
Advancing Regression Based Analytics for Steel Fabrication

Productivity Modeling

 by

Arash Mohsenijam

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Construction Engineering and Management

Department of Civil and Environmental Engineering

University of Alberta

© Arash Mohsenijam, 2019

 ii

ABSTRACT

Accounting for seven percent of the Gross Domestic Product (GDP), the construction industry is

the fifth largest contributor to the Canadian economy (Statistics Canada 2019). Structural steel is

one of the primary materials used in the construction industry for providing structural stability in

residential and commercial buildings, as well as critical infrastructure and industrial facilities such

as bridges, oil and gas pipe racks. With emerging economic diversification efforts in Canada, it is

expected that the construction industry, and the utilization of steel products therein, will continue

to grow over the coming years. To respond to increasing demand, the construction industry is

relying more on off-site prefabrication to shorten project delivery time, reduce construction cost,

and improve overall quality. Off-site fabrication shops provide a safer work environment for

labourers, conducive to higher productivity, while also removing uncertainties and risks associated

with site conditions and environmental factors.

Because the construction industry relies on labour-intensive activities, predicting labour

productivity is critical to project estimating and production planning, as well as scheduling and

assessing the costs of different design alternatives. In particular, with the fast-growing market

needs for structural steel, there is an urgent call for data-driven productivity models to support the

industry practice in project estimating, scheduling and control. Based on a literature review, this

research has identified a need for an analytical methodology that is effective, scalable and data-

driven to model and predict labour productivity. This model is needed to improve the current

industry practice of relying on irreplaceable and experienced personnel for project estimating and

planning.

 iii

Despite this pressing need, the construction industry faces several challenges when shifting to

more data-driven productivity modelling systems. First, because of the complexity, variability, and

uncertainty of construction conditions and activities, productivity-influencing factors cannot be

exhaustively identified and quantified, making it practically impossible to account for every

relevant detail. As a response to this challenge, prefabrication facilities isolate environmental

factors and implement manufacturing-like methodologies that minimize productivity-influencing

factors. Second, in order for practitioners to trust and apply developed productivity models, the

generated models need to be transparent, easy to use and adaptable. Third, with limited resources

available in the construction industry, implementing and maintaining data-driven models need to

minimize overhead costs and take advantage of readily available information as much as

practically possible to optimize data collection efforts. Therefore, a systematic, transparent, and

quantitative approach to determine labour productivity, based on historical project data, is optimal

to support project cost estimating, resource scheduling and productivity analysis. Furthermore, an

innovative approach is highly desirable to account for sufficient project details describing product

uniqueness, complexity, and uncertainty involved in steel fabrication processes.

This research proposes a new methodology that correlates labour productivity data with project

design features. This methodology essentially utilizes efficient data-driven methods to capture

implicit patterns in historical data and steel structure design details to produce labour productivity

models. The novelty of the present research lies in its simple-to-understand and easy-to-implement

analytical approach in selecting model input parameters and classifying steel fabrication projects

based on work content and design features. The focus of this research is on applications of Multiple

Linear Regression (MLR) and proposes enhanced methods to cater to application needs, first by

selecting a proper set of input variables through a proposed method called Modified Stepwise

 iv

Regression (MSR), then by splitting the feature domain by Model Trees (MT) into different

branches to predict non-linearity using piecewise linear models. Compared to other predictive

methods, this approach would satisfy the construction industry application need for transparency

and ease of use in modelling productivity, while maintaining minimal data collection efforts and

achieving high prediction accuracy.

The contributions of this study include: (1) proposing an application framework based on Modified

Stepwise Regression (MSR) for selecting relevant input variables and streamlining a predictive

model without losing the model’s predictive power; the MSR method leverage a simple but

different method to select input variables while also verifying MLR underlying assumptions; (2)

developing and validating a steel fabrication labour productivity model and identifying effects of

work content factors; (3) developing an analytical methodology to generate a system of Multiple

Linear Regression (MLR) equations by coupling the power of MSR and Model Tree (MT); (4)

formalizing a quantitative approach to analyze the trade-off between model fit quality, prediction

accuracy, and model complexity; and (5) providing an analytical means to elucidate productivity

data structure and influencing factors by classifying the data and identifying significant variables

for each class.

Although this research focusses on applying the proposed methodologies and framework to steel

fabrication productivity modelling, the proposed data-driven methodologies and application

framework can be implemented wherever there is a need for a transparent, accurate and generalized

predictive model to quantify input-output relationships. Concrete slump and viaduct installation

time-predictive models are just a few examples of the generic applicability of the methodologies

proposed and demonstrated in this thesis.

 v

This thesis is organized to first introduce the problem domain and discuss this research

significance. The problem statement and research objective are then elaborated for the scope of

the proposed research. Then the MSR methodology, as an essential step in selecting relevant

variables for MLR-based prediction modelling is presented. Next, the MSR application in steel

fabrication productivity analysis is investigated in depth based on a BIM dataset from a partner

company in Alberta. In order to achieve higher prediction accuracy, higher model generalization,

and more insight into the data structure, the integration of MSR and MT is attempted and

formalized. This integration significantly improves the model’s prediction accuracy and

generalization ability while maintaining a straightforward and explainable model form.

 vi

PREFACE

This thesis is an original work by Arash Mohsenijam, organized in a paper-based format, and is

based on the following research papers:

Chapter 2 of the thesis has been accepted for publication as part of a special issue and journal

paper: (1) Arash Mohsenijam, Ming Lu (2016). "Achieving Sustainable Structural Steel Design

by Estimating Fabrication Labour Cost Based on BIM Data." Procedia Engineering, 145, 654-661.

(2) Arash Mohsenijam, Francis M. Siu, Ming Lu (2017). "Modified Stepwise Regression

Approach to Streamlining Predictive Analytics for Construction Engineering Applications".

Journal of Computing in Civil Engineering, 31(3), 04016066. Dr Ming Lu was involved in problem

identification, concept formation, research verification. Dr. Francis M. Siu was then the

Postdoctoral Fellow who provided general comment on paper structure and cross-validated

calculations presented in the paper.

and manuscript composition. Chapter 3 of the thesis is in the press for publication as a journal

paper: Arash Mohsenijam and Ming Lu. “Framework for Developing Labour-Hour Prediction

Models from Project Design Features: Case Study in Structural Steel Fabrication", Canadian

Journal of Civil Engineering, Accepted Feb 2019. Dr Ming Lu was involved in problem

identification, concept formation, research verification.

Chapter 4 of the thesis has been submitted for publication as a journal paper and is under review:

Arash Mohsenijam and Ming Lu. “Integrating Model Trees and Modified Stepwise Regression for

 vii

Modeling Productivity of Offsite Fabrication”. Journal of Computing in Civil Engineering, Feb

2019. Dr Ming Lu was involved in problem identification, concept formation, research

verification.

 viii

ACKNOWLEDGEMENT

The presented work was substantially funded by the Natural Sciences and Engineering Research

Council (NSERC) of Canada through a Discovery Grant (RGPIN-2016-04687).

First, I would like to express my sincere gratitude to my advisor Prof. Ming Lu for his continuous

support, patience, inspiration, and immense knowledge. Appreciations are sincerely extended to

the examination committee members Dr. Simman Abourizk, Dr. Carlos Caldas, Dr. Carlos C.

Noguezfor, Dr. Yuxiang Chen, and Dr. Zhigang Tian for providing their critiques to advance this

research work.

I would especially like to thank my industrial mentors David Fritz, Dalip Parsad, Paul Zubik, Ross

Fraser and Todd Collister for sharing their valuable knowledge and experience and helping me

define a practical research problem worth solving.

Finally, I would like to thank my lovely wife, Nassim Sedaghat, for her understanding, kindness,

love, and support throughout the years; without her, this work would not have been possible.

Thanks and respect to my parents, Amir Nasser and Kianoush for setting me on the right path,

teaching me the value of hard work, and giving me all the opportunities any child could ever ask

for. I dedicate this work to my beloved wife and parents.

 ix

TABLE OF CONTENT

Abstract ... ii

Preface.. vi

Acknowledgement ... viii

Table of Content .. ix

List of Tables ... xiv

List of Figures .. xvi

Table of Abbreviations .. xviii

Chapter 1 : Introduction .. 1

1.1 Introduction to Steel Fabrication .. 1

1.2 Research Background ... 5

1.2.1 Labour Productivity ... 5

1.2.2 Project features... 8

1.3 Predictive Analytics in Construction Engineering Management .. 11

1.3.1 Artificial neural networks .. 11

1.3.2 Operations Simulation ... 13

1.3.3 Regression Analysis ... 14

1.4 Problem Statement .. 16

1.5 Research Objective ... 18

 x

1.6 Thesis Organization .. 20

Chapter 2 : Modified Stepwise Regression ... 23

2.1 Introduction ... 23

2.2 MLR Literature Review .. 31

2.3 Proposed MLR Application Framework ... 34

2.3.1 Initializing regression model.. 34

2.3.2 Performing variable selection .. 34

2.3.3 Model verification .. 38

2.3.4 Model validation .. 41

2.3.5 Prediction error estimation ... 42

2.4 Demonstration Case .. 44

2.4.1 Initializing regression model.. 44

2.4.2 Performing variable selection .. 45

2.4.3 Model verification .. 51

2.4.4 MLR model validation ... 53

2.4.5 Error estimation ... 54

2.4.6 Benchmarking against published non-linear regression models 55

2.5 Practical Case Study ... 56

2.5.1 Model verification .. 63

2.5.2 Cross-checking against trial-and-error approach ... 64

 xi

2.5.3 Prediction error estimation ... 66

2.6 MSR Framework Against General Practice of MLR Modelling .. 67

2.6.1 Verification .. 67

2.6.2 Check heteroscedasticity .. 67

2.6.3 Check multicollinearity .. 68

2.6.4 Check autocorrelation .. 68

2.6.5 Check normality of error variance ... 68

2.6.6 Model validation .. 68

2.7 Conclusion .. 71

Chapter 3 : Labour-Hour Prediction Models Factoring in Project Design Features..................... 73

3.1 Introduction ... 73

3.2 Structural steel fabrication .. 76

3.3 Proposed Framework and Implementation ... 79

3.3.1 Input variable selection .. 80

3.3.2 Data Preparation... 82

3.4 Input Variable Selection ... 85

3.5 Verification and Validation... 93

3.5.1 MLR Model Assumptions Testing... 93

3.5.2 K-Fold Cross-Validation .. 96

3.5.3 Error Range Estimation.. 97

 xii

3.5.4 Model Validations Based on New Cases ... 99

3.6 Discussion on Validation of Model .. 102

3.7 Conclusion .. 104

Chapter 4 : Productivity Modeling of Offsite Steel Fabrication ... 106

4.1 Introduction ... 106

4.2 Model Trees .. 110

4.3 Literature Review.. 114

4.3.1 Productivity Modelling .. 114

4.3.2 Model Tree Related Applications in Construction Management 115

4.3.3 Variable Selection on MLR ... 116

4.4 Research Objective And Methodology ... 118

4.4.1 Bias-Variance-Complexity Trade-off .. 120

4.5 Method Performance Benchmarking .. 125

4.6 Productivity Modelling Application ... 129

4.6.1 Model Validation ... 133

4.6.2 Prediction Demonstration .. 134

4.7 Benchmarking M5+MSR Against Other Model Trees Methods 135

4.8 Conclusion .. 138

Chapter 5 : Conclusion.. 140

5.1 Research Conclusion ... 140

 xiii

5.2 Academic Contribution ... 144

5.3 Industrial Contribution .. 147

5.4 Limitations and Recommendation for Future Research ... 149

References ... 151

Appendix (I) : MATLAB source code .. 163

5.5 Developing MSR (Modified code from MATALB 2016b) .. 163

5.6 Checking Heteroscedasticity ... 165

5.7 K-Fold Validation ... 168

5.8 PRESS Validation ... 169

5.9 M5 Model Tree (Jekabsons G. 2016) ... 170

Appendix (II): Sample Data Points ... 194

 xiv

LIST OF TABLES

Table 2-1: Correlation coefficients (1st Iteration) .. 45

Table 2-2: Correlation coefficients (2nd iteration) ... 47

Table 2-3: Correlation coefficients (3rd Iteration).. 49

Table 2-4: Breusch-Pagan test for OLS-based regression model ... 51

Table 2-5: Breusch-Pagan test for WLS-based regression model .. 52

Table 2-6: VIF values for checking multicollinearity... 52

Table 2-7: SSE values for k-fold cross-validation .. 53

Table 2-8: Recorded cycle-time for installing the precast concrete segments 58

Table 2-9: Correlation coefficient (1st iteration) .. 59

Table 2-10: Correlation coefficient (2nd iteration) ... 60

Table 2-11:Correlation coefficient (3rd iteration) .. 61

Table 2-12: Correlation coefficient (4th iteration).. 62

Table 2-13: Breusch-Pagan test for OLS-based regression model ... 63

Table 2-14: VIF values for checking multicollinearity... 63

Table 2-15: Regression model formulated by use of trial-and-error approach 65

Table 2-16: Breusch-Pagan test for OLS-based regression model ... 67

Table 2-17: VIF values ... 68

Table 2-18: SSE values for k-fold cross-validation .. 69

Table 3-1: Sample of raw data used for training... 83

Table 3-2: Design Features Extracted from The BIM Databases ... 84

Table 3-3: Variables entered the MLR model and their effect on model performance 89

 xv

Table 3-4: MLR variables, OLS Coefficients, and p-values .. 90

Table 3-5: VIF multicollinearity test results ... 94

Table 3-6: MLR variables, WLS coefficients, and p-values .. 95

Table 3-7: SSE values for k-fold Cross-validation ... 97

Table 3-8: List of Six input variables for model validation .. 100

Table 3-9: Results of Labour-hour estimation, range estimation, and actual Labour-hours 101

Table 4-1: Alternative models generated for slump dataset ... 127

Table 4-2: Model comparison on slump dataset ... 128

Table 4-3: Result of different branching methods and MSR .. 132

Table 4-4: Results of model selection criteria for different modeling methods 132

Table 4-5: Model validation results .. 133

Table 4-6: Demo case input variables .. 134

Table 4-7: Result of different branching methods and MSR .. 136

Table 4-8: Results of model selection criteria for different branching methods 137

 xvi

LIST OF FIGURES

Figure 1-1: Steel girder fabrication with custom design and specifications 2

Figure 2-1:Contrasting (a) multicollinearity and (b) no multicollinearity (x3 and x2 are highly

correlated to other input variables) ... 26

Figure 2-2:Residual plots for contrasting (a) homoscedasticity and (b) heteroscedasticity of errors

... 26

Figure 2-3:Comparing the (a) independence of errors in serial observations and (b) autocorrelation

... 27

Figure 2-4:Contrasting the (a) normal of errors and (b) non-normal of errors 27

Figure 2-5:Forward selection procedure ... 29

Figure 2-6: Backward elimination procedure ... 29

Figure 2-7: Proposed stepwise procedure ... 29

Figure 2-8: Flowchart of variable selection methodology .. 35

Figure 2-9: Explanatory power of individual input variables ... 36

Figure 2-10: Visual comparison WLS-based MLR model and OLS-based MLR model residual

plots ... 52

Figure 3-1: Steel fabrication project’s scope structure ... 77

Figure 3-2: Proposed framework application ... 80

Figure 3-3: Variable selection concept: (a) inputs (X1, X2, X3, & X4) and output (Y), (b)

explanatory power of individual inputs, (c) explanatory power of all the inputs combined, (d)

explanatory power of selected variables. .. 81

Figure 3-4: Modified stepwise regression visual representation .. 86

 xvii

Figure 3-5: Modified stepwise regression iterations ... 86

Figure 3-6: Cut plates with drilled holes ready to be welded to steel sections 91

Figure 3-7: Steel sections with end plates attached to square hollow sections 92

Figure 3-8: Regression confidence interval .. 99

Figure 4-1: (a) Data point representation, (b) Classification, (c) RT, (d) MT 111

Figure 4-2: MT structure and formulation ... 112

Figure 4-3: MT piecewise representation of non-linear trend in data .. 113

Figure 4-4: Structure of research methodologyM5 Implementation ... 118

Figure 4-5: Bias, variance and complexity trade-off .. 122

Figure 4-6: Model generalization: (a) linear model (b) non-linear model 123

Figure 4-7: M5 tree branching structure ... 131

Figure 4-8: Predicted vs. Actual labour-hours validation results ... 133

Figure 4-9: CART tree branching structure .. 135

Figure 4-10: GUIDE tree branching structure .. 136

Figure 4-11: ATREE tree branching structure .. 136

 xviii

TABLE OF ABBREVIATIONS

AIC Akaike Information Criteria

AID Automatic Interaction Detection

ANN Artificial Neural Network

BE Backward Elimination

BIC Bayesian Information Criteria

BIM Building Information Model

BLUE Best Linear Unbiased Estimators

CART Classification and Regression Tree

EC Environment Conditions

FPE Final Prediction Error

FS Forward Selection

GDP Gross Domestic Product

GLS Generalized Least Squares

MLE Maximum Likelihood Estimators

MLR Multiple Linear Regression

MSR Modified Stepwise Regression

MT Model Tree

NLMLR Non-Linear Multiple Linear Regression

OLS Ordinary Least Square

RMSE Root-Mean Square Error

PRESS Predicted Residual Error Sum of Squares

RT Regression Trees

SSE Sum of squared error

UCI University of California, Irvine

VIF Variance Inflation Factor

WC Work Content

WE Work Environment

WLS Weighted Least Square

 1

CHAPTER 1 : INTRODUCTION

This chapter presents an introduction to steel fabrication, the research background, predictive

analytics in construction engineering and management, problem statements, research objectives,

research methodologies, and overall thesis organization.

1.1 INTRODUCTION TO STEEL FABRICATION

Structural steel is one of the primary materials used to provide structural stability in projects

ranging from residential and commercial buildings to oil and gas pipe racks (Warrian 2010). In

addition to being adaptable across construction disciplines, structural steel is also a highly

recyclable material, which improves projects’ sustainability throughout the project life cycle.

Within the context of prefabrication, fabricating structural steel elements in the controlled

environment of an offsite fabrication shop leads to a higher fabrication quality, as well as time and

cost benefits (Liddy and Cross 2002). Ultimately, off-site prefabrication improves the efficiency

of the fabrication process and erection of structural steel, allowing the associated tasks to be

scheduled earlier in the construction schedule, and making the engineered materials available at

the right time to feed in to other construction trades on site.

The fabrication shop environment, at first glance, resembles a manufacturing setting (Figure 1-1);

however, steel fabrication is significantly different from other types of manufacturing which

produce large quantities of identical products in an automated or semi-automated environment

with less uncertainty and fewer changes (Song and AbouRizk 2003). In contrast, steel fabrication

 2

features labour-intensive processes which are performed on bespoke project designs that

experience frequent design and shop layout changes.

Figure 1-1: Steel girder fabrication with custom design and specifications

Another major difference between conventional manufacturing and steel fabrication lies in the

client’s role and relationship with the contractor. In conventional manufacturing, the customer and

manufacturer relationship is built based on market needs and product advertisement, which usually

takes place after production is complete. On the other hand, steel fabrication does not start without

a request from the client. Typically, the first interaction between the project owner and steel

fabricators occurs in the project bidding stage. As a result, a confident estimate of steel fabrication

labour-hours is essential for assessing fabrication costs and planning production resources and

processes (Dozzi and AbouRizk 1993). In the project bidding stage, the project is handed over to

the steel fabricator’s estimation team who must account for project details in order to justify a

competitive price.

 3

The structural steel price is the sum of materials, drafting and engineering, fabrication, and

overhead costs, plus profit margins. The material costs are straight-forward as the purchasing

department has exact quotations for different steel sections based on their weights. The raw

material cost is then adjusted by the material wastage ratio (between 0-10%) which is affected by

member length and size compared to what is available to purchase. In the estimating procedure,

the commonly-applied unit of measure to account for direct cost is labour-hours required for each

task or a project. The drafting and engineering expenses of a project are assigned through close

collaboration between these departments and the estimators in order to adequately reflect project

complexity and repetitiveness, and identify the labour-hours required to perform relevant tasks.

The fabrication of structural steel elements involves multiple specialized trades carrying out a

series of operations such as handling, cutting, fitting, welding, and surface processing (e.g.

sandblasting and painting). Therefore, in the estimating procedure, the labour-hours required to

perform different operations are considered as the main unit to measure the direct cost. Thus, the

estimators’ knowledge of the engineering design and fabrication process is critical to transform

design specifications into the associated labour-hour requirements for a certain project. On a

construction task that is performed by manual labour, productivity is expressed as the labour

production rate (labour-hours per installed unit), which measures a key dimension of project

performance and is critical to estimating, scheduling and controlling the project (Alfeld, 1988).

Owing to the labour-intensive nature of steel fabrication, the costs of tools, equipment,

consumables, and shop managerial team are generally treated as indirect or overhead costs in

practice, which are correlated with the direct cost in terms of labour-hours (Dozzi and AbouRizk

1993).

 4

Despite advances made in information and construction technology in the past two decades,

estimating methods in practice have remained much unchanged. In current practice, practitioners

still rely on the rule of thumb for rough guesstimates, instead of utilizing data-driven, quantitative

analytics. A systematic and quantitative approach to determining labour productivity based on

readily available project data is much desired to support project cost estimating, resource

scheduling and productivity performance tracking and improvement. Such an approach needs to

account for sufficient project details such as product uniqueness in design, complexity, and

uncertainty involved in steel fabrication processes. This research proposes and demonstrates

integrated data-driven methods which support steel fabrication cost estimating. These proposed

methods utilize innovative yet practical data-mining methods to capture the estimators’ knowhow,

represent steel structure design details and produce predictive models of productivity.

 5

1.2 RESEARCH BACKGROUND

In this section, a review of related literature is presented to provide background for the thesis

research, focussed on three main pillars: (I) labour productivity studies, (II) take-off project design

features, and (III) linking the two aspects with predictive analytics.

1.2.1 Labour Productivity

“Productivity is a measure of the overall effectiveness of an operating system in utilizing labor,

equipment and capital to convert labor efforts into useful output” (Hendrickson 2008). It is a

widely accepted fact that steel fabrication is a complex process that features labour-intensive

processes, custom-made pieces and activities involving a variety of equipment and labour

disciplines (Song and Abourizk 2003). Unlike typical manufacturing, steel fabrication is labour-

intensive, less automated, and undergoes frequent change orders and shop layout changes. These

features make tracking the daily utilization of the workforce, and thus labour costs and

productivity, a difficult task. These characteristics differentiate steel fabricators from other

manufacturing companies, which produce identical products in high quantities and in an optimized

environment (Song and AbouRizk 2003).

Labour productivity is critical information for managing projects and performing tasks such as

estimating, scheduling, and project control (Song and Abourizk 2006). Having access to historical

labour cost and productivity data is critical for cost estimating and shop production scheduling. In

compiling the unit rates in a tender, estimators usually utilize a set of norms or standard

productivity outputs to assess labour unit costs (Davison 2008). The industry productivity norms

 6

are either obtained from published books [e.g. RS means (Gordian 2016)] or compiled by a steel

fabricator based on historical records of past projects.

Productivity modelling has been extensively addressed in construction literature. Randolph et al.

(1990) researched different definitions for productivity and proposed two methods to model

productivity: a factor-based model and an expectancy model. Rifat and Rowings (1998) developed

productivity models considering factors like temperature, quantity and crew size using neural

networks and regression analysis. Dawood (1998) proposed Monte Carlo simulation to generate

more reliable duration estimates, considering variations in quality of material, weather, and labour

productivity. Knowles (1997) presented a feedforward backpropagation neural network model in

predicting pipe-installation labour productivity. Building on Knowles work, Lu et. al. (2000)

utilized probability inference neural network (PINN) models to predict pipe spool fabrication

labour productivity using historical data. Song and AbouRizk (2008) used ANN and discrete-event

simulation to analyze historical project data and develop labour productivity models. The neural

network approach in productivity modelling is capable of mapping high dimensional input-output

relationships; however, a productivity model should not be deemed as “black box” by keeping

implicit critical information on factor selection and reasoning logic, which is crucial to produce

reliable decision support in estimging productivity and potentially improving productivity.

There is an extensive published literature that provides unit rates and prices including labour-hour

content for construction estimation. These publications range from price books for building and

civil engineering works to books of norms for industrial and mechanical engineering works.

However, such cost norms should not be utilized without rigorously comparing the circumstances

of published data against those of the project in hand (Van Vilet 2011). In other words, the

 7

estimators need to apply adjustment factors to the labour productivity norms on a per project basis.

In current practice, adjustment factors are decided based on experience alongside rule-of-thumb

guidelines (Lu 2001). Choosing adjustment factors relies on estimators’ judgment, which might

lead to biased and unreliable estimates. Unfortunately, this labour productivity information

depends heavily on individual companies’ fabrication shop performance and may differ from

project to project and from time to time. For this reason, published steel fabrication productivity

data only represent industry average values and are often neglected in practice. To arrive at more

accurate labour productivity, more customized and systematic data collection is required.

To overcome this challenge, companies invest in custom productivity manuals, which entail

substantial costs to establish and maintain. Therefore, they may not be updated regularly and only

serve as a guideline for productivity estimating. Eventually, companies resort to relying on

irreplaceable experienced personnel for project estimation and scheduling. In short, the absence of

a scalable data-driven labour-hour estimating system has led to the current industry practice of

relying on irreplaceable experienced personnel for project estimating and planning. It is

noteworthy that relying heavily on individuals’ experience has also been identified as one of the

main causes behind inaccurate or insufficient estimates and project budget overruns on structural

steel fabrication projects (Song and AbouRizk 2006).

A reliable source of productivity data already exists in companies’ databases including project

scope, progress information, and labour expenditures. Historical data serves as a basis for

productivity models to form simple equations that predict productivity of future projects (Song

and AbouRizk 2008). More specifically, these productivity models evaluate the effect of

influencing factors on productivity using simple equations, nonlinear equations, or other advanced

 8

model forms. Once created, these models can then be used as effective decision-support to predict

productivity on future projects (Song and Abourizk 2008).

A review of recent literature has resulted in the following observations:

• There is an immediate need for a systematic approach to investigate companies’ databases for

historical project data that hold predictive productivity information. Available historical data

from building information models and labour costing systems would serve as a basis for

developing quantitative productivity models.

• Productivity data tracked in labour costing systems in practice are generally not accurate or

sufficient to support any meaningful data-driven analysis.

• Limited research has been conducted on the quantitative analysis of the relationship between

design inputs and productivity outputs. Therefore, limited contributions have been made to

improve estimation accuracy and controlling engineering productivity by connecting to project

design.

• In many instances, the fabrication cost is predicted based on the structural weight, which is an

oversimplification. Structural weight cannot adequately predict the fabrication cost as it

ignores project complexity and connection details.

1.2.2 Project features

The first step in cost estimating is an accurate quantity take-off. There are several common ways

to perform quantity take-offs in construction projects. The conventional method is to count

different materials from design drawings (i.e. 2D drawings) and transfer the obtained information

 9

into spreadsheets (Hu X. et al. 2014). Manual quantity take-off methods are not able to detect

inconsistencies between drawings, which would cause inaccurate estimates (Shen and Issa 2010).

To overcome the limitations of manual quantity take-offs, an enhanced approach is to extract

quantities from Building Information Models (BIM) (Monteiro and Poças Martins 2013). BIM

proposes significant advantages over previously used CAD systems by integrating the visual

enhancements, parametric modelling, while providing a collaborative environment to designers

and construction experts (Gu & London, 2010). Vast adoption of BIM by the construction industry

has opened new opportunities in design, planning, and execution of construction projects. There

are many studies addressing the quantity take-off and estimating capabilities of BIM (Monteiro

and Poças Martins 2013; Plebankiewicz et al. 2015; Shen and Issa 2010; Xiaolin Hu et al. 2014).

Shen and Issa (2010) studied BIM-based construction estimation and the impact of visualization

on estimation accuracy. Monteiro and Pocas Martins (2013) demonstrated the possibility of

extracting quantities from a BIM model in order to create a model ready for visualization or

drawing applications. Plebankiewicz et al. (2015) investigated BIM-based cost estimating systems,

concluding that BIM applications can generate accurate quantity takeoffs, but there is a knowledge

gap in relating material quantities to labour costs. Hu et al. (Hu et al. 2014) used extracted data

from a BIM model and generated a linear regression model with 56 available BIM features for

estimating steel fabrication labour-hours. The reviewed literature indicates a great potential for

capturing design features and quantities from BIM. That being said, the design features represented

in BIM models of structural steel projects can be numerous; thus, having all of them factored in a

model would not be a practical approach.

 10

Moreover, the connection between the BIM features (along with the quantity takeoff for each) and

required labour-hours is yet to be established. Also, a reliable source of productivity data can be

found in most of the companies’ databases, containing well-structured information related to such

items as project scope, progress information, and labour expenses. High-quality historical data

serves as a firm basis for building labour cost models in the form of simple equations that are

instrumental in predicting the productivity of future projects (Song and Abourizk 2008).

Furthermore, the granularity of data as captured in the company’s databases is usually limited by

the contract requirements for filing billing documents or project earned value reports. In other

words, existing productivity data is generally not tracked for creating detailed labour cost models

at the operations level that represent workflows on the shop floor, namely how much time

particular individual workers dedicate to specific jobs. For instance, limited research is conducted

on the quantitative analysis of the design input and labour-hour output relationship due to the

difficulty in acquiring well-structured design data (Song and AbouRizk 2006).

The first step of the proposed research methodology for developing data-driven labour cost or

productivity estimating models is to thoroughly investigate the current practice and systems. This

investigation facilitates an understanding of the practical level of granularity in the historical

project data available. Although historical data may be imperfect or incomplete, devising powerful

analytics to make the most value of such data is significant when developing decision-support

models in the realistic setting of construction engineering and management.

 11

1.3 PREDICTIVE ANALYTICS IN CONSTRUCTION ENGINEERING MANAGEMENT

Predictive analytics has played an essential role in making critical decisions in construction

engineering and project management scenarios ranging from project cost and time estimation to

cost control and analysis. This section provides comprehensive literature reviews on commonly

accepted predictive methodologies in the construction engineering and management domain,

including: (1) Artificial Neural Networks, (2) Operations Simulation, and (3) Regression Analysis.

1.3.1 Artificial neural networks

Artificial Neural Networks (ANN) are a computational method inspired by the brain’s biological

neural networks. This technique can be used to create predictive models by simulating complex

input-output relationships. The ANN network is developed using a heuristic process (Graham et

al. 2006) which is comprised of interconnected nodes arranged in different layers, where the node

connections are characterized as numeric weights that are refined during the training stage. In

general, the network structure can be subjectively formulated (e.g. the number of layers and types

of transformation function) (El-Sawy et al. 2011). There are numerous variations of ANN;

however, ANN in this thesis focuses on Back Propagation Neural Networks (BPNN) which are

the most widely applied variation in engineering applications.

The suitability of the network configurations needs to be examined prior to drawing any statistical

predictions (Heravi and Eslamdoost 2015). Increasing the number of nodes and hidden layers of

an ANN model can reduce the errors between the predicted outputs and the actual outputs based

on the training set. However, an ANN with a more elaborated structure is computationally

intensive and more likely to produce an over-fitted model (Demuth et al. 2009). As such, some

 12

researchers have suggested appropriate structures for ANN to eliminate under-fitting and over-

fitting problems based upon trial-and-error approach and optimization techniques (Kim et al. 2004;

Zhou 2010), but the analytical solutions are case-dependent and cannot be universally applied.

Implementations of ANN in construction-related predictive models can be traced back to the early

1980s (El-Sawy et al. 2011). Representative ANN applications relevant to the current research

include: estimating the labour productivity of spool fabrication (Lu et al. 2000); modelling a ready-

mixed concrete delivery system to predict operation duration, rate of delivery, and utilization rates

of concrete plants (Graham et al. 2006); estimating steel fabrication productivity (Song and

AbouRizk 2008); predicting the overhead cost of building projects (El-Sawy et al. 2011);

forecasting construction labour productivity (Heravi and Eslamdoost 2015); and estimating the

construction cost of executing multiple projects (Hyari et al. 2016).

From a practical point of view, the ANN methodology is mainly used as a “black box” by

observing the predicted outputs based on the inputs. Approaches such as sensitivity analysis have

been proposed to gain insight into the input and output relationships (Lu et al. 2001); while,

analytical mechanism still relies on complex neural computing algorithms and built-in heuristics

for Monte Carlo simulation. The derived results depend on the “trial and error” process in neural

network training and interpretation of the results is not as straightford and explicit as desired.

Nonetheless, to make it acceptable and to lend effecitive decision support in the intended

application setting in the real world, it is indispensable to provide transparent reseaning logic of

an AI model in terms of what role each input parameter plays in deriving the predicted output and

how the output is related to the inpout factors in addition to making a point-value prediction.

 13

1.3.2 Operations Simulation

Operations simulation is another strategy to support project estimation and predictions by

modelling the construction process and representing activity and resource interactions and

practical constraints (Song and AbouRizk 2008). Construction simulation is capable of capturing

the uncertainties of activity execution by modelling the activity duration with probability

distributions. Multiple simulation runs can be conducted by performing “what-if” scenarios for

prediction purposes, for example, predicting project duration with a particular confidence level.

Operations simulation has been conducted across various construction disciplines, with notable

studies that span the last two decades. For example, Marzouk and Moselhi (2002) simulated

equipment workflows to achieve minimum project cost. Nguyen et al. (2013) simulated the

construction of multistory buildings to predict project durations. Akhavian and Behzadan (2013),

Alshibani and Moselhi (2012), and Marzouk and Moselhi (2003) simulated earthmoving

operations for balancing fleets. These simulation applications can be limited to the in-depth

knowledge and practical experience required to transform real-world operations into the

representation of a simulation model.

Despite the prevalence of simulation models, there are concerns regarding their sufficiency in

making statistically sound decisions. The predictions’ accuracy depends on the validity of the

simulation model (Nguyen et al. 2013); however, updating the simulation model is a demanding

task if the planned operation sequence changes or new data is fed to the model. As a result,

redefining fitted distribution and rebuilding the simulation model may be required (Gozalez-

Quevedo et al. 1993; Panas and Pantouvakis 2014).

 14

1.3.3 Regression Analysis

Multiple Linear Regression (MLR), as represented by Equation (1-1), has demonstrated usefulness

and practicality in construction (El-abbasy et al. 2014; Jafarzadeh et al. 2014, 2015; Silva et al.

2013). MLR formulates a linear equation by relating two or more independent variables with the

dependent variable for estimation and prediction. The literature review demonstrates a widespread

use of MLR in the construction field, which can be summarized as follows: Smith (1999)

investigated earthmoving productivity in association with operating conditions. Lowe et al. (2006)

estimated the project cost of constructing buildings. Choi et al. (2013) identified the factors

affecting pavement performance. El-abbasy et al. (2014) predicted the conditions of oil and gas

pipelines. Jafarzadeh et al. (2015) predicted seismic retrofit cost.

𝑌 = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯+ 𝛽𝑘𝑋𝑘 + 𝜀 (1-1)

Where 𝛼 = intercept, 𝛽𝑖 = regression coefficients; 𝜀 = error; 𝑋𝑖 = independent variables; 𝑌 =

dependent variable.

MLR is commonly accepted as a transparent predictive method; however, several application

limitations need to be addressed. First, the underlying assumption for MLR needs to be verified,

so the resulting model is not biased and quantitatively reliable. Second, the input variables chosen

for the model need to be analytically justified. Third, MLR assumes a linear relationship between

inputs and outputs, which could be a good approximation but would fail if a significant level of

nonlinearity exists in the data. The first two limitations are addressed in the second chapter of this

thesis by proposing the Modified Stepwise Regression (MSR) approach. MSR analytically selects

a proper set of input variables by analyzing the variables’ significance and descriptive power, while

maintaining validity and MLR assumptions. The third limitation of MLR models is addressed in

 15

Chapter 4 by splitting the complex problem into branches by applying Model Trees and tackling

nonlinearity with multiple piecewise linear regressions. This proposed approach leads to the

realization of transparency, simplicity and accuracy in productivity predictive modelling.

Moreover, the proposed methodologies in this research would elucidate the structure, patterns and

relationship between input and output variables. Those functionationalities are generally not

provided in the mainstream AI methods at present.

 16

1.4 PROBLEM STATEMENT

The current practice of steel fabrication relies on manual quantity take-offs, outdated productivity

data, and experience-based contingency and uncertainty markups (Davison 2008). Consequences

of the current practice are time-consuming and error-prone quantity take-offs, rough estimates

based on outdated productivity data, and biased uncertainty related markups that do not represent

project complexity.

Extensive literature review and communication with industry partners has revealed the need and

desire for a quantitative approach that determines labour productivity based on project design

features. This quantitive approach is needed to support project cost estimating, resource scheduling

and productivity improvement; and must be simple but effective enough to account for sufficient

project details such as product uniqueness, complexity, and uncertainty involved in steel

fabrication processes. Despite decades of research and technological advancement, construction

practice has generally remained the same. The movement towards data-driven productivity

modelling has failed to cause any significant change in the construction industry as a result of the

following:

(1) Due to the complexity, variability, and uncertainty of construction projects, many

productivity-influencing factors are required to be collected and analyzed, making it

practically impossible to account for every relevant detail.

(2) Transparency, accuracy, and simplicity of a productivity model are crucial factors in

influencing the extent to which practitioners would trust and use it. Also, the fast-paced

 17

nature of the construction industry, and the increasing amount of data collected over time,

requires a method that can be updated with ease.

(3) With the constant pressure to control project cost, a proposed data-driven method should

utilize readily available information as much as practically possible, instead of incurring

extra overhead costs in order to collect data.

Prefabrication facilities have the advantages of isolating environmental factors and implementing

standardized processes and methods that reduce the number of productivity-influencing factors.

Prefabrication has created a unique situation for productivity modelling and analysis, where many

environmental factors can be isolated, thus significantly increasing the chances of success in data-

driven productivity modelling.

There is a need for a systematic, transparent, and quantitative approach in order to determine labour

productivity based on project historical data and support project cost estimating, resource

scheduling and productivity analysis. In the case of steel fabrication processes, an innovative

approach is highly desired that can account for sufficient project details such as product

uniqueness, complexity, and uncertainty.

 18

1.5 RESEARCH OBJECTIVE

The primary goal of this research is to correlate project content with labour productivity in the off-

site prefabrication of structural steel by developing productivity models that take advantage of

existing historical data. The novelty lies in its unsupervised yet transparent approach in grouping

similar observations, selecting proper input features for each group, and performing regression

analysis on each group, while correlating work content of projects with labour requirements. The

following sub-objectives are set in the context of achieving the primary objective of this research:

• Investigating practically available historical data in industry practice and setting an

achievable level of granularity for data collection.

• Analytically selecting a proper set of design features that can be relevant to steel fabrication

labour-hours, and which result in the leanest form of MLR while maintaining prediction

accuracy.

• Proposing a framework to develop productivity models and identify the effects of work

content factors.

• Developing range estimates around productivity model point estimates to account for

prediction uncertainty.

• Analytically grouping projects based on design features and exploring splitting data prior

to variable selection. Developing an analytical methodology for generating a system of

MLR equations utilizing tree-based splitting algorithms coupled with variable selection

methods.

• Performing bias-variance-complexity trade-off between predictive models in model

selection.

 19

Results and methodologies derived from this research would directly influence current practice for

estimators, project managers, and shop production planners; as they would have the ability to

configure labour resources, schedule shop floor production, and recognize any associated errors in

estimates based on historical company data.

It is anticipated that the methodologies and framework proposed by this research would apply to

construction-related problems beyond steel fabrication productivity modelling. Wherever there is

a need to develop a transparent, accurate and generalized predictive model to quantify input-output

relationships, the proposed methods can be leveraged. Concrete slump and viaduct installation

time predictive models are just a few examples of the generic application of proposed

methodologies in this thesis.

 20

1.6 THESIS ORGANIZATION

This thesis consists of the following five chapters:

Chapter 1 provides a brief overview of the research background from practical and academic

perspectives. A short literature review is provided to support the need for this research. The

problem statement and research objective are later discussed in this Chapter, followed by proposed

methodologies to adequately address them.

Chapter 2 proposes a method of variable selection in predictive models. In this Chapter, an

analytical framework is proposed for developing MLR-based predictive models by (1) selecting

input variables based on a modified stepwise approach, (2) verifying the MLR underlying

assumptions, and (3) validating the prediction performance of the regression model. The resulting

MLR model only contains the most relevant input variables while also fulfilling the Best Linear

Unbiased Estimators (BLUE) assumptions. By utilizing statistical inference techniques, the MLR

model also produces reliable range estimates around its point-value prediction according to a

particular confidence level. To illustrate the application procedure of the proposed framework, a

dataset intended for workability control of ready-mixed concrete from the University of California,

Irvine (UCI) machine learning repository is used. A practical case study based on a real-world

bridge construction project is provided to further demonstrate the application of the proposed

methodology in modelling the precast span installation cycle-time.

Chapter 3 proposes a data-driven approach that uses MLR and available historical data from

Building Information Models (BIM) to associate project labour-hours and project design features.

 21

The framework relies on an enhanced version of the stepwise regression technique to select the

most relevant predictive factors and generate a predictive model without compromising the

achievable accuracy of regression. The framework also encompasses analytical methods for

justifying MLR application, validating the resulting model, and establishing range estimates for

point-value predictions. In collaboration with an industry partner, the framework application is

exemplified by analyzing labour-hours and design features for structural steel fabrication, leading

to the creation of a valid MLR model in the simplest form. Finally, the pros and cons of the

proposed framework and opportunities for future research are discussed.

Chapter 4 explores the relationships between engineering design features and fabrication

productivity in an off-site facility and utilizes existing historical data in the development of

predictive productivity models. End users of predictive productivity models in construction

demand an understanding of factor selection and reasoning logic of the built model, more so than

achieving marginal gains on model prediction accuracy. The novelty of the present research lies

in its unsupervised approach in classifying projects based on work content and design features.

The contributions of this study include: (1) proposing a framework to develop productivity models

and identify effects of work content factors, (2) developing an analytical methodology for

generating a system of Multiple Linear Regression equations by coupling the power of Modified

Stepwise Regression (MSR) and Model Tree (MT), and (3) analyzing the trade-off between model

fit quality, prediction accuracy, and model complexity. The performance of the proposed

methodology is benchmarked on the concrete slump dataset from the University of California

Irvine machine learning repository. In the steel fabrication productivity modelling application,

variables selected for splitting in Model Tree and variables selected for regression modelling are

well aligned with industry practitioners’ know-how. This degree of transparency in reasoning logic

 22

is generally impossible to attain for non-linear regression models such as Artificial Neural

Networks. As a result, compared to commonly-applied linear or nonlinear regression models, the

resulting productivity predictive model achieves higher fit quality and generalization ability when

predicting unseen cases.

Chapter 5 restates the research contributions and conclusions of this research and proposes future

research ideas to further advance productivity modelling.

Appendix (I) provides all of the MATLAB source codes used in this research for the analysis of

data.

Appendix (II) demonstrates a table of sample data points and a link to a public repository to access

the primary dataset used in this research.

Chapter 1 of this thesis introduces, elaborates, and validates the Modified Stepwise Regression

using two small application cases. Later in Chapter 2, the Modified Stepwise Regression is applied

to a practical problem of steel fabrication productivity modelling and provides support for

generalization of the methodology. Chapter 3 proposes to improve Modified Stepwise Regression

by conducting a piecewise breakdown of the problem feature space using Model Trees; M5 tree

combined with Modified Stepwise Regression shows considerable improvement over other linear

regression methods while maintaining simplicity and transparency. The dataset analyzed in this

study is available at https://figshare.com/s/8de57c3a0ca8f8ed37c4.

23

CHAPTER 2 : MODIFIED STEPWISE REGRESSION

This chapter elaborates on the Modified Stepwise Regression methodology by first reviewing its

background and comparable methods, the stepwise approach in variable selection. Later in this

chapter, the underlying assumptions of the developed model are verified and validated. A method

for Error Estimation is also discussed in this chapter. In this Chapter, the proposed framework is

validated using two cases of concrete slump and viaduct datasets.

2.1 INTRODUCTION

Predictive analytics provides essential quantitative decision-support in construction engineering

and project management from material preparation to method design and productivity estimating.

For instance, in order to achieve acceptable quality and productivity in concreting construction in

the field, it is imperative to have a reliable prediction of the workability of concrete (e.g. the slump

measure) in addition to the compressive strength of a given concrete mix design; for achieving

cost efficiency and productivity in the construction of the viaduct made of the precast segments, it

is crucial to have an accurate estimate of precast span installation cycle-time. Making critical

decisions in connection with complicated construction engineering problems is primarily based on

experiences, supported by meticulous analyses of data and facts available, particularly when

manual calculation methods are used (El-Sawy et al. 2011). Estimates made entirely based on

estimators’ experiences may lead to unreliable results (Song and AbouRizk 2008). Regression

provides an analytical method which models complicated real-world systems and predicts their

behaviour using a mathematical equation. (Barrett and Gray 1994; Lewis-Beck 1978; Smith 1999).

24

The regression analysis is mainly used to create predictive or explanatory models, in an attempt to

extract knowledge from collected data (Hair et al. 2010; King 1986). Due to ease of use and the

flexibility to model a variety of application problems, regression analysis is a widely accepted

quantitative technique for performing time and cost estimates in construction engineering (El-

abbasy et al. 2014; Jafarzadeh et al. 2014, 2015). On the other hand, there exists a potential

loophole of misusing regression techniques if the underlying assumptions and limitations are not

thoroughly understood. It is noteworthy that terminologies, theories and quantitative methods in

connection with regression analysis were originally established in specialty disciplines such as

applied statistics and economics. Hence, regression methods need to be interpreted and articulated

in the terms comprehensible and acceptable to professionals in construction engineering.

Moreover, regression-based predictive analytics need to be enhanced through integration,

simplification, and customization in order to cater for application needs in practice and add to the

body of knowledge in the construction engineering domain.

Multiple linear regression (MLR) is one of the regression techniques where two or more

independent variables are used to predict a dependent variable. MLR applications in construction

engineering literature include predicting building construction cost (Lowe et al. 2006), assessing

the service condition of pipelines (El-abbasy et al. 2014) and predicting seismic retrofit

construction (Jafarzadeh et al. 2014, 2015). Commonly-applied methods to fit an MLR model to a

dataset and estimate regression coefficients include ordinary least square (OLS), generalized least

squares (GLS), maximum likelihood estimators (MLE). In general, the straight-forward option for

formulating MLR equations is the OLS method unless critical OLS assumptions are violated. The

validity of the OLS formulated model needs to be verified by checking the following assumptions:

25

(1) There is no perfect linear dependence between input variables (no multicollinearity);

(2) The errors’ variance is constant (homoscedasticity);

(3) The errors are serially independent (no autocorrelation);

(4) The errors follow a normal distribution.

The first assumption ensures that the regression variables are independent, and one cannot be

linearly predicted from the other. If an input variable depends on other input variables, there is no

need to include them all simultaneously in a regression model. In Figure 2-1, the area highlighted

in grey represents the explanatory power of the group of input variables x in predicting the output

Y. Although x3 and x2 individually have high explanatory power, they can almost be accounted by

the other input variables (i.e. x1 and x4). In other words, if x3 and x2 are removed, the explanatory

strength of the remaining group of input variables would not be affected. Violation of the first

assumption is termed multicollinearity, which occurs when two or more input variables in an MLR

model are highly correlated. The second assumption enforces the variance of error terms to be

constant or homoscedastic. Violation of the second assumption is termed heteroscedasticity, which

occurs when the variance of the error terms differs across observations. Heteroscedasticity can be

visually inspected in regression residual plots, as shown in Figure 2-2, or formally examined by

using White, Goldfeld-Quandt or Breusch-Pagan test (Kaufman 2013). In the presence of

heteroscedasticity, coefficients estimated by OLS and also the error analysis would become

inaccurate and unrealistic. The third assumption states that the error of different observations

should be independent. Autocorrelation refers to the dependence of errors between serial

observations over time. Autocorrelation can be visualized if the error of observation n (εn), on one

axis is plotted against the error of previous observation (εn-1) on the other axis, which would reflect

any correlation between the two (n is the order of the data being collected) (Figure 2-3). The fourth

26

assumption states that the errors of observations should follow a normal distribution (Figure 2-4).

Based on Gauss-Markov theorem, verifying the underlying assumptions is important to justify the

use of OLS and prove that OLS estimators (i.e. coefficients) are best linear unbiased estimators

(BLUE) (Berry and Feldman 1985).

Multicollinearity No Multicollinearity

2x

1x

3x

4x

Y

(a) (b)

1x

4x

YY

Figure 2-1:Contrasting (a) multicollinearity and (b) no multicollinearity (x3 and x2 are highly correlated

to other input variables)

ResidualResidual

Regression

predicted

value

Residual plot (homoscedasticity) Residual plot (heteroscedasticity)

(a) (b)

Regression

predicted

value

Figure 2-2:Residual plots for contrasting (a) homoscedasticity and (b) heteroscedasticity of errors

27

Error of
observation n
(εn)

Error of
observation n-1
(εn-1)

No Autocorrelation Autocorrelation

Error of
observation n
(εn)

Error of
observation n-1
(εn-1)

(a)
(b)

Figure 2-3:Comparing the (a) independence of errors in serial observations and (b) autocorrelation

Density

Error

Density

Error

Normal error Non-normal error

(a) (b)

Figure 2-4:Contrasting the (a) normal of errors and (b) non-normal of errors

The primary challenge of applying the MLR technique is how to select a proper set of input

variables so as to make accurate and reliable predictions. Appropriately choosing a subset of

independent variables, in contrast to including all possible input variables, have both statistical and

practical advantages in addition to model simplicity. From the statistical perspective, proper

selection of input variables would reduce the chance of over-fitting and transferring noise in data

into the regression model (Fox 1991). To elaborate more, if too many variables are used to

formulate the regression model, the resulting equation tends to fit onto the noise in the data set

(i.e., outliers), leading to over-fitting and unreliable prediction results. From the practical point of

28

view, being able to make reliable estimates while using fewer input variables would reduce data

collection effort to enable the calibration and maintenance of the model. One plausible approach

for determining the best subset of variables is by trial-and-error, which essentially enumerates all

the potential combinations and compares the analytical results. However, it is not practically

feasible in most of the cases, as there are 2n possible subsets for a model with n input variables.

For instance, if there are ten input variables, there would be 1,024 different regression models,

which need to be evaluated.

Stepwise regression is a widely accepted method for reducing the number of input variables

without sacrificing the prediction accuracy of the MLR model. The objective is to predict an output

based on the regression equation formulated by a subset of input variables; while the regression

equation retains all or most of the explanatory power as if the full set of variables were used

(Barrett and Gray 1994). In stepwise regression, the input variables are selected by testing the

significance of each one and its respective correlation with the output variable. It is worth

mentioning that the commercial statistical software systems, such as SPSS® and SAS®, provide

stepwise regression functionality. Nonetheless, all these systems function like “black box” and do

not check the validity of OLS assumptions in a comprehensive and systematic fashion.

Construction-related research studies have also been conducted for streamlining input variables by

utilizing stepwise regression (Silva et al. 2013; Smith 1999; Wong 2004). However, only a few

studies found in the literature have verified the underlying OLS assumptions (e.g., Choi et al. 2015;

El-abbasy et al. 2014; Jafarzadeh et al. 2015). Moreover, determining the errors of the MLR’s

point-value estimate is crucial to regression applications in engineering. Error analysis can be

conducted by establishing a confidence interval around the point-value estimate in order to reveal

the uncertainty of the MLR prediction (Cheung and Skitmore 2006).

29

kXX ,,1 

Initiating FS

Selected variables Ignored variables

Identify the most

correlated variable

and add it to the

selected variables

Continues till

the added

variable does

not improve the

model

significantly

Empty kXX ,,1 

1
st
 Iteration

Selected variables Ignored variables

iX kXX ,,1 

2
nd

 Iteration

Selected variables Ignored variables

ji XX ,

Identify the most

correlated variable

and add it to the

selected variables

Figure 2-5:Forward selection procedure

EmptykXX ,,1 

Initiating BE

Selected variables Ignored variables

Identify the least

significant variable

and remove it from

selected variables

Continues till the

removed variable

deteriorate the

model

significantly

kXX ,,1 

1
st
 Iteration

Selected variables Ignored variables

iX kXX ,,1 

2
nd

 Iteration

Selected variables Ignored variables

ji XX ,

Identify the least

significant variable

and remove it from

selected variables

Figure 2-6: Backward elimination procedure

If a variable or variables

in the Selected set has

significance lower than

specified remove it

from selected variables

kXX ,,1 

Initiating Stepwise

Selected variables Ignored variables

Identify the most

correlated variable

and add it to the

selected variablesEmpty kXX ,,1 

1
st
 Iteration

Selected variables Ignored variables

iX kXX ,,1 

Selected variables Ignored variables

iX

If a variable or variables

in the Selected set has

significance lower than

specified remove it from

selected variables

Identify the most

correlated variable

and add it to the

selected variables
kXX ,,1 

2
nd

 Iteration

Selected variables Ignored variables

kXX ,,1 

Selected variables Ignored variables

iXji XX ,

Continues till the

added variable is

being eliminated

inside the

iteration

Figure 2-7: Proposed stepwise procedure

To the best of our knowledge, an integrated framework for MLR predictive application in

construction engineering is absent in the literature. The proposed framework is intended to assist

in formulating MLR models by analytically selecting input variables, verifying and validating the

resulting models, and performing predictive error analysis. The objective of this research is to

develop a systematic approach to reduce the effort of data collection in the construction field,

provide valid point-value estimates based on a streamlined MLR equation, and quantify the error

of the point-value estimate in terms of a range associated with a specific level of statistical

confidence. In this research, we essentially address the following question: How to select the most

30

relevant MLR input variables and verify the BLUE assumptions such that reliable point and range

estimates can be obtained given particular confidence levels?

In the following sections, literature reviews are provided on commonly used MLR techniques for

estimation and prediction in construction engineering applications. As there is no single reference

containing all the required procedures in a systematic form, a novel MLR application framework

is proposed, consisting of Modified Stepwise Regression procedures for selecting input features

and checking the BLUE assumptions. Two case studies are presented for demonstrating the

application of the framework step by step and contrast the results against those obtained from

commonly-applied MLR methodologies in validation of the framework. Each case study

represents a typical application problem in construction engineering: (1) concrete workability

control for quality and productivity in concreting construction; and (2) precast span installation

cycle-time planning for resource use efficiency in precast construction. It is noteworthy that the

dataset for the first case (demonstration case study) was sourced from the University of California,

Irvine (UCI) machine learning repository for benchmarking new algorithms; while the dataset for

the second case (practical case study) was prepared from a previous study which applied

operations' simulation modelling to characterize the construction cycle-time in the field.

31

2.2 MLR LITERATURE REVIEW

MLR has shown its usefulness and practicality in construction engineering (El-abbasy et al. 2014;

Jafarzadeh et al. 2014, 2015; Silva et al. 2013). MLR modelling formulates a linear equation by

relating two or more independent variables with a dependent variable for estimation and

prediction, as represented by Equation (2-1).

𝑌 = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯+ 𝛽𝑘𝑋𝑘 + 𝜀 (2-1)

where𝛼 =intercept,𝛽𝑖=regression coefficients;𝜀 =error;𝑋𝑖=input variables; 𝑌 =dependent variable.

The literature review demonstrates a widespread use of MLR in the construction field. Smith

(1999) investigated the earthmoving productivity in association with the operating conditions.

Lowe et al. (2006) estimated the project cost of constructing buildings. Choi et al. (2013) identified

the factors affecting pavement performance. El-abbasy et al. (2014) predicted the conditions of oil

and gas pipelines. Jafarzadeh et al. (2015) predicted the seismic retrofit cost.

The number of input variables can be reduced by feature selection methods such as forward

selection (FS), backward elimination (BE), and stepwise regression. As mentioned, the objective

of feature selection methods is to predict an output variable by use of a subset of input variables

while retaining all or most of the explanatory power given by the full set of variables. The FS starts

with a linear regression model containing no input variables but only a constant term as shown in

Figure 2-5 (Seber and Lee 2003). The input variables are added sequentially to the regression

model based on correlation and statistical significance. The significance of a particular input

variable is measured based on its contribution to explaining the output variable, compared against

32

other input variables. The iterative process is terminated when no remaining variable can be added

to improve the model’s predictive performance.

In contrast, BE begins with the full set of variables in formulating the linear regression model and

removes insignificant variables to achieve the desired subset as presented in Figure 2-6 (Wang and

Jain 2003). A major drawback of FS and BE methods lies in the fact that the iterative processes

are susceptible to be trapped in a near-optimum subset of variables (Smith and Draper 1998).

During the FS iteration, once an input variable is included; it will never be removed. Similarly, an

input variable cannot be reintroduced into the linear regression model once the variable is

eliminated in the BE process. As a result, applying FS and BE separately on a dataset may give

rise to entirely different subsets of selected features (Thompson 1978). Stepwise regression

overcomes this drawback by combining the FS and BE processes as demonstrated in Figure 2-7.

It identifies significant input variables and eliminates multicollinearity between variables. Note

that multicollinearity would incur when the selected input variables are correlated (Leung et al.

2001). Several recent studies have applied stepwise regression as the variable selection technique.

For instance, Silva et al. (2013) reduced the input variables from fifteen to four while eliminating

multicollinearity. Jafarzadeh et al. (2014) initially selected fourteen variables based on the seismic

performance of a building and applied stepwise regression to select seven influential factors.

Nevertheless, a major drawback in the previous MLR research related to stepwise regression is

identified: the regression-based feature selection is performed by applying OLS functionality

available in commercial statistical software without formally validating the BLUE assumptions

underlying OLS, thus rendering the results to be less reliable.

33

In this research study, a modified version of stepwise regression provides the key component of

the proposed application framework for selecting predictive input variables, which is coupled with

the assessment of BLUE assumptions. In addition, the technique for characterizing the margin of

error in the point-value estimate with statistical inference is also integrated into the MLR

application framework in order to accommodate uncertainties in the predicted point-value by

MLR.

34

2.3 PROPOSED MLR APPLICATION FRAMEWORK

To harness MLR’s predictive power and develop a reliable model, a comprehensive framework is

proposed, and steps for formulating, verifying, validating, and evaluating the resulting MLR

equation are elaborated in this section.

2.3.1 Initializing regression model

The first step is to select an initial set of input variables which sufficiently explains the model’s

output. MLR coefficients can be obtained by applying OLS. Note OLS is the preferable technique

to solve MLR due to its computational simplicity and well established theoretical foundation; in

the case of violation of OLS assumptions, alternative methods that are actually developed based

on OLS, such as the weighted least squares (WLS) to address the heteroscedasticity in applying

OLS (which is explained further in later sections), can be considered to redefine the MLR model.

2.3.2 Performing variable selection

The stepwise regression is structured by selecting and removing input variables based on

correlation and statistical significance analyses, as denoted in Figure 2-8.

35

Step 2: Calculate partial correlation

coefficient between independent and

dependent variables

Start

Step 1: Define two sets for independent

variables: selected and ignored set. In

this step all the variables are in the

ignored set and the selected set is null.

Step 3: Pick the independent variable

with the highest correlation coefficient

and move it to the selected set.

Step 5: Perform partial F-test on the

regression model to check variables’

significance.

Step 4: Formulate regression model

using the variables in selected set.

Step 6: Check the significance of

variables and remove the insignificant

ones

Step 7:

Stopping criteria

 achieved?

End

No

Yes

Figure 2-8: Flowchart of variable selection methodology

In Step 1, the variables are separated into two sets, namely, (I) selected set, denoted by{𝑥𝑖,𝑠𝑒𝑙} and

(II) ignored set, denoted by{𝑥𝑖,𝑖𝑔𝑛}. Through all the steps, variables included in the selected set are

used to formulate the regression model. The variables in the ignored set are those that have not yet

been tested or have been removed from the model because of low significance. All input variables

are initialized in the ignored set at the beginning and the selected set is null.

36

Partial correlation is a measure of the linear relationship between two variables after removing the

influence of other control variables. In regression analysis, each input variable contributes to

accounting for the dependent variable (i.e., the explaining part of a dependent variable to which

an input variable is attributed), as shown in Figure 2-8. In the proposed framework, partial

correlation is used to identify a set variable which best describe the unexplained part of the

dependent variable (Figure 2-9). Variables in the selected set are regarded as control variables

when partial correlation is being determined between variables in the ignored set and the dependent

variable.

Y

 X4

Y

X3

Y

X2

Y

X1

Figure 2-9: Explanatory power of individual input variables

In Step 2, the correlation coefficients are determined to measure the degree of association between

the output (y) and ignored variables ({𝑥𝑖,𝑖𝑔𝑛}), removing the effect of control variables. If the

selected set is null (e.g., first iteration), the correlation coefficient is determined as Pearson’s

correlation coefficient (Equation 2-2). If there are variables in the selected set, the partial

correlation coefficient is calculated as per (Equation 2-3). The correlation coefficient measures the

correlation between each input variable x and the response variable y. The numerical boundaries

of the coefficient are between [+1, −1]. A positive value indicates that the variables are positively

37

correlated, and a negative value means that the variables are negatively correlated. The magnitude

of the value indicates the strength of correlation.

If {𝑥𝑖,𝑠𝑒𝑙} = 𝜑, 𝑟{𝑥𝑖,𝑖𝑔𝑛}𝑦 =
∑ [(𝑥𝑛−�̄�)(𝑦𝑛−�̄�)]𝑛

√∑ (𝑥𝑛−�̄�)2𝑛 √∑ (𝑦𝑛−�̄�)2𝑛
, for each{𝑥𝑖,𝑖𝑔𝑛} (2-2)

If {𝑥𝑖,𝑠𝑒𝑙} ≠ 𝜑, 𝑟{𝑥𝑖,𝑖𝑔𝑛}𝑦⋅{𝑥𝑖,𝑠𝑒𝑙}
=

𝑟{𝑥𝑖,𝑖𝑔𝑛}𝑦−𝑟{𝑥𝑖,𝑠𝑒𝑙}𝑦
×𝑟{𝑥𝑖,𝑖𝑔𝑛}{𝑥𝑖,𝑠𝑒𝑙}

√1−𝑟{𝑥𝑖,𝑖𝑔𝑛}{𝑥𝑖,𝑠𝑒𝑙}
2

√1−𝑟{𝑥𝑖,𝑠𝑒𝑙}𝑦
2

, for each{𝑥𝑖,𝑖𝑔𝑛}
(2-3)

where 𝜑 is the symbol for a null set, n is the number of data records, x and y are the values of

input and response variables in the dataset, respectively; �̄�and�̄�are the mean values of input and

response variables, respectively; r is the correlation coefficient.

After calculating the correlation coefficients, the variable with the highest correlation is

moved out of the ignored set and added to the selected set in Step 3. The selected variable will be

included in the regression model and all the variables’ significance will be evaluated in the next

step.

In Step 4, the regression model is formulated using all the variables stored in the selected

set by implementing OLS.

Step 5 is to assess the significance of the variables in the regression model resulting from

Step 4. To ensure that the selected variables are all significant in explaining the dependent variable,

partial F-test needs to be performed. Partial F-test measures the significance of selected input

variables by comparing two regression models, namely: the regression model prior to adding each

input variable, and the regression model after adding each input variables. The partial F-test

(denoted by𝐹𝑥𝑖
) is calculated based on the sum of squared error (SSE) (Equation 2-4) and the degree

of freedom of the two regression models (Equation 2-5).

38

𝑆𝑆𝐸 = ∑(𝑦𝑖 − �̂�𝑖

𝑛

𝑖=1

)2 (2-4)

Where 𝑦𝑖is the dependent variable (given in the dataset) and�̂�𝑖 is the predicted value of the MLR

model.

𝐹𝑥𝑖
=

(𝑆𝑆𝐸𝑘−1,𝑥𝑖
−𝑆𝑆𝐸𝑘)

(𝑆𝑆𝐸𝑘) (𝑛−𝑘−1)⁄
, for each𝑥𝑖 ∈ {𝑥𝑖,𝑠𝑒𝑙} (2-5)

To perform the partial F-test, the SSE values for the regression models before and after

adding an input variable (i.e.,𝑥𝑖) are computed.𝑆𝑆𝐸𝑘−1,𝑥𝑖
represents the SSE before adding the input

variable which has (n-k) degrees of freedom, while𝑆𝑆𝐸𝑘represents the SSE after adding the input

variable with (n-k-1) degree of freedom. n is the number of datasets. k is the number of input

variables after adding𝑥𝑖to MLR model.

In Step 6, the significance of each variable can be determined such that the variables deemed

to be significant (p-value<0.05) can be included for formulating the regression model. If the

variable is not significant (p-value>0.05), it should be removed from the regression model (i.e.,

removed from the selected set and added to the ignored set). In a particular iteration, if the variable

with the highest correlation does not satisfy the required level of significance (p-value>0.05), the

stepwise procedure ends, and no more iteration is required.

2.3.3 Model verification

The resulting MLR model, in the form of Equation (2-1), must satisfy the BLUE assumptions in

order to be valid for estimation and prediction. The model is verified by checking the following

six criteria:

(1) 𝐸(𝜀𝑗) = 0: The expected value of error term is zero. Violation of this assumption would affect

the estimation of the intercept.

39

(2) 𝑉𝐴𝑅(𝜀𝑗) = 𝜎2𝐼: The variance of the error term is constant. If the variance of the error term is

not constant, the MLR model is associated with heteroscedasticity.

(3) 𝐶𝑂𝑉(𝜀𝑗, 𝜀ℎ) = 0: The error terms are uncorrelated. Violation of this assumption causes

autocorrelation.

(4) 𝐶𝑂𝑉(𝑋𝑖, 𝜀) = 0: Each input variable is uncorrelated with the error term. Violation of this

assumption would also result in heteroscedasticity.

(5) There is no perfect collinearity: There is no input variable that is perfectly linearly related to

another input variable(s).

(6) 𝜀 ≈ 𝑁(0, 𝜎2): The error term must be normally distributed. Note, this assumption is only

relevant to the tests of statistical significance (e.g., T-test and F-test); its violation would have

no effect on the estimation of the MLR model coefficients. This check is generally required

given small sample size (smaller than 30).

The Gauss-Markov theorem (Greene 2008) maintains that the least squares estimators of

regression parameters are unbiased and efficient when assumptions 1 to 5 are satisfied; hence, the

least square estimators are deemed to be BLUE. Herein, formally established methods in applied

statistics to check the discussed BLUE assumptions are briefly described in here:

Heteroscedasticity is statistically detected by use of Breusch-Pagan test (Breusch and Pagan 1979).

Breusch-Pagan tests the null hypothesis of constant error variances, against non-constant error

variances (i.e., a function of one or more input variables) (Equation 2-6). In the case of rejection

of the null hypothesis, the WLS method is opted to formulate the WLS-based regression model

(Greene 2008; Gujarati 2004).

40

𝐻0: 𝑉𝑎𝑟(𝜀|𝑋1, 𝑋2, … , 𝑋𝑘) = 𝐸(𝜀2|𝑋1, 𝑋2, … , 𝑋𝑘) = 𝜎2

𝜀2 = 𝛿0 + 𝛿1𝑋1 + 𝛿2𝑋2 + ⋯+ 𝛿𝑘𝑋𝑘 + 𝑒

𝐻1: 𝛿1 = 𝛿2 = ⋯ = 𝛿𝑘

(2-6)

Multicollinearity is tested by examining the correlation between two input variables. Variance

inflation factor (VIF) is a commonly accepted indicator of multicollinearity. To measure the VIF

for each input variable𝑋𝑖∈{1,2,...,𝑘}, an OLS regression is formed with𝑋𝑖as the dependent variable,

while all other variables are considered as input variables (Equation 2-7). Multicollinearity exists

if the VIF value is higher than 10 (Kutner et al. 2004). There would be no sign of multicollinearity

in the MLR model developed by stepwise regression as the significance of added variables are

tested before including them in the model.

𝑋𝑖 = 𝛼0 + 𝛼1𝑋1 + 𝛼2𝑋2 + ⋯+ 𝛼𝑘𝑋𝑘 + 𝑒

𝑉𝐼𝐹𝑖 = (1 − 𝑅𝑖
2)−1

(2-7)

where𝑅𝑖
2 =coefficient of determination.

Autocorrelation is detected by use of d-statistic test (i.e., Durbin-Watson test) (Durbin and Watson

1951). As per Equation (2-8), the computed value of d lies between 0 and 4. Autocorrelation exists

if the d value is close to 4 or 0. Autocorrelation does not exist if the d value is adjacent to 2.

41

𝑑 =
∑ (𝑒𝑡 − 𝑒𝑡−1)

2𝑛
𝑡=2

∑ 𝑒𝑡
2𝑛

𝑡=1

 (2-8)

where ei is the regression residual of ith observation.

Normality of the error term can be checked statistically by Anderson-Darling test (Stephens 1974),

as shown in Equation 2-9. The hypothesis of normality is rejected if𝐴exceeds a given critical value

with presumed significance level [see Table 2-1 in Stephens (1974) for critical values].

𝐴2 = −𝑛 − 𝑆 (2-9)

Where n is the sample size, and S can be obtained from Equation 2-10.

𝑆 = ∑
(2𝑖 − 1)

𝑛
[𝑙𝑛 𝐹 (𝑒𝑖) + 𝑙𝑛(1 − 𝐹(𝑒𝑛+1−𝑖))]

𝑛

𝑖=1

 (2-10)

Where n is the sample size; F =cumulative distribution of errors, 𝑒𝑖= regression error of ith

observation.

2.3.4 Model validation

Model validation is vitally important to ensure the prediction performance of a calibrated MLR

model. The proposed application framework utilizes two cross-validation methods: (I) k-fold

cross-validation, and (II) predicted residual error sum of squares (PRESS) statistic (Holiday et al.

1995). The cross-validation is used for checking the problem of over-fitting, which occurs when a

regression model performs reliably on the training set but poorly on new data. The K-fold cross-

42

validation splits the data into a test set and a training set for k times. The training set is used for

calibrating the model whereas the test set is used for validation. The PRESS statistic is also a

widely used method to determine the quality of prediction by each time leaving one observation

out for testing the trained model (i.e. K-fold when k is equal to the number of observations)

(Equation 11) (Choi et al. 2013). By performing cross-validation methods, the sum of squared

errors (SSE) for each test set can be obtained and compared with the calibrated MLR SSE. The test

SSE cannot be smaller than the MLR SSE. If the two SSE values are close to each other (e.g. within

10%-15% difference), the MLR model is validated. If the test SSE is significantly larger than the

model SSE, the model is not valid.

𝑃𝑅𝐸𝑆𝑆 = 𝑆𝑆(𝑃𝑅𝐸𝑆𝑆 residuals) = ∑𝑒𝑖
∗2

𝑛

𝑖=1

= ∑(𝑦(𝑥𝑖) − �̂�𝑃𝑅𝐸𝑆𝑆(𝑥𝑖)

𝑛

𝑖=1

)2
(2-11)

where𝑦is the recorded dependent variable;�̂�𝑃𝑅𝐸𝑆𝑆is the predicted value of the MLR model

calibrated on the data set excluding𝑥𝑖.\

2.3.5 Prediction error estimation

The proposed framework further quantifies the uncertainty in MLR predictions, by defining

a confidence interval around its point-value estimates. The MLR uncertainty is attributed to both

modelling errors and observation errors in the collected data. The confidence interval for a point-

value estimate is statistically defined by Equation (2-12) (Liu 2010). The 𝜎𝑟𝑒𝑠 is the residual

standard deviation which accounts for the uncertainties in formulating the MLR model.

�̂�0 ± 𝑡(𝛼/2,𝑛−𝑘−1) × 𝑠. 𝑒. (2-12)

43

where �̂�0 is the predicted point value of the regression model;𝑡(𝛼/2,𝑛−𝑘−1)is the T-distribution with

significance of 𝛼 (degree of freedom of n-k-1); and𝑠. 𝑒. is the standard error of the estimate

determined based on the training set by Equation (2-13).

𝑠. 𝑒. = √𝜎𝑟𝑒𝑠
2 [𝑥0](𝑋𝑇𝑋)−1[𝑥0]𝑇 (2-13)

where𝜎𝑟𝑒𝑠 is the residual standard deviation and can be calculated by Equation (2-15);[𝑥0] in form

of [1 𝑥01 ⋯ 𝑥0𝑘] is an array of input variable for which the confidence interval of its MLR

model output needs to be established; and 𝑋 with n rows (n=number of records) and k+1 columns

(k=number of independent variables in MLR) is the matrix of recorded data (Equation 2-14).

𝑋 = [

1 𝑥11 ⋯ 𝑥1𝑘

1 𝑥21 ⋯ 𝑥2𝑘

⋮ ⋮ ⋮ ⋮
1 𝑥𝑛1 ⋯ 𝑥𝑛𝑘

] (2-14)

𝜎𝑟𝑒𝑠
2 =

𝑆𝑆𝐸

𝑛 − 𝑘 − 1
 (2-15)

where 𝑆𝑆𝐸 is the regression sum of squared errors and n-k-1 is the degree of freedom of the

regression model.

44

2.4 DEMONSTRATION CASE

To demonstrate calculation procedures of the proposed MLR application framework, a benchmark

dataset is selected from UCI machine learning repository

(https://archive.ics.uci.edu/ml/index.html) which was collected and utilized by Yeh (2006),

(2007), and (2009) for developing new non-linear algorithms. The problem is to model the slump

of a concrete mix with different properties. The slump of concrete is not only determined by the

water content, but also influenced by other concrete ingredients. The seven attributes in the

collected data are cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, and

fine aggregate (all in kg/m3); the dependent variable is the concrete slump in cm for each

experimented concrete mix (ranging from 0 to 30 cm). Yeh (2006) implemented Artificial Neural

Network (ANN) and non-linear regression modelling to predict the concrete slump based on its

ingredients. In this demonstration case, an MLR model is developed by applying the proposed

framework, and the results are compared with predictive models reported in Yeh (2006).

2.4.1 Initializing regression model

The data set includes one hundred and three records. There are seven input variables, and three

dependent variables. The data set input features are cement(𝑥1), blast furnace slag(𝑥2), fly

ash(𝑥3), water(𝑥4), superplasticizer(𝑥5), coarse aggregate(𝑥6), and fine aggregate(𝑥7). In the

recorded datasets, the dependent variables are slump, flow, and compressive strength; however, in

this demonstration case, only slump is selected to be predicted by an MLR model.

https://archive.ics.uci.edu/ml/index.html

45

2.4.2 Performing variable selection

The following demonstrate the main steps and details in performing stepwise regression for input

variable selection as proposed in the framework:

1st Iteration

Step 1: Initializing the selected and ignored variable sets

• Selected set{𝑥𝑖,𝑠𝑒𝑙} = 𝜑

• Ignored set{𝑥𝑖,𝑖𝑔𝑛} = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7}

Step 2: Performing correlation analysis.

• The correlations between the dependent variable (y) and input variables (x1, x2, x3, x4, x5, x6,

x7) are calculated and presented in Table 2-1. Since the variable x4 has the highest

correlation coefficient, it is chosen to be included in the MLR model.

Table 2-1: Correlation coefficients (1st Iteration)

Correlation coefficient 𝑟𝑥𝑖,𝑖𝑔𝑛𝑦 (𝑟𝑥𝑖,𝑖𝑔𝑛𝑦)2

𝑟𝑥1𝑦 0.15 0.02

𝑟𝑥2𝑦 -0.28 0.08

𝑟𝑥3𝑦 -0.12 0.01

𝑟𝑥4𝑦 0.47 0.22

𝑟𝑥5𝑦 -0.21 0.05

𝑟𝑥6𝑦 -0.19 0.04

𝑟𝑥7𝑦 0.20 0.04

Step 3: Refining the selected and ignored variable sets.

• Selected set{𝑥𝑖,𝑠𝑒𝑙} = {𝑥4}

46

• Ignored set{𝑥𝑖,𝑖𝑔𝑛} = {𝑥1, 𝑥2, 𝑥3, 𝑥5, 𝑥6, 𝑥7}

Step 4: Formulating the regression model with variables in the selected set by OLS.

• The regression is formulated as per Equation 2-16.

𝑦 = −21.787 + 0.202𝑥4 (2-16)

Step 5: Performing partial F-test and testing the variables significance.

• In the 1st iteration, there is no variable in the model prior to adding the input variable𝑥4.

The 𝑆𝑆𝐸0,𝑥𝑖
is calculated by Equation 2-17. In a regression model with no input variables

all the predicted values(�̂�𝑖) are the mean value of the dependent variable(�̄�). The 𝑆𝑆𝐸1is

determined as per Equation 2-18. The predicted values(�̂�𝑖) in 𝑆𝑆𝐸1are calculated from the

regression model formulated in Step 4 𝐹𝑥4
is computed using 𝑆𝑆𝐸0,𝑥𝑖

and𝑆𝑆𝐸1 by Equation

2-19 and𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥4
is determined as per Equation 2-20.

𝑆𝑆𝐸0,𝑥4
= ∑(𝑦𝑖 − �̂�𝑖

𝑛

𝑖=1

)2 = ∑(𝑦𝑖 − �̄�

𝑛

𝑖=1

)2 = (23 − 18.048)2+. . . +(29 − 18.048)2

= 7810.882

(2-17)

𝑆𝑆𝐸1 = ∑(𝑦𝑖 − �̂�𝑖

𝑛

𝑖=1

)2 = (23 − 20.641)2+. . . +(29 − 23.338)2 = 6110.563 (2-18)

𝐹𝑥4
=

(𝑆𝑆𝐸𝑘,𝑥4
− 𝑆𝑆𝐸𝑘+𝑚) (𝑚)⁄

(𝑆𝑆𝐸𝑘+𝑚) (𝑛 − 𝑘 − 𝑚 − 1)⁄
=

(𝑆𝑆𝐸0,𝑥4
− 𝑆𝑆𝐸1) (1)⁄

(𝑆𝑆𝐸1) (103 − 2)⁄

=
(7810.882 − 6110.563) (1)⁄

(6110.563) (101)⁄
= 28.104

(2-19)

47

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥4
= 𝑓(𝐹𝑥𝑖

, 𝑚, 𝑛 − 𝑘 − 1) = 𝑓(28.104,1,101) = 6.78𝑒−7 < 0.05 (2-20)

Step 6: Testing the input variables’ significance.

• Since the p-value for all the input variables is lower than 0.05 (i.e. accepted significance

level), all variables included in the model are significant.

Step 7: Deciding if the stepwise regression should end.

• The last variable entered is significant enough, return to Step 2.

2nd iteration

Step 2: Performing correlation analysis.

The partial correlation coefficients between y and the ignored variables {x1, x2, x3, x5, x6, x7} are

calculated, given x4 as the control variable. The correlation coefficients are tabulated in Table 2-2.

Table 2-2: Correlation coefficients (2nd iteration)

Correlation coefficient 𝑟𝑥𝑖,𝑖𝑔𝑛𝑦 (𝑟𝑥𝑖,𝑖𝑔𝑛𝑦)2

𝑟𝑥1𝑦⋅𝑥4
 4.96e-2 2.46e-3

𝑟𝑥2𝑦⋅𝑥4
 -3.07e-1 9.43e-2

𝑟𝑥3𝑦⋅𝑥4
 -7.02e-3 4.93e-5

𝑟𝑥5𝑦⋅𝑥4
 -1.61e-1 2.58e-2

𝑟𝑥6𝑦⋅𝑥4
 1.31e-1 1.73e-2

𝑟𝑥7𝑦⋅𝑥4
 1.69e-1 2.87e-2

• Selected set{𝑥𝑖,𝑠𝑒𝑙} = {𝑥4}

48

• Ignored set{𝑥𝑖,𝑖𝑔𝑛} = {𝑥1, 𝑥2, 𝑥3, 𝑥5, 𝑥6, 𝑥7}

Step 3: Refining the selected and ignored variable sets.

• Selected set{𝑥𝑖,𝑠𝑒𝑙} = {𝑥4, 𝑥2}

• Ignored set{𝑥𝑖,𝑖𝑔𝑛} = {𝑥1, 𝑥3, 𝑥5, 𝑥6, 𝑥7}

Step 4: Formulating the regression model with variables in the selected set by OLS.

• Formulate the regression model with x4 and x2 (Equation 2-21).

𝑦 = −18.099 + 0.199𝑥4 − 0.039𝑥2 (2-21)

Step 5: Performing partial F-test and testing the variables’ significance.

Perform partial F-test (Equations 22–28)

𝑆𝑆𝐸1,𝑥2
= ∑(𝑦𝑖 − �̂�𝑖

𝑛

𝑖=1

)2 = (23 − 17.883)2+. . . +(29 − 21.24)2 = 7180.726 (2-22)

𝑆𝑆𝐸1,𝑥4
= ∑(𝑦𝑖 − �̂�𝑖

𝑛

𝑖=1

)2 = (23 − 20.641)2+. . . +(29 − 23.338)2 = 6110.563 (2-23)

𝑆𝑆𝐸2 = ∑(𝑦𝑖 − �̂�𝑖

𝑛

𝑖=1

)2 = (23 − 20.442)2+. . . +(29 − 23.36)2 = 5534.204 (2-24)

𝐹𝑥2
=

(𝑆𝑆𝐸1,𝑥2
− 𝑆𝑆𝐸2) 1⁄

(𝑆𝑆𝐸2) 27⁄
=

(6110.563 − 5534.204) 1⁄

(5534.204) 100⁄
= 10.414 (2-25)

49

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥2
= 𝑓(10.414,𝑚, 𝑛 − 𝑘 − 1) = 𝑓(10.414,1,100) = 1.69𝑒−3 < 0.05 (2-26)

𝐹𝑥4
=

(𝑆𝑆𝐸1,𝑥4
− 𝑆𝑆𝐸2) 1⁄

(𝑆𝑆𝐸2) 100⁄
=

(7180.726 − 5534.204) 1⁄

(5534.204) 100⁄
= 29.751 (2-27)

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥4
= 𝑓(29.751,𝑚, 𝑛 − 𝑘 − 1) = 𝑓(29.751,1,100) = 3.56𝑒−7 < 0.05 (2-28)

Step 6: Testing the input variables’ significance.

• Since the p-value for x4 and x2 is lower than 0.05, all the variables included in the model

are significant.

Step 7: Deciding if the stepwise regression should end.

• The last variable entered is significant enough, return to Step 2.

3rd Iteration

Step 2: Performing correlation analysis, Table 2-3.

Table 2-3: Correlation coefficients (3rd Iteration)

Correlation coefficient 𝑟𝑥𝑖,𝑖𝑔𝑛𝑦 (𝑟𝑥𝑖,𝑖𝑔𝑛𝑦)2

𝑟𝑥1𝑦⋅𝑥4𝑥2
 -2.74e-2 7.51e-4

𝑟𝑥3𝑦⋅𝑥4𝑥2
 -1.24e-1 1.54e-2

𝑟𝑥5𝑦⋅𝑥4𝑥2
 -1.62e-1 2.63e-2

𝑟𝑥6𝑦⋅𝑥4𝑥2
 4.31e-2 1.86e-3

𝑟𝑥7𝑦⋅𝑥4𝑥2
 1.21e-1 1.47e-2

50

Step 3: Refining the selected and ignored variable sets.

• Selected set {𝑥𝑖,𝑠𝑒𝑙} = {𝑥4, 𝑥2, 𝑥5}

• Ignored set {𝑥𝑖,𝑖𝑔𝑛} = {𝑥1, 𝑥3, 𝑥6, 𝑥7}

Step 4: Formulating the regression model with variables in the selected set (Equation 2-29).

𝑦 = −15.744 − 0.036𝑥2 + 0.195𝑥4 − 0.205𝑥5 (2-29)

Step 5: Performing partial F-test and testing the variables significance (Equations 2-30 to 2-35).

𝐹𝑥2
=

(𝑆𝑆𝐸2,𝑥2
− 𝑆𝑆𝐸3) 1⁄

(𝑆𝑆𝐸3) 99⁄
=

(5952.849 − 5504.274) 1⁄

(5504.274) 99⁄
= 8.068 (2-30)

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥2
= 𝑓(8.068,𝑚, 𝑛 − 𝑘 − 1) = 𝑓(38.84,1,99) = 5.47𝑒−3 < 0.05 (2-31)

𝐹𝑥4
=

(𝑆𝑆𝐸2,𝑥4
− 𝑆𝑆𝐸3) 1⁄

(𝑆𝑆𝐸3) 99⁄
=

(7044.202 − 5504.274) 1⁄

(5504.274) 99⁄
= 27.697 (2-32)

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥4
= 𝑓(24.29,𝑚, 𝑛 − 𝑘 − 1) = 𝑓(24.29,1,99) = 8.24𝑒−7 < 0.05 (2-33)

𝐹𝑥5
=

(𝑆𝑆𝐸2,𝑥5
− 𝑆𝑆𝐸3) 1⁄

(𝑆𝑆𝐸3) 99⁄
=

(5534.204 − 5504.274) 1⁄

(5504.274) 99⁄
= 0.538 (2-34)

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥5
= 𝑓(0.538,𝑚, 𝑛 − 𝑘 − 1) = 𝑓(0.538,1,99) = 0.465 > 0.05 (2-35)

Step 6: Testing the input variables’ significance.

• The p-value for x5 is higher than 0.05, hence x5 should return back to the ignored set.

Step 7: Deciding if the stepwise regression should end.

51

• The last variable entered is not significant, and the stepwise procedure ends here (no more

iteration is required). The final MLR only includes water(𝑥4) and blast furnace slag(𝑥2)

as input variables and is presented by Equation (2-20).

2.4.3 Model verification

The BLUE assumptions are verified for the resulting MLR model (Equation 2-20).

2.4.3.1 Checking heteroscedasticity

The Breusch-Pagan results are shown in Table 2-4. As the p-value is smaller than 0.05 (i.e.,

significant level). Therefore, the null hypothesis of constant variance for the error terms is rejected

and the MLR experiences heteroscedasticity. Moreover, a fan-shape pattern can be observed in the

OLS-based MLR residual plot which supports the heteroscedasticy identified by Beusch-Pagan

test (Figure 2-10).

Table 2-4: Breusch-Pagan test for OLS-based regression model

Variable Degree of freedom 𝜒2 p-value

x2, x4 100 128.53 0.0288

To adjust the MLR model with heteroscedastic errors, the WLS method is utilized. The MLR

model with the input variables x2 and x4 is used for WLS coefficient estimation. Equation (2-36)

shows the final WLS-based MLR model. The residual plot for WLS-based regression depicts a

constant variance of error, shown in Figure 2-10. The Breusch-Pagan test is conducted again, and

the test results are shown in Table 2-5. Since the Breusch-Pagan p-value is larger than 0.05, the

variance of the error terms is constant, and the errors are now homoscedastic.

52

Table 2-5: Breusch-Pagan test for WLS-based regression model

Variable Degree of freedom 𝜒2 p-value

x2, x4 100 101.5364 0.4383

𝑦 = 4.1742 + 0.0093𝑥2 + 0.075𝑥4 (2-36)

Figure 2-10: Visual comparison WLS-based MLR model and OLS-based MLR model residual plots

2.4.3.2 Checking multicollinearity

The VIF values are computed using Equation (2-7). For both input variables (x2 and x4) the VIF is

equal to 1 leading to no multicollinearity in the MLR model as expected from stepwise regression,

Table 2-6.

Table 2-6: VIF values for checking multicollinearity

Variable VIF

x2 1

x4 1

-20

-15

-10

-5

0

5

10

15

5 15 25

R
eg

re
ss

io
n

 r
es

id
u

al
s

Regression predicted values

OLS-based MLR model

-20

-15

-10

-5

0

5

10

15

5 10 15 20 25 30

R
eg

re
ss

io
n

 r
es

id
u

al
s

Regression predicted values

WLS-based MLR model

53

2.4.3.3 Checking autocorrelation

Durbin-Watson test is conducted to calculate the d-statistic value. The result shows that the d value

is 1.806, which is closed to 2. Thus, autocorrelation does not exist between the error terms.

2.4.3.4 Checking normality of error

The normality assumption is critical when if the sample size is small. In the current case, the

number of data set is larger than 100 and checking the normality of error term can be neglected.

2.4.4 MLR model validation

To validate the MLR model’s prediction performance, both K-fold cross-validation method and

PRESS statistics are tested. In the K-fold method, k is assumed to be ten (10) and the SSE value

for each test is given in Table 2-7. The total SSE and the PRESS values are calculated by Equation

(2-37) and Equation (2-38), respectively. In both tests, the resulting SSE values are compared with

the WLS-based MLR model SSE (Equation 2-39) and (Equation 2-40). This model is validated

since both SSE ratios are in the acceptable range (10%-15%).

Table 2-7: SSE values for k-fold cross-validation

Test No. 1 2 3 4 5 6 7 8 9 10

SSE

6
5
9
.4

5

8
8
5
.3

9

1
1
4
8
.7

2

1
1
7
1
.7

9

1
6
4
.2

4

4
9
9
.2

9

9
2
9
.3

5

3
5
0
.8

7

6
5
9
.4

5

8
8
5
.3

9

𝑆𝑆𝐸𝑘−𝑓𝑜𝑙𝑑 = ∑𝑇𝑒𝑠𝑡𝑖(𝑆𝑆𝐸) = 7572.3

𝑘

𝑖=1

(2-37)

54

𝑃𝑅𝐸𝑆𝑆 = 𝑆𝑆(𝑃𝑅𝐸𝑆𝑆 residuals) = ∑𝑒𝑖
∗2

𝑛

𝑖=1

= 13.43 + 330.09+. . . +27.92

= 7609.99

(2-38)

𝑆𝑆𝐸𝑘−𝑓𝑜𝑙𝑑

𝑆𝑆𝐸𝑊𝐿𝑆 𝑀𝑜𝑑𝑒𝑙
=

7572.3

7371.3
= 1.027 (2-39)

𝑃𝑅𝐸𝑆𝑆

𝑆𝑆𝐸𝑊𝐿𝑆 𝑀𝑜𝑑𝑒𝑙
=

7609.99

7371.3
= 1.032 (2-40)

Further, the presented MLR model is comparable with the one resulting from applying MLR by

simply including all the input variables into the model.

2.4.5 Error estimation

To estimate the error of point prediction with a significance level of 0.05 (i.e. confidence level of

95%), a data point is postulated (Equation 2-41). To predict the concrete slump (cm), the blast

furnace slag(𝑥2) and the water(𝑥4) are assumed as 100 (kg/m3) and 196 (kg/m3), respectively.

Equation (2-42) shows the point prediction based on the final MLR model (Equation 36). The

predicted value of the slump, given the assumed data point, is 19.8042 cm.

[𝑥0] = [1 100 196] (2-41)

�̂�0 = 4.1742 + 0.0093𝑥2 + 0.075𝑥4 = 19.8042 (2-42)

Equations (2-43) to (2-46) show the calculations of the residual standard deviation(𝜎𝑟𝑒𝑠) (Equation

2-15), the matrix of records 𝑋 (Eq. 14), and standard error(𝑠. 𝑒.) (Equation 2-13). Note that the

number of observations is 103 (=n), and the input variables are 2 (=k); therefore, the degree of

freedom is 100 (=n-k-1). As a result of the error analysis, with 95% confidence level, the interval

55

of the point prediction is between 18.191 cm and 21.417 cm. The results are cross-checked with

the result of the actual observation, which is equal to 20 cm.

𝜎𝑟𝑒𝑠
2 =

𝑆𝑆𝐸

𝑛 − 𝑘 − 1
=

7371.3

100
= 73.713

(2-43)

(𝑋𝑇𝑋)−1 = [
9.67𝑒-01 -2.52𝑒-04 -4.75𝑒-03

-2.52𝑒-04 2.68𝑒-06 2.15𝑒-07

-4.75𝑒-03 2.15𝑒-07 2.40𝑒-05

] (2-44)

𝑠. 𝑒. = √𝜎𝑟𝑒𝑠
2 [𝑥0](𝑋𝑇𝑋)−1[𝑥0]𝑇 = √73.713 × 0.0110 = 0.8132 (2-45)

�̂�0 ± 𝑡(0.025,100) × 𝑠. 𝑒 = 19.804 ± 1.984 × 0.8132 = 19.804 ± 1.613 (2-46)

2.4.6 Benchmarking against published non-linear regression models

Based on the same dataset, Yeh (2006) produced two predictive models, namely: a non-

linear regression model and an ANN model. The non-linear model involved seven inputs and

required estimating fifty-six (56) regression coefficients, as shown in Equation (2-47). The ANN

model calibration required tedious trial-and-error processes guided by heuristic rules in order to

fix the number of hidden layers, the number of hidden nodes, the learning rate and the momentum

factor. Additionally, fifty-six (56) ANN transformation weights were estimated. For the current

case, the following ANN parameters were reported for the final model in Yeh (2006): 1 hidden

layer and seven hidden nodes; the learning rate and momentum factor were set as 0.1 and 0.5

respectively. The RMSE values can be calculated based on SSE (Equation 48). Yeh (2006) reported

the RMSE values for the ANN model and the non-linear regression model being 4.03 cm and 9.29

56

cm, respectively. In contrast, the proposed linear regression (Equation 2-36) would require the

estimation of only three coefficients, resulting in the RMSE value of 8.46 cm. Even though the

number of independent variables has been significantly reduced (from seven to two), the predictive

power of the streamlined MLR model is not compromised. In short, simplicity is retained in the

MLR model without losing sophistication of the model in coping with the complexity in the real-

world application.

𝑦 = ∑𝛽𝑖𝑥𝑖 +

𝑞

𝑖=1

∑∑𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑞

𝑖<𝑗

 (2-47)

where xi is the ith independent variables, q=total number of independent variables; 𝛽𝑖,𝛽𝑖𝑗are

regression coefficients.

𝑅𝑀𝑆𝐸 = √(𝑆𝑆𝐸/𝑛) (2-48)

2.5 PRACTICAL CASE STUDY

To demonstrate the usefulness of the proposed framework, a practical case study on predicting one

span installation cycle-time on precast viaduct construction is presented. The viaduct is part of an

artery linking Hong Kong and Shenzhen, China, and consists of 227 post-tensioned spans. A

typical span is made up of fourteen precast segmental box girders (12m×2.5m×2.8m of each). The

stepping girder precast installation method was used to accelerate the viaduct construction process

(Chan and Lu 2008). The precast segments were fabricated near Shenzhen and hauled to the Hong

Kong site for installation. A main field constraint was that the site was too congested to keep all

segments in the convenient proximity of the site crew. As an alternative, the precast segments were

57

partially stocked in a remote storage area and transported to the working span by trailer trucks,

without any intermediate storage or buffer.

In order to assist the contractors in estimating the cycle-time for installing the precast concrete

segments on one-span viaduct, four input factors relevant to site operations and logistics planning

were identified and assessed, namely: (1) the number of trailer trucks rented for hauling segments

(the site only considered the options of two trailer trucks or three), (2) one batch or two-batch

precast segment delivery modes (fourteen segments can be delivered either in one-batch in the

night before installation operation starts or in two batches, which means the first batch of seven

segments would be delivered in the night before installation starts and the second batch delivered

in the following night), (3) the percentage of the total number of segments on one-span to be placed

in the remote storage area, and (4) the haul duration for a trailer truck to transit from the remote

storage area to the working span. Table 2-8 shows the thirty cycle-time records used in this

research.

58

Table 2-8: Recorded cycle-time for installing the precast concrete segments

Data record

identifiers

No. of

trucker (x1)

Delivery

batch (x2)

Segment at

remote

storage area

(%) (x3)

Duration to

remote

storage area

(x4)

 Desired

install hours

(y)

1 2 1 0.00 0.00 103.61

2 3 1 0.50 0.50 104.76

3 3 1 0.29 0.33 104.76

4 3 1 0.50 0.33 104.78

5 3 1 1.00 0.50 105.78

6 3 1 1.00 0.33 105.78

7 3 1 0.29 0.75 108.38

8 3 1 0.50 0.75 109.36

9 2 1 0.50 0.50 111.51

10 3 1 1.00 0.75 112.05

11 3 1 0.71 0.75 112.41

12 2 1 0.29 0.75 112.72

13 2 1 1.00 0.50 114.15

14 2 1 0.50 0.75 115.70

15 2 1 0.71 0.75 116.47

16 2 1 1.00 0.75 116.61

17 2 2 0.29 0.50 116.67

18 2 2 1.00 0.33 116.70

19 2 2 1.00 0.75 116.71

20 2 2 0.00 0.00 116.74

21 2 2 0.57 0.50 116.74

22 2 2 0.57 0.75 116.74

23 3 2 0.57 0.50 116.74

24 3 2 0.57 0.75 116.74

25 3 1 0.29 0.50 104.76

26 3 1 0.71 0.50 104.89

27 3 1 0.71 0.33 104.89

28 3 1 0.00 0.00 105.77

29 2 1 0.71 0.33 106.00

30 2 1 0.29 0.50 108.47

Next, the proposed framework is implemented on the dataset to develop a simple MLR predictive

model.

59

1st iteration

The correlations between the dependent variable (y) and input parameters (x1, x2, x3, x4) are

calculated as shown in Table 2-9. Since x2 (one-batch or two batches precast segments delivery)

has the largest correlation, it will be moved to selected set of variables.

Table 2-9: Correlation coefficient (1st iteration)

Correlation coefficient (𝑟𝑥𝑖,𝑖𝑔𝑛𝑦)2

𝑟𝑥1𝑦 0.370

𝑟𝑥2𝑦 0.453

𝑟𝑥3𝑦 0.041

𝑟𝑥4𝑦 0.130

Selected set{𝑥𝑖,𝑠𝑒𝑙} = {𝑥2}

Ignored set{𝑥𝑖,𝑖𝑔𝑛} = {𝑥1, 𝑥3, 𝑥4}

Formulate the regression model with x2 (Equation 2-49).

𝑦 = 100.88 + 7.92𝑥2 (2-49)

Perform partial F-test (Equations 2-50 and 2-51).

𝐹𝑥2
=

(𝑆𝑆𝐸𝑘,𝑥2
− 𝑆𝑆𝐸𝑘+𝑚) (𝑚)⁄

(𝑆𝑆𝐸𝑘+𝑚) (𝑛 − 𝑘 − 𝑚 − 1)⁄
=

(𝑆𝑆𝐸0,𝑥2
− 𝑆𝑆𝐸1) (1)⁄

(𝑆𝑆𝐸1) (30 − 2)⁄

=
(769.05 − 400.86) (1)⁄

(400.86) (28)⁄
= 25.718

(2-50)

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥2
= 𝑓(𝐹𝑥𝑖

, 𝑚, 𝑛 − 𝑘 − 1) = 𝑓(25.718,1,28) = 2.282𝑒−5 < 0.05 (2-51)

Since the p-value for x2 is lower than 0.05, x2 is significant.

60

2nd iteration

The partial correlation coefficients between y and the ignored variables (x1, x3, x4) are calculated,

given x2 as the control variable (Table 2-10). Since x4 (haul duration from the remote storage area

to the working span) has the largest correlation, it will be moved to selected set of variables.

Table 2-10: Correlation coefficient (2nd iteration)

Correlation coefficient (𝑟𝑥𝑖,𝑖𝑔𝑛𝑦)2

𝑟𝑥1𝑦⋅𝑥2
 0.303

𝑟𝑥3𝑦⋅𝑥2
 0.099

𝑟𝑥4𝑦⋅𝑥2
 0.331

Selected set{𝑥𝑖,𝑠𝑒𝑙} = {𝑥2, 𝑥4}

Ignored set{𝑥𝑖,𝑖𝑔𝑛} = {𝑥1, 𝑥3}

Formulate the regression model with x2 and x4 (Equation 2-52).

𝑦 = 96.039 + 7.891𝑥2 + 9.608𝑥4 (2-52)

Perform partial F-test (Equations 2-53 to 2-56).

𝐹𝑥4
=

(𝑆𝑆𝐸1,𝑥4
− 𝑣) 1⁄

(𝑆𝑆𝐸2) 27⁄
=

(400.866 − 252.327) 1⁄

(252.327) 27⁄
= 15.894 (2-53)

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥4
= 𝑓(15.894,𝑚, 𝑛 − 𝑘 − 1) = 𝑓(15.894,1,27) = 0.000 < 0.05 (2-54)

𝐹𝑥2
=

(𝑆𝑆𝐸1,𝑥2
− 𝑆𝑆𝐸2) 1⁄

(𝑆𝑆𝐸2) 27⁄
=

(617.663 − 252.327) 1⁄

(252.327) 27⁄
= 39.092 (2-55)

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥2
= 𝑓(39.092,𝑚, 𝑛 − 𝑘 − 1) = 𝑓(39.092,1,27) = 0.000 < 0.05 (2-56)

Since the p-value for x2 and x4 is lower than 0.05, both variables are significant.

61

3rd iteration

The partial correlation coefficients between y and the remaining variables (x1, x3) are calculated,

given x2 and x4 as the control variables (Table 2-11). Since x1 (the number of trailer trucks) has the

largest correlation, it will be moved to selected set of variables.

Table 2-11:Correlation coefficient (3rd iteration)

Correlation coefficient (𝑟𝑥𝑖,𝑖𝑔𝑛𝑦)2

𝑟𝑥1𝑦⋅𝑥2𝑥4
 0.496

𝑟𝑥3𝑦⋅𝑥2𝑥4
 0.014

Selected set{𝑥𝑖,𝑠𝑒𝑙} = {𝑥2, 𝑥4, 𝑥1}

Ignored set{𝑥𝑖,𝑖𝑔𝑛} = {𝑥3}

Formulate the regression model (Equation 2-57).

𝑦 = 107.107 + 6.610𝑥2 + 9.518𝑥4 − 3.759𝑥1 (2-57)

Perform partial F-test (Equations 2-58 to2-60).

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥2
= 𝑓(38.84,𝑚, 𝑛 − 𝑘 − 1) = 𝑓(38.84,1,26) = 0.000 < 0.05 (2-58)

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥4
= 𝑓(24.29,𝑚, 𝑛 − 𝑘 − 1) = 𝑓(24.29,1,26) = 0.000 < 0.05 (2-59)

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥2
= 𝑓(16.062,𝑚, 𝑛 − 𝑘 − 1) = 𝑓(16.062,1,26) = 0.000 < 0.05 (2-60)

Since the p-value for all input variables is lower than 0.05, all variables are significant.

4th iteration

The partial correlation coefficients between y and the last ignored variable (x3) is calculated, given

x1, x2, and x4 as the control variables (Table 2-12). Since x3 (the percentage of the total number of

62

segments on one-span to be placed in the remote storage area) has the largest correlation, it will

be moved to selected set of variables.

Table 2-12: Correlation coefficient (4th iteration)

Correlation coefficient (𝑟𝑥𝑖,𝑖𝑔𝑛𝑦)2

𝑟𝑥3𝑦⋅𝑥2𝑥4𝑥1
 0.0469

Selected set{𝑥𝑖,𝑠𝑒𝑙} = {𝑥2, 𝑥4, 𝑥1, 𝑥3}

Ignored set{𝑥𝑖,𝑖𝑔𝑛} = 𝜑

Formulate the regression model (Equation 2-61).

𝑦 = 106.928 + 6.603𝑥2 + 9.0278𝑥4 − 3.776𝑥1 + 0.839𝑥3 (2-61)

Perform partial F-test (Equations 2-62 to 2-65).

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥2
= 𝑓(37.66,𝑚, 𝑛 − 𝑘 − 1) = 𝑓(37.66,1,25) = 0.000 < 0.05 (2-62)

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥4
= 𝑓(17.17,𝑚, 𝑛 − 𝑘 − 1) = 𝑓(17.17,1,25) = 0.000 < 0.05 (2-63)

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥2
= 𝑓(15.73,𝑚, 𝑛 − 𝑘 − 1) = 𝑓(15.73,1,25) = 0.000 < 0.05 (2-64)

𝑝𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑥3
= 𝑓(0.264,𝑚, 𝑛 − 𝑘 − 1) = 𝑓(15.73,1,25) = 0.612 > 0.05 (2-65)

The p-value calculated for x3 is higher than 0.05, therefore, the x3 is insignificant and needs to be

moved to the ignored set. The final MLR model remains the same as 3rd iteration (Equation 2-57),

where y is the desired install hours (hour), 𝑥1is the number of tractors, 𝑥2is the delivery batch,

and𝑥4is the duration to remote storage area.

63

2.5.1 Model verification

The verifications of BLUE assumptions are required for the final MLR model (Equation 2-57).

2.5.1.1 Checking heteroscedasticity

The Breusch-Pagan results are shown in Table 2-13. As the test p-value is larger than 0.05 (i.e.,

significant level), the variance of the error term is constant, thus, no heteroscedasticity is

encountered.

Table 2-13: Breusch-Pagan test for OLS-based regression model

Variable Degree of freedom 𝜒2 p-value

x1, x2, x4 26 36.052 0.4662

2.5.1.2 Checking multicollinearity

The VIF test of multicollinearity results are shown in Table 2-14. For all the input variables the

VIF value is close to 1 (smaller than 10), the MLR model experiences no multicollinearity.

Table 2-14: VIF values for checking multicollinearity

Variable VIF

x1 1.10

x2 1.10

x4 1.00

2.5.1.3 Checking autocorrelation

Durbin-Watson test is conducted to calculate the d-statistic value. The result shows that the d value

is 1.748, which is close to 2, therefore, autocorrelation does not exist between the error terms.

64

2.5.1.4 Checking normality of error

The normality assumption is critical when if the sample size is small (less than thirty recorded

data). In the current case, the number of records in data set is thirty (30); thus, the normality of

error terms needs to be tested. The Anderson-Darling test for normal distribution has a critical

value of 0.7316 (sample size of 30 and percentage level of 0.05). In the current MLR model, the

Anderson-Darling value of 0.722 is obtained, which is lower than the critical value suggested (refer

to Equation 9). Therefore, the MLR error terms follow a normal distribution.

2.5.2 Cross-checking against trial-and-error approach

Table 2-15 summarizes all the potential MLR models, formulated by considering all the possible

subsets of input variables (i.e. x1, x2, x3, and x4). The evaluation metrics of RMSE, R2, and Adjusted

R2 are determined for each MLR model based on Equations (48), (67) and (68). The R2 measures

the correlation between predicted and observed dependent variables (Equation 2-67). The Adjusted

R2 is the modified form R2 which considers the number of input variables in the regression model

(Equation 2-68). Note, the Adjusted R2 value would only increase if the added input variable

improves the explanatory power of the model. The MLR equation with the least RMSE value and

highest Adjusted R2 is connected with the subset that includes x1, x2, and x4. The result is identical

to the one derived by applying the proposed framework (Equation 2-57). Thus, the proposed

approach is cross-validated.

𝑅2 =
∑(�̂�𝑖 − �̄�)2

∑(𝑦𝑖 − �̄�)2
 (2-67)

65

where𝑦𝑖is the observed dependent variable, �̂�𝑖 is predicted dependent variable, and �̄� is the mean

value of actual dependent variable.

𝐴𝑑𝑗𝑠𝑢𝑡𝑒𝑑 𝑅2 = 1 −
(1 − 𝑅2)(𝑛 − 1)

(𝑛 − 𝑘 − 1)
 (2-68)

where n is the number of recorded data sets, and k is the number of predictors in the regression

model.

Table 2-15: Regression model formulated by use of trial-and-error approach

Model

identifier

Independent

variables

Formulated regression model RMSE R2 Adjusted

R2

1 Constant 110.9 5.15 - -

2 x1 124.86 – 5.58x1 4.37 0.304 0.279

3 x2 100.88 + 7.92x2 3.78 0.479 0.460

4 x3 108.81 + 3.70x3 5.11 0.051 0.017

5 x4 105.99 + 9.70x4 4.70 0.197 0.168

6 x1 x2 112.06 – 3.81 x1 + 6.62 x2 3.34 0.608 0.579

7 x1 x3 122.77 – 5.63 x1 + 3.90 x3 4.27 0.360 0.313

8 x1 x4 119.87 – 5.52 x1 + 9.54 x4 3.80 0.494 0.457

9 x2 x3 98.81 + 7.91 x2 + 3.65 x3 3.67 0.528 0.493

10 x2 x4 96.04 + 7.89 x2 + 9.61 x4 3.06 0.672 0.648

11 x3 x4 105.81 + 0.64 x3 + 9.32 x4 4.78 0.198 0.139

12 x1 x2 x3 110.09 – 3.87 x1 + 6.58 x2 + 3.80 x3 3.16 0.661 0.622

13 x1 x2 x4 107.11 – 3.76 x1 + 6.61 x2 + 9.52 x4 2.45 0.797 0.774

14 x1 x3 x4 119.65 – 5.54 x1 + 0.96 x3 + 8.98 x4 3.86 0.497 0.439

15 x2 x3 x4 95.87 + 7.89 x2 + 0.62 x3 + 9.24 x4 3.11 0.673 0.635

16 x1 x2 x3 x4 106.93 – 3.77 x1 + 6.60 x2 + 0.83 x3 +

9.02 x4

2.48 0.799 0.767

66

2.5.3 Prediction error estimation

To estimate the error of point prediction with a significance level of 0.05, a data point is postulated

for illustration. It has been assumed that: there are three trailer trucks rented for hauling segments;

the segments are delivered in two batches (the 1st batch of seven segments would be delivered on

the night before installation starts, and the 2nd batch delivered on the following night); the haul

duration for a trailer truck to transit from the remote storage area to the working span is 45 minutes.

As such, the number of trucks (x1), the delivery batch (x2), and the duration to remote storage area

(x4) are fixed as 3, 2, and 0.75, respectively. As per Equations (2-69) to (2-75), the range of the

cycle-time is predicted between 113.699 hours and 118.679 hours. Note, the observed value for

this point estimate is 116.74 (Appendix B, Table 18, date set 24) which lies in the predicted range.

[𝑥0] = [1 𝑥1 𝑥2 𝑥4] = [1 3 2 0.75] (2-69)

�̂�0 = 107.107 + 6.610𝑥2 + 9.518𝑥4 − 3.759𝑥1 = 116.189 (2-70)

𝜎𝑟𝑒𝑠
2 =

𝑆𝑆𝐸

𝑛 − 𝑘 − 1
=

155.9717

26
= 5.999 (2-71)

(𝑋𝑇𝑋)−1 = [

1.7357 -0.4318 -0.3621 -0.3234
-0.4318 0.1467 0.0500 0.0035
-0.3621 0.0500 0.1875 -0.0008
-0.3234 0.0035 -0.0008 0.6216

] (2-72)

𝑠. 𝑒. = √𝜎𝑟𝑒𝑠
2 [𝑥0](𝑋𝑇𝑋)−1[𝑥0]𝑇 = √5.999 × 0.2446 = 1.211 (2-73)

𝑡(𝛼/2,𝑛−𝑘−1) = 𝑡(0.025,26) = 2.056 (2-74)

�̂�0 ± 𝑡(𝛼/2,𝑛−𝑘−1) × 𝑠. 𝑒. = 116.189 ± 2.056 × 1.211 = 116.189 ± 2.49 (2-75)

67

2.6 MSR FRAMEWORK AGAINST GENERAL PRACTICE OF MLR MODELLING

The general practice of MLR modelling is to include all the identified input variables and calibrate

the model. The OLS optimization method is applied to estimate the coefficients of independent

variables. Equation (2-76) shows the OLS-based MLR model.

𝑦 = −88.525 + 0.010𝑥1 − 0.013𝑥2 + 0.006𝑥3 + 0.259𝑥4 − 0.184𝑥5 + 0.030𝑥6

+ 0.039𝑥7

(2-76)

2.6.1 Verification

2.6.2 Check heteroscedasticity

Table 2-16 shows the results of the Breusch-Pagan test. As the p-value is larger than 0.05 (i.e.,

assumed significant level), the variance of the error term is constant.

Table 2-16: Breusch-Pagan test for OLS-based regression model

Independent variable 𝜒2 p-value

x1 0.20 0.6545

x2 0.59 0.4408

 0.13 0.7202

x4 1.37 0.2416

x5 0.07 0.7942

x6 0.83 0.3627

x7 0.12 0.7280

Fitted values of y 2.50 0.1142

68

2.6.3 Check multicollinearity

Except x5, all the variables have VIF higher than 10 (Table 2-17). The result shows that the

multicollinearity exists in the formulated regression model.

Table 2-17: VIF values

Independent variable VIF

x6 88.17

x3 58.65

x2 55.28

x7 49.96

x1 48.57

x4 31.43

x5 2.14

2.6.4 Check autocorrelation

The d value is 1.806, which is closed to 2, therefore, no autocorrelation is experienced in MLR.

2.6.5 Check normality of error variance

The assumption is critical when if the sample size is small. In the current scenario, the number of

data set is larger than 100 and there is no need to check the normality of error terms.

2.6.6 Model validation

To validate the regression model for prediction, both K-fold cross-validation method and PRESS

statistics have been tested. In this research study, k is assumed to be ten for applying the k-fold

method. The resulting SSE values for each test are given in Table 2-18. The total SSE and the

PRESS values are calculated by Equation (2-77) and Equation (2-78), respectively. In both tests,

69

the resulting SSE values are compared with the OLS-based regression model SSE (Equation 2-79)

and (Equation 2-80). This model can be validated if the SSE ratios are both in the acceptable range

(10%-15%). Using both the K-fold and PRESS validation methods, it can be seen that the SSE

ratios are slightly higher than the acceptable range. As a result, this regression model might be

over-fitted to the data.

Table 2-18: SSE values for k-fold cross-validation

Test 1 2 3 4 5 6 7 8 9 10

SSE 1214.0 1249.7 793.6 369.2 185.2 623.2 436.9 345.8 321.9 703.3

𝑆𝑆𝐸𝑘−𝑓𝑜𝑙𝑑 = ∑𝑇𝑒𝑠𝑡𝑖(𝑆𝑆𝐸) = 6242.8

𝑘

𝑖=1

 (2-77)

𝑃𝑅𝐸𝑆𝑆 = 𝑆𝑆(𝑃𝑅𝐸𝑆𝑆 residuals) = ∑𝑒𝑖
∗2

𝑛

𝑖=1

= 79.36 + 5.69+. . . +27.83 = 6253.5 (2-78)

𝑆𝑆𝐸𝑘−𝑓𝑜𝑙𝑑

𝑆𝑆𝐸𝑂𝐿𝑆 𝑀𝑜𝑑𝑒𝑙
=

6242.8

5285.6
= 1.181 (2-79)

𝑃𝑅𝐸𝑆𝑆

𝑆𝑆𝐸𝑂LS 𝑀𝑜𝑑𝑒𝑙
=

6253.5

5285.6
= 1.183 (2-80)

Contrasting the results with proposed regression model

70

The developed model which includes all the input variables (Equation 2-76) compared to the

proposed regression model (Equation 2-36) has several drawbacks. Firstly, Equation (2-76)

requires seven input variables compared to two inputs of Equation (2-36). Having more input

variables would result in more effort in data collection, and a more complicated application.

Secondly, the high multicollinearity between the input variables would lead to the violation of

BLUE assumptions and reduce the reliability of the model. Multicollinearity coupled with the

validation results, further supports the claim that the model has redundant input variables. On the

other hand, Equation (2-36) reduces the chance of over-fitting which would lead to more reliable

estimates.

71

2.7 CONCLUSION

Regression analysis results in simple equations that sufficiently represent real-world systems in

civil engineering. Regression methods can be applied to tackle conventional “historical data” as

well as emerging “big data” problems. Regression has not been able to catch up with rapid

technology advances and practical application needs. The real-world problems can be mind-

boggling, and the data often contain noises or missing information. On the other hand, the problem-

solving methods are expected to be computationally simple, fast to calibrate, straight-forward to

explain, and easy to update as new data become available. To be acceptable and truly appealing to

practical applications, user experiences of data-based, analytics-driven decision-support systems

in civil engineering must not be perceived as tapping “black box” or requiring too much “trial-

and-error”.

This Chapter formalizes a generic framework for generating MLR models consisting of variable

selection, model verification, model validation, and prediction error estimation. A refined version

of stepwise regression is implemented for variable selection; if any of the OLS (ordinary least

square) assumptions are violated, the WLS is used for estimating the MLR coefficients. The

proposed framework is illustrated and tested on two case studies. The UCI machine learning

dataset is widely used for demonstrating calculation procedures and comparison with related non-

linear regression models. Previous studies on estimating concrete slump have produced ANN and

non-linear regression models for the same dataset with cement, blast furnace slag, fly ash, water,

superplasticizer, coarse aggregate, and fine aggregate as model inputs. The non-linear model

includes seven inputs and needs fifty-six regression coefficients to be fixed. The ANN model

requires fifty-six transformation weights to be fixed. On the contrary, the MLR model resulting

72

from the proposed framework requires only two input variables (blast furnace slag and water). Its

prediction performance is better than the non-linear regression model which was developed in the

previous research. Although the ANN model marginally outperformed the MLR model in terms

of smaller errors on point-value predictions, the streamlined MLR model was capable of

analytically determining a range around the point-value. The practical case study demonstrates the

advantages of the proposed framework over the trial-and-error approach in variable selection. With

four input variables, the trial-and-error approach would require building and comparing sixteen

MLR models. The proposed MLR framework and the trial-and-error approach resulted in the

identical model as the final solution; however, the proposed framework is analytical, much simpler

and scalable.

It is worth mentioning that both case studies used in this research feature a relatively small number

of input variables (the concrete slump dataset has seven inputs, while the precast bridge dataset

has four). With a small number of input variables, established factor selection methods (i.e.

forward selection, or backward elimination) and the modified stepwise method would end up with

similar regression models. Details on a more practical application with larger dataset in connection

with many-input-variable applications is given in the next Chapter.

73

CHAPTER 3 : LABOUR-HOUR PREDICTION MODELS

FACTORING IN PROJECT DESIGN FEATURES

This chapter describes a Modified Stepwise Regression application in more practical setting of

labour productivity prediction of steel fabrication. This Chapter proposes a data-driven approach

that uses Multiple Linear Regression (MLR) and available historical data from Building

Information Models (BIM) to associate project labour-hours and project design features. The

proposed framework in this chapter also encompasses analytical methods for validating MSR

model and establishing range estimates for point-value predictions.

3.1 INTRODUCTION

On labour-driven construction tasks, labour cost is measured by labour-hours and then converted

into dollars by multiplying crew specific hourly rates (Alfeld, 1988). Relying on experiences and

“gut feels” to estimate labour-hours on steel fabrication work packages has been recognized as one

of the main factors that account for insufficient cost budgeting in planning and eventually lead up

to budget overrun in project execution (Sawada et al. 2006; Song and AbouRizk 2006). In

construction engineering, confident prediction of labour resource requirements based on project

design information is vitally important for cost estimating, planning and controlling construction

projects. Structural engineers also need a reliable assessment of construction cost implication in

evaluating alternative project designs (Wiesenberger 2011). Recent advances in information

technology, including the adoption of building information Modelling (BIM), and bar-coding for

resource tracking, has gradually improved project data availability (Shen and Issa 2010) while also

74

presenting a great opportunity for improving construction productivity and efficiency (Walasek

and Barszcz 2017). Monteiro and Poças Martins (2013) demonstrated the possibility of extracting

quantities from a BIM model and created a model ready for visualization for estimators and

planners. Plebankiewicz et al. (2015) investigated BIM-based cost estimating systems and found

BIM could generate accurate quantity take-offs for project cost estimating. Taghaddos et al. (2016)

proposed an automated system to perform material take-offs from BIM models and pointed the

need in further research in this area by analyzing productivity data and deriving labour-hours based

on estimated volumes and weights from the model. In recent years, the number of steel fabricators

which implement the BIM technology in creating fabrication models and developing detailed shop

drawings has been steadily growing. Adoption of BIM on construction projects opens new

gateways to data collection and presents new possibilities for data analysis (Taghados 2015).

Nevertheless, an analytical framework has yet to be formalized for selecting proper prediction

factors and establishing valid prediction models in correlating project design features with required

labour-hours in practical applications. The present research is intended to address the following

issues identified in the current practice:

1. Lack of integration between labour cost tracking systems and project estimating and

planning systems makes it difficult to validate and implement developed productivity

models.

2. The set of inputs factored in the majority of labour cost predictive models is generally

insufficient due to data availability constraints.

3. The missing connection with design features in most of the established labour cost

prediction models does not allow for a straight-forward evaluation of various design

alternatives in terms of project cost performance.

75

Multiple Linear Regression (MLR) is widely implemented as an effective technique for developing

data-driven prediction models on a variety of engineering applications (Jafarzadeh et al. 2015).

MLR is a form of regression analysis where two or more input variables are used to predict an

output variable. Selected examples of MLR applications in the literature include predicting

building construction cost (Lowe et al. 2006), assessing the service condition of pipelines (El-

abbasy et al. 2014), and planning seismic retrofit construction (Jafarzadeh et al. 2015). Before

implementing more complicated nonlinear methods such as Artificial Neural Networks (ANN), it

is worthwhile to take MLR as the foundation methodology and take full advantage of MLR in

gaining insight into the problem definition and the available data (Jafarzadeh et al. 2015; Verlinden

et al. 2008; Siu et al. 2014).

Frequently used methods for variable selection in MLR include correlation analysis and trial-and-

error, which are time-consuming, tedious, and often end up with sub-optimal and case-dependent

solutions (Draper and Smith 1998). This research proposes a new analytical framework to

determine the best achievable prediction accuracy in applying MLR and maintain simplicity in

tackling the complexity inherent in real-world problems. As such, the minimal set of inputs can be

identified in creation of an MLR model in its leanest form without compromising the maximum

prediction accuracy achievable. The framework is proposed for the practical context of structural

steel fabrication by using historical data from BIM and project labour costing systems. Before

presenting the framework and the implementation case, background of structural steel fabrication

is first given.

76

3.2 STRUCTURAL STEEL FABRICATION

Steel is one of the primary materials used for providing structural stability for residential and

commercial buildings, industrial plants such as oil and gas pipe racks, and infrastructure projects

such as bridge girders (Warrian 2010). Fabrication of structural steel elements brings significant

quality and productivity benefits in construction (Liddy and Cross 2002). Steel fabrication is

characterized by labour-intensive work processes on bespoke project designs. Specialized trades

of labourers perform a variety of operations such as handling, cutting, fitting, welding, and surface

processing (e.g., sandblasting and painting). Structural steel fabrication is generally estimated

based on the weight of a steel project, ignoring project complexity and design details (Sawada et

al. 2006). Song and AbouRizk (2003) introduced a simulation model for a steel fabrication shop,

which represented the flows of steel pieces and resources on the fabrication shop floor; the

simulation model was further developed into a hybrid model utilizing ANN and operations

simulation in an attempt to predict labour costs on structural steel fabrication. O’Neil and

Rozmarin (2010) created a Monte Carlo simulation model to estimate labour costs in bridge steel

fabrication with the purpose of assessing the effects of change orders.

The various levels of granularity for data collection in the structural steel industry are generalized

in Figure 3-1. The finest level is the material level, where raw materials (e.g. steel plates) are

purchased from different suppliers and transferred to the fabrication shops for further processing.

The raw materials are then processed through cutting, drilling, and welding to create a piece – that

is a structural element as per design specifications. As an example, a beam fabricated out of wide

flange sections with two end plates is classified as a piece. Establishing the work breakdown

structure of a project according to the construction sequence results in the definition of “Division”.

77

A division of a steel project is defined with fabrication processes (e.g., handling, cutting, etc.), key

engineering design parameters (e.g., section dimensions) and detailed design features (e.g., welds,

bolts etc.). Several structural steel pieces that are part of an erection phase and need to be ready at

the construction site prior to field erection constitute a division. Finally, a project is one division

or a combination of a limited number of interrelated divisions.

Steel projects consist of

several divisions.

Pieces require human

resources (labor-hour) to

be connected, and

makeup divisions.

Project Level

Piece-1

Piece-2

Piece-z

Material-1

Material-2

Material-t

Structural

Steel

Projects

Division-1

Division-2

Division-n

Division Level Piece Level Material Level

Raw material requires

human resources (labor-

hour) to create steel

pieces e.g. welding,

cutting, fitting.

Figure 3-1: Steel fabrication project’s scope structure

In the current practice of project management, the division-level is the finest level of granularity

for keeping track of actual labour-hours spent in job costing and project control systems (Hu et al.

2014). It is also worth mentioning that the granularity of data captured in a company’s job costing

system (e.g. labour-hours by division in the case of structural steel fabrication) is generally dictated

by contractual requirements. For example, a fabricator collects division-level data that are

sufficient to generate project earned value reports required by clients. On the other hand, it is

prohibitively expensive and hence not practically feasible to track labour-hours on work packages

78

at the piece level or the material level on the shop floor. Hence, this study sets focus on the

characterization of the complexity of division considering engineering design features; in such a

way, historical data accumulated in databases underlying BIM models for those structural steel

projects completed over the past decade can be taken advantage of to its fullest.

79

3.3 PROPOSED FRAMEWORK AND IMPLEMENTATION

This research proposes an application framework that uses MLR as the analytical methodology to

associate project labour-hours and project design features. MLR provides a predictive model that

is one of the simplest forms of predictive analytics; however, it represents a transparent and

straight-forward mathematical equation generalized from data, while also enabling insightful

evaluation of quality of the available data and significance of input factors. It is noteworthy that if

the quality of data is insufficient, direct application of more complex analytics might cover up

noises in the data, potentially resulting in unrealistic/over-fitted models. Given a dataset

representing a certain scope of structural steel fabrication, this framework is simple and effective

to select the most relevant predictive factors in the creation of a streamlined predictive model

assisting in the determination of required labour-hours.

In the nutshell, the framework relies on the application of an enhanced version of the stepwise

regression technique to select the most relevant predictive factors and generates a predictive model

without compromising the achievable accuracy of regression. The complete framework

incorporates proven analytical and statistical methods in support of enabling MLR application,

validating the resulting model, and establishing range estimates for point-value predictions. This

framework is best suited to real-world application scenarios (1) where a large number of input

parameters are present and the historical data are likely to contain noises (incomplete or inaccurate

records); (2) where there is a need to develop a quantitatively reliable, statistically significant

predictive model in the leanest, simplest form, which features the most important input factors and

tolerates noise in data to a certain degree, but is not over-fitted with noise. The roadmap for

guiding the implementation of the proposed framework is shown in Figure 3-2. This framework

80

has been implemented specifically for streamlining design features in the prediction of labour-

hours required for a division in structural steel fabrication, which is to be elaborated in the

remainder of this Chapter.

GET PROJECT DESIGN
FEATURES AND TAKEOFF

DATA FROM BIM DATABASE

GET MATCHING COST DATA
FROM PROJECT COSTING

DATABASE

SELECT A SUBSET OF BIM
DESIGN FEATURES AS MLR

INPUT VARIABLES BY
MODIFIED STEPWISE

REGRESSION

ESTABLISH LINEAR
REGRESSION MODEL BY

ORDINATE LEAST SQUARE
METHOD

VERIFY MLR MODEL
ASSUMPTIONS

ESTIMATE ERROR RANGE
AND CONFIDENCE

INTERVAL FOR MLR POINT
VALUE OUTPUT

VALIDATE PREDICTION
PERFORMANCE BY K-FOLD

CROSS VALIDATION

PERFORM PRACTICAL
VALIDATION AGAINST

CONVENTIONAL WISDOM,
RULES OF THUMB, AND

SUBJECT EXPERTS ON NEW
CASES

MLR MODEL READY TO
DEPLOY AS DECISION

SUPPORT

TEST
HOMOSCEDASTICITY

TEST
AUTOCORRELATION

TEST
MULTICOLLINEARITY

TEST NORMALITY

Figure 3-2: Proposed framework application

3.3.1 Input variable selection

Using fewer input variables is favourable from the practical point of view as it minimizes data

collection efforts in the long run. A regression model created with a smaller subset of the identified

input features, instead of all, also has advantages in statistical modelling. Minimizing the number

of input variables significantly reduces the likelihood of over-fitting, collinearity (high correlation

between input variables), and transferring noise from data to the calibrated model (Ivanescu et al.

2016). Having too many input variables, the regression model tends to fit itself to the noise hidden

81

in the training set instead of generalizing underlying patterns and hidden relationships. A proper

method for variable selection removes those insignificant or redundant input variables from the

regression model (Akinwande et al. 2015). To elaborate more on the variable selection, Figure 3-3

(a) represents the output variable Y, and input variables X1, X2, X3, and X4. Each variable accounts

for part of the output variable Y (Figure 3-3 (b)). Figure 3-3 (c) and (d) depicts the explanatory

power of the group of input variables in predicting Y. Although X2 and X3 individually have high

explanatory power, by removing them, the explanatory strength of the streamlined group of input

variables (X1 and X4) would not be compromised, as illustrated in Figure 3-3 (d).

Figure 3-3: Variable selection concept: (a) inputs (X1, X2, X3, & X4) and output (Y), (b) explanatory

power of individual inputs, (c) explanatory power of all the inputs combined, (d) explanatory power of

selected variables.

82

At the core of the proposed MLR modelling framework, a variable selection technique called

Modified Stepwise Regression (MSR) –which has been developed in authors’ previous computing

research (Mohsenijam et al. 2016)- is utilized for identifying only those design features relevant

to the prediction of steel fabrication labour-hours. This step is presented in Figure 3-2 “Selecting

a Subset of BIM Design Features as MLR Input Variables”. Note, once the subset is selected in

such an analytical way, adding more variables would not enhance the performance of the MLR

model in terms of accuracy.

3.3.2 Data Preparation

Databases associated with BIM in our partner company contains forty-two project-related design

features (columns) and 1559records (rows), each record representing a project division for

fabrication, listed in Table 3-2. Labour-hours spent in fabricating each division are extracted from

job costing databases. Note that labour-hours collected for each project division account for total

labour-hours spent in fabrication including handling, cutting, fitting, welding, and surface

processing. The collected data mainly represent project divisions in the industrial sector, with

labour-hours ranging from 100 to 7000. It is worth mentioning that in the current research, the

actual dataset was linearly scaled prior to performing analysis in order not to reveal the company’s

sensitive productivity information while keeping the original patterns and relationships inherent in

the data. Sample of raw data used for training in this research is given in

Table 3-1. The dataset used for this Chapter can be accessed at

https://figshare.com/s/8de57c3a0ca8f8ed37c4. Note that the collected data represent a steel

fabrication in northern Alberta; however, methods proposed in this research are generic and

replicatable to other settings.

https://figshare.com/s/8de57c3a0ca8f8ed37c4

83

Although the variables in Table 3-2 are all considered relevant in predicting labour-hours, a certain

interdependency and redundancy exist between different variables and some can be explained by

others. For instance, material length and weight are highly correlated; by knowing one, the other

can be deduced. Next, a variable selection technique is applied to streamline the input data.

Table 3-1: Sample of raw data used for training

Input

variables
Description Unit Sample 1 Sample 2

X1 Division Weight Kg 56746 31660

X2 Angle Meter 88.271 146.34

X9 Wide flange Meter 246.155 438.04

X14 Plate Meter-squared 31.981 99.52

X18 Hollow steel sections Meter 194.325 0

X32 Partial penetration weld Meter 98.318 32.332

Y Actual Labour-hours Hours 1590 912

84

Table 3-2: Design Features Extracted from The BIM Databases

BIM Extracted Design features Unit Category Labels
Division Weight Weight (kg) Material-Weight X1

Angles Length (m) Material-Steel Sections X2

Channels Length (m) Material-Steel Sections X3

I Beams Length (m) Material-Steel Sections X4

Miscellaneous beams Length (m) Material-Steel Sections X5

Miscellaneous channels Length (m) Material-Steel Sections X6

Structural Tees from W Shapes Length (m) Material-Steel Sections X7

Tarpon Z Sections Length (m) Material-Steel Sections X8

Wide flange Length (m) Material-Steel Sections X9

Crane rails Length (m) Material-Steel Sections X10

Bent plate Area (m2) Material-Plate X11

Checker plate Area (m2) Material-Plate X12

Grating Area (m2) Material-Plate X13

Plate Area (m2) Material-Plate X14

Extra Extra Strong Pipe Length (m) Material-Pipes X15

Extra Strong Pipe Length (m) Material-Pipes X16

Standard Pipe Length (m) Material-Pipes X17

Hollow steel sections Length (m) Material-Hollow Sections X18

Round hollow steel sections Length (m) Material-Hollow Sections X19

Cold formed channels Length (m) Material-Cold-formed X20

Tarpon Cold Formed Channels Length (m) Material-Cold-formed X21

Flat bar Length (m) Material-Bars X22

Rebar Length (m) Material-Bars X23

Round bar Length (m) Material-Bars X24

Square bar Length (m) Material-Bars X25

Hex Bar Length (m) Material-Bars X26

Expansion Anchor Bolts Quantity Material-Anchors X27

Heavy Duty Expansion Anchor Bolts Quantity Material-Anchors X28

Threaded Anchor Rods Quantity Material-Anchors X29

Adhesive Anchor Cartridges Quantity Material-Anchors X30

Complete penetration weld Length (m) Connection-Welding X31

Partial Penetration Weld Length (m) Connection-Welding X32

Bevelled Washers Quantity Connection-Bolted X33

Button Head Machine Bolt Quantity Connection-Bolted X34

Compressible Washers with DTI Quantity Connection-Bolted X35

Flat Washers Quantity Connection-Bolted X36

Hex Head Machine Bolt Quantity Connection-Bolted X37

Hex Nuts Quantity Connection-Bolted X38

Hex Type Bolts Quantity Connection-Bolted X39

M Type Bolts Quantity Connection-Bolted X40

Mechanical Pipes Length (m) Material-Pipe X41

Nelson Studs Quantity Connection-Stud X42

85

3.4 INPUT VARIABLE SELECTION

For an MLR model with n predictors and one output, there are 2𝑛 subsets of variables that can be

correlated with the output. In the current case, the original number of division design features in

BIM is forty-two, thus making it practically infeasible to examine all the possible subsets of input

variables. Commonly-applied stepwise methods for variable selection in the literature in

connection with regression analysis can be classified into forward selection vs. backward

selection.

The forward selection technique starts with a linear regression model that contains no input

variables and adds variables to the regression model based on correlation and statistical

significance (Seber and Lee 2003). On the other hand, backward elimination begins with the full

set of variables and iteratively removes insignificant variables to reach the final subset (Wang and

Jain 2003). However, a selected variable in forward selection is never removed in later iterations;

likewise, a variable cannot be reintroduced once it has been eliminated in the backward elimination

process. As such, both forward selection and backward elimination methods tend to produce a

near-optimum subset of variables (Draper and Smith 1998). Given large datasets, applying forward

selection and backward elimination separately on a set of input variables often leads to two

different subsets of selected variables (Thompson 1978, Mendenhall and Sincich 2015). By

combining the advantages from both forward selection and backward elimination while

overcoming respective limitations of each, a modified version of stepwise regression is developed

(Mohsenijam et al. 2016), which is briefly explained below:

86

The MSR starts with an empty set of selected variables and a full set of ignored variables (same

as forward selection). In each iteration, a variable with the highest partial correlation (Equation 3-

1) is selected from ignored variables; all the selected variables are tested with partial F-test

(Equation 3-3) for statistical significance (Figure 3-4 and Figure 3-5). Note that the partial

correlation quantifies the explanatory power of the ignored variables, which is not yet accounted

by the selected variables.

Y

1st Iteration 2nd Iteration

3rd Iteration: part 1 3rd Iteration: part 2

X4

X1

Y

X1

X3

X4

X1

X3

Y

X3

Y

Figure 3-4: Modified stepwise regression visual representation

Figure 3-5: Modified stepwise regression iterations

87

𝑟𝑋1𝑌.𝑋𝑘
=

𝑟𝑋1𝑌 − 𝑟𝑋1𝑋𝑘
𝑟𝑌𝑋𝑘

√(1 − 𝑟𝑋1𝑋𝑘

2)(1 − 𝑟𝑌𝑋𝑘

2)

Where 𝑋1 is the variable that is selected in previous iterations, 𝑋𝑘is the variable for

which the partial correlation is measured against, 𝑌is the independent variable, 𝑟𝑎𝑏is the

correlation between 𝑎 and 𝑏 which can be obtained from Equation (3-2).

(4-1)

𝑟𝑎𝑏 =
𝑛 ∑𝑎𝑏 − ∑𝑎 ∑𝑏

√[𝑛 ∑𝑎2 − (∑𝑎)2][𝑛 ∑ 𝑏2 − (∑𝑏)2]

Where 𝑟𝑎𝑏 measures the correlation between 𝑎 and 𝑏, and 𝑛 is the size of the dataset.

(3-2)

𝐹𝑥𝑖
=

(𝑆𝑆𝐸𝑘−1,𝑋𝑖
− 𝑆𝑆𝐸𝑘)

(𝑆𝑆𝐸𝑘) (𝑛 − 𝑘 − 1)⁄

Where 𝑆𝑆𝐸𝑘is the standard error of the regression with 𝑘 variables calculated by

Equation (3-4), and 𝑆𝑆𝐸𝑘−1,𝑋𝑖
is the standard error of the regression before adding 𝑋𝑖to

the model, 𝑘 is the number of variables and n is the number of observations.

(3-3)

𝑆𝑆𝐸 = ∑(𝑦𝑖 − �̂�𝑖

𝑛

𝑖=1

)2

Where𝑦𝑖is the dependent variable and�̂�𝑖 is the predicted value of the MLR model.

(3-4)

For example, given a case with five input variables (demonstrated in Figure 3-4 and Figure 3-5),

in the first iteration, 𝑋3 is selected, since it has the highest correlation with 𝑌. In the second

88

iteration, by determining the partial correlation 𝑋1 is selected while both variables are identified

to be significant by F-test. In the third iteration, 𝑋4 is selected, but by performing F-test it is decided

that removing 𝑋3 has an insignificant effect on the regression model’s performance. The Modified

Stepwise Regression would allow previously eliminated variables to be reinstated in the regression

model; while those already selected variables can be removed in future iterations. More details on

the analytical procedures of the Modified Stepwise Regression can be found in Mohsenijam et al.

(2016) , along with two applications featuring relatively small numbers of input variables (four

and seven input variables respectively), which are in contrast to a much larger dataset in the current

research with forty-two input variables to start with.

MATLAB 2016b (MathWorks 2016) was used for creating MLR models, performing MSR, and

testing regression assumptions in this research. Applying MSR on the given set of input variables

(Table 3-3) resulted in the selection of six variables out of forty-two as shown in Table 3-3 under

“Model 6”. To demonstrate the fact that adding more variables would not enhance the performance

of the predictive model, Models 7 and 8 are also given in Table 3. It is observed the R-square value

remains steady at 0.680 in Models 6, 7 and 8. The six chosen input variables are (1) Division

weight (X1, in kg), (2) Square hollow steel sections (X18, in meters), (3) Plate (X14, in square

meters), (4) Hex type bolts (X39, quantity), (5) Complete penetration weld (X31, in meters), and

(6) Partial penetration weld (X32, in meters).

89

Table 3-3: Variables entered the MLR model and their effect on model performance

Model Variables in the MLR Model
R-

Square

Adjusted

R-Square

1 (Constant), X1 0.476 0.475

2 (Constant), X1, X18 0.666 0.664

3 (Constant), X1, X18, X14 0.671 0.670

4 (Constant), X1, X18, X14, X39 0.675 0.674

5 (Constant), X1, X18, X14, X39, X31 0.677 0.676

6 (Constant), X1, X18, X14, X39, X31, X32 0.680 0.678

7 (Constant), X1, X18, X14, X39, X31, X32, X5 0.680 0.676

8 (Constant), X1, X18, X14, X39, X31, X32, X5, X12 0.680 0.675

It is noteworthy the resulting linear regression model (Model 6) given in Equation (3-5) is

calibrated by applying the Ordinary Least Square (OLS) coefficient estimation method. The

regression coefficients and statistical significance (p-value) for each variable are given in Table

3-4. All the variables selected in Model 6 have a p-value smaller than 0.05 (listed in Table 3-4)

and thus are considered significant. Among the selected design features, “Division weight” (i.e.,

X1) and “Complete penetration welds” (i.e., X31) are identified to be more significant in predicting

division-specific labour-hours (with smaller p-values). In addition, coefficients of all the variables

in Equation (3-5) are positive, which implies that given more weight of a division, or more welding

work required to fabricate the division, it would take more labour-hours to fabricate the division.

It is noteworthy the resulting linear regression model (Model 6) given in Equation (3-5) is

calibrated by applying the OLS coefficient estimation method. The regression coefficients and

statistical significance (p-value) for each variable are given in Table 3-3. All the variables selected

in Model 6 have a p-value smaller than 0.05 (listed in Table 3-3) and thus are considered

significant. Among the selected design features, “Division weight” (i.e., X1) and “Complete

90

penetration welds” (i.e., X33) are identified to be more significant in predicting division-specific

labour-hours, as indicated by their smaller p-values. In addition, coefficients of all the variables in

Equation (3-5) are positive, which implies that given more weight of a division, or more welding

work required to fabricate the division, it would take more labour-hours.

𝑌 = 47.828 + 0.0037𝑋1 + 0.1495𝑋18 + 0.0245𝑋14 + 0.0126𝑋39 + 2.6064𝑋31

+ 0.3328𝑋32

(3-5)

Table 3-4: MLR variables, OLS Coefficients, and p-values

Selected variables Coefficient p-value

Intercept 47.8283 6.81 × 10−4

X1 0.0037 3.24 × 10−134

X21 0.1495 1.34 × 10−5

X15 0.0245 3.76 × 10−3

X41 0.0126 1.60 × 10−5

X33 2.6064 9.79 × 10−158

X34 0.3328 4.73 × 10−2

Results from variable selection in the current case are found to well align with the conventional

wisdom and the rules of thumb applied in the current practice of steel fabrication. This is further

elaborated as follows: Division weight is the most commonly used parameter for estimating steel

fabrication cost (Sawada et al. 2006). However, weight does not describe project complexity in

full, and hence it is necessary to consider other factors to improve estimating accuracy. The fact

that the factor “square hollow steel sections” is identified as a significant variable is attributed to

the significant welding work required to connect them, thus considerably increasing welding hours

(Figure 3-7).

91

In steel fabrication, plates are used for stiffening steel sections (i.e., beams and columns) and

creating connections between structural elements. The high plate volume in a division indicates a

significant amount of cutting and welding in fabrication (Figure 3-6). Besides welding, bolted

connections are common practice for splicing steel pieces. Bolted connections are used to

permanently connect fabricated components in the construction site. The higher the number of

bolts indicates more efforts of drilling holes and handling pieces in steel fabrication. Groove

welding is a method of permanently connecting steel pieces, which can be categorized into two

types, namely: complete penetration welds vs. partial penetration welds. Both types of groove

welding are labour-intensive. As the name implies, the complete penetration welds are thicker than

the partial penetration welds, thus requiring more welding passes to be performed. The differences

in terms of labour-hours required for each type of groove welding are clearly characterized by the

sign and magnitude of the coefficients in connection with respective factors in the MLR model

(Table 3-5). Complete penetration welds require much more labour-hour per unit of length than

partial penetration welds.

Figure 3-6: Cut plates with drilled holes ready to be welded to steel sections

92

Figure 3-7: Steel sections with end plates attached to square hollow sections

93

3.5 VERIFICATION AND VALIDATION

As one of the key steps in the proposed framework, the generated model needs to be verified and

validated to ensure the reliability and accuracy of its predictions. The verification process tests the

underpinning theoretical assumptions of the model while also ensuring that the model’s

representation of the problem is correct for the intended purpose of use (Sargent 2013). Model

validation is concerned with the fact that the model achieves a consistent level of accuracy in its

application domain. Since the proposed framework utilizes MLR in model generation, the model

needs to first pass desired regression performance measures (i.e. RMSE or R-squared) and satisfy

all the theoretical assumptions in applying MLR. Once the model passes the verification stage,

methods of historical data validation, range estimation (confidence intervals) and face validation

are used to ensure that model has a sufficient accuracy in its intended application domain (Sargent

2013). The available historical data are generally utilized to build a model and validate it. The

historical data validation methods proposed in this framework is K-fold validation and the results

are given in the following sections. Further, range estimation provides a confidence interval around

the point prediction with statistical significance; depending on where in the problem domain the

specific point prediction falls, the resulting confidence interval would differ. For the purpose of

face validation, two unseen cases were presented to both domain experts and the developed MLR

model for cross-checking prediction accuracy.

3.5.1 MLR Model Assumptions Testing

The high correlation between input variables is called multicollinearity, which is tested by

examining the correlation between two input variables. Variance inflation factor (VIF) is a

commonly accepted indicator of multicollinearity (Kutner et al. 2004). For the derived regression

94

model given in Equation (3-5), the VIF values were computed and shown in Table 3-5. All the

input variables are associated with VIF values less than three. This indicates no significant

multicollinearity in the MLR model, which also validates the effectiveness of MSR in selecting

relevant input factors.

Table 3-5: VIF multicollinearity test results

Variable VIF Value

X1 2.84

X18 1.05

X14 1.05

X39 1.62

X31 1.01

X32 2.13

The second assumption that needs to be validated in MLR modelling is the constant variance of

errors. Heteroscedasticity occurs when the variance of the errors shows varying patterns with

different observations. Heteroscedasticity can be examined by using White, Goldfeld-Quandt test

or Breusch-Pagan test (Kaufman 2013). In the presence of heteroscedasticity, coefficients

estimated by OLS along with regression error analysis become biased and unreliable. In this

research, the Breusch-Pagan test was used to check the null hypothesis of constant variance on

error terms, with results shown in Table 3-6. The Breusch-Pagan p-value was calculated as 0.0001

based on Chi-square of 109.94, which was smaller than the significant level of 0.05, thus

confirming the presence of heteroscedasticity in the developed model in the current case.

To eliminate heteroscedastic errors, the Weighted Least Square (WLS) method was applied to

scale input variables linearly and remove any dependence of regression output error on the

regression output (i.e., Y). It is noteworthy that linear scaling on variables would not affect

95

correlations between them, and therefore, would not influence the outcome of variable selection

(Greene 2008). The MLR model consisting of the same input variables as in Equation 3-5 was

calibrated by WLS, resulting in a new set of coefficients as shown in Equation (3-6) and Table

3-6. The Breusch-Pagan test was conducted again to verify the effectiveness of the WLS method

in eliminating heteroscedasticity, resulting in Chi-square of 3.59 and p-value of 0.0554. As the

Breusch-Pagan p-value is larger than 0.05, the variance of the error terms is deemed constant; thus,

the regression output errors from MLR are deemed homoscedastic.

𝑌 = 18.701 + 0.0042𝑋1 + 0.1947𝑋18 + 0.0853𝑋14 + 0.0008𝑋39 + 1.7968𝑋31

+ 0.1990𝑋32

(3-6)

Table 3-6: MLR variables, WLS coefficients, and p-values

Selected variables Coefficient p-value

Intercept 18.7014 1.08 × 10−3

X1 0.0042 4.36 × 10−77

X18 0.1947 1.29 × 10−4

X14 0.0853 2.19 × 10−8

X39 0.0008 8.10 × 10−3

X31 1.7968 5.04 × 10−15

X32 0.1990 8.27 × 10−5

The third assumption underlying MLR states that residuals from a linear regression of different

observations should be independent. Autocorrelation occurs if patterns in output errors are

recognized between serial observations. Durbin-Watson test is a common method for testing

autocorrelation, which calculates the d-statistic value by Equation (3-7) (Durbin and Watson

1950). Autocorrelation exists if the d-statistic is close to 4 or 0. A more systematic approach is to

96

select a significance level (i.e., 0.05 in this research study) and look up the Durbin-Watson Table

of critical values (Durbin and Watson 1950) in order to determine the two values of dU and dL.

The result shows that the d-statistic value is 1.128 in the current case, which is smaller than dL.

Hence, autocorrelation is not identified in this regression model.

Durbin-Watson d-statistic (6, 1558) = 1.128 < dL(6,1558)=1.85 (3-7)

In addition, normality of the residuals can be checked statistically by conducting the Anderson-

Darling test (Stephens 1974). The hypothesis of normality is rejected if Anderson’s statistic value

(a-stat) exceeds a given critical value at a presumed significance level [Stephens (1974) provides

such critical values]. The normality assumption is critical when the sample size is small. In the

current case, the number of data points (1500 records in BIM database) is much larger than 100;

hence checking normality in error terms is ignored (Stephens 1987).

3.5.2 K-Fold Cross-Validation

The K-fold cross-validation splits the available modelling data into a training set and a test set for

k times and evaluates model performance only based on the test set. In the k-fold cross-validation,

sum of squared errors (SSE) for respective segments is compared with the main model’s SSE value

(Table 3-7). If the two SSE values are close to each other (Equation 3-8) (e.g., within 10%-15%

difference), the MLR model is validated (Sargent 2013). In this case study, the ratio between Folds

SSE and WLS SSE is 1.009 (Equation 3-9), which shows a difference of less than 1 percent, thus,

the model is validated.

97

𝑆𝑆𝐸𝑘−𝑓𝑜𝑙𝑑 = ∑𝑇𝑒𝑠𝑡𝑖(𝑆𝑆𝐸) = 3.2457 × 107

𝑘

𝑖=1

 (3-8)

𝑆𝑆𝐸𝑘−𝑓𝑜𝑙𝑑

𝑆𝑆𝐸𝑊𝐿𝑆 𝑀𝑜𝑑𝑒𝑙
=

3.2457 × 107

3.2150 × 107
= 1.009 (3-9)

Table 3-7: SSE values for k-fold Cross-validation

Fold test foldSSE −10
Test 1 610279.4 
Test 2 610620.1 
Test 3 610687.4 
Test 4 610185.3 
Test 5 610126.1 
Test 6 610029.2 
Test 7 610347.3 
Test 8 610224.9 
Test 9 610252.1 

Test 10 610616.1 

3.5.3 Error Range Estimation

Validated MLR models make reliable point estimates; however, there is no identification of the

prediction’s error range. Estimates based on MLR models inherit errors from noise in data

available or approximations in regression fitting process (Liu 2010). A statistical approach to

quantify the prediction’s uncertainty is to measure the confidence interval for the MLR point-value

estimate (as illustrated in Figure 3-8). The confidence interval gives an expected range of the point-

value prediction defined at a certain confidence level. According to Liu (2010), the prediction

interval for a point-value estimate is statistically defined by Equation (3-10).

98

�̂�0 ± 𝑡(𝑝,𝑛−𝑘−1) × 𝜎𝑝 (3-10)

Where �̂�0 is the predicted point value of the regression model; 𝑡(𝑝,𝑛−𝑘−1)is the critical value of T-

distribution with a probability of p and degrees of freedom of n-k-1, and 𝜎𝑝is the standard deviation

of the prediction determined by Equation (3-11).

𝜎𝑝 = √𝜎𝑟𝑒𝑠
2 + 𝜎𝑓

2
(3-11)

Where𝜎𝑟𝑒𝑠 is the regression residual standard deviation which can be calculated by Equation (3-

12); 𝜎𝑓 is the standard error of regression, which can be measured by Equation (3-13).

𝜎𝑟𝑒𝑠
2 = 𝑆𝑆𝐸/(𝑛 − 𝑘 − 1) (3-12)

Where SSE is the sum of squared errors of regression, and n-k-1 is the regression degrees of

freedom.

𝜎𝑓 = √𝜎𝑟𝑒𝑠
2 𝑋0(𝑋𝑇𝑋)−1𝑋0

𝑇
(3-13)

Where𝑋0, in form of [1 𝑥01 ⋯ 𝑥0𝑘], is an array of input variables, for which, the confidence

interval of the associated regression output needs to be established; X with n rows (n=number of

observations) and k+1 columns (k=number of input variables) is the matrix of recorded data

presented in the form of Equation (3-14).

99

𝑋 = [

1 𝑥11 ⋯ 𝑥1𝑘

1 𝑥21 ⋯ 𝑥2𝑘

⋮ ⋮ ⋮ ⋮
1 𝑥𝑛1 ⋯ 𝑥𝑛𝑘

] (3-14)

Predicted

Variable

Input

Variable

Error

Distribution

Confidence

Intervals

Fitted

Regression

line

Figure 3-8: Regression confidence interval

3.5.4 Model Validations Based on New Cases

Application of the derived labour cost model (Equation 3-6) is demonstrated in two new cases with

detailed inputs given in Table 3-8. Note Cases (1) and (2) were prepared by extracting data from

more recently completed projects by the same steel fabricator, which had not been “seen” by the

calibrated regression model. The actual labour-hours spent on this project were also available in

the labour costing system for validating the predicted point and range estimates. The detailed

calculation for creating a range estimate for case 1 is presented by Equation (3-15) to (3-21). The

labour-hour point estimate for 𝑋𝑐𝑎𝑠𝑒 1, using the developed MLR model (Equation 3-6), is

presented by Equation (3-16). The residual standard deviation was calculated as shown in Equation

(3-17) for the fitted regression model (Equation 18). For the given point of 𝑋𝑐𝑎𝑠𝑒 1 , the standard

100

error of regression was calculated based on Equation (3-17) and the details are shown in Equation

(3-18) and (3-19). Using the result of Equation (3-17) and (3-19) the standard deviation of the

prediction was determined (Equation 3-20). With 90 percent confidence (i.e. 𝑡(0.90,1552)) the

prediction interval for the point estimate �̂�0 is presented by Equation (3-21). The estimated labour-

hours in the form of point and range estimates, for both cases, are given in Table 3-8 and Table

3-9.

Table 3-8: List of Six input variables for model validation

𝑋1 = [1 221703.7 0 757.16 9508.1 0 4.76] (3-15)

�̂�1 = 1025.1 Labour-hours (3-16)

𝜎𝑟𝑒𝑠
2 =

3.2150×107

1559−6−1
= 2.0715 × 104 (3-17)

(𝑋𝑇𝑋)−1 =

[

1051714 -3.59 -311.54 -35.26 -39.57 214.61 -836.32

-3.59 0.00 0.00 0.00 0.00 -0.02 -0.01
-311.54 0.00 6.24 0.10 0.07 1.06 0.86
-35.26 0.00 0.10 0.38 0.00 -0.15 0.01
-39.57 0.00 0.07 0.00 0.09 6.00 0.09
214.61 -0.02 1.06 -0.15 6.00 39.75 -2.05
-836.32 -0.01 0.86 0.01 0.09 -2.05 149.70]

× 10−9 (3-18)

Input

variables
Description Unit Case 1 Case 2

X1 Division Weight kg 221703.7 103713

X18 Square hollow steel sections meter 0 7.12

X14 Plate square meter 757.16 917.4

X39 Hex Type Bolts number 9508.1 16

X31 Complete penetration weld meter 0 554.1

X32 Partial Penetration Weld meter 4.76 17.9

101

𝜎𝑓
2 = (2.0715 × 104) × (0.0044) = 91.074 (3-19)

𝜎𝑝 = √𝜎𝑟𝑒𝑠
2 + 𝜎𝑓

2 =144.243 (3-20)

�̂�0 ± 𝑡(𝑝,𝑛−𝑘−1) × 𝜎𝑝 = 1025.1 ± 1.2821 × 144.243 = (840.2,1210.0) (3-21)

Table 3-9: Results of Labour-hour estimation, range estimation, and actual Labour-hours

Description Case 1 Case 2

Labour-hours estimated by Equation 6 1025.1 7140.3

Labour-hours estimate range (840.2 , 1210.0) (6934.4 , 7346.2)

Actual labour-hours 1103.4 7312.7

102

3.6 DISCUSSION ON VALIDATION OF MODEL

The developed model for predicting labour-hours required in fabrication of a division with certain

design features was verified and validated through checking MLR theoretical assumptions,

historical validation, range estimation, and face validation. The proposed framework is relevant to

a range of application cases in civil engineering for developing predictive models. However, the

model developed using this framework could only be validated in its problem domain and based

on the collected data. It would be only applicable to the decision-making situation analogous to

the one in the current problem definition. As long as there is no paradigm shift to the practice of

structural steel fabrication method leading to major change in labour productivity, the resulting

model would remain valid. An example of such a paradigm shift would be elimination of manual

operations through the implementation of robotic automation in the steel fabrication industry in

the future. In short, to extend MLR implementation to other projects based on an updated dataset

(other companies or other industries), this framework will provide valid guidance, starting from

problem definition, data collection to model validation. For instance, utilizing the proposed

framework, precast concrete panels labour-hour could also be predicted factoring design details

and using historical data.

The general problem of associating project design features with required labour-hours will remain

relevant and critical in the fields of construction engineering and structural engineering. With

recent advances in information technology (such as adoption of BIM, bar-coding or radio

frequency identification tags for resource tracking) data availability constraints on solving such

problems have been gradually relaxed. On the other hand, MLR lends itself well to construction

engineering applications due to simplicity and transparency. Before implementing more

103

complicated nonlinear methods such as Artificial Neural Networks (ANN), it is advisable to take

MLR as the foundation methodology and take full advantage of MLR in gaining insight in the

problem definition and available data. Therefore, a practical MLR-based methodology for

selecting proper project design features in prediction of required labour-hours is highly desired to

improve current industry practice in regard to project cost estimating, planning, and design

The proposed data-driven framework attempts to reap benefits from the current industry’s

data/information management systems. The scalability of this research is constrained by

investments in data management by the construction industry. The value of the framework lies in

its potential to extend application to other projects (other companies/other industries) in guiding a

repeat implementation step by step starting from problem definition and collecting data, to model

validation. It is noteworthy that the derived model itself would lose its value when tackling a new

problem or there is a significant change in the current problem domain. The model would not be

applicable any more. Nonetheless, the modelling framework is still applicable to reproduce an

updated, relevant predictive model. In particular, the step-wise method for MLR input factor

selection will remain cost-effective to identify an updated list of parameters that account for the

model output of the model in an analytical fashion as opposed to making such decisions by

resorting to trial-and-error or “gut feel”.

104

3.7 CONCLUSION

This research has devised an application framework for developing a MLR model in its simplest

form and remains valid for labour-hours prediction based on project design features. A case study

based on real-world data of structural steel fabrication is presented. In collaboration with a partner

company, we consolidated a database holding over one thousand and five hundred historical

records (project divisions) accumulated over the span of three years; each record includes forty-

two design features for a project division and the associated actual labour-hours spent in

fabrication. Out of the forty-two project design features, the six most relevant input features were

analytically selected, resulting in a streamlined MLR model. The complex relationships and hidden

patterns underlying all the data are represented in a regression equation.

This research has validated the effectiveness of the proposed framework by addressing a real-

world problem featuring relatively large datasets in terms of the number of input features defined

and the number of records in the dataset. Streamlining the number of input features leads to the

generation of a simple model for practical use while entailing less effort in data collection in the

future. In short, the proposed framework will potentially assist in developing simple yet sufficient

decision-support solutions in the real-world based on fully harnessing available data (such as BIM

data and labour cost data) –which is indeed not limited to structural steel fabrication. It is worth

mentioning that the proposed framework is selected to provide a transparent model and elucidate

the structure of data more so than other methods to the best of the author’s knowledge. Therefore,

the generated productivity models are not only applicable to productivity prediction, but also to

understand the productivity-influencing factors, and possibly productivity improvement.

105

The variable selection method in connection with the proposed model is instrumental in identifying

relevant input factors and generalization of the predictive regression model. However, to tackle

noisy, non-homogenous, and highly non-linear data, the proposed model would likely fail due to

inherent limitations of MLR. In such cases, the resulting MLR model would end up with poorer

performance in point prediction accuracy (i.e. low R-squared value) while producing too wide a

range in associated confidence interval estimate. Under such circumstances, it is recommended

data needs to be cleansed of noise or pre-processed with clustering techniques to transform a highly

non-linear problem into a linear problem ready for applying the proposed MLR methodology.

There is a great opportunity for future work on how to cope with intractable non-linear features

inherent in real-world data when tackling complex practical problems. Immediate follow-up

research is required so to enhance the proposed framework by adding non-linear classifiers prior

to MLR regression in order to represent more complex relationships in the problem; while at the

same time, attempting to maintain the simplicity of the resulting model.

106

CHAPTER 4 : PRODUCTIVITY MODELING OF OFFSITE

STEEL FABRICATION

This chapter further expands on MSR application and prediction accuracy by integrating it with

Model Trees (MT). The proposed methodology has been validated on a University of California

Irvine concrete slump dataset and labour productivity dataset from steel fabrication industry. This

Chapter elaborates on developing a framework for generating a streamlined system of MLR

equations by coupling the power of MSR and MT, and analyzing the trade-off between fit quality,

prediction accuracy, and model complexity to further assist with model selection and validation.

4.1 INTRODUCTION

With increasingly complex design, construction projects require planners to account for design

details in predicting labour cost. To expedite project delivery time, mitigate environmental impact

on project execution while achieving high-quality standards, construction projects resort to off-

site prefabrication and assembly of structural components in weatherproof facilities. Prefabricated

steel girders or precast concrete segments for building highway overpasses are a great example of

such projects. Off-site fabrication shops provide a safer work environment for labourers conducive

to higher productivity, while also removing uncertainties and risks associated with site conditions

to some extent. Many research studies have validated the cost, safety, quality and environmental

advantages of prefabrication (Jaillon and Poon 2014; Li et al. 2014).

107

Unlike manufacturing, the off-site fabrication of structural steel still relies heavily on manual

labour; products are custom made at fabrication shops based on clients’ requirements. As a result,

labour cost takes up from twenty to fifty percent of the project budget (Sweis et al. 2009).

Therefore, for management and operational purposes, it would be crucial for a fabrication facility

to have an accurate prediction of the labour effort required to complete a specific scope of work.

Prefabrication creates a unique condition for productivity analysis as the majority of productivity-

relevant factors remain constant, and productivity is largely influenced by work content and

engineering design.

Due to the labour-intensive nature of construction activities, productivity is commonly referred to

as labour productivity, represented as a ratio between the input of labour-hours and the output of

installed or fabricated units (Equation 4-1) (Dozzi and AbouRizk 1993). As labour is the most

significant resource in construction operations, costs of other resources like tools, equipment and

field overheads are generally correlated to labour-hours and factored as an add-on to the labour-

hourly rates (Song and AbouRizk 2008).

𝐿𝑎𝑏𝑜𝑢𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝐿𝑎𝑏𝑜𝑢𝑟- ℎ𝑜𝑢𝑟𝑠

𝐹𝑎𝑏𝑟𝑖𝑐𝑎𝑡𝑒𝑑 𝑢𝑛𝑖𝑡𝑒𝑠
 (4-1)

One of the methods for productivity analysis and forecasting is productivity modelling.

Productivity models are effective decision-support tools for planning, estimating, and

scheduling. These models are used to quantify the relationship between the productivity rate and

relevant influential factors (Said and Prathyaj 2017). Factors influencing labour productivity can

be grouped into two major categories: (1) nature of the work to be done or Work Content (WC)

108

and (2) Environment Conditions (EC) (Sweis et al. 2009). In practice, accurately predicting,

measuring and controlling the environmental conditions in field construction is nearly impossible

(Sweis et al. 2009). In contrast, prefabrication processes are more driven by work content and less

affected by environmental conditions.

Many research studies in the past decade emphasized on the importance of historical data and

maintained that the most accurate and reliable estimate can be obtained from past project data in

terms of labour costs, progress information, project details, and past performances (Said and

Prathyaj 2017). However, data gathered from construction projects are almost certain to contain

noise and inconsistency. In addition, the construction-related datasets feature a large number of

variables and are often influenced by unpredictable events (Sweis et al. 2009). Prefabrication, on

the other hand, has created a unique situation for productivity modelling and analysis, where many

environmental factors can be isolated, thus significantly increasing the chances of success in data-

driven productivity modelling.

The goal of this research is to correlate engineering design features with fabrication productivity

in an off-site facility while taking advantage of existing historical data in the development of

productivity models. The novelty lies in its unsupervised approach in classifying projects based on

work content and design features. The contributions of this study include: (1) proposing a

framework to develop productivity models and identifying effects of work content factors, (2)

developing an analytical methodology for generating a system of Multiple Linear Regression

equations by coupling the power of Modified Stepwise Regression (MSR) and Model Tree (MT),

and (3) analyzing the trade-off between model fit quality, prediction accuracy, and model

complexity.

109

In the following sections, first, relevant literature on productivity modelling and model trees are

reviewed. Then, the research methodology and objectives are described. The performance of the

proposed methodology is first benchmarked on a concrete slump dataset from the University of

California Irvine (UCI) machine learning repository. Thereafter, a practical case of steel

fabrication productivity modelling is presented before drawing conclusions.

110

4.2 MODEL TREES

Researchers have utilized various modelling techniques to study the relationship between

influential factors and labour productivity; tools such as regression models, expert systems, and

artificial neural networks (ANNs) have been used to develop productivity models (Najafi and

Kong 2015, Said and Prathyaj 2017). On one end of this spectrum, we have Multiple Linear

Regression (MLR) which lends itself well to generalize a simple representation of the relationship

between input factors and the output variable (Najafi and Kong 2015). On the other end, more

sophisticated modelling tools such as ANN, instance-based learning, and deep neural nets result

in productivity models that function like a “black box” without revealing the implicit relationships

between input factors and the reasoning logic applied in deriving the output variable based on input

factors (Wang and Witten 1996). Nevertheless, in order to accept a model as decision-support tool,

most end users of productivity models in construction would weigh more on understanding factor

selection and reasoning logic of the model than achieving marginal gains on the accuracy of the

prediction model.

Development of MT started as an extension to classification trees by Morgan and Sonquist (1963)

which used the automatic interaction detection (AID) method to generate Regression Trees (RT).

RTs create a predictive model represented by a tree structure where the feature domain splits

between tree branches; at the end of each branch, tree leaves have constant values. Breiman et al.

(1984) improved on AID and developed Classification and Regression Tree (CART) to

approximate non-linear functions by discretizing them into piecewise models, suitable for

predicting both continuous and categorical variables. Quinlan (1992) extended CART application

by replacing constant values on tree leaves with linear functions, resulting in a method called M5;

111

as a result, enabling CART to model non-linear datasets with piecewise linear functions. More

recently, Loh (2002) presented a new algorithm called GUIDE for generalized, unbiased

interaction detection and estimation. GUIDE divides the residuals of a linear model into negative

and positive signs and uses a Chi-square test instead of a t-test to determine the best split.

Alternating Trees (ATREE) is one of the latest methods proposed in MT development that uses an

additive forward stage-wise approach to build the trees (Frank et al. 2015).

(a)

(b)

(c)

(d)

Figure 4-1: (a) Data point representation, (b) Classification, (c) RT, (d) MT

112

Figure 4-1(a) provides a simplified representation of data points in a given domain. Classification

Trees cluster data into discrete classes through binary recursive partitioning over training data and

generate a tree-like structure for future prediction (Figure 4-1(b)). RTs are similar to classification

trees; however, constant values are assigned –instead of classes– to tree leaves, therefore,

providing a constant value for each future prediction that belongs to a specific tree leaf (Figure

4-1(c)). To replace constant values in RT, MTs attach regression models to the end of their

branches and utilize input/output correlation to generate future predictions (Figure 4-1(d)). MTs

split the data points so the similar samples are clustered for performing MLR at each leaf of the

tree (Figure 4-2), resulting in a piecewise regression model, as shown in Figure 4-3 (Quinlan 1992).

MTs are more accurate than commonly-applied MLR methods for numeric predictions and can

produce more insightful models compared to the opaque structure and implicit formulation of

ANN (Frank et al. 1998). In brief, MT is an analytical method for creating predictive models with

particular emphasis on the generalization of the problem.

X1 V1 X1>V1

X2>V2X2 V2

X4>V4X4 V4

R1

R2 R3

R4

PROBLEM

DOMAIN

R1 | X1 V1, X2 V2

R2 | X1 V1, X2>V2, X4 V4

R3 | X1 V1, X2>V2, X4>V4

R4 | X1>V1

Figure 4-2: MT structure and formulation

113

R1 R2 R3 R4

Predictor

D
ep

e
n
d

en
t

V
a

ri
ab

le

Figure 4-3: MT piecewise representation of non-linear trend in data

114

4.3 LITERATURE REVIEW

4.3.1 Productivity Modelling

Productivity modelling has been extensively addressed in the construction literature. Randolph et

al. (1990) researched different definitions for productivity and proposed two methods to model

productivity: a factor-based model and an expectancy model. Rifat and Rowings (1998) developed

productivity models considering factors like temperature, quantity and crew size using neural

networks and regression analysis. Dawood (1998) proposed Monte Carlo simulation to generate

more reliable duration estimates, considering variations in quality of material, weather, and labour

productivity. Song and AbouRizk (2008) used ANN and discrete-event simulation to analyze

project historical data and develop labour productivity models. Sweis et al. (2009) performed

labour productivity modelling using data on fourteen projects that had similar scope, size,

specification, and quality requirements and concluded that productivity affecting factors can be

categorized into Work Environment (WE) and Work Content (WC). Najafi and Kong (2015)

presented a MLR model for predicting the duration of precast concrete installation and noted that

MLR could create simple and clear relationships between inputs and outputs. To model the

relationship between productivity factors and influencing parameters, Heravi and Eslamdoost

(2015) utilized ANN and experienced over-fitting issues that were later resolved by early stopping

of the training process and applying Bayesian regularization algorithms. Lee et al. (2017)

demonstrated the advantages of Building Information Modeling (BIM) in performing quantity

take-offs and productivity analysis through an integrated approach for productivity measurement.

El-Gohary et al. (2017) performed a productivity analysis on formwork and reinforced concrete

installation for residential and commercial buildings. Said and Prathyaj (2017) investigated

115

ductwork prefabrication productivity and utilized MLR and ANN to develop predictive models for

fabrication labour-hours of different ductwork fittings.

Based on reviewed literature, more in-depth research is desired in understanding the relationship

between work content and productivity in off-site prefabrication settings, due to the isolation of

most of the environmental factors. There is a need for formalizing an analytical methodology that

takes project complexity and design features into consideration in developing a productivity

model. The desired productivity model should feature high prediction accuracy while maintaining

simplicity and transparency for ease of communication and application. To avoid productivity

models from over-fitting, there is also a need for a formalized approach to perform complexity-

accuracy trade-off analysis in the model selection.

4.3.2 Model Tree Related Applications in Construction Management

Lee et al. (2004) quantified the productivity loss due to project change orders by applying the

GUIDE methodology. They concluded that significant higher accuracy can be obtained by using

MTs compared to other methods in construction where data often feature high intercorrelation and

contain noise. Desai and Joshi (2010) applied decision trees with constant branch nodes to analyze

and predict labour productivity; they implemented a heuristic approach to select influential

attributes in building the decision tree. Deshpande et al. (2014) compared the results of non-linear

regression, MT and ANN in predicting the compressive strength of recycled aggregate concrete.

They indicated that if the input variables are limited, ANN would result in the best single model;

however, MTs can produce a set of models with different levels of complexity and accuracy.

Omran et al. (2016) compared the effectiveness of applying regression, MTs, and neural networks

in predicting concrete compressive strength. They concluded that time consumed in training

116

advanced models would hinder practicality, which should be considered as a factor in model

comparison. Behnood et al. (2017) used MTs –specifically M5– to predict concrete compressive

strength. They observed MTs can provide more insight into data and achieve high prediction

accuracy while maintaining modelling transparency. Afsarian et al. (2018) implemented M5 trees

as a transparent method in predicting building energy consumption.

4.3.3 Variable Selection on MLR

Developing a valid predictive model for labour productivity becomes more challenging with the

increase in the number of influencing parameters (Said and Prathyaj 2017). Many researchers have

noticed the drawbacks of having too many variables in a predictive model (Gardner et al. 2016,

Said and Prathyaj 2017, Mohsenijam et al. 2017). Redundant input parameters in a predictive

model would increase the chances of over-fitting while potentially introducing noise into

predictive models (Gardner et al. 2016). Interdependencies between variables in a model need to

be understood in order to achieve a more transparent model, and redundancies need to be

eliminated. Interdependencies within the data refer to cases where a variable could be explained

and predicted by other input variables; therefore, there is no need to include it in a predictive

model. In the case of the structural steel data collected in this research study, the steel member

weight and length are highly correlated, which can be predicted from one another.

Having the optimal number of input variables significantly reduces the likelihood of over-fitting,

collinearity, and transferring noise in data to the predictive model (Ivanescu et al. 2016).

Mohsenijam et al. (2016) developed a variable selection technique based on forward selection (FS)

and backward elimination (BE), called MSR. Forward selection technique starts with a linear

regression model that contains no input variables; adds input variables to MLR-based on

117

correlation and statistical significance; stops when there is no predictive gain in adding more

variables (Seber and Lee 2003). Backward elimination begins with an MLR model with all input

variables; iteratively removes insignificant variables to reach the final subset; stops when there is

a loss in model performance by removing any more variables (Wang and Jain 2003). Both forward

selection and backward elimination tend to produce a near-optimum subset of variables and given

large datasets, applying the two MLR model streamlining technique separately often results in two

different sets of input variables (Mendenhall and Sincich 2015). It is noteworthy that the MSR

method combines the advantages of forward selection and backward elimination while overcoming

respective limitations of each (Mohsenijam et al. 2016). The MSR starts with an empty set of input

variables, similar to forward selection. In an iterative process, variables with the high significance

are added to MLR, and in the same iteration, all the selected MLR variables are tested for their

statistical significance (Same as the backward elimination method). Unlike forward selection and

backward elimination, MSR allows previously eliminated variables to be reinstated in the MLR

model, while the already selected variables can be removed in future iterations.

Besides applying M5 methodology to define rules for clustering observations, this research

implements MSR at the resulting M5 leaves to eliminate redundant input features. As such, a

streamlined model at each leaf can be obtained through purposefully selecting the variables by

MSR.

118

4.4 RESEARCH OBJECTIVE AND METHODOLOGY

The proposed research methodology consists of three main steps, namely: (1) data collection, (2)

productivity model generation, and (3) model performance comparison (shown in Figure 4-4). This

methodology explores three areas in the MT development process in the application context of

construction productivity analysis. They are: (1) grouping recorded data into branches and leaves

using MTs, (2) selecting influential attributes using MSR for derived leaves and creating

regression models, and (3) performing accuracy-complexity trade-off analysis in predictive

modelling.

Collecting data on production and Product:

 1) Extracting Project/Division features.

 2) Extracting labour expenditure from

 job costing databases.

DATA COLLECTION

Train productivity models:

 1) Generate Model Trees.

 2) Split the data based on Model Tree

 results.

 3) Perform Modified Stepwise

 Regression on tree leaves.

MODEL DEVELOPMENT

Train productivity models:

 1) Bias-Variance-Complexity tradeoff

 2) Validation and error estimation

MODEL PERFORMANCE

COMPARISON

Figure 4-4: Structure of research methodologyM5 Implementation

119

MTs are generated through (1) tree generation, (2) pruning the tree, and (3) replacing sub-trees

with linear regression functions when it is appropriate (Frank et al. 1998). The model structure of

MTs consists of root, branch splitting, and leaf nodes. M5 is the selected technique for

implementing MT in the present research due to its simplicity and proven performance. Appendix

I provides an in-depth justification and comparison on using M5 against other options of MTs.

1. Tree generation: M5 develops the tree by recursive partitioning starting from the root node.

Branches are created at each splitting node and when there is no predictive gain from

partitioning, splitting stops at leaf nodes. The partitioning takes place with the aim to minimize

intra-subset variability, measured by Equation (4-2), where 𝑆𝐷𝑅 is the standard deviation

reduction as a result of partitioning, 𝑆𝐷 is the standard deviation (Equation 4-3), 𝑇 is the

number of observations as a complete set. The resulting partition based on variable 𝑋𝑖 with a

value of a is two sets of observations: (1) observations where 𝑋𝑖 is smaller or equal to a, (2)

observations where 𝑋𝑖 is bigger than a. 𝑇𝑖 is the number of observations for each portioning

condition, and 𝑆𝐷(𝑇𝑖) is the standard deviation with that subset; in M5 binary splits, i can take

two values. M5 calculates 𝑆𝐷𝑅 value for input variables and splits dataset based on the specific

variable with its particular value that maximizes the expected error reduction. Note that 𝑆𝐷 is

calculated for output values by Equation 4-3, based on the observations subject to each

branching condition. Splitting ends if only few instances remain in the branch (i.e. a minimum

of thirty observations required for forming a robust linear regression) or expected error

reduction is insignificant. The minimum number of observations in each branch is set to be

thirty in this study for generating a solid linear regression and being able to perform variable

selection.

120

𝑆𝐷𝑅 = 𝑆𝐷(𝑇) − ∑
𝑇𝑖

𝑇
× 𝑆𝐷(𝑇𝑖)

𝑖

 (4-2)

𝑆𝐷 = √
∑ (𝑦𝑗𝑗 − �̅�)

𝑛
 (4-3)

2. Regression fitting: M5 fits an MLR model for all the splitting nodes using data associated

with that node and all the attributes leading to that node.

3. Pruning the tree: Pruning refers to the process of removing excessive branches and reducing

the tree to a smaller size, which takes into account prediction accuracy and generalization gain

in applying MLR at leaves. Specifically, MSR is implemented to analytically derive an MLR

model in the leanest form by eliminating less relevant input factors in the dataset being studied.

If the expected error of the MLR at a splitting node is lower than the combined results from its

branches, then branches are removed (pruning). Note that pruning starts from leaf nodes and

removes them in an iterative process.

4.4.1 Bias-Variance-Complexity Trade-off

Numerous statistical and machine learning approaches are available to create models based on

given data. However, an important question that needs to be addressed is the trade-off between

bias, variance and model complexity. This section elaborates how to assess the combined power

of M5 and MSR (“M5+MSR”) in regard to model complexity and misclassification error against

other methods. In order to assess models developed for complex systems, model selection criteria

must be based on the trade-off between bias, variance, and complexity (Yu et al. 2006). Bias is an

indicator of the quality of fit, which can be defined as the learning error for the algorithm of choice.

A model with a high bias oversimplifies the problem being studied, ̶ analogous to using a linear

model to represent a linearly inseparable problem. Variance, as a measure of future prediction

121

accuracy, denotes the sensitivity of the developed model to the training data provided. In other

words, variance represents a model’s prediction performance on unseen or new cases, given that a

different training data (or a subset of training data) had been used for training. As a result, a

predictive model with a high variance does not generalize patterns inherent in the problem from

the data, but merely memorize the training data, which would perform poorly on cases it has not

seen before.

Lastly, certain noise (i.e. irreducible error) inevitably exists in the data originating from measuring

tools, data collection errors, and human-induced errors. The theoretical formulation for the

interaction of bias, variance and noise known as bias-variance decomposition of error is given in

Equation 4; where, 𝑦 = 𝑓(𝑥) + 𝜀 is the true function to be approximated in predictive modeling,

𝜀 is a normally distributed noise, and 𝜎 is the standard deviation. Assume that we assess a fitted

function of ℎ(𝑥) that has been trained on the training set of data. Given the test set of 𝑥′ and

observed values of 𝑦′, the ℎ(𝑥) prediction expected error is calculated as Equation 4-4.

𝐸[(ℎ(𝑥′) − 𝑦′)2] = 𝐸[ℎ(𝑥′)2 − 2ℎ(𝑥′)𝑦′ + 𝑦′2] = 𝐸[ℎ(𝑥′)2] − 2𝐸[ℎ(𝑥′)]𝐸(𝑦′) + 𝐸[𝑦′2]

= 𝐸[(ℎ(𝑥′)2 − ℎ̅(𝑥′))2] + (ℎ̅(𝑥′))2 − 2ℎ̅(𝑥′)𝑓(𝑥′) + 𝐸[(𝑦′ − 𝑓(𝑥′))2]

+ 𝑓(𝑥′)2 = 𝐸[(ℎ(𝑥′)2 − ℎ̅(𝑥′))2] + 𝐸[(𝑦′ − 𝑓(𝑥′))2] + [(ℎ̅(𝑥′) − 𝑓(𝑥′))2]

= 𝑉𝑎𝑟(ℎ(𝑥′)) + 𝜎2 + 𝐵𝑖𝑎𝑠2(ℎ(𝑥′))

(4-4)

The expected error in prediction between a true function and a fitted model can be represented by

the summation of variance, bias squared and noise. Therefore, to reduce prediction error, both

variance and bias need to be minimized simultaneously. Bias (i.e. error of predictive algorithm)

decreases as the model complexity increases; conversely, it would cause variance to escalate

122

(Figure 4-5) (Geman et al. 1992). Nevertheless, oversimplified models can be associated with

higher bias and lower variance in terms of the prediction error. The best predictive model would

achieve the best trade-off between bias and variance, thus minimizing the total error in prediction.

Figure 4-5: Bias, variance and complexity trade-off

The “best fit” or the “best model” can be assessed as the model that has the best generalization

ability by demonstrating the best performance in predicting new observations (Moody 1994).

Figure 4-6 shows an example of a simple linear model that can generalize better than a non-linear

function given the same observation data. The linear model in this example has a higher bias

compared to the non-linear model; however, the linear model has significantly less variance, thus

is deemed a better fit by giving more accurate future predictions.

123

Figure 4-6: Model generalization: (a) linear model (b) non-linear model

There are several model selection methods that take bias, variance and complexity into account;

three of the main categories of model selection methods are as follows:

(1) Root-Mean Square Error (𝑅𝑀𝑆𝐸), and coefficient of determination (𝑅2) (Lowe et al.2006).

(2) Akaike Information Criteria (AIC) (Akaike 1977) and Bayesian Information Criteria (BIC)

(Schwartz 1978).

(3) Final Prediction Error (FPE) (Yu et al. 2006).

The first group (𝑅𝑆𝑀𝐸 and 𝑅2) is the most widely used predictive model performance

measurements for indicating the goodness of fit and fit quality (Bias) in model selection (Lowe et

al. 2006). RSME and R2 can be measured by Equation (4-5) and (4-6) respectively, where y’ is the

observation value, y̅ is average of observations, h is the fitted function, n is the sample size, and D

is the model’s degrees of freedom. Degrees of freedom in predictive models can be defined as the

number of independent variables and their coefficients affecting the dependent variable. A larger

D indicates the higher complexity of the model structure.

124

AIC value gives an estimate of the model performance in terms of future predictions, which can

also be used as a model selection tool. A model with the smaller value of AIC has better chances

of mitigating model over-fitting by penalizing the high number of degrees of freedom in the model.

In contrast to AIC, BIC penalizes more on the degrees of freedom in smaller sample sizes.

Therefore, AIC is a better indicator applicable to problems with large sample sizes and BIC is

more meaningful in dealing with smaller sample sizes. AIC and BIC can be calculated by Equation

4-7 and 4-8, Where n is the number of data points, RSS is the residual sum of squares, and D is

the model degrees of freedom. When two models perform comparably well with respect to AIC

and BIC (i.e. producing similar RSS value on identical sample sizes), the one with smaller degrees

of freedom (i.e. simpler model) is more favourable.

FPE is a model fitness measure based on the trade-off between variance, bias, and complexity,

where lower values of FPE is more desirable; the FPE formulation is presented in Equation 9.

𝑅𝑀𝑆𝐸 = √
∑(𝑦′ − ℎ(𝑥′))

2

(𝑛 − 𝐷)
 (4-5)

𝑅2 =
∑(ℎ(𝑥′) − �̅�)2

∑(𝑦′ − �̅�)2
 (4-6)

𝐴𝐼𝐶 = 𝑛 + 𝑛𝑙𝑜𝑔(2𝜋) + 𝑛𝑙𝑜𝑔(𝑅𝑆𝑆/𝑛) + 2𝐷 (4-7)

𝐵𝐼𝐶 = 𝑛 + 𝑛𝑙𝑜𝑔(2𝜋) + 𝑛𝑙𝑜𝑔(𝑅𝑆𝑆/𝑛) + log(𝑛) (𝐷) (4-8)

𝐹𝑃𝐸 = [(𝑛 + 𝐷)/(𝑛 − 𝐷)]. [𝐵𝑖𝑎𝑠2 + 𝑉𝑎𝑟] (4-9)

125

4.5 METHOD PERFORMANCE BENCHMARKING

The proposed methodology is first demonstrated on a benchmarking dataset from UCI machine

learning repository (https://archive.ics.uci.edu/ml/index.html). Yeh (2006) collected one hundred

and three (103) slump results of different concrete mix results, with different values for cement

(X1), blast furnace slag (X2), fly ash (X3), water (X4), super-plasticizer (X5), coarse aggregate

(X6), and fine aggregate (X7), all in kg/m3. Detailed results for MLR and MSR implementation

and comparison on the same dataset can be found in Mohsenijam et.al (2017); herein, the

developed predictive models and their evaluation metrics are presented in Table 4-1 and Table 4-

2, respectively. To shed light on the “M5+MSR” process in accordance with the proposed

methodology, the following steps need to be followed:

Step (1) finding the 1st splitting variable and setting its value: in this step, the dataset is sorted

based on each variable and standard deviation reduction (i.e. SDR as in Equation 4-2) is calculated

for each of the seven variables with their one hundred and three (103) values. A variable and its

value with the highest SDR is chosen for the first split; data set for future splitting is divided based

on values of splitting variable. The results from the first step on the slump data set indicate that 𝑋4

with SDR value of 1.495 has the highest SDR value among all the variables; sample calculation

are demonstrated in Equations 4-10, 4-11, 4-12, and 4-13. Result of this split leads to a tree with

two branches, one with thirty-four samples, and the other branch with sixty-nine samples. With

the purpose of MLR in mind, enough samples are required for a robust model; therefore, the branch

with thirty-four samples will not be further split.

126

𝑆𝐷(𝑇) = √
∑ (𝑦𝑗𝑗 − �̅�)

𝑛
= √7887.46/103 = 8.750 (4-10)

𝑆𝐷(𝑇1) = √3459.23/34 = 10.086 (4-11)

𝑆𝐷(𝑇2) = √2369.50/69 = 5.860 (4-12)

𝑆𝐷𝑅 = 𝑆𝐷(𝑇) − ∑
𝑇𝑖

𝑇
× 𝑆𝐷(𝑇𝑖)

𝑖

= 8.75 − [(34/103) × 10.086 + (69/103) × 5.86] = 1.495

(4-13)

Step (2) finding the second splitting variable and value:

Performing the same method on the branch with 69 samples results in selection of 𝑋7 with the

value of 737 to be the splitting criteria. As a result, the developed tree would have 32 and 37

samples for MLR. At the end of this stage, the tree is generated and needed to be pruned by

removing insignificant branches.

Step (3) Regression fitting:

In this step, a linear regression model for all the nodes with samples reaching that node needs to

be fitted. Generalization performances of the regression models are compared in Table 4-2.

Step (4) Pruning:

as the regression models represented by the full tree (i.e. three branches and three leaves) have a

significant standard deviation reduction, there is no need for pruning in this case.

127

Step (5) Variable selection:

the tree structure and the samples that reach the leaves resulting from the previous steps need to

undergo MSR variable selection process [detailed steps can be found in Mohsenijam et al. (2017)].

The resulting M5+MSR model maintains the tree structure with sufficient variables in regression

models at the tree leaves (Table 4-1).

Table 4-1: Alternative models generated for slump dataset

Modelling

Method

Generated Model Splitting

Condition

MLR R= -88.525+0.010X1-0.013X2+0.006X3+0.259X4-

0.184X5+0.030X6+0.039X7

No condition

MSR R=-18.099-0.040X2+0.199X4 No condition

M5+MSR R1 = -53.109-0.043X1-0.113X2+0.468X4

R2 = 101.57-0.0395X2-0.114X7

R3 = 22.681

X4≤184

X4>184

X4>184; X7>741

Based on the collected data, Yeh (2007) produced two predictive models for concrete slump: (1)

Non-Linear MLR (NLMLR) model and (2) ANN model. The NLMLR model has fifty-six (56)

regression coefficients, shown in Equation 4-14, where 𝑥𝑖 is the ith independent variable, q is the

total number of independent variables; 𝛽𝑖, 𝛽𝑖𝑗 are regression coefficients. The ANN model has

seven input variables, one hidden layer with seven hidden nodes and fifty-six (56) ANN

transformation weights. Yeh (2006) reported the RMSE values for the NLMLR and ANN models

being 5.95 and 5.53, respectively. For further testing and analysis in this research, the NLMLR

and ANN were reproduced in the current research.

128

𝑦 = ∑𝛽𝑖𝑥𝑖 +

𝑞

𝑖=1

∑∑𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑞

𝑖<𝑗

 (4-14)

In the Bias-Variance-Complexity analysis, performance indicators mentioned in the previous

section are calculated for the slump dataset, and results are presented in Table 4-2. Although ANN

has higher model fit quality (i.e. lower RMSE and higher 𝑹𝟐), when compared with “M5+MSR”,

it has lower values of AIC, BIC, and FPE, implying over-learning from the training dataset.

“M5+MSR” features the second least number of coefficients to be estimated next to MSR (i.e. 4)

while the second lowest RMSE or R2 next to ANN. As a result, “M5+MSR” is declared the best

trade-off between fit quality, prediction accuracy, and complexity in this case.

Table 4-2: Model comparison on slump dataset

Modelling method Coefficients to be estimated RMSE 𝑹𝟐 AIC BIC FPE

MLR 8 7.42 0.32 375.35 375.44 83.30

MSR 2 7.44 0.29 369.40 369.44 78.86

M5+MSR 4 5.70 0.59 347.11 347.16 61.28

NLMLR 29 5.95 0.52 381.47 381.85 84.93

ANN 56 5.53 0.71 389.34 389.72 92.62

129

4.6 PRODUCTIVITY MODELLING APPLICATION

In this section, a predictive model for the steel fabrication labour productivity is developed

utilizing the proposed methodology. The objective is to develop a productivity model by

correlating work content and labour-hour expenditure and analyze model fit quality, prediction

accuracy, and complexity.

The steel industry is considered as one of the main drivers of prefabrication movement; steel would

retain its fabrication properties and have lighter structural pieces for more efficient transportation

(Warrian 2010). Examples of off-site steel fabrication projects include pipe and pipe rack

fabrication, hollow core floor systems, modular house construction, and steel bridge girders.

Fabrication of structural steel in the controlled environment of fabrication shops significantly

improves quality and productivity (Liddy and Cross 2002). Prefabrication would create a uniform

environment with proper supervision, similar tools and equipment, adequate inspection, and much

more control over processes and activities. To a large degree, off-site construction would limit the

number of influencing factors (e.g. weather and site condition) or normalize effects of the

remaining factors (e.g. crew skill level).

In steel fabrication facilities, similar to most of the prefabrication projects, construction sequence

defines the work breakdown structure in work planning. The same work breakdown structure

defines the cost accounts of the job costing and tracking systems in which labour-hours actually

incurred on the shop floor are recorded. The component of this work breakdown structure in steel

fabrication industry is generally referred to as “Project Division”. Labour-hour expended on

130

fabrication processes like handling, cutting, fitting, welding and surface preparation is measured

against project divisions (Hu et al. 2014).

Data gathered for this study includes 1558 records for structural steel project, each record

representing labour-hour spent on each steel fabrication division. These labour-hour records are

associated with forty-two project-related design features collected from BIM databases (details of

design feature are given in Table 3-2). For each project division, collected labour-hour is the

summation of hours spent on activities such as handling, cutting, fitting, welding, and surface

processing in the fabrication shop. Collected data for this research is sourced from a steel fabricator

in Alberta, Canada, with mainly industrial steel fabrication projects. Labour-hours in each division

can vary from 100 to 7000 labour-hours. In order to conceal sensitive company productivity

information while maintaining the patterns in the data, all the captured data has been linearly

scaled. For more information and to gain access to the database, refer to the Data Availability

Statement.

The “M5+MSR” method is applied to model labour productivity following the steps demonstrated

in the previous section (Figure 2-7). Note MSR method is applied to the tree leaves, creating

streamlined MLR regression models. The combined results of branching and MSR are given in

Table 4-3; X1 is the division weight (kg), X2 is angle length (m), X3 is channel length, X6 is

miscellaneous beams (m), X9 is wide flange beam length (m), X12 is checker plate area (m2), X14

is the plate area (m2), X18 is hollow steel section length (m), X19 is round hollow steel sections

length (m), and X32 is partial penetration weld length (m).

131

The selection of plate area (X14) by applying M5 method as the branching variable is well aligned

with industry know-how. Among practitioners, the amount of plate required in a steel project is an

indicator of the complexity of a project. High plate content in a steel fabrication project generally

means more complex connections and higher welding hours. Projects with less plate are branched

into R1 (Figure 4-7). In R1, MSR method application indicates that productivity can be predicted

by those variables related to structural section lengths (i.e. wide flange (X9), hollow sections

(X18), angels (X2) and channels (X3)). This is consistent with current practice as steel industry

would refer to these types of projects as Stick-built. Projects with higher plate requirement are

branched into R2 and R3 (Figure 4-7). MSR application identifies weight (X1), weld length (X32),

and round hollow steel section length (X19) being the main predictors of productivity in high plate

content projects. In practice, projects with high plate requirement are generally referred to as

Platework. These projects require a significant amount of fitting and welding in fabrication and

assembly.

X14 90.631

X14 266.16

R1 R2 R3

X14>90.631

X14>266.16

M5'

Figure 4-7: M5 tree branching structure

132

Table 4-3: Result of different branching methods and MSR

Branching

Method

MSR results for Tree leaves RMSE 𝑹𝟐

M5 R1 = 14.84+0.004X1+0.69X9+0.29X3+8.32X6+

0.254X2+0.566X18+1.854X14+1.930X12+11.29X32

R2 = 290.43+0.014X1+1826.1X19+9.871X32

R3 = 371.5+0.016X1+9.752X18+12.039X32

369.86 0.763

The results of the proposed methodology are later compared with MLR, MSR, and ANN. The

metrics defined in pervious sections are utilized to assist in finding the balance in Bias-Variance-

Complexity; results are shown in Table 4-4. The results indicate ANN has higher fit quality by

having higher 𝑹𝟐; however, similar to the findings in slump dataset, “M5+MSR” has lower values

of AIC, BIC, FPE. As a result, “M5+MSR” achieves higher fit quality and pattern generalization

performance compared to MSR or MLR; when exposed to new data points (unseen cases), the

model resulting from “M5+MSR” would have higher prediction accuracy while maintaining

transparency.

Table 4-4: Results of model selection criteria for different modeling methods

Modelling method Degrees of freedom RMSE 𝑹𝟐 AIC BIC FPE

MLR 25 426.94 0.687 11036.1 11065.9 17256.0

MSR 6 426.64 0.682 11043.4 11012.6 16932.0

M5+MSR 16 369.86 0.763 10849.3 10914.3 15245.5

ANN 130 523.93 0.876 11313.1 12141.0 29297.8

133

4.6.1 Model Validation

In the previous section, it has been pointed out that the “M5+MSR” has the highest prediction

accuracy among methods tested. To further validate the model, the percentage split method is used

for model validation; ten percent of data (i.e. 150 unseen instances) were randomly selected and

reserved to test the resulting model and calculate the prediction error. If the training and testing

results are close to each other (within 10%), the model prediction accuracy is validated (Sargent

2013). The correlation coefficient and root mean square for the training and test data are given in

Table 4-5. The RMSE from training and test sets is shown to be close to one another, Figure 4-8

(within the 10 percent range).

Table 4-5: Model validation results

Indicator Training set Test set

RMSE 369.86 399.96

𝑹𝟐 0.763 0.689

Figure 4-8: Predicted vs. Actual labour-hours validation results

y = x

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

P
re

d
ic

te
d

 L
a

b
o
u

r
-h

o
u

rs

Actual Labour-hours

134

4.6.2 Prediction Demonstration

Application of the derived labour productivity model is presented in this section with two new

cases (detail of inputs given in Table 4-6). This data was taken from more recent projects and had

not been part of the model training data. Note zero-value variables are not shown for ease of

demonstration. Labour-hour required for case one with the plate area of 31.98 needs to be predicted

by R1; labour-hour prediction for case two is predicted by R2, as X14 has a value of 99.52. The

results for the two cases are 1713.38 and 1052.82 labour-hours, respectively. Against the actual

labour-hours, the differences are 123.38 labour-hours (i.e. 1713.38 – 1590) for Case 1 and 140.82

labour-hours (i.e. 1052.82 – 912) for Case 2, which represent 7.76% and 15.4% difference relative

to actual labour-hours, respectively.

Table 4-6: Demo case input variables

Input

variables
Description Unit Case 1 Case 2

X1 Division Weight Kg 56746 31660

X2 Angle Meter 88.271 146.34

X9 Wide flange Meter 246.155 438.04

X14 Plate Meter-squared 31.981 99.52

X18 Hollow steel sections Meter 194.325 0

X32 Partial penetration weld Meter 98.318 32.332

Y Actual Labour-hours Hours 1590 912

135

4.7 BENCHMARKING M5+MSR AGAINST OTHER MODEL TREES METHODS

In recent decade, researchers have proposed many methods for Model Tree development. This

section explores results of coupling MSR with other MT and RT methods for steel fabrication

productivity modelling. The compared methods are CART, M5, GUIDE, and ATREE. CART

regression tree is generated in Salford Predictive Modeler® (2018); M5 Trees are developed using

M5PrimeLab toolbox (Jakabsons 2016); GUIDE tree is created by GUIDE software from Loh

(2002), and ATREE is performed by using AlternatingModelTrees (Frank et al. 2015) package for

WEKA (Hall et.al 2009). CART, M5, GUIDE and ATREE are distinguished in their approach in

building trees; the results of each branching methodology is given in Figure 4-9, 4-10, and 4-11.

The results of applying MSR to tree leaves after each branching method are presented in Table

4-7.

X31 132.75

X1 100455.5
R1

R2 R3

X31>132.75

R4X1 25694
X1>26594

X1>100455.5

CART

Figure 4-9: CART tree branching structure

136

X1 35219.75

X1 83116.5

R1 R3 R4

X1>35219.75

R2

X1 14254.5 X1>14254.5

X1>83116.5

GUIDE

Figure 4-10: GUIDE tree branching structure

X31 0

R1 R2

X31>0

X18 0 X18>0

Alternating

Trees

R3 R4

X1>0X1 0

Figure 4-11: ATREE tree branching structure

Table 4-7: Result of different branching methods and MSR

Branching

method
MSR results for Tree leaves

CART

R1 = 18.04+0.019X1+1.224X18+0.45X14+9.81X32

R2 = 381.44+0.012X1+10.064X32

R3 = 2922.4

R4 = 7109.4-76.789X3

M5

R1 = 14.84+0.004X1+0.69X9+0.29X3+8.32X6

0.254X2+0.566X18+1.854X11+1.930X13+11.29X32

R2 = 290.43+0.014X1+1826.1X19+9.871X32

R3 = 371.5+0.016X1+9.752X18+12.039X32

GUIDE

R1 = 25.14+0.022X1+0.71X18

R2 = 555.13+14.184X32

R3 = 1074.3+13.715X32

R4 = 2401.1+10.77X32

ATREES

R1 = 29.07+0.016X1+0.383X9

R2 = 78.56+0.013X1-18.568X4+71.415X19 +3.414X14

R3 = -27.554+0.025X1+13.881X32

R4 = 4235.7

137

Model selection metrics, presented in Bias-Variance-Complexity section, for different branching

methods in combination with MSR are given in Table 4-8. The results of all metrics unanimously

indicate that combination of M5 and MSR has superior fit quality while having higher prediction

accuracy.

Table 4-8: Results of model selection criteria for different branching methods

Modelling method RMSE 𝑹𝟐 AIC BIC FPE

CART+MSR 410.77 0.7075 10991.3 11021.1 16694.3

M5+MSR 369.86 0.7628 10849.3 10914.3 15245.5

GUIDE+MSR 440.23 0.6636 11085.9 11163.6 18251.3

AT+MSR 431.98 0.6761 11060.3 11106.1 17680.8

138

4.8 CONCLUSION

MLR models are used for many decades in engineering and construction applications for

transparency, simplicity, and ease of use. In coping with complicated problems and large datasets

in the real-world, MLR has shown limitations in prediction accuracy. As a result, many researchers

have resort to more complex methods such as nonlinear regressions and ANN models in order to

achieve higher accuracies. Unfortunately, such analytically complex methods fall short of

explaining how the model reasons. In some cases, to achieve higher accuracy, the model tends to

overfit itself onto the training data by memorizing noises instead of generalizing patterns. The

proposed new method combines the advantages of Model Trees and MLR (M5+MSR), which can

achieve both transparency and accuracy by generating predictive models using piecewise

approximation. M5 coupled with MSR variable selection for predictive model generation have

shown promising results on two application cases presented in this study. In modeling Labour

productivity and concrete slump prediction, the proposed new method achieves higher fit quality

and pattern generalization performance compared to commonly-applied linear or non-linear

regression techniques; when exposed to new data points (unseen cases), the resulting model would

have higher prediction accuracy while maintaining simplicity and transparency. To avoid models

from over-fitting, this research has also formalized an approach to perform complexity-accuracy

trade-off analysis in model selection.

With great advancements in data management acquisition technologies and the push for a more

modularized and off-site construction, there is a pressing need to develop a different approach to

perform productivity analysis of for construction prefabrication facilities in construction.

Prefabrication has created a unique situation for productivity modelling and analysis, where many

139

environmental factors can be isolated, thus significantly increasing the chances of success in data-

driven productivity modelling. In the steel fabrication productivity modelling application,

variables selected for splitting in M5, and variables selected for regression modelling are well

aligned with industry practitioner’s know-how. This degree of transparency in reasoning logic is

generally impossible for highly non-linear regression models such ANN to attain.

There are application problems where the relationships are extremely complex and there are no

meaningful relationships between variables (e.g. image recognition, computer vision). Therefore,

the method for predictive modelling would be chosen only based on highest prediction accuracy

achievable. When a predictive model is desired to (1) be transparent in factor selection and

reasoning logic, (2) be straightforward to be implemented in practice, (2) be able to generalize

patterns in training data for reliably predicting unseen cases, the proposed “M5+MSR” approach

holds high potential to provide the analytical solution to develop data-driven predictive models.

140

CHAPTER 5 : CONCLUSION

This Chapter draws the research conclusions, restate the academic and practical contributions, and

finally state the limitations of this research for further research.

5.1 RESEARCH CONCLUSION

This research advances the existing knowledge of predictive analytics for construction productivity

modelling. Within this research, quantitative methods have been proposed, developed, and

validated that would benefit researchers and practitioners by tapping into knowledge that is

captured through data collection and streamlining their predictive models, while simultaneously

maintaining transparency and accuracy. From a practical point of view, the proposed methodology

is not deemed “black box” and is built of analytical foundations instead of heurisitics and

simulations. Thus, the derived results do not require the “trial and error” process as applied in

neural network training while interpretation of the results is straightford in terms of what role each

input parameter plays in deriving the predicted output and how the output is related to the inpout

factors in addition to making a point-value prediction. This is critical to make an AI model

acceptable and effecitive in rendering decision support in the intended application setting in the

real world.

This research focuses on productivity modelling in construction prefabrication facilities due to

their ability to limit the influence of environmental factors on productivity. The controlled

environment of prefabrication facilities allows for higher quality data collection, and their

consistent crew size and standardized processes cause productivity to be a function of project

141

content and details. Overall, the industry push for prefabrication in recent decades has created a

unique situation for productivity modelling and analysis, where many environmental factors can

be isolated, thus significantly increasing the chances of success in data-driven productivity

modelling. Therefore, the primary constraint of external environmental factors identified in

productivity data collection and analysis does not exist in this setting. Overcoming the challenge

of developing a transparent, accurate, and simple method for productivity modelling using readily

available data is the outcome of this research. The data collected for this research has considerably

reduced the influence of other productivity impact factors, since the data has been captured under

similar work conditions, following similar production processes, and executed labour crew with

equivalent skills and qualifications. It is worth mentioning that the proposed framework is selected

to provide a transparent model and elucidate the structure of data more so than other methods to

the best of the author’s knowledge. Therefore, the generated productivity models are not only

applicable to productivity prediction, but also to understand the productivity-influencing factors,

and possibly productivity improvement.

As discussed in Chapter 2, regression has been frequently applied to input/output prediction

problems; however, given fast-growing data collection technologies, there is a need for variable

selection, validation, and verification for practical application needs. There is a high demand for

methods that are computationally simple, fast to calibrate, straight-forward to explain, and easy to

update as new data become available. Modified Stepwise Regression (MSR) is a proposed solution

to solve such problems; MSR analytically selects a proper set of variables by testing their

significance in predicting an output, resulting in a reduced number of input variables, and hence,

less data collection efforts and less introduced noise. MSR takes Multiple Linear Regression

(MLR) assumptions into consideration, and if assumptions are violated, uses Weighted Least

142

Square (WLS) for generating the MLR coefficients. The proposed MSR approach is illustrated

and benchmarked on two case studies of segmental bridge installation and concrete slump testing.

Through a practical case study, MSR demonstrated significant advantages over the trial-and-error

approach in variable selection. It is worth mentioning that both case studies used in this research

feature a relatively small number of input variables (the concrete slump dataset has seven inputs,

while the precast bridge dataset has four).

Chapter 3 further elaborates on associating project design features with project cost, leveraging

recent advancements in information technology such as BIM, bar-coding or radio frequency

identification tags for resource tracking and data collection. MSR methodology is used to select

relevant project design features in order to predict required labour-hours. The size of the dataset

used in the chapter validated the applicability of the MSR approach in practical settings, when

there are numerous variables and a noisy dataset. Out of 42 project design features, the six most

relevant input features were analytically selected, resulting in a streamlined MLR model. The

complex relationships and hidden patterns underlying all data are represented in a regression

equation in its simplest form. It is worth mentioning that this research has validated the

effectiveness of the proposed framework by addressing a real-world problem featuring relatively

large datasets (in terms of number of input features defined and the number of records in the

dataset). Streamlining the number of input features simplifies the model for practical use which

minimizes future data collection efforts. In short, the proposed framework will potentially assist

in developing simple, yet sufficient, decision-support solutions in the real-world, by fully

harnessing available BIM data and labour cost data. And indeed, the applications of these solutions

are not limited to the structural steel fabrication domain.

143

Chapter 4 describes a novel methodology that combines the advantages of Model Trees and MSR

to achieve both transparency and accuracy by generating predictive models using piecewise

approximation. M5 coupled with MSR variable selection for a predictive model generation have

shown promising results on two application cases, labour productivity modelling and concrete

slump, presented in this chapter. The proposed new method achieves higher fit quality and pattern

generalization performance compared to commonly-applied linear and non-linear regression

techniques. When exposed to new data points (unseen cases), the resulting model would have

higher prediction accuracy while maintaining simplicity and transparency. To avoid models from

over-fitting, this research has also formalized an approach to perform complexity-accuracy trade-

off analysis in model selection. When a predictive model is desired to be (1) transparent in factor

selection and reasoning logic, (2) straightforward to implement in practice, (3) able to generalize

patterns in training data in order to reliably predict unseen cases, the proposed “M5+MSR”

approach holds high potential to provide the analytical solution to develop data-driven predictive

models. Productivity models generated using the proposed M5+MSR method

144

5.2 ACADEMIC CONTRIBUTION

The academic contributions of this research study to existing knowledge include the following:

• A reliable MLR model requires an appropriate set of input variables that can satisfy the

underlying assumptions of Best Linear Unbiased Estimators (BLUE). In this research

study, an analytical framework is proposed for developing MLR-based predictive models

by (1) selecting input variables by a modified stepwise approach, (2) verifying the BLUE

assumptions, and (3) validating the prediction performance of the regression model.

• There is no formalized method for how to perform stepwise regression in the current

literature. To the best of our knowledge, the applications of stepwise regression are limited

to the use of statistical software, and there is no insight into the method itself. Additionally,

there is no single reference which explains stepwise regression in a straightforward fashion.

This research clarifies the stepwise regression procedure and modifies it to incorporate the

checking of BLUE assumptions and performing error analysis.

• This study formalizes a generic framework for generating MLR models consisting of

variable selection, model verification, model validation, and prediction error estimation. A

refined version of stepwise regression is implemented for variable selection; if any of the

OLS (Ordinary Least Square) assumptions are violated, the WLS is used for estimating the

MLR coefficients. The proposed framework is illustrated and tested in two case studies.

145

• A practical and widely applicable framework is proposed that uses MLR to associate

project costs and project-specific design features.

• The modified stepwise regression identifies a minimal set of design features as input

variables to account for project labour cost in fabrication or construction based on a dataset

that is of practical size and contains noise. By fully harnessing available BIM and labour

cost data in a real-world application setting, the proposed framework assists with

developing sufficient, yet straight-forward, decision-support solutions for a variety of

construction applications.

• This research study enhances the predictive modelling capabilities of Multiple Linear

Regression (MLR) by integrating Model Trees (MT) and Modified Stepwise Regression

(MSR).

• This research study proposes an analytical application framework for M5+MSR

application in engineering, resulting in a system of MLR equations, each having the least

amount of relevant input factors.

• The proposed methodology enables MLR to mimic non-linear regression or ANN while

maintaining modelling simplicity and transparency, which is crucial to applications in civil

engineering. A detailed study on bias-variance-complexity analysis was also performed to

compare the proposed new method against ANN.

146

• The research enables the advancement of productivity modelling in construction by

correlating engineering design features with fabrication productivity in an off-site facility.

147

5.3 INDUSTRIAL CONTRIBUTION

• The industrial contributions of this research are summarized based on collaborative

research with the partner company and a real-world project case study, as below:

• The proposed methodology efficiently uses available data and guides the development of

sufficient and reliable MLR models based on data gathered in practical settings. This

research proposes a new framework to determine the achievable prediction accuracy when

applying MLR to a practical problem using real-world data. This framework is designed to

identify the minimal set of inputs required for MLR modelling (i.e., the most relevant input

factors, based on the available dataset and given a particular problem definition) without

compromising the achievable maximal prediction accuracy. The framework encompasses

analytical methods for verifying the MLR application, validating the resulting model, and

setting confidence intervals on point-value predictions.

• With great advancements in data management acquisition technologies and a practical

demand for modularized and off-site construction, there is a pressing need to develop a

different approach to performing productivity analysis for construction prefabrication

facilities. Prefabrication has created a unique situation for productivity modelling and

analysis, where many environmental factors can be isolated, thus significantly increasing

the chances of success in data-driven productivity modelling. In the steel fabrication

productivity modelling application, variables selected for splitting in M5 and variables

selected for regression modelling, are well aligned with industry practitioners’ know-how.

This degree of transparency in reasoning logic is generally impossible to attain for highly

non-linear regression models such as ANN.

148

• The proposed approach is capable of reducing data collection efforts for MLR modelling

in application fields, ensuring the MLR models’ validity, providing point estimates based

on a streamlined linear regression equation, and quantifying the error of point estimates

according to the desired confidence level.

• The proposed approach guides the construction industry in best utilizing the data available

within each company, similar to the dataset of Building Information Model (BIM), and

predicting labour productivity by analyzing project work content relevant to key design

features of projects.

149

5.4 LIMITATIONS AND RECOMMENDATION FOR FUTURE RESEARCH

This research, in short, proposes a more transparent, simple and practical application framework

for developing predictive models in construction engineering and management. The proposed

method of MSR streamlines the variables used in a predictive model by properly selecting input

parameters. However, to tackle noisy, non-homogenous, and highly non-linear data, the proposed

model would likely fail due to the inherent limitations of MLR. In such cases, the resulting MLR

model would have poorer performance in point prediction accuracy (i.e. low R-squared) while

producing wider than desired range estimates. In consequence, either the data needs to be cleansed

of noise or preprocessed with clustering techniques that transform a highly non-linear problem into

a linear problem, prior to applying MLR. To address nonlinearity limitations of MLR, MSR was

later coupled with Model Trees (MT) to split the feature domain and to assign a predictive model

to each tree leaf. This approach created a piecewise linear model to adjust to the nonlinearities

inherent in the data structure.

The scalability of this research is limited by data management in the construction industry. The

status of data management in the construction industry has led to incomplete, incompatible, and

noisy data being collected. The proposed data-driven framework attempts to reap some benefits

from the industry’s investment in data/information management systems. The value of the

framework lies in the potential of extending its application to other projects (other companies/other

industries) in guiding a repeat implementation step by step starting from problem definition and

collecting data, to model validation.

150

It is noteworthy that the derived models in this study would lose their value when tackling a new

problem or there is a significant change in the current problem domain. The model would not be

applicable anymore. Nonetheless, the modelling framework is still applicable to reproduce an

updated, relevant predictive model. In particular, the step-wise method for MLR input factor

selection will remain cost-effective to identify an updated list of parameters that account for the

output of the model analytically and objectively, as opposed to resorting to trial-and-error or

personal judgement. Moreover, the generated model has confined the variability in data and

leveraged standardized practices and processes based on analysis of data gathered from one steel

fabricator. Further research and evaluation and analysis with the help of proposed framework and

methodologies need to be preformed to replicate the success of implementing this research in

similar application settings.

151

REFERENCES

Afsarian, F., Saber, A., Pourzangbar, A., Olabi, A. G., Khanmohammadi, M. A. (2018). "Analysis

of Recycled Aggregates Effect on Energy Conservation using M5′ Model Tree Algorithm."

Energy, 156, 264-277.

Akinwande, M., Dikko, H. and Samson, A. (2015). “Variance Inflation Factor: As a Condition for

the Inclusion of Suppressor Variable(s) in Regression Analysis.”, Open Journal of Statistics, 5,

754-767.

Alfeld, L. E. (1988). Construction Productivity: On-Site Measurement and Management,

McGraw-Hill, New York.

Barrett, B. E., and Gray, J. B. (1994). “A computational framework for variable selection in

multivariate regression.” Statistics and computing, 4, 203–212.

Behnood, A., Behnood, V., Modiri Gharehveran, M., Alyamac, K. E. (2017). "Prediction of the

Compressive Strength of Normal and High-Performance Concretes using M5P Model Tree

Algorithm." Construction and Building Materials, 142, 199-207.

Berry, W. D. D., and Feldman, S. (1985). Multiple regression in practice. Quantitative applications

in the social sciences. Sage Publication, Santa Barbara, California.

Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees.

Wadsworth, Belmont.

152

Breusch, T. S., and Pagan, A. R. (1979). “A simple test for heteroscedasticity and random

coefficient variation.” Econometrica: Journal of the econometric society, 47(5), 1287–1294.

Chan, W. H., and Lu, M. (2008). “Materials handling system simulation in precast viaduct

construction: modeling, analysis, and implementation.” Journal of construction engineering and

management, 10.1061/(ASCE)0733-9364(2008)134:4(300), 300–310.

Cheung, F. K. T., and Skitmore, M. (2006). “Application of cross validation techniques for

modelling construction costs during the very early design stage.” Building and environment,

41(12), 1973–1990.

Choi, K., Haque, M., Lee, H. W., Cho, Y. K., and Kwak, Y. H. (2013). “Macroeconomic labour

productivity and its impact on firm’s profitability.” Journal of the operational research society,

Nature Publishing Group, 64(8), 1258–1268.

Choi, K., Kim, Y., Bae, J., and Lee, H. (2015). “Determining future maintenance costs of low-

volume highway rehabilitation projects for incorporation into life-cycle cost analysis.” Journal

of computing in civil engineering, 1–10.

Dawood, N. (1998). "Estimating Project and Activity Duration: A Risk Management Approach

using Network Analysis." Constr. Manage. Econ., 16(1), 41-48.

Desai, V. S., and Joshi, S. (2010). "Application of decision tree technique to analyze construction

project data." Proc., Information Systems, Springer Berlin Heidelberg, ICISTM 2010:

Information Systems, Technology and Management, 304-313.

153

Deshpande, N., Londhe, S., Kulkarni, S. (2014). "Modeling Compressive Strength of Recycled

Aggregate Concrete by Artificial Neural Network, Model Tree and Non-Linear Regression."

International Journal of Sustainable Built Environment, 3(2), 187-198.

Draper, N. R., and Smith, H. (1998). Applied Regression Analysis, Wiley, New York, USA.

Dozzi, S. P., and Abourizk, S. M. (1993). Productivity in construction. Institute for Research in

Construction. National Research Council, Ottawa, ON, Canada

Durbin, J., and Watson, G. S. (1951). “Testing for serial correlation in least squares regression.”

Biometrika, 38(1-2), 159–178.

El-abbasy, M. S., Senouci, A., Zayed, T., and Mirahadi, F. (2014). “Condition prediction models

for oil and gas pipelines using regression analysis.” 1–17.

El-Sawy, I., Hosny, H., and Razek, M. A. (2011). “A neural network model for construction

projects site overhead cost estimating in Egypt.” International journal of computer science

issues, 8(3), 273–283.

Feng, W., Zhu, W., and Zhou, Y. (2010). “The application of genetic algorithm and neural network

in construction cost estimate.” Third international symposium on electronic commerce and

security workshops (ISECS’10), 29–31, July 2010, 151–155.

Frank, E., Mayo, M., Kramer, S. (2015). "Alternating model trees." Proceedings of the 30th Annual

ACM Symposium on Applied Computing, Salamanca, Spain, 871-878.

Fox, J. (1991). Regression diagnostics. Sage Publications.

154

Gardner, B. J., Gransberg, D. D., David, J. H. (2016). "Reducing Data-Collection Efforts for

Conceptual Cost Estimating at a Highway Agency." J. Constr. Eng. Manage., 142(11),

04016057.

Geman, S., Bienenstock, E., Doursat, R. (1992). "Neural Networks and the Bias/Variance

Dilemma." Neural Comput., 4(1), 1-58.

Greene, W. H. (2008). Econometric analysis. Econometric analysis, Pearson Education, Upper

Saddle River.

Gu, N. & London, K. (2010). Understanding and facilitating BIM adoption in the AEC industry.

Automation in Construction, 19(8), 988-999.

Gujarati, D. N. (2004). Basic econometrics. New York, McGraw-Hill.

Hair, J. F. J., Black, W. C., Babin, B. J., and Anderson, R. E. (2010). Multivariate data analysis.

Pearson Education, Upper Saddle River, New Jersey.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I. H. (2009). The WEKA

Data Mining Software: An Update. SIGKDD Explorations, Volume 11, Issue 1.

Hendrickson, C. 2008. “Project Management for Construction”. Department of Civil and

Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA l52l3. Copyright C.

Hendrickson 1998.

Heravi, G., and Eslamdoost, E. (2015). "Applying Artificial Neural Networks for Measuring and

Predicting Construction-Labor Productivity." J. Constr. Eng. Manage., 141(10), 04015032.

155

Holiday, D. B., Ballard, J. E., and Mckeown, B. C. (1995). “PRESS-related statistics regression

tools for cross-validation and case diagnostics.” Medicine and science in sports and excercise,

27(4), 612.

Hu X., Lu M., AbouRizk, S. (2014). "BIM-based data mining approach to estimating job man-

hour requirements in structural steel fabrication." IEEE, 3399-3410.

Ivanescu A. E., Li P., George B., Brown A. W., Keith S. W., Raju D., Allison D. B. (2016). “The

importance of prediction model validation and assessment in obesity and nutrition research.”

International Journal of Obesity, 40, 887–894.

Jaillon, L., and Poon, C. S. (2014). “Life cycle design and prefabrication in buildings: A review

and case studies in Hong Kong.” Autom. Constr., 39, 195–202.

Jakabsons, G. (2016), M5' regression tree, model tree, and tree ensemble toolbox for

Matlab/Octave (ver. 1.7.0), Riga Technical University, Institute of Applied Computer Systems,

Riga, Latvia

Jafarzadeh, R., Ingham, J. M., Walsh, K. Q., Hassani, N., and Ghodrati Amiri, G. R. (2015). “Using

statistical regression analysis to establish construction cost models for seismic retrofit of

confined masonry buildings.” Journal of construction engineering and management, 04014098.

Jafarzadeh, R., Wilkinson, S., González, V., Ingham, J. M., and Ghodrati Amiri, G. (2014).

“Predicting seismic retrofit construction cost for buildings with framed structures using

multilinear regression analysis.” Journal of construction engineering and management, 1–10.

156

Kaufman, R. L. (2013). Heteroskedasticity in regression. SAGE publicationss, Thousand Oaks,

California.

King, G. (1986). “How not to lie with statistics: Avoiding common mistakes in quantitative

political science.” American journal of political science, 30(3), 666–687.

Knowles, P. (1997). ‘‘Predicting labor productivity using neural networks.’’ MS thesis, University

of Alberta, Edmonton, Alta., Canada.

Kutner, M. H., Nachtsheim, C. J., and Neter, J. (2004). Applied linear regression models. McGraw-

Hill, New York.

Lee Min-Jae, Hanna, A. S., Loh Wei-Yin. (2004). "Decision Tree Approach to Classify and

Quantify Cumulative Impact of Change Orders on Productivity." J. Comput. Civ. Eng., 18(2),

132-144.

Lee, J., Park, Y., Choi, C., Han, C. (2017). "BIM-Assisted Labor Productivity Measurement

Method for Structural Formwork." Automation in Construction, 84, 121-132.

Leung, A. W. T., Tam, C. M., and Liu, D. K. (2001). “Comparative study of artificial neural

networks and multiple regression analysis for predicting hoisting times of tower cranes.”

Building and environment, 36(4), 457–467.

Lewis-Beck, M. S. (1978). “Stepwise regression: a caution.” Political methodology, 5(2), 213–

240.

Li, Z., Shen, G. Q., and Xue, X. (2014). “Critical review of the research on the management of

prefabricated construction.” Habitat Int., 43, 240–249.

157

Liddy, W., and Cross, J. (2002). "Conceptual Estimating, Design-Build and the Steel Fabricator."

Modern Steel Construction, 42(10), 48-54.

Liu, W. (2010). Simultaneous inference in regression. Boca Raton. CRC Press.

Loh, W. Y. (2002), Regression trees with unbiased variable selection and interaction detection,

Statistica Sinica, vol. 12, 361-386.

Lowe, D. J., Emsley, M. W., and Harding, A. (2006). “Predicting construction cost using multiple

regression techniques.” Journal of construction engineering and management, 132(7), 750–759.

Lu, M., AbouRizk, S. M., Hermann, U. H. (2000). "Estimating Labor Productivity using

Probability Inference Neural Network." J. Comput. Civ. Eng., 14(4), 241-248.

Lu, M., AbouRizk, S., and Hermann, U. (2001), “Sensitivity analysis of neural networks in spool

fabrication productivity studies”, Journal of Computing in Civil Engineering, ASCE, Vol 15(4),

299-308.

Malerba, D., Esposito, F., Ceci, M., Appice, A. (2004). "Top-Down Induction of Model Trees with

Regression and Splitting Nodes." IEEE Transactions on Pattern Analysis & Machine

Intelligence, 26, 612-625.

Matlab 2016b (2016), Mathworks, Natick, United States, <https://www.mathworks.com/>

(05/04/2017).

Mendenhall, W. M., Sincich, T. L. (2015), Statistics for Engineering and the Sciences Sixth

Edition. Chapman and Hall/CRC

158

Mohsenijam, A., and Lu, M. (2016) “Achieving Sustainable Structural Steel Design by Estimating

Fabrication Labor Cost Based on BIM Data,” Procedia Engineering, vol. 145, pp. 654–661.

Mohsenijam, A., Siu, M. F., Lu, M. (2017). "Modified Stepwise Regression Approach to

Streamlining Predictive Analytics for Construction Engineering Applications." J. Comput. Civ.

Eng., 31(3), 04016066.

Moody, J. (1994). "Prediction risk and architecture selection for neural networks." Proc., From

Statistics to Neural Networks, Springer Berlin Heidelberg, 147-165.

Morgan, J. N., and Sonquist, J. A. (1963). "Problems in the Analysis of Survey Data, and a

Proposal." Journal of the American Statistical Association, 58(302), 415-434.

Monteiro, A., and Poças Martins, J. (2013). "A Survey on Modeling Guidelines for Quantity

Takeoff-Oriented BIM-Based Design." Automation in Construction, 35, 238-253.

Najafi, A., and Kong, R. T. L. (2015). “Productivity modeling of precast concrete installation using

multiple regression analysis.” ARPN Journal of Engineering and Applied Sciences, 10(6),

2496-2503.

Omran, B. A., Qian, C., Ruoyu, J. (2016). "Comparison of Data Mining Techniques for Predicting

Compressive Strength of Environmentally Friendly Concrete." J. Comput. Civ. Eng., 30(6),

04016029.

Quinlan, J. R. (1992). "Learning with Continuous Classes." Proceedings of the 5th Australian Joint

Conference on Artificial Intelligence, AI’92, Pages 343-348. World Science.

159

Randolph, T. H., Maloney, W. F., Malcolm, H. R., Smith, G. R., Handa, V. K., Sanders, S. R.

(1990). "Modeling Construction Labor Productivity." J. Constr. Eng. Manage., 116(4), 705-

726.

Rifat, S., and Rowings, J. E. (1998). "Construction Labor Productivity Modeling with Neural

Networks." J. Constr. Eng. Manage., 124(6), 498-504.

Said, H. M., and Prathyaj, K. (2017). "Performance Measurement of Building Sheet-Metal

Ductwork Prefabrication Under Batch Production Settings." J. Constr. Eng. Manage., 144(2),

04017107.

Salford Predictive Modeler 8. (2018). San Diego, California, United States: Salford Systems, a

Mintab company.

Sargent, R. G. (2013). “Verification and validation of Simulation Models”, Journal of Simulation,

7:1, 12-24

Sawada, K., Shimizu, H., Matsuo, A., Sasaki, T., Yasui, T., Namba, A. (2006). "A simple

estimation of fabrication cost and minimum cost design for steel frames." Proc., Proceedings of

the Fourth China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical

Systems,89-94.

Seber, G. A. F., and Lee, A. J. (2003). Linear regression analysis. Wiley series in probability and

statistics. Wiley, New York City, NY, United States.

Shen, Z., and Issa, R. R. A. (2010). "Quantitative Evaluation of the BIM-Assisted Construction

Detailed Cost Estimates." Electron. J. Inf. Technol. Constr., 15, 234-257.

160

Silva, A., Dias, J. L., Gaspar, P. L., and de Brito, J. (2013). “Statistical models applied to service

life prediction of rendered façades.” Automation in construction, Elsevier B.V., 30, 151–160.

Siu, M. F., Lu, M., and AbouRizk, S. (2014). "Strategies for Optimizing Labour Resource Planning

on Plant Shutdown and Turnaround. " ASCE Construction Research Congress 2014, May 19–

21, 2014, Atlanta, Georgia, United States, 1676–1685

Smith, H., and Draper, N. R. (1998). Applied regression analysis. Wiley, New York City, NY,

United States.

Smith, S. D. (1999). “Earthmoving productivity estimation using linear regression techniques.”

Journal of construction engineering and management, 125, 133–141.

Song, L. Y., and Abourizk, S. M. (2008). “Measuring and modeling labor productivity using

historical data.” Journal of construction engineering and management, 134(10), 786–795.

Stephens, M. (1974). “EDF statistics for goodness of fit and some comparisons.” Journal of the

american statistical association, 69(347), 730–737.

Stephens, M. A., Scholz, F. W. (1987). “K-Sample Anderson-Darling Tests ", Journal of the

American Statistical Association, Vol. 82, No. 399, pp. 918-924.

Sweis, R. J., Sweis, G. J., Abu Hammad, A. A., Abu Rumman, M. (2009). "Modeling the

Variability of Labor Productivity in Masonry Construction." Jordan Journal of Civil

Engineering, 3(3), 197-212.

Taghados, H., Mashayekhi, A., Sherafat, B. (2016). “Automation of Construction Quantity Take-

off: Using Building Information Modeling (BIM)”, Construction Research Congress 2016

161

Thompson, M. L. (1978). “Selection of variables in multiple regression: Part I. A review and

evaluation.” International statisical review, 46(1), 1–19.

Verlinden, B., Duflou, J.R., Collin, P., Cattrysse, D. (2008). “Cost estimation for sheet metal parts

using multiple regression and artificial neural networks: A case study”, International Journal of

Production Economics, Volume 111, Issue 2, 2008, Pages 484-492.

Walasek, D., Barszcz, A. (2017). “Analysis of the adoption rate of Building Information Modeling

[BIM] and its rate of Return on Investment [ROI]”, Modern Building Materials, Structures and

Techniques, Procedia Engineering, 172, 1227-1234.

Warrian, P. (2010). The Importance of Steel Manufacturing to Canada: A Research Study, Munk

School of Global Affairs, Toronto.

Wang, Y., and Witten, I. H. (1996). “Induction of Model Trees for Predicting Continuous Classes.”

Proc. Ninth European Conf. Machine Learning.

Wang, G. C. S., and Jain, C. L. (2003). Regression analysis: modeling and forecasting. Graceway

publishing company, New York.

Wiesenberger, G., (2011), Sustainability and the Structural Engineering, Practice Periodical on

Structural Design and Construction, 16(4): 146-150

Wong, C. H. (2004). “Contractor performance prediction model for the United Kingdom

construction contractor: study of logistic regression approach.” Journal of construction

engineering and management, 130(5), 691–698.

162

Yeh, I. C. (2006). “Exploring concrete slump model using artificial neural networks.” Journal of

computing in civil engineering, 10.1061/(ASCE)0887-3801(2006)20:3(217), 217–221.

Yeh, I. C. (2007). “Modeling slump flow of concrete using second-order regressions and artificial

neural networks.” Cement and concrete composites, 29(6), 474–480.

Yeh, I. C. (2009). “Simulation of concrete slump using neural networks.” Proceedings of the ICE

- construction materials, 10.1680/coma.2009.162.1.11, 11–18.

Yu, L., Lai, K. K., Wang, S., Huang, W. (2006). "A bias-variance-complexity trade-off framework

for complex system modeling." Proc., Computational Science and its Applications - ICCSA

2006, Springer Berlin Heidelberg, 518-527.

163

APPENDIX (I) : MATLAB SOURCE CODE

This Chapter has the MATLAB source code used for data analysis. The MATLAB codes provided

are for (1) developing MSR, (2) Checking Heteroscedasticity, (3) K-Fold Cross Validation, (4)

PRESS Validation, and (5) M5 Model Tree.

5.5 DEVELOPING MSR (MODIFIED CODE FROM MATALB 2016B)

function model = stepwiselm(X,varargin) % [X, y | DS], start, ...
%STEPWISELM Create linear regression model by stepwise regression.
% LM = STEPWISELM(DS,MODELSPEC) fits the model specified by MODELSPEC to
% variables in the dataset/table DS, adds or removes terms by stepwise
% regression and returns the linear model LM. MODELSPEC can be any of
% the values accepted by the FITLM function. The default is 'constant' to
% start with only the constant term in the model.
%
% After the initial fit, the function examines a set of available terms,
% and adds the best one to the model if an F-test for adding the term has
% a p-value 0.05 or less. If no terms can be added, it examines the terms
% currently in the model, and removes the worst one if an F-test for
% removing it has a p-value 0.10 or greater. It repeats this process
% until no terms can be added or removed. The function never removes the
% constant term. It may add terms defined by MODELSPEC, as well as terms
% that are two-way interactions among the predictors.
%
% LM = STEPWISELM(X,Y) fits a linear regression model using the column
% vector Y as a response variable and the columns of the matrix X as
% predictor variables, performs stepwise regression, and returns the
% final result as the linear model LM.
%
% LM = STEPWISELM(X,Y,MODELSPEC) uses the model specified by MODELSPEC as
% the initial model. See FITLM for valid MODELSPEC values.
%
% LM = STEPWISELM(...,PARAM1,VAL1,PARAM2,VAL2,...) specifies one or more
% of the following name/value pairs:
%
% 'Weights' Vector of N non-negative weights, where N is the
% number of rows in DS or Y. Default is ones(N,1).
% 'VarNames' Cell array of strings specifying the names to use
% for the columns in X. Default is {'x1','x2',...}
% for the predictors and 'y' for the response.
% Not allowed when fitting to a dataset/table.
% 'CategoricalVars' Vector of integer or logical indices specifying
% the variables in DS or the columns in X that
% should be treated as categorical. Default is to

164

% treat DS variables as categorical if they are
% categorical, logical, or char arrays, or cell
% arrays of strings.
% 'Exclude' Vector of integer or logical indices into the
% rows of DS, or X and Y, that should be excluded
% from the fit. Default is to use all rows.
% 'Intercept' true (default) to include a constant term in the
% model, or false to omit it.
% 'PredictorVars' A specification of the variables to use as
% predictors, either as a cell array of variable
% names, or a vector of integer or logical indices
% into the variables in DS or the columns in X.
% 'ResponseVar' The response variable, specified either as a
% variable name or number.
% 'Lower' A model specification defining the terms that
% cannot be removed from the model. Default
% 'constant', meaning only the intercept.
% 'Upper' A model specification defining the terms
% available to be added to the model. Default
% 'interactions' for pairwise interaction terms.
% 'Criterion' The criterion to be used in choosing terms to add
% or remove, chosen from 'SSE' (default), 'AIC',
% 'BIC', 'Rsquared', 'AdjRsquared'.
% 'PEnter' For the 'SSE' criterion, a value E such that a
% term may be added if its p-value is less than or
% equal to E. For the other criteria, a term may be
% added if the improvement in the criterion is at
% least E.
% 'PRemove' For the 'SSE' criterion, a value R such that a
% term may be removed if its p-value is greater or
% equal to R. For the other criteria, a term may be
% added if it reduces the criterion no more than R.
% 'NSteps' The maximum number of steps that may be taken,
% starting from the initial model. Default is no
% limit on the number of steps.
% 'Verbose' An integer from 0 to 2 controlling the display of
% information. Verbose=1 (the default) displays the
% action taken at each step. Verbose=2 also
% displays the actions evaluated at each step.
% Verbose=0 suppresses all display.
%
% The following table shows the default 'PEnter' and 'PRemove' values for
% the different criteria, and indicates which must be larger than the
% other:
%
% Criterion PEnter PRemove Compared against
% 'SSE' 0.05 < 0.10 p-value for F test
% 'AIC' 0 < 0.01 change in AIC
% 'BIC' 0 < 0.01 change in BIC
% 'Rsquared' 0.1 > 0.05 increase in R-squared
% 'AdjRsquared' 0 > -0.05 increase in adjusted R-squared
%
% Example:
% % Perform stepwise regression, starting from the constant model
% % (intercept only), adding linear terms as required.
% load hald
% lm = stepwiselm(ingredients,heat,'constant','upper','linear')

165

5.6 CHECKING HETEROSCEDASTICITY

function [HetResult,secondModel,Xw,Yw,Nres] = Heter(X,Y)
%This function is to check if the model passes Heteroscedasticity.
%The function takes the matrix of input and output and test if the residuals

are pass the HeterTEST.
[m n] = size(X);
Xreg=[ones(m,1) X];

InitailModel = fitlm(X,Y);
res = InitailModel.Residuals.Raw;
Yhat = InitailModel.Fitted;
 TEST=TestHet(res, X, '-BPK')

res2= res.^2;
Hetreg=stepwiselm(X,res2,'quadratic');
Hettest=anova(Hetreg,'summary');
if Hettest.pValue(2)>0.05;
 HetResult='No Heteroscedasticity';
else
 HetResult='Heteroscedasticity';

 PRE = Hetreg.Fitted;
 Xw=zeros(m,n+1);
 for i=1:n+1;
 Xw(:,i)=Xreg(:,i)./PRE;
 end
 Yw=Y./PRE;
 secondModel = fitlm(Xw,Yw,'Intercept',false);
 %secondModel = fitlm(Xw,Yw)
 Nres=Y-Xreg*secondModel.Coefficients.Estimate
 % NYhat=Xreg*secondModel.Coefficients.Estimate;
 %Nres=secondModel.Residuals.Raw;
 NYhat=secondModel.Fitted;
 NTEST=TestHet(Nres, X, '-BPK')
 %scatter(res,Yhat,'b');hold on;scatter(Nres,NYhat,'g')
 %scatter(res,Yhat,'b')
 %scatter(Nres,NYhat,'g')
 %[bw,se,pval,inmodel,stats,nextstep,history] = stepwisefit(Xw,Yw)
 % Wpredicted=[stats.intercept bw'.*inmodel]*Xreg';
 % Wres=Y-Wpredicted';
 % Wres2= Wres.^2;
 % Wp=[Wpredicted',Wpredicted'.^2];
end

function [pVal,Chi2] = TestHet(Res, X, Whichtest, Yhat)

% TESTHET Tests wether heteroskedasticity affects data. Need 'regstats' and

'chi2cdf' (Stat TB).
%
% PVAL = TESTHET(RES, X, WHICHTEST, YHAT)
% Inputs:

166

% - Res: residuals obtained by regressing Y on x1, x2 etc...(1) It can be a

numeric 'n-by-1' vector or
% a 'n-by-p' matrix with 'p' residuals obtained from different

regressions. The # of obs. is 'n'.
% - X: predictors suspected of causing heteroskedasticity. Not necessarily

all those in (1). Same format as
% Res.
% - Whichtest: test chosen in format string.
% a. Breush-Pagan, Koenker modification --> -BPK

(Breush-Pagan 1979; Koenker 1981)
% b. White --> -W

(White 1980b)
% c. White, Wooldridge special case --> -Ws

(White 1980b; Wooldridge 2006, p.286)
% [OPTIONAL]
% - Yhat: only for '-Ws' test. Fitted values from (1). Same format as Res.
%
% Output:
% A '1-by-p' array with p-values.
%
% EXAMPLE:
% 1. Regress Y on x1, x2 --> regstats(Y, [x1 x2], 'linear', {'r',

'yhat'})
% 2. Test with -Ws:
% TestHet(r,[x1, x2], '-Ws', yhat)
%
% Ninputs
error(nargchk(3,4,nargin))
% Yhat (for White simpified case)
if strcmp(Whichtest, '-Ws')
 if nargin == 3
 error('TestHet:YhatMissing','Can''t perform -Ws test without Yhat.')
 end
elseif nargin == 4;
 warning('TestHet:InpOverSpec', 'Performing -W test. Yhat not required.')
else
 Yhat = ones(size(Res,1)); % for check purposes
end
% Numeric format
if ~isnumeric(X) || ~isnumeric(Res) || ~isnumeric(Yhat)
 error('TestHet:NumericFormat', 'Res, X and Yhat (if specified) must be

numeric.')
end
% Whichtest
if ischar(Whichtest)
 if all(~strcmp(Whichtest, {'-BPK','-W','-Ws'}))
 error('TestHet:WhichtestNotAllowed','Whichtest: choose among those

allowed.')
 end
else
 error('TestHet:WhichtestNotString','Whichtest must be a string.')
end
% Nobservations
if any(diff(cellfun(@(x) size(x,1), {Res,X,Yhat})))
 error('TestHet:NumberObservations','Res, X and Yhat (if specified must

have the same number of observations')
end

167

% STEP 1: inputs manipulation
% ---------------------------
Res2 = Res.^2; % Squared

residuals
if nargin == 4;
 Yhat2 = Yhat.^2; % Squared

Yhat (for -Ws test only)
end
Nseries = size(Res,2); % # of

series to test
pVal = NaN(1,Nseries); %

Preallocation

% STEP 2: settings
%-----------------
model = 'linear'; Regressors = X; % Default

settings

switch Whichtest %

Specific settings
 % [-BPK] Breush-Pagan
 case '-BPK'
 df = size(X,2); % degrees of freedom
 % [-WH] White
 case '-W'
 model = 'quadratic';
 % For degrees of freedom don't take the "constant".
 % Reference on the interaction form : 'x2fx'.
 df = size(X,2)*2 + max(cumsum(1:size(X,2))) - size(X,2);
 % [-Ws] White special case
 case '-Ws'
 % Degrees of freedom fixed; the terms are always Yhat and Yhat^2.
 df = 2;
end

% STEP 3: p-values
% ----------------
% [1] LOOP for Nseries
for s = 1:Nseries
 % [2a] CONDITION if Ws test, 'Regressors' are combined matrixes
 if strcmpi(Whichtest, '-Ws'); Regressors = [Yhat(:,s),Yhat2(:,s)]; end;

%[2a]
 % [2b] CONDITION Regressors+1 must be < Nobserv
 if df+1 < sum(~isnan(any(Regressors,2)+ Res2(:,s)))
 % 1. R^2res^2: res^2 on the regression terms
 Temp = regstats(Res2(:,s), Regressors, model, {'rsquare'});
 % 2. pVal = 1-cdf(LM statistic, df) from a Chi^2 distribution.
 % Where LM statistic = R^2res^2 * #obs
 pVal(1,s) = 1-chi2cdf(Temp.rsquare*nnz(~isnan(Res2(:,s))),df);
 Chi2(1,s)=Temp.rsquare*nnz(~isnan(Res2(:,s)));
 end % [2b]

end % [1]

end

168

5.7 K-FOLD VALIDATION

function [ESS,SSE,res2] = Crossvalidation2(X,Y,k)
%Get the WLS result (Coeficient and weighted variables).
% a is result of heteroscedasiticity, Model is the regression under PRESS
% test, XX is weighted X, and YY is weighted Y.
[HetResult,TEST,chi,secondModel,Xw,Yw,res,Nres,NNres]=HetWLS(X,Y);
[m,n] = size(Xw);
% Pratitioning an array of data for k-fold test
c = cvpartition(m,'kfold',k);

%running the crossvalidation
for i=1:k
% for each set of validation data we need to find the Tr (training array)
% and Te (testing array)
Tr=training(c,i);
Te=test(c,i);
[f,g]=size(Tr(Tr~= 0));
Xt=[ones(m,1) X];
%Input data need to be partitioned. To do so the data XTr and YTr are used
%for training, and the XTe and YTe are used for testing.
XTr=zeros(f,n);
XTe=zeros(m-f,n);
 for j=1:n %for each column
 %Partitioning Xw
 XTrain=Tr.*Xw(:,j);
 XTest=Te.*Xt(:,j);
 % Zero values are removed for correct regression
 XTr(:,j)=XTrain((Tr~= 0));
 XTe(:,j)=XTest((Te~= 0));
 end
%Partitioning YY
YTr=Tr.*Yw;
YTe=Te.*Y;
% Zero values are removed for correct regression
YTr=YTr((Tr~= 0));
YTe=YTe((Te~= 0));
% Fitting the regression with the training set
TrainedModel = fitlm(XTr,YTr);

% Calculating test set predicted values
XTeReg=[ones(m-f,1) XTe];
Yhat=XTeReg*TrainedModel.Coefficients.Estimate;

% PRESS residuals
res=Yhat-YTe;

%Saving Press residuals
res2(1,i)=sumsqr(res);
end
ESS=sum(res2);
SSE=sumsqr(Nres);
end

169

5.8 PRESS VALIDATION

function [SSE,PRESS,ress] = PRESS2(X,Y)

%Get the WLS result (Coeficient and weighted variables).
% a is result of heteroscedasiticity, Model is the regression under PRESS
% test, XX is weighted X, and YY is weighted Y.
[a,Model,XX,YY,Nres]=HetWLS(X,Y);
[m,n] = size(XX);

% Pratitioning an array of data for PRESS test
c = cvpartition(m,'LeaveOut');

%running the crossvalidation
for i=1:m
% for each set of validation data we need to find the Tr (training array)
% and Te (testing array)
Tr=training(c,i);
Te=test(c,i);
[f,g]=size(Tr(Tr~= 0));
Xt=[ones(m,1) X];
%Input data need to be partitioned. To do so the data XTr and YTr are used
%for training, and the XTe and YTe are used for testing.
XTr=zeros(f,n);
XTe=zeros(m-f,n);
 for j=1:n
 %Partitioning XX
 XTrain=Tr.*XX(:,j);
 XTest=Te.*Xt(:,j);
 % Zero values are removed for correct regression
 XTr(:,j)=XTrain((Tr~= 0));
 XTe(:,j)=XTest((Te~= 0));
 end
%Partitioning YY
YTr=Tr.*YY;
YTe=Te.*Y;

% Zero values are removed for correct regression
YTr=YTr((Tr~= 0));
YTe=YTe((Te~= 0));
% Fitting the regression with the training set
TrainedModel = fitlm(XTr,YTr,'Intercept',false);
% Calculating test set predicted values
Yhat=XTe*TrainedModel.Coefficients.Estimate;

% PRESS residuals
res=Yhat-YTe;
%Saving Press residuals
ress(1,i)=res;
end
PRESS=sumsqr(ress);
SSE=sumsqr(Nres);
end

170

5.9 M5 MODEL TREE (JEKABSONS G. 2016)

function [model, time, ensembleResults] = m5pbuild(Xtr, Ytr, trainParams, ...
 isBinCat, trainParamsEnsemble, keepNodeInfo, verbose)
% m5pbuild
% Builds M5' regression tree, model tree, or ensemble of trees. Trees can
% also be linearized into decision rules. For tree ensembles, can also
% assess input variable importances as well as provide data for ensemble
% interpretation.
%
% Call:
% [model, time, ensembleResults] = m5pbuild(Xtr, Ytr, trainParams, ...
% isBinCat, trainParamsEnsemble, keepNodeInfo, verbose)
%
% All the input arguments, except the first two, are optional. Empty values
% are also accepted (the corresponding defaults will be used).
%
% Input:
% Xtr, Ytr : Xtr is a matrix with rows corresponding to
% observations and columns corresponding to input
% variables. Ytr is a column vector of response values.
% Input variables can be continuous, binary, as well as
% categorical (indicated using isBinCat). All values must
% be numeric. Categorical variables with more than two
% categories will be automatically replaced with
% synthetic binary variables (in accordance with the M5'
% method). Missing values in Xtr must be indicated as
% NaN.
% trainParams : A structure of training parameters for the algorithm.
% If not provided, defaults will be used (see function
% m5pparams for details).
% isBinCat : A vector of flags indicating type of each input
% variable - either continuous (false) or categorical
% (true) with any number of categories, including binary.
% The vector should be of the same length as the number
% of columns in Xtr. m5pbuild then detects all the
% actually possible values for categorical variables from
% the training data. Any new values detected later, i.e.,
% during prediction, will be treated as NaN. By default,
% the vector is created with all values equal to false,
% meaning that all the variables are treated as
% continuous.
% trainParamsEnsemble : A structure of parameters for building ensemble
% of trees. If not provided, a single tree is built. See
% function m5pparamsensemble for details. This can also
% be useful for variable importance assessment. See
% user's manual for examples of usage.
% Note that the ensemble building algorithm employs
% random number generator for which you can set seed
% before calling m5pbuild.
% keepNodeInfo : Whether to keep models (in model trees) and response
% values (in regression trees) in interior nodes of
% trees. And whether to keep indices of training
% observations that reached each node and standard

171

% deviation of each node. These are useful for further
% analysis and plotting. Default value = true. If set to
% false, the information is removed from the trees so
% that the structure takes up less memory. Note that
% interior nodes of smoothed trees will not contain
% models or response values regardless of the value of
% this parameter because only the models in the leaves
% are smoothed. Also note that the standard deviations
% are saved before doing smoothing.
% verbose : Whether to output additional information to console.
% (default value = true)
%
% Output:
% model : A single M5' tree (or a decision rule set) or a cell
% array of M5' trees (or decision rule sets) if an
% ensemble is built. A structure defining one tree (or a
% decision rule set) has the following fields:
% binCat : Information regarding original (continuous / binary /
% categorical) input variables, transformed (synthetic
% binary) input variables, possible values for
% categorical input variables and other information.
% trainParams : A structure of training parameters for the algorithm
% (updated if any values are chosen automatically).
% tree, rules, outcomes : Structures and arrays defining either the
% built tree or the generated decision rules.
% time : Algorithm execution time (in seconds).
% ensembleResults : A structure of results for ensembles of trees or
% decision rules. Not available for Extra-Trees. The
% structure has the following fields:
% OOBError : Out-of-bag estimate of prediction Mean Squared Error of
% the ensemble after each new tree is built. The number
% of rows is equal to the number of trees built. OOBError
% is available only if getOOBError in trainParamsEnsemble
% is set to true. Note that it's possible to calculate
% mean out-of-bag predictions (and therefore out-of-bag
% errors for each individual training data observation)
% by summing the columns of OOBContrib.
% OOBIndices : Logical matrix. For each tree (column) indicates which
% observations were out-of-bag (and thus used in
% computing OOBError). The number of rows in OOBIndices
% is equal to the number of rows in Xtr and Ytr.
% OOBIndices is available only if getOOBError or
% getOOBContrib in trainParamsEnsemble is set to true.
% OOBNum : Number of times observations were out-of-bag (and thus
% used in computing OOBError). The length of OOBNum is
% equal to the number of rows in Xtr and Ytr. OOBNum is
% available only if getOOBError or getOOBContrib in
% trainParamsEnsemble is set to true.
% OOBContrib : A matrix allowing interpreting ensembles in accordance
% with the Forest Floor methodology (Welling et al.,
% 2016). See also example of usage in Section 3.2 of
% user's manual.
% It is a matrix of contributions of each input variable
% to the response for each Xtr row in terms of response
% value changes along the prediction path of a tree
% (averaged over the whole ensemble) so that Yoob =
% in-bag_mean + x1_contribution + x2_contribution + ... +

172

% xn_contribution, where Yoob is prediction of response
% for out-of-bag observation. OOBContrib has the same
% number of columns as Xtr plus one, the last column
% being the in-bag response mean. The sum of columns of
% OOBContrib is equal to Yoob of the whole ensemble for
% each row of Xtr.
% OOBContrib is available only if getOOBContrib in
% trainParamsEnsemble is set to true.
% Note that it's also possible to compute contributions
% and explain predictions for new data (including with
% single trees) – see function m5ppredict.
% varImportance : Variable importance assessment. Calculated when
% out-of-bag data of a variable is permuted. A matrix
% with four rows and as many columns as there are columns
% in Xtr. First row is the average increase of out-of-bag
% Mean Absolute Error (MAE), second row is standard
% deviation of the average increase of MAE, third row is
% the average increase of out-of-bag Mean Squared Error
% (MSE), fourth row is standard deviation of the average
% increase of MSE. The final variable importance estimate
% is often calculated by dividing each MAE or MSE by the
% corresponding standard deviation. Bigger values then
% indicate bigger importance of the corresponding
% variable. See user's manual for example of usage.
% varImportance is available only if getVarImportance in
% trainParamsEnsemble is > 0.

if nargin < 2
 error('Not enough input arguments.');
end

if isempty(Xtr) || isempty(Ytr)
 error('Training data is empty.');
end
if iscell(Xtr) || iscell(Ytr)
 error('Xtr and Ytr should not be cell arrays.');
end
[n, mOriginal] = size(Xtr); % number of observations and number of input

variables
if size(Ytr,1) ~= n
 error('The number of rows in Xtr and Ytr should be equal.');
end
if size(Ytr,2) ~= 1
 error('Ytr should have one column.');
end
if any(any(isnan(Ytr)))
 error('Cannot handle NaNs in Ytr.');
end

if (nargin < 3) || isempty(trainParams)
 trainParams = m5pparams();
else
 trainParams.minLeafSize = max(1, trainParams.minLeafSize);
 if (trainParams.minLeafSize == 1) && trainParams.prune
 error('M5'' does not allow minLeafSize=1 if pruning is enabled.');
 end

173

 trainParams.minParentSize = max(trainParams.minLeafSize * 2,

trainParams.minParentSize);
 if (trainParams.extractRules < 2)
 trainParams.smoothingK = max(0, trainParams.smoothingK);
 else
 if trainParams.smoothingK > 0
 warning('Smoothing for M5''Rules method is always disabled.');
 end
 trainParams.smoothingK = 0;
 end
 trainParams.splitThreshold = max(0, trainParams.splitThreshold);
 trainParams.maxDepth = max(0, floor(trainParams.maxDepth));
 trainParams.extractRules = max(0, min(2,

floor(trainParams.extractRules)));
end
if (nargin < 4) || isempty(isBinCat)
 isBinCat = false(1,mOriginal);
else
 isBinCat = isBinCat(:)'; % force row vector
 if length(isBinCat) ~= mOriginal
 error('The number of elements in isBinCat should be equal to the

number of columns in Xtr.');
 end
end
if (nargin < 5)
 trainParamsEnsemble = [];
else
 if (~isempty(trainParamsEnsemble)) && trainParamsEnsemble.extraTrees &&

(trainParams.prune || trainParams.modelTree)
 error('Pruning and model trees are not available for Extra-Trees.');
 end
end
if (nargin < 6) || isempty(keepNodeInfo)
 keepNodeInfo = true;
 if trainParams.smoothingK > 0
 keepInteriorModels = false; % forcing
 else
 keepInteriorModels = true;
 end
else
 keepInteriorModels = false;
 keepNodeInfo = false;
end
if (nargin < 7) || isempty(verbose)
 verbose = true;
end

binCat = isBinCat .* 2;
% Transform categorical variables into a number of synthetic binary variables
binCatVals = {};
if any(binCat >= 2)
 binCatNewNum = [];
 binCatCounter = 0;
 Xnew = [];
 model.binCat.varMap = {};
 for i = 1 : mOriginal
 if binCat(i) >= 2

174

 XX = Xtr(:,i);
 u = unique(XX(~isnan(XX))); % no NaNs, unique, sorted
 if size(u,1) > 2
 model.binCat.varMap = [model.binCat.varMap

(size(binCatNewNum,2)+1) : (size(binCatNewNum,2)+size(u,1)-1)];
 avg = zeros(size(u,1),1);
 for j = 1 : size(u,1)
 avg(j) = mean(Ytr(Xtr(:,i) == u(j)));
 end
 [~, ind] = sort(avg);
 u = u(ind);
 Xb = zeros(n,size(u,1)-1);
 for j = 1 : n
 if isnan(Xtr(j,i))
 Xb(j,:) = NaN;
 else
 Xb(j, 1 : find(Xtr(j,i) == u) - 1) = 1;
 end
 end
 Xnew = [Xnew Xb];
 binCatNewNum = [binCatNewNum repmat(size(u,1),1,size(u,1)-

1)];
 else
 Xnew = [Xnew Xtr(:,i)];
 binCatNewNum = [binCatNewNum 2];
 model.binCat.varMap = [model.binCat.varMap

size(binCatNewNum,2)];
 end
 binCat(i) = size(u,1);
 binCatCounter = binCatCounter + 1;
 binCatVals{binCatCounter} = u;
 if binCat(i) >= 50
 warning(['Categorical variable #' num2str(i) ' has '

num2str(binCat(i)) ' unique values.']);
 end
 else
 Xnew = [Xnew Xtr(:,i)];
 binCatNewNum = [binCatNewNum 0];
 model.binCat.varMap = [model.binCat.varMap size(binCatNewNum,2)];
 end
 end
 Xtr = Xnew;
 model.binCat.catVals = binCatVals;
else
 binCatNewNum = binCat;
 model.binCat.varMap = num2cell(1:mOriginal);
end

model.binCat.binCat = binCat;
model.binCat.binCatNew = binCatNewNum >= 2; % 0 for continuous; 1 for binary
if any(model.binCat.binCatNew)
 % this is used later for printing/plotting of the trees/rules
 model.binCat.minVals = min(Xtr);
 if (trainParams.extractRules > 0)
 model.binCat.maxVals = max(Xtr);
 end
end

175

model.trainParams = trainParams;

if verbose
 if trainParams.modelTree, str = 'model'; else str = 'regression'; end
 if isempty(trainParamsEnsemble)
 if trainParams.extractRules == 0
 disp(['Growing M5'' ' str ' tree...']);
 else
 disp('Generating rule set...');
 end
 else
 if trainParams.extractRules == 0
 disp(['Growing M5'' ' str ' tree ensemble...']);
 else
 disp('Growing ensemble of rule sets...');
 end
 end
end

origWarningState = warning;
if exist('OCTAVE_VERSION', 'builtin')
 warning('off', 'Octave:nearly-singular-matrix');
 warning('off', 'Octave:singular-matrix');
else
 warning('off', 'MATLAB:nearlySingularMatrix');
 warning('off', 'MATLAB:singularMatrix');
end
ttt = tic;

% For the original binary and continuous variables beta = 1
% For synthetic binary variables created from original categorical variables

beta < 1
beta = exp(7 * (2 - max(2, binCatNewNum)) / n);

if isempty(trainParamsEnsemble)

 sd = stdMy(Ytr);
 numNotMissing = sum(~isnan(Xtr),1); % number of non-missing values for

each variable
 model = buildTree(model, Xtr, Ytr, sd, numNotMissing, binCatNewNum, beta,

[], [], false, keepInteriorModels, keepNodeInfo);

 ensembleResults = [];

else

 if trainParamsEnsemble.numVarsTry < 1
 if trainParamsEnsemble.numVarsTry < 0
 trainParamsEnsemble.numVarsTry = mOriginal / 3;
 else
 trainParamsEnsemble.numVarsTry = mOriginal;
 end
 end

176

 trainParamsEnsemble.numVarsTry = min(mOriginal, max(1,

floor(trainParamsEnsemble.numVarsTry)));

 if ~trainParamsEnsemble.extraTrees
 % Random Forests or Bagging

 if round(trainParamsEnsemble.inBagFraction * n) < 1
 error('trainParamsEnsemble.inBagFraction too small. In-bag set is

empty.');
 end
 if (~trainParamsEnsemble.withReplacement) &&

(round(trainParamsEnsemble.inBagFraction * n) >= n)
 error('trainParamsEnsemble.inBagFraction too big. Out-of-bag set

is empty.');
 end

 modelBase = model;
 models = cell(trainParamsEnsemble.numTrees, 1);

 if (~trainParamsEnsemble.getOOBError) &&

(trainParamsEnsemble.getVarImportance == 0) &&

(~trainParamsEnsemble.getOOBContrib)
 ensembleResults = [];
 else
 if trainParamsEnsemble.getOOBError ||

trainParamsEnsemble.getOOBContrib
 OOBNum = zeros(n, 1);
 ensembleResults.OOBIndices = false(n,

trainParamsEnsemble.numTrees);
 end
 if trainParamsEnsemble.getOOBContrib
 OOBContrib = zeros(n, mOriginal + 1);
 end
 if trainParamsEnsemble.getOOBError
 OOBPred = zeros(n, 1);
 ensembleResults.OOBError = NaN(trainParamsEnsemble.numTrees,

1);
 end
 if trainParamsEnsemble.getVarImportance > 0
 diffOOBMAE = NaN(trainParamsEnsemble.numTrees, mOriginal);
 diffOOBMSE = NaN(trainParamsEnsemble.numTrees, mOriginal);
 ensembleResults.varImportance = zeros(4, mOriginal); %

increase in MAE, SD, increase in MSE, SD
 end
 end

 % for each tree
 for t = 1 : trainParamsEnsemble.numTrees
 if verbose && (trainParamsEnsemble.verboseNumIter > 0) && ...
 (mod(t, trainParamsEnsemble.verboseNumIter) == 0)
 if trainParams.extractRules == 0
 fprintf('Growing tree #%d...\n', t);
 else
 fprintf('Generating rule set #%d...\n', t);
 end
 end

177

 % sampling
 if trainParamsEnsemble.withReplacement
 idx = randi(n, round(trainParamsEnsemble.inBagFraction * n),

1);
 X = Xtr(idx,:);
 Y = Ytr(idx,1);
 else
 perm = randperm(n);
 idx = perm(1:round(trainParamsEnsemble.inBagFraction * n));
 X = Xtr(idx,:);
 Y = Ytr(idx,1);
 end

 if t > 1
 model = modelBase;
 end

 sd = stdMy(Y);
 numNotMissing = sum(~isnan(X),1); % number of non-missing values

for each variable
 model = buildTree(model, X, Y, sd, numNotMissing, binCatNewNum,

beta, ...
 trainParamsEnsemble.numVarsTry, mOriginal, false,

keepInteriorModels, keepNodeInfo);

 % additional calculations, if asked
 if trainParamsEnsemble.getOOBError ||

(trainParamsEnsemble.getVarImportance > 0) ||

trainParamsEnsemble.getOOBContrib
 idxoob = true(n,1);
 idxoob(idx) = false;
 idxoob = find(idxoob);
 if ~isempty(idxoob) % test for the unlikely case when out-of-

bag set is empty
 Xoob = Xtr(idxoob,:);
 Yq = zeros(size(Xoob,1),1);

 if trainParamsEnsemble.getOOBContrib
 for i = 1 : size(Xoob,1)
 [Yq(i), OOBContrib2] = predictsingle(model,

Xoob(i,:), modelBase.binCat.varMap);
 OOBContrib(idxoob(i),:) = OOBContrib(idxoob(i),:)

+ OOBContrib2;
 end
 else
 for i = 1 : size(Xoob,1)
 Yq(i) = predictsingle(model, Xoob(i,:));
 end
 end

 if trainParamsEnsemble.getOOBError ||

trainParamsEnsemble.getOOBContrib
 ensembleResults.OOBIndices(idxoob,t) = true;
 OOBNum(idxoob) = OOBNum(idxoob) + 1;
 end

178

 if trainParamsEnsemble.getOOBError
 idxExist = OOBNum ~= 0;
 OOBPred(idxoob) = OOBPred(idxoob) + Yq;
 ensembleResults.OOBError(t,1) =

mean(((OOBPred(idxExist) ./ OOBNum(idxExist)) - Ytr(idxExist)) .^ 2);
 if verbose && (trainParamsEnsemble.verboseNumIter >

0) && ...
 (mod(t, trainParamsEnsemble.verboseNumIter)

== 0)
 if trainParams.extractRules == 0
 fprintf('Out-of-bag MSE with %d trees:

%.5g\n', t, ensembleResults.OOBError(t,1));
 else
 fprintf('Out-of-bag MSE with %d rule sets:

%.5g\n', t, ensembleResults.OOBError(t,1));
 end
 end
 end

 if trainParamsEnsemble.getVarImportance > 0
 Yqtdiff = Yq - Ytr(idxoob);
 for v = 1 : mOriginal
 for iPerm =

1:trainParamsEnsemble.getVarImportance
 Xoobpert = Xoob;
 idxoobpert =

idxoob(randperm(size(idxoob,1)),1);
 % Perturb OOB variables that correspond to

the original vth variable
 for vnew = model.binCat.varMap{v}
 Xoobpert(:,vnew) = Xtr(idxoobpert,vnew);
 end
 Yqpert = zeros(size(Xoobpert,1),1);
 for i = 1 : size(Xoobpert,1)
 Yqpert(i) = predictsingle(model,

Xoobpert(i,:));
 end
 Yqptdiff = Yqpert - Ytr(idxoob);
 if iPerm == 1
 diffOOBMAE(t,v) = mean(abs(Yqptdiff)) -

mean(abs(Yqtdiff));
 diffOOBMSE(t,v) = mean(Yqptdiff .^ 2) -

mean(Yqtdiff .^ 2);
 else
 diffOOBMAE(t,v) = diffOOBMAE(t,v) +

mean(abs(Yqptdiff)) - mean(abs(Yqtdiff));
 diffOOBMSE(t,v) = diffOOBMSE(t,v) +

mean(Yqptdiff .^ 2) - mean(Yqtdiff .^ 2);
 end
 end
 if trainParamsEnsemble.getVarImportance > 1
 diffOOBMAE(t,v) = diffOOBMAE(t,v) /

trainParamsEnsemble.getVarImportance;
 diffOOBMSE(t,v) = diffOOBMSE(t,v) /

trainParamsEnsemble.getVarImportance;
 end
 end

179

 end

 end
 end

 models{t} = model;
 end % end of loop through all trees
 model = models;
 if trainParamsEnsemble.getOOBError ||

trainParamsEnsemble.getOOBContrib
 ensembleResults.OOBNum = OOBNum;
 end
 if trainParamsEnsemble.getOOBContrib
 ensembleResults.OOBContrib = OOBContrib ./ repmat(OOBNum, 1,

mOriginal + 1);
 end
 if trainParamsEnsemble.getVarImportance > 0
 ensembleResults.varImportance(1,:) = mean(diffOOBMAE, 1);
 ensembleResults.varImportance(2,:) = std(diffOOBMAE, 1, 1);
 ensembleResults.varImportance(3,:) = mean(diffOOBMSE, 1);
 ensembleResults.varImportance(4,:) = std(diffOOBMSE, 1, 1);
 end

 else % if extraTrees
 % Extra-Trees

 modelBase = model;
 models = cell(trainParamsEnsemble.numTrees, 1);
 ensembleResults = [];
 sd = stdMy(Ytr);
 numNotMissing = sum(~isnan(Xtr),1); % number of non-missing values

for each variable
 % for each tree
 for t = 1 : trainParamsEnsemble.numTrees
 if verbose && (trainParamsEnsemble.verboseNumIter > 0) && ...
 (mod(t, trainParamsEnsemble.verboseNumIter) == 0)
 if trainParams.extractRules == 0
 fprintf('Growing tree #%d...\n', t);
 else
 fprintf('Generating rule set #%d...\n', t);
 end
 end
 if t > 1
 model = modelBase;
 end
 model = buildTree(model, Xtr, Ytr, sd, numNotMissing,

binCatNewNum, beta, ...
 trainParamsEnsemble.numVarsTry, mOriginal, true,

keepInteriorModels, keepNodeInfo);

 models{t} = model;
 end
 model = models;
 end % end of if extraTrees

end

180

time = toc(ttt);
if verbose
 if isempty(trainParamsEnsemble)
 printinfo(model);
 end
 fprintf('Execution time: %0.2f seconds\n', time);
end
warning(origWarningState);
end

%==

function model = buildTree(model, X, Y, sd, numNotMissing, binCatNewNum,

beta, numVarsTry, mOriginal, extraTrees, keepInteriorModels, keepNodeInfo)
% Builds a tree. If asked, extracts decision rules and returns them instead

of the tree.
if model.trainParams.extractRules == 0
 % This is normal execution for building M5' trees.
 % Growing the tree
 model.tree = splitNode(X, Y, 1:size(Y,1), 0, sd, numNotMissing,

binCatNewNum, model.trainParams, beta, numVarsTry, mOriginal,

model.binCat.varMap, extraTrees, keepNodeInfo);
 % Pruning the tree and/or filling it with models or mean values
 model.tree = pruneNode(model.tree, X, Y, model.trainParams,

keepNodeInfo);
 if model.trainParams.smoothingK > 0
 totalAttrs = model.binCat.varMap{end}(end);
 model.tree = smoothing(model.tree, [], model.trainParams.modelTree,

model.trainParams.smoothingK, totalAttrs);
 end
 model.tree = cleanUp(model.tree, model.trainParams.modelTree,

~keepInteriorModels, ~keepNodeInfo);
elseif model.trainParams.extractRules == 1
 % Build M5' tree and extract all its decision rules.
 % Growing the tree
 tree = splitNode(X, Y, 1:size(Y,1), 0, sd, numNotMissing, binCatNewNum,

model.trainParams, beta, numVarsTry, mOriginal, model.binCat.varMap,

extraTrees, keepNodeInfo);
 % Pruning the tree and/or filling it with models or mean values
 tree = pruneNode(tree, X, Y, model.trainParams, keepNodeInfo);
 if model.trainParams.smoothingK > 0
 totalAttrs = model.binCat.varMap{end}(end);
 tree = smoothing(tree, [], model.trainParams.modelTree,

model.trainParams.smoothingK, totalAttrs);
 end
 if model.trainParams.modelTree
 [model.rules, model.outcomesCoefs, model.outcomesAttrIdx,

model.outcomesAttrAvg, model.outcomesNumCases, outcomesCaseIdx, outcomesSD] =

...
 createRules(tree, model.trainParams.modelTree, false,

keepNodeInfo);
 else
 [model.rules, model.outcomes, ~, ~, model.outcomesNumCases,

outcomesCaseIdx, outcomesSD] = ...

181

 createRules(tree, model.trainParams.modelTree, false,

keepNodeInfo);
 end
 if keepNodeInfo
 model.outcomesCaseIdx = outcomesCaseIdx;
 model.outcomesSD = outcomesSD;
 end
else
 % Builds a list of decision rules using the M5'Rules method.
 model.rules = {};
 if model.trainParams.modelTree
 model.outcomesCoefs = {};
 model.outcomesAttrIdx = {};
 model.outcomesAttrAvg = {};
 else
 model.outcomes = [];
 end
 model.outcomesNumCases = [];
 if keepNodeInfo
 caseIdx = 1 : size(X,1); % so that we get original indices even after

some observations are deleted
 model.outcomesCaseIdx = {};
 model.outcomesSD = [];
 end
 currRule = 0;
 while true
 % Growing the tree
 tree = splitNode(X, Y, 1:size(Y,1), 0, sd, numNotMissing,

binCatNewNum, model.trainParams, beta, numVarsTry, mOriginal,

model.binCat.varMap, extraTrees, keepNodeInfo);
 % Pruning the tree and/or filling it with models or mean values
 tree = pruneNode(tree, X, Y, model.trainParams, keepNodeInfo);
 if model.trainParams.modelTree
 [rules, outcomesCoefs, outcomesAttrIdx, outcomesAttrAvg,

outcomesNumCases, outcomesCaseIdx, outcomesSD] = ...
 createRules(tree, model.trainParams.modelTree, true,

keepNodeInfo);
 else
 [rules, outcomes, ~, ~, outcomesNumCases, outcomesCaseIdx,

outcomesSD] = ...
 createRules(tree, model.trainParams.modelTree, true,

keepNodeInfo);
 end
 [~, idx] = max(outcomesNumCases);

 % Storing the decision rule with the biggest coverage.
 currRule = currRule + 1;
 model.rules{currRule,1} = rules{idx};
 if model.trainParams.modelTree
 model.outcomesCoefs{currRule,1} = outcomesCoefs{idx};
 model.outcomesAttrIdx{currRule,1} = outcomesAttrIdx{idx};
 model.outcomesAttrAvg{currRule,1} = outcomesAttrAvg{idx};
 else
 model.outcomes(currRule,1) = outcomes(idx);
 end
 model.outcomesNumCases(currRule,1) = outcomesNumCases(idx);
 if keepNodeInfo

182

 model.outcomesCaseIdx{currRule,1} =

caseIdx(outcomesCaseIdx{idx});
 caseIdx(outcomesCaseIdx{idx}) = [];
 model.outcomesSD(currRule,1) = outcomesSD(idx);
 end

 % Deleting observations covered by the stored rule.
 X(outcomesCaseIdx{idx},:) = [];
 Y(outcomesCaseIdx{idx},:) = [];
 if (size(X,1) == 0)
 break;
 end
 %sd = stdMy(Y);
 %numNotMissing = sum(~isnan(X),1);
 end
end
end

function [node, attrList] = splitNode(X, Y, caseIdx, depth, sd,

numNotMissing, binCatNewNum, trainParams, beta, numVarsTry, mOriginal,

varMap, extraTrees, keepNodeInfo)
% The function splits node into left node and right node
node.caseIdx = caseIdx;
if depth >= trainParams.maxDepth
 node.interior = false; % this node will be a leaf node
 attrList = [];
 if keepNodeInfo
 node.sd = stdMy(Y(caseIdx));
 end
 return;
end
YY = Y(caseIdx);
stdYall = stdMy(YY);
if keepNodeInfo
 node.sd = stdYall;
end
% no need to check minLeafSize*2 because minParentSize is guaranteed to be at

least twice the minLeafSize
% (size(caseIdx,2) < trainParams.minLeafSize * 2) || ...
if (size(caseIdx,2) < trainParams.minParentSize) || ...
 (stdYall < trainParams.splitThreshold * sd)
 node.interior = false; % this node will be a leaf node
 attrList = [];
 return;
end;
sdr = -Inf;
if ~extraTrees
 % This is for individual trees and trees in Bagging and Random Forests
 if isempty(numVarsTry) || (numVarsTry >= mOriginal)
 varsTry = 1:size(X, 2); % try all variables
 else
 % We will try random subset of variables (for building ensembles)
 % For categorical variables, we will try all their synthetic binary

variables
 origVList = randperm(mOriginal);
 varsTry = [varMap{origVList(1:numVarsTry)}];

183

 end
else
 % This is for trees in Extra-Trees
 if isempty(numVarsTry) || (numVarsTry >= mOriginal)
 % This is for the typical configuration when we try all variables,

for one split each
 varsTry = [];
 for v = 1 : mOriginal
 vars = varMap{v};
 if size(vars,2) < 2
 varsTry = [varsTry vars];
 else
 % For categorical variables, we will randomly select one

synthetic binary variable
 varsTry = [varsTry vars(randi(size(vars,2),1))];
 end
 end
 else
 % This is for the configuration when we try fewer than all variables

but they should be non constant in the node
 origVList = randperm(mOriginal);
 numVarsUsed = 0;
 varsTry = [];
 for origV = origVList
 vars = varMap{origV};
 nonConstant = false;
 for v = vars
 XX = X(caseIdx,v);
 if min(XX) ~= max(XX)
 nonConstant = true;
 break;
 end
 end
 if ~nonConstant
 continue;
 end
 if size(vars,2) >= 2
 % For categorical variables, we will randomly select one

synthetic binary variable
 vars = vars(randi(size(vars,2),1));
 end
 varsTry = [varsTry vars];
 numVarsUsed = numVarsUsed + 1;
 if numVarsUsed >= numVarsTry
 break;
 end
 end
 end
end
% let's find best variable and best split
for i = varsTry
 XX = X(caseIdx,i);
 % NaNs (unknown values) will not be used for split point determination
 % and there is no need to sort because unique already sorts
 nonansIdx = ~isnan(XX);
 XXnonans = XX(nonansIdx);
 if binCatNewNum(i) >= 2

184

 % It's simple with binary variables
 minXXnonans = min(XXnonans);
 maxXXnonans = max(XXnonans);
 if minXXnonans == maxXXnonans
 continue;
 end
 splitCandidates = (minXXnonans + maxXXnonans) / 2;
 else
 if ~extraTrees
 sorted = unique(XXnonans);
 if size(sorted,1) < 2
 continue;
 end
 splitCandidates = ((sorted(1:end-1) + sorted(2:end)) ./ 2)';
 else
 minXXnonans = min(XXnonans);
 maxXXnonans = max(XXnonans);
 if minXXnonans == maxXXnonans
 continue;
 end
 splitCandidates = minXXnonans + rand(1) * (maxXXnonans -

minXXnonans);
 end
 end
 sizeAllNoNans = size(XXnonans,1); % size without NaNs
 if (sizeAllNoNans == size(XX,1)) % if there are no NaNs
 stdY = stdYall;
 else
 stdY = stdMy(YY(nonansIdx)); % NaNs are not used for splitting

decisions
 end
 % let's find the best split
 for splitCand = splitCandidates
 leftInd = find(XX <= splitCand);
 if (size(leftInd,1) < trainParams.minLeafSize)
 continue;
 end
 rightInd = find(XX > splitCand);
 if (size(rightInd,1) < trainParams.minLeafSize)
 break; % break loop because we definitely are too near the edge

for any further split point to be allowed
 end
 % calculate SDR for the split point
 if trainParams.vanillaSDR
 sdrNew = stdY - (size(leftInd,1) * stdMy(YY(leftInd)) +

size(rightInd,1) * stdMy(YY(rightInd))) / sizeAllNoNans;
 else
 sdrNew = numNotMissing(i) / sizeAllNoNans * beta(i) * ...
 (stdY - (size(leftInd,1) * stdMy(YY(leftInd)) +

size(rightInd,1) * stdMy(YY(rightInd))) / sizeAllNoNans);
 end
 if sdrNew > sdr
 sdr = sdrNew;
 splitPoint = splitCand;
 attrList = i;
 end
 end

185

end
if sdr <= 0
 % This node will be a leaf node
 node.interior = false;
 attrList = [];
else
 % This node will be an interior node
 [leftInd, rightInd] = leftright(splitPoint, X(caseIdx,attrList), YY,

binCatNewNum(attrList));
 leftInd = caseIdx(leftInd);
 rightInd = caseIdx(rightInd);
 node.interior = true;
 node.splitAttr = attrList;
 node.splitLocation = splitPoint;
 [node.left, attrList2] = ...
 splitNode(X, Y, leftInd, depth + 1, sd, numNotMissing, binCatNewNum,

trainParams, ...
 beta, numVarsTry, mOriginal, varMap, extraTrees,

keepNodeInfo);
 if trainParams.modelTree
 attrList = [attrList attrList2];
 end
 [node.right, attrList2] = ...
 splitNode(X, Y, rightInd, depth + 1, sd, numNotMissing, binCatNewNum,

trainParams, ...
 beta, numVarsTry, mOriginal, varMap, extraTrees,

keepNodeInfo);
 if trainParams.modelTree
 attrList = unique([attrList attrList2]); % unique also sorts
 node.attrList = attrList;
 end
end
end

function stdev = stdMy(Y)
% Calculates standard deviation
% Does the same as Matlab's std function but without all the overhead
nn = size(Y,1);
stdev = sqrt(sum((Y - (sum(Y) / nn)) .^ 2) / nn);
end

function [leftInd, rightInd] = leftright(split, X, Y, binCatNewNum)
% Splits all observations into left and right sets. Deals with NaNs

separately.
leftInd = find(X <= split);
rightInd = find(X > split);
% Place observations with NaNs in left or right according to their Y values
isNaN = isnan(X);
if any(isNaN)
 if binCatNewNum < 2
 % For continuous variables
 [~, sorted] = sort(X(leftInd));
 sorted = leftInd(sorted);
 leftAvg = mean(Y(sorted(end - min([2 size(leftInd,1)-1]) : end)));
 [~, sorted] = sort(X(rightInd));
 sorted = rightInd(sorted);

186

 rightAvg = mean(Y(sorted(1 : min([3 size(rightInd,1)]))));
 else
 % For both original and synthetic binary variables
 leftAvg = mean(Y(leftInd));
 rightAvg = mean(Y(rightInd));
 end
 avgAvg = (leftAvg + rightAvg) / 2;
 smaller = Y(isNaN) <= avgAvg;
 nanInd = find(isNaN);
 if leftAvg <= rightAvg
 leftInd = [leftInd; nanInd(smaller)];
 rightInd = [rightInd; nanInd(~smaller)];
 else
 leftInd = [leftInd; nanInd(~smaller)];
 rightInd = [rightInd; nanInd(smaller)];
 end
end
end

function node = pruneNode(node, X, Y, trainParams, keepNodeInfo)
% Prunes the tree and fills it with models (or average values).
% If tree pruning is disabled, only filling with models is done.
% For each model, subset selection is done (using sequential backward

selection).
if ~node.interior
 if ~trainParams.modelTree
 node.value = mean(Y(node.caseIdx));
 else
 % Original leaf nodes ignore input variables
 node.modelCoefs = mean(Y(node.caseIdx));
 node.modelAttrIdx = [];
 end
 return;
end
node.left = pruneNode(node.left, X, Y, trainParams, keepNodeInfo);
node.right = pruneNode(node.right, X, Y, trainParams, keepNodeInfo);
if ~trainParams.modelTree
 node.value = mean(Y(node.caseIdx));
 if trainParams.prune
 errNode = calcErrNodeWithAllKnown(node, X, Y, trainParams, true); %

pretend it's known because regression tree doesn't care
 end
else
 attrInd = node.attrList;
 if isempty(attrInd) % no attributes. the model will include only

intercept
 node.modelCoefs = mean(Y(node.caseIdx));
 node.modelAttrIdx = [];
 if trainParams.prune
 errNode = calcErrNodeWithAllKnown(node, X, Y, trainParams, true);

% pretend it's known because no attributes are used
 end
 else
 XX = X;
 isNaN = isnan(X(node.caseIdx,attrInd));
 for i = 1 : length(attrInd)
 % Store average values of the variables (required when the tree

187

 % is used for prediction and NaN is encountered)
 % (node.modelAttrIdx provides index for the variable for which
 % modelAttrAvg is the average value)
 node.modelAttrAvg(i) =

mean(X(node.caseIdx(~isNaN(:,i)),attrInd(i)));
 % Replace NaNs by the average values of the corresponding

variables
 % of the training observations reaching the node
 XX(node.caseIdx(isNaN(:,i)),attrInd(i)) = node.modelAttrAvg(i);
 end
 A = [ones(length(node.caseIdx),1) XX(node.caseIdx,attrInd)];
 node.modelCoefs = A \ Y(node.caseIdx);
 node.modelAttrIdx = attrInd;
 if trainParams.prune
 errNode = calcErrNodeWithAllKnown(node, XX, Y, trainParams,

true);
 if trainParams.eliminateTerms
 % Perform variable selection
 attrIndBest = attrInd;
 coefsBest = node.modelCoefs;
 changed = false;
 for j = 1 : length(attrInd)
 attrIndOld = node.modelAttrIdx;
 for i = 1 : length(attrIndOld)
 node.modelAttrIdx = attrIndOld;
 node.modelAttrIdx(i) = [];
 A = [ones(length(node.caseIdx),1)

XX(node.caseIdx,node.modelAttrIdx)];
 node.modelCoefs = A \ Y(node.caseIdx);
 errTry = calcErrNodeWithAllKnown(node, XX, Y,

trainParams, true);
 if errTry < errNode
 errNode = errTry;
 attrIndBest = node.modelAttrIdx;
 coefsBest = node.modelCoefs;
 changed = true;
 end
 end
 node.modelAttrIdx = attrIndBest;
 node.modelCoefs = coefsBest;
 if ~changed
 break;
 end
 end
 % Update node.modelAttrAvg if the used subset of variables

has changed
 if length(node.modelAttrIdx) < length(attrInd)
 for i = 1 : length(node.modelAttrIdx)
 node.modelAttrAvg(i) = node.modelAttrAvg(attrInd ==

node.modelAttrIdx(i));
 end
 node.modelAttrAvg =

node.modelAttrAvg(1:length(node.modelAttrIdx));
 end
 end
 end
 if keepNodeInfo

188

 val = [ones(length(node.caseIdx),1)

X(node.caseIdx,node.modelAttrIdx)] * node.modelCoefs;
 node.sd = sqrt(mean((val - Y(node.caseIdx)).^2));
 end
 end
end
if trainParams.prune && ...
 (...
 ((~trainParams.aggressivePruning) && (calcErrSubtree(node, X, Y,

trainParams) >= errNode)) || ...
 (trainParams.aggressivePruning && (calcErrSubtreeAggressive(node, X, Y,

trainParams) >= errNode)) ...
)
 % above we could also add "(sd * 1E-6 > errNode)"
 % this node will be a leaf node
 node.interior = false;
 if trainParams.modelTree
 node = rmfield(node, {'splitAttr', 'splitLocation', 'left', 'right',

'attrList'});
 else
 node = rmfield(node, {'splitAttr', 'splitLocation', 'left',

'right'});
 end
else
 if trainParams.modelTree
 node = rmfield(node, 'attrList');
 end
 % Store average value of the split variable (required when the tree
 % is used for prediction and NaN is encountered)
 notNaN = node.caseIdx(~isnan(X(node.caseIdx,node.splitAttr)));
 %node.splitAttrAvg = mean(X(notNaN,node.splitAttr)); % not really needed.

we can just set nanLeft
 node.nanLeft = mean(X(notNaN,node.splitAttr)) <= node.splitLocation;
end
end

function err = calcErrSubtree(node, X, Y, trainParams)
% Calculates error of the subtree
if node.interior
 err = (length(node.left.caseIdx) * calcErrSubtree(node.left, X, Y,

trainParams) + ...
 length(node.right.caseIdx) * calcErrSubtree(node.right, X, Y,

trainParams)) / ...
 length(node.caseIdx);
else
 err = calcErrNode(node, X, Y, trainParams);
end
end

function err = calcErrSubtreeAggressive(node, X, Y, trainParams)
% Calculates error of the subtree, applies penalty
[err, v] = calcErrSubtreeAggressiveDo(node, X, Y, trainParams);
nn = length(node.caseIdx);
if (nn > v)
 err = err * (nn + v * 2) / (nn - v);
else

189

 err = err * 10;
end
end
function [err, v] = calcErrSubtreeAggressiveDo(node, X, Y, trainParams)
% Calculates error of the subtree
if node.interior
 [errLeft, vLeft] = calcErrSubtreeAggressiveDo(node.left, X, Y,

trainParams);
 [errRight, vRight] = calcErrSubtreeAggressiveDo(node.right, X, Y,

trainParams);
 err = (length(node.left.caseIdx) * errLeft + length(node.right.caseIdx) *

errRight) / length(node.caseIdx);
 v = vLeft + vRight + 1;
else
 err = calcErrNode(node, X, Y, trainParams);
 if trainParams.modelTree
 v = length(node.modelCoefs);
 else
 v = 1;
 end
end
end

function err = calcErrNode(node, X, Y, trainParams)
% Calculates error of the node. Handles missing values.
if trainParams.modelTree
 % Replace NaNs with the average values of the corresponding variables
 % of the training observations reaching the node
 isNaN = isnan(X(node.caseIdx,node.modelAttrIdx));
 for i = 1 : length(node.modelAttrIdx)
 X(node.caseIdx(isNaN(:,i)),node.modelAttrIdx(i)) =

node.modelAttrAvg(i);
 end
end
err = calcErrNodeWithAllKnown(node, X, Y, trainParams, false);
end

function err = calcErrNodeWithAllKnown(node, X, Y, trainParams,

forDroppingTerms)
% Calculates error of the node. Assumes all values are known.
if trainParams.modelTree
 val = [ones(length(node.caseIdx),1) X(node.caseIdx,node.modelAttrIdx)] *

node.modelCoefs;
 deviation = mean(abs(val - Y(node.caseIdx)));
 v = length(node.modelCoefs);
else
 deviation = mean(abs(node.value - Y(node.caseIdx)));
 v = 1;
end
if ~trainParams.aggressivePruning
 nn = length(node.caseIdx);
 err = (nn + v) / (nn - v) * deviation;
else
 if forDroppingTerms
 nn = length(node.caseIdx);
 err = (nn + v * 2) / (nn - v) * deviation;

190

 else
 err = deviation;
 end
end
end

function node = cleanUp(node, modelTree, removeInteriorModels, removeCaseIdx)
% Removing the temporary fields
node.numCases = length(node.caseIdx);
if removeCaseIdx
 node = rmfield(node, 'caseIdx');
end
if node.interior
 if removeInteriorModels
 if modelTree
 node = rmfield(node, {'modelCoefs', 'modelAttrAvg',

'modelAttrIdx'});
 else
 node = rmfield(node, 'value');
 end
 end
 node.left = cleanUp(node.left, modelTree, removeInteriorModels,

removeCaseIdx);
 node.right = cleanUp(node.right, modelTree, removeInteriorModels,

removeCaseIdx);
end
end

function node = smoothing(node, list, modelTree, smoothingK, totalAttrs)
% Performs smoothing by incorporating interior models into leaf models.
% Deals with modelAttrAvg, so that unknown values can be substituted with
% modelAttrAvg at leaves.
if node.interior
 if modelTree
 data.attrIdx = node.modelAttrIdx;
 data.coefs = node.modelCoefs;
 data.attrAvg = zeros(totalAttrs,1);
 data.attrAvg(node.modelAttrIdx) = node.modelAttrAvg;
 else
 data.value = node.value;
 end
 data.numCases = length(node.caseIdx);
 list{end+1} = data; % making a list. will be used at leaf nodes
 node.left = smoothing(node.left, list, modelTree, smoothingK,

totalAttrs);
 node.right = smoothing(node.right, list, modelTree, smoothingK,

totalAttrs);
else
 if modelTree
 len = length(list);
 if len > 0
 attrIdx = node.modelAttrIdx;
 s_n = length(node.caseIdx);
 coefs = zeros(totalAttrs+1,1);
 coefs([1 attrIdx+1]) = node.modelCoefs;
 attrAvg = zeros(totalAttrs,1);

191

 if ~isempty(attrIdx)
 attrAvg(attrIdx) = node.modelAttrAvg;
 end
 % pretend to go from the leaf node to the root node
 for i = len:-1:1
 % Update list of used variables
 attrIdx = union(attrIdx, list{i}.attrIdx); % union sorts.

this also will make equations easier to understand
 % Coefs at this node
 coefsHere = zeros(size(coefs));
 coefsHere([1 list{i}.attrIdx+1]) = list{i}.coefs;
 % Recalculate weighted averages for NaNs
 idx = true(size(coefs));
 idx(1) = false;
 idx((coefs == 0) & (coefsHere == 0)) = false;
 if any(idx)
 idxAttr = idx(2:end);
 attrAvg(idxAttr) = ...
 attrAvg(idxAttr) .* s_n .* coefs(idx) ./ (s_n .*

coefs(idx) + smoothingK .* coefsHere(idx)) + ...
 list{i}.attrAvg(idxAttr) .* smoothingK .*

coefsHere(idx) ./ (s_n .* coefs(idx) + smoothingK .* coefsHere(idx));
 end
 % Recalculate smoothed coefs
 coefs = (s_n * coefs + smoothingK * coefsHere) / (s_n +

smoothingK);
 s_n = list{i}.numCases; % s_n for next iteration
 end
 attrIdx = attrIdx(:)'; % force row vector
 node.modelCoefs = coefs([1 attrIdx+1]);
 node.modelAttrIdx = attrIdx;
 node.modelAttrAvg = attrAvg(attrIdx)';
 end
 else
 len = length(list);
 if len > 0
 value = node.value;
 s_n = length(node.caseIdx);
 % pretend to go from the leaf node to the root node
 for i = len:-1:1
 value = (s_n * value + smoothingK * list{i}.value) / (s_n +

smoothingK); % calculate smoothed values
 s_n = list{i}.numCases; % s_n for next iteration
 end
 node.value = value;
 end
 end
end
end

function [rules, outcomes, outcomesAttrIdx, outcomesAttrAvg,

outcomesNumCases, outcomesCaseIdx, outcomesSD] = ...
 createRules(tree, modelTree, maxCoverageOnly, keepNodeInfo)
% Extracts decision rules from a tree.
totalRules = countRules(tree);
rules = cell(totalRules,1);
if modelTree

192

 outcomes = cell(totalRules,1);
 outcomesAttrIdx = cell(totalRules,1);
 outcomesAttrAvg = cell(totalRules,1);
else
 outcomes = zeros(totalRules,1);
 outcomesAttrIdx = [];
 outcomesAttrAvg = [];
end
outcomesNumCases = zeros(totalRules,1);
outcomesCaseIdx = cell(totalRules,1);
if keepNodeInfo
 outcomesSD = nan(totalRules,1);
else
 outcomesSD = [];
end
currRule = 0;
maxNumCases = 0;
createRulesDo(tree, {});
function createRulesDo(node, tests)
 if node.interior
 % Interior nodes become tests in rules
 tests{end+1,1}.attr = node.splitAttr;
 tests{end}.location = node.splitLocation;
 tests{end}.le = true; % "<="
 tests{end}.orNan = node.nanLeft; % whether to accept NaN
 createRulesDo(node.left, tests);
 tests{end}.le = false; % ">"
 tests{end}.orNan = ~node.nanLeft; % whether to accept NaN
 createRulesDo(node.right, tests);
 return;
 end
 % Leaf nodes become outcomes for the rules
 currRule = currRule + 1;
 if maxCoverageOnly && (length(node.caseIdx) <= maxNumCases)
 % If we'll actually want only the rule with the maximum coverage
 % then we don't need to store everything for rules that are already
 % known to be smaller.
 outcomesNumCases(currRule,1) = 0;
 return;
 end
 rules{currRule,1} = tests; % store all tests
 if modelTree
 outcomes{currRule,1} = node.modelCoefs;
 outcomesAttrIdx{currRule,1} = node.modelAttrIdx;
 if isempty(node.modelAttrIdx)
 outcomesAttrAvg{currRule,1} = [];
 else
 outcomesAttrAvg{currRule,1} = node.modelAttrAvg;
 end
 else
 outcomes(currRule,1) = node.value;
 end
 maxNumCases = length(node.caseIdx);
 outcomesNumCases(currRule,1) = maxNumCases;
 outcomesCaseIdx{currRule,1} = node.caseIdx;
 if keepNodeInfo
 outcomesSD(currRule,1) = node.sd;

193

 end
end
end

function nRules = countRules(node)
% Counts all rules (equal to the number of leaf nodes) in the tree.
if node.interior
 nRules = countRules(node.left) + countRules(node.right);
else
 nRules = 1;
end
end

194

APPENDIX (II): SAMPLE DATA POINTS

This section provides a set of sample data points and their descriptions. The full dataset is available

for any further research and analysis at https://figshare.com/s/8de57c3a0ca8f8ed37c4.

 Sample Data Points

Lables #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11

X1 42864 32080 31529 32053 31660 29952 27949 4852 29096.5 30380 16484

X2 574.7 424.2 435.4 441.7 438 429.7 390.2 43.7 0 0 296.1

X3 0 0 0 0 0 0 0 0 0 0 0

X4 0 0 0 0 0 0 0 0 8.8 8.8 0

X5 0 0 0 0 0 0 0 0 5.9 7.3 0

X6 0 0 0 0 0 0 0 0 0 0 0

X7 204.5 107.8 133.6 146.4 146.3 155.2 103.3 0 0 0 108.7

X8 0 0 0 0 0 0 0 0 4.9 4.9 0

X9 0 0 0 0 0 0 0 0 0 0 1.1

X10 0 0 0 0 0 0 0 0 0 0 0

X11 134.5 102.3 97.9 99.2 99.5 92.3 90.5 20.7 262.2 279.9 13.8

X12 0 0 0 0 0 0 0 0 0 0 0

X13 0 0 0 0 0 0 0 0 0 0 0

X14 659 295 356 360 358 362 305 0 106 114 248

X15 0 0 0 0 0 0 0 0 0 0 0

X16 0 0 0 0 0 0 0 0 0 0 0

X17 0 0 0 0 0 0 0 0 0 0 0

X18 0 0 0 0 0 0 0 0 0 0 0

X19 48.3 30.4 33.5 32.9 32.3 29.3 27.2 1.4 0 0 32.5

X20 0 0 0 0 0 0 0 0 0 0 0

X21 0 0 0 0 0 0 0 0 0 0 0

X22 10.4 7.1 6.8 8.4 7.1 4.7 6.2 3.2 0 0 0

X23 0 0 0 0 0 0 0 0 3.3 3.3 0

X24 254.1 207.2 184.4 183.4 182.4 163.6 161.6 43.9 35.3 34.8 32.9

X25 0 0 0 0 0 0 0 0 0 0 0

X26 0 0 0 0 0 0 0 0 0 0 0

X27 0 0 0 0 0 0 0 0 0 0 0

X28 0 0 0 0 0 0 0 0 0 0 0

https://figshare.com/s/8de57c3a0ca8f8ed37c4

195

X29 0 0 0 0 0 0 0 0 0 0 0

X30 0 0 0 0 0 0 0 0 0 0 0

X31 0 0 0 0 0 0 0 0 0 0 0

X32 0 0 0 0 0 0 0 0 0 0 0

X33 0 0 0 0 0 0 0 0 0 0 0

X34 0 0 0 0 0 0 0 0 0 0 0

X35 0 0 0 0 0 0 0 0 0 0 0

X36 0 0 0 0 0 0 0 0 0 0 0

X37 0 0 0 0 0 0 0 0 0 0 0

X38 0 0 0 0 0 0 0 0 0 0 0

X39 0 0 0 0 0 0 0 0 0 0 0

X40 0 0 0 0 0 0 0 0 0 0 0

X41 0 0 0 0 0 0 0 0 0 0 0

X42 0 0 0 0 0 0 0 0 0 0 0

Y 1095 940.2 723.3 805.9 911.6 844.5 673.8 64.9 1145 1493.5 478.9

196

Description of Design Features Extracted from The BIM Databases

Labels BIM Extracted Design features Unit Category
X1 Division Weight Weight (kg) Material-Weight

X2 Angles Length (m) Material-Steel Sections

X3 Channels Length (m) Material-Steel Sections

X4 I Beams Length (m) Material-Steel Sections

X5 Miscellaneous beams Length (m) Material-Steel Sections

X6 Miscellaneous channels Length (m) Material-Steel Sections

X7 Structural Tees from W Shapes Length (m) Material-Steel Sections

X8 Tarpon Z Sections Length (m) Material-Steel Sections

X9 Wide flange Length (m) Material-Steel Sections

X10 Crane rails Length (m) Material-Steel Sections

X11 Bent plate Area (m2) Material-Plate

X12 Checker plate Area (m2) Material-Plate

X13 Grating Area (m2) Material-Plate

X14 Plate Area (m2) Material-Plate

X15 Extra Extra Strong Pipe Length (m) Material-Pipes

X16 Extra Strong Pipe Length (m) Material-Pipes

X17 Standard Pipe Length (m) Material-Pipes

X18 Hollow steel sections Length (m) Material-Hollow Sections

X19 Round hollow steel sections Length (m) Material-Hollow Sections

X20 Cold formed channels Length (m) Material-Cold-formed

X21 Tarpon Cold Formed Channels Length (m) Material-Cold-formed

X22 Flat bar Length (m) Material-Bars

X23 Rebar Length (m) Material-Bars

X24 Round bar Length (m) Material-Bars

X25 Square bar Length (m) Material-Bars

X26 Hex Bar Length (m) Material-Bars

X27 Expansion Anchor Bolts Quantity Material-Anchors

X28 Heavy Duty Expansion Anchor Bolts Quantity Material-Anchors

X29 Threaded Anchor Rods Quantity Material-Anchors

X30 Adhesive Anchor Cartridges Quantity Material-Anchors

X31 Complete penetration weld Length (m) Connection-Welding

X32 Partial Penetration Weld Length (m) Connection-Welding

X33 Bevelled Washers Quantity Connection-Bolted

X34 Button Head Machine Bolt Quantity Connection-Bolted

X35 Compressible Washers with DTI Quantity Connection-Bolted

X36 Flat Washers Quantity Connection-Bolted

X37 Hex Head Machine Bolt Quantity Connection-Bolted

X38 Hex Nuts Quantity Connection-Bolted

X39 Hex Type Bolts Quantity Connection-Bolted

X40 M Type Bolts Quantity Connection-Bolted

X41 Mechanical Pipes Length (m) Material-Pipe

X42 Nelson Studs Quantity Connection-Stud

Y Labour Hours Hours Hours per division

