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o Abstract
e

A t> ;~di-ensional-prin- acoustic finite element vas
dovqlopoé t;“-odol cqyit} resonances of three axilylioiric
combustion chalbor~cyl§pd§t configurations. The louist
~cavity resonances vere examined in detail as a function of
c}lindcr'dqpth. |

. Experimental po@,ls were constructed to caompeare
expcri-;ﬁtal r;sﬁlgi to the finite element results for both
cavity resonances and*:Bdo shapes for each configuration. In
dddi;ién, analytical theory for a cylindrical enclosure was
‘examined iﬁ so-e}&ctuilzhhgrecaont betwveen experimental,
fin?te eleﬁcnq and analytical results vas good for the
lovest mode.
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1. INTRODUCTION

1.1 Engine Knock Related to Acoustics

Knock in the internal combustion engine is a phenomenon
which has received considerable attention in the past.
Engine knock is described as gas vibrations caused by a
rapid pressure rise in the combustion chamber of the engine
(1,2,3). An audible noise or "ping"™ emanates from the engine
as a result of the vibrations of the gas-cylinder system &t
frequencies of the order of 5,000 Hz. A detailed discussion
of engine knock is given by Obert (2). He describes several
of the undesirable characteristics of engine knock, such as
engine component vibration, scrubbing action on the chamber
walls and localized overheating, vhich suggest that knock
should be avoided in the combustion engine. Knock prevention
has generated a need to determine some of the theoretical
characteristics of the knock phenome;on.

‘C.S. Draper (1) proposed a theory that engine knock was
related to the lowest acoustical cavity resonance of the
combustion chamber. braper considered an engine wvhich
consisted of a circular cylinde; vith flat ends at right
angles to the cylinder axis. His results indicated tﬁat the
knocking frequency of the engine vas tbe\tundancntal cavity
resonance of the combustion chamber. This vas an important
conclusion as it provided a means to predict the frequency

of engine knock by calculating the acoustical cavity



resonances of the combustion chamber-cylinder configuration.
This information is required for design of suitable knock
detection systems (4).

The results presented by Draper (1) were based on the
analytical solution of the wave equation for a cylindrical
enclosure as given by Morse (5). Many combustion chambers
are not simple cylindrical enclosures. The Internal
Combustion Engine (6), shows a selection of various
combustion chambers. Often, the diameter of the combustion
chamber differs from that of the engine éylinder. A; knock
occurs near.top dead center (2), see Figure 1.1, and
continues for a portion of the stroke, the combined geometry
of the combustion chamber and cylinder at various piston
positions (i.e. cylinder depths) must be stﬁdied to
completely describe the engine knock phenomenon. A study om
knock in spark ignition engines (3), mentions the dependence
of the knocking frequency on piston pésition shown by
earlier investigators (7). .

. The study of combustion chamber-cylinder

configurations, such as those shown in reference (6) is
extremely difficult using the method dcvcloped by Draper.

" The difficulty stems fto- the irreqular boundary of the
combustion chamber-cylinder configuration. The solution
provided by Drapor'vas for an axisymmetric cylinder solved
ang%ytically using the vave equation in cylindrical
co-ordinates vith the given boundary éonditionc. There are

inherent difficulties in describing a combustion chamber
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-cylinder configuration if the diamefer of the combustion
chamber differs from that of the cylinder. A technique which
lends itself to solving these types of problems is the use
of acoustic finite elements, as described by A. Craggs (8)
to abtain an approximate numerical éolution.

From the standpoint of cavitj resonances, diesel and
spark ignition engines are treated in the same manner, .by
considefing the geometry of the combustion chamber and
cylinder together. Because the cavity resonances are related
to the geometry considered, this analysis is concerned
mainly with the geometry of the combustion chamber-cylinder
 configurations rather than the engine operating conditions.
Consequently, the study considers air in enclosures at room
température. | .

1.2 Acoustic Finite llo-out'nodolling

Acoustic finite elements were presented in their
simplest form by G.M. Gladwell (9). A one-dimensional column
of air with rigid ends vas examined to evaluate the natural
frequencies using the finite element method. The finite
element approximations of the natural frequencies for the
one-dimensional problem were in good aqrginont with the
acoustic theory. This spurred further examination into the
usage of acoustic ligitc element modelling. f

The acoustic finite element method was extended to
three-dimensional problems by A. Craggs (8)}. Different

acoustic finite elements vere used to determine the natural

-
*



frequencies and mode shapes of complex shaped enclosures.
. Good agreement was shown between the finite‘element
predictions and experimental results.

Because of the relationship of engine knock to
acoustical cavity resonances (1), acoustic finite elements
were used to model combustion chamber configufations
(4,10,11), Théée studies shoved good agreement between
acoustic finite element model predictions and experimental
rasuits for various shapes of combustion chambers.

Hickling et al (4) proposed tLat additional
investigation should be done on the nodal patterns of the
cavity resonanc:s within the cylinder during a cycle, or, in
other words, as a function of cylinder depth. Craggs et al
(1) invegtigited the cavity resonances and mode shapes for
a Chevette engine combustion chamber as a function of

cylinder depth. This provided the inpefgs for this research.

1.3 Purpose of the Research

The purpose of this research is to examine the cavity
resonances of three axisymmetric combustion chamber-cylinder
configurations, see Pigure lfz; as a funiction of cylinder
dépth using acousgié finite clénon?ss The combustion
chambers have the same volume °' and ihc cylinders have the
sane @iaaotor. One co-buction chaubcr, Pigure 1.2a , has s
'largtt diameter than the cylinder. In Pigure 1.2b the
‘co-bustion chamber has the same dimtor as the cylinder and

‘The volumes of the combustion chambers were selected to
dopict 8 co-prcloion ratio = !. ©

-
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PFigure 1.2 Combustion Chamber-Cylinder Configurations



., in Figure 1;2c the comb%jé}on‘chamber‘has a smaller diameter
"than the cylinder. In each of the cases considered, several
of the natural frequencies for different cylinder deﬁths are
examined. The mode shape for the lowest mode is examined in
detail for each of ;ﬁg three cases at a small cylinder
depth. The form of the mode shape is needed in order to
obtain the best location for knock detectors. This resea;ch
is concentrated on the lowest mode because engine knock has
been shown to be related to the lowest acouét%gal cavity

resonance.,



2. ACOUSTIC THEORY

2.1 Bagsic Acoustic Theory

Some of the fundamental concepts which are discussed
throughout this report are those associated with standing
waves of sound in three-dimensional enclosures. An excellent
description of sound in enclosures is given by Morse (5). A
brief summary of some of the acobstical terminology follows.

Acoustic pressure is defined as the pressure in excess
of the ambient, see Figure 2.1. Zero acoustic pressure
indicates that there is no excess préssure. In acoustic
terms, a "nodal surface" is a three-dimensional surface
where the acoustic pressure is zero.

Sound is defined as fluctuations in the acoustic.
pressure due to some vibrating source. The vibrating source
creates compressions and rarefactions in the medium, in this
case air, which are defined as wave motion. The speed of
propagation of sound waves, in a given medium, is defined as
the velocity of sound. It is a function of ‘the density,
pressure and temperature of the medium. This study
concentrates on sound waves in air. The veiocity of sound in

air is given the symbol c:



Acoustic
Prnl{no

Ambient _ _
Pressure

Time

T :g‘r;i":J

Pigure 2.1 - Acoustic Pressure
/
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where

k = the ratio of specific heats of air = 1.4

R = the gas constant for air‘- 287 J/kg-°K

T = the absolute temperature = °C + 273 = °K

For this analysis, the results are given at T = 25 °C.
Therefore, ¢ is given the value 346.m/sec.

Three-dimensional enclosures containing air have normal
modes of vibration. If a sound source is placed within a |
three-dimensional enclosure, it will excite these modes of
vibration similar to the excitation of standing waves on a
string. These sound waves are a function of space (x,y,z)
and time (t). The normal modes of vibration of air in an
enclosure are variations in the acoustic pressure as a
function of space and time.

For this analysis, it is assumed that the enclosures
have perfectly smooth rigid walls. The boundary condition
for a rigid wall is such that air velocity perpendicular to
the wall is zero. The wave equation in rectangulaf .

co-ordinates (5) is given as:

2

R R

2
? oz

N

] (2.1.1)

2
at’

&
4

This is the partial differential equation of the acoustic
pressure p(x,y,z,t). The rigid wall boundary condition is

given as:

(2.1.2)



1

For the analysis of the combustion chamber-cylinder
configurations, the variation in the acoustic pressure as a
function of space only is used. The resulting eguation is
called the Helmholtz ;aﬁgtion. The Helmholtz equation can be
obtained from equation (2.1.1) using a separation of
variables technique. Therefo;e, the differential eguation
used in this analysis is given in terms of the Laplacian
operator as:

2

.Vp+(%)2

p=0 (2.1.3).

with the same boundary condition as given by equation

4

(2.1.2), or:
n-vwp=0 (2.1.4)

Using the above differential equation (2.1.3) and the‘
given boundary condition (ii7;4), the Helmholtz equation can
be solved analytically for certain enclosures. The acoustic
pressure p can be found in closed form solution as a
function of the spatial co-ordinates. Morse (5) deals
.specifically with the solution fpr rectangular and
cylindrical enclosures.

For a\rectangﬁlar cnc1osﬁre, the Helmholtz equation in

Cartesian co-ordinates is given as:



~N
~N
~N

3 wz
+ + 0(60 p=0 o (2.1.5)
z .

W |
»
Q|
«<
[ o4

The solution as given by Morse (5) with a harmonic time

variation ®xp(iwt) 1s:

x z
. €cos { x| cos £ cos [ 2
sin [wc ] sin f»c ) sin-r»c ] (2.1.6)

where tﬁé origin of the (x,y,z) co-ordinates is located at
the centre of the enclosure. Equation (2.1.6) describes the
acoustic pressure variation as a function of the spatial
co-ordinates (x,y,z). The values w.,w,,and v, represent the
natural circular frequencies of the waves in each of the
three directions.

For a cylindrical enclosure, the Helmholtz eguation 1in

- cylindrical co-ordinates is given as: .

2 2 2 42
) ,IF%g,lFa_%,a @) p-o (2.1.7)
ar 20 Y4

The solution as given by Morse (5) with a harmonic time’

variation exp(iwt) is:

cos z r
p =35 (me) cos [‘iz_] In ['"%_) (2.1.8)

vhere the origin is located in thz centre of one of the

4

.¢ircular ends of the cylinder. ation (2.1.8) describes
the acoustic pressure variation as a function of the spatial

co-ordinates (r,0,z). The values w, and w, represent the
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natural circular frequencies for waves in each of the thrée
directions (w, encompassing both the r and 6 directions).
The quantity J. represents the Bessel function which is
described in detail by Horse\(S). Since the Bessel function
is not used explicitly in this analysis, the reader is
referred to Morse (5) for further explanation if so
required.

Equations (2.1.6) and (2.1.8) give the acoustic
pressure variations for two different enclosures., These
acoustic pressure variations have natural frequencies and
mode shapes associated with them. For this analysis, the
combustion phambef-cy;inder configurations are examined as
rigid epclosures and the natural frequencies are referred to
as "cavity resonances”. The mode shapes are important in
establishing the location of zero acoustic pressure or
"nodal surfaces". For the exact solutions the mode shapes
are given b} the sin/cos function for the rectangular
solution (2:1.6)‘and by a cos/sin and Bessel function for
the cylindrical enclosure (2.1.8). V[

At this point, the problem of determining cavity
resonances for simple rigid enclosures has been de;cribed by
a differential equation and boundary condition in terms of
acoustic pressure. The solution yields natural circular
frequencies and mode shapes obtained in closed form for
rectangular and cylindéical enclosures.

Another important quantity in acoustic terms is the

energy associated with the acoustic pressufe waves. The
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energy of the sound wa can be broken down into potential
energy and kinetic energy (5). Using the derivation of
energy intensity for a plane wave, the average potential and
kinetic energies for a three-dimensional wave are as

follows:

2
Potential Energy = ! 2 I pdv (2.1.9)
2pC
volume

Kinetic Energy = ——lf- I (Vp)2 dv

2pw vol ume (2.1.10)
These equations represent the average energy of a
simple harmonit acoustic pressure wave of frequency f =
w/2%x. These energies together represent the total average
energy of sound waves in enclosures with rigid walls as
there are no dissipative agencies associated with the
pressure waves in rigid enclosures. The kinetic and

potential energies take on a significant meaning in the

finite element analysis.

2.2 Acoustic Theory as an Approximation to Complex
Geometries
Acoustic theory is extremely important in understanding
the concept of cavity resonances of enclosures. It is
particularly important to be able to compare the results of

numerical models to some exact solution, to establish bounds
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for the numerical results. The object of this analysis is to
model complex shaped combustion chamber-cylinder
configurations of which there is no known closed form
solution, to obtain cavity resonances and mode shapes. The
exact solution for rectangular and cylindrical enclosures
can be used to determine the convergence of ghe humerical
method by modelling these enclosures and comparing the
results to the exact solution. This procedure gives an
indication as to the accuracy of the acoustic finite element
models used. \

It is for this reason that the solution of the
Helmholtz equation for a cylindrical enclosure is used
repeatedly throughout this analysis, even for the‘combustion
chambers whose radii differ from that of the cylinder. The
exact solution ié used to eséablish upper and lower bounds
for the numerical results. In the three cases considered,
the combustion chamber and cylinder are axisymmetric
cylindrical enclosures joined together to form a more
complicated geometry (see Figure 1.2). At top dead centre,
when the cylinder depth is negligible, the solution should
be governed by the radius of the combustion chamber. This
establishes a bound for the numerical results based én the
analytical solution for a cylindrical enclosure with a
radius equal to that of the combustion chamber. As the
cylinder depth increases, such that the éylinder volume

dominates, the solution should be governed by the radius of

the cylinder. This establishes the second bound for the
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numerical results. In the first case, the mode shapes for
the combustion chamber should be similar to those for a
cylindrical enclosure. In the gecond case, because the
combustion chamber is present the mode shapes for a
cylindrical enclosure cannot be used as an approximation.
The effect of the combustion chamber on mode shapes of the
combined geometry is unknown. |
Rectangular and cylindrical enclosures will be dealt

with in some detail in the next two sections.

2.3v0n Rectangular Enclosures

Using equation (2.1.5) with the rigid wall boundary
condition, the solution for the acoustic pressure variation
"in a rectangular enclosure as given by Morse (5) is given by
equation (2.1.6). This leads to the following characteristic
values of the natural frequencies in Hertz which represent
the cavity resonances:
f. = n.,c/2L,
£, = n,c/2L, (2.3.1)

£, = n,c/2L, ?

This solution gives the characteristic values of a
rectangular enclosure with spatial orientation and
dimensions as shown in Figure 2.2. The lengths L,,L,, and L,

used to calculate the natural frequencies are as indicated.

- e - - -

*Note: n,, n,, and n, = 0, 1, 2 . . , When n is even, the
cosine function for the acoustic pressure variation is used.
When n is odd, the sine function is used (5). 2



Rectangular Enclosure

Figure 2.2 Dimensions and Co-ordinate Systema for a
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The frequency of a given mode as given by Morse (5) is:

R RD T e

Z

The frequency f in Hertz can be calculated from the
naturél frequencies w,, w,, and w, according to equation
(2.3.2) and knowing the velocity of sound in air at a given
temperature. A characteristic value sometimes used to
describe cavity resonances independent of c is (w/c)?.

The mode shapes for a rectangular enclosure are given
by Morse (5). A detailed description of the modes of a
rectangular enclosure is not given here as they are not used
explicitly in this analysis. The reader is referred to'Morse
(5) for a discussion of axial, oblique and tangential waves
which are combinations of the aforementioned cavity
resonances. The natural frequencies of rectangular
enclosures are used later to study the accuracy of the
acoustic finite element analysis compared to acoustic

theory.

2.4 On Cylindrical Enclosures . '

Using equation (2.1.7) with the rigid wall ﬁoundary'
condition, the solution for the acoustic pressure variation
in a cylindrical encosure as given by Morse (5) is given by
equation (2.1.8). This leads to the following characteristic

values of the frequency in Hertz:
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!

f, = n,c/2L,

(2.4.1)
f = a,,céZa

This solution gives the natural frequencies of a

cylindrical enclosure with spatial orientation and
dimensions as shown in Figure 2.3. The length L, and radius
'a' given in the equations (2.4.1) to calculate the
frequencieés are as indicated. The values of a,. are

solutions to the eguation

EN (2.4.2)

which are related to the Bessel function described in
equation (2.1.8). Tﬁe procedure by which the values of Gma
are obtained is explained in detailyby Morse (5). A table of
various values‘of'aﬁ, can be found in the same reference. .

For this analysis, a,. for the loweét four modes is used. In

" ‘Morse's derivation of a,. the subscripts 'm' and 'n' denote

the type of mode conéidered: 'm' represents the humber of
diametral nodal surfaces and 'n' represents the number of
radial nodal surfaces. A similar description of modes is
used in this an;lysil except three indices are used such
that the axial modes are included.

Before proceeding further, a description of the var

types of nodal suffaces-i|~required. FPigure 2.4 #llustr
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Pigure 2.4 Three Basic Mode Types in a Cylindrical

Enclosure
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the three basic types of modes present in a cylindrical
enclosure. Figure 2,4a has a diametral nodal plane which
extends throughout the cylinder with no variation in the z
direction. This is referred to a$ a circumferential mode.
Figure 2.4b has ; cylindrical nodal plane which extends
throughout the cylinde; with no variation in thé z
direction. This is referred to as a radial mode. Figure 2.4c
has a nodal plane in the centre of the cylinder in the z
direction. This is referred to as an axial mode. For each of
these modes, the ;cpustic pressures on either side of the
nodal surface have opposite phases similar to that of s
stending waves in a closed tube.

The three types of modes are referred to throughout

this analysis in the following manner:

Mode (mnz)

wvhere
m = number of diametral nodal surfaces (circumigtential
 mode)
n = number of radial nodal surfaces (radial mode)
z = number of axial nodal surfaces (axial mode)’®

As the valbes of 'm', 'n' and 'z' can each take on
integer values from 0 to =, combinations of the different

]

basic types of modes can exist. Hoiever, in this analysis,

: Nodil surfaces are surfaces of zero acouitic~pressurc.
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which concentrates on the lowest.modes, these combined modes
are not considered. Mode (000) is the rigid enclosure mode
which has a frequency of 0 Hz and is not considered to be
the lowest mode of concern.

The circumferential and radial modes, as seen from
eguation (2.4.1) are dependent on the radius of the
cylindrical enclosure. The axial modes are dependent on the
axial length. For this analysis, the modes examined are the
first three circumfegential modes, the first radial mode and
the first axial mode. Figure 2.5 shows cross sectional views
of these modes in their relative order of magnitude. The
nodal surface in three dimensions is projected as a dashed
line in the plane cross section.

For the cylindrical enclosure, the lowest mode is the
first circumferential mode (100) with one)nqégl diameter as
shown in Figure 2.5a. Figure 2.5a shows a pai} of modes for
this frequency which are orthogonal to each other. From the
analysis.given by Morse (5) the circumferential modes occur
in orthogonal pairs at the same frequency. Physically, this
would mean that the location of the diametral nodal line is
not fixed. ‘

The next lowest mode is the second circumferential mode
(200) which has two nodal diameters. Mode (200) and its
orthogonal countetpart are illustrated in Figure 2.5b. The
third mode is the first radial mode (010) which has one
radial nodal surface as shown in Pigure 2.5c.‘This mode

exists vithout an orthogonal counterpart. Mode (300) is the
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fourth mode which is a circumferential mode with three nodal
diameters. This mode exists as a pair of orthogonal modes,
of the same frequency similar to the other twé
circumferential modes. The axial mode (001) is placed fifth
in order of magnitude. However, this mode is dependent on
the axial length rather than the radius. Therefore, its
order of magnitude varies depending on the length of the
cylindrical enclosure considered. This becomes important in
the analysis of the combustion chamber-cylinder
configurations where the cylinder depth changes such that
the relative order of the modes could change. Also, in more

complicated geometries such as complex combustion

‘chamber-cylinder configurations, purely radial,

circumferential or axial modes may no longer exist.

At this point, the types of modes which exist in a
cylindrical enclosure have been}déscribed. it is also
necessary to obtain a numerical ‘value for the frequenciés
which are associated with these modes. Using the values of
an,, obtained from Morse (5), the frequencies in Hertz are

given as follows for each mode:
Mode (100) £ = 0.5861 c/2a - . \

Mode (200) f = 0.9722 c/2a \
. (2.4.3)

Mode (010) £ = 1,2197 c/2a

”
L3
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Mode (300) f = 1.3373 c/2a

Mode (001) f = c/2L

These values are provided for a cylindrjical enclosure
of length L and radius 'a’'. A more detailed description of
modes in c}lindrical enclosures is given by Morse (5). For
t;is analysis these modes or some combination thereof may be

expected for the combustion chamber-cylinder configurations

given,



3. FINITE ELEMENT THEORY !

s

3.1 Basics

It 1s essential, 1n a study using acoustic finite
elements, to have some knowledge of the finite element
technique, in general. There are basic definitions which are
used throughout the literature on finite elements which
apply to this analysis. Three references have been used to
obtain information on the finite element method, in general
(12,13,14)l Much of the work in these referéhceé 1s credited
to various other authors.

It has been shown earlier that a.continuum such as air
in an enclosure can be represented by a governing equation
and boundary condition (equations (2.1.3) and (2./1.4)) which
often cannot be solved using analytical methods due to some
irregular geometry. The idea behind finite element modelling
of a continuum is to approximate the solution domain of the
irregular geometry using a number of smaller regular shaped
geometries (subdomains) such as cuboids, tetrahedrons or
pyramids, and thereby approximate the soiution to the
governing equation and boundary condition using these
subdomains. These smaller reqular shaped entities are called
elements. -

In a contifuum such as air in a rigid enclosure the
unknown solution is the acoustic pressure variation

throughout the enclosure. A continuum such as this is

27
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composed of a infinite number of unknowns. Using finite
elements, a continuum can be represented by an assemblage of
elements which contain @ finite number of unknowns (12).

The element 1s assigned a given number of nodes which
represent the values of the unknown solution. For example,
1f- a cuboid element is selected with nodes at each corner,
eight values for the unknown variable can be found if one
unknown per node 1s sought. In the analysis of combustion
chamber-cylinder configurations, a knowledge of the acou#tic
pressure at various nodes provides an approximate solution
to the problem.\ln finite element terminology, in «ithis case,
the acoustic pressure p, which is a scalar quantity, is the
field variable.

There are numerous types of elements presented in the
literature on finite elements. Pafec (15) and Zienkiewicz
(12) give excellent references on the types of elements that
can be used for different types of problems. The type of
element which is selected is usually dependent on the
desired accuracy of the solution, the geometry under
consideration and even the availability of computer storage
in solving the final matrix equatiops. Often, an element is
used from the literature because its behaviour has been
extensively studied. An element is said to be
'isopsrametric' if it is capable of being distorted in a
particular fashion. If the shape function used to distort an
element is the same function used to approximate the field

variable, the element is isoparametric.
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Once the element type is chosen, an interpolation
function is selected to satisfy certain continuity
requirements. The interpolation function is the assumed
approximation of the field variable over the element
expressed in terms of the nodal values of the field
variable. In this analysis, the interpolation function is a
polynomial which is easy to integrate and differentiate. The

~.degree of the ‘interpolation polynomial depends on the number
of nodes as well as the number of unknowns per node to
satisfy continuity. Zienkiewicz (12) and Heubner (13) give
detailed information from earlier work by other
investigators on commonly used finite elements and their
interpolation functions. The continuity requirements are
described in these references on finite elements for the
general case. Continuity requirements must be met so that
the approximate solution converges to the exact solution as
the number of elements increases.

Before discussing continuity requirements further, the
relationship between the governing equation and the
individual finite element must be found. Generally,
throughout the literature on finite elements, there are four
methods which are used to establish the finite element
equations or matrix equations which represent the governing
equation: 1) the direct approach, 2) Galerkin's method, 3):
the variational approach and 4) the energy method (13). The
method used for deriving the matrix equations depends on the

nature of the problem. The variational procedure is
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discussed here in some detail to give a brief overview 6(
the mathematical nature of the finite element sélution.

The variational procedure for deriving the finite
element equations from the governing equation yields a
volume integral which is called a functional. Tﬁis
functional represents the governing differential equation
and boundary condition. In terms of the calculus of
variations, if this functional is forced to have a
stationary value, the unknown function which yields this
stationary value is the approximate solution to the
differential equation and boundary condition.

The functional 1s made stationary by taking the first
variation and setting this equal to zero. This yields a set
of matrix equations for the solution of the problem. The
matrix eguations contain volume integrations of the terms of
the interpolation polynomial which are usually evaluated
using numerical integration techniques.

The continuity requirements depend on the order of the
derivatives appearing in the functional. The following
continuity requiréments for the interpolation function for
functionals with (r+1)th derivatives must be met:

1) C'continuity on element interfaces

(Fe})
2) C continuity within an element

In addition to satisfying the continuity requirements,
the numerical integration technique must be selected to

evaluate the integrals in the finite element equations



31

within certain limits of accuracy. According to Cook (14),
on the basis of previous work, if the numerical integration
scheme evaluates the volume of the element exactly, this is
an adequate intégration scheme to assure convergence if the
continuilty requirements have been satisfied.

The matrix equations for a finite element rspreseﬁt the
properties of an element according to the governing eéuation
and boundary condition. To represent the entire continuum,
the elements are assembled together knowing that the field
variable is the same for common nodes of eleﬁents in the
assemblage.

The assembly procedure yields a set of matrix eqguations
which can be solved to obtain the unknown nodal values of
the field variable. This is the basic procedure for
obtaining a finite element solution to a given problem. An
eicellent reference giving detailed steps on finite element

solutions is given in (13).

3.2 Acoustic Formulation of the Finite Element Equations

To determine the cavity resonances of combustion
chamber-cylinder configurations, a solution to the Helmholtz
equation (2.1.3) for the given boundary condition (2.1.4)
must be obtained. The analytical solutions for rectangular
and cylindrical enclosures have been discussed in some
detail. A technique for establishing bounds for more complex
geometrical configurations has been provided in Section 2.2.

However, a more detailed description of the cavity
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resonances as a function of cylinder depth for complex
shaped combustion chamber-cylinder configurations has not
been established.

The finite element method has been described as a
method to approximate the solution to cértain differential
equations and boundary conditions. The procedure outlined in
Section 3.1 is used to obtain the acoustic finite element
5quations.

By applying variational principles to equation (2.1.3)
and satisfying the boundary condition equation (2.1.4), the

following functional is obtained in terms of thel:éoustic

Ziy
pressure p:

I(p) =% I [(vp)? - (-‘3)2 #] dv (3.2.1)
volume

This functional can be obtained using an energy approach as
indicated by Gladwell (9).

The finite element equations are derived from the
functional for one element. Often, the subscript (e) is used
to denote that the equations represent one element; however,
this notation will be suspended for this analysis. The
reader should keep in mind that the resulting matrix
equations represent an individual acoustic finite element.

In order to (ind a stationary value of the functional
(3.2.1), an approximate solution must Be assumeg for the
element (12). This approximate solution is given in‘terms of

the interpolation polynomial described in Section 3.1, which



33

is chosenrto satisfy the continuity requirements. For the
acoustic problem, the interpolation function or the assumed
approximation for the acoustic pressure variation should
have

1) C° continuity on element interfaces, and

2) C' continuity throughout the element.

C°® continuity exists if the field variable, acoustic
pressure p, is continuous at element interfaces. C'
continuity exists if the first derivatives of the field
variable are continous, in addition to the field variable
itself. This is the criterion which is used to select the
interpolation polynomial for the acoustic finite element
formulation. The interpolation polynomial'is usually treated
generally for the deve}opment of the matrix equations, and
is referred to as a rov vector LN/ . The approximation for

the acoustic pressure, then, takes the form:
p=|N] {p} . (3.2.2)

vhere {p}] is 8 column vector representing the unknown
acoustic pressure at each node of the element.

To minimize the functional I(p) in equation (3.2.1),
the first variation of the functional is set to zero as

described in Section 3.1.

2l (p) .
5{2 o (3.2.3)
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is used for i = 1,2, . . . m wvhere 'm' is the number of
nodes in the element.

Substituting equation (3.2.2) for the acoustic pressure
in equation (3.2.1) and performing (3.2.3) the following

matrix equations for an element are obtained:

([s] - @)% (p)) 0} = 0

(3.2.4)
vhere
aN, aN. aN. oN oN. OoN
S = 1_.14-—1—i+—‘-—-1 dv
ij X Ax dy Iy 3z 9z
vol ume
(3.2.5)

Py ® I (NNy) dv

volume

These are the finite element>equation5'for an acoustic
element in Cartesian co-ordinates (x,y,z). For this
analysis, curved elements are needed to represent the curved
boundaries of the combuétion chamber-cylinder A |
configurations. This transformation necessitates formulating
the acoustic finite element equations in terms of a natural
co-ordinate system ({,7n,$). The transformation is a Jacobian
transformation of a curved element in a global co-ordinate
system (x,y,z) to a2 regular shaped element in a natural
co-ordinate system ({,n,$) (see Figure 3.1) . This

—_

transformation is described by B.M. Irons in (12). To
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Arbitrary shape in global cartesian
co-ordinates (xy,z)
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}

Reguilar shape in natural
co-ordinates (I,ag)

Pigure 3.1 Jacobian Transformation
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summarize, the global co-ordinate derivatives are found in

terms of the natural co-ordinates in the following manner:

X . 13

N L My : (3.2.6)
dy b an

N Ny

2 14

N RN

RRZ }

3

AR
v R . . . .
ThJ&Qolume integral is also transformed in the following

manner:

dxdydz = det [J] d&dndg ' (3.2.7)

In the above analysis [J] is the Jacobian mafrix, (gl
is the inverse of igigJacobian matrix and det[J] is the
determinant of the obian matrix. The Jacobian matrix is

formulated in the following mapner:

3k i 3 Yi 3 i

aN N, W (3.2.8)
(o] ¢ zé'rTi"‘i fin"’i’:ﬁzi

Lg% g Yilta A
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wWhen the isoparametric formulation is used, as
discussed in Section 3.1, 'NJ, which is the shape function
in (3.2.6) and (3.2.8), is the same function used as the
interpolation function for the acoustic pressure. The
summations in (3.2.8) take place on i where i = 1, 2, . .
m and 'm' is the number of nodes. * Applying this
transformation to the matrices in (3.2.5) gives the
following matrix expressions in terms of the natural

co-ordinate system ({,n,8) (see Figure 3.1):

J (L2 aN_J SN I 3N 2 |det[9])dednde

vo | ume
(3.2.9)
[P] = J (LN TN det [9)) dednd

vo lume

In this case, the interpolation function of the
acoustic pressure and the shape function are expressed in
terms of the natural co-ordinate system ({,n,{). Equations
(3.2.9) represent the matrices which describe an acoustie
finite element in terms of the ifiterpolation function N J.
The\interpolation function can be broken down in the |
following form: |

‘* x, y, and z represent the global co-ordinate values of the.
nodes.
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LN] = LF] () (3.2.10)

N .
i

The interpolation function LNJ is expressed as the product
of a row vector LFJ and an inverse matrix [G] of the natural
co-ordinates (!(,n,%) of each of the nodes expressed in terms
of the polynomial LFJ. This derivation of the interpolation
function is explained in more detail in (13). In the
derivation of the equations for a particular element, (see
Section 4.1), the transforhations are more easily )

7
understood. Substituting the expression for INJ given in

3\

equation (3.2.10) into the matrix eguations (3.2.9) gives
. AN

the following result:

5= | ey L RS T g & S el

vo 1 ume

det[J]) d&dndg VB (3.2.11)

(] = j (LeTLFITLF] (67 \det [9] dedndc

volume . o ",

These matrices represent the acoustic finite element

properties for an individual acoustic element. Matrix [s]
. \

represents a volume 1ntegral of the square of the gradient
of the acoustic pressure. Matrix [P] represents a volume
integral of the square of the acoust1t pressure. Going back

to the energy considerations of a sound wave in Section 2.1,

Y

\
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S

the [S] matrix representg the kinetic energy of an elemental
enclosure and the [P] m;§iix represents the potential energy
of an elemental enclosure. This result was obtained directly
by Gladwell (9) using energy considerations only.

Once the element mafrices are obtained, the elements
can be assembled together summing up the contributions of
kinetic energy and potential energy of common nodes. In this
analysis, a computer sybroutine is used to assemble elements
togethér. Once the elemegts are assembled together a_ kinetic
energy matrix and potential energy matrix are obtained which
represent the entire enclosure with rigid boundaries. The
matrix equation which is solved to obtain the acoustic
cavity resonances (eigenvalues) of the enclosure and their

associated mode shapes (eigenvectors) is:
wy2 -
([)rﬁ.- (z)" [P1) {p} = 0 (3.2.12)

This is an eigenvalue problem which is solved using a
standard eigenvalue subroutine. The eigenvalues are obtained
in terms of the non-dimensionalized natural frequency
(w/c)?. The order of the square matrices [S] and [P] is
dependent on the number of nodes describing ‘the total
enclosure. This is the number of degrees of freedom of the
solution which determines the number of eigenvalues and

eigenvectors.



4. DEVELOPMENT OF ACOUSTIC ELEMENT PR15

4.1 Einite Element Equations for PR15

For the analysis of the combustion chamber-cylinder
configurations, a three-dimensional 1soparametric prism
element wasvchosen to model the enclosures. The element is
shown in Figure 4.1 , being referred to as element PRI15.
This element has fifteen nodes, or 1n other words, fifteen
degrees of‘freedom. The element was chosen because its
isoparametric form can easily model a pie shape.®

The i1nterpoclation function for elemenf PR15 was derived
similar to the procedure given by eqguation "(3.2.10). The
interpolation function was not used directly in computing
the finite element equations, but rather the technigue

described in Section 3.2 was used where

N] = [F] (6] ECRRE

The polynomial LF! was one used by Pafec (15). LFJ is a row
«

vector expressed in terms of the natural co-ordinates

(¢,n,8) as follows:

LFl=Lientlennlencecen @ enieednd]  (41.2)

* This is a desirable characteristic for modelling
three-dimensional axisysmetric cylinders.

40 '
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Limits of n; 0< <1
Limitsof ¢; 1< =<1

Figure 4.1 Element PR15 in Natural Co-ordinates

41



42

Figure 4.1 shows element PR15 in the (¢,7n,%)
co-ordinate system. The nodes are numbered in a specific
order such that the the [G] matrix given in eqguation (4.1.2)

was evaluated in the following manner:

2 2 2 2 2
M M 4 MG O 000 G GG vy &g

(6] -

¢

2
15 Ms b1 L57ys

Mslis

(4.1.3)

S

The subscripts of the natural co-ordinates in the [G] matrix
correspond to the node numbers in Figure 4.1. This system of
numbers wés used so that a computer subroutine could be
written to evaluate the element properties for numerous
elements'by repeatedly using this scheme. The matrix [G] is
a 15 x 15 matrix containing the natural co-ordinates. The
inverse of this matrix was obtained using a standard
computer subroutine.

To evaluate the element matrices given in eguations
(3.2.11), which consist of volume integrals, a numerical
integration scheme was used. Instead of the traditional
numerical integration schemes for a triangle presented in

references on finite elements (13), a modified approach vas

implemented.
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The integration scheme is shown in Figure 4.2. The
element triangular face was subdivided in the tn plane, see
Figure 4.2a, into 16 triangles of equal area. The value.of
the polynomial LFJ was evaluated at the centroid of each of
the triangles and multiplied by a weighting factor. The
weighting factor was equal to 1'/16 of the area of the
triangular face. In the { direction, see Figure 4.2b, a
3-point Gaussian quadrature (16) was used to evaluate the
pclynomial. The integration séheme allowed the volume
integrals for the finite element eguations to be evaluated
numerically with computer subroutines.

The values of the polynomial LFJ were calculated at
each of the integration points on three {n faces as shown in
Figure 4.2b. The Jacobian matrix [J], the inverse Jacobian
and the determinant of the Jacobian were also evaluated at
each of the integration points. Standard computer
subroutines are used to evaluate the inverse matrix and
determinant. The values of the parameters in the volume
integral of the matrices given in equation (3.2.11) were
evaluated at each integration point and the results summed
together. The volume integrals can then be interpreted as a

summation in the following form:

3 16
[s]=z 1 [6 ]l (€ ny ck) (E n; ck) (& n; ck)l
k=1 i=1]

) [J(g; ny &) ][J(E n; &)1 l__é—( n; &) an (€ n; ¢,)
A
g% (Ei ni Ck)_l [G] det [J(Ci "i Ck)] Hi“k
3 16 _
PY=1 1 (6707 [FGgny g ITLFGE m e ) 16T (avie)
VT getfa(e, ng g )N M,
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These matrices give the acoustic properties of element
PR15. By using element PR15 evaluated in natural
co-ordinates transformed from global co-ordinates (x,y,z),
computer subroutines were written to obtain the matrices

given in equations (4.1.4).

4.2 Behaviour of Element PR1S

An acoustic problem is set up in a global co-ordinate
system (x,y,z). To illustrate the use of element PR1S, a
rectangular enclesure 1is presented composed of two PR15
elements. Figure 4.3 shows a cuboid with sides of length 1
mm.

The following information is required to calculate the
cavity resonances and mode shapes by formulating the [S] and
[P] matrices according to equations (4.1.4) through the use
of the subroutines in Appendix 1.
f.(x,y,z) co-ordinates of each node, according to the number
assigned to the node in Figure 4.1.

This is used in formulating the Jacobian matrix according to
equation (3.2.8).

2. A global assembly matrix specifying the location of each
of the nodes for the assembly process.

This is done according to Fhe numbering system prescribed in
the development of PR!S in Figure 4.1. This numbering system
is used because the co-pdter subroutines evaluate the
element in the natural co-ordihatc (¢€,9,8) system according

to this scheme.
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The computer subroutines were written to numerically
evaluate the [S] and [P] matrices for an element through two
callable subroutines. The [S] and [P] matrices for the
entire enclosure are assembled from the element matrices
using the global assembly matrix in an assembly subroutine.
For the problem of the rectangular enclosure the following
data 1s used:

X Y z

4 0.5 0.0 0.0

5 0.5 0.5 0.0

6 0.0 0.5 0.0~

7 0.0 0.0 0.5 |
8 1.0 0.0 0.5

9 0.0 1.0 0.5

10 0.0 0.0 1.0
11 1.0 0,0 1.0
12 0.0 1.0 1.0
13 0.5 0.0 1.0
14 0.5 0.5 1.0
15 0.0 0.5 1.0

Global Assc-bly Matrix (2,15) <
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-4

14 20 16 17 18 15 10 12 11 1. 7 3 4 5 2
22 16°20 19 18 21 13 11 12 93 7 6 5 8

The [S] and [P) matrices for each element are generated
by calling the subroutines ES and EP. zpe subroutines are
included in Appendix 1. |

For the problem un8er consideration, there are 22
degrees of freedom. After the two elements have been
assembled, the problem is solved by finding the eigenvalue
solution to equation (3.2.12) for the given assembled
matrices [S) and [P). The are 22 eigenvalues in terms of
(w/c)? and their a;sociated eigenvectors. The results can be
compared to acoustic theory by examining the frequencies for
a rectangular enclosure using equations (2.3.1). A rigid
_enclosure mode (w/c)? = 0.0000 Hz should appear in the
solution. The results for the rectangular enclosure are
given below for the first 3 modes compared to the exact

solution.

Numerical Exact
(w/c)? (w/c)?
00.0000 0.00
11.51343 9.86960

11.8377M : 9.86960
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11.99967 9.86960

This method of evaluatiné the natural frequencies of an
enclosure can be used to examine the convergence of element
PR15. By increasing the number of elements, one would expect
the solution to converge to the exact acoustic theory. From
earlier considerations, the convergence of an element is
dependent on the integration scheme, in addition to the
continuity requirements of the interpolation polynomial (see
Section 3.1). The volume of one PR15 element is evaluated
numerically at a value of 0.49%997973. This is slightly less
than the exact value of 0.500000000. This indicates that the
integration scheme is of a slightly lower order and the
convergence may not be quite as expected, ie. the solutions
may not converge monotonically from above (14).

The convergence of element PR15 was evaluated by
modelling a rectangular enclosure (§imi1ar to the example)
using an increasing number of elemeﬁts. The behaviour of
element PR15 was examined by increasing, the number of
elements first in the z direction and second in the y
direction. Figures 4.4\& 4.5 show the con{igurations used to
évaluate the convergence.

Por the z direction, Figure 4.4, from 1 to 7 elements
vere specified. The convergence results are presented in
Figure 4.4 for the first -mode. The percentage error is given
in terms of the exact solution for a rectangular enclosure
of the ngen dimensions. The solution converges from above,

but actually becomes sllghtly lower than the exact value for
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more than 5 elements.

For the y direction, Figure 4.5, from 1 to 5 elements
were specified. The convergence results are presented 1n
Figure 4.5 for the first mode. The percentage error is
given, similar to the z convergence, 1n terms of the exact
solution. The convergence in the y direction is slightly
different from that in the z direction because of the
integration scheme employed. The x direction convergence is
not evaluated. From considerations of the i1ntegration scheme
on the tn face, the convergence in the x direction should be

similar to that in she y direction.
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S. COMBUSTION CHAMBER-CYLINDER ANALYSIS

5.1 Description:of the Problem

The three combustion chamber-cylinder configurations
considered in this analysis are illustrated in Figure 5.1.
All three configurations have a cylinder with a radius of 50
mm. This radius was arbitrarily selected to be
characteristic of a spark ignition engine. Combustion
cﬁgmber 1, Figure 5.1la, has a radius larger than the
cylinder. Combustion chamber 2, Figure 5.1b, has a radius
equal to that of the cylinder. Combustion chamber 3, Figure
5.1c, has a radius smaller than that of the cylinder. In
each case, both combustion chamber and cylipder are
axisymmetric cylinders. The volumes of the three combustion
chambers are approximately equal.

The three configurations were selected to demonstrate
trends in the cavity resonances as a function of cylinder
depth and type of combustion chamber. The depth of the
cylinder was varied from 1 mm - 50 mm. The smallest depth
represents a top dead center configuration similar to that
which occurs as the piston approaches the top of its stroke
in an engine.

Combustion chamber 2 is of particular interest because
the radius of the cylinder is equal to that of the
combustion chamber. Therefore, this configuration is simply

a cylindrical enclosure. The analysis given in Section 2.4
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applies to this configuration and the analytical results can
be used to examine the validity of the numerical teghnique

(finite element method) which 1s used.

5.2 Analytical Approximation for Bounds )

The analysis for cylindrical enclosures can also be
used to establish bounds for the numerical resultg. Based on
the dimensions presented in Figure‘5.1, the bounds were
determined in terms of frequency. These values were
calculated from equations (2.4.3) for modes (100), (200},
(010), and (300) substituting for the radius 'a’, the radius
of the combustion chamber or cylinder as indicated earlier.
* The two bounds were joined together by a curve to give an
idea of the behaviour of the cavity resonances using the
approximation to compare to the numerical results.

The rigid enclosure mode was not considered and the
axial modes were not examined, at this point, because the
axial modes are a function of cylinder depth. This technique .
establishes bounds fof complex combustion chamber-cylinder

configurations and could even possibly be used as an

approximation.

5.3 Finite Element Models of Axisymmetric Combustion
Chamber-Cylinder Configurations
The three finite element models for the axisymmetric

combustion chamber-cylinder configurations are presented in
‘The radius of the combustion chamber gives one bound and
radius of the cylinder gives another.

A
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Figure S5.2. PR15 acoustic finite elements were used to model
one half of the combustion chamber-cylinder configurations
as indicated in Figure 5.2. The details of the actualvmodels
are not presented, that 1s, the global co-ordinates and
assembly matrices. The standard procedures described in
Section 4.2 were used to solve the problem.

The finite element models are slightly different for
each contiguration. Figure 5.2a shows a three-dimensional'
half chamber model composed cf 24 elements. The bottom 6
elements have a variable depth to model different cylinder
.depths. This model represents combustion chamber 1. Figure
5.2b shows a three-dimensional half chamber model composed
cf 12 elements. The bottom 6 elements have a variable depth
to represent the different cylinder depths. The second model
represents combastion chamber 2. Figure 5.2c shows a
three-dimensional half chamber model composed of 24
elements, where the bottom '8 elements have a variable
depth. This configuration repres?nts combustion chamber 3.

A computer program was used to evaluate the [S) and [P]
matrices for each combustion chamber-cylinder configuration
by assembling the individual elements shown in Figure 5.2.
The eigenvalue problem given by equation (3.2.12) was solved
for each system, for a given cylinder depth. The program was
rerun to obtain several different cylinder depths giving the
cavity resonances of each configuratidn as a function of

cylinder depth.
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The results for each combustion chamber-cylinder
configuration were obtained in terms of the
non-dimensionalized natural freguencies (w/c)?, which are
eigenvalues. These vaiues were converted to freqguency in
Hertzrusing c = 346 m/sec. The computer subroutine used
sorted the eigenvalues in order of magnitude from smallest
to largest. For éach configuration, the lowest value which
was obtained was (w/c)?® = 0.0000 which represents the rigid
enclosure mode. These values were not used as a cavity
resonance. Hence, the lowest mode considered was the lowest
value next to the rigid enclosure mode.

Because the theory proposed by Draper (1) suggests that
knock is related to the lowest cavity resonance, excluding
the rigid enclosure mode, only the first few cavity
resonances were examined. In terms of freguency, a range of
1,000-5,000 Hz was selected to examine the cavity resonances
for cylinder depths ra;ging from ' mm - S50 mm.

Ancother major concern in this analysis is the mode
shapes associated with the cavity resonances. From the
finite element results, eigenvalues and eigenvectors vere
obtained. The eigenvalues were the cavity resonances as
already discussed and the eigenvectors were the mode shapés.
The mode shapes give an indication of the acoustic pressure
variation within the modelled enclosure for a given
frequency. Values of the acoustic pressure vere obtained for

each node in the finite element model from the eigenvectors.
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The mode shapes from the finite element results for the
three different combustion chamber-cylinder configurations
were examined at one specific depth of 4.5 mm at the cross
section at the end of the cylinder. This depth represents a
small cylinder depth such as that which might occur near top
dead center. The finite element results show the acoustic
pressure variation along the diameter of the configuration
for a cross section taken at the bottom of the cylinder ® The
depth selected for the cylinder and the cross section
examined were based upon foreknowledge of the experimental
setup to allow for comparisons between the finite element

method and measured values.

5.4 Expori-entallyodéls of Axisymmetric Combustion
Chamber-Cylinder Configurations

A guestion of considerable importance in any
mathematical analysis, be it numerical or analytical, is the
vali&ity of the analysis in comparison to experimental
values. It is for this reason that experimental models were
constructed to simulate the combustion chamber-cylinder
geometries at various cylinder depths.

The experimental models are schematically shown in
FPigure 5.3. Photographs of the models follow the schematics
in Plates 1- 3. The experimental models consisted of 200 mm
x 200 mm panels of plexiglass with holes b&red through the
centers of inner dimensions comparable to the radii of the

combustion chambers (see Figure 5.1!) and cylfndets. The
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Plate S.1 Experimental Model for Combustion Chamber 1
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Plate 5.2 Experimental Model for Combustion Chamber 2
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small holes located mid-side on each panel represent holes
for fastening screws. In each of the three cases, the panels
wvere placed together in different combinations to obtain the
three different combustion cﬁambers at different cylinder
depths. The cylinder portion of the model consisted of
several plexgglass panels with holes of radius 50 mm. The

panels had depths of =4.5 mm, 9.0 mm and =18.0 mm which
vere placed together to obtain cylinder depths ranging from /
=(4.5 mm to 46.0 mm). The combustion chamber portion of the
model consisted of three different panels of radii 40 mm, 50
mm and 62.5 mm with depths of = 9.9 mm, = 12.1 mm, and =
8.5 mm respectively. The depth of the combustion chambers
wvere not exactly the same as those in the finite element
model because standard thicknesses of plexiglass material
vere used. Plexiglass was used to simulate the risid
boundary condition. The panels were fastened together with
screws to obtain the seven cylinder depths for the three
cases considered.

From the schematics 1in Figure 5.3, it can be seen that
thé inner dimensions‘of the plexiglass models represented
the combustion chamber-cylinder configurations used in the
finite element analysis (see Figure 5.1),

An 200 mm x 200 mm plexiglass panel’ Giih a 25 mm hole
drilled off center was mounted on each combustion chamber as

shown in Figure 5.3. This allowed a 25 mm microphone to be

placed such that the microphone was flush mounted in the

- - —— e = -

'Source Panel.
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\

combustion chamber slightly off center. This panel was
screwed together (fastening holes as indicated in Figure
5.4) with the combustion chamber and cylinder plexiglass
panels (see Figure 5.3) to obtain various cylinder depths. A
300 mm x 200 mm plexiglass® panel as shown in Figure 5.4
with a 6 mm hole drilled in the center was placed over the
end Qf the cylinder. This panel was not fastened to the
combustion chamber-cylinder coﬁfiguration so that movement
of the panel was possible. A 6 mm microphone was placed in
the hole such that the microphone was flush mounted in the
cylinder. The source and receiver panels were marked TOP and
BOTTOM to indicate the orientation used during the
experiments. The models were turned upside down to conduct
the experiments such that the cylinder was -above the
’combustion chamber. This was done purely to accomodate

of @

A general schematic is given in Figure 5.5 for the

movement of the receiving panel.

experimental models of the combustion chamber-cylinder
configurations. Each of the three configurations can be
"sescribed 1n this general manner show{ng an enclosure of '
air. The experimental models were set up such that there was
an axisymmetric cylindrical plexiglass enclosure
representing the combustion chamber with a Z%me microphone
mounted flush in the chamber. There was another axisymmetric
cylindrical plexiglas?enclosure joined and open to the

-
combustion chamber to represent the cylinder, with a 6 mm

- —————— - A= -

‘Receiving Panel.
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microphone mourted !..s’ w.th the cy..nder. The ¢ mm

microphone acted as a rece.ve:r. The % mm m:crophore acted

.‘, - -
.85 a transmitt.ng scurce. By exc:t:ng the a:r :“sxdt‘(he

combined combust.cr chamber-cy.:.~aer cortf.guration with the
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5.5 Experimental Progedure'

-

?he evaluation of the cavity resonances and mode shapes

-for the three combustMon chamber-cylindes configurations

L]
»

-

s -
I

using the experimental models followed the same basic
procedure for each configuration. The problem was examined
in terms of the general schemat&c given in Figure 5.5, There

was air in a rigid enclosure exgited by a source. The

resporise was measured with a receiver. The panels were
. . - . ! ' )

sereved together to obtain a given combustion
chamber‘cylinder configuration at a specific depth.

Dy Thq equipment used in the experimental analysis is

.
shown in Fxgu;e 5.6. The source was a 25 mm condenser

{
mxcrophone exc1ted by a sinusoidal sweep of frequencxes

using a functxon generator. The 25 mm mlcrophone was offset

so that it was not located on a potential nodal surface. The

sveep vas used to examine the response of the enclosure in
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e ta"ze ! !‘regzue~C:es ‘ronm . £L.000 Hz ‘see Section
.. The tesprose was peasured wi.t' a ¢ mm condenser
T.ovophone. The resprnse {rom the ¢ mm microphone was passed
*hrtagr @ mitriphite amp..f.er v.a a preamp..:f.er .ntc &
~ N — — s N - —~ e v . -~ Ty - - LN - * - * - — ~ ¢
Z.a8. TheaTre. SpeTlIUN ana.vier T chbta:- a trace of
frequenTy vers.s amp.:tude .- the fregjuency range.
ArFrox.mate.y .1 samp.es were ana.yzed. These traces are

Ta..eZ Iregue Ty spectra. ALl expev.ments were conducted r

The fregj_.e~Ty spectra were crta.ned for each of three
comfust.iorn charber-cy.:nder configurations at sever cylinder
depths, rarging frcm =(4. 5 mm - 46.C mm!. Four locations
(see F:gure £.7) were used tc determ:ne the fregquency
spectra of a given configuration at a specific depth. The
locations are shown in plan view relative to the cylinder,
because the receiving panel was mounted on the end of the
cylinder té take measurements. Thesg four locations
(Configurations I - IV) were chosen such that no modes in
the given frequency range were missed on the freguency
spectra, ie. when the receiving microphone was placed on a
nodal line. A nodal line exhibits zero acoustic pressure and
therefore no reading from a microphone would be obtained. By
measuring at different locations and examining four
frequency spectra, all the cavity resonances, indicated by
peaks on the spectrum trace, in the given freqguency range,
should have been present. In the second measurement location

(Configuration 11), where the microphone was placed in the

o
N A\
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center c! the cylinder cross section, only radial or axial
modes shcu.d be present.’

In additior tc assur:ing thdt all cavity resonances were
exper:mental.y determined, the four measurement locations
Save a rough 1dea as tc the types of modes on the cylinder
cross section the given frequencies represented, by relating
the position of the microphone to the mode type.

Figure 5.8 gives sample frequency spectra or traces for
combustion chamber 2 at a depth of 4.5 mm. These four
{regquency spectra represent measurements conducted at the
four different measurement configurations shown in Figure
5.7. Cavity resonances are shown as peaks on the spectrum
traces. Figure 5.8b indicates the pre;ence of one mode at a
frequency of 4150.00 Hz, where the microphone is located at
the center of the cylinder cross section. The other modes
are likely circumferential modes because the' frequencies do
not appear in configuration I1I.
| Tﬂe frequency traces are shown fo? combustion chamber 2
in Figure 5.8 because it represents a simple cylindrical
enclosure. The behaviour of the frequency spectra at
different locations can be examined in regard to the mode
shapes discussed earlier (see Figure 2.5). .

At a depth of 4.5 mm based on the analytical solution,
four cavity resonances, or peaks on the spectrum traces,
shduld be apparent in the traces. The following modes should

“"These modes ére the only type without a nodal line passing
through the center of the cross section.,
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(200) t, = 3364 Hz, mode (010) f, = 4220 Hz and mode (300)
fo = 4626 Hz, in that order. Upon examining the four
frequency spectra taken at the different locations, four
cavity resonances are indicated at approximately the same
frequencies given from the analytical analysis.
Configuration Il indicates that the resonance at
approximately 4150 Hz is a radial mode and the other three
are circumferential modes. Circumferential modes have a
point of zero acoustic pressure at the center of the
cylinder (see Figure 2.5), hence, the receiving microphone
et configuration I1I did not pick up these modes.'"®

The mode shapes for the lowest cavity resonances for
each of the three combustion chamber-éylinder configurati&%s
at a depth of 4.5 mm on the cross sectioén atrthe end of the
cylinder were obtained. In addition, theﬁmode shapes were
obtained for the second and third cavity resonances of
‘combustion chamber 2, in a similar manner, to‘compare to
analytical theory and the finite element results because
combustion chamber 2 is a simple cylindrical enclosure.

The mode shapes were obtained experimentally by
measuring the acoustie pressure at various locations on the
cross section at the end of the cylinder by moQing th;

‘®receiving ‘panel to various lecatioqs; A grid of 21 poiﬁts

" was used as shown in Figure 5.9. The microphone wa$ moved to
each of-the 21 points,lﬁhere a reading of the preséere was
‘measured in volts using ‘the 1nstantapeous value of amplltude

‘*Note: There is some variation in the frequenc1es for
different measurement locations. .
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on the spectrum analyzer for each point. By plotting these
voltages at various locations, the mode shape was obtained.
Not all of the 21 points were used in the mode shapes given
in this analysis as the picture became too complicated. The
pressure variation along one diameter was plotted to
determine the mode shapes and the nodal line of the cross
section was indicated as a dashed line.

A given mode was excited by setting the function
generator to a sine wave of a given freguency which was
obtained from the experimental cavity resonance analysis.
The acoustic pressure distribution was measured for a given
frquency at the locations indicated in Figure 5.9. For,
example,‘there was a cavity resonance at f = 2018.75 Hz for
combustion chamber 2 at a depth of 4.5 mm. To examine the
mode shape on the end of the cylinder, the function
generator was set to 2031 Hz.'' The acogstic pressute was
measured at 21 points; The results were plotted on the
cylinder cross siftion‘to demonsg}ate the mode shape." The
nodal line of the cross section was drawn, using linear

interpolation where necessary. . ‘

By repeating this procedure, experimental mode shapes
for the other two combustion chamber-cylinder configurations

at a depth of 4.5 mm were obtaine‘Likewise, the mode

-

shapes for the second and third cavity resonances of
combustion chamber 2 were obtained for comparison with

analytxca; theory. Combustion chamber 2 has been repeatedly
'. This value was sllghtly higher than the frequency given
n the cavxty resonance analysis. :

u--.
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studied i1n moré detail because it is a simple cylindrical
enclosure and analysis of these results gives an indication
of the validity of the mathematical models both approxihatt

(finite element results) and exact (analytical solution). '?

'?Note: This method does not guarantee’that the mode shape
is the maximum amplitude associated with the cavity
: resonance. i ’ -



6. COMBUSTION CHAMBER-CYLINDER RESULTS

6.1 Cavity Resonances
The bounds for the numerical results were calculated on
the basis of section 5.2 as an approximation. Figures 6.1 -

6.3 show the approximate curves for the three configurations

\

for the first fqur\Todes.
The acoustic finite element results for combustion
chamber 1 are presented in Figure 6.41 indicg%ed by solid
lines. The curves are presented in order of magnitude stGch
- that the lowest curve is the lowest cavity resonance, the
seconq curve the second l§west cavity resonance and so on.
The unusual shape.of the curves for the higher resonances
(2nd, 3rd . . .) for large cylinden,depths suggests that
some unusual behaviour is occurring. '? These chénges in the
curves are due to the presence of axial modes as the length
of the cylinder increases. Therefore, the curves presented
in order of magnitude do not necessarily represent one
specific mode except for fhérlowest cavity resongnce which
does hot exhibit this unusual behaviour. The fesulis
presented for the higher modes are not as accurate as the
lowest mode partly becapse.the finite element results lose
accuracy fotr- higher modes due to the approx1mate assumed

IIt should be noted here, that the curves do not occur in
pairs as did the modes for a cylindrical enclosure, This is
due to the use of a half chamber finite element model which
gives only one of any orthogonal pair. This does ot affect
this analys1s as the pairs of frequencies are identical for
axisymmetric cylinders such as these.
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Figure 6.1 Bounds for Numerical Results-Combustion Chamber

1

.



Figure 6.2 Bounds for Numerical Results-Combustion
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Figure 6.3 Bounds for Numerical Results-Combustion Chamber .
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solution for the acoustic pressure. The results are
presented mer;ly to give an indication of the behaviour»of
the different cavity resonances as a function of cylinder
depth. Accuracy of the higher modes can be obtained by Qsing\
more elements to model the enclosure. Hovevef, the computer
solution of large éigenvalue problems is expensive. Figure
6.1, which shows the bounds for the numerical results for
combustion chamber 1 agrees well with Figure 6.4. The
frequencies for the lowest mode increase with increasing
depth in both cases. Figure 6.1 does not illustrate the
effect of the axial modes as only the radial and
circumferential modes, which are indicated by arrovs, véke
exaqined to determine bounds. From the standpoint of engine
knock at small cylinder depths, the axial modes do not
appear to play a significant role for this configuration.
The finite element results for combustion chamber 2 are
shown in Figure 6.5, indicated by solid lines. The curves
are plotted in the same manner as those for combustion
chamber 1, in ‘order of magnitude. These results are of
particular interest because the combustion chamber-cylinder
configuration is simply an axisysmetric cylinder. Therefore,
the analytical solution given in section 2.4 can be used.
The cavity resonances (exact solution) calculated from
equations (2.3.3) are also presented in Pigure 6.5, shown by
dashed lines. The analytical solution gives a good .
indication of the accuracy of the finite element model.

Excellent agreement vas obtained between the finite elemeént
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\
approximétion and acoustic theory for the lowest mode.

The analytical curves are labeled with arrows
indicating the mode types which the frequencies represent
based on the analytical solution. Modes (100), (200), (010),
and (300) are shown in that order. The first axial mode is
also shown which occurs at large cylinder depths. The
presence of the axial mode indicates why the second
resonance curve changes shape such that mode (200) exists as
the second lowest resonance until a depth of approximately
37 mm and then the second lowest resonance is an a;ial mode.

The analytical solution shows that the finite element
solution loses accuracy at the higher modes compared to -
acoustic theory. The second.resonance curve from the finite
element analysis is approximately 4.5% higher than the
analytical solution for mode ;}00) until a depth of 37 mm is
reached. At a depth of 37 mm the finite element solution is
very close to acoustic theory for mode (001). This change in
acchracy can be explained by examining the finite element
model, Figure 5.2b, more closely. There are six elements
used in the circumferential direction. Hence, based on the
convergence of element PR1S, finite element predictions in
the circu-fd;ontial dirocfion should be extremely good for
mode (100), and resonabdly good for -od; (200) with
decrcﬁsinq accuracy for the higher circumferential logo‘.
There is one element in the radial direction. Hence, the
tinite element predictions for first radial mode (010) will
not be viry sccurate. There are tvo elements used in the

14
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axial direction. Therefore, finite element predictions for
the first axial mde (007) are quite good. Going back to
Figure 6.5, the differences between analytical theory and
the finite element results can be justified by the finite
element model. The extensive study of combustion'chamber 2
is very useful in understanding the behaviour of the finite
element models.

. Figure 6.5 can also be compared to Figure 6.2 which
shows the bounds for the Bumerical results. However, in this
' case the bounds are merely the analytical solution to the
problem. |

The finite element results for combustion chamber 3 are
shown in Figure 6.6, indicated by solid lines. The curves
are plotted, similar to those for the other two
configurations. The lowest cavity resonance is a smooth .
curve. The higher cavity resonances are unusually shaped, a
similar behaviour to that exhibited by the higher modes for
combustion chanbo;s ! and 2. This phenomena is a;tributcd to
the axial modes which have a dependence on cylinder depth
rather than the radius. | -

A comparison of Figures 6.3 and 6.6, shows a good
agreement betwean the bounds for the nimerical results and
the numerical results themselves for combustion chamber 3.
The frequencies for the different modes tend to be
decreasing with incressing cylinder depth. Figure 6.3 does
not illustratg the axial modes. Only bounds for modes (100),
(200), (010) and (300) are givﬁn. .
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The lowest éhvity resonance in each of three.cases is a
continuous smooth curve. This seems to indicate that one
tybq of mode is present. As has peen previously shown, thé
main focus of this analysis is to examine the lowest thity
resonahcé in detail. Figures 6.4 - 6.6 show the lowest
cavity .resonances for three types of axisymmetric combustion
. chambers of.ghe saﬁe volume as a function of éylinder depth.

Spectrum traces were experimentally obtained for each
combgstion chambeg-cylinder configuration at seven cylinder
depths ranging7from t(i.QymE - 46.0 mm) to compare to the
" numerical results. The experimental cavity resonances are
plogted'in Figures 6.4 - 6.6 along with the .finite elqmeht
results.. The experimental results are indicated by circles,
such that-the radius of thevcircle shovs the experimental
variation ih‘txeq%ency'for the measurements. The irequency
spectruu anslyzer, a dual channel FrT dovic§ ”hnd a
rosolution of 6. 25 Hz on the range usod. In addition, the
temperature insidn the anechoic cha-bor varicd from 2@.2 -

f

25.2 °c during the course of the ICllur.llntl.’ThttifctQ,

the pn-ks on the .pactral tracos varied from contigurntion 1
_to IV by ao much as 30 Hs, '* lopoatability t.ltl voro )
cd;i\\ttd on ssveral Jontiquratlonl to lubotantiato that the
opoetral p.ats vere vulid.

" The oxpoti-.ntal results 1n all three Cases dgree wvell
with tln unito clmt ron)lu for the lowest cavity

umm The utnuat v!th :muoa ehﬁu ! is -

------’q--‘-‘--’-- .

' *This urhtiu is m jmmoa l' the resolution alome.

-
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exceptionally qood especially compared to the analytical

solution.

6.2 Mode Shapes

The mode shapes are presented in Figures 6.7 - 6;11 in
pairs to compare the'finite elemen; mode shapes to the
~experimental mode shapes. '* Each figure shows the
compariéon for a given combustion chamber for a given mode
at a depth of 4.5 mm on the Cyljnde;-cross section. Figures
6.7a - 6.9a show the-lowest modee predictedhfrom the finite
element analysis for combustion chambers 1, 2 and 3
respectively. The finite element predictions indicate that
‘these modes are first circumferential modes (100) at the
depth indicated. An acoustic pressure variation across the
-diameter is plotted for the_finitg element results and the
nodal line is shown as a dashed line. Only the,pteeiﬁre~i
variation along o-ne diameter vn.plotted because the 9:14‘
points for the models did-not coincide with the experimental
grid points. However, a distinct coqperisog can be made
between the experimental mode shapes Aha the’!inite.e}e.ent
mnode shapes by conslderiug the dashed line in each case.

The veudity of the mode shapes can be deternined in a
similar muer to that done for the cevity resonances.
Combustion chamber 2 cen. ip emiu«l in cmtlm to-the
snalytical theory.\ageiu. for niqlieity. cin n‘n nd

!

''The experiments were conducted eueh tiat m m:léu
chember-cylinder models were turned wlue with the -
rm!vin penel on tep. ‘

e
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S~

examined at depth of 4.5 mm. From Figure 2.5, there should
be one circumferential mode with one nodal diameter. Figure
6.8 shows bokh experimentally aﬁd from the finite element
results a cross sectional view with one nodal diameter.
Secondly, there should be a circumferential mode with two
nodal diameters. Figure 6.10 shows both experimengally and
from the finite element results a crdss sectional view with
tvo nodal diameters. The third mode should be a radial mode.
Figure 6.11 shows bo;h experimentally and from the finite
element results a cross sectional view vwith a radial nodal
line. In the case of the rﬁ?ial mode, linear interpolations
vere performed to locate the zero acoustic pressure ‘
location. Both experimentally)and vith the finite element
analysis, the mode shapes were symmetric with respect to the
nodal lines. In the higher modes from the finite element
analys?s, mode (010) for example, the mode shapes began to
lose their expected shapes compared to analytical‘theory.
This is not surprising as the cavity resonances were not as
accurate for the higher modes. Again, because of the concern
vith the lovest mode, the mode shapes seem to be extremely
gooé. .

An’intcreuting note to mention regarding the
measurement of the mode shapes is in regard to the actual
valui of the frequency r;quired to excite a given mode. As
discussed earlier, the frequency of excitation was

established from values obtained from the frequency

- Spectrums for a given cavity resonance. During the course of
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the experiments, it was found that the-excitation frequency
could be varied with certain limits while still maintainiing
one specific mode shape. Considering combustion chamber 2,
for example, a mode shape was obtained at an excitation of f
= 2019 Hz which was very similar to that obtained at 2031
Hz. The mode shape at 2019 Hz was not included because there
were some difficulties with the function §enerator
maintaining an excitation of 2019 Hz. However, it is
interesting to note that the actual freguency associated
vith a given mode shape experimentally is not very precise,.
In other words, the mode shape is not necessarily the
maximum qrplitude mode shape associated with resonance. This
1s of considerable importance in some of the modes where
‘there was considerable variation in freguency from run go
run,

From the analytical analysis of standing waves in
enclosures, a positive amplitude on one side of a nodal
surface is expected and a negative amplitude on the other.
The negative amplitude indicates a phase difference which
- wvas not obtained experimentally. However, the phase
~difference vas obtained from the finite element analysis as

indicated in the figures .



7. FURTHER CONSIDERATIONS

Axisymmetric combustion chambers represent only a
portion of the complex combustion chambers as discussed
earlier. However, the finite element analysis provided in
this research would be equally valid for asymmetric
combustion chambers.

As an extension to the experimental work which was done
on the axisymmetric combustion chambers, one asymmetric
combustion chamber was examined at a depth of 4.5 mm. This
combustion chamber was similar to combustion chamber 3
(radius = 40 mm) except that the combustion chamber was
offset as shown in Figure 7.1.

The cavity resonances were experimentally obtained in a
similar manner to those for the axisymmetric combustion
chambers. The spectrum trace for configuration I is shown in
Figure 7.2.

The results for the lowest cavity resonance indicate
that two frequencies exist at very near to the same value.
This indicates that the asymmetry of the combustion chambe;
separates the orthogonal pairs of circumferential modes
(100) into two separate modes, of slightly different
frequencies.

The experimental mode shapes which were obtained for
the tvo lowvest cavity resonances are presented »in Figure
7.3. Figure 7.3b at 2400 Hz showvs a circumferential mode
(100). Figure 7.3s at 2300 Hz shows a combined mode. '°*

- - . e e .-

'‘The excitation frequencies were chosen slightly higher
than and slightly lowver. than each mode to uncouple the

97



Plane of
symmetry

' 40 l

: . Asymmetric
| ) Combustion
' cham _bor &

axisymmaetric
cylinder

~ 50 1

Dimensions in mm

-
- R S G W - e - e o o .-

*¢(cont'd)
Pigure 7.1 Asysmetric Combustion Chamber

.

98



99

Contiguration |
[ ]
= 2312.50 2381.25
&
[ J
©
2\
Tez 3587.50
« 4093.75
; N
2
-
T T T
1000 2000 3000 4000 5000
Frequency Hz
‘*s(cont'd)

Figure 7.2 Spectrum Trace for Asymmetric Combustion Chamber

-

13



/

a)Experimental f=2300 Hz .
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*¢(cont'd)
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If one superimposes two (100) modes orthogonal to one
another, the mode shape given in Figure 7.3a is similar to
the combination of these two modes, with some distortion due
to the asymmetry of the combustion chamber. Evidently, the
experimental mode shape in Figure 7.3a (representing 2312.50
Hz) was not uncoupled from the other mode (representing
2381.25 Hz).

This experiment was conducted as a ;ecommendation for
areas of further research. For more complex asymmetrical
coqbustion chambers, finite element analyses could be
performed and compared to experiﬁental results similar to
that done in this work. The mode shapes as a function of
cylinder depth could be studied to shed more light on cavity

-

resonances of complex shaped enclosures.

*¢(cont'd{modes. "



8. CONCLUSIONS

8.1 Cavity R.sonanéé:

The cavity resonance results for the three combqstion
chamber-cylinder configurations as a function of cylinder
depths are summarized in Figures 6.4 - 6.6. For each
combustion chamber, there was good agreement between the
finite‘element predictions and the experimental results for
thellowest cavity resonance. The digference between the
finite element results and the experimental results
insreases for the higher modes. This "is confirmed
particularily for combustion chamber 2 where the comparison
is made to acoﬁstic theory. Acoustic theory agrees ver& well
with experimental values for all the modes considered for

S ot s A
combustion chamber 2, within the frequency range. The

approximation for the complex geometries using the

- analytical equations for the first four modes is quite good

for the geometries considered. It gives a reliable

indication of the behaviour of the modes as the cylinder

¥

depth changes. o

- b
8.2 Mode Shapes

Tﬁe experimentgi\gode shapes and finite element mode
shapoi are summarized invriguxes 6.7 - 6,11, For each
combustion chamber, there vas good agreement betveen the
finite element predictions and the experimental results fof

- £
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the lowest cavity resonance at the given depth. For all
three combusiion chambers at the cylinder depth considered,
the lowest cavity resonance vas a circumferential mode (100)
with one nodal diameter. The agreement with analytical
theory for combustion chamber 2 mode shapes validates the
usefulness of the finite element method for predicting

cavity resonances of rigid enclosures.

8.3 For Engine Knock

Although this analysis considered air in cbmbustion
chamber-cylinder geometries, the results could be guite
useful in considering engine knock if one knows the
properties of the gas in the actual engine cycle. The
observed trends in éke cavity resonances as a functioq of
cylinder depth would be the same for-a different velocity of
sound as would the location of the nodal surfaces. However,
the actual values of the frequencies would be much higherg in
a run%ipg engine. This analysis does give soﬁe insight into
the acoustic nature of complex shaped enclosut:s in regard

to engine knock as well as insight into the natural

frequencies of complex shaped rigid enclosures, in general.
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-APPENDIX 1

C THIS SUBROUTINE CALCULATES THE P MATRIX FOR
C A 15 NODE TRIANGULAR ISOPARAMETRIC ELEMENT
(o

SUBROUTINE PR1SEP(EP,X,Y,Z,M,N)

DIMENSION

G(15,15) ,GAX1(16) ,GAET(16),GAZE(3),EP(M, M) WK( 15, 15)
DIMENSION FTF(15, 15) GT(15,15) x(15) 1(15) 2(15),wW1(3)
CALL GINVIiI5(G,M)

CALL NUMIN(GAxI GAET,GAZE,N,W,W1)

CALL FTXF(FTF,N,M,W, W1 GAXI GAET GAZE,G,X,Y,Z)

DO 1 I=1,M

DO 1 J=1,M

WK(I,J)-0.0

DO 1 K=1,M

»] WK(I,J)=WK(I,J)+FTF(I,K)*G(K,J)

DO 2 I=1,M

DO 2 J=1,M

2 GT(1,J)=G(J,1)

DO 3 1I=1,M

DO 3 J=1,M

EP(1,J)=0.0

DO 3 K=1,M

3 EP(I,J)=EP(1,J)+GT(I,K)*WK(K,J) .
RETURN

END
C
C THIS SUBROUTINE CALCULATES THE KERNEL OF THE
C P MATRIX FOR A 15 NODE TRIANGULAR ISOPARAMETRIC

C ELEMENT
c

SUBROUTINE FTXF(FTF,N,M,W,W1,GAXI,GAET,GAZE,G,X,Y,2)
REAL FT(15),FTF(M, M) GAxI(N) GAET(N) JAC(3 3) JACT(3 3)
DIMENSION x(M) Y(M) Z(M) G(M,M) W1(3) GAZE(3) :

DO 3 I=1,M

DO 3 J=1,M

3 FTF(I,J)-0.0

DO 5 L=1,3

DO 4 K=1,N

FT(1)=1.0

FT(2)=GAXI(K) T

FT(3)=GAET(K)

FT(4)=GAXI(K)=%22 :
FT(5)=GAXI(K)*GAET(K) «
.PT(6)=GAET(K)ss2 A

FT(7)=GAZE(L)

FT(8)=GAET(K)sGAZE(L) ' '
FP(9)=GAXI (K)*GAZE(L) '
FT(10)=GAXI (K)*GAET(K)*GAZE(L)

FT(11)=GAZE(L)##2

FT(12)=GAXI(K)*+2*GAZE(L)

PT(13)=GAET(K)*+2¢GAZE(L) pa
FT(14)=GAXI(K)tGAZE(L)tt2‘/ ~
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FT(15)=GAET(K)*GAZE(L)x%2 :
CALL JACOB3(JAC,JACT,DETJ,K,L,M,GAXI ,GAET,GAZE,N,X,Y,2,G)
DO I=1,M

1J=1,M
TF(,J)=FTF(1,J)+FT(1)*FT(J)*DETJ*W*W1(L)

NUE '
1, M
" J=1,M

2°FTF(1,J)=FTF(1,J) -

S5 CONTINUE : /

RETURN

END
C

C THIS SUBROUTINE SE THE NATURAL CO-ORDINATES .
C FOR THE 15 NODE TRIANGULAR ELEMENT <

C

SUBROUTINE PR15(XI,ET, ZE,M) N
DIMENSION XI (M),ET (M), 2E(M)

XI1(1)=0.0

X1(2)=1.0

7

ET(])‘0.0 . >
ET(2)=0.0 .
ET(3)=1.0
ET(4)=0.0
ET(5)=0.5
ET(6)=0.5
ET(7)=0.0
ET(8)=0.0
ET(9)=1.0
ET(10)=0.0 ‘ -
ET(11)=0.0 '
ET(12)=1.0
ET(13)=0.0
ET(14)=0.5
ET(15)=0.5
ZB(1)=-1.0
ZE(2)=-1.0
ZB(3)=-1.0
ZE(4)=-1.0
ZE(5)=-1.0
ZE(6)=-1.0

[
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tq;,;".gzﬁ:(n)

“
b

28(12)-1 0
ZE(13)=1.0
ZE(14)=1.0
ZE(15)=1.0
RETURN
END

THIS SUBROUTINE FORMS THE GINV MATRIX FOR THE
NATURAL CO-ORDINATES OF THE 15 NODE TRIANGULAR
ELEMENT -

SUBROUTINE GINV15(G,M)
DIMENSION G(M,M), LK(15) ,MK(15) , X1 (15),ET(15),2E(15)
CALL PR15(XI,ET, 2E ,M)

DO 1 I=1,M

G(I,l)-l.O

G(I,2)=X1(1)

G(I,3)=ET(1)

G(I,4)=XI(1)=ss2

G(I,5)=ET(1)*XI1(1)

G(I,6)=ET(1)ss2

G(1,7)=2E(1)

G(I,8)=ET(1)s2E(1)
G(I,9)=XI(I)s2ZE(1)

.G(1,10)=XI(I)*ET(1)¢2E(I) .
"G(I,11)=2E(1)ss2 "fﬂf

G(I,12)=XI(1)%%2+ZE(I) ‘ &
G(I,13)=ET(I)*#24ZE(1) - =
G(I,14)=XI(1)%ZE(1)2¢2

1 G(I,15)=ET(1)*ZE(1)%s2

.CALL MINV(G,M,D,LK,MK)

o
o
o
C

RETURN -
END

THIS SUBROUTINE CALCULATES THE S MATRIX FOR
A 15 NODE TRIANGULAR ISOPARAMETRIC ELEMENT

SUBROUTINE PR15ES(ES,X,Y,Z,M,N)

.DIMENSION

G(15,1%) ,6T(15,15),GAXI(16),GAET(16),GAZE(3),ES(M,M)
DIMENSION DFTXDF(IS 15) wx(15 15), wi(3)

DIMENSION X(M),Y(M),2Z(M) f

CALL GINV1S(G, M)

" CALL NUMIN(GAXI GAET,GAZE,N,W,wW1)

ggLL DFTP(DFTXDF N,M, W, W1 GAXI GAET,GAZE,G,X,Y,2)
1 I=} M

DO 1 Js1,M

WK(I,J)'O;O -

DO 1 K=1,M
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WK(I,J)=WK(1,J)+DFTXDF(1,K)*G(K,J)
2 1=1,M .
2 J=1,M
T(1,J3)=G(J,1)

DO 3 I=1,M

DO 3 J=1,M

ES(1,J)=0.0

DO 3 K=1,M

3 ES(I,J3)=ES(1,J)+GT(1,K)eWK(K,J)

RETURN

END
C
C THIS SUBROUTINE CALCULATES THE KERNEL OF THE
C S MATRIX FOR A 15 NODE 1SOPARAMETRIC ELEMENT
C

SUBROUTINE DFTF(DFTXDF,N,M,W,W1,GAXI,GAET,GAZE,G,X,Y,2)
DIMENSION DF(3,15),WK(3, 15) wx1(3 15) DFTXDF(M M)
REAL GAXI(N), GAET(N) G(M, M) ,JAC(3,3),JACT(3,3)
DIMENSION X(15), Y(15),2(15) "GAZE(3) W1(3)
DO 1 I=1,M

DO 1 J-I,M

' DFTXDF(1,J)=0.0

DO 5 L=1,3

DO 2 K=1,N

DF(1,1)=0.0

DF(1,2)=1.0

DF(1,3)=0.0

DF(1,4)=2.0¢GAXI (K)

DF(1,5)=GAET(K)

DF(1,6)=0.0

DF(1,7)=0.0

DF(1,8)=0.0

DF(1,9)=GAZE(L)
DF(1,10)=GAET(K)*GAZE(L)
DF(1,11)=0.0 ..

DF(1,12)=2, o:chI(K)cGAzE(L)
DF(1,13)=0.0

DF(I,IG)-GXZE(L)##Z s
DF(1,15)=0.0
DF(2,1)=08.0
DF(2,2)=0.0
DF(2,3)=1.0
DF(2,4)=0.0
DF(2,5)=GAXI (K)
DF(2,6)=2.08GAET(K)
DF(2,7)=0.0
DF(2,8)=GAZE(L)
DF(2,9)=0.0
DF(2,10)=GAXI(K)sGAZE(L)
DF(2,11)=0.0
DFP(2,12)=0.0
DF(2,13)=2.0*GABT(K)sGAZE(L)
Dr(2,14)=0.0
DF(2,15)=GAZE(L)ss2



DF(3,1)
DF(3,2)=0.
DF(3,3)=0.
DF(3,4)=0.
DF(3,5)=0.
DF(3,6)=0.
DF(3,7)=1,0
DF(3,8)=GAET(K)
DF(3,9)=GAXI (K)
DF (3, 10)=GAXI (K) sGAET(K)
DF(3,11)=2.0sGAZE(L)
DF(3,12)=GAXI(K)ss2
DF(3,13)=GAET(K)ss2
DF(3,14)=2_.0¢GAXI (K)*GAZE(L)
DF(3,15)=2.0#GAET(K)*GAZE(L)
CALL JACOB3(JAC,JACT,DETJ,K,L,M,GAXI ,GAET,GAZE,N,X,Y,2,G)
DO 3 1=1,3
DO 3 J=1,M
WK(I,J)=0.0
DO 3 LL=1,3
3 WK(I,J)=WK(I,J)+JAC(I,LL)*DF(LL,J) N
DO 6 I=1,3
DO 6 J=1,M
WK1(I,J)=0.0
DO 6 LL=1,3 .
6 WK1(I,J)=WK1(I,J)+JACT(I,LL)*WK(LL,J)
DO ¢ I=1,M
DO 4 J=1,M
DO 4 LL=1,3
4 DFTXDF(I +J)=DFTXDF(1,J)+DF(LL,I1)sWK1(LL,J)*DETJ*WsW1(L)
2 CONTINUE
DO 7 I=1,M
DO 7 J-1,M :
7 DFTXDF(1,J)=DFTXDF(1,J)
5 CONTINUE A -
RETURN
END
C
C THIS SUBROUTINE FORMS THE JACOBIAN FOR A 3 DIMENSIONAL
‘C 15 NODE TRIANGULAR ISOPARAMETRIC ELEMENT
€
. SUBROUTINE
JACOB3(JAC,JACT,DETJ,K,L,M,GAXI ,GAET,GAZE,N\X,Y,2,G)
REAL
JAC(3,3),JACT(3,3),GAXI(N) +GAET(N) ,GAZE(3) ,X(M),Y(M),Z(M)
DIHENSION wx1(15) wx2(15) wx3(15) G(M M) Drxh(ls) DFET(lS)
DIMENSION DFZB(IS)
DIMENSION LK(3),MK(3)
DO ¢ I=1,3
DO ¢ J=1,3
4 JAC(1,J)=0.0
DO 5 1=1,M
WK1(1)=0.0 ) ,
WK2(1)=0.0

0.
0
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5 WK3(I)=0.0

DFXI(1)=0.0

DFXI(2)=1.0

DFX1(3)=0.0
DFXI(4)=2.0¢GAXI (K)
DFXI(5)=GAET(K)

DFX1(6)=0.0

DFX1(7)=0.0

DFXI(8)=0.0

DFXI(9)=GAZE(L)
DFXI(10)=GAET(K)*GAZE(L)
DFXI(11)=0.0
DFXI(12)=2.0*GAXI(K)*GAZE(L)
DFXI1(13)=0.0
DFXI1(14)=GAZE(L)x*s2
DFX1(15)=0.0

DFET(1)=0.0

DFET(2)=0.0

DFET(3)=1.0

DFET(4)=0.0

DFET(5)=GAXI (K)
DFET(6)=2.0*GAET(K)
DFET(7)=0.0

DFET(8)=GAZE(L)

DFET(9)=0.0

DFET(10)=GAXI (K)=*GAZE(L)
DFET(11)=0.0

DFET(12)=0.0
DFET(13)=2.0*GAET(K)*GAZE(L)
DFET(14)=0.0
DFET(15)=GAZE(L)*s2
DFZE(1)=0.0

DFZE(2)=
DFZE(3)
DF2E(4)
DFZE(5)
DFZE(6)
DFZE(7)=1.0

DFZE(8)=GAET(K)
DFZE(9)=GAXI (K)

DFZE( 10)=GAXI (K) *GAET(K)
DFZE(11)=2.0¢GAZE(L)
DFZE(12)=GAXI (K)=#s2
DFZE(13)=GAET(K)#s2
DF2E(14)=2,0sGAZE(L)*GAXI (K)
DFZE(15)=2,.0¢GAZE (L) sGAET(K)
DO 1 J=1 M

DO 1 I=1,M
WK1(J)-HK1(J)*DFXI(I)tG(I,J)
WK2(J)=WK2(J)+DFET(1)¢G(I,J)

0.0
0.0
0.0
0.0
0.0

1 WK3(J)=WK3(J)+DP2E(I)sG(1,J)

DO 2 I=1,M
JAC(1,1)=JAC(1,1)+WK1(1)sXx(1)
JAC(2,1)=JAC(2,1)+WK2(1)sX(1)

li
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JAC(3,1)=JAC(3,1)+WK3(I)eX(1)
JAC(1,2)=JAC(1,2)+WK1(1)=Y(1)
JAC(2,2)=JAC(2,2)+WK2(1)*Y(])
JAC(3,2)=JAC(3,2)+WK3(1)sY(I)
JAC(1,3)=JAC(1,3)+WK1(1)*2(1) .
JAC(2,3)=JAC(2,3)+WK2(1)*2(1)
2 JAC(3,3)=JAC(3,3)+WK3(1)e2(1)
CALL MINV(JAC,3,DETJ,LK,MK
DO 3 I=1,3 :

DO 3 J=1,3

3 JACT(1,J3)=JAC(J,1)

RETURN

END

SUBROUTINE NUMIN(GAXI,GAET,GAZE,N,W,W1)
DIMENSION GAXI(N),GAET(N),GAZE(3),Wi1(3)
GAXI(1)=1.0/12.0
GAXI1(2)=1,0/6.0
GAXI(3)=1.0/12.0
GAXI1(4)=1.0/3.0
GAXI1(5)=1,0/12.0
GAXI1(6)=1.0/6.0
GAXI(7)=3+.0/3.0
GAX1(8)=5.0/12.0
GAXI(9)=1.0/12.0
GAXI1(10)=1.0/6.0
GAXI(11)=1.0/3.0
GAXI(12)=5.0/12.0
GAXI(13)=7.0/12.0
GAXI(14)=8.0/12.0
GAXI(15)=7.0/12.0
GAX1(16)=10.0/12.0
GAET(1)=10.0/12.0
GAET(2)=8.0/12.0
GAET(3)=7.0/12.0
GAET(4)=7.0/12.0°
GAET(5)=5,0/12.0
GAET(6)=1.0/3.0
GAET(7)=1,0/3.0
GAET(8)=5.0/12.0
GAET(9)=1,0/6.0
GAET(10)=1.0/12.0
GAET(11)=1.0/12.0
GAET(12)=1,0/6.0
GAET(13)=1.0/3.0
GAET(14)=1.0/6.0
GAET(15)=1.0/12.0
GAET(16)=1.0/12.0

W=1.0/32.0

GAZE(1)=0.0
GAZE(2)=0.7745966692
GAZIE(3)=-GAZE(2)
Wi1(1)=8.0/9.0

W1(2)=5.0/9.0

Wi(3)=w1(2)
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RETURN
END

114



