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Abstract

For many investors, such as mutual fund managers, the closing price of

a stock is an important benchmark. The closing price for stocks traded at

NASDAQ is determined through an auction, like at many other stock ex-

changes. Each day and for each stock traded at NASDAQ, the intertemporal

order imbalance of the auction is announced beginning ten minutes before the

close. We introduce a mathematical framework that takes the order imbalance

announcements into account, and then derive an optimal trading algorithm for

flow trades, whose benchmark is the closing price. Under suitable assumptions,

we find explicit formulas for the optimal trading strategy and that it is not

beneficial for the investor to trade after the imbalance announcement. How-

ever, in addition to participating in the auction, the investor trades before the

imbalance announcement to benefit from prices which do not reflect the later

impact of the investor’s own auction order. Using real historical data, we simu-

late the performance of the proposed algorithm and find a small, but persistent

out-of-sample improvement and a reduction in average trading costs.
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Chapter 1

Introduction

Closing prices of stocks are important and often serve as reference points for

investors to determine their performance. Closing prices are particularly rele-

vant for managers of mutual funds. In mutual funds, flow trades correspond

to inflows or outflows of cash when clients decide to buy or sell shares of the

fund. Regardless at which specific time the transactions are taking place on

any trading day, the mutual fund managers, or an institutional flow trader,

will receive from or pay to the client the closing price. Hence, such traders

use the closing price as their benchmark: they aim to achieve a price that is

as close as possible to the closing price and, if possible, more favourable than

the closing price.

Algorithmic trading, the implementation of mathematical and computa-

tional algorithms to conduct trading decisions and asset management, is be-

coming a frequently used tool in the public equity market by institutional

investors targeting various trading benchmarks. Some of the standard trad-

ing benchmarks include arrival price, VWAP (volume weighted average price),
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TWAP (time weighted average price), and closing price. The trading algo-

rithm typically aims to achieve optimal trading strategies by minimizing a

combination of expected slippage (reflecting average costs) and variance of

slippage (reflecting risk), where slippage is the difference between actually

paid prices for the order and the benchmark price. The mathematical studies

for algorithmic trading started with seminal papers by Bertsimas and Lo [3],

who set up a discrete-time model to minimize expected slippage, and by Alm-

gren and Chriss [1], who focused on the trading strategy targeting the arrival

price benchmark including risk considerations. In the past several years, a

vast literature on trading algorithms targeting different benchmarks has been

developed. An overview can be found in the recent books by Cartea et al. [4],

Guéant [8], as well as Lehalle and Laruelle [9]. Though the trading strategies

for many benchmarks have been well studied, less attention has been paid to

the closing price benchmark. Frei and Westray [6] presented a stochastic con-

trol formulation targeting a closing price benchmark for stocks traded at the

Hong Kong Exchange. At many stock exchanges, the closing price is determin-

ing through a closing auction. However, the closing price at the Hong Kong

Exchange, instead of a closing auction, is selected as the median of five prices

taken over the last minute of trading. The trading algorithm with a closing

price benchmark through the closing auction has not yet been widely discussed

and mathematically modelled. At first sight, one could think that the only

question then is about the percentage that one should place in the auction.

However, various exchanges disclose information on the projected order imbal-

ances before the auction closes. This affects the prices before the close so that

the question becomes about how to trade before the closing auction as well.
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The topic of this thesis focuses on trading around the close in the stocks at

NASDAQ. The closing auction mechanism at NASDAQ is as follows. While

the regular trading takes place from 9:30 AM to 4:00 PM Eastern Standard

Time (ETS), the closing auction takes place from 3:50 PM to 4:00 PM at

NASDAQ. At NASDAQ [10] and [11], a closing auction consists of three

types of orders; namely, Market-on-Close (MOC), Limit-on-Close (LOC), and

Imbalance-Only (IO) orders. MOC and LOC orders must be received before

3:50 PM. MOC orders are executed immediately by matching with the cor-

responding best buy/sell orders in the limit order book. On the other hand,

LOC orders are executed at a given price as they go into the limit order book.

An IO order is a type of limit order that is used to provide liquidity and offset

the imbalance during the closing auction. The initial imbalance announce-

ment occurs at 3:50 PM, after which, one can only submit IO orders. After

3:50 PM, NASDAQ publishes imbalance information every five seconds un-

til 4:00 PM. All types of orders are accepted by NASDAQ for closing cross,

a process to determine the closing price, at 4:00 PM. In the cross process,

the closing book and the NASDAQ continuous book are brought together to

create the NASDAQ Official Closing Price. Bacidore et al. [2] illustrated and

summarized the market behaviour during the closing auction at NASDAQ and

NYSE (New York Stock Exchange). The closing auction mechanism at NYSE

is similar to that of NASDAQ. At NYSE, restrictions in submitting orders to

the closing auction begin at 3:45 PM on each trading day; however, traders

may submit MOC and LOC orders during the closing auction if there exists a

significant amount of imbalance volume, known as the Regulatory Imbalance1.

1NYSE Rule 123C(1)(d); see http://wallstreet.cch.com/nyse/rules/
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Moreover, instead of Imbalance-Only (IO) orders, NYSE offers Closing Offset

(CO) orders, which serve a similar purpose as the IO orders at NASDAQ. The

major difference between the closing auctions at NASDAQ and NYSE is that

the floor brokers have an advantage over other market participants at NYSE.

From 2:00 PM to 3:45 PM, the floor brokers are able to view the close book

every 15 seconds. The information includes the MOC, LOC, and CO orders,

as well as any imbalance. At 3:55 PM, the Closing D-quotes, which are or-

ders floor brokers use that can add or create an imbalance anytime until ten

seconds before the market close, are included in the calculation of the imbal-

ance. Due to the multiple layers of additional complexity at NYSE, we choose

to study the closing auction at NASDAQ to analyze the underlying financial

mechanism.

Since the trader will typically begin trading in the open market sometime

before the start of the closing auction, one faces a degree of uncertainty in

the quest in attaining the closing price. As a flow trader, the objective is to

minimize the average and deviations of the slippage, relative to the closing

price benchmark. A trader is guaranteed to receive the closing price if the

total volume of the order is placed in the closing auction so that the slippage

is zero. In this case, the risk is zero and average cost equal exactly the bench-

mark cost. However, a trader may perform even better overall by taking some

risk and achieving a slippage on average by participating in the continuous

trading as well. Such behaviour is mainly due to two reasons. Firstly, the

trader can benefit from the impact of one’s own order in the closing auction.

In particular, the imbalance volumes revealed at the imbalance announcement

have an influence on the stock prices. As such, by investing prior to the initial
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imbalance announcement, the trader could execute orders at more attractive

prices. If the order placed in the closing auction is sufficiently large, one can

have a negative impact on the closing price when the orders are executed at

4:00 PM; thus, trading in the open market before the prices are affected by

the large order submitted to the closing auction can reduce the implemen-

tation cost. Secondly, the imbalance announcement may suggest a drift of

stock prices if the revealed information goes predominantly in one direction

(buy/sell). Hence, the trader placing buy (sell) orders may be able to gain

from a lower (higher) price from orders before the closing auction if a buy

(sell) imbalance is forecasted. While we include and discuss this second factor

in our main results for the optimal strategy, we put more emphasis on the

study and implementation of the first impact because it is a crucial feature

of the closing price benchmark that the trader’s own orders submitted to the

auction affect prices before the auction through the imbalance announcement.

Based on the observations discussed in Bacidore et al. [2], they suggested

that it is optimal to not trade, or only trade with a small order, continuously

after the initial imbalance announcement. After the imbalance is announced,

the impact of one’s own participation in the closing auction is reflected in the

stock prices. By trading in the open market during this time, the trader will

receive an unfavourable price due to the imbalance announcement. Thus, it is

preferable to trade before the initial imbalance announcement and not after.

This statement will be proved mathematically as a part of the main results of

this thesis. The main results are expressed in the form of explicit formulas for

the optimal strategy. In the empirical part, its implementation to real histor-

ical data yields a small but persistent improvement in average costs.

5



This thesis focuses on presenting an optimal trading strategy for flow

traders at NASDAQ. In Chapter 2, we first introduce a discrete-time frame-

work and then derive the optimal trading strategy through the Karush-Kuhn-

Tucker conditions. In Chapter 3, we present a continuous-time variant by solv-

ing the corresponding Euler-Lagrange equation. In Chapter 4, we estimate the

model parameters based on historical data and test the out-of-sample perfor-

mance on real data from 15 stocks traded at NASDAQ. Chapter 5 provides

proofs of the mathematical derivation of the models. Chapter 6 concludes,

and the appendix contains auxiliary calculations.
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Chapter 2

Discrete-Time Model

2.1 Problem Formulation

Consider a market order with volume of vi at time i for i ∈ {1, 2, . . . , T − 1}

where time T corresponds to 4:00 PM EST, the close of the market. Let τ be

the time when the initial imbalance is published, which corresponds to 3:50

PM EST, at NASDAQ. Let vT be the volume of orders submitted to the closing

auction. Suppose the order imbalance is cleared immediately and there are no

orders in the closing auction after 3:50 PM. If the market impact of our order

is only temporary, then our investment decision at time t will only affect the

price at time t but not the subsequent stock prices at time t+1, t+2, . . . , T−1.

Moreover, our order placed in the closing auction, vT , does not only affect the

closing price, PT , but is also accounted throughout prices from 3:50 PM ET

(time τ) to 4:00 PM ET (time T ). Then the prices of the stock are given by:

Pt = P̃t + βvt for t ∈ {1, . . . , τ − 1, τ + 1 . . . , T − 1},
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Pτ = P̃τ + βvτ ,

PT = P̃T ,

for

P̃t = P̃t−1 + Zt for t ∈ {1, . . . , τ − 1, τ + 1 . . . , T − 1},

P̃τ = P̃τ−1 + Zτ + αN,

P̃T = P̃T−1 + Z̃i,

where β is a non-negative scalar that measures the influence to the stock prices

due to the investor’s orders in the open market, and α is a non-negative scalar

that reflects the impact of the auction imbalance announcement on the stock

prices. Zt is an independent and identically distributed random process and

Z̃T is a random variable independent from Zt. For Zt, we denote its mean by

µZ and its variance by σ2
Z , and for Z̃T , we write µZ̃ for its mean and σ2

Z̃
for its

variance. Moreover, the imbalance N can be expressed as:

N = Ñ + vT ,

where Ñ is the imbalance caused by other market participants. W is the total

orders given in advance, which can be written as:

W =
T
∑

i=1

vi.

8



Consider any risk aversion, λ > 0. Flow traders’ benchmark is the closing

price, PT ; thus, the objective is to minimize:

E

[ T
∑

t=1

vtPt −WPT

]

+ λV AR

[ T
∑

t=1

vtPt −WPT

]

. (2.1)

2.2 Optimal Strategy under Drift Condition

In this section, we first analyze the optimal strategy when we impose additional

conditions on the drift of stock prices as well as the amount of predetermined

total order volume (W). In particular, the assumptions we impose on the drift

are:

µZ ≤ 0, µZ̃ ≤ 0,

which ensures it is not optimal to trade after the initial imbalance announce-

ment. In other words, we assume random drivers reflected in stock prices, Z

and Z̃, have non-positive drift.

If the imbalance announcement related to the orders of the other traders has

a clear positive direction that outweighs the impact of our trader’s order, then

it may be optimal for our trader to trade before the imbalance announcement

without participating in the closing auction. To avoid such situation, we as-

sume our trader has at least a certain amount of predetermined total order

volume (W).

By applying the Karush-Kuhn-Tucker conditions, we derive a set of explicit

optimal investment strategies. The detailed proof is shown in section 5.1.1.
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Furthermore, we later examine a generalized strategy in section 2.3 when the

conditions mentioned above are removed.

Proposition 1. Suppose that there are no orders in the closing auction after

the initial imbalance announcement and the imbalance is cleared immediately.

Assuming the investor is a flow trader and his/her participation has temporary

market impacts. Suppose the investor has sufficient capital, in particular:

W ≥ α

2((T − τ + 1)λσ2
Z + λσ2

Z̃
+ λα2σ2

Ñ
) + α

µÑ . (2.2)

If the random drivers reflected in stock prices, Z and Z̃, have non-positive

drift, then we have the following:

1. It is not optimal to trade after the initial imbalance announcement; that

is, vk = 0 for k ∈ {τ, . . . , T − 1}.

2. Suppose the investor’s orders in both the open market and the closing

auction have an influence on the stock prices. We denote:

mt := (T − t)λσ2
Z + λσ2

Z̃
+ λα2σ2

Ñ
+ α,

pt :=

( λσ2
Z

β
+ 1− x2

x21 − 1

)

xt1 +

( λσ2
Z

β
+ 1− x1

x22 − 1

)

xt2,

qt :=
xt1

x21 − 1
+

xt2
x22 − 1

,

where

x1 := 1 +
λσ2

Z

2β
+

√

λσ2
Z

β

(

1 +
λσ2

Z

4β

)

,
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x2 := 1 +
λσ2

Z

2β
−

√

λσ2
Z

β

(

1 +
λσ2

Z

4β

)

.

Let t∗ be the smallest number such that:

(

(T − t∗) +
1

β

τ−1
∑

i=t∗+1

miqi+1−t∗

)

µZ + µZ̃ + α(µÑ +W ) > 0.

If there exist such t∗ ∈ {1, . . . , τ − 2}, then the investment strategy in

the open market is given by:

vs = 0 for s ∈ {0, . . . , t∗ − 1},

vt∗ =

(

(T − t∗) + 1
β

∑τ−1
i=t∗+1miqi+1−t∗

)

µZ + µZ̃ + α(µÑ +W )

2(β +mt∗ +
∑τ−1

i=t∗+1mipi+1−t∗)
,

vi = pi+1−t∗vt∗ −
µZ

2β
qi+1−t∗ for i ∈ {t∗ + 1, . . . , τ − 1},

and the investment in the closing auction is:

vT = W −
(

1 +
τ−1
∑

i=t∗+1

pi+1−t∗

)

vt∗ +
µZ

2β

τ−1
∑

i=t∗+1

qi+1−t∗ .

Otherwise, the optimal strategy is:

vt = 0 for t ∈ {1, . . . , τ − 2},

vτ−1 = max

(

(T − τ + 1)µZ + µZ̃ + α(µÑ +W )

2
(

β + (T − τ + 1)λσ2
Z + λσ2

Z̃
+ λα2σ2

Ñ
+ α

) , 0

)

,

vT = W − vτ−1.
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3. If the investor’s orders have no influence on the stock prices in the open

market, then the investments in the continuous trading can only occur at

the beginning and the moment before the initial imbalance announcement.

In particular, we have:

vt = 0 for t ∈ {1, . . . , τ − 2},

vτ−1 = max

(

(T − τ + 1)µZ + µZ̃ + α(µÑ +W )

2
(

(T − τ + 1)λσ2
Z + λσ2

Z̃
+ λα2σ2

Ñ
+ α

) , 0

)

,

vT = W − vτ−1.

4. If the investor’s orders have no influence on the stock prices in the closing

auction, then it is optimal to invest only in the closing auction. That is,

vT = W.

Remark: If the condition 2.2 is not met, we can still give explicit formulas

for the optimal strategy, but they become more complicated. In particular,

if investor’s orders have an impact on the stock prices, we denote by t∗ the

smallest number such that:

(

(T − t∗) +
1

β

τ−1
∑

i=t∗+1

miqi+1−t∗

)

µZ + µZ̃ + α(µÑ +W )− δt∗ > 0

where

δt∗ :=max

((

(T − t∗) +
1

β

τ−1
∑

i=t∗+1

miqi+1−t∗

)

µZ + µZ̃ + α(µÑ +W )

12



−
2(β +mt∗ +

∑τ−1
i=t∗+1mipi+1−t∗)

1 +
∑τ−1

i=t∗+1 pi+1−t∗

(

W +
µZ

2β

τ−1
∑

i=t∗+1

qi+1−t∗

)

, 0

)

.

If there exist such t∗ ∈ {1, . . . , τ−2}, then the investment strategy in the open

market is given by:

vs = 0 for s ∈ {0, . . . , t∗ − 1},

vt∗ =

(

(T − t∗) + 1
β

∑τ−1
i=t∗+1miqi+1−t∗

)

µZ + µZ̃ + α(µÑ +W )− δt∗

2(β +mt∗ +
∑τ−1

i=t∗+1mipi+1−t∗)
,

vi = pi+1−t∗vt∗ −
µZ

2β
qi+1−t∗ for i ∈ {t∗ + 1, . . . , τ − 1},

and the investment in the closing auction is:

vT =















W −
(

1 +
∑τ−1

i=t∗+1 pi+1−t∗

)

vt∗ +
µZ

2β

∑τ−1
i=t∗+1 qi+1−t∗ if δt∗ = 0,

0 if δt∗ > 0.

Otherwise, we denote:

δ =max

(

(T − τ + 1)µZ + µZ̃ + α(µÑ +W )

− 2W (β + (T − τ + 1)λσ2
Z + λσ2

Z̃
+ λα2σ2

Ñ
+ α), 0

)

,

and the optimal strategy is

vt = 0 for t ∈ {1, . . . , τ − 2}

vτ−1 = max

(

(T − τ + 1)µZ + µZ̃ + α(µÑ +W )− δ

2
(

β + (T − τ + 1)λσ2
Z + λσ2

Z̃
+ λα2σ2

Ñ
+ α

) , 0

)

,

vT = W − vτ−1.
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If the investor’s orders have no influence on the stock prices, then the invest-

ment in the open market will only occur at the moment before the initial

imbalance announcement. In particular, we denote:

δ =max

(

(T − τ + 1)µZ + µZ̃ + α(µÑ +W )

− 2W
(

(T − τ + 1)λσ2
Z + λσ2

Z̃
+ λα2σ2

Ñ
+ α

)

, 0

)

,

and have:

vt = 0 for t ∈ {1, . . . , τ − 2}

vτ−1 = max

(

(T − τ + 1)µZ + µZ̃ + α(µÑ +W )− δ

2
(

(T − τ + 1)λσ2
Z + λσ2

Z̃
+ λα2σ2

Ñ
+ α

) , 0

)

,

vT = W − vτ−1.

Corollary 1. Suppose µZ ≤ 0. As the investor’s influence on the stock price

in the open market (β) converges to 0, the optimal strategy will converge to

vt = 0 for t ∈ {1, . . . , τ − 2}

vτ−1 = max

(

(T − τ + 1)µZ + µZ̃ + α(µÑ +W )

2
(

(T − τ + 1)λσ2
Z + λσ2

Z̃
+ λα2σ2

Ñ
+ α

) , 0

)

,

vT = W − vτ−1.

The proof of corollary 1 is available in section 5.1.2. The finding suggests

that item 2 converges to item 3 in proposition 1, as β converges to 0. In other

words, when the stock prices in the open market have a non-positive drift, if

a flow trader’s investment decision has extremely small influence on the stock

14



prices in the continuous trading, then the optimal strategy converges to the

strategy where there is zero effect on the open market (β=0). In addition,

we will observe an analogy with its continuous model counterpart later in

section 3.3.

2.3 General Optimal Strategy

Suppose we remove the constraints imposed on the drifts, µZ ≤ 0 and µZ̃ ≤ 0,

and the condition on the amount of capital, W . To address this question,

we introduce a generalized strategy in this section. Unlike proposition 1, it

is difficult to express the optimal strategy in the form of an explicit formula;

instead, it will be presented in the form of an algorithm. As a trade-off of a

generalized strategy, the execution can be time-consuming due to the compu-

tational iteration discussed in this section. The proof of the general strategy

can be found in section 5.1.3.

We dissect the strategy into two cases. In particular, the case where the

traders have influence on the stock prices in the open market (β > 0), and

the case where the traders do not affect the open market (β = 0). In the first

case where β > 0, we organize the various scenarios into three categories. We

define Strategy A to be the strategy when one does not invest after the ini-

tial imbalance announcement. Strategy B is the optimal investment strategy

when one would invest both before and after the initial imbalance announce-

ment. Lastly, Strategy C is the strategy when one only invest after the initial

imbalance announcement.
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Case 1: β > 0

For all three strategies, we denote:

x1 := 1 +
λσ2

Z

2β
+

√

λσ2
Z

β

(

1 +
λσ2

Z

4β

)

,

x2 := 1 +
λσ2

Z

2β
−
√

λσ2
Z

β

(

1 +
λσ2

Z

4β

)

,

such that:

mi :=















(T − i)λσ2
Z + λσ2

Z̃
+ λα2σ2

Ñ
+ α for i ∈ {1, . . . , τ − 1},

(T − i)λσ2
Z + λσ2

Z̃
for i ∈ {τ, . . . , T − 1},

and for i ∈ {1, . . . , τ − 1},

pi :=

( λσ2
Z

β
+ 1− x2

x21 − 1

)

xi1 +

( λσ2
Z

β
+ 1− x1

x22 − 1

)

xi2,

qi :=
xi1

x21 − 1
+

xi2
x22 − 1

.

Strategy A: vk = 0 for k ∈ {τ, . . . , T − 1}.

Strategy A consider the case when the investment occur only prior to the ini-

tial imbalance announcement. The structure follows directly from the remark

after proposition 1, which is exactly the optimal strategy under the drift con-

ditions. However, if µZ > 0, then the resulting formula may not hold due to

the violation of our constraint, vi ≥ 0. In particular, applying the strategy

directly could result in heavy investment in the earlier period and short selling

(vi < 0) in the later period. To avoid this issue, we select the optimal strategy

with computational iteration.
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Let t∗ ∈ {1, . . . , τ − 2} and t̄ ∈ {t∗ + 1, . . . , τ − 1} be the starting and ending

time of investment, respectively. Moreover, let t∗ be the some integer such

that vt∗ > 0 and vt̄ > 0, for some t̄ ∈ {t∗ + 1, . . . , τ − 1}. We consider the

auxiliary term:

δt̄t∗ :=max

((

(T − t∗) +
1

β

t̄
∑

i=t∗+1

miqi+1−t∗

)

µZ + µZ̃ + α(µÑ +W )

−
2(β +mt∗ +

∑t̄
i=t∗+1mipi+1−t∗)

1 +
∑t̄

i=t∗+1 pi+1−t∗

(

W +
µZ

2β

t̄
∑

i=t∗+1

qi+1−t∗

)

, 0

)

.

If there exist t∗ and t̄ as defined above, then the structure of the optimal

investment strategy in the continuous trading, for i ∈ {1, . . . , T − 1}, is given

by:

vi =































(

(T−t∗)+ 1
β

∑t̄
i=t∗+1 miqi+1−t∗

)

µZ+µ
Z̃
+α(µ

Ñ
+W )−δt̄

t∗

2(β+mt∗+
∑t̄

i=t∗+1 mipi+1−t∗ )
if i = t∗,

pi+1−t∗vt∗ − µZ

2β
qi+1−t∗ if i ∈ {t∗ + 1, . . . , t̄},

0 if otherwise.

The investment in the closing auction is vT = W −∑T−1
i=1 vi.

If µZ ≤ 0, or pi+1−t∗vt∗ − µZ

2β
qi+1−t∗ is non-decreasing over i for all t∗ ∈

{1, . . . , τ − 2}, then we have t̄ = τ − 1 and t∗ is the smallest integer such

that:

(

(T − t∗) +
1

β

τ−1
∑

i=t∗+1

miqi+1−t∗
)

µZ + µZ̃ + α(µÑ +W )− δτ−1
t∗ > 0.

Otherwise, one would need to iterate through every combination of t∗ and t̄

17



such that vt∗ , vt̄ > 0. For each pair of t∗ and t̄, we compute the strategy given

above and compare the objective value, which is equivalent to:

β

T−1
∑

t=1

v2t + α

τ−1
∑

t=1

vt

T−1
∑

t=1

vt − µZ

T−1
∑

t=1

(T − t)vt − µZ̃

T−1
∑

t=1

vt − α(µÑ +W )
τ−1
∑

t=1

vt

+ λσ2
Z

T−1
∑

t=1

( t−1
∑

i=0

vi

)2

+ λσ2
Z̃

( T−1
∑

t=1

vt

)2

+ λα2σ2
Ñ

( τ−1
∑

t=1

vt

)2

, (2.3)

as shown in Step 1 of section 5.1.1. The optimal t∗ and t̄ are given by the

combination that leads to the lowest objective value.

If t∗ and t̄ defined above do not exist, then investment in continuous trad-

ing can only occur once at time t̄ ∈ {t∗ + 1, . . . , τ − 1}. We denote:

δt̄ =max

(

(T − t̄)µZ + µZ̃ + α(µÑ +W )

− 2W (β + (T − t̄)λσ2
Z + λσ2

Z̃
+ λα2σ2

Ñ
+ α), 0

)

,

and the optimal strategy in the open market is:

vi =















max

(

(T−t̄)µZ+µ
Z̃
+α(µ

Ñ
+W )−δt̄

2
(

β+(T−t̄)λσ2
Z
+λσ2

Z̃
+λα2σ2

Ñ
+α

) , 0

)

if i = t̄,

0 if otherwise,

and the investment in the closing auction is simply vT = W − vt̄. Similarly,

if µZ ≤ 0, then we have t̄ = τ − 1. Otherwise, after iteratively examining the

objective value in eq. (2.3) given by above strategy for all t̄ ∈ {1, . . . , τ − 1},

the optimal strategy is given by the t̄ yielding the smallest objective value.

18



Strategy B:

Strategy B is the strategy where one choose to invest during both periods,

before and after the initial imbalance announcement at time τ . The beginning

and ending time of investment for both period could vary drastically depend-

ing on the input parameters. We define t∗ ∈ {1, . . . , τ − 1} to be the starting

time and t̄ ∈ {t∗, . . . , τ − 1} to be the ending time of investment for the time

horizon prior to time τ . Similarly, we let k∗ ∈ {τ, . . . , T −1} to be the starting

time and k̄ ∈ {k∗, . . . , T − 1} to be the ending time of investment after time

τ . In other words, we define t∗ ∈ {1, . . . , τ − 1} and k∗ ∈ {τ, . . . , T − 1} to

be the integers such that vt∗ , vt̄ > 0 and vk∗ , vk̄ > 0, respectively, for some

t̄ ∈ {t∗, . . . , τ − 1} and k̄ ∈ {k∗, . . . , τ − 1}.

We denote:

ri :=
β + λσ2

Z − βx2

β(x21 − 1)
xi1 +

β + λσ2
Z − βx1

β(x22 − 1)
xi2,

and

p̃i :=















β+λσ2
Z

β
pτ−i − pτ−i−1 if i ∈ {1, . . . , τ − 2},

λσ2
Z

β
if i = τ − 1.

q̃i :=















β+λσ2
Z

β
qτ−i − qτ−i−1 if i ∈ {1, . . . , τ − 2},

1 if i = τ − 1.
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We suppose t∗, k∗, t̄, and k̄ defined above exist. We further denote:

a1(t
∗, k∗, t̄, k̄) :=















































β +mt∗ +
∑t̄

i=t∗+1mipi+1−t∗ + p̃t∗
∑k̄

i=k∗+1

(

mi +
α
2

)

qi−k∗+1,

β +mt∗ +
∑t̄

i=t∗+1mipi+1−t∗ if k∗ = k̄,

β +mt̄ +
λσ2

Z

β

∑k̄
i=k∗+1

(

mi +
α
2

)

qi−k∗+1 if t∗ = t̄,

β +mt̄ if t∗ = t̄ and k∗ = k̄.

a2(t
∗, k∗, t̄, k̄) :=















































(

mk∗ +
α
2

)(

1 +
∑t̄

i=t∗+1 pi+1−t∗
)

+ p̃t∗
∑k̄

i=k∗+1miqi−k∗+1,

1 +
∑t̄

i=t∗+1 pi+1−t∗ if k∗ = k̄,

mk∗ +
α
2 +

λσ2
Z

β

∑k̄
i=k∗+1miqi−k∗+1 if t∗ = t̄,

mk̄ +
α
2 if t∗ = t̄ and k∗ = k̄.

b1(t
∗, k∗, k̄) :=















mk∗ +
α
2 +

∑k̄
i=k∗+1

(

mi +
α
2

)

ri−k∗+1 if k∗ < k̄,

mk̄ if k∗ = k̄.

b2(t
∗, k∗, k̄) :=















β +mk∗ +
∑k̄

i=k∗+1miri−k∗+1 if k∗ < k̄,

β +mk̄ if k∗ = k̄.

s1(t
∗, k∗, t̄, k̄) :=















































∑t̄
i=t∗+1miqi+1−t∗ + q̃t∗

∑k̄
i=k∗+1

(

mi +
α
2

)

qi−k∗+1,

∑t̄
i=t∗+1miqi+1−t∗ if k∗ = k̄,

∑k̄
i=k∗+1

(

mi +
α
2

)

qi−k∗+1 if t∗ = t̄,

0 if t∗ = t̄ and k∗ = k̄.

s2(t
∗, k∗, t̄, k̄) :=















































(

mk∗ +
α
2

)
∑t̄

i=t∗+1 qi+1−t∗ + q̃t∗
∑k̄

i=k∗+1miqi−k∗+1,

∑t̄
i=t∗+1 qi+1−t∗ if k∗ = k̄,

∑k̄
i=k∗+1miqi−k∗+1 if t∗ = t̄,

0 if t∗ = t̄ and k∗ = k̄.
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Moreover:

A(t∗, k∗, t̄, k̄) :=















































1 +
∑t̄

i=t∗+1 pi+1−t∗ + p̃t∗
∑k̄

k∗+1 qi−k∗+1,

1 +
∑t̄

i=t∗+1 pi+1−t∗ if k∗ = k̄,

1 +
λσ2

Z

β

∑k̄

k∗+1 qi−k∗+1 if t∗ = t̄,

1 if t∗ = t̄ and k∗ = k̄.

B(t∗, k∗, t̄, k̄) :=































1 +
∑k̄

i=k∗+1 ri−k∗+1 ∀t∗ < t̄,

1 if k∗ = k̄, ∀t∗ < t̄,

0 if t∗ = t̄.

C(t∗, k∗, t̄, k̄) :=















































∑t̄

i=t∗+1 qi + q̃t∗
∑k̄

i=k∗+1 qi−k∗+1,

∑t̄

i=t∗+1 qi+1−t∗ if k∗ = k̄,

∑k̄

i=k∗+1 qi−k∗+1 if t∗ = t̄,

0 if t∗ = t̄ and k∗ = k̄.

Furthermore, we let:

vnum1 (t∗, k∗, t̄, k̄) :=

(

b1(t
∗, k∗, t̄, k̄)

(

T − k∗ +
s2(t

∗, k∗, t̄, k̄)

β

)

− b2(t
∗, k∗, t̄, k̄)

(

T − t∗ +
s1(t

∗, k∗, t̄, k̄)

β

))

µZ

+
(

b1(t
∗, k∗, t̄, k̄)− b2(t

∗, k∗, t̄, k̄)
)

µZ̃ − b2(t
∗, k∗, t̄, k̄)α(µÑ +W ),

vden1 (t∗, k∗, t̄, k̄) :=2
(

b1(t
∗, k∗, t̄, k̄)a2(t

∗, k∗, t̄, k̄)− b2(t
∗, k∗, t̄, k̄)a1(t

∗, k∗, t̄, k̄)
)

,
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and

vnum2 (t∗, k∗, t̄, k̄) :=

(

a1(t
∗, k∗, t̄, k̄)

(

T − k∗ +
s2(t

∗, k∗, t̄, k̄)

β

)

− a2(t
∗, k∗, t̄, k̄)

(

T − t∗ +
s1(t

∗, k∗, t̄, k̄)

β

))

µZ

+
(

a1(t
∗, k∗, t̄, k̄)− a2(t

∗, k∗, t̄, k̄)
)

µZ̃ − a2(t
∗, k∗, t̄, k̄)α(µÑ +W ),

vden2 (t∗, k∗, t̄, k̄) :=2
(

a1(t
∗, k∗, t̄, k̄)b2(t

∗, k∗, t̄, k̄)− a2(t
∗, k∗, t̄, k̄)b1(t

∗, k∗, t̄, k̄)
)

,

such that:

X(t∗, k∗, t̄, k̄) :=
vnum1 (t∗, k∗, t̄, k̄)

vden1 (t∗, k∗, t̄, k̄)
, Y (t∗, k∗, t̄, k̄) :=

vnum2 (t∗, k∗, t̄, k̄)

vden2 (t∗, k∗, t̄, k̄)
.

We find that, for the auxiliary term:

δ(t∗, k∗, t̄, k̄) = max

(

2
(

b1a2 − b2a1
)

A(b1 − b2)−B(a1 − a2)

(

AX +BY − µZ

2β
C −W

)

, 0

)

,

the optimal strategy in continuous trading takes the form of:

vi =































































X − (b1−b2)
2(b1a2−b2a1)

δ if i = t∗,

pi+1−t∗vt∗ − µZ

2β
qi+1−t∗ if i ∈ {t∗ + 1, . . . , t̄},

Y + (a1−a2)
2(b1a2−b2a1)

δ if i = k∗,

p̃t∗qi−k∗+1vt∗ + ri−k∗+1vk∗ − µZ

2β
q̃t∗qi−k∗+1 if i ∈ {k∗ + 1, . . . , k̄},

0 if otherwise,

for i ∈ {1, . . . , T −1}. The investment in the closing auction is therefore given

by vT = W −∑T−1
i=1 vi.
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The challenge is now to determine the optimal starting time, t∗ and k∗, and

the ending time t̄ and k̄. If µZ ≤ 0 or the following two equations are non-

decreasing,

pi+1−t∗vt∗ −
µZ

2β
qi+1−t∗ ,

p̃t∗qi−k∗+1vt∗ + ri−k∗+1vk∗ −
µZ

2β
q̃t∗qi−k∗+1,

then it is clear that t̄ = τ − 1 and k̄ = T − 1. In this case, t∗ ∈ {1, . . . , τ − 1}

and k∗ ∈ {τ, . . . , T − 1} are smallest integers such that vt∗ > 0 and vk∗ > 0.

Though one cannot easily derive the optimal value t∗, k∗, t̄, and k̄ explicitly,

they can be found iteratively. In the case where the above two equations

are increasing, one can iterate every combination of t∗, k∗, t̄, and k̄ such that

vt∗ , vt̄, vk∗ , vk̄ > 0. The optimal strategy is given by the set of combination

that yields the lowest objective value shown in eq. (2.3). Depending on the

over all time horizon and the time increment of the investment, the overall

iteration procedure can be very time-consuming.
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Strategy C: vt = 0 for t ∈ {1, . . . , τ − 1}.

The overall presentation of Strategy C is similar to that of Strategy A. Suppose

k∗ ∈ {τ, . . . , T − 2} and k̄ ∈ {t∗ + 1, . . . , T − 1} are the starting and ending

time of investment, such that vk∗ > 0 and vk̄ > 0, respectively. We consider:

δk̄k∗ :=max

((

(T − k∗) +
1

β

k̄
∑

i=k∗+1

miqi−k∗+1

)

µZ + µZ̃

−
2(β +mk∗ +

∑k̄
i=k∗+1mipi−k∗+1)

1 +
∑T−1

i=k∗+1 pi−k∗+1

(

W +
µZ

2β

k̄
∑

i=k∗+1

qi−k∗+1

)

, 0

)

.

If such k∗ and k̄ exist, then the optimal strategy in the open market is given

by:

vi =































(

(T−k∗)+ 1
β

∑k̄
i=k∗+1 miqi−k∗+1

)

µZ+µ
Z̃
−δk̄

k∗

2(β+mk∗+
∑k̄

i=k∗+1 mipi−k∗+1)
if i = k∗

pi−k∗+1vk∗ − µZ

2β
qi−k∗+1 if i ∈ {k∗ + 1, . . . , k̄}

0 if otherwise

.

The investment in the closing auction is again vT = W −∑T−1
i=1 vi.

If µZ ≤ 0, or pi−k∗+1vk∗ − µZ

2β
qi−k∗+1 is non-decreasing over i for all k∗ ∈

{1, . . . , T − 2}, then we have k̄ = T − 1 and k∗ is the smallest integer such

that:
(

(T − k∗) +
1

β

k̄
∑

i=k∗+1

miqi−k∗+1

)

µZ + µZ̃ − δk̄k∗ > 0.

If not, then the optimal strategy can be found by iterating through all combi-

nations of k∗ and k̄ such that vk∗ , vk̄ > 0. The pair of k∗ and k̄ that suggests

the lowest objective value shown in eq. (2.3) gives the optimal strategy.
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If k∗ and k̄ defined above do not exist, then investment in continuous trading

can only occur once at time k̄ ∈ {k∗ + 1, . . . , T − 1}. We denote:

δk̄ =max

(

(T − k̄)µZ + µZ̃ − 2W (β + (T − t̄)λσ2
Z + λσ2

Z̃
), 0

)

,

and the optimal strategy in the open market is:

vi =















max

(

(T−k̄)µZ+µ
Z̃
−δk̄

2
(

β+(T−t̄)λσ2
Z
+λσ2

Z̃

) , 0

)

if i = k̄,

0 if otherwise,

and the investment in the closing auction is simply vT = W − vk̄. Similarly,

if µZ ≤ 0, then we have t̄ = T − 1. Otherwise, after iteratively examining the

objective value in eq. (2.3) given by above strategy for all k̄ ∈ {1, . . . , T − 1},

the optimal strategy is given by the k̄ yielding the smallest objective value.

Overall, the optimal strategy for case 1, is the one among the resulting strategy

of Strategies A, B, and C, that suggests the lowest target value.
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Case 2: β = 0.

In the investor has no influence in the continuous trading at all, then the

investment can only occur at three particular time periods. Specifically, at the

very beginning of the investment time horizon (time t∗), the period before and

the period after the initial imbalance announcement at time τ . We denote

by t̄ and k̄ the starting time of the investment before and after the initial

imbalance, respectively. As such, the strategy for the continuous market is

given by:

vt∗ =max

(

µZ

2λσ2
Z

, 0

)

,

vt̄ =max

(

(T − t̄)µZ + 2α(µÑ +W )

2λ
(

(T − t̄)σ2
Z + α2σ2

Ñ

)

+ α
− vt∗ , 0

)

,

vk̄ =max

(

(T − k̄)µZ + µZ̃ − δk̄t̄
2mk̄

− (v1 + vt̄)

(

1 +
α

2mk̄

)

, 0

)

,

where δk̄t̄ = max
(

µZ̃ − α(vt∗ + vt̄)− 2Wmk̄, 0
)

.

If vk̄ = 0, then the strategy is:

vt∗ =max

(

µZ

2λσ2
Z

, 0

)

,

vt̄ =max

(

(T − t̄)µZ + µZ̃ + α(µÑ +W )− δt̄

2mt̄

− vt∗ , 0

)

,

with δt̄ = max
(

(T − t̄)µZ + µZ̃ + α(µÑ +W )− 2Wmt̄, 0
)

.
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If both vt̄ = 0 and vk̄ = 0, then the strategy is simply:

vt∗ = max

(

(T − t∗)µZ + µZ̃ + α(µÑ +W )− δ

2m1

, 0

)

,

with δ = max
(

(T − t∗)µZ + µZ̃ + α(µÑ +W )− 2Wm1, 0
)

.

If µZ ≤ 0, then we have t̄ = τ − 1 and k̄ = T − 1. Otherwise, the opti-

mal strategy can by found iteratively by locating the set of t∗, t̄, and k̄ that

yields the lowest objective value depicted in eq. (2.3).
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Chapter 3

Continuous-Time Model

3.1 Problem Formulation

The orders in the open market can be executed at a high frequency, which

means the time increment between each transaction is nearly zero. To incor-

porate the continuous-time structure, we adjust the model accordingly. Sup-

pose we trade at the rate of vs in the open market time s for s ∈ [0, T ) where

time T corresponds to 4:00 PM EST, the close of the market. We denote

by τ the time when the initial imbalance is published at 3:50 PM EST. As-

sume the order imbalance is cleared immediately and there is no orders in

the closing auction after 3:50 PM EST. Suppose the flow trader’s orders have

temporary market impact, then the investment decision at time s can only

influence the stock price at time s and not the subsequent prices at time t for

t ∈ (s, T ]. Similarly to the discrete-time model, the order placed in the clos-

ing auction, vT , is accounted for in all stock prices after the initial imbalance

announcement (during the time interval (τ, T ]), and does not only affect the
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closing price. Furthermore, we model the movement of stock prices without

the trader’s involvement with an arithmetic Brownian motion. An arithmetic

Brownian motion satisfies:

dYt = σdWt + µdt

which is equivalent to:

Yt = Y0 + σWt + µt

by integration. In addition, the absolute change, dYt, is normally distributed.

We define β and α to be non-negative scalars to measure the effect on the

stock prices due to the investor’s orders in the open market and the auction

imbalance announcement, respectively. Z̃ is a random variable to capture the

stock movement at time T . We denote by µZ̃ the mean of Z̃ and by σ2
Z̃
its

variance. Moreover, the imbalance process N is expressed as:

N = Ñ +W −
∫ T

0

vtdt.

W is the total amount orders given in advance, which can be written as:

W =

∫ T

0

vtdt+ vT .

As such, the prices of the stock are given by:

Pt = P̃t + βvt for t ∈ [0, T ),
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PT = P̃T ,

where

P̃t = P̃0 + µt+ σWt for t ∈ [0, τ),

P̃s = P̃0 + µs+ σWs + αN for s ∈ [τ, T ),

P̃T = P̃0 + µT + σWT + αN + Z̃.

For any risk aversion parameter, λ > 0, the objective function for a flow trader

is presented as:

min E

[
∫ T

0

vtPtdt+

(

W −
∫ T

0

vtdt

)

PT −WPT

]

+ λV AR

[
∫ T

0

vtPtdt+

(

W −
∫ T

0

vtdt

)

PT −WPT

]

s.t. vt ≥ 0 ∀t ∈ [0, T ), W −
∫ T

0

vtdt ≥ 0.

Additionally, we define the cumulative order up to time t as:

Xv
t =

∫ t

0

vsds.

3.2 Excursion: the Euler-Lagrange Equation

The Euler-Lagrange equation is a fundamental mathematical tool in the field

of Calculus of Variation. In this chapter, this concept plays a key role in

deriving the results. The methodology gives a differential equation such that

30



one can optimize equations of the form:

J =

∫ b

a

F (x, y, y′)dx.

Gelfand and Fomin [7] give a detailed presentation of the Euler-Lagrange equa-

tion and its various forms in the context of Calculus of Variation. In addi-

tion, Weinstock [12] shows various application of the Euler-Lagrange equation.

In this section, we give a brief description on the application of the Euler-

Lagrange equation used in the proof of proposition 2 in section 5.2.1; further

detail can be found in Chapter 7 of [7].

We consider the problem of the form miny J = Φ(I1, . . . , IN) where

Ik =

∫ b

a

Fk(x, y, y
′)dx for k ∈ {1, . . . , N},

and the function Φ is continuously differentiable. For some Lagrange multi-

pliers, λ1, . . . , λN , the objective function can be expressed as:

min
y
J = min

y
min
Ik

max
λk

(

Φ +
N
∑

k=1

λk

(

Ik −
∫ b

a

Fk(x, y, y
′)dx

))

.

Thus, for all k, we have:

∂Φ

∂Ik
+ λk = 0.

We consider:

ψ =
N
∑

k=1

∂Φ

∂Ik
Fk(x, y, y

′).
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The methodology suggests that the optimal solution can be determined by

solving the Euler-Lagrange equation:

0 =
d

dt

∂ψ

∂y′
− ∂ψ

∂y
.

3.3 Optimal Strategy under Drift Condition

In this section, we propose a set of optimal investment strategies for flow

traders when assuming a continuous-time model. Similarly to the discrete

time model in section 3.3, we first examine a model with additional conditions

on the drifts of stock prices and the amount of predetermined total order

volume (W). We recall that the assumptions we imposed on the drift are:

µZ ≤ 0, µZ̃ ≤ 0,

As an analogy with the discrete-time model, above assumption suggests no

investment after the initial imbalance announcement. Furthermore, we simi-

larly impose an assumption on the capital W . If this condition is not satisfied,

then the trader may not invest in the closing auction. Moreover, similarly to

section 2.2, we further impose the condition that µ ≤ 0 to avoid complicated

presentation in this section, due to computational iteration, which is further

discussed in section 3.4. Hence, the drift conditions become, µ ≤ 0 and µZ̃ ≤ 0.

In comparison with the discrete-time model, the mathematical derivation

shown in section 5.2.1 is structurally simpler with the help of the Euler-
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Lagrange equation mentioned in section 3.2. Furthermore, later in section 3.4,

we present a more generalized strategy when the conditions mentioned previ-

ously are removed.

Proposition 2. Suppose there are no orders in the closing auction after the

initial imbalance announcement and the imbalance is cleared immediately. As-

suming the investor is a flow trader and his/her participation has temporary

market impacts. Suppose the investor has sufficient capital, in particular:

W ≥ 2 sinh

(

√

λσ2

β
τ

)

c(0)− µ− µe

√

λσ2

β
τ

2λσ2
. (3.1)

If the random drivers reflected in stock prices have non-positive drift, µ ≤ 0

and µZ̃ ≤ 0, then we have the following:

1. It is not optimal to trade on a stock after the initial imbalance announce-

ment; that is, vt = 0 for t ∈ (τ, T ).

2. Suppose the investor’s orders in the open market influence the stock

prices. That is, β > 0. We denote:

m1 = Tµ+ µZ̃ + α(µÑ +W ),

m2 =
µ

λσ2

(

λσ2
Z̃
+ λα2σ2

Ñ
+ α

)

,

and

cnum(t) = sinh

(

√

λσ2

β
τ

)(

m1 −m2

(

1− e
−2

√

λσ2

β
τ

))

− sinh

(

√

λσ2

β
t

)(

m1

−m2

(

1− e
−2

√

λσ2

β
t

))

− µ

(

τ sinh

(

√

λσ2

β
τ

)

− t sinh

(

√

λσ2

β
t

)
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− 1

2

√

β

λσ2

(

e
−2

√

λσ2

β
τ − e

−2
√

λσ2

β
t

))

,

cden(t) =2
√

βλσ2

(

sinh

(

2

√

λσ2

β
τ

)

− sinh

(

2

√

λσ2

β
t

))

+ 4
(

λσ2
Z̃
+ λα2σ2

Ñ
+ α

)

(

sinh2
(

√

λσ2

β
τ

)

− sinh2
(

√

λσ2

β
t

))

,

such that:

c(t) =
cnum(t)

cden(t)
.

Let t∗ be the smallest number such that:

2 cosh

(

√

λσ2

β
t

)

c(t∗) +
µ

2λσ2
e−

√

λσ2

β
t
> 0.

If there exist such t∗ ∈ [0, τ), then the rate of trading in the open market

at time t is given by:

vs = 0 for s ∈ [0, t∗),

vt =

√

λσ2

β

(

2 cosh

(

√

λσ2

β
t

)

c(t∗) +
µ

2λσ2
e−

√

λσ2

β
t

)

,

and the cumulative order at time t is:

Xv
s = 0 for s ∈ [0, t∗),

Xv
t = 2 sinh

(

√

λσ2

β
t

)

c(t∗) +
µ

2λσ2

(

1− e−
√

λσ2

β
t

)

.

Furthermore, the investment in the closing auction is:

vT = W −Xv
τ .
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Otherwise, the investment only occur in the closing auction:

vT = W.

3. If the investor’s orders have no influence on the stock prices in the open

market (β = 0), then the investments in the open market can only occur

at the beginning and the moment before the closing auction, which is

denoted as τ̃ = τ − ε for some small ε > 0. In particular, we have:

Vτ̃ = max

(

µ(T − τ̃) + µZ̃ + α(µÑ +W )− δ

2
(

α + λ
(

σ2(T + τ̃) + α2σ2
Ñ
+ σ2

Z̃

)) , 0

)

,

VT = W − VT ,

where δ = max

(

µ(T − τ̃) + µZ̃ + αµÑ − 2
(

α+ λ
(

σ2(T + τ̃) + α2σ2
Ñ
+ σ2

Z̃

))

W, 0

)

.

In (3.1), the term µ−µe

√

λσ2
β

τ

2λσ2 is non-negative if µ ≤ 0. Therefore, under the

assumption µ ≤ 0, the condition (3.1) is satisfied if W ≥ 2 sinh
(√

λσ2

β
τ
)

c(0),

which holds if W is big relative to λσ2

β
.

Remark: Suppose the condition (3.1) does not hold. For simplicity, we denote

ai = e

√

λσ2

β
i, and we consider:

δ = max

(

2 sinh(aτ )c(t
∗)− µ

2λσ2 (1− e−aτ )−W

sinh(2aτ )− sinh(2at∗)

(

2
√

βλσ2(sinh(2aτ )− sinh(2at∗))

+ 4
(

λσ2
Z̃
+ λα2σ2

Ñ
+ α

)

(sinh2(aτ )− sinh2(at∗))
)

, 0

)

.

We define:

c̃num(t) = cnum(t)− δ(sinh(2aτ )− sinh(2at∗)),
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such that

c̃(t) =
c̃num(t)

cden(t)
.

If there exists t∗ ∈ [0, τ), then the rate of trading in the open market at time

t is given by:

vs = 0 for s ∈ [0, t∗),

vt =

√

λσ2

β

(

2 cosh

(

√

λσ2

β
t

)

c̃(t∗) +
µ

2λσ2
e−

√

λσ2

β
t

)

,

and the cumulative order at time t is:

Xv
s = 0 for s ∈ [0, t∗),

Xv
t = 2 sinh

(

√

λσ2

β
t

)

c̃(t∗) +
µ

2λσ2

(

1− e−
√

λσ2

β
t

)

.

We find that as the influence of a flow trader’s investment decision on the stock

prices diminishes approximately to 0, the optimal strategy is identical to the

strategy where the trader has no influence. We recall a similar finding in the

discrete-time model shown in corollary 1. The detailed proof can be found in

section 5.2.2, and we propose:

Corollary 2. Suppose µ ≤ 0. As β converges to 0, the optimal strategy shown

in item 2 of proposition 2 converges to item 3. In particular,

Vτ̃ = max

(

µ(T − τ̃) + µZ̃ + α(µÑ +W )− δ

2
(

α + λ
(

σ2(T + τ̃) + α2σ2
Ñ
+ σ2

Z̃

)) , 0

)

,

VT = W − VT ,

where δ = max

(

µ(T − τ̃) + µZ̃ + αµÑ − 2
(

α+ λ
(

σ2(T + τ̃) + α2σ2
Ñ
+ σ2

Z̃

))

W, 0

)

.
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3.4 General Optimal Strategy

In this section, we discuss the generalized strategy if we omit the conditions

we imposed in proposition 2. Similarly to the discrete-time model, we will dis-

sect the overall strategy into two cases. The first case is when a flow trader’s

investment decision has influence on the stock prices during the continuous

trading (β > 0). The second case is the opposite where the trader has no ef-

fect at all (β = 0). The proof of the optimal strategy is shown in section 5.2.3.

As we have in section 2.3, we further separate case 1 into three strategies. We

let Strategy A be the strategy when one only invest before the initial imbal-

ance announcement. Strategy B is the optimal investment strategies when the

trader invest both before and after the initial imbalance announcement. Strat-

egy C is the strategy when the trader only invest after the initial imbalance

announcement.

Case 1: β > 0

For simplicity, we denote:

a(i) :=

√

λσ2

β
i.

in all three strategies.

Strategy A: vk = 0 for k ∈ [τ, T ).

Strategy A considers the case when the investment occurs only prior to the

initial imbalance announcement. The strategy is given by the remark of propo-

sition 2. Similar to the discrete-time model, if µ > 0, then the resulting for-
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mula may not hold due to the violation of our constraint, vi ≥ 0. Specifically,

implementing the strategy without any modification could result in excessive

amount of investment in the earlier period and then short selling (vi < 0) af-

terward. In particular, one can select the optimal strategy with computational

iteration.

For some small ε > 0, let t∗ ∈ [0, τ) and τ ∗ ∈ [t∗ + ε, τ) be the starting

and ending time of investment, respectively, such that vt∗ > 0 and vt̄ > 0. We

recall from proposition 2 that:

m1 = Tµ+ µZ̃ + α(µÑ +W ),

m2 =
µ

λσ2

(

λσ2
Z̃
+ λα2σ2

Ñ
+ α

)

,

and

cnum(t, t̄) = sinh
(

a(t̄)
)(

m1 −m2

(

1− ea(t̄)
))

− sinh
(

a(t)
)(

m1 −m2

(

1− ea(t)
))

− µ

(

t̄ sinh
(

a(t̄)
)

− t sinh
(

a(t)
)

− 1

2

√

β

λσ2

(

e−2a(t̄) − e−2a(t)

))

,

cden(t, t̄) =2
√

βλσ2
(

sinh
(

2a(t̄)
)

− sinh
(

2a(t)
))

+ 4
(

λσ2
Z̃
+ λα2σ2

Ñ
+ α

)

(

sinh2
(

a(t̄)
)

− sinh2
(

a(t)
)

)

,

such that c(t, t̄) = cnum(t,t̄)
cden(t,t̄)

. We consider the auxiliary term:

δ(t, t̄) =max

(

2 sinh(a(τ∗))c(t∗, τ∗)− µ
2λσ2

(

1− e−a(τ∗)
)

−W

sinh(2a(τ∗)− sinh(2a(t∗))

(

2
√

βλσ2(sinh(2a(τ∗))

− sinh(2a(t∗))) + 4
(

λσ2
Z̃
+ λα2σ2

Ñ
+ α

)

(sinh2(a(τ∗))− sinh2(a(t∗)))
)

, 0

)

.
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We define:

c̃(t, t̄) =
cnum(t, t̄)− δ(t, t̄)

(

sinh(2a(t̄))− sinh(2a(t̄))
)

cden(t, t̄)
.

If there exist t∗ ∈ [0, τ) and τ ∗ ∈ [t∗ + ε, τ), then the rate of trading in the

open market at time t is given by:

vt =















√

λσ2

β

(

2 cosh
(

a(t)
)

c̃(t∗, τ ∗) + µ

2λσ2 e
−a(t)

)

if t ∈ [t∗, τ ∗],

0 if otherwise,

and the cumulative order at time t is given by:

Xv
t =















2 sinh
(

(a(t)
)

c̃(t, t̄) + µ

2λσ2

(

1− e−(a(t)
)

if t ∈ [t∗, τ ∗],

0 if otherwise.

The investment in the closing auction is, therefore, vT = W −Xv
T .

If µ ≤ 0, then τ ∗ = τ − ε, and the strategy is identical to the one given

in the remark of proposition 2. If µ > 0, then one may need to iterate through

every pair of t∗ ∈ [0, τ) and τ ∗ ∈ [t∗ + ε, τ) and check for the objective value:

β

∫ T

0
v2t dt− µ

∫ T

0
(T − t)vtdt− µZ̃

∫ T

0
vtdt− α

∫ τ

0
vt

(

µÑ +W −
∫ T

0
vtdt

)

dt

+ λσ2

∫ T

0
(Xv

t )
2dt+ λσ2

Z̃

(
∫ T

0
vtdt

)2

+ λα2σ2
Ñ

(
∫ τ

0
vtdt

)2

, (3.2)

which is derived in section 5.2.1. The optimal strategy is given by the set of

t∗ and τ ∗ that yields the lowest target value.
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In the case that t∗ and τ ∗ do not exist, the investment will only occur in

the closing auction, which means vT = W .

Strategy B

Strategy B is the strategy where one choose to invest during both periods be-

fore and after the initial imbalance announcement. Consider some small ε > 0.

We denote by t∗ ∈ [0, τ) the starting time and τ ∗ ∈ [t∗ + ε, τ) the ending time

of investment for the time horizon prior to time τ . Similarly, we let k∗ ∈ [τ, T )

be the starting time and T ∗ ∈ [k∗ + ε, T ) be the ending time of investment

after time τ . We define t∗, τ ∗, k∗, T ∗ to satisfy vt∗ , vτ∗ > 0 and vk∗ , vT ∗ > 0.

We consider our denotation for Kj
i (t

∗, τ ∗, k∗, T ∗) shown in appendix A.2. We

denote:

A1(t
∗, τ∗, k∗, T ∗) =βK4

1 + αK1
1K

2
1 + λσ2K5

1 + λσ2
Z̃

(

K2
1

)2
+ λα2σ2

Ñ

(

K1
1

)2
,

A2(t
∗, τ∗, k∗, T ∗) =βK4

2 + λσ2K5
2 + λσ2

Z̃

(

K2
2

)2
,

A3(t
∗, τ∗, k∗, T ∗) =βK4

3 + αK1
1K

2
2 + λσ2K5

3 + 2λσ2
Z̃
K2

1K
2
2 ,

A4(t
∗, τ∗, k∗, T ∗) =βK4

4 − (Tµ+ µZ̃)K
2
1 + µK3

1 − α(µÑ +W )K1
1

+ α
(

K1
1K

2
3 +K1

2K
2
1

)

+ λσ2K5
4 + 2λσ2

Z̃
K2

1K
2
3 + 2λα2σ2

Ñ
K1

1K
1
2 ,

A5(t
∗, τ∗, k∗, T ∗) =βK4

5 − (Tµ+ µZ̃)K
2
2 + µK3

2 + αK1
2K

2
2 + λσ2K5

5 + 2λσ2
Z̃
K2

2K
2
3 .

We further denote:

D1(t
∗, τ ∗, k∗, T ∗) =

A3K
2
2 − 2A2K

2
1

4A1A2 − A2
3

,

D2(t
∗, τ ∗, k∗, T ∗) =

A3K
2
1 − 2A1K

2
2

4A1A2 − A2
3
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and

cA(t
∗, τ ∗, k∗, T ∗) =

A3A5 − 2A2A4

4A1A2 − A2
3

,

cB(t
∗, τ ∗, k∗, T ∗) =

A3A4 − 2A1A5

4A1A2 − A2
3

.

Moreover, we consider the auxiliary term:

δ = max

(

W − cA
(

e2a(τ
∗) − 1

)

e−a(T∗) − cB
(

ea(T
∗) − e2a(τ

∗)−a(T∗)
)

− µ
2λσ2

(

1− e−a(T∗)
)

D1

(

e2a(τ
∗) − 1

)

e−a(T∗) +D2

(

ea(T∗) − e2a(τ∗)−a(T∗)
) , 0

)

.

If we have:

4A1A2 − A2
3 ≤ 0,

then the optimal strategy will simply be vt = 0 for all t ∈ [0, T ) and vT = W .

Otherwise, the optimal rate of trading at time t is given by:

vt =



































√

λσ2

β

(

(

cA +D1δ
)

(

e

√

λσ2

β
t
+ e

−
√

λσ2

β
t

)

+ µ
2λσ2 e

−
√

λσ2

β
t

)

for t ∈ [t∗, τ∗],

√

λσ2

β

(

(

cB +D2δ
)

(

e

√

λσ2

β
t
+ e

2a−
√

λσ2

β
t

)

−
(

cA +D1δ
)(

e2a − 1
)

e
−
√

λσ2

β
t
+ µ

2λσ2 e
−
√

λσ2

β
t

)

for t ∈ [k∗, T ∗],

and the cumulative order at time t is given by:

Xv
t =



































(

cA +D1δ
)

(

e

√

λσ2

β
t − e

−
√

λσ2

β
t

)

+ µ
2λσ2

(

1− e
−
√

λσ2

β
t

)

for t ∈ [t∗, τ∗],

(

cA +D1δ
)(

e2a − 1
)

e
−
√

λσ2

β
t
+
(

cB +D2δ
)

(

e

√

λσ2

β
t − e

2a−
√

λσ2

β
t

)

+ µ
2λσ2

(

1− e
−
√

λσ2

β
t

)

for t ∈ [k∗, T ∗].

The investment in the closing auction is, therefore, vT = W −Xv
T .
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As we have discussed previously, one can find the optimal t∗, τ ∗, k∗, and T ∗

iteratively by selecting the combination that yields the lowest objective value

shown in eq. (3.2). The overall iteration procedure can be extremely time-

consuming, especially, in the continuous-time framework.

In addition, if t∗, τ ∗, k∗, and T ∗ as defined previously does not exist, then

it is optimal to only invest in the closing auction. Namely, vT = W .

Strategy C: vt = 0 for t ∈ {1, . . . , τ − 1}.

Strategy C considers the scenario where the investor only invest after time τ .

The overall structure and proof of this strategy are nearly identical to that of

Strategy A introduced previously in this section. We denote that:

m1 = Tµ+ µZ̃ , m2 =
µ

σ2
σ2
Z̃
,

and

cnum(k, k̄) = sinh
(

a(k̄)
)(

m1 −m2

(

1− ea(k̄)
))

− sinh
(

a(k)
)(

m1 −m2

(

1− ea(k)
))

− µ

(

k̄ sinh
(

a(k̄)
)

− k sinh
(

a(k)
)

− 1

2

√

β

λσ2

(

e−2a(k̄) − e−2a(k)

))

,

cden(k, k̄) =2
√

βλσ2
(

sinh
(

2a(k̄)
)

− sinh
(

2a(k)
))

+ 4λσ2
Z̃

(

sinh2
(

a(k̄)
)

− sinh2
(

a(k)
))

,

such that c(k, k̄) = cnum(k,k̄)

cden(k,k̄)
. We consider the auxiliary term:

δ(k, k̄) = max

(

2 sinh(a(T ∗))c(k∗, T ∗)− µ
2λσ2

(

1− e−a(T ∗)
)

−W

sinh(2a(T ∗)− sinh(2a(k∗))

(

2
√

βλσ2(sinh(2a(T ∗))

− sinh(2a(k∗))) + 4λσ2
Z̃
(sinh2(a(T ∗))− sinh2(a(k∗)))

)

, 0

)

.

42



We consider:

c̃(k, k̄) =
cnum(k, k̄)− δ(k, k̄)

(

sinh(2a(k̄))− sinh(2a(k̄))
)

cden(k, k̄)
.

If there exist k∗ ∈ [τ, T ) and T ∗ ∈ [k∗ + ε, T ), then the rate of trading in the

open market at time k is given by:

vt =















√

λσ2

β

(

2 cosh
(

a(k)
)

c̃(k∗, T ∗) + µ

2λσ2 e
−a(k)

)

if k ∈ [k∗, T ∗],

0 if otherwise,

and the cumulative order at time k is given by:

Xv
t =















2 sinh
(

(a(k)
)

c̃(k, k̄) + µ

2λσ2

(

1− e−(a(k)
)

if k ∈ [k∗, T ∗],

0 if otherwise.

The investment in the closing auction is vT = W − Xv
T . The search for the

optimal pair of k∗ and T ∗ is the same as seen previously. The optimal strategy

will yield the lowest value of eq. (3.2). If k∗ and T ∗ do not exist, then vT = W .
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Case 2: β = 0

In this case, the flow trader has no effect on in the open market. We find that

it is not optimal to invest continuously, but rather, only invest at certain point

of time. Namely, we find that it optimal to invest once before the initial im-

balance announcement (time τ) and/or once before the market end (time T ).

If the stock prices yield a positive drift (µ), then one should invest at the very

beginning as well (time t∗). In particular, for some ε1 > 0 and ε2 > 0, let the

time of investment before and after time τ to be τ̃ := τ − ε1 and T̃ := T − ε2,

respectively.

We denote:

c1 :=µ(T − τ̃) + µZ̃ + α(µÑ +W )− 2
(

α+ λ
(

σ2T + σ2
Z̃
+ α2σ2

Ñ

))

V0,

c2 :=µ(T − T̃ ) + µZ̃ −
(

α+ 2λ
(

σ2T + σ2
Z̃

))

V0.

Moreover, we let:

m := 4λ
(

α+ λ
(

σ2(T + τ̃) + σ2
Z̃
+ α2σ2

Ñ

))(

σ2(T + T̃ ) + σ2
Z̃

)

−
(

α+ 2λ
(

σ2T + σ2
Z̃

))2
.

In addition, we denote:

δnum :=m
(

2λ
(

σ2(T + T̃ ) + σ2
Z̃

)

(W − V0)− c2
)

−
(

2λσ2T̃ − α
)(

2λ
(

σ2(T + T̃ ) + σ2
Z̃

)

c1

−
(

α+ 2λ
(

σ2T + σ2
Z̃

))

c2
)

such that δ = max

(

δnum
(

2λσ2T̃−α

)(

α−σ2T̃

) , 0

)

. The optimal strategy is given by:

Vt∗ =max

(

µ

2λσ2
, 0

)

,
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Vτ̃ =max

(

2λ
(

σ2(T + T̃ ) + σ2
Z̃

)

c1 −
(

α+ 2λ
(

σ2T + σ2
Z̃

))

c2 + (α− σ2T̃ )δ

m
, 0

)

,

VT̃ =max

(

c2 −
(

α+ 2λ
(

σ2T + σ2
Z̃

))

Vτ̃ − δ

2λ
(

σ2(T + T̃ ) + σ2
Z̃

) , 0

)

,

VT =W − Vt∗ − Vτ̃ − VT̃ .

If VT̃ = 0, then the optimal strategy follows from item 3 of proposition 2. In

particular, we have:

Vt∗ = max

(

µ

2λσ2
, 0

)

,

Vτ̃ = max

(

µ(T − τ̃) + µZ̃ + α(µÑ +W )− 2
(

α+ λ
(

σ2T + α2σ2
Ñ
+ σ2

Z̃

))

V0 − δ

2
(

α+ λ
(

σ2(T + τ̃) + α2σ2
Ñ
+ σ2

Z̃

)) , 0

)

,

VT = W − Vt∗−τ̃ ,

where

δ = max

(

µ(T − τ̃) + µZ̃ + αµÑ + 2λσ2τ̃V0 − 2
(

α+ λ
(

σ2(T + τ̃) + α2σ2
Ñ
+ σ2

Z̃

))

W, 0

)

.

The optimal set of t∗, ε1, ε2 should give a strategy that produce the smallest

objective value in eq. (3.2); it can be done iteratively.
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Chapter 4

Data Analysis

In this chapter, we use real intraday stock prices and imbalance volumes dur-

ing the closing auction to estimate input parameters, and then test the per-

formance of the optimal trading strategies. We assume our trader is only

submitting buy orders. We choose the time increment of investment to be 1

second; as such, we implement the discrete time strategy introduced in sec-

tion 2.3 in our simulations. The simulation uses the data from the previous

t− 1 days to estimate the parameters, which are used to test the performance

of the strategy on day t. Lastly, we compute the sample value of the objective

(2.1) suggested by the optimal strategy for each selected stock and examine if

the optimal strategy outperforms the case where the entire purchase is done

in the closing auction. The overall investment horizon consists of the last half

hour before market close on each trading day, which means each simulation

begins at 15:30:00 EST.
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4.1 Data Description

The data used in the simulation come from two sources. Namely, the im-

balance information provided by NASDAQ and the intraday stock prices ex-

tracted from the Bloomberg terminal.2 The entire data set consists of a time

horizon from November 01, 2016 to January 26, 2017.

The imbalance information shows the imbalance volume at the moment of

announcement. The closing auction begins usually at 15:50:00 EST and the

information is updated every five seconds. The imbalance information is man-

ually saved through the NASDAQ Net Order Imbalance Indicator on a daily

basis. Due to unavoidable technical issues, the information at 15:50:00 EST

is missing on certain days. Thus, the information at 15:50:05 EST is used as

the initial imbalance information instead.

The Bloomberg terminal provides the intraday stock prices along with their

corresponding traded volume. Since the smallest time measurement Bloomberg

provides is in seconds, we sometimes have multiple entries for the same point

of time. In addition, the order of multiple data at a particular time does not

necessarily correspond to the order of transaction. Hence, in order to bet-

ter reflect the true volatility of the changes in stock prices, we additionally

compute the volume weighted average prices (VWAP) per second and choose

these prices for the corresponding second. In this chapter, we will refer to

these VWAP computed stock prices simply as stock prices.

2Data obtained with permission of NASDAQ OMX Group, Inc. and Bloomberg L.P.
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In the execution of the simulations, we divide our data into two sets; namely,

a training set and a test set. The training set is used to estimate the param-

eters for the optimal strategy, which is used to test the performance with the

stock prices from the test set. The training set will change with an increasing

window, which is explained in more detail in section 4.3. In our simulations,

we test the performance of our strategy from December 16, 2016 to January

26, 2017. This suggests the smallest training set consists of data from Novem-

ber 01 to December 15, 2016.

4.2 Stock Selection

Among over 100 stocks that comprises the NASDAQ 100 index, we test the

performance of a total of 15 stocks. Specifically, we consider three different

sets with each containing five stocks. Set 1 consists of the top 5 stocks with

the highest dollar-volume, Set 2 is comprised by the five stocks that best fit

our assumption of the model, and lastly, Set 3 is randomly selected from the

remaining pool of stocks. The stocks in Sets 1 and 2 are selected based on the

information between November 01 and December 15 of 2016.

Set 1: The Most Liquid

The dollar-volume liquidity is crucial to institutional investors as they often

submit large trading orders. One can easily enter and exit the positions of a

highly liquid stock. A measurement of liquidity of stocks is the dollar-volume.

From the daily summary of the NASDAQ 100 stocks, one can calculate the
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dollar-volume for each stock, which is the product of the volume of trade

and closing stock price. By examining the average of the dollar-volume from

November 01 to December 15, the top five most liquid stocks are given by:

Set 1 = {AAPL,AMZN,FB,MSFT,GOOGL}

The companies in Set 1 are: Apple Inc., Amazon.com Inc., Facebook Inc.,

Microsoft Corporation, and Alphabet Inc.

Set 2: The Most Suitable

We recall that one of the assumptions in the theoretical framework is that the

imbalance is cleared immediately and will not reappear after the clearance.

Though this assumption stays true on certain days, there exist occurrences

where the imbalance is not cleared for a long period of time and may reappear

after the initial clearance. For certain stocks, there exist times that the order

imbalance is never fully cleared. As such, we select the top 5 stocks that, on

average, take the shortest time to clear the imbalance order and have the least

number of occurrences where the imbalance volume reappears after the initial

clearance. Excluding any stock from Set 1, Set 2 is given by:

Set 2 = {ORLY,ESRX,EA,HSIC,DISCA}

The companies in Set 2 are: O’Reilly Automotive Inc, Express Scripts, Elec-

tronic Arts, Henry Schein, and Discovery Communications Inc.
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Set 3: The Random

The last set of stocks is determined randomly from NASDAQ 100, excluding

stocks from Set 1 and 2. In our simulation, we have:

Set 3 = {SBUX,ULTA,FOX,PYPL,BMRN}

The companies in Set 3 are: Starbucks Corporation, Ulta Beauty, 21st Century

Fox, PayPal, and BioMarin Pharmaceutical.

4.3 Parameter Estimations

We recall that the parameters one needs to determine in order to compute

the optimal strategy are: µZ , µZ̃ , µÑ , σ
2
Z , σ

2
Z̃
, σ2

Ñ
, α, β, W , and λ. We first

examine the parameters that can be determined without any data analysis:

• µZ and µZ̃ are the drift of the random drivers in the stock prices. As

stock prices behave differently in different days, it is difficult to determine

a clear direction of drifts on average. Moreover, since we are considering

only a relatively short time horizon of 30min, it is sensible to suppose

that drifts are close to zero. As such, we assume µZ = µZ̃ = 0, which

suggests the optimal strategy will follow the result of proposition 1.

• µÑ is the average imbalance volume to be cleared within the first five sec-

onds since the initial imbalance announcement. By examining the histor-

ical imbalance data, there are few occurrences where the side (buy/sell)

of the imbalance remain unchanged for a long period of time. As there
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is no clear indication on sign of the imbalance volume, it is reasonable

to assume µÑ = 0 on average.

Remark: For particular stocks, one could observe a tendency of im-

balance direction. In the case of AMZN, one can obtain a better perfor-

mance by assuming a positive µÑ . Specifically, one can estimate µÑ as

the average value of the cleared imbalance volume within the first five

seconds, throughout the training set.

• β is a parameter that quantifies the effect of a trader’s action to the

stock prices during the continuous trading. For the testing, we choose

β = 10−7, in line with section 3.4 of Almgren and Chriss [1].

• W is the pre-determined shares of a stock to be traded; we assume it is

100,000 in our simulation.

• λ measures the risk aversion of the investor. A smaller (larger) value sug-

gests the investor has a greater (lower) risk tolerance. In our simulation,

we examine the performance with λ = 10−4 and with λ = 10−5.

We use the historical data to estimate the remaining parameters. We estimate

the parameters on an increasing basis. In other words, we always use the

information from day 1 to day t − 1 to estimate parameters in order to test

the performance of the strategy on day t. For example, to test the strategy on

Dec. 16, we estimate parameters with imbalance data from Nov. 01 to Dec. 15,

but to test the strategy on Jan. 02, we would estimate parameters using data

in the period Nov. 1 –Dec. 30. With an increasing window, we determine the

parameters in the following manner:
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• α is a parameter that quantifies how the imbalance volume affects stock

prices. In other words, it can be viewed as the effect on the changes of

stock prices by the changes of the imbalance volume. We assume our

trader has the same influence as other traders in the market in general.

One can estimate such parameter with the ordinary least squares (OLS)

method. Under the Gauss-Markov assumptions, the estimated parame-

ter is the best linear unbiased estimator. The training set serves as the

sample data set of the regression. The linear regression model is given

by:

yi = αxi + εi

where xi is the change in imbalance on day i, yi is the change in price

on day i, and εi is the estimation residual. Wooldridge [13] gives an

overview of the OLS approach.

• σ2
Ñ

is the variance of the imbalance volume cleared within the first five

seconds. For each day in the training set, we calculate the changes of

the imbalance volume (the cleared volume) in the first five seconds. σ2
Ñ

is determined as the variance over the entire training set.

• σ2
Z captures the volatility of stock prices without any effect from the

imbalance announcement. For each day, we compute the variance of the

changes in stock prices from the beginning time of investment (15:30:00

EST) to the moment before the initial imbalance announcement. We

exclude the changes of stock prices for the last 10 minutes of trading to

avoid any effect that may be due to the closing auction. In the end, σ2
Z

is the average value of such daily variance.
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• σ2
Z̃
is the variance of the changes of stock price at the last moment before

the market close. It is simply calculated as such variance throughout the

training set.

As we are adapting an increasing window, the set of parameters is different each

day. For illustration purpose, Table 4.1 shows the set of estimated parameters

using information from Nov. 01 to Dec. 30, 2016. During this period, one can

α(×10−6) σ2
Ñ
(×109) σ2

Z(×10−8) σ2
Z̃
(×10−8)

AAPL 0.13 58.05 0.45 2.23
AMZN 5.56 0.63 2.31 3.25
FB 0.20 16.37 0.66 1.37
MSFT 0.07 49.11 0.81 2.84
GOOGL 6.90 0.62 4.24 3.21
ORLY 1.40 0.16 3.58 1.60
ESRX 0.16 12.60 1.57 3.44
EA 0.36 2.41 1.70 1.32
HSIC 1.50 0.36 3.37 1.55
DISCA 0.19 1.15 4.50 2.56
SBUX 0.17 6.09 1.03 1.12
ULTA 2.77 0.06 6.30 2.40
FOX 0.19 1.31 3.41 5.94
PYPL 0.14 19.65 2.09 1.57
BMRN 4.03 0.26 12.69 5.43

Table 4.1: Estimated Parameters for Jan. 03, 2017 based on Data from Nov. 01 to
Dec. 30, 2016.

see that the investor has the most market impact during the closing auction in

GOOGL and least impact in MSFT. Moreover, AAPL has the most volatility

in the initial imbalance clearance and BMRN has the most fluctuation in stock

prices.
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4.4 Algorithmic Simulation

Using the estimated parameters as described in section 4.3, one can apply the

algorithm proposed in section 2.3 to determine the optimal strategy. In this

section, we examine two cases where the trader has a relatively low or high

risk tolerance; that is, λ = 10−4 and λ = 10−5, respectively. Having a low risk

tolerance suggests the investor will tend to invest less in the earlier time of the

investment horizon.

Figure 4.1: Average Trading Volume per Second for Set 1 (Higher λ)

Figures 4.1 – 4.6 show the average progression of trading volume as percentage

of the total volume, W , throughout the testing period for all 15 stocks. By

comparing Figures 4.1 – 4.3 (λ = 10−4) with Figures 4.4 – 4.6 (λ = 10−5), the

trading volumes at the earlier period on Figures 4.1 – 4.3 are smaller; however,

there is a greater increase in the trading volume when the time is closer to
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Figure 4.2: Average Trading Volume per Second for Set 2 (Higher λ)

Figure 4.3: Average Trading Volume per Second for Set 3 (Higher λ)

55



the initial imbalance announcement at 15:50:00 EST. On the other hand, the

trading volumes on Figure 4.4 – 4.6 are greater in the earlier period, but lower

at the later period. These phenomena are consistent with our intuition and

illustrate that a relatively risk-averse investor would place the orders with a

larger marginal increase whereas a less risk-averse investor tends to trade with

a less marginal increase of volume throughout the trading period so to achieve

a lower average price impact by accepting higher deviations compared to the

benchmark (closing price). In the case of BMRN, one can observe through Fig-

ure 4.3, that there is almost no investment in the earlier period and a larger

volume of orders being placed near 15:50:00 EST. Since the trader has a rela-

tively low risk tolerance, the orders will only be placed at a later period, due

to the high volatility of BMRN’s stock prices, which is reflected in Table 4.1.

Figure 4.4: Average Trading Volume per Second for Set 1 (Lower λ)
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Figure 4.5: Average Trading Volume per Second for Set 2 (Lower λ)

Figure 4.6: Average Trading Volume per Second for Set 3 (Lower λ)
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A less risk-averse investor would tend to trade more orders in the open market

than a more risk-averse investor; this is reflected through Figures 4.7 – 4.12,

which show the cumulative order for each stock. Figures 4.7 – 4.9 show that

our trader would invest between 25% to 50% of the total volume in the open

market, depending on the selected stock. For a ten times smaller risk aversion

parameter, Figures 4.10 – 4.12 suggest the trader would buy generally more in

the continuous trading. For most stocks in this analysis, the trader tend to

increase the investment in the open market from around 30% to approximately

50%.

Figure 4.7: Average Cumulative Trading Volume for Set 1 (Higher λ)
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Figure 4.8: Average Cumulative Trading Volume for Set 2 (Higher λ)

Figure 4.9: Average Cumulative Trading Volume for Set 3 (Higher λ)
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Figure 4.10: Average Cumulative Trading Volume for Set 1 (Lower λ)

Figure 4.11: Average Cumulative Trading Volume for Set 2 (Lower λ)
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Figure 4.12: Average Cumulative Trading Volume for Set 3 (Lower λ)

We examine the performance of the optimal strategy against the performance

of investing entirely in the closing auction, based on two aspects. Namely, the

size of the difference in the implementation shortfall and its stability; the two

aspects correspond to the two terms in the objective function (2.1). For each

day of our testing period, we determine the optimal strategy for each stock

and calculate the value for

T
∑

t=1

vtPt −WPT . (4.1)

In the testing of the strategy, we adjust the stock prices with corresponding

market impact of our orders, as presented in section 2.1. By computing the

mean of eq. (4.1) over the entire testing period, we obtain the expected cost

reductions for all 15 stocks. Additionally, with the inclusion of the variance,
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we examine the risk-adjusted expected cost reductions. Table 4.2 shows such

objective values under two different values of λ. With a lower risk tolerance,

Average Risk- Average Risk-
(λ = 10−4) adjusted (λ = 10−5) adjusted

amount change (λ = 10−4) amount change (λ = 10−5)
in $ in bps in $ in bps

AAPL -2,144 -1.82 -174 -4,101 -3.47 -3,487

AMZN -40,698 -5.15 87,025 -52,940 -6.69 -24,169

FB -1,037 -0.84 3,571 -1,640 -1.33 -886

MSFT -1,157 -1.82 22 -1,942 -3.05 -1,691

GOOGL -58,040 -7.06 41,205 -75,539 -9.17 -53,668

ORLY -9,720 -3.48 9,163 -9,358 -3.35 -6,910

ESRX -1,132 -1.66 1349 -1,610 -2.36 -1,195

EA -3,464 -4.30 -1,554 -3,666 -4.55 -3,433

HSIC -13,503 -8.64 -7,978 -14,489 -9.26 -13,668

DISCA -1,601 -5.75 -1291 -1,636 -5.87 -1,601

SBUX -1,482 -2.59 -696 -1,667 -2.92 -1,552

ULTA -339,716 -9.21 -10,613 -24,929 -9.46 -22,985

FOX -2,077 -7.13 -1,611 -2,293 -7.87 -2,228

PYPL -764 -1.92 -128 -1,407 -3.50 -1,290

BMRN -31,740 -36.91 -25,077 -34,300 -39.89 -33,420

Table 4.2: Out-of-Sample Objective Values across the Different Stocks for λ = 10−4

and λ = 10−5.

the risk-adjusted value can be positive for certain stocks, such as GOOGL,

as illustrated in the fourth column. However, these positive values do not

necessarily suggest the underperformance of the strategy, but rather, reflect a

notion of fluctuation in the cost reduction. A risk-averse investor would value

these fluctuation more than the average value in cost reduction. In fact, the

second and third columns of Table 4.2 verify that the optimal strategy would

provide an attractive cost reduction on average for each stock. As expected,

if the trader has a higher risk tolerance, the risk-adjusted values are negative

for all stocks, which can be seen on the last column. Overall, if the trader is
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less risk-averse, then the simulated objective values for all sets of stocks are

negative, which suggests, generally, the proposed strategy yields a positive and

stable performance.

Though the second and fifth columns of Table 4.2 show that the average cost

reduction are negative for all selected stocks, it does not necessarily suggest

the optimal strategy will outperform everyday for all stocks. In particular,

FB yields one of the lowest cost reductions among the selected stocks. This

is to be expected as FB is one of a few stocks that deviate materially from

the theoretical model assumptions. In particular, throughout the training and

testing period, FB had ten days where the imbalance volume took a long time

to clear, and there exist three days where the imbalance volume was never

cleared. Moreover, the initial imbalance volume clearance was relatively small

on multiple occasions. In this section, we present detailed information of FB as

an illustration. For λ = 10−5, Table 4.3 shows the implementation costs of the

optimal strategy as well as investing only in the closing auction. The fourth

column shows the cost reduction in dollar, given by eq. (4.1), whereas the last

column measures it in percentage. One can observe that the investor is incur-

ring losses from January 04 to January 10, as well as January 20 to January 26.

The highest loss occurred on January 06, where the strategy underperformed

by 0.13%. However, the losses incurred on such days are completely covered

by the gains from other days; thus, resulting in a decent implementation cost

reduction on average, as shown in Table,4.2. Although the trader may ex-

perience temporary losses from time to time, the proposed optimal strategy

outperforms in general, nonetheless.
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FB Cost:
Optimal
Strategy

Cost:
Only C.A.

Difference
($)

Difference
(%)

2016-12-16 $11,985,009 $11,989,018 -$4,009 -0.03%

2016-12-19 $11,920,018 $11,926,009 -$5,991 -0.05%

2016-12-20 $11,907,823 $11,911,006 -$3,183 -0.03%

2016-12-21 $11,899,183 $11,906,000 -$6,817 -0.06%

2016-12-22 $11,728,834 $11,742,006 -$13,172 -0.11%

2016-12-23 $11,725,144 $11,729,007 -$3,863 -0.03%

2016-12-27 $11,804,965 $11,803,010 $1,955 0.02%

2016-12-28 $11,695,062 $11,694,017 $1,046 0.01%

2016-12-29 $11,634,884 $11,637,009 -$2,125 -0.02%

2016-12-30 $11,507,593 $11,507,053 $541 0.00%

2017-01-03 $11,671,078 $11,687,981 -$16,903 -0.14%

2017-01-04 $11,879,775 $11,871,003 $8,772 0.07%

2017-01-05 $12,071,586 $12,069,013 $2,573 0.02%

2017-01-06 $12,358,789 $12,343,012 $15,777 0.13%

2017-01-09 $12,500,051 $12,492,020 $8,030 0.06%

2017-01-10 $12,447,244 $12,437,040 $10,204 0.08%

2017-01-11 $12,602,509 $12,611,032 -$8,523 -0.07%

2017-01-12 $12,660,938 $12,664,031 -$3,093 -0.02%

2017-01-13 $12,845,679 $12,836,028 $9,652 0.08%

2017-01-17 $12,776,859 $12,789,026 -$12,166 -0.10%

2017-01-18 $12,788,408 $12,793,991 -$5,582 -0.04%

2017-01-19 $12,755,764 $12,756,970 -$1,206 -0.01%

2017-01-20 $12,709,382 $12,705,986 $3,396 0.03%

2017-01-23 $12,904,073 $12,894,944 $9,129 0.07%

2017-01-24 $12,943,840 $12,939,011 $4,829 0.04%

2017-01-25 $13,152,468 $13,150,011 $2,458 0.02%

2017-01-26 $13,282,190 $13,280,014 $2,176 0.02%

2017-01-27 $13,211,519 $13,220,019 -$8,500 -0.06%

2017-01-30 $13,079,683 $13,100,017 -$20,334 -0.16%

2017-01-31 $13,019,756 $13,034,034 -$14,278 -0.11%

Table 4.3: Implementation Costs in Facebook Inc. of the Optimal Strategy vs.
Investing only in Closing Auction
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Overall, the performance of the proposed strategy shows cost reduction for all

sets of our selected stocks. The sixth column of Table 4.2 summarizes the aver-

age cost reduction for each stock in basis point (bps) when λ = 10−5. One can

see that BMRN performed exceptionally well with an average cost reduction of

almost 40 bps. Excluding BMRN, the average value of cost reduction for all 15

stocks is 5.20 bps. Set 1 and Set 2 each have two stocks performed above the

average while Set 3 has three stocks performed above the average. We recall

that Set 2 consists of five stocks that satisfy the model assumptions the best.

However, Table 4.2 suggests that Set 2 does not necessarily always outperform

the average performance. Though stocks in Set 2 satisfy the theoretical as-

sumptions well, they are rather small-capitalized and less liquid stocks, hence

their stock prices and impact of imbalance announcement are more difficult to

model and estimate.
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Chapter 5

Proofs of Results

5.1 Proofs for the Discrete-Time Model

5.1.1 Proof of Proposition 1

Suppose the order imbalance is cleared immediately and there are no orders

in the closing auction afterward. We assume the market impact of our order

is only temporary. We will first restructure our objective function for a flow

trader. Then, we will construct a Lagrange function and examine its the first

order condition with respect to the investment strategy at each point of time.

By using the Karush-Kuhn-Tucker conditions, we show that it is not optimal

to trade after the initial imbalance announcement using contradiction. As

such, we derive the explicit optimal investment strategy for the period before

the initial imbalance announcement. We will show various strategies base on

the existence of the investor’s market influence. In particular, we analyze the

structure in the following four cases:

Investor’s Market Impact Exist in Closing Auction None in Open Market

Exist in Open Market β > 0, α > 0 β = 0, α > 0

None in Open Market β > 0, α = 0 β = 0, α = 0
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Step 1: Preparation.

We begin the proof with rewriting our objective function. We recall that the

stock prices are:

Pt = P̃t + βvt for t ∈ {1, . . . , τ − 1, τ + 1 . . . , T − 1}

Pτ = P̃τ + βvτ

PT = P̃T

where

P̃t = P̃t−1 + Zt for t ∈ {1, . . . , τ − 1, τ + 1 . . . , T − 1}

P̃τ = P̃τ−1 + Zτ + αN

P̃T = P̃T−1 + Z̃i,

and

N = Ñ +
T
∑

i=τ

wi = Ñ + vT ,

which can be expressed as:

Pt = P0 +
t

∑

i=1

Zi + βvt for t ∈ {1, . . . , τ − 1}

Pk = P0 +
k

∑

i=1

Zi + βvk + α(Ñ + vT ) k ∈ {τ . . . , T − 1}

PT = P0 +
T−1
∑

i=1

Zi + Z̃ + α(Ñ + vT ).
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For flow traders, we recall that the objective function is:

min E

[ T
∑

t=1

vtPt −WPT

]

+ λV AR

[ T
∑

t=1

vtPt −WPT

]

s.t. W =
T
∑

t=1

vi

W −
T−1
∑

t=1

vt ≥ 0, vt ≥ 0 for all t ∈ {1, . . . , T − 1}.

One can show:

T
∑

t=1

vtPt −WPT

=

T−1
∑

t=1

vtPt −
( T−1
∑

i=1

vi

)

PT

=

τ−1
∑

t=1

vt

(

P0 +

t
∑

i=1

Zi + βvt

)

+

T−1
∑

t=τ

vt

(

P0 +

t
∑

i=1

Zi + βvt + α

(

Ñ +W −
T−1
∑

t=1

vt

))

−
( T−1
∑

t=1

vi

)(

P0 +

T−1
∑

t=1

Zt + Z̃ + α

(

Ñ +W −
T−1
∑

t=1

vt

))

= β

T−1
∑

t=1

v2t +
T−1
∑

t=1

(

vt

t
∑

i=1

Zi

)

−
T−1
∑

t=1

vt

T−1
∑

t=1

Zt − α

τ−1
∑

t=1

(

Ñ +W −
T−1
∑

t=1

vt

)

vt − Z̃

T−1
∑

t=1

vt.

In particular, we show:

T−1
∑

t=1

(

vt

t
∑

i=1

Zi

)

=
(

v1Z1 + v2(Z1 + Z2) + · · ·+ vT−1(Z1 + · · ·+ ZT−1)
)

= Z1(v1 + · · ·+ vT−1) + Z2(v2 + · · ·+ vT−1) + · · ·+ ZT−1vT−1,

which suggests:

T−1
∑

t=1

(

vt

t
∑

i=1

Zi

)

−
T−1
∑

t=1

vt

T−1
∑

t=1

Zt = −
(

Z2v1 + Z3(v1 + v2) + · · ·+ ZT−1(v1 + · · ·+ vT−2)
)

= −
T−1
∑

t=2

( t−1
∑

i=1

vi

)

Zt.
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Hence, we have:

β

T−1
∑

t=1

v2t +

T−1
∑

t=1

(

vt

t
∑

i=1

Zi

)

−
T−1
∑

t=1

vt

T−1
∑

t=1

Zt − α

τ−1
∑

t=1

(

Ñ +W −
T−1
∑

t=1

vt

)

vt − Z̃

T−1
∑

t=1

vt

=

(

β

T−1
∑

t=1

v2t − αW

τ−1
∑

t=1

vt + α

τ−1
∑

t=1

vt

T−1
∑

t=1

vt

)

−
T−1
∑

t=2

( t−1
∑

i=1

vi

)

Zt −
( T−1
∑

t=1

vt

)

Z̃ −
(

α

τ−1
∑

t=1

vt

)

Ñ .

We will then examine the expected value and the variance of the above equa-

tion, but before we do so, we denote v0 = 0 and observe:

E

( T−1
∑

t=2

( t−1
∑

i=1

vi

)

Zt

)

= E
(

v1Z2 + (v1 + v2)Z3 + · · ·+ (v1 + · · ·+ vT−2)ZT−1

)

= µZ

(

v1 + (v1 + v2) + · · ·+ (v1 + · · ·+ vT−2)
)

= µZ

(

(T − 1)v1 + (T − 2)v2 + · · ·+ vT−2

)

= µZ

T−1
∑

t=1

(T − t)vt,

and

V AR

( T−1
∑

t=2

( t−1
∑

i=1

vi

)

Zt

)

= V AR
(

v1Z2 + (v1 + v2)Z3 + · · ·+ (v1 + · · ·+ vT−2)ZT−1

)

= σ2
Z

(

v21 + (v1 + v2)
2 + · · ·+ (v1 + · · ·+ vT−2)

2
)

= σ2
Z

T−1
∑

t=1

( t−1
∑

i=0

vi

)2

.

Now, the expected value term can be formulated as:

E

[ T
∑

t=1

vtPt −WPT

]

= β

T−1
∑

t=1

v2t − αW

τ−1
∑

t=1

vt + α

τ−1
∑

t=1

vt

T−1
∑

t=1

vt − µZ

T−1
∑

t=1

(T − t)vt − µZ̃

T−1
∑

t=1

vt − αµÑ

τ−1
∑

t=1

vt
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= β

T−1
∑

t=1

v2t + α

τ−1
∑

t=1

vt

T−1
∑

t=1

vt − µZ

T−1
∑

t=1

(T − t)vt − µZ̃

T−1
∑

t=1

vt − α(µÑ +W )

τ−1
∑

t=1

vt

On the other hand, we have the following for the variance term of the objective

function:

V AR

[ T
∑

t=1

vtPt −WPT

]

= σ2
Z

T−1
∑

t=1

( t−1
∑

i=0

vi

)2

+ σ2
Z̃

( T−1
∑

t=1

vt

)2

+ α2σ2
Ñ

( τ−1
∑

t=1

vt

)2

Step 2: Lagrange Systems of Equations.

Our objective function is now transformed into:

min β

T−1
∑

t=1

v2t + α

τ−1
∑

t=1

vt

T−1
∑

t=1

vt − µZ

T−1
∑

t=1

(T − t)vt − µZ̃

T−1
∑

t=1

vt − α(µÑ +W )
τ−1
∑

t=1

vt

+ λσ2
Z

T−1
∑

t=1

( t−1
∑

i=0

vi

)2

+ λσ2
Z̃

( T−1
∑

t=1

vt

)2

+ λα2σ2
Ñ

( τ−1
∑

t=1

vt

)2

s.t. W −
T−1
∑

t=1

vt ≥ 0, vt ≥ 0 for all t ∈ {1, . . . , T − 1}.

From this system of equations, we construct a Lagrange function L. For some

δ ≥ 0, we have:

L =β

T−1
∑

t=1

v2t + α

τ−1
∑

t=1

vt

T−1
∑

t=1

vt − µZ

T−1
∑

t=1

(T − t)vt − µZ̃

T−1
∑

t=1

vt − α(µÑ +W )
τ−1
∑

t=1

vt

+ λσ2
Z

T−1
∑

t=1

( t−1
∑

i=0

vi

)2

+ λσ2
Z̃

( T−1
∑

t=1

vt

)2

+ λα2σ2
Ñ

( τ−1
∑

t=1

vt

)2

+ δ

( T−1
∑

t=1

vt −W

)

We differentiate L with respect to vt for all t ∈ {1, . . . , T − 1} and δ. Note

that for all t, we have:

∂

∂vt
λσ2

Z

T−1
∑

t=1

( t−1
∑

i=0

vi

)2

=
∂

∂vt
λσ2

Z(v
2
1 + (v1 + v2)

2 + · · ·+ (v1 + · · ·+ vT−1)
2)
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= 2λσ2
Z

(

(T − t)

t−1
∑

i=0

vi +

T−1
∑

i=t

(T − i)vi

)

Using the above equation, we are able to find the following partial derivatives:

∂L

∂vt
= 2βvt + α

τ−1
∑

i=1

vi + α

T−1
∑

i=1

vi − µZ(T − t)− µZ̃ − α(µÑ +W )

+ 2λσ2
Z

(

(T − t)

t−1
∑

i=0

vi +

T−1
∑

i=t

(T − i)vi

)

+ 2λσ2
Z̃

T−1
∑

i=1

vi + 2λα2σ2
Ñ

τ−1
∑

i=1

vi + δ

= βvt +

(

λα2σ2
Ñ
+

α

2

) τ−1
∑

i=1

vi +

(

λσ2
Z̃
+

α

2

) T−1
∑

i=1

vi + λσ2
Z(T − t)

t−1
∑

i=0

vi

+ λσ2
Z

T−1
∑

i=t

(T − i)vi − ct for t ∈ {1, . . . , τ − 1},

∂L

∂vk
= 2βvk + α

τ−1
∑

i=1

vi − µZ(T − k)− µZ̃ + 2λσ2
Z

(

(T − k)
k−1
∑

i=0

vi +
T−1
∑

i=k

(T − i)vi

)

+ 2λσ2
Z̃

T−1
∑

i=1

vi + δ

= βvk +
α

2

τ−1
∑

i=1

vi + λσ2
Z̃

T−1
∑

i=1

vi + λσ2
Z(T − k)

k−1
∑

i=0

vi + λσ2
Z

T−1
∑

i=k

(T − i)vi − ck

for k ∈ {τ, . . . , T − 1},

∂L

∂δ
=

T−1
∑

i=1

vi −W,

where

ct :=
1

2

(

(T − t)µZ + µZ̃ + α(µÑ +W )− δ
)

for t ∈ {1, . . . , τ − 1},

ck :=
1

2

(

(T − k)µZ + µZ̃ − δ
)

for k ∈ {τ, . . . , T − 1}.
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To minimize the objective function, the following Karush-Kuhn-Tucker condi-

tions must hold:

vt
∂L

∂vt
= 0; vt ≥ 0;

∂L

∂vt
≥ 0

vk
∂L

∂vk
= 0; vk ≥ 0;

∂L

∂vk
≥ 0

δ
∂L

∂δ
= 0; δ ≥ 0;

∂L

∂δ
≤ 0.

Step 3: Not Optimal to trade after time τ .

We will show here that it is not optimal to trade after the initial imbalance

announcement by contradiction. Based on our assumptions, µZ , µZ̃ ≤ 0, which

suggest (T − t)µZ ≤ −µZ̃ . Thus, we know:

ck =
1

2

(

(T − k)µZ + µZ̃ − δ
)

≤ 0 for k ∈ {τ, . . . , T − 1}.

Suppose there exist k ∈ {τ, . . . , T − 1} such that vk > 0, then by the Karush-

Kuhn-Tucker conditions, we have ∂L
∂vk

= 0. For any k, we have

0 = βvk +
α

2

τ−1
∑

i=1

vi + λσ2
Z̃

T−1
∑

i=1

vi + λσ2
Z(T − k)

k−1
∑

i=0

vi + λσ2
Z

T−1
∑

i=k

(T − i)vi − ck.

Since β, α ≥ 0 and λ > 0, it is clear that each term of the above equation

is non-negative since vi ≥ 0 for all i. The RHS of above equality is strictly

positive since λ > 0, unless vi = 0 for all i ∈ {1, . . . , T − 1}, which will imply

vk = 0. Now, we have a contradiction; as such, we conclude that vk = 0 for

all k ∈ {τ, . . . , T − 1}.

72



Step 4: Optimal Investment Strategy - Case β > 0 and α > 0.

Step 4a: Scenario v1 > 0.

We will now examine the set of optimal vt for t ∈ {1, . . . , τ − 1}. We first

consider the case where the investor’s decision have impact on stock prices in

both the open market and the closing auction. Namely, β > 0 and α > 0.

To show the explicit expression of the set of optimal strategies for t ∈ {1, . . . , τ−

1}, we suppose that vt > 0 for any t, which implies ∂L
∂vt

= 0 by the Karush-

Kuhn-Tucker conditions. In other words, we solve for the following set of

equations:

ct = βvt +

(

λσ2
Z̃
+ λα2σ2

Ñ
+ α

) τ−1
∑

i=1

vi + λσ2
Z(T − t)

t−1
∑

i=0

vi + λσ2
Z

τ−1
∑

i=t

(T − i)vi.

We denote:

mi = (T − i)λσ2
Z + λσ2

Z̃
+ λα2σ2

Ñ
+ α

for i ∈ {1, . . . , τ − 1}. Note that for any i ∈ {1, . . . , τ − 2}, we have:

ci − ci+1 =
1

2
µZ , mi −mi+1 = λσ2

Z .
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We observe that the system of equations can be expressed as:

























β +m1 m2 m3 . . . mτ−1 c1

m2 β +m2 m3 . . . mτ−1 c2

m3 m3 β +m3 . . . mτ−1 c3

...
...

...
. . .

...
...

mτ−1 mτ−1 mτ−1 . . . β +mτ−1 cτ−1

























.

We subtract row i− 1 from row i for i ∈ {2, . . . , τ − 1}, then the above matrix

is transformed into:

























β +m1 m2 m3 . . . mτ−1 c1

m2 −m1 − β β 0 . . . 0 c2 − c1

m3 −m2 m3 −m2 − β β . . . 0 c3 − c2

...
...

...
. . .

...
...

mτ−1 −mτ−2 mτ−1 −mτ−2 mτ−1 −mτ−2 . . . β cτ−1 − cτ−2

























,

which is equivalent to:

























β +m1 m2 m3 . . . mτ−1 c1

β + λσ2
Z −β 0 . . . 0 1

2
µZ

λσ2
Z β + λσ2

Z −β . . . 0 1
2
µZ

...
...

...
. . .

...
...

λσ2
Z λσ2

Z λσ2
Z . . . −β 1

2
µZ

























.
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Moreover, we can further transform this matrix into:

































β +m1 m2 m3 m4 . . . mτ−2 mτ−1 c1

β + λσ2
Z −β 0 0 . . . 0 0 1

2
µZ

−β 2β + λσ2
Z −β 0 . . . 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 . . . −β 0 0

0 0 0 0 . . . 2β + λσ2
Z −β 0

































.

We can see that:

v2 =

(

1 +
λσ2

Z

β

)

v1 −
1

2

µZ

β
.

By examining the above matrix, for i ∈ {3, . . . , τ − 1}, we have a recursive

function:

vi =

(

2 +
λσ2

Z

β

)

vi−1 − vi−2.

We denote:

b := 2 +
λσ2

Z

β

and note that b is strictly positive. Specifically, we have b > 2 because λ and

σ2
Z are strictly positive. The solution to the above recursive function depends

on the roots of the characteristic equation:

x2 − bx+ 1.

By applying the quadratic formula, the roots are given by:

x1 :=
b+

√
b2 − 4

2
and x2 :=

b−
√
b2 − 4

2
,
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where x1 6= x2 and x1, x2 > 0 since b > 2. The recursive function can now be

expressed as:

vi = Axi1 +Bxi2

for some A,B ∈ R and i ∈ {3, . . . , τ − 1}. For v1 and v2 we have:

v1 = Ax1 +Bx2 and v2 = Ax21 +Bx22.

One can easily show that:

A =
(b− 1− x2)v1 − µZ

2β

x21 − x1x2
and B =

(b− 1− x1)v1 − µZ

2β

x22 − x1x2
.

Thus, the recursive function is equivalent to:

vi =

(

(b− 1− x2)v1 − µZ

2β

x21 − x1x2

)

xi1 +

(

(b− 1− x1)v1 − µZ

2β

x22 − x1x2

)

xi2

=

((

b− 1− x2

x21 − x1x2

)

xi1 +

(

b− 1− x1

x22 − x1x2

)

xi2

)

v1 −
µZ

2β

(

xi1
x21 − x1x2

+
xi2

x22 − x1x2

)

.

We observe that:

x1x2 =

(

b+
√
b2 − 4

2

)(

b−
√
b2 − 4

2

)

=
b2 − (b2 − 4)

4
= 1.

We denote:

pi :=

(

b− 1− x2

x21 − 1

)

xi1 +

(

b− 1− x1

x22 − 1

)

xi2

and

qi :=
xi1

x21 − 1
+

xi2
x22 − 1

.
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Moreover, since b > 2, we obtain the following:

b− 1− x1 = b− 1− b+
√
b2 − 4

2
=
b

2
− 1−

√

b2

4
− 1 < 0,

b− 1− x2 = b− 1− b−
√
b2 − 4

2
=
b

2
− 1 +

√

b2

4
− 1 > 0,

x21 − 1 =
(b+

√
b2 − 4)2

4
− 1 > 0,

x22 − 1 =
(b−

√
b2 − 4)2

4
− 1 < 0.

Hence, we know that pi > 0 for all i. As such, we now have:

c1 = (β +m1)v1 +
τ−1
∑

i=2

mivi

= (β +m1)v1 +
τ−1
∑

i=2

mi

(

piv1 −
µZ

2β
qi

)

=

(

β +m1 +
τ−1
∑

i=2

mipi

)

v1 −
µZ

2β

τ−1
∑

i=2

miqi,

which leads to:

v1 =
c1 +

µZ

2β

∑τ−1
i=2 miqi

β +m1 +
∑τ−1

i=2 mipi

=

(

(T − 1) + 1
β

∑τ−1
i=2 miqi

)

µZ + µZ̃ + α(µÑ +W )− δ

2(β +m1 +
∑τ−1

i=2 mipi)
(5.1)

where

mi = (T − 1− i)λσ2
Z + λσ2

Z̃
+ λα2σ2

Ñ
+ α,

pi =

( λσ2
Z

β
+ 1− x2

x21 − 1

)

xi1 +

( λσ2
Z

β
+ 1− x1

x22 − 1

)

xi2,
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qi =
xi1

x21 − 1
+

xi2
x22 − 1

,

with

x1 = 1 +
λσ2

Z

2β
+

√

λσ2
Z

β

(

1 +
λσ2

Z

4β

)

and

x2 = 1 +
λσ2

Z

2β
−
√

λσ2
Z

β

(

1 +
λσ2

Z

4β

)

.

Subsequently, the investment at time i ∈ {2, . . . , τ − 1} can be determined by:

vi = piv1 −
µZ

2β
qi.

Step 4b: Scenario v1 = 0.

Now, we observe from eq. (5.1) that v1 > 0 only if the following holds:

W >
δ −

(

(T − 1) + 1
β

∑τ−1
i=2 miqi

)

µZ − µZ̃ − αµÑ

α
.

Otherwise, we must have v1 = 0 to satisfy the Karush-Kuhn-Tucker Condition.

If we have v1 = 0, then our system of equations can be written as:

























β +m2 m3 . . . mτ−1 c2

β + λσ2
Z −β . . . 0 1

2
µZ

λσ2
Z β + λσ2

Z . . . 0 1
2
µZ

...
...

. . .
...

...

λσ2
Z λσ2

Z . . . −β 1
2
µZ

























.
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One can repeat the identical procedure and have:

v2 = max

(

(

(T − 2) + 1
β

∑τ−1
i=3 miqi−1

)

µZ + µZ̃ + α(µÑ +W )− δ

2(β +m2 +
∑τ−1

i=3 mipi−1)
, 0

)

Similarly, if v2 > 0, then the investment at time i ∈ {3, . . . , τ − 1} can be

determined by:

vi = pi−1v2 −
µZ

2β
qi−1.

If v2 = 0, then the identical procedure is repeatable until time τ − 3.

To generalize our observation, we denote t∗ to be the smallest integer such

that:

(

(T − t∗) +
1

β

τ−1
∑

i=t∗+1

miqi+1−t∗

)

µZ + µZ̃ + α(µÑ +W )− δ > 0.

If there exists such t∗ ∈ {2, . . . , τ − 3}, then:

vs = 0 for s ∈ {1, . . . , t∗ − 1},

vt∗ =

(

(T − t∗) + 1
β

∑τ−1
i=t∗+1miqi+1−t∗

)

µZ + µZ̃ + α(µÑ +W )− δ

2(β +mt∗ +
∑τ−1

i=t∗+1mipi+1−t∗)
, (5.2)

vi = pi+1−t∗vt∗ −
µZ

2β
qi+1−t∗ for i ∈ {t∗ + 1, . . . , τ − 1}.

79



We will now analyze the auxiliary term δ. Suppose δ > 0, then we must have

0 = W −∑τ−1
i=1 vi. In particular, we have:

0 = W −
τ−1
∑

i=1

vi

= W −
(

1 +
τ−1
∑

i=t∗+1

pi+1−t∗

)

vt∗ +
µZ

2β

τ−1
∑

i=t∗+1

qi+1−t∗

= W −
(

1 +
τ−1
∑

i=t∗+1

pi+1−t∗

)

(

(T − t∗) + 1
β

∑τ−1
i=t∗+1miqi+1−t∗

)

µZ + µZ̃ + α(µÑ +W )

2(β +mt∗ +
∑τ−1

i=t∗+1mipi+1−t∗)

+
µZ

2β

τ−1
∑

i=t∗+1

qi +
1 +

∑τ−1
i=t∗+1 pi+1−t∗

2(β +mt∗ +
∑τ−1

i=t∗+1mipi+1−t∗)
δ,

which is equivalent to:

δ =

(

(T − t∗) +
1

β

τ−1
∑

i=t∗+1

miqi+1−t∗

)

µZ + µZ̃ + α(µÑ +W )

−
2(β +mt∗ +

∑τ−1
i=t∗+1mipi+1−t∗)

1 +
∑τ−1

i=t∗+1 pi+1−t∗

(

W +
µZ

2β

τ−1
∑

i=t∗+1

qi+1−t∗

)

.

Suppose W ≥ α
2mτ−1−α

µÑ , which implies:

µÑ ≤
(

2mτ−1(1 +
∑τ−1

i=t∗+1 pi+1−t∗)

α(1 +
∑τ−1

i=t∗+1 pi+1−t∗)
− 1

)

W

<

(

2(β + λσ2
Z +mτ−1 +mτ−1

∑τ−1
i=t∗+1 pi+1−t∗)

α(1 +
∑τ−1

i=t∗+1 pi+1−t∗)
− 1

)

W

=

(

2(β +mτ−2 +mτ−1

∑τ−1
i=t∗+1 pi+1−t∗)

α(1 +
∑τ−1

i=t∗+1 pi+1−t∗)
− 1

)

W

≤
(

2(β +mt∗ +
∑τ−1

i=t∗+1mipi+1−t∗)

1 +
∑τ−1

i=t∗+1 pi+1−t∗
− α

)

W

α
.
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We see that:

α(µÑ +W )−
2(β +mt∗ +

∑τ−1
i=t∗+1mipi+1−t∗)

1 +
∑τ−1

i=t∗+1 pi+1−t∗
W ≤ 0.

Since µZ ≤ 0 and µZ̃ ≤ 0, we get δ ≤ 0, which is a contradiction. Therefore,

δ = 0 must hold. As such, the order placed in the closing auction is:

vT = W −
(

1 +
τ−1
∑

i=t∗+1

pi+1−t∗

)

vt∗ +
µZ

2β

τ−1
∑

i=t∗+1

qi+1−t∗ .

Step 4c: Scenario vi = 0 for i ∈ {1, . . . , τ − 3}.

Suppose for all i ∈ {1, . . . , τ − 3}, vi = 0. In this case, we our system of

equations is reduced to:







β +mτ−2 mτ−1 cτ−2

β + λσ2
Z −β 1

2
µZ






.

By solving this matrix, we find:

vτ−2 =

(

(T − τ + 2) + mτ−1

β

)

µZ + µZ̃ + α(µÑ +W )− δ

2

(

β +mτ−2 +mτ−1

(

1 +
λσ2

Z

β

)) (5.3)

vτ−1 =

(

1 +
λσ2

Z

β

)

vτ−2 −
µZ

2β
.

We note that if vτ−2 > 0, then vτ−1 > 0. In this case, the optimal strategy is

given as above equalities. Moreover, similar as in the previous cases, if δ > 0,
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we have

δ =

(

(T − τ + 2) +
mτ−1

β

)

µZ + µZ̃ + α(µÑ +W )

−
2

(

β +mτ−2 +mτ−1

(

1 +
λσ2

Z

β

))

1 +
λσ2

Z

β

(

W +
µZ

2β

)

.

Due to our assumption that W ≥ α
2mτ−1−α

µÑ , one can show that δ = 0, which

means :

vT = W − vτ−2 − vτ−1.

Step 4d: Scenario vi = 0 for i ∈ {1, . . . , τ − 2}.

Suppose vτ−2 = 0, in this case, we simply have

vτ−1 =
cτ−1

β +mτ−1

= max

(

(T − τ + 1)µZ + µZ̃ + α(µÑ +W )− δ

2
(

β + (T − τ + 1)λσ2
Z + λσ2

Z̃
+ λα2σ2

Ñ
+ α

) , 0

)

,

(5.4)

and

δ =(T − τ + 1)µZ + µZ̃ + α(µÑ +W )

− 2W (β + (T − τ + 1)λσ2
Z + λσ2

Z̃
+ λα2σ2

Ñ
+ α).

Similarly, by our assumption:

W ≥ α

2mτ−1 − α
µÑ ,
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we have:

µÑ ≤
(

2mτ−1 − α

α

)

W <

(

2(β +mτ−1)

α
− 1

)

W,

which implies δ ≤ 0, a contradiction. Thus, δ = 0, and we have :

vT = W − vτ−1.

Step 5: Optimal Investment Strategy - Case β > 0 and α = 0.

Now, we consider the case where the stock prices is insensitive to the investor’s

closing auction order, or α = 0. As such, we note that vt < 0 for all t from

eq. (5.1), eq. (5.2), eq. (5.3), and eq. (5.4), due to the non-positive drift of

random drivers Z and Z̃. This is a contradiction from our initial assumption

with v1 > 0. In order to satisfy the Karush-Kuhn-Tucker condition, we have

vt = 0. As such, we conclude that:

W = vT .

Step 6: Optimal Investment Strategy - Case β = 0 and α > 0.

We now examine the case where the investor’s orders in a open market have no

impact on the stock prices but the order in the closing auction can influence

the stock prices; in other words, β = 0 and α > 0.

Once again, to show the explicit expression of optimal strategy, we suppose

vt > 0 for all t ∈ {1, . . . , τ − 1}. In turn, the Karush-Kuhn-Tucker conditions
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suggest:

0 =
∂L

∂vt
=

(

λσ2
Z̃
+ λα2σ2

Ñ
+ α

) τ−1
∑

i=1

vi + λσ2
Z(T − t)

t−1
∑

i=0

vi + λσ2
Z

τ−1
∑

i=t

(T − i)vi − ct,

which can be expressed as:

























m1 m2 m3 . . . mτ−1 c1

m2 m2 m3 . . . mτ−1 c2

m3 m3 m3 . . . mτ−1 c3

...
...

...
. . .

...
...

mτ−1 mτ−1 mτ−1 . . . mτ−1 cτ−1

























.

If we subtract row i from row i + 1 of the matrix for i ∈ {1, . . . , τ − 2}, we
have:

































m1 −m2 0 0 . . . 0 0 c1 − c2

m2 −m3 m2 −m3 0 . . . 0 0 c2 − c3

m3 −m4 m3 −m4 m3 −m4 . . . 0 0 c3 − c2
...

...
...

. . .
...

...
...

mτ−2 −mτ−1 mτ−2 −mτ−1 mτ−2 −mτ−1 . . . mτ−2 −mτ−1 0 cτ−2 − cτ−1

mτ−1 mτ−1 mτ−1 . . . mτ−1 mτ−1 cτ−1

































,
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which is equivalent to:

































λσ2
Z 0 0 . . . 0 0 1

2
µZ

λσ2
Z λσ2

Z 0 . . . 0 0 1
2
µZ

λσ2
Z λσ2

Z λσ2
Z . . . 0 0 1

2
µZ

...
...

...
. . .

...
...

...

λσ2
Z λσ2

Z λσ2
Z . . . λσ2

Z 0 1
2
µZ

mτ−1 mτ−1 mτ−1 . . . mτ−1 mτ−1 cτ−1

































.

We see that:

v1 = max

(

µZ

2λσ2
Z

, 0

)

= 0.

Moreover, it is clear that vt = 0 for t ∈ {1, . . . , τ−2}. Our system of equations

is now reduced to:

mτ−1(v1 + vτ−1) = cτ−1.

Suppose the investor’s order in the closing auction has market effect, which

means α > 0, the investment at time τ − 1 is given by:

vτ−1 =
cτ−1

mτ−1

− v1 = max

(

1

2

(T − τ + 1)µZ + µZ̃ + α(µÑ +W )− δ

(T − τ + 1)λσ2
Z + λσ2

Z̃
+ λα2σ2

Ñ
+ α

− v1, 0

)

.

Suppose that δ > 0, then by the Karush-Kuhn-Tucker condition, we have

W − vτ−1 − v1 = 0,
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This suggests:

δ = (T − τ + 1)µZ + µZ̃ + α(µÑ +W )− 2W ((T − τ + 1)λσ2
Z + λσ2

Z̃
+ λα2σ2

Ñ
+ α),

which is non-positive due to our assumptions. As such, the order placed in

the closing auction is given by:

vT = W − vτ−1.

Step 7: Optimal Investment Strategy - Case β = 0 and α = 0.

Lastly, we examine the case when the investor’s orders have no impact on the

market price at all, which means β = 0 and α = 0. One can see that cτ−1 ≤ 0,

which implies vτ−1 ≤ 0. This is a contradiction, so vτ−1 = 0. Since vi = 0

for all i ∈ {1, . . . , T − 1}, we conclude that vT = W , which means that the

investor will only participate in the closing auction.

In addition to the previous result where β > 0 and α = 0, we again have

an optimal strategy to not participate in the open market since vi = 0 for

all i. We can conclude that, in general, if the investor’s order in the closing

auction has no effect on the stock prices, then he/she will only invest during

the closing auction to minimize the implementation cost.
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5.1.2 Proof of Corollary 1

We first denote a := 2β
λσ2

Z

. We note that a converges to 0 as β converges to 0.

Furthermore, we have:

x1 = 1 +
1

a
(1 +

√
1 + 2a),

x2 = 1 +
1

a
(1−

√
1 + 2a).

We recall that x1x2 = 1 and:

pt =

( 2
a
+ 1− x2

x21 − 1

)

xt1 +

( 2
a
+ 1− x1

x22 − 1

)

xt2,

qt =
xt1

x21 − 1
+

xt2
x22 − 1

.

Since β is non-negative, we will examine the right limit only. It is clear that

lima→0+ x1 = ∞ since lima→0+
1
a
= ∞. For x2, we have:

lim
a→0+

x2 = lim
a→0+

1 +
1

a
(1−

√
1 + 2a) = 1 + lim

a→0+

1−
√
1 + 2a

a

By L’Hospital’s Rule, we know:

lim
a→0+

1−
√
1 + 2a

a
= lim

a→0+

−(1 + 2a)−
1
2

1
= −1;

thus, lima→0+ x2 = 0. Moreover, we have:

lim
a→0+

xt2
x22 − 1

=
0

−1
= 0,
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and by applying L’Hospital’s Rule, we see that:

lim
a→0+

xt1
x21 − 1

= lim
a→0+

txt−1
1

2x1
= lim

a→0+

t

2
xt−2
1 =

t

2
lim
a→0+

xt−2
1 =































0, if t = 1

1, if t = 2

∞, if t ≥ 3

.

Also, we observe:

lim
a→0+

1 + 2
a
− x2

x21 − 1
xt1 = lim

a→0+

xt1 +
2xt

1

a
− xt−1

1

x21 − 1

= lim
a→0+

xt1
x21 − 1

+ lim
a→0+

2
a
xt1

x21 − 1
+ lim

a→0+

xt−1
1

x21 − 1
.

We note that lima→0+
2xt

1

a
= ∞ for t ≥ 2; as such, we find:

lim
a→0+

1 + 2
a
− x2

x21 − 1
xt1 = ∞ for t ≥ 2.

On the other hand, we have:

lim
a→0+

1 + 2
a
− x1

x22 − 1
xt2 = lim

a→0+

xt2 +
2xt

2

a
− xt−1

2

x22 − 1

= lim
a→0+

xt2
x22 − 1

+ lim
a→0+

2
a
xt2

x22 − 1
+ lim

a→0+

xt−1
2

x22 − 1
.

We analyze the numerator of the second term. By using Taylor expansion at

0, we have
√
1 + 2a ≈ 1 + a− a2

2
. Thus, we can show:

lim
a→0+

2xt2
a

= lim
a→0+

2(1 + 1
a
(1−

√
1 + 2a))t

a

= lim
a→0+

2
(

1 + 1
a

(

1− 1− a+ a2

2

))t

a
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= lim
a→0+

2at

2ta
= lim

a→0+

(

a

2

)t−1

= 0 for t ≥ 2.

Therefore:

lim
a→0+

2
a
xt2

x22 − 1
= 0 for t ≥ 2,

which implies that:

lim
a→0+

1 + 2
a
− x1

x22 − 1
xt2 = 0 + 0 + 0 = 0 for t ≥ 2.

As a result, we discover that:

lim
a→0+

pt = lim
a→0+

1 + 2
a
− x2

x21 − 1
xt1 + lim

a→0+

1 + 2
a
− x1

x22 − 1
xt2 = ∞ for t ≥ 2

and

lim
a→0+

qt = lim
a→0+

xt1
x21 − 1

+ lim
a→0+

xt2
x22 − 1

=































0, if t = 1

1, if t = 2

∞, if t ≥ 3

.

Furthermore, we note that:

lim
β→0+

qt

β
=

2

λσ2
Z

lim
a→0+

qt

a

=
2

λσ2
Z

(

lim
a→0+

1
a
xt1

x21 − 1
+ lim

a→0+

1
a
xt2

x22 − 1

)

= ∞ for t ≥ 2
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In addition, one can observe that:

pt =

(

1 + 2
a
− x2

x21 − 1

)

xt1 +

(

1 + 2
a
− x1

x22 − 1

)

xt2

=
xt1

x21 − 1
+

2
a
xt1

x21 − 1
− xt−1

1

x21 − 1
+

xt2
x22 − 1

+
2
a
xt2

x22 − 1
− xt−1

2

x22 − 1

= qt +
2

a
qt − qt−1.

Now, we will analyze the strategy itself. Suppose there exist t∗ ∈ {1, . . . , τ−2},

such that:

(

(T − t∗) +
1

β

τ−1
∑

i=t∗+1

miqi+1−t∗

)

µZ + µZ̃ + α(µÑ +W ) > 0.

We know that:

lim
β→0+

1

β

τ−1
∑

i=t∗+1

miqi+1−t∗ = ∞.

Suppose µZ < 0, which suggests:

lim
β→0+

(

(T − t∗) +
1

β

τ−1
∑

i=t∗+1

miqi+1−t∗

)

µZ = −∞,

Hence, such t∗ does not exist. In this case, we have vt = 0 at the limit as β

converges to 0 for t ∈ {1, . . . , τ − 2}.

Suppose µZ = 0 and we have

µZ̃ + α(µÑ +W ) > 0.
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In particular, we have t∗ = 1 and recall that lima→0+
∑τ−1

i=2 mipi = ∞; thus,

we get:

lim
a→0+

v1 = lim
a→0+

µZ̃ + α(µÑ +W )

2
(

a
λσ2

Z

2
+m1 +

∑τ−1
i=2 mipi

)

= 0

Since v1 = 0 at the limit, we will now analyze v2 at the limit; by our construc-

tion, we have:

lim
a→0+

v2 = lim
a→0+

µZ̃ + α(µÑ +W )

2(a
λσ2

Z

2
+m2 +

∑τ−1
i=3 mipi−1)

By the same argument, one can show that lima→0+ v2 = 0. To generalize, for

any t ∈ {1, . . . , τ − 2},

lim
a→0+

vt = lim
a→0+

µZ̃ + α(µÑ +W )

2(a
λσ2

Z

2
+mt +

∑τ−1
i=t+1mipi+1−t)

suggests vt = 0 at limit as β converges to 0.

In general, for any µZ ≤ 0, we have lima→0+ vt = 0 where t ∈ {1, . . . , τ − 2}.

To analyze the strategy right before the initial imbalance announcement, we

obtain:

lim
β→0+

vτ−1 = lim
β→0+

(T − τ + 1)µZ + µZ̃ + α(µÑ +W )

2
(

β + (T − τ + 1)λσ2
Z + λσ2

Z̃
+ λα2σ2

Ñ
+ α

)

=
(T − τ + 1)µZ + µZ̃ + α(µÑ +W )

2
(

(T − τ + 1)λσ2
Z + λσ2

Z̃
+ λα2σ2

Ñ
+ α

)
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Since vτ−1 is non-negative, we have:

lim
β→0+

vτ−1 = max

(

(T − τ + 1)µZ + µZ̃ + α(µÑ +W )

2
(

(T − τ + 1)λσ2
Z + λσ2

Z̃
+ λα2σ2

Ñ
+ α

) , 0

)

.

In turn, we have vT = W − vτ−1.

5.1.3 Proof of the Discrete-Time General Strategy

In this section, we present the mathematical derivation of the structure of

the generalized optimal strategy shown in section 2.3. Suppose we remove

the constraint imposed on the drifts, µZ , µZ̃ ≤ 0, in proposition 1. We re-

call that t∗ ∈ {1, . . . , τ − 1} and k∗ ∈ {τ, . . . , T − 1} are the integers such

that vt∗ , vt̄ > 0 and vk∗ , vk̄ > 0, respectively, for some t̄ ∈ {t∗, . . . , τ − 1} and

k̄ ∈ {k∗, . . . , τ−1}. With loss of generality, we assume t̄ = τ−1 and k̄ = T −1

for simplicity of presentation in this section. The mathematical procedure is

identical if otherwise.

Recall that, in section 5.1.1, we have:

mt = (T − t)λσ2
Z + λσ2

Z̃
+ λα2σ2

Ñ
+ α for t ∈ {1, . . . , τ − 1};

we now denote:

mk := (T − k)λσ2
Z + λσ2

Z̃
for k ∈ {τ, . . . , T − 1}.
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Let γ := λα2σ2
Ñ
+ α

2
and we observe that:

mτ−1 −mτ = λσ2
Z + γ +

α

2
.

Moreover, we recall that:

ct =
1

2

(

(T − t)µZ + µZ̃ + α(µÑ +W )− δ
)

for t ∈ {1, . . . , τ − 1},

ck =
1

2

(

(T − k)µZ + µZ̃ − δ
)

for k ∈ {τ, . . . , T − 1}.

Case 1: β > 0.

Strategy A: vk = 0 for k ∈ {τ, . . . , T − 1}.

In this case, the strategy and its mathematical derivation are identical to the

optimal strategy shown in section 5.1.1. The more generalized variant is de-

rived in the remark of proposition 1.

Strategy B

If t∗ = τ − 1 (t∗ = t̄) and k∗ = T − 1 (k∗ = k̄), we can arrive to a conclusion

without any computation. Otherwise, the set of equations in the Lagrange

system presented at the end of Step 2 of section 5.1.1 can be expressed as the

following matrix:
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













































β +mt∗ mt∗+1 mt∗+2 . . . mτ−1 mk∗ + α
2 . . . mT−1 +

α
2 ct∗

mt∗+1 β +mt∗+1 mt∗+2 . . . mτ−1 mk∗ + α
2 . . . mT−1 +

α
2 ct∗+1

mt∗+2 mt∗+2 β +mt∗+2 . . . mτ−1 mk∗ + α
2 . . . mT−1 +

α
2 ct∗+2

...
...

...
. . .

...
...

. . .
...

...

mτ−1 mτ−1 mτ−1 . . . β +mτ−1 mk∗ + α
2 . . . mT−1 +

α
2 cτ−1

mk∗ + α
2 mk∗ + α

2 mk∗ + α
2 . . . mk∗ + α

2 β +mk∗ . . . mT−1 ck∗

...
...

...
. . .

...
...

. . .
...

...

mT−1 +
α
2 mT−1 +

α
2 mT−1 +

α
2 . . . mT−1 +

α
2 mT−1 . . . β +mT−1 cT−1















































.

We subtract row i− 1 from row i for i ∈ {t∗ + 1, . . . τ − 1, k∗, . . . , T − 1} and

then multiply each row by -1, the above matrix is transformed into:























































β +mt∗ mt∗+1 . . . mτ−1 mk∗ +
α
2 mk∗+1 +

α
2 . . . mT−1 +

α
2 ct∗

β + λσ2
Z −β . . . 0 0 0 . . . 0 µZ

2

λσ2
Z β + λσ2

Z . . . 0 0 0 . . . 0 µZ

2

...
...

. . .
...

...
...

. . .
...

...

λσ2
Z λσ2

Z . . . −β 0 0 . . . 0 µZ

2

ζ1 ζ1 . . . β + ζ1
α
2 − β α

2 . . . α
2 ω1

λσ2
Z λσ2

Z . . . λσ2
Z β + λσ2

Z −β . . . 0 µZ

2

...
...

. . .
...

...
...

. . .
...

...

λσ2
Z λσ2

Z . . . λσ2
Z λσ2

Z λσ2
Z . . . −β µZ

2























































.

where we denote ζ1 := (k∗− τ +1)λσ2
Z + γ and ω1 :=

(k∗−τ+1)µZ

2
+α(µÑ +W ).

Once more, we subtract row i− 1 from row i and get:
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































































β +mt∗ . . . mτ−2 mτ−1 mk∗ + α
2 . . . mT−1 +

α
2 ct∗

β + λσ2
Z . . . 0 0 0 . . . 0 µZ

2

−β . . . 0 0 0 . . . 0 0

...
. . .

...
...

...
. . .

...
...

0 . . . −β 0 0 . . . 0 0

0 . . . 2β + λσ2
Z −β 0 . . . 0 0

ζ2 . . . ζ2 − β 2β + ζ1
α
2 − β . . . α

2 ω2

−ζ2 . . . −ζ2 −β − ζ2 2β + λσ2
Z − α

2 . . . −α
2 −ω2

0 . . . 0 0 −β . . . 0 0

...
. . .

...
...

...
. . .

...
...

0 . . . 0 0 0 . . . −β 0

































































,

which is equivalent to:

































































β +mt∗ . . . mτ−2 mτ−1 mk∗ + α
2 mk∗+1 +

α
2 . . . mT−1 +

α
2 ct∗

β + λσ2
Z . . . 0 0 0 0 . . . 0 µZ

2

−β . . . 0 0 0 0 . . . 0 0

...
. . .

...
...

...
...

. . .
...

...

0 . . . −β 0 0 0 . . . 0 0

0 . . . 2β + λσ2
Z −β 0 0 . . . 0 0

ζ2 . . . ζ2 − β 2β + ζ1
α
2 − β α

2 . . . α
2 ω2

0 . . . −β β + λσ2
Z β + λσ2

Z −β . . . 0 0

0 . . . 0 0 −β 2β + λσ2
Z . . . 0 0

...
. . .

...
...

...
...

. . .
...

...

0 . . . 0 0 0 0 . . . −β 0

































































,

where we denote ζ2 := (k∗ − τ)λσ2
Z + γ and ω2 := (k∗−τ)µZ

2
+ α(µÑ +W ). If

t∗ < τ − 1, then one can see that the top-left (k∗ − 1)× (k∗ − 1) submatrix is:
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































β +mt∗ mt∗+1 mt∗+2 mt∗+3 . . . mτ−2 mτ−1 c1

β + λσ2
Z −β 0 0 . . . 0 0 1

2
µZ

−β 2β + λσ2
Z −β 0 . . . 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 . . . −β 0 0

0 0 0 0 . . . 2β + λσ2
Z −β 0

































.

We recall that:

pi =

( λσ2
Z

β
+ 1− x2

x21 − 1

)

xi1 +

( λσ2
Z

β
+ 1− x1

x22 − 1

)

xi2,

qi =
xi1

x21 − 1
+

xi2
x22 − 1

,

with

x1 = 1 +
λσ2

Z

2β
+

√

λσ2
Z

β

(

1 +
λσ2

Z

4β

)

and

x2 = 1 +
λσ2

Z

2β
−
√

λσ2
Z

β

(

1 +
λσ2

Z

4β

)

.

As we have shown in Step 4a of section 5.1.1, given that t∗ < τ−1, the optimal

strategy for time i ∈ {t∗ + 1, . . . , τ − 1} can be determined by:

vi = pi+1−t∗vt∗ −
µZ

2β
qi+1−t∗ .
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For i ∈ {1, . . . , τ − 2}, we denote:

p̃i :=
β + λσ2

Z

β
pτ−i − pτ−i−1,

q̃i :=
β + λσ2

Z

β
qτ−i − qτ−i−1.

If t∗ = τ − 1 and k∗ < T − 1, then we denote p̃τ−1 :=
λσ2

Z

β
and q̃τ−1 := 1. In

this case, we have:

vk∗+1 =
β + λσ2

Z

β
vk∗ + p̃τ−1vτ−1 −

µZ

2β
q̃τ−1.

Otherwise, by analyzing row k∗ + 1 of the above matrix, we have:

vk∗+1 =
β + λσ2

Z

β
(vτ−1 + vk∗)− vτ−2

=
β + λσ2

Z

β
vk∗ +

(

β + λσ2
Z

β
pτ−t∗ − pτ−t∗−1

)

vt∗ −
µZ

2β

(

β + λσ2
Z

β
qτ−t∗ − qτ−t∗−1

)

=
β + λσ2

Z

β
vk∗ + p̃t∗vt∗ −

µZ

2β
q̃t∗ .

Now, if k∗ < T −1, then we can examine the bottom-right (T −k∗−1)× (T −

k∗ + 1) section of the above matrix:



















−β 2β + λσ2
Z −β 0 . . . 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 . . . −β 0 0

0 0 0 0 . . . 2β + λσ2
Z −β 0



















.
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For i ∈ {k∗ + 2, . . . , T − 1}, we have a recursive function:

vi =

(

2 +
λσ2

Z

β

)

vi−1 − vi−2,

which can be expressed as

vi = Axi−k∗+1
1 +Bxi−k∗+1

2

for some A,B ∈ R and i ∈ {k∗ + 2, . . . , T − 1}, as we have shown in Step 4a

section 5.1.3. Moreover, we have:

vk∗ = Ax1 +Bx2

and

vk∗+1 = Ax21 +Bx22.

Since x1x2 = 1, we can express A and B as:

A =
vk∗+1 − x2vk∗

x21 − 1

B =
vk∗+1 − x1vk∗

x22 − 1
.

By the structure of vk∗+1, we have:

A =

(β+λσ2
Z

β
− x2

)

vk∗ + p̃t∗v1 − µZ

2β
q̃t∗

x21 − 1

B =

(β+λσ2
Z

β
− x1

)

vk∗ + p̃t∗v1 − µZ

2β
q̃t∗

x22 − 1
.
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As such, for i ∈ {k∗ + 1, . . . , T − 1}, the recursive function is:

vi =

(β+λσ2
Z

β
− x2

)

vk∗ + p̃t∗v1 − µZ

2β q̃t∗

x21 − 1
xi−k∗+1
1 +

(β+λσ2
Z

β
− x1

)

vk∗ + p̃t∗v1 − µZ

2β q̃t∗

x22 − 1
xi−k∗+1
2

=

( β+λσ2
Z

β
− x2

x21 − 1
xi−k∗+1
1 +

β+λσ2
Z

β
− x1

x22 − 1
xi−k∗+1
2

)

vk∗ + p̃t∗

(

xi−k∗+1
1

x21 − 1
+

xi−k∗+1
2

x22 − 1

)

v1

− µZ

2β
q̃t∗

(

xi−k∗+1
1

x21 − 1
+

xi−k∗+1
2

x22 − 1

)

.

We denote ri :=
β+λσ2

Z−βx2

β(x2
1−1)

xi1 +
β+λσ2

Z−βx1

β(x2
2−1)

xi2 such that:

vi = p̃t∗qi−k∗+1vt∗ + ri−k∗+1vk∗ −
µZ

2β
q̃t∗qi−k∗+1 for i ∈ {k∗ + 1, . . . , T − 1}.

We now examine the first row of the above full matrix, we get:

ct∗ = (β +mt∗)vt∗ +
τ−1
∑

i=t∗+1

mivi +

(

mk∗ +
α

2

)

vk∗ +

T−1
∑

i=k∗+1

(

mi +
α

2

)

vi

=

(

β +mt∗ +

τ−1
∑

i=t∗+1

mipi+1−t∗ + p̃t∗

T−1
∑

i=k∗+1

(

mi +
α

2

)

qi−k∗+1

)

vt∗

+

(

mk∗ +
α

2
+

T−1
∑

i=k∗+1

(

mi +
α

2

)

ri−k∗+1

)

vk∗

− µZ

2β

( τ−1
∑

i=t∗+1

miqi+1−t∗ + q̃t∗

T−1
∑

i=k∗+1

(

mi +
α

2

)

qi−k∗+1

)

.

Similarly, row k∗ gives us:

ck∗ =

(

mk∗ +
α

2

)

vt∗ +

(

mk∗ +
α

2

) τ−1
∑

i=t∗+1

vi + (β +mk∗)vk∗ +
T−1
∑

i=k∗+1

mivi

=

((

mk∗ +
α

2

)(

1 +
τ−1
∑

i=t∗+1

pi+1−t∗

)

+ p̃t∗

T−1
∑

i=k∗+1

miqi−k∗+1

)

vt∗

+

(

β +mk∗ +
T−1
∑

i=k∗+1

miri−k∗+1

)

vk∗

99



− µZ

2β

((

mk∗ +
α

2

) τ−1
∑

i=t∗+1

qi+1−t∗ + q̃t∗

T−1
∑

i=k∗+1

miqi−k∗+1

)

.

We denote:

a
t∗,k∗

1 =















































β +mt∗ +
∑τ−1

i=t∗+1mipi+1−t∗ + p̃t∗
∑T−1

i=k∗+1

(

mi +
α
2

)

qi−k∗+1,

β +mt∗ +
∑τ−1

i=t∗+1mipi+1−t∗ if k∗ = T − 1,

β +mτ−1 +
λσ2

Z

β

∑T−1
i=k∗+1

(

mi +
α
2

)

qi−k∗+1 if t∗ = τ − 1,

β +mτ−1 if t∗ = τ − 1 and k∗ = T − 1.

a
t∗,k∗

2 =















































(

mk∗ +
α
2

)(

1 +
∑τ−1

i=t∗+1 pi+1−t∗
)

+ p̃t∗
∑T−1

i=k∗+1miqi−k∗+1,

1 +
∑τ−1

i=t∗+1 pi+1−t∗ if k∗ = T − 1,

mk∗ +
α
2 +

λσ2
Z

β

∑T−1
i=k∗+1miqi−k∗+1 if t∗ = τ − 1,

mT−1 +
α
2 if t∗ = τ − 1 and k∗ = T − 1.

b
t∗,k∗

1 =















mk∗ +
α
2 +

∑T−1
i=k∗+1

(

mi +
α
2

)

ri−k∗+1 if k∗ < T − 1,

mT−1 if k∗ = T − 1.

b
t∗,k∗

2 =















β +mk∗ +
∑T−1

i=k∗+1miri−k∗+1 if k∗ < T − 1,

β +mT−1 if k∗ = T − 1.

and

s
t∗,k∗

1 =















































∑τ−1
i=t∗+1miqi+1−t∗ + q̃t∗

∑T−1
i=k∗+1

(

mi +
α
2

)

qi−k∗+1,

∑τ−1
i=t∗+1miqi+1−t∗ if k∗ = T − 1,

∑T−1
i=k∗+1

(

mi +
α
2

)

qi−k∗+1 if t∗ = τ − 1,

0 if t∗ = τ − 1 and k∗ = T − 1.
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s
t∗,k∗

2 =















































(

mk∗ +
α
2

)
∑τ−1

i=t∗+1 qi+1−t∗ + q̃t∗
∑T−1

i=k∗+1miqi−k∗+1,

∑τ−1
i=t∗+1 qi+1−t∗ if k∗ = T − 1,

∑T−1
i=k∗+1miqi−k∗+1 if t∗ = τ − 1,

0 if t∗ = τ − 1 and k∗ = T − 1.

If t∗ = τ − 1, then we define
∑τ−1

i=t∗+1mivi = 0. In addition, if k∗ = T − 1 and

t∗ < τ − 1, then one can easily show that:

ct∗ =

(

β +mt∗ +

τ−1
∑

i=t∗+1

mipi+1−t∗

)

vt∗ +mT−1vT−1 −
µZ

2β

τ−1
∑

i=t∗+1

miqi+1−t∗ ,

cT−1 =

(

1 +

τ−1
∑

i=t∗+1

pi+1−t∗

)

vt∗ + (β +mT−1)vT−1 −
µZ

2β

τ−1
∑

i=t∗+1

qi+1−t∗ ,

In general, the system of equations becomes:

a
t∗,k∗

1 vt∗ + b
t∗,k∗

1 vk∗ = ct∗ +
µZ

2β
s
t∗,k∗

1

a
t∗,k∗

2 vt∗ + b
t∗,k∗

2 vk∗ = ck∗ +
µZ

2β
s
t∗,k∗

2 .

By solving this system, we have:

vt∗ =
vnumt∗ −

(

b
t∗,k∗

1 − b
t∗,k∗

2

)

δ

vdent∗

vk∗ =
vnumk∗ −

(

a
t∗,k∗

1 − a
t∗,k∗

2

)

δ

vdenk∗

,

where we denote:

vnumt∗ :=

(

b
t∗,k∗

1

(

T − k∗ +
s
t∗,k∗

2

β

)

− b
t∗,k∗

2

(

T − t∗ +
s
t∗,k∗

1

β

))

µZ

101



+
(

b
t∗,k∗

1 − b
t∗,k∗

2

)

µZ̃ − b
t∗,k∗

2 α(µÑ +W )

vdent∗ :=2
(

b
t∗,k∗

1 a
t∗,k∗

2 − b
t∗,k∗

2 a
t∗,k∗

1

)

and

vnumk∗ :=

(

a
t∗,k∗

1

(

T − k∗ +
s
t∗,k∗

2

β

)

− a
t∗,k∗

2

(

T − t∗ +
s
t∗,k∗

1

β

))

µZ

+
(

a
t∗,k∗

1 − a
t∗,k∗

2

)

µZ̃ − a
t∗,k∗

2 α(µÑ +W )

vdenk∗ :=2
(

a
t∗,k∗

1 b
t∗,k∗

2 − a
t∗,k∗

2 b
t∗,k∗

1

)

Moreover, we denote:

Xk∗

t∗ :=
vnumt∗

vdent∗
, Y k∗

t∗ :=
vnumk∗

vdenk∗

.

We further denote:

Ak∗

t∗ :=















































1 +
∑τ−1

i=t∗+1 pi+1−t∗ + p̃t∗
∑T−1

k∗+1 qi−k∗+1,

1 +
∑τ−1

i=t∗+1 pi+1−t∗ if k∗ = T − 1,

1 +
λσ2

Z

β

∑T−1
k∗+1 qi−k∗+1 if t∗ = τ − 1,

1 if t∗ = τ − 1 and k∗ = T − 1.

Bk∗

t∗ :=































1 +
∑T−1

i=k∗+1 ri−k∗+1 ∀t∗ < τ − 1,

1 if k∗ = T − 1, ∀t∗ < τ − 1,

0 if t∗ = τ − 1.
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Ck∗

t∗ :=















































∑τ−1
i=t∗+1 qi + q̃t∗

∑T−1
i=k∗+1 qi−k∗+1,

∑τ−1
i=t∗+1 qi+1−t∗ if k∗ = T − 1,

∑T−1
i=k∗+1 qi−k∗+1 if t∗ = τ − 1,

0 if t∗ = τ − 1 and k∗ = T − 1.

If δ > 0, then we must have:

0 = W −
T−1
∑

i=t∗

vi

= W − Ak∗

t∗ vt∗ − Bk∗

t∗ vk∗ +
µZ

2β
Ck∗

t∗

= W − Ak∗

t∗X
k∗

t∗ − Bk∗

t∗ Y
k∗

t∗ + Ak∗

t∗
(bt

∗,k∗

1 − b
t∗,k∗

2 )δ

2(bt
∗,k∗

1 a
t∗,k∗

2 − b
t∗,k∗

2 a
t∗,k∗

1 )

+Bk∗

t∗
(at

∗,k∗

1 − a
t∗,k∗

2 )δ

2(at
∗,k∗

1 b
t∗,k∗

2 − a
t∗,k∗

2 b
t∗,k∗

1 )
+
µZ

2β
Ck∗

t∗ .

As such, we have:

δk
∗

t∗ = max

{

2
(

b
t∗,k∗

1 a
t∗,k∗

2 − b
t∗,k∗

2 a
t∗,k∗

1

)

Ak∗

t∗ (b
t∗,k∗

1 − b
t∗,k∗

2 )−Bk∗

t∗ (a
t∗,k∗

1 − a
t∗,k∗

2 )

(

Ak∗

t∗ X
k∗

t∗ +Bk∗

t∗ Y
k∗

t∗ − µZ

2β
Ck∗

t∗ −W

)

, 0

}

.

Summarizing various cases, for t ∈ {1, . . . , τ − 1} and k ∈ {τ, . . . , T − 1}, we

arrive to:

vs = 0 for s ∈ {1, . . . , t∗ − 1} if t∗ > 1,

vt∗ = Xk∗

t∗ −

(

b
t∗,k∗

1 − b
t∗,k∗

2

)

2

(

b
t∗,k∗

1 a
t∗,k∗

2 − b
t∗,k∗

2 a
t∗,k∗

1

)δk
∗

t∗ ,

vt = pt+1−t∗vt∗ −
µZ

2β
qt+1−t∗ for t ∈ {t∗ + 1, . . . , τ − 1},
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vs̄ = 0 for s̄ ∈ {τ, . . . , k∗ − 1} if k∗ > τ,

vk∗ = Y k∗

t∗ +

(

a
t∗,k∗

1 − a
t∗,k∗

2

)

2

(

b
t∗,k∗

1 a
t∗,k∗

2 − b
t∗,k∗

2 a
t∗,k∗

1

)δk
∗

t∗ ,

vk = p̃t∗qk−k∗+1vt∗ + rk−k∗+1vk∗ −
µZ

2β
q̃t∗qk−k∗+1

for k ∈ {k∗ + 1, . . . , T − 1},

vT = W −
T−1
∑

i=1

vi.

Strategy C: vt = 0 for t ∈ {1, . . . , τ − 1}.

Suppose vt = 0 for t ∈ {1, . . . , τ − 1}. We denote k∗ ∈ {τ, . . . , T − 2} to be

the smallest integer such that:

(

(T − k∗) +
1

β

T−1
∑

i=k∗+1

miqi−k∗+1

)

µZ + µZ̃ + δ > 0.
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for some δ ≥ 0. Moreover, the system of equation is now:



























β +mk∗ mk∗+1 mk∗+2 . . . mT−1 ck∗

mk∗+1 β +mk∗+1 mk∗+2 . . . mT−1 ck∗+1

mk∗+2 mk∗+2 β +mk∗+2 . . . mT−1 ck∗+2

...
...

...
. . .

...
...

mT−1 mT−1 mT−1 . . . β +mT−1 cT−1



























.

We can see that the matrix appears nearly identical to the original matrix

from Step 4 of section 5.1.1, so by the exact same procedure, we can show that

the optimal strategy is given by:

vs = 0 for s ∈ {1, . . . , k∗ − 1},

vk∗ =

(

(T − k∗) + 1
β

∑T−1
i=k∗+1miqi−k∗+1

)

µZ + µZ̃ − δk∗

2(β +mk∗ +
∑T−1

i=k∗+1mipi−k∗+1)
,

vi = pi−k∗+1vk∗ −
µZ

2β
qi−k∗+1 for i ∈ {k∗ + 1, . . . , T − 1}.

where

δk∗ :=max

((

(T − k∗) +
1

β

T−1
∑

i=k∗+1

miqi−k∗+1

)

µZ + µZ̃

−
2(β +mk∗ +

∑T−1
i=k∗+1 mipi−k∗+1)

1 +
∑T−1

i=k∗+1 pi−k∗+1

(

W +
µZ

2β

T−1
∑

i=k∗+1

qi−k∗+1

)

, 0

)

.

Similarly, if k∗ does not exist, then the strategy is:

vT−1 = max

(

µZ + µZ̃ − δ

2(β + λσ2
Z + λσ2

Z̃
)
, 0

)

,

for δ = max

(

µZ + µZ̃ − 2W (β + λσ2
Z + λσ2

Z̃
), 0

)

.
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Case 2: β = 0.

Suppose β = 0. The matrix of equations will be:























































m1 m2 m3 . . . mτ−1 mτ mτ+1 . . . mT−1 c1

m2 m2 m3 . . . mτ−1 mτ mτ+1 . . . mT−1 c2

m3 m3 m3 . . . mτ−1 mτ mτ+1 . . . mT−1 c3

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

mτ−1 mτ−1 mτ−1 . . . mτ−1 mτ mτ+1 . . . mT−1 cτ−1

mτ + α
2

mτ + α
2

mτ + α
2

. . . mτ + α
2

mτ mτ+1 . . . mT−1 cτ

mτ+1 + α
2

mτ+1 + α
2

mτ+1 + α
2

. . . mτ+1 + α
2

mτ+1 + α
2

mτ+1 . . . mT−1 cτ+1

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

mT−1 + α
2

mT−1 + α
2

mT−1 + α
2

. . . mT−1 + α
2

mT−1 + α
2

mT−1 + α
2

. . . mT−1 cT−1























































,

which can be represented as:

























































λσ2

Z 0 0 . . . 0 0 0 . . . 0
µZ
2

0 λσ2

Z 0 . . . 0 0 0 . . . 0 0

0 0 λσ2

Z . . . 0 0 0 . . . 0 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
. .
.

.

.

.

.

.

.

γ γ γ . . . λσ2

Z + γ 0 0 . . . 0 α(µ
Ñ

+ W )

0 0 0 . . . 0 λσ2

Z 0 . . . 0 0

0 0 0 . . . 0 0 λσ2

Z . . . 0 0

.

.

.

.

.

.

.

.

.
. .
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

mT−1 + α
2

mT−1 + α
2

mT−1 + α
2

. . . mT−1 + α
2

mT−1 + α
2

mT−1 + α
2

. . . mT−1 cT−1

























































.

by subtracting row i+1 from row i and then subtracting row i from row i+1

for i ∈ {1, . . . , T − 1}. We can see that vt = 0 for all t ∈ {2, . . . , τ − 2} and

k ∈ {τ, . . . , T − 2}. We can directly see that:

v1 = max

(

µZ

2λσ2
Z

, 0

)

.

106



We first consider the case where vT > 0. In this case, the number of equations

is reduced to three:













m1 mτ−1 mT−1 c1

mτ−1 mτ−1 mT−1 cτ−1

mT−1 +
α
2

mT−1 +
α
2

mT−1 cT−1













.

By subtracting the third row from the second row, we have:

(T − τ + 1)µZ

2
+ α(µÑ +W ) =

(

(T − τ + 1)λσ2
Z + γ

)

(v1 + vτ ),

which suggests:

vτ−1 = max

(

(T − τ + 1)µZ + 2α(µÑ +W )

2λ
(

(T − τ + 1)σ2
Z + α2σ2

Ñ

)

+ α
− v1, 0

)

.

Moreover, the last row suggests:

cT−1 = mT−1(v1 + vτ−1 + vT−1) +
α

2
(v1 + vτ−1),

which leads to:

vT−1 = max

(

µZ + µZ̃ − δ

2mT−1

− (v1 + vτ−1)

(

1 +
α

2mT−1

)

, 0

)

where

δ = max
(

µZ̃ − α(v1 + vτ−1)− 2WmT−1, 0
)

.
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In the case where vT−1 = 0, then the strategy is similar to what has been

shown in Step 6 of section 5.1.1. In particular, we have:

vτ−1 = max

(

(T − τ + 1)µZ + µZ̃ + α(µÑ +W )− δ

2mτ−1

− v1, 0

)

,

with

δ = max

(

(T − τ + 1)µZ + µZ̃ + α(µÑ +W )− 2Wmτ−1, 0

)

.
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5.2 Proofs for the Continuous-Time Model

5.2.1 Proof of Proposition 2

Suppose the order imbalance is cleared immediately and there are no orders

in the closing auction afterward. We assume the market impact of our order

is only temporary. We will first restructure our objective function. By ex-

amining the objective function, we show that it is not optimal to trade after

the initial imbalance announcement. As such, we derive the explicit optimal

investment strategy for the period prior to the initial imbalance announce-

ment by applying the Euler-Lagrange equation. We study the case where the

trader’s investment decision has some influence on stock prices in the open

market (β > 0) and the case where there is no influence (β = 0).

Step 1: Preparation.

We recall that the prices of the stock is given by

Pt = P̃t + βvt for t ∈ [0, T )

PT = P̃T

where

P̃t = P̃0 + µt+ σWt for t ∈ [0, τ)

P̃k = P̃0 + µk + σWk + αN for k ∈ [τ, T )

P̃T = P̃0 + µT + σWT + αN + Z̃,
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and

N = Ñ +W −
∫ T

0

vtdt.

The objective function is:

min E

[
∫ T

0

vtPtdt+

(

W −
∫ T

0

vtdt

)

PT −WPT

]

+ λV AR

[
∫ T

0

vtPtdt+

(

W −
∫ T

0

vtdt

)

PT −WPT

]

s.t. vt ≥ 0 ∀t ∈ [0, T ), W −
∫ T

0

vtdt ≥ 0.

We note that:

∫ T

0
vtPtdt+

(

W −
∫ T

0
vtdt

)

PT −WPT

=

∫ τ

0
vt
(

P̃0 + µt+ σWt + βvt
)

dt+

∫ T

τ

vt

(

P̃0 + µt+ σWt + βvt + α

(

Ñ +W

−
∫ T

0
vtdt

))

dt−
(

P̃0 + µT + σWT + α

(

Ñ +W −
∫ T

0
vtdt

)

+ Z̃

)
∫ T

0
vtdt

=β

∫ T

0
v2t dt− µ

∫ T

0
(T − t)vtdt+ σ

∫ T

0
Wtvtdt− (σWT + Z̃)

∫ T

0
vtdt

− α

∫ τ

0
vt

(

Ñ +W −
∫ T

0
vtdt

)

dt.

Since Wt is a Brownian motion, we have E(Wt) = 0 and V ar(Wt) = t for all

t. Also, we recall E
( ∫ T

0
xtdt

)

=
∫ T

0
E(xt)dt under integrability assumptions.

Thus, the expectation of the above equation is:

E

(
∫ T

0
vtPtdt+

(

W −
∫ T

0
vtdt

)

PT −WPT

)

=β

∫ T

0
v2t dt− µ

∫ T

0
(T − t)vtdt− µZ̃

∫ T

0
vtdt− α

∫ τ

0
vt

(

µÑ +W −
∫ T

0
vtdt

)

dt.
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Similar to what has been shown in Section 2.1 of Frei and Westray [5], we

denote:

dXv
t = vtdt,

and the product rule yields the following:

∫ T

0

Wtvtdt =

∫ T

0

WtdX
v
t = −

∫ T

0

Xv
t dWt + YWT

where Y := Xv
T −Xv

0 =
∫ T

0
vtdt. As such, we observe that:

σ

∫ T

0

Wtvtdt− σWT

∫ T

0

vtdt = −σ
∫ T

0

Xv
t dWt.

Moreover, since
∫ T

0
Xv

t dWt is a martingale, we know E(
∫ T

0
Xv

t dWt) = 0. Thus:

V AR

(

− σ

∫ T

0
Xv

t dWt

)

= E

((

− σ

∫ T

0
Xv

t dWt

)2)

− E

((

− σ

∫ T

0
Xv

t dWt

))2

= σ2E

(
∫ T

0
(Xv

t )
2dt

)

− 0 = σ2

∫ T

0
(Xv

t )
2dt.

Hence, the variance term in the objective function is given by:

V AR

(
∫ T

0

vtPtdt+

(

W −
∫ T

0

vtdt

)

PT −WPT

)

=σ2

∫ T

0

(Xv
t )

2dt+ σ2
Z̃

(
∫ T

0

vtdt

)2

+ α2σ2
Ñ

(
∫ τ

0

vtdt

)2

.

Therefore, the objective function is reformulated into:

min β

∫ T

0
v2t dt− µ

∫ T

0
(T − t)vtdt− µZ̃

∫ T

0
vtdt− α

∫ τ

0
vt

(

µÑ +W −
∫ T

0
vtdt

)

dt

+ λσ2

∫ T

0
(Xv

t )
2dt+ λσ2

Z̃

(
∫ T

0
vtdt

)2

+ λα2σ2
Ñ

(
∫ τ

0
vtdt

)2

111



s.t. vt ≥ 0 ∀t ∈ [0, T ), W −
∫ T

0
vtdt ≥ 0.

We define Φ to be the Lagrange function such that, for some δ ≥ 0:

Φ =β

∫ T

0
v2t dt−

∫ T

0

(

(T − t)µ+ µZ̃

)

vtdt− α

∫ τ

0
vt

(

µÑ +W −
∫ T

0
vtdt

)

dt

+ λσ2

∫ T

0
(Xv

t )
2dt+ λσ2

Z̃

(
∫ T

0
vtdt

)2

+ λα2σ2
Ñ

(
∫ τ

0
vtdt

)2

+ δ

(
∫ T

0
vtdt−W

)

.

Step 2: Not Optimal to trade after time τ .

We can rewrite above objective into two portions; namely, before and after the

initial imbalance announcement (time τ):

Φ =β

∫ τ

0
v2t dt+ β

∫ T

τ

v2t dt−
∫ τ

0

(

(T − t)µ+ µZ̃

)

vtdt−
∫ T

τ

(

(T − t)µ+ µZ̃

)

vtdt

− α

∫ τ

0
vt

(

µÑ +W −
∫ τ

0
vtdt

)

dt− α

∫ τ

0
vt

(

µÑ +W −
∫ T

τ

vtdt

)

dt

+ λσ2

∫ τ

0
(Xv

t )
2dt+ λσ2

∫ T

τ

(Xv
t )

2dt+ λσ2
Z̃

(
∫ τ

0
vtdt

)2

+ λσ2
Z̃

(
∫ T

τ

vtdt

)2

+ λα2σ2
Ñ

(
∫ τ

0
vtdt

)2

+ δ

(
∫ τ

0
vtdt+

∫ T

τ

vtdt−W

)

.

At time τ , the prior orders, vt for t < τ , are determined; thus, one can only

optimize the objective function over vt for t ≥ τ . As such, the target function

of the minimization problem after time τ is:

min β

∫ T

τ

v2t dt−
∫ T

τ

(

(T − t)µ+ µZ̃

)

vtdt+

(

α

∫ τ

0

vtdt+ δ

)
∫ T

τ

vtdt

+ λσ2

∫ T

τ

(Xv
t )

2dt+ λσ2
Z̃

(
∫ T

τ

vtdt

)2

.
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We now analyze each term of the target function given that vt ≥ 0 for all t:

• Since β ≥ 0, we must have vt = 0 to minimize β
∫ T

τ
v2t dt.

• We assume µ ≤ 0 and µZ̃ ≤ 0; thus, −
(

(T − t)µ+ µZ̃

)

≥ 0. In order to

minimize
∫ T

τ
−
(

(T − t)µ+ µZ̃

)

vtdt, we have vt = 0.

• We have α, δ ≥ 0 and we know
∫ τ

0
vtdt ≥ 0 since vt ≥ 0 for t ∈ [0, τ).

Hence, vt = 0 will minimize
∫ T

τ
vtdt, thus, minimizing

(

α
∫ τ

0
vtdt +

δ
) ∫ T

τ
vtdt.

• We have λ > 0 and σ > 0 and we note that Xv
t =

∫ t

0
vsds. As such,

vs = 0 will minimize λσ2
∫ T

τ
(Xv

t )
2dt.

• Since σ2
Z̃
> 0, vt = 0 minimizes λσ2

Z̃

( ∫ T

τ
vtdt

)2
.

Since each term of the above target function is minimized by vt = 0 for

t ∈ [τ, T ), we can conclude that it is not optimal to trade after time τ .

Step 3: Euler-Lagrange Equation.

Since vt = 0 for t ∈ [τ, T ), we have:

Φ =

∫ τ

0

βv2t −
(

(T − t)µ+ µZ̃ + α(µÑ +W )− δ
)

vt + λσ2(Xv
t )

2 − δW

T
dt

+
(

λσ2
Z̃
+ λα2σ2

Ñ
+ α

)

(
∫ τ

0

vtdt

)2
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Now, we will apply the Euler-Lagrange equation to determine vt for t ∈ [0, τ);

see Section 2.3.1 for descriptions. Suppose vt > 0 for all t ∈ [0, τ). We denote:

u(t) := Xv
t and u′(t) = vt.

Moreover, let:

I1 :=

∫ T

0

L1(t, u, u
′)dt, I2 =

∫ T

0

L2(t, u, u
′)dt

with

L1(t, u, u
′) := βu′2 −

(

(T − t)µ+ µZ̃ + α(µÑ +W )− δ
)

u′ + λσ2u2 − δW

T

L2(t, u, u
′) := u′

We rewrite the Lagrange equation as:

Φ(t, u, u′) = I1 +
(

λσ2
Z̃
+ λα2σ2

Ñ
+ α

)

I22

We consider:

∂Φ

∂I1
L1(t, u, u

′) = βu′2 −
(

(T − t)µ+ µZ̃ + α(µÑ +W )− δ
)

u′ + λσ2u2 − δW

T

∂Φ

∂I2
L2(t, u, u

′) = 2(λσ2
Z̃
+ λα2σ2

Ñ
+ α

)

I2u
′

Furthermore:

ψ :=
∂Φ

∂I1
L1(t, u, u

′) +
∂Φ

∂I2
L2(t, u, u

′)
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=βu′2 −
(

(T − t)µ+ µZ̃ + α(µÑ +W )− 2(λσ2
Z̃
+ λα2σ2

Ñ
+ α

)

I2 − δ
)

u′

+ λσ2u2 − δW

T
.

The Euler-Lagrange equation suggests:

0 =
d

dt

∂ψ

∂u′
− ∂ψ

∂u
.

We compute that:

∂ψ

∂u′
= 2βu′ − (T − t)µ− µZ̃ − α(µÑ +W ) + 2(λσ2

Z̃
+ λα2σ2

Ñ
+ α

)

I2 + δ

∂ψ

∂u
= 2λσ2u.

The Euler-Lagrange equation can be written as:

2λσ2u =
d

dt

[

2βu′− (T − t)µ−µZ̃ −α(µÑ +W )+ 2(λσ2
Z̃
+λα2σ2

Ñ
+α

)

I2+ δ

]

,

which is equivalent to 2β d2

dt2
u− 2λσ2u = −µ.

Step 4: Solve for optimal strategy.

Case 1: β > 0.

By solving the above non-homogeneous ODE, we have

u(t) = c1e

√

λσ2

β
t + c2e

−
√

λσ2

β
t +

µ

2λσ2
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for some c1, c2 ∈ R. We recall that u(0) = 0, which implies c2 = −
(

c1 +
µ

2λσ2

)

.

Hence, we have:

u(t) = c1

(

e

√

λσ2

β
t − e−

√

λσ2

β
t

)

+
µ

2λσ2

(

1− e−
√

λσ2

β
t

)

= 2 sinh

(

√

λσ2

β
t

)

c1 +
µ

2λσ2

(

1− e−
√

λσ2

β
t

)

Moreover, the rate of trading is:

vt = u′(t) =

√

λσ2

β

(

2 cosh

(

√

λσ2

β
t

)

c1 +
µ

2λσ2
e−

√

λσ2

β
t

)

.

Now, we will determine the optimal value of c1 by differentiate the objective

function:

Φ =β

∫ τ

0

u′(t)2dt−
(

Tµ+ µZ̃ + α(µÑ +W )− δ
)

∫ τ

0

u′(t)dt+ µ

∫ τ

0

tu′(t)dt

+ λσ2

∫ τ

0

u2(t)dt+
(

λσ2
Z̃
+ λα2σ2

Ñ
+ α

)

(
∫ τ

0

u′(t)dt

)2

− δW

with respect to c1. Before we do so, there are some preparation steps. We

compute that:

u′(t)2 =
4λσ2

β
cosh2

(

√

λσ2

β
t

)

c21 +
2µ

β
cosh

(

√

λσ2

β
t

)

e
−
√

λσ2

β
t
c1 +

µ2

4βλσ2
e
−2

√

λσ2

β
t

u(t)2 =4 sinh2
(

√

λσ2

β
t

)

c21 +
2µ

λσ2
sinh

(

√

λσ2

β
t

)(

1− e
−
√

λσ2

β
t

)

c1

+
µ2

4λ2σ4

(

1− e
−
√

λσ2

β
t

)2
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We denote a :=
√

λσ2

β
τ and compute the following integrals:

∫ τ

0
t cosh

(

√

λσ2

β
t

)

dt =
β

λσ2

(

a sinh(a)− cosh(a) + 1
)

,

∫ τ

0
te

−
√

λσ2

β
t
dt =

β

λσ2

(

1− e−a(1 + a)
)

,

∫ τ

0
cosh2

(

√

λσ2

β
t

)

dt =
1

4

√

β

λσ2

(

2a+ sinh(2a)
)

,

∫ τ

0
cosh

(

√

λσ2

β
t

)

e
−
√

λσ2

β
t
dt =

1

4

√

β

λσ2

(

2a− e−2a + 1
)

,

∫ τ

0
e
−2

√

λσ2

β
t
dt =

1

2

√

β

λσ2

(

1− e−2a
)

,

∫ τ

0
sinh2

(

√

λσ2

β
t

)

dt =
1

4

√

β

λσ2

(

sinh(2a)− 2a
)

,

and

∫ τ

0
sinh

(

√

λσ2

β
t

)(

1− e
−
√

λσ2

β
t

)

dt = −1

4

√

β

λσ2

(

2a+ e−2a − 4 cosh(a) + 3
)

∫ τ

0

(

1− e
−
√

λσ2

β
t

)2

dt =

√

β

λσ2

(

e−2a − e−4a + 3

4
+ a

)

Using above integrals, we compute:

∫ τ

0
tu′(t)dt =

√

β

λσ2

[

2
(

a sinh(a)− cosh(a) + 1
)

c1 +
µ

2λσ2

(

1− e−a(1 + a)
)

]

,

∫ τ

0
u′(t)2dt =

√

λσ2

β

(

2a+ sinh(2a)
)

c21 +
µ

2β

√

β

λσ2

(

2a− e−2a + 1
)

c1

+
µ2

8βλσ2

√

β

λσ2

(

1− e−2b
)

,
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∫ τ

0
u(t)2dt =

√

β

λσ2

(

sinh(2a)− 2a
)

c21 −
µ

2λσ2

√

β

λσ2

(

2a+ e−2a − 4 cosh(a) + 3
)

c1

+
µ2

4λ2σ4

√

β

λσ2

(

e−2a − e−4b + 3

4
+ a

)

Moreover, we note that:

∫ τ

0
u′(t)dt = u(τ) =2 sinh(a)c1 +

µ

2λσ2

(

1− e−a
)

,

(
∫ τ

0
u′(t)dt

)2

= u2(τ) =4 sinh2(a)c21 +
2µ

λσ2
sinh(a)

(

1− e−2a
)

c1 +
µ2

4λ2σ4

(

1− e−a
)2
.

We denote the following constants:

K1 := 2 sinh(a)

K2 := 4 sinh2(a)

K3 :=
2µ

λσ2
sinh(a)

(

1− e−2a
)

K4 :=

√

β

λσ2
2
(

a sinh(a)− cosh(a) + 1
)

K5 :=

√

λσ2

β

(

2a+ sinh(2a)
)

K6 :=
µ

2β

√

β

λσ2

(

2a− e−2a + 1
)

K7 :=

√

β

λσ2

(

sinh(2a)− 2a
)

K8 := − µ

2λσ2

√

β

λσ2

(

2a+ e−2a − 4 cosh(a) + 3
)

As such, we have:

Φ =β(K5c
2
1 +K6c1)−

(

Tµ+ µZ̃ + α(µÑ +W )− δ
)

K1c1 + µK4c1
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+ λσ2(K7c
2
1 +K8c1) +

(

λσ2
Z̃
+ λα2σ2

Ñ
+ α

)

(K2c
2
1 +K3c1) + constants

=
(

βK5 + λσ2K7 +
(

λσ2
Z̃
+ λα2σ2

Ñ
+ α

)

K2

)

c21 + constants

+
(

βK6 −
(

Tµ+ µZ̃ + α(µÑ +W )− δ
)

K1 + µK4 + λσ2K8

+
(

λσ2
Z̃
+ λα2σ2

Ñ
+ α

)

K3

)

c1.

We denote:

m1 = Tµ+ µZ̃ + α(µÑ +W ),

m2 =
µ

λσ2

(

λσ2
Z̃
+ λα2σ2

Ñ
+ α

)

.

To find the optimal c1, we obtain:

0 =
∂Φ

∂c1
=2

(

βK5 + λσ2K7 +
(

λσ2
Z̃
+ λα2σ2

Ñ
+ α

)

K2

)

c1

+
(

βK6 +
(

Tµ+ µZ̃ + α(µÑ +W )− δ
)

K1 +K4 + λσ2K8

+
(

λσ2
Z̃
+ λα2σ2

Ñ
+ α

)

K3

)

=
(

2
√

βλσ2 sinh(2a) + 4
(

λσ2
Z̃
+ λα2σ2

Ñ
+ α

)

sinh2(a)
)

c1

+
µ

2

√

β

λσ2

(

2a sinh(a)− e−2a + 1
)

+ sinh(a)
(

m2

(

1− e−2a
)

−m1

)

+ δ sinh(2a).

Therefore, we find:

c∗1 =
sinh(a)

(

m1 −m2

(

1− e−2a
))

− µ
2

√

β
λσ2

(

2a sinh(a)− e−2a + 1
)

− δ sinh(2a)

2
√

βλσ2 sinh(2a) + 4
(

λσ2
Z̃
+ λα2σ2

Ñ
+ α

)

sinh2(a)
,
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and the optimal rate of trading is:

vt = u′(t) = max

(

√

λσ2

β

(

2 cosh

(

√

λσ2

β
t

)

c∗1 +
µ

2λσ2
e−

√

λσ2

β
t

)

, 0

)

.

Now, we denote by t∗ the smallest integer such that vt∗ > 0. We can find c∗1

similarly by analyzing the integrals shown previously over the interval [t∗, τ)

instead of [0, τ). We denote:

cnum(t) = sinh(aτ )
(

m1 −m2

(

1− e−2aτ
))

− sinh(at)
(

m1 −m2

(

1− e−2at
))

− µ

(

τ sinh(aτ )− t sinh(at)−
1

2

√

β

λσ2

(

e−2aτ − e−2bt
)

)

,

cden(t) =2
√

βλσ2
(

sinh(2aτ )− sinh(2at)
)

+ 4
(

λσ2
Z̃
+ λα2σ2

Ñ
+ α

)(

sinh2(aτ )− sinh2(at)
)

,

where

at :=

√

λσ2

β
t for t ∈ [0, τ ],

such that:

c(t) =
cnum(t)

cden(t)
.

As such, we have:

c∗1(t
∗) = c(t∗)− δ(sinh(2aτ )− sinh(2at∗))

cden(t∗)
.

120



Hence, the rate of trading at time t is:

v∗t =

√

λσ2

β

(

2 cosh

(

√

λσ2

β
t

)

c∗1(t
∗) +

µ

2λσ2
e−

√

λσ2

β
t

)

,

and the cumulative order at time t is:

u∗(t) = 2 sinh

(

√

λσ2

β
t

)

c∗1(t
∗) +

µ

2λσ2

(

1− e−
√

λσ2

β
t

)

.

We will now analyze the structure of δ. Suppose that δ > 0, then we must

have:

0 =W −
∫ τ

t∗
vtdt

=W − u∗(τ)

=W − 2 sinh(aτ )c
∗
1(t

∗) +
µ

2λσ2
(1− e−aτ )

=W − 2 sinh(aτ )c(t
∗) +

µ

2λσ2
(1− e−aτ ) +

δ(sinh(2aτ )− sinh(2at∗))

cden(t∗)
.

Thus:

δ =
2 sinh(aτ )c(t

∗)− µ

2λσ2 (1− e−aτ )−W

sinh(2aτ )− sinh(2at∗)
cden(t

∗).

We note that:

sinh(2aτ )− sinh(2at∗) > 0,

and

2
√

βλσ2(sinh(2aτ )− sinh(2at∗))+4
(

λσ2
Z̃
+λα2σ2

Ñ
+α

)

(sinh2(aτ )− sinh2(at∗)) > 0.
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By our assumption, 2 sinh(aτ )c(0) − µ(1−eaτ )
2λσ2 ≤ W , we can see that δ ≤ 0,

which is a contradiction as δ ≥ 0 must hold. Therefore, we have δ = 0, which

implies c∗1 = c. Moreover, we have:

vT = W − u∗(τ) > 0.

If such t∗ does not exist, then we can conclude that there is no investment in

the continuous trading. That is, vT = W .

Case 2: β = 0.

We recall that the Euler-Lagrange equation suggests:

2β
d2

dt2
u− 2λσ2u = −µ.

If β = 0, then we simply have u(t) = µ

2λσ2 ; in particular, we have:

X0 = max

(

µ

2λσ2
, 0

)

= 0.

Moreover, we have vt = 0 for t ∈ (0, τ) and vt does not exist for t = 0, τ .

We note that the transactions in the continuous trading only occur at time

0 and the moment before time τ ; that is, τ − ε for some small ε > 0. We

denote τ̃ := τ − ε. Let V0, Vτ̃ , and VT be the order volume at time 0, τ , and

T , respectively. In order to determine u(τ̃), we rewrite the objective function
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accordingly. In particular, we have:

min E

[

V0P0 + Vτ̃Pτ̃ +
(

W − V0 − Vτ̃
)

PT −WPT

]

+ λV AR

[

V0P0 + Vτ̃Pτ̃ +
(

W − V0 − Vτ̃
)

PT −WPT

]

s.t. Vτ̃ ≥ 0, W − V0 − Vτ̃ ≥ 0

where

Pτ̃ = P0 + βV0 + µτ̃ + σWτ̃ ,

PT = P0 + βV0 + µT + σWT + α
(

Ñ +W − V0 − Vτ̃
)

+ Z̃.

We can rewrite the following:

V0P0 + Vτ̃Pτ̃ +
(

W − V0 − Vτ̃

)

PT −WPT

=V0P0 + Vτ̃

(

P0 + βV0 + µτ̃ + σWτ̃

)

− (V0 + Vτ̃ )
(

P0 + βV0 + µT + σWT + α
(

Ñ +W − V0 − Vτ̃

)

+ Z̃
)

=Vτ̃

(

µτ̃ + σWτ̃

)

− βV 2
0 − (V0 + Vτ̃ )

(

µT + σWT + α(Ñ +W ) + Z̃
)

+ α(V0 + Vτ̃ )
2.

We recall that E(Wt) = 0 and V ar(Wt) = t for all t. As such, we obtain:

E

[

V0P0 + Vτ̃Pτ̃ +
(

W − V0 − Vτ̃
)

PT −WPT

]

=µτ̃Vτ̃ − βV 2
0 − (V0 + Vτ̃ )

(

µT + α(µÑ +W ) + µZ̃

)

+ α(V0 + Vτ̃ )
2,

V AR

[

V0P0 + Vτ̃Pτ̃ +
(

W − V0 − Vτ̃
)

PT −WPT

]
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=σ2τ̃V 2
τ̃ + (V0 + Vτ̃ )

2
(

σ2T + α2σ2
Ñ
+ σ2

Z̃

)

.

Hence, the objective function is equivalent to: ;

min L :=µτ̃Vτ̃ − βV 2
0 − (V0 + Vτ̃ )

(

µT + α(µÑ +W ) + µZ̃

)

+ α(V0 + Vτ̃ )
2

+ λ

[

σ2τ̃V 2
τ̃ + (V0 + Vτ̃ )

2
(

σ2T + α2σ2
Ñ
+ σ2

Z̃

)

]

+ δ
(

V0 + Vτ̃ −W
)

.

for some δ ≥ 0. To find the optimal Vτ̃ , we analyze:

0 =
∂L

∂Vτ̃
=µτ̃ −

(

µT + α(µÑ +W ) + µZ̃

)

+ 2α(V0 + Vτ̃ )

+ 2λσ2τ̃Vτ̃ + 2λ
(

σ2T + α2σ2
Ñ
+ σ2

Z̃

)

(V0 + Vτ̃ ) + δ,

which suggests:

Vτ̃ = max

(

µ(T − τ̃) + µZ̃ + α(µÑ +W )− 2
(

α+ λ
(

σ2T + α2σ2
Ñ
+ σ2

Z̃

))

V0 − δ

2
(

α+ λ
(

σ2(T + τ̃) + α2σ2
Ñ
+ σ2

Z̃

)) , 0

)

.

Furthermore, we have VT = W − V0 − Vτ̃ and V0 = X0.

We now analyze δ. We consider Vτ̃ > 0. Suppose that δ > 0, then we must

have:

0 =V0 + Vτ̃ −W

2
(

α + λ
(

σ2(T + τ̃) + α2σ2
Ñ
+ σ2

Z̃

))

W =µ(T − τ̃) + µZ̃ + αµÑ + 2λσ2τ̃V0 − δ,
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which suggests:

δ = µ(T − τ̃) + µZ̃ + αµÑ + 2λσ2τ̃V0 − 2
(

α + λ
(

σ2(T + τ̃) + α2σ2
Ñ
+ σ2

Z̃

))

W.

Since δ ≥ 0, we have:

δ = max

(

µ(T − τ̃) + µZ̃ + αµÑ + 2λσ2τ̃V0 − 2
(

α+ λ
(

σ2(T + τ̃) + α2σ2
Ñ
+ σ2

Z̃

))

W, 0

)

.

Since µ ≤ 0, the strategy is given by:

Vτ̃ = max

(

µ(T − τ̃) + µZ̃ + α(µÑ +W )− δ

2
(

α + λ
(

σ2(T + τ̃) + α2σ2
Ñ
+ σ2

Z̃

)) , 0

)

,

VT = W − VT ,

where δ = max

(

µ(T− τ̃)+µZ̃+αµÑ−2
(

α+λ
(

σ2(T+ τ̃)+α2σ2
Ñ
+σ2

Z̃

))

W, 0

)

.

5.2.2 Proof of Corollary 2

We recall that:

cnum(t) = sinh

(

√

λσ2

β
τ

)(

m1 −m2

(

1− e
−2

√

λσ2

β
τ

))

− sinh

(

√

λσ2

β
t

)(

m1

−m2

(

1− e
−2

√

λσ2

β
t

))

− µ

(

τ sinh

(

√

λσ2

β
τ

)

− t sinh

(

√

λσ2

β
t

)

− 1

2

√

β

λσ2

(

e
−2

√

λσ2

β
τ − e

−2
√

λσ2

β
t

))

,

cden(t) =2
√

βλσ2

(

sinh

(

2

√

λσ2

β
τ

)

− sinh

(

2

√

λσ2

β
t

))

+ 4
(

λσ2
Z̃
+ λα2σ2

Ñ
+ α

)

(

sinh2
(

√

λσ2

β
τ

)

− sinh2
(

√

λσ2

β
t

))

,
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such that: c(t) = cnum(t)
cden(t)

. If t∗ exists, then the optimal cumulative order at

time t is:

Xv
s = 0 for s ∈ [0, t∗),

Xv
t = 2 sinh

(

√

λσ2

β
t

)

c(t∗) +
µ

2λσ2

(

1− e
−
√

λσ2

β
t

)

.

It is clear that limβ→0 e
−
√

λσ2

β
t = 0. Moreover, we compute:

lim
β→0

sinh

(

√

λσ2

β
t

)

cnum(t∗)

= lim
β→0

sinh

(

√

λσ2

β
t

)

sinh

(

√

λσ2

β
τ

)(

m1 −m2

(

1− e
−2

√

λσ2

β
τ

)

− µτ

)

− lim
β→0

sinh

(

√

λσ2

β
t

)

sinh

(

√

λσ2

β
t∗
)(

m1 −m2

(

1− e
−2

√

λσ2

β
t∗
)

− µt∗
)

=∞,

and

lim
β→0

cnum(τ)

=4
(

λσ2
Z̃
+ λα2σ2

Ñ
+ α

)

lim
β→0

(

sinh2
(

√

λσ2

β
τ

)

− sinh2
(

√

λσ2

β
t

))

+ 2 lim
β→0

√

βλσ2

(

sinh

(

2

√

λσ2

β
τ

)

− sinh

(

2

√

λσ2

β
t

))

= ∞.

We now analyze limβ→0

sinh
(√

λσ2

β
t

)

cnum(t)

cden(t)
. In particular, we note that the term

with the highest order in the numerator is:

sinh

(

√

λσ2

β
t

)

sinh

(

√

λσ2

β
τ

)

,
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and the term with the highest order in the denominator is:

sinh2

(

√

λσ2

β
τ

)

.

Since t ≤ τ , we know that:

sinh

(

√

λσ2

β
t

)

sinh

(

√

λσ2

β
τ

)

≤ sinh2

(

√

λσ2

β
τ

)

Hence, we have:

lim
β→0

sinh

(

√

λσ2

β
t

)

sinh

(

√

λσ2

β
τ

)

sinh2

(

√

λσ2

β
τ

) = 0,

which, in turn, suggests:

lim
β→0

sinh

(

√

λσ2

β
t

)

cnum(t)

cden(t)
= 0.

Therefore, we find:

lim
β→0

Xv
t = lim

β→0

sinh

(

√

λσ2

β
t

)

cnum(t)

cden(t)
+

µ

2λσ2

(

1− lim
β→0

e−
√

λσ2

β
t

)

=
µ

2λσ2
.

We apply the same argument in case 2 in section 5.2.1 and obtain the result

stated in corollary 2.
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5.2.3 Proof of the Continuous-Time General Strategy

In this section, we show the mathematical derivation behind the generalized

strategy for the continuous-time model. In particular, we consider the con-

dition (T − t)µ ≤ −µZ̃ does not necessarily hold. Moreover, as we did in

section 5.1.3, we consider the case for β > 0 as well as the case with β = 0.

Consider some small ε > 0. We recall that t∗ ∈ [0, τ), τ ∗ ∈ [t∗ + ε, τ),

k∗ ∈ [τ, T ), and T ∗ ∈ [k∗ + ε, T ) are some real numbers such that vt∗ , vτ∗ > 0

and vk∗ , vT ∗ > 0. The search for the optimal set of t∗, τ ∗, k∗, T ∗ is discussed in

section 3.4 and the mathematical proof remain the same for any combination.

For the simplicity of the presentation of the proof, we write τ for τ ∗ and T

for T ∗. This is done to ensure the consistency notation-wise with section 5.2.1

when drawing references. For a more generalized presentation, one can simply

replace τ and T with τ ∗ and T ∗.

Case 1: β > 0.

Strategy A: vk = 0 for k ∈ {τ, . . . , T − 1}.

This strategy and its mathematical derivation are identical to the optimal

strategy shown in section 5.2.1. The more generalized variant is derived in the

remark of proposition 2.

Strategy B

This strategy consider the scenario where investor choose to invest in the time

period before and after time τ . The below steps follow immediately after Step
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1 in section 5.2.1. We can rewrite:

∫ τ

0

vtdt =

∫ T

0

vtI{t<τ}dt

As such, the objective function is:

Φ =

∫ T

0
βv2t −

(

(T − t)µ+ µZ̃ − δ
)

vt − α(µÑ +W )vtI{t<τ} + λσ2(Xv
t )

2 − δW

T
dt

+ λσ2
Z̃

(
∫ T

0
vtdt

)2

+ λα2σ2
Ñ

(
∫ T

0
vtI{t<τ}dt

)2

+ α

∫ T

0
vtdt

∫ T

0
vtI{t<τ}dt

We denote:

u(t) := Xv
t and u′(t) = vt.

Moreover, let:

I1 :=

∫ T

0

L1(t, u, u
′)dt, I2 =

∫ T

0

L2(t, u, u
′)dt, I3 =

∫ T

0

L3(t, u, u
′)dt

with

L1(t, u, u
′) := βu′2 −

(

(T − t)µ+ µZ̃ − δ
)

u′ − α(µÑ +W )u′I{t<τ} + λσ2u2 − δW

T

L2(t, u, u
′) := u′

L3(t, u, u
′) := u′I{t<τ}

We rewrite the Lagrange equation as:

Φ(t, u, u′) = I1 + λσ2
Z̃
I22 + λα2σ2

Ñ
I23 + αI2I3
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We consider:

∂Φ

∂I1
L1(t, u, u

′) = βu′2 −
(

(T − t)µ+ µZ̃ − δ
)

u′ − α(µÑ +W )u′I{t<τ} + λσ2u2 − δW

T
,

∂Φ

∂I2
L2(t, u, u

′) =
(

2λσ2
Z̃
I2 + αI3

)

u′,

∂Φ

∂I3
L3(t, u, u

′) =
(

2λα2σ2
Ñ
I3 + αI2

)

u′.

Furthermore:

ψ :=
∂Φ

∂I1
L1(t, u, u

′) +
∂Φ

∂I2
L2(t, u, u

′) +
∂Φ

∂I3
L3(t, u, u

′)

=βu′2 −
(

(T − t)µ+ µZ̃ −
(

α + 2λσ2
Z̃

)

I2 −
(

α + 2λα2σ2
Ñ

)

I3 − δ

)

u′

− α(µÑ +W )u′I{t<τ} + λσ2u2 − δW

T
.

The Euler-Lagrange equation suggests:

0 =
d

dt

∂ψ

∂u′
− ∂ψ

∂u
.

We compute that:

∂ψ

∂u′
=2βu′ − (T − t)µ− µZ̃ +

(

α + 2λσ2
Z̃

)

I2

+
(

α + 2λα2σ2
Ñ

)

I3 + δ − α(µÑ +W )I{t<τ},

∂ψ

∂u
=2λσ2u.

The Euler-Lagrange equation can be written as:

2λσ2u =
d

dt

[

2βu′ − (T − t)µ− µZ̃ +
(

α + 2λσ2
Z̃

)

I2
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+
(

α + 2λα2σ2
Ñ

)

I3 + δ − α(µÑ +W )I{t<τ}

]

2λσ2u =2βu′′ + µ− α(µÑ +W )
d

dt
I{t<τ}

On intervals [0, τ) and (τ, T ), we have

2λσ2u = 2βu′′ + µ

In both cases, we a non-homogeneous ODE:

2β
d

dt
u′ + µ = 2λσ2u

2β
d2

dt2
u− 2λσ2u = −µ. (5.5)

By solving this ODE, one can show that:

u(t) =































c1e

√

λσ2

β
t + c2e

−
√

λσ2

β
t + µ

2λσ2 for t ∈ [0, τ)

c3e

√

λσ2

β
t + c4e

−
√

λσ2

β
t + µ

2λσ2 for t ∈ [τ, T )

for some c1, c2, c3, c4 ∈ R. We recall that u(0) = 0, which implies c2 =

−
(

c1 +
µ

2λσ2

)

.

One one hand, we have:

lim
t→τ−

u(t) = lim
t→τ−

(

c1e

√

λσ2

β
t + c2e

−
√

λσ2

β
t +

µ

2λσ2

)

= lim
t→τ−

(

c1e

√

λσ2

β
t −

(

c1 +
µ

2λσ2

)

e−
√

λσ2

β
t +

µ

2λσ2

)
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=c1 lim
t→τ−

(

e

√

λσ2

β
t − e−

√

λσ2

β
t

)

− µ

2λσ2
lim
t→τ−

e−
√

λσ2

β
t +

µ

2λσ2

=c1

(

e

√

λσ2

β
τ − e−

√

λσ2

β
τ

)

− µ

2λσ2
e−

√

λσ2

β
τ +

µ

2λσ2
.

On the other hand,

lim
t→τ+

u(t) = lim
t→τ+

(

c3e

√

λσ2

β
t + c4e

−
√

λσ2

β
t +

µ

2λσ2

)

=c3e

√

λσ2

β
τ + c4e

−
√

λσ2

β
τ +

µ

2λσ2
.

Since the function u(t) measures the cumulative order up to time t, it is con-

tinuous as τ , which suggests:

c1

(

e

√

λσ2

β
τ − e−

√

λσ2

β
τ

)

− µ

2λσ2
e−

√

λσ2

β
τ +

µ

2λσ2
= c3e

√

λσ2

β
τ + c4e

−
√

λσ2

β
τ +

µ

2λσ2

c1

(

e2
√

λσ2

β
τ − 1

)

− µ

2λσ2
= c3e

2
√

λσ2

β
τ + c4

Hence, for a :=
√

λσ2

β
τ , we have:

c4 = c1
(

e2a − 1
)

− c3e
2a − µ

2λσ2
.

Now, we can rewrite the function u as:

u(t) =



















































c1

(

e

√

λσ2

β
t − e−

√

λσ2

β
t

)

+ µ

2λσ2

(

1− e−
√

λσ2

β
t

)

for t ∈ [0, τ)

c1
(

e2a − 1
)

e−
√

λσ2

β
t + c3

(

e

√

λσ2

β
t − e2a−

√

λσ2

β
t

)

+ µ

2λσ2

(

1− e−
√

λσ2

β
t

)

for t ∈ [τ, T ).
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Moreover, the rate of trading is:

vt = u′(t) =



















































√

λσ2

β

(

c1

(

e

√

λσ2

β
t + e−

√

λσ2

β
t

)

+ µ

2λσ2 e
−
√

λσ2

β
t

)

for t ∈ [0, τ)

√

λσ2

β

(

c3

(

e

√

λσ2

β
t + e2a−

√

λσ2

β
t

)

− c1
(

e2a − 1
)

e−
√

λσ2

β
t

+ µ

2λσ2 e
−
√

λσ2

β
t

)

for t ∈ (τ, T ).

We will now analyze the optimal structure for constants c1 and c3. We recall

the objective Lagrange function:

Φ =β

∫ T

0

u′(t)2dt−
∫ T

0

(

(T − t)µ+ µZ̃

)

u′(t)dt− α

∫ τ

0

u′(t)

(

µÑ +W −
∫ T

0

u′(t)dt

)

dt

+ λσ2

∫ T

0

u(t)2dt+ λσ2
Z̃

(
∫ T

0

u′(t)dt

)2

+ λα2σ2
Ñ

(
∫ τ

0

u′(t)dt

)2

+ δ

(
∫ T

0

u′(t)dt−W

)

.

Suppose t∗ and k∗ are the smallest real number such that vt∗ > 0 and vk∗ > 0

for t∗ ∈ [0, τ) and k∗ ∈ [τ, T ), respectively. As such, the objective function

becomes:

Φ =β

(
∫ τ

t∗
u′(t)2dt+

∫ T

k∗
u′(t)2dt

)

−
(

Tµ+ µZ̃ − δ
)

(
∫ τ

t∗
u′(t)dt+

∫ T

k∗
u′(t)dt

)

+ µ

(
∫ τ

t∗
tu′(t)dt+

∫ T

k∗
tu′(t)dt

)

− α(µÑ +W )

∫ τ

t∗
u′(t)dt

+ α

∫ τ

t∗
u′(t)dt

(
∫ τ

t∗
u′(t)dt+

∫ T

k∗
u′(t)dt

)

+ λσ2

(
∫ τ

t∗
u2(t)dt+

∫ T

k∗
u2(t)dt

)

+ λσ2
Z̃

(
∫ τ

t∗
u′(t)dt+

∫ T

k∗
u′(t)dt

)2

+ λα2σ2
Ñ

(
∫ τ

t∗
u′(t)dt

)2

− δW.
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Using the integrals shown in appendix A.1, we have:

Φ =β
(

K4
1c

2
1 +K4

2c
2
3 +K4

3c1c3 +K4
4c1 +K4

5c3 +K4
6

)

− (Tµ+ µZ̃ − δ)
(

K2
1c1 +K2

2c3 +K2
3

)

+ µ
(

K3
1c1 +K3

2c3 +K3
3

)

− α(µÑ +W )
(

K1
1c1 +K2

1

)

+ α
(

K1
1K

2
1c

2
1 +K1

1K
2
2c1c3 +

(

K1
1K

2
3 +K1

2K
2
1

)

c1

+K1
2K

2
2c3 +K1

2K
2
3

)

+ λσ2
(

K5
1c

2
1 +K5

2c
2
3 +K5

3c1c3 +K5
4c1 +K5

5c3 +K5
6

)

+ λσ2
Z̃

(

(

K2
1

)2
c21 +

(

K2
2

)2
c23 + 2K2

1K
2
2c1c3 + 2K2

1K
2
3c1 + 2K2

2K
2
3c3 +

(

K2
3

)2
)

+ λα2σ2
Ñ

(

(

K1
1

)2
c21 + 2K1

1K
1
2c1 +

(

K1
2

)2
)

− δW.

We now denote:

A1(t
∗, k∗) :=βK4

1 (t
∗, k∗) + αK1

1K
2
1 (t

∗, k∗) + λσ2K5
1 (t

∗, k∗) + λσ2
Z̃

(

K2
1 (t

∗, k∗)
)2

+ λα2σ2
Ñ

(

K1
1 (t

∗, k∗)
)2
,

A2(t
∗, k∗) :=βK4

2 (t
∗, k∗) + λσ2K5

2 (t
∗, k∗) + λσ2

Z̃

(

K2
2 (t

∗, k∗)
)2
,

A3(t
∗, k∗) :=βK4

3 (t
∗, k∗) + αK1

1 (t
∗, k∗)K2

2 (t
∗, k∗) + λσ2K5

3 (t
∗, k∗)

+ 2λσ2
Z̃
K2

1 (t
∗, k∗)K2

2 (t
∗, k∗),

Ã4(t
∗, k∗) :=βK4

4 (t
∗, k∗)− (Tµ+ µZ̃)K

2
1 (t

∗, k∗) + µK3
1 (t

∗, k∗)

− α(µÑ +W )K1
1 (t

∗, k∗) + α
(

K1
1 (t

∗, k∗)K2
3 (t

∗, k∗)

+K1
2 (t

∗, k∗)K2
1 (t

∗, k∗)
)

+ λσ2K5
4 (t

∗, k∗)

+ 2λσ2
Z̃
K2

1 (t
∗, k∗)K2

3 (t
∗, k∗) + 2λα2σ2

Ñ
K1

1 (t
∗, k∗)K1

2 (t
∗, k∗),

Ã5(t
∗, k∗) :=βK4

5 (t
∗, k∗)− (Tµ+ µZ̃)K

2
2 (t

∗, k∗) + µK3
2 (t

∗, k∗)

+ αK1
2 (t

∗, k∗)K2
2 (t

∗, k∗) + λσ2K5
5 (t

∗, k∗)

+ 2λσ2
Z̃
K2

2 (t
∗, k∗)K2

3 (t
∗, k∗).
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and

A4(t
∗, k∗) :=Ã4(t

∗, k∗) + δK2
1 (t

∗, k∗),

A5(t
∗, k∗) :=Ã5(t

∗, k∗) + δK2
2 (t

∗, k∗).

As such, we express the objective function as:

Φ = A1(t
∗, k∗)c21+A2(t

∗, k∗)c23+A3(t
∗, k∗)c1c3+A4(t

∗, k∗)c1+A5(t
∗, k∗)c3+ const.

To find the optimal value of c1 and c3, we analyze:

0 =
∂Φ

∂c1
= 2A1(t

∗, k∗)c1 + A3(t
∗, k∗)c3 + A4(t

∗, k∗),

0 =
∂Φ

∂c3
= 2A2(t

∗, k∗)c3 + A3(t
∗, k∗)c1 + A5(t

∗, k∗).

By solving this system of equation, we find:

c∗1(t
∗, k∗) =

A3(t
∗, k∗)A5(t

∗, k∗)− 2A2(t
∗, k∗)A4(t

∗, k∗)

4A1(t∗, k∗)A2(t∗, k∗)− A2
3(t

∗, k∗)
,

c∗3(t
∗, k∗) =

A3(t
∗, k∗)A4(t

∗, k∗)− 2A1(t
∗, k∗)A5(t

∗, k∗)

4A1(t∗, k∗)A2(t∗, k∗)− A2
3(t

∗, k∗)
.

By the second partial derivative test, we must have:

4A1(t
∗, k∗)A2(t

∗, k∗)− A2
3(t

∗, k∗) > 0

to attain a minimum solution. If this condition is not met, that is,

4A1(t
∗, k∗)A2(t

∗, k∗)− A2
3(t

∗, k∗) ≤ 0,
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then the optimal solution will simply be vt = 0 for all t ∈ [0, T ) and vT = W .

If the above condition is satisfied, then the optimal rate of trading at time

t is:

v∗t =



















































√

λσ2

β

(

c∗1(t
∗, k∗)

(

e

√

λσ2

β
t + e−

√

λσ2

β
t

)

+ µ

2λσ2 e
−
√

λσ2

β
t

)

for t ∈ [0, τ)

√

λσ2

β

(

c∗3(t
∗, k∗)

(

e

√

λσ2

β
t + e2a−

√

λσ2

β
t

)

−c∗1(t∗, k∗)
(

e2a − 1
)

e−
√

λσ2

β
t + µ

2λσ2 e
−
√

λσ2

β
t

)

for t ∈ (τ, T ),

and the cumulative order at time t is given by:

u∗(t) =



















































c∗1(t
∗, k∗)

(

e

√

λσ2

β
t − e−

√

λσ2

β
t

)

+ µ

2λσ2

(

1− e−
√

λσ2

β
t

)

for t ∈ [0, τ)

c∗1(t
∗, k∗)

(

e2a − 1
)

e−
√

λσ2

β
t + c∗3(t

∗, k∗)

(

e

√

λσ2

β
t − e2a−

√

λσ2

β
t

)

+ µ

2λσ2

(

1− e−
√

λσ2

β
t

)

for t ∈ (τ, T ).

Furthermore, we will now determine δ. We denote:

D1(t
∗, k∗) :=

A3(t
∗, k∗)K2

2(t
∗, k∗)− 2A2(t

∗, k∗)K2
1(t

∗, k∗)

4A1(t∗, k∗)A2(t∗, k∗)− A2
3(t

∗, k∗)
,

D2(t
∗, k∗) :=

A3(t
∗, k∗)K2

1(t
∗, k∗)− 2A1(t

∗, k∗)K2
2(t

∗, k∗)

4A1(t∗, k∗)A2(t∗, k∗)− A2
3(t

∗, k∗)
,

136



such that we have:

c∗1(t
∗, k∗) = cA(t

∗, k∗) +D1(t
∗, k∗)δ,

c∗3(t
∗, k∗) = cB(t

∗, k∗) +D2(t
∗, k∗)δ,

where

cA(t
∗, k∗) :=

A3(t
∗, k∗)Ã5(t

∗, k∗)− 2A2(t
∗, k∗)Ã4(t

∗, k∗)

4A1(t∗, k∗)A2(t∗, k∗)− A2
3(t

∗, k∗)
,

cB(t
∗, k∗) :=

A3(t
∗, k∗)Ã4(t

∗, k∗)− 2A1(t
∗, k∗)Ã5(t

∗, k∗)

4A1(t∗, k∗)A2(t∗, k∗)− A2
3(t

∗, k∗)
.

Recall that we denoted a :=
√

λσ2

β
τ and we now denote b :=

√

λσ2

β
T . Suppose

δ > 0, then we must have:

0 =W − u∗(T )

=W − cA(t
∗, k∗)

(

e2a − 1
)

e−b − cB(t
∗, k∗)

(

eb − e2a−b
)

− µ

2λσ2

(

1− e−b
)

−
(

D1(t
∗, k∗)

(

e2a − 1
)

e−b +D2(t
∗, k∗)

(

eb − e2a−b
))

δ,

which suggests:

δ =
W − cA(t

∗, k∗)
(

e2a − 1
)

e−b − cB(t
∗, k∗)

(

eb − e2a−b
)

− µ

2λσ2

(

1− e−b
)

D1(t∗, k∗)
(

e2a − 1
)

e−b +D2(t∗, k∗)
(

eb − e2a−b
) .

We recall that δ ≥ 0; thus, we have:

δ(t∗, k∗) = max

(

W − cA(t
∗, k∗)

(

e2a − 1
)

e−b − cB(t
∗, k∗)

(

eb − e2a−b
)

− µ
2λσ2

(

1− e−b
)

D1(t∗, k∗)
(

e2a − 1
)

e−b +D2(t∗, k∗)
(

eb − e2a−b
) , 0

)

.
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Strategy C: vt = 0 for t ∈ {1, . . . , τ − 1}.

Suppose the investor choose to trade only after the initial imbalance announce-

ment. The proof for this strategy can be viewed as a simplified version of sec-

tion 5.2.1. Suppose vt = 0 for t ∈ {1, . . . , τ − 1}, from Step 1 of section 5.2.1,

we have the objective function:

Φ =

∫ T

k∗
βv2t −

(

(T − t)µ+ µZ̃ +W )− δ
)

vt + λσ2(Xv
t )

2 − δW

T
dt+ λσ2

Z̃

(
∫ τ

0
vtdt

)2

With identical procedure shown in Steps 3 and 4 of section 5.2.1, and the

remark of proposition 2, one can derive the result shown in section 3.4.

Case 2: β = 0.

If β = 0, then following from eq. (5.5), we simply have: u(t) = µ

2λσ2 ; in

particular, we have:

X0 = max

(

µ

2λσ2
, 0

)

.

This suggests that we have vt = 0 for t ∈ (0, τ)∩(τ, T ) and vt does not exist for

t = 0, τ, T . Similar to case 2 in section 5.2.1, the transactions in the continuous

trading only occur at time 0 and the moment before time τ and T . For some

small ε > 0, we denote by τ̃ := τ − ε and T̃ := T − ε the moment before time τ

and T , respectively. Let V0, Vτ̃ , VT̃ , and VT be the order volume at time 0, τ̃ , T̃ ,

and T , respectively. We have shown V0 = X0. We now rewrite the objective

function accordingly. In particular, we consider:

min E

[

V0P0 + Vτ̃Pτ̃ + VT̃PT̃ +
(

W − V0 − Vτ̃ − VT̃
)

PT −WPT

]
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+ λV AR

[

V0P0 + Vτ̃Pτ̃ + VT̃PT̃ +
(

W − V0 − Vτ̃ − VT̃
)

PT −WPT

]

s.t. Vτ̃ ≥ 0, VT̃ ≥ 0, W − V0 − Vτ̃ − VT̃ ≥ 0

where

Pτ̃ = P0 + βV0 + µτ̃ + σWτ̃ ,

PT̃ = P0 + βV0 + µT̃ + σWT̃ + α(Ñ +W − V0 − Vτ̃ − VT̃ ),

PT = P0 + βV0 + µT + σWT + α(Ñ +W − V0 − Vτ̃ − VT̃ ) + Z̃.

We rewrite the following:

V0P0 + Vτ̃Pτ̃ + VT̃PT̃ +
(

W − V0 − Vτ̃ − VT̃

)

PT −WPT

=V0P0 + Vτ̃

(

P0 + βV0 + µτ̃ + σWτ̃

)

+ VT̃

(

P0 + βV0 + µT̃ + σWT̃ + α(Ñ +W − V0 − Vτ̃

− VT̃ )
)

− (V0 + Vτ̃ + VT̃ )
(

P0 + βV0 + µT + σWT + α(Ñ +W − V0 − Vτ̃ − VT̃ ) + Z̃
)

=Vτ̃

(

µτ̃ + σWτ̃

)

+ VT̃

(

µT̃ + σWT̃

)

− βV 2
0 − (V0 + Vτ̃ + VT̃ )

(

µT + σWT + Z̃
)

− α(V0 + Vτ̃ )(Ñ +W − V0 − Vτ̃ − VT̃ ).

We recall that E(Wt) = 0 and V AR(Wt) = t for all t. As such, we obtain:

E

[

V0P0 + Vτ̃Pτ̃ +
(

W − V0 − Vτ̃
)

PT −WPT

]

=µτ̃Vτ̃ + µT̃VT̃ − βV 2
0 − (V0 + Vτ̃ + VT̃ )

(

µT + µZ̃

)

− α(V0 + Vτ̃ )(µÑ +W − V0 − Vτ̃ − VT̃ ),

V AR

[

V0P0 + Vτ̃Pτ̃ +
(

W − V0 − Vτ̃
)

PT −WPT

]

=σ2τ̃V 2
τ̃ + σ2T̃ V 2

T̃
+ (V0 + Vτ̃ + VT̃ )

2
(

σ2T + σ2
Z̃

)
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+ α2(V0 + Vτ̃ )
2σ2

Ñ
.

Thus, for some δ ≥ 0, the objective function is equivalent to:

L :=µτ̃Vτ̃ + µT̃VT̃ − βV 2
0 − (V0 + Vτ̃ + VT̃ )

(

µT + µZ̃

)

− α(V0 + Vτ̃ )(µÑ +W − V0 − Vτ̃ − VT̃ ) + δ
(

V0 + Vτ̃ + VT̃ −W
)

+ λ

[

σ2τ̃V 2
τ̃ + σ2T̃ V 2

T̃
+ (V0 + Vτ̃ + VT̃ )

2
(

σ2T + σ2
Z̃

)

+ α2(V0 + Vτ̃ )
2σ2

Ñ

]

.

To minimize L, we consider:

0 =
∂L

∂Vτ̃
and 0 =

∂L

∂VT̃

.

In particular, we have:

0 =µτ̃ −
(

µT + µZ̃

)

− α
(

µÑ +W − 2V0 − 2Vτ̃ − VT̃

)

+ 2λσ2τ̃Vτ̃

+ 2λ
(

σ2T + σ2
Z̃

)

(V0 + Vτ̃ + VT̃ ) + 2λα2(V0 + Vτ̃ )σ
2
Ñ
+ δ,

0 =µT̃ −
(

µT + µZ̃

)

+ α(V0 + Vτ̃ ) + 2λσ2T̃ VT̃ + 2λ
(

σ2T + σ2
Z̃

)

(V0 + Vτ̃ + VT̃ ) + δ.

We denote:

c1 =µ(T − τ̃) + µZ̃ + α(µÑ +W )− 2
(

α + λ
(

σ2T + σ2
Z̃
+ α2σ2

Ñ

))

V0,

c2 =µ(T − T̃ ) + µZ̃ −
(

α + 2λ
(

σ2T + σ2
Z̃

))

V0,

such that:

c1 − δ =2
(

α + λ
(

σ2(T + τ̃) + σ2
Z̃
+ α2σ2

Ñ

))

Vτ̃ +
(

α + 2λ
(

σ2T + σ2
Z̃

))

VT̃ ,
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c2 − δ =
(

α + 2λ
(

σ2T + σ2
Z̃

))

Vτ̃ + 2λ
(

σ2(T + T̃ ) + σ2
Z̃

)

VT̃ .

Moreover, we let:

m := 4λ
(

α+ λ
(

σ2(T + τ̃) + σ2
Z̃
+ α2σ2

Ñ

))(

σ2(T + T̃ ) + σ2
Z̃

)

−
(

α+ 2λ
(

σ2T + σ2
Z̃

))2
.

By solving the system of equations, we find:

Vτ̃ =max

(

2λ
(

σ2(T + T̃ ) + σ2
Z̃

)

c1 −
(

α+ 2λ
(

σ2T + σ2
Z̃

))

c2 + (α− σ2T̃ )δ

m
, 0

)

VT̃ =max

(

c2 −
(

α+ 2λ
(

σ2T + σ2
Z̃

))

Vτ̃ − δ

2λ
(

σ2(T + T̃ ) + σ2
Z̃

) , 0

)

We now analyze δ. We consider Vτ̃ > 0 and VT̃ > 0. Suppose that δ > 0, then

we must have 0 = V0 + Vτ̃ + VT̃ −W , which is equivalent to:

δ =
m
(

2λ
(

σ2(T + T̃ ) + σ2
Z̃

)

(W − V0)− c2
)

−
(

2λσ2T̃ − α
)(

2λ
(

σ2(T + T̃ ) + σ2
Z̃

)

c1 −
(

α+ 2λ
(

σ2T + σ2
Z̃

))

c2
)

(

2λσ2T̃ − α
)(

α− σ2T̃
) .

We let:

δnum :=m
(

2λ
(

σ2(T + T̃ ) + σ2
Z̃

)

(W − V0)− c2
)

−
(

2λσ2T̃ − α
)(

2λ
(

σ2(T + T̃ ) + σ2
Z̃

)

c1

−
(

α+ 2λ
(

σ2T + σ2
Z̃

))

c2
)

Since δ ≥ 0, we have:

δ = max

(

δnum
(

2λσ2T̃ − α
)(

α− σ2T̃
) , 0

)

.

If VT̃ = 0, then the strategy follows from case 2 in section 5.2.1; we have:

Vτ̃ = max

(

µ(T − τ̃) + µZ̃ + α(µÑ +W )− 2
(

α+ λ
(

σ2T + α2σ2
Ñ
+ σ2

Z̃

))

V0 − δ

2
(

α+ λ
(

σ2(T + τ̃) + α2σ2
Ñ
+ σ2

Z̃

)) , 0

)

,
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VT = W − V0 − VT ,

where

δ = max

(

µ(T − τ̃) + µZ̃ + αµÑ + 2λσ2τ̃V0 − 2
(

α+ λ
(

σ2(T + τ̃) + α2σ2
Ñ
+ σ2

Z̃

))

W, 0

)

.
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Chapter 6

Conclusion

The optimal strategy derived in this thesis gives a trading algorithm for an

investor who targets the closing prices of stocks listed at NASDAQ. The in-

vestor attempts to minimize a combination of average costs and deviations

to the closing price benchmark. In both discrete-time and continuous-time

models, we proved formulas for the optimal trading strategies, which depend

on parameters from the stock price dynamics as well as the investor’s level of

risk aversion. Under assumptions on the drift of the underlying stock price

dynamics, the formulas for the optimal trading strategies become explicit, and

there is no investment after the imbalance announcement. Using historical

imbalance volume and intraday stock prices, we performed out-of-sample sim-

ulations for the optimal strategy. The strategy tested on 15 NASDAQ stocks

shows, persistently across different levels of the investor’s risk aversion, an

improvement compared to investing in the closing auction only; in particular,

our optimal strategy has lower average costs for all 15 stocks.
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Appendix A

Auxiliary Calculations

A.1 Integral Calculation

This appendix contains the detailed integral derivation used for Strategy B

in section 5.2.3.

Recall that we denoted a :=
√

λσ2

β
τ and we now denote b :=

√

λσ2

β
T . We

compute

u′(t)2 =



















































































c21
λσ2

β

(

e

√

λσ2

β
t
+ e

−
√

λσ2

β
t

)2

+ c1
µ
β

(

1 + e
−2

√

λσ2

β
t

)

+ µ2

4βλσ2 e
−2

√

λσ2

β
t

for t ∈ [0, τ)

c21
λσ2

β
(e2a − 1)2e

−2
√

λσ2

β
t − c1

µ
β
(e2a − 1)e

−2
√

λσ2

β
t

−c1c3
2λσ2

β
(e2a − 1)

(

1 + e
2
(

a−
√

λσ2

β
t
)
)

+ c23
λσ2

β

(

e

√

λσ2

β
t
+ e

2a−
√

λσ2

β
t

)2

+c3
µ
β

(

1 + e
2
(

a−
√

λσ2

β
t
)
)

+ µ2

4βλσ2 e
−2

√

λσ2

β
t

for t ∈ (τ, T )
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and

u(t)2 =











































































































c21

(

e

√

λσ2

β
t − e

−
√

λσ2

β
t

)2

+ c1
µ

λσ2

(

e

√

λσ2

β
t − e

−
√

λσ2

β
t

)(

1− e
−
√

λσ2

β
t

)

+ µ2

4λ2σ4

(

1− e
−
√

λσ2

β
t

)2

for t ∈ [0, τ)

c21(e
2a − 1)2e

−2
√

λσ2

β
t
+ c1

µ
λσ2 (e

2a − 1)

(

e
−
√

λσ2

β
t − e

−2
√

λσ2

β
t

)

+2c1c3(e
2a − 1)

(

1− e
2
(

a−
√

λσ2

β
t
)
)

+ c23

(

e

√

λσ2

β
t − e

2a−
√

λσ2

β
t

)2

+c3
µ

λσ2

(

e

√

λσ2

β
t − e

2a−
√

λσ2

β
t

)(

1− e
−
√

λσ2

β
t

)

+ µ2

4λ2σ4

(

1− e
−
√

λσ2

β
t

)2

for t ∈ [τ, T ).

In addition, we note that:

∫ τ

0

u′(t)dt = u(τ) =2 sinh(a)c1 +
µ

2λσ2

(

1− e−a
)

,

∫ T

0

u′(t)dt = u(T ) =c1
(

e2a − 1
)

e−b + c3
(

eb − e2a−b
)

+
µ

2λσ2

(

1− e−b
)

.

We compute the following integrals:

∫ τ

0

t

(

e

√

λσ2

β
t + e

−

√

λσ2

β
t

)

dt =
β

λσ2

(

2a sinh(a)− 2 cosh(a) + 2
)

∫ T

0

t

(

e

√

λσ2

β
t + e

2a−
√

λσ2

β
t

)

dt = 2ea
β

λσ2

(

cosh(a) + b sinh(b− a)− cosh(b− a)
)

∫ T

0

te
−

√

λσ2

β
t
dt =

β

λσ2

(

1− e−b(1 + b)
)

∫ T

0

e
−2

√

λσ2

β
t
dt =

1

2

√

β

λσ2

(

1− e−2b
)

∫ τ

0

(

e

√

λσ2

β
t + e

−

√

λσ2

β
t

)2

dt =

√

β

λσ2

(

sinh(2a) + 2a
)

∫ T

0

(

e

√

λσ2

β
t + e

2a−
√

λσ2

β
t

)2

dt =

√

β

λσ2
e2a

(

sinh(2a) + sinh(2(b− a)) + 2b
)
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∫ τ

0

1 + e
−2

√

λσ2

β
t
dt =

1

2

√

β

λσ2

(

1− e−2a + 2a
)

∫ T

0

1 + e
2
(

a−

√

λσ2

β
t
)

dt =
1

2

√

β

λσ2

(

e2a − e2(a−b) + 2b
)

∫ T

0

1− e
2
(

a−

√

λσ2

β
t
)

dt =
1

2

√

β

λσ2

(

e2(a−b) − e2a + 2b
)

∫ T

0

e
−

√

λσ2

β
t − e

−2
√

λσ2

β
t
dt =

1

2

√

β

λσ2
e−2b

(

e2b − 1
)2

∫ τ

0

(

e

√

λσ2

β
t − e

−

√

λσ2

β
t

)2

dt =

√

β

λσ2

(

sinh(2a)− 2a
)

∫ T

0

(

e

√

λσ2

β
t − e

2a−
√

λσ2

β
t

)2

dt =

√

β

λσ2
e2a

(

sinh(2a) + sinh(2(b− a))− 2b
)

∫ τ

0

(

e

√

λσ2

β
t − e

−

√

λσ2

β
t

)(

1− e
−

√

λσ2

β
t

)

dt = −1

2

√

β

λσ2

(

2a+ e−2a − 4 cosh(a) + 3
)

∫ T

0

(

1− e
−

√

λσ2

β
t

)2

dt =

√

β

λσ2

(

e−2b − e−4b + 3

4
+ b

)

∫ T

0

(

e

√

λσ2

β
t − e

2a−
√

λσ2

β
t

)(

1− e
−

√

λσ2

β
t

)

dt = −1

2

√

β

λσ2

(

e2a + e2(a−b) − 2e2a−b + 2b− 2eb + 2
)

Using above integrals, we compute:

∫ τ

0

tu′(t)dt =

√

β

λσ2

[

2c1
(

a sinh(a)− cosh(a) + 1
)

+
µ

2λσ2

(

1− e−a(1 + a)
)

]

,

∫ T

0

tu′(t)dt =

√

β

λσ2

[

c1
(

e2a − 1
)(

e−b(1 + b)− 1
)

+ 2c3e
a
(

cosh(a) + b sinh(b− a)− cosh(b− a)
)

+
µ

2λσ2

(

1− e−b(1 + b)
)

]

,

∫ τ

0

u′(t)2dt =c21

√

λσ2

β

(

sinh(2a) + 2a
)

+ c1
µ

2β

√

β

λσ2

(

1− e−2a + 2a
)

+
µ2

8βλσ2

√

β

λσ2

(

1− e−2a
)

,

∫ T

0

u′(t)2dt =
1

2
c21

√

λσ2

β

(

e2a − 1
)2(

1− e−2b
)

− c1
µ

2
√

βλσ2

(

e2a − 1
)(

1− e−2b
)
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− c1c3

√

λσ2

β

(

e2a − 1
)(

e2a − e2(a−b) + 2b
)

+
µ2

8βλσ2

√

β

λσ2

(

1− e−2b
)

+ c23

√

λσ2

β
e2a

(

sinh(2a) + sinh(2(b− a)) + 2b
)

+ c3
µ

2β

√

β

λσ2

(

e2a − e2(a−b) + 2b
)

,

∫ τ

0

u(t)2dt =c21

√

β

λσ2

(

sinh(2a)− 2a
)

− c1
µ

2λσ2

√

β

λσ2

(

2a+ e−2a − 4 cosh(a) + 3
)

+
µ2

4λ2σ4

√

β

λσ2

(

e−2a − e−4a + 3

4
+ a

)

∫ T

0

u(t)2dt =c21

√

β

λσ2

(

e2a − 1
)2(

1− e−2b
)

2
+ c1

µ

2λσ2

√

β

λσ2

(

e2a − 1
)

e−2b
(

e2b − 1
)2

+ c1c3
(

e2a − 1
)

√

β

λσ2

(

e2(a−b) − e2a + 2b
)

+
µ2

4λ2σ4

√

β

λσ2

(

e−2b − e−4b + 3

4
+ b

)

+ c23

√

β

λσ2
e2a

(

sinh(2a) + sinh(2(b− a))− 2b
)

− c3
µ

2λσ2

√

β

λσ2

(

e2a + e2(a−b) − 2e2a−b + 2b− 2eb + 2
)

We recall that t∗ and k∗ are the smallest real number such that vt∗ > 0 and

vk∗ > 0 for t∗ ∈ [0, τ) and k∗ ∈ [τ, T ), respectively. We denote a∗ :=
√

λσ2

β
t∗

and b∗ :=
√

λσ2

β
k∗. Moreover, we denote the following constants:

K1
1 (t

∗, k∗) :=2
(

sinh(a)− sinh(a∗)
)

K1
2 (t

∗, k∗) :=− µ

2λσ2

(

e−a − e−a∗
)

K2
1 (t

∗, k∗) :=2
(

sinh(a)− sinh(a∗)
)

+
(

e2a − 1
)(

e−b − e−b∗
)

K2
2 (t

∗, k∗) :=eb − eb
∗ − e2a−b + e2a−b∗

K2
3 (t

∗, k∗) :=− µ

2λσ2

(

e−a + e−b − e−a∗ − e−b∗
)
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K3
1 (t

∗, k∗) :=

√

β

λσ2

(

2
(

a sinh(a)− a∗ sinh(a∗)− cosh(a) + cosh(a∗)
)

+
(

e2a − 1
)(

e−b(1 + b)− e−b∗(1 + b∗)
))

K3
2 (t

∗, k∗) :=2

√

β

λσ2
ea
(

b sinh(b− a)− b∗ sinh(b∗ − a)− cosh(b− a) + cosh(b∗ − a)
)

K3
3 (t

∗, k∗) :=− µ

2λσ2

√

β

λσ2

(

e−a(1 + a) + e−b(1 + b)− e−a∗(1 + a∗)− e−b∗(1 + b∗)
)

K4
1 (t

∗, k∗) :=
1

2

√

λσ2

β

(

e2a − 1
)2(

e−2b∗ − e−2b
)

K4
2 (t

∗, k∗) :=

√

λσ2

β
e2a

(

sinh(2(b− a))− sinh(2(b∗ − a)) + 2(b− b∗)
)

K4
3 (t

∗, k∗) :=−
√

λσ2

β

(

e2a − 1
)(

e2(a−b∗) − e2(a−b) + 2(b− b∗)
)

K4
4 (t

∗, k∗) :=
µ

2
√

βλσ2

(

e−2a∗ − e−2a + 2(a− a∗)−
(

e2a − 1
)(

e−2b∗ − e−2b
))

K4
5 (t

∗, k∗) :=
µ

2
√

βλσ2

(

e2(a−b∗) − e2(a−b) + 2(b− b∗)
)

K4
6 (t

∗, k∗) :=− µ2

8βλσ2

√

β

λσ2

(

e−2a∗ − e−2a + e−2b∗ − e−2b
)

K5
1 (t

∗, k∗) :=

√

β

λσ2

(

sinh(2a)− sinh(2a∗)− 2(a− a∗) +
1

2

(

e2a − 1
)2(

e−2b∗ − e−2b
)

)

K5
2 (t

∗, k∗) :=

√

β

λσ2
e2a

(

sinh(2(b− a)) + sinh(2(b∗ − a))− 2(b− b∗)
)

K5
3 (t

∗, k∗) :=
(

e2a − 1
)

√

β

λσ2

(

e2(a−b) − e2(a−b∗) + 2(b− b∗)
)

K5
4 (t

∗, k∗) :=
µ

2λσ2

√

β

λσ2

(

(

e2a − 1
)(

e−2b
(

e2b − 1
)2 − e−2b∗

(

e2b
∗ − 1

)2)

+ e−2a∗ − e−2a + 4(cosh(a)− cosh(a∗))− 2(a− a∗)

)

K5
5 (t

∗, k∗) :=
µ

2λσ2

√

β

λσ2

(

e2(a−b∗) − e2(a−b) − 2
(

e2a−b∗ − e2a−b
)

+ 2
(

eb − eb
∗
)

− 2(b− b∗)
)

K5
6 (t

∗, k∗) :=
µ2

4λ2σ4

√

β

λσ2

(

e−2b + e−2a − e−2a∗ − e−2b∗ − e−4b + e−4a − e−4a∗ − e−4b∗

4

+ (b+ a− b∗ − a∗)

)
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We determine the following integrals:

∫ τ

t∗
u′(t)dt =

∫ τ

0

u′(t)dt−
∫ t∗

0

u′(t)dt

=2
(

sinh(a)− sinh(a∗)
)

c1 −
µ

2λσ2

(

e−a − e−a∗
)

=K1
1c1 +K1

2 ,

(
∫ τ

t∗
u′(t)dt

)2

=
(

K1
1

)2
c21 + 2K1

1K
1
2c1 +

(

K1
2

)2
,

∫ τ

t∗
u′(t)dt+

∫ T

k∗
u′(t)dt =

∫ T

0

u′(t)dt−
∫ k∗

0

u′(t)dt+

∫ τ

t∗
u′(t)dt

=
(

e2a − 1
)(

e−b − e−b∗
)

c1 +
(

eb − eb
∗ − e2a−b + e2a−b∗

)

c3

− µ

2λσ2

(

e−b − e−b∗
)

+ 2
(

sinh(a)− sinh(a∗)
)

c1

− µ

2λσ2

(

e−a − e−a∗
)

=
(

2
(

sinh(a)− sinh(a∗)
)

+
(

e2a − 1
)(

e−b − e−b∗
))

c1

+
(

eb − eb
∗ − e2a−b + e2a−b∗

)

c3

− µ

2λσ2

(

e−a + e−b − e−a∗ − e−b∗
)

=K2
1c1 +K2

2c3 +K2
3 ,

(
∫ τ

t∗
u′(t)dt+

∫ T

k∗
u′(t)dt

)2

=
(

K2
1

)2
c21 +

(

K2
2

)2
c23 + 2K2

1K
2
2c1c3 + 2K2

1K
2
3c1

+ 2K2
2K

2
3c3 +

(

K2
3

)2
,
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∫ τ

t∗
u′(t)dt

(
∫ τ

t∗
u′(t)dt+

∫ T

k∗
u′(t)dt

)

=K1
1K

2
1c

2
1 +K1

1K
2
2c1c3 +

(

K1
1K

2
3 +K1

2K
2
1

)

c1

+K1
2K

2
2c3 +K1

2K
2
3 ,

∫ τ

t∗
tu′(t)dt+

∫ T

k∗
tu′(t)dt

=

∫ T

0

tu′(t)dt−
∫ k∗

0

tu′(t)dt+

∫ τ

0

tu′(t)dt−
∫ t∗

0

tu′(t)dt

=

√

β

λσ2

[

c1
(

e2a − 1
)(

e−b(1 + b)− e−b∗(1 + b∗)
)

+ 2c3e
a
(

b sinh(b− a)− b∗ sinh(b∗ − a)− cosh(b− a) + cosh(b∗ − a)
)

+ 2c1
(

a sinh(a)− a∗ sinh(a∗)− cosh(a) + cosh(a∗)
)

− µ

2λσ2

(

e−a(1 + a)− e−a∗(1 + a∗) + e−b(1 + b)− e−b∗(1 + b∗)
)

=K3
1c1 +K3

2c3 +K3
3 ,

∫ τ

t∗
u′(t)2dt+

∫ T

k∗
u′(t)2dt

=

∫ T

0

u′(t)2dt−
∫ k∗

0

u′(t)2dt+

∫ τ

0

u′(t)2dt−
∫ t∗

0

u′(t)2dt

=
1

2
c21

√

λσ2

β

(

e2a − 1
)2(

e−2b∗ − e−2b
)

− c1
µ

2
√

βλσ2

(

e2a − 1
)(

e−2b∗ − e−2b
)

− c1c3

√

λσ2

β

(

e2a − 1
)(

e2(a−b∗) − e2(a−b) + 2(b− b∗)
)

− µ2

8βλσ2

√

β

λσ2

(

e−2b∗ − e−2b
)
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+ c23

√

λσ2

β
e2a

(

sinh(2(b− a))− sinh(2(b∗ − a)) + 2(b− b∗)
)

+ c3
µ

2
√

βλσ2

(

e2(a−b∗) − e2(a−b) + 2(b− b∗)
)

+ c1
µ

2
√

βλσ2

(

e−2a∗ − e−2a + 2(a− a∗)
)

− µ2

8βλσ2

√

β

λσ2

(

e−2a∗ − e−2a
)

=K4
1c

2
1 +K4

2c
2
3 +K4

3c1c3 +K4
4c1 +K4

5c3 +K4
6 ,

∫ τ

t∗
u(t)2dt+

∫ T

k∗
u(t)2dt

=

∫ T

0

u(t)2dt−
∫ k∗

0

u(t)2dt+

∫ τ

0

u(t)2dt−
∫ t∗

0

u(t)2dt

=c21

√

β

λσ2

(

e2a − 1
)2(

e−2b∗ − e−2b
)

2

+ c1
µ

2λσ2

√

β

λσ2

(

e2a − 1
)(

e−2b
(

e2b − 1
)2 − e−2b∗

(

e2b
∗ − 1

)2)

+ c1c3
(

e2a − 1
)

√

β

λσ2

(

e2(a−b) − e2(a−b∗) + 2(b− b∗)
)

+ c23

√

β

λσ2
e2a

(

sinh(2(b− a)) + sinh(2(b∗ − a))− 2(b− b∗)
)

+ c3
µ

2λσ2

√

β

λσ2

(

e2(a−b∗) − e2(a−b) − 2
(

e2a−b∗ − e2a−b
)

+ 2
(

eb − eb
∗
)

− 2(b− b∗)
)

+
µ2

4λ2σ4

√

β

λσ2

(

e−2b − e−2b∗ − e−4b − e−4b∗

4
+ (b− b∗)

)

+ c21

√

β

λσ2

(

sinh(2a)− sinh(2a∗)− 2(a− a∗)
)

− c1
µ

2λσ2

√

β

λσ2

(

e−2a − e−2a∗ − 4(cosh(a)− cosh(a∗)) + 2(a− a∗)
)

+
µ2

4λ2σ4

√

β

λσ2

(

e−2a − e−2a∗ − e−4a − e−4a∗

4
+ (a− a∗)

)

=K5
1c

2
1 +K5

2c
2
3 +K5

3c1c3 +K5
4c1 +K5

5c3 +K5
6 .
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A.2 Continuous-Time Strategy B

This section lists other notations used in the presentation of Strategy B

in section 3.4. A variant of the notations listed here was introduced in ap-

pendix A.1. We recall that:

ai :=

√

λσ2

β
i.

We denote the following:

K1
1 (t

∗, τ∗, k∗, T ∗) :=2
(

sinh(aτ∗)− sinh(at∗)
)

K1
2 (t

∗, τ∗, k∗, T ∗) :=− µ

2λσ2

(

e−aτ∗ − e−at∗
)

K2
1 (t

∗, τ∗, k∗, T ∗) :=2
(

sinh(aτ∗)− sinh(at∗)
)

+
(

e2aτ∗ − 1
)(

e−aT∗ − e−ak∗
)

K2
2 (t

∗, τ∗, k∗, T ∗) :=eaT∗ − eak∗ − e2aτ∗−aT∗ + e2aτ∗−ak∗

K2
3 (t

∗, τ∗, k∗, T ∗) :=− µ

2λσ2

(

e−aτ∗ + e−aT∗ − e−at∗ − e−ak∗
)

K3
1 (t

∗, τ∗, k∗, T ∗) :=

√

β

λσ2

(

2
(

aτ∗ sinh(aτ∗)− at∗ sinh(at∗)− cosh(aτ∗)

+ cosh(at∗)
)

+
(

e2aτ∗ − 1
)(

e−aT∗ (1 + aT ∗)− e−ak∗ (1 + ak∗)
))

K3
2 (t

∗, τ∗, k∗, T ∗) :=2

√

β

λσ2
eaτ∗

(

aT ∗ sinh(aT ∗ − aτ∗)− ak∗ sinh(ak∗ − aτ∗)

− cosh(aT ∗ − aτ∗) + cosh(ak∗ − aτ∗)
)

K3
3 (t

∗, τ∗, k∗, T ∗) :=− µ

2λσ2

√

β

λσ2

(

e−aτ∗ (1 + aτ∗) + e−aT∗ (1 + aT ∗)

− e−at∗ (1 + at∗)− e−ak∗ (1 + ak∗)
)

K4
1 (t

∗, τ∗, k∗, T ∗) :=
1

2

√

λσ2

β

(

e2aτ∗ − 1
)2(

e−2ak∗ − e−2aT∗

)

K4
2 (t

∗, τ∗, k∗, T ∗) :=

√

λσ2

β
e2aτ∗

(

sinh(2(aT ∗ − aτ∗))− sinh(2(ak∗ − aτ∗)) + 2(aT ∗ − ak∗)
)
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K4
3 (t

∗, τ∗, k∗, T ∗) :=−
√

λσ2

β

(

e2aτ∗ − 1
)(

e2(aτ∗−ak∗ ) − e2(aτ∗−aT∗ ) + 2(aT ∗ − ak∗)
)

K4
4 (t

∗, τ∗, k∗, T ∗) :=
µ

2
√

βλσ2

(

e−2at∗ − e−2aτ∗ + 2(aτ∗ − at∗)

−
(

e2aτ∗ − 1
)(

e−2ak∗ − e−2aT∗

))

K4
5 (t

∗, τ∗, k∗, T ∗) :=
µ

2
√

βλσ2

(

e2(aτ∗−ak∗ ) − e2(aτ∗−aT∗ ) + 2(aT ∗ − ak∗)
)

K4
6 (t

∗, τ∗, k∗, T ∗) :=− µ2

8βλσ2

√

β

λσ2

(

e−2at∗ − e−2aτ∗ + e−2ak∗ − e−2aT∗

)

K5
1 (t

∗, τ∗, k∗, T ∗) :=

√

β

λσ2

(

sinh(2aτ∗)− sinh(2at∗)− 2(aτ∗ − at∗)

+
1

2

(

e2aτ∗ − 1
)2(

e−2ak∗ − e−2aT∗

)

)

K5
2 (t

∗, τ∗, k∗, T ∗) :=

√

β

λσ2
e2aτ∗

(

sinh(2(aT ∗ − aτ∗)) + sinh(2(ak∗ − aτ∗))

− 2(aT ∗ − ak∗)
)

K5
3 (t

∗, τ∗, k∗, T ∗) :=
(

e2aτ∗ − 1
)

√

β

λσ2

(

e2(aτ∗−aT∗ ) − e2(aτ∗−ak∗ ) + 2(aT ∗ − ak∗)
)

K5
4 (t

∗, τ∗, k∗, T ∗) :=
µ

2λσ2

√

β

λσ2

(

(

e2aτ∗ − 1
)(

e−2aT∗

(

e2aT∗ − 1
)2 − e−2ak∗

(

e2ak∗ − 1
)2)

+ e−2at∗ − e−2aτ∗ + 4(cosh(aτ∗)− cosh(at∗))− 2(aτ∗ − at∗)

)

K5
5 (t

∗, τ∗, k∗, T ∗) :=
µ

2λσ2

√

β

λσ2

(

e2(aτ∗−ak∗ ) − e2(aτ∗−aT∗ ) − 2
(

e2aτ∗−ak∗ − e2aτ∗−aT∗

)

+ 2
(

eaT∗ − eak∗
)

− 2(aT ∗ − ak∗)
)

K5
6 (t

∗, τ∗, k∗, T ∗) :=
µ2

4λ2σ4

√

β

λσ2

(

e−2aT∗ + e−2aτ∗ − e−2at∗ − e−2ak∗

− e−4aT∗ + e−4aτ∗ − e−4at∗ − e−4ak∗

4
+ (aT ∗ + aτ∗ − ak∗ − at∗)

)
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