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Abstract

In this thesis, under the EM algorithm framework, a multiple model approach is de-

veloped towards electricity price prediction, and the identification problem for errors-

in-variables (EIV) systems is studied.

Alberta’s electricity price, which shows high volatility and erratic nature, is con-

sidered as an example of a nonlinear process. A Markov regime-switching model

is applied to predict the price using the local models through the investigations of

characteristics of the pool price sequence. The expectation maximization (EM) algo-

rithm is applied to solve the maximum likelihood (ML) estimation problem for model

parameters, and several initialization methods are proposed to generate the initial

values for the EM algorithm. The validations are presented to verify the proposed

approach, which demonstrate an improvement on the existing price prediction for the

range of high electricity prices.

A dynamic system that has both input and output measurement errors is consid-

ered as an errors-in-variables (EIV) system. Employment of traditional identification

strategies for EIV systems will result in biased estimates and inaccurate estimation

of system parameters. EIV approaches such as the subspace EIV method has been

proposed, but the subspace approach does not possess the optimality such as ML es-

timation. However, the direct application of ML approach for EIV model parameter

estimation can lead to intractable solutions. In this work, we assume a dynamic model

for noise-free input and propose to solve the ML problem using the EM algorithm.

To identify industrial nonlinear EIV processes that operate along an operating

trajectory, a linear parameter varying (LPV) EIV model is proposed to approximate

the global models. The EM algorithm is used to solve the ML estimation for LPV

EIV model parameters. Various numerical simulations and pilot-scale experiments

are used to demonstrate the effectiveness of the proposed approach.
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Preface

Chapter 2 of this thesis is the extension of the conference paper published as O. Wu,

T. Liu, B. Huang, F. Forbes, Predicting Electricity Pool Prices Using Hidden Markov

Models, IFAC-PapersOnLine (2015). In the paper, I was responsible for the extension

of the theory and algorithm developments based on the work of Tianbo Liu, validation

studies, and manuscript composition. Dr. Biao Huang and Dr. Fraser Forbes were

the supervisory authors and were involved with research discussions and manuscript

composition. The extension in Chapter 2 includes the solution of the time-varying

problem, improving the initialization for the EM algorithm, and formulating the two-

hour ahead prediction with a number of validation studies.
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Chapter 1

Introduction

1.1 Background

Predictive model development is always an attractive topic in research since the mod-

el predictions help to develop better strategies and make the right decision for the

future. In daily life, the fluctuating prices of commodities are always drawing cus-

tomers’ attention. For example, the electricity price in Alberta, also called pool price,

fluctuates from 0 $/MWh to 1000 $/MWh depending on the market. A good pool

price prediction could help the suppliers and consumers make appropriate strategies

to gain profits or reduce costs.

With the development of the advanced control strategies, model-based control

methods are commonly applied in complex industrial processes, which require models

of good predictive capability for the key physical variables of the processes. On the

other hand, the physical variables in practical processes are always noise-corrupted

due to the measurement error, which leads to the so-called errors-in-variables (EIV)

problem. The errors-in-variables behavior, where both the input and output mea-

surements are corrupted with noise, presents difficulties and challenges in system

identification.

1.2 Motivation

The nonlinearity and noise uncertainty problems are the main challenges in system

identification. In Alberta’s electricity market, the pool price shows high volatility and

erratic nature, and the price rating mechanism presents the time-varying and non-
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linear feature according to the real-time power demands [1]. A statistical approach,

namely, the Markov regime-switching model has been proposed to approximate the

pool price process [2], and the model parameters are calibrated using the expectation

maximization (EM) algorithm for the maximum likelihood estimation (MLE) [3]. The

proposed Markov regime switching model in a multiple-model framework outperforms

the existing predictions from Alberta Electric System Operator (AESO).

To predict the pool price, the forecast demands from AESO are used as the input.

However, the variable that decides the price is the real-time demand, and it exhibits

some differences from the forecast demands. In industrial processes, this phenomenon

also happens when the input variable is measured with noise, and the noise-free input

is unobservable. This class of system identification problems are referred as EIV

problems in literature. Identifying an EIV system with traditional methods, which

only consider the noise-corrupted output, would result in biased estimations of the

model parameters due to the non-inclusion of the input measurement uncertainties

[4]. The existing EIV methods also have some limitations. For example, though

the subspace EIV methods have the advantage of numerical simplicity compared to

iterative methods, the estimation accuracy has much scope for improvement [5].

To overcome nonlinearity and to have a smooth operation, most of the industrial

processes will have an operating trajectory, designed in a structured way, depending

on some known variables called scheduling variables. In the pool price prediction

model, some characteristics of the pool price such as periodic patterns are employed

as the input to mitigate the effect of nonlinearities. Since nonlinear identification is

computationally complex, a feasible option in modeling the nonlinear EIV process

is to develop a linear parameter varying (LPV) model over the operating trajectory,

where the parameter variation will depend on the scheduling variables.

1.3 Thesis contributions

The main contributions of this thesis are the development of identification approaches

using a linear EIV state space model and an LPV EIV state space model to solve the

difficulties in modeling EIV behaviors, nonlinearity, and an application of multiple

model approach on Alberta’s pool price prediction. Specifically, the contributions are

2



summarized as follows:

1. Modeling of Alberta’s pool price process using a Markov regime-switching

model and providing prediction to catch spike behaviors of pool price.

2. Proposing two specific initialization methods when applying EM algorithm to

estimate parameters of a pool price predictive model, which helps to the convergence

of EM algorithm.

3. Proposing a ‘similar month’ training data selection strategy to tackle pool price

time-varying parameter problems, and validating improved peak pool price predic-

tions on different periods throughout a year.

4. Development of a linear dynamic EIV system identification through EM algo-

rithm and proposing a smoother for state space models with colored inputs in E-steps

of EM algorithm.

5. Identifying LPV EIV state space models using EM algorithm and proposing a

smoother for LPV state space models.

1.4 Thesis outline

This thesis is organized in a paper format, and literature reviews are distributed in

each chapter. In Chapter 2, a peak electricity price prediction approach for Alberta’s

electricity market is developed, and EM algorithm is employed for model calibrations.

In Chapter 3, a linear EIV state space model with input dynamics is identified using

EM algorithm. In Chapter 4, a linear EIV state space model is extended to an LPV

EIV state space model for identifying nonlinear EIV processes, and the identification

problem is formulated and solved using EM algorithm.

3



Chapter 2

Peak pool price prediction

2.1 Introduction

In recent decades, electricity market deregulation has become a world-wide trend

with promising application in North America and Europe. By introducing compe-

tition, it is expected that the efficiency of the electricity market is improved, thus

providing opportunities and also presenting challenges to both the generators and

the consumers. As a result, electricity price prediction has become an important

problem in deregulated markets.

In 1996, Alberta’s electricity market began to evolve as a deregulated market

and full deregulation was established in 2001 [1]. According to the law, wholesale

electrical energy generated in Alberta, which is not consumed on site, must flow

through a power pool which is operated by Alberta’s independent system operator

called Alberta Electric System Operator (AESO). Thus, the power pool is Alberta’s

wholesale spot electricity market, and the hourly electricity price for the power pool

is called pool price. The power pool pricing characteristics are summarized in [1]

and [6]. Apparently, there are on-peak and off-peak electricity price patterns, and

the on-peak period is often from 8:00 to 21:00 during weekdays. Also, there are

pronounced periodic effects for the pool price, such as daily, intra-daily and weekly

repeating patterns, or even monthly repeating patterns. For example, prices vary with

demands in a day, which presents an hourly pattern. Another characteristic of the

power pool is price spikes. Since spikes and dips in demand and supply are common,

the pool prices may be quite volatile in certain periods. For example, unplanned

outages along transmission lines can drive the pool price to a high level, such as

4
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Figure 2.1: Actual pool price and AESO’s pool price forecast (Dec 2013)

500 $/MWh or more. AESO provides a two-hour ahead pool price forecast and a

day-ahead demand forecast as Figure 2.1 and Figure 2.2 presented. As the historical

data shows, the two-hour ahead pool price forecast can have large prediction errors

compared to the actual pool price, especially when prices spike. One reason for these

errors is that generators are free to modify their supply offers two hours ahead, which

could result in the dispatch level in the next two hour period being quite different

from the current dispatch level. In this case, a prediction model for Alberta’s pool

price with an improved forecasting performance would benefit customers with their

decisions on electricity consumption.

There are a number of challenges in the electricity price prediction due to their high

volatility and erratic nature. According to Weron [7], approaches such as statistical

methods, quantitative models and nonlinear techniques have been used in electricity

price modeling. Among these approaches, statistical methods have advantages of sim-

plicity and analytical tractability. To deal with the price volatility, regime-switching

models have been proposed to model switches between different states, such as nor-

mal price and spike price regimes. In [8], a Markov regime-switching model is applied

to electricity prices in the United States and Australian markets, and the results

confirmed the existence of two states with different means and variances. Huisman
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Figure 2.2: Actual demand and AESO’s demand forecast (Dec 2013)

and Mahieu [2] proposed to use Markov regime-switching for modeling price spikes

in European electricity markets which have three states, including normal electricity

price dynamics, a jump state describing sudden increases or decreases, and a state

describing a recovery from a jump state to a normal state. Markov regime-switching

models have also been used in modeling of nonlinear processes, and the expectation

maximization (EM) algorithm is employed for the parameter estimations [9], [10],

[3]. The EM algorithm is an efficient tool to apply maximum likelihood estimation

when there are missing data. However, good initial values are required for results to

accurately converge. The Hidden Markov Model (HMM) approach has been widely

applied to model systems with switched dynamics, for example, biological and finan-

cial fields [11], [12]. In this study, the HMM approach is used to produce the initial

values for the Markov regime-switching approach for electricity price prediction.

In this chapter, a Markov regime-switching model is applied for predicting the pool

price in Alberta’s electricity market. Model calibration based on the EM algorithm

with the proposed initialization methods, is presented in Section 2.2; the validation

studies are presented in Section 2.3.
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2.2 Price prediction algorithm

In this section, a Markov regime-switching model for Alberta’s pool price prediction is

formulated. Parameter estimation for the switching model is developed based on the

EM algorithm, and the initialization problem for the EM algorithm is solved through

hidden Markov model approaches.

2.2.1 Input variables selection and data preprocessing

We consider the autoregressive exogenous (ARX) model as the local model structure

due to its simplicity and low computational requirements. To select the input vari-

ables, the following characteristics of the pool price are considered [3], [6], [7]: 1) the

pool price in Alberta shows a strong periodic behavior; 2) the AESO’s forecast pool

price reflects the fluctuation of future electricity pool price; 3) the day ahead forecast

demand by AESO affects the bidding results of the generators; 4) the actual demand

is correlated with the pool price at the same time instant; 5) the actual demand is

unavailable at the time of prediction, so the historical data for the immediate past

are considered as the best available alternative for prediction. Therefore, the time

sequence, the real-time forecast pool price by AESO, the historical data for actual

system demand, the real-time day ahead forecast demand by AESO, and a dummy

variable denoting weekday or weekend are chosen as the input variables to predict

the real time pool price.

The time sequence is preprocessed to build a linear correlation with the actual

pool price. First, the time sequence is transformed to be periodic with respect to

a 24 hour time clock to appropriately reflect the periodic pattern of the pool price.

Then the weights for on-peak and off-peak hours are calculated based on the following

weighting expressions [3]:

F (k) = K(k) · exp(
(k − kp)

2

2σ2
p

)

kp ∼ PMF

K(k) = f(P (Ik|Cobs,Θ
old))

(2.1)

where F (k) is the preprocessed time sequence, weighted by peak-price magnitude

K(k) and Gaussian function exp( (k−kp)2

2σ2
p

); σ2
p is the tuning parameter; kp is the hourly

7
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Figure 2.3: Preprocessed time sequence (Dec 2013)

time instant with the peak price in a day and is a random variable with a probability

mass function (PMF) based on historical data; the peak-price magnitude K(k) is a

function of the posterior state probability at time instant k and relates the possibility

of the price that is governed by a hidden price state. The preprocessed time sequence

is presented in Figure 2.3.

Preprocessing of system demands is carried out considering the electricity market

mechanism. All the electricity generators in Alberta submit their offers to the power

pool with their available capacity and desired prices. These offers are ranked from

lowest to highest in price to meet the system demands and the high-price surplus

capacities will be dispatched. The hourly supply offer curve can be drawn as a piece-

wise function as in Figure 2.4 [1]. One of supply offer curve feature is that there is

a high price triggered at the upper end of the curve, and this is because these offers

are from some emergency capacity of plants which requires higher maintenance costs.

Therefore, the demand time series can be processed in such a way that the portions

over certain demand are emphasized, while the low demand portions are flattened.

The preprocessed curves are presented in Figure 2.5 and Figure 2.6.
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Figure 2.5: Preprocessed forecast demand (Dec 2013)
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Figure 2.6: Preprocessed actual demand (Dec 2013)

2.2.2 Identifying pool price model using the EM algorithm

For each certain hidden state or regime Ik, it is assumed that the input-output rela-

tionship follows the local autoregressive exogenous (ARX) model, as below:

yk = φT
k θIk + vk, ∀k = 1, 2, . . . , N (2.2)

where, I1:k−1 denotes {I1, I2, . . . , Ik−1}; N is the data length; the regime sequence

{Ik} is assumed to follow a first-order Markov chain P (Ik|I1:k−1) = P (Ik|Ik−1); φk is

the regressor and can be expressed as:

φk = [1, yk−1, yk−2, . . . , yk−na
, uT

k−1, u
T
k−2, . . . , u

T
k−nb

]T

na and nb are orders of denominator and numerator for the ARX model in transfer

function form; θIk are the parameters for the local sub-model with hidden state Ik ∈

{1, 2, . . . ,M} that indicates the model identity, and M is the number of local models;

vk is the output noise assumed to be Gaussian distributed with zero mean and variance

σ2; yk is the actual pool price at time instant k; {uk} is the time series vector for inputs

such as preprocessed demands, AESO’s price forecast, preprocessed time sequence and

dummy variable.
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To estimate the model parameters from input and output data with unknown

switching state {Ik}, the Expectation Maximization algorithm is used for solving the

maximum likelihood estimation problem with hidden variables. By calculating the

conditional expectation of the complete-data log likelihood function and maximizing

the so-called Q function iteratively, the likelihood keeps increasing until it reaches a

maximum [13]. The complete-data log likelihood function is given by:

logP (y1:N , u1:N , I1:N |Θ) = log

N∏

k=1

P (yk|y1:k−1, u1:k, I1:k,Θ)P (Ik|y1:k−1, u1:k, I1:k−1,Θ)·

P (uk|y1:k−1, u1:k−1, I1:k−1,Θ)

=
N∑

k=1

[logP (yk|φk, θIk) + logP (uk)] +
N∑

k=2

logP (Ik|Ik−1) + logP (I1)

(2.3)

As the constant terms logP (uk) do not affect the maximization, the Q function, with

constant terms removed, is given as:

Q(Θ|Θold) =EI1:N |Cobs,Θold[logP (y1:N , u1:N , I1:N |Θ)]

=

N∑

k=1

M∑

i=1

P (Ik = i|Cobs,Θ
old) logP (yk|φk, θIk)+

N∑

k=2

M∑

i=1

M∑

j=1

P (Ik = i, Ik−1 = j|Cobs,Θ
old) logP (Ik|Ik−1)+

M∑

i=1

P (I1 = i|Cobs,Θ
old) logP (I1)

(2.4)

where Cobs = {y1:N , u1:N} is the observed data. For each local sub-model, the noise

is assumed to follow the zero-mean Gaussian distribution with variance σ2.

To maximize the conditional expectation of the likelihood function over the pa-

rameters Θ, derivatives on Q function are taken with respect to each local sub-model

parameter θi, transition probability aij , and noise parameter σ2, respectively. Equat-

ing the derivatives to zero yields the parameter update expressions:
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θi =[
N∑

k=1

P (Ik = i|Cobs,Θ
old)φkφ

T
k ]

−1 · [
N∑

k=1

P (Ik = i|Cobs,Θ
old)φkyk],

∀ i ∈ {1, 2, . . . ,M}

aij =

∑N

k=2 P (Ik = j, Ik−1 = i|Cobs,Θ
old)

∑N

k=2 P (Ik−1 = i|Cobs,Θold)
, ∀ i, j ∈ {1, 2, . . . ,M}

σ2 =

∑N

k=1

∑M

i=1 P (Ik = i|Cobs,Θ
old)(yk − φT

k θi)
2

∑N

k=1

∑M

i=1 P (Ik = i|Cobs,Θold)

πi =P (I1 = i|Cobs,Θ
old), ∀ i ∈ {1, 2, . . . ,M}

(2.5)

The calculation of posterior probabilities is using the backward and forward algo-

rithms [12] as Algorithm 1 and Algorithm 2 illustrated, and the notations are given

as αk(i) , P (Ik = i, y1:k|Θold) and βk(i) , P (yk+1:N |Ik = i,Θold).

Algorithm 1: Forward algorithm
Data: y1:N , u1:N

Result: forward probabilities {αk}
Initialization: α0(1) = 1, and α0(i) = 0, ∀i 6= 1;
for k = 1, 2, . . . , N do

αk(i) = bi(yk)
∑N

j=1 αk−1(j)aji, ∀i ∈ {1, 2, . . . ,M}

end

Algorithm 2: Backward algorithm
Data: y1:N , u1:N

Result: Backward probabilities {βk}
Initialization: βN (i) = ai1, ∀i ∈ {1, 2, . . . ,M};
for k = N − 1, N − 2, . . . , 1 do

βk(i) =
∑N

j=1 aijbj(yk+1)βk+1(j), ∀i ∈ {1, 2, . . . ,M}

end

Note that aij refers to the transition probability P (Ik = j|Ik−1 = i), and bi(yk)

refers to the probability of the observation given state i, and is defined as 1√
2πσ2
·

e−
(yk−φk

T θi)
2

2σ2 . The posterior hidden state probabilities P (Ik = i|Cobs,Θ
old) and P (Ik =

12



j, Ik−1 = i|Cobs,Θ
old) are derived as:

P (Ik = i|Cobs,Θ
old) =

P (y1:k, Ik = i|)P (yk+1:N |Ik = i,Θold)

P (y1:N |Θold)

=
αk(i)βk(i)

∑N

i=1 αk(i)βk(i)

P (Ik = j, Ik−1 = i|Cobs,Θ
old) =

P (y1:N , Ik = j, Ik−1 = i|Cobs,Θ
old)

P (y1:N |Θold)

(2.6)

where,

P (y1:N , Ik = j, Ik−1 = i|Cobs,Θ
old)

=P (yk+1:N |Ik = j,Θold)P (yk|Ik = j,Θold)P (Ik = j|Ik−1 = i)P (Ik−1 = i, y1:k−1|Θ
old)

=βk(j)bj(yk)aijαk−1(i)
(2.7)

2.2.3 Initialization for the EM algorithm

The EM algorithm is used for the calibration of the regime-switching model, and

a good initialization would improve the computation and performance of the EM

algorithm when applied to identify the pool price predictive model. It is assumed

that various mechanisms that govern the changes of pool price, follow the Markov

chain as defined by a discrete state sequence {I1:N} with three regimes (i.e., low,

middle and high volatility). Therefore, a hidden Markov model (HMM) presented in

Figure 2.7, is considered for the modeling of hidden regimes switching on the trend of

pool price, and the modeling result is used as the initialization for the EM algorithm.

In this section, both discrete and continuous HMMs are considered and trained to

obtain the initial parameter values, respectively.

· · · → Ik → Ik+1 → Ik+2 → · · ·
↓ ↓ ↓ ↓ ↓
· · · ok ok+1 ok+2 · · ·

Figure 2.7: The hidden Markov model diagram
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Discrete HMM approach

The discrete HMM approach is considering the both the regime Ik and the observation

ok to be discrete. In the HMM initialization approach for the pool price predictive

model, the observation sequence is considered as the trend of pool price. In [3], a

feature extraction method, called neighboring difference grouping, is used to obtain a

discretized trend sequence of pool price. On the other hand, a graphic trend capturing

method called triangle representation was proposed [14], [15], [16], which can also be

used in pool price prediction process.

For the grouping representation based on neighboring difference, the pool prices

are divided into five groups based on their value with group index from low to high

represented as:

Index =







1, ∀ Price < 30 $/MWh
2, ∀ 30 $/MWh 6 Price < 100 $/MWh
3, ∀ 100 $/MWh 6 Price < 300 $/MWh
4, ∀ 300 $/MWh 6 Price < 500 $/MWh
5, ∀ Price > 500 $/MWh

(2.8)

Then, a new processed sequence {Sk} is developed as a discretized trend of price by

calculating the group index differences between every two neighboring pool price as

follows:

Sk =







1, ∀ dk > 2
2, ∀ dk < −2
3, ∀ −2 6 dk 6 2

(2.9)

where, Sk is the element of the feature extracted pool price symbol sequence at time k

and dk is the group index differences between each two neighboring electricity prices,

which is one kind of discretized trend sequence of pool price.

Instead of grouping the pool price neighboring differences into a discretized trend

sequence, a triangular representation for trend capturing can also be employed as

another feature extraction method for the pool price sequence. The triangle repre-

sentation is proposed by Cheung and Stephanopoulos [14] to calculate trend represen-

tation graphically by using the first and second order derivatives. By searching and

connecting neighboring extrema or inflection points, the discretized trend sequence

is generated with the elements classified into different basic triangular shapes in Fig-

ure 2.8, where (a) refers to concave downward with monotonic increase; (b) refers
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to concave downward with monotonic decrease; (c) refers to concave upward with

monotonic increase; (d) refers to concave upward with monotonic decrease; (e) refers

to linear increase; (f) refers to linear decrease; (g) refers to the shape of constant.

Moreover, two dimensional data of time duration and magnitude are obtained for

each neighboring extrema or inflection points as follows:

dn = tn − tn−1

mn = ytn − ytn−1

(2.10)

where, ytn refers to the value of the extrema or inflection point, the pool price in our

case, at time tn with index subscript n; n refers to the series number for extrema and

inflection points. Based on the durations and magnitudes, the basic triangle shapes

are divided into different ranges for the slope. Then, the pool price sequence is pro-

cessed into triangle representations as a discretized trend sequence.

Figure 2.8: Triangle representation components

To estimate the parameters of discrete HMM, the Baum-Welch algorithm [12] is

applied by using the EM algorithm to find the maximum likelihood estimate. The

posterior state probability P (Ik = i|o1:N ,Θold) using Bayes’ theorem is given as:

P (Ik = i|o1:N ,Θ
old) =

P (ok+1:N |Ik = i, o1:k)P (Ik = i, o1:k)

P (o1:N)
(2.11)

where, P (ok+1:N |Ik = i, o1:k) = P (ok+1:N |Ik = i) is the backward probability denoted

by βk(i); P (Ik = i, o1:k) is the forward probability denoted by αk(i); the backward
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and forward probabilities can be calculated from the backward-forward algorithm [12]

where bi(ok) is state to discrete observation emission probability in discrete HMM case

and aij as transition probability from state i to state j.

Continuous HMM approach

The pool price {yk} is real valued from 0 to 1000, and the neighboring difference

{ek|ek = yk − yk−1} is also real valued from -1000 to 1000, therefore a continuous

observation hidden Markov model can be employed based on the pool price trend

using the continuous neighboring difference sequence. Unlike the discrete case, the

state {Ik} to continuous observation {ek} emission probabilities are replaced with a

continuous distribution. The probability density follow a mixture of Gaussian with

hidden clusters {mk}, and we have the following model representation as Figure 2.9

illustrated:

· · · → Ik → Ik+1 → Ik+2 → · · ·
↓ ↓ ↓ ↓ ↓ ↓

· · · ek ← mk ek+1 ← mk+1 ek+2 ← mk+2 · · ·

Figure 2.9: Continuous hidden Markov model with hidden cluster mk

At each time step, the hidden state {Ik} is generated by following Markov chain

rule with transition probability aIk−1Ik , which determines the hidden cluster mk ac-

cording to states to clusters emission probabilities gIkmk
. The probability density

of continuous observation difference ek with known state and cluster at time k is

modeled by Gaussian function as follows:

P (ek|Ik = i,mk = l,Θ) = φ(ek|µil, σ
2
il) (2.12)

where φ(·) is Gaussian function with mean µij and variance σ2
ij .

The overall probability density of an observation generated by a state Ik is given

by a mixture of Gaussian functions:

P (ek|Ik = i,Θ) =
∑

l

P (mk = l|Ik = i,Θ)P (ek|Ik = i,mk = l,Θ)

=
∑

l

gil · φ(ek|µil, σ
2
il)

(2.13)
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The maximum likelihood estimation is employed to estimate the unknown param-

eters for the continuous HMM using the EM algorithm. The derivations of the EM

algorithm are as follows:

First the complete-data log likelihood function or the Q function is derived as:

Q(Θ|Θold) =EI1:N ,m1:N |e1:N ,Θold{logP (e1:N , I1:N , m1:N |Θ)}

=

N∑

k=1

∑

i

∑

j

P (Ik = i,mk = j|e1:N ,Θ
old) logP (ek|Ik, mk,Θ)+

N∑

k=1

∑

i

∑

j

P (Ik = i,mk = j|e1:N ,Θ
old) logP (mk|Ik,Θ)+

N∑

k=2

∑

i

∑

l

P (Ik = i, Ik−1 = l|e1:N ,Θ
old) logP (Ik|Ik−1,Θ)+

∑

i

P (I1 = i|e1:N ,Θ
old) logP (I1|Θ)

(2.14)

Taking derivatives of the Q function with respect to parameters and equating the

derivatives to zero yields the following parameter update equations:

πi ,P (I1 = i) = P (I1 = i|e1:N ,Θ
old)

aij ,P (Ik = j|Ik−1 = i) =

∑N

k=2 P (Ik = j, Ik−1 = i|e1:N ,Θold)
∑N

k=2 P (Ik−1 = i|e1:N ,Θold)

gil ,P (mk = l|Ik = i) =

∑N

k=2 P (mk = l, Ik = i|e1:N ,Θold)
∑N

k=2 P (Ik = i|e1:N ,Θold)

µil =

∑N

k=1 P (mk = l, Ik = i|e1:N ,Θ
old)ek

∑N

k=1 P (mk = l, Ik = i|e1:N ,Θold)

σ2
il =

∑N

k=1 P (mk = l, Ik = i|e1:N ,Θold)(ek − µil)
2

∑N

k=1 P (mk = l, Ik = i|e1:N ,Θold)

(2.15)

where, above equations are given for i, j = 1, 2, . . . , N1 and l = 1, 2, . . . , N2, and N1

and N2 is the number of hidden states and hidden clusters, respectively.

For the E-step, the posterior hidden variable probabilities are calculated using the

results of the forward and backward algorithm [12]:

P (Ik = i|e1:N ,Θ
old) =

αk(i)βk(i)
∑

i αk(i)βk(i)

P (Ik = i, Ik+1 = j|e1:N ,Θ
old) =

βk+1(j)bj(ek+1)aijαk(i)
∑

i

∑

j βk+1(j)bj(ek+1)aijαk(i)

P (Ik = i,mk = l|e1:N ,Θ
old) =P (Ik = i|e1:N ,Θ

old) ·
gil · φ(ek|µil, σ

2
il)

bi(ek)

(2.16)
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where, bi(ek) , P (ek|Ik = i,Θold) =
∑

l gil · φ(ek|µil, σ
2
il); αk(i)and βk(i) are forward

and backward probabilities at time step k with state index as i, respectively, and aij

refers to transition probability from state i to state j.

2.3 Validation studies

Validation studies for monthly predictions are presented using the proposed approach,

and the data is from the AESO’s website∗. Hourly predictions within a month (around

750 data points) are chosen for validation studies to ensure sufficiency of data includ-

ing price spikes and periodic behavior. For training purposes, a batch of historical

data is selected over a month (around 750 data points).

To evaluate the prediction performance, monthly mean absolute error (MMAE),

monthly root mean squared error (MRMSE), monthly correlation coefficient, month-

ly fitting rate and monthly mean absolute percentage error (MMAPE) are used as

validation metrics, which are defined below:

MMAE =
1

Nmonth

Nmonth∑

k=1

|fk − yk| =
1

Nmonth

Nmonth∑

k=1

|ek| (2.17)

MRMSE =

√
√
√
√ 1

Nmonth

Nmonth∑

k=1

e2k (2.18)

MMAPE =
1

Nmonth

Nmonth∑

k=1

|
fk − yk

yk
| (2.19)

Fitting rate = 1−
norm(F − Y )

norm(Y −mean(Y ))
(2.20)

Correlation coefficient =
∑Nmonth

k=1 (fk−mean(F ))(yk−mean(Y ))
√

∑Nmonth
i=1 (fi−mean(F ))2(yi−mean(Y ))2

(2.21)

where fk refers to the price prediction at time step k; F is the vector form of fk

; yk is the actual price at time step k with vector form Y ; correlation coefficient

measures the linear relationship between two data sets, and 1 implies perfect positive

linear correlation; fitting rate measures the variation of the output in percentage, and

higher fitting rate means better prediction performance.

∗http://ets.aeso.ca/
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2.3.1 One-hour ahead pool price prediction

For one-hour ahead pool price prediction, the prediction dynamics is represented as:

E(k + 1) =

M∑

i=1

M∑

j=1

P (Ik = i|Ck,Θ) · aij · E
j(k + 1)

Ej(k + 1) =φT
k+1θj

(2.22)

where Ej(k+1) is the prediction from the jth local model; φk is the regressor at time

step k; θj is the parameter for the jth local sub-model; P (Ik|Ck,Θ) is the filtered hid-

den regime probability at time step k, which is multiplied with transition probability

aij in order to get a prediction of the state probability P (Ik+1|Ck,Θ) at time step

k + 1; Ck refers to the available observations at time k: {y1:k, u1:k}.

Initialization methods and model orders

The inputs for the local model could be rearranged as pool price, demand, weekly

dummy variable and hourly processed time sequence. Among them, the pool prices or

demands including the AESO’s prediction and historical actual data can be combined

with the prediction on the next hour by AESO and historical actual data, and n refers

to the order of the rearranged input term including the historical data for the pool

price and demands.

DHMM refers to discrete HMM of feature extracted sequence based on neighboring

difference; DHMMTR refers to discrete HMM of feature extracted sequence based

on triangle representations; CHMM refers to continuous HMM method based on the

neighboring difference. Two examples are provided, namely January 2013 and August

2013 months’ data, and the proposed method using different initialization methods

is applied to estimate the model parameters, where the self validation results are

presented in Table 2.3 and Table 2.1. This shows that CHMM an DHMMTR tend

to have a better fitting than DHMM, i.e., CHMM and DHMMTR provide the initial

values which helps the EM algorithm reach a better fitting result at the cost of more

computation. Using the model estimated from previous examples as the training data

to predict another future month, the cross validation results are exhibited in Table 2.4

and Table 2.2. The performance metrics do not seem to trend the same direction. The

monthly mean absolute error shows that the prediction using the proposed approach
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is not as good as AESO’s results, while monthly root mean squared error shows the

opposite results. The reason is that AESO’s prediction is more accurate in the low-

range price but has large prediction errors when it is peak price. Therefore, we divide

the prediction results into high-range price by setting the threshold for the high pool

price as 100 $/MWh. The prediction results for high pool price are presented in Table

2.5 and Table 2.6. Based on the two validation results, DHMM and DHMMTR tend

to have a better performance when model order is 2, and CHMM tend to have a

better performance when model order is 1.

Table 2.1: Training data fitting in August 2013
Initialization Order MMAE MRMSE Corr(%) Fit(%)

AESO’s N/A 21.00 69.59 93.64 59.69
n=1 20.86 55.43 95.30 67.83

DHMM n=2 19.99 52.33 95.76 69.65
n=3 21.06 56.71 94.61 67.13
n=4 20.28 53.51 95.25 69.00
n=1 13.50 35.73 97.84 79.26

DHMMTR n=2 19.91 52.71 95.57 69.43
n=3 19.80 52.84 95.45 69.37
n=4 19.31 52.51 95.46 69.58
n=1 14.76 38.32 97.51 77.76

CHMM n=2 16.56 43.50 96.77 74.77
n=3 16.52 45.29 96.50 73.75
n=4 16.39 42.51 96.93 75.37

Training data selection

Pool price sequence exhibits strong periodic characteristics due to the customers’

power-consuming behaviors. The generators scheduling could also contribute to pool

pricing due to introduction of new generators or some shutdowns. These intrinsic

mechanisms result in time-varying parameters for the switching model applying in

pool price prediction, that is to say, the predicted pool price for a certain future month

has different performance from different training data. To capture the appropriate

local model, we use an entire month’s data for training purpose, and compare the

prediction results on the same future month with the ones using different months

as training data. The use of the past year monthly data to model for a future year
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Table 2.2: Prediction in August 2014 by training data August 2013
Initialization Order MMAE MRMSE Corr(%) Fit(%)

AESO’s N/A 6.61 35.51 94.76 87.16
n=1 9.46 22.53 97.66 91.85

DHMM n=2 9.00 23.53 97.40 91.49
n=3 10.12 26.06 96.85 90.58
n=4 10.91 24.11 97.46 91.28
n=1 7.78 22.67 97.62 91.80

DHMMTR n=2 8.36 25.20 97.01 90.89
n=3 8.83 28.22 96.24 89.80
n=4 9.16 28.34 96.22 89.75
n=1 7.48 24.49 97.24 91.14

CHMM n=2 8.14 24.85 97.13 91.01
n=3 9.62 41.73 92.23 84.91
n=4 9.61 40.32 92.62 85.42

same or similar month prediction is called ‘similar month’ rule in the sequel. Two

examples are presented in Table 2.7 and Table 2.8, where the initialization method

is DHMMTR and the model order is chosen as one. January 2014 and August 2014

month data are chosen as the prediction examples, since these months represent two

typical different seasons, and have dissimilar prediction errors for AESO’s pool price

forecast. The metrics MMAE and MRMSE in Table 2.7 and Table 2.8 show some

disagreement since MRMSE exaggerates the prediction errors in peaks, which also

calls for the investigation of high-price range prediction. In Table 2.10, in past two

years monthly data are taken as the training data separately, and the results in Table

2.9 indicate that a better high-price range prediction obtained using the training data

from the same month in the previous year.

The predictions using the ‘similar month’ training data selection rule are presented

in Table 2.11, which validate the proposed method by applying in the high-price range

pool price prediction. The month rows denoted as N/A in Table 2.11 indicates that

there is no peak price. Different initialization methods for the EM algorithm are

compared. By taking the average of MRMSE of different months’ predictions in a

year, the DHMMTR and CHMM have errors 133.57 and 133.62, respectively, smaller

than that of DHMM, which is 135.87.
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Table 2.3: Training data fitting in January 2013
Initialization Order MMAE MRMSE Corr(%) Fit(%)

AESO’s N/A 10.92 40.44 94.85 62.72
n=1 11.81 31.81 95.73 70.64

DHMM n=2 10.21 31.67 95.64 70.79
n=3 9.20 25.61 97.21 76.39
n=4 9.10 24.20 97.55 77.70
n=1 10.49 34.62 94.81 68.05

DHMMTR n=2 9.63 28.78 96.45 73.45
n=3 10.19 29.04 96.72 73.23
n=4 10.38 29.37 96.69 72.94
n=1 10.70 31.64 95.66 70.80

CHMM n=2 10.75 32.82 95.35 69.73
n=3 9.65 28.15 96.60 74.05
n=4 9.90 28.17 96.62 74.04

2.3.2 Two-hour ahead pool price prediction

The prediction model can also be extended for two-hour ahead prediction as follows:

E(k + 2) =

M∑

i=1

M∑

j=1

M∑

h=1

P (Ik = i|Ck,Θ) · aij · ajh · E
h(k + 2)

Eh(k + 2) =θTh φ
n
k+2

(2.23)

where Eh(k+2) is the two-hour ahead prediction from the hth local sub-model; φn
k is

the model regressor for two-hour ahead prediction at time step k, and the difference

compared to the one-hour ahead prediction is that historical data of one hour ahead

are replaced with the proposed prediction; θh is the parameter for the hth local sub-

model; P (Ik|Ck,Θ) is the filtered hidden regime probability at time step k, which is

multiplied with transition probability aij and ajh in order to get a prediction of the

state probability P (Ik+2|Ck,Θ) at time step k + 2.

The proposed approach is applied and the ‘similar Month’ training data selection

rule is used, the prediction results for high pool price regions are presented in Table

2.12. CHMM and DHMMTR are used as the initialization methods to generate the

two-hour ahead pool price prediction, which are compared with AESO’s prediction.

CHMM exhibits average MRMSE of 140.63, smaller than that of DHMMTR, which is

149.72. However, the two-hour ahead pool price prediction faces more process uncer-
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Table 2.4: Prediction in January 2014 by training data January 2013
Initialization Order MMAE MRMSE Corr(%) Fit(%)

AESO’s N/A 6.87 32.01 90.16 72.27
n=1 9.49 34.59 87.32 70.04

DHMM n=2 9.44 40.68 81.17 64.76
n=3 8.95 34.64 86.52 69.99
n=4 8.78 33.60 87.55 70.90
n=1 8.07 33.02 87.92 71.39

DHMMTR n=2 7.45 30.17 90.14 73.86
n=3 8.39 36.56 84.91 68.33
n=4 8.10 31.81 88.84 72.44
n=1 8.32 30.98 89.54 73.16

CHMM n=2 8.78 34.71 86.58 69.93
n=3 8.41 35.15 86.04 69.55
n=4 8.21 32.75 88.03 71.63

tainties than the one-hour ahead pool price prediction, which results in deteriorated

performance.

2.4 Conclusions

A pool price prediction approach is developed and applied in Alberta’s electricity

market. The Markov regime-switching model is well defined for pool price, and the

model calibration is based on the EM algorithm with the hidden Markov model is

proposed for initialization methods. Through validations studies, the time-varying

problem for parameter estimations is solved by using the ‘similar month’ training data

selection rule and the results illustrate good performance for prediction in different

months, particularly in high pool price regions. Different initialization methods are

compared and we conclude that using the proposed initialization methods CHMM

and DHMMTR lead to a superior prediction than using DHMM.
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Table 2.5: High-price range prediction in January 2014 by training data January 2013
Initialization Order MMAE MRMSE Corr(%) Fit(%)

AESO’s N/A 77.18 139.54 81.43 37.03
n=1 85.00 149.51 77.76 32.54

DHMM n=2 79.21 134.52 82.27 39.30
n=3 89.99 144.24 77.61 34.91
n=4 92.41 145.05 77.51 34.55
n=1 85.17 143.82 77.47 35.10

DHMMTR n=2 73.01 130.48 82.23 41.12
n=3 74.55 129.06 82.73 41.76
n=4 75.13 130.19 82.51 41.25
n=1 75.21 133.84 81.51 39.61

CHMM n=2 87.77 150.42 76.45 32.12
n=3 81.34 141.89 78.65 35.97
n=4 83.40 141.80 78.66 36.01

Table 2.6: High-price range prediction in August 2014 by training data August 2013
Initialization Order MMAE MRMSE Corr(%) Fit(%)

AESO’s N/A 127.41 192.15 88.48 45.95
n=1 77.79 110.96 95.02 68.79

DHMM n=2 67.06 105.73 95.84 70.26
n=3 69.16 106.44 95.69 70.06
n=4 81.89 112.34 95.42 68.40
n=1 78.58 117.17 94.55 67.04

DHMMTR n=2 71.11 106.77 95.41 69.97
n=3 73.67 109.50 95.20 69.20
n=4 75.48 109.48 95.22 69.20
n=1 59.91 97.94 96.14 72.45

CHMM n=2 85.16 127.91 93.84 64.02
n=3 66.44 102.71 95.75 71.11
n=4 64.11 101.45 95.89 71.46
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Table 2.7: Prediction in January 2014 by different training data
Month(Tr) MMAE MRMSE Corr(%) Fit(%)
AESO’s 6.87 32.01 90.16 72.27
Dec 2013 9.45 35.51 85.80 69.24
Nov 2013 9.36 37.21 84.40 67.77
Oct 2013 9.49 32.71 88.69 71.67
Sept 2013 9.76 34.93 86.79 69.74
Aug 2013 10.11 35.54 85.84 69.21
Jul 2013 9.08 34.76 86.52 69.89
Jun 2013 9.45 33.43 87.58 71.04
May 2013 9.37 33.24 88.50 71.21
Apr 2013 7.62 31.87 89.11 72.39
Mar 2013 11.64 34.92 86.61 69.76
Feb 2013 7.20 30.85 89.51 73.28
Jan 2013 7.45 30.17 90.14 73.86

Table 2.8: Prediction in August 2014 by different training data
Month(Tr) MMAE MRMSE Corr(%) Fit(%)
AESO’s 6.61 35.51 94.76 87.16
Jul 2014 7.96 32.14 95.14 88.38
Jun 2014 5.60 27.03 96.64 90.22
May 2014 6.40 26.69 96.64 90.35
Apr 2014 7.04 37.12 93.52 86.58
Mar 2014 13.12 71.40 76.98 74.18
Feb 2014 8.53 26.06 96.91 90.57
Jan 2014 6.44 26.56 96.64 90.39
Dec 2013 8.06 25.47 96.99 90.79
Nov 2013 11.38 54.17 90.56 80.41
Oct 2013 9.05 27.93 96.59 89.90
Sept 2013 8.19 29.68 95.93 89.26
Aug 2013 8.36 25.20 97.01 90.89
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Table 2.9: High-price range prediction in January 2014 by different training data
Month(Tr) MMAE MRMSE Corr(%) Fit(%)
AESO’s 77.18 139.54 81.43 37.03
Dec 2013 94.85 154.26 74.24 30.39
Nov 2013 104.87 161.41 70.76 27.17
Oct 2013 83.42 140.97 80.08 36.39
Sept 2013 87.85 147.95 75.56 33.24
Aug 2013 94.58 153.28 74.06 30.83
Jul 2013 89.47 151.02 74.79 31.85
Jun 2013 86.75 141.78 77.31 36.02
May 2013 84.55 142.52 78.44 35.69
Apr 2013 80.42 138.46 79.72 37.52
Mar 2013 87.17 145.85 75.99 34.19
Feb 2013 79.50 134.38 80.02 39.36
Jan 2013 73.01 130.48 82.23 41.12
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Table 2.10: High-price range prediction in August 2014 by different training data
Month(Tr) MMAE MRMSE Corr(%) Fit(%)
AESO’s 127.41 192.15 88.48 45.95
Jul 2014 99.03 145.12 93.05 59.18
Jun 2014 76.89 134.04 93.26 62.29
May 2014 86.57 131.20 93.08 63.09
Apr 2014 107.90 150.06 91.78 57.79
Mar 2014 299.24 387.19 24.46 -8.92
Feb 2014 75.46 116.35 94.81 67.27
Jan 2014 92.07 136.65 92.82 61.56
Dec 2013 77.72 109.12 95.77 69.30
Nov 2013 219.31 281.51 85.98 20.81
Oct 2013 92.10 121.50 95.66 65.82
Sept 2013 96.62 145.24 93.20 59.14
Aug 2013 71.11 106.77 95.41 69.97
Jul 2013 67.12 107.89 95.30 69.65
Jun 2013 76.20 118.50 94.72 66.67
May 2013 101.51 150.03 92.09 57.80
Apr 2013 85.57 129.80 93.79 63.49
Mar 2013 105.73 137.58 93.92 61.30
Feb 2013 172.82 204.01 86.11 42.61
Jan 2013 77.74 107.85 95.68 69.66
Dec 2012 91.31 119.23 95.03 66.46
Nov 2012 91.55 117.60 95.02 66.92
Oct 2012 91.53 129.62 93.52 63.54
Sept 2012 100.96 142.77 92.22 59.84
Aug 2012 77.13 116.10 94.64 67.34
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Table 2.11: High-price range prediction in different months using ‘similar month’ rule
Month(Val) Methods MMAE MRMSE Corr(%) Fit(%)
Sept 2014 N/A

AESO’s 127.41 192.15 88.48 45.95
Aug 2014 DHMMTR 71.11 106.77 95.41 69.97

DHMM 67.06 105.73 95.84 70.26
CHMM 62.13 98.53 96.09 72.28
AESO’s 154.12 253.46 71.53 22.35

Jul 2014 DHMMTR 141.78 215.21 78.82 34.07
DHMM 158.35 238.62 75.55 26.90
CHMM 154.36 233.76 74.08 28.39
AESO’s 160.79 268.46 63.42 1.85

Jun 2014 DHMMTR 131.86 196.18 72.13 28.27
DHMM 108.83 186.03 77.27 31.99
CHMM 95.66 156.79 82.89 42.68
AESO’s 115.82 199.93 76.84 29.47

May 2014 DHMMTR 118.33 184.65 77.40 34.86
DHMM 104.90 163.82 83.01 42.21
CHMM 115.17 173.90 80.31 38.66

Apr 2014 N/A
AESO’s 45.96 80.92 81.31 -5.73

Mar 2014 DHMMTR 39.46 60.40 74.42 21.09
DHMM 43.34 57.61 77.34 24.73
CHMM 40.56 58.71 78.24 23.29
AESO’s 51.55 94.32 94.31 61.92

Feb 2014 DHMMTR 60.71 89.64 94.16 63.81
DHMM 53.75 80.97 94.70 67.31
CHMM 64.10 102.94 91.05 58.44
AESO’s 77.18 139.54 81.43 37.03

Jan 2014 DHMMTR 73.01 130.48 82.23 41.12
DHMM 79.21 134.52 82.27 39.30
CHMM 75.21 133.84 81.51 39.61
AESO’s 142.84 200.04 68.53 0.98

Dec 2013 DHMMTR 105.82 141.43 73.40 29.99
DHMM 111.31 149.32 69.70 26.09
CHMM 110.63 149.52 71.13 25.99
AESO’s 118.36 168.04 82.70 -24.27

Nov 2013 DHMMTR 58.55 75.27 85.93 44.34
DHMM 62.42 86.18 78.18 36.27
CHMM 65.89 83.70 79.33 38.10
AESO’s 134.00 200.43 72.71 5.58

Oct 2013 DHMMTR 104.06 144.40 76.41 31.97
DHMM 94.82 147.23 75.99 30.64
CHMM 99.39 144.56 75.22 31.90
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Table 2.12: High-price range two-hour ahead prediction in different months using
‘similar month’ rule

Month(Val) Methods MMAE MRMSE Corr(%) Fit(%)
Sept 2014 N/A

AESO’s 127.41 192.15 88.48 45.95
Aug 2014 CHMM 109.79 137.52 93.02 61.32

DHMMTR 141.07 171.38 93.12 51.79
AESO’s 154.12 253.46 71.53 22.35

Jul 2014 CHMM 180.93 232.27 73.48 28.84
DHMMTR 194.08 265.65 70.89 18.62
AESO’s 160.79 268.46 63.42 1.85

Jun 2014 CHMM 128.48 182.54 78.04 33.26
DHMMTR 145.95 200.35 73.71 26.75
AESO’s 115.82 199.93 76.84 29.47

May 2014 CHMM 110.14 160.92 82.86 43.23
DHMMTR 130.87 186.42 80.80 34.24

Apr 2014 N/A
AESO’s 45.96 80.92 81.31 -5.73

Mar 2014 CHMM 39.90 57.71 82.50 24.59
DHMMTR 36.18 50.59 81.12 33.90
AESO’s 51.55 94.32 94.31 61.92

Feb 2014 CHMM 64.98 98.43 92.45 60.26
DHMMTR 62.81 89.50 94.38 63.87
AESO’s 77.18 139.54 81.43 37.03

Jan 2014 CHMM 76.95 137.07 79.50 38.15
DHMMTR 98.80 154.57 81.79 30.25
AESO’s 142.84 200.04 68.53 0.98

Dec 2013 CHMM 127.32 171.08 68.67 15.32
DHMMTR 113.95 144.70 70.65 28.37
AESO’s 118.36 168.04 82.70 -24.27

Nov 2013 CHMM 61.13 85.55 82.59 36.73
DHMMTR 69.30 89.94 78.95 33.49
AESO’s 134.00 200.43 72.71 5.58

Oct 2013 CHMM 101.44 143.27 75.92 32.50
DHMMTR 107.91 144.17 73.65 32.08
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Chapter 3

Identification of linear dynamic
errors-in-variables systems with a
dynamic process for noise-free
inputs using EM algorithm

3.1 Introduction

An errors-in-variables (EIV) system refers to a process where both observed inputs

and outputs are noise-corrupted. A single-input single-output EIV process is depicted

in Figure 3.1, where ûk is the noise-free process input; ũk is the input disturbance

and uk is the measured input; ỹk is the output disturbance; ŷk is the noise-free pro-

cess output and yk is the measurement. Both the noise-free variables ûk and ŷk are

unknown. In practice, the input measurements will also be corrupted with noises,

hence, the EIV model is a more practical representation of the system dynamics in

contrast to the models that assume noise-free inputs. For example, consider an elec-

tricity pool prediction model with the electricity demand forecast as one of the input

variables. However, the actual mechanism for deciding the pool price is the real de-

mand which is not available. The demand forecast variable is therefore equivalent

to a noise-corrupted input for the actual pool price model, and if we can find the

uncertainty of the demand forecast and develop a more realistic EIV model for the

pool price mechanism, then the pool price prediction could be improved. Another

example is the model development of tray temperature profiles of a distillation col-

umn using flow-rate data. The flow rate measurement is corrupted with noise, so are
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the temperature measurements. Hence, if the input noise was accounted for, it would

provide more fidelity to the model.

Figure 3.1: The errors-in-variables process diagram

There are many different ways for identifying linear dynamic systems with noise-

corrupted output measurements. However, using these traditional methods to identify

EIV systems would lead to biased estimations of parameters due to the uncertainties in

the input measurements, making the parameter estimation for EIV systems a difficult

problem. For more comprehensive treatment on this topic, readers are referred to [4].

In literature, the EIV identification problem has already been studied extensive-

ly and many different approaches have been proposed as in reviews [4] and [17].

Among the existing EIV identification approaches, several subspace methods for i-

dentifying EIV systems have been investigated in [18], [19] and [5]. In [18], unbiased

estimations using subspace framework for EIV systems are derived using the instru-

mental variables (IV) methods. These subspace EIV methods have the advantages

of numerical simplicity and stability by relying on computational tools such as the

QR factorization and the singular value decomposition (SVD). Furthermore, being a

non-iterative method, it avoids local maxima and convergence problems [20]. Also,

subspace methods are in state space form and therefore can be easily adapted to

multi-input multi-output (MIMO) processes. The results presented in [18], [19] and

[5] show that adoption of the subspace EIV methods for linear dynamic EIV systems

identification provide good estimation of poles but less accurate estimation of zeros.

Other EIV methods like the bias-eliminated least squares (BELS), proposed to correct

the bias when applying the ordinary least squares to estimate parameters of dynamic

EIV processes, also present a good parameter estimations in a non state-space form

[21].

In this chapter, a feasible alternative is to use the Maximum Likelihood (ML)
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approach which has the advantage of high accuracy on estimations of parameters.

But the caveat here is that, the large number of unknown variables compared with

the number of observations would lead to the failure of the MLE [22]. To overcome

this issue, one strategy is to reduce the number of unknowns by choosing reasonable

assumptions and parameterizations. For example, in [23], the frequency domain ML

approach is applied in EIV systems under the assumption that the noise variance

ratio is known; another strategy mentioned in [17] imposes a parametric model for

the noise-free input instead of assuming the noise-free input as an arbitrary sequence

following an unknown distribution.

Figure 3.2: The errors-in-variables process with input generation diagram

As a variant of the ML method, the EM algorithm has been applied widely in

system identification and shown the effectiveness, such as in identification of switching

ARX models [24], linear parameter varying (LPV) models [10], and nonlinear models

with missing observations [25]. For the identification of the state space model with

noise-free inputs, the ML approach has been used in [26] and [27], where the EM

algorithm is used to estimate the parameters with unknown states. Following a similar

approach, we are using the time domain ML identification through the EM algorithm

to identify EIV model parameters, due to its ability in solving the estimation problems

with hidden variables. The linear dynamic EIV model structure is chosen in the state

space form. The novelties of the current work are as follows: (i) it is proposed to use

the EM algorithm for the ML estimation of linear EIV state space model parameters

with input dynamics assumption; (ii) in conjunction with that, the development of a

smoother for state space models with stochastic inputs; (iii) extensive validations of

the proposed method including an experimental study.

In this chapter, it is considered that, the noise-free input is driven by a dynamic

state space model, in accordance with more practical situations. Section 3.2 of the
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paper provides problem formulation. The main contributions of the work, necessary

derivations for ML method using the EM algorithm, are presented in Section 3.3.

Section 3.4 shows the estimation performance of the proposed approach using various

examples including an experimental study. Section 3.5 draws conclusions from this

study.

3.2 Problem formulation

The EIV system with a dynamic input process is presented in Figure 3.2, where uo
k is

the source of the input and is known. For example, it can be a controller output for

a flow control valve in a cascaded control loop; ûk can be the actual flow rate and uk

is the measured flow rate that is corrupted by noise. G is the model describing the

input dynamics, while other notations are the same as in Figure 3.1.

The linear dynamic EIV model in a state-space form for the system represented

in Figure 3.2 is given by:
xk+1 = Axk +Bûk + wk

ŷk = Cxk

yk = ŷk + ỹk

uk = ûk + ũk

(3.1)

where, xk ∈ R
n×1 is the hidden state; ûk ∈ R

m×1 is the unknown noise-free input;

uk ∈ R
m×1 is the measurement of ûk; wk ∈ R

n×1 is the additive process noise in the

state; ũk ∈ R
m×1 and ỹk ∈ R

q×1 are the measurement noises of the input and the

output, respectively; and yk ∈ R
q×1 is the output measurement.

We consider a parametric dynamic model for the noise-free input û(k), as follows:

zk+1 = Aozk +Bou
o
k + wo

k

ûk = Cozk
(3.2)

where, zk ∈ R
no×1 is the hidden state of the input dynamics and uo

k ∈ R
mo×1 is

the known input source; wo
k ∈ R

no×1 is the process noise of the input process. The

measurement noises ũk, ỹk, and the process noises wk, w
o
k are assumed to follow i.i.d

Gaussian distributions with zero means and unknown covariance parameters Σũ, Σỹ,

Σw, Σwo, respectively, and the noise-free input ûk is uncorrelated with the noises.
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Further, the four white-noise sequences ũ, ỹ, w, wo are assumed to be uncorrelated,

that is:

E













ũk

ỹk
wk

wo
k







(
ũT
i ỹTi wT

i wo
i
T
)






=







Σũ 0 0 0
0 Σỹ 0 0
0 0 Σw 0
0 0 0 Σwo






· δki > 0 (3.3)

where, δki refers to the Kronecker’s delta. It is worth noting that the estimation of

ûk is a colored signal due to the dynamics in (3.2).

The model parameters {A,B,C} are to be estimated using the measurements

{y1:N , u1:N} and the known input source {uo
1:N}, for which we propose to use the

ML estimation method through the EM algorithm to identify model parameters,

by treating states x1:N and û1:N as hidden variables, where the notation y1:N ,

{y1, y2, . . . , yN} and similarly for other variables.

As the estimation of the state zk ultimately yields the estimation of the noise-

free input ûk, from now onwards we represent û1:N , {û1, û2, . . . , ûN} as the hidden

variable to avoid confusion and for ease of representation. The two processes shown

by (3.1) and (3.2) can also be augmented to yield a more complex, higher order

model. But the identification of a higher order model will increase the computational

demand on the EM algorithm due to its iterative nature and may lead to non-unique

identification of parameters. To avoid this situation, the identification is processed

separately for the linear dynamic EIV system and the linear dynamic model for the

noise-free input. In the next section, we present the application of the ML method

using the EM algorithm, which is the main contribution of this study.

3.3 EM algorithm for linear dynamic EIV model

identification

The EM algorithm provides iterative procedure for the ML estimation of both the

parameters and unknown or hidden variables. It is a two-step iterative algorithm

containing expectation (E) and maximization (M) steps which are repeated till con-

vergence. In the E-step, the conditional expectation of the complete-data likelihood

function, called Q function, is calculated, where the hidden variables are estimated
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based on model parameters estimated from the previous iteration:

Q(Θ|Θold) = ECmis|Θold,Cobs
logL(Cobs, Cmis|Θ) (3.4)

where Θ is the new set of parameters; Θold is the old set of parameters; Cmis refers

to the missing data or hidden variables; Cobs refers to the observations; L(·) is the

likelihood function.

In the M-step, the new parameters Θnew are computed by maximizing the Q

function as:

Θnew = argmax
Θ

Q(Θ|Θold) (3.5)

When applying E-step for estimating the unknown input ûk of the process (3.2),

one way is to use the point estimation schemes by means of a filter or a smoother.

However, this method would completely ignore the interplay between the uncertainty

in the estimation of the noise-free input variable and the estimation of EIV system

parameters. To account for this, we also develop a smoother for the estimation of ûk

through model (3.1) that includes the uncertainty of the input estimation from the

process (3.2). In brief, this section will present the derivations of the ML method

using the EM algorithm for the linear EIV state space model, the Q-function, the

smoother for state space model with colored inputs, and other terms emanating from

the Q-function.

3.3.1 ML method for the EIV system using the EM algorith-
m

To apply EM algorithm for parameter estimation of the EIV model (3.1), the Q

function is presented as follows:

Q = Ex1:N ,û1:N |y1:N ,u1:N ,uo
1:N ,Θold,Θo

[logP (y1:N , x1:N , û1:N , u1:N , u
o
1:N |Θ,Θo)] (3.6)

where, {x1:N , û1:N} is the missing data denoted as Cmis; {y1:N , u1:N , u
o
1:N} is the ob-

served data denoted as Cobs; Θ includes the process parameters {A,B,C}, noises

variance parameters {Σỹ, Σw} and the hidden state initial parameters {µx1,Σx1}.

The hidden variables x1:N are estimated from the historical data {y1:N} and the esti-

mates of the noise-free input {û1:N} using the parameters of the previous iterations
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Θold. The noise-free input {û1:N} is estimated from the historical data {u1:N , u
o
1:N},

and Θo , {Ao, Bo, Co,Σũ,Σwo}, for notational simplicity. We also assume that the

parameter set Θo is known or could be estimated based on the available information

about the input. For example, Θo can be the model of a control valve when uo is the

signal to the valve and û is the flow rate. Next we present the derivations of E-step

and M-step briefly.

E-step

The complete-data log likelihood function is derived as:

logP (y1:N , x1:N , û1:N , u1:N , u
o
1:N |Θ,Θo)

= log

N∏

k=2

P (yk, xk, ûk, uk, u
o
k|y1:k−1, x1:k−1, û1:k−1, u1:k−1, u

o
1:k−1,Θ,Θo)·

P (y1, x1, û1, u1, u
o
1|Θ,Θo)

= log

N∏

k=2

P (yk|xk,Θ)P (xk|xk−1, ûk−1,Θ)P (y1|x1,Θ)P (x1|Θ)·

N∏

k=2

P (uk|ûk,Θo)P (ûk|ûk−1, u
o
k−1,Θo)P (uo

k)P (û1, u1, u
o
1|Θo)

︸ ︷︷ ︸

C1

(3.7)

where C1 is independent of Θ and plays no role in the following maximization step.

Hence, disposing the term C1, the log likelihood function is presented as follows:

=

N∑

k=1

logP (yk|xk,Θ) +

N−1∑

k=1

logP (xk+1|xk, ûk,Θ) + logP (x1|Θ)
(3.8)

Using the Gaussian assumptions for state and output profiles:

P (yk|xk,Θ) =
1

√

2π det(Σỹ)
exp{−(yk − Cxk)

TΣ−1
ỹ (yk − Cxk)/2}

P (xk+1|xk, ûk,Θ) =
1

√

2π det(Σw̃)
exp{−(xk+1 −Axk −Bûk)

TΣ−1
w̃ (xk+1−

Axk −Bûk)/2}

P (x1|Θ) =
1

√

2π det(Σx1)
exp{−(x1 − µx1)

TΣ−1
x1
(x1 − µx1)/2}

(3.9)
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Substituting (3.9) in (3.8), the Q function is now written as:

Q = Ex1:N ,û1:N |y1:N ,u1:N ,uo
1:N ,Θold,Θo

[logP (y1:N , x1:N , û1:N , u1:N , u
o
1:N |Θ,Θo)]

= −
N

2
log 2π det(Σỹ)−

1

2

N∑

k=1

E[(yk − Cxk)
TΣ−1

ỹ (yk − Cxk)]

︸ ︷︷ ︸

t1

−
N − 1

2
· log 2π det(Σw)−

1

2

N−1∑

k=1

E[(xk+1 − Axk − Bûk)
TΣ−1

w (xk+1 − Axk − Bûk)]

︸ ︷︷ ︸

t2

−
1

2
log 2π det(Σx1)−

1

2
E[(x1 − µx1)

TΣ−1
x1
(x1 − µx1)]

︸ ︷︷ ︸

t3

+E(logC1)

(3.10)

where the conditional expectation notations are simplified as E(·) for ease of repre-

sentation. The conditional expectation terms arising in Q function are computed in

subsequent subsections. Next we proceed to M-step for maximization.

M-step

In the M-step, the Q function is maximized using unconstrained first order optimality

conditions, as we do not assume any constraints on the parameters Θ. Before taking

derivatives of the Q function, the following transformations are made to the quadratic

terms represented by underbraces in equation (3.10):

t1 =
1

2

N∑

k=1

E{Tr[Σ−1
ỹ (yk − Cxk)(yk − Cxk)

T ]}

t2 =
1

2

N−1∑

k=1

E{Tr[Σ−1
w (xk+1 −

[
A B

]
[
xk

ûk

]

)(xk+1 −
[
A B

]
[
xk

ûk

]

)T ]}

t3 =
1

2
E{Tr[Σ−1

x1
(x1 − µx1)(x1 − µx1)

T ]}

(3.11)

Derivatives of the Q function are taken over parameters Θ for maximization, as fol-

lows:

dQ

dĀ
=

d
{

−1
2

∑N−1
k=1 E{Tr[Σ−1

w (xk+1 − Āx̄k)(xk+1 − Āx̄k)
T ]}
}

dĀ
(3.12)

dQ

dC
=

d
{

−1
2

∑N

k=1E{Tr[Σ
−1
ỹ (yk − Cxk)(yk − Cxk)

T ]}
}

dC
(3.13)
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dQ

dΣỹ

=
d
{

−N
2
· log 2π det(Σỹ)−

1
2

∑N

k=1E{Tr[Σ
−1
ỹ (yk − Cxk)(yk − Cxk)

T ]}
}

dΣỹ

(3.14)

dQ

dΣw

=
d
{

−N−1
2
· log 2π det(Σw)−

1
2

∑N−1
k=1 E{Tr[Σ−1

w (xk+1 − Āx̄k)(xk+1 − Āx̄k)
T ]}
}

dΣw

(3.15)
dQ

dµx1

=
d
{
−1

2
E{Tr[Σ−1

x1
(x1 − µx1)(x1 − µx1)

T ]}
}

dµx1

(3.16)

dQ

dΣx1
=

d
{
−1

2
log 2π det(Σx1)−

1
2
E{Tr[Σ−1

x1
(x1 − µx1)(x1 − µx1)

T ]}
}

dΣx1

(3.17)

where Ā denotes
[
A B

]
; x̄k denotes

[
xk

ûk

]

.

The detailed steps are omitted here for brevity. Doing algebraic manipulations

using matrix calculus and by setting the derivatives to zero, the parameter updating

equations are obtained as follows:

[
A B

]
=

[
N−1∑

k=1

E(xk+1

[
xT
k ûT

k

]
)

]

·

[
N−1∑

k=1

E(

[
xk

ûk

] [
xk

ûk

]T

)

]−1

(3.18)

C =

[
N∑

k=1

E(ykx
T
k )

]

·

[
N∑

k=1

E(xkx
T
k )

]−1

(3.19)

Σw =
1

N − 1
E{

N−1∑

k=1

(xk+1 −
[
A B

]
[
xk

ûk

]

)(xk+1 −
[
A B

]
[
xk

ûk

]

)T}

=
1

N − 1

{
N−1∑

k=1

E(xk+1x
T
k+1)−

[
N−1∑

k=1

E(xk+1

[
xT
k ûT

k

]
)

]

·

[
N−1∑

k=1

E(

[
xk

ûk

] [
xk

ûk

]T

)

]−1

·

[
N−1∑

k=1

E(xk+1

[
xT
k ûT

k

]
)

]T






(3.20)

where the parameters {A,B} in equation (3.20) are updated from equation (3.18).

Σỹ =
1

N
E{

N∑

k=1

(yk − Cxk)(yk − Cxk)
T}

=
1

N

{
N∑

k=1

E(yky
T
k )−

[
N∑

k=1

E(ykx
T
k )

]

·

[
N∑

k=1

E(xkx
T
k )

]−1

·

[
N∑

k=1

E(ykx
T
k )

]T






(3.21)
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where parameter C in equation (3.21) is updated from equation (3.19).

For simplicity, the process noise w(t) is assumed to have the covariance as Σw =

σ2
w · I, therefore, σ

2
w is calculated as:

σ2
w =

1

(N − 1) · n
Tr

{
N−1∑

k=1

E(xk+1x
T
k+1)−

[
N−1∑

k=1

E(xk+1

[
xT
k ûT

k

]
)

]

·

[
N−1∑

k=1

E(

[
xk

ûk

] [
xk

ûk

]T

)

]−1

·

[
N−1∑

k=1

E(xk+1

[
xT
k ûT

k

]
)

]T






(3.22)

The initial state estimation parameters are updated as:

µx1 =E(x1) (3.23)

Σx1 =E[(x1 − µx1)(x1 − µx1)
T ] (3.24)

To compute the parameters using the parameter updating equations (3.18-3.22),

we need to evaluate conditional expectation terms like E(xkû
T
k ), E(xkx

T
k ), E(xk+1û

T
k ),

E(xk+1x
T
k ), etc. In this situation, the hidden states xk as well as unknown noise-free

inputs ûk should also be estimated. Methods for the same are presented in the next

subsections.

3.3.2 Smoothing for state space model with colored stochas-
tic inputs

This section derives a smoother for the estimation of the state xk from the noise-

corrupted output yk and colored input ûk for the state space model (3.1). The rela-

tionship between variables in (3.1) and (3.2) can be illustrated by Figure 3.3.

· · · yk yk+1 yk+2 · · ·
↑ ↑ ↑ ↑ ↑
· · · → xk → xk+1 → xk+2 → · · ·

ր ր ր ր
· · · ûk ûk+1 ûk+2 · · ·
↑ ↑ ↑ ↑ ↑
· · · → zk → zk+1 → zk+2 → · · ·
↓ ↓ ↓ ↓ ↓
· · · uk uk+1 uk+2 · · ·

Figure 3.3: The process variables relationship diagram

39



To calculate the conditional expectation of Q function, we bring back the hidden

variable zk due to unavailability of the accurate value of noise-free input ûk, where

the missing data posterior probability P (x1:N , û1:N |y1:N , u1:N , u
o
1:N ,Θ

old,Θo) is yielded

from P (x1:N , z1:N |y1:N , u1:N , u
o
1:N ,Θ

old,Θo) since ûk = Cozk. As stated previously, for

the ease of computation, we apply the smoother for both x1:N and z1:N in a separated

way as:

P (x1:N , z1:N |y1:N , u1:N , u
o
1:N ,Θ

old,Θo) = P (x1:N |z1:N , y1:N , u1:N , u
o
1:N ,Θ

old,Θo)·

P (z1:N |y1:N , u1:N , u
o
1:N ,Θ

old,Θo)

≈P (x1:N |z1:N , y1:N ,Θ
old)P (z1:N |u1:N , u

o
1:N ,Θo)

(3.25)

Here we have used the following facts for derivation: (i) the conditional probability

equation P (x1:N |z1:N , y1:N , u1:N , u
o
1:N ,Θ

old,Θo)= P (x1:N |z1:N , y1:N ,Θold) holds accord-

ing to Figure 3.3; (ii) uk is the more direct observation for zk according to Figure

3.3, therefore we do the following approximation P (z1:N |y1:N , u1:N , u
o
1:N ,Θ

old,Θo) ≈

P (z1:N |u1:N , u
o
1:N ,Θo). The Kalman filter and smoother are used to estimate dis-

tribution parameters of P (z1:N |u1:N , u
o
1:N ,Θo) [28] [29]. For the calculation of the

distribution parameters of P (x1:N |z1:N , y1:N ,Θold), a smoother for x1:N is proposed,

employing fixed period smoothing method [28], as follows:

xk|N ,E[Xk|y1:N , u1:N , u
o
1:N ] = xk|k + Jx

k (xk+1|N − xk+1|k) (3.26)

P x
k|N ,V [Xk|y1:N , u1:N , u

o
1:N ] = P x

k|k + Jx
k (P

x
k+1|N − P x

k+1|k)J
x
k
T (3.27)

where E(·) denotes the expectation operation; V (·) refers to the variance for scalar-

variable or covariance for vector-variable; xk|k, xk+1|k are the filtered and predicted

states, and P x
k|k , P x

k+1|k are their corresponding covariances, respectively; the upper-

case Xk denotes the variable and xk is the corresponding realization, and similarly

for other variables like Yk, Zk. The smoother gain Jx
k is derived as:

Jx
k = Cov[Xk, Xk+1|y1:k, u1:k, u

o
1:k](V [Xk+1|y1:k, u1:k, u

o
1:k])

−1

= Cov[Xk, AXk +BCoZk + wk|y1:k, u1:k, u
o
1:k](V [Xk+1|y1:k, u1:k, u

o
1:k])

−1

= (P x
k|kA

T + Cov[Xk, Zk|y1:k, u1:k, u
o
1:k]Co

TBT ) · (P x
k+1|k)

−1

(3.28)

Each of the terms in the equation (3.26, 3.27) is derived separately, starting with
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filtering step.

Filtering step

Below, we present the derivation of the filter for state space model with the colored in-

put using the conditional expectation theorem[30]. Considering the process dynamics

(3.1), the filtered state expression can be written as:

xk+1|k+1 ,E[Xk+1|yk+1, y1:k, u1:k, u
o
1:k]

=E[Xk+1|y1:k, u1:k, u
o
1:k] +Kx

t+1{yk+1 −E[Yk+1|y1:k, u1:k, u
o
1:k]}

=E[Xk+1|y1:k, u1:k, u
o
1:k] +Kx

k+1{yk+1 −E[CXk+1 + ỹk+1|y1:k, u1:k, u
o
1:k]}

=xk+1|k +Kx
k+1(yk+1 − Cxk+1|k)

(3.29)

with the covariance:

P x
k+1|k+1 , V [Xk+1|yk+1, y1:k, u1:k, u

o
1:k]

= V [Xk+1|y1:k, u1:k, u
o
1:k]−Kx

k+1V [Yk+1|y1:k, u1:k, u
o
1:k]K

x
k+1

T

= P x
k+1|k −Kx

k+1V [Yk+1|y1:k, u1:k, u
o
1:k]K

x
k+1

T

(3.30)

where the variance of output V [Yk+1|y1:k, u1:k, u
o
1:k] is calculated as:

V [Yk+1|y1:k, u1:k, u
o
1:k] = V [CXk+1 + ỹk+1|y1:k, u1:k, u

o
1:k]

= CP x
k+1|kC

T +R
(3.31)

and the filter gain Kx
k+1 is determined as:

Kx
k+1 = Cov[Xk+1, Yk+1|y1:k, u1:k, u

o
1:k] · (V [Yk+1|y1:k, u1:k, u

o
1:k])

−1

= Cov[Xk+1, CXk+1 + ỹk+1|y1:k, u1:k, u
o
1:k] · (V [Yk+1|y1:k, u1:k, u

o
1:k])

−1

= P x
k+1|kC

T (CP x
k+1|kC

T +R)−1

(3.32)

Thus:

xk+1|k+1 =xk+1|k + P x
k+1|kC

T (CP x
k+1|kC

T +R)−1(yk+1 − Cxk+1|k) (3.33)

P x
k+1|k+1 =P x

k+1|k − P x
k+1|kC

T (CP x
k+1|kC

T +R)−1CP x
k+1|k

T (3.34)

41



Prediction step

Next we present steps for the state prediction. For the process (3.1), the state pre-

diction is derived as follows:

xk+1|k , E[Xk+1|y1:k, u1:k, u
o
1:k]

= E[AXk +BCoZk + wk|y1:k, u1:k, u
o
1:k]

= E[AXk|y1:k, u1:k, u
o
1:k] + E[BCoZk|u1:k, u

o
1:k] + E[wk]

= Axk|k +BCozk|k

(3.35)

where zk|k is the Kalman filter for zk in process (3.2). The covariance of the prediction

is presented as:

P x
k+1|k ,V [Xk+1|y1:k, u1:k, u

o
1:k]

=V [AXk +BCoZk + wk|y1:k, u1:k, u
o
1:k]

=V [AXk|y1:k, u1:k, u
o
1:k] + V [BCoZk|u1:k, u

o
1:k] + V [wk]+

Cov[AXk, BCoZk|y1:k, u1:k, u
o
1:k] + Cov[BCoZk, AXk|y1:k, u1:k, u

o
1:k]

=AP x
k|kA

T +BCoP
z
k|kC

T
o B

T +Q+ A · Cov[Xk, Zk|y1:k, u1:k, u
o
1:k]

︸ ︷︷ ︸

Pxz
k|k

·(BCo)
T+

BCo · Cov[Zk, Xk|y1:k, u1:k, u
o
1:k] ·A

T

(3.36)

where P z
k|k is the filtered covariance for zk in process (3.2).

To estimate P x
k+1|k using (3.36), we need to compute the covariance of the estima-

tion denoted as P xz
k|k. The covariance for Xk and Zk, P

xz
k|k, is derived using equations

(3.1), (3.2), (3.33), (3.34), (3.35) and the Kalman filter for Zk as well as the initial-
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ization assumption that X1 and Z1 are uncorrelated, as follows:

P xz
k|k =E[(Xk − xk|k)(Zt − zk|k)

T ]

=E{[(A−KkCA)(Xk−1 − xk−1|k−1) + (BCo −KkCBCo)·

(Zk−1 − zk−1|k−1)−Kx
k ỹk + (I −KtC)wk−1] · [(Ao −Kz

kCoAo)·

(Zk−1 − zk−1|k−1)−Kz
k ũk + (I −Kz

kCo)w
o
k−1]

T}

=E{[(A−KkCA)(Xk−1 −Xk−1|k−1)] · [(Ao −Kz
kCoAo)·

(Zk−1 − Zk−1|k−1)]
T}+ (BCo −KkCBCo)·

E[(Zk−1 − zk−1|k−1)(Zk−1 − zk−1|k−1)
T ]

︸ ︷︷ ︸

P z
k−1|k−1

·(Ao −Kz
kCoAo)

T

=(A−KkCA) · P xz
k−1|k−1 · (Ao −Kz

kCoAo)
T+

(BCo −KkCBCo)P
z
k−1|k−1(Ao −Kz

kCoAo)
T

(3.37)

where Kz
k is Kalman filter gain for zk in process (3.2).

Integration of the filtering (3.33, 3.34) and prediction (3.35), (3.36) steps in con-

junction with the smoother expressions (3.26, 3.27) provides the smoother of Xk for

state space model (3.1) with inputs ûk.

3.3.3 Computation of the conditional expectation terms in

the Q function

In this subsection we evaluate the various conditional expectation terms appearing in

equations (3.18-3.24).

We begin with the expression for E(XkX
T
k |Cobs). Consider the smoothed covari-

ance of state xk:

P x
k|N =E[(Xk − xk|N)(Xk − xk|N)|Cobs]

=E(XkX
T
k |Cobs)− E(Xkx

T
k|N |Cobs)−

E(xk|NX
T
k |Cobs) + E(xk|Nx

T
k|N |Cobs)

=E(XkX
T
k |Cobs)− xk|Nx

T
k|N

⇒ E(XkX
T
k |Cobs) =xk|Nx

T
k|N + P x

k|N

(3.38)
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Next we consider E(ûkû
T
k |Cobs):

P z
k|N ,E[(Zk − zk|N)(Zk − zk|N)|Cobs]

=E(ZkZ
T
k |Cobs)− E(Zkz

T
k|N |Cobs)−

E(zk|NZ
T
k |Cobs) + E(zk|Nz

T
k|N |Cobs)

=E(ZkZ
T
k |Cobs)− zk|Nz

T
k|N

⇒ E(ûkû
T
k |Cobs) =E(CoZkZ

T
k C

T
o |Cobs)

=Cozk|Nz
T
k|NC

T
o + CoP

z
k|NC

T
o

(3.39)

Following a similar approach mentioned above, the other conditional expectation

terms are derived below:

E(Xk+1X
T
k |Cobs) = xk+1|Nx

T
k|N +Mx

k+1|N (3.40)

where Mx
k+1|N , E[(Xk+1 − xk+1|N)(Xk − xk|N)

T |Cobs].

E(Xkû
T
k |Cobs) = xk|Nz

T
k|NC

T
o + P xz

k|NC
T
o (3.41)

where P xz
k|N , E[(Xk − xk|N)(Zk − zk|N)

T |Cobs].

E(Xk+1û
T
k |Cobs) = xk+1|Nz

T
k|NC

T
o +Mxz

k+1|NC
T
o (3.42)

where Mxz
k+1|N , E[(Xk+1 − xk+1|N)(Zk − zk|N)

T |Cobs].

The covariance term Pk|N is derived using equation (3.27), and the covariance P z
k|N

is derived by applying the Kalman smoother on (3.2). The expressions for the lag-one

covariance terms Mk|N and Mxz
k|N and the cross covariance term P xz

k|N are presented as

follows, while detailed derivations are provided in Appendix B.

P xz
k|N =P xz

k|k + Jx
k (P

xz
k+1|N −AP xz

k|kA
T
o − BCoP

z
k|kA

T
o )J

z
k
T (3.43)

Mxz
k+1|N ,E[(Xk+1 − xk+1|N)(Zk − zk|N)

T |Cobs] (3.44)

=(I −Kx
k+1 + Jx

k+1AK
x
k+1C)(AP xz

k|k +BCoP
z
k|k) + Jx

k+1BCo·

Kz
k+1CoAoP

z
k|k + Jx

k+1(M
xz
k+2|N − AP xz

k+1|k − BCoP
z
k+1|k)J

z
k
T (3.45)

Mx
k+1|N ,E[(Xk+1 − xk+1|N)(Xk − xk|N)

T |Cobs] (3.46)

=(I −Kx
k+1C + Jx

k+1AK
x
k+1C)(APk|k +BCoP

xz
k|k

T )+
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Jx
k+1BCoK

z
k+1AoP

xz
k|k

T + Jx
k+1[M

x
k+2|N − AP x

k+1|k− (3.47)

BCo(AP
xz
k|kA

T
o +BCoP

z
k|kA

T
o )

T ]Jx
k
T

where Jz
k is the Kalman smoother gain for Zk; P

z
k+1|k is the predictor for the covariance

of Zk. The initialization for the recursive computations of the lag-one covariance

smoother using equations (3.45, 3.47), Mxz
N |N andMx

N |N , are also presented as follows:

Mx
N |N =(I −Kx

NC)[(AP xz
N−1|N−1 +BCoP

z
N−1|N−1)− P x

N |N−1(J
x
N−1K

x
NC)T ]− (3.48)

Kx
NR(Jx

N−1K
x
N)

T

Mxz
N |N =(I −Kx

NC)(AP xz
N−1|N−1 +BCoP

z
N−1|N−1)(I − Jz

N−1K
z
NCoAo)

T (3.49)

while P xz
N |N is computed using equation (3.37). Having presented the necessary deriva-

tions, the next subsection elicits the key steps of the proposed method for identifica-

tion, denoted as Algorithm 3.

3.3.4 Algorithm

The algorithmic representation of the complete steps of the ML estimation of linear

EIV system parameters using the EM algorithm is concisely presented as Algorithm

3.

3.4 Validations

In this section, the proposed approach is compared with the subspace EIV method

[18] as well as the bias-eliminated least squares method (BELS) [21] using two dif-

ferent simulation examples as well as through an experimental study. The proposed

smoother for state space model with colored inputs is also validated through the nu-

merical examples. The prediction error cost is used to compare different methods,

given by:

EN (θ̂l) ,
1

pN

N∑

k=1

(yk − ŷk|k−1(θ̂k))
T (yk − ŷk|k−1(θ̂k)) (3.50)

where, θ̂l is estimated parameter for the lth simulation data; p is the dimension of the

output; N is the data length for each estimation experiments; ŷk|k−1 is the one-step

ahead output prediction.

45



Algorithm 3: Proposed EM-based method

Data: y1:N , u1:N , u
o
1:N

Result: Θ
Initialization :
(i) Initial estimation of Θ based on subspace EIV method using data y1:N , u1:N ;
(ii) Identify input dynamic model (Θo) using data u0

1:N , u1:N if the input
dynamic model is not known;
(iii) Estimation of the distribution parameters of Z1:N is obtained by applying
Kalman smoother on (3.2);
(iiii) Initial guesses of noise distribution parameters and initial states.
while compare newly updated parameters with the previous ones, till the
desired convergence metric is reached, do

E− step:
for k = 2, 3, . . . , N do

Calculate the predictor of Xk (3.35, 3.36), the filter of Xk (3.33, 3.34)
and the cross covariance of Xk and Zk (3.37).

end
Calculate the initialization of smoother computation for k = N .
for k = N − 1, 2, . . . , 1 do

Calculate the smoother of Xk (3.26,3.27), the covariance smoother of
Xk and Zk (3.43), the lag-one covariance smoother of Xk and Zk (3.45)
and the lag-one covariance smoother of Xk (3.47).

end
Calculate the conditional expectation quadratic terms for hidden variables
based on equation (3.38), (3.39), (3.40), (3.41) and (3.42).
M− step:
Calculate the updated model parameters Θ using equation (3.18), (3.19),
(3.20), (3.21) and (3.24).

end
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3.4.1 Simulation: Example 1

The first example we have chosen is a simple first order EIV state space model given

as:
xk+1 = 0.8xk + 0.8ûk + wk

yk = xk + ỹk
(3.51)

where, the variances of wk and ỹk are set to be 2% of the state variance and 5% of

the output variance (Σw = 1, Σỹ = 5), respectively, with the input-output discrete

transfer function in zeros and poles form:

G(z) =
0.8

z − 0.8
(3.52)

The input parametric model of the first order state space model is:

zk+1 = 0.8zk + 0.8uo
k + wo

k

uk = zk + ũk

(3.53)

where, the variances of wo
k is set to be around 2% of the state variance (Σwo = 0.1),

and input noise ũk variance is set at two different levels as around 5% (Σũ = 0.5)

and 10% (Σũ = 1) of the noise-free input ûk variance for representing two different

scenarios; the input uo
k is generated from the random binary sequence with shifts

between -1 and 1.

The parameter for the input process is estimated first through the data {uo
1:N , u1:N}.

Then using the results of the subspace EIV method as the initial value, the proposed

EM-based method is applied on the process described in (3.51). 50 Monte-Carlo

runs are considered, and the prediction error results of the different simulations are

presented as blue asterisks in Figure 3.4 and Figure 3.5 for Σũ = 0.5 and Σũ = 1, re-

spectively. It can be seen that the proposed EM-based method has smaller prediction

error cost than the subspace EIV method and the BELS method for both different

input noise levels. The smoother result is also presented in Figure 3.6, with blue solid

line indicating true state values and red cycle line is the smoothed estimates. This

result also shows the efficacy of the proposed smoothing method.
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Figure 3.4: Prediction error cost for first order EIV system (input variance: 5%)
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Figure 3.5: Prediction error cost for first order EIV system (input variance: 10%)

3.4.2 Simulation: Example 2

The second example is a second order state space model:

A =

[
0.4 0.4472
0 0.8

]

, B =

[
0
1

]

, C =
[
0.3578 0.8

]
(3.54)

with the input-output discrete transfer function in zeros and poles form:

G(z) =
0.8(z − 0.2)

(z − 0.4)(z − 0.8)
(3.55)

where, the variances of wk and ỹk are set to be around 2% of the state variance and

2% of the output variance (Σw =

[
1 0
0 1

]

, Σỹ = 1.8); the input measurement noise

variance σ2
ũ is set at two different levels as around 5% (Σũ = 0.5) and 10% (Σũ = 1)
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Figure 3.6: State estimation for the first-order EIV system (input variance: 10%)

of the noise-free input ûk variance for representing two different scenarios, and the

input dynamic model is the same as that presented in (3.53).
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Figure 3.7: Prediction error cost for second order EIV system (input variance: 5%)

The prediction error costs of 50 numerical simulations are presented as blue aster-

isks in Figure 3.7 and Figure 3.8 when Σũ = 0.5 and Σũ = 1, respectively. The results

show that the EM-based method has smaller prediction errors than the subspace EIV

method and the BELS method. For comparison purposes, the statistical values of

the prediction cost for the two examples are also tabulated in Table 3.1, which fur-
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Figure 3.8: Prediction error cost for second order EIV system (input variance: 10%)
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Figure 3.9: State estimation for the second-order EIV system (input variance: 10%)

ther underlines that the proposed EM-based method outperforms the subspace EIV

method. The smoother result for the second order EIV system is presented in Figure

3.9, where the blue solid line shows the true state profile and red circle line indicates

the smoothed estimate. The result also demonstrates the effectiveness of the proposed

smoothing technique.
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Table 3.1: Mean prediction costs of the simulation results
Order Input noise level EM-based method Subspace method BELS

2 10% 0.958 2.2798 3.0877
2 5% 0.9229 2.093 2.6545
1 10% 1.1446 1.7356 2.4676
1 5% 1.1074 1.6007 2.2521

3.4.3 Experiment: Tank system

To illustrate the effectiveness of the proposed EM-based method, an EIV system

identification experiment is designed and performed on a tank system. The schematic

diagram of the process is presented in Figure 3.10. The tank system is a nonlinear

process and the linearization approximation is applied around an appropriate working

point to obtain linear models. In the experiment, Tank2 is considered as the EIV

process with the water level L2 measured by the sensor LT2 as the output and the

water level L3 measured by the sensor LT3 as the noise-corrupted input, with Tank3

being the input generator. The referred input for Tank3 is the water flow rate F2

measured by the sensor FC2. In the configuration, valves V 1, V 2, V 6 and V 7 are

closed, while valves V 3, V 4, V 5, V 8 and V 9 are open, making Tank1 (shaded in Figure

3.10) isolated from the experiment. The experiment is conducted and 1500 samples

of data are collected and the input source, the noise-corrupted EIV system input and

output are presented in Figure 3.11, where the L3 is added with the simulated white

noise with two different noise level as 5% and 10% of the input variance as Figure 3.12

to demonstrate the tolerability of the proposed EIV identification method to different

input noises.

The model parameters for the input generation process are estimated firstly. For

the identification of the EIV system, the first 1000 sampling data are used as the

training data to estimate the parameters Θ using the proposed EM-based method.

The cross validation results on the remaining data set are illustrated along with

the self validations in Figure 3.13 and Figure 3.14 by plotting the predictions from

different approaches with the plant data L2. By running 10 Monte Carlo simulations

on the simulated-noise added data with different noise level, the average mean square

errors (MSE) for different methods are presented in Table 3.2, where one can see
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Figure 3.10: Schematic Diagram of the tank system
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Figure 3.11: Input and output data

that the predictions using the EM-based method has better performance in matching

with the plant data than the predictions using the subspace method and the BELS

method. This experiment validates that the proposed EM-based method has superior

performance over both the subspace-based method and the BELS method.
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Figure 3.12: Simulated noise-corrupted input: (1) 5% of input variance; (2) 10% of
input variance

Table 3.2: Average MSEs of the simulation results
Validation Input noise level EM-based Subspace BELS

Self 10% 0.3513 0.6351 1.9536
Cross 10% 0.3346 0.5995 2.6545
Self 5% 0.2908 0.4571 1.0813
Cross 5% 0.2728 0.4305 1.0021
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Figure 3.13: Validation results: 5% input noise

3.5 Conclusions

In this chapter, the EM algorithm was adopted in a ML framework for the identifica-

tion of dynamic linear EIV state space model with a linear input dynamics. To take

53



0 200 400 600 800 1000

35

40

45

50

55

60

65

Sampling time

Ta
nk

 le
ve

l

Self validation

 

 

0 100 200 300 400 500
35

40

45

50

55

60

65

Sampling time

Ta
nk

 le
ve

l

Cross validation

 

 Output
EM
Subspace
BELS

Output
EM
Subspace
BELS

Figure 3.14: Validation results: 10% input noise

computation advantage, the proposed method avoids using the augmented model ap-

proach, and proposes a smoother for the state space models with colored inputs in

the E-step of the EM algorithm.

To validate the proposed EM-based method, two simulation examples are used

along with an experiment on the tank system. The results show that the EM-based

method has achieved better performance than the existing subspace EIV method and

the BELS method.
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Chapter 4

Identification of LPV
Errors-In-Variables systems with a
dynamic process for noise-free
inputs using EM algorithm

4.1 Introduction

In the previous chapter, the identification of linear dynamic errors-in-variables system

is solved as a maximum likelihood (ML) estimation problem using EM algorithm.

In this chapter, we would be extending the same approach for the identification of

nonlinear EIV process.

Identification of nonlinear processes is always a challenging problem due to the

difficulties posed by complex nonlinearities and stochastic nature of the disturbances.

Intensive researches have been carried out in this topic for the past decades. There

have been two major directions in the research of nonlinear system identification: (i)

completely black box, data-driven, nonlinear model identification like NARX models,

Hammerstein and Wiener models and models based on Artificial Neural Networks

or combinations of those [31], [32]; (ii) grey box identification techniques, where the

nonlinear first principles model structure, derived from physical principles such as

mass and momentum balances, are retained and the parameters as well as noise char-

acteristics are estimated from the process data [31], [33]. Both of these approaches

broadly adopt Prediction Error Estimation (PEM) method, Nonlinear Least Square

(NLS) method or MLE method in order to estimate the model parameters [34], [35],
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[25]. Direct nonlinear black box identification is more computationally demanding in

contrast to the grey box identification of nonlinear processes. However, grey box mod-

eling requires more thorough understanding of the physical process. Other relevant

methods include Just-in-time modeling (JIT) approaches where a number of local

linear models are used to approximate the nonlinear process [36], [37]. However, the

limitation here is that it is suitable only for static process as with mild nonlinearities.

To circumvent the problem, linear parameter varying (LPV) approaches have been

proposed to identify nonlinear industrial processes using the cognizance that the in-

dustrial processes are designed to operate in certain structured ways, and it can be

expressed as operating trajectory [38] where local models can be identified. In [38], a

global LPV model for a class of nonlinear processes is proposed, and the local models

are identified based on input excitation around certain chosen operating points, while

cubic spline functions are employed to represent the validity of each local model. In

[10], an LPV model identification method with a less error is proposed, and exponen-

tial functions are used to weight each local model, and showed a superior performance

compared to [38]. The local model structure in [38], [10] is chosen as ARX model due

to its capability in approximating any arbitrary linear dynamic system with reduced

complexity [39]. Considering the local model structure as ARX model, extensions of

LPV identification are also reported in literature, for example, LPV robust identifi-

cation [40], stochastic scheduling variables problem in LPV identification [41], [42].

Comparing to ARX models, the state-space representation is a more general and

flexible form for linear local input-output models. Further the Markov property of the

state space model has advantages on estimation and control problems [43]. Among

multiple model approaches with state space model structure, Markov switched state

space models are discussed in [26], [44], [45] and [46], where local models’ switching

behavior is assumed to follow a Markov chain. LPV state space models are different

compared to the former in that the local models are governed by operating points

which can be referred from scheduling variables.

This work concerns with identification of LPV EIV systems. EIV systems refer to

processes where both inputs and outputs are noise-corrupted. In practice, both the

measured inputs and outputs can be noise-corrupted. Ignorance of noise corruption

in the input can deteriorate the performance of traditional identification techniques.
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Direct EIV identification of the process could pose computational difficulty and may

lead to intractable problem due to the arbitrary structure of nonlinear functions. As

a result, we propose to identify LPV EIV model to approximate the nonlinear EIV

process. None of the previous works reported in literature has attempted to address

this problem cohesively, and bridging of this gap forms the novelty of the present

work.

In this chapter, an LPV EIV identification approach is developed to approximate

model nonlinear EIV processes. The identification problem is treated as a MLE

problem and the expectation maximization (EM) algorithm is employed to identify

the model parameters. Necessary smoothers and filters are also derived to estimate the

posterior probabilities of states and model identities as well as noise-free inputs. Two

simulation examples and an experimental verification is presented to demonstrate the

effectiveness of the proposed approach. The chapter is organized as follows: Section

4.2 presents the problem formulation. Section 4.3 provides the details of the LPV

EIV identification using MLE method through the EM algorithm. Section 4.4 presents

validation examples including experimental case study. Section 4.5 draws conclusive

remarks from the study.

4.2 Problem formulation

A nonlinear dynamic EIV process in state-space structure can be represented as:

xk+1 =f(xk, ûk) + wk

yk =g(xk, ûk) + ỹk

uk =ûk + ũk

(4.1)

where, xk ∈ R
n×1 is the hidden state; ûk ∈ R

m×1 is the unknown noise-free input;

uk ∈ R
m×1 is the measurement of ûk; wk ∈ R

n×1 is the additive process noise in the

state; ũk ∈ R
m×1 and ỹk ∈ R

q×1 are the measurement noises of the input and the

output, respectively; and yk ∈ R
q×1 is the output measurement; g(·) and f(·) are

nonlinear functions for the state and output dynamics.

An LPV EIV model is employed to approximate the above nonlinear dynamic
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EIV system (4.1), which in state-space form, is presented as follows:

xk =AIkxk−1 +BIk ûk−1 + wk−1

yk =CIkxk +DIk ûk + ỹk

uk =ûk + ũk

(4.2)

where, Ik ∈ {1, 2, . . . ,M} are the local model identities, determined by the scheduling

variable Lk; the state space matrices {Ai, Bi, Ci, Di} i = 1, . . . ,M represent the

parameters for each local linear model developed along with the operating trajectory.

A combination of estimations given by the local models is used to approximate the

output in different operating conditions, and a normalized exponential function is

employed as the local model weight [10]:

P (Ik = i|Lk, T1:M , o1:M) =
wki

∑M

j=1wkj

wki = exp(
−(Lk − Ti)

2

2oi2
)

(4.3)

where, T1:M = {T1, T2, . . . , TM} are the M different operating points; o1:M = {o1,o2,

. . .,oM} represent the validity width of the different local models. The probability of

output yk, given all the past input-output data and the current scheduling data, can

be derived as:

P (yk|y1:k−1, û1:k−1, Lk,Θ) =
M∑

i=1

P (Ik = i, yk|y1:k−1, û1:k−1, Lk,Θ)

=
M∑

i=1

P (Ik = i|Lk, T1:M , o1:M)P (yk|y1:k−1, û1:k−1, Ik = i,Θ)

(4.4)

where, Θ represents the collection of all the parameters to be estimated.

We assume a parametric dynamic model for the noise-free input ûk in the state-

space form, given by:
zk =fo(zk−1, u

o
k−1) + wo

k−1

ûk =go(zk, u
o
k)

(4.5)

where, zk ∈ R
no×1 is the hidden state of the input process and uo

k ∈ R
mo×1 is the

known source of input; wo
k ∈ R

no×1 is the process noise of the input process. The

measurement noises ũk, ỹk, and the process noises wk, w
o
k are assumed to follow i.i.d

Gaussian distributions with zero mean and unknown covariance parameters Σũ, Σỹ,
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Σw, Σwo, respectively, and the noise-free input ûk is assumed to be uncorrelated with

the noises. Further, the four white-noise sequences ũ, ỹ, w, wo are assumed to be

uncorrelated, that is:

E













ũk

ỹk
wk

wo
k







(
ũT
i ỹTi wT

i wo
i
T
)






=







Σũ 0 0 0
0 Σỹ 0 0
0 0 Σw 0
0 0 0 Σwo






· δki > 0 (4.6)

where, δki refers to the Kronecker’s delta.

The LPV EIV model identification task is to estimate model parameters Θ, which

includes the state-space matrices {Ai, Bi, Ci, Di} i = 1, . . . ,M , distribution param-

eters for noises w, ũ, ỹ and parameters for the validity width of the local models oi

i = 1, . . . ,M , from the input and output data set {y1:N , u1:N}. For simplicity, in the

present work, it is assumed that nonlinear functions fo(·) and go(·) in Equation (4.5)

are known.

To identify the LPV EIV model parameters, the maximum likelihood (ML) method

is applied in order to leverage its good estimation accuracy. To tackle the hidden vari-

ables, the expectation maximization (EM) algorithm is used to compute the maximum

likelihood estimation for the parameters of the LPV EIV model.

4.3 The LPV EIV system identification

In this section, the application of the EM algorithm to identify the LPV EIV model

parameters is presented as the main contribution of this study. Before presenting the

derivations for parameter estimation of the LPV EIV system using the EM algorithm,

a brief revisit of the EM algorithm is given.

4.3.1 Revisit of the EM algorithm

The EM algorithm provides an iterative procedure for the ML estimation of both

parameters and unknown variables. It is a two-step iterative algorithm containing

expectation (E) and maximization (M) steps which are repeated till convergence.

In the E-step, the conditional expectation of the complete-data likelihood function,

called Q function, is calculated, where the hidden variables are estimated based on
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the old parameters:

Q(Θ|Θold) = ECmis|Θold,Cobs
logL(Cobs, Cmis|Θ) (4.7)

where Θ is the new set of parameters; Θold is the old set of parameters; Cmis refers

to the missing data or hidden variables; Cobs refers to the observations; L(·) is the

complete-data likelihood.

In the M-step, the new parameters Θnew are computed by maximizing the Q

function as follows:

Θnew = argmax
Θ

Q(Θ|Θold) (4.8)

4.3.2 ML estimation of the LPV EIV model using the EM
algorithm

The Q function for parameter estimations of the LPV EIV state space model (4.2) is

derived as:

Q =Ex1:N ,û1:N ,I1:N |y1:N ,u1:N ,uo
1:N ,T o

1:M ,L1:N ,Θold,Θo
{logP (y1:N , u1:N ,

uo
1:N , T

o
1:M , L1:N , x1:N , û1:N , I1:N |Θ,Θo)}

(4.9)

where, {x1:N , û1:N , I1:N} are the missing data denoted as Cmis; {y1:N , u1:N , u
o
1:N , L1:N}

are the observed data denoted as Cobs; Θ includes the local models parameters {Ai,

Bi, Ci, Di} for i = 1, . . . ,M , noises variance parameters {Σỹ, Σũ, Σw, Σwo} and

the initial parameters of the hidden state {µx1,Σx1}. The hidden variables x1:N are

estimated from the historical data {y1:N} and the estimates of the noise-free input

{û1:N}, using the parameters of the previous iterations Θold. The noise-free input

{û1:N} is estimated from the historical data {u1:N , u
o
1:N}, and Θo , {fo, go,Σũ,Σwo},

for notational simplicity. For the sake of simplicity, in this study, we assume that Θo is

known. In Θo is unknown, a separate identification procedure using data {u1:N , u
o
1:N}

can be conducted to estimate Θo.

60



E-step

Using chain rule of probability, the complete-data log likelihood function is derived

as:

logL(x1:N , û1:N , I1:N , y1:N , u1:N , u
o
1:N , L1:N , T

o
1:M |Θ)

= log

N∏

k=2

P (yk|xk, ûk, Ik,Θ)P (xk|xk−1, ûk−1, Ik,Θ)P (Ik|Lk, T
o
1:M ,Θ)P (y1|x1, û1, I1,Θ)·

P (x1|Θ)P (I1|L1, T
o
1:M ,Θ)

N∏

k=1

P (uk|u
o
k, ûk)P (uo

k)P (Lk)
N∏

k=2

P (ûk|ûk−1, u
o
k−1)P (û1)P (T o

1:M)

︸ ︷︷ ︸

C

=

N∑

k=1

logP (yk|xk, ûk, Ik,Θ) +

N∑

k=2

logP (xk|xk−1, ûk−1, Ik,Θ)+

N∑

k=1

logP (Ik|Lk, T
o
1:M ,Θ) + logP (x1|Θ) + logC

(4.10)

where, C is the term which is independent of Θ and plays no role in the maximization

step, hence the subsequent steps will dispense with the term. Based on the Gaussian

assumptions of the noises, the individual likelihood terms in equation (4.10) can be

derived as:

P (yk|xk, ûk, Ik,Θ) =
1

√

2π det(Σỹ)
exp{−(yk − CIkxk −DIkûk)

TΣ−1
ỹ (yk−

CIkxk −DIkûk)/2}

P (xk+1|xk, ûk, Ik,Θ) =
1

√

2π det(Σw̃)
exp{−(xk+1 −AIkxk − BIk ûk)

TΣ−1
w̃ ·

(xk+1 − AIkxk − BIk ûk)/2}

P (x1|Θ) =
1

√

2π det(Σx1)
exp{−(x1 − µx1)

TΣ−1
x1
(x1 − µx1)/2}

(4.11)
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Therefore, the Q function (4.9) is represented as:

Q = −
1

2

N∑

k=1

M∑

i=1

L∑

l=1

P (Ik = i|Cobs,Θ
old)P (ûk = ûl

k|Cobs,Θ
old)·

∫

xk

P (xk|Ik = i, Cobs,Θ
old)(yk − CIkxk −DIk û

l
k)

TΣ−1
ỹ (yk − CIkxk−

DIk û
l
k)dxk −

N

2
log 2π det(Σỹ)−

1

2

N∑

k=2

M∑

i=1

L∑

l=1

P (Ik = i|Cobs,Θ
old)·

P (ûk−1 = ûl
k−1|Cobs,Θ

old) ·

∫

xk−1:k

P (xk, xk−1|Ik = i, Cobs,Θ
old)·

(xk+1 − AIkxk − BIk ûk)
TΣ−1

w̃ (xk+1 − AIkxk −BIk ûk)dxkdxk−1−

N − 1

2
· log 2π det(Σw) +

N∑

k=1

M∑

i=1

P (Ik = i|Cobs,Θ
old) logP (Ik|Lk, T

o
1:M ,Θ)

−
1

2

M∑

i=1

P (I1 = i|Cobs,Θ
old)

∫

x1

P (x1|I1 = i, Cobs,Θ
old)·

(x1 − µx1)
TΣ−1

x1
(x1 − µx1)dx1 −

1

2
log 2π det(Σx1)

(4.12)

where, the particle filter and smoother are applied to obtain the estimates of the noise-

free input û1:N through the input-output data {u1:N , u
o
1:N}. The smoother density

function P (ûk|u1:N , u
o
1:N) can be numerically calculated as [25]:

P (ûk|u1:N , u
o
1:N) =

L∑

l=1

wl
k|Nδ(ûk − ûl

k) (4.13)

where wk|N is the smoothed weight of the particle ûl
k, computed as P (ûk = ûl

k|u1:N , u
o
1:N),

and L is the number of the particles.

M-step

In M-step, the Q function (4.12) is maximized to yield the parameter updating ex-

pressions. Unconstrained optimization provides parameter update expressions for

parameters {A1:M , B1:M , C1:M , D1:M , Σw, Σỹ, µx1, σ
2
x1
}, where derivatives are taken

directly. Explicit update expression for local model width oi is difficult to obtain in

maximization due to the presence of exponential functions and physical constraints.

To deal with such a case, we do a constrained nonlinear optimization to obtain the

optimal validity width of each local model.
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Next, we take the derivatives of Q function with respect to parameters,

dQ

dĀi

=d
{

−
1

2

N∑

k=2

L∑

l=1

P (Ik = i|Cobs,Θ
old)P (ûk−1 = ûl

k−1|Cobs,Θ
old)·

Exk,xk−1|Ik=i,Cobs,Θold{Tr[Σ−1
w (xk − Āix̄k−1)(xk − Āix̄k−1)

T ]}
}

/dĀi

(4.14)

dQ

dC̄i

=d
{

−
1

2

N∑

k=1

L∑

l=1

P (Ik = i|Cobs,Θ
old)P (ûk = ûl

k|Cobs,Θ
old)·

Exk|Ik=i,Cobs,Θold{Tr[Σ−1
ỹ (yk − C̄ix̄k)(yk − C̄ix̄k)

T ]}
}

/dC̄i

(4.15)

dQ

dΣw

=d
{

−
N − 1

2
log 2π det Σw −

1

2

N∑

k=2

M∑

i=1

L∑

l=1

P (Ik = i|Cobs,Θ
old)·

P (ûk−1 = ûl
k−1|Cobs,Θ

old)·

Exk,xk−1|Ik=i,Cobs,Θold{Tr[Σ−1
w (xk − Āix̄k−1)(xk − Āix̄k−1)

T ]}
}

/dΣw

(4.16)

dQ

dΣỹ

=d
{

−
N

2
log 2π det Σỹ −

1

2

N∑

k=1

M∑

i=1

L∑

l=1

P (Ik = i|Cobs,Θ
old)P (ûk = ûl

k|Cobs,Θ
old)·

Exk|Ik=i,Cobs,Θold{Tr[Σ−1
ỹ (xk − C̄ix̄k)(xk − C̄ix̄k)

T ]}
}

/dΣỹ

(4.17)

dQ

dµx1
=d
{

−
1

2

M∑

i=1

P (I1 = i|Cobs,Θ
old)·

Ex1|I1=i,Cobs,Θold{Tr[Σ−1
x1
(x1 − µx1)(x1 − µx1)

T ]}
}

/dµx1

(4.18)

dQ

dΣx1

=d
{

−
1

2
log 2π det(Σx1)−

1

2

M∑

i=1

P (I1 = i|Cobs,Θ
old)·

Ex1|I1=i,Cobs,Θold{Tr[Σ−1
x1
(x1 − µx1)(x1 − µx1)

T ]}
}

/dΣx1

(4.19)

where Āi denotes
[
Ai Bi

]
; C̄i denotes

[
Ci Di

]
; x̄k denotes

[
xk

ûk

]

.

The parameter update expressions are obtained by equating the derivatives (4.14

- 4.19) to zero, as follows:

Āi =
[ N∑

k=2

L∑

l=1

P (Ik = i|Cobs,Θ
old)P (ûk−1 = ûl

k−1|Cobs,Θ
old) ·

Exk,xk−1|Ik=i,Cobs,Θold(xkx̄
T
k−1)

]

·
[ N∑

k=2

L∑

l=1

P (Ik = i|Cobs,Θ
old)·

P (ûk−1 = ûl
k−1|Cobs,Θ

old) · Exk,xk−1|Ik=i,Cobs,Θold(x̄k−1x̄
T
k−1)

]−1

(4.20)
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C̄i =
[ N∑

k=1

L∑

l=1

P (Ik = i|Cobs,Θ
old)P (ûk = ûl

k|Cobs,Θ
old)·

Exk|Ik=i,Cobs,Θold(ykx̄
T
k )
]

·
[ N∑

k=1

L∑

l=1

P (Ik = i|Cobs,Θ
old)·

P (ûk = ûl
k|Cobs,Θ

old) · Exk|Ik=i,Cobs,Θold(x̄kx̄
T
k )
]−1

(4.21)

Σw =
{ N∑

k=2

M∑

i=1

L∑

l=1

P (Ik = i|Cobs,Θ
old)P (ûk−1 = ûl

k−1|Cobs,Θ
old)·

Exk,xk−1|Ik=i,Cobs,Θold[(xk − Āix̄k−1)(xk − Āix̄k−1)
T ]
}

/(N − 1) (4.22)

Σỹ =
{ N∑

k=1

M∑

i=1

L∑

l=1

P (Ik = i|Cobs,Θ
old)P (ûk = ûl

k|Cobs,Θ
old)·

Exk|Ik=i,Cobs,Θold[(xk − C̄ix̄k)(xk − C̄ix̄k)
T ]
}

/N (4.23)

µx1 =
M∑

i=1

P (I1 = i|Cobs,Θ
old)Ex1|I1=i,Cobs,Θold(x1) (4.24)

Σx1 =

M∑

i=1

P (I1 = i|Cobs,Θ
old)Ex1|I1=i,Cobs,Θold[(x1 − µx1)(x1 − µx1)

T ] (4.25)

Further, the optimization formulation for obtaining the optimal oi can be posed

as:

max
o1:M

N∑

k=1

M∑

i=1

logP (Ik = i|Lk, T1:M , o1:M) · P (Ik = i|Cobs,Θ
old)

S.T. oi,ld 6 oi 6 oi,ub, ∀i ∈ {1, 2, . . . ,M}

(4.26)

where, oi,ld and oi,ub represent lower and upper bounds of the variable oi.

In this work, the above problem (4.26) is solved using the constrained nonlinear

optimization function ‘fmincon’ provided in MATLAB[10][41].

4.3.3 Smoother for the LPV state space model

In the M-step, the following posterior probabilities are required to calculate the con-

ditional expectation terms:

P (Ik = i|Cobs,Θ
old), ∀k = 1, 2, . . . , N ; i = 1, 2, . . . ,M

P (ûk = ûl
k|Cobs,Θ

old), ∀k = 1, 2, . . . , N ; l = 1, 2, . . . , L

P (Xk, Xk−1|Ik = i, Cobs,Θ
old), ∀k = 2, 3, . . . , N ; i = 1, 2, . . . ,M

P (Xk|Ik = i, Cobs,Θ
old), ∀k = 1, 2, . . . , N ; i = 1, 2, . . . ,M

(4.27)
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Among them, the posterior probability P (ûk = ûl
k|Cobs,Θ

old) and the generation

of the particles ûl
k are computed using the particle smoother [25], [47], while the rest

of the terms are computed by deriving a smoother of the LPV state space model as

follows:

P (xk|Ik = i, Cobs,Θ
old) ∼N (xi

k|N , P
i
k|N)

P (xk−1|Ik = i, Cobs,Θ
old) ∼N (x

(∗,i)
k−1|N , P

(∗,i)
k−1|N)

P (xk, xk−1|Ik = i, Cobs,Θ
old) ∼N

[(

xi
k|N

x
(∗,i)
k−1|N

)

,

(

P i
k|N M i

k|N
M i

k|N
T

P
(∗,i)
k−1|N

)] (4.28)

where, xi
k|N and P i

k|N are the mean and the variance for the smoother of xk given

model identity Ik = i; x
(∗,i)
k−1|N and P

(∗,i)
k−1|N are the mean and the variance for the

smoother of xk−1 given model identity Ik = i; and M i
k|N is the lag-one covariance

smoother given Ik = i.

In this section, the estimation of states is carried out using output data y1:N and

the particle filter is used for the point estimation of the inputs û1:N and is represented

as ûp
1:N :

ûp
k =

L∑

l=1

ûl
k/L (4.29)

where, ûl
k is the re-sampled particle with a weight of 1/L.

The posterior probabilities are computed based on the Gaussian noise assumption

and are presented as:

P (xk|φN , Ik = j) ∼N (xj

k|N , P
j

k|N)

P (xk|φN , Ik+1 = h) ∼N (x
(∗,h)
k|N , P

(∗,h)
k|N )

P (xk|φN , Ik = j, Ik+1 = h) ∼N (x
(∗,j,h)
k|N , P

(∗,j,h)
k|N )

(4.30)

where φN , {y1:N , û
p
1:N}; x

(∗,j,h)
k|N and P

(∗,j,h)
k|N , the smoothed estimate and variance of

the state, respectively, are derived as next.

Smoothing step

The smoothers for Xk given different state identities are derived using the expressions

for the conditional distribution of a subset of Gaussian random variables given another
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subset of Gaussian random variables [28], as follows:

x
(∗,j,h)
k|N ,E(Xk|φN , Ik = j, Ik+1 = h)

=E[E(Xk|Xk+1, φk, Ik = j, Ik+1 = h)|φN , Ik = j, Ik+1 = h]

=E[xj

k|k + J
(∗,j,h)
k (Xk+1 − x

(j,h)
k+1|k)|φN , Ik = j, Ik+1 = h]

=xj

k|k + J
(∗,j,h)
k [E(Xk+1|φN , Ik = j, Ik+1 = h)

︸ ︷︷ ︸

x
(j,h,∗)
k+1|N

−x(j,h)
k+1|k]

(4.31)

P
(∗,j,h)
k|N ,V (Xk|φN , Ik = j, Ik+1 = h)

=E[V (Xk|Xk+1, φk, Ik = j, Ik+1 = h)|φN , Ik = j, Ik+1 = h]+

V [E(Xk|Xk+1, φk, Ik = j, Ik+1 = h)|φN , Ik = j, Ik+1 = h]

=E(P j

k|k − J
(∗,j,h)
k P

(j,h)
k+1|kJ

(∗,j,h)
k

T
|φN , Ik = j, Ik+1 = h)+

V [xj

k|k + J
(∗,j,h)
k (Xk+1 − x

(j,h)
k+1|k)|φN , Ik = j, Ik+1 = h]

=P j

k|k + J
(∗,j,h)
k (V (Xk+1|φN , Ik = j, Ik+1 = h)

︸ ︷︷ ︸

P
(j,h,∗)
k+1|N

−P (j,h)
k+1|k)J

(∗,j,h)
k

T

(4.32)

where, E(·) denotes the expectation operation; V (·) denotes the variance operation;

the upper case Xk denotes the variable for the state, xk is the corresponding real-

ization, and similarly for other variables like Yk; x
j

k|k, P
j

k|k, x
(j,h)
k+1|k and P

(j,h)
k+1|k are the

filtered and predicted states, variances of the state Xk, respectively, derived in the

next sub-section. The smoother gain J
(∗,j,h)
k is calculated as:

J
(∗,j,h)
k =Cov[Xk, Xk+1|φk, Ik = j, Ik+1 = h]·

[V (Xk+1|φk, Ik = j, Ik+1 = h)]−1

=P j

k|kA
T
h (P

(j,h)
k+1|k)

−1

(4.33)

To keep the backwards calculation running, following approximations are adopted in

equation (4.31) and (4.32) as:

x
(j,h,∗)
k+1|N ≈ xh

k+1|N = E(Xk+1|φN , Ik+1 = h)

P
(j,h,∗)
k+1|N ≈ P h

k+1|N = V (Xk+1|φN , Ik+1 = h)
(4.34)

Thus, the expression for smoother of Xk when Ik = j, Ik+1 = h, is as follows:

x
(∗,j,h)
k|N =xj

k|k + J
(∗,j,h)
k [xh

k+1|N − x
(j,h)
k+1|k]

P
(∗,j,h)
k|N =P j

k|k + J
(∗,j,h)
k (P h

k+1|N − P
(j,h)
k+1|k)J

(∗,j,h)
k

T (4.35)

where, xh
k+1|N and P h

k+1|N are evaluated later using the principles of distribution col-

lapsing [48].
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Prediction and filtering steps

The filtered and the predicted probabilities, which are required in the smoothing step

are given as:
P (xk|φk, Ik = j) ∼N (xj

k|k, P
j

k|k)

P (xk|φk, Ik = j, Ik−1 = i) ∼N (x
(i,j)
k|k , P

(i,j)
k|k )

P (xk|φk−1, Ik = j, Ik−1 = i) ∼N (x
(i,j)
k|k−1, P

(i,j)
k|k−1)

(4.36)

For the prediction step, the expressions are as follows:

x
(i,j)
k|k−1 ,E(Xk|φk−1, Ik = j, Ik−1 = i)

=Ajx
i
k−1|k−1 +Bj û

p
k−1

P
(i,j)
k|k−1 ,V (Xk|φk−1, Ik = j, Ik−1 = i)

=AjP
i
k−1|k−1A

T
j +Q

(4.37)

where, the filter parameters xi
k−1|k−1 and P i

k−1|k−1 can not be calculated directly using

the filtering step based on the above predictions. They are derived in the collapsing

step instead and explained in the next subsection.

The filtering step for x
(i,j)
k|k and P

(i,j)
k|k is derived based on the results of the prediction

step, as below:

x
(i,j)
k|k ,E(Xk|φk, Ik = j, Ik−1 = i)

=x
(i,j)
k|k−1 +K

(i,j)
k (yk − y

(i,j)
k|k−1)

P
(i,j)
k|k ,V (Xk|φk, Ik = j, Ik−1 = i)

=(I −K
(i,j)
k Cj)P

(i,j)
k|k−1

(4.38)

where, x
(i,j)
k|k is the filtered estimate of Xk given model identities Ik = j, Ik−1 = j, and

P
(i,j)
k|k is the corresponding variance. Further, K

(i,j)
k is the filter gain, and y

(i,j)
k|k−1 is the

predicted output, given by:

y
(i,j)
k|k−1 ,E(Yk|φk−1, Ik = j, Ik−1 = i)

=Cjx
(i,j)
k|k−1 +Djû

p
k

K
(i,j)
k =Cov[Xk, Yk|φk, Ik = j, Ik−1 = i]·

(V (Yk|φk−1, Ik = j, Ik−1 = i))−1

=P
(i,j)
k|k−1C

T
j (CjP

(i,j)
k|k−1C

T
j +R)−1

(4.39)
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A method for local model identity distribution approximation using dis-
tribution collapsing

To keep the predicting and the filtering steps working, we have assumed that both

P (xk|φk, Ik = j) and P (xk|φk, Ik = j, Ik−1 = i) are normally distributed. However it

is contradictory that:

P (xk|φk, Ik = j) =

M∑

i=1

P (xk, Ik−1 = i|φk, Ik = j)

=

M∑

i=1

P (Ik−1 = i|φk)P (xk|Ik−1 = i, Ik = j, φk)

(4.40)

where P (Ik−1 = i|φk) is the weight of P (xk|φk, Ik = j, Ik−1 = i). This indicates

that P (xk|φk, Ik = j) is a Gaussian mixture distribution under the assumption that

P (xk|φk, Ik = j, Ik−1 = i) is Gaussian distributed. This property of the multiple

state space model makes the number of the Gaussian mode posteriors which are to

be computed, to increase exponentially with M2. In this work, to reduce the number

of calculated posteriors from M2 to M , we propose to approximate the Gaussian

mixture by distribution collapsing method proposed by [48], as follows,

xj

k|k =

M∑

i=1

P (Ik−1 = i|φk)x
(i,j)
k|k

P j

k|k =
M∑

i=1

P (Ik−1 = i|φk)[P
(i,j)
k|k + (xj

k|k − x
(i,j)
k|k )(xj

k|k − x
(i,j)
k|k )T ]

(4.41)

and applying the same ’collapsing’ process for the smoothing steps P (xk|φN , Ik = j),

P (xk|φN , Ik+1 = h) and P (xk|φN , Ik = j, Ik+1 = h), leads to,

xj

k|N =

M∑

h=1

P (Ik+1 = h|φN)x
(∗,j,h)
k|N

P j

k|N =
M∑

h=1

P (Ik+1 = h|φN)[P
(∗,j,h)
k|N + (xj

k|N −X
(∗,j,h)
k|N )(xj

k|N − x
(∗,j,h)
k|N )T ]

(4.42)

x
(∗,h)
k|N =

M∑

j=1

P (Ik = j|φN)x
(∗,j,h)
k|N

P
(∗,h)
k|N =

M∑

j=1

P (Ik = j|φN)[P
(∗,j,h)
k|N + (x

(∗,h)
k|N − x

(∗,j,h)
k|N )(x

(∗,h)
k|N − x

(∗,j,h)
k|N )T ]

(4.43)
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where, for computational tractability the posterior probability of the local model

identity is approximated from smoothing to filtering as follows:

P (Ik−1 = i|φk) ≈P (Ik−1 = i|φk−1)

P (Ik+1 = h|φN) ≈P (Ik+1 = h|φk+1)

P (Ik = j|φN) ≈P (Ik = j|φk)

(4.44)

The filtered probability of Ik is derived as follows:

P (Ik = i|φk) =
P (yk|φk−1, Ik = i)P (Ik = i|φk−1)

P (yk|φk−1)
(4.45)

where, P (yk|φk−1, Ik = i) ∼ N (yik|k−1, H
i
k|k−1); P (Ik = i|φk−1) = P (Ik = i|Lk, Ti).

yik|k−1 =E(CiXk +Diûk + ỹk|Ik = i, φk−1)

=Cix
i
k|k−1 +Diû

p
k

H i
k|k−1 =V (CiXk +Diûk + ỹk|Ik = i, φk−1)

=CiP
i
k|k−1C

T
i + Σỹ

(4.46)

and xi
k|k−1 and P i

k|k−1 are evaluated using the collapsing step from x
(l,i)
k|k−1 and P

(l,i)
k|k−1:

xi
k|k−1 =

M∑

l=1

P (Ik−1 = l|φk−1)x
(l,i)
k|k−1

P i
k|k−1 =

M∑

l=1

P (Ik−1 = l|φk−1)[P
(l,i)
k|k−1 + (xi

k|k−1 − x
(l,i)
k|k−1)(x

i
k|k−1 − x

(l,i)
k|k−1)

T ]

(4.47)

4.3.4 Computation of the conditional expectation terms in
the Q function

In this section, the conditional expectation terms appearing in equation (4.20-4.23)

are derived.

We start with the expression for E(XkX
T
k |Cobs, Ik = i). The smoother covariance

of state Xk given local model identity Ik = i is given as:

P i
k|N =E[(Xk − xi

k|N)(Xk − xi
k|N)

T |Cobs, Ik = i]

=E(XkX
T
k |Cobs, Ik = i)− E(Xkx

i
k|N

T
|Cobs, Ik = i)−

E(xi
k|NX

T
k |Cobs, Ik = i) + xi

k|Nx
i
k|N

T

⇒ E(XkX
T
k |Cobs, Ik = i) = xi

k|Nx
i
k|N

T
+ P i

k|N

(4.48)
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Following a similar approach as above, the conditional expectation term E(Xk−1X
T
k−1

|Cobs, Ik = i) is derived as:

E(Xk−1X
T
k−1|Cobs, Ik = i) = x

(∗,i)
k−1|Nx

(∗,i)
k|N

T
+ P

(∗,i)
k−1|N (4.49)

and the conditional expectation term E(XkX
T
k−1|Cobs, Ik = i) is also derived in a

similar fashion as:

E(XkX
T
k−1|Cobs, Ik = i) = xi

k|Nx
(∗,i)
k−1|N

T
+M i

k|N (4.50)

where, M i
k|N is the lag-one covariance smoother given model identity Ik = i, defined

as M i
k|N , E[(Xk − xi

k|N)(Xk−1 − x
(∗,i)
k−1|N)

T |Cobs, Ik = i]. M i
k|N can not be derived

directly due to the multi-mode nature of the LPV state space model. Hence, the lag-

one covariance smoother given model identity Ik−1 = i, Ik = j and Ik+1 = h, denoted

as M
(i,j,h)
k|N , is derived first and detailed derivation is presented in Appendix C,

M
(i,j,h)
k|N =E[(Xk −X

(i,j,h)
k|N )(Xk −X

(∗,i,j,h)
k−1|N )T ]

=(Aj +K
(i,j)
k CjAj + J

(i,j,h)
k AhK

(i,j)
k CjAj)P

i
k−1|k−1+

J
(i,j,h)
k (M

(j,h,∗)
k+1|N − AhP

(i,j)
k|k−1)J

(∗,i,j)
k−1

T

(4.51)

where, M
(i,j,∗)
k|N = E[(Xk −X

(i,j,∗)
k|N )(Xk−1 −X

(∗,i,j)
k−1|N)

T ], and a similar collapsing step is

adopted for the lag-one covariance smoothing as:

M
(i,j,∗)
k|N =

M∑

h=1

P (Ik+1 = h|Cobs)[M
(i,j,h)
k|N + (x

(i,j,∗)
k|N − x

(i,j,h)
k|N )(x

(∗,i,j)
k−1|N − x

(∗,i,j,h)
k−1|N )T ]

M j

k|N =

M∑

i=1

P (Ik−1 = i|Cobs)[M
(i,j,∗)
k|N + (xj

k|N − x
(i,j,∗)
k|N )(x

(∗,j)
k−1|N − x

(∗,i,j)
k−1|N)

T ]

(4.52)

where, x
(i,j,∗)
k|N , x

(i,j,h)
k|N and x

(∗,i,j,h)
k−1|N are the auxiliary state smoothers whose derivations

are presented in Appendix C.

The initialization for the backwards calculation of the lag-one covariance smoother

is also presented as follows:

M
(i,j,∗)
N |N =E[(XN −X

(i,j)
N |N)(XN−1 −X

(∗,i,j)
N−1|N)

T ]

=(Aj −K
(i,j)
N CjAj)P

i
N−1|N−1(I − J

(i,j)
N−1K

(i,j)
N CjAj)

T−

(I −K
(i,j)
N Cj)Q(J

(i,j)
N−1K

(i,j)
N Cj)

T +K
(i,j)
N R(J

(i,j)
N−1K

(i,j)
N )T

(4.53)
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4.3.5 Algorithm

The algorithmic representation of the complete steps of the ML estimation of LPV

EIV system parameters using the EM algorithm is concisely presented as Algorithm

4 shown in the following page.

Algorithm 4: Proposed LPV EIV approach

Data: y1:N , u1:N , u
o
1:N

Result: Θ
Initialization :
(i) Estimate noise-free input û1:N using the particle filter and smoother for the
nonlinear input dynamics or Kalman filter and smoother for the linear input
dynamics.
(ii) Obtain initial guess of Θ by conducting a number of initial trials with
random values as initial guesses and selecting the best one as the final initial
guess of parameters Θ.
while compare the value of the new likelihood function based on the updated
parameters with the one using the old parameters, till the desired convergence
metric is reached, do

E− step:
for k = 2, 3, . . . , N do

Calculate the predicted state (4.37), the filtered state (4.38, 4.41) and
the filtered model identities (4.47, 4.45).

end
Calculate the initialization of smoother computation for k = N .
for k = N − 1, 2, . . . , 1 do

Calculate the smoothed state (4.31, 4.32, 4.42, 4.43) and the lag-one
covariance smoother (4.51, 4.52).

end
Calculate the conditional expectation quadratic terms for hidden variables
using equations (4.48), (4.49), (4.50).
M− step:
Calculate the updated model parameters Θ using equations (4.20), (4.21),
(4.22), (4.23), (4.24) and (4.25).

end

4.4 Validations

In this section, two numerical examples including a first-order continuous LPV system

and a CSTR process with a nonlinear dynamic model of the noise-free input are
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depicted to illustrate the proposed method. Furthermore, an experimental verification

of the multi-tank system is also presented to validate the proposed method.

4.4.1 Numerical example 1: a first-order continuous LPV
system

A first-order continuous LPV model example [38] [40] is considered for the noise-free

input-output process with the following transfer function form:

G(s, p) =
K(p)

τ(p)s+ 1
(4.54)

where, the process time constant τ(p) and gain K(p) change nonlinearly in operation

range, p ∈ [1, 4], as:

K(p) = 0.6 + p2, τ(p) = 3 + 0.5p3 (4.55)

By transforming the process (4.54) into discrete state space model with sample time

1 and assuming state and input measurement uncertainties, it yields,

xk+1 =Ad(p)xk +Bd(p)ûk + wk

yk =Cd(p)xk + vk

uk =ûk + ũk

(4.56)

where wk and vk are the process noise and the measurement noise, respectively; wk

is designed as white noise with variance 0.02; vk is set as white noise with variance

of about 5% of the variance of the noise-free output (Σv = 0.08); ûk is the unknown

noise-free input, which is generated by a nonlinear process as follows:

zk+1 =0.5zk +
0.1zk
1 + z2k

+ uo
k + wo

k

ûk =0.05z3k

(4.57)

where uo
k is the input source, and it is generated by a random binary signal with

magnitude -1 and 1; zk is the hidden state of the input process; the process noise wo
k is

set as Gaussian distribution with zero mean and variance 0.02; the input measurement

noise ũk is white noise with variance of about 5% of the variance of the noise-free

input ûk (Σũ = 0.006). The particle filter is applied for the state estimation of the

nonlinear process, while three operating points for the numerical example are selected

as {1, 2.25, 4}, and the corresponding operating trajectory P is presented in Figure
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4.1 (2). In Figure 4.1 (1), particle filter state estimation results are presented, where

the red circle line indicates noise corrupted input and blue solid line indicates particle

filter estimation performance, from which it can be seen that the particle filter is able

to estimate the input dynamics with reasonable accuracy.
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Figure 4.1: (1) The noise-corrupted input uk and the PF estimations; (2) The oper-
ating trajectory for the numerical example 1

The self validation result of applying the proposed algorithm on the input-output

data, are presented in Figure 4.2 (1), where the one-step ahead prediction (blue solid

line) and the infinite step ahead prediction (green dash line) are compared to the

plant output (red circle line) with mean square error (MSE) as 0.0739 and 0.4878,

respectively, and the normalized weights of local models are also presented in Figure

4.2 (2). For cross validation, a new operating trajectory is used and the one-step

ahead prediction and the infinite step ahead prediction are compared with the output

measurement. The MSE for one-step ahead prediction is 0.0677 and MSE for infinite

step ahead prediction is 0.1337. The results are presented in Figure 4.3, where blue

solid line indicates one-step ahead prediction, green dash line presents the infinite

step ahead prediction, and red circle line indicate the plant output measurement.

This illustrates that the identified LPV EIV model is able to satisfactorily predict

the nonlinear EIV process for the first order LPV system.
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Figure 4.2: (1) The self validation result for the numerical example 1; (2) The model
identity probabilities of the local models
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Figure 4.3: (1) The cross validation result for the numerical example 1; (2) The
operation trajectory for the cross validation data

4.4.2 Numerical example 2: CSTR

In this sub-section, a continuous stirred tank reactor (CSTR) simulation example is

considered to validate the proposed method. CSTR is a nonlinear chemical process,

which has been commonly used for nonlinear system state estimation, modeling and

control [10],[40],[49],[50] as a benchmark. The first principles model of CSTR is
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derived based on the mass and heat balance, as [10]:

dCA(t)

dt
=
q(t)

V
(CA0 − CA(t))− k0CA(t) exp

(
−E

RT (t)

)

dT (t)

dt
=
q(t)

V
(T0(t)− T (t))−

(−∆H)k0CA(t)

ρCp

exp

(
−E

RT (t)

)

+

ρcCpc

ρCpV
qc(t)

{

1− exp

(
−hA

qc(t)ρCp

)}

(Tc0(t)− T (t))

(4.58)

where the model parameters are listed in Table 4.1. The output variable is the product

concentration CA(t), and the input variable is the coolant flow rate qc(t), which is

also chosen as the scheduling variable since it influences the model significantly.

Table 4.1: Model parameters of the CSTR process
Parameters Value Unit

Process flow rate (q) 100 L/min
Feed concentration of component A (CA0) 1 mol/L

Feed temperature (T0) 350 K
Inlet coolant temperature (Tc0) 350 K

Reactor volume (V ) 100 L
Heat transfer term (hA) 7× 105 cal/(min ·K)
Specific heats (Cp, Cpc) 1 cal/(g ·K)
Liquid density (ρ, ρc) 1× 103 g/L

Reaction rate constant (k0) 7.2× 1010 min−1

Activation energy term (E/R) 1× 104 K
Heat of reaction (−∆H) −2 × 105 cal/mol

Three operating points of the coolant flow considered are [97, 103, 109], as the

coolant flow rate varies from 97 L/min to 109 L/min. Since the coolant flow rate

acts as both the input variable and the scheduling variable, its dynamics is assumed to

be composed and divided into two parts: 1) is the scheduling variable which changes

in a large scale that denotes the operating points; 2) is the noise-free input around

the operating points, which is generated from the same model shown in (4.57). The

source of input uo
k is generated by a random binary sequence ranging between -1

and 1. The measurement uk is corrupted by the input noise ũk which is the white

noise with variance at 5% of the variance of noise-free input. Particle filter is applied

to estimate the noise-free input on (4.57). The operating trajectory and the noise-

corrupted input, and the particle filter results are presented in Figure 4.4 (1) and
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Figure 4.4 (2), respectively, where the noise-corrupted input is represented by red

circle line and particle filter estimation is by blue solid line. The simulated output

measurement is corrupted by the white noise with variance at 5% of the variance

of the noise-free output. The proposed algorithm is applied, and the self validation

results are presented in Figure 4.5 (1), where the MSEs for one-step ahead prediction

and infinite step ahead prediction are 6.623 × 10−7 and 1.8 × 10−6, respectively.

Corresponding model identity probability profiles are presented in Figure 4.5 (2).

A new operating trajectory is used to generate the data for cross validation, and

the results are presented in Figure 4.6 (2). In Figure 4.6 (1), the one-step ahead

prediction (blue solid line) and the infinite step ahead prediction (green dash line)

are compared with the plant output measurement (red circle line), for which the MSEs

are 8.07 × 10−7 and 1.116 × 10−6, respectively, thereby showing the effectiveness of

the proposed identification.
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Figure 4.4: (1) The operating trajectory for the numerical example 2; (2) The PF
estimation of the nonlinear process output

4.4.3 Experimental example

In this sub-section, an experiment on the multi-tank system is conducted to validate

the proposed method. The schematic diagram of the multi-tank system is presented

in Figure 4.7, and the corresponding nonlinear model equations [51],[52],[42] are given
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below:
dH1

dt
=

1

β1(H1)
q −

1

β1(H1)
D1H

α1
1

dH2

dt
=

1

β2(H2)
D1H

α1
1 −

1

β2(H2)
D2H

α2
2

dH3

dt
=

1

β3(H3)
D2H

α2
2 −

1

β3(H3)
D3H

α3
3

(4.59)

where the notations are listed in Table 4.2, and i ∈ {1, 2, 3}.

In this work, we only use the middle tank as the EIV process, and flow valves have

been adjusted in such a way that the inflow q is directly channeled into the middle
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Table 4.2: Notations of multi-tank system
Notation Description

q the inflow to the upper tank
Hi the water levels in the ith tank
Di the resistance of the output orifice of ith tank
βi the cross sectional area of the ith tank
αi the flow coefficient for the ith tank

Figure 4.7: Diagram of multi-tank system

tank. Therefore, the nonlinear model for the EIV process considered is reduced to:

dH2

dt
=

1

β2(H2)
q −

1

β2(H2)
D2H

α2
2 (4.60)

where, the EIV output variable is chosen as the middle tank water level H2, and the

EIV input variable is chosen as the inflow q. The nonlinearity of the process is arisen

from the shape of the tank where the cross sectional area changing along with the

water level. By forcing the inflow q around a working point with certain small flow

rate range, an approximated linear model can be built for the corresponding working

point. Since the valve position can be used to change the working point for different

water levels, the scheduling variable is chosen as the valve position of the middle tank

C2. The operating points of the valve position are per-selected as {1, 0.85, 0.8}, and

the operating trajectory is presented in Figure 4.8 (2).

To generate the input q, we considered the following nonlinear dynamics:

zk+1 =0.5zk +
0.1zk
1 + z2k

+ uo
k + wo

k

ûk =0.0025z3k

(4.61)
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Figure 4.8: (1) The noise-corrupted input and the PF estimations; (2) The operation
trajectory for the experimental example

where zk is the hidden state for the input process; uo
k is the source of input, which is

a known random binary sequence; process noise wo
k is white noise with variance 0.01.

Simulated noise is added into the noise-free input ûk with a noise variance at 5% of

the input variance. Particle filter is used to estimate the noise-free input on (4.61),

and the estimation result are presented in Figure 4.8 (1).

The self validation results and the normalized weights for local models are present-

ed in Figure 4.9 (1) and Figure 4.9 (2), respectively. The one-step ahead prediction

(blue solid line) and infinite step ahead prediction (green dash line) are compared

with the plant output measurement with MSEs of 4.95 × 10−6 and 3.11 × 10−5, re-

spectively. The cross validation results are presented in Figure 4.10 (1), where one

step ahead prediction (blue solid line) and infinite step ahead prediction (green dash

line) are compared with the true plant output (red circle line), and the corresponding

operating trajectory is shown in Figure 4.10 (2). Although one step ahead prediction

shows good performance, the infinite step predictions have more significant mismatch

at certain points. This is attributed to the possible valve stiction presented in this

process, where the scheduling variable (valve opening) would not physically operate

in the same trajectory as it is designed for the experiment.
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Figure 4.9: (1) The self validation results for the experimental example; (2) The
model identity probabilities of the local models
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Figure 4.10: (1) The cross validation results for the experimental example; (2) The
operating trajectory for the cross validation data

4.5 Conclusions

In this study, a multiple model approach is presented for the identification of non-

linear EIV system as an LPV EIV system. By selecting the scheduling variables

and operating points based on the process information, the parameters of local state

space models and the exponential weighting functions are estimated using the EM

algorithm. A filtering and smoothing method for LPV state space model is proposed

to compute the posterior probabilities of the hidden variables in the E-step of the

EM algorithm. A nonlinear state space process is assumed for generating inputs and
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particle filter is employed to estimate the noise-free input from noise-corrupted mea-

surements. Two numerical simulation examples, a first-order continuous LPV model

and a nonlinear CSTR, as well as an experimental study on the multi-tank system

are used to validate the effectiveness of the proposed approach.
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Chapter 5

Conclusions

In this chapter, the work in the thesis is summarized, conclusions are drawn and

future work directions are discussed.

5.1 Summary and conclusions of the thesis

This thesis mainly focused on the EIV problem identification and multiple model

approaches for solving the nonlinear and time-varying problem. As one of the multiple

model approaches, the Markov regime-switching model approach is applied to model

the highly erratic pool price process and improve the existing pool price forecast.

In the Chapter 1, the background and motivations are demonstrated for the peak

price prediction and the EIV system identification.

In the Chapter 2, the Alberta’s electricity market is introduced, and the Markov

regime-switching model is applied to model the pool price process. The EM algorith-

m is used to solve the MLE problem of the model parameters, and several hidden

Markov model (HMM) approaches are proposed to generate the initial values for the

EM algorithm. To solve the time-varying behavior problem of pool price, the ‘similar’

month selection rule is proposed based on the periodic patterns of pool price. Vali-

dation studies are provided using the initialization methods and the ‘similar’ month

selection rule on price data in different time periods, and the results for one-hour

ahead predictions and two-hour ahead predictions are presented. The results show

that the prediction using the proposed approach can improve the existing price fore-

cast in the high-price region. Also, the proposed two initialization methods help to

improve the predictions in contrast to the existing initialization method.
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In the Chapter 3, the identification problem for the EIV state space model is

formulated. By introducing the input dynamics, the MLE of the EIV model parameter

is solved under the EM framework. To estimate the hidden state of the EIV state

space model, a filtering and smoothing approach for the state space model with

colored stochastic inputs is proposed and applied in the E-step of the EM algorithm.

Two numerical examples and one experimental example are presented to compare

the proposed method with the existing EIV methods, which demonstrate that the

proposed method can outperform the subspace EIV method and the BELS method

by comparing the prediction errors.

In the Chapter 4, an LPV EIV state space model is formulated to approximate

the nonlinear EIV system. By introducing the input dynamics, the EIV system

identification problem is solved using the EM algorithm. To estimate the hidden

state and local model identities of the LPV EIV state space model, a filtering and

smoothing approach for LPV state space model is proposed and applied in the E-step

of the EM algorithm. In the validation step, two numerical examples namely, a the

continuous LPV process and the nonlinear CSTR process are presented. Furthermore,

an experimental example the nonlinear tank system is used to validate the proposed

method.

5.2 Directions for future work

In this thesis, the EIV problem and nonlinear problem are investigated and solved

under the EM framework, including the identification of linear EIV state space modes

and LPV EIV state space models. Besides, an application using the multiple model

approach is presented in pool price prediction. To further extend the work in this

thesis, following aspects can be considered:

1. The proposed pool price prediction approach providing the point forecast only,

and incorporating uncertainty like confidence intervals into the price prediction would

help to the related decision-making. The variance estimation procedure are presented

in Appendix A.

2. The identification of linear EIV state space model with input dynamics is

based on a separated model estimation framework. A efficient combination of the
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estimations of EIV model and input dynamics would be helpful to generate more

accurate estimation with acceptable computation increase.

3. The state estimation in an LPV EIV state space model has employed the

proposed smoothing approach. However, there are some approximation steps called

the ‘collapsing process’ due to the structure of the LPV state space model, which

use a Gaussian mode to approximate a mixture of Gaussian. In such a case, the

particle approach would be helpful in this non-Gaussian case. On the other hand, a

new multiple state space model structure may be investigated, which can reduce the

approximations when doing filtering and smoothing.
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Appendix A

Variance estimation for pool price
prediction

A.1 Supplemented EM algorithm

The expectation maximization (EM) algorithm does not produce the asymptotic

variance-covariance matrices for parameters automatically. Therefore, we need to

search for other methods to compute the parameter uncertainties when we are using

EM algorithm. The large-sample variance-covariance matrix of (Θ − Θ∗) based on

observation Cobs, V , is used to compute the uncertainties in the parameter estimation,

which is derived as:

V = Io(Θ
∗|Cobs)

−1 (A.1)

where,Θ∗ is the final estimation of Θ; Io(Θ|Cobs) is the observed information matrix,

defined as:

Io(Θ|Cobs) = −
∂2 logP (Cobs|Θ)

∂Θ · ∂Θ
(A.2)

The observed information matrix cannot be computed directly due to the existence

of missing data Cmis. To solve this problem, a supplemented expectation maximiza-

tion (SEM) algorithm is proposed in [53], where the large-sample variance-covariance

matrix is derived as:

V = I−1
c +∆V (A.3)

where, I−1
c is the conditional expectation of complete-data observed information ma-

trix when Θ = Θ∗, defined as:

Ic = ECmis|Θ∗,Cobs
Io(Θ

∗|Cobs, Cmis) (A.4)

90



∆V is the increase in variance due to missing data, defined as:

∆V = I−1
c DM(I −DM)−1 (A.5)

DM is the Jacobian matrix of the implicit mapping function Θnew = M(Θold) in the

EM algorithm at Θ = Θ∗, which is computed using the iterative SEM algorithm [53].

A.2 Uncertainty estimation for pool price predic-

tion

The pool price point prediction approach is proposed in Chapter 2, however, it would

be preferred to predict intervals for future pool price movement than simply point

estimation in a risk management view.

Take one-hour ahead prediction as example, the estimation E(k + 1) is expressed

as a combination of estimation given by each local model, presented as:

E(k + 1) =

M∑

i=1

M∑

j=1

P (Ik = i|Ck,Θ) · aij · φ
T
k+1θj (A.6)

where, the probability for each local model is predicted by Markov property as

P (Ik+1 = j) = P (Ik = i) ∗ aij , ∀ i, j = 1, · · · ,M . The uncertainties also existed

all parameter estimation, and for simplicity we only consider the uncertainties in the

local model parameter estimation θIk . The covariance expression of one-hour ahead

prediction E(k + 1) is derived using the uncertainty (covariance) in the local model

parameters as:

Cov[E(k + 1)] = Wk+1 ∗ Cov(Θl) ∗W
T
k+1 (A.7)

where,

Wk+1 =
[ ∑M

i=1 P (Ik = i|Ck,Θ)ai1φ
T
k+1 . . .

∑M

i=1 P (Ik = i|Ck,Θ)aiMφT
k+1

]
(A.8)

Θl =
[
θT1 , . . . , θTM

]T
(A.9)

The covariance of local model parameters for M = 3 are derived as:

Cov(Θl) =









[

−∂2Q(Θ)
∂θ1∂θ1

]−1 [

−∂2Q(Θ)
∂θ1∂θ2

]−1 [

−∂2Q(Θ)
∂θ1∂θ3

]−1

[

−∂2Q(Θ)
∂θ2∂θ1

]−1 [

−∂2Q(Θ)
∂θ2∂θ2

]−1 [

−∂2Q(Θ)
∂θ2∂θ3

]−1

[

−∂2Q(Θ)
∂θ3∂θ1

]−1 [

−∂2Q(Θ)
∂θ3∂θ2

]−1 [

−∂2Q(Θ)
∂θ3∂θ3

]−1









∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
Θ=Θ∗

+∆V (Θl)

(A.10)
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where, the increase in covariance of Θl is computed using the SEM algorithm [53]; the

conditional expectation of complete-data observed information matrix are derived as:

−
∂2Q(Θ)

∂θi∂θi

∣
∣
∣
∣
Θ=Θ∗

=

N∑

k=1

P (Ik = i|Cobs,Θ
∗)φkφ

T
k /σ

∗2, ∀ i = 1, 2, 3

−
∂2Q(Θ)

∂θi∂θj

∣
∣
∣
∣
Θ=Θ∗

=0, ∀ i 6= j ∈ {1, 2, 3}

(A.11)
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Appendix B

Detailed derivations for section
3.3.3

B.1 Detailed derivation of equation (3.43)

To compute the covariance smoother of Xk and Zk, M
xz
k|N = E[(Xk − Xk|N)(Zt −

Zk|N)
T ], the state smoother equations for both Xk and Zk are rearranged by sub-

tracting both hand sides of the equations (3.26) and smoothing equation for Zk [28]

from Xk and Zk, respectively, leading to:

(Xk − xk|N) + Jx
kxk+1|N =(Xk − xk|k) + Jx

kxk+1|k (B.1)

(Zk − zk|N) + Jz
kzk+1|N =(Zk − zk|k) + Jz

kzk+1|k (B.2)

Then, multiply the left-hand side terms of (B.1) and (B.2), and equate the result to

the corresponding result of the right-hand side terms. By taking joint expectation

of both sides over all the random variables including X1:N and Z1:N with all possible

realizations of Y1:N , U1:N , U
o
1:N , we have the new left-hand side as:

left-hand side = E[(Xk −Xk|N)(Zk − Zk|N)
T ] + Jx

kE[Xk+1|NZk+1|N
T ]Jz

k
T (B.3)

and the new right-hand side as:

right-hand side = E[(Xk −Xk|k)(Zk − Zk|k)
T ] + Jx

kE[Xk+1|kZk+1|k
T ]Jz

k
T (B.4)

Further, the following equations are obtained based on the projection theorem

[54], where Zk|N = E(Zk|U1:N , U
o
1:N) is an approximation of E(Zk|Y1:N , U1:N , U

o
1:N)
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and Zk+1|k = E(Zk+1|U1:k, U
o
1:k) is an approximation of E(Zk+1|Y1:k, U1:k, U

o
1:k):

E[(Xk −Xk|N)Z
T
k+1|N ] = 0

E[(Zk − Zk|N)X
T
k+1|N ] ≈ 0

E[(Xk −Xk|k)Z
T
k+1|k] = 0

E[(Zk − Zk|k)X
T
k+1|k] ≈ 0

(B.5)

where Xk|N denotes the estimator of Xk given variables Y1:N , U1:N ,U
o
1:N while xk|N

denotes the estimate of Xk given one of the realizations as {y1:N , u1:N ,u
o
1:N}, and

similarly for other variables. It is also easy to derive following equations based on the

projection theorem [54]:

E[(Xk+1 −Xk+1|N)Z
T
k+1|N ] =0

E[(Zk+1 − Zk+1|N)X
T
k+1|N ] ≈0

⇒ E(Zk+1X
T
k+1|N) ≈E(Zk+1|NX

T
k+1|N)

E[(Xk+1 −Xk+1|k)Z
T
k+1|k] =0

E[(Zk+1 − Zk+1|k)X
T
k+1|k] ≈0

⇒ E(Zk+1X
T
k+1|k) ≈E(Zk+1|kX

T
k+1|k)

(B.6)

Therefore:

E[(Xk+1 −Xk+1|N)(Zk+1 − Zk+1|N)
T ] =E[Xk+1Z

T
k+1 −Xk+1|NZ

T
k+1−

(Xk+1 −Xk+1|N)Z
T
k+1|N ]

=E[Xk+1Z
T
k+1]−E[Xk+1|NZ

T
k+1|N ]

E[(Xk+1 −Xk+1|k)(Zk+1 − Zk+1|k)
T ] =E[Xk+1Z

T
k+1 −Xk+1|kZ

T
k+1−

(Xk+1 −Xk+1|k)Z
T
k+1|k]

=E(Xk+1Z
T
k+1)− E(Xk+1|kZ

T
k+1|k)

(B.7)

By rearranging (B.7), we have:

E(Xk+1|NZ
T
k+1|N) =E(Xk+1Z

T
k+1)−E[(Xk+1 −Xk+1|N)(Zk+1 − Zk+1|N)

T ]

E(Xk+1|kZ
T
k+1|k) =E(Xk+1Z

T
k+1)−E[(Xk+1 −Xk+1|k)(Zk+1 − Zk+1|k)

T ]
(B.8)

Using equation (B.8), the joint expectation equation is derived as:

E[(Xk −Xk|N)(Zk − Zk|N)
T ] = E[(Xk −Xk|k)(Zk − Zk|k)

T ] + Jx
k {E[(Xk+1−

Xk+1|N)(Zk+1 − Zk+1|N)
T ]−E[(Xk+1 −Xk+1|t)(Zk+1 − Zk+1|t)

T ]}Jz
k
T

(B.9)
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Since the unconditional error covariance matrix E[(Xk − Xk|N)(Zk − Zk|N)
T ] equals

the conditional error covariance matrix E[(Xk − Xk|N)(Zk − Zk|N)
T |y1:N , u1:N , u

o
1:N ]

or P xz
k|N , and similarly for other unconditional covariance matrix [54]. The covariance

smoother of Xk and Zk as P xz
k|N is derived as follows:

P xz
k|N = P xz

k|k + Jx
k (P

xz
k+1|N −AP xz

k|kA
T
o − BCoP

z
k|kA

T
o )J

z
k
T (B.10)

B.2 Detailed derivation of equation (3.45)

To compute the lag-one covariance smoother of Xk and Zk, first the covariance filter

with time step k = N is calculated using equation (3.33). This gives the initialization

Mxz
N |N for recursively computing Mxz

k|N :

Mxz
N |N =E[(XN −XN |N)(ZN−1 − ZN−1|N)

T ]

=E{[(I −Kz
NC)(XN −XN |N−1)−Kz

N ỹN ][(ZN−1 − ZN−1|N−1)−

Jz
N−1K

z
NCo(ZN − ZN |N−1)]

′}

=(I −Kx
NC) ·E[(XN −XN |N−1)(ZN−1 − ZN−1|N−1)

T ]
︸ ︷︷ ︸

Mxz
N|N−1

−

(I −Kx
NC) ·E[(XN −XN |N−1)(ZN − ZN |N−1)

T ]
︸ ︷︷ ︸

Pxz
N|N−1

·(Jz
N−1K

z
NCo)

T

(B.11)

where the underbraced terms are,

P xz
k|k−1 =E{(Xk −Xk|k−1)[Ao(Zk−1 − Zk−1|k−1) + wo

k−1]
T}

=E[(Xk −Xk|k−1)(Zk−1 − Zk−1|k−1)
T ]Ao

T = Mxz
k|k−1Ao

T
(B.12)

Mxz
k|k−1 =E{[A · (Xk−1 −Xk−1|k−1) +BCo(Zk−1−

Zk−1|k−1) + wk−1](Zk−1 − Zk−1|k−1)
T}

=A ·E[(Xk−1 −Xk−1|k−1)(Zk−1 − Zk−1|k−1)
T ]+

BCo · E[(Zk−1 − Zk−1|k−1)(Zk−1 − Zk−1|k−1)
T ]

=AP xz
k−1|k−1 +BCoP

z
k−1|k−1

(B.13)

Therefore, the equation for Mxz
N |N is given as:

Mxz
N |N =(I −Kx

NC)(AP xz
N−1|N−1 +BCoP

z
N−1|N−1)(I − Jz

N−1K
z
NCoAo)

T (B.14)
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Then to calculate Mxz
k|N as E[(Xk −Xk|N)(Zk−1 − Zk−1|N)

T ], a similar method as

computing P xz
k|N is used. The state smoother equations for Xk and Zk−1 are arranged

and presented as follows:

(Xk −Xk|N) + Jx
kXk+1|N =(Xk −Xk|k) + Jx

kXk+1|k (B.15)

(Zk−1 − Zk−1|N) + Jz
k−1Zk|N =(Zk−1 − Zk−1|k−1) + Jz

k−1Zk|k−1 (B.16)

Then, multiply the left-hand side terms of these two equations, and equate the result

to the corresponding result of the right-hand side terms. We also use the following

identifies obtained using the projection theorem [54] for simplification:

E[(Xk −Xk|N)Z
T
k|N ] = 0

E[(Zk−1 − Zk−1|N)X
T
k+1|N ] ≈ 0

E[(Xk −Xk|k−1)Z
T
k|k−1] = 0

E[(Zk−1 − Zk−1|k−1)Z
T
k|k−1] = 0

E[(Zk − Zk|k−1)Z
T
k|k−1] = 0

E[(Zk−1 − Zk−1|k−1)X
T
k|k−1] ≈ 0

(B.17)

By taking jointly expectation of both sides over all the random variables including

X1:N and Z1:N with all possible realizations of Y1:N , U1:N , U
o
1:N , we have the left-hand

side of the joint expectation equation as:

left-hand side =E[(Xk −Xk|N)(Zk−1 − Zk−1|N)
T ]+

Jz
kE[Xk+1|NZ

T
k|N ]J

z
k−1

T
(B.18)

The right-hand side terms of equation (B.15) are derived as:

(Xk − xk|k)+Jx
kxk+1|k = (I −Kx

kC)(Xt − xk|k−1) + Jx
k (Axk|k +BCozk|k)

=(I −Kx
kC)(Xk −Xk|k−1) + Jx

k [Axk|k−1 + AKx
kC(Xk−

Xk|k−1) +BCozk|k−1 +BCoK
z
kCo(Zk − zk|k−1)]

(B.19)

Thus, we have the right-hand side of the joint expectation equation as:

right-hand side =(I −Kx
kC + Jx

kAK
x
kC)E[(Xk −Xk|k−1)(Zk−1 − Zk−1|k−1)

T ]+

Jx
kBCoK

z
kCo ·E[(Zk − Zk|k−1)(Zk−1 − Zk−1|k−1)

T ]+

Jx
kA ·E[Xk|k−1Zk|k−1

T ]Jz
k−1

T + Jx
kBCo ·E[Zk|k−1Zk|k−1

T ]Jz
k−1

T

(B.20)
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Also, we have the following results based on the projection theorem [54]:

E[Zk|k−1Zk|k−1
T ] = E[ZkZk

T ]−E{(Zk − Zk|k−1)(Zk − Zk|k−1)
T} (B.21)

Using equation (B.8) and (B.21), the smoother equation with lag-one covariance of

Xk and Zk−1 is derived as follows:

Mxz
k|N =E{(Xk −Xk|N)(Zk−1 − Zk−1|N)

T}

=(I −KkC + Jx
kAK

x
kC)E[(Xk −Xk|k−1)(Zk−1 − Zk−1|k−1)

T ]
︸ ︷︷ ︸

Mxz
k|k−1

+

Jx
kBCoK

z
kCo · E[(Zk − Zk|k−1)(Zk−1 − Zk−1|k−1)

T ]
︸ ︷︷ ︸

Mz
k|k−1

+

Jx
k {E[(Xk+1 −Xk+1|N)(Zk − Zk|N)

T ]
︸ ︷︷ ︸

Mxz
k+1|N

−

A · E[(Xk −Xk|k−1)(Zk − Zk|k−1)
T ]

︸ ︷︷ ︸

Pxz
k|k−1

−

BCo · E[(Zk − Zk|k−1)(Zk − Zk|k−1)
T ]

︸ ︷︷ ︸

P z
k|k−1

}Jz
k−1

T

(B.22)

Finally, the equation for Mxz
k|N as:

Mxz
k|N =(I −Kx

kC + Jx
kAK

x
kC)(AP xz

k−1|k−1 +BCoP
z
k−1|k−1) + Jx

kBCo·

Kz
kCoAoP

z
k−1|k−1 + Jx

k (M
xz
k+1|N −AP xz

k|k−1 −BCoP
z
k|k−1)J

z
k−1

T
(B.23)

B.3 Detailed derivation of equation (3.47)

To calculate the lag-one covariance smoother forXk, first, the lag-one covariance filter

for time step k = N is derived as:

Mx
N |N =E[(XN −XN |N)(XN−1 −XN−1|N)]

=E{[(I −Kx
NC)(XN −XN |N−1)−Kx

N ỹN ][(XN−1 −XN−1|N−1)−

Jx
N−1K

x
NC(XN −XN |N−1)− Jx

N−1K
x
N ỹN ]}

=(I −Kx
NC)[Mx

N |N−1 − Pt|t−1(J
x
N−1K

x
NC)T ]−Kx

NΣỹ(J
x
N−1K

x
N)

T

(B.24)

Then, to compute the lag-one covariance smoother Mx
k|N , the smoother equations for

Xk and Xk−1 are rearranged as follows:

(Xk −Xk|N) + Jx
kXk+1|N =(Xk −Xk|k) + Jx

kXk+1|k (B.25)
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(Xk−1 −Xk−1|N) + Jx
k−1Xk|N =(Xk−1 −Xk−1|k−1) + Jx

k−1Xk|k−1 (B.26)

Then, multiply the left-hand side terms of these two equations, and equate that to

the corresponding result of the right-hand side terms. By taking jointly expectation

of both sides over all the random variables including X1:N and Z1:N with all possible

realizations of Y1:N , U1:N , U
o
1:N as well as using the following equations based on the

projection theorem [54]:

E[(Xk −Xk|N)X
T
k|N ] = 0

E[(Xk−1 −Xk−1|N)X
T
k+1|N ] = 0

E[(Xk−1 −Xk−1|k−1)X
T
k|k−1] = 0

E[(Xk−1 −Xk−1|k−1)Z
T
k|k−1] = 0

E[(Zk − Zk|k−1)X
T
k|k−1] ≈ 0

(B.27)

we have the left-hand side of the joint expectation equation as:

left-hand side =E[(Xk −Xk|N)(Xk−1 −Xk−1|N)
T ]+

Jx
kE[Xk+1|NX

T
k|N ]J

x
k−1

T
(B.28)

and right-hand side of the joint expectation equation as:

right-hand side =(I −Kx
kC + Jx

kAK
x
kC)E[(Xk −Xk|k−1)(Xk−1−

Xk−1|k−1)
T ] + Jx

kBCKz
kCo ·E[(Zk − Zk|k−1)(Xk−1−

Xk−1|k−1)
T ] + Jx

kA ·E[Xk|k−1Xk|k−1
T ]Jx

k−1
T+

Jx
kBCo · E[Zk|k−1Xk|k−1

T ]Jx
k−1

T

(B.29)

Using the following equations based on projection theorem [54], we have the following

expression:

E[Xk+1|NX
T
k|N ] =E[Xk+1X

T
k ]−E[(Xk+1 −Xk+1|N)(Xk −Xk|N)

T ]

E[Xk|k−1Xk|k−1
T ] =E[XkX

T
k ]− E[(Xk −Xk|k−1)(Xk −Xk|k−1)

T ]

E[Zk|k−1Xk|k−1
T ] =E[ZkX

T
k ]− E[(Zk − Zk|k−1)(Xk −Xk|k−1)

T ]

(B.30)
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The smoother equation for lag-one covariance of Xk and Xk−1 is derived as follows:

Mx
k|N =E[(Xk −Xk|N)(Xk−1 −Xk−1|N)

T ]

=(I −Kx
kC + Jx

kAK
x
kC)E[(Xk −Xk|k−1)(Xk−1 −Xk−1|k−1)

T ]
︸ ︷︷ ︸

Mx
k|k−1

+

Jx
kBCKz

kCo · E[(Zk − Zk|k−1)(Xk−1 −Xk−1|k−1)
T ]

︸ ︷︷ ︸

Mzx
k|k−1

+

Jx
k {E[(Xk+1 −Xk+1|N)(Xk −Xk|N)

T ]
︸ ︷︷ ︸

Mx
k+1|N

−AP x
k|k−1 − BCo·

E[(Zk − Zk|k−1)(Xk −Xk|k−1)
T ]

︸ ︷︷ ︸

P zx
k|k−1

}Jx
k−1

T

(B.31)

where,

Mx
k|k−1 =E{[A(Xk−1 −Xk−1|k−1) +BCo(Zk−1 − Zk−1|k−1) + wk−1]· (B.32)

(Xk−1 −Xk−1|k−1)
T}

As: E[wk−1(Xk−1 −Xk−1|k−1)
T ] = 0, this will result

=APk−1|k−1 +BCoP
xz
k−1|k−1

T

Mzx
k|k−1 =E{[Ao(Zk−1 − Zk−1|k−1) + ũk−1](Xk−1 −Xk−1|k−1)

T} (B.33)

As: E[ũk−1(Xk−1 −Xk−1|k−1)
T ] = 0, this will result

=AoP
xz
k−1|k−1

T

P zx
k|k−1 =P xz

k|k−1
T (B.34)

=(AP xz
k−1|k−1A

T
o +BCoP

z
k−1|k−1A

T
o )

T

Finally we have the concise equation for Mx
k|N as:

Mx
k|N =(I −Kx

kC + Jx
kAK

x
kC)(APk−1|k−1 +BCoP

xz
k−1|k−1

T )+

Jx
kBCKz

kCoAoP
xz
k−1|k−1

T + Jx
k {M

x
k+1|N −AP x

k|k−1−

BCo(AP
xz
k−1|k−1A

T
o +BCoP

z
k−1|k−1A

T
o )

T}Jx
k−1

T

(B.35)
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Appendix C

Smoothing step for the lag-one
covariance of LPV EIV state space
model

The smoothing step for the lag-one covariance

The lag-one covariance smoother for the multiple state space model is defined as:

M j

k|N ,Cov[Xk, Xk−1|φN , Ik = j]

=E[(Xk −Xj

k|N)(Xk−1 −X
(∗,j)
k−1|N)

T ]
(C.1)

where, Xk|N denotes the estimator of Xk given variables Y1:N , U1:N , U
o
1:N , while xk|N

denotes the estimate of Xk given one of the realizations as {y1:N , u1:N , u
o
1:N}, and

similarly for other variables.

For recursive calculation, we need to calculate the following expressions first:

M
(i,j,h)
k|N ,Cov[Xk, Xk−1|φN , Ik+1 = h, Ik = j, Ik−1 = i]

=E[(Xk −X
(i,j,h)
k|N )(Xk −X

(∗,i,j,h)
k−1|N )T ]

M
(i,j,∗)
k|N ,Cov[Xk, Xk−1|φN , Ik = j, Ik−1 = i]

=E[(Xk −X
(i,j,∗)
k|N )(Xk−1 −X

(∗,i,j)
k−1|N)

T ]

(C.2)

where, x
(i,j,h)
k|N and x

(∗,i,j,h)
k−1|N are introduced for the calculation of lag-one covariance

smoother, which are derived as:

x
(i,j,h)
k|N ,x

(i,j)
k|k + J

(i,j,h)
k [x

(j,h,∗)
k+1|N − x

(i,j,h)
k+1|k] (C.3)

x
(∗,j,h,g)
k|N ,xj

k|k + J
(∗,j,h)
k [x

(∗,h,g)
k+1|N − x

(j,h)
k+1|k] (C.4)
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where, x
(i,j,h)
k+1|k = Ahx

(i,j)
k|k + Bhuk; the smoother gain J

(i,j,h)
k is derived as:

J
(i,j,h)
k =C(Xk, Xk+1|φk, Ik+1 = h, Ik = j, Ik−1 = i)·

V (Xk+1|φk, Ik+1 = h, Ik = j, Ik−1 = i)

=P
(i,j)
k|k AT

h (AhP
(i,j)
k|k AT

h +Q)−1

(C.5)

the state smoother equations for both Xk and Xk−1 are rearranged by subtract-

ing both the sides of the equations (C.3) and equation (C.4) from Xk and Xk−1,

respectively, leading to:

(Xk − x
(i,j,h)
k|N ) + J

(i,j,h)
k x

(j,h,∗)
k+1|N = (Xk − x

(i,j)
k|k ) + J

(i,j,h)
k x

(i,j,h)
k+1|k (C.6)

(Xk−1 − x
(∗,i,j,h)
k−1|N ) + J

(∗,i,j)
k−1 x

(∗,j,h)
k|N = (Xk−1 − xi

k−1|k−1) + J
(∗,i,j)
k−1 x

(i,j)
k|k−1 (C.7)

where,

(Xk − x
(i,j)
k|k ) + J

(i,j,h)
k x

(i,j,h)
k+1|k = (Aj +K

(i,j)
k CjAj + J

(i,j,h)
k AhK

(i,j)
k CjAj)·

(Xk−1 − xi
k−1|k−1) + J

(i,j,h)
k x

(i,j,h)
k+1|k−1 + (I +K

(i,j)
k Cj

J
(i,j,h)
k K

(i,j)
k Cj)wk−1 + (J

(i,j,h)
k K

(i,j)
k +K

(i,j)
k )ỹk

(C.8)

By multiplying the left-hand side terms of (C.6) and (C.7), and equating that to

the corresponding result of the right-hand side terms, then taking joint expectation for

both sides over all the random variables including X1:N with all possible realizations

of Y1:N , U1:N , U
o
1:N , leads to new expression for left-hand side as:

Left-hand side =E[(Xk −X
(i,j,h)
k|N )(Xk−1 −X

(∗,i,j,h)
k−1|N )T ]+

J
(i,j,h)
k E[X

(j,h,∗)
k+1|NX

(∗,j,h)
k|N

T
]J

(∗,i,j)
k−1

T (C.9)

and the new expression for right-hand side is given as,

Right-hand side =(Aj +K
(i,j)
k CjAj + J

(i,j,h)
k AhK

(i,j)
k CjAj)E[(Xk−1 −X i

k−1|k−1)·

(Xk−1 −X i
k−1|k−1)

T ] + J
(i,j,h)
k E[X

(i,j,h)
k+1|k−1X

(i,j)
k|k−1

T
]J

(∗,i,j)
k−1

T

(C.10)

Further, the following equations are obtained based on the projection theorem [54],

yielding:

E[(Xk −X
(i,j,h)
k|N )X

(∗,j,h)
k|N

T
] = 0

E[(Xk−1 −X
(∗,i,j,h)
k−1|N )X

(j,h,∗)
k+1|N

T
] = 0

E[(Xk−1 −X i
k−1|k−1)X

(i,j,h)
k+1|k−1

T
] = 0

E[(Xk−1 −X i
k−1|k−1)X

(i,j)
k|k−1

T
] = 0

(C.11)
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It is also easy to derive following equations based on the projection theorem [54]:

E[(Xk+1 −X
(j,h,∗)
k+1|N)X

(∗,j,h)
k|N

T
] =0

E[(Xk −X
(∗,j,h)
k|N )X

(j,h,∗)
k+1|N

T
] =0

⇒ E[XkX
(j,h,∗)
k+1|N

T
] =E[X

(∗,j,h)
k|N X

(j,h,∗)
k+1|N

T
]

E[(Xk −X
(i,j)
k|k−1)X

(i,j,h)
k+1|k−1

T
] =0

E[(Xk+1 −X
(i,j,h)
k+1|k−1)X

(i,j)
k|k−1

T
] ≈0

⇒ E[Xk+1X
(i,j)
k|k−1

T
] ≈E[X

(i,j,h)
k+1|k−1X

(i,j)
k|k−1

T
]

(C.12)

Therefore:

E[(Xk+1 −X
(j,h,∗)
k+1|N)((Xk −X

(∗,j,h)
k|N )T ] =E[Xk+1X

T
k −X

(j,h,∗)
k+1|NX

T
k −

(Xk+1 −X
(j,h,∗)
k+1|N)X

(∗,j,h)
k|N

T
]

=E[Xk+1X
T
k ]− E[X

(j,h,∗)
k+1|NX

(∗,j,h)
k|N

T
]

E[(Xk+1 −X
(i,j,h)
k+1|k−1)(Xk −X

(i,j)
k|k−1)

T ] =E[Xk+1X
T
k −X

(i,j,h)
k+1|k−1X

T
k −

(Xk+1 −X
(i,j,h)
k+1|k−1)X

(i,j)
k|k−1

T
]

=E[Xk+1X
T
k ]− E[X

(i,j,h)
k+1|k−1X

(i,j)
k|k−1

T
]

(C.13)

By rearranging (C.13), we have:

E{X(j,h,∗)
k+1|NX

(∗,j,h)
k|N

T
} =E[Xk+1X

T
k ]− E[(Xk+1 −X

(j,h,∗)
k+1|N)((Xk −X

(∗,j,h)
k|N )T ]

︸ ︷︷ ︸

M
(j,h,∗)
k+1|N

E[X
(i,j,h)
k+1|k−1X

(i,j)
k|k−1

T
] =E[Xk+1X

T
k ]− E[(Xk+1 −X

(i,j,h)
k+1|k−1)(Xk −X

(i,j)
k|k−1)

T ]
︸ ︷︷ ︸

M
(i,j,h,∗)
k+1|k−1

(C.14)

where,

M
(i,j,h,∗)
k+1|k−1 =E{[Ah(Xk −X

(i,j)
k|k−1) + wk](Xk −X

(i,j)
k|k−1)

T}

=AhE[(Xk −X
(i,j)
k|k−1)(Xk −X

(i,j)
k|k−1)

T ]

=AhP
(i,j)
k|k−1

(C.15)

Thus, the smoothing lag-one covariance is derived as:

M
(i,j,h)
k|N =(Aj +K

(i,j)
k CjAj + J

(i,j,h)
k AhK

(i,j)
k CjAj)P

i
k−1|k−1+

J
(i,j,h)
k (M

(j,h,∗)
k+1|N − AhP

(i,j)
k|k−1)J

(∗,i,j)
k−1

T (C.16)
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The starting point smoother M
(i,j,∗)
N |N is derived as:

M
(i,j,∗)
N |N =E[(XN −X

(i,j)
N |N)(XN−1 −X

(∗,i,j)
N−1|N)

T ]

=E{[(Aj −K
(i,j)
N CjAj)(XN−1 −X i

N−1|N−1) + (I −K
(i,j)
N Cj)wN−1−

K
(i,j)
N ỹN ][(I − J

(i,j)
N−1K

(i,j)
N CjAj)(XN−1 −X i

N−1|N−1)−

J
(i,j)
N−1K

(i,j)
N CjwN−1 − J

(i,j)
N−1K

(i,j)
N ỹN ]

T}

=(Aj −K
(i,j)
N CjAj)P

i
N−1|N−1(I − J

(i,j)
N−1K

(i,j)
N CjAj)

T−

(I −K
(i,j)
N Cj)Q(J

(i,j)
N−1K

(i,j)
N Cj)

T +K
(i,j)
N R(J

(i,j)
N−1K

(i,j)
N )T

(C.17)

A similar collapsing form as [48], the collapsed distributions for M
(i,j,∗)
k|N and M j

k|N

are given as:

M
(i,j,∗)
k|N =

M∑

h=1

P (Ik+1 = h|Cobs)[M
(i,j,h)
k|N + (x

(i,j,∗)
k|N − x

(i,j,h)
k|N )(x

(∗,i,j)
k−1|N − x

(∗,i,j,h)
k−1|N )T ]

M j

k|N =

M∑

i=1

P (Ik−1 = i|Cobs)[M
(i,j,∗)
k|N + (xj

k|N − x
(i,j,∗)
k|N )(x

(∗,j)
k−1|N − x

(∗,i,j)
k−1|N)

T ]

(C.18)
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