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ABSTRACT 

Accounting for seven percent of the Gross Domestic Product (GDP), the construction industry is 

the fifth largest contributor to the Canadian economy (Statistics Canada 2019). Structural steel is 

one of the primary materials used in the construction industry for providing structural stability in 

residential and commercial buildings, as well as critical infrastructure and industrial facilities such 

as bridges, oil and gas pipe racks. With emerging economic diversification efforts in Canada, it is 

expected that the construction industry, and the utilization of steel products therein, will continue 

to grow over the coming years. To respond to increasing demand, the construction industry is 

relying more on off-site prefabrication to shorten project delivery time, reduce construction cost, 

and improve overall quality. Off-site fabrication shops provide a safer work environment for 

labourers, conducive to higher productivity, while also removing uncertainties and risks associated 

with site conditions and environmental factors. 

Because the construction industry relies on labour-intensive activities, predicting labour 

productivity is critical to project estimating and production planning, as well as scheduling and 

assessing the costs of different design alternatives. In particular, with the fast-growing market 

needs for structural steel, there is an urgent call for data-driven productivity models to support the 

industry practice in project estimating, scheduling and control. Based on a literature review, this 

research has identified a need for an analytical methodology that is effective, scalable and data-

driven to model and predict labour productivity. This model is needed to improve the current 

industry practice of relying on irreplaceable and experienced personnel for project estimating and 

planning. 
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Despite this pressing need, the construction industry faces several challenges when shifting to 

more data-driven productivity modelling systems. First, because of the complexity, variability, and 

uncertainty of construction conditions and activities, productivity-influencing factors cannot be 

exhaustively identified and quantified, making it practically impossible to account for every 

relevant detail. As a response to this challenge, prefabrication facilities isolate environmental 

factors and implement manufacturing-like methodologies that minimize productivity-influencing 

factors. Second, in order for practitioners to trust and apply developed productivity models, the 

generated models need to be transparent, easy to use and adaptable. Third, with limited resources 

available in the construction industry, implementing and maintaining data-driven models need to 

minimize overhead costs and take advantage of readily available information as much as 

practically possible to optimize data collection efforts. Therefore, a systematic, transparent, and 

quantitative approach to determine labour productivity, based on historical project data, is optimal 

to support project cost estimating, resource scheduling and productivity analysis. Furthermore, an 

innovative approach is highly desirable to account for sufficient project details describing product 

uniqueness, complexity, and uncertainty involved in steel fabrication processes.  

This research proposes a new methodology that correlates labour productivity data with project 

design features. This methodology essentially utilizes efficient data-driven methods to capture 

implicit patterns in historical data and steel structure design details to produce labour productivity 

models. The novelty of the present research lies in its simple-to-understand and easy-to-implement 

analytical approach in selecting model input parameters and classifying steel fabrication projects 

based on work content and design features. The focus of this research is on applications of Multiple 

Linear Regression (MLR) and proposes enhanced methods to cater to application needs, first by 

selecting a proper set of input variables through a proposed method called Modified Stepwise 
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Regression (MSR), then by splitting the feature domain by Model Trees (MT) into different 

branches to predict non-linearity using piecewise linear models. Compared to other predictive 

methods, this approach would satisfy the construction industry application need for transparency 

and ease of use in modelling productivity, while maintaining minimal data collection efforts and 

achieving high prediction accuracy. 

The contributions of this study include: (1) proposing an application framework based on Modified 

Stepwise Regression (MSR) for selecting relevant input variables and streamlining a predictive 

model without losing the model’s predictive power; the MSR method leverage a simple but 

different method to select input variables while also verifying MLR underlying assumptions; (2) 

developing and validating a steel fabrication labour productivity model and identifying effects of 

work content factors; (3) developing an analytical methodology to generate a system of Multiple 

Linear Regression (MLR) equations by coupling the power of MSR and Model Tree (MT); (4) 

formalizing a quantitative approach to analyze the trade-off between model fit quality, prediction 

accuracy, and model complexity; and (5) providing an analytical means to elucidate productivity 

data structure and influencing factors by classifying the data and identifying significant variables 

for each class. 

Although this research focusses on applying the proposed methodologies and framework to steel 

fabrication productivity modelling, the proposed data-driven methodologies and application 

framework can be implemented wherever there is a need for a transparent, accurate and generalized 

predictive model to quantify input-output relationships. Concrete slump and viaduct installation 

time-predictive models are just a few examples of the generic applicability of the methodologies 

proposed and demonstrated in this thesis.  
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This thesis is organized to first introduce the problem domain and discuss this research 

significance. The problem statement and research objective are then elaborated for the scope of 

the proposed research. Then the MSR methodology, as an essential step in selecting relevant 

variables for MLR-based prediction modelling is presented. Next, the MSR application in steel 

fabrication productivity analysis is investigated in depth based on a BIM dataset from a partner 

company in Alberta. In order to achieve higher prediction accuracy, higher model generalization, 

and more insight into the data structure, the integration of MSR and MT is attempted and 

formalized. This integration significantly improves the model’s prediction accuracy and 

generalization ability while maintaining a straightforward and explainable model form.
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CHAPTER 1 : INTRODUCTION 

This chapter presents an introduction to steel fabrication, the research background, predictive 

analytics in construction engineering and management, problem statements, research objectives, 

research methodologies, and overall thesis organization. 

1.1 INTRODUCTION TO STEEL FABRICATION 

Structural steel is one of the primary materials used to provide structural stability in projects 

ranging from residential and commercial buildings to oil and gas pipe racks (Warrian 2010). In 

addition to being adaptable across construction disciplines, structural steel is also a highly 

recyclable material, which improves projects’ sustainability throughout the project life cycle. 

Within the context of prefabrication, fabricating structural steel elements in the controlled 

environment of an offsite fabrication shop leads to a higher fabrication quality, as well as time and 

cost benefits (Liddy and Cross 2002). Ultimately, off-site prefabrication improves the efficiency 

of the fabrication process and erection of structural steel, allowing the associated tasks to be 

scheduled earlier in the construction schedule, and making the engineered materials available at 

the right time to feed in to other construction trades on site. 

The fabrication shop environment, at first glance, resembles a manufacturing setting (Figure 1-1); 

however, steel fabrication is significantly different from other types of manufacturing which 

produce large quantities of identical products in an automated or semi-automated environment 

with less uncertainty and fewer changes (Song and AbouRizk 2003). In contrast, steel fabrication 
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features labour-intensive processes which are performed on bespoke project designs that 

experience frequent design and shop layout changes. 

 

Figure 1-1: Steel girder fabrication with custom design and specifications 

Another major difference between conventional manufacturing and steel fabrication lies in the 

client’s role and relationship with the contractor. In conventional manufacturing, the customer and 

manufacturer relationship is built based on market needs and product advertisement, which usually 

takes place after production is complete. On the other hand, steel fabrication does not start without 

a request from the client. Typically, the first interaction between the project owner and steel 

fabricators occurs in the project bidding stage. As a result, a confident estimate of steel fabrication 

labour-hours is essential for assessing fabrication costs and planning production resources and 

processes (Dozzi and AbouRizk 1993). In the project bidding stage, the project is handed over to 

the steel fabricator’s estimation team who must account for project details in order to justify a 

competitive price.  
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The structural steel price is the sum of materials, drafting and engineering, fabrication, and 

overhead costs, plus profit margins. The material costs are straight-forward as the purchasing 

department has exact quotations for different steel sections based on their weights. The raw 

material cost is then adjusted by the material wastage ratio (between 0-10%) which is affected by 

member length and size compared to what is available to purchase. In the estimating procedure, 

the commonly-applied unit of measure to account for direct cost is labour-hours required for each 

task or a project. The drafting and engineering expenses of a project are assigned through close 

collaboration between these departments and the estimators in order to adequately reflect project 

complexity and repetitiveness, and identify the labour-hours required to perform relevant tasks.  

The fabrication of structural steel elements involves multiple specialized trades carrying out a 

series of operations such as handling, cutting, fitting, welding, and surface processing (e.g. 

sandblasting and painting). Therefore, in the estimating procedure, the labour-hours required to 

perform different operations are considered as the main unit to measure the direct cost. Thus, the 

estimators’ knowledge of the engineering design and fabrication process is critical to transform 

design specifications into the associated labour-hour requirements for a certain project. On a 

construction task that is performed by manual labour, productivity is expressed as the labour 

production rate (labour-hours per installed unit), which measures a key dimension of project 

performance and is critical to estimating, scheduling and controlling the project (Alfeld, 1988). 

Owing to the labour-intensive nature of steel fabrication, the costs of tools, equipment, 

consumables, and shop managerial team are generally treated as indirect or overhead costs in 

practice, which are correlated with the direct cost in terms of labour-hours (Dozzi and AbouRizk 

1993). 
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Despite advances made in information and construction technology in the past two decades, 

estimating methods in practice have remained much unchanged. In current practice, practitioners 

still rely on the rule of thumb for rough guesstimates, instead of utilizing data-driven, quantitative 

analytics. A systematic and quantitative approach to determining labour productivity based on 

readily available project data is much desired to support project cost estimating, resource 

scheduling and productivity performance tracking and improvement. Such an approach needs to 

account for sufficient project details such as product uniqueness in design, complexity, and 

uncertainty involved in steel fabrication processes. This research proposes and demonstrates 

integrated data-driven methods which support steel fabrication cost estimating. These proposed 

methods utilize innovative yet practical data-mining methods to capture the estimators’ knowhow, 

represent steel structure design details and produce predictive models of productivity.   
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1.2 RESEARCH BACKGROUND 

In this section, a review of related literature is presented to provide background for the thesis 

research, focussed on three main pillars: (I) labour productivity studies, (II) take-off project design 

features, and (III) linking the two aspects with predictive analytics. 

1.2.1 Labour Productivity 

“Productivity is a measure of the overall effectiveness of an operating system in utilizing labor, 

equipment and capital to convert labor efforts into useful output” (Hendrickson 2008).  It is a 

widely accepted fact that steel fabrication is a complex process that features labour-intensive 

processes, custom-made pieces and activities involving a variety of equipment and labour 

disciplines (Song and Abourizk 2003). Unlike typical manufacturing, steel fabrication is labour-

intensive, less automated, and undergoes frequent change orders and shop layout changes. These 

features make tracking the daily utilization of the workforce, and thus labour costs and 

productivity, a difficult task. These characteristics differentiate steel fabricators from other 

manufacturing companies, which produce identical products in high quantities and in an optimized 

environment (Song and AbouRizk 2003).  

Labour productivity is critical information for managing projects and performing tasks such as 

estimating, scheduling, and project control (Song and Abourizk 2006). Having access to historical 

labour cost and productivity data is critical for cost estimating and shop production scheduling. In 

compiling the unit rates in a tender, estimators usually utilize a set of norms or standard 

productivity outputs to assess labour unit costs (Davison 2008). The industry productivity norms 
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are either obtained from published books [e.g. RS means (Gordian 2016)] or compiled by a steel 

fabricator based on historical records of past projects.  

Productivity modelling has been extensively addressed in construction literature. Randolph et al. 

(1990) researched different definitions for productivity and proposed two methods to model 

productivity: a factor-based model and an expectancy model. Rifat and Rowings (1998) developed 

productivity models considering factors like temperature, quantity and crew size using neural 

networks and regression analysis. Dawood (1998) proposed Monte Carlo simulation to generate 

more reliable duration estimates, considering variations in quality of material, weather, and labour 

productivity. Knowles (1997) presented a feedforward backpropagation neural network model in 

predicting pipe-installation labour productivity. Building on Knowles work, Lu et. al. (2000) 

utilized probability inference neural network (PINN) models to predict pipe spool fabrication 

labour productivity using historical data. Song and AbouRizk (2008) used ANN and discrete-event 

simulation to analyze historical project data and develop labour productivity models. The neural 

network approach in productivity modelling is capable of mapping high dimensional input-output 

relationships; however, a productivity model should not be deemed as “black box” by keeping 

implicit critical information on factor selection and reasoning logic, which is crucial to produce 

reliable decision support in estimging productivity and  potentially improving productivity. 

There is an extensive published literature that provides unit rates and prices including labour-hour 

content for construction estimation. These publications range from price books for building and 

civil engineering works to books of norms for industrial and mechanical engineering works. 

However, such cost norms should not be utilized without rigorously comparing the circumstances 

of published data against those of the project in hand (Van Vilet 2011). In other words, the 
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estimators need to apply adjustment factors to the labour productivity norms on a per project basis. 

In current practice, adjustment factors are decided based on experience alongside rule-of-thumb 

guidelines (Lu 2001). Choosing adjustment factors relies on estimators’ judgment, which might 

lead to biased and unreliable estimates. Unfortunately, this labour productivity information 

depends heavily on individual companies’ fabrication shop performance and may differ from 

project to project and from time to time. For this reason, published steel fabrication productivity 

data only represent industry average values and are often neglected in practice. To arrive at more 

accurate labour productivity, more customized and systematic data collection is required.  

To overcome this challenge, companies invest in custom productivity manuals, which entail 

substantial costs to establish and maintain. Therefore, they may not be updated regularly and only 

serve as a guideline for productivity estimating. Eventually, companies resort to relying on 

irreplaceable experienced personnel for project estimation and scheduling. In short, the absence of 

a scalable data-driven labour-hour estimating system has led to the current industry practice of 

relying on irreplaceable experienced personnel for project estimating and planning. It is 

noteworthy that relying heavily on individuals’ experience has also been identified as one of the 

main causes behind inaccurate or insufficient estimates and project budget overruns on structural 

steel fabrication projects (Song and AbouRizk 2006). 

A reliable source of productivity data already exists in companies’ databases including project 

scope, progress information, and labour expenditures. Historical data serves as a basis for 

productivity models to form simple equations that predict productivity of future projects (Song 

and AbouRizk 2008). More specifically, these productivity models evaluate the effect of 

influencing factors on productivity using simple equations, nonlinear equations, or other advanced 
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model forms. Once created, these models can then be used as effective decision-support to predict 

productivity on future projects (Song and Abourizk 2008). 

A review of recent literature has resulted in the following observations: 

• There is an immediate need for a systematic approach to investigate companies’ databases for 

historical project data that hold predictive productivity information. Available historical data 

from building information models and labour costing systems would serve as a basis for 

developing quantitative productivity models.  

• Productivity data tracked in labour costing systems in practice are generally not accurate or 

sufficient to support any meaningful data-driven analysis. 

• Limited research has been conducted on the quantitative analysis of the relationship between 

design inputs and productivity outputs. Therefore, limited contributions have been made to 

improve estimation accuracy and controlling engineering productivity by connecting to project 

design. 

• In many instances, the fabrication cost is predicted based on the structural weight, which is an 

oversimplification. Structural weight cannot adequately predict the fabrication cost as it 

ignores project complexity and connection details. 

1.2.2 Project features 

The first step in cost estimating is an accurate quantity take-off. There are several common ways 

to perform quantity take-offs in construction projects. The conventional method is to count 

different materials from design drawings (i.e. 2D drawings) and transfer the obtained information 
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into spreadsheets (Hu X. et al. 2014). Manual quantity take-off methods are not able to detect 

inconsistencies between drawings, which would cause inaccurate estimates (Shen and Issa 2010).  

To overcome the limitations of manual quantity take-offs, an enhanced approach is to extract 

quantities from Building Information Models (BIM) (Monteiro and Poças Martins 2013). BIM 

proposes significant advantages over previously used CAD systems by integrating the visual 

enhancements, parametric modelling, while providing a collaborative environment to designers 

and construction experts (Gu & London, 2010). Vast adoption of BIM by the construction industry 

has opened new opportunities in design, planning, and execution of construction projects. There 

are many studies addressing the quantity take-off and estimating capabilities of BIM (Monteiro 

and Poças Martins 2013; Plebankiewicz et al. 2015; Shen and Issa 2010; Xiaolin Hu et al. 2014). 

Shen and Issa (2010) studied BIM-based construction estimation and the impact of visualization 

on estimation accuracy. Monteiro and Pocas Martins (2013) demonstrated the possibility of 

extracting quantities from a BIM model in order to create a model ready for visualization or 

drawing applications. Plebankiewicz et al. (2015) investigated BIM-based cost estimating systems, 

concluding that BIM applications can generate accurate quantity takeoffs, but there is a knowledge 

gap in relating material quantities to labour costs. Hu et al. (Hu et al. 2014) used extracted data 

from a BIM model and generated a linear regression model with 56 available BIM features for 

estimating steel fabrication labour-hours. The reviewed literature indicates a great potential for 

capturing design features and quantities from BIM. That being said, the design features represented 

in BIM models of structural steel projects can be numerous; thus, having all of them factored in a 

model would not be a practical approach.   
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Moreover, the connection between the BIM features (along with the quantity takeoff for each) and 

required labour-hours is yet to be established. Also, a reliable source of productivity data can be 

found in most of the companies’ databases, containing well-structured information related to such 

items as project scope, progress information, and labour expenses. High-quality historical data 

serves as a firm basis for building labour cost models in the form of simple equations that are 

instrumental in predicting the productivity of future projects (Song and Abourizk 2008).  

Furthermore, the granularity of data as captured in the company’s databases is usually limited by 

the contract requirements for filing billing documents or project earned value reports. In other 

words, existing productivity data is generally not tracked for creating detailed labour cost models 

at the operations level that represent workflows on the shop floor, namely how much time 

particular individual workers dedicate to specific jobs. For instance, limited research is conducted 

on the quantitative analysis of the design input and labour-hour output relationship due to the 

difficulty in acquiring well-structured design data (Song and AbouRizk 2006). 

The first step of the proposed research methodology for developing data-driven labour cost or 

productivity estimating models is to thoroughly investigate the current practice and systems. This 

investigation facilitates an understanding of the practical level of granularity in the historical 

project data available. Although historical data may be imperfect or incomplete, devising powerful 

analytics to make the most value of such data is significant when developing decision-support 

models in the realistic setting of construction engineering and management. 
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1.3 PREDICTIVE ANALYTICS IN CONSTRUCTION ENGINEERING MANAGEMENT 

Predictive analytics has played an essential role in making critical decisions in construction 

engineering and project management scenarios ranging from project cost and time estimation to 

cost control and analysis. This section provides comprehensive literature reviews on commonly 

accepted predictive methodologies in the construction engineering and management domain, 

including: (1) Artificial Neural Networks, (2) Operations Simulation, and (3) Regression Analysis. 

1.3.1 Artificial neural networks 

Artificial Neural Networks (ANN) are a computational method inspired by the brain’s biological 

neural networks. This technique can be used to create predictive models by simulating complex 

input-output relationships. The ANN network is developed using a heuristic process (Graham et 

al. 2006) which is comprised of interconnected nodes arranged in different layers, where the node 

connections are characterized as numeric weights that are refined during the training stage. In 

general, the network structure can be subjectively formulated (e.g. the number of layers and types 

of transformation function) (El-Sawy et al. 2011). There are numerous variations of ANN; 

however, ANN in this thesis focuses on Back Propagation Neural Networks (BPNN) which are 

the most widely applied variation in engineering applications. 

The suitability of the network configurations needs to be examined prior to drawing any statistical 

predictions (Heravi and Eslamdoost 2015). Increasing the number of nodes and hidden layers of 

an ANN model can reduce the errors between the predicted outputs and the actual outputs based 

on the training set. However, an ANN with a more elaborated structure is computationally 

intensive and more likely to produce an over-fitted model (Demuth et al. 2009). As such, some 
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researchers have suggested appropriate structures for ANN to eliminate under-fitting and over-

fitting problems based upon trial-and-error approach and optimization techniques (Kim et al. 2004; 

Zhou 2010), but the analytical solutions are case-dependent and cannot be universally applied.  

Implementations of ANN in construction-related predictive models can be traced back to the early 

1980s (El-Sawy et al. 2011). Representative ANN applications relevant to the current research 

include: estimating the labour productivity of spool fabrication (Lu et al. 2000); modelling a ready-

mixed concrete delivery system to predict operation duration, rate of delivery, and utilization rates 

of concrete plants (Graham et al. 2006); estimating steel fabrication productivity (Song and 

AbouRizk 2008); predicting the overhead cost of building projects (El-Sawy et al. 2011); 

forecasting construction labour productivity (Heravi and Eslamdoost 2015); and estimating the 

construction cost of executing multiple projects (Hyari et al. 2016).  

From a practical point of view, the ANN methodology is mainly used as a “black box” by 

observing the predicted outputs based on the inputs. Approaches such as sensitivity analysis have 

been proposed to gain insight into the input and output relationships (Lu et al. 2001); while, 

analytical mechanism still relies on complex neural computing algorithms and built-in heuristics 

for Monte Carlo simulation. The derived results depend on the “trial and error” process in neural 

network training and interpretation of the results is not as straightford and explicit as desired. 

Nonetheless, to make it acceptable and to lend effecitive decision support in the intended 

application setting in the real world, it is indispensable to provide transparent reseaning logic of 

an AI model in terms of what role each input parameter plays in deriving the predicted output and 

how the output is related to the inpout factors in addition to making a point-value prediction. 
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1.3.2 Operations Simulation 

Operations simulation is another strategy to support project estimation and predictions by 

modelling the construction process and representing activity and resource interactions and 

practical constraints (Song and AbouRizk 2008). Construction simulation is capable of capturing 

the uncertainties of activity execution by modelling the activity duration with probability 

distributions. Multiple simulation runs can be conducted by performing “what-if” scenarios for 

prediction purposes, for example, predicting project duration with a particular confidence level.   

Operations simulation has been conducted across various construction disciplines, with notable 

studies that span the last two decades. For example, Marzouk and Moselhi (2002) simulated 

equipment workflows to achieve minimum project cost. Nguyen et al. (2013) simulated the 

construction of multistory buildings to predict project durations. Akhavian and Behzadan (2013), 

Alshibani and Moselhi (2012), and Marzouk and Moselhi (2003) simulated earthmoving 

operations for balancing fleets. These simulation applications can be limited to the in-depth 

knowledge and practical experience required to transform real-world operations into the 

representation of a simulation model.  

Despite the prevalence of simulation models, there are concerns regarding their sufficiency in 

making statistically sound decisions. The predictions’ accuracy depends on the validity of the 

simulation model (Nguyen et al. 2013); however, updating the simulation model is a demanding 

task if the planned operation sequence changes or new data is fed to the model. As a result, 

redefining fitted distribution and rebuilding the simulation model may be required (Gozalez-

Quevedo et al. 1993; Panas and Pantouvakis 2014). 
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1.3.3 Regression Analysis 

Multiple Linear Regression (MLR), as represented by Equation (1-1), has demonstrated usefulness 

and practicality in construction (El-abbasy et al. 2014; Jafarzadeh et al. 2014, 2015; Silva et al. 

2013). MLR formulates a linear equation by relating two or more independent variables with the 

dependent variable for estimation and prediction. The literature review demonstrates a widespread 

use of MLR in the construction field, which can be summarized as follows: Smith (1999) 

investigated earthmoving productivity in association with operating conditions. Lowe et al. (2006) 

estimated the project cost of constructing buildings. Choi et al. (2013) identified the factors 

affecting pavement performance. El-abbasy et al. (2014) predicted the conditions of oil and gas 

pipelines. Jafarzadeh et al. (2015) predicted seismic retrofit cost.  

𝑌 = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯+ 𝛽𝑘𝑋𝑘 + 𝜀 (1-1) 

Where 𝛼 = intercept, 𝛽𝑖 = regression coefficients; 𝜀 = error; 𝑋𝑖 = independent variables; 𝑌 = 

dependent variable. 

MLR is commonly accepted as a transparent predictive method; however, several application 

limitations need to be addressed. First, the underlying assumption for MLR needs to be verified, 

so the resulting model is not biased and quantitatively reliable. Second, the input variables chosen 

for the model need to be analytically justified. Third, MLR assumes a linear relationship between 

inputs and outputs, which could be a good approximation but would fail if a significant level of 

nonlinearity exists in the data. The first two limitations are addressed in the second chapter of this 

thesis by proposing the Modified Stepwise Regression (MSR) approach. MSR analytically selects 

a proper set of input variables by analyzing the variables’ significance and descriptive power, while 

maintaining validity and MLR assumptions. The third limitation of MLR models is addressed in 
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Chapter 4 by splitting the complex problem into branches by applying Model Trees and tackling 

nonlinearity with multiple piecewise linear regressions. This proposed approach leads to the 

realization of transparency, simplicity and accuracy in productivity predictive modelling. 

Moreover, the proposed methodologies in this research would elucidate the structure, patterns and 

relationship between input and output variables. Those functionationalities are generally not 

provided in the mainstream AI methods at present.  



 

 

 16  

 

1.4 PROBLEM STATEMENT 

The current practice of steel fabrication relies on manual quantity take-offs, outdated productivity 

data, and experience-based contingency and uncertainty markups (Davison 2008). Consequences 

of the current practice are time-consuming and error-prone quantity take-offs, rough estimates 

based on outdated productivity data, and biased uncertainty related markups that do not represent 

project complexity.  

Extensive literature review and communication with industry partners has revealed the need and 

desire for a quantitative approach that determines labour productivity based on project design 

features. This quantitive approach is needed to support project cost estimating, resource scheduling 

and productivity improvement; and must be simple but effective enough to account for sufficient 

project details such as product uniqueness, complexity, and uncertainty involved in steel 

fabrication processes. Despite decades of research and technological advancement, construction 

practice has generally remained the same. The movement towards data-driven productivity 

modelling has failed to cause any significant change in the construction industry as a result of the 

following: 

(1) Due to the complexity, variability, and uncertainty of construction projects, many 

productivity-influencing factors are required to be collected and analyzed, making it 

practically impossible to account for every relevant detail. 

(2) Transparency, accuracy, and simplicity of a productivity model are crucial factors in 

influencing the extent to which practitioners would trust and use it. Also, the fast-paced 
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nature of the construction industry, and the increasing amount of data collected over time, 

requires a method that can be updated with ease. 

(3) With the constant pressure to control project cost, a proposed data-driven method should 

utilize readily available information as much as practically possible, instead of incurring 

extra overhead costs in order to collect data. 

Prefabrication facilities have the advantages of isolating environmental factors and implementing 

standardized processes and methods that reduce the number of productivity-influencing factors. 

Prefabrication has created a unique situation for productivity modelling and analysis, where many 

environmental factors can be isolated, thus significantly increasing the chances of success in data-

driven productivity modelling. 

There is a need for a systematic, transparent, and quantitative approach in order to determine labour 

productivity based on project historical data and support project cost estimating, resource 

scheduling and productivity analysis. In the case of steel fabrication processes, an innovative 

approach is highly desired that can account for sufficient project details such as product 

uniqueness, complexity, and uncertainty. 
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1.5 RESEARCH OBJECTIVE 

The primary goal of this research is to correlate project content with labour productivity in the off-

site prefabrication of structural steel by developing productivity models that take advantage of 

existing historical data. The novelty lies in its unsupervised yet transparent approach in grouping 

similar observations, selecting proper input features for each group, and performing regression 

analysis on each group, while correlating work content of projects with labour requirements. The 

following sub-objectives are set in the context of achieving the primary objective of this research:  

• Investigating practically available historical data in industry practice and setting an 

achievable level of granularity for data collection. 

• Analytically selecting a proper set of design features that can be relevant to steel fabrication 

labour-hours, and which result in the leanest form of MLR while maintaining prediction 

accuracy. 

• Proposing a framework to develop productivity models and identify the effects of work 

content factors. 

• Developing range estimates around productivity model point estimates to account for 

prediction uncertainty. 

• Analytically grouping projects based on design features and exploring splitting data prior 

to variable selection. Developing an analytical methodology for generating a system of 

MLR equations utilizing tree-based splitting algorithms coupled with variable selection 

methods. 

• Performing bias-variance-complexity trade-off between predictive models in model 

selection.  
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Results and methodologies derived from this research would directly influence current practice for 

estimators, project managers, and shop production planners; as they would have the ability to 

configure labour resources, schedule shop floor production, and recognize any associated errors in 

estimates based on historical company data. 

It is anticipated that the methodologies and framework proposed by this research would apply to 

construction-related problems beyond steel fabrication productivity modelling. Wherever there is 

a need to develop a transparent, accurate and generalized predictive model to quantify input-output 

relationships, the proposed methods can be leveraged. Concrete slump and viaduct installation 

time predictive models are just a few examples of the generic application of proposed 

methodologies in this thesis.  
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1.6 THESIS ORGANIZATION 

This thesis consists of the following five chapters: 

Chapter 1 provides a brief overview of the research background from practical and academic 

perspectives. A short literature review is provided to support the need for this research. The 

problem statement and research objective are later discussed in this Chapter, followed by proposed 

methodologies to adequately address them. 

Chapter 2 proposes a method of variable selection in predictive models. In this Chapter, an 

analytical framework is proposed for developing MLR-based predictive models by (1) selecting 

input variables based on a modified stepwise approach, (2) verifying the MLR underlying 

assumptions, and (3) validating the prediction performance of the regression model. The resulting 

MLR model only contains the most relevant input variables while also fulfilling the Best Linear 

Unbiased Estimators (BLUE) assumptions. By utilizing statistical inference techniques, the MLR 

model also produces reliable range estimates around its point-value prediction according to a 

particular confidence level. To illustrate the application procedure of the proposed framework, a 

dataset intended for workability control of ready-mixed concrete from the University of California, 

Irvine (UCI) machine learning repository is used. A practical case study based on a real-world 

bridge construction project is provided to further demonstrate the application of the proposed 

methodology in modelling the precast span installation cycle-time. 

Chapter 3 proposes a data-driven approach that uses MLR and available historical data from 

Building Information Models (BIM) to associate project labour-hours and project design features. 
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The framework relies on an enhanced version of the stepwise regression technique to select the 

most relevant predictive factors and generate a predictive model without compromising the 

achievable accuracy of regression. The framework also encompasses analytical methods for 

justifying MLR application, validating the resulting model, and establishing range estimates for 

point-value predictions. In collaboration with an industry partner, the framework application is 

exemplified by analyzing labour-hours and design features for structural steel fabrication, leading 

to the creation of a valid MLR model in the simplest form. Finally, the pros and cons of the 

proposed framework and opportunities for future research are discussed. 

Chapter 4 explores the relationships between engineering design features and fabrication 

productivity in an off-site facility and utilizes existing historical data in the development of 

predictive productivity models. End users of predictive productivity models in construction 

demand an understanding of factor selection and reasoning logic of the built model, more so than 

achieving marginal gains on model prediction accuracy. The novelty of the present research lies 

in its unsupervised approach in classifying projects based on work content and design features. 

The contributions of this study include: (1) proposing a framework to develop productivity models 

and identify effects of work content factors, (2) developing an analytical methodology for 

generating a system of Multiple Linear Regression equations by coupling the power of Modified 

Stepwise Regression (MSR) and Model Tree (MT), and (3) analyzing the trade-off between model 

fit quality, prediction accuracy, and model complexity. The performance of the proposed 

methodology is benchmarked on the concrete slump dataset from the University of California 

Irvine machine learning repository. In the steel fabrication productivity modelling application, 

variables selected for splitting in Model Tree and variables selected for regression modelling are 

well aligned with industry practitioners’ know-how. This degree of transparency in reasoning logic 
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is generally impossible to attain for non-linear regression models such as Artificial Neural 

Networks. As a result, compared to commonly-applied linear or nonlinear regression models, the 

resulting productivity predictive model achieves higher fit quality and generalization ability when 

predicting unseen cases. 

Chapter 5 restates the research contributions and conclusions of this research and proposes future 

research ideas to further advance productivity modelling.  

Appendix (I) provides all of the MATLAB source codes used in this research for the analysis of 

data. 

Appendix (II) demonstrates a table of sample data points and a link to a public repository to access 

the primary dataset used in this research. 

Chapter 1 of this thesis introduces, elaborates, and validates the Modified Stepwise Regression 

using two small application cases. Later in Chapter 2, the Modified Stepwise Regression is applied 

to a practical problem of steel fabrication productivity modelling and provides support for 

generalization of the methodology. Chapter 3 proposes to improve Modified Stepwise Regression 

by conducting a piecewise breakdown of the problem feature space using Model Trees; M5 tree 

combined with Modified Stepwise Regression shows considerable improvement over other linear 

regression methods while maintaining simplicity and transparency. The dataset analyzed in this 

study is available at https://figshare.com/s/8de57c3a0ca8f8ed37c4.
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CHAPTER 2 : MODIFIED STEPWISE REGRESSION  

This chapter elaborates on the Modified Stepwise Regression methodology by first reviewing its 

background and comparable methods, the stepwise approach in variable selection. Later in this 

chapter, the underlying assumptions of the developed model are verified and validated. A method 

for Error Estimation is also discussed in this chapter. In this Chapter, the proposed framework is 

validated using two cases of concrete slump and viaduct datasets. 

2.1 INTRODUCTION 

Predictive analytics provides essential quantitative decision-support in construction engineering 

and project management from material preparation to method design and productivity estimating. 

For instance, in order to achieve acceptable quality and productivity in concreting construction in 

the field, it is imperative to have a reliable prediction of the workability of concrete (e.g. the slump 

measure) in addition to the compressive strength of a given concrete mix design; for achieving 

cost efficiency and productivity in the construction of the viaduct made of the precast segments, it 

is crucial to have an accurate estimate of precast span installation cycle-time. Making critical 

decisions in connection with complicated construction engineering problems is primarily based on 

experiences, supported by meticulous analyses of data and facts available, particularly when 

manual calculation methods are used (El-Sawy et al. 2011). Estimates made entirely based on 

estimators’ experiences may lead to unreliable results (Song and AbouRizk 2008). Regression 

provides an analytical method which models complicated real-world systems and predicts their 

behaviour using a mathematical equation. (Barrett and Gray 1994; Lewis-Beck 1978; Smith 1999). 
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The regression analysis is mainly used to create predictive or explanatory models, in an attempt to 

extract knowledge from collected data (Hair et al. 2010; King 1986). Due to ease of use and the 

flexibility to model a variety of application problems, regression analysis is a widely accepted 

quantitative technique for performing time and cost estimates in construction engineering (El-

abbasy et al. 2014; Jafarzadeh et al. 2014, 2015). On the other hand, there exists a potential 

loophole of misusing regression techniques if the underlying assumptions and limitations are not 

thoroughly understood. It is noteworthy that terminologies, theories and quantitative methods in 

connection with regression analysis were originally established in specialty disciplines such as 

applied statistics and economics. Hence, regression methods need to be interpreted and articulated 

in the terms comprehensible and acceptable to professionals in construction engineering. 

Moreover, regression-based predictive analytics need to be enhanced through integration, 

simplification, and customization in order to cater for application needs in practice and add to the 

body of knowledge in the construction engineering domain. 

Multiple linear regression (MLR) is one of the regression techniques where two or more 

independent variables are used to predict a dependent variable. MLR applications in construction 

engineering literature include predicting building construction cost (Lowe et al. 2006), assessing 

the service condition of pipelines (El-abbasy et al. 2014) and predicting seismic retrofit 

construction (Jafarzadeh et al. 2014, 2015). Commonly-applied methods to fit an MLR model to a 

dataset and estimate regression coefficients include ordinary least square (OLS), generalized least 

squares (GLS), maximum likelihood estimators (MLE). In general, the straight-forward option for 

formulating MLR equations is the OLS method unless critical OLS assumptions are violated. The 

validity of the OLS formulated model needs to be verified by checking the following assumptions: 
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(1) There is no perfect linear dependence between input variables (no multicollinearity); 

(2) The errors’ variance is constant (homoscedasticity); 

(3) The errors are serially independent (no autocorrelation); 

(4) The errors follow a normal distribution. 

The first assumption ensures that the regression variables are independent, and one cannot be 

linearly predicted from the other. If an input variable depends on other input variables, there is no 

need to include them all simultaneously in a regression model. In Figure 2-1, the area highlighted 

in grey represents the explanatory power of the group of input variables x in predicting the output 

Y. Although x3 and x2 individually have high explanatory power, they can almost be accounted by 

the other input variables (i.e. x1 and x4). In other words, if x3 and x2 are removed, the explanatory 

strength of the remaining group of input variables would not be affected. Violation of the first 

assumption is termed multicollinearity, which occurs when two or more input variables in an MLR 

model are highly correlated. The second assumption enforces the variance of error terms to be 

constant or homoscedastic. Violation of the second assumption is termed heteroscedasticity, which 

occurs when the variance of the error terms differs across observations. Heteroscedasticity can be 

visually inspected in regression residual plots, as shown in Figure 2-2, or formally examined by 

using White, Goldfeld-Quandt or Breusch-Pagan test (Kaufman 2013). In the presence of 

heteroscedasticity, coefficients estimated by OLS and also the error analysis would become 

inaccurate and unrealistic. The third assumption states that the error of different observations 

should be independent. Autocorrelation refers to the dependence of errors between serial 

observations over time. Autocorrelation can be visualized if the error of observation n (εn), on one 

axis is plotted against the error of previous observation (εn-1) on the other axis, which would reflect 

any correlation between the two (n is the order of the data being collected) (Figure 2-3). The fourth 
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assumption states that the errors of observations should follow a normal distribution (Figure 2-4). 

Based on Gauss-Markov theorem, verifying the underlying assumptions is important to justify the 

use of OLS and prove that OLS estimators (i.e. coefficients) are best linear unbiased estimators 

(BLUE) (Berry and Feldman 1985). 
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Figure 2-1:Contrasting (a) multicollinearity and (b) no multicollinearity (x3 and x2 are highly correlated 

to other input variables) 
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Figure 2-2:Residual plots for contrasting (a) homoscedasticity and (b) heteroscedasticity of errors 
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Figure 2-3:Comparing the (a) independence of errors in serial observations and (b) autocorrelation 
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Figure 2-4:Contrasting the (a) normal of errors and (b) non-normal of errors 

The primary challenge of applying the MLR technique is how to select a proper set of input 

variables so as to make accurate and reliable predictions. Appropriately choosing a subset of 

independent variables, in contrast to including all possible input variables, have both statistical and 

practical advantages in addition to model simplicity. From the statistical perspective, proper 

selection of input variables would reduce the chance of over-fitting and transferring noise in data 

into the regression model (Fox 1991). To elaborate more, if too many variables are used to 

formulate the regression model, the resulting equation tends to fit onto the noise in the data set 

(i.e., outliers), leading to over-fitting and unreliable prediction results. From the practical point of 



 

 

28 

view, being able to make reliable estimates while using fewer input variables would reduce data 

collection effort to enable the calibration and maintenance of the model. One plausible approach 

for determining the best subset of variables is by trial-and-error, which essentially enumerates all 

the potential combinations and compares the analytical results. However, it is not practically 

feasible in most of the cases, as there are 2n possible subsets for a model with n input variables. 

For instance, if there are ten input variables, there would be 1,024 different regression models, 

which need to be evaluated. 

Stepwise regression is a widely accepted method for reducing the number of input variables 

without sacrificing the prediction accuracy of the MLR model. The objective is to predict an output 

based on the regression equation formulated by a subset of input variables; while the regression 

equation retains all or most of the explanatory power as if the full set of variables were used 

(Barrett and Gray 1994). In stepwise regression, the input variables are selected by testing the 

significance of each one and its respective correlation with the output variable. It is worth 

mentioning that the commercial statistical software systems, such as SPSS® and SAS®, provide 

stepwise regression functionality. Nonetheless, all these systems function like “black box” and do 

not check the validity of OLS assumptions in a comprehensive and systematic fashion. 

Construction-related research studies have also been conducted for streamlining input variables by 

utilizing stepwise regression (Silva et al. 2013; Smith 1999; Wong 2004). However, only a few 

studies found in the literature have verified the underlying OLS assumptions (e.g., Choi et al. 2015; 

El-abbasy et al. 2014; Jafarzadeh et al. 2015). Moreover, determining the errors of the MLR’s 

point-value estimate is crucial to regression applications in engineering. Error analysis can be 

conducted by establishing a confidence interval around the point-value estimate in order to reveal 

the uncertainty of the MLR prediction (Cheung and Skitmore 2006). 
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Figure 2-5:Forward selection procedure 
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Figure 2-6: Backward elimination procedure 
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Figure 2-7: Proposed stepwise procedure 

To the best of our knowledge, an integrated framework for MLR predictive application in 

construction engineering is absent in the literature. The proposed framework is intended to assist 

in formulating MLR models by analytically selecting input variables, verifying and validating the 

resulting models, and performing predictive error analysis. The objective of this research is to 

develop a systematic approach to reduce the effort of data collection in the construction field, 

provide valid point-value estimates based on a streamlined MLR equation, and quantify the error 

of the point-value estimate in terms of a range associated with a specific level of statistical 

confidence. In this research, we essentially address the following question: How to select the most 
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relevant MLR input variables and verify the BLUE assumptions such that reliable point and range 

estimates can be obtained given particular confidence levels? 

In the following sections, literature reviews are provided on commonly used MLR techniques for 

estimation and prediction in construction engineering applications. As there is no single reference 

containing all the required procedures in a systematic form, a novel MLR application framework 

is proposed, consisting of Modified Stepwise Regression procedures for selecting input features 

and checking the BLUE assumptions. Two case studies are presented for demonstrating the 

application of the framework step by step and contrast the results against those obtained from 

commonly-applied MLR methodologies in validation of the framework. Each case study 

represents a typical application problem in construction engineering: (1) concrete workability 

control for quality and productivity in concreting construction; and (2) precast span installation 

cycle-time planning for resource use efficiency in precast construction. It is noteworthy that the 

dataset for the first case (demonstration case study) was sourced from the University of California, 

Irvine (UCI) machine learning repository for benchmarking new algorithms; while the dataset for 

the second case (practical case study) was prepared from a previous study which applied 

operations' simulation modelling to characterize the construction cycle-time in the field.  
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2.2 MLR LITERATURE REVIEW 

MLR has shown its usefulness and practicality in construction engineering (El-abbasy et al. 2014; 

Jafarzadeh et al. 2014, 2015; Silva et al. 2013). MLR modelling formulates a linear equation by 

relating two or more independent variables with a dependent variable for estimation and 

prediction, as represented by Equation (2-1).  

𝑌 = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯+ 𝛽𝑘𝑋𝑘 + 𝜀 (2-1) 

where𝛼 =intercept,𝛽𝑖=regression coefficients;𝜀 =error;𝑋𝑖=input variables; 𝑌 =dependent variable. 

The literature review demonstrates a widespread use of MLR in the construction field. Smith 

(1999) investigated the earthmoving productivity in association with the operating conditions. 

Lowe et al. (2006) estimated the project cost of constructing buildings. Choi et al. (2013) identified 

the factors affecting pavement performance. El-abbasy et al. (2014) predicted the conditions of oil 

and gas pipelines. Jafarzadeh et al. (2015) predicted the seismic retrofit cost.  

The number of input variables can be reduced by feature selection methods such as forward 

selection (FS), backward elimination (BE), and stepwise regression. As mentioned, the objective 

of feature selection methods is to predict an output variable by use of a subset of input variables 

while retaining all or most of the explanatory power given by the full set of variables. The FS starts 

with a linear regression model containing no input variables but only a constant term as shown in 

Figure 2-5 (Seber and Lee 2003). The input variables are added sequentially to the regression 

model based on correlation and statistical significance. The significance of a particular input 

variable is measured based on its contribution to explaining the output variable, compared against 
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other input variables. The iterative process is terminated when no remaining variable can be added 

to improve the model’s predictive performance.  

In contrast, BE begins with the full set of variables in formulating the linear regression model and 

removes insignificant variables to achieve the desired subset as presented in Figure 2-6 (Wang and 

Jain 2003). A major drawback of FS and BE methods lies in the fact that the iterative processes 

are susceptible to be trapped in a near-optimum subset of variables (Smith and Draper 1998). 

During the FS iteration, once an input variable is included; it will never be removed. Similarly, an 

input variable cannot be reintroduced into the linear regression model once the variable is 

eliminated in the BE process. As a result, applying FS and BE separately on a dataset may give 

rise to entirely different subsets of selected features (Thompson 1978). Stepwise regression 

overcomes this drawback by combining the FS and BE processes as demonstrated in Figure 2-7. 

It identifies significant input variables and eliminates multicollinearity between variables. Note 

that multicollinearity would incur when the selected input variables are correlated (Leung et al. 

2001). Several recent studies have applied stepwise regression as the variable selection technique. 

For instance, Silva et al. (2013) reduced the input variables from fifteen to four while eliminating 

multicollinearity. Jafarzadeh et al. (2014) initially selected fourteen variables based on the seismic 

performance of a building and applied stepwise regression to select seven influential factors. 

Nevertheless, a major drawback in the previous MLR research related to stepwise regression is 

identified: the regression-based feature selection is performed by applying OLS functionality 

available in commercial statistical software without formally validating the BLUE assumptions 

underlying OLS, thus rendering the results to be less reliable. 
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In this research study, a modified version of stepwise regression provides the key component of 

the proposed application framework for selecting predictive input variables, which is coupled with 

the assessment of BLUE assumptions. In addition, the technique for characterizing the margin of 

error in the point-value estimate with statistical inference is also integrated into the MLR 

application framework in order to accommodate uncertainties in the predicted point-value by 

MLR. 
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2.3 PROPOSED MLR APPLICATION FRAMEWORK 

To harness MLR’s predictive power and develop a reliable model, a comprehensive framework is 

proposed, and steps for formulating, verifying, validating, and evaluating the resulting MLR 

equation are elaborated in this section. 

2.3.1 Initializing regression model 

The first step is to select an initial set of input variables which sufficiently explains the model’s 

output. MLR coefficients can be obtained by applying OLS. Note OLS is the preferable technique 

to solve MLR due to its computational simplicity and well established theoretical foundation; in 

the case of violation of OLS assumptions, alternative methods that are actually developed based 

on OLS, such as the weighted least squares (WLS) to address the heteroscedasticity in applying 

OLS (which is explained further in later sections), can be considered to redefine the MLR model.  

2.3.2 Performing variable selection 

The stepwise regression is structured by selecting and removing input variables based on 

correlation and statistical significance analyses, as denoted in Figure 2-8. 
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Step 2: Calculate partial correlation 

coefficient between independent and 

dependent variables

Start

Step 1: Define two sets for independent 

variables: selected and ignored set. In 

this step all the variables are in the 

ignored set and the selected set is null.

Step 3: Pick the independent variable 

with the highest correlation coefficient 

and move it to the selected set.

Step 5: Perform partial F-test on the 

regression model to check variables’ 

significance.

Step 4: Formulate regression model 

using the variables in selected set. 

Step 6: Check the significance of 

variables and remove the insignificant 
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Step 7: 

Stopping criteria
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End

No

Yes

 

Figure 2-8: Flowchart of variable selection methodology 

In Step 1, the variables are separated into two sets, namely, (I) selected set, denoted by{𝑥𝑖,𝑠𝑒𝑙} and 

(II) ignored set, denoted by{𝑥𝑖,𝑖𝑔𝑛}. Through all the steps, variables included in the selected set are 

used to formulate the regression model. The variables in the ignored set are those that have not yet 

been tested or have been removed from the model because of low significance. All input variables 

are initialized in the ignored set at the beginning and the selected set is null. 
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Partial correlation is a measure of the linear relationship between two variables after removing the 

influence of other control variables. In regression analysis, each input variable contributes to 

accounting for the dependent variable (i.e., the explaining part of a dependent variable to which 

an input variable is attributed), as shown in Figure 2-8. In the proposed framework, partial 

correlation is used to identify a set variable which best describe the unexplained part of the 

dependent variable (Figure 2-9). Variables in the selected set are regarded as control variables 

when partial correlation is being determined between variables in the ignored set and the dependent 

variable.  

Y

       

      X4

Y

X3

Y

X2

Y

X1

 

Figure 2-9: Explanatory power of individual input variables 

In Step 2, the correlation coefficients are determined to measure the degree of association between 

the output (y) and ignored variables ({𝑥𝑖,𝑖𝑔𝑛}), removing the effect of control variables. If the 

selected set is null (e.g., first iteration), the correlation coefficient is determined as Pearson’s 

correlation coefficient (Equation 2-2). If there are variables in the selected set, the partial 

correlation coefficient is calculated as per (Equation 2-3). The correlation coefficient measures the 

correlation between each input variable x and the response variable y. The numerical boundaries 

of the coefficient are between [+1, −1]. A positive value indicates that the variables are positively 
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correlated, and a negative value means that the variables are negatively correlated. The magnitude 

of the value indicates the strength of correlation. 

If {𝑥𝑖,𝑠𝑒𝑙} = 𝜑, 𝑟{𝑥𝑖,𝑖𝑔𝑛}𝑦 =
∑ [(𝑥𝑛−�̄�)(𝑦𝑛−�̄�)]𝑛

√∑ (𝑥𝑛−�̄�)2𝑛 √∑ (𝑦𝑛−�̄�)2𝑛
, for each{𝑥𝑖,𝑖𝑔𝑛} (2-2) 

If {𝑥𝑖,𝑠𝑒𝑙} ≠ 𝜑, 𝑟{𝑥𝑖,𝑖𝑔𝑛}𝑦⋅{𝑥𝑖,𝑠𝑒𝑙}
=

𝑟{𝑥𝑖,𝑖𝑔𝑛}𝑦−𝑟{𝑥𝑖,𝑠𝑒𝑙}𝑦
×𝑟{𝑥𝑖,𝑖𝑔𝑛}{𝑥𝑖,𝑠𝑒𝑙}

√1−𝑟{𝑥𝑖,𝑖𝑔𝑛}{𝑥𝑖,𝑠𝑒𝑙}
2

√1−𝑟{𝑥𝑖,𝑠𝑒𝑙}𝑦
2

, for each{𝑥𝑖,𝑖𝑔𝑛} 
(2-3) 

where 𝜑 is the symbol for a null set, n is the number of data records, x and y are the values of 

input and response variables in the dataset, respectively; �̄�and�̄�are the mean values of input and 

response variables, respectively; r is the correlation coefficient. 

After calculating the correlation coefficients, the variable with the highest correlation is 

moved out of the ignored set and added to the selected set in Step 3. The selected variable will be 

included in the regression model and all the variables’ significance will be evaluated in the next 

step.  

In Step 4, the regression model is formulated using all the variables stored in the selected 

set by implementing OLS. 

Step 5 is to assess the significance of the variables in the regression model resulting from 

Step 4. To ensure that the selected variables are all significant in explaining the dependent variable, 

partial F-test needs to be performed. Partial F-test measures the significance of selected input 

variables by comparing two regression models, namely: the regression model prior to adding each 

input variable, and the regression model after adding each input variables. The partial F-test 

(denoted by𝐹𝑥𝑖
) is calculated based on the sum of squared error (SSE) (Equation 2-4) and the degree 

of freedom of the two regression models (Equation 2-5). 
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𝑆𝑆𝐸 = ∑(𝑦𝑖 − �̂�𝑖

𝑛

𝑖=1

)2 (2-4) 

Where 𝑦𝑖is the dependent variable (given in the dataset) and�̂�𝑖 is the predicted value of the MLR 

model. 

𝐹𝑥𝑖
=

(𝑆𝑆𝐸𝑘−1,𝑥𝑖
−𝑆𝑆𝐸𝑘)

(𝑆𝑆𝐸𝑘) (𝑛−𝑘−1)⁄
, for each𝑥𝑖 ∈ {𝑥𝑖,𝑠𝑒𝑙} (2-5) 

To perform the partial F-test, the SSE values for the regression models before and after 

adding an input variable (i.e.,𝑥𝑖) are computed.𝑆𝑆𝐸𝑘−1,𝑥𝑖
represents the SSE before adding the input 

variable which has (n-k) degrees of freedom, while𝑆𝑆𝐸𝑘represents the SSE after adding the input 

variable with (n-k-1) degree of freedom. n is the number of datasets. k is the number of input 

variables after adding𝑥𝑖to MLR model.  

In Step 6, the significance of each variable can be determined such that the variables deemed 

to be significant (p-value<0.05) can be included for formulating the regression model. If the 

variable is not significant (p-value>0.05), it should be removed from the regression model (i.e., 

removed from the selected set and added to the ignored set). In a particular iteration, if the variable 

with the highest correlation does not satisfy the required level of significance (p-value>0.05), the 

stepwise procedure ends, and no more iteration is required. 

2.3.3 Model verification 

The resulting MLR model, in the form of Equation (2-1), must satisfy the BLUE assumptions in 

order to be valid for estimation and prediction. The model is verified by checking the following 

six criteria: 

(1) 𝐸(𝜀𝑗) = 0: The expected value of error term is zero. Violation of this assumption would affect 

the estimation of the intercept.  
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(2) 𝑉𝐴𝑅(𝜀𝑗) = 𝜎2𝐼: The variance of the error term is constant. If the variance of the error term is 

not constant, the MLR model is associated with heteroscedasticity. 

(3) 𝐶𝑂𝑉(𝜀𝑗, 𝜀ℎ) = 0: The error terms are uncorrelated. Violation of this assumption causes 

autocorrelation. 

(4) 𝐶𝑂𝑉(𝑋𝑖, 𝜀) = 0: Each input variable is uncorrelated with the error term. Violation of this 

assumption would also result in heteroscedasticity. 

(5) There is no perfect collinearity: There is no input variable that is perfectly linearly related to 

another input variable(s). 

(6) 𝜀 ≈ 𝑁(0, 𝜎2): The error term must be normally distributed. Note, this assumption is only 

relevant to the tests of statistical significance (e.g., T-test and F-test); its violation would have 

no effect on the estimation of the MLR model coefficients. This check is generally required 

given small sample size (smaller than 30). 

The Gauss-Markov theorem (Greene 2008) maintains that the least squares estimators of 

regression parameters are unbiased and efficient when assumptions 1 to 5 are satisfied; hence, the 

least square estimators are deemed to be BLUE. Herein, formally established methods in applied 

statistics to check the discussed BLUE assumptions are briefly described in here: 

Heteroscedasticity is statistically detected by use of Breusch-Pagan test (Breusch and Pagan 1979). 

Breusch-Pagan tests the null hypothesis of constant error variances, against non-constant error 

variances (i.e., a function of one or more input variables) (Equation 2-6). In the case of rejection 

of the null hypothesis, the WLS method is opted to formulate the WLS-based regression model 

(Greene 2008; Gujarati 2004).  
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𝐻0: 𝑉𝑎𝑟(𝜀|𝑋1, 𝑋2, … , 𝑋𝑘) = 𝐸(𝜀2|𝑋1, 𝑋2, … , 𝑋𝑘) = 𝜎2 

𝜀2 = 𝛿0 + 𝛿1𝑋1 + 𝛿2𝑋2 + ⋯+ 𝛿𝑘𝑋𝑘 + 𝑒 

𝐻1: 𝛿1 = 𝛿2 = ⋯ = 𝛿𝑘 

(2-6) 

Multicollinearity is tested by examining the correlation between two input variables. Variance 

inflation factor (VIF) is a commonly accepted indicator of multicollinearity. To measure the VIF 

for each input variable𝑋𝑖∈{1,2,...,𝑘}, an OLS regression is formed with𝑋𝑖as the dependent variable, 

while all other variables are considered as input variables (Equation 2-7). Multicollinearity exists 

if the VIF value is higher than 10 (Kutner et al. 2004). There would be no sign of multicollinearity 

in the MLR model developed by stepwise regression as the significance of added variables are 

tested before including them in the model. 

𝑋𝑖 = 𝛼0 + 𝛼1𝑋1 + 𝛼2𝑋2 + ⋯+ 𝛼𝑘𝑋𝑘 + 𝑒 

𝑉𝐼𝐹𝑖 = (1 − 𝑅𝑖
2)−1 

(2-7) 

where𝑅𝑖
2 =coefficient of determination. 

Autocorrelation is detected by use of d-statistic test (i.e., Durbin-Watson test) (Durbin and Watson 

1951). As per Equation (2-8), the computed value of d lies between 0 and 4. Autocorrelation exists 

if the d value is close to 4 or 0. Autocorrelation does not exist if the d value is adjacent to 2. 
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𝑑 =
∑ (𝑒𝑡 − 𝑒𝑡−1)

2𝑛
𝑡=2

∑ 𝑒𝑡
2𝑛

𝑡=1

 (2-8) 

where ei is the regression residual of ith observation. 

Normality of the error term can be checked statistically by Anderson-Darling test (Stephens 1974), 

as shown in Equation 2-9. The hypothesis of normality is rejected if𝐴exceeds a given critical value 

with presumed significance level [see Table 2-1 in Stephens (1974) for critical values]. 

𝐴2 = −𝑛 − 𝑆 (2-9) 

Where n is the sample size, and S can be obtained from Equation 2-10.  

𝑆 = ∑
(2𝑖 − 1)

𝑛
[𝑙𝑛 𝐹 (𝑒𝑖) + 𝑙𝑛( 1 − 𝐹(𝑒𝑛+1−𝑖))]

𝑛

𝑖=1

 (2-10) 

Where n is the sample size; F =cumulative distribution of errors, 𝑒𝑖= regression error of ith 

observation. 

2.3.4 Model validation 

Model validation is vitally important to ensure the prediction performance of a calibrated MLR 

model. The proposed application framework utilizes two cross-validation methods: (I) k-fold 

cross-validation, and (II) predicted residual error sum of squares (PRESS) statistic (Holiday et al. 

1995). The cross-validation is used for checking the problem of over-fitting, which occurs when a 

regression model performs reliably on the training set but poorly on new data. The K-fold cross-
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validation splits the data into a test set and a training set for k times. The training set is used for 

calibrating the model whereas the test set is used for validation. The PRESS statistic is also a 

widely used method to determine the quality of prediction by each time leaving one observation 

out for testing the trained model (i.e. K-fold when k is equal to the number of observations) 

(Equation 11) (Choi et al. 2013). By performing cross-validation methods, the sum of squared 

errors (SSE) for each test set can be obtained and compared with the calibrated MLR SSE. The test 

SSE cannot be smaller than the MLR SSE. If the two SSE values are close to each other (e.g. within 

10%-15% difference), the MLR model is validated. If the test SSE is significantly larger than the 

model SSE, the model is not valid.  

𝑃𝑅𝐸𝑆𝑆 = 𝑆𝑆(𝑃𝑅𝐸𝑆𝑆 residuals) = ∑𝑒𝑖
∗2

𝑛

𝑖=1

= ∑(𝑦(𝑥𝑖) − �̂�𝑃𝑅𝐸𝑆𝑆(𝑥𝑖)

𝑛

𝑖=1

)2 
(2-11) 

where𝑦is the recorded dependent variable;�̂�𝑃𝑅𝐸𝑆𝑆is the predicted value of the MLR model 

calibrated on the data set excluding𝑥𝑖.\ 

2.3.5 Prediction error estimation 

The proposed framework further quantifies the uncertainty in MLR predictions, by defining 

a confidence interval around its point-value estimates. The MLR uncertainty is attributed to both 

modelling errors and observation errors in the collected data. The confidence interval for a point-

value estimate is statistically defined by Equation (2-12) (Liu 2010). The 𝜎𝑟𝑒𝑠 is the residual 

standard deviation which accounts for the uncertainties in formulating the MLR model. 

�̂�0 ± 𝑡(𝛼/2,𝑛−𝑘−1) × 𝑠. 𝑒. (2-12) 
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where �̂�0 is the predicted point value of the regression model;𝑡(𝛼/2,𝑛−𝑘−1)is the T-distribution with 

significance of 𝛼 (degree of freedom of n-k-1); and𝑠. 𝑒. is the standard error of the estimate 

determined based on the training set by Equation (2-13). 

𝑠. 𝑒. = √𝜎𝑟𝑒𝑠
2   [𝑥0](𝑋𝑇𝑋)−1[𝑥0]𝑇 (2-13) 

where𝜎𝑟𝑒𝑠 is the residual standard deviation and can be calculated by Equation (2-15);[𝑥0] in form 

of [1 𝑥01 ⋯ 𝑥0𝑘] is an array of input variable for which the confidence interval of its MLR 

model output needs to be established; and 𝑋 with n rows (n=number of records) and k+1 columns 

(k=number of independent variables in MLR) is the matrix of recorded data (Equation 2-14). 

𝑋 = [

1 𝑥11 ⋯ 𝑥1𝑘

1 𝑥21 ⋯ 𝑥2𝑘

⋮ ⋮ ⋮ ⋮
1 𝑥𝑛1 ⋯ 𝑥𝑛𝑘

] (2-14) 

𝜎𝑟𝑒𝑠
2 =

𝑆𝑆𝐸

𝑛 − 𝑘 − 1
 (2-15) 

where 𝑆𝑆𝐸 is the regression sum of squared errors and n-k-1 is the degree of freedom of the 

regression model. 
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2.4 DEMONSTRATION CASE 

To demonstrate calculation procedures of the proposed MLR application framework, a benchmark 

dataset is selected from UCI machine learning repository 

(https://archive.ics.uci.edu/ml/index.html) which was collected and utilized by Yeh (2006), 

(2007), and (2009) for developing new non-linear algorithms. The problem is to model the slump 

of a concrete mix with different properties. The slump of concrete is not only determined by the 

water content, but also influenced by other concrete ingredients. The seven attributes in the 

collected data are cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, and 

fine aggregate (all in kg/m3); the dependent variable is the concrete slump in cm for each 

experimented concrete mix (ranging from 0 to 30 cm). Yeh (2006) implemented Artificial Neural 

Network (ANN) and non-linear regression modelling to predict the concrete slump based on its 

ingredients. In this demonstration case, an MLR model is developed by applying the proposed 

framework, and the results are compared with predictive models reported in Yeh (2006). 

2.4.1 Initializing regression model 

The data set includes one hundred and three records. There are seven input variables, and three 

dependent variables. The data set input features are cement(𝑥1), blast furnace slag(𝑥2), fly 

ash(𝑥3), water(𝑥4), superplasticizer(𝑥5), coarse aggregate(𝑥6), and fine aggregate(𝑥7). In the 

recorded datasets, the dependent variables are slump, flow, and compressive strength; however, in 

this demonstration case, only slump is selected to be predicted by an MLR model. 

https://archive.ics.uci.edu/ml/index.html
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2.4.2 Performing variable selection 

The following demonstrate the main steps and details in performing stepwise regression for input 

variable selection as proposed in the framework: 

1st Iteration 

Step 1: Initializing the selected and ignored variable sets 

• Selected set{𝑥𝑖,𝑠𝑒𝑙} = 𝜑 

• Ignored set{𝑥𝑖,𝑖𝑔𝑛} = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7} 

Step 2: Performing correlation analysis. 

• The correlations between the dependent variable (y) and input variables (x1, x2, x3, x4, x5, x6, 

x7) are calculated and presented in Table 2-1. Since the variable x4 has the highest 

correlation coefficient, it is chosen to be included in the MLR model.  

Table 2-1: Correlation coefficients (1st Iteration) 

Correlation coefficient 𝑟𝑥𝑖,𝑖𝑔𝑛𝑦 (𝑟𝑥𝑖,𝑖𝑔𝑛𝑦)2 

𝑟𝑥1𝑦 0.15 0.02 

𝑟𝑥2𝑦 -0.28 0.08 

𝑟𝑥3𝑦 -0.12 0.01 

𝑟𝑥4𝑦 0.47 0.22 

𝑟𝑥5𝑦 -0.21 0.05 

𝑟𝑥6𝑦 -0.19 0.04 

𝑟𝑥7𝑦 0.20 0.04 

 

Step 3: Refining the selected and ignored variable sets. 

• Selected set{𝑥𝑖,𝑠𝑒𝑙} = {𝑥4} 
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• Ignored set{𝑥𝑖,𝑖𝑔𝑛} = {𝑥1, 𝑥2, 𝑥3, 𝑥5, 𝑥6, 𝑥7} 

Step 4: Formulating the regression model with variables in the selected set by OLS. 

• The regression is formulated as per Equation 2-16. 

𝑦 = −21.787 + 0.202𝑥4 (2-16) 

Step 5: Performing partial F-test and testing the variables significance. 

• In the 1st iteration, there is no variable in the model prior to adding the input variable𝑥4. 

The 𝑆𝑆𝐸0,𝑥𝑖
is calculated by Equation 2-17. In a regression model with no input variables 

all the predicted values(�̂�𝑖) are the mean value of the dependent variable(�̄�). The 𝑆𝑆𝐸1is 

determined as per Equation 2-18. The predicted values(�̂�𝑖) in 𝑆𝑆𝐸1are calculated from the 

regression model formulated in Step 4 𝐹𝑥4
is computed using 𝑆𝑆𝐸0,𝑥𝑖

and𝑆𝑆𝐸1 by Equation 

2-19 and𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥4
is determined as per Equation 2-20. 

𝑆𝑆𝐸0,𝑥4
= ∑(𝑦𝑖 − �̂�𝑖

𝑛

𝑖=1

)2 = ∑(𝑦𝑖 − �̄�

𝑛

𝑖=1

)2 = (23 − 18.048)2+. . . +(29 − 18.048)2

= 7810.882 

(2-17) 

𝑆𝑆𝐸1 = ∑(𝑦𝑖 − �̂�𝑖

𝑛

𝑖=1

)2 = (23 − 20.641)2+. . . +(29 − 23.338)2 = 6110.563 (2-18) 

𝐹𝑥4
=

(𝑆𝑆𝐸𝑘,𝑥4
− 𝑆𝑆𝐸𝑘+𝑚) (𝑚)⁄

(𝑆𝑆𝐸𝑘+𝑚) (𝑛 − 𝑘 − 𝑚 − 1)⁄
=

(𝑆𝑆𝐸0,𝑥4
− 𝑆𝑆𝐸1) (1)⁄

(𝑆𝑆𝐸1) (103 − 2)⁄

=
(7810.882 − 6110.563) (1)⁄

(6110.563) (101)⁄
= 28.104 

(2-19) 
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𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥4
= 𝑓(𝐹𝑥𝑖

, 𝑚, 𝑛 − 𝑘 − 1) = 𝑓(28.104,1,101) = 6.78𝑒−7 < 0.05 (2-20) 

 

Step 6: Testing the input variables’ significance. 

• Since the p-value for all the input variables is lower than 0.05 (i.e. accepted significance 

level), all variables included in the model are significant. 

 

Step 7: Deciding if the stepwise regression should end. 

• The last variable entered is significant enough, return to Step 2. 

2nd iteration 

Step 2: Performing correlation analysis. 

The partial correlation coefficients between y and the ignored variables {x1, x2, x3, x5, x6, x7} are 

calculated, given x4 as the control variable. The correlation coefficients are tabulated in Table 2-2. 

Table 2-2: Correlation coefficients (2nd iteration) 

Correlation coefficient 𝑟𝑥𝑖,𝑖𝑔𝑛𝑦 (𝑟𝑥𝑖,𝑖𝑔𝑛𝑦)2 

𝑟𝑥1𝑦⋅𝑥4
 4.96e-2 2.46e-3 

𝑟𝑥2𝑦⋅𝑥4
 -3.07e-1 9.43e-2 

𝑟𝑥3𝑦⋅𝑥4
 -7.02e-3 4.93e-5 

𝑟𝑥5𝑦⋅𝑥4
 -1.61e-1 2.58e-2 

𝑟𝑥6𝑦⋅𝑥4
 1.31e-1 1.73e-2 

𝑟𝑥7𝑦⋅𝑥4
 1.69e-1 2.87e-2 

 

• Selected set{𝑥𝑖,𝑠𝑒𝑙} = {𝑥4} 
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• Ignored set{𝑥𝑖,𝑖𝑔𝑛} = {𝑥1, 𝑥2, 𝑥3, 𝑥5, 𝑥6, 𝑥7} 

Step 3: Refining the selected and ignored variable sets. 

• Selected set{𝑥𝑖,𝑠𝑒𝑙} = {𝑥4, 𝑥2} 

• Ignored set{𝑥𝑖,𝑖𝑔𝑛} = {𝑥1, 𝑥3, 𝑥5, 𝑥6, 𝑥7} 

 

Step 4: Formulating the regression model with variables in the selected set by OLS. 

• Formulate the regression model with x4 and x2 (Equation 2-21). 

𝑦 = −18.099 + 0.199𝑥4 − 0.039𝑥2 (2-21) 

Step 5: Performing partial F-test and testing the variables’ significance. 

Perform partial F-test (Equations 22–28) 

𝑆𝑆𝐸1,𝑥2
= ∑(𝑦𝑖 − �̂�𝑖

𝑛

𝑖=1

)2 = (23 − 17.883)2+. . . +(29 − 21.24)2 = 7180.726 (2-22) 

𝑆𝑆𝐸1,𝑥4
= ∑(𝑦𝑖 − �̂�𝑖

𝑛

𝑖=1

)2 = (23 − 20.641)2+. . . +(29 − 23.338)2 = 6110.563 (2-23) 

𝑆𝑆𝐸2 = ∑(𝑦𝑖 − �̂�𝑖

𝑛

𝑖=1

)2 = (23 − 20.442)2+. . . +(29 − 23.36)2 = 5534.204 (2-24) 

𝐹𝑥2
=

(𝑆𝑆𝐸1,𝑥2
− 𝑆𝑆𝐸2) 1⁄

(𝑆𝑆𝐸2) 27⁄
=

(6110.563 − 5534.204) 1⁄

(5534.204) 100⁄
= 10.414 (2-25) 
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𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥2
= 𝑓(10.414,𝑚, 𝑛 − 𝑘 − 1) = 𝑓(10.414,1,100) = 1.69𝑒−3 < 0.05 (2-26) 

𝐹𝑥4
=

(𝑆𝑆𝐸1,𝑥4
− 𝑆𝑆𝐸2) 1⁄

(𝑆𝑆𝐸2) 100⁄
=

(7180.726 − 5534.204) 1⁄

(5534.204) 100⁄
= 29.751 (2-27) 

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥4
= 𝑓(29.751,𝑚, 𝑛 − 𝑘 − 1) = 𝑓(29.751,1,100) = 3.56𝑒−7 < 0.05 (2-28) 

Step 6: Testing the input variables’ significance. 

• Since the p-value for x4 and x2 is lower than 0.05, all the variables included in the model 

are significant.  

Step 7: Deciding if the stepwise regression should end. 

• The last variable entered is significant enough, return to Step 2. 

3rd Iteration 

Step 2: Performing correlation analysis, Table 2-3. 

Table 2-3: Correlation coefficients (3rd Iteration) 

Correlation coefficient 𝑟𝑥𝑖,𝑖𝑔𝑛𝑦 (𝑟𝑥𝑖,𝑖𝑔𝑛𝑦)2 

𝑟𝑥1𝑦⋅𝑥4𝑥2
 -2.74e-2 7.51e-4 

𝑟𝑥3𝑦⋅𝑥4𝑥2
 -1.24e-1 1.54e-2 

𝑟𝑥5𝑦⋅𝑥4𝑥2
 -1.62e-1 2.63e-2 

𝑟𝑥6𝑦⋅𝑥4𝑥2
 4.31e-2 1.86e-3 

𝑟𝑥7𝑦⋅𝑥4𝑥2
 1.21e-1 1.47e-2 
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Step 3: Refining the selected and ignored variable sets. 

• Selected set {𝑥𝑖,𝑠𝑒𝑙} = {𝑥4, 𝑥2, 𝑥5} 

• Ignored set {𝑥𝑖,𝑖𝑔𝑛} = {𝑥1, 𝑥3, 𝑥6, 𝑥7} 

Step 4: Formulating the regression model with variables in the selected set (Equation 2-29). 

𝑦 = −15.744 − 0.036𝑥2 + 0.195𝑥4 − 0.205𝑥5 (2-29) 

Step 5: Performing partial F-test and testing the variables significance (Equations 2-30 to 2-35). 

𝐹𝑥2
=

(𝑆𝑆𝐸2,𝑥2
− 𝑆𝑆𝐸3) 1⁄

(𝑆𝑆𝐸3) 99⁄
=

(5952.849 − 5504.274) 1⁄

(5504.274) 99⁄
= 8.068 (2-30) 

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥2
= 𝑓(8.068,𝑚, 𝑛 − 𝑘 − 1) = 𝑓(38.84,1,99) = 5.47𝑒−3 < 0.05 (2-31) 

𝐹𝑥4
=

(𝑆𝑆𝐸2,𝑥4
− 𝑆𝑆𝐸3) 1⁄

(𝑆𝑆𝐸3) 99⁄
=

(7044.202 − 5504.274) 1⁄

(5504.274) 99⁄
= 27.697 (2-32) 

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥4
= 𝑓(24.29,𝑚, 𝑛 − 𝑘 − 1) = 𝑓(24.29,1,99) = 8.24𝑒−7 < 0.05 (2-33) 

𝐹𝑥5
=

(𝑆𝑆𝐸2,𝑥5
− 𝑆𝑆𝐸3) 1⁄

(𝑆𝑆𝐸3) 99⁄
=

(5534.204 − 5504.274) 1⁄

(5504.274) 99⁄
= 0.538 (2-34) 

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥5
= 𝑓(0.538,𝑚, 𝑛 − 𝑘 − 1) = 𝑓(0.538,1,99) = 0.465 > 0.05 (2-35) 

Step 6: Testing the input variables’ significance. 

• The p-value for x5 is higher than 0.05, hence x5 should return back to the ignored set.  

Step 7: Deciding if the stepwise regression should end. 
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• The last variable entered is not significant, and the stepwise procedure ends here (no more 

iteration is required). The final MLR only includes water(𝑥4) and blast furnace slag(𝑥2) 

as input variables and is presented by Equation (2-20). 

2.4.3 Model verification 

The BLUE assumptions are verified for the resulting MLR model (Equation 2-20). 

2.4.3.1  Checking heteroscedasticity 

The Breusch-Pagan results are shown in Table 2-4. As the p-value is smaller than 0.05 (i.e., 

significant level). Therefore, the null hypothesis of constant variance for the error terms is rejected 

and the MLR experiences heteroscedasticity. Moreover, a fan-shape pattern can be observed in the 

OLS-based MLR residual plot which supports the heteroscedasticy identified by Beusch-Pagan 

test (Figure 2-10). 

Table 2-4: Breusch-Pagan test for OLS-based regression model 

Variable Degree of freedom 𝜒2 p-value 

x2, x4 100 128.53 0.0288 

 

To adjust the MLR model with heteroscedastic errors, the WLS method is utilized. The MLR 

model with the input variables x2 and x4 is used for WLS coefficient estimation. Equation (2-36) 

shows the final WLS-based MLR model. The residual plot for WLS-based regression depicts a 

constant variance of error, shown in Figure 2-10. The Breusch-Pagan test is conducted again, and 

the test results are shown in Table 2-5. Since the Breusch-Pagan p-value is larger than 0.05, the 

variance of the error terms is constant, and the errors are now homoscedastic. 
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Table 2-5: Breusch-Pagan test for WLS-based regression model  

Variable Degree of freedom 𝜒2 p-value 

x2, x4 100 101.5364 0.4383 

 

𝑦 = 4.1742 + 0.0093𝑥2 + 0.075𝑥4 (2-36) 

  

Figure 2-10: Visual comparison WLS-based MLR model and OLS-based MLR model residual plots 

 

2.4.3.2  Checking multicollinearity 

The VIF values are computed using Equation (2-7). For both input variables (x2 and x4) the VIF is 

equal to 1 leading to no multicollinearity in the MLR model as expected from stepwise regression, 

Table 2-6. 

Table 2-6: VIF values for checking multicollinearity 

Variable VIF 

x2 1 

x4 1 
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2.4.3.3  Checking autocorrelation 

Durbin-Watson test is conducted to calculate the d-statistic value. The result shows that the d value 

is 1.806, which is closed to 2. Thus, autocorrelation does not exist between the error terms. 

2.4.3.4  Checking normality of error 

The normality assumption is critical when if the sample size is small. In the current case, the 

number of data set is larger than 100 and checking the normality of error term can be neglected. 

2.4.4 MLR model validation 

To validate the MLR model’s prediction performance, both K-fold cross-validation method and 

PRESS statistics are tested. In the K-fold method, k is assumed to be ten (10) and the SSE value 

for each test is given in Table 2-7. The total SSE and the PRESS values are calculated by Equation 

(2-37) and Equation (2-38), respectively. In both tests, the resulting SSE values are compared with 

the WLS-based MLR model SSE (Equation 2-39) and (Equation 2-40). This model is validated 

since both SSE ratios are in the acceptable range (10%-15%).   

Table 2-7: SSE values for k-fold cross-validation 

Test No. 1 2 3 4 5 6 7 8 9 10 

SSE 

6
5
9
.4

5
 

8
8
5
.3

9
 

1
1
4
8
.7

2
 

1
1
7
1
.7

9
 

1
6
4
.2

4
 

4
9
9
.2

9
 

9
2
9
.3

5
 

3
5
0
.8

7
 

6
5
9
.4

5
 

8
8
5
.3

9
 

 

𝑆𝑆𝐸𝑘−𝑓𝑜𝑙𝑑 = ∑𝑇𝑒𝑠𝑡𝑖(𝑆𝑆𝐸) = 7572.3

𝑘

𝑖=1

 

(2-37) 
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𝑃𝑅𝐸𝑆𝑆 = 𝑆𝑆(𝑃𝑅𝐸𝑆𝑆 residuals) = ∑𝑒𝑖
∗2

𝑛

𝑖=1

= 13.43 + 330.09+. . . +27.92

= 7609.99 

(2-38) 

𝑆𝑆𝐸𝑘−𝑓𝑜𝑙𝑑 

𝑆𝑆𝐸𝑊𝐿𝑆 𝑀𝑜𝑑𝑒𝑙
=

7572.3

7371.3
= 1.027 (2-39) 

𝑃𝑅𝐸𝑆𝑆

𝑆𝑆𝐸𝑊𝐿𝑆 𝑀𝑜𝑑𝑒𝑙
=

7609.99

7371.3
= 1.032 (2-40) 

Further, the presented MLR model is comparable with the one resulting from applying MLR by 

simply including all the input variables into the model. 

2.4.5 Error estimation 

To estimate the error of point prediction with a significance level of 0.05 (i.e. confidence level of 

95%), a data point is postulated (Equation 2-41). To predict the concrete slump (cm), the blast 

furnace slag(𝑥2) and the water(𝑥4) are assumed as 100 (kg/m3) and 196 (kg/m3), respectively. 

Equation (2-42) shows the point prediction based on the final MLR model (Equation 36). The 

predicted value of the slump, given the assumed data point, is 19.8042 cm. 

[𝑥0] = [1 100 196] (2-41) 

�̂�0 = 4.1742 + 0.0093𝑥2 + 0.075𝑥4 = 19.8042 (2-42) 

Equations (2-43) to (2-46) show the calculations of the residual standard deviation(𝜎𝑟𝑒𝑠) (Equation 

2-15), the matrix of records 𝑋 (Eq. 14), and standard error(𝑠. 𝑒. ) (Equation 2-13). Note that the 

number of observations is 103 (=n), and the input variables are 2 (=k); therefore, the degree of 

freedom is 100 (=n-k-1). As a result of the error analysis, with 95% confidence level, the interval 
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of the point prediction is between 18.191 cm and 21.417 cm. The results are cross-checked with 

the result of the actual observation, which is equal to 20 cm. 

𝜎𝑟𝑒𝑠
2 =

𝑆𝑆𝐸

𝑛 − 𝑘 − 1
=

7371.3

100
= 73.713

 

(2-43) 

(𝑋𝑇𝑋)−1 = [
9.67𝑒-01 -2.52𝑒-04 -4.75𝑒-03

-2.52𝑒-04 2.68𝑒-06 2.15𝑒-07

-4.75𝑒-03 2.15𝑒-07 2.40𝑒-05

] (2-44) 

𝑠. 𝑒. = √𝜎𝑟𝑒𝑠
2 [𝑥0](𝑋𝑇𝑋)−1[𝑥0]𝑇 = √73.713 × 0.0110 =  0.8132 (2-45) 

�̂�0 ± 𝑡(0.025,100) × 𝑠. 𝑒 = 19.804 ± 1.984 × 0.8132 =  19.804 ± 1.613 (2-46) 

2.4.6 Benchmarking against published non-linear regression models  

Based on the same dataset, Yeh (2006) produced two predictive models, namely: a non-

linear regression model and an ANN model. The non-linear model involved seven inputs and 

required estimating fifty-six (56) regression coefficients, as shown in Equation (2-47). The ANN 

model calibration required tedious trial-and-error processes guided by heuristic rules in order to 

fix the number of hidden layers, the number of hidden nodes, the learning rate and the momentum 

factor. Additionally, fifty-six (56) ANN transformation weights were estimated. For the current 

case, the following ANN parameters were reported for the final model in Yeh (2006): 1 hidden 

layer and seven hidden nodes; the learning rate and momentum factor were set as 0.1 and 0.5 

respectively. The RMSE values can be calculated based on SSE (Equation 48). Yeh (2006) reported 

the RMSE values for the ANN model and the non-linear regression model being 4.03 cm and 9.29 
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cm, respectively. In contrast, the proposed linear regression (Equation 2-36) would require the 

estimation of only three coefficients, resulting in the RMSE value of 8.46 cm. Even though the 

number of independent variables has been significantly reduced (from seven to two), the predictive 

power of the streamlined MLR model is not compromised. In short, simplicity is retained in the 

MLR model without losing sophistication of the model in coping with the complexity in the real-

world application. 

𝑦 = ∑𝛽𝑖𝑥𝑖 +

𝑞

𝑖=1

∑∑𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑞

𝑖<𝑗

 (2-47) 

where xi is the ith independent variables, q=total number of independent variables; 𝛽𝑖,𝛽𝑖𝑗are 

regression coefficients. 

𝑅𝑀𝑆𝐸 = √(𝑆𝑆𝐸/𝑛) (2-48) 

2.5 PRACTICAL CASE STUDY 

To demonstrate the usefulness of the proposed framework, a practical case study on predicting one 

span installation cycle-time on precast viaduct construction is presented. The viaduct is part of an 

artery linking Hong Kong and Shenzhen, China, and consists of 227 post-tensioned spans. A 

typical span is made up of fourteen precast segmental box girders (12m×2.5m×2.8m of each). The 

stepping girder precast installation method was used to accelerate the viaduct construction process 

(Chan and Lu 2008). The precast segments were fabricated near Shenzhen and hauled to the Hong 

Kong site for installation. A main field constraint was that the site was too congested to keep all 

segments in the convenient proximity of the site crew. As an alternative, the precast segments were 
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partially stocked in a remote storage area and transported to the working span by trailer trucks, 

without any intermediate storage or buffer. 

In order to assist the contractors in estimating the cycle-time for installing the precast concrete 

segments on one-span viaduct, four input factors relevant to site operations and logistics planning 

were identified and assessed, namely: (1) the number of trailer trucks rented for hauling segments 

(the site only considered the options of two trailer trucks or three), (2) one batch or two-batch 

precast segment delivery modes (fourteen segments can be delivered either in one-batch in the 

night before installation operation starts or in two batches, which means the first batch of seven 

segments would be delivered in the night before installation starts and the second batch delivered 

in the following night), (3) the percentage of the total number of segments on one-span to be placed 

in the remote storage area, and (4) the haul duration for a trailer truck to transit from the remote 

storage area to the working span. Table 2-8 shows the thirty cycle-time records used in this 

research. 
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Table 2-8: Recorded cycle-time for installing the precast concrete segments  

Data record 

identifiers 

No. of 

trucker (x1) 

Delivery 

batch (x2) 

Segment at 

remote 

storage area 

(%) (x3) 

Duration to 

remote 

storage area 

(x4) 

 Desired 

install hours 

(y) 

1 2 1 0.00 0.00 103.61 

2 3 1 0.50 0.50 104.76 

3 3 1 0.29 0.33 104.76 

4 3 1 0.50 0.33 104.78 

5 3 1 1.00 0.50 105.78 

6 3 1 1.00 0.33 105.78 

7 3 1 0.29 0.75 108.38 

8 3 1 0.50 0.75 109.36 

9 2 1 0.50 0.50 111.51 

10 3 1 1.00 0.75 112.05 

11 3 1 0.71 0.75 112.41 

12 2 1 0.29 0.75 112.72 

13 2 1 1.00 0.50 114.15 

14 2 1 0.50 0.75 115.70 

15 2 1 0.71 0.75 116.47 

16 2 1 1.00 0.75 116.61 

17 2 2 0.29 0.50 116.67 

18 2 2 1.00 0.33 116.70 

19 2 2 1.00 0.75 116.71 

20 2 2 0.00 0.00 116.74 

21 2 2 0.57 0.50 116.74 

22 2 2 0.57 0.75 116.74 

23 3 2 0.57 0.50 116.74 

24 3 2 0.57 0.75 116.74 

25 3 1 0.29 0.50 104.76 

26 3 1 0.71 0.50 104.89 

27 3 1 0.71 0.33 104.89 

28 3 1 0.00 0.00 105.77 

29 2 1 0.71 0.33 106.00 

30 2 1 0.29 0.50 108.47 

 

Next, the proposed framework is implemented on the dataset to develop a simple MLR predictive 

model.  
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1st iteration 

The correlations between the dependent variable (y) and input parameters (x1, x2, x3, x4) are 

calculated as shown in Table 2-9. Since x2 (one-batch or two batches precast segments delivery) 

has the largest correlation, it will be moved to selected set of variables.  

Table 2-9: Correlation coefficient (1st iteration) 

Correlation coefficient (𝑟𝑥𝑖,𝑖𝑔𝑛𝑦)2 

𝑟𝑥1𝑦 0.370 

𝑟𝑥2𝑦 0.453 

𝑟𝑥3𝑦 0.041 

𝑟𝑥4𝑦 0.130 

 

Selected set{𝑥𝑖,𝑠𝑒𝑙} = {𝑥2} 

Ignored set{𝑥𝑖,𝑖𝑔𝑛} = {𝑥1, 𝑥3, 𝑥4} 

Formulate the regression model with x2 (Equation 2-49). 

𝑦 = 100.88 + 7.92𝑥2 (2-49) 

Perform partial F-test (Equations 2-50 and 2-51). 

𝐹𝑥2
=

(𝑆𝑆𝐸𝑘,𝑥2
− 𝑆𝑆𝐸𝑘+𝑚) (𝑚)⁄

(𝑆𝑆𝐸𝑘+𝑚) (𝑛 − 𝑘 − 𝑚 − 1)⁄
=

(𝑆𝑆𝐸0,𝑥2
− 𝑆𝑆𝐸1) (1)⁄

(𝑆𝑆𝐸1) (30 − 2)⁄

=
(769.05 − 400.86) (1)⁄

(400.86) (28)⁄
= 25.718 

(2-50) 

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥2
= 𝑓(𝐹𝑥𝑖

, 𝑚, 𝑛 − 𝑘 − 1) = 𝑓(25.718,1,28) = 2.282𝑒−5 < 0.05 (2-51) 

Since the p-value for x2 is lower than 0.05, x2 is significant.  
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2nd iteration 

The partial correlation coefficients between y and the ignored variables (x1, x3, x4) are calculated, 

given x2 as the control variable (Table 2-10). Since x4 (haul duration from the remote storage area 

to the working span) has the largest correlation, it will be moved to selected set of variables. 

Table 2-10: Correlation coefficient (2nd iteration) 

Correlation coefficient (𝑟𝑥𝑖,𝑖𝑔𝑛𝑦)2 

𝑟𝑥1𝑦⋅𝑥2
 0.303 

𝑟𝑥3𝑦⋅𝑥2
 0.099 

𝑟𝑥4𝑦⋅𝑥2
 0.331 

 

Selected set{𝑥𝑖,𝑠𝑒𝑙} = {𝑥2, 𝑥4} 

Ignored set{𝑥𝑖,𝑖𝑔𝑛} = {𝑥1, 𝑥3} 

Formulate the regression model with x2 and x4 (Equation 2-52).  

𝑦 = 96.039 + 7.891𝑥2 + 9.608𝑥4 (2-52) 

Perform partial F-test (Equations 2-53 to 2-56). 

𝐹𝑥4
=

(𝑆𝑆𝐸1,𝑥4
− 𝑣) 1⁄

(𝑆𝑆𝐸2) 27⁄
=

(400.866 − 252.327) 1⁄

(252.327) 27⁄
= 15.894 (2-53) 

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥4
= 𝑓(15.894,𝑚, 𝑛 − 𝑘 − 1) = 𝑓(15.894,1,27) = 0.000 < 0.05 (2-54) 

𝐹𝑥2
=

(𝑆𝑆𝐸1,𝑥2
− 𝑆𝑆𝐸2) 1⁄

(𝑆𝑆𝐸2) 27⁄
=

(617.663 − 252.327) 1⁄

(252.327) 27⁄
= 39.092 (2-55) 

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥2
= 𝑓(39.092,𝑚, 𝑛 − 𝑘 − 1) = 𝑓(39.092,1,27) = 0.000 < 0.05 (2-56) 

Since the p-value for x2 and x4 is lower than 0.05, both variables are significant. 
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3rd iteration 

The partial correlation coefficients between y and the remaining variables (x1, x3) are calculated, 

given x2 and x4 as the control variables (Table 2-11). Since x1 (the number of trailer trucks) has the 

largest correlation, it will be moved to selected set of variables. 

Table 2-11:Correlation coefficient (3rd iteration) 

Correlation coefficient (𝑟𝑥𝑖,𝑖𝑔𝑛𝑦)2 

𝑟𝑥1𝑦⋅𝑥2𝑥4
 0.496 

𝑟𝑥3𝑦⋅𝑥2𝑥4
 0.014 

 

Selected set{𝑥𝑖,𝑠𝑒𝑙} = {𝑥2, 𝑥4, 𝑥1} 

Ignored set{𝑥𝑖,𝑖𝑔𝑛} = {𝑥3} 

Formulate the regression model (Equation 2-57). 

𝑦 = 107.107 + 6.610𝑥2 + 9.518𝑥4 − 3.759𝑥1 (2-57) 

Perform partial F-test (Equations 2-58 to2-60). 

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥2
= 𝑓(38.84,𝑚, 𝑛 − 𝑘 − 1) = 𝑓(38.84,1,26) = 0.000 < 0.05 (2-58) 

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥4
= 𝑓(24.29,𝑚, 𝑛 − 𝑘 − 1) = 𝑓(24.29,1,26) = 0.000 < 0.05 (2-59) 

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥2
= 𝑓(16.062,𝑚, 𝑛 − 𝑘 − 1) = 𝑓(16.062,1,26) = 0.000 < 0.05 (2-60) 

Since the p-value for all input variables is lower than 0.05, all variables are significant. 

4th iteration 

The partial correlation coefficients between y and the last ignored variable (x3) is calculated, given 

x1, x2, and x4 as the control variables (Table 2-12). Since x3 (the percentage of the total number of 
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segments on one-span to be placed in the remote storage area) has the largest correlation, it will 

be moved to selected set of variables. 

Table 2-12: Correlation coefficient (4th iteration) 

Correlation coefficient (𝑟𝑥𝑖,𝑖𝑔𝑛𝑦)2 

𝑟𝑥3𝑦⋅𝑥2𝑥4𝑥1
 0.0469 

 

Selected set{𝑥𝑖,𝑠𝑒𝑙} = {𝑥2, 𝑥4, 𝑥1, 𝑥3} 

Ignored set{𝑥𝑖,𝑖𝑔𝑛} = 𝜑 

Formulate the regression model (Equation 2-61). 

𝑦 = 106.928 + 6.603𝑥2 + 9.0278𝑥4 − 3.776𝑥1 + 0.839𝑥3 (2-61) 

Perform partial F-test (Equations 2-62 to 2-65). 

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥2
= 𝑓(37.66,𝑚, 𝑛 − 𝑘 − 1) = 𝑓(37.66,1,25) = 0.000 < 0.05 (2-62) 

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥4
= 𝑓(17.17,𝑚, 𝑛 − 𝑘 − 1) = 𝑓(17.17,1,25) = 0.000 < 0.05 (2-63) 

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥2
= 𝑓(15.73,𝑚, 𝑛 − 𝑘 − 1) = 𝑓(15.73,1,25) = 0.000 < 0.05 (2-64) 

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥3
= 𝑓(0.264,𝑚, 𝑛 − 𝑘 − 1) = 𝑓(15.73,1,25) = 0.612 > 0.05 (2-65) 

The p-value calculated for x3 is higher than 0.05, therefore, the x3 is insignificant and needs to be 

moved to the ignored set. The final MLR model remains the same as 3rd iteration (Equation 2-57), 

where y is the desired install hours (hour), 𝑥1is the number of tractors, 𝑥2is the delivery batch, 

and𝑥4is the duration to remote storage area. 
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2.5.1 Model verification 

The verifications of BLUE assumptions are required for the final MLR model (Equation 2-57). 

2.5.1.1  Checking heteroscedasticity 

The Breusch-Pagan results are shown in Table 2-13. As the test p-value is larger than 0.05 (i.e., 

significant level), the variance of the error term is constant, thus, no heteroscedasticity is 

encountered. 

Table 2-13: Breusch-Pagan test for OLS-based regression model  

Variable Degree of freedom 𝜒2 p-value 

x1, x2, x4 26 36.052 0.4662 

 

2.5.1.2  Checking multicollinearity 

The VIF test of multicollinearity results are shown in Table 2-14. For all the input variables the 

VIF value is close to 1 (smaller than 10), the MLR model experiences no multicollinearity. 

Table 2-14: VIF values for checking multicollinearity 

Variable VIF 

x1 1.10 

x2 1.10 

x4 1.00 

 

2.5.1.3  Checking autocorrelation 

Durbin-Watson test is conducted to calculate the d-statistic value. The result shows that the d value 

is 1.748, which is close to 2, therefore, autocorrelation does not exist between the error terms. 
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2.5.1.4  Checking normality of error 

The normality assumption is critical when if the sample size is small (less than thirty recorded 

data). In the current case, the number of records in data set is thirty (30); thus, the normality of 

error terms needs to be tested. The Anderson-Darling test for normal distribution has a critical 

value of 0.7316 (sample size of 30 and percentage level of 0.05). In the current MLR model, the 

Anderson-Darling value of 0.722 is obtained, which is lower than the critical value suggested (refer 

to Equation 9). Therefore, the MLR error terms follow a normal distribution. 

2.5.2 Cross-checking against trial-and-error approach 

Table 2-15 summarizes all the potential MLR models, formulated by considering all the possible 

subsets of input variables (i.e. x1, x2, x3, and x4). The evaluation metrics of RMSE, R2, and Adjusted 

R2 are determined for each MLR model based on Equations (48), (67) and (68). The R2 measures 

the correlation between predicted and observed dependent variables (Equation 2-67). The Adjusted 

R2 is the modified form R2 which considers the number of input variables in the regression model 

(Equation 2-68). Note, the Adjusted R2 value would only increase if the added input variable 

improves the explanatory power of the model. The MLR equation with the least RMSE value and 

highest Adjusted R2 is connected with the subset that includes x1, x2, and x4. The result is identical 

to the one derived by applying the proposed framework (Equation 2-57). Thus, the proposed 

approach is cross-validated. 

𝑅2 =
∑(�̂�𝑖 − �̄�)2

∑(𝑦𝑖 − �̄�)2
 (2-67) 
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where𝑦𝑖is the observed dependent variable, �̂�𝑖 is predicted dependent variable, and �̄� is the mean 

value of actual dependent variable. 

𝐴𝑑𝑗𝑠𝑢𝑡𝑒𝑑 𝑅2 = 1 −
(1 − 𝑅2)(𝑛 − 1)

(𝑛 − 𝑘 − 1)
 (2-68) 

where n is the number of recorded data sets, and k is the number of predictors in the regression 

model. 

Table 2-15: Regression model formulated by use of trial-and-error approach 

Model 

identifier 

Independent 

variables 

Formulated regression model RMSE R2 Adjusted 

R2 

1 Constant 110.9 5.15 - - 

2 x1 124.86 – 5.58x1 4.37 0.304 0.279 

3 x2 100.88 + 7.92x2 3.78 0.479 0.460 

4 x3 108.81 + 3.70x3 5.11 0.051 0.017 

5 x4 105.99 + 9.70x4 4.70 0.197 0.168 

6 x1 x2 112.06 – 3.81 x1 + 6.62 x2 3.34 0.608 0.579 

7 x1 x3 122.77 – 5.63 x1 + 3.90 x3 4.27 0.360 0.313 

8 x1 x4 119.87 – 5.52 x1 + 9.54 x4 3.80 0.494 0.457 

9 x2 x3 98.81 + 7.91 x2 + 3.65 x3 3.67 0.528 0.493 

10 x2 x4 96.04 + 7.89 x2 + 9.61 x4 3.06 0.672 0.648 

11 x3 x4 105.81 + 0.64 x3 + 9.32 x4 4.78 0.198 0.139 

12 x1 x2 x3 110.09 – 3.87 x1 + 6.58 x2 + 3.80 x3 3.16 0.661 0.622 

13 x1 x2 x4 107.11 – 3.76 x1 + 6.61 x2 + 9.52 x4 2.45 0.797 0.774 

14 x1 x3 x4 119.65 – 5.54 x1 + 0.96 x3 + 8.98 x4 3.86 0.497 0.439 

15 x2 x3 x4 95.87 + 7.89 x2 + 0.62 x3 + 9.24 x4 3.11 0.673 0.635 

16 x1 x2 x3 x4 106.93 – 3.77 x1 + 6.60 x2 + 0.83 x3 + 

9.02 x4 

2.48 0.799 0.767 
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2.5.3 Prediction error estimation 

To estimate the error of point prediction with a significance level of 0.05, a data point is postulated 

for illustration. It has been assumed that: there are three trailer trucks rented for hauling segments; 

the segments are delivered in two batches (the 1st batch of seven segments would be delivered on 

the night before installation starts, and the 2nd batch delivered on the following night); the haul 

duration for a trailer truck to transit from the remote storage area to the working span is 45 minutes. 

As such, the number of trucks (x1), the delivery batch (x2), and the duration to remote storage area 

(x4) are fixed as 3, 2, and 0.75, respectively. As per Equations (2-69) to (2-75), the range of the 

cycle-time is predicted between 113.699 hours and 118.679 hours. Note, the observed value for 

this point estimate is 116.74 (Appendix B, Table 18, date set 24) which lies in the predicted range. 

[𝑥0] = [1 𝑥1 𝑥2 𝑥4] = [1 3 2 0.75] (2-69) 

�̂�0 = 107.107 + 6.610𝑥2 + 9.518𝑥4 − 3.759𝑥1 = 116.189 (2-70) 

𝜎𝑟𝑒𝑠
2 =

𝑆𝑆𝐸

𝑛 − 𝑘 − 1
=

155.9717

26
= 5.999 (2-71) 

(𝑋𝑇𝑋)−1 = [

1.7357 -0.4318 -0.3621 -0.3234
-0.4318 0.1467 0.0500 0.0035
-0.3621 0.0500 0.1875 -0.0008
-0.3234 0.0035 -0.0008 0.6216

] (2-72) 

𝑠. 𝑒. = √𝜎𝑟𝑒𝑠
2 [𝑥0](𝑋𝑇𝑋)−1[𝑥0]𝑇 = √5.999 × 0.2446  = 1.211 (2-73) 

𝑡(𝛼/2,𝑛−𝑘−1) = 𝑡(0.025,26) = 2.056 (2-74) 

�̂�0 ± 𝑡(𝛼/2,𝑛−𝑘−1) × 𝑠. 𝑒. = 116.189 ± 2.056 ×  1.211 =  116.189 ± 2.49 (2-75) 
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2.6 MSR FRAMEWORK AGAINST GENERAL PRACTICE OF MLR MODELLING  

The general practice of MLR modelling is to include all the identified input variables and calibrate 

the model. The OLS optimization method is applied to estimate the coefficients of independent 

variables. Equation (2-76) shows the OLS-based MLR model. 

𝑦 = −88.525 + 0.010𝑥1 − 0.013𝑥2 + 0.006𝑥3 + 0.259𝑥4 − 0.184𝑥5 + 0.030𝑥6

+ 0.039𝑥7 

(2-76) 

2.6.1 Verification 

2.6.2 Check heteroscedasticity 

Table 2-16 shows the results of the Breusch-Pagan test. As the p-value is larger than 0.05 (i.e., 

assumed significant level), the variance of the error term is constant. 

Table 2-16: Breusch-Pagan test for OLS-based regression model 

Independent variable 𝜒2 p-value 

x1 0.20 0.6545 

x2 0.59 0.4408 

  0.13 0.7202 

x4 1.37 0.2416 

x5 0.07 0.7942 

x6 0.83 0.3627 

x7 0.12 0.7280 

Fitted values of y 2.50 0.1142 
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2.6.3 Check multicollinearity 

Except x5, all the variables have VIF higher than 10 (Table 2-17). The result shows that the 

multicollinearity exists in the formulated regression model. 

Table 2-17: VIF values 

Independent variable VIF 

x6 88.17 

x3 58.65 

x2 55.28 

x7 49.96 

x1 48.57 

x4 31.43 

x5 2.14 

 

2.6.4 Check autocorrelation 

The d value is 1.806, which is closed to 2, therefore, no autocorrelation is experienced in MLR. 

2.6.5 Check normality of error variance 

The assumption is critical when if the sample size is small. In the current scenario, the number of 

data set is larger than 100 and there is no need to check the normality of error terms. 

2.6.6 Model validation 

To validate the regression model for prediction, both K-fold cross-validation method and PRESS 

statistics have been tested. In this research study, k is assumed to be ten for applying the k-fold 

method. The resulting SSE values for each test are given in Table 2-18. The total SSE and the 

PRESS values are calculated by Equation (2-77) and Equation (2-78), respectively. In both tests, 
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the resulting SSE values are compared with the OLS-based regression model SSE (Equation 2-79) 

and (Equation 2-80). This model can be validated if the SSE ratios are both in the acceptable range 

(10%-15%). Using both the K-fold and PRESS validation methods, it can be seen that the SSE 

ratios are slightly higher than the acceptable range. As a result, this regression model might be 

over-fitted to the data. 

Table 2-18: SSE values for k-fold cross-validation 

Test 1 2 3 4 5 6 7 8 9 10 

SSE 1214.0 1249.7 793.6 369.2 185.2 623.2 436.9 345.8 321.9 703.3 

 

𝑆𝑆𝐸𝑘−𝑓𝑜𝑙𝑑 = ∑𝑇𝑒𝑠𝑡𝑖(𝑆𝑆𝐸) = 6242.8

𝑘

𝑖=1

 (2-77) 

𝑃𝑅𝐸𝑆𝑆 = 𝑆𝑆(𝑃𝑅𝐸𝑆𝑆 residuals) = ∑𝑒𝑖
∗2

𝑛

𝑖=1

= 79.36 + 5.69+. . . +27.83 = 6253.5 (2-78) 

𝑆𝑆𝐸𝑘−𝑓𝑜𝑙𝑑 

𝑆𝑆𝐸𝑂𝐿𝑆 𝑀𝑜𝑑𝑒𝑙
=

6242.8

5285.6
= 1.181 (2-79) 

𝑃𝑅𝐸𝑆𝑆

𝑆𝑆𝐸𝑂LS 𝑀𝑜𝑑𝑒𝑙
=

6253.5

5285.6
= 1.183 (2-80) 

Contrasting the results with proposed regression model 
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The developed model which includes all the input variables (Equation 2-76) compared to the 

proposed regression model (Equation 2-36) has several drawbacks. Firstly, Equation (2-76) 

requires seven input variables compared to two inputs of Equation (2-36). Having more input 

variables would result in more effort in data collection, and a more complicated application. 

Secondly, the high multicollinearity between the input variables would lead to the violation of 

BLUE assumptions and reduce the reliability of the model. Multicollinearity coupled with the 

validation results, further supports the claim that the model has redundant input variables. On the 

other hand, Equation (2-36) reduces the chance of over-fitting which would lead to more reliable 

estimates. 
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2.7 CONCLUSION 

Regression analysis results in simple equations that sufficiently represent real-world systems in 

civil engineering. Regression methods can be applied to tackle conventional “historical data” as 

well as emerging “big data” problems. Regression has not been able to catch up with rapid 

technology advances and practical application needs. The real-world problems can be mind-

boggling, and the data often contain noises or missing information. On the other hand, the problem-

solving methods are expected to be computationally simple, fast to calibrate, straight-forward to 

explain, and easy to update as new data become available. To be acceptable and truly appealing to 

practical applications, user experiences of data-based, analytics-driven decision-support systems 

in civil engineering must not be perceived as tapping “black box” or requiring too much “trial-

and-error”.  

This Chapter formalizes a generic framework for generating MLR models consisting of variable 

selection, model verification, model validation, and prediction error estimation. A refined version 

of stepwise regression is implemented for variable selection; if any of the OLS (ordinary least 

square) assumptions are violated, the WLS is used for estimating the MLR coefficients. The 

proposed framework is illustrated and tested on two case studies. The UCI machine learning 

dataset is widely used for demonstrating calculation procedures and comparison with related non-

linear regression models. Previous studies on estimating concrete slump have produced ANN and 

non-linear regression models for the same dataset with cement, blast furnace slag, fly ash, water, 

superplasticizer, coarse aggregate, and fine aggregate as model inputs. The non-linear model 

includes seven inputs and needs fifty-six regression coefficients to be fixed. The ANN model 

requires fifty-six transformation weights to be fixed. On the contrary, the MLR model resulting 
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from the proposed framework requires only two input variables (blast furnace slag and water). Its 

prediction performance is better than the non-linear regression model which was developed in the 

previous research. Although the ANN model marginally outperformed the MLR model in terms 

of smaller errors on point-value predictions, the streamlined MLR model was capable of 

analytically determining a range around the point-value. The practical case study demonstrates the 

advantages of the proposed framework over the trial-and-error approach in variable selection. With 

four input variables, the trial-and-error approach would require building and comparing sixteen 

MLR models. The proposed MLR framework and the trial-and-error approach resulted in the 

identical model as the final solution; however, the proposed framework is analytical, much simpler 

and scalable.  

It is worth mentioning that both case studies used in this research feature a relatively small number 

of input variables (the concrete slump dataset has seven inputs, while the precast bridge dataset 

has four). With a small number of input variables, established factor selection methods (i.e. 

forward selection, or backward elimination) and the modified stepwise method would end up with 

similar regression models. Details on a more practical application with larger dataset in connection 

with many-input-variable applications is given in the next Chapter.  
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CHAPTER 3 : LABOUR-HOUR PREDICTION MODELS 

FACTORING IN PROJECT DESIGN FEATURES 

This chapter describes a Modified Stepwise Regression application in more practical setting of 

labour productivity prediction of steel fabrication. This Chapter proposes a data-driven approach 

that uses Multiple Linear Regression (MLR) and available historical data from Building 

Information Models (BIM) to associate project labour-hours and project design features. The 

proposed framework in this chapter also encompasses analytical methods for validating MSR 

model and establishing range estimates for point-value predictions. 

3.1 INTRODUCTION 

On labour-driven construction tasks, labour cost is measured by labour-hours and then converted 

into dollars by multiplying crew specific hourly rates (Alfeld, 1988). Relying on experiences and 

“gut feels” to estimate labour-hours on steel fabrication work packages has been recognized as one 

of the main factors that account for insufficient cost budgeting in planning and eventually lead up 

to budget overrun in project execution (Sawada et al. 2006; Song and AbouRizk 2006). In 

construction engineering, confident prediction of labour resource requirements based on project 

design information is vitally important for cost estimating, planning and controlling construction 

projects. Structural engineers also need a reliable assessment of construction cost implication in 

evaluating alternative project designs (Wiesenberger 2011). Recent advances in information 

technology, including the adoption of building information Modelling (BIM), and bar-coding for 

resource tracking, has gradually improved project data availability (Shen and Issa 2010) while also 



 

 

74 

presenting a great opportunity for improving construction productivity and efficiency (Walasek 

and Barszcz 2017). Monteiro and Poças Martins (2013) demonstrated the possibility of extracting 

quantities from a BIM model and created a model ready for visualization for estimators and 

planners. Plebankiewicz et al. (2015) investigated BIM-based cost estimating systems and found 

BIM could generate accurate quantity take-offs for project cost estimating. Taghaddos et al. (2016) 

proposed an automated system to perform material take-offs from BIM models and pointed the 

need in further research in this area by analyzing productivity data and deriving labour-hours based 

on estimated volumes and weights from the model. In recent years, the number of steel fabricators 

which implement the BIM technology in creating fabrication models and developing detailed shop 

drawings has been steadily growing. Adoption of BIM on construction projects opens new 

gateways to data collection and presents new possibilities for data analysis (Taghados 2015). 

Nevertheless, an analytical framework has yet to be formalized for selecting proper prediction 

factors and establishing valid prediction models in correlating project design features with required 

labour-hours in practical applications. The present research is intended to address the following 

issues identified in the current practice:  

1. Lack of integration between labour cost tracking systems and project estimating and 

planning systems makes it difficult to validate and implement developed productivity 

models. 

2. The set of inputs factored in the majority of labour cost predictive models is generally 

insufficient due to data availability constraints. 

3. The missing connection with design features in most of the established labour cost 

prediction models does not allow for a straight-forward evaluation of various design 

alternatives in terms of project cost performance. 
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Multiple Linear Regression (MLR) is widely implemented as an effective technique for developing 

data-driven prediction models on a variety of engineering applications (Jafarzadeh et al. 2015). 

MLR is a form of regression analysis where two or more input variables are used to predict an 

output variable. Selected examples of MLR applications in the literature include predicting 

building construction cost (Lowe et al. 2006), assessing the service condition of pipelines (El-

abbasy et al. 2014), and planning seismic retrofit construction (Jafarzadeh et al. 2015).  Before 

implementing more complicated nonlinear methods such as Artificial Neural Networks (ANN), it 

is worthwhile to take MLR as the foundation methodology and take full advantage of MLR in 

gaining insight into the problem definition and the available data (Jafarzadeh et al. 2015; Verlinden 

et al. 2008; Siu et al. 2014).  

Frequently used methods for variable selection in MLR include correlation analysis and trial-and-

error, which are time-consuming, tedious, and often end up with sub-optimal and case-dependent 

solutions (Draper and Smith 1998). This research proposes a new analytical framework to 

determine the best achievable prediction accuracy in applying MLR and maintain simplicity in 

tackling the complexity inherent in real-world problems. As such, the minimal set of inputs can be 

identified in creation of an MLR model in its leanest form without compromising the maximum 

prediction accuracy achievable. The framework is proposed for the practical context of structural 

steel fabrication by using historical data from BIM and project labour costing systems. Before 

presenting the framework and the implementation case, background of structural steel fabrication 

is first given.  



 

 

76 

3.2 STRUCTURAL STEEL FABRICATION 

Steel is one of the primary materials used for providing structural stability for residential and 

commercial buildings, industrial plants such as oil and gas pipe racks, and infrastructure projects 

such as bridge girders (Warrian 2010). Fabrication of structural steel elements brings significant 

quality and productivity benefits in construction (Liddy and Cross 2002). Steel fabrication is 

characterized by labour-intensive work processes on bespoke project designs. Specialized trades 

of labourers perform a variety of operations such as handling, cutting, fitting, welding, and surface 

processing (e.g., sandblasting and painting). Structural steel fabrication is generally estimated 

based on the weight of a steel project, ignoring project complexity and design details (Sawada et 

al. 2006). Song and AbouRizk (2003) introduced a simulation model for a steel fabrication shop, 

which represented the flows of steel pieces and resources on the fabrication shop floor; the 

simulation model was further developed into a hybrid model utilizing ANN and operations 

simulation in an attempt to predict labour costs on structural steel fabrication. O’Neil and 

Rozmarin (2010) created a Monte Carlo simulation model to estimate labour costs in bridge steel 

fabrication with the purpose of assessing the effects of change orders.  

The various levels of granularity for data collection in the structural steel industry are generalized 

in Figure 3-1. The finest level is the material level, where raw materials (e.g. steel plates) are 

purchased from different suppliers and transferred to the fabrication shops for further processing. 

The raw materials are then processed through cutting, drilling, and welding to create a piece – that 

is a structural element as per design specifications. As an example, a beam fabricated out of wide 

flange sections with two end plates is classified as a piece. Establishing the work breakdown 

structure of a project according to the construction sequence results in the definition of “Division”. 
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A division of a steel project is defined with fabrication processes (e.g., handling, cutting, etc.), key 

engineering design parameters (e.g., section dimensions) and detailed design features (e.g., welds, 

bolts etc.). Several structural steel pieces that are part of an erection phase and need to be ready at 

the construction site prior to field erection constitute a division. Finally, a project is one division 

or a combination of a limited number of interrelated divisions.  

Steel projects consist of 

several divisions.

Pieces require human 

resources (labor-hour) to 

be connected, and 

makeup divisions.

Project Level

Piece-1

Piece-2

 

Piece-z

Material-1

Material-2

 

Material-t

Structural 

Steel 

Projects 

Division-1

Division-2

 

Division-n

Division Level Piece Level Material Level

Raw material requires 

human resources (labor-

hour) to create steel 

pieces e.g. welding, 

cutting, fitting.
 

Figure 3-1: Steel fabrication project’s scope structure 

In the current practice of project management, the division-level is the finest level of granularity 

for keeping track of actual labour-hours spent in job costing and project control systems (Hu et al. 

2014). It is also worth mentioning that the granularity of data captured in a company’s job costing 

system (e.g. labour-hours by division in the case of structural steel fabrication) is generally dictated 

by contractual requirements. For example, a fabricator collects division-level data that are 

sufficient to generate project earned value reports required by clients. On the other hand, it is 

prohibitively expensive and hence not practically feasible to track labour-hours on work packages 
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at the piece level or the material level on the shop floor. Hence, this study sets focus on the 

characterization of the complexity of division considering engineering design features; in such a 

way, historical data accumulated in databases underlying BIM models for those structural steel 

projects completed over the past decade can be taken advantage of to its fullest. 
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3.3 PROPOSED FRAMEWORK AND IMPLEMENTATION 

This research proposes an application framework that uses MLR as the analytical methodology to 

associate project labour-hours and project design features. MLR provides a predictive model that 

is one of the simplest forms of predictive analytics; however, it represents a transparent and 

straight-forward mathematical equation generalized from data, while also enabling insightful 

evaluation of quality of the available data and significance of input factors. It is noteworthy that if 

the quality of data is insufficient, direct application of more complex analytics might cover up 

noises in the data, potentially resulting in unrealistic/over-fitted models. Given a dataset 

representing a certain scope of structural steel fabrication, this framework is simple and effective 

to select the most relevant predictive factors in the creation of a streamlined predictive model 

assisting in the determination of required labour-hours.  

In the nutshell, the framework relies on the application of an enhanced version of the stepwise 

regression technique to select the most relevant predictive factors and generates a predictive model 

without compromising the achievable accuracy of regression. The complete framework 

incorporates proven analytical and statistical methods in support of enabling MLR application, 

validating the resulting model, and establishing range estimates for point-value predictions. This 

framework is best suited to real-world application scenarios (1) where a large number of input 

parameters are present and the historical data are likely to contain noises (incomplete or inaccurate 

records); (2) where there is a need to develop a quantitatively reliable, statistically significant 

predictive model in the leanest, simplest form, which features the most important input factors and 

tolerates noise in data to a certain degree, but is  not over-fitted with noise. The roadmap for 

guiding the implementation of the proposed framework is shown in Figure 3-2. This framework 
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has been implemented specifically for streamlining design features in the prediction of labour-

hours required for a division in structural steel fabrication, which is to be elaborated in the 

remainder of this Chapter. 

GET PROJECT DESIGN 
FEATURES AND TAKEOFF 

DATA FROM BIM DATABASE

GET MATCHING COST DATA 
FROM PROJECT COSTING 

DATABASE

SELECT A SUBSET OF BIM 
DESIGN FEATURES AS MLR 

INPUT VARIABLES BY 
MODIFIED STEPWISE 

REGRESSION

ESTABLISH LINEAR 
REGRESSION MODEL BY 

ORDINATE LEAST SQUARE 
METHOD

VERIFY MLR MODEL 
ASSUMPTIONS

ESTIMATE ERROR RANGE 
AND CONFIDENCE 

INTERVAL FOR MLR POINT 
VALUE OUTPUT

VALIDATE PREDICTION 
PERFORMANCE BY K-FOLD 

CROSS VALIDATION

PERFORM PRACTICAL 
VALIDATION AGAINST 

CONVENTIONAL WISDOM, 
RULES OF THUMB, AND 

SUBJECT EXPERTS ON NEW 
CASES

MLR MODEL READY TO 
DEPLOY AS DECISION 

SUPPORT 

TEST 
HOMOSCEDASTICITY

TEST 
AUTOCORRELATION

TEST 
MULTICOLLINEARITY

TEST  NORMALITY

 

Figure 3-2: Proposed framework application 

3.3.1 Input variable selection 

Using fewer input variables is favourable from the practical point of view as it minimizes data 

collection efforts in the long run. A regression model created with a smaller subset of the identified 

input features, instead of all, also has advantages in statistical modelling. Minimizing the number 

of input variables significantly reduces the likelihood of over-fitting, collinearity (high correlation 

between input variables), and transferring noise from data to the calibrated model (Ivanescu et al. 

2016).  Having too many input variables, the regression model tends to fit itself to the noise hidden 
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in the training set instead of generalizing underlying patterns and hidden relationships. A proper 

method for variable selection removes those insignificant or redundant input variables from the 

regression model (Akinwande et al. 2015). To elaborate more on the variable selection, Figure 3-3 

(a) represents the output variable Y, and input variables X1, X2, X3, and X4. Each variable accounts 

for part of the output variable Y (Figure 3-3 (b)). Figure 3-3 (c) and (d) depicts the explanatory 

power of the group of input variables in predicting Y. Although X2 and X3 individually have high 

explanatory power, by removing them, the explanatory strength of the streamlined group of input 

variables (X1 and X4) would not be compromised, as illustrated in Figure 3-3 (d). 

 

Figure 3-3: Variable selection concept: (a) inputs (X1, X2, X3, & X4) and output (Y), (b) explanatory 

power of individual inputs, (c) explanatory power of all the inputs combined, (d) explanatory power of 

selected variables. 
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At the core of the proposed MLR modelling framework, a variable selection technique called 

Modified Stepwise Regression (MSR) –which has been developed in authors’ previous computing 

research (Mohsenijam et al. 2016)- is utilized for identifying only those design features relevant 

to the prediction of steel fabrication labour-hours. This step is presented in Figure 3-2 “Selecting 

a Subset of BIM Design Features as MLR Input Variables”. Note, once the subset is selected in 

such an analytical way, adding more variables would not enhance the performance of the MLR 

model in terms of accuracy. 

3.3.2 Data Preparation 

Databases associated with BIM in our partner company contains forty-two project-related design 

features (columns) and 1559records (rows), each record representing a project division for 

fabrication, listed in Table 3-2. Labour-hours spent in fabricating each division are extracted from 

job costing databases. Note that labour-hours collected for each project division account for total 

labour-hours spent in fabrication including handling, cutting, fitting, welding, and surface 

processing. The collected data mainly represent project divisions in the industrial sector, with 

labour-hours ranging from 100 to 7000. It is worth mentioning that in the current research, the 

actual dataset was linearly scaled prior to performing analysis in order not to reveal the company’s 

sensitive productivity information while keeping the original patterns and relationships inherent in 

the data. Sample of raw data used for training in this research is given in  

Table 3-1. The dataset used for this Chapter can be accessed at 

https://figshare.com/s/8de57c3a0ca8f8ed37c4. Note that the collected data represent a steel 

fabrication in northern Alberta; however, methods proposed in this research are generic and 

replicatable to other settings.  

https://figshare.com/s/8de57c3a0ca8f8ed37c4
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Although the variables in Table 3-2 are all considered relevant in predicting labour-hours, a certain 

interdependency and redundancy exist between different variables and some can be explained by 

others. For instance, material length and weight are highly correlated; by knowing one, the other 

can be deduced. Next, a variable selection technique is applied to streamline the input data.  

Table 3-1: Sample of raw data used for training 

 

  

Input 

variables 
Description Unit Sample 1 Sample 2 

X1 Division Weight Kg 56746 31660 

X2 Angle Meter 88.271 146.34 

X9 Wide flange Meter 246.155 438.04 

X14 Plate Meter-squared 31.981 99.52 

X18 Hollow steel sections Meter 194.325 0 

X32 Partial penetration weld Meter 98.318 32.332 

Y Actual Labour-hours Hours 1590 912 
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Table 3-2: Design Features Extracted from The BIM Databases 

BIM Extracted Design features Unit Category Labels 
Division Weight Weight (kg) Material-Weight X1 

Angles Length (m) Material-Steel Sections X2 

Channels  Length (m) Material-Steel Sections X3 

I Beams  Length (m) Material-Steel Sections X4 

Miscellaneous beams  Length (m) Material-Steel Sections X5 

Miscellaneous channels  Length (m) Material-Steel Sections X6 

Structural Tees from W Shapes  Length (m) Material-Steel Sections X7 

Tarpon Z Sections  Length (m) Material-Steel Sections X8 

Wide flange Length (m) Material-Steel Sections X9 

Crane rails  Length (m) Material-Steel Sections X10 

Bent plate  Area (m2) Material-Plate X11 

Checker plate  Area (m2) Material-Plate X12 

Grating  Area (m2) Material-Plate X13 

Plate  Area (m2) Material-Plate X14 

Extra Extra Strong Pipe  Length (m) Material-Pipes X15 

Extra Strong Pipe  Length (m) Material-Pipes X16 

Standard Pipe  Length (m) Material-Pipes X17 

Hollow steel sections  Length (m) Material-Hollow Sections X18 

Round hollow steel sections  Length (m) Material-Hollow Sections X19 

Cold formed channels  Length (m) Material-Cold-formed X20 

Tarpon Cold Formed Channels  Length (m) Material-Cold-formed X21 

Flat bar  Length (m) Material-Bars X22 

Rebar Length (m) Material-Bars X23 

Round bar  Length (m) Material-Bars X24 

Square bar  Length (m) Material-Bars X25 

Hex Bar  Length (m) Material-Bars X26 

Expansion Anchor Bolts  Quantity Material-Anchors X27 

Heavy Duty Expansion Anchor Bolts  Quantity Material-Anchors X28 

Threaded Anchor Rods  Quantity Material-Anchors X29 

Adhesive Anchor Cartridges  Quantity Material-Anchors X30 

Complete penetration weld  Length (m) Connection-Welding X31 

Partial Penetration Weld  Length (m) Connection-Welding X32 

Bevelled Washers  Quantity Connection-Bolted X33 

Button Head Machine Bolt  Quantity Connection-Bolted X34 

Compressible Washers with DTI  Quantity Connection-Bolted X35 

Flat Washers  Quantity Connection-Bolted X36 

Hex Head Machine Bolt  Quantity Connection-Bolted X37 

Hex Nuts  Quantity Connection-Bolted X38 

Hex Type Bolts  Quantity Connection-Bolted X39 

M Type Bolts  Quantity Connection-Bolted X40 

Mechanical Pipes Length (m) Material-Pipe X41 

Nelson Studs Quantity Connection-Stud X42 
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3.4 INPUT VARIABLE SELECTION 

For an MLR model with n predictors and one output, there are 2𝑛 subsets of variables that can be 

correlated with the output. In the current case, the original number of division design features in 

BIM is forty-two, thus making it practically infeasible to examine all the possible subsets of input 

variables. Commonly-applied stepwise methods for variable selection in the literature in 

connection with regression analysis can be classified into forward selection vs. backward 

selection.   

The forward selection technique starts with a linear regression model that contains no input 

variables and adds variables to the regression model based on correlation and statistical 

significance (Seber and Lee 2003). On the other hand, backward elimination begins with the full 

set of variables and iteratively removes insignificant variables to reach the final subset (Wang and 

Jain 2003). However, a selected variable in forward selection is never removed in later iterations; 

likewise, a variable cannot be reintroduced once it has been eliminated in the backward elimination 

process. As such, both forward selection and backward elimination methods tend to produce a 

near-optimum subset of variables (Draper and Smith 1998). Given large datasets, applying forward 

selection and backward elimination separately on a set of input variables often leads to two 

different subsets of selected variables (Thompson 1978, Mendenhall and Sincich 2015). By 

combining the advantages from both forward selection and backward elimination while 

overcoming respective limitations of each, a modified version of stepwise regression is developed 

(Mohsenijam et al. 2016), which is briefly explained below: 
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The MSR starts with an empty set of selected variables and a full set of ignored variables (same 

as forward selection).  In each iteration, a variable with the highest partial correlation (Equation 3-

1) is selected from ignored variables; all the selected variables are tested with partial F-test 

(Equation 3-3) for statistical significance (Figure 3-4 and Figure 3-5). Note that the partial 

correlation quantifies the explanatory power of the ignored variables, which is not yet accounted 

by the selected variables.  

Y

1st Iteration 2nd Iteration

3rd Iteration: part 1 3rd Iteration: part 2

       

      

X4

X1

Y

X1

X3

       

      

X4

X1

X3

Y

X3

Y

 

Figure 3-4: Modified stepwise regression visual representation 

 

Figure 3-5: Modified stepwise regression iterations 
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𝑟𝑋1𝑌.𝑋𝑘
=

𝑟𝑋1𝑌 − 𝑟𝑋1𝑋𝑘
𝑟𝑌𝑋𝑘

√(1 − 𝑟𝑋1𝑋𝑘

2 )(1 − 𝑟𝑌𝑋𝑘

2 )

 

Where 𝑋1 is the variable that is selected in previous iterations, 𝑋𝑘is the variable for 

which the partial correlation is measured against, 𝑌is the independent variable, 𝑟𝑎𝑏is the 

correlation between 𝑎 and 𝑏 which can be obtained from Equation (3-2). 

(4-1) 

𝑟𝑎𝑏 =
𝑛 ∑𝑎𝑏 − ∑𝑎 ∑𝑏

√[𝑛 ∑𝑎2 − (∑𝑎)2][𝑛 ∑ 𝑏2 − (∑𝑏)2]
 

Where 𝑟𝑎𝑏 measures the correlation between 𝑎 and 𝑏, and 𝑛 is the size of the dataset. 

(3-2) 

𝐹𝑥𝑖
=

(𝑆𝑆𝐸𝑘−1,𝑋𝑖
− 𝑆𝑆𝐸𝑘)

(𝑆𝑆𝐸𝑘) (𝑛 − 𝑘 − 1)⁄
 

Where 𝑆𝑆𝐸𝑘is the standard error of the regression with 𝑘 variables calculated by 

Equation (3-4), and 𝑆𝑆𝐸𝑘−1,𝑋𝑖
is the standard error of the regression before adding 𝑋𝑖to 

the model, 𝑘 is the number of variables and n is the number of observations. 

(3-3) 

𝑆𝑆𝐸 = ∑(𝑦𝑖 − �̂�𝑖

𝑛

𝑖=1

)2 

Where𝑦𝑖is the dependent variable and�̂�𝑖 is the predicted value of the MLR model. 

(3-4) 

For example, given a case with five input variables (demonstrated in Figure 3-4 and Figure 3-5), 

in the first iteration, 𝑋3 is selected, since it has the highest correlation with 𝑌. In the second 
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iteration, by determining the partial correlation 𝑋1 is selected while both variables are identified 

to be significant by F-test. In the third iteration, 𝑋4 is selected, but by performing F-test it is decided 

that removing 𝑋3 has an insignificant effect on the regression model’s performance. The Modified 

Stepwise Regression would allow previously eliminated variables to be reinstated in the regression 

model; while those already selected variables can be removed in future iterations. More details on 

the analytical procedures of the Modified Stepwise Regression can be found in Mohsenijam et al. 

(2016) , along with two applications featuring relatively small numbers of input variables (four 

and seven input variables respectively), which are in contrast to a much larger dataset in the current 

research with forty-two input variables to start with.  

MATLAB 2016b (MathWorks 2016) was used for creating MLR models, performing MSR, and 

testing regression assumptions in this research. Applying MSR on the given set of input variables 

(Table 3-3) resulted in the selection of six variables out of forty-two as shown in Table 3-3 under 

“Model 6”. To demonstrate the fact that adding more variables would not enhance the performance 

of the predictive model, Models 7 and 8 are also given in Table 3. It is observed the R-square value 

remains steady at 0.680 in Models 6, 7 and 8. The six chosen input variables are (1) Division 

weight (X1, in kg), (2) Square hollow steel sections (X18, in meters), (3) Plate (X14, in square 

meters), (4) Hex type bolts (X39, quantity), (5) Complete penetration weld (X31, in meters), and 

(6) Partial penetration weld (X32, in meters).  
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Table 3-3: Variables entered the MLR model and their effect on model performance 

Model Variables in the MLR Model 
R-

Square 

Adjusted 

R-Square 

1 (Constant), X1 0.476 0.475 

2 (Constant), X1, X18 0.666 0.664 

3 (Constant), X1, X18, X14 0.671 0.670 

4 (Constant), X1, X18, X14, X39 0.675 0.674 

5 (Constant), X1, X18, X14, X39, X31 0.677 0.676 

6 (Constant), X1, X18, X14, X39, X31, X32 0.680 0.678 

7 (Constant), X1, X18, X14, X39, X31, X32, X5 0.680 0.676 

8 (Constant), X1, X18, X14, X39, X31, X32, X5, X12 0.680 0.675 

 

It is noteworthy the resulting linear regression model (Model 6) given in Equation (3-5) is 

calibrated by applying the Ordinary Least Square (OLS) coefficient estimation method. The 

regression coefficients and statistical significance (p-value) for each variable are given in Table 

3-4. All the variables selected in Model 6 have a p-value smaller than 0.05 (listed in Table 3-4) 

and thus are considered significant. Among the selected design features, “Division weight” (i.e., 

X1) and “Complete penetration welds” (i.e., X31) are identified to be more significant in predicting 

division-specific labour-hours (with smaller p-values). In addition, coefficients of all the variables 

in Equation (3-5) are positive, which implies that given more weight of a division, or more welding 

work required to fabricate the division, it would take more labour-hours to fabricate the division.  

It is noteworthy the resulting linear regression model (Model 6) given in Equation (3-5) is 

calibrated by applying the OLS coefficient estimation method. The regression coefficients and 

statistical significance (p-value) for each variable are given in Table 3-3. All the variables selected 

in Model 6 have a p-value smaller than 0.05 (listed in Table 3-3) and thus are considered 

significant. Among the selected design features, “Division weight” (i.e., X1) and “Complete 
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penetration welds” (i.e., X33) are identified to be more significant in predicting division-specific 

labour-hours, as indicated by their smaller p-values. In addition, coefficients of all the variables in 

Equation (3-5) are positive, which implies that given more weight of a division, or more welding 

work required to fabricate the division, it would take more labour-hours. 

𝑌 = 47.828 + 0.0037𝑋1 + 0.1495𝑋18 + 0.0245𝑋14 + 0.0126𝑋39 + 2.6064𝑋31

+ 0.3328𝑋32 

(3-5) 

Table 3-4: MLR variables, OLS Coefficients, and p-values 

Selected variables Coefficient p-value 

Intercept 47.8283 6.81 × 10−4 

X1 0.0037 3.24 × 10−134 

X21 0.1495 1.34 × 10−5 

X15 0.0245 3.76 × 10−3 

X41 0.0126 1.60 × 10−5 

X33 2.6064 9.79 × 10−158 

X34 0.3328 4.73 × 10−2 

 

Results from variable selection in the current case are found to well align with the conventional 

wisdom and the rules of thumb applied in the current practice of steel fabrication. This is further 

elaborated as follows: Division weight is the most commonly used parameter for estimating steel 

fabrication cost (Sawada et al. 2006). However, weight does not describe project complexity in 

full, and hence it is necessary to consider other factors to improve estimating accuracy. The fact 

that the factor “square hollow steel sections” is identified as a significant variable is attributed to 

the significant welding work required to connect them, thus considerably increasing welding hours 

(Figure 3-7).  
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In steel fabrication, plates are used for stiffening steel sections (i.e., beams and columns) and 

creating connections between structural elements. The high plate volume in a division indicates a 

significant amount of cutting and welding in fabrication (Figure 3-6). Besides welding, bolted 

connections are common practice for splicing steel pieces. Bolted connections are used to 

permanently connect fabricated components in the construction site. The higher the number of 

bolts indicates more efforts of drilling holes and handling pieces in steel fabrication. Groove 

welding is a method of permanently connecting steel pieces, which can be categorized into two 

types, namely: complete penetration welds vs. partial penetration welds. Both types of groove 

welding are labour-intensive. As the name implies, the complete penetration welds are thicker than 

the partial penetration welds, thus requiring more welding passes to be performed. The differences 

in terms of labour-hours required for each type of groove welding are clearly characterized by the 

sign and magnitude of the coefficients in connection with respective factors in the MLR model 

(Table 3-5). Complete penetration welds require much more labour-hour per unit of length than 

partial penetration welds. 

 

Figure 3-6: Cut plates with drilled holes ready to be welded to steel sections 
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Figure 3-7: Steel sections with end plates attached to square hollow sections 
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3.5 VERIFICATION AND VALIDATION 

As one of the key steps in the proposed framework, the generated model needs to be verified and 

validated to ensure the reliability and accuracy of its predictions. The verification process tests the 

underpinning theoretical assumptions of the model while also ensuring that the model’s 

representation of the problem is correct for the intended purpose of use (Sargent 2013). Model 

validation is concerned with the fact that the model achieves a consistent level of accuracy in its 

application domain. Since the proposed framework utilizes MLR in model generation, the model 

needs to first pass desired regression performance measures (i.e. RMSE or R-squared) and satisfy 

all the theoretical assumptions in applying MLR. Once the model passes the verification stage, 

methods of historical data validation, range estimation (confidence intervals) and face validation 

are used to ensure that model has a sufficient accuracy in its intended application domain (Sargent 

2013). The available historical data are generally utilized to build a model and validate it. The 

historical data validation methods proposed in this framework is K-fold validation and the results 

are given in the following sections. Further, range estimation provides a confidence interval around 

the point prediction with statistical significance; depending on where in the problem domain the 

specific point prediction falls, the resulting confidence interval would differ. For the purpose of 

face validation, two unseen cases were presented to both domain experts and the developed MLR 

model for cross-checking prediction accuracy. 

3.5.1 MLR Model Assumptions Testing 

The high correlation between input variables is called multicollinearity, which is tested by 

examining the correlation between two input variables. Variance inflation factor (VIF) is a 

commonly accepted indicator of multicollinearity (Kutner et al. 2004). For the derived regression 
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model given in Equation (3-5), the VIF values were computed and shown in Table 3-5. All the 

input variables are associated with VIF values less than three. This indicates no significant 

multicollinearity in the MLR model, which also validates the effectiveness of MSR in selecting 

relevant input factors. 

Table 3-5: VIF multicollinearity test results 

Variable VIF Value 

X1 2.84 

X18 1.05 

X14 1.05 

X39 1.62 

X31 1.01 

X32 2.13 

  

The second assumption that needs to be validated in MLR modelling is the constant variance of 

errors. Heteroscedasticity occurs when the variance of the errors shows varying patterns with 

different observations. Heteroscedasticity can be examined by using White, Goldfeld-Quandt test 

or Breusch-Pagan test (Kaufman 2013). In the presence of heteroscedasticity, coefficients 

estimated by OLS along with regression error analysis become biased and unreliable. In this 

research, the Breusch-Pagan test was used to check the null hypothesis of constant variance on 

error terms, with results shown in Table 3-6. The Breusch-Pagan p-value was calculated as 0.0001 

based on Chi-square of 109.94, which was smaller than the significant level of 0.05, thus 

confirming the presence of heteroscedasticity in the developed model in the current case. 

To eliminate heteroscedastic errors, the Weighted Least Square (WLS) method was applied to 

scale input variables linearly and remove any dependence of regression output error on the 

regression output (i.e., Y). It is noteworthy that linear scaling on variables would not affect 
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correlations between them, and therefore, would not influence the outcome of variable selection 

(Greene 2008). The MLR model consisting of the same input variables as in Equation 3-5 was 

calibrated by WLS, resulting in a new set of coefficients as shown in Equation (3-6) and Table 

3-6. The Breusch-Pagan test was conducted again to verify the effectiveness of the WLS method 

in eliminating heteroscedasticity, resulting in Chi-square of 3.59 and p-value of 0.0554. As the 

Breusch-Pagan p-value is larger than 0.05, the variance of the error terms is deemed constant; thus, 

the regression output errors from MLR are deemed homoscedastic. 

𝑌 = 18.701 + 0.0042𝑋1 + 0.1947𝑋18 + 0.0853𝑋14 + 0.0008𝑋39 + 1.7968𝑋31

+ 0.1990𝑋32 

(3-6) 

Table 3-6: MLR variables, WLS coefficients, and p-values 

Selected variables Coefficient p-value 

Intercept 18.7014 1.08 × 10−3 

X1 0.0042 4.36 × 10−77 

X18 0.1947 1.29 × 10−4 

X14 0.0853 2.19 × 10−8 

X39 0.0008 8.10 × 10−3 

X31 1.7968 5.04 × 10−15 

X32 0.1990 8.27 × 10−5 

 

The third assumption underlying MLR states that residuals from a linear regression of different 

observations should be independent. Autocorrelation occurs if patterns in output errors are 

recognized between serial observations. Durbin-Watson test is a common method for testing 

autocorrelation, which calculates the d-statistic value by Equation (3-7) (Durbin and Watson 

1950). Autocorrelation exists if the d-statistic is close to 4 or 0. A more systematic approach is to 



 

 

96 

select a significance level (i.e., 0.05 in this research study) and look up the Durbin-Watson Table 

of critical values (Durbin and Watson 1950) in order to determine the two values of dU and dL. 

The result shows that the d-statistic value is 1.128 in the current case, which is smaller than dL. 

Hence, autocorrelation is not identified in this regression model. 

Durbin-Watson d-statistic (6, 1558) = 1.128 < dL(6,1558)=1.85 (3-7) 

In addition, normality of the residuals can be checked statistically by conducting the Anderson-

Darling test (Stephens 1974). The hypothesis of normality is rejected if Anderson’s statistic value 

(a-stat) exceeds a given critical value at a presumed significance level [Stephens (1974) provides 

such critical values]. The normality assumption is critical when the sample size is small. In the 

current case, the number of data points (1500 records in BIM database) is much larger than 100; 

hence checking normality in error terms is ignored (Stephens 1987). 

3.5.2 K-Fold Cross-Validation  

The K-fold cross-validation splits the available modelling data into a training set and a test set for 

k times and evaluates model performance only based on the test set. In the k-fold cross-validation, 

sum of squared errors (SSE) for respective segments is compared with the main model’s SSE value 

(Table 3-7). If the two SSE values are close to each other (Equation 3-8) (e.g., within 10%-15% 

difference), the MLR model is validated (Sargent 2013).  In this case study, the ratio between Folds 

SSE and WLS SSE is 1.009 (Equation 3-9), which shows a difference of less than 1 percent, thus, 

the model is validated. 
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𝑆𝑆𝐸𝑘−𝑓𝑜𝑙𝑑 = ∑𝑇𝑒𝑠𝑡𝑖(𝑆𝑆𝐸) = 3.2457 × 107

𝑘

𝑖=1

 (3-8) 

𝑆𝑆𝐸𝑘−𝑓𝑜𝑙𝑑 

𝑆𝑆𝐸𝑊𝐿𝑆 𝑀𝑜𝑑𝑒𝑙
=

3.2457 × 107

3.2150 × 107
= 1.009 (3-9) 

Table 3-7: SSE values for k-fold Cross-validation 

Fold test foldSSE −10  
Test 1 610279.4   
Test 2 610620.1   
Test 3 610687.4   
Test 4 610185.3   
Test 5 610126.1   
Test 6 610029.2   
Test 7 610347.3   
Test 8 610224.9   
Test 9 610252.1   

Test 10 610616.1   
 

3.5.3 Error Range Estimation 

Validated MLR models make reliable point estimates; however, there is no identification of the 

prediction’s error range. Estimates based on MLR models inherit errors from noise in data 

available or approximations in regression fitting process (Liu 2010). A statistical approach to 

quantify the prediction’s uncertainty is to measure the confidence interval for the MLR point-value 

estimate (as illustrated in Figure 3-8). The confidence interval gives an expected range of the point-

value prediction defined at a certain confidence level. According to Liu (2010), the prediction 

interval for a point-value estimate is statistically defined by Equation (3-10).  
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�̂�0 ± 𝑡(𝑝,𝑛−𝑘−1) × 𝜎𝑝 (3-10) 

Where �̂�0 is the predicted point value of the regression model; 𝑡(𝑝,𝑛−𝑘−1)is the critical value of T-

distribution with a probability of p and degrees of freedom of n-k-1, and 𝜎𝑝is the standard deviation 

of the prediction determined by Equation (3-11).  

𝜎𝑝 = √𝜎𝑟𝑒𝑠
2 + 𝜎𝑓

2 
(3-11) 

Where𝜎𝑟𝑒𝑠 is the regression residual standard deviation which can be calculated by Equation (3-

12); 𝜎𝑓 is the standard error of regression, which can be measured by Equation (3-13). 

𝜎𝑟𝑒𝑠
2 = 𝑆𝑆𝐸/(𝑛 − 𝑘 − 1) (3-12) 

Where SSE is the sum of squared errors of regression, and n-k-1 is the regression degrees of 

freedom. 

𝜎𝑓 = √𝜎𝑟𝑒𝑠
2  𝑋0(𝑋𝑇𝑋)−1𝑋0

𝑇 
(3-13) 

Where𝑋0, in form of [1 𝑥01 ⋯ 𝑥0𝑘], is an array of input variables, for which, the confidence 

interval of the associated regression output needs to be established; X with n rows (n=number of 

observations) and k+1 columns (k=number of input variables) is the matrix of recorded data 

presented in the form of Equation (3-14). 
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𝑋 = [

1 𝑥11 ⋯ 𝑥1𝑘

1 𝑥21 ⋯ 𝑥2𝑘

⋮ ⋮ ⋮ ⋮
1 𝑥𝑛1 ⋯ 𝑥𝑛𝑘

] (3-14) 

Predicted 
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Input 
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Error 

Distribution

Confidence 

Intervals

Fitted 
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line

 

Figure 3-8: Regression confidence interval 

3.5.4 Model Validations Based on New Cases  

Application of the derived labour cost model (Equation 3-6) is demonstrated in two new cases with 

detailed inputs given in Table 3-8. Note Cases (1) and (2) were prepared by extracting data from 

more recently completed projects by the same steel fabricator, which had not been “seen” by the 

calibrated regression model. The actual labour-hours spent on this project were also available in 

the labour costing system for validating the predicted point and range estimates. The detailed 

calculation for creating a range estimate for case 1 is presented by Equation (3-15) to (3-21). The 

labour-hour point estimate for 𝑋𝑐𝑎𝑠𝑒 1, using the developed MLR model (Equation 3-6), is 

presented by Equation (3-16). The residual standard deviation was calculated as shown in Equation 

(3-17) for the fitted regression model (Equation 18). For the given point of 𝑋𝑐𝑎𝑠𝑒 1 , the standard 



 

 

100 

error of regression was calculated based on Equation (3-17) and the details are shown in Equation 

(3-18) and (3-19). Using the result of Equation (3-17) and (3-19) the standard deviation of the 

prediction was determined (Equation 3-20). With 90 percent confidence (i.e. 𝑡(0.90,1552)) the 

prediction interval for the point estimate �̂�0 is presented by Equation (3-21). The estimated labour-

hours in the form of point and range estimates, for both cases, are given in Table 3-8 and Table 

3-9.  

Table 3-8: List of Six input variables for model validation 

 

𝑋1 = [1 221703.7 0 757.16 9508.1 0 4.76] (3-15) 

�̂�1 = 1025.1 Labour-hours (3-16) 

𝜎𝑟𝑒𝑠
2 =

3.2150×107

1559−6−1
= 2.0715 × 104  (3-17) 

(𝑋𝑇𝑋)−1 =

[
 
 
 
 
 
 
1051714 -3.59 -311.54 -35.26 -39.57 214.61 -836.32

-3.59 0.00 0.00 0.00 0.00 -0.02 -0.01
-311.54 0.00 6.24 0.10 0.07 1.06 0.86
-35.26 0.00 0.10 0.38 0.00 -0.15 0.01
-39.57 0.00 0.07 0.00 0.09 6.00 0.09
214.61 -0.02 1.06 -0.15 6.00 39.75 -2.05
-836.32 -0.01 0.86 0.01 0.09 -2.05 149.70 ]

 
 
 
 
 
 

× 10−9 (3-18) 

Input 

variables 
Description Unit Case 1 Case 2 

X1 Division Weight kg 221703.7 103713 

X18 Square hollow steel sections meter 0 7.12 

X14 Plate square meter 757.16 917.4 

X39 Hex Type Bolts number 9508.1 16 

X31 Complete penetration weld meter 0 554.1 

X32 Partial Penetration Weld meter 4.76 17.9 



 

 

101 

𝜎𝑓
2 = (2.0715 × 104) × ( 0.0044) = 91.074 (3-19) 

𝜎𝑝 = √𝜎𝑟𝑒𝑠
2 + 𝜎𝑓

2 =144.243 (3-20) 

�̂�0 ± 𝑡(𝑝,𝑛−𝑘−1) × 𝜎𝑝 = 1025.1 ± 1.2821 × 144.243 =  (840.2,1210.0) (3-21) 

Table 3-9: Results of Labour-hour estimation, range estimation, and actual Labour-hours 

Description Case 1 Case 2 

Labour-hours estimated by Equation 6 1025.1 7140.3 

Labour-hours estimate range (840.2 , 1210.0) (6934.4 , 7346.2) 

Actual labour-hours 1103.4 7312.7 
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3.6 DISCUSSION ON VALIDATION OF MODEL 

The developed model for predicting labour-hours required in fabrication of a division with certain 

design features was verified and validated through checking MLR theoretical assumptions, 

historical validation, range estimation, and face validation. The proposed framework is relevant to 

a range of application cases in civil engineering for developing predictive models. However, the 

model developed using this framework could only be validated in its problem domain and based 

on the collected data. It would be only applicable to the decision-making situation analogous to 

the one in the current problem definition. As long as there is no paradigm shift to the practice of 

structural steel fabrication method leading to major change in labour productivity, the resulting 

model would remain valid. An example of such a paradigm shift would be elimination of manual 

operations through the implementation of robotic automation in the steel fabrication industry in 

the future. In short, to extend MLR implementation to other projects based on an updated dataset 

(other companies or other industries), this framework will provide valid guidance, starting from 

problem definition, data collection to model validation. For instance, utilizing the proposed 

framework, precast concrete panels labour-hour could also be predicted factoring design details 

and using historical data. 

The general problem of associating project design features with required labour-hours will remain 

relevant and critical in the fields of construction engineering and structural engineering. With 

recent advances in information technology (such as adoption of BIM, bar-coding or radio 

frequency identification tags for resource tracking) data availability constraints on solving such 

problems have been gradually relaxed. On the other hand, MLR lends itself well to construction 

engineering applications due to simplicity and transparency. Before implementing more 
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complicated nonlinear methods such as Artificial Neural Networks (ANN), it is advisable to take 

MLR as the foundation methodology and take full advantage of MLR in gaining insight in the 

problem definition and available data. Therefore, a practical MLR-based methodology for 

selecting proper project design features in prediction of required labour-hours is highly desired to 

improve current industry practice in regard to project cost estimating, planning, and design 

The proposed data-driven framework attempts to reap benefits from the current industry’s 

data/information management systems. The scalability of this research is constrained by 

investments in data management by the construction industry. The value of the framework lies in 

its potential to extend application to other projects (other companies/other industries) in guiding a 

repeat implementation step by step starting from problem definition and collecting data, to model 

validation. It is noteworthy that the derived model itself would lose its value when tackling a new 

problem or there is a significant change in the current problem domain. The model would not be 

applicable any more. Nonetheless, the modelling framework is still applicable to reproduce an 

updated, relevant predictive model. In particular, the step-wise method for MLR input factor 

selection will remain cost-effective to identify an updated list of parameters that account for the 

model output of the model in an analytical fashion as opposed to making such decisions by 

resorting to trial-and-error or “gut feel”. 
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3.7 CONCLUSION 

This research has devised an application framework for developing a MLR model in its simplest 

form and remains valid for labour-hours prediction based on project design features. A case study 

based on real-world data of structural steel fabrication is presented. In collaboration with a partner 

company, we consolidated a database holding over one thousand and five hundred historical 

records (project divisions) accumulated over the span of three years; each record includes forty-

two design features for a project division and the associated actual labour-hours spent in 

fabrication. Out of the forty-two project design features, the six most relevant input features were 

analytically selected, resulting in a streamlined MLR model. The complex relationships and hidden 

patterns underlying all the data are represented in a regression equation.  

This research has validated the effectiveness of the proposed framework by addressing a real-

world problem featuring relatively large datasets in terms of the number of input features defined 

and the number of records in the dataset. Streamlining the number of input features leads to the 

generation of a simple model for practical use while entailing less effort in data collection in the 

future. In short, the proposed framework will potentially assist in developing simple yet sufficient 

decision-support solutions in the real-world based on fully harnessing available data (such as BIM 

data and labour cost data) –which is indeed not limited to structural steel fabrication. It is worth 

mentioning that the proposed framework is selected to provide a transparent model and elucidate 

the structure of data more so than other methods to the best of the author’s knowledge. Therefore, 

the generated productivity models are not only applicable to productivity prediction, but also to 

understand the productivity-influencing factors, and possibly productivity improvement. 
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The variable selection method in connection with the proposed model is instrumental in identifying 

relevant input factors and generalization of the predictive regression model.  However, to tackle 

noisy, non-homogenous, and highly non-linear data, the proposed model would likely fail due to 

inherent limitations of MLR. In such cases, the resulting MLR model would end up with poorer 

performance in point prediction accuracy (i.e. low R-squared value) while producing too wide a 

range in associated confidence interval estimate. Under such circumstances, it is recommended 

data needs to be cleansed of noise or pre-processed with clustering techniques to transform a highly 

non-linear problem into a linear problem ready for applying the proposed MLR methodology. 

There is a great opportunity for future work on how to cope with intractable non-linear features 

inherent in real-world data when tackling complex practical problems. Immediate follow-up 

research is required so to enhance the proposed framework by adding non-linear classifiers prior 

to MLR regression in order to represent more complex relationships in the problem; while at the 

same time, attempting to maintain the simplicity of the resulting model. 
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CHAPTER 4 : PRODUCTIVITY MODELING OF OFFSITE 

STEEL FABRICATION 

This chapter further expands on MSR application and prediction accuracy by integrating it with 

Model Trees (MT). The proposed methodology has been validated on a University of California 

Irvine concrete slump dataset and labour productivity dataset from steel fabrication industry. This 

Chapter elaborates on developing a framework for generating a streamlined system of MLR 

equations by coupling the power of MSR and MT, and analyzing the trade-off between fit quality, 

prediction accuracy, and model complexity to further assist with model selection and validation.  

4.1 INTRODUCTION 

With increasingly complex design, construction projects require planners to account for design 

details in predicting labour cost. To expedite project delivery time, mitigate environmental impact 

on project execution while achieving high-quality standards, construction projects resort to off-

site prefabrication and assembly of structural components in weatherproof facilities. Prefabricated 

steel girders or precast concrete segments for building highway overpasses are a great example of 

such projects. Off-site fabrication shops provide a safer work environment for labourers conducive 

to higher productivity, while also removing uncertainties and risks associated with site conditions 

to some extent. Many research studies have validated the cost, safety, quality and environmental 

advantages of prefabrication (Jaillon and Poon 2014; Li et al. 2014).  
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Unlike manufacturing, the off-site fabrication of structural steel still relies heavily on manual 

labour; products are custom made at fabrication shops based on clients’ requirements. As a result, 

labour cost takes up from twenty to fifty percent of the project budget (Sweis et al. 2009). 

Therefore, for management and operational purposes, it would be crucial for a fabrication facility 

to have an accurate prediction of the labour effort required to complete a specific scope of work. 

Prefabrication creates a unique condition for productivity analysis as the majority of productivity-

relevant factors remain constant, and productivity is largely influenced by work content and 

engineering design.  

Due to the labour-intensive nature of construction activities, productivity is commonly referred to 

as labour productivity, represented as a ratio between the input of labour-hours and the output of 

installed or fabricated units (Equation 4-1) (Dozzi and AbouRizk 1993). As labour is the most 

significant resource in construction operations, costs of other resources like tools, equipment and 

field overheads are generally correlated to labour-hours and factored as an add-on to the labour-

hourly rates (Song and AbouRizk 2008). 

𝐿𝑎𝑏𝑜𝑢𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝐿𝑎𝑏𝑜𝑢𝑟- ℎ𝑜𝑢𝑟𝑠

𝐹𝑎𝑏𝑟𝑖𝑐𝑎𝑡𝑒𝑑 𝑢𝑛𝑖𝑡𝑒𝑠
 (4-1) 

One of the methods for productivity analysis and forecasting is productivity modelling. 

Productivity models are effective decision-support tools for planning, estimating, and 

scheduling.  These models are used to quantify the relationship between the productivity rate and 

relevant influential factors (Said and Prathyaj 2017). Factors influencing labour productivity can 

be grouped into two major categories: (1) nature of the work to be done or Work Content (WC) 
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and (2) Environment Conditions (EC) (Sweis et al. 2009). In practice, accurately predicting, 

measuring and controlling the environmental conditions in field construction is nearly impossible 

(Sweis et al. 2009). In contrast, prefabrication processes are more driven by work content and less 

affected by environmental conditions.  

Many research studies in the past decade emphasized on the importance of historical data and 

maintained that the most accurate and reliable estimate can be obtained from past project data in 

terms of labour costs, progress information, project details, and past performances (Said and 

Prathyaj 2017). However, data gathered from construction projects are almost certain to contain 

noise and inconsistency. In addition, the construction-related datasets feature a large number of 

variables and are often influenced by unpredictable events (Sweis et al. 2009). Prefabrication, on 

the other hand, has created a unique situation for productivity modelling and analysis, where many 

environmental factors can be isolated, thus significantly increasing the chances of success in data-

driven productivity modelling. 

The goal of this research is to correlate engineering design features with fabrication productivity 

in an off-site facility while taking advantage of existing historical data in the development of 

productivity models. The novelty lies in its unsupervised approach in classifying projects based on 

work content and design features. The contributions of this study include: (1) proposing a 

framework to develop productivity models and identifying effects of work content factors, (2) 

developing an analytical methodology for generating a system of Multiple Linear Regression 

equations by coupling the power of Modified Stepwise Regression (MSR) and Model Tree (MT), 

and (3) analyzing the trade-off between model fit quality, prediction accuracy, and model 

complexity.  
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In the following sections, first, relevant literature on productivity modelling and model trees are 

reviewed. Then, the research methodology and objectives are described. The performance of the 

proposed methodology is first benchmarked on a concrete slump dataset from the University of 

California Irvine (UCI) machine learning repository. Thereafter, a practical case of steel 

fabrication productivity modelling is presented before drawing conclusions. 
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4.2 MODEL TREES 

Researchers have utilized various modelling techniques to study the relationship between 

influential factors and labour productivity; tools such as regression models, expert systems, and 

artificial neural networks (ANNs) have been used to develop productivity models (Najafi and 

Kong 2015, Said and Prathyaj 2017). On one end of this spectrum, we have Multiple Linear 

Regression (MLR) which lends itself well to generalize a simple representation of the relationship 

between input factors and the output variable (Najafi and Kong 2015). On the other end, more 

sophisticated modelling tools such as ANN, instance-based learning, and deep neural nets result 

in productivity models that function like a “black box” without revealing the implicit relationships 

between input factors and the reasoning logic applied in deriving the output variable based on input 

factors (Wang and Witten 1996). Nevertheless, in order to accept a model as decision-support tool, 

most end users of productivity models in construction would weigh more on understanding factor 

selection and reasoning logic of the model than achieving marginal gains on the accuracy of the 

prediction model.  

Development of MT started as an extension to classification trees by Morgan and Sonquist (1963) 

which used the automatic interaction detection (AID) method to generate Regression Trees (RT). 

RTs create a predictive model represented by a tree structure where the feature domain splits 

between tree branches; at the end of each branch, tree leaves have constant values. Breiman et al. 

(1984) improved on AID and developed Classification and Regression Tree (CART) to 

approximate non-linear functions by discretizing them into piecewise models, suitable for 

predicting both continuous and categorical variables. Quinlan (1992) extended CART application 

by replacing constant values on tree leaves with linear functions, resulting in a method called M5; 
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as a result, enabling CART to model non-linear datasets with piecewise linear functions. More 

recently, Loh (2002) presented a new algorithm called GUIDE for generalized, unbiased 

interaction detection and estimation. GUIDE divides the residuals of a linear model into negative 

and positive signs and uses a Chi-square test instead of a t-test to determine the best split. 

Alternating Trees (ATREE) is one of the latest methods proposed in MT development that uses an 

additive forward stage-wise approach to build the trees (Frank et al. 2015). 

(a)

(b)

(c)

(d)

 

Figure 4-1: (a) Data point representation, (b) Classification, (c) RT, (d) MT 
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Figure 4-1(a) provides a simplified representation of data points in a given domain. Classification 

Trees cluster data into discrete classes through binary recursive partitioning over training data and 

generate a tree-like structure for future prediction (Figure 4-1(b)). RTs are similar to classification 

trees; however, constant values are assigned –instead of classes– to tree leaves, therefore, 

providing a constant value for each future prediction that belongs to a specific tree leaf (Figure 

4-1(c)). To replace constant values in RT, MTs attach regression models to the end of their 

branches and utilize input/output correlation to generate future predictions (Figure 4-1(d)). MTs 

split the data points so the similar samples are clustered for performing MLR at each leaf of the 

tree (Figure 4-2), resulting in a piecewise regression model, as shown in Figure 4-3 (Quinlan 1992). 

MTs are more accurate than commonly-applied MLR methods for numeric predictions and can 

produce more insightful models compared to the opaque structure and implicit formulation of 

ANN (Frank et al. 1998). In brief, MT is an analytical method for creating predictive models with 

particular emphasis on the generalization of the problem. 

X1 V1 X1>V1

X2>V2X2 V2

X4>V4X4 V4

R1

R2 R3

R4

PROBLEM 
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R1    |    X1 V1, X2 V2

R2    |    X1 V1, X2>V2, X4 V4

R3    |    X1 V1, X2>V2, X4>V4

R4    |    X1>V1

 

Figure 4-2:  MT structure and formulation 
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Figure 4-3: MT piecewise representation of non-linear trend in data 
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4.3 LITERATURE REVIEW 

4.3.1 Productivity Modelling 

Productivity modelling has been extensively addressed in the construction literature. Randolph et 

al. (1990) researched different definitions for productivity and proposed two methods to model 

productivity: a factor-based model and an expectancy model. Rifat and Rowings (1998) developed 

productivity models considering factors like temperature, quantity and crew size using neural 

networks and regression analysis. Dawood (1998) proposed Monte Carlo simulation to generate 

more reliable duration estimates, considering variations in quality of material, weather, and labour 

productivity. Song and AbouRizk (2008) used ANN and discrete-event simulation to analyze 

project historical data and develop labour productivity models. Sweis et al. (2009) performed 

labour productivity modelling using data on fourteen projects that had similar scope, size, 

specification, and quality requirements and concluded that productivity affecting factors can be 

categorized into Work Environment (WE) and Work Content (WC). Najafi and Kong (2015) 

presented a MLR model for predicting the duration of precast concrete installation and noted that 

MLR could create simple and clear relationships between inputs and outputs. To model the 

relationship between productivity factors and influencing parameters, Heravi and Eslamdoost 

(2015) utilized ANN and experienced over-fitting issues that were later resolved by early stopping 

of the training process and applying Bayesian regularization algorithms. Lee et al. (2017) 

demonstrated the advantages of Building Information Modeling (BIM) in performing quantity 

take-offs and productivity analysis through an integrated approach for productivity measurement. 

El-Gohary et al. (2017) performed a productivity analysis on formwork and reinforced concrete 

installation for residential and commercial buildings. Said and Prathyaj (2017) investigated 
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ductwork prefabrication productivity and utilized MLR and ANN to develop predictive models for 

fabrication labour-hours of different ductwork fittings.  

Based on reviewed literature, more in-depth research is desired in understanding the relationship 

between work content and productivity in off-site prefabrication settings, due to the isolation of 

most of the environmental factors. There is a need for formalizing an analytical methodology that 

takes project complexity and design features into consideration in developing a productivity 

model. The desired productivity model should feature high prediction accuracy while maintaining 

simplicity and transparency for ease of communication and application. To avoid productivity 

models from over-fitting, there is also a need for a formalized approach to perform complexity-

accuracy trade-off analysis in the model selection. 

4.3.2 Model Tree Related Applications in Construction Management 

Lee et al. (2004) quantified the productivity loss due to project change orders by applying the 

GUIDE methodology. They concluded that significant higher accuracy can be obtained by using 

MTs compared to other methods in construction where data often feature high intercorrelation and 

contain noise. Desai and Joshi (2010) applied decision trees with constant branch nodes to analyze 

and predict labour productivity; they implemented a heuristic approach to select influential 

attributes in building the decision tree. Deshpande et al. (2014) compared the results of non-linear 

regression, MT and ANN in predicting the compressive strength of recycled aggregate concrete. 

They indicated that if the input variables are limited, ANN would result in the best single model; 

however, MTs can produce a set of models with different levels of complexity and accuracy. 

Omran et al. (2016) compared the effectiveness of applying regression, MTs, and neural networks 

in predicting concrete compressive strength. They concluded that time consumed in training 
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advanced models would hinder practicality, which should be considered as a factor in model 

comparison. Behnood et al. (2017) used MTs –specifically M5– to predict concrete compressive 

strength. They observed MTs can provide more insight into data and achieve high prediction 

accuracy while maintaining modelling transparency. Afsarian et al. (2018) implemented M5 trees 

as a transparent method in predicting building energy consumption. 

4.3.3 Variable Selection on MLR 

Developing a valid predictive model for labour productivity becomes more challenging with the 

increase in the number of influencing parameters (Said and Prathyaj 2017). Many researchers have 

noticed the drawbacks of having too many variables in a predictive model (Gardner et al. 2016, 

Said and Prathyaj 2017, Mohsenijam et al. 2017). Redundant input parameters in a predictive 

model would increase the chances of over-fitting while potentially introducing noise into 

predictive models (Gardner et al. 2016). Interdependencies between variables in a model need to 

be understood in order to achieve a more transparent model, and redundancies need to be 

eliminated. Interdependencies within the data refer to cases where a variable could be explained 

and predicted by other input variables; therefore, there is no need to include it in a predictive 

model. In the case of the structural steel data collected in this research study, the steel member 

weight and length are highly correlated, which can be predicted from one another. 

Having the optimal number of input variables significantly reduces the likelihood of over-fitting, 

collinearity, and transferring noise in data to the predictive model (Ivanescu et al. 2016). 

Mohsenijam et al. (2016) developed a variable selection technique based on forward selection (FS) 

and backward elimination (BE), called MSR. Forward selection technique starts with a linear 

regression model that contains no input variables; adds input variables to MLR-based on 
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correlation and statistical significance; stops when there is no predictive gain in adding more 

variables (Seber and Lee 2003). Backward elimination begins with an MLR model with all input 

variables; iteratively removes insignificant variables to reach the final subset; stops when there is 

a loss in model performance by removing any more variables (Wang and Jain 2003). Both forward 

selection and backward elimination tend to produce a near-optimum subset of variables and given 

large datasets, applying the two MLR model streamlining technique separately often results in two 

different sets of input variables (Mendenhall and Sincich 2015). It is noteworthy that the MSR 

method combines the advantages of forward selection and backward elimination while overcoming 

respective limitations of each (Mohsenijam et al. 2016). The MSR starts with an empty set of input 

variables, similar to forward selection. In an iterative process, variables with the high significance 

are added to MLR, and in the same iteration, all the selected MLR variables are tested for their 

statistical significance (Same as the backward elimination method). Unlike forward selection and 

backward elimination, MSR allows previously eliminated variables to be reinstated in the MLR 

model, while the already selected variables can be removed in future iterations.  

Besides applying M5 methodology to define rules for clustering observations, this research 

implements MSR at the resulting M5 leaves to eliminate redundant input features. As such, a 

streamlined model at each leaf can be obtained through purposefully selecting the variables by 

MSR. 
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4.4 RESEARCH OBJECTIVE AND METHODOLOGY 

The proposed research methodology consists of three main steps, namely: (1) data collection, (2) 

productivity model generation, and (3) model performance comparison (shown in Figure 4-4). This 

methodology explores three areas in the MT development process in the application context of 

construction productivity analysis. They are: (1) grouping recorded data into branches and leaves 

using MTs, (2) selecting influential attributes using MSR for derived leaves and creating 

regression models, and (3) performing accuracy-complexity trade-off analysis in predictive 

modelling.  

Collecting data on production and Product:

   1) Extracting Project/Division features.

   2) Extracting labour expenditure from 

        job costing databases.

DATA COLLECTION

Train productivity models:

   1) Generate Model Trees.

   2) Split the data based on Model Tree 

        results.

   3) Perform Modified Stepwise  

       Regression on tree leaves.

MODEL DEVELOPMENT

Train productivity models:

   1) Bias-Variance-Complexity tradeoff

   2) Validation and error estimation

MODEL PERFORMANCE 

COMPARISON

 

Figure 4-4:  Structure of research methodologyM5 Implementation 
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MTs are generated through (1) tree generation, (2) pruning the tree, and (3) replacing sub-trees 

with linear regression functions when it is appropriate (Frank et al. 1998). The model structure of 

MTs consists of root, branch splitting, and leaf nodes. M5 is the selected technique for 

implementing MT in the present research due to its simplicity and proven performance. Appendix 

I provides an in-depth justification and comparison on using M5 against other options of MTs.   

1. Tree generation: M5 develops the tree by recursive partitioning starting from the root node.  

Branches are created at each splitting node and when there is no predictive gain from 

partitioning, splitting stops at leaf nodes. The partitioning takes place with the aim to minimize 

intra-subset variability, measured by Equation (4-2), where 𝑆𝐷𝑅 is the standard deviation 

reduction as a result of partitioning, 𝑆𝐷 is the standard deviation (Equation 4-3), 𝑇 is the 

number of observations as a complete set. The resulting partition based on variable 𝑋𝑖 with a 

value of a is two sets of observations: (1) observations where 𝑋𝑖 is smaller or equal to a, (2) 

observations where 𝑋𝑖 is bigger than a. 𝑇𝑖 is the number of observations for each portioning 

condition, and 𝑆𝐷(𝑇𝑖) is the standard deviation with that subset; in M5 binary splits, i can take 

two values. M5 calculates 𝑆𝐷𝑅 value for input variables and splits dataset based on the specific 

variable with its particular value that maximizes the expected error reduction. Note that 𝑆𝐷 is 

calculated for output values by Equation 4-3, based on the observations subject to each 

branching condition. Splitting ends if only few instances remain in the branch (i.e. a minimum 

of thirty observations required for forming a robust linear regression) or expected error 

reduction is insignificant. The minimum number of observations in each branch is set to be 

thirty in this study for generating a solid linear regression and being able to perform variable 

selection. 
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𝑆𝐷𝑅 = 𝑆𝐷(𝑇) − ∑
𝑇𝑖

𝑇
× 𝑆𝐷(𝑇𝑖)

𝑖

 (4-2) 

𝑆𝐷 = √
∑ (𝑦𝑗𝑗 − �̅�)

𝑛
 (4-3) 

2. Regression fitting: M5 fits an MLR model for all the splitting nodes using data associated 

with that node and all the attributes leading to that node. 

3. Pruning the tree: Pruning refers to the process of removing excessive branches and reducing 

the tree to a smaller size, which takes into account prediction accuracy and generalization gain 

in applying MLR at leaves. Specifically, MSR is implemented to analytically derive an MLR 

model in the leanest form by eliminating less relevant input factors in the dataset being studied.  

If the expected error of the MLR at a splitting node is lower than the combined results from its 

branches, then branches are removed (pruning). Note that pruning starts from leaf nodes and 

removes them in an iterative process. 

4.4.1 Bias-Variance-Complexity Trade-off 

Numerous statistical and machine learning approaches are available to create models based on 

given data. However, an important question that needs to be addressed is the trade-off between 

bias, variance and model complexity. This section elaborates how to assess the combined power 

of M5 and MSR (“M5+MSR”) in regard to model complexity and misclassification error against 

other methods. In order to assess models developed for complex systems, model selection criteria 

must be based on the trade-off between bias, variance, and complexity (Yu et al. 2006). Bias is an 

indicator of the quality of fit, which can be defined as the learning error for the algorithm of choice. 

A model with a high bias oversimplifies the problem being studied, ̶ analogous to using a linear 

model to represent a linearly inseparable problem. Variance, as a measure of future prediction 
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accuracy, denotes the sensitivity of the developed model to the training data provided. In other 

words, variance represents a model’s prediction performance on unseen or new cases, given that a 

different training data (or a subset of training data) had been used for training. As a result, a 

predictive model with a high variance does not generalize patterns inherent in the problem from 

the data, but merely memorize the training data, which would perform poorly on cases it has not 

seen before.  

Lastly, certain noise (i.e. irreducible error) inevitably exists in the data originating from measuring 

tools, data collection errors, and human-induced errors. The theoretical formulation for the 

interaction of bias, variance and noise known as bias-variance decomposition of error is given in 

Equation 4; where, 𝑦 = 𝑓(𝑥) + 𝜀 is the true function to be approximated in predictive modeling, 

𝜀 is a normally distributed noise, and 𝜎 is the standard deviation. Assume that we assess a fitted 

function of ℎ(𝑥) that has been trained on the training set of data. Given the test set of  𝑥′ and 

observed values of 𝑦′, the ℎ(𝑥) prediction expected error is calculated as Equation 4-4.  

𝐸[(ℎ(𝑥′) − 𝑦′)2] = 𝐸[ℎ(𝑥′)2 − 2ℎ(𝑥′)𝑦′ + 𝑦′2] = 𝐸[ℎ(𝑥′)2] − 2𝐸[ℎ(𝑥′)]𝐸(𝑦′) + 𝐸[𝑦′2]

= 𝐸[(ℎ(𝑥′)2 − ℎ̅(𝑥′))2] + (ℎ̅(𝑥′))2 − 2ℎ̅(𝑥′)𝑓(𝑥′) + 𝐸[(𝑦′ − 𝑓(𝑥′))2]

+ 𝑓(𝑥′)2 =  𝐸[(ℎ(𝑥′)2 − ℎ̅(𝑥′))2] + 𝐸[(𝑦′ − 𝑓(𝑥′))2] + [(ℎ̅(𝑥′) − 𝑓(𝑥′))2]

=  𝑉𝑎𝑟(ℎ(𝑥′)) + 𝜎2 + 𝐵𝑖𝑎𝑠2(ℎ(𝑥′)) 

(4-4) 

The expected error in prediction between a true function and a fitted model can be represented by 

the summation of variance, bias squared and noise. Therefore, to reduce prediction error, both 

variance and bias need to be minimized simultaneously. Bias (i.e. error of predictive algorithm) 

decreases as the model complexity increases; conversely, it would cause variance to escalate 
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(Figure 4-5) (Geman et al. 1992). Nevertheless, oversimplified models can be associated with 

higher bias and lower variance in terms of the prediction error. The best predictive model would 

achieve the best trade-off between bias and variance, thus minimizing the total error in prediction. 

 

Figure 4-5: Bias, variance and complexity trade-off 

The “best fit” or the “best model” can be assessed as the model that has the best generalization 

ability by demonstrating the best performance in predicting new observations (Moody 1994). 

Figure 4-6 shows an example of a simple linear model that can generalize better than a non-linear 

function given the same observation data. The linear model in this example has a higher bias 

compared to the non-linear model; however, the linear model has significantly less variance, thus 

is deemed a better fit by giving more accurate future predictions. 
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Figure 4-6: Model generalization: (a) linear model (b) non-linear model 

There are several model selection methods that take bias, variance and complexity into account; 

three of the main categories of model selection methods are as follows:  

(1) Root-Mean Square Error (𝑅𝑀𝑆𝐸), and coefficient of determination (𝑅2) (Lowe et al.2006). 

(2) Akaike Information Criteria (AIC) (Akaike 1977) and Bayesian Information Criteria (BIC) 

(Schwartz 1978).  

(3) Final Prediction Error (FPE) (Yu et al. 2006). 

The first group (𝑅𝑆𝑀𝐸 and 𝑅2) is the most widely used predictive model performance 

measurements for indicating the goodness of fit and fit quality (Bias) in model selection (Lowe et 

al. 2006). RSME and R2 can be measured by Equation (4-5) and (4-6) respectively, where y’ is the 

observation value, y̅ is average of observations, h is the fitted function, n is the sample size, and D 

is the model’s degrees of freedom. Degrees of freedom in predictive models can be defined as the 

number of independent variables and their coefficients affecting the dependent variable. A larger 

D indicates the higher complexity of the model structure.  
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AIC value gives an estimate of the model performance in terms of future predictions, which can 

also be used as a model selection tool. A model with the smaller value of AIC has better chances 

of mitigating model over-fitting by penalizing the high number of degrees of freedom in the model. 

In contrast to AIC, BIC penalizes more on the degrees of freedom in smaller sample sizes. 

Therefore, AIC is a better indicator applicable to problems with large sample sizes and BIC is 

more meaningful in dealing with smaller sample sizes. AIC and BIC can be calculated by Equation 

4-7 and 4-8, Where n is the number of data points, RSS is the residual sum of squares, and D is 

the model degrees of freedom. When two models perform comparably well with respect to AIC 

and BIC (i.e. producing similar RSS value on identical sample sizes), the one with smaller degrees 

of freedom (i.e. simpler model) is more favourable.  

FPE is a model fitness measure based on the trade-off between variance, bias, and complexity, 

where lower values of FPE is more desirable; the FPE formulation is presented in Equation 9. 

𝑅𝑀𝑆𝐸 = √
∑(𝑦′ − ℎ(𝑥′))

2

(𝑛 − 𝐷)
 (4-5) 

𝑅2 =
∑(ℎ(𝑥′) − �̅�)2

∑(𝑦′ − �̅�)2
 (4-6) 

𝐴𝐼𝐶 = 𝑛 + 𝑛𝑙𝑜𝑔(2𝜋) + 𝑛𝑙𝑜𝑔(𝑅𝑆𝑆/𝑛) + 2𝐷 (4-7) 

𝐵𝐼𝐶 = 𝑛 + 𝑛𝑙𝑜𝑔(2𝜋) + 𝑛𝑙𝑜𝑔(𝑅𝑆𝑆/𝑛) + log(𝑛) (𝐷) (4-8) 

𝐹𝑃𝐸 = [(𝑛 + 𝐷)/(𝑛 − 𝐷)]. [𝐵𝑖𝑎𝑠2 + 𝑉𝑎𝑟] (4-9) 
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4.5 METHOD PERFORMANCE BENCHMARKING 

The proposed methodology is first demonstrated on a benchmarking dataset from UCI machine 

learning repository (https://archive.ics.uci.edu/ml/index.html). Yeh (2006) collected one hundred 

and three (103) slump results of different concrete mix results, with different values for cement 

(X1), blast furnace slag (X2), fly ash (X3), water (X4), super-plasticizer (X5), coarse aggregate 

(X6), and fine aggregate (X7), all in kg/m3. Detailed results for MLR and MSR implementation 

and comparison on the same dataset can be found in Mohsenijam et.al (2017); herein, the 

developed predictive models and their evaluation metrics are presented in Table 4-1 and Table 4-

2, respectively. To shed light on the “M5+MSR” process in accordance with the proposed 

methodology, the following steps need to be followed: 

Step (1) finding the 1st splitting variable and setting its value: in this step, the dataset is sorted 

based on each variable and standard deviation reduction (i.e. SDR as in Equation 4-2) is calculated 

for each of the seven variables with their one hundred and three (103) values. A variable and its 

value with the highest SDR is chosen for the first split; data set for future splitting is divided based 

on values of splitting variable. The results from the first step on the slump data set indicate that 𝑋4 

with SDR value of 1.495 has the highest SDR value among all the variables; sample calculation 

are demonstrated in Equations 4-10, 4-11, 4-12, and 4-13. Result of this split leads to a tree with 

two branches, one with thirty-four samples, and the other branch with sixty-nine samples. With 

the purpose of MLR in mind, enough samples are required for a robust model; therefore, the branch 

with thirty-four samples will not be further split. 
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𝑆𝐷(𝑇) = √
∑ (𝑦𝑗𝑗 − �̅�)

𝑛
= √7887.46/103 = 8.750 (4-10) 

𝑆𝐷(𝑇1) = √3459.23/34 = 10.086 (4-11) 

𝑆𝐷(𝑇2) = √2369.50/69 = 5.860 (4-12) 

𝑆𝐷𝑅 = 𝑆𝐷(𝑇) − ∑
𝑇𝑖

𝑇
× 𝑆𝐷(𝑇𝑖)

𝑖

= 8.75 − [(34/103) × 10.086 + (69/103) × 5.86] = 1.495 

(4-13) 

 

Step (2) finding the second splitting variable and value:  

Performing the same method on the branch with 69 samples results in selection of 𝑋7 with the 

value of 737 to be the splitting criteria. As a result, the developed tree would have 32 and 37 

samples for MLR. At the end of this stage, the tree is generated and needed to be pruned by 

removing insignificant branches. 

Step (3) Regression fitting:  

In this step, a linear regression model for all the nodes with samples reaching that node needs to 

be fitted. Generalization performances of the regression models are compared in Table 4-2.  

Step (4) Pruning:  

as the regression models represented by the full tree (i.e. three branches and three leaves) have a 

significant standard deviation reduction, there is no need for pruning in this case. 
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Step (5) Variable selection:  

the tree structure and the samples that reach the leaves resulting from the previous steps need to 

undergo MSR variable selection process [detailed steps can be found in Mohsenijam et al. (2017)]. 

The resulting M5+MSR model maintains the tree structure with sufficient variables in regression 

models at the tree leaves (Table 4-1).  

Table 4-1: Alternative models generated for slump dataset 

Modelling 

Method 

Generated Model Splitting 

Condition 

MLR R= -88.525+0.010X1-0.013X2+0.006X3+0.259X4-

0.184X5+0.030X6+0.039X7 

No condition 

MSR R=-18.099-0.040X2+0.199X4 No condition 

M5+MSR R1 = -53.109-0.043X1-0.113X2+0.468X4  

R2 = 101.57-0.0395X2-0.114X7 

R3 = 22.681 

X4≤184 

X4>184 

X4>184; X7>741 

 

Based on the collected data, Yeh (2007) produced two predictive models for concrete slump: (1) 

Non-Linear MLR (NLMLR) model and (2) ANN model. The NLMLR model has fifty-six (56) 

regression coefficients, shown in Equation 4-14, where 𝑥𝑖 is the ith independent variable, q is the 

total number of independent variables; 𝛽𝑖, 𝛽𝑖𝑗 are regression coefficients. The ANN model has 

seven input variables, one hidden layer with seven hidden nodes and fifty-six (56) ANN 

transformation weights. Yeh (2006) reported the RMSE values for the NLMLR and ANN models 

being 5.95 and 5.53, respectively. For further testing and analysis in this research, the NLMLR 

and ANN were reproduced in the current research. 
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𝑦 = ∑𝛽𝑖𝑥𝑖 +

𝑞

𝑖=1

∑∑𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑞

𝑖<𝑗

 (4-14) 

In the Bias-Variance-Complexity analysis, performance indicators mentioned in the previous 

section are calculated for the slump dataset, and results are presented in Table 4-2. Although ANN 

has higher model fit quality (i.e. lower RMSE and higher 𝑹𝟐), when compared with “M5+MSR”, 

it has lower values of AIC, BIC, and FPE, implying over-learning from the training dataset. 

“M5+MSR” features the second least number of coefficients to be estimated next to MSR (i.e. 4) 

while the second lowest RMSE or R2 next to ANN. As a result, “M5+MSR” is declared the best 

trade-off between fit quality, prediction accuracy, and complexity in this case. 

Table 4-2: Model comparison on slump dataset 

Modelling method Coefficients to be estimated RMSE 𝑹𝟐 AIC BIC FPE 

MLR 8 7.42 0.32 375.35 375.44 83.30 

MSR 2 7.44 0.29 369.40 369.44 78.86 

M5+MSR 4 5.70 0.59 347.11 347.16 61.28 

NLMLR 29 5.95 0.52 381.47 381.85 84.93 

ANN 56 5.53 0.71 389.34 389.72 92.62 
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4.6 PRODUCTIVITY MODELLING APPLICATION 

In this section, a predictive model for the steel fabrication labour productivity is developed 

utilizing the proposed methodology. The objective is to develop a productivity model by 

correlating work content and labour-hour expenditure and analyze model fit quality, prediction 

accuracy, and complexity. 

The steel industry is considered as one of the main drivers of prefabrication movement; steel would 

retain its fabrication properties and have lighter structural pieces for more efficient transportation 

(Warrian 2010). Examples of off-site steel fabrication projects include pipe and pipe rack 

fabrication, hollow core floor systems, modular house construction, and steel bridge girders. 

Fabrication of structural steel in the controlled environment of fabrication shops significantly 

improves quality and productivity (Liddy and Cross 2002). Prefabrication would create a uniform 

environment with proper supervision, similar tools and equipment, adequate inspection, and much 

more control over processes and activities. To a large degree, off-site construction would limit the 

number of influencing factors (e.g. weather and site condition) or normalize effects of the 

remaining factors (e.g. crew skill level).  

In steel fabrication facilities, similar to most of the prefabrication projects, construction sequence 

defines the work breakdown structure in work planning. The same work breakdown structure 

defines the cost accounts of the job costing and tracking systems in which labour-hours actually 

incurred on the shop floor are recorded. The component of this work breakdown structure in steel 

fabrication industry is generally referred to as “Project Division”. Labour-hour expended on 
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fabrication processes like handling, cutting, fitting, welding and surface preparation is measured 

against project divisions (Hu et al. 2014). 

Data gathered for this study includes 1558 records for structural steel project, each record 

representing labour-hour spent on each steel fabrication division. These labour-hour records are 

associated with forty-two project-related design features collected from BIM databases (details of 

design feature are given in Table 3-2). For each project division, collected labour-hour is the 

summation of hours spent on activities such as handling, cutting, fitting, welding, and surface 

processing in the fabrication shop. Collected data for this research is sourced from a steel fabricator 

in Alberta, Canada, with mainly industrial steel fabrication projects. Labour-hours in each division 

can vary from 100 to 7000 labour-hours. In order to conceal sensitive company productivity 

information while maintaining the patterns in the data, all the captured data has been linearly 

scaled. For more information and to gain access to the database, refer to the Data Availability 

Statement. 

The “M5+MSR” method is applied to model labour productivity following the steps demonstrated 

in the previous section (Figure 2-7). Note MSR method is applied to the tree leaves, creating 

streamlined MLR regression models. The combined results of branching and MSR are given in 

Table 4-3; X1 is the division weight (kg), X2 is angle length (m), X3 is channel length, X6 is 

miscellaneous beams (m), X9 is wide flange beam length (m), X12 is checker plate area (m2), X14 

is the plate area (m2), X18 is hollow steel section length (m), X19 is round hollow steel sections 

length (m), and X32 is partial penetration weld length (m).  
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The selection of plate area (X14) by applying M5 method as the branching variable is well aligned 

with industry know-how. Among practitioners, the amount of plate required in a steel project is an 

indicator of the complexity of a project. High plate content in a steel fabrication project generally 

means more complex connections and higher welding hours. Projects with less plate are branched 

into R1 (Figure 4-7). In R1, MSR method application indicates that productivity can be predicted 

by those variables related to structural section lengths (i.e. wide flange (X9), hollow sections 

(X18), angels (X2) and channels (X3)). This is consistent with current practice as steel industry 

would refer to these types of projects as Stick-built. Projects with higher plate requirement are 

branched into R2 and R3 (Figure 4-7). MSR application identifies weight (X1), weld length (X32), 

and round hollow steel section length (X19) being the main predictors of productivity in high plate 

content projects. In practice, projects with high plate requirement are generally referred to as 

Platework. These projects require a significant amount of fitting and welding in fabrication and 

assembly.  

X14 90.631

X14 266.16

R1 R2 R3

X14>90.631

X14>266.16

M5'

 

Figure 4-7: M5 tree branching structure 
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Table 4-3: Result of different branching methods and MSR 

Branching 

Method 

MSR results for Tree leaves RMSE 𝑹𝟐 

M5 R1 = 14.84+0.004X1+0.69X9+0.29X3+8.32X6+ 

0.254X2+0.566X18+1.854X14+1.930X12+11.29X32 

R2 = 290.43+0.014X1+1826.1X19+9.871X32 

R3 = 371.5+0.016X1+9.752X18+12.039X32 

369.86 0.763 

 

The results of the proposed methodology are later compared with MLR, MSR, and ANN. The 

metrics defined in pervious sections are utilized to assist in finding the balance in Bias-Variance-

Complexity; results are shown in Table 4-4. The results indicate ANN has higher fit quality by 

having higher 𝑹𝟐; however, similar to the findings in slump dataset, “M5+MSR” has lower values 

of AIC, BIC, FPE. As a result, “M5+MSR” achieves higher fit quality and pattern generalization 

performance compared to MSR or MLR; when exposed to new data points (unseen cases), the 

model resulting from “M5+MSR” would have higher prediction accuracy while maintaining 

transparency. 

Table 4-4: Results of model selection criteria for different modeling methods 

Modelling method Degrees of freedom RMSE 𝑹𝟐 AIC BIC FPE 

MLR 25 426.94 0.687 11036.1 11065.9 17256.0 

MSR 6 426.64 0.682 11043.4 11012.6 16932.0 

M5+MSR 16 369.86 0.763 10849.3 10914.3 15245.5 

ANN 130 523.93 0.876 11313.1 12141.0 29297.8 
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4.6.1 Model Validation 

In the previous section, it has been pointed out that the “M5+MSR” has the highest prediction 

accuracy among methods tested. To further validate the model, the percentage split method is used 

for model validation; ten percent of data (i.e. 150 unseen instances) were randomly selected and 

reserved to test the resulting model and calculate the prediction error. If the training and testing 

results are close to each other (within 10%), the model prediction accuracy is validated (Sargent 

2013). The correlation coefficient and root mean square for the training and test data are given in 

Table 4-5. The RMSE from training and test sets is shown to be close to one another, Figure 4-8 

(within the 10 percent range). 

Table 4-5: Model validation results 

Indicator Training set Test set 

RMSE 369.86 399.96 

𝑹𝟐 0.763 0.689 

 

Figure 4-8: Predicted vs. Actual labour-hours validation results  
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4.6.2 Prediction Demonstration 

Application of the derived labour productivity model is presented in this section with two new 

cases (detail of inputs given in Table 4-6). This data was taken from more recent projects and had 

not been part of the model training data. Note zero-value variables are not shown for ease of 

demonstration. Labour-hour required for case one with the plate area of 31.98 needs to be predicted 

by R1; labour-hour prediction for case two is predicted by R2, as X14 has a value of 99.52. The 

results for the two cases are 1713.38 and 1052.82 labour-hours, respectively. Against the actual 

labour-hours, the differences are 123.38 labour-hours (i.e. 1713.38 – 1590) for Case 1 and 140.82 

labour-hours (i.e. 1052.82 – 912) for Case 2, which represent 7.76% and 15.4% difference relative 

to actual labour-hours, respectively. 

 

Table 4-6:  Demo case input variables 

 

  

Input 

variables 
Description Unit Case 1 Case 2 

X1 Division Weight Kg 56746 31660 

X2 Angle Meter 88.271 146.34 

X9 Wide flange Meter 246.155 438.04 

X14 Plate Meter-squared 31.981 99.52 

X18 Hollow steel sections Meter 194.325 0 

X32 Partial penetration weld Meter 98.318 32.332 

Y Actual Labour-hours Hours 1590 912 
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4.7 BENCHMARKING M5+MSR AGAINST OTHER MODEL TREES METHODS 

In recent decade, researchers have proposed many methods for Model Tree development. This 

section explores results of coupling MSR with other MT and RT methods for steel fabrication 

productivity modelling. The compared methods are CART, M5, GUIDE, and ATREE. CART 

regression tree is generated in Salford Predictive Modeler® (2018); M5 Trees are developed using 

M5PrimeLab toolbox (Jakabsons 2016); GUIDE tree is created by GUIDE software from Loh 

(2002), and ATREE is performed by using AlternatingModelTrees (Frank et al. 2015) package for 

WEKA (Hall et.al 2009). CART, M5, GUIDE and ATREE are distinguished in their approach in 

building trees; the results of each branching methodology is given in Figure 4-9, 4-10, and 4-11. 

The results of applying MSR to tree leaves after each branching method are presented in Table 

4-7. 

X31 132.75

X1 100455.5
R1

R2 R3

X31>132.75

R4X1 25694
X1>26594

X1>100455.5

CART

 

Figure 4-9: CART tree branching structure 
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X1 35219.75

X1 83116.5

R1 R3 R4

X1>35219.75

R2

X1 14254.5 X1>14254.5

X1>83116.5

GUIDE

 

Figure 4-10: GUIDE tree branching structure 
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Figure 4-11: ATREE tree branching structure  

Table 4-7: Result of different branching methods and MSR 

Branching 

method 
MSR results for Tree leaves 

CART 

R1 = 18.04+0.019X1+1.224X18+0.45X14+9.81X32 

R2 = 381.44+0.012X1+10.064X32 

R3 = 2922.4 

R4 = 7109.4-76.789X3  

M5 

R1 = 14.84+0.004X1+0.69X9+0.29X3+8.32X6 

0.254X2+0.566X18+1.854X11+1.930X13+11.29X32 

R2 = 290.43+0.014X1+1826.1X19+9.871X32 

R3 = 371.5+0.016X1+9.752X18+12.039X32 

GUIDE 

R1 = 25.14+0.022X1+0.71X18 

R2 = 555.13+14.184X32 

R3 = 1074.3+13.715X32 

R4 = 2401.1+10.77X32 

ATREES 

R1 = 29.07+0.016X1+0.383X9 

R2 = 78.56+0.013X1-18.568X4+71.415X19 +3.414X14 

R3 = -27.554+0.025X1+13.881X32 

R4 = 4235.7 
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Model selection metrics, presented in Bias-Variance-Complexity section, for different branching 

methods in combination with MSR are given in Table 4-8. The results of all metrics unanimously 

indicate that combination of M5 and MSR has superior fit quality while having higher prediction 

accuracy. 

Table 4-8: Results of model selection criteria for different branching methods 

Modelling method RMSE 𝑹𝟐 AIC BIC FPE 

CART+MSR 410.77 0.7075 10991.3 11021.1 16694.3 

M5+MSR 369.86 0.7628 10849.3 10914.3 15245.5 

GUIDE+MSR 440.23 0.6636 11085.9 11163.6 18251.3 

AT+MSR 431.98 0.6761 11060.3 11106.1 17680.8 
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4.8 CONCLUSION 

MLR models are used for many decades in engineering and construction applications for 

transparency, simplicity, and ease of use. In coping with complicated problems and large datasets 

in the real-world, MLR has shown limitations in prediction accuracy. As a result, many researchers 

have resort to more complex methods such as nonlinear regressions and ANN models in order to 

achieve higher accuracies. Unfortunately, such analytically complex methods fall short of 

explaining how the model reasons. In some cases, to achieve higher accuracy, the model tends to 

overfit itself onto the training data by memorizing noises instead of generalizing patterns. The 

proposed new method combines the advantages of Model Trees and MLR (M5+MSR), which can 

achieve both transparency and accuracy by generating predictive models using piecewise 

approximation. M5 coupled with MSR variable selection for predictive model generation have 

shown promising results on two application cases presented in this study. In modeling Labour 

productivity and concrete slump prediction, the proposed new method achieves higher fit quality 

and pattern generalization performance compared to commonly-applied linear or non-linear 

regression techniques; when exposed to new data points (unseen cases), the resulting model would 

have higher prediction accuracy while maintaining simplicity and transparency.  To avoid models 

from over-fitting, this research has also formalized an approach to perform complexity-accuracy 

trade-off analysis in model selection. 

With great advancements in data management acquisition technologies and the push for a more 

modularized and off-site construction, there is a pressing need to develop a different approach to 

perform productivity analysis of for construction prefabrication facilities in construction. 

Prefabrication has created a unique situation for productivity modelling and analysis, where many 
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environmental factors can be isolated, thus significantly increasing the chances of success in data-

driven productivity modelling. In the steel fabrication productivity modelling application, 

variables selected for splitting in M5, and variables selected for regression modelling are well 

aligned with industry practitioner’s know-how. This degree of transparency in reasoning logic is 

generally impossible for highly non-linear regression models such ANN to attain.  

There are application problems where the relationships are extremely complex and there are no 

meaningful relationships between variables (e.g. image recognition, computer vision). Therefore, 

the method for predictive modelling would be chosen only based on highest prediction accuracy 

achievable.  When a predictive model is desired to (1) be transparent in factor selection and 

reasoning logic, (2) be straightforward to be implemented in practice, (2) be able to generalize 

patterns in training data for reliably predicting unseen cases, the proposed “M5+MSR” approach 

holds high potential to provide the analytical solution to develop data-driven predictive models.  
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CHAPTER 5 : CONCLUSION 

This Chapter draws the research conclusions, restate the academic and practical contributions, and 

finally state the limitations of this research for further research. 

5.1 RESEARCH CONCLUSION 

This research advances the existing knowledge of predictive analytics for construction productivity 

modelling. Within this research, quantitative methods have been proposed, developed, and 

validated that would benefit researchers and practitioners by tapping into knowledge that is 

captured through data collection and streamlining their predictive models, while simultaneously 

maintaining transparency and accuracy. From a practical point of view, the proposed methodology 

is not deemed “black box” and is built of analytical foundations instead of heurisitics and 

simulations. Thus, the derived results do not require the “trial and error” process as applied in 

neural network training while interpretation of the results is straightford in terms of what role each 

input parameter plays in deriving the predicted output and how the output is related to the inpout 

factors in addition to making a point-value prediction. This is critical to make an AI model 

acceptable and effecitive in rendering decision support in the intended application setting in the 

real world. 

This research focuses on productivity modelling in construction prefabrication facilities due to 

their ability to limit the influence of environmental factors on productivity. The controlled 

environment of prefabrication facilities allows for higher quality data collection, and their 

consistent crew size and standardized processes cause productivity to be a function of project 
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content and details. Overall, the industry push for prefabrication in recent decades has created a 

unique situation for productivity modelling and analysis, where many environmental factors can 

be isolated, thus significantly increasing the chances of success in data-driven productivity 

modelling. Therefore, the primary constraint of external environmental factors identified in 

productivity data collection and analysis does not exist in this setting. Overcoming the challenge 

of developing a transparent, accurate, and simple method for productivity modelling using readily 

available data is the outcome of this research. The data collected for this research has considerably 

reduced the influence of other productivity impact factors, since the data has been captured under 

similar work conditions, following similar production processes, and executed labour crew with 

equivalent skills and qualifications. It is worth mentioning that the proposed framework is selected 

to provide a transparent model and elucidate the structure of data more so than other methods to 

the best of the author’s knowledge. Therefore, the generated productivity models are not only 

applicable to productivity prediction, but also to understand the productivity-influencing factors, 

and possibly productivity improvement. 

As discussed in Chapter 2, regression has been frequently applied to input/output prediction 

problems; however, given fast-growing data collection technologies, there is a need for variable 

selection, validation, and verification for practical application needs. There is a high demand for 

methods that are computationally simple, fast to calibrate, straight-forward to explain, and easy to 

update as new data become available. Modified Stepwise Regression (MSR) is a proposed solution 

to solve such problems; MSR analytically selects a proper set of variables by testing their 

significance in predicting an output, resulting in a reduced number of input variables, and hence, 

less data collection efforts and less introduced noise. MSR takes Multiple Linear Regression 

(MLR) assumptions into consideration, and if assumptions are violated, uses Weighted Least 



 

 

142 

Square (WLS) for generating the MLR coefficients. The proposed MSR approach is illustrated 

and benchmarked on two case studies of segmental bridge installation and concrete slump testing. 

Through a practical case study, MSR demonstrated significant advantages over the trial-and-error 

approach in variable selection. It is worth mentioning that both case studies used in this research 

feature a relatively small number of input variables (the concrete slump dataset has seven inputs, 

while the precast bridge dataset has four).  

Chapter 3 further elaborates on associating project design features with project cost, leveraging 

recent advancements in information technology such as BIM, bar-coding or radio frequency 

identification tags for resource tracking and data collection. MSR methodology is used to select 

relevant project design features in order to predict required labour-hours. The size of the dataset 

used in the chapter validated the applicability of the MSR approach in practical settings, when 

there are numerous variables and a noisy dataset. Out of 42 project design features, the six most 

relevant input features were analytically selected, resulting in a streamlined MLR model. The 

complex relationships and hidden patterns underlying all data are represented in a regression 

equation in its simplest form. It is worth mentioning that this research has validated the 

effectiveness of the proposed framework by addressing a real-world problem featuring relatively 

large datasets (in terms of number of input features defined and the number of records in the 

dataset). Streamlining the number of input features simplifies the model for practical use which 

minimizes future data collection efforts. In short, the proposed framework will potentially assist 

in developing simple, yet sufficient, decision-support solutions in the real-world, by fully 

harnessing available BIM data and labour cost data. And indeed, the applications of these solutions 

are not limited to the structural steel fabrication domain.  
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Chapter 4 describes a novel methodology that combines the advantages of Model Trees and MSR 

to achieve both transparency and accuracy by generating predictive models using piecewise 

approximation. M5 coupled with MSR variable selection for a predictive model generation have 

shown promising results on two application cases, labour productivity modelling and concrete 

slump, presented in this chapter. The proposed new method achieves higher fit quality and pattern 

generalization performance compared to commonly-applied linear and non-linear regression 

techniques. When exposed to new data points (unseen cases), the resulting model would have 

higher prediction accuracy while maintaining simplicity and transparency. To avoid models from 

over-fitting, this research has also formalized an approach to perform complexity-accuracy trade-

off analysis in model selection. When a predictive model is desired to be (1) transparent in factor 

selection and reasoning logic, (2) straightforward to implement in practice, (3) able to generalize 

patterns in training data in order to reliably predict unseen cases, the proposed “M5+MSR” 

approach holds high potential to provide the analytical solution to develop data-driven predictive 

models. Productivity models generated using the proposed M5+MSR method   
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5.2 ACADEMIC CONTRIBUTION 

The academic contributions of this research study to existing knowledge include the following:  

• A reliable MLR model requires an appropriate set of input variables that can satisfy the 

underlying assumptions of Best Linear Unbiased Estimators (BLUE). In this research 

study, an analytical framework is proposed for developing MLR-based predictive models 

by (1) selecting input variables by a modified stepwise approach, (2) verifying the BLUE 

assumptions, and (3) validating the prediction performance of the regression model. 

 

• There is no formalized method for how to perform stepwise regression in the current 

literature. To the best of our knowledge, the applications of stepwise regression are limited 

to the use of statistical software, and there is no insight into the method itself. Additionally, 

there is no single reference which explains stepwise regression in a straightforward fashion. 

This research clarifies the stepwise regression procedure and modifies it to incorporate the 

checking of BLUE assumptions and performing error analysis.  

 

• This study formalizes a generic framework for generating MLR models consisting of 

variable selection, model verification, model validation, and prediction error estimation. A 

refined version of stepwise regression is implemented for variable selection; if any of the 

OLS (Ordinary Least Square) assumptions are violated, the WLS is used for estimating the 

MLR coefficients. The proposed framework is illustrated and tested in two case studies. 
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• A practical and widely applicable framework is proposed that uses MLR to associate 

project costs and project-specific design features.  

 

• The modified stepwise regression identifies a minimal set of design features as input 

variables to account for project labour cost in fabrication or construction based on a dataset 

that is of practical size and contains noise. By fully harnessing available BIM and labour 

cost data in a real-world application setting, the proposed framework assists with 

developing sufficient, yet straight-forward, decision-support solutions for a variety of 

construction applications. 

 

• This research study enhances the predictive modelling capabilities of Multiple Linear 

Regression (MLR) by integrating Model Trees (MT) and Modified Stepwise Regression 

(MSR). 

 

• This research study proposes an analytical application framework for M5+MSR 

application in engineering, resulting in a system of MLR equations, each having the least 

amount of relevant input factors. 

 

• The proposed methodology enables MLR to mimic non-linear regression or ANN while 

maintaining modelling simplicity and transparency, which is crucial to applications in civil 

engineering. A detailed study on bias-variance-complexity analysis was also performed to 

compare the proposed new method against ANN. 
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• The research enables the advancement of productivity modelling in construction by 

correlating engineering design features with fabrication productivity in an off-site facility.  
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5.3 INDUSTRIAL CONTRIBUTION 

• The industrial contributions of this research are summarized based on collaborative 

research with the partner company and a real-world project case study, as below: 

• The proposed methodology efficiently uses available data and guides the development of 

sufficient and reliable MLR models based on data gathered in practical settings. This 

research proposes a new framework to determine the achievable prediction accuracy when 

applying MLR to a practical problem using real-world data. This framework is designed to 

identify the minimal set of inputs required for MLR modelling (i.e., the most relevant input 

factors, based on the available dataset and given a particular problem definition) without 

compromising the achievable maximal prediction accuracy. The framework encompasses 

analytical methods for verifying the MLR application, validating the resulting model, and 

setting confidence intervals on point-value predictions. 

• With great advancements in data management acquisition technologies and a practical 

demand for modularized and off-site construction, there is a pressing need to develop a 

different approach to performing productivity analysis for construction prefabrication 

facilities. Prefabrication has created a unique situation for productivity modelling and 

analysis, where many environmental factors can be isolated, thus significantly increasing 

the chances of success in data-driven productivity modelling. In the steel fabrication 

productivity modelling application, variables selected for splitting in M5 and variables 

selected for regression modelling, are well aligned with industry practitioners’ know-how. 

This degree of transparency in reasoning logic is generally impossible to attain for highly 

non-linear regression models such as ANN.  
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• The proposed approach is capable of reducing data collection efforts for MLR modelling 

in application fields, ensuring the MLR models’ validity, providing point estimates based 

on a streamlined linear regression equation, and quantifying the error of point estimates 

according to the desired confidence level. 

• The proposed approach guides the construction industry in best utilizing the data available 

within each company, similar to the dataset of Building Information Model (BIM), and 

predicting labour productivity by analyzing project work content relevant to key design 

features of projects. 
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5.4 LIMITATIONS AND RECOMMENDATION FOR FUTURE RESEARCH 

This research, in short, proposes a more transparent, simple and practical application framework 

for developing predictive models in construction engineering and management. The proposed 

method of MSR streamlines the variables used in a predictive model by properly selecting input 

parameters. However, to tackle noisy, non-homogenous, and highly non-linear data, the proposed 

model would likely fail due to the inherent limitations of MLR. In such cases, the resulting MLR 

model would have poorer performance in point prediction accuracy (i.e. low R-squared) while 

producing wider than desired range estimates. In consequence, either the data needs to be cleansed 

of noise or preprocessed with clustering techniques that transform a highly non-linear problem into 

a linear problem, prior to applying MLR. To address nonlinearity limitations of MLR, MSR was 

later coupled with Model Trees (MT) to split the feature domain and to assign a predictive model 

to each tree leaf. This approach created a piecewise linear model to adjust to the nonlinearities 

inherent in the data structure.  

The scalability of this research is limited by data management in the construction industry. The 

status of data management in the construction industry has led to incomplete, incompatible, and 

noisy data being collected. The proposed data-driven framework attempts to reap some benefits 

from the industry’s investment in data/information management systems. The value of the 

framework lies in the potential of extending its application to other projects (other companies/other 

industries) in guiding a repeat implementation step by step starting from problem definition and 

collecting data, to model validation. 
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It is noteworthy that the derived models in this study would lose their value when tackling a new 

problem or there is a significant change in the current problem domain. The model would not be 

applicable anymore. Nonetheless, the modelling framework is still applicable to reproduce an 

updated, relevant predictive model. In particular, the step-wise method for MLR input factor 

selection will remain cost-effective to identify an updated list of parameters that account for the 

output of the model analytically and objectively, as opposed to resorting to trial-and-error or 

personal judgement. Moreover, the generated model has confined the variability in data and 

leveraged standardized practices and processes based on analysis of data gathered from one steel 

fabricator. Further research and evaluation and analysis with the help of proposed framework and 

methodologies need to be preformed to replicate the success of implementing this research in 

similar application settings.   
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APPENDIX (I) : MATLAB SOURCE CODE 

This Chapter has the MATLAB source code used for data analysis. The MATLAB codes provided 

are for (1) developing MSR, (2) Checking Heteroscedasticity, (3) K-Fold Cross Validation, (4) 

PRESS Validation, and (5) M5 Model Tree. 

5.5 DEVELOPING MSR (MODIFIED CODE FROM MATALB 2016B) 

function model = stepwiselm(X,varargin) % [X, y | DS], start, ... 
%STEPWISELM Create linear regression model by stepwise regression. 
%   LM = STEPWISELM(DS,MODELSPEC) fits the model specified by MODELSPEC to 
%   variables in the dataset/table DS, adds or removes terms by stepwise 
%   regression and returns the linear model LM. MODELSPEC can be any of 
%   the values accepted by the FITLM function. The default is 'constant' to 
%   start with only the constant term in the model. 
% 
%   After the initial fit, the function examines a set of available terms, 
%   and adds the best one to the model if an F-test for adding the term has 
%   a p-value 0.05 or less. If no terms can be added, it examines the terms 
%   currently in the model, and removes the worst one if an F-test for 
%   removing it has a p-value 0.10 or greater. It repeats this process 
%   until no terms can be added or removed. The function never removes the 
%   constant term. It may add terms defined by MODELSPEC, as well as terms 
%   that are two-way interactions among the predictors. 
% 
%   LM = STEPWISELM(X,Y) fits a linear regression model using the column 
%   vector Y as a response variable and the columns of the matrix X as 
%   predictor variables, performs stepwise regression, and returns the 
%   final result as the linear model LM. 
% 
%   LM = STEPWISELM(X,Y,MODELSPEC) uses the model specified by MODELSPEC as 
%   the initial model. See FITLM for valid MODELSPEC values. 
% 
%   LM = STEPWISELM(...,PARAM1,VAL1,PARAM2,VAL2,...) specifies one or more 
%   of the following name/value pairs: 
% 
%      'Weights'          Vector of N non-negative weights, where N is the 
%                         number of rows in DS or Y. Default is ones(N,1). 
%      'VarNames'         Cell array of strings specifying the names to use 
%                         for the columns in X. Default is {'x1','x2',...} 
%                         for the predictors and 'y' for the response. 
%                         Not allowed when fitting to a dataset/table. 
%      'CategoricalVars'  Vector of integer or logical indices specifying 
%                         the variables in DS or the columns in X that 
%                         should be treated as categorical. Default is to 
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%                         treat DS variables as categorical if they are 
%                         categorical, logical, or char arrays, or cell 
%                         arrays of strings. 
%      'Exclude'          Vector of integer or logical indices into the 
%                         rows of DS, or X and Y, that should be excluded 
%                         from the fit. Default is to use all rows. 
%      'Intercept'        true (default) to include a constant term in the 
%                         model, or false to omit it. 
%      'PredictorVars'    A specification of the variables to use as 
%                         predictors, either as a cell array of variable 
%                         names, or a vector of integer or logical indices 
%                         into the variables in DS or the columns in X. 
%      'ResponseVar'      The response variable, specified either as a 
%                         variable name or number. 
%      'Lower'            A model specification defining the terms that 
%                         cannot be removed from the model. Default 
%                         'constant', meaning only the intercept. 
%      'Upper'            A model specification defining the terms 
%                         available to be added to the model. Default 
%                         'interactions' for pairwise interaction terms. 
%      'Criterion'        The criterion to be used in choosing terms to add 
%                         or remove, chosen from 'SSE' (default), 'AIC', 
%                         'BIC', 'Rsquared', 'AdjRsquared'. 
%      'PEnter'           For the 'SSE' criterion, a value E such that a 
%                         term may be added if its p-value is less than or 
%                         equal to E. For the other criteria, a term may be 
%                         added if the improvement in the criterion is at 
%                         least E. 
%      'PRemove'          For the 'SSE' criterion, a value R such that a 
%                         term may be removed if its p-value is greater or 
%                         equal to R. For the other criteria, a term may be 
%                         added if it reduces the criterion no more than R. 
%      'NSteps'           The maximum number of steps that may be taken, 
%                         starting from the initial model. Default is no 
%                         limit on the number of steps. 
%      'Verbose'          An integer from 0 to 2 controlling the display of 
%                         information. Verbose=1 (the default) displays the 
%                         action taken at each step. Verbose=2 also 
%                         displays the actions evaluated at each step. 
%                         Verbose=0 suppresses all display. 
% 
%   The following table shows the default 'PEnter' and 'PRemove' values for 
%   the different criteria, and indicates which must be larger than the 
%   other: 
% 
%      Criterion     PEnter   PRemove    Compared against 
%      'SSE'         0.05   < 0.10       p-value for F test 
%      'AIC'         0      < 0.01       change in AIC 
%      'BIC'         0      < 0.01       change in BIC 
%      'Rsquared'    0.1    > 0.05       increase in R-squared 
%      'AdjRsquared' 0      > -0.05      increase in adjusted R-squared 
% 
%   Example: 
%      % Perform stepwise regression, starting from the constant model 
%      % (intercept only), adding linear terms as required. 
%      load hald 
%      lm = stepwiselm(ingredients,heat,'constant','upper','linear') 
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5.6 CHECKING HETEROSCEDASTICITY 

function [HetResult,secondModel,Xw,Yw,Nres] = Heter(X,Y) 
%This function is to check if the model passes Heteroscedasticity. 
%The function takes the matrix of input and output and test if the residuals 

are pass the HeterTEST. 
[m n] = size(X); 
Xreg=[ones(m,1) X]; 

  
InitailModel = fitlm(X,Y); 
res = InitailModel.Residuals.Raw; 
Yhat = InitailModel.Fitted; 
    TEST=TestHet(res, X, '-BPK') 

  
res2= res.^2; 
Hetreg=stepwiselm(X,res2,'quadratic'); 
Hettest=anova(Hetreg,'summary'); 
if Hettest.pValue(2)>0.05; 
    HetResult='No Heteroscedasticity'; 
else  
    HetResult='Heteroscedasticity'; 

     
    PRE = Hetreg.Fitted; 
    Xw=zeros(m,n+1); 
    for i=1:n+1; 
      Xw(:,i)=Xreg(:,i)./PRE; 
    end 
     Yw=Y./PRE; 
   secondModel = fitlm(Xw,Yw,'Intercept',false); 
    %secondModel = fitlm(Xw,Yw) 
    Nres=Y-Xreg*secondModel.Coefficients.Estimate 
   % NYhat=Xreg*secondModel.Coefficients.Estimate; 
    %Nres=secondModel.Residuals.Raw; 
    NYhat=secondModel.Fitted; 
    NTEST=TestHet(Nres, X, '-BPK') 
    %scatter(res,Yhat,'b');hold on;scatter(Nres,NYhat,'g') 
    %scatter(res,Yhat,'b') 
    %scatter(Nres,NYhat,'g') 
    %[bw,se,pval,inmodel,stats,nextstep,history] = stepwisefit(Xw,Yw) 
   % Wpredicted=[stats.intercept bw'.*inmodel]*Xreg'; 
   % Wres=Y-Wpredicted'; 
   % Wres2= Wres.^2; 
   % Wp=[Wpredicted',Wpredicted'.^2]; 
end 

 
function [pVal,Chi2] = TestHet(Res, X, Whichtest, Yhat) 

  
% TESTHET Tests wether heteroskedasticity affects data. Need 'regstats' and 

'chi2cdf' (Stat TB). 
% 
%   PVAL = TESTHET(RES, X, WHICHTEST, YHAT) 
%   Inputs: 
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%   - Res: residuals obtained by regressing Y on x1, x2 etc...(1) It can be a 

numeric 'n-by-1' vector or  
%          a 'n-by-p' matrix with 'p' residuals obtained from different 

regressions. The # of obs. is 'n'. 
%   - X: predictors suspected of causing heteroskedasticity. Not necessarily 

all those in (1). Same format as 
%        Res. 
%   - Whichtest: test chosen in format string.  
%                a. Breush-Pagan, Koenker modification   -->  -BPK      

(Breush-Pagan 1979; Koenker 1981)            
%                b. White                                -->  -W        

(White 1980b) 
%                c. White, Wooldridge special case       -->  -Ws       

(White 1980b; Wooldridge 2006, p.286) 
%   [OPTIONAL] 
%   - Yhat: only for '-Ws' test. Fitted values from (1). Same format as Res. 
% 
%   Output: 
%   A '1-by-p' array with p-values. 
% 
%   EXAMPLE: 
%       1. Regress Y on x1, x2 --> regstats(Y, [x1 x2], 'linear', {'r', 

'yhat'}) 
%       2. Test with -Ws: 
%               TestHet(r,[x1, x2], '-Ws', yhat) 
% 
% Ninputs 
error(nargchk(3,4,nargin)) 
% Yhat (for White simpified case) 
if strcmp(Whichtest, '-Ws')  
   if nargin == 3 
        error('TestHet:YhatMissing','Can''t perform -Ws test without Yhat.') 
   end 
elseif nargin == 4; 
    warning('TestHet:InpOverSpec', 'Performing -W test. Yhat not required.')     
else 
    Yhat = ones(size(Res,1)); % for check purposes 
end 
% Numeric format 
if ~isnumeric(X) || ~isnumeric(Res) || ~isnumeric(Yhat) 
    error('TestHet:NumericFormat', 'Res, X and Yhat (if specified) must be 

numeric.') 
end 
% Whichtest 
if ischar(Whichtest)  
    if all(~strcmp(Whichtest, {'-BPK','-W','-Ws'})) 
        error('TestHet:WhichtestNotAllowed','Whichtest: choose among those 

allowed.') 
    end 
else 
    error('TestHet:WhichtestNotString','Whichtest must be a string.') 
end 
% Nobservations 
if any(diff(cellfun(@(x) size(x,1), {Res,X,Yhat}))) 
    error('TestHet:NumberObservations','Res, X and Yhat (if specified must 

have the same number of observations') 
end 
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% STEP 1: inputs manipulation 
% --------------------------- 
Res2 = Res.^2;                                                      % Squared 

residuals 
if nargin == 4;  
    Yhat2 = Yhat.^2;                                                % Squared 

Yhat (for -Ws test only) 
end                  
Nseries = size(Res,2);                                              % # of 

series to test  
pVal = NaN(1,Nseries);                                              % 

Preallocation 

  
% STEP 2: settings 
%----------------- 
model = 'linear'; Regressors = X;                                   % Default 

settings             

  
switch Whichtest                                                    % 

Specific settings 
    % [-BPK] Breush-Pagan 
    case '-BPK' 
        df = size(X,2); % degrees of freedom 
    % [-WH] White 
    case '-W' 
        model = 'quadratic';                           
        % For degrees of freedom don't take the "constant".  
        % Reference on the interaction form : 'x2fx'.   
        df = size(X,2)*2 + max(cumsum(1:size(X,2))) - size(X,2); 
    % [-Ws] White special case     
    case '-Ws' 
        % Degrees of freedom fixed; the terms are always Yhat and Yhat^2. 
        df = 2; 
end 

  
% STEP 3: p-values 
% ---------------- 
% [1] LOOP for Nseries 
for s = 1:Nseries 
    % [2a] CONDITION if Ws test, 'Regressors' are combined matrixes 
    if strcmpi(Whichtest, '-Ws'); Regressors = [Yhat(:,s),Yhat2(:,s)]; end; 

%[2a] 
    % [2b] CONDITION Regressors+1 must be < Nobserv    
    if df+1 < sum(~isnan(any(Regressors,2)+ Res2(:,s))) 
        % 1. R^2res^2: res^2 on the regression terms 
        Temp = regstats(Res2(:,s), Regressors, model, {'rsquare'}); 
        % 2. pVal = 1-cdf(LM statistic, df) from a Chi^2 distribution.  
        %    Where LM statistic = R^2res^2 * #obs  
        pVal(1,s) = 1-chi2cdf(Temp.rsquare*nnz(~isnan(Res2(:,s))),df); 
        Chi2(1,s)=Temp.rsquare*nnz(~isnan(Res2(:,s))); 
    end % [2b] 

     
end % [1] 

  
end 
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5.7 K-FOLD VALIDATION 

function [ ESS,SSE,res2 ] = Crossvalidation2(X,Y,k) 
%Get the WLS result (Coeficient and weighted variables). 
% a is result of heteroscedasiticity, Model is the regression under PRESS 
% test, XX is weighted X, and YY is weighted Y. 
[HetResult,TEST,chi,secondModel,Xw,Yw,res,Nres,NNres]=HetWLS(X,Y); 
[m,n] = size(Xw); 
% Pratitioning an array of data for k-fold test 
c = cvpartition(m,'kfold',k); 

  
%running the crossvalidation 
for i=1:k 
% for each set of validation data we need to find the Tr (training array) 
% and Te (testing array) 
Tr=training(c,i); 
Te=test(c,i); 
[f,g]=size(Tr(Tr~= 0)); 
Xt=[ones(m,1) X]; 
%Input data need to be partitioned. To do so the data XTr and YTr are used 
%for training, and the XTe and YTe are used for testing. 
XTr=zeros(f,n); 
XTe=zeros(m-f,n); 
    for j=1:n %for each column 
        %Partitioning Xw  
        XTrain=Tr.*Xw(:,j); 
        XTest=Te.*Xt(:,j); 
        % Zero values are removed for correct regression 
        XTr(:,j)=XTrain((Tr~= 0)); 
        XTe(:,j)=XTest((Te~= 0)); 
    end           
%Partitioning YY 
YTr=Tr.*Yw; 
YTe=Te.*Y; 
% Zero values are removed for correct regression 
YTr=YTr((Tr~= 0)); 
YTe=YTe((Te~= 0)); 
% Fitting the regression with the training set 
TrainedModel = fitlm(XTr,YTr); 

 
% Calculating test set predicted values 
XTeReg=[ones(m-f,1) XTe]; 
Yhat=XTeReg*TrainedModel.Coefficients.Estimate; 

  
% PRESS residuals 
res=Yhat-YTe; 

  
%Saving Press residuals 
res2(1,i)=sumsqr(res); 
end 
ESS=sum(res2); 
SSE=sumsqr(Nres); 
end 
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5.8 PRESS VALIDATION 

function [SSE,PRESS,ress] = PRESS2(X,Y) 

 
%Get the WLS result (Coeficient and weighted variables). 
% a is result of heteroscedasiticity, Model is the regression under PRESS 
% test, XX is weighted X, and YY is weighted Y. 
[a,Model,XX,YY,Nres]=HetWLS(X,Y); 
[m,n] = size(XX); 

  
% Pratitioning an array of data for PRESS test 
c = cvpartition(m,'LeaveOut'); 

  
%running the crossvalidation 
for i=1:m 
% for each set of validation data we need to find the Tr (training array) 
% and Te (testing array) 
Tr=training(c,i); 
Te=test(c,i); 
[f,g]=size(Tr(Tr~= 0)); 
Xt=[ones(m,1) X]; 
%Input data need to be partitioned. To do so the data XTr and YTr are used 
%for training, and the XTe and YTe are used for testing. 
XTr=zeros(f,n); 
XTe=zeros(m-f,n); 
    for j=1:n 
        %Partitioning XX 
        XTrain=Tr.*XX(:,j); 
        XTest=Te.*Xt(:,j); 
        % Zero values are removed for correct regression 
        XTr(:,j)=XTrain((Tr~= 0)); 
        XTe(:,j)=XTest((Te~= 0)); 
    end 
%Partitioning YY 
YTr=Tr.*YY; 
YTe=Te.*Y; 

  
% Zero values are removed for correct regression 
YTr=YTr((Tr~= 0)); 
YTe=YTe((Te~= 0)); 
% Fitting the regression with the training set 
TrainedModel = fitlm(XTr,YTr,'Intercept',false); 
% Calculating test set predicted values 
Yhat=XTe*TrainedModel.Coefficients.Estimate; 

  
% PRESS residuals 
res=Yhat-YTe; 
%Saving Press residuals 
ress(1,i)=res; 
end 
PRESS=sumsqr(ress); 
SSE=sumsqr(Nres); 
end 
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5.9 M5 MODEL TREE (JEKABSONS G. 2016) 

function [model, time, ensembleResults] = m5pbuild(Xtr, Ytr, trainParams, ... 
    isBinCat, trainParamsEnsemble, keepNodeInfo, verbose) 
% m5pbuild 
% Builds M5' regression tree, model tree, or ensemble of trees. Trees can 
% also be linearized into decision rules. For tree ensembles, can also 
% assess input variable importances as well as provide data for ensemble 
% interpretation. 
% 
% Call: 
%   [model, time, ensembleResults] = m5pbuild(Xtr, Ytr, trainParams, ... 
%       isBinCat, trainParamsEnsemble, keepNodeInfo, verbose) 
% 
% All the input arguments, except the first two, are optional. Empty values 
% are also accepted (the corresponding defaults will be used). 
% 
% Input: 
%   Xtr, Ytr      : Xtr is a matrix with rows corresponding to 
%                   observations and columns corresponding to input 
%                   variables. Ytr is a column vector of response values. 
%                   Input variables can be continuous, binary, as well as 
%                   categorical (indicated using isBinCat). All values must 
%                   be numeric. Categorical variables with more than two 
%                   categories will be automatically replaced with 
%                   synthetic binary variables (in accordance with the M5' 
%                   method). Missing values in Xtr must be indicated as 
%                   NaN. 
%   trainParams   : A structure of training parameters for the algorithm. 
%                   If not provided, defaults will be used (see function 
%                   m5pparams for details). 
%   isBinCat      : A vector of flags indicating type of each input 
%                   variable - either continuous (false) or categorical 
%                   (true) with any number of categories, including binary. 
%                   The vector should be of the same length as the number 
%                   of columns in Xtr. m5pbuild then detects all the 
%                   actually possible values for categorical variables from 
%                   the training data. Any new values detected later, i.e., 
%                   during prediction, will be treated as NaN. By default, 
%                   the vector is created with all values equal to false, 
%                   meaning that all the variables are treated as 
%                   continuous. 
%   trainParamsEnsemble : A structure of parameters for building ensemble 
%                   of trees. If not provided, a single tree is built. See 
%                   function m5pparamsensemble for details. This can also 
%                   be useful for variable importance assessment. See 
%                   user's manual for examples of usage. 
%                   Note that the ensemble building algorithm employs 
%                   random number generator for which you can set seed 
%                   before calling m5pbuild. 
%   keepNodeInfo  : Whether to keep models (in model trees) and response 
%                   values (in regression trees) in interior nodes of 
%                   trees. And whether to keep indices of training 
%                   observations that reached each node and standard 
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%                   deviation of each node. These are useful for further 
%                   analysis and plotting. Default value = true. If set to 
%                   false, the information is removed from the trees so 
%                   that the structure takes up less memory. Note that 
%                   interior nodes of smoothed trees will not contain 
%                   models or response values regardless of the value of 
%                   this parameter because only the models in the leaves 
%                   are smoothed. Also note that the standard deviations 
%                   are saved before doing smoothing. 
%   verbose       : Whether to output additional information to console. 
%                   (default value = true) 
% 
% Output: 
%   model         : A single M5' tree (or a decision rule set) or a cell 
%                   array of M5' trees (or decision rule sets) if an 
%                   ensemble is built. A structure defining one tree (or a 
%                   decision rule set) has the following fields: 
%     binCat      : Information regarding original (continuous / binary / 
%                   categorical) input variables, transformed (synthetic 
%                   binary) input variables, possible values for 
%                   categorical input variables and other information. 
%     trainParams : A structure of training parameters for the algorithm 
%                   (updated if any values are chosen automatically). 
%     tree, rules, outcomes : Structures and arrays defining either the 
%                   built tree or the generated decision rules. 
%   time          : Algorithm execution time (in seconds). 
%   ensembleResults : A structure of results for ensembles of trees or 
%                   decision rules. Not available for Extra-Trees. The 
%                   structure has the following fields: 
%     OOBError    : Out-of-bag estimate of prediction Mean Squared Error of 
%                   the ensemble after each new tree is built. The number 
%                   of rows is equal to the number of trees built. OOBError 
%                   is available only if getOOBError in trainParamsEnsemble 
%                   is set to true. Note that it's possible to calculate 
%                   mean out-of-bag predictions (and therefore out-of-bag 
%                   errors for each individual training data observation) 
%                   by summing the columns of OOBContrib. 
%     OOBIndices  : Logical matrix. For each tree (column) indicates which 
%                   observations were out-of-bag (and thus used in 
%                   computing OOBError). The number of rows in OOBIndices 
%                   is equal to the number of rows in Xtr and Ytr. 
%                   OOBIndices is available only if getOOBError or 
%                   getOOBContrib in trainParamsEnsemble is set to true. 
%     OOBNum      : Number of times observations were out-of-bag (and thus 
%                   used in computing OOBError). The length of OOBNum is 
%                   equal to the number of rows in Xtr and Ytr. OOBNum is 
%                   available only if getOOBError or getOOBContrib in 
%                   trainParamsEnsemble is set to true. 
%     OOBContrib  : A matrix allowing interpreting ensembles in accordance 
%                   with the Forest Floor methodology (Welling et al., 
%                   2016). See also example of usage in Section 3.2 of 
%                   user's manual. 
%                   It is a matrix of contributions of each input variable 
%                   to the response for each Xtr row in terms of response 
%                   value changes along the prediction path of a tree 
%                   (averaged over the whole ensemble) so that Yoob = 
%                   in-bag_mean + x1_contribution + x2_contribution + ... + 



 

 

172 

%                   xn_contribution, where Yoob is prediction of response 
%                   for out-of-bag observation. OOBContrib has the same 
%                   number of columns as Xtr plus one, the last column 
%                   being the in-bag response mean. The sum of columns of 
%                   OOBContrib is equal to Yoob of the whole ensemble for 
%                   each row of Xtr. 
%                   OOBContrib is available only if getOOBContrib in 
%                   trainParamsEnsemble is set to true. 
%                   Note that it's also possible to compute contributions 
%                   and explain predictions for new data (including with 
%                   single trees) – see function m5ppredict. 
%     varImportance : Variable importance assessment. Calculated when 
%                   out-of-bag data of a variable is permuted. A matrix 
%                   with four rows and as many columns as there are columns 
%                   in Xtr. First row is the average increase of out-of-bag 
%                   Mean Absolute Error (MAE), second row is standard 
%                   deviation of the average increase of MAE, third row is 
%                   the average increase of out-of-bag Mean Squared Error 
%                   (MSE), fourth row is standard deviation of the average 
%                   increase of MSE. The final variable importance estimate 
%                   is often calculated by dividing each MAE or MSE by the 
%                   corresponding standard deviation. Bigger values then 
%                   indicate bigger importance of the corresponding 
%                   variable. See user's manual for example of usage. 
%                   varImportance is available only if getVarImportance in 
%                   trainParamsEnsemble is > 0. 

  
if nargin < 2 
    error('Not enough input arguments.'); 
end 

  
if isempty(Xtr) || isempty(Ytr) 
    error('Training data is empty.'); 
end 
if iscell(Xtr) || iscell(Ytr) 
    error('Xtr and Ytr should not be cell arrays.'); 
end 
[n, mOriginal] = size(Xtr); % number of observations and number of input 

variables 
if size(Ytr,1) ~= n 
    error('The number of rows in Xtr and Ytr should be equal.'); 
end 
if size(Ytr,2) ~= 1 
    error('Ytr should have one column.'); 
end 
if any(any(isnan(Ytr))) 
    error('Cannot handle NaNs in Ytr.'); 
end 

  
if (nargin < 3) || isempty(trainParams) 
    trainParams = m5pparams(); 
else 
    trainParams.minLeafSize = max(1, trainParams.minLeafSize); 
    if (trainParams.minLeafSize == 1) && trainParams.prune 
        error('M5'' does not allow minLeafSize=1 if pruning is enabled.'); 
    end 
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    trainParams.minParentSize = max(trainParams.minLeafSize * 2, 

trainParams.minParentSize); 
    if (trainParams.extractRules < 2) 
        trainParams.smoothingK = max(0, trainParams.smoothingK); 
    else 
        if trainParams.smoothingK > 0 
            warning('Smoothing for M5''Rules method is always disabled.'); 
        end 
        trainParams.smoothingK = 0; 
    end 
    trainParams.splitThreshold = max(0, trainParams.splitThreshold); 
    trainParams.maxDepth = max(0, floor(trainParams.maxDepth)); 
    trainParams.extractRules = max(0, min(2, 

floor(trainParams.extractRules))); 
end 
if (nargin < 4) || isempty(isBinCat) 
    isBinCat = false(1,mOriginal); 
else 
    isBinCat = isBinCat(:)'; % force row vector 
    if length(isBinCat) ~= mOriginal 
        error('The number of elements in isBinCat should be equal to the 

number of columns in Xtr.'); 
    end 
end 
if (nargin < 5) 
    trainParamsEnsemble = []; 
else 
    if (~isempty(trainParamsEnsemble)) && trainParamsEnsemble.extraTrees && 

(trainParams.prune || trainParams.modelTree) 
        error('Pruning and model trees are not available for Extra-Trees.'); 
    end 
end 
if (nargin < 6) || isempty(keepNodeInfo) 
    keepNodeInfo = true; 
    if trainParams.smoothingK > 0 
        keepInteriorModels = false; % forcing 
    else 
        keepInteriorModels = true; 
    end 
else 
    keepInteriorModels = false; 
    keepNodeInfo = false; 
end 
if (nargin < 7) || isempty(verbose) 
    verbose = true; 
end 

  

binCat = isBinCat .* 2; 
% Transform categorical variables into a number of synthetic binary variables 
binCatVals = {}; 
if any(binCat >= 2) 
    binCatNewNum = []; 
    binCatCounter = 0; 
    Xnew = []; 
    model.binCat.varMap = {}; 
    for i = 1 : mOriginal 
        if binCat(i) >= 2 
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            XX = Xtr(:,i); 
            u = unique(XX(~isnan(XX))); % no NaNs, unique, sorted 
            if size(u,1) > 2 
                model.binCat.varMap = [model.binCat.varMap 

(size(binCatNewNum,2)+1) : (size(binCatNewNum,2)+size(u,1)-1)]; 
                avg = zeros(size(u,1),1); 
                for j = 1 : size(u,1) 
                    avg(j) = mean(Ytr(Xtr(:,i) == u(j))); 
                end 
                [~, ind] = sort(avg); 
                u = u(ind); 
                Xb = zeros(n,size(u,1)-1); 
                for j = 1 : n 
                    if isnan(Xtr(j,i)) 
                        Xb(j,:) = NaN; 
                    else 
                        Xb(j, 1 : find(Xtr(j,i) == u) - 1) = 1; 
                    end 
                end 
                Xnew = [Xnew Xb]; 
                binCatNewNum = [binCatNewNum repmat(size(u,1),1,size(u,1)-

1)]; 
            else 
                Xnew = [Xnew Xtr(:,i)]; 
                binCatNewNum = [binCatNewNum 2]; 
                model.binCat.varMap = [model.binCat.varMap 

size(binCatNewNum,2)]; 
            end 
            binCat(i) = size(u,1); 
            binCatCounter = binCatCounter + 1; 
            binCatVals{binCatCounter} = u; 
            if binCat(i) >= 50 
                warning(['Categorical variable #' num2str(i) ' has ' 

num2str(binCat(i)) ' unique values.']); 
            end 
        else 
            Xnew = [Xnew Xtr(:,i)]; 
            binCatNewNum = [binCatNewNum 0]; 
            model.binCat.varMap = [model.binCat.varMap size(binCatNewNum,2)]; 
        end 
    end 
    Xtr = Xnew; 
    model.binCat.catVals = binCatVals; 
else 
    binCatNewNum = binCat; 
    model.binCat.varMap = num2cell(1:mOriginal); 
end 

  
model.binCat.binCat = binCat; 
model.binCat.binCatNew = binCatNewNum >= 2; % 0 for continuous; 1 for binary 
if any(model.binCat.binCatNew) 
    % this is used later for printing/plotting of the trees/rules 
    model.binCat.minVals = min(Xtr); 
    if (trainParams.extractRules > 0) 
        model.binCat.maxVals = max(Xtr); 
    end 
end 
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model.trainParams = trainParams; 

  
if verbose 
    if trainParams.modelTree, str = 'model'; else str = 'regression'; end 
    if isempty(trainParamsEnsemble) 
        if trainParams.extractRules == 0 
            disp(['Growing M5'' ' str ' tree...']); 
        else 
            disp('Generating rule set...'); 
        end 
    else 
        if trainParams.extractRules == 0 
            disp(['Growing M5'' ' str ' tree ensemble...']); 
        else 
            disp('Growing ensemble of rule sets...'); 
        end 
    end 
end 

  
origWarningState = warning; 
if exist('OCTAVE_VERSION', 'builtin') 
    warning('off', 'Octave:nearly-singular-matrix'); 
    warning('off', 'Octave:singular-matrix'); 
else 
    warning('off', 'MATLAB:nearlySingularMatrix'); 
    warning('off', 'MATLAB:singularMatrix'); 
end 
ttt = tic; 

  
% For the original binary and continuous variables beta = 1 
% For synthetic binary variables created from original categorical variables 

beta < 1 
beta = exp(7 * (2 - max(2, binCatNewNum)) / n); 

  
if isempty(trainParamsEnsemble) 

     
    sd = stdMy(Ytr); 
    numNotMissing = sum(~isnan(Xtr),1); % number of non-missing values for 

each variable 
    model = buildTree(model, Xtr, Ytr, sd, numNotMissing, binCatNewNum, beta, 

[], [], false, keepInteriorModels, keepNodeInfo); 

     
    ensembleResults = []; 

     
else 

     
    if trainParamsEnsemble.numVarsTry < 1 
        if trainParamsEnsemble.numVarsTry < 0 
            trainParamsEnsemble.numVarsTry = mOriginal / 3; 
        else 
            trainParamsEnsemble.numVarsTry = mOriginal; 
        end 
    end 
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    trainParamsEnsemble.numVarsTry = min(mOriginal, max(1, 

floor(trainParamsEnsemble.numVarsTry))); 

     
    if ~trainParamsEnsemble.extraTrees 
        % Random Forests or Bagging 

         
        if round(trainParamsEnsemble.inBagFraction * n) < 1 
            error('trainParamsEnsemble.inBagFraction too small. In-bag set is 

empty.'); 
        end 
        if (~trainParamsEnsemble.withReplacement) && 

(round(trainParamsEnsemble.inBagFraction * n) >= n) 
            error('trainParamsEnsemble.inBagFraction too big. Out-of-bag set 

is empty.'); 
        end 

         
        modelBase = model; 
        models = cell(trainParamsEnsemble.numTrees, 1); 

         
        if (~trainParamsEnsemble.getOOBError) && 

(trainParamsEnsemble.getVarImportance == 0) && 

(~trainParamsEnsemble.getOOBContrib) 
            ensembleResults = []; 
        else 
            if trainParamsEnsemble.getOOBError || 

trainParamsEnsemble.getOOBContrib 
                OOBNum = zeros(n, 1); 
                ensembleResults.OOBIndices = false(n, 

trainParamsEnsemble.numTrees); 
            end 
            if trainParamsEnsemble.getOOBContrib 
                OOBContrib = zeros(n, mOriginal + 1); 
            end 
            if trainParamsEnsemble.getOOBError 
                OOBPred = zeros(n, 1); 
                ensembleResults.OOBError = NaN(trainParamsEnsemble.numTrees, 

1); 
            end 
            if trainParamsEnsemble.getVarImportance > 0 
                diffOOBMAE = NaN(trainParamsEnsemble.numTrees, mOriginal); 
                diffOOBMSE = NaN(trainParamsEnsemble.numTrees, mOriginal); 
                ensembleResults.varImportance = zeros(4, mOriginal); % 

increase in MAE, SD, increase in MSE, SD 
            end 
        end 

         
        % for each tree 
        for t = 1 : trainParamsEnsemble.numTrees 
            if verbose && (trainParamsEnsemble.verboseNumIter > 0) && ... 
                    (mod(t, trainParamsEnsemble.verboseNumIter) == 0) 
                if trainParams.extractRules == 0 
                    fprintf('Growing tree #%d...\n', t); 
                else 
                    fprintf('Generating rule set #%d...\n', t); 
                end 
            end 
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            % sampling 
            if trainParamsEnsemble.withReplacement 
                idx = randi(n, round(trainParamsEnsemble.inBagFraction * n), 

1); 
                X = Xtr(idx,:); 
                Y = Ytr(idx,1); 
            else 
                perm = randperm(n); 
                idx = perm(1:round(trainParamsEnsemble.inBagFraction * n)); 
                X = Xtr(idx,:); 
                Y = Ytr(idx,1); 
            end 

             
            if t > 1 
                model = modelBase; 
            end 

             
            sd = stdMy(Y); 
            numNotMissing = sum(~isnan(X),1); % number of non-missing values 

for each variable 
            model = buildTree(model, X, Y, sd, numNotMissing, binCatNewNum, 

beta, ... 
                trainParamsEnsemble.numVarsTry, mOriginal, false, 

keepInteriorModels, keepNodeInfo); 

             
            % additional calculations, if asked 
            if trainParamsEnsemble.getOOBError || 

(trainParamsEnsemble.getVarImportance > 0) || 

trainParamsEnsemble.getOOBContrib 
                idxoob = true(n,1); 
                idxoob(idx) = false; 
                idxoob = find(idxoob); 
                if ~isempty(idxoob) % test for the unlikely case when out-of-

bag set is empty 
                    Xoob = Xtr(idxoob,:); 
                    Yq = zeros(size(Xoob,1),1); 

                     
                    if trainParamsEnsemble.getOOBContrib 
                        for i = 1 : size(Xoob,1) 
                            [Yq(i), OOBContrib2] = predictsingle(model, 

Xoob(i,:), modelBase.binCat.varMap); 
                            OOBContrib(idxoob(i),:) = OOBContrib(idxoob(i),:) 

+ OOBContrib2; 
                        end 
                    else 
                        for i = 1 : size(Xoob,1) 
                            Yq(i) = predictsingle(model, Xoob(i,:)); 
                        end 
                    end 

                     
                    if trainParamsEnsemble.getOOBError || 

trainParamsEnsemble.getOOBContrib 
                        ensembleResults.OOBIndices(idxoob,t) = true; 
                        OOBNum(idxoob) = OOBNum(idxoob) + 1; 
                    end 
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                    if trainParamsEnsemble.getOOBError 
                        idxExist = OOBNum ~= 0; 
                        OOBPred(idxoob) = OOBPred(idxoob) + Yq; 
                        ensembleResults.OOBError(t,1) = 

mean(((OOBPred(idxExist) ./ OOBNum(idxExist)) - Ytr(idxExist)) .^ 2); 
                        if verbose && (trainParamsEnsemble.verboseNumIter > 

0) && ... 
                                (mod(t, trainParamsEnsemble.verboseNumIter) 

== 0) 
                            if trainParams.extractRules == 0 
                                fprintf('Out-of-bag MSE with %d trees: 

%.5g\n', t, ensembleResults.OOBError(t,1)); 
                            else 
                                fprintf('Out-of-bag MSE with %d rule sets: 

%.5g\n', t, ensembleResults.OOBError(t,1)); 
                            end 
                        end 
                    end 

                     
                    if trainParamsEnsemble.getVarImportance > 0 
                        Yqtdiff = Yq - Ytr(idxoob); 
                        for v = 1 : mOriginal 
                            for iPerm = 

1:trainParamsEnsemble.getVarImportance 
                                Xoobpert = Xoob; 
                                idxoobpert = 

idxoob(randperm(size(idxoob,1)),1); 
                                % Perturb OOB variables that correspond to 

the original vth variable 
                                for vnew = model.binCat.varMap{v} 
                                    Xoobpert(:,vnew) = Xtr(idxoobpert,vnew); 
                                end 
                                Yqpert = zeros(size(Xoobpert,1),1); 
                                for i = 1 : size(Xoobpert,1) 
                                    Yqpert(i) = predictsingle(model, 

Xoobpert(i,:)); 
                                end 
                                Yqptdiff = Yqpert - Ytr(idxoob); 
                                if iPerm == 1 
                                    diffOOBMAE(t,v) = mean(abs(Yqptdiff)) - 

mean(abs(Yqtdiff)); 
                                    diffOOBMSE(t,v) = mean(Yqptdiff .^ 2) - 

mean(Yqtdiff .^ 2); 
                                else 
                                    diffOOBMAE(t,v) = diffOOBMAE(t,v) + 

mean(abs(Yqptdiff)) - mean(abs(Yqtdiff)); 
                                    diffOOBMSE(t,v) = diffOOBMSE(t,v) + 

mean(Yqptdiff .^ 2) - mean(Yqtdiff .^ 2); 
                                end 
                            end 
                            if trainParamsEnsemble.getVarImportance > 1 
                                diffOOBMAE(t,v) = diffOOBMAE(t,v) / 

trainParamsEnsemble.getVarImportance; 
                                diffOOBMSE(t,v) = diffOOBMSE(t,v) / 

trainParamsEnsemble.getVarImportance; 
                            end 
                        end 
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                    end 

  
                end 
            end 

             
            models{t} = model; 
        end % end of loop through all trees 
        model = models; 
        if trainParamsEnsemble.getOOBError || 

trainParamsEnsemble.getOOBContrib 
            ensembleResults.OOBNum = OOBNum; 
        end 
        if trainParamsEnsemble.getOOBContrib 
            ensembleResults.OOBContrib = OOBContrib ./ repmat(OOBNum, 1, 

mOriginal + 1); 
        end 
        if trainParamsEnsemble.getVarImportance > 0 
            ensembleResults.varImportance(1,:) = mean(diffOOBMAE, 1); 
            ensembleResults.varImportance(2,:) = std(diffOOBMAE, 1, 1); 
            ensembleResults.varImportance(3,:) = mean(diffOOBMSE, 1); 
            ensembleResults.varImportance(4,:) = std(diffOOBMSE, 1, 1); 
        end 

         
    else % if extraTrees 
        % Extra-Trees 

         
        modelBase = model; 
        models = cell(trainParamsEnsemble.numTrees, 1); 
        ensembleResults = []; 
        sd = stdMy(Ytr); 
        numNotMissing = sum(~isnan(Xtr),1); % number of non-missing values 

for each variable 
        % for each tree 
        for t = 1 : trainParamsEnsemble.numTrees 
            if verbose && (trainParamsEnsemble.verboseNumIter > 0) && ... 
                    (mod(t, trainParamsEnsemble.verboseNumIter) == 0) 
                if trainParams.extractRules == 0 
                    fprintf('Growing tree #%d...\n', t); 
                else 
                    fprintf('Generating rule set #%d...\n', t); 
                end 
            end 
            if t > 1 
                model = modelBase; 
            end 
            model = buildTree(model, Xtr, Ytr, sd, numNotMissing, 

binCatNewNum, beta, ... 
                trainParamsEnsemble.numVarsTry, mOriginal, true, 

keepInteriorModels, keepNodeInfo); 

             
            models{t} = model; 
        end 
        model = models; 
    end % end of if extraTrees 

     
end 
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time = toc(ttt); 
if verbose 
    if isempty(trainParamsEnsemble) 
        printinfo(model); 
    end 
    fprintf('Execution time: %0.2f seconds\n', time); 
end 
warning(origWarningState); 
end 

  
%========================================================================== 

  
function model = buildTree(model, X, Y, sd, numNotMissing, binCatNewNum, 

beta, numVarsTry, mOriginal, extraTrees, keepInteriorModels, keepNodeInfo) 
% Builds a tree. If asked, extracts decision rules and returns them instead 

of the tree. 
if model.trainParams.extractRules == 0 
    % This is normal execution for building M5' trees. 
    % Growing the tree 
    model.tree = splitNode(X, Y, 1:size(Y,1), 0, sd, numNotMissing, 

binCatNewNum, model.trainParams, beta, numVarsTry, mOriginal, 

model.binCat.varMap, extraTrees, keepNodeInfo); 
    % Pruning the tree and/or filling it with models or mean values 
    model.tree = pruneNode(model.tree, X, Y, model.trainParams, 

keepNodeInfo); 
    if model.trainParams.smoothingK > 0 
        totalAttrs = model.binCat.varMap{end}(end); 
        model.tree = smoothing(model.tree, [], model.trainParams.modelTree, 

model.trainParams.smoothingK, totalAttrs); 
    end 
    model.tree = cleanUp(model.tree, model.trainParams.modelTree, 

~keepInteriorModels, ~keepNodeInfo); 
elseif model.trainParams.extractRules == 1 
    % Build M5' tree and extract all its decision rules. 
    % Growing the tree 
    tree = splitNode(X, Y, 1:size(Y,1), 0, sd, numNotMissing, binCatNewNum, 

model.trainParams, beta, numVarsTry, mOriginal, model.binCat.varMap, 

extraTrees, keepNodeInfo); 
    % Pruning the tree and/or filling it with models or mean values 
    tree = pruneNode(tree, X, Y, model.trainParams, keepNodeInfo); 
    if model.trainParams.smoothingK > 0 
        totalAttrs = model.binCat.varMap{end}(end); 
        tree = smoothing(tree, [], model.trainParams.modelTree, 

model.trainParams.smoothingK, totalAttrs); 
    end 
    if model.trainParams.modelTree 
        [model.rules, model.outcomesCoefs, model.outcomesAttrIdx, 

model.outcomesAttrAvg, model.outcomesNumCases, outcomesCaseIdx, outcomesSD] = 

... 
            createRules(tree, model.trainParams.modelTree, false, 

keepNodeInfo); 
    else 
        [model.rules, model.outcomes, ~, ~, model.outcomesNumCases, 

outcomesCaseIdx, outcomesSD] = ... 
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            createRules(tree, model.trainParams.modelTree, false, 

keepNodeInfo); 
    end 
    if keepNodeInfo 
        model.outcomesCaseIdx = outcomesCaseIdx; 
        model.outcomesSD = outcomesSD; 
    end 
else 
    % Builds a list of decision rules using the M5'Rules method. 
    model.rules = {}; 
    if model.trainParams.modelTree 
        model.outcomesCoefs = {}; 
        model.outcomesAttrIdx = {}; 
        model.outcomesAttrAvg = {}; 
    else 
        model.outcomes = []; 
    end 
    model.outcomesNumCases = []; 
    if keepNodeInfo 
        caseIdx = 1 : size(X,1); % so that we get original indices even after 

some observations are deleted 
        model.outcomesCaseIdx = {}; 
        model.outcomesSD = []; 
    end 
    currRule = 0; 
    while true 
        % Growing the tree 
        tree = splitNode(X, Y, 1:size(Y,1), 0, sd, numNotMissing, 

binCatNewNum, model.trainParams, beta, numVarsTry, mOriginal, 

model.binCat.varMap, extraTrees, keepNodeInfo); 
        % Pruning the tree and/or filling it with models or mean values 
        tree = pruneNode(tree, X, Y, model.trainParams, keepNodeInfo); 
        if model.trainParams.modelTree 
            [rules, outcomesCoefs, outcomesAttrIdx, outcomesAttrAvg, 

outcomesNumCases, outcomesCaseIdx, outcomesSD] = ... 
                createRules(tree, model.trainParams.modelTree, true, 

keepNodeInfo); 
        else 
            [rules, outcomes, ~, ~, outcomesNumCases, outcomesCaseIdx, 

outcomesSD] = ... 
                createRules(tree, model.trainParams.modelTree, true, 

keepNodeInfo); 
        end 
        [~, idx] = max(outcomesNumCases); 

         
        % Storing the decision rule with the biggest coverage. 
        currRule = currRule + 1; 
        model.rules{currRule,1} = rules{idx}; 
        if model.trainParams.modelTree 
            model.outcomesCoefs{currRule,1} = outcomesCoefs{idx}; 
            model.outcomesAttrIdx{currRule,1} = outcomesAttrIdx{idx}; 
            model.outcomesAttrAvg{currRule,1} = outcomesAttrAvg{idx}; 
        else 
            model.outcomes(currRule,1) = outcomes(idx); 
        end 
        model.outcomesNumCases(currRule,1) = outcomesNumCases(idx); 
        if keepNodeInfo 
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            model.outcomesCaseIdx{currRule,1} = 

caseIdx(outcomesCaseIdx{idx}); 
            caseIdx(outcomesCaseIdx{idx}) = []; 
            model.outcomesSD(currRule,1) = outcomesSD(idx); 
        end 

         
        % Deleting observations covered by the stored rule. 
        X(outcomesCaseIdx{idx},:) = []; 
        Y(outcomesCaseIdx{idx},:) = []; 
        if (size(X,1) == 0) 
            break; 
        end 
        %sd = stdMy(Y); 
        %numNotMissing = sum(~isnan(X),1); 
    end 
end 
end 

  
function [node, attrList] = splitNode(X, Y, caseIdx, depth, sd, 

numNotMissing, binCatNewNum, trainParams, beta, numVarsTry, mOriginal, 

varMap, extraTrees, keepNodeInfo) 
% The function splits node into left node and right node 
node.caseIdx = caseIdx; 
if depth >= trainParams.maxDepth 
    node.interior = false; % this node will be a leaf node 
    attrList = []; 
    if keepNodeInfo 
        node.sd = stdMy(Y(caseIdx)); 
    end 
    return; 
end 
YY = Y(caseIdx); 
stdYall = stdMy(YY); 
if keepNodeInfo 
    node.sd = stdYall; 
end 
% no need to check minLeafSize*2 because minParentSize is guaranteed to be at 

least twice the minLeafSize 
% (size(caseIdx,2) < trainParams.minLeafSize * 2) || ... 
if (size(caseIdx,2) < trainParams.minParentSize) || ... 
   (stdYall < trainParams.splitThreshold * sd) 
    node.interior = false; % this node will be a leaf node 
    attrList = []; 
    return; 
end; 
sdr = -Inf; 
if ~extraTrees 
    % This is for individual trees and trees in Bagging and Random Forests 
    if isempty(numVarsTry) || (numVarsTry >= mOriginal) 
        varsTry = 1:size(X, 2); % try all variables 
    else 
        % We will try random subset of variables (for building ensembles) 
        % For categorical variables, we will try all their synthetic binary 

variables 
        origVList = randperm(mOriginal); 
        varsTry = [varMap{origVList(1:numVarsTry)}]; 
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    end 
else 
    % This is for trees in Extra-Trees 
    if isempty(numVarsTry) || (numVarsTry >= mOriginal) 
        % This is for the typical configuration when we try all variables, 

for one split each 
        varsTry = []; 
        for v = 1 : mOriginal 
            vars = varMap{v}; 
            if size(vars,2) < 2 
                varsTry = [varsTry vars]; 
            else 
                % For categorical variables, we will randomly select one 

synthetic binary variable 
                varsTry = [varsTry vars(randi(size(vars,2),1))]; 
            end 
        end 
    else 
        % This is for the configuration when we try fewer than all variables 

but they should be non constant in the node 
        origVList = randperm(mOriginal); 
        numVarsUsed = 0; 
        varsTry = []; 
        for origV = origVList 
            vars = varMap{origV}; 
            nonConstant = false; 
            for v = vars 
                XX = X(caseIdx,v); 
                if min(XX) ~= max(XX) 
                    nonConstant = true; 
                    break; 
                end 
            end 
            if ~nonConstant 
                continue; 
            end 
            if size(vars,2) >= 2 
                % For categorical variables, we will randomly select one 

synthetic binary variable 
                vars = vars(randi(size(vars,2),1)); 
            end 
            varsTry = [varsTry vars]; 
            numVarsUsed = numVarsUsed + 1; 
            if numVarsUsed >= numVarsTry 
                break; 
            end 
        end 
    end 
end 
% let's find best variable and best split 
for i = varsTry 
    XX = X(caseIdx,i); 
    % NaNs (unknown values) will not be used for split point determination 
    % and there is no need to sort because unique already sorts 
    nonansIdx = ~isnan(XX); 
    XXnonans = XX(nonansIdx); 
    if binCatNewNum(i) >= 2 
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        % It's simple with binary variables 
        minXXnonans = min(XXnonans); 
        maxXXnonans = max(XXnonans); 
        if minXXnonans == maxXXnonans 
            continue; 
        end 
        splitCandidates = (minXXnonans + maxXXnonans) / 2; 
    else 
        if ~extraTrees 
            sorted = unique(XXnonans); 
            if size(sorted,1) < 2 
                continue; 
            end 
            splitCandidates = ((sorted(1:end-1) + sorted(2:end)) ./ 2)'; 
        else 
            minXXnonans = min(XXnonans); 
            maxXXnonans = max(XXnonans); 
            if minXXnonans == maxXXnonans 
                continue; 
            end 
            splitCandidates = minXXnonans + rand(1) * (maxXXnonans - 

minXXnonans); 
        end 
    end 
    sizeAllNoNans = size(XXnonans,1); % size without NaNs 
    if (sizeAllNoNans == size(XX,1)) % if there are no NaNs 
        stdY = stdYall; 
    else 
        stdY = stdMy(YY(nonansIdx)); % NaNs are not used for splitting 

decisions 
    end 
    % let's find the best split 
    for splitCand = splitCandidates 
        leftInd = find(XX <= splitCand); 
        if (size(leftInd,1) < trainParams.minLeafSize) 
            continue; 
        end 
        rightInd = find(XX > splitCand); 
        if (size(rightInd,1) < trainParams.minLeafSize) 
            break; % break loop because we definitely are too near the edge 

for any further split point to be allowed 
        end 
        % calculate SDR for the split point 
        if trainParams.vanillaSDR 
            sdrNew = stdY - (size(leftInd,1) * stdMy(YY(leftInd)) + 

size(rightInd,1) * stdMy(YY(rightInd))) / sizeAllNoNans; 
        else 
            sdrNew = numNotMissing(i) / sizeAllNoNans * beta(i) * ... 
                (stdY - (size(leftInd,1) * stdMy(YY(leftInd)) + 

size(rightInd,1) * stdMy(YY(rightInd))) / sizeAllNoNans); 
        end 
        if sdrNew > sdr 
            sdr = sdrNew; 
            splitPoint = splitCand; 
            attrList = i; 
        end 
    end 
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end 
if sdr <= 0 
    % This node will be a leaf node 
    node.interior = false; 
    attrList = []; 
else 
    % This node will be an interior node 
    [leftInd, rightInd] = leftright(splitPoint, X(caseIdx,attrList), YY, 

binCatNewNum(attrList)); 
    leftInd = caseIdx(leftInd); 
    rightInd = caseIdx(rightInd); 
    node.interior = true; 
    node.splitAttr = attrList; 
    node.splitLocation = splitPoint; 
    [node.left, attrList2] = ... 
        splitNode(X, Y, leftInd, depth + 1, sd, numNotMissing, binCatNewNum, 

trainParams, ... 
                beta, numVarsTry, mOriginal, varMap, extraTrees, 

keepNodeInfo); 
    if trainParams.modelTree 
        attrList = [attrList attrList2]; 
    end 
    [node.right, attrList2] = ... 
        splitNode(X, Y, rightInd, depth + 1, sd, numNotMissing, binCatNewNum, 

trainParams, ... 
                beta, numVarsTry, mOriginal, varMap, extraTrees, 

keepNodeInfo); 
    if trainParams.modelTree 
        attrList = unique([attrList attrList2]); % unique also sorts 
        node.attrList = attrList; 
    end 
end 
end 

  
function stdev = stdMy(Y) 
% Calculates standard deviation 
% Does the same as Matlab's std function but without all the overhead 
nn = size(Y,1); 
stdev = sqrt(sum((Y - (sum(Y) / nn)) .^ 2) / nn); 
end 

  
function [leftInd, rightInd] = leftright(split, X, Y, binCatNewNum) 
% Splits all observations into left and right sets. Deals with NaNs 

separately. 
leftInd = find(X <= split); 
rightInd = find(X > split); 
% Place observations with NaNs in left or right according to their Y values 
isNaN = isnan(X); 
if any(isNaN) 
    if binCatNewNum < 2 
        % For continuous variables 
        [~, sorted] = sort(X(leftInd)); 
        sorted = leftInd(sorted); 
        leftAvg = mean(Y(sorted(end - min([2 size(leftInd,1)-1]) : end))); 
        [~, sorted] = sort(X(rightInd)); 
        sorted = rightInd(sorted); 
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        rightAvg = mean(Y(sorted(1 : min([3 size(rightInd,1)])))); 
    else 
        % For both original and synthetic binary variables 
        leftAvg = mean(Y(leftInd)); 
        rightAvg = mean(Y(rightInd)); 
    end 
    avgAvg = (leftAvg + rightAvg) / 2; 
    smaller = Y(isNaN) <= avgAvg; 
    nanInd = find(isNaN); 
    if leftAvg <= rightAvg 
        leftInd = [leftInd; nanInd(smaller)]; 
        rightInd = [rightInd; nanInd(~smaller)]; 
    else 
        leftInd = [leftInd; nanInd(~smaller)]; 
        rightInd = [rightInd; nanInd(smaller)]; 
    end 
end 
end 

  
function node = pruneNode(node, X, Y, trainParams, keepNodeInfo) 
% Prunes the tree and fills it with models (or average values). 
% If tree pruning is disabled, only filling with models is done. 
% For each model, subset selection is done (using sequential backward 

selection). 
if ~node.interior 
    if ~trainParams.modelTree 
        node.value = mean(Y(node.caseIdx)); 
    else 
        % Original leaf nodes ignore input variables 
        node.modelCoefs = mean(Y(node.caseIdx)); 
        node.modelAttrIdx = []; 
    end 
    return; 
end 
node.left = pruneNode(node.left, X, Y, trainParams, keepNodeInfo); 
node.right = pruneNode(node.right, X, Y, trainParams, keepNodeInfo); 
if ~trainParams.modelTree 
    node.value = mean(Y(node.caseIdx)); 
    if trainParams.prune 
        errNode = calcErrNodeWithAllKnown(node, X, Y, trainParams, true); % 

pretend it's known because regression tree doesn't care 
    end 
else 
    attrInd = node.attrList; 
    if isempty(attrInd) % no attributes. the model will include only 

intercept 
        node.modelCoefs = mean(Y(node.caseIdx)); 
        node.modelAttrIdx = []; 
        if trainParams.prune 
            errNode = calcErrNodeWithAllKnown(node, X, Y, trainParams, true); 

% pretend it's known because no attributes are used 
        end 
    else 
        XX = X; 
        isNaN = isnan(X(node.caseIdx,attrInd)); 
        for i = 1 : length(attrInd) 
            % Store average values of the variables (required when the tree 
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            % is used for prediction and NaN is encountered) 
            % (node.modelAttrIdx provides index for the variable for which 
            % modelAttrAvg is the average value) 
            node.modelAttrAvg(i) = 

mean(X(node.caseIdx(~isNaN(:,i)),attrInd(i))); 
            % Replace NaNs by the average values of the corresponding 

variables 
            % of the training observations reaching the node 
            XX(node.caseIdx(isNaN(:,i)),attrInd(i)) = node.modelAttrAvg(i); 
        end 
        A = [ones(length(node.caseIdx),1) XX(node.caseIdx,attrInd)]; 
        node.modelCoefs = A \ Y(node.caseIdx); 
        node.modelAttrIdx = attrInd; 
        if trainParams.prune 
            errNode = calcErrNodeWithAllKnown(node, XX, Y, trainParams, 

true); 
            if trainParams.eliminateTerms 
                % Perform variable selection 
                attrIndBest = attrInd; 
                coefsBest = node.modelCoefs; 
                changed = false; 
                for j = 1 : length(attrInd) 
                    attrIndOld = node.modelAttrIdx; 
                    for i = 1 : length(attrIndOld) 
                        node.modelAttrIdx = attrIndOld; 
                        node.modelAttrIdx(i) = []; 
                        A = [ones(length(node.caseIdx),1) 

XX(node.caseIdx,node.modelAttrIdx)]; 
                        node.modelCoefs = A \ Y(node.caseIdx); 
                        errTry = calcErrNodeWithAllKnown(node, XX, Y, 

trainParams, true); 
                        if errTry < errNode 
                            errNode = errTry; 
                            attrIndBest = node.modelAttrIdx; 
                            coefsBest = node.modelCoefs; 
                            changed = true; 
                        end 
                    end 
                    node.modelAttrIdx = attrIndBest; 
                    node.modelCoefs = coefsBest; 
                    if ~changed 
                        break; 
                    end 
                end 
                % Update node.modelAttrAvg if the used subset of variables 

has changed 
                if length(node.modelAttrIdx) < length(attrInd) 
                    for i = 1 : length(node.modelAttrIdx) 
                        node.modelAttrAvg(i) = node.modelAttrAvg(attrInd == 

node.modelAttrIdx(i)); 
                    end 
                    node.modelAttrAvg = 

node.modelAttrAvg(1:length(node.modelAttrIdx)); 
                end 
            end 
        end 
        if keepNodeInfo 
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            val = [ones(length(node.caseIdx),1) 

X(node.caseIdx,node.modelAttrIdx)] * node.modelCoefs; 
            node.sd = sqrt(mean((val - Y(node.caseIdx)).^2)); 
        end 
    end 
end 
if trainParams.prune && ... 
   ( ... 
    ((~trainParams.aggressivePruning) && (calcErrSubtree(node, X, Y, 

trainParams) >= errNode)) || ... 
    (trainParams.aggressivePruning && (calcErrSubtreeAggressive(node, X, Y, 

trainParams) >= errNode)) ... 
   ) 
    % above we could also add "(sd * 1E-6 > errNode)" 
    % this node will be a leaf node 
    node.interior = false; 
    if trainParams.modelTree 
        node = rmfield(node, {'splitAttr', 'splitLocation', 'left', 'right', 

'attrList'}); 
    else 
        node = rmfield(node, {'splitAttr', 'splitLocation', 'left', 

'right'}); 
    end 
else 
    if trainParams.modelTree 
        node = rmfield(node, 'attrList'); 
    end 
    % Store average value of the split variable (required when the tree 
    % is used for prediction and NaN is encountered) 
    notNaN = node.caseIdx(~isnan(X(node.caseIdx,node.splitAttr))); 
    %node.splitAttrAvg = mean(X(notNaN,node.splitAttr)); % not really needed. 

we can just set nanLeft 
    node.nanLeft = mean(X(notNaN,node.splitAttr)) <= node.splitLocation; 
end 
end 

  
function err = calcErrSubtree(node, X, Y, trainParams) 
% Calculates error of the subtree 
if node.interior 
    err = (length(node.left.caseIdx) * calcErrSubtree(node.left, X, Y, 

trainParams) + ... 
           length(node.right.caseIdx) * calcErrSubtree(node.right, X, Y, 

trainParams)) / ... 
           length(node.caseIdx); 
else 
    err = calcErrNode(node, X, Y, trainParams); 
end 
end 

  
function err = calcErrSubtreeAggressive(node, X, Y, trainParams) 
% Calculates error of the subtree, applies penalty 
[err, v] = calcErrSubtreeAggressiveDo(node, X, Y, trainParams); 
nn = length(node.caseIdx); 
if (nn > v) 
    err = err * (nn + v * 2) / (nn - v); 
else 
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    err = err * 10; 
end 
end 
function [err, v] = calcErrSubtreeAggressiveDo(node, X, Y, trainParams) 
% Calculates error of the subtree 
if node.interior 
    [errLeft, vLeft] = calcErrSubtreeAggressiveDo(node.left, X, Y, 

trainParams); 
    [errRight, vRight] = calcErrSubtreeAggressiveDo(node.right, X, Y, 

trainParams); 
    err = (length(node.left.caseIdx) * errLeft + length(node.right.caseIdx) * 

errRight) / length(node.caseIdx); 
    v = vLeft + vRight + 1; 
else 
    err = calcErrNode(node, X, Y, trainParams); 
    if trainParams.modelTree 
        v = length(node.modelCoefs); 
    else 
        v = 1; 
    end 
end 
end 

  
function err = calcErrNode(node, X, Y, trainParams) 
% Calculates error of the node. Handles missing values. 
if trainParams.modelTree 
    % Replace NaNs with the average values of the corresponding variables 
    % of the training observations reaching the node 
    isNaN = isnan(X(node.caseIdx,node.modelAttrIdx)); 
    for i = 1 : length(node.modelAttrIdx) 
        X(node.caseIdx(isNaN(:,i)),node.modelAttrIdx(i)) = 

node.modelAttrAvg(i); 
    end 
end 
err = calcErrNodeWithAllKnown(node, X, Y, trainParams, false); 
end 

  
function err = calcErrNodeWithAllKnown(node, X, Y, trainParams, 

forDroppingTerms) 
% Calculates error of the node. Assumes all values are known. 
if trainParams.modelTree 
    val = [ones(length(node.caseIdx),1) X(node.caseIdx,node.modelAttrIdx)] * 

node.modelCoefs; 
    deviation = mean(abs(val - Y(node.caseIdx))); 
    v = length(node.modelCoefs); 
else 
    deviation = mean(abs(node.value - Y(node.caseIdx))); 
    v = 1; 
end 
if ~trainParams.aggressivePruning 
    nn = length(node.caseIdx); 
    err = (nn + v) / (nn - v) * deviation; 
else 
    if forDroppingTerms 
        nn = length(node.caseIdx); 
        err = (nn + v * 2) / (nn - v) * deviation; 
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    else 
        err = deviation; 
    end 
end 
end 

  
function node = cleanUp(node, modelTree, removeInteriorModels, removeCaseIdx) 
% Removing the temporary fields 
node.numCases = length(node.caseIdx); 
if removeCaseIdx 
    node = rmfield(node, 'caseIdx'); 
end 
if node.interior 
    if removeInteriorModels 
        if modelTree 
            node = rmfield(node, {'modelCoefs', 'modelAttrAvg', 

'modelAttrIdx'}); 
        else 
            node = rmfield(node, 'value'); 
        end 
    end 
    node.left = cleanUp(node.left, modelTree, removeInteriorModels, 

removeCaseIdx); 
    node.right = cleanUp(node.right, modelTree, removeInteriorModels, 

removeCaseIdx); 
end 
end 

  
function node = smoothing(node, list, modelTree, smoothingK, totalAttrs) 
% Performs smoothing by incorporating interior models into leaf models. 
% Deals with modelAttrAvg, so that unknown values can be substituted with 
% modelAttrAvg at leaves. 
if node.interior 
    if modelTree 
        data.attrIdx = node.modelAttrIdx; 
        data.coefs = node.modelCoefs; 
        data.attrAvg = zeros(totalAttrs,1); 
        data.attrAvg(node.modelAttrIdx) = node.modelAttrAvg; 
    else 
        data.value = node.value; 
    end 
    data.numCases = length(node.caseIdx); 
    list{end+1} = data; % making a list. will be used at leaf nodes 
    node.left = smoothing(node.left, list, modelTree, smoothingK, 

totalAttrs); 
    node.right = smoothing(node.right, list, modelTree, smoothingK, 

totalAttrs); 
else 
    if modelTree 
        len = length(list); 
        if len > 0 
            attrIdx = node.modelAttrIdx; 
            s_n = length(node.caseIdx); 
            coefs = zeros(totalAttrs+1,1); 
            coefs([1 attrIdx+1]) = node.modelCoefs; 
            attrAvg = zeros(totalAttrs,1); 
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            if ~isempty(attrIdx) 
                attrAvg(attrIdx) = node.modelAttrAvg; 
            end 
            % pretend to go from the leaf node to the root node 
            for i = len:-1:1 
                % Update list of used variables 
                attrIdx = union(attrIdx, list{i}.attrIdx); % union sorts. 

this also will make equations easier to understand 
                % Coefs at this node 
                coefsHere = zeros(size(coefs)); 
                coefsHere([1 list{i}.attrIdx+1]) = list{i}.coefs; 
                % Recalculate weighted averages for NaNs 
                idx = true(size(coefs)); 
                idx(1) = false; 
                idx((coefs == 0) & (coefsHere == 0)) = false; 
                if any(idx) 
                    idxAttr = idx(2:end); 
                    attrAvg(idxAttr) = ... 
                        attrAvg(idxAttr) .* s_n .* coefs(idx) ./ (s_n .* 

coefs(idx) + smoothingK .* coefsHere(idx)) + ... 
                        list{i}.attrAvg(idxAttr) .* smoothingK .* 

coefsHere(idx) ./ (s_n .* coefs(idx) + smoothingK .* coefsHere(idx)); 
                end 
                % Recalculate smoothed coefs 
                coefs = (s_n * coefs + smoothingK * coefsHere) / (s_n + 

smoothingK); 
                s_n = list{i}.numCases; % s_n for next iteration 
            end 
            attrIdx = attrIdx(:)'; % force row vector 
            node.modelCoefs = coefs([1 attrIdx+1]); 
            node.modelAttrIdx = attrIdx; 
            node.modelAttrAvg = attrAvg(attrIdx)'; 
        end 
    else 
        len = length(list); 
        if len > 0 
            value = node.value; 
            s_n = length(node.caseIdx); 
            % pretend to go from the leaf node to the root node 
            for i = len:-1:1 
                value = (s_n * value + smoothingK * list{i}.value) / (s_n + 

smoothingK); % calculate smoothed values 
                s_n = list{i}.numCases; % s_n for next iteration 
            end 
            node.value = value; 
        end 
    end 
end 
end 

  
function [rules, outcomes, outcomesAttrIdx, outcomesAttrAvg, 

outcomesNumCases, outcomesCaseIdx, outcomesSD] = ... 
        createRules(tree, modelTree, maxCoverageOnly, keepNodeInfo) 
% Extracts decision rules from a tree. 
totalRules = countRules(tree); 
rules = cell(totalRules,1); 
if modelTree 
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    outcomes = cell(totalRules,1); 
    outcomesAttrIdx = cell(totalRules,1); 
    outcomesAttrAvg = cell(totalRules,1); 
else 
    outcomes = zeros(totalRules,1); 
    outcomesAttrIdx = []; 
    outcomesAttrAvg = []; 
end 
outcomesNumCases = zeros(totalRules,1); 
outcomesCaseIdx = cell(totalRules,1); 
if keepNodeInfo 
    outcomesSD = nan(totalRules,1); 
else 
    outcomesSD = []; 
end 
currRule = 0; 
maxNumCases = 0; 
createRulesDo(tree, {}); 
function createRulesDo(node, tests) 
    if node.interior 
        % Interior nodes become tests in rules 
        tests{end+1,1}.attr = node.splitAttr; 
        tests{end}.location = node.splitLocation; 
        tests{end}.le = true; % "<=" 
        tests{end}.orNan = node.nanLeft; % whether to accept NaN 
        createRulesDo(node.left, tests); 
        tests{end}.le = false; % ">" 
        tests{end}.orNan = ~node.nanLeft; % whether to accept NaN 
        createRulesDo(node.right, tests); 
        return; 
    end 
    % Leaf nodes become outcomes for the rules 
    currRule = currRule + 1; 
    if maxCoverageOnly && (length(node.caseIdx) <= maxNumCases) 
        % If we'll actually want only the rule with the maximum coverage 
        % then we don't need to store everything for rules that are already 
        % known to be smaller. 
        outcomesNumCases(currRule,1) = 0; 
        return; 
    end 
    rules{currRule,1} = tests; % store all tests 
    if modelTree 
        outcomes{currRule,1} = node.modelCoefs; 
        outcomesAttrIdx{currRule,1} = node.modelAttrIdx; 
        if isempty(node.modelAttrIdx) 
            outcomesAttrAvg{currRule,1} = []; 
        else 
            outcomesAttrAvg{currRule,1} = node.modelAttrAvg; 
        end 
    else 
        outcomes(currRule,1) = node.value; 
    end 
    maxNumCases = length(node.caseIdx); 
    outcomesNumCases(currRule,1) = maxNumCases; 
    outcomesCaseIdx{currRule,1} = node.caseIdx; 
    if keepNodeInfo 
        outcomesSD(currRule,1) = node.sd; 
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    end 
end 
end 

  
function nRules = countRules(node) 
% Counts all rules (equal to the number of leaf nodes) in the tree. 
if node.interior 
    nRules = countRules(node.left) + countRules(node.right); 
else 
    nRules = 1; 
end 
end 
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APPENDIX (II): SAMPLE DATA POINTS 

This section provides a set of sample data points and their descriptions. The full dataset is available 

for any further research and analysis at https://figshare.com/s/8de57c3a0ca8f8ed37c4. 

 Sample Data Points 

Lables #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 

X1 42864 32080 31529 32053 31660 29952 27949 4852 29096.5 30380 16484 

X2 574.7 424.2 435.4 441.7 438 429.7 390.2 43.7 0 0 296.1 

X3 0 0 0 0 0 0 0 0 0 0 0 

X4 0 0 0 0 0 0 0 0 8.8 8.8 0 

X5 0 0 0 0 0 0 0 0 5.9 7.3 0 

X6 0 0 0 0 0 0 0 0 0 0 0 

X7 204.5 107.8 133.6 146.4 146.3 155.2 103.3 0 0 0 108.7 

X8 0 0 0 0 0 0 0 0 4.9 4.9 0 

X9 0 0 0 0 0 0 0 0 0 0 1.1 

X10 0 0 0 0 0 0 0 0 0 0 0 

X11 134.5 102.3 97.9 99.2 99.5 92.3 90.5 20.7 262.2 279.9 13.8 

X12 0 0 0 0 0 0 0 0 0 0 0 

X13 0 0 0 0 0 0 0 0 0 0 0 

X14 659 295 356 360 358 362 305 0 106 114 248 

X15 0 0 0 0 0 0 0 0 0 0 0 

X16 0 0 0 0 0 0 0 0 0 0 0 

X17 0 0 0 0 0 0 0 0 0 0 0 

X18 0 0 0 0 0 0 0 0 0 0 0 

X19 48.3 30.4 33.5 32.9 32.3 29.3 27.2 1.4 0 0 32.5 

X20 0 0 0 0 0 0 0 0 0 0 0 

X21 0 0 0 0 0 0 0 0 0 0 0 

X22 10.4 7.1 6.8 8.4 7.1 4.7 6.2 3.2 0 0 0 

X23 0 0 0 0 0 0 0 0 3.3 3.3 0 

X24 254.1 207.2 184.4 183.4 182.4 163.6 161.6 43.9 35.3 34.8 32.9 

X25 0 0 0 0 0 0 0 0 0 0 0 

X26 0 0 0 0 0 0 0 0 0 0 0 

X27 0 0 0 0 0 0 0 0 0 0 0 

X28 0 0 0 0 0 0 0 0 0 0 0 

https://figshare.com/s/8de57c3a0ca8f8ed37c4
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X29 0 0 0 0 0 0 0 0 0 0 0 

X30 0 0 0 0 0 0 0 0 0 0 0 

X31 0 0 0 0 0 0 0 0 0 0 0 

X32 0 0 0 0 0 0 0 0 0 0 0 

X33 0 0 0 0 0 0 0 0 0 0 0 

X34 0 0 0 0 0 0 0 0 0 0 0 

X35 0 0 0 0 0 0 0 0 0 0 0 

X36 0 0 0 0 0 0 0 0 0 0 0 

X37 0 0 0 0 0 0 0 0 0 0 0 

X38 0 0 0 0 0 0 0 0 0 0 0 

X39 0 0 0 0 0 0 0 0 0 0 0 

X40 0 0 0 0 0 0 0 0 0 0 0 

X41 0 0 0 0 0 0 0 0 0 0 0 

X42 0 0 0 0 0 0 0 0 0 0 0 

Y 1095 940.2 723.3 805.9 911.6 844.5 673.8 64.9 1145 1493.5 478.9 
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Description of Design Features Extracted from The BIM Databases 

Labels BIM Extracted Design features Unit Category 
X1 Division Weight Weight (kg) Material-Weight 

X2 Angles Length (m) Material-Steel Sections 

X3 Channels  Length (m) Material-Steel Sections 

X4 I Beams  Length (m) Material-Steel Sections 

X5 Miscellaneous beams  Length (m) Material-Steel Sections 

X6 Miscellaneous channels  Length (m) Material-Steel Sections 

X7 Structural Tees from W Shapes  Length (m) Material-Steel Sections 

X8 Tarpon Z Sections  Length (m) Material-Steel Sections 

X9 Wide flange Length (m) Material-Steel Sections 

X10 Crane rails  Length (m) Material-Steel Sections 

X11 Bent plate  Area (m2) Material-Plate 

X12 Checker plate  Area (m2) Material-Plate 

X13 Grating  Area (m2) Material-Plate 

X14 Plate  Area (m2) Material-Plate 

X15 Extra Extra Strong Pipe  Length (m) Material-Pipes 

X16 Extra Strong Pipe  Length (m) Material-Pipes 

X17 Standard Pipe  Length (m) Material-Pipes 

X18 Hollow steel sections  Length (m) Material-Hollow Sections 

X19 Round hollow steel sections  Length (m) Material-Hollow Sections 

X20 Cold formed channels  Length (m) Material-Cold-formed 

X21 Tarpon Cold Formed Channels  Length (m) Material-Cold-formed 

X22 Flat bar  Length (m) Material-Bars 

X23 Rebar Length (m) Material-Bars 

X24 Round bar  Length (m) Material-Bars 

X25 Square bar  Length (m) Material-Bars 

X26 Hex Bar  Length (m) Material-Bars 

X27 Expansion Anchor Bolts  Quantity Material-Anchors 

X28 Heavy Duty Expansion Anchor Bolts  Quantity Material-Anchors 

X29 Threaded Anchor Rods  Quantity Material-Anchors 

X30 Adhesive Anchor Cartridges  Quantity Material-Anchors 

X31 Complete penetration weld  Length (m) Connection-Welding 

X32 Partial Penetration Weld  Length (m) Connection-Welding 

X33 Bevelled Washers  Quantity Connection-Bolted 

X34 Button Head Machine Bolt  Quantity Connection-Bolted 

X35 Compressible Washers with DTI  Quantity Connection-Bolted 

X36 Flat Washers  Quantity Connection-Bolted 

X37 Hex Head Machine Bolt  Quantity Connection-Bolted 

X38 Hex Nuts  Quantity Connection-Bolted 

X39 Hex Type Bolts  Quantity Connection-Bolted 

X40 M Type Bolts  Quantity Connection-Bolted 

X41 Mechanical Pipes Length (m) Material-Pipe 

X42 Nelson Studs Quantity Connection-Stud 

Y Labour Hours Hours Hours per division  

 


