National Lib
Bl ™

Acquisitions ana

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch  des services bibliographiques

395 Wellingion Street
Orttawa. Ontario
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
queality of the original thesis
submitted for  microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

L

Canada

395. rue Welingten
Ottawa (Ontarno)

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec ['université
qui a conféré le grade.

La qualité d’impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d'un
ruban usé ou si I'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
2 la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.



UNIVERSITY CF ALBERTA

Sequence Stratigraphy of the Lower Cretaceous Mannville
Group of East-Central Alberta

BY
Don A McPhee @

A THESIS SUBMITTED TO THE FACULTY OF
GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF GEOLOGY
EDMONTON, ALBERTA

FALL, 1994



National Lib
el e

Acquisilions and

Bibliotheque nationale
du Canaaqa

Direction des acquisitions et

Bibliographic Services Branch  des services bibliographiques

385 Wellington Street
Ottawa, Ontario
K1A Oti4 K1A ON4

The author has granted an
irrevocable ncn-exclusive licence
allowing the National Library of
Canada to reproduce, Iloan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Onlario)

Your e Votre ierens e

Oue e Nehe tMerem e

L'auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
thése. Ni la these ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-95077-3

Canada



UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Don A McPhee

TITLE OF THESIS: Sequence Stratigraphy of the Lower Cretaceous
Mannville Group of East-Central Alberta

DEGREE: Master of Science
YEAR THIS DEGREE GRANTED: Fall, 1994

PERMISSION IS HEREBY GRANTED TO THE UNIVERSITY OF ALBERTA LIBRARY TO
REPRODUCE SINGLE COPIES OF THIS THESIS AND TO LEND OR SELL SUCH COPIES FOR
PRIVATE, SCHOLARLY OR SCIENTIFIC RESEARCH PURPOSES ONLY.

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND NEITHER THE THESIS
NOR EXTENSIVE EXTRACTS FROM IT MAY BE PRINTED OR OTHERWISE REPRODUCED

WITHOUT THE AUTHOR'S WRITTEN PERMISSION.

// //” e /v,’
(SIGNED). A" a4 4 ¢ [ Leg

(PERMANENT ADDRESS)

R.R. #1, Port Hood,
Inverness County, Nova Scotia

(TEMPORARY ADDRESS)

42 Edgedale Crt..
Calgary. Alberta,
Canada. T3A 2R1

» o S
DATE: - ( 1’?(73’[_#21 L_i{;f_{



UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

THE UNDERSIGNED CERTIFY THAT THEY HAVE REAIDD, AND
RECOMMEND TO THE FACUITY OF GRADUATE STUIMES AND
RESEARCH FOR ACCEPTANCE, A THESIS ENTITLED SEQUENCE
STRATIGRAPHY OF THE LOWER CRETACEOUS MANNVILLE GROQUY OF
EAST-CENTRAL ALBERTA, SUBMITTED BY DON A MCPHER IN PARTIAL.
FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF
SCIENCE.

s

; ~ e

Dr. S. Gdorge Pemberton - Supervisor

Dr. C.R. Stelck

Dr. G.E Ba}/

/ !
Date: July 4, 1994,




Abstract

The Mannville Group 1 subdivided into a lower “Transgressive Systems Tract” and an upper
“Highstand Systzms Tract” at the transition from doniinantly retrogradational to progradational stratal
geometry, On both of these systems, transgressive/regressive cycles are superimposed.

The “Transgressive Systems Tract™ is subdivided by three major floading cvents. The initial
flocding event is associated with the ransgression of the Boreal Sca during which time paleo-valleys on the
sub-Cretaceous unconformity were filled with fluvial deposits. The floading of broad fluvial plains formed
broad crabayments separated by a chain of north-northwest trending Paleozoic highlands. Embayments on
the western side of the Palcozoic Highs and closer to the foredeep of the foreland basin were more sediment-
starved compared 1o those on the cast. The flooding event was followed by a major drop in sea-level
contributing 1o deep incision. The second tlooding event transformed incised valleys into long estuaries
which later formed broad estuaries as sea-level continued to rise. During the relative still-stand of the sea,
the progradation of the shoreline results in the deposition of a widcspread. 10 1o 15m thick. sandstone sheet.
Thie third flooding event marks the time of maximum transgression, during which an open maringc
environment covered the northern half of the Alberta Foreland Basin.

The “Highstand Systems Traset” is subdivided by at least six major flooding cvents. Between cach
flooding cvent, three distinet lateral components are generally recognized. In the south, each succession
gencratly consists of a 15 10 25 m thick. upward-shoaling, muddy to sandy facies often capped by a thin 0.5
10 21 thick ceal. This part of the succession may extend over a distance of 300 km before rapidly
translating to the nosthwest into a 20 to 40 m thick, clean. blocky sandstone forming lincar. 2010 100
kilometre wide bands, trending northeast -southwest. The blocky sandstone bands gradually translate to the
northwest, over 20 to 30 kilometres, into a laterally extensive mud dominated successions containing
laterally extensive thin sandstone stringers.

The thicker. blocky s.adstone bands occur along and 1o the northwest of the Snowbird Tectonic
Zone (STZ). Relative to the STZ. lowstand incision is prevalent to the south but difficult to recegnize to
the nerthwest. The STZ marks the southeasiern limit of Precambrian basement subsidence associated with
the collapse of the Peace River Arch during the Lower to Upper Cretaceous. Accommodation space, formed
during cach flooding event. was a function of both relative sea-level risc and bascment subsidence.
Southeast of the STZ. accommodation space was primarily a function of relative sea-level rise whereas to
the northeast, accommodation space was a function of both relative sea-level risc and basement subsidence.

During the stilistand, following cach transgressive phasc. the rate of shoreline progradation slowed
or stoped as it advanced towards the STZ, a region of greater subsidence. A stacked shoreline sandstone
evolved while the coastal plain was incised by shallow fluvial systems. If sca-level dropped or sediment
input increased, the shorefine moved seaward with an increase in the depth of regional incision, If sea-level
rose, a stranded barrier system may have been localized along the former shorcline position with an
extensive brackish /marine lagoon formed behind it. Analysis of the cross-section data, supports a cycle of
sea-level nse, standstill and sea-level fall. The area to the south of the STZ was dominated by shallow,

marine o brackish, lagoonal environments while the area to the north was dominated by dceper marine

cnvironments.
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1 Introduction

1.1 Purpose, scope and study area

This study is a re-interpretation of stratal elements that reflect fourth to fifth order phascs of
regional deposition, which comprise the Lower Cretaceous Mannville Group in the swdy area extending
from Township 40 10 100 between the fourth and fifth meridians in Alberta (Figure 1). The aim of this
study was to provide a grid of stratigraphic cross-sections to be a reference framework and context for
understanding the Tateral and vertical distribution of facies comprising the Lower Cretaccous Mannville
Giroup. In addition to the grid, the regional distribution of cach fourth order phase of deposition and the
associated flooding event is mapped. A database of geopky sical well logs from more than 3000 wells forms
the foundation of this study. Core was examined 1o confirm the interpretion of mecasured geophysical

propertics including radiation, electric and sonic.

1.2 Previous work on the stratigraphy of northeast and east-central Alberta

Within the study arca many authors have attempted to resolve the riddle of the siliciclastic Lower
Cretaceous Mannville Group of northeastern and cast-central Alberta (McConnell, 1893a and 1893b:
McLearn. 1917: Nauss, 1945 and 1947; Wickenden, 1948, 1949 and 1951; Hume and Hage, 1949; Layer
et al. 1949: Hunt. 1950; Loranger, 1951; Stelck er al., 1956; Glaister, 1959; Williams, 1960 and 1963;
Carrigy. 1959, 1963 and 1966; Clack, 1967: Mcllon, 1967; ERCB, 1973 Jardin, 1974; Kramers, 1974,
Williams and Stelek, 1975: ERCB, 1976; Cartier, 1976; Flach. 1977: James, 1977; Vigrass, 1977; Orr e
al.. 1977 Keeler. 1978: Nelson and Glaister, 1978; Gross, 1980; MacCallum, 1981; Haidl, 1984; Smith
et al.. 1984: Wightman and Bereznuik, 1985; Kramers, 1926; McPhee. 1986; Kceith er al.. 1987
MacGatlivray ef al.. 1989 Fox,1988; Mattison, 1988). Most of these authors have subdivided the
snccession on the basis of lithologic variation and microfossil data rather than on the recognition of surfaces
reflecting relative sea-fevel change. Their interpretations, based on both outcrop and borchole data from five
widely separated areas (Figure 1) (Fort McMurray, Wabasca, Cold Lake. Lloydminster and Edmonton), has
resulted in three distinet lithostratigraphic subdivisions (figure 2).

In the Fort McMurray region (T 89. R 9W4M), three formations have been defined and include, in
ascending order, the McMurray, Clearwater, and Grand Rapids formations. In the Lloydminster area (T 50,

R1IWJM). ninc members are recognized and include in ascending order: the Dina, Cummings, Lloydminster,
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Rex. General Petroleum, Sparky. Waseca, McLaren, and Colony. In the Edmonton area (T 52, R 2IWJ4M)
five units are recognized and include in ascending order: Deville Formation, Ellerstic Formation, Ostracade
Member, Glauconite Formation and the Upper Mannville Formation.

The stratigraphic nomenclature applied to northeastem Alberta has evolved from outerops along the
banks of the Athabasca River between Townships 83-87 (Figure 1). McConnell (1893), on the basis of
lithology. subdivided the succession into three formations and assigned the names in ascending order; T
Sands', "Clcarwater Shale” and *Grand Rapids Sandstone’. At the head of Grand Rapids, McConnell (1893)
described the Grand Rapids Sandstone as consisting of fifty feet (15.2m) of soft yellowish almost
homogencous sandsione, packed thickly with nodules. and weathering into almost verticat cliffs. Resting on
this is about 100 feet (30.5m) of alicrnating sandstone and shales, then fifty feet (15.2m) of greyish and
yellowish sandstone overlain by a scam of lignite four to five feet (1.2 to 1.5m) thick, above which comes
the flaky Pelican shale. Note was made of beds of fine-grained conglomerate. of which a small bed of
ferruginous conglomerate lies between the Grand Rapids sandstone and the overlying Pehean shale. The
“Clearwater Shale” estimated to be 83.8m (275 ft.) thick. (at the outcrop 4.8 km (8 miles) downstream
from Grand Rapids at Poinle La Biche [Tp. 86, R. 18, W. 4th Mcr.]) consists of dark and lead grey shales
and clays. a considerable proportion of greyish sandstone. greenish glauconitic sandstone and ironstone. In
1917, McLearn raiscd both the *Grand Rapids Sandstone” and the “Clearwatcr Shale’ to fonation status.
McLearn (1917) proposed the name "McMurray” Fou .« ation for the bituminous sands underlying the
Clearwater Formation and overlying the sub-Cretaceous unconformity, and defined the upper limit at the
base of a green sandstone, the basal unit of the Clearwater Formation. In 1952, Badgley introduced the
term "Wabiskaw" Mcmber for the the “green sandstone” occurring at the base of the Clearwater Formation.

The stratigraphic nomenclature applicd to the Mannville Group of the Lloydminster region has
evolved through a complex history of terms introduced by drillers and through scientific papers. Tesms for
the members above the Cummings Member are drillers words aceepted by the oil industry. The Mannville

wip as noted above is informally subdivided into nine units based on lithological variations defined by
petrophysical log characteristics (Vigrass, 1977; Orr et al., 1977). Both Vigrass and Orr et al., (1977) use
the same nine informal stratigraphic subdivisions except that Vigrass called them members whereas O et
al., (1977) refer to them as formations. Only the Dina and Cummings have been formally described
(Nauss, 1945, 1947). The terms Colony, Sparky, Rex and Lloydminster were referred (o prior to Nauss's

published account of nomenclature (Edmunds, 1948). Later, oil ficld workers separated the General



Petroleums from the Sparky sandstone (Kent, 1959). Still later, industry began to restrict usage of
“Colony” 10 only the uppermost sandy cycle of the Mannville rather than applying it to all the Mannville
strata above the Sparky. Industry adopted the term “McLaren” and “Wascca”, where applicable only in ficld
arcas east of Lloydminster, for the sandy cycle helow the restricted Colony sandstonc (Fuglem, 1970).

In 194S. Nauss. on the basis of drill core, established a lithostratigraphic subdivision for the
Lower Cretaccous succession at Vermilion (1-18-50-8W4) based on the presence or absence of dark minerals
in the sands. the rounded, frosted, and well sorted character of the quartz sands, and on microfauna. He
subdivided the succession in ascending order into the Dina, Cummings, Islay, Tovell, Borradaile, and
O'Sullivan Members.

With regard to the Lower Cretaceous strata exposed along the Athabasca River, Nauss (1945), on
the basis of stratigraphic position and lithology, suggested that the Dina member was an equivalent of the
McMurray Formation and that the Cummings member was a wedge edge of the Clearwater shale.
Wickenden (1949) suggested that the Islay Member and all those above it were equivalent to the Grand
Rapids Formation along the Athabasca River.

Nauss (1945, 1947) applicd the name "Manaville” Formation to the subsurface Lower Cretaceous
sandstone-shale succession resting unconformably on Devonian dolomites and conformably underlying the
Joli Fou shale (Lloydminster shale, Nauss, 1945). He regarded the contact between the Mannville
Formation and the overlying Joli Fou shale to be conformable. Later this contact was segarded as
disconformable by: Badgley (1952), Stelck (1958) Mellon (1967), Christopher (1974), and Vigras (1977).
Wickenden (1948) extended the Mannville Formation to the Lloydminster area. His attempt o apply the
subdivision proposed by Nauss met with indifferent success and instead he proposed dividing the Mannville
into a basal or lower division of continental origin. a middle division with marine attributes, and an upper
division which is largely continental. In 1952, Badgley published the first comprehensive regional
correlations of the Lower Cretaceous section of Central Albertz and raised the Mannville (o group status to
include the McMurray. Clearwater, and Grand Rapids Fornmatiens.

The Mannville Group in the Cold Lake area, in addition {0 being referred to by the stratigraphic
subdivisions of the Fort McMurray and Lloydminster regions, is informally referred to in descending order
as the A, B, C, and D units (Vigrass, 1966). Clack (1967) cerrelated the ‘A’ and 'B' units with the Grand
Rapids Formation and the 'C' and ‘D" units respectively with the Clearwater and McMurray formations as

defined by Williams (1960, 1963) iri the Edmonton arca.



In central Alherta. the Mannville Group is subdivided in ascending order into the Deville (Detrital)
Formation (Badgley. 1952). Elierslic (Basal Quart/) Formation (Hunt, 1950), Calcarcous Member (Glaister,
1959). Glauconite Formation (Layer e7 al.. 1949; Glaister. 1959), Clearwater Formation, and the
unditferentiated Upper Mannville Formation (Glaister, 1959). The Calcarcous Member, defined fora
lithostratigraphic interval, is more commonly referred to in industry as the Ostracode Zone (Hunt, 1950;
Loranger, 1951). a tenn originally designated as a biostratigraphic zone. Farshori (1983) redefined the
Calcarcous Member of Glaister (1959). renaiing it the Ostracode Beds to include the Bantry Shale and the
Ostracode Limestene of the Ostracode Zone and Calcarcous Members. The Upper Mannville Formation of
Glaister (1959) includes the succession hetween the top of the Calcarcous Membwer and the base of the
Colorado Group. The Clearwater Formation (McConnell, 1893; Mcleamn, 1917) wedges-out south of

Township 50, Range | west of the Sth Meridian.

1.3 Stratigraphic setting

The Mannville Group of castern Alberta forms the disial part of a northeastward tapering wedge of
Aptian to Middlc Albian strata deposited in a forcland basin (Figure 3and 4) formed by tectonic activity
along the Columbian orogenic belt. Deposition of detritus was influenced by the topography of a deeply
eroded surface of Early Cretaceous (o Paleozoic beds, the southward transgression of the Borcal Sea, local
basement subsidence of the Peace River Arch, and salt solution of Middle Devonian evaporites.

The Mannville Group and stratigraphic cquivalents form the sceond of four clastic wedges deposited
in the Alberta Foreland Basin (Cant, 1989). The development of the foreland basin is linked to the accretion
of displaced terrancs onto the Pacific margin of the North American continent between the Middle Jurassic
and Early Tertiary. Tectonic shortening and thickening of the crust, by imbrication and tectonic progradation
of the thrusted slices of the older miogeocline over the craton margin, resulted in flexural depression of the
lithosphere in the forcland adjacent to the deforned belt (Price, 1973; Beaumont, 1981) (Figure 3), The
topographic relief of the thrust sheets and concomitant erosion also generated great volumes of sediment,
which were shed into the foreland basin. The tectonics of terrane accretion therefore controlled not only
basin subsidence. but also the supply of sediment.

The form of the foreland basin was also influenced by the tectonics of deep scated bascment
structures and evaporite dissolution. The crystalline basement in Alberta is scgmented by two major

northeast trending crustal discontinuities: the Snowbird Tectonic Zonc in central Alberta and the Great Slave
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Lake Shear Zone in northern Alberta, both of which can be traced into the Canadian Shicld (Figure §) (Ross
& Stephenson, 1989). The foreland basin is divided interally by two large basement structures which
originated in the Palcozoic, but still affected sedimentation in the Cretaceous. These structures, the Peace
River and Sweelgrass arches (Figure 4) moved upward and cownward. perhaps in response to thrust loading
in the Cordillera. Maximum thickening of the Upper Mannville Group occurs hetween the Snowbird
Tectonic Zone and the Great Slave Lake Shear Zone with maximum thickening occurring over the axis of
the subsiding Peace River Arch (Figure 6). Both shedr zones may have controtled the extent of the
subsidence of the crystatline bascment resulting from tectonic compression during the Columbian Orogeny.

Subsidence of the passive margin due to thermal contraction during Middle Camnbrian to Middle
Jurassic ime (McKenzie, 1978; Bond & Kominz. 1984) led to the westward tilting of the overlying
Palcozoic succession, Westward tilting was associated with the westwand migration of the castern limit of
Palcozoic seas from late Devonian to Triassic time. Erosion of Devonian strata adjacent to the Canadian
Shicld initially led to the exposure and dissolution of Middle Devonian evaporites (Figure 7). Continuing
dissolution by the downdip migration of groundwater led to extensive subsurface cvaporite removal. Within
the study area, the collapse of strata overlying the site of salt removal has contributed to the development of
a monoclinal structure (Figure 8). The reversal of regional dip of the monoclinal limb corresponds to the
dissolution scarp of the Middle Devonian Prairic Evaporite Formation. Dissolution scarps of the thinner,
Middle Devonian Cold Lake and Upper Lotsberg salts are offsct further to the castin Saskatchewan. From
Late Devonian 1o the present, the maximum thickness of salt removed from the three evaporite units is 400
metres. A maximum thickness of 175 meties was removed from along the Prairic Evaporite Salt Scarp
(Figure 9). During the Larmide Orogeny. a maximum thickness of 75 metres was removed form along the
Prairic Evaporite Salt Scarp (Figure 10).

The Mannville succession was deposited on an erosional surface resulting frote Nexurally generated
crosional episodes telated 1o the interplay of passive margin subsidence, thrust loading, and evaporiie
dissolution. Differcntial crosion of various shelf lithologics (Paleozoic to Jurassic subcrops) resuited in a
north-northwest trending ridge and valley system roughly parallel to the axis of the foreland basin (Figurc
11). To the west of the Prairic Evaporite Salt Scarp, resistant carbonate units between less resistant units
formed ridges with relief up to 100m (Rudkin, 1964; Christopher, 1980). During deposition of the Lower
Mannville succession. these ridges remained exposed, supplied sedisnent and localized shoreline sand bodics.

Along the northeast and southcastern part of the foreland basin, the increased thickness of the Lower
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Mannville sub-group reflects topographic lows resulting from salt dissolution.

Within the Alberta Forelund Basin, the Mannville Group and equivalents form a sccond order
sequence within the first order Zuni Sequence (Sloss, 1963; Cant, 1989). The timing of sca-level rise
together with tectonic uplift and subscquent mass wasting resulted in the generation of two, third order
sequences consisting of a lower “Transgressive Systems Tract™ and an upper “Highstand Systems Tract”
(Figure 12). Within each systems tract, higher order cycles reflect the interplay of custasy, sediment supply
and tectonic activity. This interplay is reflected in transgressive-regressive shoreline sequences and the
incision of valleys into nonmarine and marginal marine sediments.

The Mannville Group is unconformably overlain by the Joli Fou Formaiion, the basal unit of
the overlying Lower Cretaceous Colorado Group. The cntire stratigraphic scction above the Manaville
Group in the study arca is composed of the Lower to Upper Cretaccous marine shales of the Colorado
Group, unconformably overlain by a thin layer of Pleistocenc glacial deposits. The Mannville Group
outerops in the northern part of the study arca (Figure 1) and depth of burial progressively increases to

1200 m in the southwest.

1.4 Method

The investigation was initiated by a review of all type sections both formally and informally
described. Having gained an understanding of the existing local lithostratigraphic subdivision and
nomenclature, the next step was to establish regional equivalency. To avoid being strongly biased by the
existing stratigraphic systems, the mode of regional correlation was focused on the identification of
regional flooding cvents and lowstand surfaces of erosion. Initially, the mode of corrclation was focused on
the correlation of flooding surfaces for the purpose of identifying genetic stratigraphic sequences as defined
by Galloway (1989). Later, the principles of Sequence Stratigraphy defined by Van Wagner er al. (1988)
were applied. The identification of regional unconformities requires far more respect to detail than the
correlation of regional flooding surfaces. For this reason, the correlation of regional flooding surfaces was
given first priority. establishing a framework for the further unravelling of the depositional history. The
truncation of flooding surfaces, marker beds between major flooding surfaces, downward shifts of facics and
obvious incised valley fill were later mapped to verify regional unconformitics, providing another reference
point for the definition of genetic successions. Due to nature of the data, the size of the region covered, and

the wide spacing of the cross-section grid, the existence of regional uncoaformitics is more implied than
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defined. Verification of regional unconformitics would require the examination of core as well as a closer

grid spacing.

Well log cross-sections were oriented in a north-northwest and a southwest trend on the hasis of
several factors. The relief on the sub-Cretaccous unconformity (Rudkin. 1964; McPhee, 1986; Hayes ¢!
al., 1994; Ranger. 1994), the orientation of the dissolution scarps of the Middle Devonian evaporite
successions (Hamilton, 1971; McPhee and Wightman, 1991), and the axis of terrane aceretion and tectonic
thrusting (Grayston e al.. 1964; Porter et al.. 1982) along the western margin of the North Amcrican plate
during the Lower Cretaceous provide the Alberta Forcland basin with a strong north-northwest grain. From
the southerly advance of the Boreal Sea, the axis of the Peace River Arch and the Snowbhird Tectonic Zone, a
northwest dipping palco-slope is inferred (Carrigy, 1966). Scctions constructed paratlel to the palco-stope
were expected to show greater lateral consistency and therefore provide an casier incans of correlating across
the basin. Scctions constructed perpendicular to the paleo-slope were expected to show the architecture of
the basin filling proccsses resulting from the scries of relative sea-level changes occurring during the
deposition of the Mannville Group. Correlations of the Lower Mannville from sub-basin to sub-basin arc
primarily restricted to paleo-valleys that follow the north-northwest grain of the Alberta Foreland basin.

The grid spacing is approximately 50 kilometres (Figure 13). Closer grid spacing down
Township spacing (10 Km.) was required in the Cold Lake to Lloydminster arca to accurately correlate
across the arca. Each well along the line of section was included and the top of the Mannville Group was
used as a datum. From the working catabase of cross-sections a smaller network (Figure 14) was sclected for
graphic representation. A summary cross-section (Figure 15) is an attempt to illustrate the dominant
architecture, significant regional variations in the architecture and the relationship between strata isolated in
separate basins.

The gamina ray logs of these sections were digitized on LOG DIGITIZER (Ranger, ©1989) and
then transferred to the computer assisted drafting package CANVAS 3.01 (Denaba Corp.). Within CANVAS
3.01 corrclations and facics relationships were constructed on the framework of gamma ray logs.

Following the drafting of the cross-section, the gamma ray logs were hidden in a separate drafting laycr. The
overlay layer containing the interpreted correlations and distribution of facies was then compressed
horizontally and vertically to gencrate a visual aid (Appendix A, Cross-section 2) concentrating otherwise
spread out data (Appendix A, Cross-section 1 part A and part B).

The Upper Mannville above the Sparky Member was correlated in less detail. To the north of



Township 60 time was spent on the correlation of distinct shale beds or unconformity surfaces whereas to
the south only coal heds were noted and indicated on the cross-sections,
Flooding and unconformity surfaces interpreted from the grid of cross-sections provide the basis for

the reconstruction of a series of paleotopograhic interpretations in the study arca, shown in the context of

other authons™ paleotopograhic interpretations of selected time slices in the Mannville Group.
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2 Interpretation of the Stratigraphic Succession
2.1 l.ower Mannville Succession - 3rd Order Transgressive Systems Tract

The subdivision of the Mannville succession is discussed in ascending order through a serics of
paleogeographic maps (figures 16-39). a regional well log section (Appendix A. Cross-scction 1part A and
part B) and a condensed schemitic of the well log section (Appendix A, Cross-section 2).

The Lower Mannville succession is the result of a gradual Lower Cretaccous marine transgression
during the Aptian to lowcest Albian stages. By late Aptian time the Boreal Sea consisted of two lobes
separated by the emergent part of an axial high trend of pre-Cretaccous strata cxtending to the northwest
across Alberta (Jackson 1984). This stage of the transgression referred o as the Butlhead Sea is considered
by Caldwell (1983) to be the initial stuge of an ensuing rise in sea level beginning in Latc Aptian time and

continging through all of Albian time.

2.1.1 Phase 1 - Relative Sea-level Rise - fluvial aggradation - infilling of Paleozoic
topographic valleys - (Dina Member, Ellerslie, Lower McMurray,
Cadomin/Gething Formations)

The sub-Cretaceous unconformity in the study area is locally overlain by a shaly succession up to

25 mn in thickness. Maximumn thickness of succession occurs in topographic depressions = 80 m below the

top of the McMurray Formation and equivalents, along and to the east of the Prairie Evaporite Salt Scarp

(Figure 11 and 16). Petrophysically, the unit is a massive shalc or interbedded shale and sandstone

succession. The higher density of the shale relative to overlying shale beds may indicate its source o be

residual from local crosion of the surrounding carbonate strata. The accumulation of the thicker shale
successions along the Prairic Evaporite Salt Scarp may reflect penecontemporancous salt dissolution. The
stratigraphic position of the unit and its dominantly shaly character indicate that it may be an cquivalent of

the Deville (Detrital) Formation (Badgley, 1952).

The shaly succession (Deville Formation ?) is abruptly overlain by a dominantly clean (15 - 30

API) sandstone succession which fincs-up abruptly 10 a thin, widespread shale. The sandstonc succession up

10 45 m in thickness, is the result of fluvial aggradation within two subbasins separated by the Wainwright



Ridge (Figure 16). Communication between the subbasins only occurred toward the end of the phase of
deposition, with the lowest topographic arca along the highlands being at the southeastemn end of the
Wainwright Ridge. Relative to the Wainwright Ridge. the succeession forms the Ellerslic Formation to the
southwest, the Gething/Cadomin Formations to the northweslt, the Dina Member to the cast (Lloydminster

area), and the lower McMurray Formation to the northeast.

2.1.2 Phase 2 - Relative Sea-level Rise - Transgression of the Bullhead Sea - Broad
Brackish Embayments Formed - (Ostracode Member, lower part of Cummings
Member, Upper part of McMurray Formation)

The shale unit overlying the sandstone succession deseribed above reflects the first episode of
regional flooding resulting in the development of widespread. shallow. brackish seas extending down to the
49th paralle! and beyond (Figure 17). Communication between the seas occurred in at least three or four
localities along the axis of Palcozoic highlands, with the lowest topographic arca of the highlands being at
the southeastern end of the Wainwright Ridge. The perophysical characteristics of the succession from cach
subbasin, differ. In the subbasin to the cast of the Wainwright Ridge. the gamma ray log describes one to
two ypward-coarsening successions that are laterally extensive. The lower sheet, averaging 12 to 15 metres
in thickness, tends 1o be cleaner and thicker. On the schematic and well log cross-sections (Appendix A,
Cross-section 1 part A; Cross-section 2). the succession forms the lower two thirds of the Upper
McMurray “member” in the northeast and the lower half of the Cuminings Member in the southeast. On
the western side of the Wainwright Ridge. the lateral equivalent is the brackish-bay shales, fine-grained
sandstones, and argillaceous limestoncs of the Calcarcous/Ostracode Memnber (Glaister, 1959; Banerjee and
Davies, 1988) (Appendix A, Cross-scction 1 part B: Cross-section 2). Petrophysically, the succession is
characterized by a negative SP. higher density and resistivity relative to surrounding strata with a similar
gamma ray reading. The gamma ray response indicates two slightly upward-coarsening units. Banerjee and
Davies (1988) suggested that the embayment was twice inundated by an advancing sea. The greater shale
content plus the carbonate beds may reflect a sediment starved brackish basin. This phase of deposition

closed with a relative drop in sea-level, the retreat of the Bullhead Sea.

2.1.3 Phase 3 - Relative Sea-level Fall - Regional incision - Post Ostracode Time

Depti of incision and the extent of the region incised was probably restricted to areas outside the
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subsiding centre of the Peace River Arch. Two areas of incision arc documented (Figure 18). To the
northeast of the Wainwright Ridge, along the axis of the Prairic Evaporite Salt Scarp. the entirc upper
McMurray unit, the lateral equivalent of the Ostracode Member, was removed.

On the southern flank of the Wainwright Ridge. vallcys were incised through the Ostracode
Member into the underlying Ellerslic Member. The incision follows the axis of the sub-Cretaceous paleo-
vallcy, then abruptly ends or switches direction to the northeast along the trend of the southernmost of
several faults diverging to the southwest from the main Snowbird Tectonic Zone (STZ) (Figure 19) (Ross
and Stephenson, 1989). To the north of this inferred fault or ductile shear zone, further incision was not
observed in the cross-sections used in the study. Within the STZ, the Drayton Valley Complex or the
Bigoray sandstone is described as being entirely encased in shale and overlying the Ostracode Member
(Rosenthal, 1988; Juckson, 19835, Corrclations of this sandstone succession indicate that it is composed of
a series of prograding, downlapping units. It is suggested that it may not have formed during the phase of
fluvial incision but rather on the rise of relative sca-level. as the landward limit of the succession onlaps
onto upward-fining ¢stuarine (?) valley fill. The sediment flush associated with the phase of lowstand

incision may have been the source of the Bluesky Formation further to the northwest.

2.2 Transgression of the Moosebar/Clearwater Sea

2.2.1 Phase 4 - Relative Sea-level Rise - Flooding of incised valleys and shallow
coastal plain - (estuarine valley fill of incised valleys in the Ostracode Member
and the upper part of the McMurray Formation)

The close of the lowstand phase is associated with the advance of the Mooscbar/Clearwater Sea
culminating in a period of maximum marine incursion (figures 20 and 21). In the initial phase of sca-level
rise. incised valleys of the previous lowstand phase became estuarine embayments (Pemberton eral., 1982;
Rennie, 1987; Mattison, 1987; Karvonen. 1989), Pemberton er al., (1982) have identified at least ten
ichnogenera from outcrops along the Steepbank River (Tp. 100, R. 8W4) for the middle and upper parts of
the McMurray Formation. The ichnogencra include *Dolopichnus, Lockeia, Monocraterion,
Palacophycus, Planolites. ?Rosselia, Skolithos, Teichichnus and vertical escape structures. They suggest
that the deep channel complex in which the sediments were deposited was closcly associated with a nearby

marine shoreline. The palynological evidence suggest some saline influence in many of the interchannel

27
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sediments of the middle McMurray, but the degree of marine influence is still open to question (Flach 1984,
Rennic 1987).

In the upper half of the McMurray Formation in the Fort McMurray area (T. 89, R. 9W4M),
Mattison (1987) identified sixteen ichnogenera which include: Planolites. Palacophyeus, Ophiomorpha,
Cvlindrichnus, Teichichnus, Skolithos, Bergaueria, Thalassinoides, Conichnus, Conostichnus,
Asterosoma. Monocraterion, Trichichnus. Gyrolithes, Rosselia and escape structures. Of the three facies he
recognized in the upper McMurray. two usually contained twelve ichnogenera while the third only contained
three. From both the middle and upper part of the McMurray Formation, the more common ichnogenera
include Planolites, Palavophycus, Cylindrichnus, Teichichnus, Skolithos. On the basis of the ichnogenera
present, he interpreted the upper part of the McMurray Formation as being deposited in a shoreface or
necarshore shoal settings.

With continued sca-level rise, shallow, broad, brackish embayments formed both to the northeast
(Ranger and Pemberton, 1988) and southwest (G: -d Pemberton, 1994) of the Wainwright Ridge (Figure
20). Evidence of marine incursions are reported by L ~ret al. (1987) and Ranger and Pemberton (1988)
roughly 200 km to the south and palco-geographica!ly ~ward from Fort McMumay (T. 89, R. 9W4M) in
the Primrose Arca (T, 72, R. 6 W4M). Ranger and Pemberton (1988) identified six ichnogencera in the
middle and upper parts of the McMurray of Primrose Arca which include: Planolites. Skolithos,
Teichichnus. Cvlindrichnus and Chondrites. The ichnogenera are interspersed with a widespread shale facics
containing thin coals and rootlets. A preliminary interpretation of the vertical succession in this arca led
Ranger and Pemberton (1988) to suggest a restricted marine cstuary, dominated by brackish water
conditions, with intermittent development of brackish to freshwatcr marsh environments.

In the embayment to the southwest of the Wainwright and along the southcastern flank of the
Wainwright Ridge. coastal marsh environments formed. In association with the marsh environinents, a 610
10 m thick, upward-coarscning sheet prograded to the north across the northeastern cmbayment. This sheet
forms the upper unit of the upper McMurray member to the northeast of the Wainwright Ridge. The
regional correlations indicate that the lateral equivalent to this unit, west of the Wainwright Ridge, is the
Drayton Valley Complex (Rosenthal, 1988) or Bigoray sandstone (Jackson, 1984). A regional strike scction
extending from T. 54, R, 18W4M to T. 63, R. 1W5M defines the Drayton Valicy/Bigoray sandsion as 4
series of northwest prograding shoreline shect-sandstones. To the south of this complex a linear, northcast

rending incision of the Ostracode member is filled with a fining-upward sandstone succession probably
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representing fluvial/estuarine fill behind an aggrading shoreline system. In suminary this phase of
deposition began with the flooding of incised valleys, with continucd sca-level rise leading to more

widespread inundation of the coastal plain, followed by widespread progradation of a thin shoreface

SUCCESSIon,

2.2.2 Phase § - Relative Sea-level Rise - Open marine separated from brackish
lagoons by extensive barrier systems

Continued sca-leve! rise of the Mooschar/Clearwater Sea is associated with the widespread
deposition of the initial occurrence of glauconitic (McLearn, 1917; Badgley, 1952; Carrigy. 1963;
Rosenthal, 1988) in association with sediment intenscly bioturbated by a wide range of ichnogencra
(Mattison, 1987; O Connell, 1988; Male, 1992) indicating the onsct of a fully open marine environment
across the region (Figure 21).

Study of the environments of deposition in which modern deposits of glauconite have been found
suggests that at feast five conditions must be maintained for the formation of glauconite. These are: (1)
normal sca water, (2) suitable parent material, (3) slightly reducing conditions, such as are produced by
decaying organic matter. (4) slow rate of detrital influx, and (5) moderate to shallow depth of water (Cloud,
1955). Among the suitable parent materials listed by Takahashi (1939) are hydrated and gelatinized
fragments of volcanic glass, opaline silica. faccal pellets. feldspars, and possibly micas.

Within the Mannville Group. the initial occurrence of glauconite is associated with the first major
influx of lithic sediment derived from the newly evolving mountain range (Columbian Orogeny) to the
west. The slow rate of detrital influx associated with the formation of modem glauconite has led
stratigraphers to the conclusion that ancient glauconite beds may mark stratigraphic discontinuities
representing a lack of deposition for considerable intervals of time over wide arcas (Weller, 1960).

Throughout most of the northern two-thirds of the study arca. the initial occurrence of glauconite
oceurs in a 2 to 3 m thick, lithic sandstone overlying quartz-rich sandstone and is overlainby a4 to 6 m
thick marine shale (Badgley, 1952; Carrigy, 1963; Carrigy, 1971 Clack, 1967. Dekker er al., 1981; Flach,
1984, McPhee, 1986; Ranger and Pemberton, 1988). The glauconitic unit is intenscly bioturbated by a
suite of ichnogenera (Mattison, 1987; Ranger and Pemberton, 1988) indicative of fully marine conditions.
The petrophysical response of the glauconitic unit consists of a high density spike, approximately I m

thick, an abrupt increase in resistivity, and gencrally a corresponding decrease in the permeability relative to



the underlying quarts. rich sandstone. Regional well log correlations of this glauconitic unit together with
observations of core data (O Connell, 1988; Muslow and Pemberton, 1988; Male, 1992; Bradlcy and
Pemberton, 1992) indicate that it was deposited over most of central Alherta in a very thin uniform sheet
beneath a widespread overly marine shale. This observation in conjunction with both the high degree of
burrowing and range of ichnogenera lends support to the suggestion that the presence of glauconite in high
concentrations may mark periods of very low sedimentation for considerable intervals of time over wide
arcas.

The southern limit of the foregoing succession of glauconitic sandstone and overlying marine shale
occurs along the Hoadley Barrier and along the castem flank of the Wainwright Ridge. Rehind the Hoadley
Barricr and along the flanks of the Wainwright Ridge the approximate ateral equivalent of the glauconitic
sandstone is an extensive coal unit up to 2 meues in thickness. O the southwestern flank of the
Wainwright Ridge, the coal unit overlies the Ostracode Member and the estuarine fill (i.c. Bellshill Lake
deposit in T. 41, R. 12W4) of the lowstand valley incised into the Ostracode Member, Progressing castward
into the embayment the coal unit grades castward to organic rich mudstone with an average thickness of 3-
5 m (Geier and Pemberton, 1994; Ford. (PanCanadian) per. comm.). This coal unit confined behind the axis
of the Hoadley Barricr, testifies to the existence of an extensive fresh water bay.

The base of the Hoadley Barricer overlies upward-fining channel fill of the aforementioned northeast
rrending valley incised into the Ostracode Member, and approximately coin des with the southern arm of
the Snowbird Tectonic Zone (Figure 19). I is suggested here that the Hoadley Barrier developed along the
inflection point between greater basin subsidence to the northwest and lesser subsidence o the southcast.
Correlations of the coal unit across the Wainwright Ridge indicate that an equivalent of the Hoadley Basrier
developed to the northeast and parallel to the axis of the Wainwright Ridge. The barricr/shoreline deposit of
both barrier systems consists of a clean. massive, 10-15 m thick sandstone which abruptly overlics the coal
unit. and wedges out onto the flanks of the Wainwright Ridge. Progressing to the cast within the
embayment (o the southeast of the Wainwright Ridge, this barrier/shoreline deposit tapers into the thin (3-5
m thick), laterally extensive, organic rich mudstone, the lateral equivalent of the coal unit. In some arcas a
thin (< 1 m thick) coal bed overlics the barricr/shoreline sandstone. Both the lower and upper coal beds
merge along the axis of the Wainwright Ridge with a combined thickness of 1 to 3 metres. The
barrier/shoreline sandstone on the eastern flank of the Wainwright Ridge appears to be equivalent to the

upper half of the Cummings Member, and on the southwestern flank, equivalent to the lower cycle of the
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Glauconite B unit of Roscenthal (1988).

2.2.3 Phase 6 - Relative Sea-level Fall - deposition of upper Wahiskaw Member

Lowstand Wedge

Lowstand incision of both the lower succession of the Glauconite B unit (Hoadley Barrier) and the
upper half of the Cummings Member (Cold Lake arca on castern flank of Wainwright Ridge), is interpreted
to represent the first major drop in relative sea-level following the onset of the transgression of the
Moosebar/Clearwater Sca (Figure 22). Lowstand shoreline deposition foried a northward thickening wedge
15 10 20 m in thickness. The northern flank of the lowstand wedge tapers over less than a township into a
widespread succession consisting of a lower 2 to 3 metre thick. silty to very-fine grained. wave rippled
sandstone and an overlying 1 10 2 metre thick bentonite bed.  Approaching the Grosmont and Red Earth
Highlands the 2 1o 3 metre thick sandstone units thickens, translating into an extensive, upward-coarscning
sheet that onlaps the Palcozoic highs but does not cover them. The distal part of this lowstand succession
forms the upper of three shoreline sheets that merge into one stacked sandstone succession approaching the
southeastern end of the Red Eanth Highlands (Ranger, 1994). Badgley (1952) defined the interval of the
stacked sandstone succession as the type section for the Wabiskaw Member, the basal member of the
Clearwater Formation, The lateral equivalent of the Wabiskaw Member type section, to the east and south,
consists of a laterally extensive succession consisting, in ascending order. of a basal 2 - 3 m thick
glauconitic unit, a 4 - 6 m thick marine shale, and a 2 - 3 m thick silty sandstone and a 1 - 2 m thick
bentonitic unit. In this study the glauconitic unit overlies the top of the McMurray Formation and the
bentonitic unit is referred to as the Wabiskaw Shale Marker (W sm). The "W sm’ is laterally continuous
across the northern half of the study arca but gradually becomes indisti. i as the underlying 2 - 3 m thick

silty sandstone thickens to the south and northwest.

2.2.4 Phase 7 - Relative Sea-level Rise - deposition of upper Glauconite B unit and
the Lloydminster Member
The regional correlations indicate that the ensuing transgression flooded the foreland basin
southward to the Hoadley Barricr and its lateral equivalent, the lower part of the Clearwater C unit, on the

castern side of the Wainwright Ridge (Figure 23). Landward of the barrier, a lateral equivalent of the
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flooding cvent is recognized as a thin 1-2 m thick shale interpreted to have formed in a brackish to shallow
marine environment (Geicr and Pemberton, 1994). This shale correlates to the shale separating the
Cummings Member from the Lloydminster member in the Lloydminster - Vermillion region.
Biostratigraphic analysis of the shalc by Nauss (1945, 1947) shows it 10 be marine in origin. Further
evidence for the existence of a marine environment is based on ichnogenera recognized in the sandstone
interval immediately underlying this shale in well 11-2-50-2W4,

The regional correlations show that there arc two distinct sandstone successions associated with the
flooding. These include the upward-coarsening sandstone facies of the Lioydminster Member and the upper
succession of the Glauconite B unit of the Hoadley Barricr (Rosenthal, 1988). The sandstone facics of the
Lloydminster Member is localized around small remnant Palcozoic outerops of the southern end of the
Wainwright Ridge while the Hoadley Barrier is localized along the southern flank of the Snowbird Tectonic
Zone (Figure 24). The lack of sedimentation prior to the deposition of the shale southeast of the Hoadley
Barricr indicates that flooding hehind the barrier occurred early in the transgressive phase.

The low lying coastal plain of Cape Hatteras and Cape Lookout arca of the North Carolina Coast
(Heron e1 al., 1984) (Fig. 25) may present a possible modern analogue. Along this coastline the highest
wave energy occurs where the landmass projects further scaward. The barrier system along the North
Carolina Coast is characterized by lincar barriers flanking an extensive lagoonal system. Due to high wave
encrgy, few tidal inlets cut the barricrs. Tidal inlet processes are dominated by large flood-tidal deltas as a
result of the microtidal range. Both transgressive and regressive processes operating in an overall
transgressive system are controlled by the rate of sediment supply.

The quartzose sandstone of the Lioydminster Member (O'Connell, 1988), the feldspathic sands of
the Clcarwater C unit in the Cold Lake arca (T 60-66. R 1-1SW4M) (Harrison ez al., 1981; Putnam and
Pedskalny, 1983) and the lithic sands of the Hoadley barrier (Roscnthal, 1988) point to widely divergent
sources.

North of the Clearwater C barrier system, the Wabiskaw marker shale is overlain by a muddy
succession that gradually tapers to a few mctres in the northwest from a maximum thickness of 25 mctres
in the south. Informally within industry and the Energy Resources Conservation Board, this muddy
succession forms the lower part of the B unit of the Clearwater Formation. Within this study, it is referred

to as the Clearwater B2 unit.
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2.2.5 Phase 8 - Relative Sea-level Fall - Depaosition of upper Clearwater C lowstand
wedge

Both the Hoadley - Clearwater C barrier system and the Lloydminster sandstone are incised by
channels (Figure 26) (Chiang, 1984; Rosenthal,1988; Gross, 1980; O"Connell, 1985, 1988). On the basis
of the foregoing, channels within the barrier system may have been tidal inlets. Evidence of sca-level
lowering is found just north of the Cold Lake area (T 66-70. R 1-6W4M). Here. the Clearwater B2 unit is
incised. Progressing north of the area of incision, a thin § to 10 m thick, clean sandstone sharply overlics
the Clearwater B2 unit. This lowstand deposit formed to the north of Township 71, Range 1-15W4M is
suggested to have formed the locus of a new barrier system during the phase next phase of relative sea-level
rise, This barrier system, up to 40 m in thickness, is referred to here as the Clearwater B sandstone.

The stratal context and the petrophysical characteristics of the upper surface of the Clearwater B2
unit are similar to the glauconitic sandstone, the basal unit of the Wabiskaw Member. Petrophysically, the
upper 3 to 5 metres of the Clearwater B2 unit is more resistive, less dense and cleaner than the underlying
part of the unit and is capped by a modcrately distinctive, 2-5 metre thick shale referred to here as the
Clearwater B2 shale marker (B2 sm) (Figurc 27). The Clearwater B2 shale marker is not developed over the
area of the lowstand shoreline sandstone. The upper surface of the Clearwater B2 unit is interpreted as a
transgressive surface of erosion on the basis of the incised valley, the regionally consistent petrophysical

characteristics of its upper surface, and its stratal context.

Figure 25 Morphology of the southern United States coastline showing major cuspate
forelands and cape systems (modified from Heron et. al., 1984).

40
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2.2.6 Phase 9 - Relative Sea-level Rise - Deposition of Clearwater B1 unit and the

Rex Member

The interpretation of well log data and core reveal @ complex history of deposition during this
phase of sea-level rise. Progressing to the nonth. the Clearwater B1 sandstone barricr rapidly translates into
an upward-coarsening muddy sandstone succession that onlaps the Grosment High but does not cover it
(Figure 2%). The nuddy succession of the Clearwater B1 unit abruptly translates into a 20 m thick, clean
candstone on the northeastern flank of the Grosmont High. Progressing toward the Red Earth Highlands, the
Clearwater B1 sandstone barrier translates into a 20 m thick muddy succession containing several thin sand
stringers.

Progressing south of the Clearwater B1 sandstone barrier system, the lateral equivalent consists of
a succession of muddy sandstone sharply overlain by a clean to muddy upward-fining sandstonc (Figure 29).
Further to the southeast the succession translates into an upward-coarsening succession grading still further
10 the southeast into a clean. blocky sandstone (Figure 30) which in turn grades into the muddy to upward-
coarsening sandstone suceession of the Rex Member in the Lioydminster region (T 50 along the 4th
Mendian).

Observation of core (in well 10-13-64-15W4) from the muddy unit of the Clearwater B1 unit,
approximately 20 km south of the Clearwater B barrier system, indicate sediment deposited in a brackish
to brackish-marine environment (Pemberton. pers. comm.). Only an indirect link can be made between this
muddy unit and the brackish sediments of the Rex Member {O'Connell, 1985, 1988) to the southcast. There
i no distinetive shale or coal bed that extends between the two areas. Inference is made instead on the stratal
relationships of shaic, coal and sandstone successions between the two areas.

In order to explain the relationship of the Clearwater B barrier sandstone, the low lying coastal
plain of Cape Hatteras and Cape Lookout area of the North Carolina Coast (Heron er al., 1984) (Fig. 25) is
again suggested te present a possible modern analogue. It is suggested that as the barrier aggraded with sea-
level rise, it was separated from the shoreline sandstones of the Rex Member by an extensive brackish-
marine lagoon (Figure 28). Analysis of the well fogs east of range 12W4 and west of Range 12W4 in the
100 km ide band south of the barrier does not indicate the presence of channels in the muddy fower unit of
the B1 overlying the Clearwater B2 shale marker. Instead the muddy lower unit of the B1 gradually
translates toward the south into the muddy, upward-coassening succession of the Rex Member.

The upper surface of the meddy lower unit of the B1 and the Rex Member provide evidence of a
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major lowstand surface of erosion. Shale and sand filled channels extend from the Lloydminster arca (T SO,
along the 4th Meridian) in a north-northwest direction up to Township 65, In the 75 1o 150 km wide band
(Figure 29) south of the Clearwater Bl barrier system, the lower muddy sub-unit of the Clearwater Bl is
sharply overlain by at least two retrogradational, southward thinning, S t¢ 1S metre thick, upward-fining
sandstone successions. It is suggested that the laterally extensive contact at the base of the upward-fining
sandstone successions was produced by ravinement processes during the next phase of relative sca-level rise.
Progressing to the southeast. the upward-fining sandstone succession forms the basal part of 4 20
to 30 metre thick, clean, blocky sandstone succession sharply overlying the crosional surface of muddy
strata of the Rex Member. The widespread 2 to 3 metre thick Clearwater B1 shale marker (B1 sin) (Figure
31) overlying the Clearwater B1 unit merges into the middle of the stratigraphic interval of this blocky
sandstone succession, The shale bed also coincides stratigraphically with a 0.5 to T m thick coal bed present
within the upper part of the blocky sandstone succession. Stratigraphically this coal correlates to the coal

bed forming the upper surface of the Rex Member.

2.3 Upper Mannville Succession - post Clearwater B unit-Rex Member

Deposition of the Mannville succession, above the Clearwater B - Rex succession, is interpreted
to have been a function of tectonic subsidence along the northemn flank of the Snowbird Tectonic Zone
(STZ) (Figure 32). South of the STZ. the succession is characterized by thin, S to 10m thick, upward-
coarsening successions, capped by thin organic beds. Along. and to the nonh, of the STZ, semi-lincar, 25
10 40 m thick, blocky sandstone successions paraliel the STZ and the axis of the Peace River Arch. Four
distinct sandstone wedges successively prograde and aggrade to the north-northwest. Inascending order they
include the Clearwater A sandstone (CW A), Grand Rapids C sandstone (GR C). Grand Rapids B sandstone
(GR B), Grand Rapids A sandstone (GR A) (Kramers and Prost, 1986). The thicker sandstone successions
are interpreted o be lowstand wedges on the basis of their stratigraphic position relative to theis thinner
lateral cquivalents to the south, their onlap and downlap patterns. and the extensive incision of the thinner
cquivalents to the south. In the Lloydiminster region, the thinner equivalents have been subdivided in
ascending order into the General Petroleums, Sparky, Waseca, McLaren and Colony,

The General Petroleums is interpreted as the earliest phase of shoreline progradation following a

significant period of relative sea-leve! rise during the flooding of the Clearwater B unit. At least six off-



49
lapping lowstand successions (Figure 331 are recognized and referred to as 1 to 6. with increasing numbers
cquiting with successively younger deposits. Lowstand incision is interpreted to have cut through units 1
10 3 depositing unit 4. Unit S may have had a more easterly source. Unit 6 is a thin. sharp-based. upward-
fining, 10 m thick sandstone sheet deposited out on the open shelf. This progradational cycle closes with
regional flooding submerging units S and 6, and onlapping deposits units 3 and 4.

During the transgression, a barrier system was localized on deposits units 3 and 4 (Figure 34).
South of the barrier system, the lateral equivalent is correlated with the Sparky Mcember. Beyond the type
tocation in the Lloydminster area. the Sparky Member is recognized as an extensive succession consisting
of a lower 2 to 3 metre thick shale and an overlying 9 to 15 thick, upward-coarsening sandstone. South of
Township §5, the succession is commonly overlain by a 0.5 to 1 m thick coal unit or a § to 10 m thick
muddy succession containing thin coal beds (Figure 35). From the observed stratigraphic relations it is
suggested that the localization of the barrier system resulted in the development of an extensive lagoon
across which a thin shoreline sandstone rapidly prograded. Infilling of the lagoon led to shoreline
progradation to the northwest of the barrier system. Flexure along the SnowBird Tectonic Zone resulted in
the aggradation of a 40 m thick, stacked shoreline succession. the Grand Rapids C unit. A similar process

contributed 1o the Waseca Member-Grand Rapids B unit (Figure 36); the McLaren Member-Grand Rapids ?

unit; and the Colony Member-Grand Rapids A unit (Figure 37).
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3 Discussion and Conclusions

Within the first order Zuni Sequence. the Mannville Group is a second order sequence comprised of
a lower “Transgressive Systems Tract™ und an upper “Highstand Systems Trict of third order. The
transition between the two systems tracts is based on stratal geometry. reflecting a change from
retrogradation to progradation. Fourth 1o fifth order transgressive/regressive cycles are supenmposed on both
of these systems (Figure 12).

The Lower Cretaccous Mannville Group of castern Alberta is subdivided on the basis of surfaces
reflecting relative sea-fevel change. A review of the stratigraphic record through the correlation of
geophysical well log data indicates there are at Jeast nine fourth order cycles of relative sci-level rise that
flooded the region, The lower three floading events subdivide a retrogradational succession while the upper
six subdivide a dominantly progradational succession.

The initial flooding event is associated with the transgression of the Boreal Sca during which time
paleo-vallcys on the sub-Cretaccous unconformity were filled with fluvial deposits. The flooding of broad
fluvial plains forming the top of the Ding member, the mid o tower McMurray Forimation and the Ellerslie
Formation left a widespread. 110 S m thick shale succession. Infilling of Tooded embayments was a
function of sediment supply. During the ensuing highstand of the sea. embayments closer to the foredeep of
the foreland basin were more sediment-starved compared to those toward the Precambrian Shicld. The
flooding event is followed by a major drop in sea-level contributing to deep incision. The second flooding
event transforms incised valieys into long estuaries which later forms broad estuarics as sea-level nses
above the coastal plain. During the relative still-stand of the sea, shoreline advance resulted in the
deposition of a - widespread. 10 to 15 thick, sandstone sheet. The third flooding event marks the time of
maximum transgression, during which an open marine environmient covered the northiern half of the Alberta
Forclund Basin.

During Upper Mannville time the factors of relative sea-level rise, bisin subsidence and sediment
input resulted in a succession that is both aggradationa) and progradational. The succession can be
subdivided on the basis of six flooding surfaces reflecting temporary periods of widespread transgression.
Laterally, the succession between flooding events, is comprised of three components. The more landward
component (southeastern arca) is a 15 10 25 m thick succession extending up to 300 km in width and
consisting of an upward-shoaling. muddy to sandy facies often capped by a thin 0.5 to 2 m thick coal.

Progressing to the north-northwest, the landward component translates over a few kilometres into & 20 o



40 m thick. clean. blocky sandstene wedge forming a linear. 20 to 100 kilometre wide band, trending
northeast -southwest. Progressing o the north-northwest, the blocky sandstone wedges translate gradually
over 2010 30 kilometres into laterally extensive mud dominated successions containing laterally extensive
thin sandstone stringers.

The transition from the upward-shoaling, muddy to sandy landward comiponent to the thicker
blocky sandstone wedge oceurs along the length of the Snowbird Tectonic Zone (STZ). Relative to the
STZ. lowstand incision is prevalent to the south but difficult to recognize iv the northwest. It is suggested
that the STZ marks the southeastern limit of Precambrian basement subsidence associated with the collapse
of the Peace River Arch during the Lower to Upper Cretaceous. Regionally, accommodation space fonned
during cach Mooding event is assumed 16 be a function of the limit of basement flexure along the STZ.
Southeast of the STZ, the accommaodation space is primarily a function of the extent of relative sca-level
risc whereas 10 the northeast of the STZ, the accommodation spacc is a function of both the extent of
relative sea-Tevel rise and the rate of bascment subsidence.

If the above reasoning is valid the following scenario is proposed for the evolution of the Upper
Mannville succession of eastern Alberta. During the stillstand, following cach transgressive phase, the rate
of shoreline progradation would slow or stop as it advanced a region of greater subsidence. With constant
sea-level, a stacked shoreline sandstone would evolve while the coastal plain would be incised by shallow
fluvial systems, If sea-level dropped or sediment input increased the shoreline would move seaward with an
increase in the depth of regional incision. If sea-level rose, a stranded barrier system may have been localized
along the former shoreline position with an extensive brackish /fmarine Jagoon formed behind it In general,
analysis of the cross-section datia. supports a cycle of sea-level rise, standstill and sca-level fall. The area to
the south of the STZ was dominated by shallow, marine to brackish. lagoonal environments while the area
to the north was dominated by deeper marine environments,

The Liovdminster, Rex, and General Petroleum members are the initial phase of shoreline
progradation culminating in thick lowstand wedges included in the Clearwater Formation. The Sparky.
Wiseca, McLaren, and Cotony members are the initial phase of shoreline progradation culminating in thick
lowstand wedges included in the Grand Rapids Formation,

The mapping of each cycle of relative sea-leve! rise is based on the correlation of thin, distinctive
marine shale beds in the northern part of the region, and in the south, by less distinct marine to brackish

shale beds that often overlie distinetive regional coal beds. Ambiguity in the correlation of each flooding
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event especially above the McMurray - Cummings fevel oceurs hetween the thinner muddy to sandy
upward-shoaling succession to the south and the thicker blocky. sandstone wedge 1o the north, In this zone
neither marine shale beds nor coal beds are well developed. In these areas. widespread crosional surfaces,
where developed. and the stratal geometry of the Upper Mannville succession, both 1o the north and south,

must he used to infer stratigraphic equivalence.
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