0 (. A + R —y) = 0. (2.3.14)

Equation (2.3.14) is the quasigeostrophic (QG) potential vorticity equation for
the upper layer. It “says” that the upper layver QG potential vorticity. given by
An® + A0 — y is conserved following the leading order (geostrophic) motion.

The upper layer potential vorticity is comprised of three terms. The first is the
relative vorticity term V x u(lo) = A'9, the second is the baroclinic stretching
term associated with the height of the abyssal layer 2®. and the third is the
background vorticity gradient associated with the sloping bottom, i.e., the —y
term.

The Swaters (1991) model therefore corresponds to the set of coupled nonlin-
ear partial differential equations (2.3.9) and (2.3.14), which is to be supplemented
by appropriate initial and boundary conditions. Although it is not immediately
obvious, in fact (2.3.9) is also the leading potential vorticity equation for the
abyssal layer. In the next section we show this by re-deriving the Swaters (1991)
model by working from the potential vorticity equations for the full two layer

shallow water equations.
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2.4 Derivation based on a potential vorticity for-

mulation

We are going to convert the two layer shallow water equations into a single po-
tential vorticity equation for each layer. We first take the curl of the momentum
equation to derive the vorticity equation, and from this we will find the poten-
tial vorticity equation. Dynamically, the potential vorticity has a very important
property. In the inviscid limit that is examined here, the potential vorticity is
conserved following the motion (Pedlosky, 1987), i.e., it is a Lagrangian invariant.

First, let’s consider the upper layer equations. To compute the curl of the

v

upper layer momentum equations we first compute 9/8,(€;-(2.2.22)] and 9/9,[€,-

(2.2.22)], yielding, respectively.
—Uly + Thzy = =Sty — S(Uiyliy + Ulizy + Viylyy + Vrityyy). (2.4.1)
Uy + Nyr = —SViz — S(Ul:rle + U Uypr + U1l T U Ulyx)- (242)

Subtracting (2.4.2) from (2.4.1) gives
—(uyr + v1y) = sCup + {1 Ciz + 011Gy + (t1r + v1y) Gl (2.4.3)

where
Cl = Uy — Uy,

is the relative vorticity of the upper layer. Equation (2.4.3) can be rewritten as

Tcll + s(uiz + viy)Gre (2.4.4)

—(U]I + Uly) =9

where we have used the nondimensional total derivative, given hy

Do Yor hay' '

&)
.
<t

=
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shi+(sh—sy—1)V-u;+u,-V(sh—sy—1)=0. (2.4.6)

and then to solve for the horizontal divergence, i.e.,

shy+uy - V(sh—sy—1)  D(sh—sy—1)/Dl

‘= = 24.7
V- sh—sy—1 sh—sy—1 ( )
If this is substituted into (2.4.4), we get
D¢, D(sh —y—1)/Dt .
—_— - S = (. 248
s Dt (1+5G) sh—sy—1 ( )
which can be re-written in the form
D 1+s( D
—(1+ () —————(sh—sy—1) =0, 2.4.9
l)t( +5G1) sh—sy—lDt,(S) sy —1) ( )
and, thus, we find
D 1+sG N _g (2.4.10)
Dt \ 1+ sy — sh

Equation (2.4.10) is the potential vorticity equation for the upper layer. The
nondimensional potential vorticity for the upper layer, here denoted by PVy. is
given by

1 + S(:l

PV = ——— 2.4.11
T+ sy — sh ( )

and is conserved following the motion.
It is interesting to notice that we can also derive (2.4.10) by scaling the di-
mensional potential vorticity equation, given generically for the shallow water

equations for a single layer, by (see, e.g.. Pedlosky, 1987)

D Vixu+f) (2.4.12)
Dt- [[totnl

where Hyoa is the total layer thickness. For the upper layer equations, (2.4.12)

takes the form

D [ G+ f ]20

(2.4.13)
Dt | H + s*y* — h*

30
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When we apply the scalings from Section 2.2, the equation (2.4.13) is exactly
(2.4.10).

Returning to (2.4.11), if we now substitute the expansion (2.3.1), we obtain
PV, ~1+s (c§°) + RO y) +0(s?). (2.4.14)
Hence. to leading order, (2.4.10) is

9 0wl 0l ) _
<0[.+“‘ 0:L‘+ll 3y ( + 10 y)—f—O(s)—

which, if the geostrophic relations (2.3.7) are substituted in. is exactly (2.3.14).

We begin the derivation of the potential vorticity equation for the abyssal

i;)z[ 2 - (2.2.24)] —-—[el (2.2.24)]
and the result is
Uy + Voy = — /?)C[’ + (Ugr + voy)Cof - (2.4.15)
where
G2 = var — Uy,
and

D o 2 0
b_ o 9.8 2.4.16
ot ot “2(');p g (24.16)

1 Dh
—Xb—; =V uy = uy + Uy, (2417)

which if it is substituted into (2.4.15) vields

1Dh DG 1 Dh _
—_—— —— 2.4.18
hDt [ Dt~ h Dt 2] ( )
or, after multiplying by 1/h and rearranging. can be written as
D + 8C Dh
sDG _1+s@Dh _, (2.4.19)

hDt R Dt '
31
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or, equivalently,

Dt h

which is the potential vorticity equation for the abyssal layer. The nondimensional

D (1 i 363) =0, (2.4.20)

potential vorticity for the abyssal layer, here denoted by PVs, is given by

1+ sG

PV, = ,
- h

(2.4.21)

and is conserved following the motion.
As was the case for the upper layer. equation (2.4.20) could also have been
obtained by the scalings into the dimensional shallow water potential vorticity

equation (2.4.12), as it relates to the lower layer, i.e..

D (G+] 5
1)(‘( h ) 0 (

Returning to (2.4.21), if we now substitute the expansion (2.3.1). we obtain

1
PVy 5+ 0 (s).. (2.4.23)

Hence. to leading order, (2.4.20) is

1o} (0) 17, (0 ad 1 ) N
(E)'t"*‘ltg '(.j)-;-i*l.g 5; W + 0 (s) =0.

which. if the geostrophic relations (2.3.8) are substituted in. is exactly (2.3.9).

2.5 Steady solutions and general stability prop-

erties
The Swaters (1991) model equations are given by, after deleting the (0)-superscript,

(An+h),—n,+J(n, An+h)=0. (2.5.1)
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he + he +J(n, h) =0, (2.5.2)

with the auxiliary relations

u; =¢e3 x Vr, (2.5.3)
u; =€, +¢e; x V(n+h), (2.5.4)
p=n+h-—y. (2.5.3)

where we have also deleted the 2-subscript on the abyssal layer geostrophic pres-
sure field. From time to time it will be more convenient to work with (2.5.1)
minus (2.5.2), i.e.,

Any =1y = he + J(n,An) = 0, (2.5.6)

as the upper layer equation.

the form, after substituting the geostrophic relations (2.3.7) and (2.3.8),

ne=hy=00ony=0,L. (

o
[S2]
~I
~—

The model equations (2.5.1) or (2.5.6). (2.5.2). together with the boundary

conditions (2.5.7), have an exact steady nonlinear along slope solution given by

n=1n0(y) =~ f; Uo(€) dé = uyo = (U, 0),

h = })()(y) >0=uy = (1 - h()y + Up. 0) .

—
o
ot
o

~

for all sufficiently smooth Up(y) aud ho(y). This can be verified by direct substi-
tution. The solution (2.5.8) corresponds to a steady along slope mean flow in the
upper layer with the along slope velocity given by Uy (y) and an abyssal current
height profile given by hg(y). which is invariant in the along slope direction. The
abyssal along slope velocity will be given by ug = 1 — hgy + Up.

For convenience we will henceforth assume Up(y) = 0. This has the effect
of removing any mean flow in the upper layer, which will eliminate any possi-

ble barotropic instability in the model. That is, we are going to explicitly focus
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on the baroclinic instability of abyssal currents. We note that the effect of the
barotropic instability of an upper layer flow on abyssal currents has been exam-
ined experimentally by Sutherland et al. (2004). Understanding the full oceano-
graphic implications of this mechanism for the transition to instability remains
an interesting problem that needs to be examined.

Linear stability analysis is a procedure in which a small perturbation is applied
to a steady solution of the governing equations in order to see if such disturbances
will grow with time, indicating instability, or remain constant, oscillate. or recede,
indicating stability of the steady solution to such perturbations. From a physical
context, we are really determining if the steady solution has the possibility of
persisting in time, because it will never be seen in nature (or even in a laboratory
setting) if it is susceptible to small perturbations rapidly growing since it is not
possible to completely eliminate “imperfections” that give rise to small deviations
from the steady solution (Drazin and Reid, 1981).

Mathematically, an analytical stability analysis is carried out by adding a
small perturbation to the steady solution to be studied, and substituting this
into the nonlinear governing equations. The key assumption in a linear stability
analysis is that the perturbations are small, which allows us to ignore terms
that are nonlinear in the perturbations (which in our context means dropping
the quadratic perturbation terms). The result of applying this procedure is the
so-called linear stability equations, the solution of which determines the spatial
structure and temporal evolution of the disturbances.

However, it is important to point out that if there is instability in the linear
stability analysis, the growing disturbance will always reach a size where the
linear stability equations are no longer valid, because at that point the small
perturbation assumption is violated. One then needs to appeal to nonlinear

theories in order to follow the evolution in time of the disturbance, because the
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nonlinear terms can no longer be ignored.

In order to derive the stability equations, we introduce

h = ho(y) + h'(x, y. t), (2.5.9)
n=1n'(z,y.t). (2.5.10)

where hg(y) is the steady abyssal solution (recall we have assumed Up(y) = 0),
and 7’ and 2" are the perturbation quantities. We then substitute (2.5.9) and

(2.5.10) into (2.5.2) and (2.5.6) to get (after dropping the primes)

Ay =1y —he +J(n, An) = 0. (2.5.11)
(O + 0z) h + hoyne + J (1, h) = 0. (2.5.12)

These are the nonlinear perturbation equations, and they will be used in the
weakly nonlinear analysis presented in the next two sections.
For our purposes here, we drop the nonlinear Jacobian terms. which are

quadratic in the perturbations, to arrive at the linear stability equations
Ang— 1y —h, =0, (2.5.13)

(O + 02) h 4 hoynz = 0. (2.5.14)

Before proceeding to the nonlinear stability analysis it is useful to review the
known linear stability properties associated with the linear stability equations.
We do this because there is certain information, essential to the weakly nonlinear
work, which is generated from the lincar analysis, namely the marginal stability
curve, whose meaning will be discussed at length in a later section. and the
dispersion relation for the perturbation modes. Our discussion here closely follows

that in Swaters (1991).
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The energetics associated with destabilization can be ascertained from the
area-averaged perturbation energy equation for the upper layer, obtained by mul-

tiplying (2.5.13) by 7 and integrating, that is.

o rtop/ L A
,—/ / Vn-Vndzdy = —2/ / nhy drdy
ot Jo Jo o Jo
= 7/ / N dedy = ‘7/ / wh dxdy, (2.5.15)
0 0

where A is the wavelength of the perturbation (we are implicitly assuming that the
perturbations are periodic in the along slope direction) and where it is understood
that the limits of integration associated with integrals that contain h in the
integrand are, in fact, only over the region where hy > 0.

Thus, instability can only occur, which is equivalent to assuming

9 L pA L A
—/ / Vn-Vydedy > 0= / / nh drdy > 0,
M Jo Jo o Jo

which implies that, on average over one wavelength v is positively correlated with
h. That is. again on average, if h > 0 then ¢; > 0, and likewise. if 2 < 0 then
v; < 0. If we interpret & > 0 as a cold anomaly in the overlying water and 7 < 0
as a warm anomaly in the overlying water. then a positive correlation between
vy; and h can be interpreted as a net up-slope heat transport. Since the sloping
bottom is a topographic 3-plane in this model, this means that instability can
only occur if there is a net transport of heat up the background potential vorticity
gradient. This is exactly the scenario associated with the baroclinic instability
of zonal flow on a planetary 3-plane (Pedlosky, 1987 and LeBlond and Mysak,
1978) and underscores the fact that the transition to instability mechanism being
modelled here is a purely baroclinic one.

Additional qualitative information can be obtained by multiplying (2.5.14) by

h/ho, and integrating, that is,

L pA
Ot / / E (1'1,(11/ = -—9/0. /0‘ 'Ulh d.’l?(iy.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



If this result is substituted into (2.5.15), it follows that

h?
—_ 2.5.16
En {/ / Vy-Vn+ oy d:zdy} (2.5.16)

Equation (2.5.16) is the perturbation energy equation and implies that the quan-
tity in the curly brackets is an invariant of the motion, that is,
L A 2 L A h2
/ V- Vn+ — dxdy = [/ Vn-Vn+ — d.'zfdy] . (2.5.17)

o Jo hoy o Jo hoy t=0
Instability can only occur, that is the amplitude of the perturbation fields can
only grow in time, if there is at least one value of y in the region where hg > 0 for
which hg, < 0. Clearly. if hoy > 0 for all values of y in the region where hy > 0,
then the perturbation energy is a well defined norm on the perturbation fields
and the flow is linearly stable. This necessary condition for instability has been
generalized to other flow profiles by Swaters (1993), to other topographic profiles
by Karsten and Swaters (1996) and to other geometries by Choboter and Swaters
(2000).

The fact that there must be at least one value of y in the region where hy > 0
for which hg, < 0 for instability to occur has a simple physical interpretation. If
we consider an abyssal height profile which is quadratically shaped (sce Fig. 1)
that possesses two groundings or incroppings (the two points where h intersects
the bottom), the necessary condition for instability is only satisfied on the down
slope side of the abyssal height. This serves to underscore the spatial structure of
the unstable disturbances which correspond to preferentially amplifying pertur-
bations on the down slope grounding which subsequently evolve into down slope
propagating plumes (Swaters, 1991, 1998).

Further qualitative results can be obtained from the normal mode linear in-

stability equations that are obtained by substituting
n = n(y) explik(z — ct)] + c.c., (2.5.18)
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h = h(y) explik(z — ct)] + c.c., (2.5.19)

where c.c. means the complex conjugate of the preceding term, & is the real-valued
along slope wavenumber, and ¢ is the along slope complex-valued wave velocity

into the linear stability equations, to yvield, after a little algebra

. 1 }l,()
. — k/') — e e — Y V= 0. 2.5.20
oy = (8 = - = )i =0 (25.20)
LTI (2.5.21)
c—1" T
The boundary conditions become
J=h=0ony=0 L. (2.5.22)

Following Swaters (1991), it is possible to obtain a semi-circle theorem (Drazin
and Reid. 1981) and sharp bounds on the growth rates and phase velocities for
the unstable modes. If (2.3.20) is multiplied through by the complex conjugate

of 7, denoted by n*. and the result integrated over y, we obtain

I .

’ 5 -1 ] 2 ) -

/ {(1 —ck?) + E————l,’—o—”] " —clmyl” dy. (2.5.23)
0 le — 1]

If we now substitute ¢ = cg + ic; into this balance and separate the result into

the imaginary and real components, we obtain the two integrals, respectively,

I
‘ 2 P ’ ], - -
cr {/ [l” + [k“ + L,} n|? (Iy} =0, (2.5.24)
0 le —1}°
o 2 hg .12
e [t 1 - o g ay
0 [e =1}

L hOx 2 - =
= / 1- ——————’-—,} 7" dy. (2.5.25)
0 le — 1)

From (2.5.24) we see immediately that assuming instability occurs, i.e., ¢; > 0,
it follows that the integral inside the curly brackets must be identically zero and

this can only occur, again, if there is at least one value of y in the region where
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hg > 0 for which Aoy, < 0. Thus, assuming instability occurs, we may introduce
7, defined by

min hg,=-v<0 (=~v>0).
y € (0.L) Oy Y ( i )

If instability occurs, then the fact that the integral inside the curly brackets
in (2.5.24) must be identically zero can be re-arranged, to yield

L 12 Ly a2
Jo hoy 10 dy < Jo 1nl" dy ~ (25.26)
T 2 o ST . — — 2.5.2
Joo 1l + k2|9 dy I 1l + k2P dy

IN

2
l("‘l] == kz‘v

or, equivalently, that the complex valued phase speed must lie in the semicircle
defined by

(cr=1"+3 < =, ¢ >0. (2.5.27)

~
ﬁ‘.
This, in turn, implies that, if instability occurs, that the growth rate, denoted as

o and defined by o = k¢, satisfies

o < VA
Additionally, if instability occurs, then we may use (2.5.26) to eliminate |¢ — 1|
in (2.5.25) to yield, after a little algebra,

oLy a2
1 [y 1Al dy 1 ( 1 )
Cp = = 4 - . ‘ : S 2 1 . ).
2 2 .]()L |f1y|2 + &2 l")lz dy 2 k=

(2.5.28)

Equations (2.5.27) and (2.5.28) can be used to infer the existence of a high
wavenumber cutoff for instability, that is for a given v, there exists Ay such

that for & > Ay, there is no instability. From (2.5.27) we sce that
V7 Val .
1-— T <cep<Ll-— T (2029)

Clearly, for sufficiently large k. the intervals in (2.5.29) and (2.5.28) become

disjoint, i.e., their intersection is empty. Their intersection is non-empty, that is,

1
1+§ ,

instability can only occur if

1= Y7 ¢
=

O} -
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which can be re-arranged to give

0 <k < knax = V7 + V157 (2.5.30)

Conversely, a mode with a given along slope wavenumber & will be unstable only

if .
K2 - 117
Y 2 Ymin = < ) . (2.5.31)

2k

2.6 The abyssal flow examined in this thesis

In the remainder of this thesis we will restrict attention to the constant abyssal
flow given by

ho(y) = hmax — 7Y (2.6.1)

where we assume fhpx — vy > 0 for y € (0,L). Here ~ is the cross slope rate
of change of the thickness of the abyssal current height relative to the sloping
bottom. The dimensional rate of change is given by v* = (h*/L")7. Clearly. the
height profile given by (2.6.1) will satisfy the necessary conditions for instability.
We use the same profile which is used by Mooney and Swaters (1996).

Here we review the linear instability theory for the constant abyssal flow given
by (2.6.1). If (2.6.1) is substituted into the normal mode equations (2.5.20) and

(2.5.21), one obtains

1 ~
Ty — (A -+ - =0 2.6.2
Nyy ( ¢ e 1))71 ( )
[— 0 (2.6.3)

c—1

with the boundary conditions
i=h=0 ony=0, L. (2.6.4)
40
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The solution to (2.6.2) subject to (2.6.4) is

7 = a;sin{nwy/L). (2.

(V]
.C’ﬁ
<t
~—

where a, is a free constant and n = 1,2,3.... . Therefore, the general form of the

normal mode solution is given by

1 =y sin(ly) explik{x — ct)] + c.c., (2.6.6)

-~

i 7 sin(ly) expltk(x = ct)] + c.c., (2.6.7)

h=-—a
where [ = nw/L.
When we substitute (2.6.6) into (2.6.2), we get an expression for ¢, which is

LR PH I [(R+ P+ 1)° - 4k + )1+ )]
o 2(k2 + 12) '

Equation (2.6.8) is a formula that expresses ¢ as a function of & and [. This is
called a dispersion relation because it shows that waves of different wavelengths
travel at different phase speeds. that is, they disperse (Kundu. 1990).

For instability to occur, the imaginary part of ¢ must be positive. The bound-
ary between instability and stability will be given. therefore. when the quantity
inside the square root term in (2.6.8) is zero. This gives us the marginal stability

curve, with the critical value ~, of v,
Yo = (K? = 1)?/4K>, (2.6.9)
where A is the total wavenumber, given by,
K? = k*+ 12, (2.6.10)

that is a mode with total wavenumber A" is unstable if and only if v > ~..
Alternatively, the marginal stability curve represents the boundary between stable

modes and unstable modes for a particular ..
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10 ~+

: Figure 2.1. Plot of the marginal stability curve y_= (K:-1)2/4K2.
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In Fig. 2.1 we present the marginal stability curve as determined by (2.6.9).
The minimum of the marginal stability curve is located at A = 1 and corresponds
to Y. = 0. The point of marginal stability corresponds to the first value of « for
which any larger value of ¥ leads to instability. The point of marginal instability
therefore corresponds to 7. = 0 and A" = 1. Clearly. the A’ = 1 mode can only
exist if [ < 1 for some value of n. Consequently, we shall henceforth assume that

n =1 so that [ = 7/L (the gravest, or first, cross slope mode).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3

Weakly nonlinear evolution of

K # 1 unstable modes

In order to see how the marginally unstable modes as determined by linear theory
actually evolve in time we must allow the nonlinear interactions to be included
in the description. That is, we must develop a finite amplitude instability theory
which follows the evolution of the wave when it has reached amplitudes for which
the linear theory is no longer valid.

In this section, we derive a temporal amplitude evolution equation for a weakly
sub or supercritical mode which has a wavenumber modulus different than A = 1.
[t is important to realize that in this situation. there will always be other modes
with different wavenumbers which are unstable at smaller values of ~v. Because
of this, in this section we do not introduce a slow space variable which would
follow the evolution of a wave packet centered on the mode in question. It is
straightforward to include a slow space variable for these modes in a similar

manner as that described, for example, for the Phillips’ model for baroclinic
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instability of a zonal flow on a 3-plane (Tan and Liu, 1995).

Also, we point out that in some sense the analysis presented in this section
is somewhat artificial in that there will always be wavenumber moduli K for the
same ~ that are more unstable than the wavenumber being considered. Neverthe-
less, it is instructive, if not the most physically relevant, to consider a marginally
sub or supercritical K # 1 mode. We remark that the theory developed in this
section is, in fact, the nonlinear generalization of the theory developed by Pavec
et al. (2004), which is itself based on the work of Pedlosky and Thomson (2003).
Or, from another point of view, this section extends the nonlinear instability the-
ory described in Section 4 in Mooney and Swaters (1996) to the case where the

marginally sub or supercritical abyssal current varies slowly with respect to time.

3.1 Developing the asymptotic expansion

We have to develop a finite amplitude theory that follows the evolution of the
marginally unstable wave when it has reached amplitudes for which the linear
theory is no longer valid. Weakly nonlinear analysis can be used to derive the
nonlinear amplitude equation if the mode is weakly unstable. In this section. we
use weakly nonlinear analysis to derive an amplitude evolution equation which
follows the evolution of the disturbance associated with a slightly supercritical
mode when the height, and thus the velocity, of the abyssal current has time
variability, but on a slower time scale than the fast phase period of the underlying
mode.

To determine the proper scaling for the slow time variable we examine the
dispersion relation (2.6.8) in the situation when 7 is slightly supercritical. 1f, for
the moment, we assume that

Y=Y + 9,
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where ¢ is a small positive number (i.e., the supercriticality), the dispersion rela-
tion (2.6.8) becomes

o K2 L [(K2 1) — 4K3(1 47 + 6)]/2
T 2K2 ’

where we recall that K" = vA? + [? > 0. Substituting in for v, from (2.6.9) gives

CORZLE (K74 1) — 421+ B gy

¢
2K

K241 {—4R%)E A4l VB
B 2K T o UK

(3.1.1)
Examining (3.1.1), we see that the linear growth rate, given by o = k¢;. where
¢y is the (positive) imaginary part of ¢, is given by

ko
K~

g =

(3.1.2)

Thus, the linear growth rate will be proportional to v/8 so that the e-folding
time scale associated with the slightly supercritical mode will be O (1 / \/X) The
assumptions for the asymptotic expansion must be such that the time scale over
which the nonlinear interactions make a cumulative O (1) contribution to the
evolution of the marginally unstable mode is the same as the linear growth rate.

Following and extending the ideas of Mooney and Swaters (1996) and Pedlosky
and Thomson (2003) to allow for time variations in the slightly sub or supercritical

abyssal current, we will choose d to be of the form
0 =¢e2[To+ T (ct)],

where Tp = £1 (Tp = +1 and Ty = -1 correspond to a slightly supercritical
or subcritical abyssal current, respectively), and T (gt) is an O (1) real-valued
function of time that models the temporal variations of the marginally stable or

unstable abyssal flow. We will choose a specific form for T (st) when we describe
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the solutions to the yet-to-be derived nonlinear amplitude equation. The param-
eter ¢ is assumed to satisfy 0 < £ << 1 and corresponds to the nondimensional
order of magnitude of the amplitude of the perturbation. We note that with this
form of 4, it follows that the underlying abyssal current we are examining the

stability of is given by
ho = Pmax — {ve + 2 [To+ T ()]} y

= Uy = (1 +5+*[To+ T (t)]) &1

There are, of course, many possible choices that one could make for 4. But
the reason to choose this specific form is that this choice will allow the time scale
of the growth of the amplitude of the perturbations to balance the time scale
associated with the nonlinear interactions and the time variations of the abyssal

current. In summary, with this choice of §, v is given by
- 0.
v =+ 22 [To+ Y (ct)], (3.1.3)

where v. = 7. (') as given by (2.6.9) where it is explicitly assumed that A" # 1.

Under these assumptions, we introduce the weakly nonlinear and slow time

scalings
n(x,y. t) = si(e oy 1, T:2). (3.1.4)
ha,y.t) = 5/1(.1:, y.t,T:2), (3.1.5)
T = et, (3.1.6)

where 7 and £ are both assumed to be O (1). We note that
Tx~0(l) <= t=0(c"), (3.1.7)

is the time scale over which the mode will evolve nonlinearly. In addition, we

observe that time derivatives will map according to &, — 0, + =0r.
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If (2.6.1), (3.1.3), (3.1.4), (3.1.5) and (3.1.6) are substituted into the nonlinear

perturbation equations (2.5.11) and (2.5.12), and the tildes dropped, we obtain
(O +¢0r) Ay — ey — chy + 2 J(n, An) = 0. (3.1.8)

@ +e0r+ ) h—c{r.+To+ T}y +2J(n. k) =0, (3.1.9)

which can be re-arranged into the form

A —ny — hy = —cAnr — 2J(n. An), (3.1.10)
he + hy = ety = =chp + 2 Yo + Y (1)) e — cJ (0. h). (3.1.11)

We follow the method in Mooney and Swaters (1996), and solve (3.1.10) and

(3.1.11) with an expansion of the form
i,y t, Tig) = nolx, y, t.T) + ey (a,y. 6.T) + ma(a,y 6, T) + -+ . (3.1.12)

h(z,y. t.T:2) = holx,y. t.T) +chy(x,y. t.T) + 2hy(e,y . T) + -+ . (3.1.13)

3.2 The O(1) problem
The O(1) equations are given by
A7]()r = Nor — hor = 0. (321)

hot + hor = ~enor = 0. (3.2.2)

and are simply the linear stability equations (2.5.13) and (2.5.14). The normal

mode solution for the O(1) problem can be written in the form

no(x,y, 4. T) = A(T)sin(ly) exp [ik(z — ct)] + c.c., (3.2.3)
ho(z,y,t, T) = B(T)sin(ly) exp [ik(z — ct)] + c.c. . (3.2.4)
47
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Substituting (3.2.3) and (3.2.4) into (3.2.1) and (3.2.2) gives the pair of alge-
braic equations

Kc-1 -1 A .
=0. (3.2.5)
—Ye —c+1 B
Since we are only interested in nontrivial solutions it follows that the determinant

of the coefficient matrix in (3.2.53) must be identically zero, i.e.,
(KPc=1)(1=¢) =7

If (2.6.9) is substituted into this expression, it follows (as it must. see (3.1.2)),

that
K?+1 .

= 200

€= SrT (3.2.6)
If (3.2.6) is substituted into (3.2.5), it also follows that

c 1.

B=—A=(K?=1)A. (3.2.7)
1-¢ 2

which determines the amplitude of the perturbation height of the abyssal current
as a function of the normal mode amplitude in the overlying water column.
Hence, we have determined the spatial and fast time structure of the O (1)
solutions. But the slow time evolution of the amplitude coefficient A (7T°) remains
undetermined. Its determination requires that we fully solve the O (g) problem

and, as it turns out, examine in some detail the O (¢2) problem. This we now do.

3.3 The O (¢) problem
The O(e) equations are given by
ANy — e — he = =Anor — J(10, Anp), (3.3.1)

by + iz = Yeme = —hor — J (10, o). (3.3.2)
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The first thing to note is that if (3.2.3) and (3.2.4) are substituted into the right-
hand-side (R.H.S) of (3.3.1) and (3.3.2), the Jacobian terms are identically zero.
so that (3.3.1) and (3.3.2) reduce to

Any — iz — hiy = Ap K sin(ly) exp [ik(z = ct)] + c.c., (3.3.3)

Ry + hie = Yetne = —1% Arsin(ly)exp [ik(z — )] + c.c. . (3.3.4)
-
The solution for (3.3.3) and (3.3.4) may be written in the general form
m = E(T)sin(ly)exp [ik(z — ct)] + c.c.. (3.3.5)

hy = oy, T) + F(T)sin(ly) exp [ik(z — ct)] + c.c.. (336)

where o(y,T) is a real-valued homogeneous solution which will be required to
balance adjustments to the mean flow resulting from nonlinear interactions that
arise in the O(s?) problem. Substituting (3.3.5) and (3.3.6) into (3.3.4) implies
that

Fole g 4,
l-¢ k(1 —c)? -

and hence
Fe ~elS . ivedr
1—c  k(I—c)?*

Further, if (3.3.5) and (3.3.6) are substituted into (3.3.3). with F given by (3.3.7),

(3.3.7)

it follows. after a little algebra, that

K2+1
v T = [ = )‘ . .8
F(( S > E-0=( (3.3.8)

where we have used (2.6.9) and (3.2.6).

Two important facts follow from (3.3.8). First, there are no inhomogeneities
in (3.3.8). Thus, the inhomogeneities in (3.3.3) and (3.3.4) do not provide any
constraint on the evolution of the leading order amplitude A (7). Second, (3.3.8)
is satisfied for all F(T). This implies that the “F mode” in (3.3.5) is not re-

quired to contribute to a particular solution for the O(s) problem. That is, the
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“F mode” corresponds to a homogenous solution and is thus just an additional
contribution to the O(1) solution. We may thus “absorb” this contribution di-
rectly into the O(1) solution (Pedlosky. 1970) and, without loss of generality, set

E = 0. Consequently, the O(c) solution can be written in the form
m(z.y.t.T) =0, (3.3.9)

1
h(z,y,t.T) = o(y, T) + { T 5 sin(ly) exp [ik(z — ct)] + c.c'.} . (3.3.10)

17
k(1 —c¢)
The O(<) problem has not determined the evolution of A (T") and has, in fact,
introduced a new undetermined function ¢(y. 7). Both of these functions will be

determined by examining the O(z?) problem.

3.4 The O (¢?) problem

The O(z?) equations are given by
Any — 1z — hoy = —Amr — Mo A1y — MzAngy + NoyAmy + Thy Aoz (34.1)
hat + hox = vtz =~y + Yo+ T(T)] 1o — J (i, ho) — S (1. b)), (3:4.2)
which reduce. since ny(z,y,t.T) = 0. to
Aty — Nor = hor = 0, (3.4.3)

hoe + hoy — Yelor = —hyr + (Yo + T (1)) nor — J (0. 111). (3.4.4)

which further reduce, if no(z,y, ¢, T) and hy(x,y.t,T) are substituted into the
right-hand-sides. to

Ange — 1y — hyz = 0, (3.4.5)

h2l + h"Z:r — Yelloz =

17 A )
{‘EI(VT' s o Aik[To + Y (T) ~ oyJ} sin(ly) exp(ike) + c.c.
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APYr/ (1 =¢)*, (3.4.6)

— ¢r — 2l sin(ly) cos(ly)ve(

where, for convenience, we have introduced 6 = z — ct.

Now we apply appropriate solvability conditions to (3.4.5) and (3.4.6) in order
to determine the amplitude equation. First, we observe that each term in the
left-hand-side of (3.4.6) contains derivatives in either z or ¢. There are no terms
without these derivatives. However, we notice that term
Vel AIQ)T

(1-¢)?"

in the right-hand-side of (3.4.6) does not contain any dependence on either x or {.

or + 2l sin(ly) cos(ly)

Unless this term is zero. the particular solution associated with this term, in an
initial value problem where the contribution associated with this term is initially
zero, will necessarily grow linearly with respect to ¢. But if this is the case. then
the asymptotic expansion will no longer be asymptotically valid for { >~ O (s7!).
From a physical interpretation. solutions which grow linearly in time imply that
there exists the possibility of an infinite amount of energy associated with the
perturbations. This is not an acceptable physical result. Thus we are forced to

conclude that

O + 21 S"ill([’( ) ('0\‘(]7/)7(:( 44’2)T =0
e Y (l—c)2 '
which implies that
-~ ‘4 2 _ ‘4 2
o (y.T) = —lsin(2ly) je([ 4] |')°‘ )
(1-1¢)?

where 49 = A(T = 0).
Further analysis is facilitated by eliminating A, from the O (2?) equations. We

begin by writing (3.4.5) and (3.4.6) in the form

hor = Any — 1)z, (347)

hoy + A2y — oz — el =
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{-—ZI(’)TC% + Atk [To+ T(T) - d)y]} sin(ly) exp(ik6) + c.c., (3.4.8)

where it is understood that

7e(141° ~ |40]%)

¢, = —21% cos(2ly) e

If we differentiate (3.4.8) with respect to x, we obtain

hoyr + A7}2!1‘ = Tzr — Yellrr =

A«C‘_"l' - 9 . . . X
{({ _x,z — AR [To+ Y (T) - oy]} sin(ly) exp(ik8) + c.c., (3.4.9)

and from (3.4.7) it follows that
th( = Al’l‘ltl — 12zt (3.410)
Substituting (3.4.10) into (3.4.9) gives us

(O + 0 )(AO, — D)2 — Yelarr =

YA, 27 k2P A
ﬁ—k To+T 7)H—T}———|1| — 40 cos(21y)
x exp(ikf) sin(ly) + c.c. (3.4.11)

And if we use the trigonometric identity

sin(3ly) — sin(ly)
D) *

cos(2ly) sin(ly) = (3.4.12)

the right-hand-side of (3.4.11) becomes

AT : 5 ,'ckzle : 2 . .
-(%—:—7-3)3 - R [To+T(T)) A+ 21 — C)z(l.tllz — | Ao|") | sin(ly) exp(ik6)
/c" 12 . . . .
= (AP = | Aof?) sin(3ly) exp(ikf) + c.c. . (3.4.13)

The only terms which will produce secular growth are those terms on the right

hand side of (3.4.13) that are proportional to sin(ly) exp(ik6). Thus to remove the
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possibility of secular growth, we set those terms on the right hand side of (3.4.13)

that are proportional to sin(ly) exp(ikf) to be zero, which yields the amplitude

equation
Arr = ]A\ [To+ T (T)] A= KZA(AP - Ao
=0%[To+ T(T)] A - NA(A]? = |4u]). (3.4.14)
where
ol = L >0, N=k12>0. (3.4.15)

K?
Note that ¢ = k/K > 0 in equation (3.4.14) is the linear growth rate for the

slightly unstable mode when Ty = +1 and will be the frequency for the marginally

stable mode when YTy = —1. This is in precise agreement with the linear theory as
seen in (3.1.2). Assuming Yo = +1 and T = 0 and neglecting the nonlinear term

Iz a)

in (3.4.14) we can easily see the linear solution A(T) = Agexp(cT) (assuming
A(0) = Ay and Ar(0) = o Ay). However, in the nonlinear problem as A “grows”
from the initial value Ag, the nonlinear term N A(JA]* — |Ag|*) becomes larger.
Since the coefficient of the nonlinear term is negative, we see that it is possible
that the nonlinear term can act to halt the “initial” exponential growth and either
allow a new equilibrium amplitude to emerge or set up a nonlinear oscillation in
A(T). Mooney and Swaters (1996) were able to explicitly solve (3.4.14) when
T = 0. We are interested in examining how the solutions found by Mooney and

Swaters (1996) change when the periodic forcing term in (3.4.14) is retained.

3.5 Solving the amplitude equation

The method of solution for (3.4.14) follows Pedlosky (Chapter 7, 1987) or as

described by Mooney and Swaters (1996). We write A(T') in the form

A(T) = R(T) exp [i6(T)] , (3.5.1)
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where R(T) and 6(T') are real valued functions. Substituting into (3.5.1) into

(3.4.14), we get
Ryr + 2iRp0r + iROrp — RO2 = 02 [Yo+ Y (T)) R—= NR(R* -~ R2), (35.2)

where Ry = Ao.
After separating the real and imaginary parts of equation (3.5.2). we get.

respectively,
Rrr + RO3 = 0* [Ty + T (T)]R-= NR(R* - R}). (3.5.3)

ROrr + 2Rp67 = 0. (354)

It follows from (3.5.4), that

d 5
—- {(R°67) =0,
dr (Fér)
which can be immediately integrated to vield

67 (0) R?
8’[‘ = ——T{E_— .

We are interested in the case where 4 (0) = Ag and A7 (0) = g4q (i.e, the
marginally unstable mode is initially amplifying at the linear marginal growth

rate when To = +1). Since, in general,
A(0) = R(0) exp [i6(0)]
A7 (0) = {Rr(0) + 167 (0) R(0)} exp [:6(0)]
this will be realized if
R(0) = Ag, R7(0) =0Ap, 6(0) =0, 6r(0)=0.

It follows that 8(T") =0 for all T > 0.

Thus, (3.5.2) reduces to

Rrr = 0* [To+ X (T)] R— NR(R® ~ R3). (3.

[$1
[$1)
~
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subject to

R(0) = Ry, Rr(0) = o Ry. (3.5.6)

There are two cases that need to be examined. First, we describe the role that
periodic time variability can play for a marginally unstable mode, ie., Tg =
+1. Second, we will examine the role that periodic time variability plays for a

marginally steble mode, ie., Tog = —1.

The solution for R(7T") when Ty =1and T(7) =0

Since we wish to compare the role of Y (7)) in modifying the Mooney and Swaters
(1996) solution for R (T'), it is appropriate to review the solution to (3.5.3) in the
limit Ty = 1 and T (7) = 0. If we assume that Ty =1 and T(T) = 0, (3.5.3)
reduces to

Rrr = 0*R — NR(R* - R). (3.5.7)

If (3.5.7) is multiplied by Ry and integrated, we obtain

1, | Ro)? -
3127‘“ +V(R) = [;}-RT' +V (R)} = (g—jo)— + V(Ro). (3.5.8)
= = T=0 -
where
R, . NR
\/(R) = -"-‘2—[(7- + N 1{0-] + T
We may re-write (3.5.8) in the form
dr = d€ : (3.5.9)
[(1—€)(€* — a?)]=
where
R Imin ; N
€= Rl Q= ¢ - and 7= (NR2,./2T,

and where

2, 0 2N Ro?
Rlznax,min =Ry + 7\7 |:1 + (1 + o

)} , (3.5.10)
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where the “max” and “min” are associated with the plus and minus signs, re-
spectively.

Integrating (3.5.9) leads to

£ = dn(t — 79|m), (3.5.11)
where
T = dn”! (RRO [ m) . (3.5.12)

Here dn is the Jacobi elliptic dnoidal function, m = 1 — o°. and 7 is chosen to
3 0

ensure that R = Rg at 7 = 0.

1.2 4 Figure 3.1. R(T) assuming R, = 0.1 and R{0) = R, /2%
with k = /=1.0. The period T is about 17.
1.0 A
0.8 4
R(T) 0.6 -
0.4
0.2+
0.0 - T - T v 7 v T - 1
0 10 20 30 40 50

The period of the disturbance, with respect to the variable 7, denoted as 7.
is given by

T = 2E(m),

ot
(o>
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where E(m) is the complete Jacobi elliptic integral of the first kind. Hence, the
period of the disturbance , with respect to the variable 7', denoted as T}, will be

given by
T, = V8/(NR2, )E(m). (3.5.13)

The evolution of R (T') (and hence A (7)) follows the form of a dnoidal wave.
and therefore is periodic in time. This means that after the initial exponential
increase of the unstable mode, the effect of the nonlinearities in the equations for
Ais to slow and eventually reverse the growth of the disturbance. The amplitude
falls until it reaches a point where the linear growth rate becomes dominant
again, and the cycle begins anew. In Fig. 3.1 we show a graph of the amplitude
function R(T) vs. T for the parameter values given by A =1 = 1.0 and Ry = 0.1.
It follows that K = v2. ¢ = 1/v2, N = 1.0, Ruax = 1.09902. Ry =~ 0.009902
and 7T, >~ 17.003033.

The evolution of R(T) when Tg=1and YT (T) #0

In order to describe the effect of a nonzero Y (7)) on the Mooney and Swaters
solution for R (T') it is useful to select a particular form for Y (7). To be con-
sistent with Pavec et al. (2004) and Thomson and Pedlosky (2003) and. more

importantly. for genuine oceanographic reasons, we choose the periodic function
Y (T) = Hsin (wT), (3.5.14)

where H > 0 is the maximum amplitude and w is the frequency of the time
variation. Since T (0) = 0, there will be brief period of time near 7' = 0 where
we can expect the effect of T (T') to be minimal. The period of T (7), denoted

by P, is given by P, = 27 /w. Substitution of (3.5.14) into (3.5.5) leads to

Ry = o® [L+ Hsin (WT)| R — NR(R® — R2).

57
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This is a nonlinear Mathieu Equation (Morse and Feshbach, 1953).
In the linear limit (N = 0), this equation reduces to the linear Mathieu equa-
tion

Rpr — o? [1+ Hsin(WT) R=0.

This equation has interesting stability properties (see. for example, Sec. 11.4
in Bender and Orszag, 1978). Note that if H = 0, then the solution to the
linearized equation, subject to the initial conditions (3.5.6), is simply R(T) =
Roexp (oT), reflecting the exponential growth of the marginally unstable normal
mode. However, in the above linearized Mathieu equation, it is known (see, for
example, Sec. 11.4 in Bender and Orszag, 1978) that there exists a "small” region
of parameter values in (¢2/w?, H)-space for which all solutions are stable. Hence.
even in the linear limit, periodic time variability can stabilize, what is in the time
averaged sense, an unstable abyssal flow.

However. as we have mentioned above, the set of (¢2/w?. H) values for which
this stabilization can occur corresponds to a very small region in parameter space.
The generic solution. for most parameter values, to the above lincarized Mathieu
cquation remains unstable. i.e., amplifying in time. Thus, the remainder of our
discussion in this subsection will be focussed on describing the effect of time
variability in the situation where instability persists even in the linear limit.

Specifically, we are interested in describing the effect of T (7°) on the Mooney
and Swaters solutions when the magnitude of H is small compared to the steady
part of the supercriticality (i.e., 0 < H << 1), when the magnitude of H is
comparable to the steady part of the supercriticality (i.e., H = 1), and when the
magnitude of H is large compared to the steady part of the supercriticality (i.e.,

H >> 1). To this end, we examine the set of H values given by
H € (0.1, 1.0, 10.0). (3.5.13)
For this set of H values (i.e., 0.1, 1.0 and 10.0), the abyssal flow remains slightly

o8
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unstable, has isolated single moments of marginal stability, and alternating peri-
odic intervals of stability and instability, respectively.

With respect to the period of T (7°), we are interested in examining the effect
of the time variability when P, is short, comparable and long compared to T),.

To this end, we examine the set of P, values given by
P, € (107, T,. T,/10). (3.5.16)
which implies that we will examine the set of frequencies given by
w e (n/(3T}), 27/T,. 20%/T,). (3.5.17)

In summary, we will describe the set of nine simulations, labelled S;, Ss. ---
Sy, respectively, for the w and H parameters values given in Table 1. All other
parameter values in this set of simulations will be identical to those associated
with Fig. 3.1, i.e., k =1 = 1.0 and Ry = 0.1. It follows that N = V2. 0 = 1/V2.
N = 1.0, and the initial conditions are given by R(0) = Rp and Ry (0) = o Ry. The
solutions for R(T) were all obtained numerically by using the routine NDSolve in
the symbolic software package Mathematica 4.0. Each simulation was of sufficient
length in “time,” i.e., with respect to 7', so that the temporal behavior of R(T)

could be discerned.

w\H |01]1.0]100
/(T | S | S | S5
2 /T, | Sy |Ss | Se
207 /T, |S: | Ss | S

Table 1. Values of w and H examined.

Description of the simulations Sy, S,, -+, Sy

Figs. 3.2, 3.3, and 3.4 show R(T) vs. T for the “low frequency” simulation

parameter values Sj, S», and Sz, respectively. In this set of simulations, the
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period of the time variable part of the abyssal current is P, ~ 170 compared to
the period of the unforced Mooney and Swaters solution shown in Fig. 3.1 given
by T, >~ 17. Figs. 3.2, 3.3, and 3.4, respectively, have H = 0.1, 1.0 and 10.0.
Clearly. comparing Figs. 3.2, 3.3, 3.4 with Fig. 3.1, there is marked change in
the evolution in R(T"). However, there are some patterns that can be observed.
The first thing to note is that the period of the oscillations in Figs. 3.2, 3.3, and
3.4 is smaller than that in Fig. 3.1 Further, comparing Fig. 3.2 with Fig. 3.3 and
Fig. 3.4, we see that as H increases, so too does the frequency of the oscillations.
Also, we see that, qualitatively, the "maximum” peak to trough distance, i.e., the
range of R(T), also seems to increase as H increases. Thus, in general. we see
that, for this value of w. there is a trend toward more rapid oscillations with the

range of R(T) increasing.

1.25 i Figure 3.2. R(T) vs. T for simulation S,.

o.75-| |
0.25

R(T) 1
-0.25 -

-0.75 +

T

-1.25 d T T T r T T T 1
0 75 150 225 300 375
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Nevertheless, we see in Figs. 3.2, 3.3. and 3.4, that, although the structure
of R(T) appears to be quite complicated, the solution appears to be periodic (at
least for the range of T we integrated over). In Fig. 3.2 the pattern appeared

33l

to follow 9 subcycles where R(T) remained positive and then switched to a 4
subcycle pattern where the amplitude in R(T) increased and R(T) can become
negative. The pattern then repeats itself. We note that when R(7T') goes negative.,
this corresponds to the underlying normal mode going 180° out of phase with the

Mooney and Swaters (1996) solution.

15+ [ Figure 3.3. R(T) vs. T for simulation S,, |
1.0
| |
. i
0.5+ I A 1
R(T) | ' ,
0.0

il
J

15 . — r v r
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3.0~

1 | Figure 3.4. R(T) vs. T for simulation S, ]
254 Nw
2.0 W N
1.5
1.0 4
R(T)
0.5
0.0
054
-1.04
15 . : . T . . . )
0 50 100 150 200
T

The pattern in Figs. 3.3 and 3.4 appears to be more complicated as compared
to Fig. 3.2. But, qualitatively, there are similarities (and, of course, differences)
in all three figures. We see that initially (i.e., 0 < T < T.) there is a set of cvcles
where the envelope of the oscillations is concave up and where R(7T) > 0. The
number of cycles in the region appears to increase with increasing ‘H. Subsequent
to this set of initial cycles, there is a transition to a second set of cveles. In
all three figures. this second set of cycles appears to oscillate about R(T") =~ 0.
However, whereas in Figs. 3.2 and 3.4 there appears to be a transition back to
the initial set of cycles from the second set, in Fig. 3.3, R(T") transitions to a
distinct third set of cycles from the second. However, again qualitatively, this
third set of cycles in Fig. 3.4 appears to be a “reflection™ of the first set of cycles
through the T-axis.

Figs. 3.5, 3.6 and 3.7 show R(T) vs. T for the simulation parameter values

S4, Sy, and Sg, respectively. In this set of simulations, the period of the time
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variable part of the abyssal current is P, = T, =~ 17 (i.e., is comparable to the
period of the unforced Mooney and Swaters solution shown in Fig. 3). Figs. 3.5,
3.6 and 3.7, respectively, have H = 0.1, 1.0 and 10.0.

The structure of R(T) in Figs. 3.5, 3.6 and 3.7 is different than that seen
in Figs. 3.2, 3.3 and 3.4. Indeed. our numerical integrations suggested that
there was no periodic structure at all. It is possible that there is a very long
time scale periodic structure that we were not able to identify because we failed
to integrate for a sufficiently long time. Nevertheless, although we have not
identifies a global periodic structure, clearly, the solutions continue to exhibit

quasi-periodic oscillatory behavior.

1.25 - | Figure 3.5. R(T) vs. T for simulation S,

I M 1
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Figure 3.6. R(T) vs. T for simulation S,
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However, in Fig. 3.5 we see, again, the pattern that initially (i.e., 0 < T < T,)
there is a set of cycles where R(T") > 0. Subsequent to this set of initial cycles,
there is a transition to a second set of cyvcles that appears to oscillate about
R(T) = 0. Subsequent to this second set of cycles, there is a transition to a third
set of cycles that appears to be similar to the first set although there are fewer
of them. Subsequent to this third set of cycles. there is a transition to a fourth
set of cycles that appears to be similar to the second set but is clearly different.
Continued numerical integration was unable to identify any periodicity.

In Figs. 3.6 and 3.7. we see the increasing irregularity emerging in the oscil-
lations. In Figs. 3.6 and 3.7, there appears to be only one or two initial cvcles
where R(T) > 0 and then an almost immediate transition to a set of similarly
structured cycles that appears to oscillate about R(7) = 0. But then there is
a subsequent transition to a set of new cycles that appears to be increasingly

irregular. This transition takes place sooner in Fig. 3.7 that in Fig. 3.6.

1.5 4
Figure 3.8. R(T) vs. T for simulation S,. ]

|
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It is important to note, however, that this irregularity is not the onset of in-
stability. The solutions remain bounded in time as they must. Although it is way
beyond the scope of this thesis, it is interesting to speculate that the increasing
irregularity seen in these simulations is an indication of chaos developing.

Figs. 3.8, 3.9 and 3.10 show R(T") vs. T for the “high frequency”™ simulation
parameter values Sy, Sy, and Sy, respectively. In this set of simulations, the
period of the time variable part of the abyssal current is P, >~ 1.7 compared to
the period of the unforced Mooney and Swaters solution shown in Fig. 3 given

by T, ~ 17. Figs. 3.8, 3.9 and 3.10, respectively. have H = 0.1. 1.0 and 10.0.

159 Figure 3.9. R(T) vs. T for simulation S,. |
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0.6 - Figure 3.10. R(T) vs. T for simulation SJ
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As in Figs. 3.5, 3.6 and 3.7, our numerical integration did not reveal any
global periodicity in Figs. 3.8, 3.9 and 3.10 as well. However, qualitatively, it
appears that the oscillation patterns seen in Figs. 3.8, 3.9 and 3.10 are somewhat
less irregular than that seen in Figs. 3.5, 3.6 and 3.7. We attribute this to the fact
that the periodicity in the time varying part of the abyssal current in Figs. 3.5.
3.6 and 3.7 is identical to the period of the Mooney and Swaters (1996) solution
as seen in Fig. 3.1. It is possible that a nonlinear resonance exists in Figs. 3.5,
3.6 and 3.7 that does not occur in the other simulations and that this allows more

“structure” to occur in the other figures.

The evolution of R(T) when Yo = —1and Y(7T) #0

Even in the case where the underlying mode is subcritical (i.e., To = —1), we will

show time variability can lead to instability if the nonlinear terms are neglected
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in the amplitude equation. If we substitute Yo = —1 and
YT(T)=Hcos(wT),
into (3.5.5), we obtain the nonlinear Mathieu equation
Rrr = 0*[Hcos (wT) — 1] R — NR(R? — R3). (3.5.18)

Note, that this choice of T (7) allows the effect of time variability to be immediate
at T = (.
The first thing to note is that in the purely linear limit, i.e., N = 0. (3.5.18)

reduces to the linear Mathieu equation
Rpr + 0 [1 = Hcos (wT)] R = 0. (3.5.19)

This equation has much more interesting stability properties (see. for example.
Sec. 11.4 in Bender and Orszag. 1978) than the linear Mathieu equation derived
in the last subsection. Note that if H = 0. then the solutions to (3.5.19) simply
oscillate in time reflecting, of course, the neutral stability of the underlying normal

mode and, in fact. the solution to (3.5.18) subject to (3.5.6), is given by
R(T) = Ry(cos(aT) +sin(aT)]. (3.5.20)

In Fig. 3.11 we show a plot of R(T') vs. T for Ry = 0.1 (implies that R (0) = 0.1
and Ry (0) = ¢/10) with o = 1/v/2 (i.c.. k = [ = 1.0) as determined by (3.5.20).
The solution is, of course, neutrally stable with a periodicity of about 8.886 units
(with respect to T').

However, it is known (see, for example, Sec. 11.4 in Bender and Orszag, 1978)
that, in the limit H — 0, the Mathieu equation (3.5.19) has unstable solutions

(i.e., exponentially growing solutions) for the discrete frequency spectrum

w=20/n, forn=123,---. (3.5.21)
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For slightly larger H the discrete points for w at which instability occurs expand
into intervals of finite length, and as H gets even larger these intervals also get
larger, so that eventually there is instability for almost all w. Accordingly, the
generic situation associated with solutions to (3.5.18) is one of amplification.
This process of destabilization, called “parametric instability,” is the result of
resonance developing between the underlyving unforced periodic solution and the
periodicity in Y (7).

This is a very lmportant result. We have therefore shown that in the linear
limit, a periodic abyssal flow can lead to instability, even when the time mean
average of the periodic flow is neutrally stable (provided that the frequency of
the time varying part of the abyssal flow is algebraically related to the frequency
of the neutrally stable normal mode associated with the time averaged abyssal
flow as given by (3.5.21)).

In Fig. 3.12 we show a plot of R(T) vs. T for R(0) = Rg = 0.1, Ry (0) =
oRy =c/10witho =1/ V2 (i.e., k& =1 = 1.0; these are the same parameter values
as those for Fig. 3.11) as determined by (3.5.19) with H = 0.25 and w = 20 = V2
(i.e., for n = 1 in (3.5.21)). The solution has been obtained numerically by using
the routine NDSolve in the symbolic software package Mathematica 4.0. One can
see the gradual amplification of the oscillations as T increases. This increase in
amplitude increases without bound. Higher values of w and H act to increase
the “growth rate” of the destabilization, but the basic pattern scen in Fig. 3.12
remains.

In Fig. 3.13 we show a plot of R (T") vs. T as determined by (3.5.18). for the
same parameter values as that in Fig. 3.12, and additionally N = 1.0. One can
see how the nonlinear terms act to stabilize the instability seen in Fig. 3.12. In
addition, the nonlinear terms have acted to introduce a longer period modulation

in the envelope of the amplitude.
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Figure 3.13. R(T) for the marginally stable case with N = 1
0.5 and H=0.25and o = 20.
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Chapter 4

Weakly nonlinear evolution of a

K =1 unstable wave packet

In this Chapter. we examine the nonlinear development of a slightly supercritical
K = 1 mode, which is the wavenumber modulus corresponding to the mode
located at the minimum of the marginal stability curve (see Fig. 2.1) for which
7. = 0. Under these conditions, a small but finite positive v will lead to a narrow
band of unstable modes centered on A = 1. We wish to follow the evolution of the
resulting baroclinic wave packet as it goes initially unstable and interacts with
itself when the underlying abyssal current has periodic time variability.

The evolution of the marginally unstable X' = 1 mode is singular in the sense
that it cannot be described by simply taking the limit A’ — 1, v, —= 0 and ¢ — 1
of the theory developed in Chapter 3 for the K # 1 modes. One immediate
difference between the marginally unstable A’ = 1 and A" # 1 modes which has
significance follows from (3.2.7), where we sce that the leading order amplitude

in the abyssal layer satisfies B — 0 in the limit A — 1. This implies that the
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leading order term hg(z,y,¢,7") = 0 in the expansion (3.1.13) for K = 1. This is
equivalent to observing that, to leading order, the two layers are not dynamically
coupled together for this marginally unstable mode.

However, this point alone is not sufficient to establish that the theory devel-
oped in Chapter 3 will not describe the finite amplitude evolution of a marginally
unstable K = 1 mode. Indeed, if one takes the limit K — 1,7, —0and c — 1
of the various coefficients in Chapter 3, it is easily seen that 7y, . he and b all
remain finite. The problem first arises in equation (3.4.11) for the O (£?) problem
where it is seen that 7, and hence he become singular in this limit. As we will
show later in this Chapter, the problem can be traced to the fact that the the-
ory developed for h in Chapter 3 does not need to include the additional higher
harmonics required in this section.

In addition. as we saw in Chapter 3, the phase velocity of the marginally
unstable A" = 1 mode will be given by ¢ = 1 (see, e.g.. (3.2.6)). This is nothing
more than a reflection of the fact that, to leading order, it follows from (2.5.14)
or {3.2.2) that the dynamics of the abyssal layer perturbation height is described
by hy + h, = 0 in the weakly nonlinear marginally unstable limit at the point of
marginal stability where v, = 0.

The fact that ¢ = 1 means that the entire abyssal layer is a critical layer.
Note that it follows from (2.5.4) that the leading order Eulerian velocity field
in the abyssal layer is given by u, =~ €. The steady velocity in the abyssal
layer given by u, ~ €;, which we have previously referred to as the Nof velocity,
arises due to the geostrophic adjustment of a density-driven abyssal flow lying
directly on a sloping bottom. The phase speed of the marginally unstable A = 1
mode is therefore identical everywhere in the abyssal laver to the induced Nof
velocity and the entire abyssal layer forms a critical layer. As is well known (see,

e.g., Benney and Bergeron, 1969, or Warn and Gauthier, 1989), there will be a
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rapid development of the dimensionality of the underlying phase space as more
and more modes are excited by the fundamental harmonic due to the intrinsic
nonlinearity of the critical layer.

From the point of view of the asymptotics, the nonlinear development of the
marginally unstable K = 1 mode will, of course, be determined by the higher
order, i.e., the nonlinear, terms in (2.5.12). However, since the leading order
equation for & is nondispersive, it necessarily follows that all the higher harmonics
associated with the nonlinear terms in (2.5.12) will generate secular producing
terms. These secular producing higher harmonics, which must be removed in
a properly constructed asymptotic theory, lead inevitably to an infinity of wave
packet evolution equations in sharp contrast to the single mode theory for the

K # 1 modes developed in Chapter 3.

4.1 Developing the asymptotic expansion

In order to examine the nonlinear evolution of the marginally unstable A = 1
mode it is convenient to move into a co-moving reference frame in which the
frequency, to leading order in the abyssal layer, will be zero. In this reference
frame, the time development of the current height will be determined by the
higher order, and importantly, the nonlinear Jacobian terms in (2.5.12).

To this end, and in light of the preceding comments. the correct scalings for

the supercriticality in the slope of the abyvssal height will be given by
=T+ T(T)], 0<e<<l, T(T)=0(1), To= %L1, (4.1.1)

and the perturbation fields for the marginally unstable A" = 1 and v, = 0 mode

will scale according to

n(z,y,t) = i3, y, X, T; ). (4.1.2)
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h(z,y,t) = 2h(F,y, X.T;¢). (4.1.3)
with the fast space and slow space time variables given by, respectively,
T=ux-t (4.1.4)

X=cxr, T=

[UY
m

t (4.1.5)
so that derivatives map according to
O — —0; + £0r, (4.1.6)
Oy — 0; + 0y (4.1.7)
Substituting the above into the nonlinear perturbation equations (2.5.11) and
(2.5.12) yields, after dropping the tildes and doing a little algebra.
(A + D)z = [Anr — Wixza — nx = by + J(0. An)] + O(°), (4.1.8)
hr+hyx = [To+ T (D)) n + J(n. h) =0+ O(g). (4.1.9)
It is important to note the difference between the pair (4.1.8) and (4.1.9) and
the pair (3.1.10) and (3.1.11). Although the upper laver equations (4.1.8) and
(3.1.10) are both linear, to leading order, the abyssal layer equation (4.1.9) is
fully nonlinear, to leading order. as compared to (3.1.11). This leading order
nonlinearity is a consequence of the fact that the entire abyssal layer is a critical
layer at the point of marginal stability given by X' =1 and v, = 0.
Following and extending Mooney and Swaters (1996), equations (4.1.8) and
(4.1.9) can be approximately solved with an asymptotic expansion of the form
Wz y, X,T:¢) = oz, y, X.T) + em(z,y. X, T) + ..., (4.1.10)
hMx,y, X,T;e) = ho(z,y. X, T) + shi(z,y, X.T) + ... (4.1.11)
Substitution of (4.1.10) and (4.1.11) into (4.1.8) and (4.1.9) gives rise to a se-
quence of partial differential equations that must be solved to obtain each term
in the asymptotic sequence. As it turns out, the necessary analysis is both simpler

and more complex than that developed in Chapter 3.
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4.2 The O(1) problem

The O(1) equations are given by
(A + Dnoe =0, (4.2.1)

hor + hox = [Yo + Y (T)] nor + J (0, ho) = 0. (4.2.2)

Note that the leading order equation for 7 is not coupled to the abyssal layer
equation. We may therefore solve (4.2.1) immediately to give

no = A (X.T)sin{ly) exp(ikz) + c.c.. (4.2.3)

Equation (4.2.2) describes fully the leading order evolution of ho(z.y, X.T).

We need go no further in the asymptotic analysis of the abyssal layer equation.

However to dynamically couple ng(x,y. X, T) with ho(z.y, X.T). that is, to de-

termined the fully coupled evolution of A (X,T) with hg(x,y, X.T), we need to

examine the O(=) problem.

4.3 The O(e) problem
‘The O(sg) upper layer equation is given by
(A + Dz = Anor — 200x2z — Mox — Doz (4.3.1)

where we have used .J(1y, Anp) = 0. We need to establish a solvability condition
on (4.3.1) in order to remove secular growth in the #; solution.

The terms of on the right-hand side of (4.3.1) that will produce secular
growth are those terms that are proportional to 7. i.e., those proportional to
sin(ly) exp(Zikxr). We may therefore write the solvability condition associated

with (4.3.1) in the form
L p2r/k
/ / [Anor — 2n0xzz = Tox — hoz) sin(ly) exp(—ikz)dzdy =0,  (4.3.2)
o Jo
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where the complex conjugate of this relationship is understood. Equation (4.3.2)
is simply the geometric statement that the projection of the right-hand-side of
(4.3.1) on the sin(ly) exp(xikz) mode must be zero.

Equations (4.2.2) and (4.3.2) (together with (4.2.3)) form a closed svstem of
partial differential equations for hy(x,y: X.T) and A(X.T). We have chosen to
write the coupled equations in this way in order to emphasize the similarity with
the analysis presented by Warn and Gauthier (1989) for a marginally unstable
baroclinic flow in the Phillips’ model.

As argued by Mooney and Swaters (1996). if one neglects the dy derivatives
in (4.2.2) and (4.3.2) and assumes T (7°) = 0. it is possible to obtain a closed form
solution in terms of elliptic and trigonometric functions by a slight modification
of the methods presented in Warn and Gauthier (1989). We have not been able to
generalize the Warn and Gauthier technique to the equations if one retains slow
space variations in the wave amplitude or for nonzero Y (7)) and thus we construct
a solution using the spectral approach developed by Mooney and Swaters (1996).
We emphasize, however, that it remains an interesting and challenging problem
to modify the Warn and Gauthier technique if one retains slow space variations

in the wave amplitude or for nonzero Y (7).

4.4 Spectral solution procedure

Here we construct an explicit spectral solution for hg in the form

ho=o¢y.X.T)+ Z Z B (X.T)sin(nly) exp(imkax) + c.e. 3, (4.4.1)

m=1 n=1
where ¢ (y, X, T') is a real valued mean flow adjustment term that will be deter-
mined as a result of the balance between the growth of the disturbance and the

extraction of potential energy from the ambient Row.
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If one substitutes (4.4.1) and (4.2.3) into (4.3.1) one obtains

(A+ 1)y, = —ik Z Z m B sin(nly) exp(imk6)
m=1n=1
—~[8r + (1 — 2k%)dy]Asin(ly) exp(ikf) + c.c. (4.4.2)

The only terms that cause resonant behavior on the left-hand side of (4.4.2)
are those that are proportional to sin(ly) exp(%ik@), which must be eliminated.

Setting the coefficient of these terms to be equal to zero implies
ikByy + Apr + (1 =2k Ax =0, (4.4.3)

and. of course, its complex conjugate. Most importantly, however. is to note that
(4.4.3) determines B;; (X,T) as a function of A(X,T). What remains to be
done is to determine all the other B, (X.T). A(X.,T) and ¢ (y. X.T).

We proceed as follows. If one substitutes (4.4.2) and (4.2.3) into (4.2.2). one

obtains
ik [Yo+ T(T) = o,) Asin(ly) exp(ikz)
1 N
——§ikl/1 Z Z{'an,,, sin{(n + )y} — (n + 1) By sin(nly)
m=1 n=1
—mBy, nsin[(n + Dly] — mBpy, e sin(nly)} expli(m + 1)kx]
1 - — ,
+§'ikl:’1* Z Z{an_,, sin[(n + 1)y} = (n + 1) Byns1 sin(nly)
m=] n=]
+m By sin[(n + 1)y} + m Byt sin(nly)} expli(m — 1)k
- Z Z (Or + 9x) Bimnsin(nly) exp(imkz) + c.c.— (Or +9dx) 0 =0. (4.44)
m=1 n=1

[o. ]
n=1

This expression is a double Fourier series in the orthogonal basis functions {sin(nly
o

o0

and {exp(imkx)} _, .

The evolution equations are obtained by demanding that

each individual Fourier coefficient be identically zero.
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To begin, the terms in (4.4.4) that are independent of the fast phase variable

x are given by

(Or+0x)o= é’ikl/l‘ Z{"’B‘v" sin{(n + Dly] = (n + 1) By p41 sin(nly)

n=1

+ By asin[(n + 1)ly] + By sin(nly)} + c.c. (4.4.5)

Simplifying and including the complex conjugate explicitly, we find that

(Br +0x) 0 = —qu (n(AB] ) — A" Bint)
n=1
—n(AB] ., — A" Bi,-1)) sin(nly). (4.4.6)

The solution to (4.4.6) may be written in the form

fosny

oy X.T) —Z (X.T)nsin(nly). (4.4.7)

(8]

Substituting (4.4.7) into (4.4.6) leads to the following set of equations for the a,

coefficients
((}[ + ('),\')a,, = Ilk[(ABl‘v"_H — .4']3;.,,.4.1) - (AB;‘”_I — ,4.[))1',,_1)]. (448)

Thus we have explicitly determined ¢ (y. X.T).
We now examine the exp(ikr) terms. The terms in (4.4.4) that are propor-

tional to exp(ikx) are given by
ik [To + T(T) — ¢,] Asin(ly)

+ 11.[4 Z{nBo,, sin((n + 1)ly) = (n + 1) By 41 sin(nly)

n=1

+2 By psin((n + 1)ly) + 2By 4 sin(nly)}

- Z (Or + 0x) Binsin(nly) = 0. (4.4.9)

n=l1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



If (4.4.7) is substituted into (4.1.25), we find. after some manipulation,
ikA[Yo + Y (T)] + ikAlPay — (Br + dx) Byy =0. (4.4.10)
from the sin(ly) rerms, and from the sin(nly) (n > 1) terms
1. 2 2 12
—:1-71\":11 [@n_i(n = 1)° + apsr(n + 1))

1
+§i,l\‘l'.‘1‘[(77. + I)BQ.y1h1 - (71 - 1)[33_,,+1} — (()7 + ()\) By, =0, (4411)

and finally. the equations associated with the modes with m > 1 are given by

(()T + d\) bm.n = 3']\14 !(” =+ "7)81711‘-1.71—1 - (71 - 777)l)m+1.n+1]

1 i ,
—51'1\‘1.4{(71 ~m)Bpoino1 — (0 +mYByyna) (4.4.12)

form=23....,andn=1.2.....
The entire set of coupled spectral equations can be cleaned up and consoli-

dated if we introduce the transformations

Qp = —Qpn. Bpp = =B, (except for By ). (4.4.13)
which yields the coupled set of partial differential equations
(Or +0x)[Br + (1 = 2k)Ix1A = k2 [To + T (T)] A = 2k A, (4.4.14)
(Br + Ox)az = [Op + (1 = 262)Ix | |A]? + k[AB}; + A* By ). (4.4.15)
(Op + Ox )y = KAB] o + A" By — (AB]_y + A" B2 (4.4.16)
forn=1,3.4,---, and
By = Ai [0r + (1 = 2k%)dx] A (4.4.17)
(Or + 0x) Bun = %""Ngl(n = D?am = 1) = (1 + 1D’ousi]0im

1
+3'ikl_4'[(n + 1) Binstn-1 — (0 —m) Byt na

30
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1
—;iklA[(n. —m)Bp—1a-1 — (0 + m)Bp_1041)s (4.4.18)

for m,n=1,2,3,--- ,except m=n=1.

This set of equations is completely intractable so far as we know. Mooney
and Swaters (1996) qualitatively examined these equations with To = +1 and
T(T) = 0. The method Mooney and Swaters (1996) used was to examine the
evolution of the solution by truncating the spectral series after a certain number
of terms. In particular they showed that if the cutoff was applied too soon after
(but not directly after) a mean flow mode. then exponentially growing solutions
resulted for A(T). If the truncation was applied directly after a mean flow mode,
then the equation set yielded bounded oscillating solutions. where the cycles
forming a period became more complex with each increase in size of the set. This
would seem to indicate that the mean flow modes have a stabilizing influence on
the solutions, possibly by acting to restrict the potential energy available to the
higher modes. We were unable to rigorously establish whether or not increasing
the number of modes always leads to an increase in the number of cycles needed
to form a period, although the numerical evidence seems to indicate this.

In terms of solutions that retain spatial variations. there is a soliton solution
associated with the truncated model in which B 3 and all higher harmonics and
the accompanying mean flows are ignored. In this limit, it is known (see Gibbon
et al., 1979) that this truncated model can be reduced to the sine-Gordon (SG)
equation. The SG equation is a completely integrable nonlinear wave equation
that has a soliton solution (Ablowitz and Segur, 1981). This soliton solution
can be identified as an isolated abyssal wave packet that propagates nonlinearly
and nondispersively in the along slope direction. Presumably, it is of interest
to determine the propagation characteristics of the abyssal wave packet soliton
solution, when the marginally unstable abyssal flow possesses time variability.

This we do in the next Section.
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4.5 Solution of the truncated soliton model with

Y (T) 0

If we neglect B;3 and all higher order terms, the truncated spectral equations

are given by
(Or +0x)[Ar + (1 = 2k Ay = Yo+ 7T ()] A - IPk*AB, (4.5.1)

(Or + 0x)B = [0r + (1 = 2k)dx] |A]*, (4.5.2)

where, for convenience, we have set B = a» (X, T). These equations are some-
times called the AB equations.

We note, immediately, that if one assumes that dy = 0, this set of equations
can be reduced to a single equation that is identical in form to the A # 1 am-
plitude equation (3.4.14). Thus, in this steady approximation of the truncated
model, the effect of T (T') # 0 on the evolution of A (7") will be identical to that
described in Chapter 3 and is not reproduced here. In this Section. we wish to fo-
cus on understanding the changes introduced into the propagation characteristics
of the soliton solution to (4.5.1) and (4.5.2) by Y (7).

To be concrete we will focus attention on the soliton solution associated with
the marginally unstable situation with Tg = +1. There is a soliton solution asso-
ciated with the marginally stable solution as well (the allowed sets of translation
velocities associated with the marginally unstable and stable situations are dis-
joint from one another). The analysis is essentially the same and thus we do not
include it here.

Our method of analysis is based on a nonlinear WKB procedure (Kodama
and Ablowitz, 1980) developed for solitary waves that assumes that the time

scale associated with Y (7°) is long in comparison to the advective time scale of
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the solitary wave. We begin by assuming
Yo+ Y(T)=14+7(T)=~(ul), (4.5.3)

where v (uT) ~ O (1) and 0 < p << 1, and that A and B are real valued and
satisfy the far field conditions |A, B| — 0 as X — Foo forall T > 0. The solution

to (4.5.1) and (4.5.2) is constructed in the form
A=A mp). B=B(E ), (4.5.4)
where the new variables (£, 7) are given by

1 uT
=1~ —~/ c(C) d¢, 7= uT, (4.5.5)
0

H

so that derivatives map according to
Or = —c(7) e + pdr. Ox = Ok,

where ¢ (7) is the soliton velocity.
Substitution of (4.5.4) and (4.5.5) into (4.5.1) and (4.5.2) leads to. after a

little algebra,
l=c(M))[1=c(r) =287 A =7 (1) A+ K PAB =
=2l =c(r) = k] Aer + O (1) (4.5.6)
L= c(r)] B — [1—c(r) = 2%%] (4%) = p (4° = B) . (4.5.7)

The solution to (4.5.6) and (4.5.7), in the limit of “small” y. can be found in the
form

(A, B) = (A, B) + (A, B)") ... (4.5.8)

Substitution of (4.5.8) into (4.5.6) and (4.5.7) leads to the following series of

problems.
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The O (1) problem
The O (1) equations are given by,
L=c(n][L=c(r) = 2k%] AL — ~ (1) A® + K2 A0BO = g, (4.5.9)
u-«un@m-[y_qﬂ—Qﬁ]QAMFL=0. (4.5.10)

Equation (4.5.10) can be integrated with respect to &. to yvield

(1 - c— 2k2) (A0)?

B = 1.5.11
which can be substituted into (4.5.9) to give
, F22 (1 = ¢ — 2k2) (A©@)°
(L~c)(1~c—2k%) Ay — A0 + ( ) )=o. (4.5.12)

(1-0¢)
It is straightforward to verify, by direct substitution. that (4.5.12) has the
soliton solution

Al (g, 1) = Ay (7)sech v (1) €], (4.5.13)

where

(1) = 5 (7) .
v(n= \/[1 — (7)1 =c(r) =242 (4.5.14)

‘MMﬂEEM 2 (D)1~ c(r) (4.5.15)

K221 = c(r) = 2k%)
which implies that Ay and v are related through the simple algebraic relation

V2(1=¢)v

5.16
Iy (4.5.16)

A 0=

Thus given. v (7) and ¢(7), the evolution of the soliton “wavenumber” v (7) and
amplitude Ag () will be determined. The parameter v (7) is assumed known and
c¢(7) is determined by examining solvability conditions associated with the O (y)

problem.
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Also, it follows from (4.5.14) and (4.5.13) that the product
1—c(r)}x [1=c(r)—2k7],

has the same sign as v (7) or else Ay and v are not real valued. which is not
allowed. Thus, if v(7) > 0, which corresponds to the marginally unstable case
(that we examine here), then ¢ € (=00, 1 — 2k*) U (1, 00), and if 7 (7) < 0, which
corresponds to the marginally stable case (that we do not examine here), then

ce (1 —-2k1).

The O (i) problem and the determination of ¢(7)
The O (1) equations are given by

(1=0¢) (1 —c—2k%) Ay — 74D + 127 (A9BY 4 AVBO) =

—2(1-c—~k?) AL, (4.5.17)
(L=¢) B —2(1—c—2k%) (A9AM), = ([“1(0)]2 - B“”) . (435.18)
which are to be solved subject to the far field conditions ‘:’1“), B“’[ — 0 as

£ — koo forall 7 > 0.

The required solvability condition is that. considered as a 2 x 2 system of
ordinary differential equations (with respect to the variable &), the right hand
side of (4.5.17) and (4.5.18) must be orthogonal to the kernel (i.e.. the vector
space spanned by the homogeneous solutions) of the adjoint system (see. for
example, Kodama and Ablowitz, 1980 or Swaters and Flierl. 1991). The result
of this solvability condition will be to derive an ordinary differential equation for
c(r).

When formulated this way, the solvability condition may be considered an
application of the Fredholm Alternative Theorem (see, e.g., Boyce and DiPrima.

2005). In fact, the “removal of secular terms” procedure we used previously to
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determine the amplitude equation for the marginally unstable (or stable) modes
can also be seen as an application of the Fredholm Alternative Theorem in the
situation where the operator associated with the homogeneous problem is self-
adjoint or trivially non-self-adjoint.

We proceed as follows. We individually multiply (4.5.17) and (4.5.18) by the
unknown test functions ¢; (£.7) and ¢, (€, 7), respectively, integrate (by parts,
repeatedly, where necessary) with respect to £ € (—o0c.00), and add together.

The result can be written in the form
o P 2,9
/ {.‘1(]) [(1 - (.‘) (l —C—- 21&2) 0155 - ","(?1 + }\T-["B(O)Q]
-0

+2(1—c—2k%) AD¢y] + B[R4, — (1 - ¢) o] } dE =

- /ac {2(0-c=k) 040 + 0 ([4)° - B) | de. (4.5.19)

o0

where it is assumed that all the integrals exist.
The homogeneous adjoint problem associated with (4.5.17) and (4.5.18) is

thercfore given by
(1= ¢) (1 —c=2k%) o1 — v0r + K 1P BVo,

+2 (1= ¢ = 2k%) APy =0, (4.5.20)
READG — (1 =)oz = 0. (4.5.21)

If (4.5.11) and (4.5.21) is used to eliminate B'” and @u. respectively. in (4.5.20).

we obtain

2

3K (1 — ¢ — 2k%) [AO)]

=9 o) =0. (4.5.22)

(l - (.') (1 - C— 2’12) Dree — Yo +
Comparing (4.5.22) with (4.5.12) we see immediately that

o = AL, (4.5.23)
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and, thus from (4.5.21), that

B2 [A0)

TR (4.5.24)

@2

Therefore, if (4.5.23) and (4.5.24) is substituted into (4.5.19), it follows that

/ {20-c=#) 4042

oo

212 [ 400072 R
+ L—)l(l{%d] ([A“’)]" - B“”)_} d€ = 0, (4.5.25)

must hold. If (4.5.11) is used to eliminate B in (4.5.25). the result can be

written in the form, after a little algebra,

2(1—c— ) % (/:x [Aéo)]'-’ d&)

A 42 oo
+% ((1]‘_1())2 / [4©@] dg) = 0. (4.5.26)

—0C

If (4.5.13) is substituted into (4.5.26), the integrals are elementary to explicitly
evaluate. and we obtain

(1= c=#?) (va7), - K [————“‘3 ] =0

: Aol ; v (1= ) ] :
and if (4.5.16) is substituted into this expression, the result can be written in the
form
(1-c=3k%) [(1-c)* V"] =0.
Generically.

¢(r) #1 =3k for all 7 > 0,

so that we conclude

[(1-0c)v®]_=0, (4.

[$1]
(R
-1
~

which can immediately be integrated to vield
[L—c(m*¥* (1) = (1 - ) 4
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where ¢o = ¢(0) and vy = v (0), which if (4.5.14) is substituted in, implies,

O VT=e@ [ T w) P,
{[1—0(7)—2k‘-’]} ‘{m} =Vi>0. (453)

where v = v (0). It follows from (4.5.28) that ¢(7) can be obtained by solving

(M 12

the cubic equation
Bol=c(r) =23 =) [1-c(n)]=0 (4.5.29)

Once ¢ (7) is determined, the result can be substituted into (4.5.14) and (4.5.15)
to determine v (7) and Ap (7). which completes the determination of the leading

order solution A® (¢, 7).

An example calculation
We briefly describe an example calculation assuming that
v(1) = 1+sin(7) /2. (4.5.30)

e., the time variability is periodic with period 27 in units of 7 with a range
given by v (1) € (0.5, 1.5). In addition, to be concrete, we assume that & =

= 1/v2 and that ¢(0) = —2.0. It follows from (4.5.14) and (4.5.16) that the
initial soliton wavenumber and amplitude are given by v (0) >~ 0.41 and A (0) =~
3.40. respectively. With the above choice of ¥ (7). the abyssal current never goes
suberitical and, thus, always remains supercritical.

With this choice of parameter values, (14.5.29) can be written in the form
A1) = 83(m)e + 873 (7) = 0, (4.5.31)

since g = 3/8. It follows from (4.5.31) that
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It can be directly confirmed that ¢ (0) = —2.

In Fig. 4.1 we plot the solution for the soliton velocity ¢ (7) as obtained
from (4.3.32). The solution appears to be almost linearly proportional to v (7).
However, this is not precisely true as the exact solution contains contributions
from higher harmonics (i.e., the 3243 (7) /81 terms) but these contributions have
a small amplitude coefficient. In Figs. 4.2 and 4.3 we plot the solution for the
soliton wavenumber v (7) and amplitude Ag(7), respectively. as obtained by
substituting (4.3.32) into (4.5.14) and (4.5.13), respectively. As in Fig. 4.1, we

see the almost linear proportionality with « (7).

051
Fig. 6a. The soliton velocity o{x) vs. v assuming c(0)=-2.0 |
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0.60 - Fig. 6b. The soliton wavenumber v(z) vs. 1. j
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Chapter 5

Summary and conclusions

A weakly nonlinear theory for a marginally stable or unstable. time-varying
abyssal current has been studied. We extend the weakly nonlinear instability
analysis of Mooney and Swaters (1996) to marginally stable or unstable. time-
varying abyssal currents, using the methods described by Pedlosky and Thomson
(2003). The governing equations originate from Swaters (1991) that describe the
linear baroclinic instability of a grounded abyvssal current on a sloping bottom.
The model for this thesis is a two-layer system in which relatively dense water (the
abyssal layer) sits directly on a sloping bottom surrounded by relatively lighter
water (the upper layer).

We first derive the shallow water cquations for each layer from the inviscid
incompressible Navier-Stokes equations with constant density. The shallow water
theory is based on a remarkable distinction between the horizontal and vertical
length scales of geophysical fluid motion. We apply scalings to highlight the
dynamics we expect to occur in the specific physical situation studied in this
thesis. The Swaters (1991) model is obtained by an asymptotic reduction of

the scaled model equations. Another way to derive the Swaters (1991) model is
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presented by working from the potential vorticity equations for the full two layer
shallow water equations.

We then continue to discuss the general linear, nonlinear stability theory and
normal mode stability theory. Linear stability analysis is a procedure to examine
the stability of the steady solution to small perturbations. We add a small per-
turbation term to the steady solution, substitute this into the nonlinear governing
equations, and drop the nonlinear terms (the quadratic perturbation terms) to
obtain the linear stability equations that describe the spatial structure and tem-
poral evolution of the disturbances. Analyzing the energetics associated with
destabilization gives us the fact that there must be at least one negative value of
the slope of the abyssal height hy for instability to occur. When we consider a
quadratically shaped abyssal height profile hg as shown in Fig. 1.1. which pos-
sesses two incroppings. a physical interpretation for this fact is that the instability
occurs on the down slope side of the abyssal height (%o, < 0). The normal mode
linear instability equations are analvzed in order to generate a marginal stability
curve. The marginal stability curve represents the boundary between stable and
unstable modes for a particular cross-slope rate of change of the thickness of the
abyssal current height versus the total wavenumber.

If there is instability in the linear stability analysis. the evolution of the wave
always reaches amplitudes for which the linear theory is no longer valid. To sec
how the marginally unstable modes as determined by linear theory actually evolve
in time we must develop a finite amplitude instability theory that describes the
nonlinear interactions.

The case when the mode does not correspond to the point of marginal stability
is examined first. We derive an amplitude evolution equation and solve for a
weakly subcritical or supercritical abyssal flow with or without time variations.

Without time variations, the amplitude evolution is periodic, which is determined
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by Jacobi elliptic dnoidal function. When a periodic time variation is included,
the normal mode amplitude satisfies a nonlinear Mathieu equation. When the
nonlinear terms are neglected in the amplitude equation, i.e., the case of the
linearized Mathieu equation, there exist periodic abyssal flow configurations that
can stabilize an unstable abyssal flow. This situation occurs for an extremely
small region in parameter space. The generic solution for this linearized Mathieu
equation is not stable for most parameter values. We investigate the effect of
adding the nounlinear term to this amplifving solution in time.

Nine different simulations are obtained by numerically integrating the am-
plitude equation, i.e., the nonlinear Mathieu equation with various amplitudes
and periods of the time varying term. The three cases for the magnitude of the
time varying term correspond to simall, comparable, and large compared with the
steady part of the supercriticality. The three cases for the period of the time
varying term correspond to the periodicity being short, comparable and long,
respectively, compared to the period of the disturbance without the time-varying
terms. The amplitude functions are not periodic so that we allow sufficient length
of time to confirm long time periods. When we have a low frequency parameter
value of the time variable part of the abyssal current, there exist periodic abyssal
flow configurations. For other ranges of frequency parameter values. the normal
mode amplitude is no longer periodic and the pattern of the oscillation appears
highly irregular. However, this irregularity is not the onset of instability because
the normal mode amplitude still oscillates in time within a certain bound.

The second situation is that an amplitude evolution equation is in weakly
subcritical modes. The solutions to the linearized Mathieu equation without
the time-varying term are periodic. However, the linearized Mathicu equation
including the time-varying term has unstable solutions. When we include the

time-varying term into the Mathieu equation, the range of parameters that un-
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stable solutions occur gets larger as the magnitude of time-varying term gets
larger. We have therefore shown that in the linear limit, a stable and periodic
abyssal flow can lead to instability. Numerical simulations show that the origi-
nally stable, periodic amplitude is amplified gradually as time goes by because
of the effect of the time-varying term. However, there is a very interesting re-
sult about the presence of the nonlinear terms in the amplitude equation. The
presence of the nonlinear terms in the amplitude equation always leads to the
amplitude oscillating in time even though the amplitude is linearly unstable. We
present a simulation that illustrates the periodic amplitude.

The evolution of modes that correspond to the point of marginal stability is
singular because it cannot be described by taking the limit of the theory developed
for the mode that do not correspond to the point of marginal stability. When the
supercriticality is centred on the point of marginal stability, the weakly nonlinear
instability theory for time varying abyssal flow generates fully a nonlinear partial
differential equation for the unstable mode. Even at lowest order, there is an
infinity of harmonics produced. The secular producing harmonics are removed
by using asvmptotic theorv constructed properly. Based on a purely ad hoc basis,
we choose only two truncated spectral equations which explain the fundamental
mode and the mean flow it generates. The resulting equation set is equivalent
to the sine-Gordon equation with tiine-dependent forcing. Without the forcing
terms associated with the time dependent abyssal current. the truncated model
has a soliton solution that can be identified as a steadily traveling coherent abyssal
dome.

We develop an asymptotic expansion to describe the evolution of the abyssal
soliton when the abyssal current is time varying. When we include the time-
dependent periodic forcing term, the soliton amplitude is a smooth periodic func-

tion. This is a very important result. Initially unstable modes (the supercritical
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modes) are stabilized by the time-dependent forcing for the wavenumber corre-
sponding to the minimum of the marginal stability curve. We can compare this
with the subcritical mode that the wavenumber modulus is not located at the
minimum of the marginal stability curve. In this case, the amplitude is initially
stable but the time variability of a periodic abyssal flow leads to instability.
The assumptions made for this thesis ignore many important physical config-
urations and dynamic processes such as separation and mixing by topography,
and adiabatic and planetary effects. To understand the abyssal circulation oc-
curring in the ocean, a theory including these features is necessary. It would be
interesting to compensate the amplitude equation concerning realistic geophysi-
cal effects to understand an arbitrary shaped-abyssal current character. In view
of extending the nonlinear regime of the marginal stability of the time-varying
abyssal flow, applving other possible nonlinear terms would be another interesting

topic to work on in the future.
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