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Abstract

A  fin ite  am plitude theory is developed for the evolution o f m arg ina lly unstable 

modes o f tim e-varying abyssal currents on a sloping bo ttom . The evolution of 

th is  abyssal current is modeled by a geostrophic baroclin ic theory of convective 

destabiliza tion which allows for large-am plitude isopycnal deflection and filters 

ou t shear-based barotrop ic instabilities. Linear s tab ility  theory is used to gener­

ate a m arginal s ta b ility  curve. There are two different s ituations to  be considered. 

One is for m arg ina lly unstable modes not located at the m in im um  of the marginal 

s ta b ility  curve. A n  am plitude equation shows tha t the modes eventually equili­

b rate w ith  a new fin ite  am plitude periodic solution. The other case corresponds 

to  the modes a t the m in im um  of the m arginal s tab ility  curve.
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Chapter 1

Introduction

When viewed globally, the vertical temperature structure of the ocean can be 

separated into two d is tinc t zones. The first is an upper, near the surface region, 

roughly 1 km  deep, th a t is characterized bv the temperature sharply decreasing 

w ith  depth. Th is upper region is called the "therm ocline zone” and its  lower 

boundary is called sometimes sim ply the “ thermocline." Ocean currents in the 

therm ocline zone are princ ipa lly  driven by atmospheric winds and la titud ina l 

variations in solar heating. On the planetary scale, these currents are the dom i­

nant mechanism by which the warm waters o f the tropics are transported to the 

polar regions.

Below the thermocline, and extending to  the bottom , is the vast volume of 

cold, dense ocean water (i.e.. between 0°C  and 2°C  and some 3 to  4 km  th ick), 

tha t is called the abyssal zone or region. The abyssal region is characterized 

by a re lative ly weak vertical temperature gradient. Abyssal currents tend to be 

somewhat slower than near-surface currents and are p rinc ipa lly  driven by deep 

convection and density contrasts w ith  the surrounding ocean. These deep ocean 

currents are the dom inant mechanism by which cold polar water returns to the

1
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equator (and beyond).

I t  has long been recognized th a t the con tribu tion  from  abyssal currents should 

be included in  the overall heat budget o f the oceans (e.g., Wunseh, 1984). In  

particu la r, the role o f the abyssal ocean in  setting the global average ocean tem ­

perature is significant. Even though widespread areas o f the ocean surface have 

temperatures on the order o f 20°C  or so, i t  has been estimated by W orth ing ton  

(1981). for example, th a t the im pact o f the abyssal ocean is to dram atica lly lower 

the global average tem perature o f the ocean to  be only about 3.5°C . In  addi­

tion , abyssal currents transport salt, and nutrients as well as other chemical and 

biological components, over great distances.

The water masses o f the abyss are created by the cooling of the ocean surface 

by the atmosphere in the polar regions (W arren. 1981). As the surface waters 

are cooled, they become more dense and, due to  gravity, they sink toward the 

bottom . The existence of such deep cold water at other la titudes means tha t 

there must be a large scale deep c ircu la tion, the abyssal c irculation, which carries 

the water formed in the polar regions to  the rest of the ocean (Warren. 1981: see, 

also, Pedlosky, 1996).

The development o f a theoretical understanding o f the abyssal c ircu la tion , its  

sources, pathways and interaction w ith  the rest of the ocean, has been a challeng­

ing problem in  physical oceanography. Clearly, there are enormous technological 

problems associated w ith  collecting oceanographic data, 4 to 5 k m  deep, from 

ships located on a rap id ly  moving ocean surface. Irrespective o f the fact tha t 

the collection o f oceanographic data from  the abyss is d ifficu lt, the problem of 

understanding the p lanetary scale dynamics of the abyssal c ircu la tion is one of 

the central problems in physical oceanography. The abyssal c ircu la tion , taken 

together w ith  the surface circu la tion, is the means by which incoming solar heat­

ing is d is tribu ted la titu d in a lly  and ve rtica lly  deep in to  the ocean. Besides being

2
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an interesting oceanographic problem in  its own righ t, understanding the abyssal 

c ircu la tion  is obviously an im portan t component in  clim ate dynamics and vari­

ab ility .

Stommel and Arons (1960) provided the firs t dynam ical explanation for the 

deep circulation. They showed, based on the Sverdrup vo rtic ity  balance, tha t 

source-driven abyssal currents on a b-plane must flow equator ward. However, 

away from  the source region, the Sverdrup vo rtic ity  balance does not determine 

the flow direction. This raises the interesting question concerning determ ining 

the dynam ical balance(s) tha t is (are) responsible for m ainta in ing basin scale 

abyssal flow tha t is far removed from the source region.

W hen dense water is formed (e.g., because o f atmospheric cooling) it  may 

reach the bottom . I f  the bottom  is sloping, then the combined influences o f the 

Coriolis force and density contrasts may force the current to  be transversely con­

strained and flow w ith  the coastline to its right (le ft) in  the northern (southern) 

hemisphere. Examples include the Denmark S tra it Overflow (DSO. Smith, 1976). 

the form ation and flow o f A n ta rc tic  Bottom  W ater (W hitehead and W orth ing­

ton, 1982), deep water form ation in  the A d ria tic  Sea (Zoceolotti and Salusti, 

1987), and deep water replacement in the S tra it o f Georgia (LeBlond et n i .  1991 

Karsten et a i .  1995, Masson, 2002). As shown by Nof (1983). a fu lly  grounded 

abyssal water mass ly ing over sloping topography flows, in the fu lly  nonlinear bu t 

reduced gravity dynamical lim it, nondispersively and steadily in the along slope 

d irection, irrespective of the specific height or vo rtic ity  field w ith in  the abyssal 

water mass.

These two dynamical lim its  (i.e., the Stommel-Arons and the Nof balances) 

provide a theoretical scenario for the in itia tion  and maintenance o f source-driven 

grounded abyssal flow. T ha t is, in  high la titude regions where the deep water is 

produced (often over sloping topography), the Sverdrup vo rtic ity  balance in itia tes

3
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equatorward flow. Once produced, th is water mass can become grounded (i.e.. 

"attached” to  the bottom ) and geostrophically adjusted, m aintaining a Nof-like 

balance th a t perm its sustained basin scale meridional quasi-stead}' and coher­

ent abyssal flow. O f course, th is  picture leaves out many im portan t dynam ical 

processes such as d iabatic and planetary effects, baroclinicity, instab ility , topo­

graphic separation and m ixing. In  addition, such a scenario cannot explain cross- 

equatorial abyssal currents where the underlying assumptions o f geostrophically 

balanced grounded flow must necessarily break down (see, e.g., Choboter and 

Swaters, 2003. 2004) or the super-inertial ins tab ility  process associated w ith  fric ­

tiona l super-critical abyssal overflows (Swaters, 2003).

Swaters (1991) was the first paper to  describe the linear baroclinic in s tab ility  

of a grounded abyssal current on a sloping bottom . The ins tab ility  mechanism 

modeled by Swaters (1991) is the release of the available gravita tiona l potentia l 

energy (AG PE) associated w ith  a relatively dense water mass s itting  d irectly  on 

a sloping bottom  surrounded by relatively lighter water. As the abyssal cur­

rent becomes unstable, down slope propagating plumes develop on the offshore 

isopycnal incropping. The AGPE is transferred to perturbation potentia l energy 

in the overlying water column tha t is organized into topographic Rossby waves. 

Jiang and Garwood (1996). Jungclaus et nl. (2001). E tling  et al. (2000), and 

others, have concluded tha t the instabilities observed in three-dimensional nu­

merical simulations o f overflows on a continental slope arise due to the Swaters 

(1991) ins tab ility  mechanism.

Subsequently, Swaters (1993) showed tha t the Swaters (1991) model was an 

in fin ite  dimensional non-canouical Ham iltonian system and th a t it was possible 

to derive A rn o l’d-like nonlinear s tab ility  conditions. Karsten and Swaters (1996) 

extended the Swaters (1993) analysis to  allow for more realistic topographic con­

figurations.

4
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Notw ithstand ing the success o f the linear in s tab ility  theory, i f  the model is to 

correctly describe the observed trans ition  of an unstable abyssal current to  a new 

equ ilib rium  configuration th a t continues to allow sustained basin scale abyssal 

flow, i t  was necessary to  understand the predictions o f the theory in  the nonlinear 

regime. Mooney and Swaters (1990) developed a fin ite  am plitude ins tab ility  

theory for the Swaters (1991) model. They showed tha t i t  was possible for the 

instab ilities to  saturate and for the unstable abyssal current to evolve toward a 

new quasi-equilibrim n state or to  form isolated coherent abyssal domes. Swaters 

(1998) presented numerical simulations based on the Swaters (1991) model and 

showed tha t predictions o f the weakly nonlinear Mooney and Swaters (1996) 

theory remained true even in the fu lly  nonlinear regime.

Poulin and Swaters ( 1999a,b.c) extended the Swaters (1991) model to  the 

case where the overlying water column is continuously stratified. Subsequently. 

Reszka. Swaters and Sutherland (2002) developed the linear ins tab ility  theory for 

th is  new model and presented numerical simulations for the nonlinear evolution 

o f source driven abyssal flows for parameter values characteristic of the DSO. 

In add ition  to showing how th is  model could reproduce the spatia l and temporal 

characteristics o f the mesoscale va riab ility  observed in the DSO. these simulations 

were also able to reproduce the formation of surface intensified eddies that have 

been observed in satellite imagery o f the DSO (Bruce. 1995).

A ll o f the above ins tab ility  for abyssal currents has been based on assuming 

the underlying flow is steady. However, recent work on the baroclinie in s ta b ility  of 

tim e varying flow has suggested tha t tim e dependence can have a profound effect 

on the s tab ility  properties o f ocean currents. For example, Pedlosky and Thomson 

(2003), in  a study o f the two-layer Ph illips ' model o f baroclinie in s tab ility  o f a 

zonal flow on a /3-plane (Pedlosky, 1987), have shown tha t simple tim e variations 

in the zonal current can destabilize the flow even i f  the tim e average of the

5
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current is itse lf stable (and vice-versa). Such tim e  dependence occurs on many 

different tim e scales and for many different reasons. Some of these reasons include 

(da ily) tida lly-forced flow variations, (weekly) weather system induced variab ility , 

seasonal variations or even longer tim e scale interannual variab ility . In  the context 

o f source driven abyssal flow it  is easy to  imagine th a t there are seasonal variations 

in  the intensity o f the atmospheric cooling which produces the deep convection 

and this, in  tu rn , w ill result 111 a tim e varying abyssal current.

The principal purpose o f th is thesis is to develop a weakly nonlinear theory 

for a m arginally unstable, tim e-varying abyssal current. We point out th a t Pavec, 

Carton and Swaters (2004) have recently extended, following the ideas in Pedlosky 

and Thomson (2003), the l inear  s tab ility  theory o f Swaters (1991) to  the case o f a 

m arg ina lly unstable unsteady abyssal flow having an oscillatory component . O ur 

contribu tion  here is to extend the weakly nonlinear ins tab ility  analysis o f Mooney 

and Swaters (1996) to  m arginally unstable, tim e-varying abyssal currents, using 

the methods described bv Pedlosky and Thomson (2003).

T ha t is, we extend the work o f Pavec et al. (2004) in two im portan t ways. 

F irs t, we extend the work o f Pavec et al. (2004) in to  the nonlinear regime. Second, 

we develop the theory for the case of a m arginally unstable unsteady abyssal flow 

having an oscillatory component where the underlying corresponds to the "po in t 

o f marginal s tab ility '' (D razin and Reid. 1981). As we w ill see the details o f these 

two calculations are d ram atica lly  different.

The model for th is thesis is the Swaters (1991) equations for abyssal flow. 

Briefly, th is is a two-layer model tha t is stably stratified w ith  variable bottom  

topography 011 an /-p lane . The model is not completely quasi-geostrophic and 

the abyssal layer can have a height or thickness field tha t intersects the bo ttom  

(see Fig. 1.1). However, because it  is assumed th a t the thickness o f the abyssal 

layer is small compared to the mean thickness o f the overlying water column, the

6
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dynamics of the surrounding ocean is, in fact, quasi-geostrophic, w ith  the poten­

tia l vo rtic ity  (PV) containing relative vortic ity , vortex stretching associated w ith  

the interface between the abyssal current and the upper layer, and a background 

PV  gradient associated w ith  a sloping bottom .

t o / ' 2

v

QG upper layer -  “1

Abyssal layer — “2!
h

Figure 1.1: Geometry o f the model used in th is  thesis

The outline o f th is thesis is as follows. In  Chapter 2, we derive the Swaters 

(1991) model in two different ways. F irst, we derive the equations using the 

asym ptotic methods o f Swaters (1991). In addition , we present a derivation

7
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of the model based on the relevant PV  equations. Chapter 2 then goes on to 

describe the general linear, nonlinear and normal mode s tab ility  theory for abyssal 

currents based on the Swaters (1991) model. Several general s tab ility  properties 

axe presented including necessary conditions for instab ility , a semi-circle theorem 

and a high wavenumber cutoff. F inally, in Chapter 2 the normal s tab ility  problem 

for a constant, or un-sheared, abyssal flow on a sloping bottom  is solved and 

the s tab ility  characteristics are described. These properties are essential to the 

bu ild ing  of the fin ite  amplitude ins tab ility  theory for tim e varying flows that is 

developed in Chapters 3 and -4.

As shown by Mooney and Swaters (1996). and as is well known in the nonlin­

ear theory of baroclinie ins tab ility  in the context o f the P h illips ' model (Pedlosky, 

1970, 1972, 1982a,b. 1987), the mathematical details o f the development of the 

weakly nonlinear theory depend crucially on the underlying perturbation  mode 

being examined. Chapter 3 develops the weakly nonlinear ins tab ility  theory for 

a tim e varying abyssal flow, when the m arginally unstable mode does not corre­

spond to  the “po in t o f marginal s tab ility ." In  th is  s ituation, at each stage o f the 

asym ptotic expansion, the governing partia l d ifferentia l equations are linear so 

th a t higher harmonics are generated only as a second order effect.

In  Chapter 3. we derive and analyze the nonlinear governing equation for the 

modal am plitude when the background flow is a tim e periodic function. The 

Mooney and Swaters (1996) solution is reviewed. We show that in the fin ite  

am plitude lim it, the normal mode amplitude, when the abyssal flow is periodic 

in tim e, must satisfy a nonlinear Mathieu equation. Two situations involving a 

tim e periodic abyssal flow are considered in some detail in Chapter 3.

The first s itua tion  corresponds to  when the normal mode is s ligh tly  unstable, 

i.e., the abyssal current is s ligh tly  supercritical. We show tha t even when the 

nonlinear terms are neglected in the (normal mode) am plitude equation there

8
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exist periodic, w ith  respect to  tim e, abyssal flow configurations tha t can stabi­

lize what is, in  the tim e averaged sense, nevertheless an unstable abyssal flow. 

However, this s itua tion  only occurs for a re la tive ly small set o f flow parameters. 

Generically, when the underlying abyssal flow is already m arginally unstable, we 

show tha t periodic tim e va riab ility  is not a stabilizing influence. However, the 

presence o f the nonlinear terms in  the am plitude equation u ltim a te ly  always leads 

to the am plitude oscillating in time.

We investigate the role of periodic tim e va riab ility  in a m arginally unstable 

abyssal flow by num erically integrating the am plitude equation. In particu la r, 

we describe the evolution of the normal mode am plitude when the period of the 

tim e varying part of the abyssal flow is short, comparable, and long, and when 

the magnitude o f the tim e varying part of the abyssal flow is small, comparable, 

and large, respectively, compared to  the solution o f the am plitude equation when 

tim e variab ility  is not present (i.e., the Mooney and Swaters (1996) solution). 

Generally speaking, for the low frequency variab ility , the normal mode am pli­

tude s till evolves period ica lly although the tem poral structure is complex. For 

the higher frequency tim e variab ility , the normal mode am plitude continues to 

oscillate in time, and appears to  be globally bounded, bu t the oscillations are no 

longer periodic at a single frequency.

The second situa tion  corresponds to  when the normal mode is s ligh tly  stable, 

i.e., the abyssal current is s lightly subcritical. We show tha t when the non lin ­

ear terms are neglected in the (normal mode) am plitude equation there exist 

tim e periodic abyssal flow configurations tha t can destabilize what is, in the tim e 

averaged sense, nevertheless a stable abyssal flow and that th is is the generic 

situation. However, the presence o f the nonlinear terms in the am plitude equa­

tion  u ltim ate ly  always leads to the am plitude oscillating in time. We present a 

numerical sim ulation tha t illustrates this property.

9
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In  Chapter 4, we develop the weakly nonlinear ins tab ility  theory for tim e 

varying abyssal flows when the m arginally unstable mode does correspond to  the 

"po in t o f marginal stability."' In many ways, th is is the real nonlinear s ta b ility  

problem. B ut th is  analysis is complicated by the fact tha t, even at lowest order, 

the unstable mode is governed by a fu lly  nonlinear partia l d ifferentia l equation 

(th is  was first shown for the Ph illips ' model for the baroclinie ins tab ility  o f a 

steady zonal flow by Pedlosky. 1982a,b, and later was more completely discussed 

by W arn and Gauthier, 1989).

This means tha t, even at lowest order, there are an in fin ity  of harmonics 

produced. Following the solution procedure o f Mooney and Swaters (1996), we 

introduce a spectral decomposition technique tha t leads to an in fin ite  set of cou­

pled nonlinear pa rtia l d ifferential equations tha t w ill describe the spatial and 

tem poral evolution of the modal amplitudes.

I f  the in fin ite  set o f modal amplitude equations is truncated, on a purely ad hoc 

basis, to  include only the fundamental mode and the mean flow it  generates, then 

the resulting set o f equations can be shown to  be equivalent to the sine-Gordon 

equation w ith  time-dependent forcing. This was firs t shown for the P h illips ' 

model for the baroclinie ins tab ility  of a steady flow by G ibbon e.t. al. (1979) and 

for the abyssal flow problem by Mooney and Swaters (1996). Unfortunate ly, we 

have not been able to  find exact solutions to our truncated model equations for a 

tim e varying mean flow. However, Mooney and Swaters (1996) have shown th a t, 

w ithou t the forcing terms associated w ith  the tim e dependent abyssal current, 

the truncated model has a soliton solution that can be identified as a steadily- 

trave lling coherent abyssal dome. We derive transport equations, by introducing 

a nonlinear W KB  technique, describing the evolution of the soliton solution of 

the truncated model assuming that the tim e variation of the underlying abyssal 

current is slow compared to the advective tim e scale associated w ith  the soliton.

10
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Finally, in  Chapter 5. there is a discussion o f the results, concluding remarks, 

and suggestions for fu rther research.

11
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Chapter 2

Derivation of the governing 

equations

Geophysical fluids are characterized by a s trik ing  difference between the length 

scale o f the vertica l motion compared to tha t o f the horizontal motion. In the 

atmosphere, for example, the vertical movement o f a ir associated w ith  typical 

weather system takes place almost entire ly in the region between the surface of 

the earth and the tropopause. a distance of. on average, about 10 km.  Coherent 

horizontal movement in the atmosphere occurs on a much vaster scale: a typical 

wavelength for a series of disturbances organized as p lanetary Rossby waves may 

be 1000 to  2000 krns, or more. In the ocean, the depth o f the mid-ocean is 

about 5 km,  and the dynamical horizontal length scale is about 100 km.  We may 

take advantage o f these scale differences by developing a theory which, to  leading 

order, ignores vertical accelerations compared to  horizontal accelerations. The 

resulting equations are the shallow water equations. In  th is  thesis, we use a two 

layer system of shallow water equations (see Fig. 1) as the starting  po in t for the

12
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development of our baroclinie model for abyssal currents.

The outline o f th is  Chapter is as follows. In  Section 2.1, we derive the shallow 

water equations for each layer in  our model based on a scaling argument applied 

to the inviscid, incompressible Navier-Stokes equations w ith  constant density. In  

Section 2.2, we develop scalings to highlight the dynamics we expect to occur in 

the specific physical s ituation studied here. In  Section 2.3 we derive the Swaters 

(1991) model as a systematic asymptotic reduction of the nondimensional two 

layer shallow water equations derived in Section 2.2. In Section 2.4, we present 

an a lternative derivation of the model equations based on the potentia l vo rtic ity  

form ulation of the two layer shallow water equations. In  Section 2.5, we review, 

based on the theory in Swaters (1991). the known linear s tab ility  characteris­

tics for general steady abyssal flow solutions to the model including necessary 

conditions for instab ility , a high wave number cu to ff and a semi-circle theorem. 

In  addition, the general form of the linear and nonlinear s tab ility  equations is 

derived. In Section 2.6, we describe the steady abyssal current solutions tha t we 

w ill use to develop the theory in th is thesis and present some specific s tab ility  

results for th is flow configuration.

2.1 The two-layer shallow water equations

We begin our derivation of the model equations by first deriving the shallow water 

equations from the inviscid incompressible Navier-Stokes equations w ith  constant 

density for a single layer of flu id. Once this is done, i t  w ill be stra ightforward to 

see how the two layer model can be obtained. We also remark tha t our derivation 

w ill assume /-p lane  dynamics so tha t the la titud ina l varia tion o f the Coriolis 

parameter is neglected.

The Navier-Stokes equations for an inviscid, incompressible flu id  w ith  constant

13
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density, in the presence o f gravity, can ire w ritten  in the form

u ( +  (u  ■ V )u  +  / ( e 3 x u) =  —- V p  -  pe3, (2.1.1)
P

V  • u  =  0. (2.1.2)

where u ( j \  y. z, t) =  (u, v, w) where u, v, and w are the along slope, across slope, 

and vertica l velocities, respectively, p is the constant density, p ( x . y . z . t )  is the 

to ta l pressure, V  =  (dx,d r  dz). and /  =  2fls in(#o) where Q is the magnitude of 

the earth's ro ta tion  vector ( f i =  2tt rad ians / day)  and 0 Q is the reference la titude  

for the /-p la n e  approxim ation (Pedlosky. 1987). g =  9.8 m / s 1 is the gravita tiona l 

constant, and e3 is the un it basis vector in the positive c-direetion. Equations

(2.1.1) and (2.1.2) are in vector form. I t  is more convenient to  w rite  (2.1.1) and

(2.1.2) in the component form

■ut +  uux +  vuy +  wuz — f v  =

vt - f  uvx 4 -  vvy - r  wv.  +  f  u =  ■

1
wt +  uwx - f  vWy +  win,  =  — - j

11.r +  Vy +  Wz = 0 .

The derivation o f the shallow water equations is facilita ted by introducing 

appropriate scalings for the various variables. Let H  and L be the horizontal and 

vertical length scales, respectively. The aspect ratio, denoted as ,4r . given by

A r =  H / L  «  1, (2.1.7)

for the geophysical flows we are interested in.

I f  the horizontal velocities are scaled by U and the vertical velocity by IV. 

then the con tinu ity  equation, (2.1.G), scales like

ux - f  v;j +  wz =  0 .

II IL m
L L II
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- f t . (2.1.4)

-  9̂ (2.1.5)

(2.1.6)
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Assuming t l ia t  u k  scales like u x  and v y , implies th a t

W hen we scale the vertica l momentum equation. (2.1.5), we obtain

wt + uwx +  vw,j + wuk =

w  £ i r  u\v u iv
T  L  L  11

where we have introduced the tim e scale T.  I f  we use the so called advective tim e 

scale assumption T  =  L / U  and substitu te  in the above relation for IF . we find 

th a t a ll the terms 011 the left hand side o f (2.1.5). i.e.. the vertical acceleration 

terms, are 0 ( A rU 2/  L).  Now. typ ica l m id ocean scales are about (LeBlond and 

Mysak, 1978, G ill, 1982. Pedlosky. 1987. M ellor, 1996)

U =  10- 'm /s ,  L =  105m. A r =  10“ 2 ( / /  ~  5 km)

==> A r l l 2 1L  ~  O (10“ !' m / s 2). (2.1.8)

Since g ~  10 m / s 2, clearly, the vertica l acceleration terms are insignificant 

compared to  the gravita tiona l term  in  the vertica l momentum equation. It follows 

tha t the only term  th a t can balance g must Ire the pressure gradient term , which 

implies tha t to a significant approxim ation, the vertica l momentum equation 

reduces to

~P: =  - 9 -  (2-1.9)
P

In tegra ting  this equation w ith  respect to c leads to

p{x, y, z, t) =  - p g z  +  0 (x, y, l). (2.1.10)

where (f> is a "constant" o f integration. Note th a t d  is independent o f c. I t  follows 

th a t i)Xj j  =  0j.,y so tha t the pressure gradient terms in the horizontal momentum 

equations are independent o f 2 . Thus, i f  (u .v)  are in itia lly  independent o f 2 ,

15
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i t  follows th a t it  is consistent to suppose tha t they w ill remain so subsequently. 

T ha t is, we assume uz =  v, =  0 for a ll / >  0.

We now consider a two layer configuration where each layer has a different 

density. For convenience, we denote the upper layer (i.e., the overlying ocean) as 

layer one, and the lower layer (i.e.. the abyssal layer), as layer two and subscript, 

where necessary, the various variables w ith  a -T ' or a "2" to  denote the respective 

layer.

Thus, the upper layer pressure w ill be o f the form

P i( :r ,y .~ .0  =  - p \ g z  +  0, (.r. y, t). (2.1.11)

I f  we denote the position of the free surface associated w ith  the upper layer to 

be given by c =  r/(:r, y, t) and th a t the pressure on the free surface is constant 

(which we can take to be zero), it  follows that the dynam ic boundary condition 

is given by

0 =  -p i ( ) i i { . r .  y , t )  +  O] (.r, y, / ). (2.1.12)

which determines O i(.r,y.<). Thus /q is determined by combining (2.1.11) and 

(2.1.12). to give,

p ,(.r.y ,2 ./.)  =  ~P\(jz +  pxgp. (2.1.13)

To determ ine p2, i t  is convenient to  w rite  the analogue of (2.1.11) in the form

y2(:r, y, t) =  pxg H  -  p2g{z +  / / )  +  o2(x. y . t ) .  (2.1.14)

The dynamic boundary condition on the interface between the abyssal layer and 

overlying flu id , located at c =  —H  — sy +  h (see Fig. 1), is th a t the to ta l pressure 

must, be continuous across the interface, i.e..

Pi(x ,y ,  —H  — ,sy +  h, /.) =  p2(x, y, - / /  — sy +  /;./.). (2.1.15)

I t  follows from  (2.1.15), (2.1.13) and (2.1.14) that,

PiOiv +  U +  sy — h ) =  p i g H  — P2 g {—H — sy +  h +  H )  +  &2, (2.1.16)

16
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which can be re-arranged into the form

02 =  P m  +  P2 <j(h -  sy), (2.1.17)

where g' =  g(p<> — Pi ) /P 2 >  0 is called the reduced gravity. Substitu ting  (2.1.17) 

in to  (2.1.14), we see that

Pi =  P\<j{H +  n) ~  Pz(~ +  H)  +  P2 (j '{h -  sy). (2.1.18)

We now develop the appropriate kinem atic boundary conditions for the upper 

layer. For notational convenience we delete the "1" subscript for the moment. 

As mentioned above, the position of the ocean surface is given by z — g (x .y .  t). 

I t  follows tha t

- j^ (z  -  ?/) =  0 on z =  g (x, y. t ) . (2.1.19)

where the total time derivative D j D t  is given by

D d „  d  d d  d  —  =  —  +  U -  V  =  — - F  u—  +  v —  4 -  iv— .
Dt  dt. dt dx dy dz

So, (2.1.19) can be expressed as

(d, +  udx +  vdy +  wO.){z -  rj) =  0 on z ~  g (x. y. t ) . 

from  which it  follows tha t

Dul l
w =  gt +  ugx +  vgy =  -j j j -  on z =  g {x. y. t ) .

where D u / Dt. is the total "horizontal" t ime derivative given bv 

D u  e) d  d d

7 x - m +a,' ' w" - u  + l%  + %-
where U// =  (u.v)  and V //  =  (dx,d y).

I t  therefore follows, re-introducing the "1" subscript, tha t

wi  =  gt +  u\gx +  vxgy on z =  g (x, y, t ) . (2.1.20)

17
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and, sim ilarly, 011 the interface between the abyssal layer and overlying ocean, 

located at z — —I I  — sy +  h, tha t

w i =  (dt +  u xdx +  V\dy) (h — sy) 011 z =  —I I  — sy +  h. (2.1.21)

We now tu rn  to w ritin g  the continu ity  equation (2.1.6) in a more convenient 

form for the upper layer. To begin, we integrate (2.1.6) vertica lly  over the entire 

upper layer water column, i.e.,

[  U l x  +  I ’ l y  +  U’ lz dz =  0.
J - H - s y + h

This gives us

uq(.r, y. 7). t) -  u>i(x, y, -1-1 -  sy +  h, t) =  - ( r /  +  11 +  sy -  h ) {u Xx +  cly ). (2.1.22)

I f  (2.1.20) and (2.1.21) are substituted in to  (2.1.22), we obtain

D H(i) +  H ^-r sy— /1) +  ^  +  ^  +  ^  _  h) (u ]x +  v ly) =  0. (2.1.23)

which can be re-arranged into

(7/ +  sy -  h), +  u w, • V H(rj +  sy -  h) +  (7; -1- 1 1 +  sy -  h ) V H • u , l l :  (2.1.24)

and fu rther into the form

(?/ -  h),  + V ,/  • [u w i(;/ +  H +  sy -  h)} =  0. (2.1.25)

where we have used the vector identity

V - ( b o )  =  t t V - b  +  b - V a ,  (2.1.26)

for an a rb itra ry  scalar function a (x ) and vector function b ( x ) .

The development o f the kinem atic boundary conditions for the lower layer 

follows in exactly the same manner. For the abyssal layer, the "upper boundary"

IS
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is the interface between the abyssal layer and the overlying ocean (located at 

2  =  —H  — sy +  h) and the "lower boundary” is the ocean bo ttom  (located at 

z — —H  — sy). Thus, we find tha t

Hence, i f  we vertica lly  integrate the con tinu ity  equation (2.1.6) over the lower 

layer thickness, i.e..

We summarize our work so far. Because we need to nondimensionalize the 

two layer shallow water equations and then subsequently introduce an asym ptotic 

expansion we w ill now introduce asterisks in to  the equations so that variables w ith  

asterisks are to be considered dimensional. Also, we w ill delete the H  subscript 

from the gradient and the velocity fields since henceforth we w ill on ly work w ith  

the horizontal gradient and velocity fields, respectively.

uh — - j j j -(— H  — sy +  h) on c =  —H  — sy +  h, 

w2  =  ~  sy) 011 2 =  - H  -  sy.

(2.1.27)

(2.1.28)

(2.1.29)

i t  follows tha t

w 2 {x, y. — H  — sy  +  h, t) — tn>(.r. y. —H  — sy, t.) +  (iiox +  v->y)h =  0. (2.1.30)

I f  (2.1.27) and (2.1.28) are substituted in to  (2.1.30). we obtain

~  sy +  h) -  -  sy) +  (u2x +  v2y)h =  0. (2.1.31)

which simplifies to

(2.1.32)

or, equivalently,

h, +  V a  • (u2i,h)  — 0. (2.1.33)

19
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Thus, from  (2.1.1) and (2.1.26), the upper layer equations are given by

u ; t . +  K  • V ') u j  +  /(e3 X  u*) +  g V r f  =  0, (2.1.34)

( i f  -  h’ )t. +  V * • [u \ ( r f  +  H  +  s ' y '  -  /**)] =  0. (2.1.35)

where we recall that

—  V*/h = g V ' r f .
Pi

The lower layer equations are given by

u.*(. +  (u.> • V *)U 2 +  / ( e 3 x u.') +  —  V ’ /r, =  0, (2.1.36)
P2

h'r  +  V ’ • [u.Vi*] =  0. (2.1.37)

w ith  pressure con tinu ity  across the interface given by

Pi =  P ig i f  +  P2 f / { h ’ -  x 'y ') .  (2.1.38)

2.2 Scalings for the two layer shallow water equa­

tions

We now scale the two layer shallow water equations to obtain the Swaters (1991) 

baroclin ic abyssal current model. We w ill introduce variables w ithou t an asterisk 

and these are henceforth all non-dimensional. The horizontal length is the internal 

deform ation associated w ith  the overlying ocean, not the abyssal layer. Th is is 

the appropriate length scale i f  potentia l vo rtic ity  (P V ) variations associated w ith  

deformations o f the interface between the two layers is to  be the same order of 

m agnitude as the relative vo rtic ity  in the upper layer (Swaters. 1991). T ha t is,

( x ' . y ' )  =  L'(x,y) =  ,y ) , (2.2.1)

20
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where L* =  (g ' I I ) = / /  is the in terna l radius o f deformation o f the upper layer 

(Pedlosky, 1987). Note tha t (g 'H )*  is the phase speed o f a long internal g rav ity  

wave unaffected by ro ta tion  (Pedloskv. 1987).

Second, we introduce the advective tim e scaling,

r  =  ( f L * / s *g ' ) t . (2 .2 .2 )

We note th a t s ’ g' / f  is the N o f  speed, which is the speed at which an isolated 

abyssal eddy travels along a bo ttom  w ith  constant slope s'  assuming tha t there 

is no baroclin ic interaction w ith  the surrounding flu id  (Nof. 1983). The Nof speed 

w ill form the velocity scaling for the abyssal layer.

T h ird , the abyssal layer height is scaled as

where s' is the slope o f the bottom  topography. More generally, s '  can be regarded 

as a typical value for the bottom  slope and thus s ' L '  w ill be a characteristic 

bo ttom  varia tion  in the height of the topography over an internal deformation 

radius.

Fourth, the upper layer velocity and variations in the height of the ocean 

surface are scaled as follows

These scalings may seem a lit t le  unusual at first glance. Note th a t we have scaled 

the upper layer velocity field by the N of velocity. However, as shown bv Swaters 

(1991), th is  is the correct scaling to use if  the relative vo rtic ity  is to scale sim ilar 

to  the potentia l vo rtic ity  changes induced by the abyssal layer height, i.e.,

I f  =  s' I f  h. (2.2.3)

(2.2.4)

(2.2.5)

O  (V * x u () ~  O ( f h * / I I )  = »  u ; ~  O (.s ' g ' / f ) .

21
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The scaling for i f  is constructed so tha t u j and i f  are in  geostrophic balance to 

leading order. Tha t is, to  leading order, we assume tha t the horizontal pressure 

gradient scales like the Coriolis terms.

F ifth , the velocity and pressure fields in the abyssal current are assumed to 

be in  geostrophic balance, to  leading order, and as mentioned earlier, the abyssal 

velocity is scaled by the Nof velocity. That is.

These are the basic scalings for the dimensional model. We now substitu te  

these definitions, so to  speak, in to the dimensional shallow water equations and 

obtain the nondimensional equations. W hen one does tha t, there w ill be a sin­

gle nondimensional parameter, denoted as s. and related to  the bottom  slope 

parameter s’ , via the relation

This relationship can be rew ritten as

which allows us to interpret the parameter s as the ra tio  of the Nof speed to  the 

speed o f long baroclinic gravity waves. A  small s acts as a low band pass filte r to 

remove the long gravity  waves and to focus attention on baroclin ic sub-inertia l 

processes (Swaters and F lie rl, 1991).

F inally, we comment on what typical values for the scalings would correspond 

to abyssal currents. Typ ica l values for the dimensional parameters appropriate 

for a continental shelf (see Swaters and F lierl, 1991) are I f  ~  40 in. I I  ~  250 

in. I f  «  15 km, tf «  7 days which implies a Nof velocity of about 3 cm/s.  For 

deeper basin scale abyssal flows, such as the DSO, typ ica l values would be about,

(2 .2.6)

l>2 — f h l f f / s ’ ]),. (2.2.7)
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h* «  100 m, H  «  4000 m , L ' ~  15 fcm, ( * « 7  days which implies a Nof velocity, 

again, o f about 3 cm/s  (see Reszka et a i ,  2002). Typ ica l bo ttom  slopes are on 

the order o f s’ ~  10~2 which suggests th a t s ss 10“ 1 to 10“ 2.

The dimensional  momentum equation for the upper layer is given by (2.1.34). 

I f  the above scalings are introduced into th is  equation, one gets the follow ing 

non-dimensional  momentum equation

 4 —  uw + % '/ / ) * 7777rr(ui • V).s(<///)3Ul
(3'*m »' { g ' H ) *

9'

+/(e3 x  ( g ' H ^ s u , )  +  =  0. (2.2.10)
{g’ HY- 0

which can be simplified to

s ( y '/ / ) ^ / s u 1( +  s2( y '/ y ) ^ / ( u 1 - V ) u 1

+ / ( r / / / ) i s ( e 3 x  U l) +  7 ^ 4 V y  =  0, (2.2.11)
( g ' l l p

and yet fu rther to

s u 1( +  .s(ui • V )u i +  e3 x Ul +  Vr; =  0. (2.2.12)

A pp ly ing  the above scalings to the dimensional con tinu ity  equation for the 

upper layer, (2.1.35). yields the following non-dimensional  continu ity  equation 

for the upper layer

( ^ g - s H h ) t f  , s l I g>
+ - V - [ . s ( r / / y ) n i1( ^ / /  +  / /

(.■?'»)* a' { g ' H ) i  ' ' 9
s' (g'H)1 /*

+ (2 t 0 W  b W  () , , 213)

O' f  '

which can be simplified to

! • < — - V ~  sHh) ,  +  s f V  • [ u i ( ~ p 7 /  +  H  +  H sy  -  sHh) }  =  0. (2.2.14)
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The s tra tifica tion  characteristics o f abyssal ocean currents has

0 <  g ' /g  =  (Pi -  P \ ) /p 2 «  1,

which allows us to  neglect the free surface terms of order O {g' /g)  in the upper 

layer con tinu ity  equation (Swaters and F lie rl, 1991). Th is is equivalent to assum­

ing th a t the ocean surface is a rig id  lid  (Swaters. 1991). M aking this assumption 

implies tha t

- H f s h t +  s / V  • [u , ( / /  +  H sy  -  sHh)} =  0, (2.2.15)

which can be sim plified to

sh, +  V  • [u] ( .s/i -  sy -  I) ] =  0. (2.2.16)

The non-dimensional equations for the lower layer are obtained using exactly 

the same procedure sta rting  from  equations (2.1.36) and (2.1.37), yie ld ing

.suof +  .s(uo • V)u_» +  e.i x uo +  V p 2 =  0,

h, +  V  • ( / iu 2) =  0.

We see im m ediately th a t the abyssal layer con tinu ity  equation does not have the 

parameter s in it. T h a t is, all terms are 0 (1 ) .  This is a consequence of the fact 

tha t the abyssal height has been scaled to allow fin ite  height variations. I t  is th is 

property which implies th a t the lower layer dynamics are not quasigeostrophic.

I f  we apply the scaling assumptions to the pressure con tinu ity  condition 

(2.1.38). we obtain

-  m i l . +  (2.2.17)
f g '  ‘  ‘ g' f  * g

which simplifies to

P2 g 'Hsp 2 — p2g ' { sH h  — Hsy)  -(- pysHg'g , (2.2.18)
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and yet fu rthe r to

p2 sp2 =  p2(sh -  sy) +  piST]. (2.2.19)

I f  we use the defin ition o f the reduced gravity

/ ( j {p 2 ~ P i )  _  Pi , 9'g — ----------------  <==?• — — l  ,
P2 P2 9

and substitu te  in to  the pressure con tinu ity  condition and then neglect terms o f 

O (g ' / g ). we obta in  sim ply

p., = ,/ +  h -  y. (2.2.20)

For completeness we obtain the appropriate nondimensional horizontal bound­

ary conditions. The s tab ility  theory to be developed w ill be done in the context 

of a channel w ith  parallel walls located at y  =  0 and y =  L. respectively. Because 

the flu id  is inviscid the appropriate boundary condition is tha t there is no flux 

of flu id  through the wall, which implies the normal velocity at the wall must be 

zero. This is expressed m athem atically as

t ’i,2 ( ^ , 0  , t )  =  Vi:2( x , L , t )  =  0. (2.2.21)

In  summary, the nondimensional two layer shallow water equations are given

by

e3 x u i  +  V // =  ■- s  (dt +  U i  • V ) U j , (2.2.22)

V  • U i  =  sht — sV ■ ( y u , )  +  .sV • ( / ( U i ) , (2.2.23)

e3 x u 2 -  e2 +  V(/i. + , / )  =  s  (dt +  u 2 • V ) u 2 , (2.2.24)

h t +  V  • (/m2) =  0 , (2.2.25)

Pi =  9  +  h -  y. (2.2.2G)

Note th a t the location of the small parameter s in the above equations pro­

duces the effect suggested in words earlier, which is tha t the overlying ocean w ill 

follow quasigeostrophic dynamics bu t the abyssal layer w ill be geostrophic, but 

not quasigeostrophic.
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2.3 A sym ptotic reduction of the two layer shal­

low water equations

The Swaters (1991) model can be obtained by a regular asym ptotic reduction of 

the model equations (2.2.22) through to (2.2.26) in  the lim it s —>• 0. To begin, 

we assume an asym ptotic expansion o f the form

(/?, u i , u 2,p, h) ~  (?/. u i,  u 2 , / j ,  / i) (0) +  s(i], u i , u 2,p ,/ f) (1) H . (2.3.1)

When the asymptotic expansion (2.3.1) is substituted in to  (2.2.22) through 

to (2.2.26), and terms w ith  sim ilar powers of s are collected together, one obtains 

five equations, ind iv idua lly  o f the generic form

To ((?;, u i , u 2.p. h) {0]) +  sCi  ((7/, iq .  u 2.p, / i) (0), (//, u !: u2,p, h){1)) + • • •  =  0.

where the T „ (77 =  0,1, 2. • • •) are pa rtia l d ifferential operators acting on the ir 

arguments. Since the asym ptotic expansion is assumed to hold for a rb itra ry  

(but, of course, ‘‘small” ) s, i t  follows (see Bender and Orszag, 1978), since there 

is 110 exp lic it $ dependence in each of the C„  “coefficients," tha t

To ( ( r / , u t , u 2 . / 7 , h){Q)) =  T i ( (77, u u u 2 , />.  / i ) ( 0 ) . (7/ ,  u 1; u 2 .p. h ) { l ] ) =  • • ■  = 0 .

We call the T n =  0 i)rol)lem the "0 ( s n) problem." One can see how the 

asymptotic solution is, in principle, constructed. From the 0(.s° =  1) problem 

one determines, in principle, ( / / ,u i,U 2 ,p , / t ) (0) and from the O(s)  problem one 

determines (77, u t . u ^ . p ,  / t ) (1) ,  and so on, un til as many terms in the asym ptotic 

expansion as are wanted are determined. O f course, in practice, the solution of 

the ind iv idua l problems is never entire ly straightforward. For example, associated 

w ith  the "higher order” problems, i.e., the T n =  0 problems when n  =  1,2, • • • .  

w ill be certain mathematical so lvability conditions.
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The 0 (1 )  equations are given by

e3 x  =  - V i } {0), (2.3.2)

(2.3.3)

(2.3.4)

(2.3.5)

(2.3.6)

which implies tha t the velocities are geostrophically determined and can be w r it ­

ten in the form

The abyssal layer model equation is obtained by substitu ting  (2.3.8) in to

(2.3.5) to  give

The model equations for the upper layer are somewhat more subtle to obtain. 

I f  (2.3.7) is substituted in to  (2.3.3) one sees tha t (2.3.3) w ill be tr iv ia lly  satisfied 

for all In  other words, the 0 (1 )  problem for the upper layer is not closed 

since there are an insufficient number o f equations to determine the leading order 

solution. In the context o f the problem examined here, th is is called "geostrophic 

degeneracy.” To fu lly  determine the 0 (1 )  solution, i t  is necessary to  examine the

u
(0 ) (2.3.7)

h\0) +  h™ +  J  h (0)) =  0. (2.3.9)

where the Jacobian J  operator is defined as

J  (.4. B)  =  A x By -  A yBx. (2.3.10)
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O  (s ) problem for the upper layer and derive a so lvab ility  condition on th a t 

w ill "close” the problem.

The O  (s) equation for the upper layer is given by

e3 x +  V r/(1) =  -  ( ^  +  Uj0) • v )  u '01. (2.3.11)

V  • u [ }) =  h{t0) -  V  • ( y u f ' 1) +  V  ■ ( / i(0)u '01). (2.3.12)

I f  we form  V  x  (2.3.11) and substitute in (2.3.7), we obta in

A r/((0) +  J  (t/(0). A r / 0)) =  - V  • u ^ .  (2.3.13)

where A  =  V 2 =  dxx +  dyy.

Finally, i f  (2.3.12) is used to  e lim inate V  • u * /1 in (2.3.13). w ith  (2.3.7) being 

used again, we get

( A r / 0) +  h{0)) t +  J ( i f ' K  A i f } +  h (Q) -  y) =  0. (2.3.14)

Equation (2.3.14) is the quasigeostrophic (QG) potentia l vo rtic ity  equation for

the upper layer. I t  "says” tha t the upper layer QG potentia l vortic ity . given by

A t/ 0) +  / i (0) -  y. is conserved following the leading order (geostrophic) m otion.

The upper layer potentia l vo rtic ity  is comprised o f three terms. The firs t is the 

relative v o rtic ity  term  V  x Uj0) =  A7/(0), the second is the baroclin ic stretching 

term  associated w ith  the height of the abyssal layer and the th ird  is the 

background vo rtic ity  gradient associated w ith  the sloping bottom , i.e., the —y 

term.

The Swaters (1991) model therefore corresponds to  the set of coupled non lin ­

ear pa rtia l d ifferentia l equations (2.3.9) and (2.3.14), which is to be supplemented 

by appropria te in it ia l and boundary conditions. A lthough it  is not im m ediate ly 

obvious, in  fact (2.3.9) is also the leading potentia l vo rtic ity  equation for the 

abyssal layer. In  the next section we show this by re-deriving the Swaters (1991) 

model by working from the potentia l vo rtic ity  equations for the fu ll two layer 

shallow water equations.
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2.4 D erivation based on a potential vorticity  for­

m ulation

We are going to  convert the two layer shallow water equations in to  a single po­

ten tia l vo rtic ity  equation for each layer. We firs t take the curl o f the momentum 

equation to derive the vo rtic ity  equation, and from this we w ill find the poten­

tia l vo rtic ity  equation. Dynamically, the potentia l vo rtic ity  has a very im portan t 

property. In the inviscid lim it tha t is examined here, the poten tia l v o rtic ity  is 

conserved following the motion (Pedlosky, 1987), i.e., it  is a Lagrangian invariant.

F irs t, let's consider the upper layer equations. To compute the curl o f the 

upper layer momentum equations we first, compute d / d y\e\ ■ (2.2.22)] and d j d x [e> • 

(2.2.22)], yielding, respectively,

— t ’l !/ +  7}\xy =  —SU\ty ~  s(u iy l l ix +  U\U\xy +  7’l y “ ly +  D ' d y y ) -  ( 2 - 4 . 1 )

Mix +  Vlyx =  —SVltx — 'S(«lxMlx +  +  t’lx l’ly +  ep'lyx)- (2.4.2)

Subtracting (2.4.2) from  (2.4.1) gives

is the relative vo rtic ity  o f the upper layer. Equation (2.4.3) can be rew ritten  as

( u i x  +  i ’ly) — A'Clf +  sfli iC lx +  771 Cl y +  ( (/lx +  ,;ly)Clj-  (2 .4 .3 )

where

Cl 7,lx M1 y ,

(2 .4 .4 )

where we have used the nondimensional to ta l derivative, given by

(2 .4 .5 )
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The next step is to work w ith  (2.2.23), in  the form

sht +  (sh -  sy — 1)V  • Ui +  Ui • V (s /i -  sy -  1) =  0.

and then to  solve for the horizontal divergence, i.e.,

sh, +  Ui • V(.s7i. — sy — 1) D(sh — sy — 1 ) / D t
V - U i  =  —

sh — sy — 1

I f  th is is substituted into (2.4.4). we get

sh — sy — 1

D(sh — y — l ) j  Dt
sh — sy — 1

=  0.

which can be re-w ritten in the form

D r  , 1 +  s(, i D
IDt 1 sh — sy — 1 Dt

and. thus, we find
D 1 +

(sh - s y -  1) -  0,

=  0 .

(2.4.6)

(2.4.7)

(2.4.8)

(2.4.9)

(2.4.10)
D t  \  1 +  sy -  sh /

Equation (2.4.10) is the potentia l vo rtic ity  equation for the upper layer. The 

nondimensional potentia l vo rtic ity  for the upper layer, here denoted by P\ ' \ .  is 

given by

PV,
1 + (2.4.11)

1 +  sy — sh 

and is conserved following the motion.

I t  is interesting to notice that we can also derive (2.4.10) by scaling the d i­

mensional potentia l vo rtic ity  equation, given genetically for the shallow water 

equations for a single layer, by (sec, e.g., Pedlosky. 1987)

'V *  x u ’ +  f 'D
Dt - H to ta l

o. (2.4.12)

where //total is the to ta l layer thickness. For the upper layer equations, (2.4.12) 

takes the form

Q  +  fD

DP I !  +  ,s*y* — /;,* 

30
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W hen we apply the scalings from  Section 2.2, the equation (2.4.13) is exactly

(2.4.10).

R eturning to (2.4.11), i f  we now substitute the expansion (2.3.1), we obtain 

PVi  ~  1 +  s ( ( I 0' +  h{0) - y j + O  (s2) . (2.4.14)

Hence, to leading order, (2.4.10) is

which, i f  the geostrophic relations (2.3.7) are substituted in. is exactly (2.3.14).

We begin the derivation o f the potentia l vo rtic ity  equation for the abyssal 

layer by taking the curl o f (2.2.24), i.e.,

^ [ e ,  • (2.2.24)] -  ^ - [e ,  • (2.2.24)].

and the result is

where

u 2x  +  » 2i j
DC* , 

D t  ~
(ll 2 s +  f-'2y)C2 (2.4.15)

C-2 =  W’j  -  l‘2 „

and
D c) a  d

777 ~  7i7 +  U*T~  +  a- 'Dt dt ox  oy

The con tinu ity  equation (2.2.25) can l:>e w ritten  in the form

1 Dh
~J\~Dt, ~~ U“ — >l2j ~  V'2,r

which i f  it, is substituted into (2.4.15) yields

U J h
Ji~Dt

IX 2 _  I D h ^
Dt h D t

or, after m u ltip ly ing  by l / h  and rearranging, can be w ritten  as

s DQ> 1 +  sC> Dh

It D t h2 Dt  

31
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(2.4.18)
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or, equivalently,

D ' ' 1+S<2 ' '  0, (2.4.20)
D t  \  h

which is the potentia l vo rtic ity  equation for the abyssal layer. The nondimensional 

potentia l v o rtic ity  for the abyssal layer, here denoted by PV2, is given by

PV2 =  1 (2.4.21)

and is conserved follow ing the motion.

As was the case for the upper layer, equation (2.4.20) could also have been 

obtained by the scalings into the dimensional shallow water potentia l vo rtic ity  

equation (2.4.12), as it  relates to  the lower layer, i.e..

D  (2.4.22)
I.)t' V h'

Returning to (2.4.21). i f  we now substitute the expansion (2.3.1). we obtain

n ' - - m + 0 l s ) - { t A n )

Hence, to leading order. (2.4.20) is

( I + + T ’l; )  (p>) + 0  w =

which, i f  the geostrophic relations (2.3.8) are substitu ted in, is exactly (2.3.9).

2.5 Steady solutions and general stability  prop­

erties

The Swaters (1991) model equations are given bv, after deleting the (O)-superscript, 

( A T) +  h) t -  r]x +  J  (r/, A i] +  h) =  0. (2.5.1)
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h, +  hx +  J(y ,  h) =  0, (2.5.2)

w ith  the auxilia ry  relations

U ! = e 3 xV7; ,  (2.5.3)

U2 = e i + e 3 x  V(»/ +  /i), (2.5.4)

p =  Tj +  h — y. (2.5.5)

where we have also deleted the 2-subscript on the abyssal layer geostrophic pres­

sure field. From tim e to tim e it  w ill be more convenient to  work w ith  (2.5.1) 

minus (2.5.2), i.e.,

&Vt -  ijx -  hx +  J(r/, Ai j )  =  0. (2.5.6)

as the upper layer equation.

The boundary condition on the channel walls, given by (2.2.21). now takes 

the form, after substitu ting  the geostrophic relations (2.3.7) and (2.3.8),

Vi — hx =  0 on !/ =  T  h. (2.5.7)

The model equations (2.5.1) or (2.5.6). (2.5.2). together w ith  the boundary 

conditions (2.5.7), have an exact steady nonlinear along slope solution given by

V -  Vo(y) =  -  $  I M O  = >  U i o  =  (Uo- 0 ) , 1  (^ 5  8)

h =  h0 {y) >  0 ==> U20 — (1 — hoy +  f/o. 0 ). J

for a ll sufficiently smooth f/o(y) and ho(y). Th is can be verified by direct substi­

tu tion . The solution (2.5.8) corresponds to  a steady along slope mean flow in the 

upper layer w ith  the along slope velocity given by U0  (y) and an abyssal current 

height profile given by h0 (y). which is invariant in the along slope direction. The 

abyssal along slope velocity w ill be given by u2o =  1 — hoy +  Uq.

For convenience we w ill henceforth assume Uo{v) =  0. This has the effect

of removing any mean flow in the upper layer, which w ill elim inate any possi­

ble barotropic in s ta b ility  in the model. T ha t is, we are going to exp lic itly  focus
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on the baroclinic ins tab ility  o f abyssal currents. We note th a t the effect o f the 

barotropic ins tab ility  of an upper layer flow on abyssal currents has been exam­

ined experimentally by Sutherland et al. (2004). Understanding the fu ll oceano­

graphic im plications o f th is mechanism for the transition to  in s tab ility  remains 

an interesting problem tha t needs to  be examined.

Lineal1 s tab ility  analysis is a procedure in which a small perturbation  is applied 

to  a steady solution of the governing equations in  order to see i f  such disturbances 

w ill grow w ith  time, indicating instab ility , or remain constant, oscillate, or recede, 

ind ica ting  s tab ility  of the steady solution to such perturbations. From a physical 

context, we are really determ ining if  the steady solution has the possib ility  of 

persisting in tim e, because it w ill never be seen in nature (or even in a laboratory 

setting) if  it is susceptible to small perturbations rapid ly growing since i t  is not 

possible to completely elim inate "imperfections" tha t give rise to small deviations 

from  the steady solution (Drazin and Reid, 1981).

Mathem atically, an analytical s tab ility  analysis is carried out by adding a 

small perturbation to the steady solution to  be studied, and substitu ting  th is 

in to  the nonlinear governing equations. The key assumption in a linear s tab ility  

analysis is that the perturbations are small, which allows us to ignore terms 

tha t are nonlinear in the perturbations (which in our context means dropping 

the quadratic perturbation terms). The result of applying this procedure is the 

so-called linear s tab ility  equations, the solution of which determines the spatial 

structu re  and temporal evolution o f the disturbances.

However, i t  is im portan t to  point out tha t i f  there is in s tab ility  in the linear 

s ta b ility  analysis, the growing disturbance w ill always reach a size where the 

linear s tab ility  equations are 110 longer valid, because at tha t point the small 

pertu rba tion  assumption is violated. One then needs to  appeal to nonlinear 

theories in order to follow the evolution in tim e o f the disturbance, because the
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nonlinear terms can no longer be ignored.

In  order to  derive the s tab ility  equations, we introduce

h =  h0 {y) +  h'(x, y , t), (2.5.9)

7/ =  r f ( x , y . t ) .  (2.5.10)

where ho(y) is the steady abyssal solution (recall we have assumed Uo{y) — 0). 

and i f  and h' are the perturbation quantities. We then substitu te  (2.5.9) and

(2.5.10) in to (2.5.2) and (2.5.G) to get (after dropping the primes)

Ary ~  ~  hx +  J{i ] ,  A 7]) =  0. (2.5.11)

(dt +  dx) h +  hoyi}x +  ./(?/, h) =  0. (2.5.12)

These are the nonl inear perturbation equations, and they w ill be used in the 

weakly nonlinear analysis presented in the next two sections.

For our purposes here, we drop the nonlinear Jacobian terms, which are 

quadratic in the perturbations, to arrive at the l inear stabil i ty equations

A i ] t -  rjx -  hx =  0. (2.5.13)

(dt +  Dx) h +  hoyijx =  0. (2.5.14)

Before proceeding to the nonlinear s ta b ility  analysis it  is useful to review the 

known linear s tab ility  properties associated w ith  the linear s ta b ility  equations. 

We do th is  because there is certain inform ation, essential to the weakly nonlinear 

work, which is generated from the linear analysis, namely the marginal s tab ility  

curve, whose meaning w ill be discussed at length in a la ter section, and the 

dispersion re lation for the perturbation modes. O ur discussion here closely follows 

tha t in Swaters (1991).
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The energetics associated w ith  destabilization can be ascertained from  the 

area-averaged perturbation  energy equation for the upper layer, obtained by m ul­

tip ly in g  (2.5.13) by T] and integrating, tha t is.

where A is the wavelength o f the perturbation (we are im p lic itly  assuming tha t the 

perturbations are periodic in the along slope d irection) and where it is understood 

tha t the lim its  o f in tegration associated w ith  integrals tha t contain h in the 

integrand are, in fact, only over the region where hQ >  0.

Thus, ins tab ility  can only occur, which is equivalent to assuming

which implies tha t. 011 average over one wavelength iq is positive ly correlated w ith  

h. T ha t is. again 011 average, if  h >  0 then tq >  0, and likewise, i f  h <  0 then 

Ui < 0. I f  we interpret h >  0 ms a cold anomaly in the overlying water and h <  0 

as a warm anomaly in the overlying water, then a positive correlation between 

U] and h can be interpreted ms a net up-slope heat transport. Since the sloping 

bottom  is a topographic ,3-plane in  th is model, this means tha t in s tab ility  can 

only occur i f  there is a net transport of heat up the background potentia l vo rtic ity  

gradient. Th is is exactly the scenario associated w ith  the baroclinic ins tab ility  

of zonal flow on a planetary 3-plane (Pedlosky, 1987 and LeBlond and Mysak, 

1978) and underscores the fact tha t the transition  to ins tab ility  mechanism being 

modelled here is a purely baroclinic one.

A dd itiona l qua lita tive  in form ation can be obtained by m u ltip ly ing  (2.5.14) by 

h/hoy and integrating, th a t is,

A

V // • Vry d r  dt/ >  0 = s  Uj/f dxdy  >  0.
Jo Jo
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If this result is substitu ted  into (2.5.15), it follows that

d_

dt
=  0. (2.5.16)

Equation (2.5.16) is the perturbation energy equation and implies th a t the quan­

t i ty  in  the curly  brackets is an invariant o f the motion, th a t is.

In s ta b ility  can only occur, tha t is the am plitude o f the perturbation  fields can 

only grow in tim e, i f  there is at least one value o f y in the region where ho >  0 for 

which hoy <  0. C learly, i f  hoy >  0 for all values o f y in the region where ho >  0, 

then the pe rtu rba tion  energy is a well defined norm on the perturbation fields 

and the flow is linearly  stable. Th is necessary condition for ins tab ility  lnts been 

generalized to  other flow profiles by Swaters (1993). to other topographic profiles 

by Karsten and Swaters (1996) and to other geometries by Choboter and Swaters 

(2000).

The fact th a t there must be at least one value of y in the region where h0 >  0 

for which h0y <  0 for in s tab ility  to  occur has a simple physical in terpretation. I f  

we consider an abyssal height, profile which is quadratica lly shaped (see Fig. 1) 

tha t possesses two groundings or incroppings (the two points where ho intersects 

the bo ttom ), the necessary condition for in s tab ility  is on ly satisfied on the down 

slope side of the abyssal height. This serves to underscore the spatial structure of 

the unstable disturbances which correspond to  preferentia lly am plify ing pe rtu r­

bations on the down slope grounding which subsequently evolve in to  down slope 

propagating plumes (Swaters, 1991, 1998).

Further qua lita tive  results can be obtained from the normal  mode, l inear in ­

stabi l i ty equations th a t are obtained by substitu ting

// =  f j(y) e \p [ i k (x  -  c/,)j +  c.c., (2.5.IS)
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h =  h(y)  exp [ ik(x  — ct)] +  c.c., (2.5.19)

where c.c. means the complex conjugate o f the preceding term , k is the real-valued 

along slope waveuumber, and c is the along slope complex-valued wave velocity 

in to  the linear s ta b ility  equations, to yield, after a l i t t le  algebra

'lyy (k -  -  T ^ r r l ' i  =  »■c c ( e - l )

1 Il0y -

The boundary conditions become

f] — h — 0  on y =  0 . L.

(2.5.20)

(2.5.21)

(2.5.22)

Following Swaters (1991), i t  is possible to  obtain a semi-circle theorem (Drazin 

and Reid. 1981) and sharp bounds on the growth rates and phase velocities for 

the unstable modes. I f  (2.5.20) is m ultip lied through by the complex conjugate 

o f r), denoted bv r) ' . and the result integrated over ij, we obtain

f  [J o
/1  ( 2 \ I )
( i  - C k ) +  — ---------- T -

k ' - i |
-  c\Vy \2 ({y- (2.5.23)

I f  we now substitu te  c =  ('r +  ic.j in to th is  balance and separate the result in to 

the im aginary and real components, we obta in the two integrals, respectively.

ci r
Jo

£  fei 
■r

A. +
hOy

I r -  II"

+ k 2 - 'Oy

k -  i r J

I'/!2 di/J

I i f  dy

0. (2.5.24)

i> O y

ic — II
|r) | 2 dy. (2.5.25)

From (2.5.24) we see im m ediately that assuming in s ta b ility  occurs, i.e., c/ >  0, 

i t  follows th a t the integral inside the curly brackets must be identically zero and 

th is  can on ly occur, again, i f  there is at least, one value o f y in the region where
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h0  >  0 for which h0y <  0. Thus, assuming ins tab ility  occurs, we may introduce 

7 , defined by

m ill hQy =  - 7  <  0  (=*> 7  >  0 ) .
y e (0 ,L)

I f  ins tab ility  occurs, then the fact tha t the integral inside the curly  brackets 

in (2.5.24) must be identically zero can be re-arranged, to  yield

, _  1 |2  =  & h o B\v \ 2 dy < Jp l t f d y  <

Jo \%\2 +  k '2\v \2 dV Jo \ V v \2 +  k2\t)\2 dy k2 

or. equivalently, tha t the complex valued phase speed must lie in  the semicircle 

defined by

(cR -  l ) 2 +  cj  <  ^ 7 , c,i >  0. (2.5.27)

This, in tu rn , implies that, i f  ins tab ility  occurs, tha t the growth rate, denoted as

a and defined by <7 =  kc\. satisfies

^

Additiona lly , i f  ins tab ility  occurs, then we may use (2.5.26) to e lim inate |c — 1 | 

in (2.5.25) to yield, after a lit t le  algebra,

, = 1 , ([y < I  ( ,  , ± \  ( 0 r

2 2 Jo \fh \2 +  k '2 \ n f  dy ~  2 ^ A'2'
Equations (2.5.27) and (2.5.28) can be used to infer the existence o f a high 

wavenumber cuto ff for instab ility , th a t is for a given 7 , there exists A’m;ix such 

tha t for k >  A-max there is 110 instability. From (2.5.27) we see that

1 -  x  -  Cr - 1 ~  ^ • (2-5-29)

Clearly, for sufficiently large k. the intervals in (2.5.29) and (2.5.28) become 

disjo int, i.e., the ir intersection is empty. The ir intersection is non-empty, tha t is. 

in s tab ility  can only occur i f
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which can be re-arranged to  give

0  <  k <  k,■max \ /7  +  \ A  +  7- (2.5.30)

Conversely, a mode w ith  a given along slope wavenumber k  w ill be unstable only

2.6 The abyssal flow exam ined in this thesis

In  the remainder o f this thesis we w ill restrict attention to  the constant abyssal 

flow given by

where we assume / imax — yy  >  0 for y  € (0, L).  Here -y is the cross slope rate 

of change of the thickness o f the abyssal current height relative to the sloping 

bottom . The dimensional rate o f change is given by 7 * =  ( h ' / L ' ) j .  Clearly, the 

height profile given by (2 .6 .1 ) w ill satisfy the necessary conditions for instab ility . 

We use the same profile which is used by Mooney and Swaters (1996).

Here we review the linear ins tab ility  theory for the constant abyssal flow given 

by (2.6.1). I f  (2.6.1) is substituted in to  the normal mode equations (2.5.20) and 

(2.5.21), one obtains

if •>
(2.5.31)

^o(l/) ^max 51/' (2.6.1)

(2 .6 .2)

h =
c — 1

(2.6.3)

w ith  the boundary conditions

i) — h — 0  on y =  0 , L. (2.6.4)
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The solution to (2.6.2) subject to (2.6.4) is

f) — a\ sm(rn:y /L) .  (2.6.5)

wliere is a free constant and n — 1 ,2 ,3 .......  Therefore, the general form  of the

norm al mode solution is given by

Tj — a x s in (ly) exp[ ik(x  — r f) ] +  c.c.. (2 .6 .6 )

h =  —»| ■ s'm(ly) exp[ ik (x  — ct)} +  c.c., (2.6.7)

where / =  n x / L .

When we substitu te  (2.6.6) in to  (2.6.2), we get an expression for c. which is

. k1 +  P + l ± { ( k 2 + l- +  iy! - i ( k 2 + m  + -:)}'12 
c -  W T W )  ■ (- (>b)

Equation (2.6.8) is a formula th a t expresses c, as a function o f k and I. Th is is 

called a dispersion relation because it shows th a t waves o f different wavelengths 

travel at different plmse speeds, tha t is, they disperse (Kundu. 1990).

For ins tab ility  to  occur, the im aginary pa rt o f c must be positive. The bound­

ary between ins tab ility  and s ta b ility  w ill be given, therefore, when the quan tity  

inside the square root term  in (2.6.8) is zero. Th is  gives us the m arginal s ta b ility  

curve, w ith  the c ritica l value % o f 7 .

7 c =  ( K 2 -  1)2 /4 A '-. (2.6.9)

where K  is the to ta l wavenumber, given by,

A' 2 =  k '2 +  I2, (2.6.10)

tha t is a mode w ith  to ta l wavenumber K  is unstable i f  and only i f  7  >  7 c- 

A lte rnative ly , the marginal s ta b ility  curve represents the boundary between stable 

modes and unstable modes for a particu lar 7 C.
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Figure 2.1. Plot of the marginal stability curve yc = (K2-1 )ZI4K2.
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In  Fig. 2.1 we present the m arginal s tab ility  curve as determined by (2.6.9). 

The m inim um  of the marginal s ta b ility  curve is located at K  =  1 and corresponds 

to ~fc — 0. The point of  marginal stabi l i ty corresponds to the first value of 7  for 

which any larger value of 7  leads to  instab ility . The po in t of marginal in s tab ility  

therefore corresponds to -lc =  0 and K  — 1 . Clearly, the K  =  1 mode can only 

exist i f  / <  1 for some value o f n. Consequently, we shall henceforth assume tha t 

n =  1 so th a t I =  7r /L  (the gravest, or firs t, cross slope mode).
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Chapter 3 

Weakly nonlinear evolution of 

K  1 unstable modes

In  order to see how the m arginally unstable modes as determined by linear theory 

actually evolve in tim e we must allow the nonlinear interactions to be included 

in the description. Tha t is. we must develop a fin ite  amplitude ins tab ility  theory 

which follows the evolution o f the wave when it  has reached amplitudes for which 

the linear theory is no longer valid.

In th is section, we derive a temporal amplitude evolution equation for a weakly 

sub or supercritical mode which has a wavenumber modulus different than A’ =  1. 

I t  is im portan t to realize th a t in this situation, there w ill always be other modes 

w ith  different wavenumbers which are unstable at smaller values of 7 . Because 

of this, in th is section we do not introduce a slow space variable which would 

follow the evolution of a wave packet centered on the mode in question. I t  is 

stra ightforward to include a slow space variable for these modes in a s im ilar 

manner as tha t described, for example, for the Ph illips ' model for baroclinic
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in s ta b ility  o f a zonal flow on a T-plano (Tan and L iu , 1995).

Also, we point out th a t in  some sense the analysis presented in th is section 

is somewhat a rtific ia l in th a t there w ill always be wavenumber m oduli I \  for the 

same 7  tha t are more unstable than the wavenumber being considered. Neverthe­

less, i t  is instructive, i f  not the most physically relevant, to  consider a m arginally 

sub or supercritica l I \  ^  1 mode. We remark th a t the theory developed in th is 

section is, in  fact, the nonlinear generalization of the theory developed by Pavec 

et al. (2004), which is itse lf based 011 the work o f Pedlosky and Thomson (2003). 

Or, from  another point o f view, this section extends the nonlinear in s tab ility  the­

ory described in Section 4 in Mooney and Swaters (1996) to the case where the 

m arg ina lly sub or supercritical abyssal current varies slowly w ith  respect to time.

3.1 D eveloping the asym ptotic expansion

We have to develop a fin ite  am plitude theory tha t follows the evolution o f the 

m arg ina lly unstable wave when it  has reached amplitudes for which the linear 

theory is 110 longer valid. Weakly nonlinear analysis can be used to  derive the 

nonlinear am plitude equation if  the mode is weakly unstable. In th is section, we 

use weakly nonlinear analysis to derive an am plitude evolution equation which 

follows the evolution of the disturbance associated w ith  a s ligh tly  supercritical 

mode when the height, and thus the velocity, o f the abyssal current has tim e 

va riab ility , but on a slower time scale than the fast phase period o f the underlying 

mode.

To determine the proper scaling for the slow time variable we examine the 

dispersion re lation (2.6.8) in  the situation when 7  is s ligh tly  supercritical. If. for 

the moment, we assume tha t

7  =  7 c  +  <*,
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where 5 is a small positive number (i.e., the supereritica lity), the dispersion rela­

tion  (2 .6 .8 ) becomes

K 2 +  1 ±  [ ( / v 2 +  l ) 2 -  4 A ' 2 ( 1  +  7 c  +  <5)] ‘ / 2 

C ~  2 A ' 2

where we recall th a t K  =  \ f k 2 + 12 >  0. Substitu ting  in for 7c from (2.6.9) gives

A' 2 +  1 ±  [(A ' 2 +  I ) 2 -  4A '2(1 +  +  S) } 1' 2

C ~  2 A ' 2

K 2 +  1 ± { - 1 K 2 6}±  A ' 2 +  1 , , v ^

2A ' 2 2A ' 2 K  ' [ }

Exam ining (3.1.1), we see th a t the linear grow th rate, given by a  — k c j , where

Ci is the (positive) imaginary part o f c, is given by

°  =  k- T "  ( 3 1 '2)

Thus, the linear growth rate w ill be proportional to y/S so tha t the e-folding 

tim e scale associated w ith  the s ligh tly  supercritica l mode w ill be O  ^1 /\ZS^j. The 

assumptions for the asym ptotic expansion must be such th a t the tim e  scale over 

which the nonlinear interactions make a cum ulative 0 ( 1 ) con tribu tion  to  the 

evolution o f the m arginally unstable mode is the same as the linear growth rate.

Following and extending the ideas o f Mooney and Swaters (1996) and Pedlosky 

and Thomson (2003) to allow for tim e variations in the s ligh tly  sub o r supercritica l 

abyssal current, we w ill choose S to  be o f the form

6  =  £ 2 [To +  T  (£/.)],

where To — ±1  (T 0 =  + 1  and To =  —1 correspond to a s ligh tly  supercritica l 

or subcritica l abyssal current, respectively), and T  (el) is an 0 ( 1 )  real-valued 

function  of tim e th a t models the tem poral variations o f the m arginally stable or 

unstable abyssal flow. We w ill choose a specific form for T  (s t ) when we describe
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the solutions to the yet-to-be derived nonlinear am plitude equation. The param­

eter s is assumed to satisfy 0  <  s «  1 and corresponds to  the nondimensional 

order o f magnitude o f the am plitude o f the perturbation . We note tha t w ith  this 

form  o f 5, i t  follows th a t the underlying abyssal current we are examining the 

s tab ility  o f is given by

*0 — /'max ~ {7c + P̂ O + ^  (=03} V

= *> u 20 = (l + 7c + c" [To + T 003) ei-

There are, o f course, many possible choices th a t one could make for 6 . But

the reason to  choose th is  specific form  is tha t th is  choice w ill allow the tim e scale

of the grow th o f the am plitude o f the perturbations to  balance the tim e scale 

associated w ith  the nonlinear interactions and the tim e variations of the abyssal 

current. In  summary, w ith  th is choice of 5, 7  is given by

7 =  7c +  =-2 [To +  T0=O]< (3-1.3)

where yc =  7 C(A') as given by (2.6.9) where i t  is exp lic itly  assumed th a t K  ^  1.

Under these assumptions, we introduce the weakly nonlinear and slow time 

scalings

y{x, y, t) =  si](x. y, /., T:  s). (3.1.4)

/>.(x, y. t) =  sh(x, y. t, T\  e). (3.1.5)

T  =  st, (3.1.6)

where y and h axe both assumed to  be 0 ( 1 ) .  We note that

r « 0 ( l )  <^=>t a s O ( £ * ‘ ), (3.1.7)

is the tim e scale over which the mode w ill evolve nonlinearly. In  addition , we 

observe th a t tim e derivatives w ill map according to  d, —> dt +  sdr .
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I f  (2.6.1), (3.1.3), (3.1.4), (3.1.5) and (3.1.6) are substituted in to  the nonlinear 

perturbation equations (2.5.11) and (2.5.12), and the tildes dropped, we obtain

s (dt +  sdT) A 7/ - -j]x -  shx +  s2 J(r], Arj) =  0. (3.1.8)

,  (dl +  edr  +  dx) h -  e { 7c +  c-2 (To + T  (s t ) ]}  i]x +  s2 J ( V, h) -  0, (3.1.9)

which can be re-arranged in to  the form

Ar/, -  qT -  hx =  - c A r / r  -  eJ(q.  A //), (3.1.10)

h, +  hx -  lcVx =  - s h r  +  =-2 [To +  T  (T )] rlx -  s.J(,h h). (3.1.11)

We follow the method in Mooney and Swaters (1996). and solve (3.1.10) and

(3.1.11) w ith  an expansion of the form

V(x, y, t, T:  s) =  7/0(2‘, y, L  T)  +  £i]\ (.r. y. L T)  +  s27/2(.r, y, t, T )  +  ■ • • . (3.1.12)

h(x ,y ,  t . r : s) =  h0 (x, y . t .  T)  4 - eh , ( . 7-. y, t, T)  +  e2 h2 {x. y. t. ! ' )  +  ■■■ . (3.1.13)

3.2 The 0 (1 ) problem

The 0 (1 ) equations are given by

A7/o( — 7/0x — h0x — 0. (3.2.1)

hot +  hox ~  7<4/o:r — 0. (3.2.2)

and are s im ply the linear s tab ility  equations (2.5.13) and (2.5.14). The normal 

mode solution for the 0 (1 )  problem can be w ritten  in the form

7/0 (2 7  y, T )  =  ,4(7’) s in(ly) exp \ ik(x  -  ct)] +  ex., (3.2.3)

h-o(x, y, t , T )  =  B ( T )  sin ( ly) exp [ ik(x  — ct) ] +  c.c. . (3.2.4)
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Substitu ting (3.2.3) and (3.2.4) in to  (3.2.1) and (3.2.2) gives the pair o f alge­

braic equations

=  0 . (3.2.5)
K 2c — 1 - 1

- 7 c  ~ c  +  1

Since we are only interested in non triv ia l solutions i t  follows tha t the determ inant 

o f the coefficient m a trix  in (3.2.5) must be identically zero, i.e.,

(K 2c. -  l )  (1  -  c )  =  7c-

I f  (2.6.9) is substituted in to  th is expression, i t  follows (as it  must, see (3.1.2)), 

tha t
A'2 4- 1

(3.2.6)
•21C- '

I f  (3.2.6) is substituted into (3.2.5), it also follows tha t

B  =  —^ — .4 =  U k 2 -  1).4.
1 — c 2 1

(3.2.7)

which determines the am plitude o f the perturbation height o f the abyssal current 

as a function of the normal mode am plitude in the overlying water column.

Hence, we have determined the spatial and fast tim e structure o f the 0 (1 )  

solutions. But the slow tim e evolution of the am plitude coefficient ,4 (T ) remains 

undetermined. Its  determ ination requires tha t we fu lly  solve the O (s) problem 

and, as it  turns out, examine in some detail the 0 { s 2) problem. This we now do.

3.3 The O  (e) problem

The 0(e)  equations are given by

Ar/n -  r/i* -  h Xx =  - A t)0t  -  J{7)o, Ar/0), (3.3.1)

hu  +  h Xx -  7c//i* =  - / to r  -  •/(% , /i0)- (3.3.2)
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The firs t th ing  to  note is tha t if  (3.2.3) and (3.2.4) are substituted in to  the righ t- 

hand-side (R.H.S) o f (3.3.1) and (3.3.2). the Jaeobian terms are identically zero, 

so tha t (3.3.1) and (3.3.2) reduce to

The solution for (3.3.3) and (3.3.4) may be w ritten  in the general form

where 6 { y , rF) is a real-valued homogeneous solution which w ill be required to 

balance adjustments to  the mean flow resulting from nonlinear interactions tha t 

arise in the 0 ( s 2) problem. Substitu ting  (3.3.5) and (3.3.6) in to  (3.3.4) implies 

that

Further, i f  (3.3.5) and (3.3.6) are substituted into (3.3.3). w ith  F  given by (3.3.7). 

i t  follows, after a lit t le  algebra, that

where we have used (2.6.9) and (3.2.6).

Two im portan t facts follow from (3.3.8). F irs t, there are no inhomogeneities 

in (3.3.8). Thus, the inhomogeneities in  (3.3.3) and (3.3.4) do not provide any 

constraint on the evolution o f the leading order am plitude .4 (T ). Second, (3.3.8) 

is satisfied for a ll E ( T ) .  Th is implies tha t the " E  mode" in (3.3.5) is not re­

quired to  contribute to  a particu lar solution for the O(c) problem. That is. the

A r/i, -  rjix -  h lx =  A ' l 'K 2 sin (ly)  exp [ ik{x  -  ct)] +  c.c (3.3.3)

"Y
h u +  h lx -  7 c//lx =  - y - ^ . 4 T sin(/y) exp [ ik{x  -  ct)] +  c-c- ■ (3.3.4)

i]i =  E ( T )  sin (ly) exp [ ik(x  — ct)] +  c.c. (3.3.5)

lh =  6{y, T)  +  F ( T )  sin ( ly)  exp [ ik(x  — c/,)] +  c.c (3.3.6)

and hence

P — 1
' ~  1 - e  T  f c ( l - c ) 2 ’

7r F  i ~cA-r
(3.3.7)

(3.3.8)
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" E  mode” corresponds to  a homogenous solution and is thus ju s t an add itiona l 

con tribu tion  to  the 0 (1 )  solution. We may thus "absorb” th is con tribu tion  d i­

rectly in to  the 0 (1 )  solution (Pedlosky. 1970) and, w ithou t loss o f generality, set 

£7 =  0. Consequently, the 0 (e )  so lution can be w ritten  in  the form

rh ( x . y . t . T )  =  0, (3.3.9)

/ii(ar, y, t, T)  =  4>(y, T)  +  | j 2 s in( ^ )  exP iik(x ~  c0 ] +  j • (3.3.10)

The 0(e )  problem has not determ ined the evolution o f A (T)  and has, in  fact, 

introduced a new undeterm ined function <?(y.T). Both o f these functions w ill be 

determ ined by exam ining the O ( e ’ ) problem.

3.4 The O  (e2) problem

The 0 (£ 2) equations are given by

&V2 t ~  'hx ~  h2x =  -  rj0xA j ] ly -  r)ixAr)0y +  r]0 yA r jhj -f r]UyA y 0x. (3.4.1)

hot +  hox — icifcx — ~ h \ r  +  [To +  T  ( £ ) ]  7/oj — J( i ] \ ,ho)  — J(i)o. h\) ,  (3.4.2)

which reduce, since r j i ( x , y , t , T )  =  0. to

Ar]2t -  >i2x ~  h2x =  0. (3.4.3)

h-2t +  h2x — ~jCThx — —h \ r  +  [To +  T  (T )] ij0x — J(i ioJ>\)-  (3.4.4)

which fu rther reduce, if  y0 (x .y ,  t , T )  and h l ( x . y . t  ,T )  ;U'e substituted in to  the 

right-hand-sides. to

Ar)2 t -  i}2x ~  h2x =  o, (3.4.5)

h2t +  h2x -  7 c7/2x —

• ^ 3 ^ 2  +  A ik  [T ° +  T  (T ) -  <?y] j  sm(ly) e \p ( i k 0 ) +  c.c.
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-  (pr -  2 /s in (/y )cos(/y )7c(|,4|2)r /  (1 -  c f (3.4.6)

where, for convenience, we have introduced 6 — x — ct.

Now we apply appropriate so lvability  conditions to  (3.4.5) and (3.4.6) in order 

to  determ ine the am plitude equation. F irst, we observe tha t each term  in  the 

left-hand-side o f (3.4.6) contains derivatives in  either x  or t. There are no terms 

w ithou t these derivatives. However, we notice that term

in the right-hand-side of (3.4.6) does not contain any dependence on either x  or /. 

Unless th is term  is zero, the particu la r solution associated w ith  th is  term , in an 

in it ia l value problem where the contribution associated w ith  th is term  is in it ia lly  

zero, w ill necessarily grow linearly w ith  respect to t. But i f  th is is the case, then 

the asym ptotic expansion w ill no longer be asym ptotica lly valid for t. ~  O  (s“ ‘ ). 

From a physical in terpretation, solutions which grow linearly in  tim e im p ly  that 

there exists the possib ility o f an in fin ite  amount o f energy associated w ith  the 

perturbations. This is not an acceptable physical result. Thus we are forced to 

conclude tha t

where .40 =  .4 (7' =  0).

Further analysis is fac ilita ted by elim inating h2 from  the O (s2) equations. We 

begin by w ritin g  (3.4.5) and (3.4.6) in  the form

which implies that

<p { y . T ) =  —I sin(2h/)

h2x =  Arj2t -  r/2r. (3.4.7)

h.2t +  At ] 2, -  7/2x  -  7 c t? 2 x  =
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H cA
k { l - ' c )2 + A i k  ~̂° + T ^  ~  ^  )  sin^y) exP(?̂ )  + c-c- 

where i t  is understood tha t

0 y =  —2l2 cos(2/y)-
(1 -  c f

I f  we differentiate (3.4.8) w ith  respect to  x, we obtain

(3.4.8)

Ic -A rr
(1 - c ) 2

and from  (3.4.7) i t  follows that

h'itx T  Alj^tx T)'2xx

A i r  [T 0 +  T  (T)  -  oy] [  s in(/y) exp (ikd)  +  c.c.. (3.4.9)

h'2xt Arj)t( f]2xt- (3.4.10)

Substitu ting  (3.4.10) in to  (3.4.9) gives us

(dt +  dx){Adt -  dx)i]2 -  l ci]2.'2xx

)'c A T T  , 2

L(i - c ) a
k2 [T 0 +  T  (7 )] -4 -

2-fci r l - A n  •>

( 1 - c )  

x exp ( ik8) sin ( ly) +  c.c.

" ( I - 4 ! *  -  | . 40 r ) c o s ( 2 / i

And if  we use the trigonom etric iden tity

cos(2 l y)  sin ( ly) =
sm(' i ly)  — sin (ly)

(3.4.11)

(3.4.12)

the right-hand-side of (3.4.11) becomes

1cAtT-  -  k 2 [T0 +  T  (7 )] /I +  7 7 — " 4 (|-412 -  |Ao|2)
( 1 - c ) 2 (1  -  cy

sin(Zjty) exp(ikd)

~ l t - c Y ^ 2 ~  s in(3/y) cxp(ik8)  +  c.c. . (3.4.13)

The only terms which w ill produce secular growth are those terms 011 the righ t 

hand side o f (3.4.13) tha t are proportional to sin(ly) exp(ikd).  Thus to  remove the
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possib ility  o f secular growth, we set those terms on the right hand side o f (3.4.13) 

th a t are p roportiona l to  sin ( ly)  exp ( ikd)  to  be zero, which yields the am plitude 

equation

a t t  =  7̂ [T o  +  T  (T )j / l  -  k?l2 A ( \ A \2 -  \A0\2)

=  a 2 [T 0 +  T  (T )] .4 -  Ab4(|.4|2 -  |A0|2). (3.4.14)

where
k 2

a 2 =  —  >  0, -V =  k 2 l 2 >  0. (3.4.15)
A  -

Note th a t a  =  k / K  >  0 in equation (3.4.14) is the linear growth rate for the 

s ligh tly  unstable mode when T 0 =  +1 and w ill be the frequency for the m arg ina lly 

stable mode when T 0 — — 1. This is in  precise agreement w ith  the linear theory as 

seen in (3.1.2). Assuming To =  +1 and T  — 0 and neglecting the nonlinear term  

in (3.4.14) we can easily see the linear solution .4(7’) =  A0 exp(crT) (assuming 

.4(0) =  .40 and .4x(0) =  a ,4o). However, in the nonlinear problem as .4 "grows" 

from the in it ia l value .40, the nonlinear term  Ar,4(|,4|2 — |.40|2) becomes larger. 

Since the coefficient o f the nonlinear term  is negative, we see tha t it  is possible

th a t the nonlinear term  can act to  ha lt the " in itia l"  exponential growth and either

allow a new equilibrium  am plitude to emerge or set up a nonlinear oscillation in 

A ( T ) .  Mooney and Swaters (1996) were able to  exp lic itly  solve (3.4.14) when 

T  =  0. We are interested in examining how the solutions found by Mooney and 

Swaters (1996) change when the periodic forcing term  in (3.4.14) is retained.

3.5 Solving the am plitude equation

The method o f solution for (3.4.14) follows Pedlosky (Chapter 7. 1987) or as 

described by Mooney and Swaters (1996). We w rite  A (T )  in  the form

A{T )  — R{T)  exp [i8 ( T ) } , (3.5.1)
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where R ( T ) and 9(T)  are real valued functions. Substitu ting  in to  (3.5.1) in to 

(3.4.14), we get

R t t  +  2iR- rdr  +  i R B r r  ~  R # t  =  ° 2 !T o +  T  CO] R ~  N R ( R 2 -  fig), (3.5.2) 

where Rq =  /10.

A fte r separating the real and im aginary parts o f equation (3.5.2). we get. 

respectively,

Rt t  +  R 8 \  =  a 2 [T 0 +  T  (T )] R -  N R {  -  /?5). (3.5.3)

Rd-rr 4* 2R'[ 6 -j- =  0. (3.5.4)

I t  follows from  (3.5.4), tha t

; £ < * * )  - 0 .

which can be im m ediate ly integrated to yield

We are interested in the case where A (0) =  .40 and A r  (0) =  cr.4o (i.e., the 

m arg ina lly unstable mode is in it ia lly  am plify ing  at the linear- m arginal growth 

rate when T 0 =  +1). Since, in  general,

>1(0) =  /f(0 ) exp [10(0)],

A t  (0) =  { R t (0) +  idT (0) /?(0)} exp [ id(0)]. 

th is  w ill be realized i f

R {0) =  A 0, Rr (0) =  cAo, 8 (0 ) =  0. 8 r  (0) =  0.

I t  follows th a t 9(T)  =  0 for a ll T  >  0.

Thus, (3.5.2) reduces to

R t t  =  tf2 [T 0 +  T  (T)} R -  N R ( R 2 -  fig ), (3.5.5)
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subject to

/f(0) -  R0, Rt {0) =  ctRq. (3.5.6)

There are two cases tha t need to  be examined. F irs t, we describe the role tha t 

periodic tim e va riab ility  can play for a m arginally unstable mode, i.e.. To =  

+  1. Second, we w ill examine the role tha t periodic tim e va riab ility  plays for a 

m arg ina lly stable mode, i.e., T 0 =  — 1.

The solution for R ( T )  when T 0 =  1 and T  (T ) =  0

Since we wish to compare the role o f T  (T ) in  m odifying the Mooney and Swaters 

(1996) solution for R (T ), i t  is appropriate to  review the solution to (3.5.5) in the 

lim it T 0 =  1 and T  (T ) =  0. I f  we assume tha t T 0 =  1 and T  (T)  =  0. (3.5.5) 

reduces to

RTT =  a2R -  N R { R 2 -  flg). (3.5.7)

I f  (3.5.7) is m ultip lied  by R-p and integrated, we obtain

\ r t 2 +  V(R )  =  [  ̂  R t 2 +  V (R ) }  =  +  \/(/?0), (3.5.8)

where

We may re-write (3.5.8) in the form

(It = (3.5.9)

where

a n d  r  =  J ( N  R ^ f t T ,
m ax m ax

and where

niax.mm

i -|

(3.5.10)
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where the "max” and "m in” are associated w ith  the plus and minus signs, re­

spectively.

In tegrating (3.5.9) leads to

£ =  d n { r  — r0|m), (3.5.11)

where

To =  dn~l | \ • (3.5.12)
\  * Mnax /

Here dn is the Jacobi e llip tic  dnoidal function, m =  1 — a 2, and r 0 is chosen to  

ensure th a t R =  RQ at t  =  0.

Figure 3.1. R(T) assuming R0 = 0.1 and RJO) = R0/ 2  
with k = I = 1.0. The period T is about 17.
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The period of the disturbance, w ith  respect to the variable denoted as r p. 

is given by

r p =  2 E(m) ,
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where E (m )  is the complete Jacobi e llip tic  integral o f the firs t k ind. Hence, the 

period o f the disturbance , w ith  respect to the variable T , denoted as Tp. w ill be 

given by

Tp =  y / S / i N R ^ M m ) .  (3.5.13)

The evolution o f R (T)  (and hence A (T )) follows the form  of a dnoidal wave, 

and therefore is periodic in  time. Th is means that after the in it ia l exponential 

increase o f the unstable mode, the effect of the nonlinearities in the equations for 

.4 is to slow and eventually reverse the growth of the disturbance. The am plitude 

falls un til i t  reaches a point where the linear growth rate becomes dom inant 

again, and the cycle begins anew. In Fig. 3.1 we show' a graph o f the am plitude 

function R ( T )  vs. T  for the parameter values given by k =  I =  1.0 and Rq =  0.1. 

I t  follows tha t I\ =  y/2, a =  1 /% /! .V =  1.0, /?max ~  1.09902. R mm ~  0.009902 

and Tp ~  17.003033.

The evolution of R ( T )  when T0 = 1 and T (T)  ^ 0

In order to  describe the effect of a nonzero T  (T ) on the Mooney and Sw'aters 

solution for R ( T )  i t  is useful to  select a particu lar form for T  (T ). To be con­

sistent w'ith Pavec ct al. (2004) and Thomson and Pedlosky (2003) and. more 

im portantly, for genuine oceanographic reasons. wre choose the periodic function

T ( T )  =  77 sin (u /T ). (3.5.14)

where H  >  0  is the maximum am plitude and ui is the frequency o f the time 

variation. Since T  (0) — 0, there w'ill be brie f period o f tim e near T  =  0 wdiere 

we can expect the effect of T  (T)  to be m inim al. The period o f T  (7'), denoted 

by P^, is given by — 2ir/u.  Substitu tion of (3.5.14) in to (3.5.5) leads to

R t t  =  v 2 [1 +  W sin (uT)}  R -  N  R(R 2 -  /$ ) .
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This is a nonlinear Mathieu Equation (Morse and Feshbach, 1953).

In  the linear lim it  (N  — 0), th is  equation reduces to  the linear M ath ieu equa­

tion

Rtt  -  a 2 [1 +  H  sin (u/T)] R  =  0 .

This equation has interesting s ta b ility  properties (see. for example. Sec. 11.4 

in Bender and Orszag, 1978). Note th a t i f  Ti. =  0, then the solution to  the 

linearized equation, subject to the in it ia l conditions (3.5.6), is sim ply R{T )  =  

Ro exp (crT), reflecting the exponential growth o f the m arg ina lly unstable normal 

mode. However, in the above linearized M athieu equation, i t  is known (see. for 

example. Sec. 11.4 in Bender and Orszag, 1978) tha t there exists a "sm all" region 

of parameter values in (<r2 /u r ,  H)-spaee for which all solutions are stable. Hence, 

even in the linear lim it, periodic tim e va riab ility  can stabilize, what is in the tim e 

averaged sense, an unstable abyssal flow.

However, as we have mentioned above, the set of (cr2 /a /2. H )  values for which 

th is s tab ilization can occur corresponds to  a very small region in parameter space. 

The generic solution, for most parameter values, to the above linearized M athieu 

equation remains unstable, i.e., am plify ing  in time. Thus, the remainder o f our 

discussion in th is subsection w ill be focussed on describing the effect o f tim e 

va riab ility  in  the s itua tion  where ins tab ility  persists even in the linear lim it.

Specifically, we are interested in describing the effect o f T  (T)  on the Mooney 

and Swaters solutions when the magnitude o f 7i  is small compared to  the steady 

part o f the supercritica lity  (i.e., 0  <  H  «  1 ), when the magnitude o f H  is 

comparable to the steady part o f the supercritica lity  (i.e., H  =  1 ). and when the 

magnitude o f H  is large compared to  the steady part o f the supercritica lity  (i.e., 

7i  > >  1). To th is end, we examine the set o f H  values given by

H  € (0.1, 1.0, 10.0). (3.5.15)

For th is set o f 7i  values (i.e., 0.1, 1.0 and 10.0), the abyssal flow remains s ligh tly
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unstable, lias isolated single moments o f marginal s tab ility , and a lte rnating  peri­

odic intervals o f s ta b ility  and instab ility , respectively.

W ith  respect to  the period o f T  (T ), we are interested in  examining the effect

of the tim e va riab ility  when is short, comparable and long compared to  Tp.

To this end, we examine the set of Px values given by

P„  6  (107p, Tp. Tp/ 10 ) . (3.5.16)

which implies tha t we w ill examine the set of frequencies given by

w € ( t t /  (57p), 2n /T p. 20;t/T p) . (3.5.17)

In  summary, we w ill describe the set of nine simulations, labelled S i, So. • • • . 

St), respectively, for the uj and TL parameters values given in Tal)le 1. A ll other 

parameter values in th is set o f simulations w ill be identical to those associated 

w ith  Fig. 3.1, i.e., A* =  I =  1.0 and /?0 =  0.1. I t  follows th a t K  =  y/2, ex — l / \ / 2 .  

N  =  1.0, and the in it ia l conditions are given by R(0) =  /?0 and R r { 0) =  ctRq. The 

solutions for R(T)  were a ll obtained numerically by using the routine NDSolvc in 

the symbolic software package Mathematica Jt .0. Each sim ulation was o f sufficient 

length in "tim e," i.e.. w ith  respect to 7’, so that the temporal behavior of R(T)  

could be discerned.

a) \ H 0 .1 1 .0 1 0 .0

~ /  (57p) 5, •So S 3

277 /7p 5, So SG

207 7  / T p •St S6 S9

Table 1. Values of u> and 7i  examined.

Description of the simulations S S 2 , ■ ■ • , Sg

Figs. 3.2, 3.3, and 3.4 show R(T)  vs. T  for the "low frequency’’ simulation 

parameter values S i, So, and S3 , respectively. In th is set of simulations, the
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period o f the tim e variable part o f the abyssal current is ~  170 compared to 

the period o f the unforced Mooney and Swaters solution shown in Fig. 3.1 given 

by Tp ~  17. Figs. 3.2. 3.3, and 3.4, respectively, have PL =  0.1, 1.0 and 10.0.

Clearly, comparing Figs. 3.2, 3.3, 3.4 w ith  Fig. 3.1, there is marked change in 

the evolution in R{T) .  However, there are some patterns tha t can be observed. 

The firs t th ing  to  note is tha t the period o f the oscillations in Figs. 3.2, 3.3, and 

3.4 is smaller than that in  Fig. 3.1 Further, comparing Fig. 3.2 w ith  Fig. 3.3 and 

Fig. 3.4, we see tha t as PL increases, so too does the frequency o f the oscillations. 

Also, we see tha t, qualita tive ly, the “ m axim um ” peak to  trough distance, i.e., the 

range o f R(T) ,  also seems to  increase as PL increases. Thus, in general, we see 

tha t, for th is value of there is a trend toward more rapid oscillations w ith  the 

range o f R(T)  increasing.

Figure 3.2. R(T) vs. T  for simulation Sr
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Nevertheless, we see in Figs. 3.2, 3.3. and 3.4, tha t, a lthough the structure 

o f R ( T ) appears to  be quite complicated, the solution appears to  be periodic (at 

least for the range o f T  we integrated over). In  Fig. 3.2 the pa tte rn  appeared 

to follow 9 subcycles where R(T)  remained positive and then switched to  a 4 

subcycle pattern where the am plitude in R(T)  increased and R (T )  can become 

negative. The pattern  then repeats itself. We note tha t when R (T )  goes negative, 

th is corresponds to  the underlying normal mode going 180° out o f phase w ith  the 

Mooney and Swaters (1996) solution.

1.5-, Figure 3.3. R(T) vs. T  for simulation
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3.0

Figure 3.4. R(T) vs. T  for simulation Sy
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The pattern in Figs. 3.3 and 3.4 appears to  be more complicated as compared 

to  Fig. 3.2. B ut, qualita tive ly, there are sim ilarities (and, o f course, differences) 

in  a ll three figures. We see tha t in it ia lly  (i.e., 0 <  T  <  T .) there is a set of cycles 

where the envelope o f the oscillations is concave up and where R(T)  >  0. The 

number of cycles in the region appears to  increase w ith  increasing H .  Subsequent 

to  th is set o f in it ia l cycles, there is a trans ition  to  a second set o f cycles. In  

a ll three figures, th is  second set of cycles appears to  oscillate about R(T)  ~  0. 

However, whereas in Figs. 3.2 and 3.4 there appears to  be a transition  back to 

the in it ia l set o f cycles from the second .set, in Fig. 3.3. R (T)  transitions to a 

d is tinc t th ird  set o f cycles from the second. However, again qualitative ly, th is 

th ird  set o f cycles in Fig. 3.4 appears to  be a "reflection’' o f the first set of cycles 

through the 7’-axis.

Figs. 3.5, 3.6 and 3.7 show R.{T) vs. T  for the sim ulation parameter values 

5,i, S5 , and 5 (i, respectively. In th is set o f simulations, the period o f the tim e
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variable pa rt o f the abyssal current is = Tp ~  17 (i.e., is comparable to  the 

period o f the unforced Mooney and Swaters solution shown in Fig. 3). Figs. 3.5.

3.6 and 3.7, respectively, have H  =  0.1, 1.0 and 10.0.

The structure  o f R(T)  in  Figs. 3.5, 3.6 and 3.7 is different than th a t seen 

in Figs. 3.2, 3.3 and 3.4. Indeed, our numerical integrations suggested that 

there was no periodic structure at all. I t  is possible th a t there is a very long 

tim e scale periodic structure  tha t we were not able to  iden tify  because we failed 

to integrate for a suffic iently long time. Nevertheless, although we have not 

identifies a global periodic structure, clearly, the solutions continue to  exhib it 

quasi-periodic oscilla tory behavior.

Figure 3.5. R(T) vs. T for simulation S,
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Figure 3.6. R(T) vs. T for simulation S5.
1.5

1.0 -

0 .5 -

0 .0 -

•0.5 -

- 1 .0 -

-1.5
375 450300150 2250 75

T

4-i
Figure 3.7. R(T) vs. T  for simulation S#.
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However, in Fig. 3.5 we see, again, the pattern th a t in it ia lly  (i.e., 0 <  T  <  T,)  

there is a set of cycles where R(T)  >  0. Subsequent to  th is set o f in it ia l cycles, 

there is a transition  to a second set of cycles th a t appears to oscillate about 

R(T)  0. Subsequent to th is second set of cycles, there is a trans ition  to a th ird  

set of cycles tha t appears to be sim ilar to the firs t set although there are fewer 

o f them. Subsequent to th is th ird  set of cycles, there is a transition  to  a fourth  

set of cycles tha t appears to be sim ilar to the second set but is clearly different. 

Continued numerical integration was unable to iden tify  any periodicity.

In  Figs. 3.6 and 3.7. we see the increasing irregu la rity  emerging in the oscil­

lations. In  Figs. 3.6 and 3.7, there appears to  be only one or two in itia l cycles 

where R(T)  >  0 and then an almost, immediate transition  to  a set o f s im ila rly  

structured cycles tha t appears to  oscillate about R(T)  ~  0. B u t then there is 

a subsequent transition to a set of new cycles tha t appears to be increasingly 

irregular. This transition takes place sooner in  Fig. 3.7 that in Fig. 3.6.

1.5 n
Figure 3.8. R(T) vs. T for simulation S,

0 .5 - 

R(T) ■ 

0 .0 -

-0 .5 -

- 1 .0 -

-1.5
5000 100 200 300 400

T

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I t  is im portan t to  note, however, tha t th is irregu la rity  is not the onset o f in ­

stab ility . The solutions remain bounded in time as they must. A lthough i t  is way 

beyond the scope of th is  thesis, i t  is interesting to  speculate th a t the increasing 

irregu la rity  seen in these simulations is an indication o f chaos developing.

Figs. 3.8, 3.9 and 3.10 show R.(T) vs. T  for the "high frequency’’ s im ulation 

parameter values S7 . Sg, and 59, respectively. In  th is set o f simulations, the 

period o f the tim e variable part of the abyssal current is /A  ~  1.7 compared to 

the period o f the unforced Mooney and Swaters solution shown in Fig. 3 given 

by Tp ~  17. Figs. 3.8, 3.9 and 3.10. respectively, have H  =  0.1. 1.0 and 10.0.

1.5-i Figure 3.9. R(T) vs. T for simulation S(.
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Figure 3.10. R(T) vs. T  for simulation SB.0 .6  - t
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As in Figs. 3.5, 3.6 and 3.7. our numerical integration d id  not reveal airy- 

global period ic ity  in Figs. 3.8, 3.9 and 3.10 as well. However, qua lita tive ly, i t  

appears th a t the oscillation patterns seen in Figs. 3.8. 3.9 and 3.10 are somewhat 

less irregular than tha t seen in Figs. 3.5. 3.6 and 3.7. We a ttr ib u te  th is  to the fact 

th a t the period ic ity  in the tim e varying part o f the abyssal current in Figs. 3.5.

3.6 and 3.7 is identical to the period o f the Mooney and Swaters (1996) solu tion 

as seen in Fig. 3.1. I t  is possible tha t a nonlinear resonance exists in Figs. 3.5.

3.6 and 3.7 tha t does not occur in the other sim ulations and th a t th is  allows more 

■‘structure" to  occur in the other figures.

T h e  e v o lu t io n  o f  R { T )  w h e n  T 0 =  - 1  and  T  (T ) 7 ^ 0

Even in the case where the underlying mode is subcritica l (i.e., T 0 =  —1), we w ill 

show tim e va riab ility  can lead to ins tab ility  i f  the nonlinear term s are neglected

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



in the am plitude equation. If we substitute To — —1 and

T  (T)  =  H  cos (ujT) .

in to (3.5.5). we obta in the nonlinear Mathieu equation

R t t  =  a 2 [ H cos (wT) -  1 ] R -  ATR (R 2 -  /$ ) .  (3.5.18)

Note, tha t th is choice o f T  (T)  allows the effect o f tim e va riab ility  to be immediate 

at T  =  0.

The first th ing  to note is th a t in the purely linear lim it, i.e.. N  =  0. (3.5.18) 

reduces to  the linear M athieu equation

R t t  +  d l  [1 - H  cos (ujT)} R =  0 . (3.5.19)

This equation has much more interesting s ta b ility  properties (see. for example. 

Sec. 11.4 in Bender and Orszag. 1978) than the linear M athieu equation derived 

in the last subsection. Note tha t i f  H  =  0. then the solutions to  (3.5.19) sim ply 

oscillate in tim e reflecting, o f course, the neutra l s tab ility  of the underlying normal 

mode and, in fact, the solution to  (3.5.18) subject to (3.5.6). is given by

R (T ) =  Rq [cos {crT) +  sin ( o T ) } . (3.5.20)

In  Fig. 3.11 we show a p lo t o f R (T)  vs. T  for /?fl =  0.1 (implies tha t 77(0) =  0.1 

and Rt  (0) — <r/10) w ith  a =  l / \ / 2  (i.e.. k =  I =  1.0) as determ ined by (3.5.20). 

The solution is, o f course, neutra lly stable w ith  a period ic ity  o f about 8 .8 8 6  units 

(w ith  respect to T).

However, i t  is known (see, for example, Sec. 11.4 in Bender and Orszag, 1978) 

tha t, in the lim it  H  —> 0 , the M athieu equation (3.5.19) ha.s unstable solutions 

(i.e., exponentia lly growing solutions) for the discrete frequency spectrum

u  =  2a / n ,  for n — 1, 2,3, • • •. (3.5.21)
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For s ligh tly larger H  the discrete points for u> at which ins tab ility  occurs expand 

in to  intervals of fin ite  length, and as H  gets even larger these intervals also get 

larger, so th a t eventually there is in s tab ility  for almost all lj. Accordingly, the 

generic s ituation associated w ith  solutions to  (3.5.18) is one of am plification. 

Th is process o f destabilization, called "parametric ins tab ility ,” is the result of 

resonance developing between the underlying unforced periodic solution and the 

period ic ity  in  T  (T).

This is a very im portan t result. We have therefore shown tha t in the linear 

lim it, a periodic abyssal flow can lead to instability, even when the tim e mean 

average of the periodic flow is neutra lly stable (provided tha t the frequency of 

the tim e varying part of the abyssal flow is algebraically related to  the frequency 

o f the neutra lly  stable normal mode associated w ith  the tim e averaged abyssal 

flow as given by (3.5.21)).

In Fig. 3.12 we show a p lo t o f R { T )  vs. T  for /?(0) =  R0  =  0.1, R r  (0) =  

ctRq =  er/1 0 w ith <7 =  1 /v / 2  (i.e.. k =  I' =  1 .0 ; these are the same parameter values 

as those for Fig. 3.11) as determined by (3.5.19) w ith  H  =  0.25 and a’ =  2a =  \/2  

(i.e.. for n =  1 in (3.5.21)). The solution has been obtained numerically by using 

the routine NDSolve in the symbolic software package Mathematica 4-0. One can 

see the gradual am plification of the oscillations as T  increases. This increase in 

am plitude increases w ithou t bound. Higher values of m and H  act to increase 

the "growth rate” o f the destabilization, but the basic pattern seen in Fig. 3.12 

remains.

In  Fig. 3.13 we show a p lo t o f R (T)  vs. T  as determined by (3.5.18). for the 

same parameter values as tha t in Fig. 3.12, and add itionally N  =  1.0. One can 

see how the nonlinear terms act to stabilize the ins tab ility  seen in Fig. 3.12. In  

addition, the nonlinear terms have acted to  introduce a longer period m odulation 

in the envelope of the amplitude.
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0.20-,
Figure 3.11. R(T) for the marginally stable case with N = H = 0 .
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Figure 3.12. R(T) for the marginally stable case with N = 0 
and H = 0.25 and w = 2a.
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Figure 3.13. R(T) for the marginally stable case with N = 1 
and H  = 0.25 and co = 2a.0.5
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Chapter 4 

Weakly nonlinear evolution of a 

K  =  1 unstable wave packet

In  th is Chapter, we examine the nonlinear development o f a slightly supercritical 

K  =  1 mode, which is the waveninnber modulus corresponding to  the mode 

located at the m inimum of the marginal s ta b ility  curve (see Fig. 2.1) for which 

7 C =  0. Under these conditions, a small but fin ite  positive 7  w ill lead to a narrow 

band o f unstable modes centered 011 K  =  1 . We wish to  follow the evolution o f the 

resulting baroclinie wave packet as it goes in itia lly  unstable and interacts w ith  

itse lf when the underlying abyssal current has periodic tim e variab ility .

The evolution of the m arginally unstable K  — 1 mode is singular in the sense 

tha t i t  cannot be described by sim ply taking the lim it A' —* 1. 7 c —*• 0 and c —> 1 

of the theory developed in Chapter 3 for the K  ^  1 modes. One immediate 

difference between the m arginally unstable K  =  1 and K  ^  1 modes which has 

significance follows from (3.2.7), where we see tha t the leading order am plitude 

in the abyssal layer satisfies B  —> 0 in the lim it A' —► 1. This implies tha t the
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leading order term  ho(x, y , t , T )  =  0 in the expansion (3.1.13) for K  =  1. Th is is 

equivalent to  observing tha t, to  leading order, the two layers are not dynam ically 

coupled together for th is m arginally unstable mode.

However, th is  point alone is not sufficient to establish tha t the theory devel­

oped in  Chapter 3 w ill not describe the fin ite  am plitude evolution o f a m arginally 

unstable K  =  1 mode. Indeed, if  one takes the lim it A’ — 1. qy —* 0 and c —• 1 

of the various coefficients in Chapter 3, it  is easily seen that ij0. i)\. h0 and /q all 

remain fin ite . The problem firs t arises in equation (3.4.11) for the O (s2) problem 

where it  is seen tha t ?/2 and hence h2 become singular in th is lim it. As we w ill 

show later in  th is Chapter, the problem can be traced to the fact th a t the the­

ory developed for h in Chapter 3 does not need to  include the additional higher 

harmonics required in th is section.

In addition, as we saw in  Chapter 3, the phase velocity o f the m arginally 

unstable K  =  1 mode w ill be given by c =  1 (see, e.g.. (3.2.6)). This is nothing 

more than a reflection o f the fact tha t, to leading order, it  follows from (2.5.14) 

or (3.2.2) th a t the dynamics o f the abyssal layer perturbation height, is described 

by ht +  hx =  0  in the weakly nonlinear m arginally unstable lim it at the point of 

marginal s ta b ility  where 7 „ =  0 .

The fact tha t c. — 1 means that the entire abyssal layer is a critica l layer. 

Note tha t it  follows from (2.5.4) that, the leading order Eulerian velocity field 

in the abyssal layer is given by u 2 ~  e t . The steady velocity in the abyssal 

layer given by u 2 — e,. which we have previously referred to  as the Nof  velocity. 

arises due to the geostrophic: adjustment o f a density-driven abyssal flow ly ing 

d irectly  on a sloping bottom . The phase speed o f the m arginally unstable A' =  1 

mode is therefore identical everywhere in the abyssal layer to  the induced Nof 

velocity and the entire abyssal layer forms a critica l layer. As is well known (see. 

e.g., Benney and Bergeron, 1969, or W arn and Gauthier, 1989), there w ill be a
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rap id  development of the dim ensionality o f the underlying phase space as more 

and more modes are excited by the fundamental harmonic due to  the intrinsic 

nonlinearity of the critica l layer.

From the po in t o f view o f the asymptotics, the nonlinear development of the 

m arg ina lly unstable K  =  1 mode w ill, o f course, be determined by the higher 

order, i.e., the nonlinear, terms in (2.5.12). However, since the leading order 

equation for h is nondispersive, i t  necessarily follows tha t al l  the higher harmonics 

associated w ith  the nonlinear terms in  (2.5.12) w ill generate secular producing 

terms. These secular producing higher harmonics, which must be removed in  

a properly constructed asymptotic theory, lead inevitab ly to an in fin ity  o f wave 

packet evolution equations in sharp contrast to the single mode theory for the 

K  1 modes developed in Chapter 3.

4.1 D eveloping the asym ptotic expansion

In  order to examine the nonlinear evolution o f the m arginally unstable l \ =  1 

mode it  is convenient to move in to  a co-moving reference frame in which the 

frequency, to  leading order in the abyssal layer, w ill lie zero. In th is  reference 

frame, the tim e development o f the current height w ill be determined by the 

higher order, and im portantly, the nonlinear Jacobian terms in (2.5.12).

To th is end, and in light o f the preceding comments, the correct scalings for 

the supercritiea lity  in the slope o f the abyssal height w ill be given by

7  =  s2 [T 0 +  T  (7 ')], ( ) < £ «  1 , T  (T)  ~  O ( 1 ) ,  T 0 =  ± 1 , (4.1.1)

and the pertu rba tion  fields for the m arginally unstable K  — 1 and 7 c =  0 mode 

w ill scale according to

T}{x, y, t) =  st](x , y, X ,  T: s). (4.1.2)
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h (x ,y , t )  =  s2 h ( x , y ,X ,T ;s ) .  (4.1.3)

w ith  the fast space and slow space tim e variables given by. respectively,

x  =  x  - t .  (4.1.4)

x : = s x , T  =  st, (4.1.5)

so th a t derivatives map according to

dt ^ - d i  +  sdT, (4.1.6)

dx - * d i  +  Edx . (4.1.7)

Substitu ting  the above in to the nonlinear perturbation  equations (2.5.11) and

(2.5.12) yields, after dropping the tildes and doing a lit t le  algebra.

(A  +  1)//* =  s [A t)t  — 2r]xxx ~  Vx ~  hx +  J ( rh -^7/)] +  0(s~). (4.1.8)

hT +  hx  -  [T 0 +  T  (7 )] Th  +  J (/;. h) =  0 +  O(e). (4.1.9)

I t  is im portan t to note the difference between the pair (4.1.8) and (4.1.9) and 

the pa ir (3.1.10) and (3.1.11). A lthough the upper layer equations (4.1.8) and 

(3.1.10) are both linear, to leading order, the abyssal layer equation (4.1.9) is 

fu lly  nonlinear, to  leading order, as compared to (3.1.11). Th is leading order 

nonlinearity is a consequence of the fact tha t the entire abyssal layer is a critica l

layer at the point o f marginal s tab ility  given by K  =  1 and j c =  0.

Following and extending Mooney and Swaters (1996), equations (4.1.8) and

(4.1.9) can be approxim ately solved w ith  an asymptotic expansion o f the form

r/(:r, y, X , T: s) =  7/0 (x, y, A , 7’ ) +  £r/,(x, y, X ,  7 )  +  .... (4.1.10)

h(x, y. X ,  7 ; s) =  hQ(:r, y. X , T )  +  s h ^ r ,  y. X ,  7 )  +  .... (4.1.11)

Substitu tion  of (4.1.10) and (4.1.11) in to  (4.1.8) and (4.1.9) gives rise to a se­

quence of pa rtia l d ifferentia l equations tha t must be solved to  obtain each term 

in the asym ptotic sequence. As it  turns out, the necessary analysis is both simpler 

and more complex than th a t developed in Chapter 3.
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4.2 T he 0(1) problem

The 0 (1 ) equations are given by

(A  +  1 )7 /0 *  =  0, (4.2.1)

Iiqt +  ho.x — [To +  T  (T )] i)QX +  ./(??o, ho) =  0. (4.2.2)

Note th a t the leading order equation for //0 is not coupled to  the abyssal layer 

equation. \Ve may therefore solve (4.2.1) immediately to  give

7/0 =  A (X . T )  s in ( ly )  exp(/A\r) +  ex.. (4.2.3)

Equation (4.2.2) describes fu l ly  the leading order evolution o f h0 (x .y .  X . T ) .  

We need go no fu rthe r in  the asym ptotic analysis o f the abyssal layer equation. 

However to  dynam ica lly couple rjo(x, y. X ,  T )  w ith  h0 (x .y .  X .T ) .  tha t is, to de­

term ined the fu lly  coupled evolution o f .4 ( X .T )  w ith  h0 ( x , y , X . T ) ,  we need to 

examine the O(s)  problem.

4.3 T he 0 ( e )  problem

The 0 (s )  upper layer equation is given by

(A  +  l) / / ix  =  A ;/or — -Vaxxx — Vox ~  hox, (4.3.1)

where we have used .J(r)o,Ar]o) =  0. We need to establish a so lvab ility  condition 

on (4.3.1) in  order to remove secular growth in the solution.

The terms o f on the right-hand side of (4.3.1) tha t w ill produce secular' 

grow th are those terms th a t are proportional to t)q. i.e., those p roportiona l to 

s in (/y) exp(±/A '.r). We may therefore w rite  the so lvability  condition associated 

w ith  (4.3.1) in  the form

r L  XI  n / k

/  /  [Ar/or -  27/o.yxx ~  Vox -  lh)x] sin (ly) e x p ( - ik x )  dx dy =  0, (4.3.2)
Jo Jo
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where the complex conjugate o f th is  relationship is understood. Equation (4.3.2) 

is sim ply the geometric statement tha t the projection o f the right-hand-side of 

(4.3.1) on the sh\(ly) e x p (± ik x )  mode must be zero.

Equations (4.2.2) and (4.3.2) (together w ith  (4.2.3)) form  a closed system of 

pa rtia l d ifferentia l equations for h o {x ,y \X ,T )  and A ( X ,T ) .  We have chosen to 

w rite  the coupled equations in th is  way in order to emphasize the s im ila rity  w ith  

the analysis presented by W arn and G auth ier (1989) for a m arginally unstable 

baroclin ic flow in the P h illips ’ model.

As .argued by Mooney and Swaters (1996). if  one neglects the d \  derivatives 

in (4.2.2) and (4.3.2) and assumes T  (T)  =  0. it is possible to obtain a closed form 

solution in terms o f e llip tic  and trigonom etric functions by a slight m odification 

o f the methods presented in W arn and G auth ier (1989). We have not been able to 

generalize the Warn and G auth ier technique to  the equations i f  one retains slow 

space variations in the wave am plitude or for nonzero T  (T )  and thus we construct 

a solution using the spectral approach developed by Mooney and Swaters (1996). 

We emphasize, however, tha t it  remains an interesting and challenging problem 

to m odify  the W arn and G auth ier technique i f  one retains slow space variations 

in the wave am plitude or for nonzero T  (T).

4 . 4  Spectral solution procedure

Here we construct an exp lic it spectral solution for /i0 in the form

'<o =  H v , x r ) +  f t  Bm.n{X, T )  sin ( i l ly ) exp(im kx)  -f c.c. 1 . (4.4.1)
l . , n  =  l n = l  J

where q> (y ,X ,T )  is a real valued mean flow adjustment term  that w ill be deter­

mined as a result o f the balance between the growth o f the disturbance and the 

extraction  o f potentia l energy from the ambient flow.
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If one substitutes (4.4.1) and (4.2.3) into (4.3.1) one obtains

CC CC

( A +  l)77la; =  ~ ik  EE m B m,n s in (n ly) exp(imkd)
771=1  7 7 = 1

— [9 r +  (1 -  2 k r )d \ }A  sin (ly)  exp (ikd) +  c.c. (4.4.2)

The only terms tha t cause resonant behavior on the left-hand side o f (4.4.2)

are those th a t are proportional to  sin(/;y) exp(± ikd),  which must be elim inated.

Setting the coefficient o f these terms to be equal to zero implies

i k B u  +  A t  +  (1 -  - k 2 )A_\ =  0. (4.4.3)

and. of course, its complex conjugate. Most im portantly, however, is to note that 

(4.4.3) determines B u  ( X .T )  as a function of A ( X .T ) .  W hat remains to  be 

done is to determine all the other B,nM ( X .T ) .  A ( X .T )  and o ( y . X . T ) .

We proceed as follows. I f  one substitutes (4.4.2) and (4.2.3) in to  (4.2.2). one 

obtains

ik  [T 0 +  T  (T)  -  by) .4sin(Zy) exp( ik r )
J oc oc

- - i k l A  ]P { n .£ m.„s in [(rt +  1 )ly] -  (n +  l ) f l m.„+ i sin (n ly)
~  m  — 1 71— 1

—rriBm.n sin[(n +  1 )ly] -  sin (n ly ) }  exp\i(m +  l)A*:r]
^ ■'X- CC

+  - i k lA *  Y 2  Y 2 ^ nBm-n s in^ "  +  ~  (n +  An(n ly )
m = l n = l

+ m B m<n s in[(n +  l) /y ]  +  sin (n ly ) }  exp[;(m  -  l )k:r]
OO CC-EE (d r  +  d.x) B mn sin (n ly) exp(im kx)  +  c.c. — (d r  +  dx)  0 =  0. (4.4.4)

771 =  1 71 = 1

This expression is a double Fourier series in the orthogonal basis functions { s in g ly ) } 

and {exp(/mA:.r) } ^ =1 . The evolution equations me obtained by demanding tha t 

each ind iv idua l Fourier coefficient be identically zero.
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To begin, the terms in  (4.4.4) th a t are independent o f the fast phase variable 

x  are given by

^  CO

{d-r  +  dx ) 4> =  - i k l / V  ^ { n B Un sin [{n +  1 )ly\ -  (n +  l ) B Un+i sin (n ly)
n = l

+ B Un s in [(n  +  1 )ly] +  B Un+l sin {n ly ) }  +  c.c. (4.4.5)

S im plify ing and including the complex conjugate explic itly , we find that

(&r  +  dx ) 6  =  ~ ik l  f > ( . 4 £ ( , i+1 -  A ’ B Un+1)
n=i

- n i A B l ^  -  /T 5 i, „ _ i) )  sm(nly).  (4.4.6)

The solution to  (4.4.6) may be w ritten  in the form

Q ( y ,X ,T )  =  ^ ^ a „ ( A ' . 7 > . s in ( n t y ) .  (4-4-7)
“  n=i

Substitu ting (4.4.7) in to (4.4.6) leads to the following set o f equations for the a „  

coefficients

(c>r  +  O x )a n =  i k \ ( A B l , + l -  A 'B hu+l) -  (A B -  A ' B hn^ ) } .  (4.4.8)

Thus we have exp lic itly  determined d (y .  X .  T).

We now examine the exp(ikx)  terms. The terms in (4.4.4) th a t are propor­

tiona l to exp(/A::r) are given by

i k [ T () +  T ( T ) - 0 y}A A n ( ly )

1 °°
+ - i k l A * '^2 { n B 2.„ s in((n +  1 ) ly) -  (n +  1 )0 2.h+i sin (n ly)

71 = 1

-t-2/Jo,n sin((n +  1 ) ly) ~r 2 /?2,7i+ i siu (n ly )}
CO

-  ^ 2  (dx  +  dx) B \,n sm(nly) =  0. (4.4.9)
71 =  1
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If (4.4.7) is substituted into (4.1.25), we find, after some manipulation.

ik A  [T 0 +  T  (T )] +  i k A l 2 a 2 -  (d r  +  dx ) B lA =  0. (4.4.10)

front the sin(/y) terms, and from  the sin {n ly) (n >  1) terms

- - i k A l 2 {an- i ( n  -  l ) 2 +  n „ + i(»  -t- l ) 2]
4

-f —/W .4*[(n -r I ) Z?2.n — 1 ~ (7) -  l)-/5->.n+l] — (d r  +  d \  )  B ] . n  ~  0. (4.4.11)

and finally, the equations associated w ith  the modes w ith  m >  1 are given by

(0j~ T  A x  ) B m n  —i k I A  [ ( +  77?) / ] (7? 777 )JyjnA. X ,7 1 - i -1 ]

~ i k l A [ ( n  -  -  (11 -r m ) B m ^ . n + i \ -  (4.4.12)

for 777 =  2 .3 ..... and n =  1. 2.......

The entire set o f coupled spectral equations can be cleaned up and consoli­

dated i f  we introduce the transform ations

a „  =  —d „. B m<n =  - /7 3 m,„ (except for B lA). (4.4.13)

which yields the coupled set of pa rtia l d ifferentia l equations

(c)T +  d.x)[ch +  (1 -  2k'2)()x }A =  k 2 [T 0 +  T  (7')[ A -  l 2 l r A o 2. (4.4.14)

(c)T +  dx )a 2 =  [(>,- +  (1 -  2k2 )dx \ \A \ 2 +  k [AB 'h:i - f ,1*B VA}. (4.4.15)

(d r  +  dx )a n =  k [ A B l n+l +  A ' B Un+l -  (A B 4- . 4 * ( 4 . 4 . 1 6 )  

fo r 77. =  1 ,3.4. * • • . and

B \A =  — [cl/- +  (1 — 2A r)0Y] .4, (4.4.17)

( d r  +  dx ) B m n =  — ̂ A:/U2[(r7. -  l ) 2a (7i. -  1) -  (77 +  l ) 2(v„+ I]A'i.ni

+  ̂ ik l .A *[(n  +  ■/».)£,n+1>N_, -  {n -  m ) B m+Un+x\

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



~^iklA[(n -  -  (n +  m )S m_1,I1+1], (4.4.18)

for in, n — 1 ,2 ,3 ,---  , except rn =  n =  1.

Th is set o f equations is completely in tractable so far as we know. Mooney 

and Swaters (1996) qua lita tive ly  examined these equations w ith  To =  +1 and 

T  (T ) =  0. The method Mooney and Swaters (1996) used was to  examine the 

evolution o f the solution by trunca ting  the .spectral series afte r a certain number 

of terms. In  pa rticu la r they showed th a t if  the cu to ff was applied too soon after 

(but not d irectly  after) a mean flow mode, then exponentia lly growing solutions 

resulted for A (T ) .  I f  the truncation  was applied d irectly  after a mean flow mode, 

then the equation set yielded bounded oscillating solutions, where the cycles 

form ing a period became more complex w ith  each increase in size o f the set. This 

would seem to indicate tha t the mean flow modes have a stabiliz ing influence on 

the solutions, possibly by acting to  restrict the potentia l energy available to  the 

higher modes. We were unable to  rigorously establish whether or not increasing 

the number of modes always leads to  an increase in the number of cycles needed 

to  form  a period, although the numerical evidence seems to  indicate this.

In terms o f solutions tha t re ta in  spatial variations, there is a soliton solution 

associated w ith  the truncated model in which B  1,3 and a ll higher harmonics and 

the accompanying mean flows are ignored. In th is  lim it, it  is known (see G ibbon 

et. al., 1979) tha t th is  truncated model can be reduced to  the sine-Gordon (SG) 

equation. The SG equation is a completely integrable nonlinear wave equation 

tha t has a soliton solution (Ab low itz  and Segur. 1981). Th is soliton solution 

can be identified as an isolated abyssal wave packet tha t propagates nonlinearly 

and nondispersively in  the along slope direction. Presumably, i t  is o f interest 

to determine the propagation characteristics o f the abyssal wave packet soliton 

solution, when the m arginally unstable abyssal flow possesses tim e variab ility . 

This we do in the next Section.
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4.5 Solution o f the truncated soliton m odel w ith

T ( T )  ±  0

I f  we neglect B i:i  and a ll higher order terms, the truncated spectral equations 

are given by

{&j- +  dx )[A T +  (1 -  2k2)A x ] =  A'' [T 0 +  T  (T)] .4 -  l 2 k 2 A B ,  (4.5.1)

{d-r  +  dx )B  =  [c>r  +  (1 -  2k 2 )dx ] |-4[2 , (4.5.2)

where, for convenience, we have set B  =  ao (X .T ) .  These equations me some­

times called the A B  equations.

We note, immediately, tha t i f  one assumes tha t d \  =  0, this set o f equations 

can be reduced to a single equation that is identical in form to the I \  ^  1 am­

p litude equation (3.4.14). Thus, in this steady approximation of the truncated 

model, the effect of T  (T) ^  0 on the evolution o f .4 (T ) w ill be identical to  that 

described in Chapter 3 and is not reproduced here. In  th is Section, we wish to fo­

cus on understanding the changes introduced in to the propagation characteristics 

of the soliton solution to  (4.5.1) and (4.5.2) by T  (T).

To be concrete we w ill focus attention on the soliton solution associated w ith  

the m arginally unstable situation w ith  T 0 =  +1. There is a soliton solution asso­

ciated w ith  the m arginally stable solution as well (the allowed sets of translation 

velocities associated w ith  the m arginally unstable and stable situations are dis­

joint, from one another). The analysis is essentially the same and thus we do not 

include it  here.

Our method o f analysis is based on a nonlinear WKB  procedure (Kodama 

and Ablow itz, 1980) developed for solitary waves tha t assumes that the time 

scale associated w ith  T  (T )  is long in comparison to  the advective tim e scale of
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the so lita ry wave. We begin by assuming

To +  T  (T) =  1 +  T (T) =  7 (p T ) , (4.5.3)

where 7  ( f iT )  ~  0 (1 )  and 0 <  f i «  1, and th a t A  and B  are real valued and

satisfy the far field conditions |/1, B\ —> 0 as X  —> ± 0 0  for a ll T  >  0. The solution

to  (4.5.1) and (4.5.2) is constructed in the form

A — -4 ( £ , t ; p ) . 5  =  5 ( £ , r ; p ) ,  (4.5.4)

where the new variables (£, r )  are given by

f  =  x -  -  [  c ( 0  rfC, r  =  nT, (4.5.5)
/ i J0

so tha t derivatives map according to

d r  =  —c ( r )  dc +  [ idT, dx  =  %

where c ( r )  is the soliton velocity.

S ubstitu tion  o f (4.5.4) and (4.5.5) in to (4.5.1) and (4.5.2) leads to. after a 

l i t t le  algebra.

[1 -  c (t )] [ 1  -  c ( t )  -  2 A-2]  -  7 ( r )  ,1 +  k~l2AB  =

—2// [ l  — c ( r )  — A"] /lcT +  O (p “ ) , (4.5.6)

[1 -  c ( r ) ]  B , -  [1 -  c ( r )  -  2A'2] ( d 2) ,  =  p (.42 -  B ) r . (4.5.7)

The solution to (4.5.6) and (4.5.7), in the lim it o f "smalT p. can lie  found in the 

form

(.4 ,5 )  =  ( A , B ) m  +  f i { A , B ) il)  + • • • •  (4.5.8)

Substitu tion  o f (4.5.8) in to (4.5.6) and (4.5.7) leads to the following series of 

problems.
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The 0 (1 )  problem

The O (1) equations are given by,

[1 -  c ( t ) ]  [ l  -  c ( r )  -  2 /r ]  .4 ^  -  7  ( r )  / i (0) +  k 2 l 2 A l0 )B {0) =  0, (4.5.9)

[1 -  c (t )] -  [1 -  c ( r ) -  2A:2] ( [-4 (0)] 2) { =  0. (4.5.10)

Equation (4.5.10) can be integrated w ith  respect to  £. to yield

( l - c - 2 Jta) ( A (0)) a
B {0) =  ---------- ;------- ^ ------ - ■  (4.5.11

(1  - c )

which can lie substituted in to  (4.5.9) to give

^  an A' 2 / 2 (1 — c — 2A:2) (.4(0 ) ) 3
(1 -  c) (1 -  c -  2k2) 4 (’> -  7-4(0) + ----------   ( 1 _ r)  V------L  =  0. (4.5.12)

I t  is stra ightforward to verify, by direct substitu tion , that (4.5.12) has the 

soliton solution

-4<0) ( f ,  r )  =  -40 ( r )  sech [u ( t ) £ ] , (4.5.13)

where

" <T) " V l i  -<■(-)] [ i - c M - a c ] -  (4-5-u)

,  /  2 7 ( r ) [ l - c ( r ) ]

'4° (T) =  V A-2/ 2 [1 — c ( r )  — 2A;2] ’

which implies th a t / 10 and v  are related through the simple algebraic relation

■■1„=V'? ( 1, p ) , t  (4-5.16)

Thus given, 7 (7 ) and c ( r ) ,  the evolution o f the soliton "wavemimber" u ( t ) and 

am plitude /10 ( t )  w ill be determined. The parameter 7  ( r )  is assumed known and 

c ( r )  is determined by examining solvability  conditions associated w ith  the O (//.) 

problem.
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Also, it follows from (4.5.14) and (4.5.15) th a t the product

[1 — c ( r ) ]  X  [ l  -  C ( r )  -  2k2] ,

has the same sign as 7  ( r )  or else ,40 and u are not real valued, which is not 

allowed. Thus, i f  ~ ( r )  >  0, which corresponds to the m arginally unstable case 

(tha t we examine here), then c E (—0 0 , 1 — 2k2) U (1 ,0 0 ), and i f  7  ( r )  <  0, which 

corresponds to the m arginally stable case (tha t we do not examine here), then 

cE  (1 -2 A - .1 ) .

T h e  O (n )  p ro b le m  a n d  th e  d e te rm in a t io n  o f  c ( r )

The O (h ) equations are given by

( l - c ) ( l -  c -  2k2) -  7 / l (I) +  A' * / 2 (A {0 )B {i] +  A (1)B (0)) =

—2 ( l  — c — A'2) .4 ^ ,  (4.5.17)

(1  -  c) B [ l) - 2 ( 1  -  c -  2k2) (.4(0 ).4(1)) ,  =  ( [ A (0 )] 2 -  / i (0))  . (4.5.18)

which are to  be solved subject to  the far field conditions /?(1'| — 0  as

£ — ± 0 0  fo r all r  >  0 .

The required solvability  condition is tha t, considered as a 2 x 2 system of 

ord inary differentia l equations (w ith  respect to  the variable £), the righ t hand 

side o f (4.5.17) and (4.5.18) must be orthogonal to  the kernel (i.e., the vector 

space spanned by the homogeneous solutions) of the ad jo in t system (see. for 

example, Kodam a and Ablow itz, 1980 or Swaters and F lie rl. 1991). The result 

of th is so lvability  condition w ill be to derive an ord inary differential equation for 

c ( r ) .

When formulated th is way, the so lvability  condition may be considered an 

application of the Fredholm Alternative Theorem (see, e.g., Boyce and D iP rim a, 

2005). In  fact, the "removal o f secular terms" procedure we used previously to
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determine the am plitude equation for the m arginally unstable (or stable) modes 

can also be seen as an application o f the Fredholm A lte rna tive  Theorem in the 

s ituation where the operator associated w ith  the homogeneous problem is self- 

adjoint or tr iv ia lly  noil-self-adjoint.

We proceed as follows. We ind iv idua lly  m u ltip ly  (4.5.17) and (4.5.18) by the 

unknown test functions p , ( £ . t )  and o 2 (£ , t ) ,  respectively, integrate (by parts, 

repeatedly, where necessary) w ith  respect to £ €  ( — oc.oo), and add together. 

The result can be w ritten  in the form

r  {.4 (1) [ ( 1  -  c) (1 -  c -  2 k2) P1K -  7<?1 +  A-2r - f i (0)o,
J  — OC

+  2  (1  -  c -  2 k2) A (0)<fo{] +  B il) [k2 l 2 A w 4>i -  (1  -  c) o 2c ]} =

-  r  {'2 (1  -  c -  k2) +  0 2  ( [-4(0)] 2 -  B i0))  }  d t  (4-5.19)
J  -  7C T

where i t  is assumed tha t a ll the integrals exist.

The homogeneous ad jo in t problem associated w ith  (4.5.17) and (4.5.18) is 

therefore given by

(1 -  c) (1 -  c -  2k2) 0 1K -  7 o , +  k 2 l 2 B {0 )0,

+2 (1 -  c -  2k2) .4(0)o 2< =  0, (4.5.20)

k 2 !2 .4(0)O, -  (1 -  c) p2< =  0. (4.5.21)

I f  (4.5.11) and (4.5.21) is used to elim inate / i <0) and 0 2<. respectively, in (4.5.20). 

we obtain

o - < - ) ( i - c - + m y . (, , 22)

Comparing (4.5.22) w ith  (4.5.12) we see immediately tha t

=  A f \  (4.5.23)

8 6
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and, thus from (4.5.21), that

02
k2l2 [AM]2

(4.5.24)
2 ( 1  - c )  '

Therefore, i f  ( 4 . 5 . 2 3 )  and ( 4 . 5 . 2 4 )  is substituted in to  ( 4 . 5 . 1 9 ) ,  i t  follows th a t

f *  { 2 ( 1 - c - k ^ A f ' A ™
J — OO

+  ( [ - 4 <0)32 -  5(0)) _ }  #  =  °- <4-5-25)

must hold. I f  ( 4 . 5 . 1 1 )  is used to elim inate jS<0) in  ( 4 . 5 . 2 5 ) ,  the result can be

w ritten  in the form , after a l it t le  algebra.

2 c ^ ( £ K T "e
( 4 . 5 . 2 6 )

k'H2 r°°

. ( l - c ) 2
I f  ( 4 . 5 . 1 3 )  is substituted into ( 4 . 5 . 2 6 ) ,  the integrals are elementary to  exp lic itly  

evaluate, and we obtain

( l - c - A : 2) (vAl)r - M =  0 .
L*' ( i  -  <*) J

and i f  ( 4 . 5 . 1 6 )  is substituted in to  th is expression, the result can be w ritte n  in the 

form

( 1 - C - 3 A - 2 ) [ ( 1 - c) V ] t =  0.

Genetically.

c ( r )  ^  1 — 3k2 for all r  >  0.

so tha t we conclude

[ ( l - c ) V ] 7 =  0 , ( 4 . 5 . 2 7 )

which can im m ediately be integrated to yield

[ l - c ( r ) ] V  (t ) =  (1 - c 0)2 /^,
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where Co =  c(0) and uq =  v { 0), which if (4.5.14) is substituted in, implies,

=  y/ f o >  0, (4.5.28)
7oS/(l — Co)

[  [1 — c ( r )  — 2fc2] J [ ( l - c 0 - 2 f c2)^

where 7 0  =  7 ' ( 0 ). I t  follows from  (4.5.28) tha t c ( t )  can be obtained by solving 

the cubic equation

1 *>7 3
;j0 [1 -  c ( t ) -  2 fc2] ' -  7 3 ( r )  [1 -  c ( r ) j  =  0 . (4.5.29)

Once c ( t )  is determined, the result can be substituted into (4.5.14) and (4.5.15) 

to determine u { t ) and .4 o (t) . which completes the determ ination o f the leading 

order solution .4(0) (£, r ) .

An exam ple calculation

We brie fly describe an example calculation assuming that

7  ( r )  — 1 +  sin ( t ) / 2 . (4.5.30)

i.e., the tim e va riab ility  is periodic w ith  period 2 tt in units of r  w ith  a range 

given by 7  ( r )  € (0.5, 1.5). In  addition, to  be concrete, we assume th a t k =  

I =  l / \ / 2  and tha t c(0) =  -2 .0 . I t  follows from (4.5.14) and (4.5.16) th a t the 

in it ia l soliton wavenumber and am plitude are given by u (0 ) ~  0.41 and ,4o (0 ) ~  

3.46. respectively. W ith  the above choice of y ( r ) .  the abyssal current never goes 

subcritica l and, thus, always remains supercritical.

W ith  th is choice of parameter values. (4.5.29) can be w ritte n  in the form

c3 ( r )  -  8 7 3 ( r )c  +  8 y3 ( r )  =  0 , 

since do =  3/8. I t  follows from (4.5.31) tha t

(4.5.31)

e (T) =  - y  ^ 7 (t ) 1 -

327:? ( r )  

81
(4.5.32)
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I t  can be d irec tly  confirmed tha t c(0) =  —2.

In  Fig. 4.1 we p lo t the solution for the soliton velocity c ( r )  as obtained 

from  (4.3.32). The solution appears to  be almost linearly p roportiona l to  7  ( t ) .  

However, th is is not precisely true as the exact solution contains contributions 

from  higher harmonics (i.e., the 32y3 ( r )  /81 terms) but these contributions have 

a sm all am plitude coefficient. In  Figs. 4.2 and 4.3 we plot the solution for the 

so liton wavenumber u ( r )  and am plitude .40 ( r ) ,  respectively, as obtained by 

substitu ting  (4.3.32) in to  (4.5.14) and (4.5.15), respectively. As in Fig. 4.1. we 

see the almost, linear p roportiona lity  w ith  7  ( r ) .

-0.5
Fig. 6a. The soliton velocity c ( t ) v s . t  assuming c(o)=-2.0

- 1 .0 -

-1 .5 -
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-2 .0 -

-2 .5 -

-3 .0 -

-3.5
0 2 6 84 10 12

r
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0.60 Fig. 6b. The soliton wavenumber v(t) vs. t.
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Fig. 6c. The soliton amplitude Ao(x) vs. t.
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Chapter 5

Summary and conclusions

A weakly nonlinear theory for a m arginally stable or unstable, tim e-varying 

abyssal current has been studied. We extend the weakly nonlinear ins tab ility  

analysis of Mooney and Swaters (1996) to m arginally stable or unstable, time- 

varying abyssal currents, using the methods described by Pedlosky and Thomson 

(2003). The governing equations originate from Swaters (1991) tha t describe the 

linear baroclinic ins tab ility  of a grounded abyssal current on a sloping bottom . 

The model for th is thesis is a two-layer system in which re lative ly dense water (the 

abyssal layer) sits d irectly  on a sloping bottom  surrounded by re lative ly lighter 

water (the upper layer).

We first derive the shallow water equations for each layer from the inviscid 

incompressible Navier-Stokes equations w ith  constant density. The shallow water 

theory is based on a remarkable d istinction between the horizontal and vertical 

length scales of geophysical flu id  motion. We apply scalings to h igh ligh t the 

dynamics we expect to occur in  the specific physical s ituation studied in this 

thesis. The Swaters (1991) model is obtained by an asym ptotic reduction of 

the scaled model equations. Another way to derive the Swaters (1991) model is
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presented by working from the potentia l vo rtic ity  equations for the fu ll two layer 

shallow water equations.

We then continue to discuss the general linear, nonlinear s ta b ility  theory and 

norm al mode s tab ility  theory. Linear s tab ility  analysis is a procedure to  examine 

the s ta b ility  of the steady solution to  small perturbations. We add a small per­

tu rba tion  term to  the steady solution, substitute th is in to  the nonlinear governing 

equations, and drop the nonlinear terms (the quadratic perturbation  terms) to 

obta in  the linear s tab ility  equations that describe the spatial s tructure and tem ­

poral evolution o f the disturbances. Analyzing the energetics associated w ith  

destabilization gives us the fact tha t there must be at least one negative value of 

the slope o f the abyssal height h0 for ins tab ility  to occur. When we consider a 

quadratieally shaped abyssal height profile h0 as shown in Fig. 1.1. which pos­

sesses two incroppings, a physical in terpretation for th is  fact is tha t the ins tab ility  

occurs on the down slope side o f the abyssal height (/i0u <  0). The normal mode 

linear ins tab ility  equations are analyzed in order to  generate a m arginal s tab ility  

curve. The marginal s tab ility  curve represents the boundary between stable and 

unstable modes for a particu lar cross-slope rate o f change o f the thickness o f the 

abyssal current height versus the to ta l wavenumbcr.

I f  there is ins tab ility  in the linear s tab ility  analysis, the evolution of the wave 

always reaches amplitudes for which the linear theory is no longer valid. To see 

how the m arginally unstable modes as determined by linear theory act ually evolve 

in  tim e we must develop a fin ite  am plitude ins tab ility  theory tha t describes the 

nonlinear interactions.

The case when the mode does not correspond to the point of m arginal s tab ility  

is examined firs t. We derive an am plitude evolution equation and solve for a 

weakly subcritica l or supercritical abyssal flow w ith  or w ithou t tim e variations. 

W ith o u t tim e variations, the am plitude evolution is periodic, which is determined

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



by Jacobi e llip tic  dnoidal function. When a periodic tim e varia tion  is included, 

the normal mode am plitude satisfies a nonlinear Mathieu equation. W hen the 

nonlinear terms are neglected in  the am plitude equation, i.e., the case of the 

linearized M athieu equation, there exist periodic abyssal flow configurations that 

can stabilize an unstable abyssal flow. This s ituation occurs for an extremely 

small region in parameter space. The generic solution for th is  linearized Mathieu 

equation is not stable for most parameter values. We investigate the effect of 

adding the nonlinear term  to th is  am plify ing solution in time.

Nine different simulations are obtained by numerically in tegrating the am­

p litude  equation, i.e.. the nonlinear M athieu equation w ith  various amplitudes 

and periods o f the tim e varying term . The three cases for the magnitude of the 

tim e varying term  correspond to  small, comparable, and large compared w ith  the 

steady part o f the supercritica lity. The three cases for the period o f the time 

varying term  correspond to  the period ic ity being short, comparable and long, 

respectively, compared to  the period of the disturbance w ithou t the tim e-varying 

terms. The am plitude functions are not periodic so that we allow sufficient length 

o f tim e to  confirm  long tim e periods. When we have a low frequency parameter 

value o f the tim e variable part o f the abyssal current, there exist periodic abyssal 

flow configurations. For other ranges o f frequency parameter values, the normal 

mode am plitude is no longer periodic and the pattern o f the oscillation appears 

h igh ly irregular. However, th is  irregu la rity  is not the onset o f in s ta b ility  because 

the normal mode am plitude s t il l oscillates in tim e w ith in  a certain bound.

The second s itua tion  is th a t an am plitude evolution equation is in  weakly 

subcritica l modes. The solutions to  the linearized M ath ieu equation w ithout 

the tim e-varying term  are periodic. However, the linearized M ath ieu equation 

including the tim e-varying term  has unstable solutions. W hen we include the 

tim e-varying term in to  the M ath ieu equation, the range o f parameters th a t un-
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stable solutions occur gets larger as the magnitude o f tim e-varying term  gets 

larger. We have therefore shown tha t in the linear lim it, a stable and periodic 

abyssal flow can lead to instab ility . Numerical simulations show th a t the orig i­

na lly stable, periodic am plitude is amplified gradually as tim e goes by because 

of the effect o f the tim e-varying term. However, there is a very interesting re­

sult about the presence o f the nonlinear terms in  the am plitude equation. The 

presence o f the nonlinear terms in the am plitude equation always leads to  the 

am plitude oscillating in tim e even though the am plitude is linearly unstable. We 

present a sim ulation tha t illustra tes the periodic amplitude.

The evolution o f modes th a t correspond to the point o f m arginal s ta b ility  is 

singular because it  cannot be described by taking the lim it o f the theory developed 

for the mode tha t do not correspond to the point o f m arginal s tab ility . W hen the 

supereritica lity  is centred on the point o f m arginal stab ility , the weakly nonlinear 

ins tab ility  theory for tim e varying abyssal flow generates fu lly  a nonlinear partia l 

d ifferentia l equation for the unstable mode. Even at lowest order, there is an 

in fin ity  of harmonics produced. The secular producing harmonics are removed 

bv using asym ptotic theory constructed properly. Based 011 a purely ad hoc basis, 

we choose only two truncated spectral equations which explain the fundam ental 

mode and the mean flow it  generates. The resulting equation set is equivalent 

to the sine-Gordon equation w ith  time-dependent forcing. W ith o u t the forcing 

terms associated w ith  the tim e dependent abyssal current, the truncated model 

has a soliton solution tha t can be identified as a steadily traveling coherent abyssal 

dome.

We develop an asym ptotic expansion to  describe the evolution o f the abyssal 

soliton when the abyssal current is tim e varying. W hen we include the time- 

dependent periodic forcing term , the soliton am plitude is a smooth periodic func­

tion. This is a very im portant result. In it ia lly  unstable modes (the supercritica l
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modes) are stabilized by the time-dependent forcing for the wavenumber corre­

sponding to  the m inim um  o f the marginal s tab ility  curve. YVe can compare th is 

w ith  the subcritica l mode tha t the wavenumber modulus is not located at the 

m inim um  of the marginal s tab ility  curve. In th is case, the am plitude is in it ia lly  

stable but the tim e va riab ility  of a periodic abyssal flow leads to instab ility .

The assumptions made for th is thesis ignore many im portant physical config­

urations and dynamic processes such as separation and m ixing by topography, 

and adiabatic and planetary effects. To understand the abyssal circulation oc­

curring in the ocean, a theory including these features is necessary. I t  would lie 

interesting to  compensate the am plitude equation concerning realistic geophysi­

cal effects to understand an a rb itra ry  shaped-abyssal current character. In view 

of extending the nonlinear regime o f the marginal s tab ility  of the tim e-varying 

abyssal flow, applying other possible nonlinear terms would be another interesting 

topic to work 011 in the future.
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